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Abstract 
This thesis illustrates issues and solutions to build a decentralized and distributed 

tuple space (DTSpace) on top of a Peer-to-Peer (P2P) network. The tuple space 

(TS) model was first described by David Gelernter in 1985. The TS provides 

communication and synchronization capabilities for distributed processes and 

applications. During the last two decades, many approaches have been developed 

for the TS. Most of them, for example, JavaSpaces from Sun or TSpaces from 

IBM, are centrally managed. An example for a distributed TS is SwarmLinda, 

which imitates the behavior of a swarm in nature to store and retrieve data items 

called tuples (e.g. like an ant colony).  

 

The DTSpace approach in this thesis is divided into three parts: (1) TS, (2) P2P and 

(3) distributed mutual exclusion, which are examined in this thesis. The DTSpace 

approach provides the three operations out, in and read, which are originally 

described by David Gelernter. A distributed mutual exclusion algorithm approach 

is used to provide the mutual access to tuples.  
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Kurzfassung 
Diese Diplomarbeit stellt Probleme und Lösungen vor, um einen verteilten und 

dezentralisierten Tupel Space (DTSpace), basierend auf einem Peer-to-Peer (P2P) 

Netzwerk, zu entwickeln. Das Tupel Space (TS) Modell wurde erstmals von David 

Gelernter im Jahre 1985 beschrieben. Der TS stellt Kommunikations- und 

Synchronisationsmechanismen für verteilte Applikationen zur Verfügung. 

Während der letzten zwei Jahrzehnte wurden viele Ansätze für den TS entwickelt. 

Viele davon haben einen zentralisierten Ansatz, wie z.B. JavaSpaces  von Sun und 

TSpaces  von IBM. Ein Beispiel für einen verteilten TS ist SwarmLinda. Dieser 

Ansatz imitiert das Verhalten eines natürlichen Schwarms, um Datensätze, so 

genannte Tupel, zu speichern und wieder zu finden (z.B. wie eine 

Ameisenkolonie). 

 

Der DTSpace Ansatz in dieser Diplomarbeit ist in drei Bereiche unterteilt: (1) TS, 

(2) P2P und (3) verteilter Mutual Exclusion (wechselseitiger Ausschluss). Diese 

werden in der Diplomarbeit detailliert behandelt. Die drei Operationen out, in und 

read, welche ursprünglich von David Gelernter beschrieben wurden, werden vom 

DTSpace Ansatz unterstützt. Ein verteilter Mutual Exclusion Algorithmus wird 

verwendet, um zu gewährleisten, dass nur ein Prozess zur gleichen Zeit auf ein 

Tupel zugreifen kann. 
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1. Introduction 
In this chapter I shortly introduce what a tuple space is. A tuple space can be 

viewed as a blackboard where, for example, people, can put notes on it, read or 

remove them. Consider, for example, a blackboard as a platform to search for or 

offer flats. The demands and offers for flats are written on little paper snippets 

(notes). The notes are pinned on to the blackboard. In tuple space terminology the 

notes are tuples and the blackboard is the tuple space. The people who are 

interacting with the blackboard, i.e. read, remove or put notes onto the blackboard, 

are called processes or nodes. There are three interactions with the blackboard: (1) 

pin a note onto the blackboard, (2) remove a note and (3) read a note. The tuple 

space offers these three operations: (1) out to write a tuple into the tuple space, (2) 

in to remove a tuple and (3) read to read a tuple.  

 

In the tuple space it is possible to wait for tuples, which does not exist in the tuple 

space yet. This would be the demanding notes on the blackboard. For example, if 

someone is looking for a flat, he or she puts a note on the blackboard and waits 

until someone, who offers a suitable flat, notifies the looking person. The looking 

person has to sit tight until a notify message is made (e.g. someone calls, that he or 

she is offering a suitable flat, for which the looking person searches for). In tuple 

space terminology this is called blocking. If a requested tuple does not exist, the 

demanding node waits until a suitable (also called matching) tuple is inserted into 

the tuple space.  

 

It is possible that demanding and offering notes for a suitable flat co-exist on the 

blackboard. For example, the offering person and the demanding person do not 

look for suitable demands or offers. Therefore both the offering and demanding 

person are waiting indefinitely, if no one does anything further. In contrast to the 

blackboard the tuple space guarantees that, if a node is requesting a tuple and a 

matching tuple is inserted into the tuple space, the requesting node gets the tuple. 

 

The blackboard example is an abstraction of a tuple space. A tuple space is a 

virtual space for notes, i.e. tuples. A tuple space can be used for communication 
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and synchronization between distributed processes and applications. How this 

communication works in detail is discussed in Chapter 3.1. This thesis works out 

an approach for a distributed tuple space.  

 
The remaining thesis is organized as follows. Chapter 2 discusses the motivation, 

the problem discussed in this thesis and an application scenario. Chapter 3 gives an 

overview of different tuple space implementations; distributed hash table (DHT) 

networks and discusses distributed mutual exclusion approaches for Peer-to-Peer 

(P2P) networks. In Chapter 4 the distributed tuple space (DTSpace) approach is 

discussed in detail. Chapter 6 evaluates the DTSpace prototype implementation in 

different test scenarios. Future work and novel approaches are discussed in Chapter 

6. A summary is found in Chapter 7 and a conclusion is presented in Chapter 8. 

The Appendix contains a short discussion of the DTSpace prototype 

implementation (architecture, configuration and usage).  
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2. Motivation 
The motivation of building a distributed tuple space on top of a P2P network is 

based on the need of distributed applications. In the last decade, distributed 

networking and applications became very popular. One reason is that more and 

more computers are connected with each other through networks and are able to 

collaborate with each other. The biggest network at the moment is the Internet with 

millions of participating computers. Another reason is that the home computers 

have become very powerful and are able to share their resources. One of the classic 

examples is Napster – a file sharing P2P network. During the late 90’s, Napster 

attracted millions of users to share their files. The success of Napster is its 

simplicity in usage and powerful collaboration of resources. The distributed tuple 

space also contains these two qualities. The distributed tuple space is simple to use, 

since there are only three operations. However, the distributed tuple space provides 

powerful features like synchronization and mutual exclusion capabilities. The 

additional benefits of a distributed tuple space are that it is dynamic, scalable and 

can be used in heterogeneous networks. Besides the distributed approach for 

communication like a distributed tuple space there is a classical approach for 

communication between network nodes – the client-server approach. 

 

The client-server approach is not very scalable if the number of clients is large, 

since the server has to handle every client and thus may become a bottleneck. The 

disadvantage of using a centralized approach for a tuple space in a distributed 

system is that it scales not very well, since the centralized components may become 

a bottleneck on heavy load. Another benefit of using a distributed tuple space is 

fault tolerance, since centralized approaches present a single point of failure, if no 

special precautions are taken (i.e. redundancy).  

 

Another reason to build a distributed tuple space is that most tuple space 

implementations are centrally managed (e.g. IBM TSpaces, JavaSpaces from Sun). 

There are as well some distributed approaches (e.g. SwarmLinda). As discussed in 

[5], the development of SwarmLinda is in an early stage.  
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Since the P2P networks have become quite sophisticated, it is a close choice to use 

a P2P network (i.e. DHT) as underlying organization and communication platform 

to implement the distributed tuple space. One reason to use an already existing P2P 

network implementation is that it does not make sense to invent new routing or 

storage strategies if they already work. Another reason is that the focus can be set 

on the tuple space and not on P2P networking. The approach in this thesis is a 

proof of concept for a dynamic distributed tuple space using a P2P network (i.e. 

DHT). However, it is important to assess the performance of a distributed tuple 

space. 

 

 

2.1 Application Scenario 
Multiple organizations and commercial companies are involved to coordinate and 

organize big sport events like the European Football Championship in 2008. The 

championship is distributed among several European cities in two countries. 

During the event, associated organizations need to share heterogeneous information 

for communication/coordination purposes. Examples include schedules of the 

soccer games, the transportation of the teams from one accommodation to another, 

coordination of volunteers, etc. In addition, sudden changes of schedules, like flight 

delays when moving a soccer team from one city to another, must also be 

coordinated among different organizations (an airport can inform the hotel and the 

transportation organization, which waits for the soccer team to transport it to the 

hotel, etc.). Figure 1 illustrates the application scenario. 
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Figure 1: Application scenario overview. Note that a mix of ad hoc/mobile peers and a stable 

backend, i.e., the cities, are considered. 

 

In the scenario, the DTSpace middleware architecture is based on P2P technology, 

which is fully decentralized, self organized, fault tolerant and scalable. The 

participants share responsibilities, because every participant adds resources, while 

they participate. Therefore, no bottleneck emerges and this approach provides a 

dynamic communication and coordination network. The middleware itself provides 

a set of basic operations, which are used to interact with participants of the 

middleware.  

 

The scenario foresees front end applications, i.e., applications that utilize DTSpace 

middleware but do not provide itself middleware functionality, for mobile teams or 
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individuals with mobile devices. These devices are connected to the network using 

available hot spot base at the different locations, e.g. football stadiums, city centers, 

etc. The organizations use their Internet connection to communicate with their 

mobile teams or other organizations. For example, volunteers give feedback, if they 

notice traffic jam. The traffic coordination then diverts the traffic accordingly.  
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3. Related Work 
In this chapter I introduce the three main topics, into which the DTSpace approach 

is divided. The first part contains a discussion about tuple spaces. The second part 

gives an overview over P2P networks with the focus on distributed hash tables 

(DHTs). A tuple space and DHT network implementations are also discussed in 

this chapter. I discuss mutual exclusion for distributed systems in the last part of 

this chapter. 

 

 

3.1 Tuple Space Model 
As discussed in Chapter 1 the tuple space model (TS) can be viewed as a 

blackboard for notes. The distributed programming language Linda [1] is an 

example for a TS, described by David Gelernter in 1985. The TS communication is 

based on the so-called generative communication. Generative means, that if 

processes need to communicate, they generate a data object (i.e. tuple, note) and 

put it into a shared space called TS [6]. The tuple exists in the TS until it is 

explicitly deleted from the TS. A tuple is an ordered vector consisting of value-type 

pairs, also called fields. It can contain executable code (active tuple) or data values 

(passive tuple) [1]. Any process can access every tuple in an equivalent way [1]. In 

this thesis the TS is referred to the Linda model. 

 

A distributed programming language like Linda, in general, enables message 

passing mechanisms and code execution for distributed systems [7]. In most 

distributed languages the message passing (i.e. communication) between processes 

is partially uncoupled in space and is not uncoupled in time [1]. The Linda model 

provides both. The communication in the Linda model is fully uncoupled in space 

and in time. For example, if a process A wants to communicate with a process B, it 

generates a tuple and writes it into the TS. The tuple exists in the TS until a process 

removes it from the TS (uncoupled in time) [1]. The processes A and B need not to 

run at the same time in order to be able to communicate with each other. If 

processes communicate over the TS the communication is anonymous, because the 
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tuples do not refer to their originating process and the receiver does not notify the 

originator of the tuple, if it removes a tuple. For example, process A does not know 

which process removes the tuple, which it has written into the TS. Process B does 

not know which process has written a tuple into the TS. Uncoupled in space means, 

that for example, k distributed processes running in k different address spaces can 

communicate over a common TS. The tuples written by different processes (thus 

coming from different address spaces) may be tagged with the same name. Every 

process can manage the tuples although they come from different address space [1]. 

 

 
Figure 2: Example of a tuple space 

 

There are three operations defined in the TS, which are (1) out, (2) read and (3) in 

[1]. The out-operation writes a tuple into the TS. The read-operation reads a tuple 

and the in-operation removes a tuple from the TS [1]. The read- and in-operations 

are blocking operations. To search for a tuple a so-called template is defined for the 

read- and in-operation. A template contains values for the fields and wildcards 

(also called formals [1]). Wildcards are placeholders in templates, if a value of a 

field is not important for a match. Consider a process, which wants to read a tuple 
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from the TS. The process first defines a template, which is then matched among the 

tuples in the TS. If a matching tuple in the TS exists, it is returned. If no matching 

tuple exists in the TS, the read-operation blocks until a matching tuple is available 

in the TS [1]. If more than one tuple match the template, an arbitrary tuple from the 

result set is returned.  

 

Figure 2 illustrates a TS with 5 participating processes. It is possible, that different 

applications use the same TS without disturbing each other. Therefore not every 

process communicates with every other process participating in the TS. For 

example, process A writes a tuple into the TS and process B removes it. Process C 

removes an existing tuple from the TS. Process D is blocking and waits for a tuple, 

which does not exist in the TS yet. Process E reads a tuple from the TS, but does 

not change it.  

 

The blocking operations read and in can be used to synchronize processes. For 

example, the read- and in-operations can be used for asynchronous message 

passing [7]. Consider a process A only writes tuples into the TS and a process B 

only removes them. Process B has to wait for tuples, which process A writes into 

the TS. Therefore process B is dependant on process A. Process A is able to 

process faster than process B, since process A is able to write tuples into the TS 

without waiting for process B to remove them. In addition synchronized message 

passing can be implemented on the application layer using TS. For example, every 

time process A writes a tuple into the TS, it waits (blocks) for a tuple from process 

B to read it, e.g. a tuple which says “I am ready – now continue”, written by 

process B. After process B has written such a tuple into the TS, process A is 

allowed to continue processing. 

 

The Linda model is a simple coordination tool for distributed applications. There 

are also some criticisms with reference to its performance, because a TS hides its 

complexity like data sharing and the required communication. According to [3], 

this may result into unpredictable performance. 
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Many approaches have been made to implement the TS. There are several 

approaches to implement a TS [3, 8]:  

 

• Centralized: Use a centralized server to provide the TS. This may be 

effective to match tuples, but may become a bottleneck to handle a big 

number of processes. 

 

• Hashing: The placement of tuples is dependent on the content. The TS is 

partitioned among several processors (i.e. servers). 

 

• Full replication: All servers hold a copy of all tuples in the TS. 

 

• Fully distributed: The tuples may reside on every participating processor 

without any restrictions. 

 

 

3.1.1 Tuple Space Implementations 
In this section, I discuss the following TS implementations: 

 

• JavaSpaces (by Sun Microsystems): As the name suggests JavaSpaces is a 

TS specification and implementation, written in Java. It is based on other 

systems from Sun, like Java RMI (Remote Method Invocation) and JINI 

[3]. The tuples, stored in JavaSpaces are Java Objects [2]. JavaSpaces 

supports transactions, which is an extension of the original Linda model [9]. 

JavaSpaces is a client-server approach [2].  

 

• GigaSpaces: GigaSpaces [10] is a commercial implementation of the 

JavaSpaces specification. JavaSpaces is built into a product named 

GigaSpaces Enterprise Edition. A feature of GigaSpaces is that non-Java 

clients can access GigaSpaces through the SOAP protocol [3]. 
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• The Blitz Project: Blitz [11] is an open-source implementation of 

JavaSpaces. The implementation is also based on JINI to use its services. It 

provides scripts to install and configure the TS easily. Blitz also provides 

monitoring functions. The monitoring tool is called Dashboard and has a 

simple GUI [9]. 

 

• IBM TSpaces: TSpaces is a commercial and centralized Java 

implementation of TS. “TSpaces provides a large number of operations 

over and above the basic Linda operations” [3, p.1007]. For example, it 

provides an event notification mechanism, which can notify registered 

nodes, if a tuple is written or deleted from the TS [3]. TSpaces also 

provides matching mechanisms on XML data stored in the tuple [3].  

 

• XMLSpaces: XMLSpaces [8] is based on the TSpaces implementation of 

IBM. The system provides a flexible matching mechanism for XML data. 

Instead of a centralized server XMLSpaces provides a distributed and 

partial replication approach with several servers on different locations. The 

distributed servers provide one logical TS. The XMLSpaces uses Java RMI 

(Remote Method Invocation) for communication. 

 

• SwarmLinda: SwarmLinda [4] is a distributed TS implementation in Java. 

The positioning and retrieval mechanism of tuples is based on swarms in 

nature, e.g. like in an ant colony. The system is completely distributed and 

self-organized. The development of the Java of the SwarmLinda 

implementation is in an early stage [5]. 

 

• LighTS: LighTS [12] is a centralized lightweight open-source Java 

implementation of the Linda model. LighTS extends the Linda model with 

more operations than the basic operations out, read and in. In contrast to 

IBM’s TSpaces LighTS does not provide functionality like security or 

transactions, etc. LighTS supports Java RMI for remote access and is 

extendable. 
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The centralized JavaSpaces and TSpaces implementations may become a 

performance bottleneck with a large number of participating processes [3].  

 

 

3.2 Peer-to-Peer Networks 
This thesis discusses a decentralized approach, which uses a Peer-to-Peer (P2P) 

network for communication between processes and storage for the tuples. 

 

A P2P system is defined as follows:  

 

“Peer-to-peer systems are distributed systems that operate without centralized 

organization or control.” [13, p.79] 

 

Peer-to-Peer (P2P) networks belong to the classification of overlay networks. In the 

last decade P2P networks have become more and more popular. Especially file-

sharing tools [14] like Napster, Gnutella [15] and BitTorrent [16]. These systems 

use the P2P technology to share all kind of data. The term P2P originally was used 

to describe the communication between two peers [15]. It is also a “point-to-point 

communication between two equal participants” [15, p.24]. 

 

In this thesis I follow the definition of overlay networks: 

  

“An overlay network is a virtual network of nodes and logical links that is built on 

top of an existing network with the purpose to implement a network service that is 

not available in the existing network.“ [17] 

 

As the term overlay network is very general, there are many sub classifications. For 

example, a related sub class is Grid Computing [15]. This thesis discusses the P2P 

approach, as it would go beyond the scope of this thesis.  

 

P2P networks can be sub classed into unstructured and structured P2P networks as 

discussed later in detail. In unstructured P2P networks the connections between the 
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nodes in the network is randomly, the routing of messages is uncoordinated (e.g. 

broadcasts) and the data placement is not organized (similar data can reside in other 

parts of the network). This strategy offers a complete decentralized approach of a 

network. The structured P2P networks do coordinate routing of messages and the 

data placement is structured (e.g. a datum is uniquely mapped into a binary tree, 

where it can be found deterministically). The structured P2P network defines a new 

layer on top of the unstructured P2P network – a logical layer, which organizes and 

maintains routing tables and data items. This logical layer means, that more 

maintenance has to be done (e.g. keep the structure, like routing tables and binary 

trees up to date). 

 

The two definitions of the terms P2P and overlay network have some things in 

common – they build a network or system, which collaborate with each other. 

There are two main ideas behind these collaborations of computers or systems: 

 

• Share and merge resources 

• Abstraction 

 

P2P networks have been used to share resources since the beginning of the 

Internet. The ARPANET, for example, was originally used to share computing 

resources [15].  

 

In 1999, Napster is one of the first P2P networks. Its purpose is to share and swap 

files [18]. With the popularity of Napster the term P2P nowadays is strongly related 

to file-sharing tools. However P2P networks can be used to share other resources 

than files. For example, to combine and share unused resources like CPU-power, 

storage place, network bandwidth [19]. Personal home computers are getting faster 

and more powerful recently and may have unused resources. This situation, for 

example, uses the SETI@home project to compute radio signals to search for 

extraterrestrial intelligence [19]. It distributes the collected radio signals among the 

participating computers, which for themselves analyze them. The result of 
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SETI@home is that it is faster than ASCI White, a supercomputer from IBM with 

12.3 TFLOPS [19]. 

 

Another range of application of a P2P network is abstraction. Nowadays there are 

many different devices like PDAs, mobile phones and home computers with 

different communication protocols. The communication protocols may be 

Bluetooth, HTTP, TCP/IP and many others. One way to communicate with each 

other is to implement a P2P network, which puts a virtual layer on top of the 

different devices to use the same protocol [15] and also able to communicate with 

each other.  

 

The classical and widely spread approach for communication is the client-server 

interaction. Usually the information is concentrated centrally on a server. The 

Internet is an example for the client-server approach. Web pages are hosted on 

servers, which are requested by client applications like web browsers [20]. Clients 

are also able to send data to the server, for example, if filling out forms or order 

books on an online store. The role of the participants in the communication, client 

and server, is rigid. In a P2P network, the participants (peers) have equal roles. 

Every peer acts as a client and a server at the same time. Thus a peer in a P2P 

network is also called servent. Another difference to the client-server approach is 

that the resources of the peers, e.g. storage place, CPU power, network bandwidth 

and others, can be shared among the peers in the P2P network. This results in to a 

huge resource pool, which can be used for distributed calculations, e.g. 

SETI@home as mentioned above or for distributed databases like OceanStore [21].  

 

All P2P approaches have some common aspects and goals: 

 

• Scalability 

• Robustness 

• Fault-tolerance 
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Scalability is one of the key aspects in P2P networks. The client-server approach 

has a bottleneck – the server. The computing power and bandwidth of a server is 

limited and if many clients query the server, it may become a bottleneck. There are 

many approaches to solve these problems (e.g. server farms) but there is always a 

limited amount of resources to handle the clients. The benefit of P2P networks is 

that every node in the network acts as a client and as a server at the same time. 

Therefore the computing power and bandwidth is distributed all over the 

participating nodes, instead of centralizing all resources at one place, where it may 

become a bottleneck. Another benefit is that with every participating node, the 

resources, available in the network increases, e.g. storage place or CPU power. 

Every node can add its resources to the P2P network. So, P2P networks are able to 

automatically adapt the resources while growing and keep being scalable to a 

theoretically infinite number or participating nodes (also called peers).  

 

Another aspect of P2P networks is fault-tolerance. The P2P network is under 

constant change if peers join or leave the network. This change in the network is 

called churn. Participants of the P2P network are allowed to join and leave without 

warning. The benefit of the P2P network is that the resources are distributed and a 

failure or leave of a participant does not impact the whole system. Even if many 

nodes fail, every node in the network maintains several connections to different 

nodes [15], making it robust, for example, against single connection failures. 

 

To find data items in distributed networks, more effort has to be done, than in 

centralized systems, because there is usually no global view over all existing data 

items at any node and at any time in the P2P network [22]. Consider for instance a 

centralized database with 10 data items. The worst case is to check all of these 10 

items during a search process, but if the data item exists, it can be found. In a P2P 

network consisting of hundreds or even millions of nodes, it cannot be guaranteed, 

that a data item is found, even if it exists. One reason is that P2P networks are, by 

nature, unreliable and distributed. Another reason is that search algorithms are 

limited, as discussed later. A benefit of a centralized database is that the number of 

data items in the database is known (e.g. check the size of the data table). 
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In this thesis, I focus on the following approaches to manage a search in a 

distributed environment: 

 

• Centralized  

• Flooding 

• Random walks  

• Distributed Hash Tables (DHTs) 

 

I do not consider hybrid approaches, since it is out of the scope of this thesis.  

 

Napster has implemented a centralized approach to search for data items. Every 

node in the network sends a list of content (e.g. file names, keywords), which it 

shares, to a centralized server when joining the network. The server maintains the 

list of content (index) for every node in the network. Therefore the server has a 

global view over all data items, which are available in the P2P network. If a node 

searches for a keyword it sends a request to the server, which searches for a match 

in its index and returns the result. The result contains the node, which shares the 

requested content. Then the searching node contacts the node directly and 

downloads the data item from this node. Only keywords, file names and on which 

node the datum resides are maintained centrally. The actual datum remains among 

the participating nodes and the actual download is managed directly between the 

requesting and the datum-sharing node. One major drawback of this approach is 

that the index server is a single point of failure and search results can be filtered 

(e.g. censored). 
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Figure 3: Example of a P2P network with the flooding approach and TTL = 3. All nodes except 

number 7, 10 and 11 are inside the Gnutella horizon, if the request message is sent from node 2. 

 

A different search approach is flooding [13]. For example, Gnutella [15] uses this 

kind of search algorithm. The search request is sent to all neighbors of the 

requesting node. The neighbors themselves look locally for a match. If a node 

matches the request, it returns the result. Otherwise the node forwards the request 

to all its neighbors (except to the one, from which it got the request) and so on. To 

limit the traffic during a search process, the request message gets a time to live 

(TTL) stamp, which is decreased every time it is forwarded. If the TTL reaches 0, 

the request message is deleted. For example, if the TTL is 5, the message can be 

forwarded only 5 times. “The TTL is also known as the Gnutella horizon” [15, 

p.104]. There are two major drawbacks in this flooding approach. First, it causes 

much traffic overhead, since the request is sent to all nodes in the Gnutella horizon. 

Second, if the P2P network is broader than the Gnutella horizon, the request 

message does not reach every node in the network. If the match for the request is 

outside the Gnutella horizon, the request does not deliver a result, although the 

datum exists. Figure 3 illustrates a situation, where the Gnutella horizon is too 

small to find a requested datum, although it exists. The blue node with the number 

2 sends a search message with TTL = 3. The message only reaches the yellow 

marked nodes (1, 3, 4, 5, 6, 8, 9, 12 and 13). The nodes with the numbers 7, 10 and 
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11 are not reached, because the message is deleted before it is forwarded to them. If 

the requested datum only exists on one of the nodes with the numbers 7, 10 and 11, 

the requesting node with the number 2 does not get a result for the search message. 

 

The random walk approach “forwards a query message to a randomly chosen 

neighbor at each step until the object is found” [23, p.89]. The improvement is a 

significant reduction of the traffic during the search process. The random walk 

approach increases the waiting time for the result, because the nodes are only 

queried one after another. In the flooding approach many nodes are queried in 

every step, thus reaching many nodes in a relatively short time. In the random walk 

approach only one node is queried in every step. The search message is called 

“walker” [23]. To minimize the delay time more than one “walker” can be sent, but 

at the cost of more traffic. The drawback of using multiple “walkers” is that the 

“walkers” have to be stopped, if a search result has been found. The “walkers” 

walk forever, if they don’t find a result. Consider for example, a network that starts 

10 “walkers” during a search. One “walker” finds the datum and terminates. But 

the other 9 “walkers” still search for a result although one result has been found. 

The question arises how they can be stopped. Limiting the time of the “walkers” 

with a TTL has the same problem as discussed in the flooding approach, which is 

illustrated in Figure 3.  

 

The DHT approach follows a complete different approach to search for data items. 

The search algorithms flooding and random walk take the structure of the P2P 

network as it is and tries to search with best effort for data items. The DHT 

approach is more than a search algorithm – it structures the P2P network and “use 

precise placement algorithms and specific routing protocols to make searching 

efficient” [23]. The DHT is discussed in detail in Chapter 1.3.  

 

Much research effort has been put into the optimization of the search process in 

P2P networks [23, 24, 25, 13]. For example, [26] discusses an 

aggregation/broadcast algorithm, which is able “to collect and disseminate 

information efficiently on a global scale” [26, p.81]. The algorithm needs 
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additional storage place, but causes relatively small overhead and is robust against 

node failures [26].  

 

Since the resources in a P2P network are distributed over the participating nodes, 

these distributed resources have to be managed, so that they are available, when 

needed. “In order to resolve the problem of resource management in P2P systems, 

many solutions have been suggested recently by research institutions and 

industries” [20, p.36]. There are two main classes in decentralized P2P networks, 

which themselves use different management approaches - unstructured and 

structured P2P networks.  

 

 

3.2.1 Unstructured Peer-to-Peer Networks 
Unstructured P2P networks do not maintain information about resources of other 

peers and therefore message forwarding cannot be routed intelligently [27]. Also 

“no rule exists that defines where data is stored and which nodes are neighbors” 

[20, p.37]. Therefore the data is distributed unorganized and a data retrieval turn 

out to be expensive or even impossible, as discussed in the previous section. 

Gnutella is an example for a completely unstructured P2P network. It is also called 

a “pure” P2P network, because it does not have any centralized mechanisms like 

Napster. For example, when Napster has to shut down its index servers in 2001, 

because of copyright problems with the content, which was shared in the Napster 

network [18], the Napster did not work any more without these index servers. It is 

more difficult to shut down the Gnutella network, because there is no centralized 

point to shut down in order to disable the whole network. To connect to the Napster 

network every node has to connect to one of the index servers. In the Gnutella 

network, every node can connect to an arbitrary node, which already is connected 

to the Gnutella network in order to participate. If a node in the Gnutella network 

fails, the connectivity of the network remains, since every node maintains several 

connections to its neighbors, thus is making it robust. The drawback of such an 

unstructured P2P network is that it is not very scalable. As discussed in the 

previous section, the search is limited by the so-called Gnutella horizon. Even 
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when using a random walker to search for data, it may not be found, because of the 

random approach. For example, the request message may be sent into the wrong 

direction, since the direction is chosen randomly and not by considering the content 

of the message. 

 

One major drawback of an unstructured P2P network is the unorganized 

distribution of the resources. In order to find a resource, the node, which holds the 

resource, has to be found. The search algorithms have to deal with the unorganized 

topology of the network. Consider two equal resources, each residing on different 

parts of the network. To find both resources the query has to be routed into two 

different directions. Therefore a broadcast or random search is nearly inevitable. To 

make operations in the P2P network more efficient, the network has to be 

structured. But with more structure comes more complexity and new issues to 

solve, as discussed in the next sections.  

 

 

3.2.2 Structured Peer-to-Peer Networks 
To solve the scalability and search problems in unstructured P2P networks, many 

different approaches have been proposed. They form the class of structured P2P 

networks. 

 

There are two architectures of structured, decentralized P2P networks [23]: 

 

• Loosely structured 

• Tightly structured 

 

In loosely structured P2P networks the topology and the routing is controlled 

based on local decisions. In unstructured and loosely structured P2P networks the 

datum and its index reside on the same node or nearby in a physical sense (e.g. 

one-hop replication as discussed later). In tightly structured networks the index 

datum placement is also controlled based on local decisions [23, 27], but the datum 
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storage and the index storage are uncoupled and may reside separately. The datum 

storage is still arbitrarily organized, but the index storage of the data is organized to 

make the search process more efficient.  

 

The data-index is a pointer to the node, where the actual datum is stored. The index 

is also used as keyword for which can be searched to find the correspondent datum 

in the P2P network.  

 

Loosely structured P2P networks improve the way search messages are routed. 

There are simple, but effective ways to do this. For example, in an improved 

Gnutella version every node gets a capacity indicator [25]. High-capacity nodes 

can handle more traffic than low-capacity nodes. If a message is forwarded, it is 

sent to a neighbor with high capacity instead to a randomly chosen node. Therefore 

the traffic is routed more efficiently with focus on traffic handling, because it is 

routed along nodes with enough power to process it. A drawback, when using only 

the capacity approach is that if the queried datum resides on a low-capacity node, 

the datum may not be found, because the message is routed only to high-capacity 

nodes. An extension of this approach is the so-called one-hop replication, where 

“all nodes maintain pointers to the content offered by their immediate neighbors” 

[25, p.409]. This increases the possibility to find a datum, because the index resides 

on more than one node. This approach also reduces the traffic, since the message 

can be answered before it reaches the content holding node. 

 

Freenet, for example, uses an adaptive routing scheme [27]. Every node examines 

the messages (e.g. search requests, data insertions), which are passed to the node, 

to learn where to route the messages more efficiently. For example, when 

examining an answer message, the node stores from where this answer comes 

from. Later, when a new request for this datum is passed to this node, it searches 

the routing table and finds the location of the datum. The message then is 

forwarded towards the location of the datum. Freenet also replicates popular data 

“to peers where they are more likely to be found” [28, p.8]. 
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Tightly structured P2P networks go one step further. They also structure the data- 

index itself. The goals are to “enable more deterministic resource location 

operations with shortest lookup path, fault-tolerant operation and high availability” 

[20, p.46]. The storage space for data-index is addressed uniquely and every node 

is responsible for one part of the address (ID) space.  

 

In tightly structured P2P networks there are two types of neighborhoods for nodes: 

physical and logical neighbors. A node keeps direct connections to other nodes 

(e.g. TCP/IP connections) for sending and routing messages. These directly 

connected nodes are called physical neighbors.  

 

 
Figure 4: Example for logical and physical neighborhoods in tightly structured P2P networks. The 

solid lines are direct connections between the nodes. Dashed arrows show the mapping of a physical 

node to the logical node (e.g. the physical node N1 is mapped to the logical node L3). 

 

The tightly structured P2P network builds up a logical structure over the physical 

connected network. In the logical structure every node gets a logical place (via 

mapping). For example, every node gets an ascending number as they arrive in the 

network. The direct neighbors of a node in the logical structure are called logical 

neighbors. A physical neighbor of a node needs not to be a logical neighbor. Figure 

4 illustrates an example where the nodes are mapped to a logical structure. For 

example, the node N3 has three physical neighbors, namely N4, N5 and N6. N3 
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maintains actual connections to these physical neighbors and is mapped to the 

logical place L4 in the logical structure. The logical neighbors of node N3 (logical 

place = L4) are L3 and L5, which are the physical nodes N1 and N2. The nodes N1 

and N2 are physically not connected to the node N3. The logical structure is used 

to search for data, since it is efficiently structured in the logical level. For example, 

if the node N4, which is mapped to L1, wants to send a message to its direct logical 

neighbor L2, the node N4 only needs one hop at the logical level. In the physical 

layer, this message has to be routed along the following physical path: N4 – N3 – 

N6. N6 is the physical node, which is logically mapped to L2.  

 

The benefit of a tightly structured P2P network is that the logical structure can be 

organized independently. For example, independently of the physical structure, the 

logical structure can be organized to efficiently find data. The most popular 

approach for a tightly structured P2P network is the Distributed Hash Table (DHT) 

[20]. P2P networks, which use DHTs, are discussed in detail in the next section. 

 

 

3.3 Distributed Hash Tables 
DHTs play a central role in this thesis, because the DTSpace prototype 

implementation is built on top of P-Grid [29]. P-Grid is a P2P network 

implementation, which uses a DHT. DHTs are tightly structured P2P networks, 

which uncouples the index location from the resource location as discussed in the 

previous section.  

 

As discussed before the P2P networks have problems with finding resources, 

because of the distributed nature of P2P networks. The approach of DHT maps 

every resource to a unique identifier (ID), also called index. The ID can be 

calculated with a hash function from the resource value (e.g. file name). Every ID 

is taken from a so-called ID space, which is a range of IDs to identify resources. 

For example, the integers range from  to 2  can be an ID space. Also hash 

functions can be used to calculate IDs for the resources. How the resources are 

02 128
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mapped into the ID space “has an important impact on the load-balancing 

properties of the” P2P network [30, p.13]. For example, Chord uses a uniform hash 

function, which “implicitly provides load-balancing” [30, p.13]. The drawback of 

this uniform distribution of the IDs is that “range queries will be expensive to 

process” [30, p.13]. For example, the hash function may distribute similar values to 

nodes, which reside on different parts of the P2P network, because they get 

complete different IDs. Therefore the similar values with complete different IDs 

have to be searched in different parts of the network. However, if the hash function 

clusters similar values, the load balancing has to be done explicitly, like in P-Grid 

[30]. 

 

The ID space is divided into ranges. Every node in the P2P network gets a range 

for which it is responsible. If a new resource is inserted into the P2P network, its 

ID is calculated with the hash function. The ID, together with a reference to the 

actual resource location is stored on the node, which is responsible for the ID. The 

resource itself (e.g. file) remains on the original node.  

 

Maintenance strategies [30] take care that the DHT structure remains consistent 

and functional during churns. To maintain fault-tolerance, replication of the IDs is 

a common used technique. Routing strategies are used to route queries to their 

destination [30] and also support the maintenance strategies by routing 

maintenance messages. Also redundant routing entries for the same destination are 

maintained to be able to route a message on an alternative route, if a routing entry 

fails.  

 

There exist different approaches for the logical structure of a DHT. For example, a 

ring structure, which is used in Chord [31] or a tree structure like in P-Grid [32]. 

Figure 5 illustrates two possible structures. The yellow marked rectangles in Figure 

5 are participating nodes in the P2P network. Figure 5 (a) shows a ring structure, as 

used in Chord [20]. As shown in Figure 5 (a) every node has a successor node and 

also maintains a predecessor node. The ID space is successively assigned along the 

successor relations. For example, node 1 is assigned the first possible ID. Node 2 
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holds the following ID and so on. Also wide range relations exist, which minimizes 

the needed hops of a query by leaving out nodes in certain cases as discussed later 

in detail (refer to Chapter 3.2.2). In Figure 5 (b) a tree structure, used by P-Grid is 

illustrated. P-Grid uses a prefix ID space. For example, node 1 and 2 are 

responsible for the IDs, which start with 00, node 5 is responsible for IDs with 

prefix 01 and so on. P-Grid is discussed in more detail in Chapter 3.2.1. 

 

A main characteristic of a DHT is that a query is routed towards its destination on 

every hop, until it reaches its destination. In contrast to random walk algorithms the 

query is routed to a random node, independent if it is the direction towards the 

destination. This is not the case in a DHT. 

 

 
Figure 5: Examples for a ring structure of a DHT (a) and tree structure (b). Solid arrows indicate 

successor nodes and dashed arrows indicate long range connections. 

 

Some DHT implementations use the small-world phenomenon as model to build up 

the connection structure of the ID space (e.g. Chord, P-Grid). Stanley Milgram 

described what he called the small-world phenomenon in 1960’s [33]. He made a 

social experiment in which he sent a few letters to arbitrary people in Nebraska to 

deliver the letter to a person in Massachusetts. Every person should forward the 

letter to people they know, based on a few information likes name, address and 
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occupation of the target person. The letters are then subsequently forwarded until it 

reaches its target. Milgram found out, that the letters had an average number of hop 

count (intermediate people) of six [33]. His hypothesis was, “that everyone in the 

world can be reached through a short chain of social acquaintances” [20, p.63]. The 

small-world graph of the social network, which people have in the real world, 

consists of many short-range acquaintances and a few long-range acquaintances. 

Milgram had the theory that every person in the USA can be found within an 

average of six hop acquaintances [20]. This is still an open question [20], but as 

discussed in Chapter 3.2 this approach scales good and has good search 

capabilities. 

 

The following two sections discuss different implementations of DHT networks. 

The focus in this thesis is on the search, route and replication capabilities of DHT 

networks. 

 

 

3.3.1 P-Grid 
According to [32, p.30], “P-Grid is a peer-to-peer lookup system based on a virtual 

distributed search tree, similarly structured as standard distributed hash tables.” P-

Grid is data oriented and has a special focus on range queries. A bit string (i.e. key 

or index) is calculated with a hash function for every datum. The virtual distributed 

search tree in P-Grid is a binary prefix tree illustrated in Figure 7.  
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Figure 7: Example of a P-Grid network 

 

Every node is responsible for a path in the binary search tree. A path is the route 

from the root of the binary search tree to a leaf. The path is generated from a virtual 

binary tree as illustrated in Figure 7. For example, the nodes 1 and 6 are 

responsible for the path “00”. As illustrated in Figure 7, the binary search tree 

represents the complete ID space. The ID space consists of binary bit strings [22]. 

For every path in the binary search tree, there is at least one node responsible for it. 

It is to say, that every leaf (i.e. path) has at least one node hold responsible for it. In 

Chord for example, it is possible, that no node is responsible for a path (i.e. ID). 

The structure in Chord is a ring instead of a binary tree. Every node in the ring is 

assigned an ID from the ID space. It is not necessary to assign the complete ID 

space to the nodes in the Chord network (as is the case in P-Grid). Consider for 

example, a node requests a datum with an ID, which is not assigned to a node in the 

Chord network. The datum with such an ID is stored on the successor node in the 

ring structure. Therefore the complete ID space can be used, although IDs are not 

assigned explicitly to nodes. The successor node is then responsible for the ID. For 

example, the nodes with IDs = 2, 4 and 7 exist in the Chord ring network and the 

ID space ranges from 1 to 7. The IDs 1, 3, 5 and 6 are not assigned to any node. If a 
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datum with ID = 5 is written into the Chord network, the successor node with ID = 

7 is responsible for data with ID = 5.  

 

For every bit (level) in the path (binary search tree), the node stores at least one 

reference to a node on the other part of the binary search tree at the same level [22]. 

For example, the node 1 in Figure 7 is responsible for the path “00”. Therefore the 

routing table contains at least one node, which is responsible for the path, which 

begins with “1”. In addition at least one node, which is responsible for the path 

prefix “01”, is maintained in node 1’s routing table. These are, for example, node 3 

for the path prefix “1” and node 2 for the path prefix “10” in Figure 7. The routing 

table holds multiple entries per path level to be fault-tolerant, if an entry does not 

work.  

 

A routing example is illustrated in Figure 7 as well. A query for the key “100” is 

sent to node 6. Node 6 is only responsible for keys with prefix “00”. Therefore 

node 6 looks up a node in its routing table, which is responsible for a key, which 

starts with “1”. Node 5 is responsible for a key, which starts with “1” and node 6 

forwards it to node 5. The first digit of the key is equal to node 5s path, but the 

node is not responsible since the 2nd digit of the key is “0”. Node 5 looks up a node 

in its routing table, which is responsible for the prefix “10” and thus forwards the 

query to node 4. Node 4 is responsible for this query and answers it. The query is 

successively routed to a “closer” node in every routing step (i.e. hop). P-Grids’ 

search and routing algorithm needs O  steps on an average to route a query 

to a responsible node (n is the number of leaves in the binary search tree).  

))(log(n

 

Keys (i.e. IDs, indices) can have different sizes and also paths can have different 

lengths in P-Grid. The ID space is divided recursively, so that every node gets 

about the same number of data to store [34]. For example, if much data with prefix 

“00” is stored at the nodes 1 and 6, the path is divided recursively to balance the 

amount of data stored at every node. Therefore the single path “00” is divided into 

the paths “001” and “000” to balance the number of data at the nodes. This 

specialization may result into an unbalanced tree structure, if one path is 
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specialized several times, but other paths are not. The drawback in an unbalanced 

binary search trees is that the routing table grows up to linear size, compared to the 

network size [34].  

 

To increase the fault-tolerance, P-Grid associates more than one node for every 

path (i.e. partition replication) [34]. As in Figure 7 illustrated, the nodes 1 and 6 are 

associated with the same path “00” and the nodes 3 and 4 are responsible for the 

path “10”. 

 

Besides partition replication, data replication is done in the P-Grid network for 

every datum. Other P2P implementations like Freenet replicate only popular data 

[28]. P-Grid uses the tree structure to choose the location for the replications [22]. 

Figure 8 illustrates the replication mechanism. The datum is first copied to its 

logical direct neighbor. After that, it is copied to the next 2, 4, 8, etc. logical 

neighbors by masking the key (i.e. ID) of the datum. This is done until the number 

of copies of the asset “000”, i.e. data with key “000”, is approximately the same 

than other assets [22]. The approximate replication factor is set in the configuration 

of P-Grid. Every replica knows a few locations of other replicas [35]. Therefore, if 

one replica is found other replicas can be found.  

 

 
Figure 8: The replication mechanism in P-Grid 

 

P-Grid supports updates of data items, which is based on rumor spreading [35]. The 

update algorithm provides probabilistic guarantees for consistency [22]. [36] 

discusses the rumor spreading algorithm in detail. An update may not reach every 
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replica existing in the network. The cost to reach the few replicas, which are not 

updated, may be very high. It is not necessary to keep all replicas updated. It is 

only necessary to deliver the correct (updated) data. Replicas, which are found 

during an update, also are more likely to be found during a query [37]. 

 

When nodes start up a new P-Grid network, the communication is based on 

broadcast messages. Since P-Grid’s functionality (e.g. search algorithm, replication 

and update algorithm) depends on the binary search tree the goal is to build up a 

functional binary search tree as fast as possible. So the first step of a P-Grid 

network is to build up the binary search tree. This phase is called bootstrapping 

[34].  

 

The partitioning of the ID space is made as follows (for 
2
1

≤p , where p  is a 

probabilistic size): 

 

1. Every node, which has not decided for a path yet, contacts arbitrary chosen 

nodes until a decision has been made. 

 

2. If the contacted node has not decided yet, these two nodes make a balanced 

partition decision (e.g. the one node takes path “0” and the other one takes 

“1”) with probability )( pα  and exchange their routing table references. 

 

3. If the contacted node already has path “1”, the node, which initiated the 

contact decides with probability )( pβ  to take “0” and with probability 

)(1 pβ−  to take “1”. If the node takes “0”, it takes the reference to the 

contacted node into its routing table. If the contacting node takes “1”, it 

asks the contacted node to get a reference from the other part of the search 

tree, i.e., a node, which’s path starts with “0”. 
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This algorithm is modeled as Markov-Process. β , for example, can be calculated 

from the equation  [34]. The decisions in the bootstrapping phase 

are based on random and probabilistic approaches, which are discussed in [34] in 

more detail.  

)21(1 1 ββ −−=p

 

The partitioning of the ID space is continued after the bootstrapping phase [37]. 

For example, if the data, stored on a certain node (path) exceeds a certain threshold, 

the path is partitioned with a certain probability into a more specialized path. This 

causes load balancing, because the number of data previously stored on one node is 

now distributed on two nodes. Also merging specialized paths is possible. Since the 

P-Grid network is under continuous churn, maintenance operations like path 

partitioning are done periodically.  

 

To repair inconsistencies in routing tables, P-Grid uses the approach of correction 

on use. This approach only repairs a faulty entry, if it is used [34]. The drawback is 

that a query may take longer, if a faulty entry is encountered during routing a 

query. The benefit is that since nodes in a P-Grid network are often available only 

temporarily, faulty routing table entries only cause maintenance traffic if they are 

used. Otherwise they stay in the routing table (causing no correction traffic) and 

can be used, if the node is available again [34]. To make the routing table fault-

tolerant, P-Grid maintains redundant references in the routing table (as discussed 

previously). [34] gives a detailed analysis of the approaches correction on use and 

correction on failure. The approach correction on failure repairs failures, when they 

appear.  
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3.3.2 Other Distributed Hash Table Implementations 
In this section I discuss a few DHT-based P2P network implementations:  

 

• Chord 

As discussed before, Chord builds up the ID space in a form of a ring. In Chord 

every node has a unique decimal ID. The maximal ID is predefined and 

presents the maximal number of possible participating nodes in the Chord 

network. Every node maintains the successor node (i.e. direct following 

neighbor) in its finger table. “The finger table of a node with ID x  is formed of 

the nodes  with ixy 2+= N2i log0 <≤ ,  being the maximum possible 

number of nodes that form the network” [20, p.48]. The long-range connections 

have logarithmic distances. If a node with ID  does not exist, the 

entry in the finger table is replaced with an existing node, which has the next 

higher ID. 

N

xy 2+= i

 
Figure 9: Example of a Chord P2P network 
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(a) Finger Table for N2 (b) Finger Table for N4 
N2 + 1 N4 N4+1 N5 
N2 + 2 N4 N4+2 N15 
N2 + 4 N15 N4+4 N15 
N2 + 8 N15 N4+8 N15 
N2 + 16 N25 N4+16 N25 
N2 + 32 N38 

 

N4+32 N38 
Table 1: Finger table for the node N2 (a) and N4 (b) in Figure 9 

 

Figure 9 depicts an example of a Chord network with 64=N

k

)og N

. Table 1 shows 

the finger table for nodes N2 and N4. In this example the resources in the 

network are hashed into an ID between 1 and 64. The index of the resource is 

maintained on the node, which is responsible for the index ID. If the node with 

the ID does not exist, it is stored on an existing node with the next higher ID. 

For example, the index for the resource with ID = 30 is stored on node N33.  

 

If a node looks for a query with key , it looks up a node in its finger table, 

which has the largest ID smaller than the key k  and forwards the query 

towards this node. For example, if node N2 is looking for a datum with the key 

38, it checks the finger table. The key 38 has an entry in N2’s finger table , 

illustrated in Table 1 (a). The query can be forwarded directly to N38. If N2 

wants to look up a datum with the key 5, the closest entry in N2’s finger table is 

N4. N2 forwards the query to N4. N4 looks up the key in its finger table, 

illustrated in Table 1 (b). The direct successor of N4 is found as a match for the 

key 5. The query is forwarded to N5, which is responsible for the query. 

According to [38] a lookup of a key requires only (lΟ  messages.  

 

To maintain the finger table entries Chord periodically checks them by sending 

messages into the network. This causes a lot of overhead traffic, which affects 

the performance of Chord [20]. The ring structure is rigid, since the entries in 

the finger table are rigid. For example, the entry N2 + 8 in the finger table 

(Table 1 (a)) must be N15 unless there are other nodes, which are between N2 

+ 8 and N15 (e.g. N8 to N14). If there are other nodes in the range N2 + 8 and 

N15 the entry in the finger table must be the next bigger node after N2 + 8. 
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Every “Chord node maintains a ‘successor-list’ of its r nearest successors on 

the Chord ring” [39, p.156]. This list guarantees that in case of a node failure, 

the ring keeps closed (for routing messages). For example, if no successor-list 

exists and every node only knows its closest successor node (neighbor) – 

besides long distance entries in the finger table. If a node fails, the predecessor 

of the failing node loses its successor node and thus the Chord ring is open. 

Routing may fail, if a query is destined to the failed node, because there is no 

alternative. Also long distance entries in the finger table referring to the failed 

node get invalid. For example, if node N38 from Figure 9 fails, the predecessor 

node N33 looses its successor node. The node N2 looses a long distance entry 

in its finger table (Table 1 (a)), since the entry N2+32 points to the failed node 

N38. In such cases, invalid finger table entries are corrected. During this time a 

message is routed to other nodes in the finger table to circumvent the missing 

nodes. For example, N2 forwards a message to the next shorter reference in the 

finger table, i.e. to N25. The consequence is that data items which are stored on 

the failed node are not accessible any more and messages are routed over more 

hops to their destination. 

 

Replication of data items in Chord is not available implicitly, but it can be 

implemented by a higher application [39]. Since the Chord nodes maintain a 

successor-list, a potential replication strategy could be that every  successors 

of a node also stores this data item. 

k
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• Pastry 

In contrast to Chord, Pastry [40] has not a rigid structure like a ring. The 

structure of the Pastry network is completely random. Pastry assigns a random 

ID to every node in the P2P network. The ID space ranges from 0  to  

and every ID is 128 bit long. “Pastry can route to the numerically closest node 

to a given key in less than ⎡ ⎤Nb2
log N

4

 steps” [40, p.331].  represents the 

number of peers in the P2P network and b  is a configuration parameter 

(typically ).  =b
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The routing table of Pastry is divided into three parts:  

 

• Routing table 

• Neighborhood set  

• Leaf set  

 

Node ID 1023102 
Leaf set 

Smaller Larger 
10233033 10233021 10233120 10233122 
10233001 10233000 10233230 10233232 
Routing table 

-0-2212102 1 -2-2301203 -3-1203203 
0 1-1-301233 1-2-230203 1-3-021022 

10-0-31203 10-1-32-102 2 10-3-23302 
102-0-0230 102-1-1302 102-2-2302 3 
1023-0-322 1023-1-000 1023-2-121 3 
10233-0-01 1 10233-2-32  

0  102331-2-0  
  2  

Neighborhood set 
13021022 10200230 11301233 31301233 
02212102 22301203 31203203 33213321 

Table 2: Example of a routing table in Pastry: The node ID is 1023102. The first row of the 

routing table is row 0; the second row is row 1 and so on. The grey cells in the routing table 

show the corresponding digit of the present node’s node ID. The node IDs are split into three 

areas: (1) the common prefix – (2) the next digit – (3) rest of the node ID [40] 

 

The routing table contains IDs of nodes with different prefix matches. The 

routing table holds ⎡ ⎤Nb2
log 1 rows. Every row holds 2 −b

12 −b

 entries. In every 

row , the  entries (other node IDs) match the first n  digits of the 

current node ID, but differ in the remaining digits. For example, the current 

node ID is 10233102. The node holds the entry 10233001 in its 5th row of the 

routing table. This node ID shares the first 5 digits (i.e. 10233001) with that of 

the current node ID. 

n
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The neighborhood set contains IDs and IP addresses of physically connected 

nodes. Physically means, that an actual connection can be built to these nodes 

with the underlying network (e.g. TCP/IP, http). The neighborhood set is used 

to route messages. 

 

The leaf set contains nodes with numerically closest larger and smaller node 

IDs than the current node ID. The neighborhood set and leaf set usually contain 

 or 2  entries. Numerically close means that the numerical distance 

between two nodes is small (e.g. nodes with a distance of 10 are assumed to be 

close). For example, a node with ID = 1023102 has nodes in the ID range 

1023101 to 1023092 as closest smaller nodes and nodes with ID range 1023103 

to 1023112 as closest larger nodes in the leaf set.  

b2 bx2

 

To route a message to a key, the node first checks its leaf set, if the key 

numerically lies within the range of the leaf set. If the key does lie in the range 

of the leaf set, the key is forwarded to the node with the numerically smallest 

distance between the node ID and the key. If the key is outside the range of the 

leaf set, the routing table is used to find a node ID, which has a common prefix 

with the key. The length of the common prefix between the node ID in the 

routing table and the key has to be at least equal to the common prefix between 

the key and the current node. If the prefix of the key is equal to that of the 

receiving node ID, the receiving node ID has to have a smaller numerical 

distance to the key than the current node ID. According to [40, p.334] “this 

simple routing procedure always converges, because each step takes the 

message to a node that either shares a longer prefix with the key than the local 

node, or shares as long a prefix, but is numerically closer to the key than the 

local node”. Table 2 illustrates a routing table for a Pastry node. 

 

During a join of a node, the joining node sends its randomly generated ID to an 

already connected node. The already connected node sends the new ID to a 

node which’s ID has a numerically small distance to the new ID. The return 

message contains all state information of nodes, which encountered the 

 42



message during routing. The new node analyses these state information to 

create its own state. If needed, the new node requests additional state 

information from other nodes. After that it informs any node, which has to be 

aware of the newly joined node. The benefit of this procedure is that a new 

node initializes a proper state at the beginning and updates the state of already 

connected nodes of its arrival [40]. Routing entries, which are out of date, are 

repaired, when they are needed [40]. Therefore this repairing strategy only 

causes overhead, if a faulty entry in the routing table is used (i.e. correction on 

use). 

 

Pastry is more dynamic in choosing the entries in the routing table than Chord. 

There can be arbitrary entries in the routing table which only have to meet the 

restrictions, as discussed above. For example, the first 2 digits of the node ID in 

the routing table have to be equal to the current node ID in the 2nd row. Also the 

routing process is not so strict, than in P-Grid or Chord, because Pastry routes a 

message with a key  to the node with the numerically closest ID, i.e., 

numerically smallest distance between key and node ID [40]. Therefore the 

target node ID needs not to be the same key in the message.  

k

 

A benefit of routing a key to the closest node ID is that this behavior is used for 

data replication [40]. The query is routed along nodes with a numerically closer 

ID in every routing step. Replicas are places near the closest node ID compared 

to their key. Since the replicas are placed on nodes near their key and the query 

is routed along the numerical distance to the key, the query comes by the 

replicas. If a replica fails the query finds the next replica, closer to the key. The 

query may approach closer to the key to find the next replica. 

 

• Tapestry [41] 

This DHT overlay network is based on the Plaxton mechanism, discussed in 

[42]. The Pastry network [40] is also based on the Plaxton mechanism. Every 

node maintains a neighbor map (i.e. routing table). The neighbor map is 

organized into levels. For every level n (bit position in the ID) several nodes are 
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maintained, which have the nearest distance and match the first n bits of the ID. 

At every level at least three nodes are maintained for fault-tolerance. If a 

message is routed to a node, which is not responsive the node is marked as 

invalid in the neighborhood map and another entry is used to route the message. 

A message is routed again to the invalid marked node with a certain 

probability. If the node is still not responsive, the entry in the neighborhood 

node is removed. If the node is responsive, the entry is marked as valid. 

However, a node, which is marked as invalid, is probed for a second time 

before it is deleted from the neighborhood map. To maintain the neighborhood 

entries, periodic heartbeats are sent to the direct neighbors of a node [41]. 

 

Tapestry maintains a root node for every datum in the P2P network. To find a 

datum, the message is routed to the root node, which is unique in the whole 

network. To calculate this root node for a datum, a message with the key of the 

datum is tried to route to the node with the same ID than the key. Since it is 

unlikely that a node with the same ID exists (because the ID space is very big), 

the message is routed to a node with the numerically smallest distance between 

the ID and the key. This node then acts as the root node for the datum. This 

mechanism is called surrogate routing [41]. Replications of a datum is 

maintained by creating multiple root nodes for the datum. 

 

Every datum in Tapestry gets a timeout, which has to be refreshed on 

periodically terms. Therefore every storage server has to republish its data in 

order to keep them in Tapestry. If a datum gets inaccessible it simply timeouts 

and therefore is deleted in Tapestry. 

 

As Tapestry has similar approaches to the Pastry network, the joining 

mechanism of a new node to the Tapestry network is similar. A new node sends 

a message to the node, which has the closest ID to the new node ID. The 

message gathers routing information, which is sent back to the joining node. 

With this information the new node populates its neighbor map and also 

informs nodes of its appearance. 

 44



3.4 Distributed Mutual Exclusion 
In the previous sections communication in distributed environments using TSs and 

P2P networks have been discussed. For distributed processes, which closely work 

together, communication is not the whole story [43].  

 

The Linda model provides exclusive access to tuples. That is, no concurrent 

processes can access the same tuple at the same time. For example, if process A 

wants to remove a tuple from the TS and a concurrent process B wants to read the 

same tuple at the same time, the access to the tuple has to be serialized. If process 

A gets access to the tuple first, process A removes the tuple from the TS. If process 

B accesses the same tuple with a read-operation afterwards, it does not exist any 

more. Process B then blocks until another matching tuple is written into the TS. 

However, if process B is able to read the tuple before process A, both processes are 

satisfied, since the read-operation does not change the tuple and it can be accessed 

by process A afterwards. For example, if no mutual access is guaranteed in the TS, 

the operations read and in concurrently access the same tuple at the same time. 

This may cause inconsistency in the flowing of the distributed application, in which 

both processes participate. The worst case of non-controlled concurrency in the TS 

is that if two processes want to remove the same tuple at the same time and both 

processes get a copy of the tuple. The correct procedure is that only one process 

gets the tuple and the second process blocks until another matching tuple is written 

into the TS. However, when two concurrent read-operations take place at the same 

time for the same tuple, the outcome may not be as problematic as for two in-

operations. Two concurrent read-operations may cause no difference when they 

occur at the same time instead of serializing the access, because they just read the 

same tuple without changing it.  

 

There are different approaches for mutual exclusion algorithms for so-called 

critical sections. The critical section in the TS is a tuple. If more than one process 

wants access the same tuple, the access has to be controlled (e.g. serialized). To 

control access to critical sections in single-processor systems centralized 
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algorithms like semaphores and monitors can be used [43]. For multi-processor 

systems like P2P networks, other approaches have to be considered.  

 

The different mutual exclusion algorithms for multi-processor systems can be 

classified into three groups [43, 44]: 

 

• Centralized algorithms 

• Token-based algorithms 

• Permission-based (also called quorum-based [45]) algorithms 

 

Centralized distributed mutual exclusion algorithms are based on single-

processor mutual exclusion algorithms [43]. A distributed system uses a single 

coordinator, which has a global overview over all critical sections and maintains 

request queues for them [43, 44]. If a process wants to access a critical section, it 

asks the coordinator for permission. The drawback is that the coordinator is a 

single point of failure and may be a performance bottleneck in large systems. 

Figure 6 illustrates a system with a centralized coordinator. [43] The coordinator 

can be chosen from any participating process (node). Additional information can be 

found in [43].  

 

 
Figure 6: (a) Process 1 asks the coordinator for permission to enter the critical section and is 

granted access. (b) Process 3 also asks for permission for the same critical section and is denied, 

since process 1 is in charge. The coordinator queues the request of process 3. (c) When process 1 

releases the critical section the queued process 3 gets an ok as a grant to access the critical section. 
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The processes in a token-based distributed mutual exclusion algorithm are 

logically organized as a closed directed ring [44]. This structure is like the Chord 

ring, discussed in Chapter 3.2.2. Every process knows its next process in line. A 

unique object, called token, circulates around this ring structure. The token is the 

permission to access a certain critical section, since the token is unique among all 

processes. If a process owns the token, it is permitted to access the critical section. 

If a process does not need the critical section and owns the token, it just passes the 

token to the next process. If no process needs the critical section the token 

circulates around the ring.  

 

There are some problems in this token-based approach. If the token is lost no one is 

permitted to access the critical section any more. To create a new token is difficult, 

because it is difficult to get prove, if the token is really lost. According to [43], “the 

fact that the token has not been spotted for an hour does not mean that it has been 

lost: somebody may still use it” [43, p.270]. If a process, currently holding the 

token, fails, the token is lost. However problems can occur, if duplicated tokens for 

the same critical section exist [44]. Another problem is that if a process fails, the 

ring is open, so the token cannot circulate anymore. To repair the hole in the ring 

every process has to maintain a successor list, as the Chord P2P network does 

(Chapter 3.2.2). Since the token is passed to every process, the token-based 

approach may become a performance bottleneck if the number of processes 

becomes large. Although one hop of a token between two processes may cause 

little overhead, passing the token through thousands or millions of processes, take 

unacceptably amount of overhead. If there are many critical sections to be 

managed, there is a token for every critical section, which circulates through every 

process. The tokens cause traffic even if the critical sections are not used [44]. 

Descriptions of different token-based algorithms can be found in [44]. 

 

In permission-based or quorum-based distributed mutual exclusion algorithms 

the access to critical sections is controlled by getting permissions from a set of 

processes (nodes) in the system, also called quorum [44]. A quorum is defined as a 

number of nodes, which are able to make decisions (e.g. grant access to a tuple). A 
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node set (i.e. quorum) contains nodes, participating in the system. The node set is 

able to coordinate permissions for any kind of resource (critical section), regardless 

whether the node in the node set holds the resource or not. If a node wants to 

access the critical section it sends requests to all nodes in the set. The nodes in the 

node set return the permissions. Only one permission per node in the node set and 

critical section is allowed. If the requesting node has the majority (quorum) of 

permissions it is granted access to the critical section. The problem is to find the 

minimal set of nodes needed to grant access to a critical section [44], i.e., the ratio 

of the number of nodes in the node set and permissions. Many algorithms have 

been developed to manage distributed mutual exclusion [44], but “it is not possible 

to directly adapt the proposed solutions into the P2P domain” [46, p.296]. Chapter 

3.4.1 discusses two protocols in more detail. These protocols are permission-based 

distributed mutual exclusion algorithms. 

 
 

3.4.1 Distributed Mutual Exclusion Protocols 
In the last few years, three permission-based distributed mutual exclusion 

algorithms have been proposed for the use in P2P networks. The protocols are able 

to work in highly distributed and churn prone environments: 

 

• Sigma protocol [47] 

• End-to-End mutual exclusion protocol [46, 45] 

• Non-End-to-End mutual exclusion protocol [46, 45] 

 

The three protocols use replicas instead of node sets. Every resource in a P2P 

network is a critical section. Since replicas can be used for fault-tolerance (see 

Chapter 1.2), these replicas are also used for permitting requests to the critical 

sections. 

 

The Sigma protocol is based on the Strawman protocol [47]. Every node, which 

wants access a critical section (a resource) sends a request to all replicas of the 
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resource and waits for responses. A replica returns a grant vote, if the replica is not 

owned by another node (i.e. has voted for another node before). If it is owned by 

another node the replica returns a vote in which it states who the current owner of 

the replica is. The node, which gets m out of n replica votes (
2
nm > ) is the winner 

and is able to access the critical section. The other nodes, which have not gained 

enough votes, release their votes and try again later. [47] 

 

As P2P networks are in constant change, failures of nodes occur unexpected. 

Therefore replicas can fail and thus the mutual exclusion of a critical section can be 

broken. To make the algorithm robust against violations of the critical section 

attention has to be paid for the ratio of 
m
n . [47] discusses, that “even with n = 32 

and 
m
n 4010−= 0.75 (i.e. m = 24)” … “the chance of breaking the exclusivity is ” 

[47, p.14]. The Sigma protocol architecture is illustrated in Figure 10 and works as 

follows: 

 

A node, which wants access a critical section, sends a request message to every 

replica (SendRequest). The replicas sends a response message back 

(SendResponse) with either a grant vote or the current owner of the replica, if this 

replica already has voted. The requesting node is queued at the replica, if there is 

another current owner. There are three different outcomes after the requests are 

sent to every replica: 

 

• The requesting node is the winner of the critical section and is allowed to 

access it. 

 

• Another concurrent node wins the vote. The requesting node does nothing, 

but waits until it is notified when the concurrent node leaves the critical 

section. 
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• No requesting node has gained enough votes to access the critical section. 

Therefore the node sends a yield message (SendYield) to every replica, 

which reorders the request queue and votes again. This is repeated until a 

winner is chosen. 

 

 
Figure 10: Architecture of the Sigma protocol. 

 

When the requesting node is finished with the critical section it sends a release 

message (SendRelease) to every replica and another node is allowed to enter the 

critical section. 

 

[47] discusses approaches to cope with failures. For example, if a replica fails, the 

replaced replica rebuilds its queue state from the queues at the other working 

replicas (informed backoff [47]). Consider, for example, if a node, which is 

currently the owner of the critical section fails. The access to the critical section 

will be blocked forever, because it is not released. Therefore the Sigma protocol 

proposes, that the replicas grant renewable leases for the critical sections. When the 

lease expires the next node is granted access to the critical section. [47] 

 

The distributed mutual exclusion protocols End-to-End and Non-End-to-End are 

similar. They are based on the Sigma protocol. In the End-to-End protocol the 
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current owner of a critical section holds the request queue, instead of having the 

request queue on every replica (as in the Sigma protocol). When the owner of the 

critical section leaves the critical section, the owner sends the request queue to the 

next requester in the queue.  

 

Every replica has a quorum set, which is a group of nodes. A quorum set consists 

of the nodes, which are in the routing path of a request message. The routing path 

goes from the requesting node to a replica of the resource (critical section). The 

path is dependent on which overlay network is used (e.g. Chord). If a node requests 

the critical section, the quorum set of the replicas forwards the request to the 

current owner, which puts it into the request queue. The quorum set periodically 

contacts the current owner of the critical section to check if it still is alive to avoid 

a deadlock. [48, 45] 

 

The Non-End-to-End protocol distributes the request queue among the nodes in the 

quorum set. This protocol is more distributed and more fault-tolerant, since the 

request queue is not stored on a single node (i.e. current owner of the critical 

section) [48]. The message overhead is relatively low [45]. The performance in 

terms of time ranges from 3 to 7.5 seconds to gain access to a critical section [45]. 

 

The idea behind the End-to-End and Non-End-to-End protocols is load balancing, 

since the replicas in the Sigma protocol are directly contacted for every vote and 

therefore may become a bottleneck. In the quorum set a request can be forwarded 

to the owner of a critical section before it reaches the replica. Every node of the 

quorum set is able to forward a request. The maintenance cost of the quorum set is 

not mentioned in [45, 46], but since a quorum set updates its content, it seems to 

have a maintenance impact. The DTSpace approach uses a hybrid of the two 

protocols Sigma and End-to-End.  

 

This thesis discusses a novel approach of completely distributed, dynamic and 

reliable TS. In comparison to many centralized TS implementations like TSpaces 

or LighTS the DTSpace approach does not have any centralized approaches. The 
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storage of tuples and interactions between the nodes in the network are distributed. 

Fault-tolerance is implemented with a replication mechanism, provided by the P2P 

network P-Grid [29]. 
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4. The Distributed Tuple Space Approach 
As discussed before I use a P2P network for the distributed tuple space (DTSpace) 

approach. Therefore I have to choose which P2P network implementation is 

suitable for the DTSpace. There are two main requirements for the P2P network. 

First, the P2P network implementation has to be written in Java programming 

language and second the implementation has to be available as open-source. The 

main reason why the P2P network implementation should be open-source is that 

the DTSpace prototype implementation is open-source and thus free available for 

further research and development.  

 

There are different approaches for P2P networks, as discussed in Chapter 3.2. It 

turns out, that structured P2P networks have some advantages in contrast to 

unstructured approaches. The advantages are (1) better scalability, (2) deterministic 

searches (no enclosed search like in Gnutella with the Gnutella horizon) and (3) 

less communication overhead. Structured P2P network approaches for DHTs build 

up an organized but dynamic search and placement structure. These capabilities are 

suitable for the DTSpace. DTSpace uses the index of the DHT to store the data 

(e.g. tuple, field). The index is normally used to store references of data. For 

example, if files are shared the actual files are kept on the nodes and references to 

the location of the files are stored in the index of the DHT. The index can be 

logically organized as tree or ring structure (refer to Chapter 3.2.2). The indices are 

used to search efficiently for data. In the DTSpace this index structure holds the 

actual data (e.g. tuple, field).  One reason for storing the tuples in the index 

structure of the DHT is that the datum in the tuples is not very big. The traffic in 

the DHT therefore is manageable. Another reason is that the replication mechanism 

of the DHT can be used to replicate the data.  

 

The actual choice falls on P-Grid [29], because of the following reasons: 

 

• Available as open-source (GNU license) 

• Written in Java  
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• Extendable and adaptable framework (e.g. one can add routing-strategies, 

new message types) 

• P-Grid is well documented  

• P-Grid uses proved approaches (e.g. gossiping for update strategies) 

• P-Grid is capable of range queries, which may be helpful for future 

developments of DTSpace  

• Support from the developers of P-Grid 

 

In the remaining chapter I discuss a novel approach of the DTSpace. The DTSpace 

approach and its prototype implementation can be used for other P2P networks 

than P-Grid. For example, the distributed mutual exclusion (DMutex) module can 

be fully reused. Only some methods of an abstract class must be implemented 

(refer to the Appendix for more detail).  

 

 

4.1 The Linda Model in DTSpace  
The DTSpace approach has the same capabilities like the original Linda model, 

introduced by David Gelernter in 1985 [1]. The DTSpace approach supports the 

basic operations (1) in, (2) out and (3) read (see Chapter 3.1).  

 

There is one big difference to the other approaches of the Linda model like 

TSpaces or JavaSpaces: It is completely distributed over a network of nodes (i.e. 

DHT), which automatically organize themselves. The DHT network, used in 

DTSpace, is P-Grid. In contrast to SwarmLinda [4], which organizes the distributed 

network based on nature swarms; P-Grid is organized more deterministic (see 

Chapter 3.3.1). 

 

The major benefits of this approach are: 

 

• Scalability for an unlimited number of participants, who can use the same 

tuple space. 

 54



• Robustness - it is difficult to loose data, since they are replicated. 

 

• Fault-tolerance – the tuple space is still operable if, for example, a part of 

the network fails. 

 

• Every node can choose to participate and leave without any precautions. 

Normal churns of nodes does not affect the performance and reliability of 

the tuple space. For example, locally stored data need not to be pushed into 

the network when disconnecting to avoid data loss. The data is replicated 

among the remaining network, if necessary. 

 

The drawbacks are discussed in Chapter 3.3.  

 

The DTSpace has to guarantee mutual access to a tuple (see Chapter 3.1). 

Therefore an adapted voting algorithm, which is discussed in [47] and [45], is used 

for mutual exclusion. The voting algorithm, which is used in DTSpace, is discussed 

in detail in Chapter 4.8. Centralized approaches for mutual exclusion usually have 

to be adapted in a distributed environment, as discussed in [43] and Chapter 3.4. 

 

 

4.2 Architecture of the DTSpace 
The DTSpace architecture consists of three layers: (1) the DTSpace module and the 

factory module, (2) the wrapper layer and the (3) overlay network. Figure 11 

illustrates the DTSpace architecture. 
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Figure 11: DTSpace architecture 

 

The upper layer of the DTSpace is the DTSpace module, which provides the three 

operations (1) out, (2) read and (3) in. The Factory module generates the DTSpace 

module, configures the Overlay Network and the Wrapper layer as well. The 

Factory also generates instances of objects, which are used to interact with the 

DTSpace (e.g. tuples, templates, configuration objects). For example, if a new tuple 

is inserted into the DTSpace the Factory generates the new tuple. Also template 

objects are generated in the Factory module to search for tuples. Processes, which 

use the DTSpace, only have to interact with the DTSpace module and the Factory 

module. The Wrapper layer provides tuple space functionalities on top of the 

Overlay Network (e.g. mutual exclusive access to a tuple). The second layer 

(Wrapper layer) has several purposes. Consider using P-Grid as an overlay 

network. P-Grid does provide replication for fault-tolerance, but does not provide 

mutual exclusion. Therefore the Wrapper layer wraps the out-operation of the 

DTSpace to the insert-operation of P-Grid. The DTSpace also can be viewed as an 

overlay network, providing new functionalities to the overlay network P-Grid. For 

example, if a read- or in-operation is invoked the Wrapper layer provides mutual 

exclusion, which is not implemented in the overlay network P-Grid. At the bottom 

of the DTSpace architecture the overlay network provides connectivity, search and 
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storage capabilities for the DTSpace. For the prototype implementation of 

DTSpace P-Grid, a DHT network (see Chapter 3.3), is used. 

 

The DTSpace hides all its complexity and functionalities behind the top layer. The 

underlying overlay network can be exchanged without affecting the operations of 

the DTSpace. One benefit of the prototype implementation of the DTSpace is that 

some classes (e.g. DMutex, tuples, templates) can be reused if another overlay 

network than P-Grid is used. 

 

 

4.3 DTSpace features 
As mentioned before the DTSpace approach provides the three basic tuple space 

operations and is fully distributed. Some features, which are hidden from 

processes, have to be implemented in the DTSpace as well in order to work as a 

tuple space (e.g. exclusive access to a tuple). The following list shows different 

features, which the DTSpace provides: 

 

• Basic tuple space operations (out, read and in) 

• Blocking for the read- and in-operations 

• Exclusive access to a tuple for concurrent processes (realized with 

distributed mutual exclusion) 

• Scalability  

• Fault-tolerance (realized with replication, provided by P-Grid) 

• Flexible search granularity (refer to Chapter 4.6) 

 

Some of the features depend on the used overlay network (e.g. scalability). The 

overlay network P-Grid, which is used in the prototype implementation of the 

DTSpace for example, provides scalability and fault-tolerance. All tuple space 

operations, blocking and exclusive access to a tuple are implemented in the 

Wrapper layer of the DTSpace. A detailed discussion of the prototype 

implementation can be found in the Appendix. 

 57



4.4 Data Storage in DTSpace 
To operate with a tuple space three main data structures namely (1) tuple, (2) field 

and (3) template are needed (see Chapter 3.1). Besides these three data structures 

the DTSpace uses so-called blocking fields. They are inserted if a process (node) 

does not find a matching tuple. The blocking fields contain a reference to the 

blocking node and the field value, for which the node is looking for. The search 

process is discussed in detail in Chapter 4.7.  

 

Every data object (e.g. tuple, field) is replicated among the nodes in the DTSpace 

network. The replication rate defines how many copies of every data object are 

maintained in the DTSpace. The benefit of replication is fault-tolerance, scalability 

and robustness. Even if a part of the DTSpace network fails, the probability of a 

data loss is very low, because the physical and logical distribution of the nodes is 

different (see Chapter 3.2.2). If a logical neighbor of a node fails, then it is unlikely 

that it is also a physical neighbor (for a detailed discussion, refer to Chapter 3.2.2).  

 

The storage method, i.e., the way how tuples are persisted in a DTSpace has a great 

impact on the search granularity and storage usage. The search granularity defines 

the granularity of the search keys in the DTSpace. Consider a field value with 

“Steven Green” and a search granularity of a field. To get a result, the complete 

value of the field has to be defined as a search key in order to retrieve the field. It is 

not possible to search for the forename “Steven”, because the granularity is too 

coarse. To be able to search for a key, which is finer than the field value, the 

granularity has to be refined. For example, refine the granularity to the precision of 

a word. Then it is possible to search for the key “Steven” although the complete 

field value is “Steven Green”. 

 

For every tuple, which exists in the DTSpace, the following data objects are stored: 

Every field of the tuple by itself and the tuple as it is. The number of data objects, 

which are stored in the DTSpace, can be calculated from the Equation 1. 

 

Equation 1:  data objects = (number of tuples + number of fields) * replication rate 
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For example, a tuple with 4 fields and a replication rate of 3 results into 15 data 

objects. Besides blocking fields, tuples and fields are the basic objects, which are 

replicated in the DTSpace. 

 

 

4.5 Data Mapping in DTSpace 
Data objects (e.g. tuple, field) are mapped to the search structure (index) in the 

DTSpace. Every data object in the DTSpace has a unique ID, an index string and 

an index (the hashed value of the index string). The index string is a key to search 

for a value in the DTSpace. The index string is generated from the data object 

itself. The index is the hash value of the index string and is used to distribute the 

data objects equally among the nodes in the DTSpace for load balancing (see 

Chapter 3.3). Since P-Grid is used as overlay network in DTSpace, the index 

structure of P-Grid is used. 

 

The main question is how the index string should look like to make the data 

retrieval efficient. For example, if the index string is equal for different tuples the 

search result for a specific tuple is big, because the index string does not 

distinguish between the different tuples. The following example illustrates how to 

make the index string efficient. Table 3 defines 6 tuples stored in the DTSpace. 

 

ID Tuple Number 
of fields 

1 (“Diego”:string, “student” :string, “Columbia” :string, “25” 
:string) 

4 

2 (“Maria” :string, “student” :string, “Austria” :string, “26” 
:string) 

4 

3 (“Peter” :string, “worker” :string, “Germany” :string, “30” 
:string) 

4 

4 (“14” :string, “June” :string, “3” :string, “25” :string, “p.m.” 
:string, “conference” :string, “Security” :string) 

7 

5 (“25” :string, ”April” :string, “4” :string, “10” :string, “p.m.” 
:string, “appointment” :string, “Mr. Miller” :string) 

7 

6 (“meeting with” :string, “Mr. X” :string, “Grove Street” :string, 
25:integer) 

4 

Table 3: 6 Tuples. The type for a field is defined after the sign “:”. 
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1. Straightforward approach  

A straightforward approach is to take the value of the field/tuple to generate the 

index string:  

Index string = [value of the field] 

 

The tuple with the ID=1 has the index strings “Diego”, “student”, “Columbia”, 

“25” for the fields and the index string “DiegostudentColumbia25” for the tuple 

itself.  

 

The drawback of this approach is that every tuple, which has at least one field, 

which matches a search key, is put into the result set, independent of the position 

and number of the field in the tuple. For example, search for the template (*, *, *, 

“25”:string). Independent of the type of the field the result set contains the tuples 

with the IDs 1, 4, 5 and 6, because every tuple contains a field with the value “25”. 

The correct tuple has to be filtered out from the resulting set afterwards. The result 

set causes more traffic than necessary, because the tuples with the IDs 4, 5 and 6 

have nothing to do with the template. The tuple with ID 4 and 5 have not the 

correct number of fields. The tuple with the ID 6 has the wrong field type. 

 

2. Extended approach 

Every search process gets a template to search for a tuple. This template contains 

search keys and structural information about the tuple to search for. For example, 

the template additionally contains the total number of fields, the positions of the 

fields and the types of the fields. All these information can be used to generate the 

index string. To minimize the result set, the index string is extended with the 

number of fields in the tuple. The index string then has the format:  

 

Index string = [value of the field] [number of fields in the tuple] 

 

The tuple with ID = 1 then has the index strings “Diego4”, “student4”, 

“Columbia4”, “254” for the fields and the index string 

“Diego4student4Columbia4254” for the tuple itself. The search for the template (*, 
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*, *, “25”:string) does improve. The result does not contain the tuple with the IDs 4 

and 5, because they have 7 fields. The tuple with ID 6 is still in the result set, 

although the type of the field does not match with that of the template. 

 

3. Approach, implemented in the DTSpace 

I extend the former approach for the index string with the type of the field and the 

position of the field. The value of the field, the position of the field, the number of 

fields in the tuple and the type of the fields is information, which is implicitly 

defined, if a template is created. The index string then looks like: 

 

Index = [value of the field] [type of the field] [number of fields in the tuple] 

[position of the field] 

 

The tuple with ID = 1 then has the index strings “DiegoSTRING41”,  

“studentSTRING42”, “ColumbiaSTRING43”, “25STRING44” for the fields and 

the index string 

“DiegoSTRING41studentSTRING42ColumbiaSTRING4325STRING44” for the 

tuple itself. The search for the template (*, *, *, “25”:string) then returns only the 

tuple with ID = 1 in the result set.  

 

The last approach filters out tuples, which obviously do not match the template, 

before they get into the result set and cause traffic. For example, the tuple with the 

ID = 5 is not in the result set, although it contains a field with the value “25”. Still 

there are some drawbacks for this approach. For example, if the DTSpace contains 

many tuples with the same number of fields and equal values, the result set is large, 

causing a lot of traffic, because many tuples matches the template, but only one 

tuple finally is returned as result. The third approach is used in the DTSpace. 

 

 

4.6 Correlation between Search Granularity and Storage  
The search granularity in the DTSpace is a field, because there is a tradeoff 

between granularity, complexity and storage usage. The finer the search 
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granularity, the more storage is used for one tuple. For example, if the granularity 

is set to one character, every character of a field value is split into an extra field in 

order to search for a granularity of character. It is then possible to search for a 

substring in a value. For example, the tuple (“Dublin”, “Ireland”, “Europe”) then 

looks like 

(“D”,“u”,“b”,“l”,“i”,“n”,“I”,“r”,“e”,“l”,“a”,“n”,“d”,“E”,“u”,“r”,“o”,“p”,“e”). Every 

field of this extended tuple contains additional information about the position in the 

original tuple. This causes much more overhead information (and thus more 

storage usage). For every field the position and number of fields in the original 

tuple is stored. Instead of 40 data objects, 200 data objects are used to store the 

same tuple, but different search granularity. With this search granularity of a 

character it is possible to search for a substring of the value in the tuple, e.g. a 

template to search for the substring “Euro” looks like (*, *, *, *, *, *, *, *, *, *, *, 

*, *, “E”, “u”, “r”, “o”, *, *). The drawback besides the storage usage is that the 

position of the substring has to be known in order to search for it. Table 4 and 

Figure 12 give an example of the storage usage, using different granularities. The 

Equation 1 from Chapter 4.4 is taken to calculate the storage usage. 

 

Granularity Tuple Number of 
needed fields 

Storage usage 
(in objects) 

Field (“Dublin”, “Ireland”, “Europe”) 3 40 
Character (“Dublin”, “Ireland”, “Europe”) 19 200 

Table 4: An example for the storage usage, using different search granularities (replication rate = 

10). 

 

Although the value of every field in the character-granularity-approach is one 

character long, it causes an expensive overhead. Every field is stored in an object 

which contains information like position in the field, position in the tuple and ID of 

the tuple. Therefore the value of the field is a small part compared to the overhead 

information. The storage usage also depends on the length of the values in the 

tuple, because the values are split into one-character fields. 
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Storage usage vs. Search granularity 
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Figure 12: Storage usage of a tuple with 5 fields and different lengths of the value of the tuple. The 

replication rate is 10. The field-granularity requires only 60 objects independent of the length of the 

values. The character-granularity requires more objects to store the tuple the longer the value of the 

tuple is. 

 

The storage usage is counted in objects, because the size of the overhead 

information is big (e.g. 200 bytes) compared to the size of the value of a field (e.g. 

30 bytes for 30 characters). The character-granularity-approach is more expensive 

than the field-granularity-approach, because every character is stored in an extra 

object. Figure 12 graphically shows the differences of the storage usage. The x-axis 

shows the total length of the values in the tuple (number of characters). The tuple 

has 5 fields in the field-granularity-approach and has to be split into more fields if 

using the character-granularity-approach. Consider, for example, the total length of 

the values in the 5 fields of the tuple is 25 (characters). The tuple is split into 25 

fields. Every field contains one character. The required objects to store this tuple 

can be calculated with the Equation 1 as follows: (1 + 25) * 10 = 250 objects, for a 

replication rate of 10. In the field-granularity approach the number of required 

objects to store the tuple stays the same, if the length of the values change. In the 

character-granularity approach the required objects to store a tuple is dependant on 

the length of the values – the longer the value, the more storage space is required. 
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Another problem is to search for matching tuples, because if regular expressions 

are allowed as search keys some cases lead into an infinite number of possible 

search queries, for which it has to be searched for. For example, the regular 

expression “A?” where the question mark is a placeholder for one character. The 

DTSpace generates one search query (i.e. the matching tuple must have two fields, 

where the first field must have the value “A”) for the expression “A?” which can be 

handled easily. The regular expression “A*” has an infinite number of possible 

matches since “*” represents an arbitrary combination of characters. For every 

possible length of the expression “A*”, a search query has to be sent. If a tuple 

with a short length (e.g. 5 characters) exists, the search process is finished quickly. 

But if only a matching tuple with a long value (e.g. 200 characters) exists, the 

search process has to send 200 queries in the worst case. Consider no matching 

tuple exists for the expression “A*”. The search process sends an infinite number 

of queries, since it does not know the length an existing matching tuple. This 

situation causes an unmanageable amount of search queries. To handle such an 

amount of queries causes a lot of traffic and may take a lot of time to answer that 

many queries.  

 

 

4.7 Search in DTSpace 
The SQL language is a sophisticated query language often used in databases [49]. 

The SQL language can handle regular expressions – even range queries are 

possible. In a distributed environment the communication overhead to reach the 

same granularity than SQL is very high. For example, the communication overhead 

to get a global overview of every stored datum in a distributed network is very 

high, because every node has to be contacted. Consider a distributed network, 

existing of hundreds or thousands of nodes, physically distributed all over the 

world. Contacting every single node in a large network can be time and bandwidth 

consuming.  

As discussed in Chapter 3.2 distributed networks have to manage tasks like 

robustness, fault-tolerance, etc. In the DTSpace network there is a tradeoff between 

speed, complexity, storage usage and granularity. As discussed in Chapter 4.6 the 
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search granularity has a direct impact on the storage usage in the DTSpace network 

and on the number of search queries to find a matching tuple. The DTSpace 

approach has a search granularity of one field – either the whole value of a field 

matches the keyword or does not. The user of the DTSpace is able to increase the 

granularity by dividing the fields into more fields and therefore able to search for 

finer keywords.  

 

The search process in the DTSpace approach has three main steps: 

 

1. Search for non-wildcarded fields 

2. Search for tuples 

3. Access the tuple 

 

Figure 13 illustrates an activity-diagram of the read-operation. The in-operation is 

similar to the read-operation. In contrast to the read-operation, the in-operation 

deletes the tuple and its correspondent fields after it successfully accessed the tuple. 

Figure 14 illustrates an activity-diagram of the in-operation. 

 

 
Figure 13: Read-operation activity-diagram 
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Figure 14: In-operation activity-diagram 

 

To search for a tuple, a template needs to be defined first. The template can be 

considered as a keyword to search for. The template must contain at least one field 

with a value. Every other field can contain wildcards. The template is handed over 

to the search process of the local node. The search process searches for every field 

in the template for which a value has been defined (i.e. non-wildcarded fields). If 

the node receives a matching field, it reads the tuple reference, stored in the field. 

The node starts to search for this reference. The reference acts as a pointer to the 

tuple to which this field belongs. If a tuple has been found, the search process 

checks if it matches the template. If the tuple matches the template, the distributed 

voting algorithm is used to get mutual exclusive access to the tuple. The distributed 

voting algorithm is discussed in detail in Chapter 4.8. If no matching field or tuple 

is found, the node inserts so-called block fields, which contain a reference to the 

searching node and the value of the field for which the node searches for. After 

inserting these block fields, the node blocks (e.g. waits a certain amount of time) 

and periodically repeats the search for matching fields and tuples.  

 

If another node in the DTSpace inserts a new tuple in the meantime, it searches for 

block fields, which match one or more fields of the newly inserted tuple. If a 

matching block field is found, the node sends a notification message to the 

blocking node that new matching fields has been inserted into the DTSpace 

network. If the blocking node receives a notification message it immediately ends 
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blocking (i.e. interrupts the delay period) and begins to search for matching fields 

and tuples. The block fields are deleted after the search process has ended.  

 

The notification message is sent in a best effort approach in the distributed 

network. The notification message may not reach its destination. Then the blocking 

node does not interrupt the delay period and will find the new fields when the next 

search period starts. The benefit of the notification message is to interrupt the delay 

period of the blocking node and thus minimizing the overall time to get a matching 

tuple. The blocking node periodically repeats the search for matching fields and 

tuples, if the notification message is lost.  

 

 

4.8 Distributed Mutual Exclusion 
If the search process has found a matching tuple, it has to access the tuple in a 

mutual exclusive way, because the tuple space model provides exclusive access to 

tuples. Since the tuples are replicated in the overlay network two processes (nodes) 

may access the same tuple, but different replicas at the same time. The overlay 

network does not know if the same tuple is accessed at the same time on different 

replicas (locations), because there is no global view in the overlay network, which 

can prevent simultaneous access on different replicas. The mutual exclusion is 

violated, if two nodes access different replicas of the same tuple. To solve this 

problem, in a distributed network, a so-called voting algorithm is implemented. As 

discussed in Chapter 3.4 there are several approaches for distributed mutual 

exclusion algorithms. I combine the two approaches (1) Sigma protocol [47] and 

(2) End-to-End mutual exclusion protocol [46, 45]. The main features are taken 

from the Sigma protocol. The End-to-End mutual exclusion protocol maintains a 

quorum set, which I do not use, because the effort to maintain a quorum set for 

tuples, which do not reside very long in the DTSpace, is expensive in terms of 

communication overhead. 
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Figure 15: Activity diagram for the distributed mutual exclusion algorithm from the point of view 

of a requesting node 

 

The voting algorithm approach for the DTSpace has three main phases – (1) a 

gathering, (2) a winner and (3) a yield phase. The yield phase is only needed, if no 

majority of votes is reached in the first voting round. Voting is done in the 

gathering and in the winner phase. Every replica of a tuple acts independently. The 

replicas maintain a request queue for every tuple. To get access to a tuple, the 

requesting node has to gather the majority of votes for two times to guarantee 

mutual exclusion. It is to say, that if a node wants to access a tuple, it sends 

REQUEST messages to every replica of the tuple in the first phase. If a REQUEST 

message reaches a replica, the replica stores the request into its request queue. The 

first node in the request queue is the owner of the replica. Every replica answers 

with a RESPONSE message (i.e. vote), which contains the current owner of the 

replica. If a replica already has voted for another node (e.g. other REQUEST 

messages have been received before), it returns a RESPONSE message, which 

contains the current owner of the replica. All RESPONSE messages (votes) are 

counted on the requesting node. There are two different votes for a requesting 

node: (1) the votes, for which the node itself is the owner of a replica (own vote) 

and (2) the votes, for which other nodes are the owner of a replica (foreign votes). 

If the requesting node has got the majority of own votes (i.e. number of 
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RESPONSE messages, which contain the own node as owner of the replica) the 

second phase (i.e. winner phase) is started.  

 

In the winner phase the requesting node, which owns the majority of replicas sends 

WINNER messages to all replica. Every replica, which gets a WINNER message, 

sets the requesting node as winner of the replica. It is to say, that after the 

WINNER message is received on a replica, no other node can change the state of 

the replica – the owner is fixated until the winner node releases the replica. The 

replica returns a RESPONSE message to the requesting node, if it gets a WINNER 

message. The RESPONSE message contains the owner (winner) of the replica (e.g. 

the requesting node). The winner votes are counted again. If the requesting node 

gets the majority of winner votes (own votes), it is granted access to the tuple. 

 

Consider the situation if no requesting node gets the majority of votes in the first 

phase. For example, there are 6 replicas for a tuple and three challenging nodes, 

which want to access the same tuple at the same time. It can happen that every 

requesting node gets only two votes. So no node has the majority of votes. In this 

case every requesting node sends a so-called YIELD message to every replica (this 

is called the yield phase). This is a call for the replicas to reorder their requesting 

queues and vote again by sending back a RESPONSE message to the sender of a 

YIELD message. The RESPONSE message contains the new owner of the replica. 

The problem of the YIELD message is that it is sent the number of requesting 

nodes times. Every requesting node sends a YIELD message to every replica, 

because the nodes act independently. Therefore several reorders happen in a short 

amount of time. To avoid multiple reordering, the order of the request queue on the 

replica is frozen for a certain amount of time after one reorder is done. Every 

YIELD message, requesting for a reordering of the request queue is ignored during 

this time. This solves the problem that a new vote gets invalid as soon as a new 

YIELD message arrives at the replica.  

 

Consider the case if the request queue of a replica is not frozen. If node A sends a 

YIELD message and receives a RESPONSE message, in which node A is now the 
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owner of the replica. Node A counts the RESPONSE message as an own vote. 

After the replica has sent the RESPONSE message to node A, node B sends a 

YIELD message. The replica node reorders its request queue again and node B is 

the owner of the replica now. Node B also receives a RESPONSE message, that 

node B is the owner of the replica. Both requesting nodes A and B believe that they 

are the owner of the replica. If this situation happens on several replicas both nodes 

A and B are able to get the majority of votes. This leads to a conflict, because both 

nodes send WINNER messages and fixate the owner of the replicas. This race 

condition has an uncertain outcome. One node may get the majority of votes and 

thus granted access or no node gets the majority of votes and therefore releases the 

currently owned replicas and starts over again. This strategy does cost time and 

message overhead, because the replicas have to be released first before another 

vote can take place. This can be prevented during the YIELD phase, because no 

two requesting nodes believe that they are both winners in the first phase. Delaying 

the reordering process on the replicas leads into a clear situation, in which for 

example, only one node gets the majority of votes. Therefore only one node sends 

WINNER messages. There is no guarantee, that the winner node gets the majority 

of votes in the winner phase (e.g. if nodes fail or the routing does not reach every 

replica). After the access to a tuple, the owner of the tuple sends a RELEASE 

message to all replicas to free it and make the tuple accessible for other nodes. 

 

A WINNER message is overrides a REQUEST or a YIELD message. It is to say 

that if a WINNER message arrives at a replica node, the replica node directly sets 

the sender of the WINNER message as owner of the replica. This owner cannot be 

changed until the owner sends a RELEASE message to the replica. Therefore a 

WINNER message overwrites the current owner, which only has sent a REQUEST 

or YIELD message. The WINNER message fixates the owner of a replica. If the 

current owner of a replica has sent a WINNER message and another node 

accidentally sends a WINNER message, the owner of the replica does not change, 

since the owner has been fixated with the first WINNER message. Figure 15 

illustrates the voting algorithm as activity diagram from the point of view of a 

requesting node.   
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Figure 16: Distributed mutual exclusion process from the point of view of a replica node R. 

 

Figure 16 illustrates an example of a replica node R during a voting process. Three 

concurrent nodes (1, 2 and 3) want to access the same tuple. The messages 

illustrated in Figure 16 are sent to all replicas, which hold the tuple in question. 

Figure 16 illustrates how a replica node acts during concurrent access requests. For 

example, node 1 requests the tuple on the replica node R and sends a REQUEST 

message (Figure 16 (a)). The replica node R has not voted before (i.e. the request 

queue is empty) and therefore takes the request into its request queue. The replica 

node returns a RESPONSE message, which contains node 1 as owner. Shortly 

after, the REQUEST message of node 3 arrives at node R (Figure 16 (b)). The 

replica node R returns a RESPONSE message, which states node 1 as owner of the 

replica node R, since the REQUEST message of node 1 arrived first on the replica 

node R. Node R takes the request of node 3 into its request queue at the second 

place. Also node 2 sends a REQUEST message and receives the same RESPONSE 

message as node 3 (Figure 16 (c)). The request of node 2 is also put into the request 

queue of the replica node. Consider the situation that no requesting node gets the 

majority of own votes and therefore begin to send YIELD messages to all replica 

nodes (Figure 16 (d)). The YIELD message from node 2 arrives at the replica node 

R first. This reorders the request queue randomly. Node 2 gets on the first place of 
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the request queue and is the new owner of the replica node R now. The 

RESPONSE message for node 2 contains node 2 as the new owner. The request 

queue is frozen for a certain amount of time, because of the YIELD message. 

When the YIELD message of node 1 arrives at the replica node, the request queue 

is still frozen and therefore no reordering of the request queue is done (Figure 16 

(e)). Node 1 receives a RESPONSE message with node 2 as owner. In Figure 16 (f) 

node 3 also sends a YIELD message and receives a RESPONSE, which contains 

the node 2 as owner, since we consider that the time to freeze the request queue, 

after a YIELD message has been received, is not over. Consider some time later 

node 2 got the majority of votes. Node 2 sends a WINNER message to all replicas. 

For example, if a WINNER message reaches the replica node R, node 2 is selected 

as owner of the replica. The replica node R returns a RESPONSE message, which 

contains the final owner of the replica node R (Figure 16 (g)). If node 2 gets the 

majority of votes for the previously sent WINNER messages, it can access the 

tuple. If node 2 has finished the access to the tuple, node 2 sends a RELEASE 

message to every replica (Figure 16 (h)). The current owner is deleted from the 

request queue of the replicas and the other nodes in the request queue (1 and 3) 

continue the vote by sending YIELD messages to reorder the request queues on the 

replica nodes. 

 

 

4.9 Blocking Operations in DTSpace 
The tuple space model described by David Gelernter provides the two operations 

read and in as so-called block operations (see Chapter 3.1). If a node does not find 

a tuple in the DTSpace, it blocks until a matching tuple is inserted. There are two 

ways to find out if a matching tuple is inserted in the meantime of blocking: (1) 

periodically repeat the search for a matching tuple and (2) a notification 

mechanism, if a tuple is inserted into the DTSpace. The DTSpace approach 

contains both approaches.  

 

If a node does not find a matching tuple, the node inserts block fields for every 

non-wildcarded field in the template. Every block field contains an address where 
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to contact the blocking node. Every block field also contains the value of the field 

for which the node is looking for, since the search process deals with fields in its 

first phase (refer to Chapter 4.7). The block fields are inserted into the DTSpace. If 

a node inserts a new tuple it searches for block fields, which match fields of the 

tuple. A block field matches a field of a tuple, if the index string of a field of the 

tuple matches the index string of the block field. If matching block fields are found, 

the node sends a notify message to the blocking node. The blocking node resumes 

searching for a matching tuple, since there has been inserted a new tuple. The new 

tuple may not match, because every block field only provides information about 

one field and the total number of fields in the tuple. If the tuple does not match, the 

blocking node blocks again (without inserting block fields, because they already 

have been inserted before). The blocking node waits for a certain amount of time 

and searches for the tuple again until a match is found.  

 

The purpose of block fields is to notify the blocking node, which resumes 

searching for a matching tuple before the delay time period (blocking time) runs 

out. Therefore the notify message shorten the time to wait. The notify mechanism 

needs not to be reliable, because the blocking node do not rely on a notification 

(since it periodically repeats to search for matching tuples). If a notify message 

arrives at the blocking node it increases the performance of the DTSpace (in terms 

of time), because a matching tuple which has just been inserted is found faster. If a 

blocking node finds a matching tuple it deletes the previously inserted block fields. 
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5. Evaluation 
In this chapter different test scenarios evaluate the capabilities of the DTSpace 

prototype implementation. Every test scenario has a different focus (e.g. average 

duration of the operations).  

 

 

5.1 Test Environment 
One computer is used during the tests. The computer is an AMD Athlon XP 2500+ 

with 1024 MB RAM. The operating system is Windows XP with SP2. The nodes 

are started in the environment of Eclipse Europa [50] with Java version 1.6. 

 

 

5.2 Scenario Setup 
Every test scenario uses the same node graph. The initial node graph is illustrated 

in Figure 17 and contains 10 nodes. The label of every node shows the port number 

on which the node communicates. The directed arrow shows the bootstrap node of 

the current node. For example, the node with label “Node@12664” runs at port 

number 12664 and its bootstrap node is “Node@12663”.  

 

The 10 nodes are started at once. Before starting the test scenarios the nodes is 

given time to build up a DTSpace network (e.g. building up routing tables and 

creating paths). After a build up time of 10 minutes the different test scenarios uses 

the DTSpace network. The first test scenario puts tuples into the DTSpace network 

with the out-operation.  
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Figure 17: Node graph for the test scenarios (10 nodes) 

 

 

5.3 DTSpace Operations Test  
In these test scenarios the performance of the operations out, in and read is tested. 

For these three tests, an already built up DTSpace network is used (as discussed in 

Chapter 5.2). The active node (“Node@12664”) does repeat every operation 200 

times using different tuples. 200 random tuples are inserted into the DTSpace 

network.  

 

 

5.3.1 Out-Operation 
In this scenario the performance of the out-operation to write tuples into the 

DTSpace is tested. Therefore the time, which is needed to invoke the out-operation, 

is measured. 200 random tuples are written into the DTSpace network. A tuple has 
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between 1 and 6 fields and the field values have random character strings. Every 

tuple is written from the active node with the label “Node@12664” into the 

DTSpace network. Between two out-operations two seconds is waited. The reason 

of the two second delay is that I have encountered very high CPU usage, if much 

data is written into P-Grid in a very short time. The delay keeps the CPU usage low 

and the operation time can be measured without interference of the CPU load. 

Figure 18 depicts the times, which every out-operation needs to write a tuple into 

the DTSpace network. The red line shows the average time for an out-operation. 

The average time to invoke an out-operation for the 200 tuples is 550 ms, as 

illustrated in Figure 18. 
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Figure 18: Time to invoke an out-operation. 
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5.3.2 Read-Operation 
This scenario tests the performance of the read-operation. The test is similar to the 

out-operation test in Chapter 5.3.1. 200 tuples already exist in the DTSpace 

network. The templates, which are used for the read-operation, are randomly 

generated from the tuples already existing in the DTSpace network. Therefore at 

least one matching tuple exists for every template. 200 templates are tested. The 

time, which is needed for every read-operation is presented graphically in Figure 

19. The red line shows the average time needed to invoke a read-operation (i.e. 

14.200 ms).  
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Figure 19: Time needed to invoke a read-operation. 
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5.3.3 In-Operation 
The test of the in-operation is done like the read-operation test in Chapter 5.3.2. 

The 200 templates from the read-operation test are used for the in-operation test. 

The time needed for the invocation of the in-operations is graphically illustrated in 

Figure 20. The red line describes the average time needed to process an in-

operation (i.e. 5.853 ms).  
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Figure 20: Time to invoke an in-operation. 

 78



5.4 Concurrency Test 
In this test scenario the distributed mutual exclusion of the DTSpace is tested. A 

modified read-operation is invoked by three nodes at the same time for the same 

tuple to test the distributed mutual exclusion. The DTSpace prototype 

implementation is modified not to release a tuple after a read-operation 

successfully accessed a tuple, because the original read-operation in the DTSpace 

prototype implementation does release a tuple after the node accessed it. If other 

nodes try to get access to the same tuple, no other node is allowed to access it. 

Consider, for example, a node gets granted access to a tuple. In order to test the 

mutual exclusion algorithm two other nodes try to get access to the same tuple. 

 

The replication rate in the DTSpace network is 6. Because there is no global view 

of the DTSpace network the replication rate has to be approximated. Therefore it 

cannot be guaranteed, that there exists exactly 6 copies of a tuple. First, the 

majority threshold was set to 4, but the result was that none of the three concurrent 

nodes can get access to the tuple. Therefore I take an optimistic approach and set 

the majority threshold to 50% (i.e. 3) compared to the replication rate. In the 

following test results 3 votes out of maximal 6 votes are necessary to get access to 

a tuple. As the test results state in Table 5 50% threshold is enough during 

concurrent voting. Either one node or no node is granted access to a tuple. Table 5 

illustrates the time to get access to a tuple and which node of the three concurrent 

nodes gets granted access. There are 6 results, where no node gets access to the 

tuple. The rows, which are only filled with ‘-‘, are results, where no node is granted 

access to a tuple. This may happen in an unreliable P2P network, but there is no 

case, where two nodes get granted access to the same tuple at the same time. The 

distributed mutual exclusion algorithm in the DTSpace prototype implementation is 

not violated even with an optimistic 50% threshold. 

 

Time in ms Node 1 Node 2 Node 3 
6.250 x - - 
7.313 - - x 

- - - - 
10.110 - - x 
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5.984 - x - 
- - - - 

10.141 - - x 
17.468 - - x 
10.282 - x - 
6.484 x - - 

- - - - 
- - - - 

6.516 - - x 
6.328 x - - 

- - - - 
- - - - 

14.313 - x - 
9.719 - x - 

10.250 - x - 
8.765 - - x 
6.578 - x - 

17.515 - - x 
34.672 - x - 
13.281 - x - 
30.375 x - - 

 

Table 5:  The nodes 1-3 try to access the same tuple at the same time. The ‘x’ illustrates, which 

node gets granted access. The time in ms in the left column shows the time, which is needed to get 

access to the tuple. The sign ‘-‘ illustrates that the node in this column does not get access to the 

tuple. 

 

 

5.5 Conclusion 
The measured times of the different operations show that the DTSpace network is 

an unreliable P2P network. The results of the out-operation test states that it takes 

about 0.5 second in average to write a tuple into the DTSpace network. In the 

beginning of the test phase I encountered high CPU load, if many out-operations 

are invoked in a short time (e.g. invoke a new out-operation as soon as the previous 

operation is finished). The reason was that P-Grid peaks the CPU load up to 100% 

if tuples are inserted very fast. To circumvent this I delayed every out-operation by 

two seconds.  
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The average time in the in-operation test is nearly half of that in the read-operation 

test, although the read- and in-operations are very similar. There are several 

possible reasons for this improvement. On the one hand in the in-operation test the 

DTSpace network is running longer than for the read-operation test, because the 

same DTSpace network is taken for the two tests. On the other hand the same 

templates are used to invoke the in-operation. This behavior indicates that P-Grid 

has improved the routing towards the tuples during the read-operation test, which 

was done before the in-operation test. Another possible reason could be that the 

more often a route is used, the more sophisticated the route becomes in P-Grid. 

However, P-Grid may learn from messages to improve its routing infrastructure 

and therefore improves the message passing. These are only proposal reasons, why 

the operations in the second test (i.e. in-operation test) are faster. However, further 

investigations had to be done. 

 

The concurrency test give results about the distributed mutual exclusion algorithm. 

Some tuples could not be accessed in concurrency, because no concurrent node got 

the majority of votes. There are a few reasons, why this can happen. First, the 

message to all replicas, which is sent by every concurrent node, may not reach 

enough replica nodes, due to the unreliable nature of P2P networks. Another reason 

could be that there exist too few replicas to get the majority of votes during the 

voting algorithm. P-Grid maintains the number of replicas, but since P-Grid is a 

P2P network no node has a global view over the network to know the current 

number of replicas of a tuple. Therefore the number of replicas is estimated 

towards the configured replication rate in P-Grid.  
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6. Future Work 
The DTSpace approach has a simple interface for the processes, which uses the 

DTSpace. An API between the DTSpace and the overlay network would make it 

easier to use the DTSpace approach with other P2P networks too. The DMutex 

module (as discussed in Appendix A) is an example to reuse the DTSpace for 

another P2P network. The benefit to use the DTSpace approach with different P2P 

networks would be that it can be tested in different environments or the P2P 

network performance can be tested with the DTSpace API, since the DTSpace is 

quite demanding (e.g. replication, message passing for votes, many storage 

objects). 

 

Improving the distributed mutual exclusion approach is another interesting field for 

further research. The majority threshold and replication rate are predefined in the 

current approach. To make the majority threshold and the replication rate dynamic 

(since the majority of votes depends on the replication rate) is a non-trivial 

challenge, since it has to be guaranteed, that the mutual exclusion must not be 

broken. Some P2P networks work with randomized attributes (e.g. random walker, 

discussed in Chapter 3.2). Also the replication rate in P-Grid is estimated around 

the configured replication rate. Therefore making the majority threshold dynamic is 

interesting. Consider the situation that some replicas fail and there are too few 

replicas available to get the majority to access the tuple. Consider the replicas are 

only replaced during maintenance round, but the time for a new maintenance round 

has not come yet. Therefore no process can access the tuple during this time. If the 

majority threshold is dynamically adapted to the number of replicas, currently 

available, nodes can access tuples, even though replicas are missing. 

  

Another interesting extension of the DTSpace approach would be to make the 

DTSpace capable for range queries. For example, to match tuples which’s field 

value lies within a certain range (e.g. return a tuple, which’s first field has a value 

between 3 and 9). 
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7. Summary and Conclusion 
This thesis illustrates a novel approach, which uses a P2P network to distribute a 

tuple space (TS). Beginning with the file-sharing tool Napster in 1999, P2P 

networks have drawn up attention for user applications (e.g. Gnutella) and for 

research (e.g. Chord). Therefore a lot of research has been done to make P2P 

networks (1) robust, (2) fault-tolerant and, most importantly, (3) scalable. In this 

thesis, P-Grid a distributed hash table (DHT) implementation is used for the 

distributed TS (DTSpace) prototype implementation. P-Grid provides a P2P 

network API, which is able to replicate data. P-Grid builds up a binary search tree 

to efficiently search for data and to efficiently route messages in the P-Grid 

network. 

 

The original TS model was first introduced by David Gelernter in 1985. The TS 

provides communication and synchronization capabilities for distributed 

applications. A TS can be viewed as a blackboard on which someone can put notes, 

read or remove notes. These actions are equivalent to the three TS operations out, 

read and in. Following the blackboard analogy notes on the blackboard are tuples, 

and the blackboard itself is a tuple space. During the last two decades many 

approaches have been developed for the TS. Most of them, for example, 

JavaSpaces from Sun or TSpaces from IBM, are centrally managed. An example 

for a DTSpace is SwarmLinda, which imitates the behavior of a swarm in nature to 

store and retrieve tuples (e.g. like an ant colony).  

 

This thesis also provides an approach for data mapping in a DTSpace. The purpose 

of data mapping is to make the search process efficient. For every tuple and for 

every field a so-called index is generated. The index is used to filter out non-

matching tuples in the beginning of the search process. For example, to filter out 

tuples, which, for example, match the values of a field, but the tuple does not match 

the number of fields of the template.  

 

The TS operations read and in are blocking operations. A node, which does not 

find a matching tuple periodically search for matching tuples. A node, which 
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inserts a tuple into the DTSpace searches for nodes, which are looking for the new 

tuple. If the node finds a blocking node, the node notifies the blocking node that a 

new tuple has been inserted. The blocking node immediately resumes its search 

process. Synchronization in a TS is achieved with mutual access to a tuple. The 

DTSpace approach in this thesis uses a hybrid approach of the two distributed 

mutual exclusion protocols Sigma and End-to-End that grants mutual access to 

tuples. 

 

I implemented a Java prototype on top of the P2P API P-Grid. The prototype 

implementation provides the three TS operations out, in and read and an 

implementation of the distributed mutual exclusion approach. Every tuple is split 

into its fields. The fields are stored, together with the tuple itself, in the P-Grid 

index. The fields of a tuple hold a reference to the tuple to which they belong. 

These fields are used to search for matching tuples of a template. A template can 

contain wildcards to replace unknown values of the tuple to search for. Therefore 

the search process in DTSpace first searches for fields for which the value is 

known. The fields in the search result hold references to matching tuples. The 

found tuples are matched with the template and one matching tuple is returned. 

 

Finally the evaluation of the DTSpace prototype implementation shows the 

performance and capability of the approach discussed in this thesis. The TS 

operations out, read and in were tested in a DTSpace network, which consisted of 

10 nodes. The time needed to invoke the operations was measured. The results 

indicated that the distributed mutual exclusion algorithm scales with the size of the 

P2P network and the number of tuples. Experiments with the vote majority of the 

distributed mutual exclusion algorithm showed that an optimistic strategy (only 

50% of the votes are needed) is sufficient for mutual exclusive access to tuples.  
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Appendix 
 

A The DTSpace Prototype Implementation 
The prototype implementation for the DTSpace is built on top of the DHT network 

P-Grid [29]. Because P-Grid has special abilities the modules of the DTSpace 

prototype are only partially reusable. For example, the search module (Seeker) has 

to be newly implemented if another overlay network is used. The distributed 

mutual exclusion module (DMutex) is mainly reusable. The DTSpace objects like 

fields, tuples and templates are also reusable. 

 

 
Figure 21: Main modules in the DTSpace prototype implementation 

 

The DTSpace prototype implementation starts three threads (i.e. 

dtspace.blockhandler.PGridBlockhandler, dtspace.seeker.PGridSeeker and 

dtspace.dmutex.PGridDMutex) besides instantiating classes (e.g. 

dtspace.dmutex.PGridDMutex for the DMutex module). The threads are started on 

startup of the DTSpace node. The P-Grid implementation is also started in the 
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beginning, which itself contains several threads. Figure 21 illustrates a detailed 

overview of the main modules in the DTSpace prototype and its interactions. The 

Seeker and BlockHandler modules are responsible for searching and matching 

tuples. The DMutex module is responsible for the distributed mutual exclusive 

access of a tuple. The PGrid Interceptor module is built into the P-Grid 

implementation as discussed later. On top of all modules the DTSpace module is 

the point of contact to the processes or nodes, which interact with the distributed 

tuple space. The DTSpace module offers a simple interface, which is illustrated in 

Figure 23. 

 

The modules, which are illustrated in Figure 21, are discussed briefly as follows: 

 

• DMutex module (package dtspace.dmutex): This module maintains the 

request queues for the locally stored tuples. The request queues are stored in 

a hash table and contain access requests from nodes, which want to access a 

tuple. The DMutex module incorporates the protocol for distributed mutual 

exclusion, which is discussed in Chapter 4.8. The modules Seeker and 

PGrid Interceptor interact with the DMutex module. The Seeker module 

invokes the DMutex module, if the local node wants to access a tuple. The 

DMutex module handles the votes for replicas. 

 

• Seeker module (package dtspace.seeker): The Seeker module is one of the 

central modules, because it has to coordinate the whole search and match 

process. If the local node is looking for a tuple the Seeker module sends 

search queries into the overlay network. If no result is returned or a timeout 

occurs the Seeker module invokes the BlockHandler module to handle the 

blocking process as discussed in Chapter 4.7. The BlockHandler module 

invokes the Seeker module, if a notification message arrives. The Seeker 

module continues the process, if a notification message is received. After a 

matching tuple is found the Seeker module also handles the access 

permission of a tuple by invoking the DMutex module. 
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• BlockHandler module (package dtspace.blockhander): This module is 

invoked if the Seeker module does not find a matching tuple. The 

BlockHandler module is also invoked, if a new tuple is inserted. The 

module notifies the nodes, which are waiting for a tuple. 

 

• PGrid Interceptor module (package dtspace.pgrid): This module handles 

incoming and outgoing maintenance messages, which are sent in the P-Grid 

network. The PGrid Interceptor module keeps the request queues in the 

DMutex module up to date. For example, if a local tuple is replicated to 

another node, the PGrid Interceptor module adds the current request queue 

of the tuple to the maintenance message. The request queue is sent along 

with the new replica. On the receiving node of the replica the PGrid 

Interceptor module reads out the request queue from the maintenance 

message and adds it to the other request queues in the DMutex module. If a 

tuple is deleted the PGrid Interceptor module deletes the correspondent 

request queue in the DMutex module. The overlay network invokes the 

PGrid Interceptor module. Therefore the overlay network implementation 

has to be changed. The changes in the overlay network are discussed in 

detail in the JavaDocs of the class dtspace.pgrid.PGridInterceptor. 

 

• DTSpace module (package dtspace): This module represents the tuple 

space interface for the processes and nodes, which are using the DTSpace 

network. The module invokes the tuple space operations out, read and in.  

 

• Overlay Network (P-Grid): This is not a module, written for the DTSpace 

prototype implementation. It provides an API, which is developed and 

written by [29]. P-Grid is discussed in Chapter 3.3.1. 

 

Nearly for every class in the DTSpace prototype an interface has been defined. The 

interfaces can be found in the packages with the prefix dtspace.interfaces. Overlay 

specific (i.e. P-Grid specific) implementations can be found in the packages with 

the prefix dtspace.pgrid or dtspace.constants.pgrid, since P-Grid is the overlay 
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network used in the prototype implementation. Other P-Grid specific classes have 

the term PGrid in their class names.  

 

Constants, which are used in the DTSpace prototype, can be found in the packages 

with the prefix dtspace.constants. The classes in the packages dtspace.constants are 

extendable in an easy way, because they contain a constant, which contains all 

defined constants in the class. For example, the constant ALL_PROPERTIES is an 

array of strings, which contains all available constants in the class 

dtspace.constants.configuration.PropertiesPGrid. Another example is 

ALL_PHASES, which contains every possible phase existing in the class 

dtspace.constants.dmutex.Phases. The benefit of this structure is that automatic 

check loops (e.g. for-loops) can easily go through all possible constants and it is 

easy to get a complete list of possible constant values to see which constants are 

available. For example, all data types, which are possible for a field, are listed in 

the array dtspace.constants.dtspace.FieldTypes.ALL_FIELD_TYPES. The big 

benefit for loops, which need to check every constant in a class, is that it is 

extendible. Consider a new FieldType is needed. The new type only needs to be 

written into the class dtspace.constants.dtspace.FieldTypes and must be added to 

the array ALL_FIELD_TYPES. Therefore all loops, which check all available types 

(i.e. exists for a field) automatically are extended by extending the array 

ALL_FIELD_TYPES, since the checking uses only this array. 

 

The implementations of the interfaces can be found in the packages, which do not 

have interface in their package names. For example, the interfaces in the package 

dtspace.interfaces.dtspaceobjects can be found in the package 

dtspace.dtspaceobjects. Abstract classes are used to be general and reusable for 

other implementations. For example, the abstract class dtspace.dmutex.DMutex is 

used to implement the distributed mutual exclusion module for the P-Grid overlay 

network (i.e. class name dtspace.dmutex.PGridDMutex). If another overlay 

network is used, the abstract class dtspace.dmutex.DMutex can be used to 

implement the DTSpace using the new overlay network. Only a few methods have 

to be implemented instead of the whole interface for the DMutex module. Another 
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example is the abstract class dtspace.interfaces.DTSpace, which also can be 

partially reused. The modules BlockHandler, which is defined in 

dtspace.interfaces.blockhandler.IBlockHandler and the Seeker module, which is 

defined in dtspace.interfaces.seeker.ISeeker have to be implemented completely 

new, if another overlay network is used, because these modules have to be adapted 

very specifically to the used overlay network. The structure of the implemented 

modules BlockHandler and Seeker for the P-Grid overlay network can be used as a 

template for a new implementation of the modules. Namely the packages 

dtspace.seeker.PgridSeeker and dtspace.blockhandler.PGridBlockHandler can be 

used as a template for a new implementation of these two modules. 

 

The DTSpace prototype implementation uses the singleton pattern to ensure that 

specific classes are instantiated only once (e.g. the DMutex module). The singleton 

pattern also provides access from everywhere in the implementation. It is to say 

that a reference to a singleton instance does not have to be handed over as 

parameter to every class, which needs it. I took over this principle from the P-Grid 

implementation. 

 

The modules Seeker, BlockHandler and DMutex work with phases. For example, if 

no search is processed the Seeker module is in the phase IDLE. Please refer to the 

JavaDocs of the DTSpace prototype implementation for a detailed description of all 

available phases for the three modules Seeker, DMutex and BlockHandler (i.e. 

dtspace.constants.seeker.Phases, dtspace.constants.blockhandler and 

dtspace.constants.dmutex.Phases). 

 

Figure 22 illustrates a class diagram with the main interfaces (in violet) of the 

DTSpace objects, their implementations (in green) and references. The dashed lines 

are implementation relations of interfaces and the continuous lines are 

generalization relations. The most generalized interface is IDTSpaceObject. For 

example, a template is a special form (implementation) of a tuple. A block field 

and a wildcard are special fields. These similarities are a benefit for the 

implementation, because many implemented methods can be reused from the super 
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class. Another benefit is that working with the objects in the DTSpace is easier to 

understand, since they are similar. For example, the method isValid() is available in 

every DTSpace object and checks, whether the object contains the correct values or 

not. The block field is a DTSpace internal object and is not needed at the user level, 

but since it is a DTSpace object it also belongs to the same package than tuples or 

fields.  

 

 
Figure 22: Class diagram of the main DTSpace objects (interfaces are violet and implementations 

are green) 

 

The DTSpace prototype implementation also contains examples for a DTSpace 

system in the package dtspace.test.scenarioA and dtspace.test.scenarioB. These 

packages contain two classes each, which can be used to test the DTSpace 

prototype or use them as a template to build an application, which uses the 

DTSpace.  

 

The class DTSpaceActive can be used to interact with the DTSpace network via 

command line (type help to get the possible commands in the command line after 
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starting the process). The class DTSpacePassive is configured to periodically 

output the locally stored tuples of a node. It is easy to build up a DTSpace network 

with these two example classes.  

 

Besides the packages and classes discussed in this chapter there are many other 

packages in the DTSpace prototype implementation. To discuss all of them would 

go beyond the scope of this thesis. Please refer to the JavaDocs of the DTSpace 

prototype implementation.  

 

 

B Configure and Use the DTSpace Prototype Implementation 
The DTSpace prototype is written in Java and has a simple interface, which is 

illustrated in Figure 23.  

 

 
Figure 23: Interface of the DTSpace prototype 

 

The interface for the DTSpace prototype is illustrated in Figure 23. The following 

methods have been implemented in the DTSpace prototype: 

 

• connect( ):  This method connects the local node to the DTSpace network. 
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• in( template: ITemplate ): Remove a tuple from the DTSpace network, 

which matches the template. 

 

• isConnected( ): Check, whether the local node is connected to the 

DTSpace network or not. 

 

• out( tuple: ITuple ): Write a tuple into the DTSpace network. 

 

• read( template: ITemplate ): This method reads a matching tuple. 

 

• shutdown( ):  Nicely shut down all processes of the local DTSpace node. 

 

The following methods in the DTSpace interface are not implemented yet (future 

work): 

 

• disconnect( ): Disconnect the local DTSpace node from the DTSpace 

network. It does not work, because the overlay network P-Grid is not 

developed to disconnect. P-Grid only leaves the network without special 

actions (e.g. leave message, transfer locally stored replicas to other nodes 

before leaving). 

 

• toNetworkMode( dismissLocalTuples: boolean ): This method connects 

to the DTSpace network and deletes all locally stored tuples, if the 

parameter dismissLocalTuples = true. Locally stored tuples are kept, if the 

parameter is false. 

 

• toOfflineMode( dismissLocalTuples: boolean ): Disconnect from the 

DTSpace network and keep all locally stored tuples, if the parameter 

dismissLocalTuples is set to false. Otherwise all locally stored tuples are 

deleted. 
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The methods toNetworkMode and toOfflineMode can be used for processes, which 

work offline from time to time. It is to say that the processes need not to stay online 

(i.e. connected to the DTSpace network) all the time. For example, a process can 

prepare tuples to write into the DTSpace network if it is not connected to the 

DTSpace network (i.e. in offline mode). The tuples are put into the network the 

next time the process connects to the DTSpace network. Consider the situation 

where the connection time to the DTSpace network is expensive (i.e. modem 

connection). The process writes all tuples into the local storage during offline 

mode. The local process invokes the out-operation to write tuples into the DTSpace 

network. Because the local process is offline the tuples are stored only locally. If 

the process connects to the DTSpace network by invoking the method 

toNetworkMode(false) the locally stored tuples are put into the DTSpace network. 

The tuples then are available for every process, which is connected to the DTSpace 

network. 

 

To configure and work with the DTSpace implementation the following three 

classes are used: 

 

• dtspace.DTSpaceFactory: This class is the factory for every object 

instance (e.g. DTSpace instance, tuples, templates), which is needed at the 

user level. For example, the factory is used to create the DTSpace instance 

at the beginning as well as to create templates to search for tuples, etc. 

Please refer to the JavaDocs of the DTSpace prototype implementation for 

further descriptions of the available methods. A detailed example to 

configure and start a DTSpace node is discussed later in this chapter.  

 

• dtspace.PGridDTSpace: This class is the DTSpace instance and is created 

in the dtspace.DTSpaceFactory. This instance provides the three basic TS 

operations out, read and in. Other methods than these basic operations exist 

in dtspace.PGRidDTSpace (e.g. shutdown). Please refer to the JavaDocs in 

the DTSpace prototype implementation for a detailed description of the 

class.  
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• dtspace.constants.dtspace.FieldTypes: This class provides the data types, 

which must be used in the fields of a tuple or template. For example, if an 

integer value is stored in a field, the data type can be set to INT. The reason 

for this additional information for a value is that every value in a field is 

stored as a string value. For example, an integer value is converted into a 

string value. If an integer value is converted into a string value the 

information of the type is lost. Therefore the type has to be declared 

explicitly. All types are available in the class 

dtspace.constants.dtspace.FieldTypes. 

 

There are two classes to configure the DTSpace implementation on startup: 

 

• dtspace.constants.configuration.PropertiesDTSpace: Get a default 

configuration instance for this class by invoking 

dtspace.DTSpaceFactory.createConfigDTSpace(). All necessary properties 

are initialized with a default value. This class is used to configure the 

DTSpace specific properties (e.g. storage directory for the local tuples, 

blocking delay). 

 

• dtspace.constants.configuration.PropertiesPGrid: Get a default 

configuration instance for this class by invoking 

dtspace.DTSpaceFactory.createConfigONetwork(). The instance, which is 

returned, contains all necessary properties for the overlay network. The 

prototype implementation uses P-Grid. Therefore P-Grid specific properties 

can be set in the class (e.g. directory for the local storage place, hostname 

and port number of the bootstrap host, replication rate). 

 

How to configure the DTSpace prototype implementation? 

 

First of all, the configuration properties for the DTSpace must be set. As discussed 

above, the factory generates an instance of the configuration class 
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(dtspace.DTSpaceFactory.createConfigDTSpace()) and initializes it with the 

default values.  

 

The second part of the configuration is to configure the overlay network. The 

DTSpace prototype uses P-Grid and therefore P-Grid specific properties are 

necessary (get a default configuration instance from 

dtspace.DTSpaceFactory.createConfigONetwork()). 

 

For a detailed description of the properties please refer to the JavaDocs of the 

prototype implementation, since including the JavaDocs goes beyond the scope of 

this thesis (dtspace.constants.configuration.PropertiesDTSpace and 

dtspace.constants.configuration.PropertiesPGrid). 

 

The two configuration classes from above are used to create the DTSpace instance. 

The code snipped in Figure 24 is an example to configure and create a DTSpace 

instance.  

 
1 /** 
2 * Set the arguments... 
3 */ 
4 String localPort = 6655; 
5 String dirName = “DTSpacePrototype“; 
6 String bootstrapIP = “192.168.0.3”; 
7 String bootstrapPort = “1555”; 
8  
9 /** 
10 Get factory instance… 
11 */ 
12 DTSpaceFactory factory = DTSpaceFactory.getInstance(); 
13  
14 /** 
15 Create configurations... 
16 */ 
17 IConfigProperties configDTS = factory.createConfigDTSpace(); 
18 IConfigProperties configPGrid = factory.createConfigONetwork(); 
19  
20 /** 
21 Change standard configurations for the overlay network... 
22 */ 
23 configPGrid.setProperty(PropertiesPGrid.ONETWORK_LOCAL_PORT, localPort); 
24 configPGrid.setProperty(PropertiesPGrid.BOOTSTRAP_ADDRESS, bootstrapIP); 
25 configPGrid.setProperty(PropertiesPGrid.BOOTSTRAP_PORT, bootstrapPort); 
26 configPGrid.setProperty(PropertiesPGrid.LOG_LEVEL, "3"); 
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27 configPGrid.setProperty(PropertiesPGrid.VERBOSE_DEBUG, "false"); 
28  
29 /** 
30 Change the standard configurations of DTSpace... 
31 */ 
32 configDTS.setProperty(PropertiesDTSpace.LOG_LEVEL, "2"); 
33 configDTS.setProperty(PropertiesDTSpace.VERBOSE_DEBUG, "true"); 
34 configDTS.setProperty(PropertiesDTSpace.BLOCK_HANDLER_DELAY, "2000"); 
35 configDTS.setProperty(PropertiesDTSpace.PROPERTY_FILE, dirName + ".xml"); 
36  
37 configDTS.setProperty(PropertiesDTSpace.REPLICATION_RATE, "5"); 
38 configDTS.setProperty(PropertiesDTSpace.DMUTEX_MAJORITY_THRESHOLD, "3"); 
39  
40 String userDirName = 
41 configPGrid.getProperty(PropertiesPGrid.ONETWORK_DATA_PATH) +  
42 dirName + System.getProperty("file.separator"); 
43  
44 configPGrid.setProperty(PropertiesPGrid.ONETWORK_DATA_PATH, userDirName); 
45  
46 String dataDir = configDTS.getProperty(PropertiesDTSpace.DTSPACE_DATA_PATH) +  
47 dirName +  
48 System.getProperty("file.separator"); 
49 configDTS.setProperty(PropertiesDTSpace.DTSPACE_DATA_PATH, dataDir); 
50  
51 /** 
52 Check, if the configuration instances are valid (ok)... 
53 */ 
54 if !(configDTS.isValidConfiguration()) 
55  System.exit(-1); 
56  
57 if !(configPGrid.isValidConfiguration()) 
58  System.exit(-2); 
59  
60 /** 
61 Create DTSpace... 
62 */ 
63 IDTSpace dts = factory.createDTSpace(configDTS, configPGrid); 
64  
65 /** 
66 Check if DTSpace has been created... 
67 */ 
68 if (dts == null) { 
69  System.exit(-3); 
70 } 

Figure 24: Code snippet to configure and create a DTSpace 

 

In the lines 4-7 the user configuration is set like the bootstrap IP address, the local 

port number and the directory where the configurations and data are stored. The 

factory to create the DTSpace, tuples, fields and configuration class instances is 

stored in a variable in line 12 for a more comfortable usage of the factory instance. 

Line 17 and 18 generate default configuration class instances for the DTSpace. In 
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the lines 23-27 the default configuration class instance for the overlay network P-

Grid is changed. For example, the bootstrap host and the local port, where other 

DTSpace nodes can contact the local node are set. The lines 32-49 change the 

DTSpace configuration like the directory where to store the configurations, the 

replication rate. Refer to the JavaDocs of the DTSpace prototype for a detailed 

description of the configuration properties. The lines 54-58 are optional. In the 

lines 54-58 the two configuration instances are checked, whether they are set 

correctly. For example, it is checked if the log file name is correctly set or the 

replication rate has a correct value. The line 63 finally configures the DTSpace 

instance with the properties, which are set in the configuration class instances. 

After the DTSpace is created it can be used immediately.  

 

The factory for the DTSpace is capable of more than creating the DTSpace instance 

and its configuration properties. It also creates tuples, fields and templates. Figure 

25 illustrates a code snipped to create a tuple. In the lines 9-11 string arrays are 

defined, which represent the fields of the tuple and its data types. In the line 16 the 

tuple instance is created, which holds 4 fields which are defined in the line 9 and 

every field type, which is defined in the lines 10-11. The lines 21 and 22 write the 

content of the tuple to the standard output as illustrated in Figure 26. The first line 

in Figure 26 shows the values of the fields of the tuple and the second line holds 

the data types of the correspondent fields.  

 
1 /** 
2 * Get the factory... 
3 */ 
4 DTSpaceFactory factory = DTSpaceFactory.getInstance(); 
5   
6 /** 
7 * Define the fields in the tuple and data types for every field as array of string... 
8 */ 
9 String[] dataArray = {"University", "Vienna", "Austria", "1040"}; 
10 String[] dataTypeArray = {FieldTypes.STRING, FieldTypes.STRING,  
11 FieldTypes.STRING, FieldTypes.INT};  
12  
13 /** 
14 * Create the tuple... 
15 */ 
16 ITuple tuple = factory.createTuple(dataArray, dataTypeArray); 
17   
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18 /** 
19 * Print the content of the tuple... 
20 */ 
21 System.out.println(tuple.getDataStructure()); 
22 System.out.println(tuple.getDataTypesStructure()); 

Figure 25: Code snipped to create a tuple 

 
 

1 (University, Vienna, Austria, 1040) 
2 (STRING, STRING, STRING, INT) 

Figure 26: Content of the tuple defined in Figure 25. 

 

Templates are created the same way as illustrated in Figure 27 for tuples. The 

difference to tuples is that so-called wildcarded fields can be used in templates. A 

wildcarded field indicates that a field is not important for a match. Figure 27 

illustrates a code snipped, which creates a template. Figure 28 shows the content of 

the template (“*” represents wildcarded fields). 

 
1 /** 
2 * Get the factory... 
3 */ 
4 DTSpaceFactory factory = DTSpaceFactory.getInstance(); 
5   
6 /** 
7 * Define the fields in the template as array of string... 
8 */ 
9 String[] dataArray = {"University", null, null, null}; 
10 String[] dataTypeArray = {FieldTypes.STRING, null, null, null}; 
11   
12 /** 
13 * Create the template... 
14 */ 
15 ITemplate template = factory.createTemplate(dataArray, dataTypeArray); 
16   
17 /** 
18 * Print the content of the template... 
19 */ 
20 System.out.println(template.getDataStructure()); 
21 System.out.println(template.getDataTypesStructure()); 

Figure 27: Code snippet to create a template 

 
1 (University, *, *, *) 
2 (STRING, *, *, *) 

Figure 28: Content of the template defined in Figure 27 
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Besides these methods to create a tuple or template as illustrated above, there are 

several other methods in the factory class. They all work similar and offer a simple 

way to create DTSpace objects (i.e. fields, tuple and templates). 

 

 

C Abbreviations  
API Application Programming Interface 

DHT Distributed Hash Table 

DTSpace Distributed Tuple Space 

HTTP Hypertext Transfer Protocol 

ID Identifier 

P2P Peer-to-Peer 

PDA Personal Digital Assistant 

RMI Remote Method Invocation 

SETI (@home) Search for Extraterrestrial Intelligence  

SOAP Simple Object Access Protocol 

SQL Structured Query Language 

TCP/IP Transmission Control Protocol / Internet Protocol 

TS Tuple Space 
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