
Alexandru Jugravu

A High-level Programming

Paradigm for Java-based Parallel

and Distributed Applications

8. September 2005

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

D I S S E R T A T I O N

A High-level Programming Paradigm
for Java-based Parallel and Distributed

Applications

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung von

o. Univ.-Prof. Dipl. Ing. Dr. Thomas Fahringer
Institut für Informatik, Leopold-Franzens Universität Innsbruck

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl. Ing. Alexandru Jugravu
Matrikelnummer: 0127156

Liechtensteinstr. 22A/2/2/18, A-1090 Wien

Wien, am 8. September 2005

Dedicated to
My parents,
Amelia, and
Ana Maria

Abstract

With the development of the Internet and Web computing, the sharing of
programs across heterogeneous platforms and the establishment of a unified
programming and computing environment across the fundamentally heteroge-
neous World Wide Web have become critical issues, which led to the booming
of brand new programming languages such as Java.

There has been an increasing research interest in extending the use of
Java towards performance-oriented programming for distributed and concur-
rent applications. Numerous research projects have introduced class libraries
or language extensions for Java, and tried to provide flexible and high-level
APIs for programming parallel and distributed applications. Much of this work
focuses on providing automatic performance control (e.g. automatic load bal-
ancing, mapping, migration, or control of locality) for distributed applications
and assumes that the runtime system is able to detect parallelism, exploit lo-
cality and achieve efficient load balancing. However, automatic load balancing
and data migration can easily lead to significant performance degradation,
as the underlying runtime system is lacking sufficient information about the
distributed applications. In many cases, programmers are very much aware
of the particular nature of their application, how to distribute data, which
data should be mapped together, when to migrate data, etc. Programming
paradigms that disable the programmer to provide the runtime system with
this information may severely degrade performance.

To overcome the limitations of existing programming paradigms, this the-
sis proposes JavaSymphony, a novel programming paradigm for wide classes
of heterogeneous systems ranging from small-scale cluster computing to large
scale wide area meta computing. On the one hand, JavaSymphony supports
automatic mapping, load balancing and migration of objects without involv-
ing the programmer. On the other hand, in order to enhance the performance
of distributed applications, JavaSymphony provides a semi-automatic mode,
which leaves the error-prone, tedious, and time consuming low-level details to
the underlying system, whereas the programmer controls the most important
strategic decisions at a very high level.

6

We have designed JavaSymphony Runtime System as a distributed Java-
based middleware to support the execution of distributed JavaSymphony ap-
plications. The components of the JavaSymphony middleware (called agents)
are running onto distributed resources and provide basic services needed by
the applications like communication, resource and application monitoring, or
code execution. This dissertation presents in detail relevant features of the
JavaSymphony Runtime System design. Furthermore, we propose a formal
representation to describe middleware functionality, based on the Pi-calculus.

The JavaSymphony programming paradigm allows flexible implementation
of a large range of distributed applications, including workflow applications,
which are quite suitable for coarse-grain distributed computing. On the other
hand, in many cases, the improvement of application performance may re-
quire significant programming effort, whilst the applications that adhere to a
specific computation/communication model such as a workflow model, allow
performance tuning through automatic scheduling and resource allocation.
Motivated by these aspects, we introduce a framework for scheduling work-
flow applications in JavaSymphony. Our approach in this matter differs from
similar research in several ways: Whilst in most related work, the workflows
are limited to DAGs of tasks, we present a workflow model that includes
loops to model repetition in workflow applications, and conditional branches
to address non-deterministic behaviour due to data that is available only at
runtime. Furthermore, we build a dynamic scheduling strategy that addresses
the new workflow elements and we apply this technique to enhance several
static DAG-based scheduling heuristics. In addition, the thesis introduces a
theoretical framework to describe the functionality of the resource broker,
which support advanced features like reservations and dynamic updates of
the estimated task execution times.

Finally, the thesis presents a variety of real-world experiments that validate
the research topics addressed.

Acknowledgements

Here I would like to acknowledge my gratitude to some people who helped me
in completing this work.

First of all, I would like to specially thank my advisor, Prof. Thomas
Fahringer, for his continued generous support and guidance during my studies,
and for the opportunity of working in his research group at University of
Vienna. Without his extremely valuable assistance, this thesis would likely
not have matured.

I am also deeply thankful to Prof. Schahram Dustdar for accepting to be
my second co-examiner.

I thank Prof. Zima for giving me the opportunity to work in Aurora re-
search program, which has funded my Ph.D. studies, and to the members of
the AURORA project for their cooperation, which had a deep impact on the
outcome of my work.

I would also like to thank my colleagues in the tool group, Radu Prodan,
Lihn Truong, Clovis Seragiotto and Sabri Pllana, for many valuable discus-
sions on research or social issues. I wish to address special thanks to Radu
Prodan, for partially proofreading this thesis and for his helpful comments.

Finally, my warm thanks go to my beloved wife, Amelia, and my par-
ents, for their continuous support and encouragement, and to my wonderful
daughter, Ana Maria, for bringing joy in my life.

Contents

1 Introduction . 19
1.1 Motivation . 21

1.1.1 Programming Paradigms for Heterogeneous
Distributed Architectures . 22

1.1.2 Portability . 22
1.1.3 Performance . 23
1.1.4 Access and Control of Resources . 24
1.1.5 Fault Tolerance and Adaptation to Dynamic Changes

of Distributed Systems . 24
1.1.6 Scheduling . 24
1.1.7 Formal Representation of Distributed Processes 25

1.2 Goals . 25
1.2.1 High-level Programming Paradigm for Distributed

Heterogeneous Systems . 25
1.2.2 JavaSymphony - Middleware for Java-based

Distributed Applications . 26
1.2.3 Scheduling Task-based Distributed Applications 27
1.2.4 A Formal Model for Distributed Systems 27

1.3 Thesis Outline . 27

2 Model . 29
2.1 Architectural Model . 29

2.1.1 Single Computing Resource . 29
2.1.2 Symmetric Multi-Processor Machine 30
2.1.3 Multicomputers . 31
2.1.4 The Grid . 33

2.2 Programming Model . 35
2.2.1 Single Address Space Applications 35
2.2.2 Distributed applications . 36
2.2.3 Grid Applications . 41

10 Contents

3 JavaSymphony Programming Paradigm . 45
3.1 JavaSymphony Applications . 46
3.2 Dynamic Virtual Architectures . 46

3.2.1 System Constraints . 46
3.2.2 Creating VAs . 48
3.2.3 Modifying VAs . 49
3.2.4 Retrieving Information about VA’s 49
3.2.5 Class Loading . 49

3.3 JavaSymphony Distributed Objects . 52
3.3.1 Creation of JS Objects . 53
3.3.2 Remote Method Invocation . 54
3.3.3 Migration of JS Objects . 57
3.3.4 Lock/Unlock JS Objects . 59
3.3.5 Persistent Objects . 59

3.4 Distributed Synchronization Mechanisms in JavaSymphony . . . 60
3.4.1 Synchronization of Asynchronous Method Invocations . . 61
3.4.2 Barrier Synchronization . 61

3.5 JavaSymphony Distributed Events . 62
3.6 Summary . 67

4 JavaSymphony Runtime System . 69
4.1 Runtime System Overview . 69
4.2 The JavaSymphony Administration Shell (JS-Shell) 70
4.3 The Network Agent System (NAS) . 71
4.4 The Object Agent System . 74
4.5 The Event Agent System (EvAS) . 78
4.6 Modelling the JavaSymphony Runtime System with

Pi-calculus Processes . 79
4.6.1 The Runtime System . 80
4.6.2 RMI and Pi-calculus . 81
4.6.3 The Network Agent System . 82
4.6.4 The Object Agent System . 83
4.6.5 The Event Agent System . 84
4.6.6 JavaSymphony Applications . 86

4.7 Summary . 87

5 Scheduling Task-based Applications in JavaSymphony 89
5.1 JavaSymphony Workflow Applications . 89
5.2 Workflow Model . 90

5.2.1 Formal Representation of a Workflow Application 90
5.2.2 Basic Elements of the Workflow . 90
5.2.3 Workflow Patterns . 99
5.2.4 Modelling Workflow Applications with Pi-calculus

Processes . 103
5.3 Building and Running Workflow Applications 109

Contents 11

5.3.1 The Activity Life-cycle . 111
5.3.2 Computation and Communication 112
5.3.3 The Execution Plan . 112
5.3.4 An Example of Workflow Application 114

5.4 Scheduling Workflow Applications . 116
5.4.1 Scheduling Workflows without Branches and Loops 116
5.4.2 Scheduling Workflows with Branches and Loops 117

5.5 A Min-min Scheduling Algorithm for DAG-based Workflows . . 124
5.5.1 The Algorithm . 125
5.5.2 Applying the Algorithm to Similar Heuristics 127
5.5.3 Limitations of the Algorithm. 128

5.6 HEFT Algorithm for Workflows . 132
5.6.1 Preliminaries . 133
5.6.2 HEFT-based Workflow Scheduling Algorithm 134

5.7 The Schedule Objective Function . 135
5.7.1 The Execution Time as Objective Function 136
5.7.2 Economical Cost Model . 138
5.7.3 Alternative Objective Functions . 140
5.7.4 Scheduling with Multiple Objective Functions 142

5.8 Summary . 143

6 The JavaSymphony Resource Broker . 145
6.1 Modelling the Resources . 145
6.2 Modelling the QoS for Workflow Activities 146
6.3 The Resource Availability . 147
6.4 Scheduling with Advanced Reservation . 148
6.5 Resource Monitoring . 149
6.6 Summary . 151

7 Experiments . 153
7.1 JavaSymphony DCTA . 154

7.1.1 DCTA onto a Heterogeneous Network of Workstations . 154
7.1.2 DCTA onto a Cluster of SMPs . 158

7.2 Jacobi Relaxation . 160
7.2.1 Jacobi Relaxation: Single- vs. Multi-threaded Objects . . 160
7.2.2 Jacobi Relaxation: Events and Barrier Synchronization . 164

7.3 Branch and Bound Application . 165
7.4 JavaSymphony Backtracking Application 170
7.5 DES Encryption/Decryption . 173
7.6 N-body Distributed Application . 177
7.7 Asynchronous Nested Benders Decomposition 179
7.8 Performance of Micro Benchmarks . 182
7.9 Scheduling Workflow Applications in JavaSymphony 185

7.9.1 Wien2k . 186
7.9.2 Invmod/Wasim . 188

12 Contents

7.9.3 Montage . 191
7.10 Summary . 193

8 Related Work . 197
8.1 Java-based Distributed Systems . 197
8.2 Algorithms for Scheduling Tasks-based Applications in

Distributed Systems . 202
8.3 Workflow Research in Distributed and Grid Computing 206

8.3.1 Workflow Languages . 206
8.3.2 Workflow Representation . 207
8.3.3 Workflow Management Systems . 208

8.4 Resource Management Tools . 210

9 Conclusions . 213
9.1 Contributions . 213

9.1.1 The JavaSymphony Programming Paradigm 213
9.1.2 The JavaSymphony Runtime System. 215
9.1.3 Scheduling Techniques for Distributed Workflow

Applications . 215
9.1.4 Published Contributions . 216

9.2 Future Work . 217

10 Appendix . 219
10.1 Notations and Acronyms . 219
10.2 JavaSymphony System Parameters . 222
10.3 Pi-calculus Preliminaries . 227

10.3.1 Basics . 227
10.3.2 Variants of the Calculus . 229

10.4 XML Schema for JavaSymphony Workflow Specification
Language . 234

References . 239

List of Figures

2.1 Von Neumann architecture [1] . 29
2.2 Multiprocessor architecture . 30
2.3 Multicomputer architecture . 31
2.4 Model of a cluster . 32
2.5 Grid environment . 33
2.6 Multithreading for single address space applications. 35
2.7 Multiple threads/processes. Multiprocessor vs. von Neumann

machine model . 36
2.8 Collaborative applications. Various communication patterns . . . 37
2.9 Master/Worker programming model . 38
2.10 Grid service-oriented model . 42
2.11 Application flow types in Grid applications [2]. 42

3.1 Example of a JavaSymphony level-4 virtual architecture 47
3.2 Building constraints. Code excerpt. 47
3.3 Retrieving system parameters. Code excerpt 48
3.4 VA creation. Code excerpt . 48
3.5 Dynamically changing VAs by using the (un)lock mechanism . . . 50
3.6 VA modification. Code excerpt . 51
3.7 Managing VAs’ properties. Code excerpt . 51
3.8 Checking VAs’ constraints. Code excerpt . 52
3.9 Managing the codebase. Code excerpt . 52
3.10 JS object creation. Code excerpt . 53
3.11 Single- and multi- threaded JS objects. Code excerpt 54
3.12 Remote method invocation in JavaSymphony 56
3.13 Synchronous RMI in JavaSymphony. Code excerpt 57
3.14 Asynchronous RMI in JavaSymphony. Code excerpt 57
3.15 One-sided RMI in JavaSymphony. Code excerpt 57
3.16 Object migration in JavaSymphony. Code excerpt 58
3.17 Lock/Unlock mechanism for JS objects. Code excerpt 59
3.18 Using persistent JS objects. Code excerpt 60

14 List of Figures

3.19 Synchronization of 3 ainvoke calls . 60
3.20 Synchronization of ainvoke calls. Code excerpt 62
3.21 Barrier synchronization for 3 JS objects . 63
3.22 JavaSymphony barrier synchronization. Code excerpt 63
3.23 JavaSymphony event consumer. Code excerpt 65
3.24 JavaSymphony event producer. Code excerpt 67

4.1 JavaSymphony Runtime System (JRS) Architecture 70
4.2 JS-Shell, an interface to control the physical resources for JS

applications . 72
4.3 Example of a level-3 PA (physical architecture) 72
4.4 Mapping level-2,3 VAs to level-2 PAs . 73
4.5 Mapping a level-3 VA to a level-3 PA . 74
4.6 Job processing mechanism . 76
4.7 Event Agent System. Consumer and producer interaction 79

5.1 Activity specification. Code excerpt . 92
5.2 Dummy activity specification. Code excerpt 93
5.3 Data Link specification. Code excerpt . 95
5.4 Initial/Final States and Loops. Code excerpt 96
5.5 Branch and branch condition. Code excerpt 98
5.6 AND-split pattern . 100
5.7 AND-join and OR-join patterns. 100
5.8 OR-split and XOR-split patterns. 101
5.9 Sequential and parallel loops in JavaSymphony. 102
5.10 Example of control- and data-dependency 104
5.11 Entries and exits of the initial state . 105
5.12 Branch element . 106
5.13 Building and running JS workflow applications 110
5.14 Activity states . 113
5.15 A workflow application graph . 115
5.16 Parallel loop elimination . 119
5.17 Branch elimination . 120
5.18 For-loops transformation . 121
5.19 Until-loops transformation . 122
5.20 Elimination of initial and final states . 123
5.21 Min-min scheduling algorithm for DAG-based workflows 127
5.22 Dynamic scheduling algorithm for workflows 130
5.23 HEFT-based algorithm for scheduling workflows 134
5.24 Monotony property for workflows . 137
5.25 Additivity property for workflows . 137
5.26 Additivity. The contributions of the workflows cannot be

clearly separated. 137
5.27 Scheduling with budget limit . 142

List of Figures 15

6.1 Managing reservation requests. 148
6.2 Two tasks sharing a resource . 150
6.3 Estimating execution times for shared-access. 151

7.1 Code skeleton of master/worker JavaSymphony DCTA 155
7.2 JavaSymphony DCTA (16x16 blocks) performance on a NOW . 156
7.3 JavaSymphony DCTA (32x32 blocks) performance on a NOW. . 157
7.4 Performance for various numbers of objects per node on a

single SMP node . 158
7.5 JavaSymphony DCTA (16x16 blocks) on a SMP cluster 159
7.6 JavaSymphony DCTA (32x32 blocks) on a SMP cluster 159
7.7 JS Jacobi Relaxation (without JS events or JS barrier-

synchronization) . 161
7.8 Jacobi relaxation. Performance comparison for single- and

multi-threaded JS objects . 162
7.9 JS Jacobi Relaxation with events . 163
7.10 JS Jacobi Relaxation with JS barrier-synchronization 164
7.11 B&B solution space divided between several computing objects . 166
7.12 JavaSymphony Branch&Bound algorithm performance. 168
7.13 JavaSymphony backtracking algorithm performance 172
7.14 JavaSymphony DES decoding algorithm design 174
7.15 Comparative performance analysis for JavaSymphony,

JavaParty, and Proactive DES decryption versions on a
heterogeneous cluster of SMP clusters . 176

7.16 The organization of N-body functional components 177
7.17 N-body application. Performance result . 178
7.18 Benders algorithm on each node. 180
7.19 Load balancing mapping strategy for a binary tree with 15

algorithm nodes, on a cluster with 4 SMP nodes 181
7.20 Speedup for Benders decomposition . 182
7.21 Wien2k workflow . 187
7.22 Gannt Chart for Wien2k workflow execution. JavaSymphony

vs. Condor . 189
7.23 Invmod/Wasim workflow . 190
7.24 Gannt Chart for Invmod/Wasim workflow execution. 192
7.25 MONTAGE. Process flow overview (Montage Tutorial) 193
7.26 Montage workflow . 194
7.27 Gannt Chart for Montage workflow execution. 195

10.1 Monitoring system parameters with the JS-Shell 222
10.2 Pi-calculus structural congruence . 228
10.3 Pi-calculus operational semantics . 228
10.4 XML Schema for workflow definition . 234
10.5 XML Schema for workflow definition. Link element 234
10.6 XML Schema for workflow definition. Node element 235

16 List of Figures

10.7 XML Schema for workflow definition. Data-link element 236
10.8 XML Schema for workflow definition. Loop element 236
10.9 XML Schema for workflow definition. Link element 237

List of Tables

4.1 Job types in JavaSymphony . 75

7.1 Timing for B&B. Overhead 1 for transferring the optimum;
Overhead 2 for redistributing the work . 169

7.2 Performance data for B&B problem 3 . 170
7.3 Various timings for backtracking algorithm. Values are

represented in ms . 172
7.4 N-Body timings (in ms) . 179
7.5 Creation of JSObjects - remote and local. 183
7.6 Variable number of method invocations for SI, OI. 184
7.7 Variable number of method invocations for AI 184
7.8 Variable number of method invocations/migrations for MIG. . . . 185
7.9 Condor pool of workstations ranked by JavaMFlops attribute . . 186

8.1 Properties of related Java-based middleware 198

10.3 System parameters . 223
10.3 System parameters . 224
10.4 System parameters associated with Condor machine ClassAds . 225
10.4 System parameters associated with Condor machine ClassAds . 226
10.5 Pi-calculus syntax . 227

1

Introduction

In the last decades, we have witnessed a revolution of the computing sys-
tems, from massive and largely expensive computers introduced in the 1940s,
to parallel and distributed architectures comprising large numbers of power-
ful microprocessors connected by high-speed networks. Nowadays, distributed
systems have become the norm for the organization of computing facilities.
The availability of high-performance personal computers, workstations, and
server computers has resulted in a major shift towards distributed systems
and away from centralized and multi-user computers. Clusters of inexpen-
sive workstations or multi-processors are increasingly popular as a promising
solution to design low cost parallel machines.

In parallel with the rapid advances in computing architecture and technol-
ogy, we have seen a growing demand for computation power from increasingly
complex applications. It seems that the size and complexity of the problems
we would like to deal with grow faster than the development of hardware tech-
nologies. The demand for even greater application performance is a familiar
feature of every aspect of computing. Advances in hardware capability enable
new application functionality, which grows in significance and places even
greater demands on the architecture. Application demand for computational
performance continues to outpace what individual processor can deliver, and
therefore multiprocessor systems occupy an increasingly important place in
mainstream computing.

On the other hand, efficient utilization of the huge computing power avail-
able in single supercomputers, or as the sum of the computing power of the
components of a distributed system (e.g. a cluster of workstations, a geo-
graphically distributed grid of resources, or even all the hosts available over
the Internet) is a difficult task. Motivated by this aspect, considerable efforts
have been also made in developing software that can efficiently use the new
computing architectures.

Presently, Local Area Networks (LANs) are able to link hundreds of ma-
chines within a building, whilst Wide Area Networks (WANs) allows millions
of machines all over the earth to be connected. It is very attractive to harvest

20 1 Introduction

the cycles of the interconnected idle machines distributed all over the world,
which can provide peta-flops of aggregated computing power. But beyond the
evident advantages of using already existing hardware and a very competitive
cost to performance ratio, there are also drawbacks of using heterogeneous
systems such as high communication overhead, or compatibility issues, due to
the variety of the hardware, operating systems or the software used.

We have identified several major advances in the software science that have
encouraged the shift towards heterogeneous computing, as a viable alternative
to the massively parallel architectures.

The Internet and the World Wide Web

The Internet [3] was invented in the 1980s, but has exploded in popularity on
a worldwide scale with the advent of the World Wide Web (WWW) [4] later
in the 1990s. Despite its global success and acceptance as a standard mean of
publishing and exchange of digital information, the WWW technology does
not enable ubiquitous access to the billions of (potentially idle) computers
simultaneously connected to the Internet providing huge amount of estimated
aggregate computational power.

Java

With the development of the Internet and Web computing, the sharing of
programs across heterogeneous platforms and the establishment of a unified
programming and computing environment across the fundamentally heteroge-
neous WWW have become critical issues, which led to the booming of brand
new programming languages such as Java [5, 6]. Java may be not distinct in
its way of programming, but it is definitely distinguished in the execution of
its programs on various hardware platforms, available at the present or which
may not even exist right now.

Since its introduction in May 1995, the Java platform has been adopted
more quickly across the industry than any other new technology in comput-
ing history. All major computing platform vendors have signed up to integrate
Java technology as a core component of their products. The popularity and the
utilization of the Java technology have grown over the past ten years, because
of Java’s true portability. The Java platform enables the same Java applica-
tion run on most existing machines, no matter which computing architecture
or which operating system they use. Moreover, Java offers build-in support
for code-mobility, object-orientation, multi-threading, security, remote com-
munication, which are highly useful for distributed computing.

On the other hand, Java programs are commonly interpreted, and often use
more memory than programs written in lower-level language. Moreover, au-
tomatic garbage collection and array range checking can seriously affect the
performance, especially for applications that run only for short time. How-
ever, in the last couple of years, several efforts have been made to solve Java’s

1.1 Motivation 21

performance problems, such as just-in-time compilation or dynamic recompi-
lation (which allow the program to take advantage of the speed of native code
without loosing the portability), and many optimisations in the Java Virtual
Machine (JVM). Recent results [7] have shown that optimised Java code can
perform comparably to C or Fortran for specific classes of applications. Still,
whether Java is significantly slower than other languages is hotly debated.

Grid computing

Analogous to the World Wide Web that provides ubiquitous access to the
information on the Internet, the computational Grids explore new mechanisms
for ubiquitous access to computational resources and quality of service beyond
the best-effort provided by the Internet Protocol (IP).

Built on pervasive Internet standards, Grid computing [8] enables orga-
nizations to share computing and information resources across department
and organizational boundaries in a secure, highly efficient manner. The Grid
computing is commonly illustrated by an analogy with an electrical power
grid [8, 9]. The users of the Grid should be able to access many and di-
verse resources (e.g. high-end computational capabilities, aggregated comput-
ing power of many idle CPUs or large collection of storage/data) as simply as
plugging a device into an electrical socket.

The Grid research challenge is to provide standard, reliable, and low-cost
access to the relatively cheap computing power available nowadays [10]. Grid
computing involves sharing heterogeneous resources over a network by using
open standards. The resources may be based on different platforms, hard-
ware/software architectures, and computer languages, and may belong to dif-
ferent administrative domains. The ensemble of resources is meant to support
the execution of large-scale, resource-intensive, and distributed applications.

Nowadays, there are many different points of view about what Grid com-
puting means, and there are still many open issues regarding the Grid com-
puting, which are currently addressed by numerous research groups. In order
to realize the benefits of Grid computing, standards are needed, so that the
diverse resources can be discovered, accessed, allocated, monitored, and in
general managed as a single virtual system, even when provided by different
organizations. Currently, the Open Grid Service Architecture (OGSA) [11]
and the Globus Toolkit [12, 13] are playing a major role in providing the
needed Grid computing standards.

1.1 Motivation

In the past years, the interest in computational Grids has constantly grown
in the scientific community as a mean of enabling application developers to
aggregate the capabilities of heterogeneous resources scattered around the
globe for solving large-scale scientific problems. Developing applications that

22 1 Introduction

can effectively utilise the huge amount of the resources remains, however, a
very difficult task, because of the lack of high-level programming paradigms
and tools to support developers.

This thesis aims to meet various aspects concerning the programming of
distributed applications for heterogeneous distributed environments.

1.1.1 Programming Paradigms for Heterogeneous Distributed
Architectures

Programming for parallel and distributed architectures is much more com-
plex than for sequential computers. Typically, the programmer is provided
with a machine-specific low-level programming interface (e.g. OpenMP [14]
for shared memory multi-processors, MPI [15] for distributed memory multi-
processors system, or hybrid OpenMP/MPI for SMP clusters). Moreover, on
top of low-level message passing, distributed systems like Sun Remote Pro-
cedure Call (RPC) [16], or Microsoft’s Distributed Computing Environment
(DCE) [17], enable the execution of code via remote procedure calls. The
idea of distributed objects extends the concept of remote procedure calls with
object-oriented programming, and has been used in popular distributed pro-
gramming paradigms like Microsoft’s Distributed Component Object Model
(DCOM) [18], Common Object Request Broker Architecture (CORBA) [19],
designed by Object Management Group (OMG), and JavaSoft’s Java/Remote
Method Invocation (Java/RMI) [20]. All these three standards have their com-
ponent model extensions.

However, the existing tools and programming models are still too low-
level and developing distributed applications commonly requires to deal with
all the details of the parallelism (e.g. decomposition of the program and data,
the mapping of the subparts to the machines/processors, communication and
synchronization). The developer cannot avoid managing the low-level pro-
gramming aspects like explicitly building distinct threads of execution, iden-
tifying the available/suitable resources and mapping code and data onto them.
Therefore, new programming paradigms that can support the easy develop-
ment of parallel and distributed applications are in great demand.

1.1.2 Portability

Heterogeneous resources usually have not only various architectures and com-
puting powers, but also distinct operating systems and distinct software in-
stalled. Portability is necessary to guarantee that these resources can col-
laborate by using a unified programming paradigm or middleware. Building a
portable programming paradigm on top of Java, a true portable programming
language, is therefore a desirable choice.

1.1 Motivation 23

1.1.3 Performance

Achieving performance on a heterogeneous computing infrastructure is not
an easy task. Heterogeneous computing systems commonly consist of a large
number of machines interconnected through off-the-shelf communication com-
ponents, or even by a WAN. This implies higher latency and lower bandwidth
that produce scalability problems, which make the heterogeneous comput-
ing not suitable for several classes of applications (e.g. application with low
computation to communication ratios).

On the other hand, other distributed systems properties, such as flexibility,
portability and transparency, usually come at the cost of performance.

Performance versus portability. In order to run parts of a distributed
application on various computing architectures, potentially having distinct
operating systems and distinct software installed, a new middleware layer is
required to hide the differences between them. For example, Java programs
need a Java Virtual Machine (JVM) to run on the target architecture. The
additional software layer causes overhead and thus affects the performance of
the distributed applications.

Performance versus transparency. Distributed systems commonly
hide the details of the underlying resources (e.g. location, performance pa-
rameters, architecture, etc.), in order to facilitate their usage by various types
of distributed applications. We believe that the access to certain performance
information about the underlying resources may be useful in order to improve
the performance of certain applications. This information could be used auto-
matically by an application scheduler for example, or may be accessed within
the application by using a high-level API to system parameters.

Automatic versus user-controlled performance tuning. Many re-
search groups have tried to provide flexible and high-level APIs for program-
ming parallel and distributed applications. Much of this work focuses on pro-
viding automatic performance control (e.g. automatic load balancing, map-
ping, migration, or control of locality) for distributed applications and assumes
that the runtime system is able to detect parallelism, exploit locality and
achieve efficient load balancing. However, automatic load balancing and data
migration can easily lead to significant performance degradation as the under-
lying runtime system is lacking sufficient information about the distributed
applications. In many cases, programmers are very much aware of the partic-
ular nature of their application, how to distribute data, which data should be
mapped together, when to migrate data, etc. Programming paradigms that
disable the programmer to provide the runtime system with this information
may severely degrade performance. Therefore, we believe that a programming
paradigm should support both options: automatic or user-controlled perfor-
mance tuning in regard with mapping, migration and load balancing.

24 1 Introduction

1.1.4 Access and Control of Resources

High-level programming paradigms for heterogeneous distributed systems are
required to provide APIs for the management of the distributed resources. The
programming paradigm is supposed to hide the low-level details regarding the
location of the resources and/or the protocols used to access them. However,
the programmers may require information from the runtime system to support
or to refine their strategic decisions. Thus, a high-level API to system param-
eters is needed to mitigate the programming effort. Clearly, a programming
paradigm should be provided to support and enhance the interplay between
programmer and runtime system to greatly improve efficiency and scalability
of programs targeting modern parallel and distributed computing structures,
while simplifying the programming effort.

1.1.5 Fault Tolerance and Adaptation to Dynamic Changes of
Distributed Systems

Heterogeneous systems, and in particular Grids, are characterized by dynamic
changes regarding the availability or the performance properties of the under-
lying machines. The resources may be shared by multiple applications, and
therefore the performance could vary substantially. On the other hand, re-
source may randomly fail or become available (again). Resource monitoring is
required to determine when such events happen, and support for migration of
code and data may be needed if these events occur. Many distributed systems
commonly do not address the failures or the dynamic changes in performance
of the resources.

1.1.6 Scheduling

Many distributed applications follow a well-defined pattern, which allows per-
formance optimization by appropriate mapping and synchronization between
the concurrent components of the application. These components could be au-
tomatically scheduled onto the resources, thus saving significant programming
effort.

Application scheduling in a classical approach is an NP-complete optimi-
sation problem [21]. The scheduling algorithms search within a space that
exponentially grows with the (potentially unbounded) number of resources
and tasks and that can achieve particularly huge dimensions on the Grid,
which have not been previously addressed. In addition, the static scheduling
as an optimisation problem has to be enhanced with steering capabilities that
consider the dynamic availability of the resources over space and time. The
workflow model originating from business process modelling [22] has gained
increased interest as the potential state-of-the-art paradigm for programming
distributed applications. While business process workflows are in most cases
Directed Acyclic Graphs (DAG) that consist of a limited number of nodes,

1.2 Goals 25

scientific workflows that implement Grid applications often require large itera-
tive loops that model a convergent behaviour or a recursive problem definition,
or employ selection criteria that produce dynamic changes in the structure of
their execution graphs.

1.1.7 Formal Representation of Distributed Processes

We have observed that many research projects for distributed and heteroge-
neous computing focus on implementation issues and lack a theoretical ap-
proach. We believe that a formal representation can be used to model the
distributed processes and may support an in-depth theoretical understanding
of the model, reasoning and verification.

1.2 Goals

Motivated by the problems outlined in the previous section, we aim to support
the developer of distributed applications with an easy to use novel high-level
programming paradigm for performance oriented parallel and distributed ap-
plications.

1.2.1 High-level Programming Paradigm for Distributed
Heterogeneous Systems

In this thesis, we propose JavaSymphony, a novel programming paradigm
for wide classes of heterogeneous systems ranging from small-scale cluster
computing to large scale wide area meta computing. JavaSymphony supports
object-oriented distributed computing and it is particularly well-suited for
applications that require shared address space, task parallelism, or one-side
message passing.

The primary goal of the JavaSymphony programming paradigm is to al-
leviate the development of parallel and distributed Java programs. At the
same time, the improvement of the application performance is playing an
important role. For performance reasons, the JavaSymphony programming
paradigm strongly supports the programmer to specify and to control local-
ity, parallelism, and load balancing at a high level, without putting a burden
on the programmer to deal with error-prone and time consuming low-level
details (e.g. socket communication or creation and management of remote
proxies for Java/RMI mechanism).

In addition, JavaSymphony provides programming elements highly useful
for programming distributed applications that run on heterogeneous systems,
which includes:

• High-level control over distributed resources;

26 1 Introduction

• High level access to a large variety of static or dynamic system parame-
ters, including machine name, user name, operating system, JVM version
or CPU load, idle time, available memory size, number of processes and
threads, network latency, network bandwidth, etc;

• Selective remote class-loading;
• Automatic and user-controlled mapping and migration of distributed ob-

jects;
• Multi- and single-threaded access to distributed objects;
• Communication through several types of remote method invocation;
• Distributed synchronization mechanisms;
• Distributed event mechanism;

Moreover, the JavaSymphony programming paradigm is characterized by
several desirable properties outlined in Section 1.1:

Portability. Portability is ensured by the fact that JavaSymphony pro-
vides a class library, which is entirely written in Java and runs on any standard
compliant JVM. There is no need to invest time in learning new languages
from scratch, since the supported distributed applications are written in Java
by only using the JavaSymphony class library.

Performance. On the one hand, JavaSymphony supports automatic map-
ping, load balancing and migration of objects without involving the program-
mer. On the other hand, in order to enhance the performance of distributed
applications, JavaSymphony provides a semi-automatic mode, which leaves
the error-prone, tedious, and time consuming low-level details (e.g. creat-
ing and handling of remote proxies for Java/RMI) to the underlying system,
whereas the programmer controls the most important strategic decisions at a
very high level.

Resource Management. JavaSymphony introduces the concept of dy-
namic virtual distributed architectures, which allows the programmer to define
a structure of a heterogeneous (e.g. type, speed, or configuration) network of
computing resources and to control the code placement and the mapping, load
balancing, and migration of objects. Moreover, it gives the programmer the
opportunity to access a large set of dynamic and static system parameters, in
order to improve the performance of the application.

1.2.2 JavaSymphony - Middleware for Java-based Distributed
Applications

The distributed applications use the JavaSymphony programming paradigm
in order to run their components on multiple computing resources. We
have implemented the JavaSymphony Runtime System, a middleware that
is needed to hide the low-level details of the operating systems and to of-
fer a higher level of abstraction to JavaSymphony application developers.
The components of the JavaSymphony Runtime System (called agents) are
running onto distributed resources and provide basic services needed by the

1.3 Thesis Outline 27

applications (e.g. communication, resource and application monitoring, code
execution, etc.). In this thesis, we present in detail relevant features of the
JavaSymphony middleware.

1.2.3 Scheduling Task-based Distributed Applications

The workflow model has emerged as a very promising paradigm for program-
ming distributed applications. Commonly, a static scheduling strategy is used
to build a schedule for a DAG-based workflow, which is known as an NP-
complete optimisation problem. However, static scheduling is not appropri-
ate for dynamic distributed environments, in which resources may randomly
become unavailable or unsuitable and may change dramatically their perfor-
mance parameters. At the same time, DAG-based workflow models cannot
express dynamic behaviour that can occur due to criteria that change at
runtime or due to repetition until convergence criteria are met. We propose
a new workflow model, which includes loops and conditional branches to ad-
dress these issues. For workflow applications of this type, we introduce a novel
dynamic scheduling method.

1.2.4 A Formal Model for Distributed Systems

This thesis proposes a theoretical framework to describe distributed systems,
based on a formal language. For this purpose, we have chosen the Pi-calculus,
which can be seen as a minimal programming language built to capture all
interesting behaviours of concurrent programs and which gives us a mean of
expressing the dynamic interactions among communicating processes. We have
extended this calculus in order to make it suitable for the formal representation
of concurrent and distributed processes in two cases:

• Firstly, we investigate how to represent the functionality of the JavaSym-
phony Runtime System as an abstract Pi-calculus process.

• Secondly, the calculus is used to describe the elements of workflow appli-
cations and model the interactions between them.

1.3 Thesis Outline

The rest of the thesis is organized as follows:
Chapter 2 introduces preliminary notions on top of which the concepts

presented in this thesis are developed. We discuss the existing computing
architectures and the types of applications that can use them.

Chapter 3 explains the JavaSymphony programming paradigm and give
details about the JavaSymphony programming constructs.

Chapter 4 presents the functionality of the JavaSymphony middleware and
the relevant implementation details. Additionally, a formal model is used to
describe the JavaSymphony Runtime System.

28 1 Introduction

Chapter 5 introduces a framework for scheduling workflow applications.
Novel scheduling techniques are introduced to manage loops and conditional
branches in workflows. A framework for modelling the resource broker is pre-
sented in Chapter 6.

Chapter 7 illustrates practical experiments that validate our techniques
and evaluate the performance of the JavaSymphony middleware.

Chapter 8 outlines the most relevant related work.
Finally, Chapter 9 summarizes the contributions and outlines future work.

2

Model

Before starting to describe in detail the main topics of the thesis, we introduce
a few preliminaries. The first part of the chapter discusses on the available
computing systems, ranging from single computing resource to a large scale
Grid architecture. We study the computer organizations and classify them
according to Flynn’s taxonomy [23]. Secondly, we investigate the applications
that can use the described computing architectures, which comprise single
address space applications, a variety of distributed applications (e.g. generic
collaborative distributed applications, meta-tasks, and workflows), and several
types of Grid applications.

2.1 Architectural Model

2.1.1 Single Computing Resource

Fig. 2.1. Von Neumann architecture [1]

Most of the past and present computers are based on the single machine
model, called von Neumann architecture. A von Neumann computer comprises
a single CPU (central processing unit) connected to a single storage structure,
which holds both the set of instructions on how to perform the computation

30 2 Model

and the data produced or required by the computation (Fig. 2.1). The unique
CPU can execute only one stream of instructions and therefore it supports
only the SISD (Single Instruction Single Data) programming model in Flynn’s
classification [23].

2.1.2 Symmetric Multi-Processor Machine

Fig. 2.2. Multiprocessor architecture

A Symmetric Multi-Processor (SMP) machine or an SMP (com-
puting) node has two or more identical CPUs that are connected to a com-
mon memory (consisting of one or more memory modules), commonly via a
shared bus (Fig. 2.2). The cost of accessing the shared memory is the same for
all CPUs; however, each CPU may have its local cache. The SMP architec-
ture supports SIMD (Single Instruction, Multiple Data) and MIMD (Multiple
Instructions, Multiple data) programming models in Flynn’s taxonomy. One
important aspect is that a SMP machine uses a single operating system and
all the CPUs share the same input/output resources.

The SMP architectures are considered to be multiprocessors, which
are characterized by the fact that all their CPUs have direct access to
a shared memory. Multiprocessors are also denoted as MIMD shared-
address-space computers [24]. Other examples of multiprocessors are the
NUMA (NonUniform Memory Access) machines. In this case, in con-
trast to the SMP architecture, each CPU has access to local, respectively to
non-local memory, both shared, and the access to the local memory is faster.
Commonly, the present multiprocessor systems use the SMP architecture,
since this provides high throughput and performance through multiprocess-
ing, and it is relatively straightforward to develop parallel programs for it.
On the other hand, a major disadvantage of the SMP systems is that they
provide only limited scalability.

2.1 Architectural Model 31

2.1.3 Multicomputers

Fig. 2.3. Multicomputer architecture

According to Foster [1], a multicomputer comprises a number of von
Neumann computers, or nodes, linked by an interconnection network (Fig. 2.3).

The main characteristic of a multicomputer is that, in contrast to the
multiprocessors, each CPU has a direct connection to its own private mem-
ory, whilst the access to the memory of other CPUs is significantly more
expensive and requires specific communication protocols. On the other hand,
multicomputer systems are highly scalable, this being their main advantage in
comparison with the multiprocessors: Thousands of CPUs can be connected
through a single, often high-performance interconnection network. The MIMD
programming model is the most appropriate to be used with the multicom-
puter systems. The multicomputers are also called MIMD message-passing
computers [24].

Examples of Multicomputer Systems

Multicomputers can vary widely in terms of performance, cost or architecture.
Massively Parallel Processors (MPPs) are huge and expensive com-

puters, consisting of possibly thousands of CPUs [25]. The CPU types used
in a MPP machine are the CPU types commonly present in PCs or work-
stations. On the other hand, the CPUs are connected by a high-performance
proprietary network, designed to achieve low latency and high bandwidth.
The structure of the interconnecting network of the MPP systems normally
employs hypercube, tree, or 2-D/3-D mesh topologies [26, 25].

Clusters of Workstations (COWs) are a popular form of multicomput-
ers. They are basically a collection of standard PCs or workstation, connected
through off-the-shelf communication components [25]. This approach makes
the COWs simple to build and cheap compared to MPPs. COWs are some-
times also called Network of Workstations, defined as a computer network,
which connects several computer workstations together and which can be used
as a single cluster by utilizing specific software.

The cluster model is characterized by G.F. Pfister [27] as follows:

32 2 Model

Definition 2.1. A cluster is a type of parallel or distributed system that (1)
consists of a collection of interconnected computers and (2) is utilized as a
single unified computing resource.

The element that makes the difference between the COWs and MPPs
systems is the interconnection network. In contrast to the MPPs, the clusters’
interconnection network is normally based on commodity LAN (Local Area
Network) technologies. Besides that, the cluster nodes have a complete and
conventional operating system.

Fig. 2.4. Model of a cluster

The cluster model (Fig. 2.4) usually provides a front-end node, which
represents the access point to the rest of the cluster’s nodes, and additional
software to provide a unified virtual view of the whole system as a single
parallel computer. Within the specific software collection, an important role
is played by the resource manager, which runs onto the front-end and allows
the users to run their applications onto the cluster’s computing nodes.

SMP clusters combine the performance of multiprocessor system with
the scalability of the multicomputer systems. The nodes of the SMP cluster
employ the SMP architecture.

Homogeneous versus Heterogeneous Multicomputers

Distributed computer systems are further classified in homogeneous and het-
erogeneous computer systems. This distinction applies most commonly to the
multicomputer systems.

In homogeneous computer systems, the interconnection network uses
the same technology everywhere, respectively all the CPUs have the same ar-
chitecture and have access to memory of identical sizes and types. The homo-
geneous multicomputers tend to be used in the same way like multiprocessors,
working on a single problem.

2.1 Architectural Model 33

The heterogeneous computer systems comprise collections of distinct
computers, which may widely vary in terms of processor type, memory size,
and performance. Not only the CPUs, but also the interconnection network,
or the software present onto the comprising computers may vary. There are
drawbacks of using heterogeneous systems like high communication overheads,
or compatibility issues, due to the variety of the hardware, operating systems
or the software used, but these systems have the advantage of using already
existing hardware and can provide a very competitive cost to performance
ratio.

2.1.4 The Grid

Grid computing [10] represents the next evolution step following the cluster
computing. Recently, Grid computing has faced rapid advances, widespread
deployment and considerable hype. Grid computing offers a model for solv-
ing massive computational problems by making use of the unused resources
(e.g. CPU cycles, disk storage) of large numbers of disparate, often desktop,
computers.

Fig. 2.5. Grid environment

34 2 Model

Grid computing is about pooling and coordinated use of large sets of dis-
tributed resources. The resources may be computers, storage space, software
and data, all connected to the Internet and a software layer that provides
basic services for security, monitoring, resource manager, discovery, etc.

Dedicated clusters are characterized by close proximity of the comprising
nodes, and they normally employ homogeneous hardware. In contrast, grids
are inherently heterogeneous (in terms of hardware, interconnection network,
existing software and operating system, etc.), and are characterized by a dis-
tant proximity of the (Grid) sites.

Initially, the term Grid was used to denote a computational Grid, defined
as:

Definition 2.2. A computational Grid is a hardware and software infras-
tructure that provides dependable, consistent, pervasive, and inexpensive ac-
cess to high-end computational capabilities, across multiple administrative do-
mains [8].

The Grid computing is commonly defined through an analogy with a power
grid [8, 9], which provides standard, reliable and low-cost access to common
electric power, whilst it hides its actual source. Similarly, a Grid infrastructure
consists of diverse resources, such as computers (e.g. workstations, PCs, clus-
ters, MPPs or multiprocessors), networks, or storage space (Fig. 2.5), which
authorized users can access. However, the use of individual resources will not
be visible to the users and the users may not be aware of how the resources are
assembled. Grid computing offers standards that enable completely heteroge-
neous systems to work together to form the image of a large virtual computing
system. The users of the Grid can be organized dynamically into a number of
virtual organizations, each with different policy requirements, which can
share their resources collectively.

The Grid environment comprises a set of Grid sites (Fig. 2.5), each of them
representing a distinct administrative domain.

Definition 2.3. A Grid site represents the aggregation of Grid services
within a single organization. It consists of a set of computational resources
managed by one single hosting environment and one single resource manager
(e.g. GRAM - Globus Resource Allocation Manager service [28]).

A Grid site consists of a set of computational nodes, which can be any
computing platform, ranging from single processor workstations or PCs, to
SMP machines or MPP systems. Normally, a computational node is identi-
fied by its unique IP address or host name. The computational nodes can
communicate with each other via a local network, which commonly provides
high bandwidth, whilst Grid sites exchange data via a wide area network with
lower bandwidth and higher latency. In many cases, depending on particular
configuration or security settings (e.g. private IP addresses, firewalls), com-
putational nodes from two distinct Grid sites cannot communicate directly.

2.2 Programming Model 35

2.2 Programming Model

In this section, we investigate the applications that can use the above-
described computing architectures. We start with applications that are de-
signed to run in single address space. Then, we analyze several types of dis-
tributed applications. Among these, workflow applications will play an impor-
tant role further in the thesis (Chapter 5). We further outline the characteris-
tics of the applications that use the Grid infrastructure, as a particular type
of distributed applications.

2.2.1 Single Address Space Applications

In order to describe the single address space applications, we first define the
notion of the address space:

Definition 2.4. The address space is the range of memory locations that
a process or processor can access. Depending on context, this could refer to
either physical or virtual memory [29].

Definition 2.5. A single address space application is an application that
is designed to run in a single address space.

Fig. 2.6. Multithreading for single address space applications.

A single address space application consists of a set of instructions that
manage data placed into the local memory of the system, no matter if the
memory is physical or virtual. To run such an application, von Neumann
machines with a single CPUs, or shared-memory machines such as SMP nodes

36 2 Model

can be used. In a distributed context, these are identified by their IP address,
as a unique access point. In Grid context, such a machine corresponds to one
computational node, which may be part of a Grid site.

Single address space applications can support parallelism as well. We call
it inter-process parallelism if two or more application instances (commonly
called processes) are allowed to run in parallel and compete for the resources
of the machine (e.g. CPU, memory, I/O). The inter-process parallelism is
also called multitasking and it is usually managed by the operating system,
which supports scheduling (i.e. deciding which task may be the one running
at a given time) and context switching (i.e. the act of reassigning a CPU
from one task to another).

Fig. 2.7. Multiple threads/processes. Multiprocessor vs. von Neumann machine
model

In case of intra-process parallelism, also named multithreading, an
application spawns multiple threads (Fig. 2.6), which share the same memory
context and process state information. Both multitasking and multithreading
can benefit from the multiprocessor architecture (see Fig. 2.7).

2.2.2 Distributed applications

In contrast to single address space applications, distributed application
are designed to use multiple computing resources (Section 2.1.3), physically
placed in distinct locations and individually identified by their IP addresses
or host names. The key issue is that the distributed resources do not share a
common physical memory and the communication among them is significantly
more expensive. It is possible to implement a distributed shared memory
system, which mimics the functionality of the shared memory, by assembling
the distributed memories of these resources, but this solution requires a co-
herence protocol in order to maintain the memory consistency according to

2.2 Programming Model 37

a consistency model, which increases the complexity and affects the system
scalability.

In the following, we investigate several types of distributed applications.

Collaborative distributed applications

(a) random (b) cyclic

(c) grid (d) hierarchy

Fig. 2.8. Collaborative applications. Various communication patterns

Collaborative distributed applications consist of several components
(commonly named (sub)jobs, tasks or activities), which may be freely placed
onto any available resources (Fig. 2.8). Each component alternates compu-
tation with communication. The components may freely exchange data at
random times by using available communication mechanisms (e.g. MPI [15],
RPC [16], RMI [20], SOAP [30]).

Since no restriction applies to the interactions between the application
components, it is not possible to apply a generic strategy of mapping them
onto resources so that the overall performance is optimized. Each application
may employ itself a specific optimization strategy.

Collaborative distributed applications are the most generic type of dis-
tributed applications. Applying restrictions to the application structure and/or
communication among the components, we get particular types of distributed
applications such as meta-tasks or workflows, which will be discussed in the
following.

38 2 Model

Meta-tasks

The meta-tasks consist of multiple independent components, commonly
called tasks. There is no communication or synchronization between these
tasks, and there is no constraint regarding the temporal order in which the
tasks may run. Meta-tasks commonly solve embarrassingly parallel prob-
lems and represent a popular category of applications in distributed comput-
ing.

Definition 2.6. An embarrassingly parallel problem is a problem for
which no particular effort is needed to segment it into a very large number
of parallel tasks, and there is no essential dependency (or communication)
between the parallel tasks. [31]

A popular example of meta-tasks is the parameter sweeps, also called
parameter studies applications. In this case, the same application (com-
monly a single address space application) is executed on a large number of
distinct input parameters/data sets. The multiple instances of the application
are independently executed onto a large set of computing resources.

Meta-tasks are managed by resource management software, which deter-
mines the computing resource that should be used for each task, and which
starts the task when the resource is available.

Fig. 2.9. Master/Worker programming model

The master/worker (called sometime also master/slave) programming
model (Fig. 2.9) is similar to meta-tasks. In this model, a master program
spawns several copies of the worker program (or uses already existing instances
of this), and delegates them work/work items. There is no communication
between the workers. However, the master sends input data to the workers
and collects back results. In this case, the master plays the role of the resource
management system explained above.

2.2 Programming Model 39

Workflow Applications

For workflow applications, the dependencies between the application compo-
nents obey certain constraints. Meta-tasks can be seen as a particular case of
workflows, which lack dependencies between the components. In the following,
the workflow model is explained in detail.

Started as an initiative of the business community, the Workflow Manage-
ment Coalition (WfMC) [22] aims to produce common terminology and stan-
dards for the exploitation of the workflow technology. According to WfMC:

Definition 2.7. A workflow is the automation of a business process, in
whole or part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural
rules. [32]

A business process represents a set of linked procedures and activities
that realise a common goal. Furthermore, a process definition is used to
define the automation of a business process, and a workflow management
system (WfMS) provides software components to manage the workflows.

The basic element of the workflow is the activity. This is defined as:

Definition 2.8. An activity is a description of a piece of work that forms
one logical step within a process. [32]

The activity is considered the smallest unit of work, which is scheduled by
a workflow engine during workflow process enactment. The activity may be
categorized as automatic activities (i.e. which can be managed automatically
by a WfMS) or manual activities (which typically are not capable of automa-
tion and are managed by humans). In this thesis, we deal only with automatic
activities, which will be simply called (workflow) activities. Moreover, we
assume that an activity uses only a single computing resource at a time.

The so-called dummy activities represent a special type of activities:

Definition 2.9. A dummy activity is an activity which has no inherent
processing related to the business process, but which is used to represent and
evaluate complex routing or process control conditions which may be too com-
plicated to define efficiently using conventional process definition notation. [32]

Since dummy activities do not require computational effort, they may be
manipulated distinctively by the WfMS scheduler.

For each workflow, the WfMS produces a process instance (i.e. a single
enactment of the process), respectively activity instances (i.e. single enact-
ment of the activity) within the process instance. The WfMS manages also
the transitions between the activities.

Definition 2.10. A transition is defined as a point during the execution of
a process instance where one activity (instance) completes and the thread of

40 2 Model

control passes to another, which starts. A transition may be associated with a
transition condition, which is a logical expression which may be evaluated
by a workflow engine to decide the sequence of activity execution within a
process. [32]

The transitions between the activity instances are enabled in accordance
with dependencies between activities, defined within the process definition.
We identify two types of activity dependencies: data-dependency, which
implies transitions that require data transfer (e.g. files, messages) between
activities; control-dependency, which implies transitions that require only
synchronization between activity instances and do not require data transfer.
In both cases, the definition of the transition implies that the first activity in-
stance (called transition source) has to finish, before the second one (called
transition target) starts.

The data that is transferred between activity instances is called applica-
tion data.

Definition 2.11. Application data is application-specific data that is not
accessible to the WfMS. In contrast, workflow control data is data that is
managed by the WfMS, is internal to WfMS and is not normally accessible
to applications. A hybrid type of data is represented by the workflow relevant
data, which may be manipulated by both the workflow applications and the
WfMS, in order to dynamically influence the transitions between the activity
instances.

Commonly, a graphical representation is used as a formalized view of the
business process. Typically, this is a directed graph, which we call workflow
graph. The workflow activities/activity instances are represented as the ver-
tices of the workflow graph, whilst the transitions correspond to the edges of
the graph. Since we consider two types of activity dependencies, we distinguish
two types of edges in the workflow graph, as well: Data-edges, which are as-
sociated with data-dependencies, and control-edges, which are associated
with control dependencies.

Most of the related work assumes that the workflows are modelled as Di-
rected Acyclic Graph (DAG) workflow, in which case the associated workflow
graph has no cycle. In our framework, several elements are added to this
model.

• A conditional branch is a point in the workflow execution which in-
dicates that transition conditions need to be evaluated. The conditional
branch is not associated with computation and can be represented as a
vertex in the workflow graph. All outgoing transitions for a branch need
to be associated with transition conditions.

• An initial state represents the start of a workflow execution. It is not
associated with computation and can be represented as a vertex in the
workflow graph.

2.2 Programming Model 41

• A final state represents the end of a workflow execution. It is not associ-
ated with computation and can be represented as a vertex in the workflow
graph.

• A (sequential) loop models the repetitive execution of one or more work-
flow activities for a previously determined number of times or until a ter-
mination condition is met. The loop is represented as an edge (of a distinct
type) in the workflow graph.

• A parallel loop models the execution of n identical copies of one or more
workflow activities. The parallel loop is represented as an edge in the
workflow graph.

The workflow model which is used in this thesis is further detailed in
Section 5.1.

2.2.3 Grid Applications

What we usually call a Grid application (or Grid-enabled application) is basi-
cally an application, which can run on the Grid, and uses for this purpose the
Grid software infrastructure. Bart Jacob et al. [2] define a Grid application in
term of its constituent jobs:

Definition 2.12. A Grid Application is a collection of work items (jobs/tasks)
designed to solve a certain problem or to achieve desired results using a Grid
infrastructure. In other words, a Grid application may consist of a number of
jobs that together fulfil the whole task.

The job is considered as a single unit of work within a Grid application. It
is typically submitted for execution on the Grid, has defined input and output
data, and execution requirements in order to complete its task. A single job
can launch one or several processes on a specified node. It can perform complex
calculations on large amounts of data or might be relatively simple in nature
[2].

In short, a Grid application is a collection of jobs that carry out a complex
computing task by using Grid resources.

Currently, the Grid follows the service-oriented approach [11]. The Open
Grid Services Infrastructure (OGSI) provides specifications for query, mon-
itoring, discovery, factory, notification, security, registration, management,
scheduling, and other functions that can be made available to all Grid users. A
Grid application can use these registered services, along with Grid infrastruc-
ture (Fig. 2.10), to accomplish specific work-related tasks that solve business
and technical problems.

On the other hand, Bart Jacob et al. [2] have identified three types of Grid
applications, in terms of application flow, defined as the flow of work between
the jobs that make up the Grid application:

42 2 Model

Fig. 2.10. Grid service-oriented model

(a) Parallel flow (b) Serial flow

(c) Networked flow (d) Sub-jobs

Fig. 2.11. Application flow types in Grid applications [2].

2.2 Programming Model 43

• Parallel flow applications (Fig. 2.11(a)) are similar to meta-tasks. The
jobs of the application can be executed in parallel, and there is no (or a very
limited) exchange of data among the jobs. An initial job may be used to
launch a number of jobs on preselected or dynamically assigned Grid nodes.
Each job may receive a set of data, perform independent computation and
deliver its output. A final job may be used to collect the output data
from all these. Grid services, such as a resource broker, scheduler and/or
enactment engine, may be used to determine best suitable resource, the
appropriate time frame for execution, and to launch the execution of each
job.

• Serial flow applications (Fig. 2.11(b)) resemble workflows with a lim-
ited structure (e.g. only the sequence of activities is allowed). Such an
application has a single thread of job execution, and each job produces
data that is used by the subsequent job as input. The advantages of run-
ning in a Grid environment are not based on access to multiple resources
in parallel, but rather on the ability to use one of the several appropri-
ate and available resources, especially if particular jobs require specialized
resources.

• Networked flow applications (Fig. 2.11(c)) are similar to distributed
collaborative applications or complex workflows. In this case, a job flow
management service is required to handle the synchronization of the indi-
vidual results. Loose coupling between the jobs avoids high inter-process
communication and reduces overhead in the Grid. The complexity of such
an application adds more dependencies on the Grid infrastructure services
such as schedulers and brokers, but once that infrastructure is in place, the
application can benefit from the flexibility and utilization of the virtualized
computing environment.
In many cases, a subset of jobs may be seen as the sub-jobs of a larger
job (Fig. 2.11(d)), in a hierarchical system. The reason for using such
a system is that the higher-level jobs could include the logic to obtain
resources and launch sub-jobs in the most optimal way. In this way, some
very large applications may get benefit from passing the management of
certain tasks to the individual components.

We observe that the Grid applications are quite similar to the distributed
applications discussed in the previous sections. The main difference between
the two classes is the ability of the Grid applications to use the Grid infras-
tructure (e.g. physical resources and software services) in order to obtain per-
formance from large amount of distributed computation power. However, not
all applications can be modified to run on a Grid and achieve scalability, and
there are no tools for automatic transformation of the existing applications
into grid-enabled applications.

David Kra [33] identifies 6 strategies to build a grid-enable application:

• Batch Anywhere. This strategy has the goal of running one application
instance on one of the available Grid nodes. We obtain what is commonly

44 2 Model

called a single-site Grid application, which uses a single Grid site to
run (see Section 2.1.4). This can be a single-address space application (Sec-
tion 2.2.1) or a distributed application managed by a single local resource
manager.

• Independent Concurrent Batch. This strategy supports multiple in-
dependent instances of the same application running concurrently, poten-
tially using distinct input data, similar to a meta-task.

• Parallel Batch. This strategy implies the existence of a client that splits
work into multiple server jobs and assembles intermediate results into a
final output (similar to the master/worker model). The server jobs behave
as the multiple independent tasks in a meta-task.

• Service. The service is software, which is already placed onto a Grid node,
and commonly started before its first use. In this case, the programming
efforts switch to service implementation, in contrast to the previous strate-
gies. Clients access the service only by using Grid middleware, and this
invokes the service on client’s behalf. The service may be shared among
independent clients, and it can maintain its state between calls.

• Parallel services combine services with parallel batch strategies, by pro-
viding multiple service instances that can be invoked in parallel (indepen-
dently) on client’s behalf.

• Tightly Coupled Parallel Programs imply intense communication and
synchronization between clients and services, respectively among services
(similar to the workflow or collaborative distributed applications). This
sort of applications commonly requires significant programming effort and
complex cooperation among the services. Applications of this type are
usually specialized applications that comprise extensive computation and
would take even decades if running on single machines.

3

JavaSymphony Programming Paradigm

There are numerous research efforts to provide flexible and high-level APIs
that support programming of parallel and distributed applications. Much of
this work focuses on providing automatic performance control (e.g. automatic
load balancing, mapping, migration, or control of locality) for distributed ap-
plications and assumes that the runtime system is able to detect parallelism,
exploit locality and achieve efficient load balancing. However, fully automatic
systems commonly cause poor performance results, due to the lack of infor-
mation about the application and insufficient static and dynamic analysis.

On the other hand, many programmers are well aware of how to struc-
ture a distributed application, where to place objects, which objects inter-
act with each other, and how to exploit and to control locality and paral-
lelism. JavaSymphony, on the one hand, supports automatic mapping, load
balancing, and migration of objects without involving the programmer. On
the other hand, in order to enhance the performance of distributed appli-
cations, JavaSymphony provides a semi-automatic mode, which leaves the
error-prone, tedious, and time consuming low-level details (e.g. creating and
handling of remote proxies for Java/RMI) to the underlying system, whereas
the programmer controls the most important strategic decisions at a very high
level.

This chapter presents in detail the JavaSymphony programming paradigm.
The JavaSymphony programming API has two key components: dynamic vir-
tual distributed architectures (VAs), which we discuss in Section 3.2, respec-
tively JavaSymphony objects (JS objects), presented in Section 3.3. We fur-
ther demonstrate additional useful programming elements, including: a variety
of remote method invocation types (synchronous, asynchronous and one-sided
method invocation); (un)lock mechanism for VAs and JS objects; high level
API to access a large variety of static or dynamic system parameters, selective
remote class-loading; automatic and user-controlled mapping of objects; con-
version from Java conventional objects to JS objects for remote access; single-
threaded versus multi-threaded JS objects; object migration; distributed event
mechanism; synchronization mechanisms.

46 3 JavaSymphony Programming Paradigm

3.1 JavaSymphony Applications

The developers may use the JavaSymphony programming paradigm to easily
build Java-based distributed applications, which we call JavaSymphony ap-
plications (JS applications). Commonly, every JS application must first regis-
ter with the JavaSymphony Runtime System (JRS) (detailed in Chapter 4).
This is realized by using the register method of the JSRegistry class. There-
after, in order to manage remote distributed computing resources, VAs can
be requested. In order to minimize performance problems due to Java class
loading, all required classes are stored in Java archive files and loaded onto
arbitrary nodes of a defined VA. Objects can be created, mapped, and mi-
grated both on a local, as well as on a remote computing node. JavaSymphony
supports three types of (remote) method invocations, namely synchronous,
asynchronous, and one-sided method invocations, which enable the applica-
tion’s objects to collaborate according to the application logic. In the end, an
application should un-register from the JavaSymphony Runtime System, by
using the unregister method of the JSRegistry class.

The JS application is linked with the JavaSymphony class library and is
executed in the same way as any regular Java application. The programming
elements are further discussed in detail in the next sections.

3.2 Dynamic Virtual Architectures

JavaSymphony introduces the concept of dynamic virtual distributed archi-
tectures (called VAs), which allows the programmer to define a structure of
a heterogeneous (e.g. type, speed, or configuration) network of computing re-
sources and to control the code placement and the mapping, load balancing,
and migration of objects.

Dynamic virtual distributed architectures (see Fig. 3.1) consist of a set of
components, each of which associated with a level:

• level-1 VA corresponds to a single computing node such as a PC, worksta-
tion or a multiprocessor system.

• level-2 VA refers to a cluster of level-1 VAs (e.g. workstation or PC cluster).
• level-3 VA defines a cluster of geographically distributed level-2 VAs con-

nected, for instance, by a wide area network.
• level-i VA with i ≥ 2 denotes a cluster of level-(i − 1) VAs, which, among

the others, allows to define arbitrary complex heterogeneous GRID archi-
tecture distributed across several continents.

In the following sections, we refer the level-1 VAs as (computing) nodes.

3.2.1 System Constraints

A key advantage of JavaSymphony over other systems is the provision of a
high-level API to static and dynamic system parameters. Based on the system

3.2 Dynamic Virtual Architectures 47

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2

1 i

3

4

3

Level-1 VA Level-i VA (i>1)

Fig. 3.1. Example of a JavaSymphony level-4 virtual architecture

parameters, the user can specify system constraints to control load balancing,
migration, mapping, to honour computing site policies, etc. The basic idea is
to include architecture components in a VA that obey user-defined constraints
defined over system parameters. On the other hand, the constraints can be
used to examine the properties of physical resources, which include static
parameters such as machine name, operating system, peak performance pa-
rameters, etc., or dynamic parameters such as system load, idle times, and
available memory. During the execution of an application, the static param-
eters remain unchanged, while the dynamic parameters may change. A list
of system parameters that are supported by JavaSymphony is presented in
Appendix 10.2.

Constraints are added to a JSConstraints object by invoking calls to the
following method:

setConstraints(sys param,rel op,[float val|int val|string val]);JSConstraints onstr = new JSConstraints();onstr.setConstraints(JSConstraintsConst.C_HOST_URL,"!=","r2d2");onstr.setConstraints(JSConstraintsConst.C_CPU_IDLE,">=",90.0f);onstr.setConstraints(JSConstraintsConst.C_MEMORY_FREE_KB,">=",10240);
Fig. 3.2. Building constraints. Code excerpt

Each method invocation adds a constraint with the following pattern:

48 3 JavaSymphony Programming Paradigm

sys param name rel op value

where rel op corresponds to arbitrary relational operators and value refers to
floating point/integer numbers or strings. For instance, consider the JavaSym-
phony code excerpt shown in Fig. 3.2. A set of constraints is collected in the
constr object. These specify that the VA’s computing nodes may not include
the one whose name is ”r2d2”, their CPU should be idle for more than 90%,
and they should have at least 10240 Kbytes of unused memory.//* get system parameters for level-1 VA v1: CPU idle time, URL, swap spae�oat puIdle = v1.getSysParamAsFloat(JSConstraintsConst.C_CPU_IDLE);String sURL = v1.getSysParamAsString(JSConstraintsConst.C_HOST_URL);int swap = v1.getSysParamAsInt(JSConstraintsConst.C_SWAP_SPACE_AVAIL);

Fig. 3.3. Retrieving system parameters. Code excerpt

The programmer can define constraints over a large number (depending
on the operating system and the installed system sensors) of various system
parameters. JavaSymphony provides easy access to VA’s system parameters,
as illustrated in the Fig. 3.3.

3.2.2 Creating VAsJSConstraints onstr;//* request level-1 VAVA v1 = new VA(1);//* request level-1 VA for whih onstraints holdVA v2 = new VA(1, onstr);//* bottom-up request for level-2 VA by adding existing VAs to itVA v3 = new VA(2);v3.addVA(v1);v3.addVA(v2);//* top-down request for level-4 VA (see Fig. 3.1) with 2 level-3 VA's://* �rst level-3 VA with 3 level-2 VAs with 2, 3,//* and 1 level-1 VAs, respetively//* seond level-3 VA with 2 level-2 VAs with 3//* and 2 level-1 VAs, respetivelyVA v4 = new VA(4, new int[℄[℄ {{2,3,1}, {3,2}});
Fig. 3.4. VA creation. Code excerpt

The JavaSymphony class VA is used to define the topology for VAs. As we
have mentioned before, a node (level-1 VA) corresponds to a single computing

3.2 Dynamic Virtual Architectures 49

resource (e.g. PC or workstation), whereas VAs with higher levels denote
collections of lower level VAs. A set of constructors of the VA class may be
used to create complex topologies with a single line of code. The task of
allocating and managing VAs is left to the JRS. Moreover, VAs can also be
built in a bottom-up manner, by assembling lower level VAs into one higher
level VA (Fig. 3.4).

3.2.3 Modifying VAs

The JRS returns a handle for every generated VA. These handles are first
order objects that can be passed as parameters to methods. Any thread with
a handle to a VA has access to and can modify or even release this VA. A
lock/unlock mechanism provided by JavaSymphony can prevent concurrent
changes to VAs. If a thread t has a handle to a VA v and locks v, then no
other thread can access v until thread t unlocks v again. A lock operation
on a VA v is delayed until all unfinished methods on v have completed their
execution. It is recommended to use the lock/unlock mechanism in order to
avoid inconsistent modifications of the VAs.

Figure 3.5 illustrates the modifications applied to v1 inside the lock/unlock
code region, as shown in the code excerpt from Fig. 3.6.

3.2.4 Retrieving Information about VA’s

Each VA may be queried for specific information, such as system parame-
ters (static or dynamic) or information about the topology (e.g. the parent or
the successors in the tree structure of a VA). The getLocalNode static method
returns the local computing node (i.e. the level-1 VA corresponding to the ma-
chine onto which the current execution thread is running). The code excerpt
in Fig. 3.7 demonstrates these features.

System constraints can be used to control load balancing, to improve the
program’s performance, to honour computing site policies, etc. The program
can check if the constraints that have been used at the creation of the VA, or
any other constrains, (still) hold or not for a specific VA, as demonstrated by
the code excerpt in Fig. 3.8.

3.2.5 Class Loading

JavaSymphony enables the programmer to generate objects both locally and
remotely. As JavaSymphony is built on top of the Java RMI mechanism, it is
required that all objects that can be created remotely to be serializable (i.e.
implements java.lang.Serializable interface). Before an object can be gener-
ated, the class file of this object must be located either locally in the CLASS-
PATH or at an accessible URL. JavaSymphony assumes that all Java class
files are available at a given VA before objects are generated. This reduces

50 3 JavaSymphony Programming Paradigm

1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2

33

4

22 2 2

33

4

22 2 2

333

4

22 2 2

lock

add

free

unlock

......................

1

2

1

3

Fig. 3.5. Dynamically changing VAs by using the (un)lock mechanism

3.2 Dynamic Virtual Architectures 51VA v1 = new VA(4, new int[℄[℄ {{1,3,2}, {2,2}});VA v2 = new VA(3, new int[℄ {4,2,1});...v1.lok(); //* lok v1 before modifying itv1.addVA(v2); //* hange v1v1.free(new int[℄{2,1}) //* delete the �rst suessor of the seond suessor of v1v1.unlok(); //* unlok v1v1.free(); //* delete v1 when it is not needed anymore
Fig. 3.6. VA modification. Code excerpt//* get system parameters for v1 - a level-i VA�oat puIdle = v1.getSysParamAsFloat(JSConstraintsConst.C_CPU_IDLE);String sURL = v1.getSysParamAsString(JSConstraintsConst.C_HOST_URL);int swap = v1.getSysParamAsInt(JSConstraintsConst.C_SWAP_SPACE_AVAIL);//* obtain the VA level and parent VA of v1VA v2 = v1.getPred(v1.getLevel()+1);//* obtain the n-th suessor of v1VA vn = v1.getVA(n);//* obtain the loal level-1 VAVA v_loal = VA.getLoalNode();//* obtain the 2nd node of the 2nd level-2 VA// *** of the 1st level-3 VA of a level-4 VAVA v4 = new VA(4, new int[℄[℄ {{1,3,2}, {2,2}});VA v1 = v4.getVA(new int[℄{1,2,2});//* number of level-i VAs in v4int ountLevel_i = v4.nrVA(i);//* traverse level-1 VAs of v4VAEnum e = v4.enumerateVA(1);while (e.hasMoreVA()){ VA v5 = e.nextVA();...}

Fig. 3.7. Managing VAs’ properties. Code excerpt

the amount of data transferred when creating objects. A Java archive file with
all necessary byte code can be transferred during the application initializa-
tion phase, which saves multiple byte code transfers during the application
execution. For this purpose, JavaSymphony facilitates the building of one or
several codebases (i.e. collection of Java classes needed by an application to
run), which can then be delivered as Java archive files to arbitrary components

52 3 JavaSymphony Programming ParadigmJSConstraints onstr;//* hek if the initial onstraints of a VA v still holdboolean itHolds = v.onstrHold();//* hek if spei� onstraints hold for VA vboolean itHolds = v.onstrHold(onstr);
Fig. 3.8. Checking VAs’ constraints. Code excerptJSCodebase odebase = new JSCodebase(); //* initialize a odebase//* a Java arhive or lass �le is added to the odebaseodebase.add("../lasses.jar");odebase.add("../testlasses.lass");//* Java arhive or lass �le is fethed from URL and added to the odebaseURL lassURL = new URL("http://www.par.univie.a.at/JS/test/�le.lass");odebase.add(lassURL);odebase.load(v); //* load odebase to all nodes of a VA vodebase.free(); //* free odebase
Fig. 3.9. Managing the codebase. Code excerpt

of a VA, by using the JSCodebase.load method. JavaSymphony, therefore, not
only supports the programmer to control data (objects) locality, but allows
him to control the code locality, as well.

The codebase management is demonstrated in Fig. 3.9. All or individual
codebases can be dynamically transferred onto individual VAs. For instance,
object migration commonly requires to transfer codebases in order to ensure
that the class files for the objects to be migrated are available at the new
location. By using the free() method on a codebase object, the codebase in-
formation is deleted, and associated memory is released.

3.3 JavaSymphony Distributed Objects

In order to use JavaSymphony to distribute regular Java objects onto virtual
architectures, we need first to encapsulate them into so-called JS objects. Af-
terwards, they can be used by remotely invoking their methods. Moreover, the
JS objects support features like migration and synchronization mechanisms
that are highly useful for distributed computing.

3.3 JavaSymphony Distributed Objects 53

3.3.1 Creation of JS Objects

Assuming that class files are available on every component of a VA where
needed, JS objects can be created by generating instances of JSObject class.
A set of JSObject constructors allows the developer to specify the Java class
name of the object that is encapsulated in the JS object, the constructor
arguments for this object, whether the JS object is single-threaded or multi-
threaded, and the JS object location, with optional constraints. The provision
of a level-1 VA indicates the exact location where the JS object will be placed.
If a higher level VA v (with level greater or equal than 2) with/without con-
straints (see Section 3.2.1) is provided, then the JRS tries to determine a
level-1 VA in v which honours all the given constraints. If only constraints
and no location are provided, then the JRS searches for a location that fulfils
all constraints, within the set of all available nodes. If neither location nor
constraints are provided, then the JRS will use a default location based on
configuration constraints (e.g. a level-1 VA with the smallest system load and
reasonable resources available) set under the JavaSymphony Administration
Shell (JS-Shell - see Section 4.2). The code excerpt in Fig. 3.10 illustrates the
features described above.VA v1 = new VA(1); //* alloate level-1 VAVA v2 = new VA(4,....); //* alloate level-4 VAVA vLoal = VA.getLoalNode(); //* get loal level-1 VAJSConstraints onstr;Objet[℄ args = new Objet[℄ { ... }; //* parameters for the new objet//* generate an objet of lass "ClassName" at a VA deided by JRS,//* restrited by onstraints or plaed onto the loal level-1 VAJSObjet obj1 = new JSObjet("ClassName"[,args℄[,onstr℄[,vLoal℄);//* generate an objet on a higher level VA;//* JRS deides onto whih level-1 VA of v2 the objet is generatedJSObjet obj1 = new JSObjet("ClassName",[args,℄ v2);//* generate an objet onto a spei� VA v1JSObjet obj1 = new JSObjet("ClassName",[args,℄ v1);//* generate obj1 onto the level-1 VA where obj2 is plaedJSObjet obj1 = new JSObjet("ClassName" ,obj2.getVA());

Fig. 3.10. JS object creation. Code excerpt

Each JS object can be created as a single- or multi-threaded JS object
(Fig. 3.11). This attribute of the object can be changed dynamically at run-
time. A single-threaded object is associated with only one thread that exe-

54 3 JavaSymphony Programming Paradigm

cutes all of its methods. In contrast, the JRS may assign multiple threads
to a multi-threaded object can by the JRS that execute its methods simul-
taneously. Even a single method of a multi-threaded object can be executed
by multiple threads in parallel. The number of threads incorporated to exe-
cute multi-threaded objects can be changed dynamically through the JS-Shell.
A multi-threaded object can benefit from multiprocessor nodes (e.g. SMP
nodes), since the several threads that execute in parallel a multi-threaded ob-
ject’s methods may be assigned on distinct processors. For a single-threaded
object, since only one method at a time is allowed to run, inconsistent con-
current accesses to the object are prevented.//* generate a multi-threaded objet in a node of//* a higher level VA v that honours a set of onstraintsboolean multiThreaded = true;JSObjet obj1 = new JSObjet(multiThreaded, "ClassName" [,args℄ [,onstr℄[,v℄);//* objets an be made single- or multi-threaded at runtimeobj1.singleThreaded();obj1.multiThreaded();//* onvert a onventional Java objet to a JS objetClassName obj = new ClassName(...);JSObjet obj2 = JSObjet.onvertToJSObjet(obj [,multiThreaded℄);

Fig. 3.11. Single- and multi- threaded JS objects. Code excerpt

The JS objects can be generated based on existing non-JS (conventional
Java) objects, by using the convertToJSObject method. The first parameter of
the method represents the non-JS object, and, optionally, the second param-
eter indicates whether a single- or multi-threaded object should be generated
(Fig. 3.11). The migration (Section refsec:migrate-obj) of a JS object obj2
that has been generated through conversion based on a non-JS object obj
is possible; however, it must be carefully handled. In case of migrating obj2
to another VA, all previous local references to obj should be deleted by the
programmer to avoid programming errors and memory leaks.

3.3.2 Remote Method Invocation

In the current implementation of JavaSymphony, the communication among
the remote distributed components of the JavaSymphony middleware is based
on Java/RMI. Java/RMI imposes blocking remote method invocation, which
prohibits overlapping of waiting time – for the results of the method in-
vocations to arrive – with some useful local computations. In addition to

3.3 JavaSymphony Distributed Objects 55

synchronous (blocking) RMI, JavaSymphony also offers asynchronous (non-
blocking) and one-sided (non-blocking without results) RMI.

All these three types of method invocations have similar signatures: A
method name, a list of parameters and, optionally, a list of parameter types
are provided as method parameters. The JRS uses the parameter types in
order to identify the appropriate method to invoke, in case of an object that
may have several methods with the same name and similar signatures. If the
list of parameter types is given, the JRS will choose the method with the
indicated signature.

Synchronous Method Invocation

A synchronous method invocation (see Fig. 3.12(a)) is initiated by calling the
sinvoke method of JSObject class. The call of sinvoke blocks the calling site
until the result arrives. The method’s parameters are passed as an array of
objects. JavaSymphony sinvoke always returns a result of class Object, which
needs to be explicitly cast to the actual class of the result. Figure 3.13 demon-
strates the usage of the synchronous method invocation in JavaSymphony. In
the code excerpt, a method with name methodName is invoked for the obj JS
object, with two parameters of type Param1, respectively Param2.

Asynchronous Method Invocation

Asynchronous method invocations (see Fig. 3.12(b)) are commonly employed
to parallelize computations. An asynchronous method invocation is initiated
by calling the ainvoke method of the JSObject class. Once again, an array of
objects is used to hold the method parameters. The method call, however,
does not block, but immediately returns a handle. At the calling site the exe-
cution continues, while the method is being executed. If a pre-defined method
handle.isReady returns true, then the result is available, otherwise the method
is still being executed. If the calling site wants to block until the result has ar-
rived – for instance, because no other useful computations can be done – then
the handle.getResult method may be called. Note that this method returns
the result object of generic type Object, which needs to be explicitly cast to
the actual class of the result. The code excerpt in Fig. 3.14 illustrates these
aspects.

One-sided Method Invocation

An one-sided method invocation (see Fig. 3.12(c)) is initiated by calling the
oinvoke of JSObject class.

One-sided method invocations are used when it is not necessary to wait for
the completion of the invocation and the result is not required. The one-sided
method invocation can improve the performance of the application because

56 3 JavaSymphony Programming Paradigm

(a) Synchronous RMI (b) Asynchronous RMI

(c) One-sided RMI

Fig. 3.12. Remote method invocation in JavaSymphony

3.3 JavaSymphony Distributed Objects 57JSObjet obj = new JSObjet("ClassName");...Objet[℄ params = new Objet[℄ {new Param1(), new Param2()};Class[℄ paramTypes =new Class[℄ {Param1.getClass(), Param2.getClass()};ResultClass result = (ResultClass)obj.sinvoke("methodName,"params [,paramTypes℄);
Fig. 3.13. Synchronous RMI in JavaSymphony. Code excerptObjet[℄ params = {new Param1(), new Param2()};Class[℄ paramTypes = new Class[℄ {Param1.getClass(), Param2.getClass()};//* invoke remote method with parameters; a handle is returned//* to refer to the (future) method's resultResultHandle handle = obj.ainvoke("methodName",params [,paramType℄);... //* verify whether result is availableif (handle.isReady()) {//* get result in bloking modeResultClass result = (ResultClass)handle.getResult();}... //* wait for result to arrive in bloking mode//* without heking for the result to be availableResultClass result = (ResultClass)handle.getResult();
Fig. 3.14. Asynchronous RMI in JavaSymphony. Code excerptObjet[℄ params = {new Param1(), new Param2()};Class[℄ paramTypes = new Class[℄ {Param1.getClass(), Param2.getClass()};obj.oinvoke("methodName",params [,paramTypes℄);

Fig. 3.15. One-sided RMI in JavaSymphony. Code excerpt

there is no need to transfer back a result from a node that hosts the remote ob-
ject. Moreover, one-sided method invocation reduces some bookkeeping over-
head of JRS. The usage of one-sided method invocations is demonstrated in
the code excerpt of Fig. 3.15.

3.3.3 Migration of JS Objects

Objects can be migrated during the execution of the JS distributed applica-
tion. The JRS, however, verifies before object migration, whether any of its

58 3 JavaSymphony Programming Paradigm

methods are currently being executed. If so, then migration is delayed until
all unfinished method invocations have been completed, otherwise the ob-
ject can be immediately migrated. JavaSymphony offers two forms of object
migration: automatic migration, which is controlled by the JRS, or explicit
migration, which is controlled by the programmer. The programmer can also
specify the destination VA, constraints, and whether the codebase(s) should
be transferred. Optionally, specific codebase could be indicated, to be trans-
ferred before the migration.

Explicit migration can be encoded by the JS application programmer,
based on system constraints. JavaSymphony allows access to the VAs’ system
parameters, as described in Section 3.2.1. In case of higher-level VAs, the
system parameters for a level-i VA are the average values across its level-
(i − 1) VAs, which is limited to system parameter values of numeric types
(i.e. integer and float). The methods getSysParamAsFloat, getSysParamAsInt
or getSysParamAsString can be used to examine the system parameters of
interest. Moreover, it can be checked by using the constrHold method whether
a set of constraints (see Section 3.2.1) currently hold for a given VA. For
instance, in the code excerpt from Fig. 3.16, it is examined whether v1, the
level-1 VA onto which the obj object resides, has less than 50 % idle time or
whenever it does not fulfil a set of constraints. If so, the object can be migrated
by using the migrate method of the JSObject class. If migrate is called without
any parameters, the JRS decides where to send the object.JSConstraints onstr;VA v1 = new VA(1); VA v2 = new VA(4,...);JSCodebase b; JSObjet obj;...VA v3 = obj.getVA();//* hek if v3 on whih obj resides has less than 50 % idle time//* or onstr do not hold for v3if (v3.getSysParamAsFloat(JSConstraints.C_CPU_IDLE) < 50) ||!v3.onstrHold(onstr)){ obj.migrate(); //* migrate objet to a node destined by JRSobj.migrate(onstr, true); //* migrate objet to a node based on onstraintsobj.migrate(v1); //* migrate objet to a spei� nodeobj.migrate(v2); //* migrate objet to a node of v2 to be destined by JRS//* migrate objet and move odebase to the destination VAobj.migrate(va, b);obj.migrate(onstr, b);obj.migrate(b);}

Fig. 3.16. Object migration in JavaSymphony. Code excerpt

3.3 JavaSymphony Distributed Objects 59

The migrate method may use a level-1 VA as parameter, which indicates
where to migrate the object. If constraints are provided, then the JRS finds
a node that honours the constraints as the target node. A Java exception is
thrown if no suitable node is found. The exception has to be handled by the
application programmer.

3.3.4 Lock/Unlock JS Objects

The remote objects are accessed through handles (i.e. instances of JSObject
class), which are first order objects. They can be passed to methods and,
therefore, can be distributed onto VAs, as well. Any thread that has a handle
to a JS object has access to it and can invoke its methods or even release this
object. However, concurrent accesses to objects can be prevented by using
a JavaSymphony lock/unlock mechanism. If a thread t has a handle to an
object and locks it, then no other thread can access this object until thread
t unlocks it again. A lock operation is delayed until the currently unfinished
object’s methods terminate. These features are illustrated in the code excerpt
from Fig. 3.17. JSObjet obj;obj.lok(); //* lok objet... //* invoke methods of the JS objetobj.unlok(); //* unlok objetobj1.free() ; //* free objet

Fig. 3.17. Lock/Unlock mechanism for JS objects. Code excerpt

Finally, an object, if no longer needed, should be released by invoking
the free method, which reduces the overall bookkeeping effort and enables
the garbage collector to de-allocate the memory used by the object. All the
distributed objects used by a JS application are automatically released when
the application un-registers from the JRS.

3.3.5 Persistent Objects

JavaSymphony provides facilities to make objects persistent by saving/loading
them to/from external storage. An object can be stored in a local file, if
none of its methods is currently executing, by using JSObject method store.
Optionally, the file name is given; otherwise, a unique string is returned for
the object that has just been stored (Fig. 3.18).

Objects are restored from local files, by invoking the static method load
with the str string parameter that uniquely identifies a previously stored ob-
ject. Optionally, parameters for the destination VA and single-/multithreaded
attribute are used.

60 3 JavaSymphony Programming ParadigmJSObjet obj; String fName;// *** save objet on external storagefName = obj.store([givenName℄);... // *** load objet from external storage// *** optional params: the target VA, single/multi-threaded attributeJSObjet obj = JSObjet.load(str [,va℄ [,singleTh℄);
Fig. 3.18. Using persistent JS objects. Code excerpt

3.4 Distributed Synchronization Mechanisms in
JavaSymphony

Fig. 3.19. Synchronization of 3 ainvoke calls

3.4 Distributed Synchronization Mechanisms in JavaSymphony 61

Synchronizing distributed threads of execution that are running in parallel
is an important feature, which distributed systems should provide. We have
already mentioned two synchronization mechanisms in JavaSymphony:

• Single-threaded objects, which restrict concurrent access and enforce se-
quential access to their methods.

• (Un)Lock/Unlock mechanism, which enables exclusive access to an object.

JavaSymphony adds further features that allow synchronization of multiple
distributed objects. These features are described in the next sections.

3.4.1 Synchronization of Asynchronous Method Invocations

In concurrent systems, programmers commonly synchronize a set of threads
or processes. In the presence of asynchronous method invocations, we found
numerous cases, in which a set of threads that execute methods simultaneously
– possibly on distinct computing nodes – should be synchronized in a join
operation.

For this purpose, JavaSymphony enables the programmer to group a set
of result handles, each one associated with a unique asynchronous remote
method invocation, by using the ResultHandleGroup class. This class pro-
vides several methods to block or examine (without blocking) whether one,
a specific number, or all the threads have finished processing the associated
methods. Commonly, methods of distinct object, which may reside on dis-
tinct computing nodes, are executed in parallel in order to improve the load
balancing and better utilize the existing computing resources. By using a syn-
chronization mechanism, we can easily determine which object is idle because
the execution of its method has finished. On the other hand, the returned re-
sults can be processed one by one at the time they are available, and the idle
objects (i.e. for which the method invocation has finished) can be reused with
a new asynchronous method invocation. Figure 3.19 and the code excerpt in
Fig. 3.20 demonstrate this mechanism.

3.4.2 Barrier Synchronization

JavaSymphony provides a barrier mechanism that can be used to synchronize
remote distributed threads of execution. A set of distributed threads, execut-
ing methods of JS objects may be suspended until all of them reach a certain
barrier point (see Fig. 3.21). Once all threads have reached the barrier point,
they resume the execution simultaneously.

The mechanism is straightforward, but improper usage can lead to per-
formance degradation or even deadlocks. For each JS application, a set of
barriers can be defined by using the newBarrier static method of JSRegistry
class. This method has as parameters an identifier that uniquely identifies the
barrier, and the number of the threads n that have to wait at barrier point.

62 3 JavaSymphony Programming ParadigmJSObjet obj[n℄;ResultHandleSet rhs;ResultHandle rh;Objet[℄ params;...for(i=0; i < n; i++) {//* add a ResultHandle and index i (optional) to the ResultHandleSet rhsrhs.add(obj[i℄.ainvoke("run", params), i);}...if(rhs.isReady(5)) {...} //* non-bloking test if at least 5 methods are �nishedif(rhs.isAllReady()) {...} //* non-bloking test if all methods are �nishedif(rhs.waitReady(5)) {...} //* blok until at least 5 methods are �nishedif(rhs.waitAll ()) {...} //* blok until all methods are �nished//* get results one by one without spei� order;//** blok until the �rst method has returned resultsrh = rhs.getFirstReady();while(rh ! = null){ ResultClass result = (ResultClass)rh.getResult(); //* get the results... //* proess results;index = rhs.getIndex(rh); //* get index of idle objet//* invoke next method on idle objet for load balaning;//** add ResultHandle to the ResultHandleSet againrhs.add(obj[index℄.ainvoke("run", params), index);//* get ResultHandle of a method that �nishes next;//** blok until the method has returned resultsrh = rhs.getNextReady();}
Fig. 3.20. Synchronization of ainvoke calls. Code excerpt

The barrier is visible to all the application objects. Upon reaching a barrier
point, the execution threads are suspended until n threads have reached it.
Thereafter, all threads may resume execution (Fig. 3.21). The code excerpt in
Fig. 3.22 demonstrates the usage of the JavaSymphony barrier mechanism. A
practical use of this mechanism is presented in Section 7.2.2.

3.5 JavaSymphony Distributed Events

Programs that incorporate objects reacting to a change of state somewhere
outside the objects, possible on a different computing site, are common in
both single address space and distributed systems. Commonly, user or system
actions are modelled as events to which other objects in the program react.
The events also represent a mechanism for asynchronous communication. Java

3.5 JavaSymphony Distributed Events 63

Fig. 3.21. Barrier synchronization for 3 JS objects//* ***** a barrierId de�nes a unique synhronization point *****int barrierId = 17;//* de�ne a barrier for two (remote) threads.JSRegistry.newBarrier(2, barrierId);obj1.oinvoke("runThread1", params);obj2.oinvoke("runThread2", params);... //* ***** inside runThread1 *****int barrierId = 17;//* suspend exeution until runThread2 reahes the synhronization pointJSRegistry.barrier(barrierId);... //* ***** inside runThread2 *****int barrierId = 17;//* suspend exeution until runThread1 reahes the synhronization pointJSRegistry.barrier(barrierId);...
Fig. 3.22. JavaSymphony barrier synchronization. Code excerpt

64 3 JavaSymphony Programming Paradigm

has a number of event models, differing in various subtle ways. All of these
involve an object generating an event in response to some change of state
either in the object itself or in the external environment. At some earlier stage,
an event consumer would have registered interest in this event. A suitable
consumer method will be called, in case of event occurrence.

JavaSymphony follows a general event model where objects can subscribe
as consumers for various types of events. At a later stage, events of a specific
type may be produced, in which case the corresponding registered consumers
will be notified. An event consumer handles the event by providing an appro-
priate method. An advantage of the event mechanism is that JavaSymphony
does not restrict the types of objects that receive or produce events. Any Java
object distributed by using JavaSymphony can consume or produce events
without implementing dedicated interfaces or extending dedicated JavaSym-
phony classes.

JavaSymphony supports three types of events:

• User Defined Events are explicitly generated by the user. They are used
to support asynchronous communication and interaction among arbitrary
Java objects (not restricted to JS objects). The programmer’s tasks are
to simply insert the specific code that generates an event and to provide
a consumer’s method that is invoked at the time the event notification
arrives.

• Middleware Events are produced and controlled by the JRS, in the
event of, for instance, VA unavailable, registration/un-registration of a
new application, lock/unlock of JS objects or VAs, etc. The user must
provide only the method that is invoked when the event notification ar-
rives, whereas the JRS produces these events automatically.

• System Events are generated due to changes in the dynamic system pa-
rameters such as idle time, available memory, swap space allocated, etc.
The programmer can access all of these parameters through the JavaSym-
phony API for static/dynamic system parameters (see Section 3.2.1). For
the consumer object, a set of constraints, a specific constant value that
controls the generation of an event, and a method, which is invoked if the
event occurs, are specified as event consumer’s constructor parameters.
The event generation is triggered in one of the following 3 cases, depend-
ing on the constant value: (1) if the constraints hold (and previously did
not), (2) if they do not hold, respectively (3) if they change their state.
The JRS monitors the resources and examines whether the event must be
generated or not.

The Event Consumer

An object that intends to consume a user-defined or JS-middleware event cre-
ates a JSEventConsumer that describes the event type (middleware or user-
defined) and properties of the event in which it is interested. The JSSyste-
mEventConsumer derived class is used in case of system events. When building

3.5 JavaSymphony Distributed Events 65

an instance of the JSEventConsumer, the programmer provides the following
information:

• Reference to the object that consumes the event;
• Unique event type identifier;
• The consumer’s method, which will be invoked if the event occurs....//* de�ne types for user de�ned and middleware eventsint userEvType = JSConstants.C_USER_TYPE + 1;int middleEvType = JSConstants.C_APP_REGISTERED;JSObjet listObj[℄=.....; //* list of remotes objetsVA listVAs[℄=.....; //* list of VAsJSConstraints onstr1;//* subsribe for the user-de�ned events;//** no restrition on event produers; handleMethod manages the events.JSEventConsumer Ev1 = new JSEventConsumer(this, userEvType,JSConstants.C_ANY_LOCATION, "handleMethod");//* events an be produed only onto VAs in listVAsJSEventConsumer Ev2 = new JSEventConsumer(this, userEvType,JSConstants.C_LIST_VA_EVENT, listVAs, "handleMethod");//* event an be produed only by JS Objets in listObjJSEventConsumer Ev3 = new JSEventConsumer(this, userEvType,JSConstants.C_LIST_JSOBJECT_EVENT, listObj, "handleMethod");//* subsribe for a middleware event whih an be produed anywhere;//** the event is generated when a new appliation registers with JSJSEventConsumer Ev4 = new JSEventConsumer(this, middleEvType,JSConstants.C_ANY_LOCATION, "handleMethod");//* subsribe for a system event whih is produed only by the VA va,//* if the validity for a set of onstraints onstr hangesJSSystemEventConsumer EvSystem =new JSSystemEventConsumer(this, JSConstants.C_VA_EVENT,va, "handleMethod", onstr, JSConstants.JS_CONSTRAINTS_CHANGE);...//* subsribe for event Ev1Ev1.subsribe();...//* unsubsribe event Ev1Ev1.unsubsribe();...

Fig. 3.23. JavaSymphony event consumer. Code excerpt

66 3 JavaSymphony Programming Paradigm

The constants corresponding to the event types are defined as part of
the JSConstants class. For example, C USER TYPE indicates the definition
of user-defined events; C APP REGISTERED denotes an event generated
when a new application registers itself with the JRS; C SYSTEM EVENT
corresponds to system events.

Furthermore, the events can be filtered based on the event producer, by
using specific parameters that are passed to the JSEventConsumer construc-
tor. For instance, event producers can be limited to a list of producers (JS
Objects) or to a producer that resides onto a specific location (i.e. VA).
Similarly, a specific set of constants is used in these cases. For example,
C ANY LOCATION indicates that the consumer accepts events from any
producer; C LIST VA EVENT restricts the location of the event producer to
a specific list of VAs; C LIST JSOBJECT EVENT restricts the event pro-
ducer to a list of JS Objects.

For the consumers of system events, a JSConstraints object encapsulates
the constraints that will be checked in order to produce a system event. For
each set of constraints, JRS generates a distinct system event, which causes
all the consumers to be notified accordingly. The generation of the event is
controlled by an additional parameter, which can take one of the following
three values:

• JS CONSTRAINTS HOLD - the event is generated if the constraints be-
come valid;

• JS CONSTRAINTS NOT HOLD - the event is generated if the con-
straints become valid;

• JS CONSTRAINTS CHANGE - the event is generated if the constraints
status changes;

The utilization of event consumers is illustrated in Fig. 3.23. The consumer
subscribes to an event by using the subscribe method of the JSConsumerEvent
class. If event notification should no longer be received, then the consumer
uses the unsubscribe method.

The Event Producer

Only user-defined events can be explicitly produced, by using the JSEvent-
Producer object. The first parameter of the JSEventProducer constructor in-
dicates the object that generates an event. The second parameter refers to
the unique type of the generated event, which must match with the second
parameter of the JSEventConsumer. Moreover, the constants used by event
consumers to filter events based on event producer, are also used here to re-
strict the list of potential consumers. The user-defined event must be explicitly
produced by invoking the produceEvent method of the JSEventProducer. The
parameters passed to this method are forwarded to the consumers’ methods
by the JRS.

3.6 Summary 67...int userEvType = JSConstants.C_USER_TYPE + 1;Objet listObj[℄=.....; //* list of remotes objetsObjet listVAs[℄=.....; //* list of VAS//* produes a user-de�ned event of type userEvType;//*** no restrition on event onsumersJSEventProduer pEv1 =new JSEventProduer (this, userEvType, JSConstants.C_ANY_LOCATION);//* notify only those onsumers registered on VAs in listVAsJSEventProduer pEv2 = new JSEventProduer (this, userEvType,JSConstants.C_LIST_VA_EVENT, listVAs);//* notify only those onsumers in listObjJSEventProduer pEv3 = new JSEventProduer (this, userEvType,JSConstants.C_LIST_JSOBJECT_EVENT, listObj);...//* produe a user-de�ned event; parameters will be transmitted//* to the handleMethod of mathing onsumerObjet params[℄=.....;pEv1.produeEvent(params)
Fig. 3.24. JavaSymphony event producer. Code excerpt

Figure 3.24 shows code for event producer. We have also built an exper-
imental application that uses JavaSymphony events, which is presented in
Section 7.2.2.

3.6 Summary

JavaSymphony offers a new object oriented programming paradigm in Java,
to control distributed and parallel system at a higher level. On the one hand,
JavaSymphony supports automatic mapping, load balancing, and migration of
objects without involving the programmer. However, fully automatic systems
commonly cause poor performance results due to lack of information about
the application and insufficient static and dynamic analysis. JavaSymphony,
therefore, provides a semi-automatic mode, which leaves the error-prone, te-
dious, and time consuming low-level details (e.g. creating and handling of
remote proxies for Java/RMI) to the underlying system, whereas the pro-
grammer controls the most important strategic decisions at a very high level,
such as:

• The setup of the virtual distributed architecture by determining which
computing resources can be used and how these resources should be orga-
nized for executing a distributed/parallel program.

68 3 JavaSymphony Programming Paradigm

• The mapping of data in relation to other data. For example, a set of objects
may be placed physically close to each other or even on the same node of
a VA if they intensively interact.

• The mapping of data (objects) onto specific nodes based on system con-
straints (e.g. available memory is larger than a minimal value, or CPU
load is less than a maximal value).

• Dynamic conversion of conventional Java objects to JS objects, which en-
ables access to conventional Java objects through JS remote method in-
vocations. Moreover, JS objects can be dynamically modified to become
single- or multi-threaded JS objects.

• Selective placement of code (Java byte-code) on specific computing nodes,
which reduces the overall disk and memory requirement of an application.

In this chapter, we have introduced the JavaSymphony programming
paradigm. The JavaSymphony programming API has two key components:

• Dynamic virtual distributed architectures are used to manage het-
erogeneous distributed computing resources and to control mapping, load
balancing, migration of objects and code placement (Section 3.2);

• JavaSymphony objects are used to distribute code and data among
remote computing resources, and to remotely execute code as part of a
distributed application (Section 3.3).

In addition, JavaSymphony offers a large set of programming elements,
which includes: various types of remote method invocation (e.g. synchronous,
asynchronous and one-sided); lock/unlock mechanism for VAs and JS objects;
high level API to access a large variety of static or dynamic system parame-
ters, selective remote class-loading; automatic and user-controlled mapping of
objects; conversion from Java conventional objects to JS objects for remote
access; single-threaded versus multi-threaded JS objects; object migration,
automatic or user-controlled, etc. Moreover, JavaSymphony introduces high-
level distributed synchronization mechanisms (Section 3.4) and distributed
event mechanism (Section 3.5).

4

JavaSymphony Runtime System

The JavaSymphony programming paradigm offers high-level constructs to
simplify the programming for distributed systems. The JavaSymphony class
library is used to distribute data and to run code on a collection of comput-
ers. In order to use a set of distributed computing machines for a distributed
application, the JavaSymphony middleware is required to run on each of them.

In this chapter, we describe the functionality of the JavaSymphony mid-
dleware and present several implementation issues. The chapter is organized
as follows: The first section gives an overview of the JavaSymphony Runtime
System (JRS). Thereafter, we analyze the main components of the middle-
ware:

• The JavaSymphony Administration Shell (Section 4.2) is a central-
ized graphical tool used to manage the set of available computing resources.

• The Network Agent System (Section 4.3) monitors and manages each
computing resource.

• The Object Agent System (Section 4.4) manages the interaction be-
tween the JavaSymphony middleware and the JavaSymphony distributed
applications.

• The Event Agent system (Section 4.5) manages the JavaSymphony
distributed event mechanism.

Finally, Section 4.6 presents a formal model of the JavaSymphony Runtime
System based on the Pi-calculus.

4.1 Runtime System Overview

The JavaSymphony Runtime System (JRS) is implemented as an agent based
system (see Fig. 4.1) that consists of several components: the JavaSymphony
Administration Shell (JS-Shell), the Network Agent System (NAS), the Ob-
ject Agent System (OAS) and the Event Agent System (EvAS). The Network

70 4 JavaSymphony Runtime System

Agent System is made up of network agents (NAs), which run on every ma-
chine (PC/workstation, SMP node, supercomputer) that can be used to start
or to run a JS application. The Object Agent System comprises two types of
object agents: public object agents (PubOA), one for each computing node,
and application object agents (AppOA), one for each JS application. The
Event Agent System includes event agents (EvA), one for each machine to be
used by the JS applications.

JSA

AppOA

JVM

JSA

AppOA

JVM

JSA

AppOA

JVM

JSA

AppOA

JVM

JSA

AppOA

JVM

JSA

AppOA

JVM

JS-Shell

(NAS)

Agent
System

Network

PubOA

EvA

NA

JVM

PubOA

EvA

NA

JVM

PubOA

EvA

NA

JVM

Agent
System

Event

(EvAS)

PubOA public object agent

AppOA application object agent

JSA JavaSymphony application network agentNA

JavaSymphony shellJS-Shell

event agentEvA remote method invocation via JAVA/RMI

method invocation within JVM

node 1

...

Object

System
Agent

(OAS)

...

node Nnode i

...
......

Fig. 4.1. JavaSymphony Runtime System (JRS) Architecture

Each machine to be used by JavaSymphony has a NA, a PubOA and an
EvA running in the same JVM, while each JS application runs in its own
JVM instance together with its associated AppOA.

4.2 The JavaSymphony Administration Shell (JS-Shell)

All physical computing resources (nodes) such as workstations, PCs, clusters
or supercomputers must have a JVM installed and must be configured under
the JS-Shell (see Fig. 4.2) before they can be used by any JS application. A
NA can be started on each configured node in two ways:

• Automatically by the JS-Shell. The JS-Shell spawns NA processes onto
a predefined set of the machines within the same administrative domain,
provided that the domain security policy allows the JS-Shell process to

4.3 The Network Agent System (NAS) 71

remotely start these processes within the domain. In a Grid environment,
the security issues can be solved by the Grid security infrastructure: JS-
Shell may use the Grid resource manager (e.g. Globus toolkit [12]) to
allocate resources and start NAs onto them.

• Manually, by the user, on each machine that is to be used in distributed
calculations by JavaSymphony applications. JS-Shell process provides an
access point (IP address and port), which can be accessed by newly started
NAs, by using the Java RMI mechanism. The NAs contact the JS-Shell,
which adds them to its list of managed resources.

Computing resources can be dynamically added or eliminated. The JS-
Shell controls the NAs via the Java/RMI mechanism. Using resources in mul-
tiple administration domains can complicate the communication between dis-
tinct NAs, respectively between the NAs and the JS-Shell, especially if security
policies are enforced (e.g. firewalls restrict access to or even hide the address of
computers in the domain). These security issues can be solved by using addi-
tional JS proxies processes, which reroute the low-level socket communication
between JavaSymphony agents through secure channels that can bypass the
firewalls. In this case, additional settings (e.g. proxy address, proxy port, list
of acceptable remote partners) are stored in local files at each machine that
runs a NA.

The computing resources are monitored using the JS-Shell GUI. The run-
time behaviour of the JS applications can be observed in the node information
window. The remote objects of an application distributed on several nodes are
listed in the same window and can be migrated to a remote node using this
interface. For example, the right side of Figure 4.2 shows the monitoring win-
dows for two nodes (workstations) named kirsty and brooke. On both machines
a NA is running. A JS application is started on kirsty and appears in its moni-
toring window as a local application. This application creates 2 remote objects
onto brooke, which are shown in its monitoring window.

The JS-Shell interface can be also used to configure various parameters of
the JRS (e.g. number of JobHandlers, enable/disable specific system events,
backup in case of failure of resources, etc.). Predefined resource configurations
may be stored into files or loaded from files. These configurations may be used
by the JS-Shell to automatically start up or stop large sets of NAs onto the
corresponding machines.

4.3 The Network Agent System (NAS)

A network agent (NA) is started by the JS-Shell or independently by the
user, onto each computing node to be used by the JS applications. The NA
determines the local machine’s setting (e.g. local temporary directory, proxy
settings for communication among multiple administrative domains, local port
used to access the NA, etc.) from a specific local file, and starts one associ-
ated PubOA and one associated EvA. The NA’s main purpose is to monitor

72 4 JavaSymphony Runtime System

Fig. 4.2. JS-Shell, an interface to control the physical resources for JS applications

Fig. 4.3. Example of a level-3 PA (physical architecture)

the resources of the local machine (e.g. dynamic parameters as system load,
free memory or static parameters as operating system, machine name, Java
version). At the same time, the NA monitors the constraints used to create
the VAs, or used to create or migrate JS objects, and chooses the machines
that build up the requested VAs.

The set of all NAs defines the Network Agent System (NAS). At the level of
the NAS, the computing nodes are organized in a level-i (i ≥ 1) tree structure,

4.3 The Network Agent System (NAS) 73

Fig. 4.4. Mapping level-2,3 VAs to level-2 PAs

which we call physical architecture (PA) (Fig. 4.3). A level-2 PA represents a
cluster and consists of a set of nodes (level-1 PA). A level-3 PA represents a
cluster of clusters, etc. A PA manager, which is a node as well, controls the
nodes in a PA. In addition to the management tasks, a PA manager can also
be used as a computing node for JS applications. The left side of Figure 4.2
shows a complex PA, which is built by using the JS-Shell.

The VAs used by the JS applications map their nodes (level-1 VAs) onto
the nodes in a PA. Higher-level VAs do not correspond to the nodes in a PA.
Assuming that a level-n VA with k nodes (the VA tree structure has k leaves)
is requested by a JS application, the nodes are chosen such as the best locality
is provided, according to the following algorithm:

1. If a cluster (level-2 PA) that includes at least k nodes (which fulfil the
constraints associated to the given VA) is found, then all VA’s nodes are
chosen from this cluster (Fig. 4.4).

2. If no corresponding level-i PA (i >= 2, initially i is 2) is found, then the
algorithm recursively searches for level-(i − 1) PAs for each level-(n − 1)
sub-VAs. The result is the aggregation of all these sub-VAs (Fig. 4.5).

3. If no PA is found, then the algorithm increments i and repeats the previous
step.

The PA manager periodically monitors each node in its PA subtree and
collects statistical values for the system parameters. The dynamic values are
updated periodically, according to the settings controlled by the JS-Shell. A
level-I PA manager collects the observed system parameters of its level-(i−1)

74 4 JavaSymphony Runtime System

Fig. 4.5. Mapping a level-3 VA to a level-3 PA

PAs, locally computes and stores simple statistics, and forwards them to its
associated level-(i + 1) PA. Thus every PA has statistical information about
the system behaviour for all its architecture components at the next lower
level.

Monitoring is also used to detect system failures. If a certain node does
not respond within a specific length of time, it will be released by the NAS
according to a simple fault tolerance mechanism.

4.4 The Object Agent System

The Object Agent System (OAS - see Fig. 4.1) directly interacts with JS ap-
plications by managing the remote objects (e.g. creation, mapping, migration,
load balancing, and release of JS objects). Furthermore, the OAS is respon-
sible for the management of the remote method invocations (e.g. parameter
transfer, remote execution, and returning results to the calling site).

Each NA creates a public object agent (PubOA) within the same JVM. For
each JS application, a unique application object agent (AppOA) is generated
once the JS application registers with the JRS. A JS application uses the
same JVM as its associated AppOA. PubOAs and NAs on the one hand,
and AppOAs and JS applications on the other hand interact by local (direct)
method invocations. The Java RMI mechanism is used for communication

4.4 The Object Agent System 75

between the AppOA and PubOAs. The AppOA manages a list that contains
all the objects generated by its corresponding JS application.

If a JS application requests a VA, the associated AppOA forwards this
request to the PubOA. The VAManager, as part of the PubOA, interacts
with the local NA and manages (creates, modifies, and releases) all VAs that
have been asked by any JS application on the node where the PubOA resides.

Job Java Class Job Description

ChangeObjectLockJob Job to (un)lock a (remote) JS object

ChangeObjectTypeJob Job to change the type of an JS object
(e.g. single- or multi-threaded).

CreateObjectJob Job to create a new JS object/ load it
from an external storage

DownloadCodebaseJob Job to download the codebase for an
object, from a remote node; used in mi-
gration

DownloadObjectJob Job to download a remote object (for
storing into an external storage)

FreeCodebaseJob Job to free codebase from the node

LoadCodebaseJob Job to install the necessary codebase
on remote nodes

MethodInvocationJob Job to invoke methods of (remote) JS
objects

TransferObjectJob Job to migrate an object to a remote
location

Table 4.1. Job types in JavaSymphony

A job processing mechanism (Fig. 4.6) is used to implement any type of
remote and local interaction between OAs. A job may create a JS object,
invoke a method, download a codebase, migrate objects, lock/unlock objects
or VAs, etc. Table 4.1 lists the JavaSymphony job types with the description
of their tasks.

Each PubOA and AppOA creates a set of threads called JobHandlers,
which process all the jobs submitted remotely by using Java/RMI, or lo-
cally through direct method invocation. The number of JobHandler threads
is controlled via the JS-Shell. For the single-threaded JS objects, a dedicated
JobHandler thread is created, whereas for the multi-threaded objects (default
case), several threads can be employed to simultaneously process jobs.

We demonstrate the job mechanism functionality for the MethodInvoca-
tionJob: For every method invocation in a JS application which implicates
local or remote OA processing, a MethodInvocator, part of the OA, creates a
specific job (Fig. 4.6). If the job implies receiving results (e.g. synchronous and
asynchronous method invocations), a ResultHandle is created and attached to

76 4 JavaSymphony Runtime System

Fig. 4.6. Job processing mechanism

the job. The OAs and the ResultHandle play the role of the remote objects
in the Java RMI mechanism [20], whereas the jobs, respectively the results,
are serializable objects that are passed as parameters to the remote OA’s
methods, and respectively to the remote ResultHandle’s method. Depending
on whether they cause method invocations for either multi-threaded, or for
single-threaded objects, the jobs are placed into corresponding queues at the
destination OA. After the object method is executed, the available results are
sent back to the associated ResultHandler via Java RMI.

In the following, we discuss how the JRS manages and supports some of
the most important JavaSymphony programming features.

VA Management

If a JS application requests a VA, the associated AppOA forwards this re-
quest to the VAManager of the local PubOA. The VAManager manages all
VAs generated by any JS application that runs onto the local node. The fol-
lowing information is stored for each VA: VA identification and description,
identification of the associated JS application and AppOA, constraints that
must hold for this VA. The VAManager periodically examines whether the
constraints of all stored VAs still hold, by accessing system parameters via

4.4 The Object Agent System 77

its local NA. In the current implementation, the JS programmer must decide
which action must be taken if the constraints are no longer fulfilled.

Object Creation

Remote parallel processing in JavaSyphony is based on remote objects. For
each created JS object, the JS application obtains a handle, which is managed
by the associated AppOA. Each JS object creation is done by a specific job:
CreateObjectJob. The job is sent to the associated AppOA, if the object resides
locally, onto the node where JS application was started, or to a remote PubOA,
if the object is placed at another location. A JobHandler executes the job. A
newly created object is added in the AppOA’s local list of JS objects. The
JS programmer can fully control the mapping by indicating a specific VA, or
by specifying which system constraints must be fulfilled by the VA where the
object will be placed.

Method Invocation

Each AppOA/PubOA that possesses an object handle has full access to the
object’s methods via its MethodInvocator. Both method’s name and param-
eters are encapsulated in a serializable MethodInvocationJob object, which is
transmitted to the PubOA or AppOA where the object resides. Object handles
are associated with information about the location of the object and the Ap-
pOA/PubOA which the object originates from. Object handles are first-order
objects, thus having the possibility to be passed to methods of other objects
that may reside onto arbitrary nodes. Methods are always executed by the
local AppOA or by the remote PubOA, corresponding to the location where
the object has been generated. The results are sent back to a ResultHandler.
Note that ResultHandlers are employed for both local and remote method
invocations.

Object Migration

The JS application programmer can explicitly migrate objects to other VAs.
An object to be migrated is serialized and transferred by the OAS to a dif-
ferent location/VA. Moreover, the AppOA’s list of objects (associated with
the JS application) and the list at the remote PubOA (where the object will
reside after migration) are updated to reflect the change of location. Explicit
methods are provided by the JS programming API to examine whether initial
constraints indicated during creation of a JS object still hold or whenever any
system parameter reaches a certain threshold. The remote references to the
migrated object are not instantly updated with the new location. If a method
invocation tries to find an object at the old location, an exception is thrown.
Thereafter, the object’s new location can be found at the AppOA associated

78 4 JavaSymphony Runtime System

with the JS application (home location). Note that each JS application is as-
sociated with a unique AppOA, but possibly with several/many PubOAs (see
Fig. 4.1).

Lock/Unlock

The JS programming API allows a programmer to explicitly lock and unlock
JS objects. If a thread acquires a lock for a JS object, all future jobs related
to the object are placed into a separate queue and delayed for execution, until
the object is unlocked. Only the thread that has initialized the lock is allowed
to unlock it. Until this happens, only jobs ”signed” by this thread may access
the regular job queue, and can be processed by the JobHandlers. Once the
unlock operation occurs, the blocked jobs are transferred back into the regular
job queue.

Codebase Transfer

Usually the codebase transfer is done during the application initialization
phase, when all necessary code is placed onto the computing nodes in the VAs.
Additional transfers may be needed when migrating the objects or creating
new VAs. The codebase content (e.g. classes and archives) is serialized and
transferred to the destination. The target PubOA deserializes the content of
the associated jobs and places it into the local classpath, into a temporary
directory.

4.5 The Event Agent System (EvAS)

The Event Agent System (EvAS) consists of the event agents (EvA) that run
on all the machines used by JS applications. Onto each of these machines,
the NA starts an associated EvA. An EvA directly interacts with the local
PubOA to register user-defined events, middleware events, and system events
consumers or to produce user-defined events (see Section 3.5). The EvA also
interacts directly with the local NA to produce system events. The middleware
events are configured/selected by using the JS-Shell and are automatically
produced by JS classes.

The interaction between consumers and producers is realized through the
EvAS (see Figure 4.7). To register for an event, a consumer (any object in a JS
application) contacts the local EvA and provides information about the event
it wants to receive (e.g. event type, filter for producers, constrains for system
events, method to handle the event, etc. - see Section sec:event) . The EvA
analyses the filter associated with the event consumer, determines the list of
possible producers and distributes (remotely) the request to the corresponding
EvAs. Each of these EvAs manages a list of registered consumers.

4.6 Modelling the JavaSymphony Runtime System with Pi-calculus Processes 79

Fig. 4.7. Event Agent System. Consumer and producer interaction

In order to produce an event, an event producer (i.e. any object in the
JS application for user events, JS classes for middleware events or a NA for
system events) contacts the local EvA and provides information about the
event (e.g. event type, a filter for the destinations, etc.). The EvA inspects
the filter and the type associated with the event to find the list of possible
consumers and (remotely) notifies the corresponding EvAs about the event’s
occurrence. The EvA at the consumer’s location contacts the consumer by
(locally) invoking its event handling method. There is no direct connection
between the producer(s) and the consumer(s). Local interaction among EvAs
and consumers, respectively producers, is done via local method calls. The
RMI mechanism is used for remote interactions between distinct EvAs.

4.6 Modelling the JavaSymphony Runtime System with
Pi-calculus Processes

Pi-calculus1 [34] is the most recent addition to the impressive collection of
process algebra variants. Pi-calculus can be seen as a minimal programming
language built to capture all interesting behaviours of concurrent programs
and gives us a mean of expressing the dynamic interactions among commu-
nicating processes, which makes it suitable to build a formal model for the
functionality of the JRS. On the other hand, it is commonly thought that
Pi-calculus is at a too low-level to be used as a serious tool.

1 Preliminary notions of Pi-calculus are presented in Appendix 10.3

80 4 JavaSymphony Runtime System

However, we believe that it would be useful to investigate at what ex-
tend Pi-calculus can be used to model a real world system - in our case the
JRS. Therefore, we use a Pi-calculus variant (Appendix 10.3) to express the
dynamic interactions between the components of the JRS: the JS-Shell, the
NAS, the OAS, the EvAS and the JS applications.

The components of the model are presented in a top-down manner: First,
we build a reduced formula for the whole system (i.e. the JRS), while ignoring
the definitions of the subparts. Thereafter, we separately analyze the subparts
(i.e. the JS-Shell, the NAS, the OAS, the EvAS and the JS applications).

4.6.1 The Runtime System

The JavaSymphony Runtime System can be represented as the parallel exe-
cutions of 3 agent systems and a monitoring process:

JS ::= NAS|OAS|EvAS|JSShell

On the other hand, it can be represented as the sum of agents running on
each computing resource:

JS ::= (νc̃)AG1|AG2|.....AGn|JSShell

where AGx ::= (νc̃x){NA|PubOA|EvA}x

We assume the existence of private channels (i.e. placed under restriction
operator ν) for each pair of connected agents (according to Fig. 4.1). For
example, there is a communication channel from PubOAi to PubOAj, which
we denote by cPubOAi−PubOAj

, and there is also a channel from PubOAj to
PubOAi, denoted by cPubOAj−PubOAi

. In the same manner, there are remote
communication channels among NAs or among EvAs, between the AppOA
and the PubOAs or between the JS-Shell and the NAs, for which we use
similar notations. There are also local communication channels within one
computing resource, such as cNAx−PubOAx

or cEvAx−PubOAx
.

We use the notation c̃ to represent the set of all these channels, whilst c̃x

is used to denote the set of channels that connect the agents inside a single
computing resource x.

The mechanism of using input and output communication channels for
each pair of connected agents is quite generic. On the other hand, we may
want to model additional specific behaviour that may apply for distributed
systems. For example, in our implementation, the agents within a single JVM
are listening to the same port of the machine, which is allowed by the RMI
lookup mechanism. We could represented this behaviour in Pi-calculus as:

(νc)c(x).NA(x)|PubOA(x)|EvA(x)

The protocol that chooses which agent process the input message (x) is com-
plex and is hidden behind the definitions of the NA, PubOA and EvA. On the

4.6 Modelling the JavaSymphony Runtime System with Pi-calculus Processes 81

other hand, since the agents are implemented as RMI services, they are bound
to specific names. Therefore, we can consider that the input communication
channels are distinct as in the following formula:

(νcNA, cPubOA, cEvA)cNA(x).NA(x)|cPubOA(x).PubOA(x)|cEvA(x).EvA(x)

Alternatively, we can use the matching construct of Pi-calculus and as-
sume that the message x, which is coming over the channel c encapsulates
information about the destination agent (e.g. the type of the agent). This can
be expressed by the following formula:

[x 7→ dest = NA]NA(x)
[x 7→ dest = PubOA]PubOA(x)
[x 7→ dest = EvA]EvA(x)

4.6.2 RMI and Pi-calculus

The JavaSymphony Runtime System is built upon the Java RMI mecha-
nism [20]. Pi-calculus operates with channels and communication over chan-
nels, which is at a lower level than the Java RMI mechanism. This is the
reason for which we find useful to express the RMI mechanism in terms of
Pi-calculus.

Typically, RMI applications have two separate parts: server(s) and clients.
The server creates remote objects, makes them accessible and waits for some
clients to invoke their methods. The clients get remote references to these
objects to invoke methods on them. The Java/RMI mechanism allows the
server and the client to communicate and to pass information.

We express this mechanism in terms of Pi-calculus.

• We use Pi-calculus process to model a remote object. The object is accessi-
ble by using the IP address of its location, the port where the rmiregistry
is listening for calls and the name associated by the server to the ob-
ject. Therefore, we consider that the object is accessible via the channel
caddr,port,name, which is uniquely determined by these parameters.

• The client obtains a remote reference which has a specific remote interface
type. The interface type corresponds with the sort associated with the
channel caddr,port,name, which determines the specific data type allowed to
be send along the channel.

• The client calls the method in a standard way. In Pi-calculus, this means
that it sends the method (or method name) and the parameters along the
channel: caddr,port,name 〈method, params...〉
Note that the sort associated with the channel restricts the methods and
parameters according to the interface definition.

• The server executes the method on the remote object. This is modelled
by a separate process: Execute(obj 7→ method, params), which hides the
complexity of the method invocation.

82 4 JavaSymphony Runtime System

• The client gets the result over a new channel, which it has provided at
invocation. Again, the channel is associated with a sort that allows only
the type of the expected result along the new channel.

• In summary, we can formalize the client and the server as:
Client ::= (νcresult)caddr,port,name 〈method, params, cresult〉 .cresult(x).P
Server ::=!caddr,port,name(method, params, cresult).
Execute(obj 7→ method, params).cresult 〈result〉
P is the continuation of the client. The replication in the server’s definition
means the ability to serve multiple clients.

4.6.3 The Network Agent System

The Network Agent System comprises a set of NAs, running on each comput-
ing resource that is used by JavaSymphony:

NAS ::= (νc̃){NA}1|{NA}2 · · · |{NA}m

In JavaSymphony, a NA process acts as a RMI server. In addition, a NA
has associated a backup-thread, which implements a simple fault-tolerance
mechanism, and a property thread, which computes the static and dynamic
system parameters. We can express this as:

NA ::=!(cNA(m, p, cres).Execute(m, p).cres 〈result〉)|PropTh|BackupTh

The property-thread collects statistical information from the successors
in the resource tree (physical architecture - see Section 4.3), computes the
system properties for its own system and forwards statistical information to
the predecessor in the tree. This process is cyclic:

PropTh ::= cin(i).ComputeProp(...).cout 〈o〉 .P ropTh

The backup-thread checks the parent of the current node. In case of failure,
the process starts reorganizing the resource tree.

BackupTh ::= ccheck(x).[x = fail]InitBackup(...).BackupTh

Note that the complexity of the actual NA is hidden behind the definitions
of Execute, ComputeProp or InitBackup. It is not possible to model these
processes with simple Pi-calculus formulas.

Also, we can see that PropTh and BackupTh are defined recursively,
since they are cyclic processes. There is a waiting time before starting the
next cycle of the process, which we do not represent in terms of Pi-calculus.
An alternative is to insert a process Wait(...), before starting the next cycle.

Another interesting aspect is the choice of the channels ccheck, cin (in
fact an array of channels for the successors) and cout. These channels are not
placed under the restriction operator ν, because they are initialized by the

4.6 Modelling the JavaSymphony Runtime System with Pi-calculus Processes 83

Execute(m, p) by using a specific NA’s initialization method m and specific
parameters. This method is remotely invoked by the JSShell process, which
contacts all the NAs (along the channels cNA) and sets up the resources tree,
before any application could run.

4.6.4 The Object Agent System

The Object Agent System (OAS) directly interacts with the distributed ap-
plications. The constructs of JavaSymphony programming paradigm are sup-
ported by operations at the OAS level. Consequently, the OAS is the most
important and most complex agent system in JavaSymphony.

The OAS comprises two types of object agents:

• The public object agents (PubOAs). One PubOA is running onto each
computing resource;

• The application object agents (AppOAs). One AppOA instance is created
for each JavaSymphony application.

The following formula models the OAS:

(νc̃) {PubOA}1 |...| {PubOA}m | {AppOA}m1
| {AppOA}m2

|...| {AppOA}mn

An object agent (OA - either PubOA or AppOA) acts as an RMI server.
In addition, several JobHandler threads are running under the control of each
OA (see Fig. 4.6). Therefore, we model an OA as following:

OA ::= (νin, out)(Q(in, out)|
(cOA(m, p, cres).Execute(m, p).cres 〈result〉) |
JH1|JH2|...JHn)

Again, the complexity of the OA is hidden behind Execute(m, p) and JHs
processes. JH1, JH2, ... JHn are identical processes, corresponding to the
JobHandler threads. The (finite) number of JobHandler threads is controlled
via the JS-Shell.

Each of the JobHandler threads extracts a job from the OA’s job queue and
processes it. We assume that the queue is modelled by a process Q(in, out) ::=
in(x)....Q|out 〈y〉Q, which reads from the in channel and writes to the out
channel. The readings and writings are asynchronous, which is difficult to
express in terms of Pi-calculus. Therefore, we do not further detail the queue
process’s formula.

The threads’ behaviour is quite simple. One job is taken from the queue
Q, its run method is executed and the result is sent back to the invocation
source (see Fig. 4.6):

JH ::= out(job).Execute(job 7→ run).job 7→ output 〈result〉 .JH

The job types that are used in JavaSymphony are listed in Table 4.1. The
jobs are placed in the queue by (remotely) invoking the OA’s putJob method
with the job as parameter. This can be written as:

84 4 JavaSymphony Runtime System

cOA 〈pushJob, job, cresult〉 .P |OA

where the first process sends (pushJob, job, cresult) over the cOA channel and
continues as P .

We assume that Execute(pushJob, j) → in 〈j〉, since this method is only
placing the job in the queue. In parallel with OA, the process is transform by
reduction as follows:

cOA 〈pushJob, job, cresult〉 .P |(νin, out)(Q(in, out)|
! (cOA(m, p, cres).Execute(m, p).cres 〈result〉) |JH1|JH2|...JHn)

→ P |(νin, out)(Execute(pushJob, job)|Q(in, out)|
! (cOA(m, p, cres).Execute(m, p).cres 〈result〉) |JH1|JH2|...JHn)

→ P |
(
(νin, out)in 〈job〉 |Q(in, out)| (...) |JH1|JH2|...JHn

)

→ P |
(
(νin, out)out 〈job〉 | (...) |JH1|JH2|...JHn

)

and

out 〈j〉 |JHi is out 〈j〉 |out(job).Execute(job 7→ run).job 7→ output 〈results〉

which is reduced to

Execute(j 7→ run).j 7→ output 〈results〉

4.6.5 The Event Agent System

The Event Agent System (EvAS) consists of a set of event agents (EvAs),
running on each computing resource that is used by JavaSymphony:

EvAS ::= (νc̃){EvA}1|{EvA}2 · · · |{EvA}m

An EvA acts as a RMI server in JavaSymphony. It performs several pri-
mary operations:

• Registration of a local consumer. A local object Cons registers its interest
in receiving remote events of a specific type TEv. The EvA processes the
information about the consumer and the event of interest, determines a list
of remote EvAs that may send this type of event, and remotely registers
the consumer with each of these EvAs. We model this operation as:

clocalC(Cons, TEv).P rocessC(Cons, TEv).
(cremoteC1

〈Cons, TEv〉 |cremoteC2
〈Cons, TEv〉 |...|cremoteCn

〈Cons, TEv〉)

The formula shows that the process receives Cons and TEv along a ded-
icated channel clocalC , process this information in ProcessC sub-process,
which determines the correspondent remote EvAs and the associated chan-
nels cremoteCi

. Cons and TEv are sent over these channels. ProcessC also
saves information about the consumer into local memory.

4.6 Modelling the JavaSymphony Runtime System with Pi-calculus Processes 85

• Registration of a remote consumer. An EvA determines which remote
EvAs may produce events of interest for a local consumer. Afterwards,
it sends information about the producer and the event of interest to these
remote EvAs. We write this as:

cremoteC(Cons, TEv).RegisterC(Cons, TEv)

The RegisterC sub-process places the information about Cons and TEv
into a local list. The channel cremoteC is one of the cremoteCi

channels
mentioned above.

• Local event notification. A local event producer generates an event and
sends a notification to the local EvA. The EvA checks its list of registered
consumers and determines which remote EvAs need to be notified. A no-
tification is sent to these EvAs. The formula is similar to the formula for
local consumer registration:

clocalP (Prod, TEv).P rocessP (Prod, TEv).
(cremoteP1

〈Prod, TEv〉 |cremoteP2
〈Prod, TEv〉 |...|cremotePn

〈Prod, TEv〉)

This means that the process receives Prod and TEv along a dedicated
channel clocalP , and processes this information within the ProcessP sub-
process, which determines the correspondent remote EvAs and the asso-
ciated channels cremotePi

. Cons and TEv are sent over these channels as
the event notification.

• Event notifications. The event notifications are distributed to the regis-
tered event consumers by their local EvAs. We write this as:

cremoteP (Prod, TEv).P rocessRemoteP (Prod, TEv).
(o1 7→ m1|o2 7→ m1|...|on 7→ mn)

The process receives information about the producer, respectively about
the produced event along channel cremoteP . The consumers o1, o2, ...,on

and their methods m1, m2, ...,mn, are identified inside the ProcessRemoteP
sub-process. Afterwards, the process continues with the (local) method in-
vocation of all these methods.

• Un-register a local/remote consumer. These two processes are quite similar
to the processes for the registration of local/remote consumers:

clocalUC(Cons, TEv).P rocessUC(Cons, TEv).
(cremoteUC1

〈Cons, TEv〉 |cremoteUC2
〈Cons, TEv〉 |...|cremoteUCn

〈Cons, TEv〉)

respectively,

cremoteUC(Cons, TEv).UnRegisterC(Cons, TEv)

A separate set of channels is used for communication. ProcessUC, respec-
tively UnRegisterC delete the information from the memory, instead of
adding it.

86 4 JavaSymphony Runtime System

Therefore, we may write EvA process as a parallel composition of the
above-described processes, mapped onto a single machine m:

EvA ::= {P1|P2|P3|P4|P5|P6}m

4.6.6 JavaSymphony Applications

A JavaSymphony application is modelled by a Pi-calculus process that runs
in parallel with an associated AppOA. Both processes are placed onto a single
computing resource:

{A|AppOAA}m

Each application has its own logic and therefore there is no generic for-
mula to model A. However, by using JavaSymphony programming constructs
(Chapter 3), a JavaSymphony application may perform a few standard oper-
ations, such as:

• Registration with the JRS. This means the creation of the AppOAA

process, which runs in parallel with the application thread of execution.
• Requesting VAs. In terms of Pi-calculus, this means that a set of chan-

nels are opened for communication with remote PubOAs processes. The
use of named channels is implicit in Pi-calculus, and therefore no Pi-
calculus formula is necessary to model this operation.

• Creating JS objects. In terms of Pi-calculus, the creation of JS means
sending a specific job along the channel for the chosen PubOA. The job
contains information about the new object (e.g. class name, parameters).
The new object is not itself a process; it represents merely information
stored at the level of the PubOA.

• Remote method invocation. A specific job is sent to the PubOA. The
job contains information about the object, its method name and param-
eters. The PubOA uses matching construct to identify the object and its
method. The method invocation represents a sub-process of the PubOA,
which is parallel composed with the rest of PubOA’s sub-processes. This
process has its own logic. It could interact with other PubOAs by remotely
invoking methods of other JS objects, or it could interact with the local
EvA by producing or consuming events.

• Managing JS objects (e.g. migrate or delete) is similar to the creation
of JS object. A specific job is sent along the channel for the associated
PubOA. No sub-process of the PubOA is created.

In summary, a JS application execution is modelled as the parallel compo-
sition between the application process {A|AppOAA}m and the JRSprocess:
{A|AppOAA}m|JRS. The application process A communicates with the
AppOAA via restricted channels. AppOAA communicates with the {PubOAA}i

processes, mainly by placing jobs in their queues, which are executed as
Execute(m, p) processes. The rest of the components (e.g EvAS, NAS,
JSShell processes, as part of the JRS) follow their own execution logic. In the

4.7 Summary 87

end, after interactions with JRS, the A process is reduced to 0, which means
the termination of the application. Afterwards or in parallel, the remaining
process (i.e. JRS) expects input on its channels from another application
process.

4.7 Summary

The JavaSymphony Runtime System (JRS) is implemented as an agent based
system. In this chapter, we have described the components of the JRS:

• The JavaSymphony Administration Shell (Section 4.2) is used to
configure the available computing resources and to monitor the running
JS applications.

• The Network Agent System (Section 4.3) comprises network agents
(NAs) that monitor and manage each computing resource.

• The Object Agent System (Section 4.4) manages the interaction be-
tween the JavaSymphony middleware and the JavaSymphony distributed
applications. For each distributed application, an AppOA is created,
whereas each computing resource is associated with a PubOA. The in-
teractions within the OAS are based on a job-processing mechanism.

• The Event Agent System (Section 4.5) manages the JavaSymphony
distributed event mechanism. The EvAS comes as a layer between the
event producer(s) and consumer(s): The producer and EvA, respectively
the EvA and the consumer communicate locally, whilst remote communi-
cation exists only between distinct EvAs.

Furthermore, in Section 4.6, we have introduced a formal model based on
Pi-calculus to express the behaviour of the concurrent components of the JRS.

5

Scheduling Task-based Applications in
JavaSymphony

The JavaSymphony programming paradigm allows flexible implementation
of a large range of distributed applications, such as meta-task applications
or workflow applications. However, the developer usually has to manage the
resources, build Java objects, and control the mapping of the objects onto
resources. In order to improve the performance, the developer needs to use
a scheduling strategy adapted to his particular application. All these issues
require a significant programming effort.

On the other hand, many distributed applications follow a well-defined pat-
tern, and therefore many of the above-mentioned programming issues could be
automatized. We are particularly interested in automatic resource allocation
and scheduling.

Motivated by these aspects, we have added new JavaSymphony features to
support automatic scheduling of some particular types of application, namely
workflow applications, which we will present in the following sections.

5.1 JavaSymphony Workflow Applications

A workflow application is defined as a set of one or more linked activities,
which collectively realize a common goal. Information (files, messages, param-
eters, etc.) is passed from one participant to another for action, according to
a set of procedural rules.

On the one hand, workflow applications have become quite popular in
Grid community and many research and industry groups proposed standards
to model and develop workflow applications and built workflow definition
languages or schedulers for workflow applications [35, 36, 37, 38]. On the other
hand, the workflow applications may support automatic resource discovery,
allocation and scheduling.

Motivated by these aspects, we have considered to support the develop-
ment of workflow applications in JavaSymphony with:

90 5 Scheduling Task-based Applications in JavaSymphony

• A graphical user interface for building the structure of a workflow. The user
interface also allows the specification of resource constraints and workflow
activity properties and constraints.

• A simple XML-based specification language1 for describing the workflow
and its elements. A JS workflow application is automatically generated
using the workflow description and the class files for its activities.

• Library support consisting of a set of classes for building workflows and
customizing workflow activities.

• A specialized scheduler, which automatically finds suitable resources, maps
workflow activities onto these resources, and runs the distributed compu-
tation, according to the workflow specification.

5.2 Workflow Model

A workflow consists of several interconnected computing activities. Between
two computing activities there may be: (1) a control flow dependency, which
means that one activity cannot start before its predecessors finished or (2)
a data dependency, which means that one activity needs input data that is
produced by the other.

In this section we introduce a formal representation of the workflow appli-
cation and present in detail the basic elements of the workflow model.

5.2.1 Formal Representation of a Workflow Application

Each workflow application is associated in our model with a workflow graph
defined by: WF = (Nodes, CEdges, DEdges, Loops, PLoops, istate, fstate)
where:

• Nodes is the set of the vertices in the graph Nodes = Act∪DAct∪ Init∪
Final ∪ Branches and comprises the vertices for all activities, dummy
activities, initial states, final states and branches in the workflow.

• CEdges, DEdges, Loops, respectively PLoops are the sets of the control
links, data links, respectively loops and parallel loops of the graph. We
denoted Edges = CEdges∪DEdges∪Loops∪PLoops the set of all edges
in the associated graph.

The elements of Nodes and Edges sets represent the basic elements of the
workflow and are explained in detail in the following section.

5.2.2 Basic Elements of the Workflow

The terminology and specifications proposed by the Workflow Management
Coalition [22] are used to define the above-mentioned basic workflow elements.

1 The XML Schema for the workflow specification language is presented in Ap-
pendix 10.4

5.2 Workflow Model 91

Activities

The set Act ⊂ Nodes includes the activities of the workflow, which perform
its computational parts. They are represented as vertices of the associated
graph. One activity has input ports, which are used to receive data from
predecessors and output ports used to send data to its successors. The ports
are simply identified by their index (0,1,...n-1). For simplicity, we call them
input port(0), input port(1)..., respectively output port(0), output port(1)...

In addition, the activities provide workflow-relevant data that is used to
control the overall execution. We assume that this data is provided in a simple
format (as an integer), which may indicate the actual state of the activity
(mapped, ready, cancelled, running, error, etc.), or any additional information
that may be used in evaluating internal conditions.

Each activity is associated with a Java class that extends the DAGAc-
tivity abstract class provided by the JavaSymphony library. Instances of the
associated classes are mapped onto computing resources, where they perform
specific computations. Also, each activity is associated with a unique id within
the entire workflow. Additional information that is relevant for scheduling may
be associated with each activity, which includes:

• Activity properties like associated priority, computational load (ex-
pressed in FLOPS), number of input and output ports, and activity
constraints like maximal execution time allowed, minimal execution time
required or estimated average execution time. The scheduler uses this data
for scheduling decisions.

• Resource constraints associated with the resources, which will be used
by the corresponding activities (e.g. idle CPU time, free memory, free disk
space, etc.). A resource broker uses the resource constraints within the
scheduling process.

• A performance contract is associated with an activity and is used to
detect at runtime whether the assigned resource becomes unsuitable, and,
consequently, the activity needs to be migrated to a new one. The perfor-
mance contract information has a similar format with the resource con-
straints and it is used by the resource broker as well.

• Input parameters are passed to the activities at runtime, directly by
the enactment engine.

The code excerpt in Fig. 5.1 illustrates the use of the specification language
for one activity.

Dummy Activities

The DAct ⊂ Nodes set comprises the so-called dummy activities. These rep-
resent a restricted type of activities, which are supposed to perform evaluation
of complex expressions, or setup workflow variables. It is assumed that the

92 5 Scheduling Task-based Applications in JavaSymphony< node id="4" type="ativity" ><name>Multiply_4</name>...<ativity_properties><lass>js.test.ativity.Multiply</lass><settings><priority>5</priority><input_ports>1</input_ports><output_ports>1</output_ports><avg_time>25.0</avg_time></settings></onstraints><onstraints><onstraint><id>benhCPU_omposite_sore</id><operator>>=</operator><value>15</value></onstraint><onstraint><id>pu_idle</id><operator>>=</operator><value>80</value></onstraint></onstraints><perf_ontrat><onstraint><id>pu_idle</id><operator>>=</operator><value>40</value></onstraint></perf_ontrat><parameters><parameter>10</parameter><parameter>256</parameter></parameters><parameters/></ativity_properties></node>
Fig. 5.1. Activity specification. Code excerpt

5.2 Workflow Model 93<node id="14" type="dummy_ativity"><name>IsPositive_8</name><ativity_properties><lass>js.test.ativity.IsPositive</lass><settings><input_ports>1</input_ports><output_ports>1</output_ports></settings><parameters><parameter>Param0</parameter></parameters><variables><set_var><var_name>fLoop</var_name><value>true</value></set_var></variables></ativity_properties></node>
Fig. 5.2. Dummy activity specification. Code excerpt

dummy activities require minimal computing power. Instead of being placed
onto distributed computing resources, they run locally, within the scheduler.

Dummy activities may require input data from previous activities (pre-
decessors from the control-flow dependency point of view), and allow input
parameters provided by the scheduler at runtime, as the regular activities
do. On the other hand, the dummy activities do not produce output data
for their successors. They may provide only workflow-relevant data (i.e. data
used by the scheduler to determine the future plan of execution for the en-
tire workflow). Consequently, it is not allowed to associate constraints with
dummy activities, and only a reduced set of activity properties/constraints is
available for them.

The code excerpt for the specification of a dummy activity is shown in
Fig. 5.2. The code shows a dummy activity, which takes an input parameter
and initializes a variable fLoop with the value true.

Control Links

The elements of CEdges set represent the control-links of the workflow. The
control-links are used to define the control-precedence relation over the
elements of Nodes set. The control precedence relation represents the
transitive closure of CEdges, and it is a partial order over Nodes:

94 5 Scheduling Task-based Applications in JavaSymphony

N1 < Np iff ∃N1, N2... NP ∈ Nodes, ∀i ∈ {1, 2, ...p − 1}, (Ni, Ni+1) ∈
CEdges.

One control link (N1, N2) ∈ CEdges between the two vertices associated
with the activities N1 and N2 means that N2 cannot be started unless N1

is finished. In this case, we say that there is a direct control precedence
relation between N1 and N2.

A path (of more than one control links) between two vertices associated
with the activities N1 and Np implies that there is an indirect control
precedence relation between N1 and Np. N1 < Np implies also that Np

cannot be started before N1 is finished.
Note that control links may exist between any two elements of the Nodes

set. We denote the predecessors, respectively the successors of workflow node
as: pred(N) = {M ∈ Nodes|(M, N) ∈ CEdges}, and respectively succ(M) =
{N ∈ Nodes|(M, N) ∈ CEdges} .

Each control link has a source and a target: For the control link represented
as (N1, N2) ∈ Nodes×Nodes, N1 is called the source of the control link and
N2 the target. On the other hand, for each element A in Nodes, we call entries
of A the control-links that have this element as target: entries(A) = {(B, A) ∈
CEdges|B ∈ Nodes}, and exits of A the control links that have it as source:
exits(A) = {(A, B) ∈ CEdges|B ∈ Nodes}

Data Links

The data links define the data-precedence relation over the set of the
activities of a workflow. A data-link between two activities means that the
second activity requires as input the output data of the first. This data is
transferred from one activity to another by using the remote method invoca-
tion mechanism, or alternatively by transferring a list of files from the location
of the first activity (data-predecessor) to the location of the second activity
(data-successor).

Note that data links are allowed only between two regular activities. In
addition, the dummy activities may be only the target of a data link (are
allowed to collect data from other activities, but they are not allowed to
provide data to other activities). Therefore, the data-precedence relation is a
partial relation, defined only over Act×(Act∪DAct), and it is not a transitive
relation.

We write N1 <d N2 iff (N1, N2) ∈ DEdges.
Intuitively, for a workflow without loops, N1 <d N2 requires that N1 < N2,

since N1 cannot send output data to N2, before N1 has been completed and
has produced its output.

A data-link is associated with an output port of the source activity and
an input port of the target activity, or alternatively with a list of files that
need to be transferred. Additional information that is relevant for scheduling
may be associated with each data link:

5.2 Workflow Model 95<data_link><soure>5</soure><target>4</target><link_properties><soure_port>0</soure_port><target_port>0</target_port><settings><ommuniation_load>15.0</ommuniation_load></settings><onstraints><onstraint><id>bandwidth</id><operator>>=</operator><value>15</value></onstraint></onstraints><�les><�le_transfer><soure_�le>�le1.sr</soure_�le><target_�le>�le1.trg</target_�le></�le_transfer><�le_transfer><soure_�le>�le2.sr</soure_�le><target_�le>�le2.trg</target_�le></�le_transfer></�les></link_properties>...</data_link>
Fig. 5.3. Data Link specification. Code excerpt

• Communication properties like communication load (expressed in
MBs) - to be used for scheduling decisions;

• Constraints for the physical link that are associated with the data link
(e.g. bandwidth and latency) - to restrict the access to certain network
resources.

Code excerpt for a data-link is shown in Fig. 5.3.

Initial and Final States

Each workflow has one entry and one exit point, which we call the initial
state, respectively the final state of the workflow. These workflow elements
are not associated with computation. They are used for synchronization of
activities, or to mark the body of the so-called sub-workflows.

96 5 Scheduling Task-based Applications in JavaSymphony<node id="10" type="initial_state"><name>Initial state_10</name>...</node><node id="11" type="�nal_state"><name>Final state_11</name>...</node><loop><soure>11</soure><target>10</target><loop_settings><iterations>3</iterations><termination_ondition><or_term><and_term><ativity>IsPositive_8</ativity><operator>!=</operator><value>1</value></and_term></or_term></termination_ondition></loop_settings></loop>
Fig. 5.4. Initial/Final States and Loops. Code excerpt

The initial states within a workflow are the members of the Init ⊂ Nodes
set, whilst Final ⊂ Nodes includes the final states. There is a unique
istate ∈ Init, for which preds(istate) = ∅, and a unique fstate ∈ Final,
for which succs(fstate) = ∅. These two elements are part of the definition of
the workflow graph. The rest of the initial and final states are used to define
sub-workflows of the workflow, as it will be explained in the next subsection.

There is a bijective function final : Init → Final, which uniquely maps
an initial state i ∈ Init to a final state f ∈ Final. The initial state of the
workflow istate is mapped to fstate: final(istate) = fstate. The inverse
function is init = final−1 : Final → Init, which maps each final state to a
unique initial state in Init.

The XML constructs for initial/final states can be seen in Fig. 5.4.

Sub-workflows

The initial and final states are used to mark sub-workflow units of a larger
enclosing workflow. Each sub-workflow unit is delimited by a unique pair

5.2 Workflow Model 97

(i, f = final(i)) ∈ Init×Final. Note that all the activities in a (sub)workflow
are control-successors of the associated initial state and control-predecessors
of the associated final state.

We define a sub-workflow of a workflow as follows:
WF ′ = (Nodes′, CEdges′, DEdges′, Loops′, PLoops′, istate′, fstate′) is a

subworkflow of WF iff WF ′ is a workflow with the following properties:

Nodes′ ⊂ Nodes, CEdges′ ⊂ CEdges, and DEdges′ ⊂ DEdges,
(N1, N2) ∈ CEdges ∩ (Nodes − Nodes′) × Nodes′

⇒ N2 = istate′ (unique entry point);
(N1, N2) ∈ CEdges ∩ Nodes′ × (Nodes − Nodes′)

⇒ N2 = fstate′ (unique exit point);
final(istate′) = fstate .

The idea is that each pair (i, f = final(i)) ∈ Init×Final corresponds to a
unique sub-workflow WF ′ = (Nodes′, CEdges′, DEdges′, Loops′, PLoops′, i, f)
such as i < N < f,∀N ∈ Nodes′.

For each sub-workflow unit, ”external” control-links are not allowed. This
means that it is not allowed to have control links with one end (i.e. source or
target) inside a sub-workflow and with the other end outside the sub-workflow,
except the entries of the initial state, respectively the exits of the final state.
On the other hand, the data links may have any two distinct activities as
source and target, no matter if they are outside or inside one sub-workflow.

Note that these aspects resemble the properties of a procedural program-
ming language: Goto-s placed outside of a procedure that point to an in-
struction inside this procedure are not permitted. At the same time, goto-s
that are placed inside a procedure and point to an instruction outside are not
allowed. Nevertheless, the sub-procedures of a program may access ”global”
data stored in previously defined variables.

Conditional Branches

The conditional branches are the elements of the Branches ⊂ Nodes set. The
execution plan of a workflow is dynamically changed by using conditional
branches. Each exit (control-link) of a conditional branch is associated with a
boolean condition, as shown in Fig. 5.5. A built-in scheduler chooses at run-
time to execute the branch successors (activities or sub-workflows), for which
the associated conditions are evaluated as true. The rest of the successors
(activities or sub-workflows) is omitted in the execution of the workflow and
placed in ”cancelled” state.

Loops

JavaSymphony extends the classical DAG(directed acyclic graph)-based work-
flow model by supporting workflows with (sequential) loops (not allowed in

98 5 Scheduling Task-based Applications in JavaSymphony<node id="15" type="branh"><name>Branh_15</name></node><link><soure>15</soure><target>16</target><branh_ondition><or_term><and_term><ativity>IsPositive_8</ativity><operator>==</operator><value>1</value></and_term></or_term></branh_ondition></link>
Fig. 5.5. Branch and branch condition. Code excerpt

DAG-based workflows). The loops are represented by the elements of the
Loops set from the definition of workflow associated graph.

For consistency reasons, the loops in JavaSymphony may be associated
only with entire (sub)workflows units, with a single entry (initial state) and
a single exit (final state) point, according to the following rules:

Loops ⊂ Final × Init,
(f, i) ∈ Loops only if f = final(i)

For a (sub)workflow with an associated loop, the entire sequence of activi-
ties is executed repeatedly, for a fixed number of times (for-loops), or until an
associated termination condition is satisfied (until-loops). There is no explicit
support for while-loops, but such a loop can be easily simulated by combining
an until-loop with a conditional branch.

A fixed number of iterations and/or a termination condition can be spec-
ified for each loop, as shown in Fig. 5.4. At runtime, after all the activities
within the (sub)workflow have been finished, the built-in scheduler/execution
engine evaluates the termination condition, respectively checks the number of
iterations already executed, and determines the future execution plan for the
workflow:

• If the termination condition is fulfilled, or the number of executed itera-
tions is equal with the fixed maximum number of iterations, the successors
of the sub-workflow are enabled to run;

• If not, all the activities within the (sub)workflow are executed again.

5.2 Workflow Model 99

Parallel Loops

The members of PLoops set of edges are called parallel loops. The parallel
loops and the regular sequential loops are both associated with sub-workflow
units:

PLoops ⊂ Final × Init,
(f, i) ∈ PLoopss only if f = final(i)

However, the parallel loop models a different behaviour of the associated
sub-workflow: For each parallel loop, the number of iterations n is specified,
and n identical copies of the associated sub-workflow will be created and
executed in parallel. Note that for regular loops, the associated sub-workflow
is sequentially executed for a number of times. In addition, in contrast to
the regular loops, there is no termination condition for parallel loops.

A parallel loop can be replaced with n identical copies of the associated
sub-workflow, in which case the workflow graph may have a significantly more
complex structure. Therefore, the parallel loop is very useful when the work-
flow application comprises many identical sub-parts that may run in parallel.

5.2.3 Workflow Patterns

The Workflow Management Coalition (WFMC) [22] defines terminology and
standards for basic workflow constructs. A detailed overview of basic and com-
plex workflow patterns is presented in [39]. This paper also points out to which
extent current existing workflow management systems realize these patterns.
It is assumed, that a workflow specification language is more expressive if it
supports a larger sets of workflow patterns.

It is not our objective to support as many workflow patterns as possible.
Additional complex patterns add overhead to the scheduling process. More
important for us is to allow specification of scheduling relevant information.
The scheduler/enactment engine should be able to easily use this data for
proper scheduling decisions. On the other hand, it may be useful to investigate
how some of these workflow patterns are supported by our workflow model.

Sequence

The sequence pattern is used to model consecutive steps in a workflow process.
The sequence is implicitly supported via control links. Any control-path (e.g.
a path in the associated graph defined by the control links) in a workflow
defines a sequence.

AND-Split

The AND-split (Fig. 5.6(a)) is also known as parallel split or fork, and repre-
sents a point in the workflow execution where a single thread of control may

100 5 Scheduling Task-based Applications in JavaSymphony

(a) AND-split (b) JS AND-split

Fig. 5.6. AND-split pattern

split in multiple threads. The activities in the resulting threads may run in
parallel (if enough resources are available).

The existence of the parallel split is implicit in our model (Fig. 5.6(b)).
There is no special construct for this pattern. Any activity, branch, initial
or final state with several control-successors represents a AND-split. Its suc-
cessors may run in parallel after its termination. The initial states typically
represent AND-splits.

AND-Join

(a) AND-join (b) OR-join (c) JS AND-join

Fig. 5.7. AND-join and OR-join patterns.

The AND-join (Fig. 5.7(a)) is also known as synchronizer and is used to
converge threads of parallel activities in one single thread of control.

The AND-join is also implicit in our model (Fig. 5.7(c)). There is no special
construct for synchronization. Any activity with several control-predecessors
represents an AND-join. Such an activity starts only when all its predecessors
are finished. The final states typically represent AND-joins.

There is no rule to associate each AND-split with a corresponding AND-
join, as many other workflow models do for explicit AND-split and AND-join
constructs. However, a similar rule applies for initial and final states: Each
initial state is uniquely associated with a corresponding final state, defining a
sub-workflow unit.

5.2 Workflow Model 101

(a) XOR-split (b) OR-split (c) JS OR-split

Fig. 5.8. OR-split and XOR-split patterns.

XOR-Split

It is also known as exclusive choice or switch, and represents a point in the
workflow execution where one of several branches is chosen, based on a decision
or on internal workflow data.

The XOR-split (Fig. 5.8(a)) is a particular case of OR-split (multi-choice)
(Fig. 5.8(b)), which is explicitly represented by the conditional branch element
(Fig. 5.8(c)).

Any branch (control link) that exits out of a conditional branch point is
associated with a condition. A particular branch element represents a XOR-
split only if the conditions associated with its branches are disjoint. The branch
whose condition is evaluated as true, assuming that there is only one such a
branch, is chosen for execution. The rest of them are ”cancelled”, which means
that they will not be executed.

There is no explicit Merge associated with the XOR-split.

OR-Join

It is also known as merge or asynchronous join and represents a point where
several branches come together without synchronization (Fig. 5.7(b)). It is
assumed that these branches do not run in parallel; in particular that only
one branch is actually executed.

In our model, there is no explicit construct for this pattern. The activities
on the branches that are not chosen in a XOR-split are implicitly cancelled and
treated as already finished. Any plain AND-join (e.g. an activity with several
control-predecessors) that implies synchronization of a cancelled branch, acts
like an OR-join.

OR-Split

It is also known as multi-choice (Fig. 5.8(b)). As we stated above, the OR-
split is explicitly represented by the conditional branch element. In case of an
OR-split, the scheduler has to choose a subset of valid branches, in contrast
to the XOR-split where a single branch is chosen. This is done by evaluating
all branch conditions, and choosing those branches whose conditions are true.

102 5 Scheduling Task-based Applications in JavaSymphony

Synchronizing Merge

It is a synchronization point associated with an OR-split. Multiple threads
that are active due to an OR-split converge in such a point. The inactive
threads do not need to be synchronized.

Our workflow model does not explicitly support this pattern. Any plain
AND-join that has as predecessors both activities that are part of a cancelled
branch and activities that are not part of such a branch, acts as Synchronizing
merge. In [39], the OR-split and Synchronizing Merge are included in a list of
advanced branching and synchronization patterns. This list includes
also Multi-merge and Discriminator patterns, which are not supported by our
model. We have chosen not to detail these complex patterns.

Structured Cycles vs Arbitrary Cycles

(a) Sequential loop (b) Parallel loop

Fig. 5.9. Sequential and parallel loops in JavaSymphony.

These patterns are considered structural patterns. A cycle allows the re-
peated execution of one or more workflow activities. The structured cycles
can have only one entry point to the loop and one exit point from the loop and
they cannot be interleaved. The structured cycles are explicitly supported in
our model (Fig. 5.9(a)). The arbitrary cycles do not have these restrictions
and are not supported by the JavaSymphony workflow model.

Patterns Involving Multiple Instance

According to [39], this category includes multiple instances without syn-
chronization, multiple instances with a priori design time knowl-
edge, and multiple instances with a priori runtime knowledge.

The JavaSymphony workflow model includes loops (Fig. 5.9(b)), which
can be used to model multiple instances with a priori design time knowledge,
if the number of iterations is set to a constant value (default case), or they
can model multiple instances with a priori runtime knowledge, if the number

5.2 Workflow Model 103

of iterations is set to a workflow variable, whose value has been set by some
dummy activity. Note that sequential and parallel loops are used in similar
conditions: they are attached to a (sub-)workflow unit; the graphical repre-
sentation is slightly different: sequential loops have a rounded form, whilst
parallel loops a rectangular one.

In [39], several other categories of workflow patters are introduced (e.g.
patterns involving multiple instances, stated-based patterns, cancellation pat-
terns). These patterns have a higher complexity, and they are not commonly
used in workflow applications. Due to their complexity, a scheduler will have
to manage them at a higher cost. JavaSymphony does not support these pat-
terns. We consider supporting some of them in the future, as long as the
additional scheduling costs are acceptable.

5.2.4 Modelling Workflow Applications with Pi-calculus Processes

Graph-based modelling allows graphical definition of an arbitrary workflow
through a few basic graph elements. The workflow graphical representation
is very intuitive and can be easily managed even by a non-expert user. The
workflow model discussed in the previous sections is in a direct relationship
with the graphical workflow representation, which the user assembles with the
help of the JavaSymphony workflow composition tool.

However, for an in-depth theoretical understanding of the model, the
graphical representation is not enough. As an alternative formal model, Pi-
calculus introduced in Appendix 10.3 can be used to express the dynamical
behaviour of the workflow process. In contrast to graphical modelling, process
algebra’s are based on a textual (i.e. rather linear) description. Pi-calculus
[34] is the most recent addition to the impressive collection of process algebra
variants. Pi-calculus can be used to model any process, including how one
workflow works, since a workflow itself is just a process. Its patterns can be
constructed out of Pi-calculus primitives [40].

On the other hand, many think that Pi-calculus is at a too low-level to
be used as a serious tool. However, we want to find out for ourselves if it can
be useful in real world problems. Therefore, we have chosen to represent the
elements of our workflow model also as Pi-calculus processes. We think that
the Pi-calculus can be regarded as an internal representation of the workflow
model, which allows analysis and verification.

Activities

The activities correspond to atomic Pi-calculus processes. For example, an
activity A is represented as a computational process PA, which will eventually
finish. This process is associated with input and output channels, according
to control- and data-precedence, as described below.

104 5 Scheduling Task-based Applications in JavaSymphony

Control-links

The control-links are associated with channels, which we call control-channels.
A control-link between A and B is represented as a channel cA−B, such as
PA := ...cA−B 〈〉 ... has it as output channel, with empty output, and PB :=
...cA−B()... has it as input channel, with empty input.

Data-links

The data-links are associated with channels in a similar way. We call these
channels data-channels. A data-link between A and B is represented as a
channel dA−B, such as PA := ...cA−B 〈dA〉 ... has it as output channel, with
non-empty output, and PB := ...cA−B(x)... has it as input channel, with non-
empty input.

We denote c̃inA, c̃outA all the input control channels, respectively all the
output control-channels associated with an activity A. We use a similar nota-

tion for input/output data-channels: d̃inA, d̃outA

Fig. 5.10. Example of control- and data-dependency

Let’s assume that A has B as control-predecessor and C as control-
successor, respectively D as data-predecessor and E as data-successor (as in
Fig. 5.10). Then we may write the process associated with the activity A as:
PA := cB−A().dD−A(x).CompA.cA−C 〈〉 .dA−E 〈dA〉 .

According to this formula, the computation associated with the activity
(written as the CompA process) cannot start before B finishes and activates
channel cA−B and before D finishes and sends dD over the channel dA−B .
Thereafter, the process continues as CompA[dD/x] (x is renamed in CompA

as the input data over the channel dA−B). On the other hand, the termination
of CompA activates cA−C channel and sends data dA over dA−E channel.
The order in which CompA receives input over control and data channels is
irrelevant.

5.2 Workflow Model 105

Dummy Activities

The formula for the dummy activities is similar. The difference lies in the
fact that they do not output data and therefore they do not have output-data
channels.

Initial and Final States

Fig. 5.11. Entries and exits of the initial state

In the formula for the initial and final states, Comp is replaced with 0,
and input/output data-channels are not used. For example, the initial state
in Fig. 5.11, can be represented as:

PI := cA1−I().cA2−I().cA3−I().cI−B1 〈〉 .cI−B2 〈〉 .

Sub-workflows

The sub-workflows may be represented as the parallel composition of their
components. In addition, there is an initial state, respectively final state as-
sociated with the sub-workflow, which are part of the sub-workflow process:

S := (νc̃)PI |PF |PA1
|PA2

|...|PAn

At the beginning, most of the processes in the parallel composition are idle,
waiting for activation over their input channels. Each sub-process continues
after it receives activation signal over its control input channels and data
over its data input channels, as described above. c̃ denotes all the control
channels, which are considered to be local for the sub-workflow. c̃ includes all
the channels for all the control-links within the sub-workflow and excludes the
entries of the initial state I and the exits of the final states F .

c̃ = c̃outI ∪ c̃outA1
∪ c̃outA2

... ∪ c̃outAn
= c̃inF ∪ c̃inA1

∪ c̃inA2
... ∪ c̃inAn

Note that the data links are not considered. We use the restriction for the
channels in c̃, to enforce the property of single entry point and single exit point
of control for the sub-workflow, as expressed in the Section 5.2.1. Therefore,
we may express a sub-workflow process similar to a single activity, which has
the control-entries of the initial state and the control-exits of the final state:
S = c̃in().ExecS .c̃out 〈〉 .

106 5 Scheduling Task-based Applications in JavaSymphony

Note that there may be other data-channel names that are free in ExecS ,
but there are no other free control-channel.

Branches

The branches have an input control-channel associated with the branch ele-
ment entry. Each exit of a branch point is associated with a condition. We
denote by Eval(ci) the evaluation of the condition associated with the i-th
exit of a branch.

Fig. 5.12. Branch element

We use Pi-calculus match to write the branch process formula:

cin(). ([Eval(c1) = true]cout1 〈〉 |Eval(c2) = true]cout2 〈〉 |
...|Eval(cn) = true]coutn 〈〉)

where the cin is the channel associated with branch element entry (a con-
trol link), and cout1 , cout2,..., coutn are the channels associated with branch
element exits (the actual branches) (Fig. 5.12). Note that Eval(ci) is usually
a more complex process that has workflow-relevant data as input and outputs
true, or false, as names on one output channel.

On the other hand, we need to model the cancellation of one activity/sub-
workflow, because when a branch condition evaluates to false, the activity/sub-
workflow on that branch will be cancelled. To allow the cancellation of a single
activity, we extend the definition of the activity process as follows:

PA := (cB−A().dD−A(x).CompA.cA−C 〈〉 .dA−E 〈dA〉)+
(cancelA().cA−C 〈〉 .dA−E 〈null〉)

We have extended the previous example of an activity process with one
”cancellation component”, which runs as an alternative to the main process.
This is expressed in the second part of the formula. The process listens on a
special input channel cancelA, and simply sends a signal on all the outputs
channel. This enables the control- and data-successors of the cancelled activity

5.2 Workflow Model 107

to run further as if this activity had finished. However, there is no data to be
sent along the data-output channels.

To cancel an entire sub-workflow means that all the activities within the
sub-workflow will be cancelled, as expressed in the following formula:

S := PI |PF |PA1
|PA2

|...|PAn
|(

cancelS().
(
cancelI 〈〉 |cancelF 〈〉 |cancelA1

〈〉 |..|cancelAn
〈〉

))

The last part of the formula models the cancellation of the sub-workflow.
The sub-workflow process receives a signal on a special input channel cancelS
and sends signals on the cancel channels for each inner activity. The activity
processes in the first part of the sub-workflow process: PI |PF |PA1

|PA2
|...|PAn

,
are extended with the cancellation part as described above.

We can now extend the formula for conditional branches:

cin().
(
[Eval(c1) = true]cout1 〈〉 + [Eval(c1) = false]cancelout1 〈〉

)
|...

For each branch exit, both alternatives are modelled: either the condition
evaluates to true, and the process associated with the subsequent activity/sub-
workflow is enabled, or the condition evaluates to false, and the process
associated with the subsequent activity/sub-workflow gets the cancel signal.

Parallel Loops

The parallel loops are attached to sub-workflows to express the fact that
several identical copies of the sub-workflow are executed.

If S = cin().ExecS .cout 〈〉 is the formula for a sub-workflow process, and
a parallel loop with n iterations is attached to this sub-workflow, we denote
Si = cini

().ExecSi
.couti

〈〉, I ∈ {1...n} the n identical copies of the sub-
workflow process. We assume that S has a single entry cin, instead of c̃in and
a single exit cout, instead of c̃out only for simplicity reason.

The Pi-calculus process associated with the loop is expressed by:

Par(S, n) := cin().cin1
〈〉cinn

〈〉 |
S1|S2|...|Sn|
cout1()...coutn

().cout 〈〉

The process has three parts:

• The first part waits for input on the control-channel cin. After receiving
it, it signals on the input-channels associated with the n copies of the sub-
workflow. This triggers the execution of the sub-workflow copies. It is not
relevant if the signal on the n channels is sent sequentially as the formula
shows, or in parallel.

• The second parts models the parallel execution of the n instances of the
sub-workflow.

108 5 Scheduling Task-based Applications in JavaSymphony

• The third part of the formula synchronizes the n copies. Signals from S1,
S2,..., Sn are expected on their output-channels and after that a signal is
sent on the cout, to enable the sub-workflow successors.

Note that the channels cini
and couti

are new internal channels for the
Par(S, n) process, which means that they should be placed under the Pi-
calculus restriction operator. For simplicity reason, we do not include the
restriction in the formula.

Sequential Loops

We use the same notation to describe identical copies of a sub-workflow pro-
cess, as for parallel loop. There are two types of sequential loops, as described
in Section 5.2.1: for-loops and until-loops. Whilst for-loops are associated
with a predetermined number of iterations, which indicates how many times
the sub-workflow will be executed, the until-loops are associated with a ter-
mination condition, which is tested at the end of each iteration to decide
whether or not a new iteration should be executed. Therefore, we model the
two types of sequential loops as two distinct types of Pi-calculus processes.

The for-loops are associated with a number of iterations iter. We denote
with Seqiter(S, n) the process that models a for-loop with n iterations asso-
ciated to the S sub-workflow. Again, in order to simplify things, we assume
that S has a single control input-channel and a single control output-channel.

We model this process as following:

Seqiter(S, n) := cin().cin1
〈〉 |

cin1
().ExecS1

.cin2
〈〉 |

cin2
().ExecS2

.cin3
〈〉 |

...
cinn

().ExecSn
.cout 〈〉

The process is enabled upon receiving a signal on cin channel. After this, it
sends immediately a signal on channel cin1

, which triggers the execution of the
first copy of the sub-workflow. When this finishes, it sends a signal on channel
cin2

, instead of sending it on channel cout1 . This enables the execution of the
second copy of the sub-workflow. Finally, when the execution of the last copy
is finished, a signal is sent on the channel cout, which activates the execution
of the sub-workflow successor(s).

The until-loops are associated with logical termination condition, which
is evaluated at the end of each iteration. We denote by Seqcond(S, term) the
process that models a until-loop with n iterations associated to the S sub-
workflow. We model this process as:

Seqcond(S, term) := cin().Execs.cout1 〈〉 |
cout1().([Eval(term) = false]Seqcond(S1, term)+
[Eval(term) = true]cout 〈〉)

The process is divided into three parts:

5.3 Building and Running Workflow Applications 109

• The first part waits for input on the control-channel cin. A copy of the
loop is enabled to execute. At termination, it sends a signal on channel
cout1 , which is used to enable one of the second or third part of the process.
This sub-process models the execution of one single iteration of the loop
construct.

• The second part describes what happens if the termination condition is
not fulfilled. The second, or alternatively the third part, is enabled upon
receiving a signal on channel cout1 , which was sent at the termination of the
first part. If the termination condition evaluates to false, Seqcond(S1, term)
is activated, which means that a second iteration is executed.

• The third part deals with the termination of the loop. If the termination
condition evaluates to true, it simply sends a signal on channel cout1 , which
enables the execution of the sub-workflow successor(s).

Again, the complexity of the process that evaluates the termination con-
dition is hidden behind the Eval(term) formula.

5.3 Building and Running Workflow Applications

To build a JavaSymphony workflow application, one has to design first the
workflow graph, by using the specialized graphical user interface (Fig. 5.13).
The user puts together the activities, dummy activities, initial and final states
of the workflow and connects them using control links, data links, loops and
parallel loops. The result is an easy-to-understand graphical representation of
the workflow.

Each graphical element (vertices and edges of the graph) is associated
with relevant workflow information. Some of this data is mandatory (e.g. class
name for activities, activity ids, input parameters , files to be transferred, ter-
mination conditions or the number of iterations for the loops, the number
of iterations for parallel loops, branch conditions, etc.). Other information is
optional (e.g. performance characteristics of the computational activities or
communication, resource constraints for mapping the activities or for commu-
nication network, performance contracts), but, on the other hand, it may be
used by the scheduler to improve the performance of the whole application or
to match the user preferences.

The workflow specification is stored as an XML file, by using the specific
XML-based specification language. This file is provided to a local scheduler
(build-in within the user interface or external), which performs the resource
brokerage, maps the activities and enacts the whole applications.

The scheduling/enactment process consists of several operations:

• Analyzing the workflow specification for consistency.
• Resource brokerage finds the suitable computing resource for each of the

workflow activities, based on the specified resource constraints.

110 5 Scheduling Task-based Applications in JavaSymphony

Fig. 5.13. Building and running JS workflow applications

• Building a partial execution graph. Since many of the workflow parameters
are determined at runtime, only subparts of the whole workflow can be
scheduled for execution at specific times.

• Scheduling the partial execution graph. A scheduling algorithm is used to
determine where the activities should be placed and in which order and
at what times they should be started. The scheduling algorithm uses the
scheduling-relevant and performance data, as described in the workflow
specification.

• Activity management. The enactment engine places and starts the activi-
ties and dummy activities, according to the scheduling algorithm. It also
monitors the activity execution, and determines when the activity is fin-
ished. The execution has to preserve the control-precedence relation. The
enactment engine also initiates files transfer, as defined in the workflow
specification.

• Monitoring scheduling events. When the execution reaches a branch point,
or a loop iteration is finished and the termination condition has to be
checked, or if the performance contract for a computing resource is no
longer fulfilled, a scheduling event is generated to inform the scheduler
that changes of the execution plan are needed. This may imply migration
of activities or recalculation of the partial execution graph.

5.3 Building and Running Workflow Applications 111

• Application termination. The workflow application is finished when there
are no more workflow activities to start, and all the activities are finished.

5.3.1 The Activity Life-cycle

A workflow application represents a collaboration of its workflow activities.
The activities need to communicate with each other, but they must be able
to perform their computations independently. Therefore, the implementation
of the workflow activities has to obey specific rules.

Each activity is associated with a Java class that extends the DAGActivity
abstract class, which is provided by JavaSymphony library. We identify several
phases in the life-cycle of an activity, each of them being associated with a
method of the DAGActivity abstract class:

1. Initialization phase. The object that performs the associated compu-
tation is created on the corresponding resource. A unique Id is associated
with the activity. In addition, the doInit method of DAGActivity class
passes to the activity the list of the data-predecessors (to collect their
output) and the runtime parameters.

2. Computation phase. The specific computation associated with the ac-
tivity is placed in the abstract run method. During the computation, the
method getInputData may retrieve input data from data-predecessors. Af-
ter the computation is finished, the status information or additional rel-
evant scheduling information are collected by remotely invoking method
getStatus. This method returns an integer, which may take predefined con-
stant values for possible activity states (e.g. mapped, running, suspended,
cancelled, error, finished, etc...), or user-defined values, relevant for the
workflow scheduling. The scheduler may test these values at the time it
evaluates the branch conditions or the loop termination conditions. Note
that the scheduler cannot test the output data transferred from workflow
activities to their data-successors.

3. Suspended state and migration phase. Optionally, the scheduler may
decide to suspend the execution of an activity, and migrate that activity to
a new computing resource. This is done by remotely invoking the method
suspend of the DAGActivity class. Usually, suspending and resuming the
execution are difficult to implement and application-dependent. Therefore,
it is the developer’s task to implement this method such that it interrupts
the run method, saves the activity current state and sets the activity status
as suspended. After migration, the activity is re-started by invoking the
resume method.

4. Output phase. The activities, after finishing their computation, may
provide output data to their data-successors. This can be done in two
ways: (1) by using the JavaSymphony remote method invocation mecha-
nism or (2) by transferring files from one location to another.

112 5 Scheduling Task-based Applications in JavaSymphony

In the first case, the method getOutputData retrieves the output data.
The data is distributed along several output ports (numbered 0,1, ...).
The output port is a parameter of getOutputData method. Note that this
method is automatically and remotely invoked by the data-predecessors’
getInputData methods, while they are performing their computations.
In the second case, the transfer of the files, as defined in the workflow
specification, is initialized by the scheduler, at the destination site. The
transfer mechanism is supported by JavaSymphony and is implemented
as part of the Object Agent System (see Section 4.4).

5. Release phase. After an activity has performed its computation and
its successors have acquired all its output data, the activity is no longer
needed. In this case, the resources used by the activity are released by
invoking its doRelease method, and the activity object is deleted from the
memory. Note that if an activity needs to provide data to activities in
future loop iterations, the scheduler is not allowed to release it.

5.3.2 Computation and Communication

A workflow application enactment alternates computation with communica-
tion. The computation part is performed by the activities, as described above.
After the scheduler has determined the mapping and the execution order of
the activities, the enactment engine manages the activity state as shown in
Fig. 5.14. The computation is performed as described in the previous section,
after the successful mapping of the activity onto a computing resource, and
after all control-predecessors of the activity have finished.

Communication is partially controlled by the enactment engine: On the
one hand, this performs all the files transfers associated with the data-links;
on the other hand, in the initialization phase of an activity, the enactment
engine assigns the data-predecessors of an activity and the associated ports.
Thereafter, the activity itself will collect data from its data-successors, as
described in the previous section.

5.3.3 The Execution Plan

Based on the workflow definition, the workflow management system creates
a workflow application instance as a distributed application. An execution
plan is created to determine which activities are executed and in which order.
Due to the presence of conditional branches or sequential loops, the execution
plan has to be updated at runtime. The workflow-relevant data is used to
control the changes in the execution plan.

Defining the Workflow-Relevant Data

There are two types of workflow-relevant data:

5.3 Building and Running Workflow Applications 113

Fig. 5.14. Activity states

• Activity state information is determined by the enactment engine by
monitoring the execution of the workflow activities. The activity state
(e.g. not processed, submitted, not mapped, mapped, ready, running, sus-
pended, error, cancelled, finished - see Fig. 5.14) can be queried and used in
the evaluation of the logical conditions associated with branches or loops.
Moreover, an activity or a dummy activity could set its own state to a
relevant value to be used by the enactment engine.

• Workflow variables are defined in the workflow specification. Each se-
quential or parallel loop may be associated with an iteration variable,
which counts the number of the iterations of the loop. The dummy ac-
tivities are used to define new variables and to assign them values, based
on previous defined workflow-relevant data (e.g. activity state information
or other variables). The variables are used to evaluate Boolean conditions
associated with branches or loops, to assign values to other variables, or
to set the input parameters for an activity.

Note that the workflow activities can use data that may not be regarded as
workflow-relevant (e.g. input files or data produced by other activities). The
scheduler does not have a standard way to interpret this data, which may be
in various formats and may have a variable data-size. In this case, an activity
(most likely a dummy activity) is required to analyze the data and produce
workflow-relevant data out of it (e.g. as activity state information).

114 5 Scheduling Task-based Applications in JavaSymphony

Using the Workflow-Relevant Data

The workflow-relevant data is used to control the application execution plan
in two workflow constructs: branches and sequential loops.

Each exit of a branch element has a branch condition associated with
it. This condition is defined as a Boolean expression that uses variables and
activity states, which is evaluated at runtime when the execution reaches
the branch point. If the branch condition evaluates to true, the associated
successor of the branch element may execute. Otherwise, it is placed in the
cancelled state.

The sequential loops are associated with a number of iterations, or with a
termination condition. In the second case, the enactment engines evaluates the
termination condition at the end of each iteration. If the condition evaluates
to true, the enactment continues with the successors of the loop exit point (a
final state); otherwise it continues with a new iteration of the loop, starting
with the loop entry point (an initial state).

5.3.4 An Example of Workflow Application

As we want to exemplify our workflow model, we present in this section a
testing workflow application. Its associated graph (Fig. 5.15) was created by
using the JS integrated graphical tool for workflow applications.

The graphical representation of the workflow is based on the UML ac-
tivity diagram [41]. Each activity has a unique id (e.g. Add 1, Multiply 4,
Substract 10,...) and performs associated computation.

The IsPositive 8 activity is a dummy activity. It is supposed to analyze
data from its predecessor and evaluate a Boolean expression.

The successor of IsPositive 8 is a conditional branch. In this application,
based on the information provided by IsPositive 8, one single branch will be
chosen. Depending on which branch is chosen, one of the two subsequent sub-
workflows is executed, and the other one is cancelled.

The workflow graph has a unique entry point (initial state), a unique exit
point (final state) and it is associated with a loop, which connects the final
state with the initial state. The workflow has two sub-workflows, each of them
having an associated loop. Each of the sub-workflows has an initial and a final
state.

Most of the graph edges represent control links (e.g. Initial state-Add 1,
Add 1-Multiply 4). The data links are built along control link between activ-
ities (e.g. Add 1-Multiply 4 or Add 2-Substract 5, but not Initial state-Add 1
or IsPositive 8-Branch). This means that output data from one activity (e.g.
Add 1) is transmitted as input to its data successor(s) (e.g. Multiply 4).

The graph shown in Fig. 5.15 is used to compute a complex mathematical
expression, which has the following C-like syntax:

((1 + 4) ∗ ((2 + 1) − n3)/(6 − 4) > 0)?(8 + 1) ∗ (9 + 4) ∗ (10 − 3) : (11 + 2)/n12/n13

5.3 Building and Running Workflow Applications 115

Fig. 5.15. A workflow application graph

The numeric values in the expression are passed as parameters directly to
the activities. The values of n3, n12 and n13 are generated by the activities
Number 3, Number 12, respectively Number 13.

The activities perform only simple operations: addition, subtraction, mul-
tiplication, and division. They get input either as input parameters, or from
their predecessors. The result of the expression is produced by either Multi-
ply 14, or or Divide 16 activity, depending on which branch is chosen when the
execution reaches the branch after IsPositive 8. For testing reasons, we have

116 5 Scheduling Task-based Applications in JavaSymphony

artificially added loops for the entire workflow, and for the two sub-workflows.
The execution of the workflow ends when all the iterations of the main loop
are finished.

5.4 Scheduling Workflow Applications

5.4.1 Scheduling Workflows without Branches and Loops

We consider first the case of scheduling workflows with no loops or branches.
By eliminating the conditional branches and loops, we get a workflow with
a static DAG structure. The advantage is that the scheduling for DAGs of
tasks has been widely studied and there are plenty of heuristics to solve this
problem.

Definition 5.1. A schedule for an application represented by
WF = (Nodes, Edges, DEdges, Loops, PLoops, istate, fstate) , with Loops =

∅ and Branches = ∅ is a function sched : Act ∪ DAct → M × R+.

In this definition, M is the set of computing resources and R+ is the set of
positive real numbers. The notation sched(t) = (mt, startt) means that the
task t is started on machine mt at the time startt.

For a specific schedule, we use the following notations and definitions:

• The execution time of one activity t on the machine m is denoted by
exec(t/m). At this stage, we assume that the execution time is the time
needed to run the task exclusively on that machine, and this value does
not vary during the execution of the whole application.

• The communication time to send data from activity t1 running on m1

to activity t2 running on m2 is denoted by comm(t1/m1, t2/m2).

This data can be determined by using prediction tools and/or user estima-
tions placed in the workflow specification for each activity, respectively data
link. Note that if t ∈ DAct, we may assume that mt is always a dedicated
machine m0 (where the scheduler is running) and we consider exec(t/mt) to
be 0. We also assume that communication time for two activities running on
the same machine is 0: comm(t1/m, t2/m) = 0

Definition 5.2. A well-defined schedule of the workflow WF is a schedule
which has the following additional properties:

t1 < t2 implies startt1 + exec(t1/mt1) ≤ startt2
t1 <d t2 implies startt1 + exec(t1/mt1) + comm(t1/mt1 , t2/mt2) ≤ startt2

The job of a scheduler is to find a schedule for each workflow application,
which optimizes a specific performance function, under certain constraints.
Such functions are: makespan (execution time of the whole workflow applica-
tion), total cost of the resource utilization (when the resources are associated

5.4 Scheduling Workflow Applications 117

with utilization costs) or the throughput of the entire system. The first two
examples are considered to be application-level scheduling, while the last one
refers to the system-level scheduling.

A few other scheduling elements are commonly used when describing a
scheduling algorithm. Supposing that a scheduling algorithm provides a sched-
ule sched for the pair (WF, M), then for each task t, we can define a ready
time, a start time and a completion time.

Definition 5.3. For a fixed schedule sched and a task t ∈ Nodes, for which
sched(t) = (mt, startt)

• The start time of t is the value startt;
• The completion time of t is the value ct(t/mt) = startt + exec(t/mt);
• The ready time of t is the value

ready(t) = max{max
p<t

(ct(p/mp)), max
p<dt

(ct(p/mp) + comm(p/mp, t/mt))}

Definition 5.4. A control path for a workflow WF without branches and
loops is a series of activities t1, t2, ...tk, where each pair (ti, ti+1) ∈ CEdges.

Definition 5.5. For a fixed schedule sched, we define the length of a con-
trol path P = t0, t1, ...tn as:

length(P) =
∑

i

exec(ti/mti
) +

∑

ti<dtj

comm(ti/mti
, tj/mtj

)

A workflow critical path is a control path with the maximum length
maxP (length(P)) from all possible control paths that start with the initial
state and end with the final state.

For a well-defined schedule sched, it is obvious that t1 < t2 or t1 <d t2
implies that ct(t1/mt1) ≤ ready(t2),

and the length of a critical path CP is an inferior limit for the length of
the schedule makespan(sched) = mint(ct(t/mt)) (assuming that the com-
munication and computation are not overlapped).

Note that the values of ready time, start time and completion time,
respectively the critical path depend on a fixed workflow schedule. In prac-
tice, these are dynamically calculated or estimated by the scheduling algo-
rithm, and used to gradually compute the schedule, as we will see in the next
sections.

5.4.2 Scheduling Workflows with Branches and Loops

The presence of conditional branches and loops in the workflow model implies
a dynamic change in the structure of the execution task graph associated
with the application. Subsets of the activities composing the application may
be executed repeatedly or may not be executed at all, based on data that

118 5 Scheduling Task-based Applications in JavaSymphony

is available only at runtime. Consequently, scheduling techniques for static
DAG-based applications cannot be applied to such workflow applications.

Our strategy is to transform the application workflow into one without
conditional branches or loops, and recursively find a schedule in the conditions
from previous section.

First, we separate the workflow activities in two classes:

• Unsettled activities are the activities for which the scheduling/execution
decision is taken based on data that is not (yet) available. Such activities
are, for example, the activities subsequent to a conditional branch, for
which the associated condition cannot be evaluated, because the param-
eters in the Boolean expression have not been calculated yet. Therefore,
it is not sure at this point that these activities will ever be scheduled for
execution.

• The rest of the activities are called settled activities. These are the
activities that are planned for execution or have been executed at a specific
time of the scheduling/execution process. All the activities for which it is
sure that they will be scheduled for execution are considered settled.

For a workflow application, the two sets of activities are dynamically
changing during execution, according to the following transformations. In the
auxiliary figures, settled activities are represented as coloured vertices, whilst
the unsettled activities are not coloured.

• Parallel loop elimination is performed before the scheduling actually
starts if the number of the iterations can be statically determined. Other-
wise, if the number of iterations depends on the value of workflow-relevant
data (e.g. variables values), the transformation is applied upon reaching
the loop entry (i.e. associated initial state).
The parallel loop construct is used merely to reduce the complexity of
the workflow structure. A workflow with the same functionality can be
easily built by replacing the body of the parallel loop (i.e. the associated
sub-workflow) with n identical copies, as illustrated in Fig. 5.16.

• Branch elimination is applied at the time the conditions associated to
the conditional branches are evaluated. This transformation takes place
at runtime and it is illustrated in Fig. 5.17. Note that the successors of
the conditional branch have been unsettled activities before the evaluation
of the condition(s), and become settled activities after that. If a branch
condition evaluates to false, the associated branch is not executed. The
transformation replaces such branches with dummy activities.

• Transformation of for-loops. The for-loops have a fixed number of iter-
ation. This transformation may take place anytime during the scheduling
process and it is illustrated in Fig. 5.18. For each loop iteration, clones of
the activities (i.e. new activities with the same properties as the original
ones) in the body of the loop and associated control/data links are added
to the graph. The new cloned activities preserve the settled state, if the
original activities have been settled activities before the transformation.

5.4 Scheduling Workflow Applications 119

Fig. 5.16. Parallel loop elimination

120 5 Scheduling Task-based Applications in JavaSymphony

Fig. 5.17. Branch elimination

• Transformation of until-loops. The until-loops terminate when a spe-
cific condition is fulfilled. The evaluation of the condition can be performed
only at runtime. This transformation is illustrated in Fig. 5.19. For each
loop iteration, clones of the activities in the body of the loop and associ-
ated control/data links are added to the graph. The activities in the first
iteration remain settled after the transformation, if they have been settled,
but the clone activities in the subsequent iterations are unsettled. Any ac-
tivity subsequent to the until-loop preserves its unsettled state until all
the iterations of the loop are executed.

• Elimination of initial and final states is illustrated in Fig. 5.20. The
initial and final states are simply replaced by dummy activities, not as-

5.4 Scheduling Workflow Applications 121

Fig. 5.18. For-loops transformation

sociated with computation. If all their (direct) predecessors are settled
activities, these become settled dummy activities. The initial and the final
states elements are eliminated in order to obtain a simplified graph, which
has only activities, control and data-links.

Note that the branch elimination and the until-loop transformation, which
implies the creation of a new conditional branch, can be performed only dy-
namically, at runtime. The other transformations do not depend on dynamic
data, and therefore, they may be performed at design time.

We use the notation WF 7−→ WFm to express that WFm (modified work-
flow) is obtained from WF applying the above-mentioned transformations.

We iteratively build a transformed workflow as follows: Initially (pre-
scheduling), all possible transformations, except branch elimination, are ap-
plied. The workflow application is scheduled/executed until a conditional
branch is reached (i.e. all predecessors of a conditional branch finished their
execution). Upon this event, the branch elimination is applied, followed by all

122 5 Scheduling Task-based Applications in JavaSymphony

Fig. 5.19. Until-loops transformation

the other possible transformations. The sets of settled, respectively unsettled
activities are recalculated after each transformation step as following.

Definition 5.6. For B ∈ Branches a branch node, Next(B) is the set of
direct successors of B, which comprises all activities directly dependent via
control edges on B and all the activities of the sub-workflows directly dependent
via control edges on B.

According to this definition, Next(B) includes all the activities that may
be cancelled after reaching the conditional branch B. Note that the decision to

5.4 Scheduling Workflow Applications 123

Fig. 5.20. Elimination of initial and final states

cancel or not an activity in Next(B) may be taken only when the execution
reaches B and all conditions associated with the subsequent branches are
evaluated.

Consequently, the set of unsettled activities is U(WFm) = U1 ∪ U2

where U1 =
⋃

B∈Branches Next(B) and U2 = {N ∈ Act ∪ DAct|∃M ∈ U1, M < N}
The set of settled activities is S(WFm) = Act ∪ DAct − U(WFm)
We denote by DAG(WFm) = (S(WFm), (Edges(WFm)∪Loops(WFm))∩

S(WFm)× S(WFm)), the graph which has S(WFm) as vertices and as edges
all the control links, and loops from WFm that have both the targets and
sources in S(WFm).

Definition 5.7. A control path for the workflow
WF = (Nodes, Edges, DEdges, Loops, PLoops′, istate, fstate) , is a se-

ries of activities t1, t2, ...tk, where each pair (ti, ti+1) is either a control link
or a loop.

Lemma 5.8. DAG(WFm) is a DAG which preserves the control paths of the
initial workflow.

Proof:

• DAG(WFm) has no loops. According to the transformation of while
loops, the body of a loop in WFm has only unsettled activities. Therefore,
the final state associated with a loop is not in DAG(WFm) and accord-
ingly, the loop is not edge in DAG(WFm).

• DAG(WFm) preserves the control paths of WF . This means that
for each control path t1, t2, ...tk of WF , with all ti in S(WFm), there is a
corresponding control path in DAG(WFm).
First, the control edges of the initial workflow are preserved by all transfor-
mations, so if ti,ti+1 ∈ S(WFm) and (ti, ti+1) ∈ CEdges, implies (ti, ti+1)
is also edge in DAG(WFm).

124 5 Scheduling Task-based Applications in JavaSymphony

On the other hand, if (ti, ti+1) is a for-loop, this means that a for-loop
transformation has been applied, followed by an elimination of initial and
final states. In this case, the loop is transformed into a control link between
ti and a clone of ti+1, both dummy activities in WFm.
If (ti, ti+1) is an until-loop, this means that a until-loop transformation has
been applied, followed by a branch elimination and then by an elimination
of initial and final states. In this case, the loop is transformed into 2 control
links: (ti, B) and B, t′i+1, where B is a new branch and t′i+1 is a clone of
ti+1 in WFm and all of them are (new created) dummy activities.

Consequently, the following dynamic scheduling strategy is adopted for
workflows with conditional branches and loops.

1. Apply all possible transformations on the initial workflow WF 7−→ WFm,
compute U(WFm), S(WFm) and DAG(WFm). A scheduling algorithm
for DAG-based workflows (no conditional branches and loops) is applied
to DAG(WFm).

2. At each scheduling event, U(WFm), S(WFm) and DAG(WFm) are recal-
culated. Note that termination of activities may imply adding their succes-
sors to S(WFm). Changes in DAG(WFm) automatically imply schedul-
ing/rescheduling of unfinished activities.

3. When the execution reaches a conditional branch and the scheduler eval-
uates the branch conditions, applies a branch elimination transformation,
which is immediately followed by all other possible transformations. The
result is a new WFm, and new U(WFm), S(WFm) and DAG(WFm)
are calculated. The scheduling algorithm is now applied to the new
DAG(WFm).

4. The iterative scheduling/execution process finishes when all activities (in
all iterations of all loops) are processed. At this point, U(WFm) = ∅ and
S(WFm) contains all the activities of WF , including the newly created
activity clones (for each additional iteration of a loop), and all newly
created dummy activities (for branches, initial and final states).

In the end, we have obtained a series of DAGs: WFm1
, WFm2

, ..., WFmn

and a well defined schedule for each of these DAG-based workflows, ac-
cording to the definitions in the previous section. The schedule obtained for
WFmn

is the schedule of WF , a workflow with branches and loops.

5.5 A Min-min Scheduling Algorithm for DAG-based
Workflows

Min-min is a well-known static scheduling algorithm for mapping meta-tasks
(large set of independent tasks) on heterogeneous computing systems. Min-
min is simple; it runs fast and delivers good results. In [42], several heuristics
for mapping meta-tasks are evaluated and Min-min performs well in all cases.

5.5 A Min-min Scheduling Algorithm for DAG-based Workflows 125

Only the genetic scheduling algorithm outperforms it; however, this is also due
to the fact that the Min-min heuristic is used to build the initial population
for the genetic algorithm. At the same time, the execution time of the genetic
algorithm is significantly larger than that for Min-min.

However, Min-min is used to map tasks without dependencies, which is not
the case for DAG-based workflows. Therefore, we build a scheduling algorithm,
which is based on Min-min heuristics, and which can be used to schedule
DAG-based workflows. The new algorithm is presented in the next section.
Furthermore, in Section 5.5.2, we investigate some similar heuristics that can
be easily adapted for workflow scheduling.

Similar work is done in GrADS [43]: Min-min heuristic is used to schedule
DAGs of tasks onto distributed resources. However, it is not clear in which
way the dependencies between the tasks influence the scheduling.

A serious limitation of the Min-min algorithm is that it does not consider
the control dependencies, or data communication between the activities of
the workflow. However, we think that the algorithm is still suitable for DAG-
based workflow scheduling, provided that the workflow has a large number of
activities that can run in parallel. We analyze this and several other limitations
of the algorithm, and propose a few solutions in Section 5.5.3.

5.5.1 The Algorithm

As input for the algorithm we have the machine set M = {m1, m2...mnM
},

the set of workflow tasks (activities) Act = {t1, t2...tnAct
}, and the ETC (ex-

pected time to compute) matrix of size nAct × nM . The elements of the ETC
matrix describe the values of the exec function: ETC(t, m) = exec(t/m). The
algorithm produces a schedule schedMin−min with the properties described
in Section 5.4.1.

The algorithm progressively maps workflows tasks (activities) onto the
computing resources in M set. At each step of the algorithm, the tasks are
divided into two sets: the set of already mapped tasks MAct and the set of
tasks which are not yet mapped Act−MAct. We use the following notations:

• avail(m) denotes the availability of the machine m and represents the time
when m becomes idle, after the termination of all tasks that have already
been mapped onto m.

• ready(t) denotes the time when ”the last” control predecessors of the task
t finishes. This is the moment when t is allowed to start its execution.

• ct(t/m) denotes the completion time of the task t on the machine m (de-
termined by prediction and/or user specification).

The value of avail(m) is computed as avail(m) = startt + exec(t/m),
where t is the last mapped task on the machine m. Note that for tasks with
no dependencies, this is the sum of the execution times for the tasks mapped
on this machine, but due to the dependencies in the DAG, idle times on the
machine may occur between tasks.

126 5 Scheduling Task-based Applications in JavaSymphony

The ready(t) and ct(t/m) values correspond to the definitions in Section
5.4.1. However, in this case, they are not associated to a fixed schedule, but
are calculated recursively according to the scheduling strategy. The value of
ready(t) is computed as:

max{ct(p/mp)|p ∈ pred(t), sched(p) = (mp, startp)}

This value depends on the completion times for the control-predecessors
of the task t. We assumed that they have already been mapped.

The completion time for already mapped tasks is calculated as:

ct(t/m) = startt + exec(t/m), t ∈ MAct

However, the scheduling algorithm actually needs the values of ct(t/m)
for the tasks that are not mapped (yet). For these tasks, ct(t/m) is computed
according to the following formula:

ct(t/m) = exec(t/m) + max(avail(m), ready(t))

We assume again that all the predecessors in pred(t) have already been
scheduled, otherwise sched(p) in the definition of ready(t) is not defined and
ct(t/m) cannot be calculated. Therefore we split the Act−MAct in two sub-
sets:

• RAct denotes the set of tasks for which ct(t/m) can be computed. We call
them ready tasks. All the predecessors have already been scheduled for
these tasks.

• NAct denotes the set of tasks for which ct(t/m) cannot be computed. We
call these tasks blocked tasks. For these tasks, at least one of their direct
predecessors has not been scheduled.

Note that in case of tasks with no dependencies, ct(t/m) = exec(t/m) +
avail(m), ∀t ∈ Act − MAct and NAct = ∅.

We use these notations to build the Min-min scheduling algorithm for
DAG-based workflows, as presented in Fig. 5.21.

The algorithm attempts to minimize the makespan, which is computed
as the value of max {ct(t/m)|t ∈ Act, m ∈ M}. Initially, the set of mapped
tasks MAct is empty, the set of ready tasks is filled with the activities that
do not have predecessors and the rest of the activities are placed in NAct.
At each scheduling step, the algorithm chooses a single activity and maps
it on a selected machine, according to the Min-min scheduling strategy. The
availability of the chosen machine avail(m) and the activity sets MAct, NAct,
Ract are updated.

The original Min-min heuristic is comprised in step 2 of the new algorithm
The novelty of our method is the management of MAct, RAct and NAct ac-
tivity sets. The Min-min heuristic is applied only to the tasks in RAct, whose
predecessors have already been processed. MAct comprises the processed (i.e.
scheduled) tasks, whilst NAct contains the tasks which cannot be yet ana-
lyzed, since they still have predecessors that have not been processed.

5.5 A Min-min Scheduling Algorithm for DAG-based Workflows 127

1. Initially MAct = ∅, RAct is the set of the activities with no predecessor,
NAct = Act − RAct.

2. Min-min step for the tasks in RAct
• For each t ∈ RAct compute mct(t) = mint∈M ct(t/m).
• Choose t which gives the overall minimum and mt the machine for

which this minimum is obtained.
• Choose startt = max(avail(mt), ready(t)), and sched(t) =

(startt, mt)
3. Update MAct = MAct∪ {t}, RAct = RAct− {t}, and avail(mt) = ct(t).
4. For each s ∈ succ(t), if pred(s) ⊂ MAct add s to RAct and remove it

from NAct.
5. Repeat from step 2 until RAct = NAct = ∅.

Fig. 5.21. Min-min scheduling algorithm for DAG-based workflows

5.5.2 Applying the Algorithm to Similar Heuristics

The algorithm 5.21 uses the Min-min strategy to choose the task t in step 2.
However, the choice is restricted to the tasks in the set RAct, and steps for
updating Ract, MAct and NAct are added to the original algorithm. These
steps represent the key part of the algorithm, which allow the scheduling of
complex task graphs instead of simple meta-tasks.

Using the structure of the above algorithm, we can easily transform some
other well-known heuristics for mapping meta-tasks, and use them to schedule
DAG-based workflows.

For this purpose, we have to modify step 2 of the algorithm according to
the strategy of the static heuristic scheduling algorithm. Some of the heuristics
presented in [42] may be used for this purpose:

• OLB: Opportunistic Load Balancing. The static version of this algo-
rithm assigns each task in arbitrary order, to the next available machine.
In the modified algorithm, step 2 chooses an arbitrary task t ∈ RAct

• UDA: User-Directed Assignment (also known as LBA - Limited Best
Assignment) assigns each task in arbitrary order to the machine with the
best expected execution time. For scheduling DAG-based workflows, in
step 2 the task t is chosen from RAct. This algorithm is likely to choose
only the best machines and ignore the poor ones.

• Max-min is similar to Min-min algorithm. The difference is that the task
t is chosen such that it maximizes mct(t) (instead minimizing it for Min-
min). This algorithm favours long-running tasks, which are delayed in the
Min-min algorithm.

• Sufferage algorithm [44] chooses the task t with the highest sufferage
value(i.e. the difference between its best and second best completion time).

128 5 Scheduling Task-based Applications in JavaSymphony

The heuristics have various complexities and each one may outperform the
others for specific inputs. One user may experiment and determine which one
suits better the needs of a specific meta-task or workflow application.

A few other static mapping heuristics for meta-tasks are presented in [42].
For several reasons, we cannot use the same scheduling strategy for these
algorithms:

• Genetic algorithms (GA), Simulated Annealing (SA) and Ge-
netic Simulated Annealing (GSA) use a representation of the solution
as a chromosome and try to find the chromosome with the best fitness value
(the makespan). The problem is that the transformations applied by these
algorithms to the chromosomes do not preserve the precedence relation,
and the result is no longer a feasible scheduling solution.

• Tabu search and A∗ heuristic perform extensive search in large solution
spaces and therefore are not compatible with the single choice of a task
in step 2 of the algorithm. Similar algorithms of higher complexity need
to be built for DAG-based workflow scheduling. On the other hand, [42]
shows that these algorithms do not outperform the Min-min algorithm in
most cases and require significantly more time for schedule computation.

5.5.3 Limitations of the Algorithm

The algorithm 5.21 is simple, runs fast and it is easy to understand. However,
it does not consider some aspects of the scheduling problem, which may affect
the quality of the schedule. We analyze some of these aspects in this section.
We also propose a few strategies to improve it and to adapt it to our workflow
model.

Idle Times Between Tasks

The classical Min-min heuristic favours the short-running tasks, whereas the
long-running tasks are delayed. Min-min scheduling may yield load imbalance
due to a small number of tasks with long execution tasks and unfairness for
the longer tasks.

The original Min-min heuristic has been designed for scheduling meta-
tasks, which comprise multiple independent tasks. In this case, the machines
become idle only when there are no more tasks to be scheduled. On the other
hand, scheduling tasks with control dependencies may produce idle times be-
tween tasks mapped on the same machine. Note that the scheduler chooses
startt = max(avail(mt), ready(t)).

If avail(mt) < ready(t), the interval [avail(mt), ready(t)] is idle time on
the machine mt. In the opposite case, if avail(mt) > ready(t), the task t is
delayed because there is no available machine at the right moment.

The schedule can be improved by adopting a back-filling strategy, which
implies accounting the ”empty slots” of the machines (e.g. idle time intervals

5.5 A Min-min Scheduling Algorithm for DAG-based Workflows 129

between tasks) and trying to fit the tasks into these empty slots. A similar
strategy is used in ISH (Insertion Scheduling Heuristic) [45, 46] or HEFT (Het-
erogeneous Earliest Finish Time) [47]. The main drawbacks of this approach
is that placing a ready task into an empty slot complicates the calculation of
the values for task completion time and machine availability, and increases
the complexity of the algorithm.

Scheduling Dummy Activities

The algorithm does not consider the existence of dummy activities. Our work-
flow model uses dummy activities as activities that do not perform significant
computations. On the other hand, the transformations of a workflow with
loops and conditional branches introduce new dummy activities in the asso-
ciated graph.

Managing regular and dummy activities in different ways may improve the
performance of the schedule. The dummy activities do not use resources and
we assume that their execution time can be approximated with 0. We fur-
ther assume that the dummy activities are mapped onto a dedicated machine
m0, probably the same that the scheduler uses. Therefore, the schedule for a
dummy activity d is sched(d) = (m0, ready(d)) and ct(d) = ready(d).

Note that sched(d) does not depend on the availability of the machine,
but depends on the completion time of its predecessors. However, the dummy
activities may have control-predecessors and control-successors, and therefore
they influence the scheduling. The successors of one dummy activity d are
considered in step 2 of the algorithm only after d was scheduled. If step 2 of the
algorithm process a dummy activity d as soon as possible (even if non-dummy
tasks with smaller completion time are available), the RAct set is enlarged
with the successors of d without updating the values of avail(m), ∀m ∈ M .
With a larger RAct set, the makespan of the schedule is more likely to be
improved. In conclusion, the algorithm should process the dummy activities
prior to the others.

Scheduling Workflows with Loops and Conditional Branches

The algorithm does not consider loops and branches. In fact, as presented
above, it manages a fixed DAG associated with the workflow. For workflows
with loops and conditional branches we apply an algorithm based on the
transformations in Section 5.4.2. The algorithm dynamically schedules and
executes a workflow with loops and conditional branches.

Reaching a conditional branch or the end of until-loops causes subsequent
runtime transformations of the workflow. Other scheduling events includes
termination of activities (successful or with error), performance contract vio-
lation, and user intervention:

130 5 Scheduling Task-based Applications in JavaSymphony

1. Apply all possible transformations as defined in 5.4.2.
2. (Re)compute the sets of settled activities S(WFm), unsettled activities

U(WFm) and determine DAG(WFm).
3. Apply Algorithm 5.21 to the subgraph DAG(WFm).
4. Go to step 1 whenever a scheduling event occurs.

Fig. 5.22. Dynamic scheduling algorithm for workflows

• On termination of activities, new scheduling data may be available so that
the conditions associated to the conditional branches may be evaluated.
This implies adding new activities to S(WFm) and enlarging DAG(WFm).
Activity termination that occurs either sooner, or later than estimated
implies new estimations for subsequent tasks.

• Performance contract violations usually imply new estimations for execu-
tion time of a task and do not require the recalculation in step 1.

• User intervention means manual (and unexpected) modifications of the
workflow during the scheduling/execution process. The user may decide
to cancel the execution of one activity, parts of the workflow, or even the
whole workflow application. The S(WFm) and U(WFm) are modified by
removing the cancelled tasks.

Resource Constraints

The specification language allows the user to specify constraints for the re-
sources, which may be used by a task. However, the scheduling algorithm does
not analyze or use in any other way the constraints associated with the tasks.

A separate resource broker has to do that. For each workflow activity, the
set of potentially computing resources is built by eliminating the resources
that do not fulfil the specific requirements. The resource broker may associate
the unsuitable resources for a task with very large estimated computing times
(ETC elements), so that the scheduling algorithm will never choose such a
resource. If we assume that the relevant resource properties do not change, the
resource broker can produce its results before the scheduling process. On the
other hand, if resource behaviour changes during runtime and affects resource
suitability for specific tasks, the resource broker needs to run in parallel with
scheduling/enactment process.

Communication Overhead

The algorithm ignores the communication costs. When large amounts of data
need to be sent from one activity to another, the communication overhead
can be significant, thus affecting the overall performance of the workflow ap-
plications. We propose two methods to deal with this problem:

• Include the communication time in the estimation of completion time. For
any task t that has data-predecessors, the algorithm estimates

5.5 A Min-min Scheduling Algorithm for DAG-based Workflows 131

comm(p/mp, t/m), ∀p ∈ dpred(t), ∀m ∈ M

Depending on the implementation of data transfer, the communication
overhead can be included in the estimation of completion time in several
ways. On the one hand, if the data transfer is initiated at destination site,
by the activity which is ready, the communication overhead may be esti-
mated either as (1) the sum of these values:

∑
p∈dpred(t) comm(p/mp, t/m)

if the transfer is done sequentially, one predecessor at a time; or as (2) the
maximum of the communication times: maxp∈dpred(t) comm(p/mp, t/m),
if the data transfers can be overlapped.
The overhead estimated value is then included in the estimation of com-
pletion time for t. For the tasks that are not yet mapped, the ct(t/m) is
computed according to the new formula:

ct(t/m) = exec(t/m)+max(avail(m), ready(t))+
⊕

p∈dpred(t)

comm(p/mp, t/m)

The operator
⊕

stands either for sum or for maximum.
On the other hand, the communication may be initiated at the predecessor
site and may be overlapped. In this case, the changes are reflected in the
formula for ready(t) according to the definition of ready time for a task
in Section 5.4.1:

ready(t) = max{ max
p∈pred(t)

(ct(p/mp)), max
p∈dpred(t)

(ct(p/mp)+comm(p/mp, t/mt))}

Accordingly, the ct(t/m) formula does not explicitly include the commu-
nication overhead:

ct(t/m) = exec(t/m) + max(avail(m), ready(t))

• Consider communication as activities of the graph. Any data link is trans-
formed into an activity of the associated graph. We call these activities
transfer activities/tasks. The network links are added to the set of re-
sources. The computation tasks are mapped only on computing resources,
while transfer tasks are mapped only on network link resources.
Additional constraints must be fulfilled: Any transfer task has a single
predecessor - the computation task that produces the data; and a single
successor - the computation that consumes the data. At the same time,
the transfer task has to be mapped onto the network link resource that
connects the two computing resources where its predecessor, respectively
its successor are mapped. Note that the resource broker needs to analyze
the suitability of the resources at runtime. These aspects show us the main
drawback of this method: a significant higher complexity of the scheduling.

132 5 Scheduling Task-based Applications in JavaSymphony

Accuracy of the Estimations

Most scheduling algorithms assume that the estimations (e.g. for ETC ele-
ments, communication time, etc) are accurate enough and take proper schedul-
ing decisions based on these estimations. Our algorithm (Fig. 5.21) is no ex-
ception to this rule. JavaSymphony offers support for estimating the execu-
tion time of the tasks. The computing power of the resources (FLOPS/sec) is
estimated based on a build-in benchmark system. In addition, the JavaSym-
phony Runtime System continuously monitors the dynamic parameters of the
resources (e.g. CPU load, free memory, etc.). The computing requirements
of a task (FLOPS) are specified in the workflow definition script. Based on
this data, in a simple performance model, an estimation of the execution time
for each (task,resource)-pair can be calculated as the quotient between the
computing requirements of the task and the computing power of the resource.
Performance prediction tools [48] may use more complex performance models,
which utilize dynamic information like CPU load, or free memory to predict
more accurate execution times. However, this is beyond the purpose of this
work.

A basic assumption of the scheduling algorithm is that the corresponding
estimation is accurate. On the other hand, the algorithm in Fig. 5.22 pro-
poses a dynamic scheduling approach, which combines the estimated values
with runtime information to compute a schedule for a workflow applications.
Therefore, the estimations may be dynamically updated at runtime, when-
ever a scheduling event occurs. A resource broker, running in parallel with
the scheduler/enactment engine has the role to update this information. More
details about the resource broker are presented in Section 6.

5.6 HEFT Algorithm for Workflows

As we have seen in the previous section, the scheduling algorithms for meta-
tasks do not consider dependencies between the tasks, which introduces a
series of limitations. Managing these dependencies requires additional pro-
cessing. On the other hand, the general DAG scheduling problem has been
extensively studied and many research efforts have proposed heuristics to
solve this problem, both for homogeneous and for heterogeneous domains
[46, 49, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 47, 70, 71, 72, 73, 74].

A significant number of the proposed heuristics are based on the list
scheduling technique. The basic idea is to assign priorities to the workflow
activities, and to place the activities in a list in descending order of priorities.
The activities with higher priority are examined for scheduling before those
with a lower priority. The list scheduling algorithms are known to perform well
at relatively low cost. Therefore, we have decided to use a similar technique
for workflow scheduling.

5.6 HEFT Algorithm for Workflows 133

There is a large number of list scheduling algorithms for the DAG schedul-
ing problem. However, all of them have a static approach, which computes the
schedule at compile time and do not address the problem of scheduling con-
ditional branches and loops. We have chosen HEFT (Heterogeneous Earliest
Finish Time) [47], which is considered to be an important representative for
list scheduling algorithms for heterogeneous systems [74, 73]. We apply the
technique described in 5.4.2 to create a new workflow scheduling algorithm
based on HEFT.

5.6.1 Preliminaries

The Heterogeneous-Earliest-Finish-Time (HEFT) algorithm is a DAG schedul-
ing algorithm that supports a bounded number of heterogeneous processing
elements. According to list scheduling technique, the algorithm first computes
priorities for each of the workflow activities, and then processes the activities
in descending order of their priorities.

We used the same notations as for min-min based scheduling algorithm. As
input for the algorithm we have the machine set M = {1, 2...nM}, the set of
workflow tasks (activities) Act = {1, 2...nAct}, and the ETC (expected time to
compute) matrix, whose elements are exec(t/m) values for each pair (t, m) ∈
Act×M . Additionally, the algorithms consider also the communication costs,
defined as:

comm(t1/m1, t2/m2) = data(t1, t2)/rate(m1, m2)

Data = (data(t1, t2)) is a matrix nAct × nAct for the sizes (in bytes) of
the data transfers between the activities. The transfer rates between ma-
chines/processors are denoted by rate(m1, m2), and are stored in a nM ×nM

matrix. When m1 = m2 (i.e. both activities are mapped onto the same ma-
chine), the communication cost comm(t1/m, t2/m) becomes 0.

The algorithm uses the earliest start time st(t/m) and the earliest
completion time ct(t/m) of an activity t on machine m, defined as:

ready(t/m) = maxp∈pred(t) {comm(p/mp, t/m) + ct(p/mp)}
st(t/m) = max(avail(m), ready(t/m))
ct(t/m) = st(t/m) + exec(t/m)

In the first phase, HEFT algorithm computes so-called upward rank of an
activity t, used as the task priority:

ranku(t) = exec(t) + max
s∈succ(t)

(comm(t, s) + ranku(s))

where succ(t) is the set of immediate successors of task t and exec(t) and
comm(t, s) are the average execution cost of task t, respectively the average
communication cost of edge (t, s), defined as:

134 5 Scheduling Task-based Applications in JavaSymphony

exec(t) =
1

|M |

∑

m∈M

exec(t/m)

comm(t1, t2) = data(t1, t2)/rate

rate is the average transfer rate between the machines in the domain.
The upward rank is computed recursively, starting from the exit node(s).

It can be clearly seen that each task is ranked higher than its successors. In
the second phase, the tasks are processed in descending order of their rank.
For each task, the machine which gives the best completion time ct(t/m) is
chosen. At any moment, all the predecessors of the current activity t have been
processed, since they have higher ranks. Therefore ct(t/m) can be computed.

5.6.2 HEFT-based Workflow Scheduling Algorithm

1. Apply all possible transformations to produce WFm, as described in 5.4.2.
2. Perform next steps whenever a scheduling event occurs
3. begin

4. (Re)Compute U(WFm), S(WFm) and DAG(WFm) as in 5.4.2
5. Eliminate finished tasks from DAG(WFm) and apply the next step
6. Apply HEFT strategy

• Determine exit nodes of the reduced DAG(WFm)
• Recursively compute ranku(t), starting from the exit nodes.
• Build a list of activities, sorted by descending order of ranku values.
• while the list is not empty
• begin

• Remove t, the first element from the list
• Compute ct(t/m) for each m and assign t to mt that minimizes it.
• end

7. Start the activities on the assigned machines, in the ascending order of
st(t/m) values; Each activity is started only after all its predecessors have
finished

8. end

Fig. 5.23. HEFT-based algorithm for scheduling workflows

We use the technique introduced in 5.4.2, the HEFT strategy and the
notations described above to create a new algorithm for scheduling workflows.

The algorithm is shown in Fig. 5.23. Note that the algorithm recursively
computes a partial DAG and a partial schedule. The schedule is dynamically
updated, if necessary, at runtime, on scheduling events (e.g. termination of
activities - successful or with error, performance contract violation, or user
intervention). The termination of activities and evaluation of Boolean expres-
sion associated with conditional branch or loops are mainly responsible for
the recalculation of DAG(WFm) in step 4.

5.7 The Schedule Objective Function 135

The algorithm finishes when all the activities in DAG(WFm) have finished
and no other scheduling event occurs.

5.7 The Schedule Objective Function

The purpose of a scheduler is to optimize a specific function associated with
the workflow, under the workflow constraints, as defined by the workflow
dependencies and the resource constraints. We call such a function the ob-
jective function of the schedule. For a workflow WF , a set of resources M
and a schedule function sched for the workflow WF and the resource set M,
we denote the objective function with F (WF, M, sched). Since WF and M
are already included in the definition of the function sched, we may omit them
and simply write: F (sched). We assume that the purpose of a scheduler is to
find schedopt such as:

F (WF, M, schedopt) = min
sched

F (WF, M, sched)

We denote with Sopt(WF, M) the function that associates to a workflow
WF and a set of resources M , its optimal schedule schedopt. Under these
conditions:

F (Sopt(WF, M)) = min
sched

Fsched(WF, M)

Note that a specific scheduling algorithm Alg provides an ”approximation”
of Sopt, which we denote by SAlg(WF, M), and which associates to each pair
(WF, M), the schedule obtained by applying the algorithm Alg to WF and
M . The following definitions explain what does it mean that a scheduling
algorithm provides an approximation of the optimal schedule.

Definition 5.9. For a workflow WF and a set of resources M , the absolute
error of a scheduling algorithm Alg is defined as the value of:

∆Alg(WF, M) = F (SAlg(WF, M)) − F (Sopt(WF, M))

Definition 5.10. For a workflow WF and a set of resources M , the relative
error of a scheduling algorithm Alg is defined as the value of:

δAlg(WF, M) =
∆Alg(WF, M)

F (Sopt(WF, M))

Definition 5.11. For a workflow WF and a set of resources M , we say that
the algorithm provides an ǫ-approximation of the optimal schedule Sopt, or
that SAlg(WF, M) ǫ-approximates Sopt(WF, M), if |δAlg(WF, M)| < ǫ.

We write this property as: SAlg(WF, M) ≃ǫ Sopt(WF, M),

136 5 Scheduling Task-based Applications in JavaSymphony

Definition 5.12. We say that SAlg(WF, M) approximates Sopt(WF, M),
and we write this as: SAlg(WF, M) ≃ Sopt(WF, M), if there is an acceptable
small ǫ such as SAlg(WF, M) ≃ Sopt(WF, M).

Moreover, we say that SAlg approximates Sopt, if there is an acceptable
small ǫ such as SAlg(WF, M) ≃ǫ Sopt(WF, M), for any WF and M .

In practice, the calculation of an optimal schedule for a workflow is not
feasible, since the scheduling problem is NP-complete [21] in most of the cases.
Therefore, the absolute and relative scheduling error are usually not calculated
and the ǫ-approximation has only a theoretical use.

In the previous sections, we have assumed that the objective function is the
makespan of a schedule (i.e. the time it takes to execute the entire workflow
application). However, the users may be interested in optimizing some other
metrics associated with a workflow, e.g. the total cost of the resources, if
the resource usage is associated with a price, overall network communication,
or resource utilization (e.g. CPU or memory utilization). In this section, we
investigate a few alternative objective functions and some of their properties.

5.7.1 The Execution Time as Objective Function

The purpose of the scheduling algorithms described above is to minimize the
execution time. This means to find a schedopt scheduling function which min-
imize the Makespan(sched) = maxt∈Nodes(ct(t). Since this is a NP-complete
problem, the heuristics provide a sched∗ ”almost optimal”, for which the value
of Makespan(sched∗) is ”as close as possible” to Makespan(schedopt). Note
that there is no clear definition for ”almost optimal” or ”as close as possible”,
especially if the optimum calculation is not feasible due to large problem size
(i.e. machines number and activities number). Nevertheless, we can say that a
scheduler outperforms another one if it provides a smaller schedule makespan
value, which implies that it has a smaller (both absolute and relative) schedul-
ing error. In other words, for each workflow application, the objective function
gives us a order relation over the set of possible schedules and an optimal
schedule is a minimum in this set.

Let’s analyze some properties of the objective function.
It is obvious that Makespan(Sopt(WF, M)) ≤ Makespan(SAlg(WF, M)),

for any heuristic algorithm Alg.
We identify two important properties of the F (Sopt) function, which maps

each workflow and each set of resources to the (theoretical) optimal value of
the schedule objective function.

Monotony. Monotonic functions map ordered sets into other ordered sets,
and preserve the order relation. Since we do not have an order relation over
the set of workflows, we cannot mathematically define this property. Instead,
we intuitively observe that if one workflow graph WF1 is part of a larger
enclosing workflow graph WF2, then F (Sopt(WF1, M)) ≤ F (Sopt(WF2, M)).

5.7 The Schedule Objective Function 137

Fig. 5.24. Monotony property for workflows

Fig. 5.25. Additivity property for workflows

A very simple example for this case is shown in Fig. 5.24. We call this property
the monotony of the objective function.

Additivity. This property express the fact that the value of a function
is the sum of the contributions of each term that is part of the function
argument: F (A+B) = F (A)+F (B). Again, we cannot define this property for
workflow scheduling, since we do not have an addition operation on workflows
set. Instead, we intuitively observe that if two distinct workflows graph WF1

and WF2 are glued together (sequentially ordered) to form a bigger workflow
then F (Sopt(WF, M)) = F (Sopt(WF1, M)) + F (Sopt(WF2, M)) (Fig. 5.25).
The necessary condition for the equality is that all WF1 activities finish (are
synchronized at the end of WF1) before the activities in WF2 can start (Fig.
5.26). We call this property the additivity of Fsched.

Fig. 5.26. Additivity. The contributions of the workflows cannot be clearly sepa-
rated.

138 5 Scheduling Task-based Applications in JavaSymphony

The two properties of Fsched function are essential for our dynamic schedul-
ing strategy described in Section 5.4.2. Remember that for each workflow with
loops and branches WF , we define using successive transformations, the series:

WF → WFm0
→ WFm1

→ ... → WFmn

and the associated series of DAGs:

DAG(WFm0
) → DAG(WFm1

) → ... → DAG(WFmn
)

Note that each DAG(WFmi
) is a subpart of the next element in the series -

DAG(WFmi+1
), and the second one is obtained from the previous by adding

a set of new settled activities. The series of DAGs could be seen as an ordered
set of DAGs, and the monotony property can be considered. The monotony
property indicates that the length of schedule is increased at each transforma-
tion step: F ∗

sched(DAG(WFmi
), M) ≤ F ∗

sched(DAG(WFmi+1
), M). The addi-

tivity property indicates that the increase is due to the new added settled
activities. However, there is no clear scheduling delimitation between the old
and the new activities, which means that the new added settled activities in
DAG(WFmi+1

) still depend on the termination of activities in DAG(WFmi
).

Therefore, the contribution to the makespan of the activities in DAG(WFmi
)

and that of the new added activities in DAG(WFmi+1
) cannot be clearly

separated (Fig. 5.26).
Our intention is to generalize the scheduling strategy presented in Section

5.4.2 for any objective function that has the monotony and additivity proper-
ties. We will analyze several objective functions with these properties in the
following sections.

5.7.2 Economical Cost Model

Economical models for resource allocation in Grid computing environments
represent a promising research area. For such a model, the resources are as-
sociated with costs of utilization, while the users have budgets to spend for
running distributed applications. We propose a simple economical model for
resource allocation and a scheduling strategy similar to that described in Sec-
tion 5.4.2.

Resources. Each resource in the machine set M = {1, 2...nM} is associ-
ated with a cost. The resource utilization cost cost(m) can be expressed in
units such as processing cost-per-FLOP, cost-per-job, CPU cost-per-time unit
or any other similar metrics. Economical models of higher complexity may
include other costs (e.g. for disk usage or memory usage). We assume that
the applications are charged per time unit for the utilization of the resource,
and the cost represents the charge for one time unit (e.g. second) of execu-
tion onto the associated resource. At the same time, a benchmark may be
used to evaluate the performance of computing resources, as a computational

5.7 The Schedule Objective Function 139

power factor denoted by pwf(m). This resource parameter can be expressed
in FLOPS-per-time unit.

Communication. We assume that the links between the resources are
associated with communication cost or network utilization cost. We de-
note the cost of sending 1 MB (one data unit) of data from m1 to m2 by
ccost(m1, m2). A simplified economical model may assume a unique commu-
nication cost for any pair of machines (m1, m2). Even more, we may consider
an economical model, for which the communication of data is not associated
with costs.

Activities of the workflow. The set of workflow tasks (activities) is
Act = {1, 2...nAct}, and we assume that the ECT matrix is provided. There-
fore, we can calculate the cost of executing an activity t onto a resource m as
costex(t/m) = exec(t/m) ∗ cost(m).

Data links. Data = (data(t1, t2)) is a matrix nAct × nAct for data trans-
fer size (in data units- e.g. MB) between the activities. A non-zero element
of the matrix is associated with a workflow data-link. Therefore, we can cal-
culate the cost of transferring data between two workflow activities t1 and t2
mapped onto the resources m1, respectively m2 as costcomm(t1/m1, t2/m2) =
data(t1/t2) ∗ ccost(m1, m2).

Objective function. The objective function (to be minimized) is cho-
sen to be the total cost of executing the workflow F (sched) = Cost(sched)
calculated as:

Cost(sched) =
∑

t∈Act

costex(t/mt) +
∑

(t1,t2)∈DEdges

costcomm.(t1/mt1 , t2/mt2)

where sched(t) = (mt, startt).
Again, we denote with Sopt(WF, M) the function which associates to a

workflow WF and a set of resources M , its optimal schedule. We notice that
we have the monotony and additivity properties for F (Sopt) function like
in the case of makespan objective function:

• Monotony. It is obvious that if a workflow is extended with new activities
and data links, then its optimal resource utilization cost grows.

• Additivity. If two workflows are sequentially ordered to form a larger work-
flow, the cost of their sum is the sum of their costs.

Therefore, we may apply the dynamic scheduling strategy described in
Section 5.4.2 for scheduling workflows with loops and conditional branches.

We define a series of DAGs, using successive transformations:

DAG(WFm0
) → DAG(WFm1

) → ... → DAG(WFmn
)

The workflow-scheduling problem is transformed into a set of DAG-scheduling
problems, for which we may apply a static scheduling algorithm, such as a list
scheduling heuristic. For example, the modified HEFT algorithm presented in
Section 5.6 may be easily adapted for the new objective function, by replacing

140 5 Scheduling Task-based Applications in JavaSymphony

the time values with resource cost values, and by computing the priorities
using exclusively these values. However, in order to compute the start times
for each activity, the time values are used, but minimizing the execution length
is no longer an objective of the scheduler.

5.7.3 Alternative Objective Functions

Some other, less utilized, objective functions are considered by Prodan et al.
[75]. We shortly describe them in this section. However, one thing they have
in common is that the monotony and additivity properties no longer hold in
their cases. This means that the strategy in Section 5.4.2 cannot be applied
for optimizing them. Moreover, we did not find interest for DAG-scheduling
that optimizes these objective functions in related work, and therefore we do
not investigate them further.

Speedup

We define the speedup of a schedule sched as:

Speedup(sched) =
Makespanseq(sched)

Makespan(sched)

Makespanseq is defined as the length of the schedule that maps the work-
flow WF onto a single resources. Choosing a slower resource, we obtain larger
speedup values, and therefore the value has to be multiplied with a factor
which gives an average computational factor

∑
m∈M cpow(m)/|M |:

Makespanseq(sched) = Makespan(schedm0
) ∗

∑
m∈M cpow(m)

|M | ∗ powf(mo)

The powf(m) values represent the computational power factor asso-
ciated with the resource.

The goal of the scheduling should be to maximize the speedup.

Efficiency

We calculate efficiency by dividing the speedup by the number of resources
used:

Eff(sched) =
Speedup(sched)

|M |

The goal of the scheduling should be to maximize the efficiency. Speedup
and efficiency are the most common ways to report the performance of a
parallel algorithm.

5.7 The Schedule Objective Function 141

Synchronization Cost

Synchronization cost is measured in correlation with the tasks on the critical
path (according to the definition in Section 5.4.1). We compute this value as:

Sync(sched) = Makespan(sched)− lengthsched(CP)

where length of the CP is

lengthsched(CP) =
∑

T∈CP

exec(T/mT) +
∑

T1,T2∈CP

comm(T1/mT1
, T2/mT2

)

Some scheduling algorithm may be interested to minimize this value.

Load Balance

First, we define the load on a node for a schedule sched as:

Loadsched(m) =
∑

T∈Act,sched(T)=(m,sT)

exec(T/m)

The Load Balance is due to the uneven work and is calculated as:

LB(sched) =

∑
m∈M Loadsched(m)

|M | ∗ maxm∈M (Loadsched(m))

The goal should be to maximize the Load Balance value.

Total Overhead

Overhead is defined by Amdahl’s law [76] and calculated as:

O(sched) = Makespan(sched)− Makespanseq(sched)/|M |

The goal should be to minimize the O(sched) value.

Loss of Parallelism

The Loss of parallelism measures the overhead, which is not due to the syn-
chronisation:

LP (sched) = O(sched) − Sync(sched)
Some scheduler may be interested to minimize this value.
Note that the objective functions described in this section are generally

used for measuring the performance of the parallel applications. The workflow
applications are just a particular case of parallel applications, and therefore
their performance may be evaluated with these metrics as well. At the same
time, these objective functions do not have the monotony and additiv-
ity properties, as defined in the Section 5.7.1. Consequently, the incremental
scheduling strategy presented in Section 5.4.2 is useless in these cases.

142 5 Scheduling Task-based Applications in JavaSymphony

5.7.4 Scheduling with Multiple Objective Functions

Let’s analyze the following scenario. Suppose that resources are associated
with utilization costs, as in the previous section. A user has a workflow appli-
cation and a budget to run his application, from which he wants to spend as
little as possible. At the same time, he is interested in running his application
in a relatively short time. It is clear that the two objectives may conflict with
each other, since faster resources, which can execute workflow activities in
shorter times, are commonly more expensive.

Two scenarios are equally possible: The user may want to execute the
application as fast as possible, but within a budget limit, or he may want to
reduce the cost as much as possible, but within a time limit (deadline) [77].

1. cnt := 1
2. D := DAG(WFm1

) the first partial DAG in the series of DAGs, build as
described in Section 5.4.2

3. Repeat until there are no more activities to schedule
4. begin

5. Compute static schedule schedD for D to minimize execution time.
6. Compute cost(schedD).
7. If cost(schedD) > budget.

send acknowledgement and suspend
8. If cost(schedD) ∗ (1 − rf) ∗ nev > budget.

send warning and suspend
9. Schedule and execute until next scheduling event.

10. Update D := DAG(WFmcnt+1
), cnt := cnt + 1

11. If cnt > nev update nev := nev + 1
12. end

Fig. 5.27. Scheduling with budget limit

Since the two scenarios are similar, we analyze only the first case. First,
we could observe that no matter how good the scheduling strategy and how
large the budget are, it is not sure that the application execution cost will
be within the limit. This can be easily demonstrated by a simple workflow
application with one activity within a while-loop. Assuming that the number
of iteration cannot be determined at compile time and it can be quite large, it
is clear that the cost can go above any acceptable value. Therefore, the user
needs to know as early as possible that the cost of his application will exceed
the budget, in order to take a decision: either to raise the cost limit, or to
cancel the rest of the application. We propose a scheduling strategy that deals
with this scenario.

We assume that, as an additional parameter for the scheduling, we can
obtain nev - an estimation of the number of the scheduling events, which cause
the update of DAG(WFm) (e.g. reaching a conditional branch or termination
of a loop iteration). In addition, we assume that the user is willing to take a

5.8 Summary 143

certain risk, quantified by a risk factor rf with values in [0,1]. 0 means that
no risk is taken and the execution is suspended as soon as it is predicted that
the budget will be exceeded. 1 means that the execution continues anyway, as
long as the cost is within the limits.

The algorithm is shown in Fig. 5.27. Note that the algorithm may deter-
mine that the budget is already exceeded by the current schedule, in which
case it sends an acknowledgement and suspends in step 7, or it can estimate
that the schedule will probably exceed the budget with a risk factor of rf , in
which case it sends a warning and suspends in step 8.

5.8 Summary

In this chapter, we have described a new framework to schedule distributed
workflow applications in JavaSymphony. JavaSymphony offers a graph-based
modelling user interface to compose workflows. The graphical representation
of the workflow is based on the UML activity diagram enhanced with specific
elements for loops. The workflow model is explained in Section 5.2.

The graphical representation of a workflow application is stored using a
simple, yet expressive XML-based specification language. A build-in scheduler
uses the workflow representation to run the distributed workflow applications
on a set of resources, with the support of the JavaSymphony Runtime System.
This functionality is explained in Section 5.3.

We have built a scheduling model for workflow distributed applications
and proposed a technique to manage the conditional branches and the loops
in Section 5.4. Based on this technique, we have built two algorithms for
scheduling workflows with loops and conditional branches:

• In Section 5.5 we have proposed a scheduling algorithm based on Min-min,
which is one of the heuristics used to schedule meta-tasks onto heteroge-
neous resources;

• In Section 5.6 we have presented an algorithm based on HEFT, one of the
most important DAG-scheduling algorithms, which uses the well-known
list-scheduling technique.

Finally, in Section 5.7, we have analyzed several alternative scheduling
objective-functions and we have described how our scheduling technique can
be used for some of these objective-functions.

6

The JavaSymphony Resource Broker

In Section 5.3, we have introduced the resource broker as part of the generic
scheduling process. We have defined the resource brokerage as the part of the
scheduling/enactment process that finds the suitable computing resource for
each of the workflow activities, based on the specified resource constraints.

In the previous sections, we have assumed that the scheduling algorithms
use a static set of resources M = {m1, m2...mnM

}, and determine a near-
optimal mapping of the activities onto these resources. However, in real life,
this is hardly true, since resources may crash, or become available at random
times. Moreover, resource performance may largely vary in time, such as suit-
able resources become unsuitable and vice versa, thus affecting the scheduling
performance. In this part of the thesis, we introduce and discuss a theoretical
model for the resource brokerage, which deals with these aspects.

6.1 Modelling the Resources

We consider M = {m1, m2...mnM
} the set of all resources that may be used.

The resources are associated with a set of attributes: Att = {att1, att2, ...attn}.
Each attribute atti associates to each resources an attribute value (numeric

or string) in the values set. If the attribute is a dynamic attribute (e.g. system
load, idle times, and available memory), this value varies in time and the
attribute is defined as a function of the machine and the time:

atti : M × T → V alues, atti(m, t) = v

If the attribute is static (e.g. machine name, operating system, peak per-
formance parameters), the attribute is defined as a function over M only:

atti : M → V alues, atti(m) = v

146 6 The JavaSymphony Resource Broker

6.2 Modelling the QoS for Workflow Activities

The workflow activities are associated with a set of constraints, as defined in
the workflow specifications.

We denote the set of constraints by C = {c1, c2, ...}. Each constraint ci

is uniquely associated with a resource attribute, which we denote by att(ci).
A constraint is a Boolean function ci : M × T ime → {true, false}, which
determines if a property of the attribute att(ci) holds or not. Practically, the
Boolean value of ci(t) is determined by comparing att(ci) with a threshold
value. For example, we may have a constraints c(m, t), which takes the value
of the predicate ”att(c)(m, t) ≥ v0”, if the associated attribute att(c) takes
numeric values.

For a workflow WF , each task T ∈ Act is associated with a (finite) set of
constraints denoted by C(T) = {c(T,1), c(T,2)...}.

Using these notations, we define what is a suitable resource for a work-
flow activity.

Definition 6.1. We call a resource m ∈ M suitable for the activity T ∈ Act
at time t ∈ T ime, if cT,i(m, t) = true for any cT,i ∈ C(T).

Definition 6.2. For m ∈ M ,T ∈ Act and t ∈ T ime, the predicate:

S(m, T, t) = ∧cT,i∈C(T)(cT,i(m, t))

is called the suitability-predicate of the resource m for the activity T (at
t).

The resource broker has to find all the suitable resources, for all the ac-
tivities of the workflow, at any moment in time. In other words, a resource
broker provides a function:

B(T, t) = {m|cT,i(m, t) = true, ∀cT,i ∈ C(T)}

that determines at each moment t which resources are suitable for a workflow
activity T .

Determining the suitability of the resources at each moment is not feasible:
On the one hand, it does not make sense to measure the system parameters
continuously, since this may lead to performance problems. Instead, the dy-
namic system parameters could be updated at regular intervals (as done by
the JavaSymphony middleware), and consequently the resource suitability
predicate would be updated at discrete times, too.

On the other hand, a relaxed scheduling policy may not require up to date
information about resource suitability. We present three scheduling scenarios
for using resource suitability information:

• The resource suitability is used only at the start of the scheduling, for the
initial mapping. The advantage of this policy is obvious - a set of suitable

6.3 The Resource Availability 147

resources is assigned only once to each tasks, and there is no need for
complex resource monitoring. However, significant changes of the system
dynamic parameters could dramatically deteriorate the performance.

• The resource suitability is continuously updated, and the scheduler is no-
tified in case of changes. The scheduling complexity is increased, but adap-
tive decisions, which prevent the performance deterioration, are possible.

• We have adopted a hybrid scheduling policy for JavaSymphony workflow
applications. The idea is to use two sets of constraints for each activity:
The first set is used to determine the initial suitability of the resource.
Optionally, a second set of constraints, which we call performance con-
tract, is used during the execution of the workflow activities on resources.
If the suitability-predicate associated to the activity performance contract
does no longer hold, the scheduler may suspend the activity execution and
migrate it to another suitable resource.

6.3 The Resource Availability

In dynamic computing systems such as computational grids, the resources
may become unavailable or available randomly. For a distributed application,
it is important to determine when a resource crashes and to recover and
continue the execution after such an incident. One of the functions of the
resource broker is to monitor the resources in order to determine if they are
still available or not. The availability of a resource can be expressed by a
function of the resource and the time:

Avail(m, t) =

{
true, if m is alive at t
false, if not

In combination with the suitability-predicate, we obtain a function, which
tells us if a resource m may be used by one activity T , at time t:

S(m, T, t) ∧ Avail(m, t) iif m may be used by T at t.
and the function of the resource broker is modified to include the avail-

ability of the resources as well:

B(T, t) = {m|S(m, T, t) ∧ Avail(m, t) = true}

In practice, the resource broker does not calculate such a function, but
provides an ordered series of time intervals: I(T, m) = {I1, I2 ..., Ij ..} such as:

Ij = [tsj , tfj] with tsj < tfj , Avail(m, t) = true, and S(m, T, t) = true
for any t ∈ Ij .

Moreover, the resource broker is not able to forecast future intervals,
but updates the I(T, M) sets on scheduling events (e.g. resource becomes
(un)available, or resource does no longer fulfils the suitability-condition).

148 6 The JavaSymphony Resource Broker

6.4 Scheduling with Advanced Reservation

Scheduling with advanced reservation can be also modelled by time-intervals
series. We assume that there are two levels of scheduling: high level schedul-
ing mechanism, which supports the coordination of all the activities in the
workflow, and a lower level scheduling mechanism implemented by a local re-
source scheduler. The scheduling is the result of the negotiation between the
two scheduling mechanisms [78]:

• The local lower-level scheduler manages the queues of tasks at the resource
level. At the same time, it provides information about resource perfor-
mance (e.g. system parameters). It is desirable to have a resource-level
scheduler, which can manage the reservations for the resource.

• The global high-level scheduler collects the relevant data from the resource-
level schedulers, and, based on that, computes a schedule for the entire
workflow. The high-level scheduler manages the co-ordination of the ac-
tivities, according to the workflow dependencies.

Managing a new reservation request:

1. Input Sm and R = [ts, ts + ∆t]
2. If Rk is not covered by Sm reject reservation request.
3. Otherwise accept request and assign Sm := Sm − (R)

Removing a reservation (cancel or finish task):

1. Input Sm and R = [ts, ts + ∆t]
2. Update Sm := Sm + (R).

Fig. 6.1. Managing reservation requests.

If the resource-level scheduler supports advanced reservations, the reser-
vations and the availability of the reserved resources can be expressed with
time-intervals.

Let I = {[ts, tf]|ts < tf} be the set of all the time-intervals. We add a
partial order relation over I: [ts1, tf1] < [ts2, tf2] iff tf1 ≤ tf2.

Then, an ordered series of interval S = (I1, I2...Ij ..) , I1 < I2 < .. < Ij < ...
is used to represent the availability of a resource m.

We denote by S the set of time-interval order series.

Definition 6.3. Several operations and a partial order can be defined over S:

• Addition of two ordered series of intervals is defined as: S1 + S2 =
(I1, I2, ...) with Ij either in S1, in S2 or union of two intervals from S1,
respectively S2.

6.5 Resource Monitoring 149

• Intersection is defined as: S1 ∗ S2 = (I1, I2, ...) with Ij intersection of
two time-intervals from S1, respectively S2.

• Difference is: S1 − S2 = (I1, I2, ...) with Ij time interval obtained by
cutting the intervals in S2 from one interval in S1.

• We say that I0 is covered by S1 if there is Ik ∈ s1 such as I0 ⊆ Ik.
We write this as: (I0) < S = (I1, I2, ...). Note that if we subtract I0 =
[ts0, tf0] from S1, and I0 ⊆ Ik ∈ S1, then Ik = [tsk, tfk] is transformed
into maximum 2 intervals: I ′k = [tsk, ts0] and I ′′k = [tf0, tsk], whilst the
rest remains unchanged in S1 − (I0).

• Partial order. For S1 and S2 we have S1 < S2 iif each I ∈ S1 is covered
by S2. < is a partial order relation over S .

The starting time ts and the execution time ∆t = exec(T/m) are used
to represent a reservation request as a time interval R = [ts, ts + ∆t].
A reservation-based local scheduler manages a list of time-intervals Sm =
(I1, I2, ...), for which the resource is free and may receive reservations.

The reservations are managed by a simple algorithm (see Figure 6.1). The
higher-level resource broker should be able to query the low-level schedulers
for their time-interval lists Sm. For one resource m ∈ M , Sm is combined with
the availability series I(T, m) in a intersection of interval series: Sm ∗ I(T, m),
which indicates the time frame(s) when the resource may be used by the
activity T . The higher-level scheduler uses this information to build a schedule
for the entire workflow.

6.5 Resource Monitoring

Good scheduling decisions depend on accurate estimations for execution times
and communication times for a distributed application. Therefore, it is nec-
essary to monitor resources for performance changes, in order to update
these estimations. The resource broker is responsible to collect the perfor-
mance data from the resources and to update the estimations for the execu-
tion/communication times.

In grid environments, computing resources may be shared, and two dis-
tinct applications may obtain the same resource concurrently. In this way, one
application may slow-down or it may degrade the performance of the other,
thus diminishing the performance of both. JavaSymphony uses the share of the
computing resources. Distributed objects, possibly from distinct distributed
application, may reside on the same machine. The shared access model con-
trasts with the exclusive access to the resources, in which a single tasks at a
time uses a resource, while other tasks wait in a queue. Even if the first one is
more flexible, the second access model allows more accurate performance es-
timations. The schedulers previously presented implicitly assume an exclusive
access to the resources for the activities of a workflow and static estimations
of the execution times.

150 6 The JavaSymphony Resource Broker

(a) No sharing

(b) Sharing (1)

(c) Sharing (2)

Fig. 6.2. Two tasks sharing a resource

In the following, we analyse how the execution times are affected by sharing
a resource (Figure 6.2) and propose an algorithm for updating these estima-
tions.

We assume that the sharing is fair (i.e the CPU cycles are equally dis-
tributed among the task sharing the same resource). For two activities T1

and T2 mapped onto a resource m, execution times in exclusive mode are
estimated as exec(T1/m) and respectively exec(T2/m).

Assuming that T1 starts earlier than T2, at ts1, if it exclusively uses the
computing resource (Figure 6.2(a)), then it is supposed to finish execution at
tf1 = ts1 + ∆t, with ∆t = exec(T1/m). As we will see, ∆t varies in case of
shared access to the resource.

In Figure 6.2(b), T1 starts and finishes earlier than T2. We assume that
in [ts2, tf1] both tasks are slowed down by 50%. Therefore, we compute the
execution times for shared access as:

∆t1 = tf1 − ts1 = (ts2 − ts1) + 2 ∗ (exec(T1/m) − (ts2 − ts1))

6.6 Summary 151

which is:∆t1 = exec(T1/m)+ (exec(T1/m)− (ts2 − ts1)). The second part
of the sum represents the overhead due to shared access.

For task T2, we have:
∆t2 = tf2 − ts2 = 2 ∗ (exec(T2/m) − (tf2 − tf1)) + (tf2 − tf1)
which is:∆t2 = exec(T2/m) + (exec(T2/m) − (tf22 − tf1))

Managing a new task Tn+1, that starts at tsn+1:

1. Add Tn+1 to T , rtn+1 := exec(Tn+1/m)/(n + 1).
2. For each j=1,2..n update rtj := rtj ∗ n/(n + 1)
3. Update tupd := tcrt

Removing a task Tn (cancel or finish):

1. Remove Tn from T
2. For each j=1,2..(n-1) update rtj := rtj ∗ n/(n − 1)
3. Update tupd := tcrt

Remaining execution time for Ti is rti + tcrt − tupd, which is passed to the
resource broker.

Fig. 6.3. Estimating execution times for shared-access.

In the case of Figure 6.2(b), T1 starts earlier and finishes later than T2.
We assume that in [ts2, tf2] both tasks are slowed down by 50%. Therefore,
we compute the execution times for shared access as:

∆t2 = tf2 − ts2 = 2 ∗ exec(T2/m)
and for T1:
tf1 − ts1 = (ts2 − ts1) + 2 ∗ (exec(T1/m) − (ts2 − ts1 + tf1 − tf2)) + (tf1 − tf2)

= (tf1 − ts1) + 2 ∗ (exec(T1/m) − (tf1 − ts1 − ∆t2)) − ∆t2
= 2 ∗ exec(T1/m) + ∆t2 − ∆t1

which gives us:
∆t1 = tf1 − ts1 = exec(T1/m) + ∆t2/2 = exec(T1/m) + exec(T2/m)
As we can see, the estimation of execution times on a resource in case of

shared access requires a complex analysis at resource-level.
We propose an algorithm (Fig. 6.3), which dynamically updates the es-

timations of the execution times for the activities that share a computing
resource. The algorithm manages a list of tasks T = (T1, T2, ..., Tn), running
on a single resource. Each task Ti is associated with a value rti, which indi-
cates the execution time left for the task. The tupd indicates the time when
the last update was performed, whilst the tcrt is the current time.

6.6 Summary

A resource broker is essential for scheduling distributed applications in het-
erogeneous environment. A resource broker determines which resources are

152 6 The JavaSymphony Resource Broker

available and suitable for a workflow activity, and may support more ad-
vanced features like reservations and dynamic updates of the estimated task
execution times.

In this chapter, we have built a theoretical model to describe the function-
ality of the resource broker. The basic elements of the model are the resources,
which are associated with attributes, and (workflow) activities, which are as-
sociated with constraints. The resource broker determines the suitability and
the availability of the resource, which is modelled by associated predicates.
These can be calculated from the information provided by the JavaSymphony
Runtime System, or from the workflow specification.

Moreover, we have investigated the implications of using advanced reser-
vations and we have proposed an algorithm to dynamically update the task
execution time estimations in case of shared access to the resources.

7

Experiments

In this chapter, we will demonstrate the usefulness of JavaSymphony, through
a variety of experiments.

We have implemented and tested several distributed application by using
the JavaSymphony programming paradigm and/or the JavaSymphony work-
flow scheduling model and JavaSymphony graph-based workflow composition
tool. The list of experimental applications includes:

1. An application for image processing based on Discrete Cosine Transforma-
tion Algorithm (DCTA) (Section 7.1), which proves that JavaSymphony
applications can achieve scalability on heterogeneous NOWs, respectively
on homogeneous clusters;

2. Three variants of Jacobi relaxation algorithm (Section 7.2), which demon-
strate how to implement message passing programs in JavaSymphony.
Furthermore, these experiments illustrate the use of single- vs. multi-
threaded objects, distributed events and barrier synchronization in JavaSym-
phony;

3. A Branch&Bound technique to solve a discrete optimization problem
(Section 7.3). This experiment shows that JavaSymphony can address
Branch&Bound problems and discuss scalability issues for this category
of applications;

4. A distributed backtracking method to compute the number of distinct
strings when applying a flattening operator on a planar word (Section
7.4). This experiment demonstrates that JavaSymphony can achieve very
good speedup for computation-intensive distributed application;

5. A DES distributed encryption/decryption algorithm (Section 7.5). This
application shows the advantages of using JavaSymphony in heteroge-
neous computing over two other similar programming paradigms;

6. A decision support system for portfolio and asset liability management
(Section 7.7) proves that JavaSymphony is suitable for realistic optimiza-
tion problems;

154 7 Experiments

7. A distributed application for the well-known N-body problem (Section
7.6) demonstrates scalable behaviour of JavaSymphony;

8. Three workflow applications including Wien2K program package for per-
forming structure calculations of solids (Section 7.9.1), modelling software
to calibrate hydrological model parameters (Section 7.9.2), and a software
system for generating astronomical image mosaics (Section 7.9.3). These
applications illustrate the use of JavaSymphony workflow management
system and the advantages of using our scheduling framework.

7.1 JavaSymphony DCTA

The Discrete Cosine Transformation Algorithm (DCTA) [79] can be used to
eliminate non-essential information from images and compress digital data.
This algorithm is commonly used to compress JPEG images. In order to do
that, an input image is divided into square blocks of identical sizes. DCTA
is then applied to individual blocks of the same size and with non-essential
image information is eliminated. A reverse transformation produces a restored
image without non-essential data, which resembles the original image.

We use the master/worker paradigm to encode a JavaSymphony DCTA.
The master is encoded as a JavaSymphony Application that divides the im-
age into square blocks of identical sizes (16x16, and 32x32). These blocks are
grouped into jobs that are distributed to a number of workers, encoded as
JS objects, which run on a set of computing resources (workstations or SMP
nodes). After a worker has finished its job, it sends back the results to the
master and requests a new job. The master application enables the JS object
workers to execute the jobs, by using the JS asynchronous remote method in-
vocations. The results are transferred back to the master, which then restores
the image.

For the sake of demonstration, Figure 7.1 shows the most important ex-
cerpt of our JS application, omitting parts of the initialization, image process-
ing, and exception handling. Figure 7.1 shows us only the processing part of
an applet designed to draw the image before and after processing. Class Job
is used as a container for a predefined number of blocks, JS objects that en-
capsulate TransformBIG instances reside on all workers and process the jobs
assigned by the master. In order to be able to analyze the performance more
accurately, we have artificially increased the processing time for one single
block by 10, by repeating the associated computation ten times.

7.1.1 DCTA onto a Heterogeneous Network of Workstations

First, we describe the experiment that has been conducted on a non-dedicated
heterogeneous NOW with up to 13 Sun workstations comprising 6x Sun Ultras
10/440, 1x Sun Ultra 10/333, 2x Sun Ultra 10/300, and 4x Ultra 1/140-170.
All Sun Ultra workstations are connected based on 100 Mbits/sec bandwidth

7.1 JavaSymphony DCTA 155publi void startAppliation(...){ JSRegistry js = new JSRegistry();// ***** registration *****/VA =new VA(2); VA[℄ n=new VA[nrnoduri℄; /***** reating VA's *****/for(nr=0;nr < nrnoduri;nr++){ n[nr℄= new VA(1);.addVA(n[nr℄);}obj=new JSObjet[nrnoduri*nrpro℄;JSCodebase b=new JSCodebase();b.add("./JS/TransformBIG.lass"); b.load(); // ***** loading odebase *****/for(i=0;i < nrnoduri * nrpro;i++)obj[i℄=new JSObjet("TransformBIG", new Objet[℄ {new Integer(i)} , n[i%nrnoduri℄);startProess(nrnoduri,nrpro); //***** proessing *****/js.unregister(); //***** unregistering *****/}publi void startProess(int nrnoduri, int nrpro){ ResultHandle h[℄ = new ResultHandle[nrnoduri*nrpro℄;boolean isProessed[℄ = new boolean[nrnoduri * nrpro℄;for(i=0;I < nrnoduri * nrpro;i++)isProessed[i℄ = false;/***** PROCESSING ******/int jNod; Job myjob = new Job(jobSize); boolean no_more_jobs, all_ready;/***** initial load *****/for(jNod=0; (jNod < (nrnoduri*nrpro)) && (task < nr_tasks); jNod++){ task = makeJob(myjob, task, jobSize, nr_tasks); // **** build the jobh[jNod℄ = obj[jNod℄.ainvoke("osTransfJob",new Objet[℄ { myjob , new Integer(blokDim), new Integer(alpha),new Integer(jNod) });}/***** load balaning *****/no_more_jobs = (task >= nr_tasks); all_ready = false;while(!no_more_jobs || !all_ready){ all_ready = true;for(jNod = 0; (jNod < (nrnoduri*nrpro)); jNod++){ if(h[jNod℄.isReady() && !isProessed[jNod℄){ makeFromJob((Job)h[jNod℄.getResult()); //***** save results *****/if(!no_more_jobs){ task = makeJob(myjob, task, jobSize, nr_tasks); //***** build a new job *****/h[jNod℄ = obj[jNod℄.ainvoke("osTransfJob",new Objet[℄ { myjob , new Integer(blokDim), new Integer(alpha),new Integer(jNod)});no_more_jobs = (task >= nr_tasks);}elseisProessed[jNod℄ = true;}if(!isProessed[jNod℄)all_ready = false;}}}
Fig. 7.1. Code skeleton of master/worker JavaSymphony DCTA

156 7 Experiments

Fig. 7.2. JavaSymphony DCTA (16x16 blocks) performance on a NOW

and run Sun Solaris 8. These workstations are used by the personal for the
regular work. We have used Sun’s JDK 1.2.1 with a JIT compiler and native
threads as the platform JVM. The job size influences the performance in two
ways:

• Larger job sizes induce lower communication costs, but at the same time
deteriorate load balancing;

• Smaller job sizes imply a better load balancing at the cost of an increased
communication overhead.

Figures 7.2 and 7.3 show the total execution time for the entire DCTA
measured at the master, and the maximum computation time of all jobs across
all workers for various number of workstations and various problem sizes.

The job processing corresponds to the core DCTA without any synchro-
nization and communication overhead. One workstation is exclusively used
for the master, whereas all other workstations are processing worker jobs. We
can clearly see that the maximum computation time across all workers is very
close to the total execution time. Therefore, the JavaSymphony middleware
produces very small overhead (e.g., communication and synchronization) for
DCTA on the given workstation cluster.

We also observe that the DCTA performance scales for up to 5 workers.
Thereafter, we use substantially slower workstations. The fastest workstations
are up to 4 times faster than the slowest workstations. At the very end of the
execution, when the master stops producing new jobs for the workers, the

7.1 JavaSymphony DCTA 157

Fig. 7.3. JavaSymphony DCTA (32x32 blocks) performance on a NOW.

slowest workstations are still busy with the assigned jobs, whereas the faster
workstations have already finished the work. This effect impacts the load
balancing and consequently prevents also any further scaling of the DCTA for
more than 5 workers on the given NOW.

Moreover, we evaluate the overhead produced by migrating objects. For
this purpose we have tested 3 DCTA scenarios with different degrees of arti-
ficial migration of worker objects without changing the overall load balance:
minimum migration (10-20% of the objects migrate), medium migration (50%
of the objects migrate) and maximum migration (all objects migrate). Note
that all migration experiments did not modify the load balance of each work-
station in terms of objects per computing node. For every object migrated to
a remote location, another one has been moved in its place. This policy al-
lowed us to observe the unaltered overhead induced by object migration only,
without side-effects caused by load imbalance.

The total execution times for these three scenarios are displayed in Figures
7.2 and 7.3. Due to the fact that communication costs on the given network
are small compared with the computation costs, we notice that the scenar-
ios with migration are similar to the ones without migration. This holds in
particular for the problem size with 16x16 blocks. However, for 32x32 blocks,
the number of jobs is rather small and the average job execution time onto
different workstations varies significantly. This, in turn, aggravates the load
balance in particular for the medium and maximum migration scenario.

158 7 Experiments

7.1.2 DCTA onto a Cluster of SMPs

Similar experiments with DCTA have been conducted on a SMP cluster [80].
which has 16 SMP nodes (connected by FasterEthernet) with 4 Intel Pentium
III Xeon 700 MHz CPUs with 1MB full-speed L2 cache and 2Gbyte ECC
RAM main memory per SMP, and runs under Linux 2.2.18-SMP.

Fig. 7.4. Performance for various numbers of objects per node on a single SMP
node

Each SMP node has its own IP address, and 4 CPUs share this address.
The JavaSymphony Runtime System (JRS) uses the Java RMI mechanism,
and implicitly the IP machine addresses to distribute objects onto the re-
sources. Therefore it is not possible to assign JS objects to each CPU in the
cluster.

Figure 7.4 shows an experiment in which we use a single SMP node to run
the JavaSymphony DCTA. By increasing the number of worker objects in a
single SMP node, we can substantially improve the performance. The Linux
operating system presumably distributes JS objects mapped to an SMP node
to its individual CPUs. Mapping more than 4 JS objects to an SMP node
with 4 CPUs does not improve the performance anymore. We conclude that
a number of at least 4 JS objects per each SMP node is necessary to use the
computing resource most efficiently.

Figures 7.5 and 7.6 (similar to Figures 7.2 and 7.3) display the total exe-
cution time for the entire DCTA measured at the master and the maximum
computation time of all jobs across all workers for various numbers of SMP
nodes and distinct problem sizes.

7.1 JavaSymphony DCTA 159

Fig. 7.5. JavaSymphony DCTA (16x16 blocks) on a SMP cluster

Fig. 7.6. JavaSymphony DCTA (32x32 blocks) on a SMP cluster

160 7 Experiments

Note that a single SMP node corresponds to 4 CPUs. The scaling be-
haviour is improved compared to the experiments conducted on the worksta-
tion network, because the SMP cluster is a dedicated system that can only
be used by one application at any given time. Unfortunately, the network
that connects the nodes in the SMP cluster is relatively slow compared to the
computing capabilities of the CPUs in this architecture. The communication
overhead is significant, which produces the difference between the total exe-
cution time and the maximum job computation time across all workers. This
explains why the application scales only for up to 5 nodes.

As in the previous section, we evaluate the overhead due to the object
migration. For this purpose, we have tested the same 3 DCTA scenarios with
the three degrees of artificial migration of worker objects, without changing
the overall load balance (i.e. objects per node rate). According to Figures 7.5
and 7.6, only the minimum migration scenario produces small overhead. For
medium and maximum migration scenarios, the migration impact on the per-
formance cannot be ignored. The communication network of this architecture
is relatively slow compared to the computational capabilities of the individual
CPUs on the SMP nodes. Therefore, depending on the degree of migration,
the overall execution time grows gradually. On the other hand, since the ar-
chitecture is a dedicated homogeneous system, we achieve a close-to-perfect
balance of the workload distributed among the worker JS objects.

7.2 Jacobi Relaxation

7.2.1 Jacobi Relaxation: Single- vs. Multi-threaded Objects

In order to examine whether JavaSymphony is suitable for message passing
programs and to compare the performance impact of single-threaded versus
multi-threaded objects, we have built a JavaSymphony version of the Jacobi
relaxation [81].

The Jacobi relaxation iterative method is used to approximate the solu-
tion of a partial differential equation discretized on a grid. The algorithm
consists of successive steps of computation followed by communication. We
have encoded a JavaSymphony version that splits a square matrix into hori-
zontal blocks (1-dim. row-wise distribution), which are distributed onto SMP
computing nodes for processing. In order to update the matrix elements of
the block assigned to an SMP node, a JS (processing) object is generated.
Before computing new matrix values for the local block, non-local matrix el-
ements stored on the upper and lower neighbouring SMP nodes are needed.
Therefore, on each SMP node, two separate JS (communication) objects are
created, which are responsible for communication and synchronization with
the immediate neighbouring SMP nodes. Communication objects have been
generated as multi-threaded JS objects.

7.2 Jacobi Relaxation 161// *** INITIALIZATION PART// *** builds a ommuniation objet for upper and lower neighbour;// *** ommuniation objets enode synhronizationdownLoalObj = new JSNeighbour ();downJSObj = JSObjet.onvertToJSObjet(downLoalObj);upLoalObj = new JSNeighbour ();upJSObj = JSObjet.onvertToJSObjet(upLoalObj);...// *** ALGORITHM PART - for generi iterationproessNewIteration(){ ...// *** blok until data for the urrent iter. is reeived from neighbours;// *** variable iter is used to synhronize objetslowerData = (double[℄)downJSObj.sinvoke("getData", new Objet[℄{ new Integer(iter) });upperData = (double[℄)upJSObj.sinvoke("getData", new Objet[℄{ new Integer(iter) });doComputation();...// *** COMMUNICATION PART - asynhronously send data to neighboursdownJSObj.oinvoke("send", new Objet[℄ { new Integer(iter), lastLine });upJSObj.oinvoke("send", new Objet[℄ { new Integer(iter), �rstLine });iter++;proessNewIteration();... }
Fig. 7.7. JS Jacobi Relaxation (without JS events or JS barrier-synchronization)

The code excerpt for this implementation is presented in Fig. 7.7. A vari-
able that indicates which iteration is currently being processed is used for
synchronization. The computation phase for the new iteration is suspended
until the corresponding lines from the neighbours (with the same iteration
number) arrive from the lower and upper neighbours. At the end of the com-
putation phase, the updated matrix border lines are asynchronously sent to
the neighbours.

For this experiment, we compare two versions: one that uses single-
threaded and another that employs multi-threaded processing objects on a
SMP cluster configuration (see Section 7.1.2) with a fixed number of nodes.
Overall, three (two multi-threaded communication and one processing) JS ob-
jects are placed on each SMP node. A single-threaded processing object can
only use one CPU of an SMP node, whereas a multi-threaded object can use
several CPUs and, therefore, can exploit intra-node parallelism. For our exper-
iments, we use SMP nodes with 4 CPUs. The experiments are based on a fixed
matrix size (1000x1000) and a fixed number of Jacobi iteration steps (100). In
order to show the effect of a multi-threaded JS object, the computational load

162 7 Experiments

Fig. 7.8. Jacobi relaxation. Performance comparison for single- and multi-threaded
JS objects

of each processing JS object is artificially modified by multiplying it with a fac-
tor ranging from 1 (corresponds to original Jacobi relaxation) to 20 (the orig-
inal calculations have been repeated 20 times). Therefore, the computational
load varies, whilst the communication and synchronization overhead remains
constant. In this way, we can examine different computation/(communication
+ synchronization) ratios.

Figure 7.8 shows the total execution time for 4 SMP nodes of the JS Ja-
cobi relaxation based on single-threaded and on multi-threaded JS processing
objects, respectively. Even though the computational load is increased mul-
tiple times and we employ SMPs with 4 processors, the total execution time
raises much slower, which indicates substantial synchronization and commu-
nication costs of the Jacobi relaxation implementation. In the worst case, the
performance of the Jacobi relaxation can be improved by 20% by using multi-
threaded JS objects. In the best case, the performance gain reaches 100 %.
It is obvious that for this particular JS Jacobi relaxation implementation, JS
multi-threaded objects perform visibly better than the single-threaded ones.
On the other hand, by artificially increasing the computation to overcome
communication/synchronization overheads, we achieve a speedup of up to 2
for multi-threading objects on 4CPU nodes. We assume that the speedup
would further grow with the raise of the computation load. This experiment
shows that JS is suitable for medium- to coarse-grained parallelism, but fine-
grained parallelism may lead to performance deterioration.

7.2 Jacobi Relaxation 163// *** INITIALIZATION PART// *** enode produer and onsumer to ommuniate with neighbours// * produer for event to be sent to the upper neighbour;// * event type mathes with the neighbour's onsumer typeprodUp = new JSEventProduer(thisBlok,JSConstants.C_USER_TYPE + 2* index,JSConstants.C_ANY_LOCATION, null);// * onsumer for the event produed by the upper neighbour;// * event type mathes with neighbor's produer typeonsUp = new JSEventConsumer(thisBlok,JSConstants.C_USER_TYPE + 2* index -1,JSConstants.C_ANY_LOCATION, "proessEvent");onsUp.register();... // * similar for the lower neighbour...// *** ALGORITHM PART - generi Jaobi iterationvoid proessNewIteration(){doComputation();// * matrix lines (lastLine, �rstLine) are attahed to the events as parametersprodUp.produeEvent(new Objet[℄ { �rstLine,new Integer(index), new Integer(iter) });prodDown.produeEvent(new Objet[℄ { lastLine,new Integer(index), new Integer(iter) });}...// *** PROCESSING EVENT// * parameter types math with the parameters// * of the method that produes eventspubli void proessEvent(double[℄ line, Integer soure, Integer iteration) {// * blok until urrent iteration iter// * mathes with the iteration sent by the neighbourwait_until_iteration(iteration, iter);update_matrix_bound(soure, line);// * test whether data from both neighbours// * have been updated for the urrent iteration;if(all_data_reeived(iter)){ // start new iterationiter++;proessNewIteration();}}
Fig. 7.9. JS Jacobi Relaxation with events

164 7 Experiments

Note that the programmer could mimic a multi-threaded object on a SMP
node by creating several single-threaded objects. However, by doing so, pro-
gramming gets more complex as more methods of different objects must be
invoked to obtain the same effect as for a single multi-threaded JS object.
The main purpose of multi-threaded objects is to exploit parallelism within a
single object on shared memory multi-processors without the need to create
multiple objects and to call methods of distinct objects.

7.2.2 Jacobi Relaxation: Events and Barrier Synchronization

The JS Jacobi Relaxation version of Section 7.2.1 requires explicit program-
ming for synchronization. In this section, we exemplify two JS programming
features, namely events and barrier synchronization, which simplify the pro-
gramming effort substantially.// *** INITIALIZATION PART - for eah iteration a JS barrier objet is built// *** noObjets represents the number of threads that waitfor(id =0; id <maxIteration; id++)JSRegistry.newBarrier(noObjets, id);...// *** ALGORITHM PART - main iterationvoid proessNewIteration(){doComputation();// * barrier-synhronization -- bloks until all (remote) threads reah this pointJSRegistry.barrier(iter);// * ommuniation is diret and synhronous; neighbours provide matrix linesobjUp.sinvoke("getLastLine", new Objet[℄ {});objDown.sinvoke("getFirstLine", new Objet[℄ {});iter++;proessNewIteration();... }

Fig. 7.10. JS Jacobi Relaxation with JS barrier-synchronization

Figure 7.9 shows a Jacobi Relaxation code excerpt based on JS user-events
for synchronization and communication. This version includes processing ob-
jects but no communication objects. JavaSymphony specific classes for event
consumers/producers are used to encode synchronization and communication.
The variable iter refers to the current iteration number, and synchronizes all
objects, before proceeding with the next iteration. The variable iter is sent via
events among processing objects. Matrix border rows are transmitted as event
parameters between neighbouring objects. The index member of the process-
ing object class uniquely identifies each processing object and it is used to
compute the unique event-types for the neighbouring objects.

7.3 Branch and Bound Application 165

Figure 7.10 reproduces a code excerpt of a Jacobi Relaxation implemen-
tation based on JS barrier synchronization, which is the most simple version
to implement. The barriers are declared in the initialisation phase. One bar-
rier is placed at the end of each computation cycle. When encountered, each
thread waits until the rest of the threads have reached this point. Thereafter,
all threads continue processing by accessing the data from their neighbours
via JS synchronous remote method invocation.

7.3 Branch and Bound Application

Branch&Bound [82] is a technique for solving problems by using the divide
& conquer strategy. An optimal solution has to be found in a large space of
solutions. The initial solution space is recursively divided into subspaces. As
a result, an abstract searching tree is created: the internal nodes represent
subspaces of possible solutions, while the leaf nodes represent the solutions.
Each solution is quantified by a cost function. The solution with the optimal
cost value is required. The goal of Branch&Bound technique is to exclude parts
of the searching tree, which cannot provide feasible solutions with better costs
than the very latest computed best-cost value.

We use Branch&Bound technique to solve a discrete optimization problem
[83]. The goal is to search the optimal value of the cost function f : x ∈
Zn → R, and the solution x = {x1, ...xn} ∈ Zn, for which the function’s value
is optimal. The domain of the cost function f , called the solutions space,
is generally defined by means of a set of m constraints over the elements
of the definition space. The constraints are generally expressed by a set of
inequalities:

n∑

i=1

ai,jxi ≤ bj , ∀j ∈ {1, ..., m}

For the sequential algorithm, we use the Branch&Bound strategy as de-
scribed above. For the parallel implementation, the search-tree is split between
JavaSymphony objects, within the nodes of a JavaSymphony level-2 VA. We
denote these objects as computing objects, which work in parallel to find the
solution with the optimal value. Sub-trees of the search-tree that represents
the solution space are distributed to each computing object (Fig. 7.11). The
set of the computing objects is organized as a ring. If a better local optimum
is found by one of the computing objects, it is sent to the next object in the
ring. The neighbour updates its own local optimum if necessary, and sends
this value further. All the computing objects update their local best-cost val-
ues until one that has an equal-or-better value stops this transmission. This
is either the one that has found the new optimal cost value in the first place,
or another one that has found a better one in the meantime.

For the parallel implementation, we analyze two distinct approaches. In
the first approach, equal parts of the initial search-tree are distributed to

166 7 Experiments

(a) 2 computing objects

(b) 4 computing objects

Fig. 7.11. B&B solution space divided between several computing objects

the computing objects from the start, with no later redistribution, whilst the
latest best-cost value is updated as explained above. In the second approach,
the sub-trees are distributed among the computing objects at the beginning
and, in addition, work is redistributed whenever one of the computing objects
becomes idle.

A characteristic of B&B parallel algorithms is that the gain in performance
depends significantly on the input data, and the execution time for various
workloads cannot be predicted. The following examples explain this behaviour:

Let’s assume that we split the problem between exactly two computing
objects, as in Fig. 7.11(a). In the sequential version, the first sub-tree is obvi-

7.3 Branch and Bound Application 167

ously analyzed by the algorithm before the second sub-tree. For the parallel
algorithm, two things could happen, if the two computing objects analyze
their search sub-trees in parallel:

• The first computing object receives a better optimal value from the second
computing object, which allows the elimination of some search paths in
the first sub-tree. Consequently, the workload is smaller, and performance
is improved - even super linear speedup is possible.

• In the first part of the computation, the second computing object does
not have access to the best optimum value for the first sub-tree, since this
has not been fully analyzed. This forces the computing object to analyze
additional search paths, which would have been quickly rejected in the
sequential algorithm. The workload is higher and performance deteriorates.

We have tested the JavaSymphony B&B application on a SMP cluster
[80] with 16 SMP nodes (connected by FasterEthernet), each of them with
4 Intel Pentium III Xeon 700 MHz CPUs (see Section 7.1.2). We analyze
the performance of the Branch&Bound algorithm in experiments for three
distinct, randomly generated inputs for the discrete optimisation problems
with m = 40 equations and n = 10 variables.

The speedup results are shown in Fig. 7.12. Performance data values for
the experiments can be found in Table 7.1 and in Table 7.2. The number of
visited nodes proves the variation in the computation load. Two overheads
due to communication are presented: (1) the overhead produced to propa-
gate the local optimal cost to the rest of the computing object, and (2) the
overhead produced by the workload redistribution (only for the dynamic load
balancing version). The difference between the total computation time and
the average computation time suggests the existence of the overhead due to
unequal workloads, especially for the static load balancing.

The performance issues discussed above are demonstrated by these three
experiments. As we can see, performance varies, even if the problem size is the
same for all three. In the first experiment (Fig. 7.12(a)), for up to 8 CPUs the
speedup grows only up to 2 (in the dynamical load-balanced version). With
16 CPUs, the performance is more than 3 times better than 8 CPUs case,
which represents a super linear speedup.

The performance variation could be explained by analyzing the values
in Table 7.1: In the dynamical load-balanced approach, while the number
of visited nodes grows with the number of CPUs used for up to 8 CPUs,
thus deteriorating the performance, for 16 CPUs it is suddenly lower than the
previous value. The bigger number of computing objects causes this behaviour,
as some of the computing objects finish and find the optimal value faster. Parts
of the tree are faster rejected and workload is redistributed. Observe that the
number of the visited nodes is reduced for the static load balancing approach,
but the large difference between the average time of computing and the total
time of execution proves the unbalance of the workloads, which affects the
general performance.

168 7 Experiments

(a) Experiment 1.

(b) Experiment 2.

(c) Experiment 3.

Fig. 7.12. JavaSymphony Branch&Bound algorithm performance.

7.3 Branch and Bound Application 169

No. CPUs Total time Avg. Time Nodes visited Overhead 1 Overhead 2 Efficiency
(ms) (ms)

PROBLEM 1

Sequential

1 CPU 186258.00 36665880

Static load balancing

4 CPUs 204817.00 152526.50 110959591 653.25 0 0.2273
8 CPUs 162590.00 105733.50 153053162 656.75 0 0.1432
16 CPUs 78108.00 34456.00 108259200 612.00 0 0.1490
32 CPUs 66272.00 23239.13 136903433 1006.16 0 0.0878

Dynamic load balancing

4 CPUs 147980.00 147960.50 96469135 652.00 394.00 0.3147
8 CPUs 95847.00 95785.50 119274168 572.00 1334.00 0.2429
16 CPUs 27760.00 27225.69 72932293 463.69 2000.06 0.4193
32 CPUs 20340.00 19274.44 80687271 490.00 4457.44 0.2862

PROBLEM 2

Sequential

1 CPU 54363.00 11605272

Static load balancing

4 CPUs 12592.00 11412.25 8271101 1119.50 0 1.0793
8 CPUs 13634.00 12056.25 14262503 2305.88 0 0.4984
16 CPUs 10813.00 9290.69 20820747 2361.69 0 0.3142
32 CPUs 12395.00 9560.88 40836445 2387.94 0 0.1371

Dynamic load balancing

4 CPUs 11494.00 11446.25 8324727 952.00 146.00 1.1824
8 CPUs 10759.00 10634.25 12873919 1474.75 625.38 0.6316
16 CPUs 9322.00 9081.44 18988918 1579.25 1069.25 0.3645
32 CPUs 10432.00 9426.03 36334837 1038.25 2501.06 0.1628

Table 7.1. Timing for B&B. Overhead 1 for transferring the optimum; Overhead
2 for redistributing the work

The second experiment (Fig. 7.12(b)) shows us a different behaviour: we
get a significant speedup for up 4 CPUs - more then 4 times performance
improvement. On the other hand, using more than 4 CPUs does not improve
the performance anymore. The values in Table 7.1 could explain the phe-
nomenon. The number of visited nodes is smaller compared with the first
experiment. Even the sequential version eliminates important parts of the
search tree. By using 4 computing objects, more search paths are eliminated
and the speedup becomes super-linear for both versions. However, by raising
further the number of computing objects and CPUs, the number of visited
nodes grows as well. The overheads due to local optimum propagation (asyn-
chronous communication) and to the workload redistribution for the dynamic
load-balancing version become significant for the overall performance, since

170 7 Experiments

the total execution time is so small. These aspects produce performance de-
terioration for static load-balancing implementation at 8 CPUs and for both
versions at 32 CPUs. In both cases, we can see that the number of the visited
nodes gets 2 times bigger from 16 CPUs to 32 CPUs.

No. CPUs Total time Avg. Time Nodes visited Overhead 1 Overhead 2 Efficiency
(ms) (ms)

Sequential

1 CPU 352285.00 35378744

Static load balancing

4 CPUs 162750.00 157204.50 62515907 200.50 0 0.5411
8 CPUs 106455.00 101661.75 73955665 263.00 0 0.4137
16 CPUs 47838.00 37430.25 54204058 158.81 0 0.4603
32 CPUs 46667.00 33081.47 93405849 91.50 0 0.2359

Dynamic load balancing

4 CPUs 163934.00 163906.75 62412733 176.50 262.00 0.5372
8 CPUs 105029.00 104863.63 73822916 190.25 1168.00 0.4193
16 CPUs 38989.00 38794.31 50727885 196.50 2488.50 0.5647
32 CPUs 34765.00 33795.06 80594720 120.75 4746.47 0.3167

Table 7.2. Performance data for B&B problem 3

In the third experiment (Fig. 7.12(c)), we obtain a steady and significant
performance improvement, for up to 16 CPUs. Again, when increasing the
number of CPUs from 8 up to 16 CPUs, there are actually less processed
nodes in the search-tree, which produces a super linear speedup. We do not
get better performance by using 32 CPUs. In the dynamic load-balancing
version, the overhead for re-balancing the workload becomes significant, thus
preventing further improvements.

The experiments demonstrate the unpredictability of the performance for
the parallel version of the Branch&Bound algorithm. However, we can see that
there is usually a performance improvement - in some cases minimal, but in
some other cases significant, depending on the input data and the number of
processing objects used. On the other hand, workload redistribution produces
always better results than static load balancing.

7.4 JavaSymphony Backtracking Application

Backtracking [82] is a generic and very well known method of solving a large
class of problems. The backtracking method is based on the systematic inqui-
sition of the possible solutions where, through the procedure, many possible
solutions are rejected before even examined. Commonly, one solution is built
from partial solutions, which satisfy a set of constraints. The partial solutions

7.4 JavaSymphony Backtracking Application 171

are expanded gradually to a full solution. Each partial solution can provide a
few choices for the next searching step. When the constraints are not fulfilled,
the search path is abandoned. The goal is to find all possible solutions (or
alternatively, a single solution) by searching a solution space that is scaled
down by the constraints. Usually, backtracking algorithms have an exponen-
tial complexity and thus they are computation-intensive. Since at each steps
a few choices for the next partial solution could exist, the parallelization of
the algorithm becomes natural.

For the following experiment, we have chosen a particular problem that
can be solved by using the backtracking method. However, our implementation
can be generalized for a large class of computational-intensive backtracking
problems. The selected problem has been inspired from the problem of com-
puting the number of distinct strings when applying the flattening operator
to a planar word (see [84]).

To solve this problem, we must find all distinct possibilities to move a
number of n identical objects along m consecutive positions in a m-tuple (1,
2, 3 ... m). One object is moved at a time from a position i to the next position
i+1 until all objects reside on position m, such that 1 ≤ i ≤ m−1. We denote
this move by [i, i + 1]. Initially, all objects start at position 1 in the m-tuple.
For example, if we have to move 2 objects along 3 positions in a tuple (1, 2, 3),
we can find two solutions, represented as ordered sets:

{[1,2], [1,2], [2,3], [2,3] } and { [1,2], [2,3], [1,2], [2,3]}

The backtracking method can be applied to solve this problem in an ob-
vious way: Each object is moved from one position to the next, until all the
objects are placed onto the last position. At each step, several distinct moves
are possible. Consecutive possible moves yield sub-problems that can be solved
in parallel with the other sub-problems. As simple as it looks, the requested
number raises very fast: for 5 objects and 6 positions we obtain 701149020
distinct possibilities to move the objects from position 1 to 6. The sequential
algorithm has exponential complexity, which requires extensive computation
time on any computer architecture.

We have built a JavaSymphony application for the parallel backtracking
algorithm. The search is split into sub-problems, which are distributed among
computing objects (JS-objects). Each computing object maintains a queue
for jobs (i.e. sub-problems as defined above) that can be passed to other
idle computing objects. This algorithm requires a high computational effort.
Communication is low even in the case of dynamic load balancing when idle
computing objects receive additional jobs from busy objects. Additional over-
head occurs in the final phase of the program, when each computing object
solves a sub-problem and all the queues are empty. The sub-problems have
distinct computational needs, which may cause significant load imbalance and
consequently deteriorate the performance.

Figure 7.13 compares the overall speedup values with the ideal speedup,
for various number of CPUs, on the 4way SMP cluster (described in the

172 7 Experiments

Fig. 7.13. JavaSymphony backtracking algorithm performance

previous experiments). Although we do not achieve maximal efficiency, the
speedup values raise steadily with the number of CPUs. Therefore, we consider
that JavaSymphony is suitable to implement parallel versions of any other
computation-intensive backtracking algorithms.

No. CPUs exec. time exec. time ideal exec. time comp. time comm. time
(avg.) (avg.) (avg.) (avg.)

Sequential

1 CPU 823785

Parallel

4 283777 214585 205946 214316 219
8 131249 110709 102973 110022 603
16 66474 56395 51487 55209 1032
24 47022 39599 34324 37373 1900
32 35412 31105 25743 28089 2277

Table 7.3. Various timings for backtracking algorithm. Values are represented in
ms

In order to explain the performance loss, Table 7.3 displays experimental
values for the total execution time, average execution time (across all comput-
ing objects), ideal execution time (theoretically computed assuming perfect
speedup), computation time (spend by each object without any communi-

7.5 DES Encryption/Decryption 173

cation or parallelization overhead), and communication overhead (time for
sending jobs to idle computing objects). All tabulated values, except total
execution times, are average values across all computing objects.

Clearly, load imbalance – for reasons mentioned above - can rise noticeable
for increasing number of CPUs, which is demonstrated by the difference be-
tween total execution time and average execution time. The communication
overhead is reasonably small. The small difference between average computa-
tion time and average execution time shows the overhead due to the JavaSym-
phony middleware.

7.5 DES Encryption/Decryption

In the following, we present an experiment with the DES (Data Encryption
Standard) encryption/decryption algorithm [85], to compare the performance
of three Java-based programming paradigms for concurrent and distributed
applications including JavaSymphony, JavaParty, and ProActive. JavaParty
is centered on semi-automatic load balancing and locality control where most
strategic decisions are taken by the underlying runtime system. In contrast,
JavaSymphony and ProActive provide explicit user control of load balancing
and locality. ProActive represents a lower-level programming paradigm that
does not provide the user with an API to system information. For our exper-
iments, we have used the publicly available JavaParty version 1.05b [86] and
ProActive, version 0.9.1 [87].

The DES encryption/decryption algorithm [85] uses a key of 56 bits, which
is extended with another 8 parity bits. DES tries to detect the key that has
been used to encrypt a message using DES, based on a ”brute-force” approach
(every possible key is tested). The assumption is that we know a string that
must appear in the encrypted message, which is used to test its authenticity.
For the sake of demonstration, the experiments examine only a sub-set from
the total number of 256 possible keys.

Figure 7.14 depicts the design of the JavaSymphony DES decoding algo-
rithm. The DesDecoder objects process a space of possible keys, which are
provided by one or several KeyGenerator objects. A DesDecoder acquires the
keys from the KeyGenerator through a synchronous method invocation. The
KeyGenerator keeps track of the keys that have already been generated. Af-
ter the DesDecoders have decoded a message by using the assigned keys, a
one-sided method invocation is used to transfer the decoded message to a
TextSearcher object, which searches it for the known string, to determine if
the correct encryption key has been found. Depending on the length of the
encoded message, the DesDecoder and TextSearcher components may require
various computational efforts.

For these experiments, two connected Beowulf cluster architectures have
been used. The first (slower) cluster has SMP nodes (connected by FastEther-
net) with 2 CPUs (Pentium II, 400MHz, 512 MB ECC Ram) each. The second

174 7 Experiments

Fig. 7.14. JavaSymphony DES decoding algorithm design

(faster) cluster consists of 16 4-way SMP nodes (connected by Myrinet) with
Pentium III Xeon (700MHz) CPUs and 2GB ECC RAM main memory per
SMP (see Section 7.1.2). Both clusters run under Linux 2.4.17-PMC-SMP and
use Sun Java 2 SDK with a JIT compiler and native threads.

We have implemented three distinct versions of the DES algorithm, one
for each programming paradigm.

• JavaSymphony version: Two different clusters are used, one for each
functional component. The computation-intensive component (DesDe-
coder) is mapped on the faster cluster, whereas the less computation-
intensive component (TextSearcher) is mapped on the slower cluster. The
KeyGenerator component (with very small computational overhead) is
mapped together with one of the DesDecoders, in order to reduce commu-
nication. JavaSymphony requires the user to create a virtual architecture
and to use synchronous and one-sided method invocations.

• JavaParty version: The second version is based on JavaParty, which
introduces a new class modifier called remote. Only the objects that are
generated based on remote classes can be distributed. In order to paral-
lelize a program, JavaParty requires the programmer to generate specific
threads, which execute methods of remote objects onto distinct nodes.
On the other hand, the conversion to remote objects is quite transparent
for the programmer. Therefore, we consider that the programming effort
is about the same for both JavaSymphony and JavaParty. A JavaParty
specific pre-compiler is used to compile JavaParty programs to Java RMI
programs.

7.5 DES Encryption/Decryption 175

• ProActive version: The third version is based on ProActive. The ProAc-
tive class library offers extensive functionality, but at a rather low level.
The so-called future objects and one-sided method invocations are used
to parallelize DES. In contrast to JavaParty, no explicit threads have to
be generated. Objects can be explicitly mapped onto a one-dimensional
architecture structure (e.g. a set of connected nodes). Java objects are au-
tomatically substituted by stubs and can be locally or remotely accessed,
fully transparently. However, the RMI details are not sufficiently hidden,
and mapping objects requires starting RMI servers and connecting to their
addresses. Therefore, we consider that ProActive programming paradigm
requires more programming efforts for DES implementation.

We have managed to further improve the performance of these DES ver-
sions as follows:

• The load balancing for the DesDecoders can be dynamically controlled.
When a DesDecoder finishes a job, it requests a new set of keys from the
KeyGenerator.

• Since text-processing takes much less time compared to key processing, we
make a TextSearcher to serve more than one DesDecoder.

• As TextSearchers are less computation-intensive, they are explicitly mapped
on the slower cluster, whereas the DesDecoders are mapped on the faster
one. JavaSymphony can determine whether a cluster is faster or slower
through its high level interface to system parameters. Both JavaParty and
ProActive do not support the mapping of objects based on performance
information of the underlying computing infrastructure. Therefore, for the
JavaParty and ProActive versions, we use a round-robin mapping strategy
instead.

Figure 7.15 compares the speedup values for the three code versions for
different cluster sizes. The notations fCPU and sCPU, respectively, mean that
CPUs of the faster (with Pentium III CPUs) and respectively slower (with
Pentium II CPUs) cluster have been used. The speedup is computed relative
to a sequential version that has been run on a single CPU of the faster cluster.

JavaParty and ProActive perform only slightly better than JavaSymphony
on a homogeneous cluster. This is caused by a more complex communication
protocol used by JavaSymphony to hide the RMI details from the program-
mer. On the other hand, JavaParty uses a separate JavaParty pre-compiler to
compile remote JavaParty objects into RMI remote objects, and therefore the
runtime middleware overhead is reduced. ProActive reduces the middleware
overhead by providing a lower-level programming paradigm.

However, if a heterogeneous cluster architecture is available, then JavaSym-
phony provides the capability to map parts of an application to specific sub-
clusters. If we employ both fast and slow cluster in a single experiment, then
under JavaSymphony we can place the TextSearcher on the slower cluster and
the other components on the faster cluster. For the heterogeneous cluster ar-
chitecture, JavaSymphony visibly outperforms the JavaParty and ProActive

176 7 Experiments

Fig. 7.15. Comparative performance analysis for JavaSymphony, JavaParty, and
Proactive DES decryption versions on a heterogeneous cluster of SMP clusters

versions. The performance for 32 fast CPUs and 8 slow CPUs is deteriorat-
ing compared to using only 32 fast CPUs, as the additional communication
between the two different clusters cannot be compensated with additional
computing resources. Nevertheless, even in this case, JavaSymphony achieves
better performance than JavaParty and ProActive.

Both JavaParty and ProActive versions achieve similar performance. From
this result one may conclude that the performance achieved by JavaParty,
which uses a special pre-compiler, can also be obtained with a class library
that uses the standard Java compiler, but at the cost of a more complex
programming method of ProActive that only partially shields the programmer
from low level details.

Overall, we believe that for heterogeneous architectures a system such as
JavaSymphony is likely to achieve superior performance compared to semi-
automatic systems, as JavaSymphony allows the programmer to control paral-
lelism, locality and dynamic load balancing. Moreover, JavaSymphony shields
the programmer from low-level details by supporting a high-level program-
ming paradigm.

7.6 N-body Distributed Application 177

7.6 N-body Distributed Application

We have implemented a JavaSymphony application to solve the well-known N-
body problem, which determines the motion of a group of interacting particles
starting with some initial configuration of positions and velocities in a specified
volume of space. Our implementation is based on a sequential code developed
in related work [88]. The algorithm is based on a simple approximation: The
force on each particle is computed by agglomerating distant particles into
groups and using their total mass and center of mass as a single particle. The
algorithm consists of three phases, which are repeated in an outermost loop:

1. The volume in which the particles move is subdivided and represented
by an octree. Each node in this tree uniquely represents a portion of the
volume in which a possibly empty set of particles may reside.

2. Forces aging on each particle are computed through traversing the octree.
3. The velocities and the positions of the N particles are updated by using

the new values for the forces.

Fig. 7.16. The organization of N-body functional components

The N-body algorithm is divided into several functional components (see
Figure 7.16), which are coded as separate JavaSymphony objects. Their func-
tionality and the interaction between them are detailed below:

• One TreeSplitter and several TreeObjects manage the first phase of the
algorithm. The TreeSplitter creates the first levels of the octree. The sub-
trees are distributed to the TreeObjects, which build in parallel the full
octree.

178 7 Experiments

• Several ForceData objects, each being associated with a few ForceObjects,
manage the second (most computational intensive) phase of the algorithm.
The octrees created by the TreeObjects are collected by the ForceData
objects and subsequently processed in parallel by the ForceObjects. The
ForceObjects compute the forces of particles that reside in the space repre-
sented by the assigned octree. The ForceObjects have direct (local) access
to the octree in the ForceData. JavaSymphony N-body implementation
places at least one ForceData object on each SMP node and a number
of ForceObjects equal to the node’s number of CPUs. The TStepCollec-
tor dynamically controls the workload of the ForceObjects. Every time a
ForceObject becomes idle, the TStepCollector assigns it a new set of par-
ticles for processing.

• In the final phase, all particles are collected by TStepCollector and for-
warded to the XVObjects which compute the new positions and velocities
of all particles. Thereafter, the data is forwarded to the TreeSplitter, which
starts the next iteration. This phase has not been parallelized, as it requires
only reduced computation effort. In order to eliminate extra communica-
tion, the TStepCollector, XVObjects and TreeSplitter, which interact with
each other, are placed onto the same SMP node.

Fig. 7.17. N-body application. Performance result

7.7 Asynchronous Nested Benders Decomposition 179

We have tested our implementation on the previously mentioned cluster
[80] with 16 SMP nodes, each of them with 4 Intel Pentium III Xeon 700 MHz
CPUs (see Section 7.1.2). Figure 7.17 shows very reasonable speedup values
for the JavaSymphony N-body application. The three algorithm phases are
executed in a sequential order. Broadcast operations between phases 1 and
2 and barrier synchronisation between phases 2 and 3 influence the general
performance of the parallel algorithm. However, phase 2 dominates the com-
putational effort. It can be parallelized almost without communication (except
at the beginning and at the end of the phase) by exploiting data parallelism,
which explains the good scaling behaviour for small and medium number of
CPUs (up to 16 CPUs). For larger number of processors, phases 1 and 3
become more significant, due to the impact of barrier synchronization and
broadcast operations.

No. CPUs Total time phase 1 phase 2 phase 3
(all) (JS overhead) (comm.)

4 CPUs 314406 1096 309797.50 12130.00 4606.25 2545
8 CPUs 163361 1174 161496.50 4002.75 1814.13 1261
16 CPUs 81132 1680 77555.94 1875.94 784.75 2611
32 CPUs 44168 2465 38849.75 876.62 528.63 3071
64 CPUs 22143 4026 12971.94 1067.56 506.75 3822

Table 7.4. N-Body timings (in ms)

Table 7.4 shows various timings for this experiment, which includes the
overall execution time and time values for all three algorithm phases. More-
over, we were able to isolate the overhead due to JS middleware in phase 2
(see the row named phase 2 (JS overhead)). Phase 2 execution time includes
computation, middleware overhead and communication. The timings of phase
2 (all) correspond to the execution time of the entire phase 2. We can clearly
see, that phase 2 dominates the overall performance. The execution times for
phases 1 and 3 get bigger for larger processor numbers due to the barrier and
synchronization overhead, which prevents linear speedup. The JavaSymphony
middleware overhead is very small, compared with the total time for phase 2.
The communication overhead, as part of phase 2, decreases for larger cluster
size because the data load remains the same, whilst it is distributed to a larger
number of ForceObjects.

7.7 Asynchronous Nested Benders Decomposition

The Aurora Financial Management System [89], under development at the
University of Vienna, is a decision support system for portfolio and asset
liability management (ALM). The classical problem of dynamic asset-liability

180 7 Experiments

management seeks an investment strategy, in which an investor chooses a
portfolio of various assets, in such a way that some risk-adjusted objective is
maximized (for instance the return of investment), subject to the uncertainty
of future markets’ development, future obligations, and other constraints.

Fig. 7.18. Benders algorithm on each node.

The system contains an optimization module, which solves a stochastic,
multistage optimization problem in order to find an optimal investment plan.
Realistic models for the future development of asset prices taking into account
many risk factors result in very large scenario trees.

Among other methods [90], the optimization module makes use of decom-
position techniques [91], which allow for solving large-scale tree structured
optimization problems very efficiently. In addition, due to their inherent par-
allelism, they are well suited for parallel implementation [92] .

The entire optimization problem is decomposed into a set of local problems
(Fig. 7.18), corresponding to the nodes of the scenario tree. Every tree node
represents an active object (executed by a single thread). This contributes to
the solution of the entire problem in an iterative manner:

7.7 Asynchronous Nested Benders Decomposition 181

• The node solves its local problem by means of a Linear Program (LP)
solver;

• The local problem is updated with information from neighbour nodes (i.e.
the predecessor and the successors in the scenario tree), and then the node
solves the updated problem etc.

An asynchronous parallel version of the nested Benders decomposition
method has been implemented on top of different parallel programming plat-
forms [93, 94]. The JavaSymphony version has been built starting from exist-
ing Java code, which contains an algorithm layer calling asynchronous com-
munication operations implemented in an underlying coordination layer. Only
the coordination layer and the initialization part have been adapted to the
JavaSymphony API. The threads associated with the tree nodes are encapsu-
lated within JS objects; the algorithm code remains unchanged (Fig. 7.18).

SMP node 0 SMP node 2

SMP node 3SMP node 1

Fig. 7.19. Load balancing mapping strategy for a binary tree with 15 algorithm
nodes, on a cluster with 4 SMP nodes

We use an optimal load balancing strategy for mapping the tree nodes
onto SMP computing nodes (Fig. 7.19). Communication among tree node
objects residing on the same compute node is performed through direct access.
JavaSymphony remote method invocation is used for communication between
objects residing on different computing nodes.

We have tested the application on binary scenario trees of different sizes.
The node objects are working on test input data reflecting realistic optimiza-
tion problems. The experiments have been performed onto SMP nodes (each
comprising 4 CPUs) of a dedicated Beowulf cluster (see Section 7.1.2), used
in most of the previous experiments. The speedup results for up to 8 SMP
computing nodes are displayed in Fig. 7.20.

182 7 Experiments

Fig. 7.20. Speedup for Benders decomposition

Some of our measurements demonstrate that the effective time for compu-
tation (spent on the CPU) is small in comparison to the actual execution time.
The latter value is strongly influenced by synchronization between nodes and
idle times due to specific criteria waiting to be met, and by the large number
of tree node objects per compute node, each having its own thread of execu-
tion. For the tree with 31 nodes, the SMP nodes are used inefficiently because
of the small number of tree nodes per each CPU and the reduced computa-
tion load for each tree node. The speedup improves with the number of tree
nodes, because the CPUs are used more efficiently. The best performance is
achieved for 511 tree nodes. Therefore, we believe that our JavaSymphony-
based implementation of the nested Benders decomposition is suitable for
realistic optimization problems (in terms of tree and local problem sizes).

7.8 Performance of Micro Benchmarks

In order to evaluate the middleware overhead, we have developed a set of
micro benchmarks to test several of the basic elements of the JavaSymphony
constructs: remote object creation, method invocations and object migration.

All the experiments have been conducted by using 2 or 3 SMP nodes
of the cluster described in the previous experimental sections. Each of the
benchmarks uses two types of objects: a Tester and a Tested object. The
Tester creates one or more Tested objects and performs specific benchmark
operations on them. Three metrics are analyzed:

7.8 Performance of Micro Benchmarks 183

• Total time is the total elapsed time for the execution of a particular
benchmark;

• Average time is an estimation of the time it takes for a particular activity
to complete;

• Rate defines an estimation of the number of these activities per second.
The time values are computed in milliseconds.

We have examined the overheads for creating local and remote JS objects,
for the remote method invocations: synchronous, asynchronous and one-sided,
respectively for object migration. The results are analyzed in the followings.

CL CR

No. obj. Total time Avg. Time Rate Total time Avg. Time Rate

1 38.00 38.00 26.32 69.50 69.50 14.39
10 229.60 22.96 43.55 252.40 25.24 39.62
100 1622.00 16.22 61.65 2165.00 21.65 46.19
1000 14305.00 14.31 69.91 20537.20 20.54 48.69
10000 140546.00 14.05 71.15 149317.33 14.93 66.97

Table 7.5. Creation of JSObjects - remote and local.

CR and CL - Object Creation Benchmarks

These benchmarks are used to study the overhead due to the creation of JS
objects, locally for the CL benchmark or remotely for the CR benchmark. The
Tester creates a variable number of Tested objects placed on the same level-1
VA for the CL benchmark, respectively on a distinct level-1 VA for the CR
benchmark. The number of Tested objects varies from 1 to 104. The results
are presented in Table 7.5.

As expected, remote creation adds the cost of communication to the
generic cost of the object creation. At the same time, by increasing the number
of operations the performance increases to a peak value: The rate of creations
is slowly growing. We can see that for a large number of operations, the values
for CR and CL become relatively close to each other.

SI, AI, OI - Method Invocation Benchmarks

For each type of remote method invocation (synchronous, asynchronous or
one-sided), a micro benchmark is used to estimate its overhead (i.e. SI, AI,
OI benchmarks). For these benchmarks, the Tester, builds one single Tested
object onto the same SMP node, respectively onto a remote one and invokes
one of its methods for a number of times.

184 7 Experiments

SI OI

Nr.oper Total time Avg Time Rate Total time Avg.Time Rate

Local

1 17.67 17.67 56.60 18.67 18.67 53.57
10 209.67 20.97 47.69 181.67 18.17 55.05
100 1444.67 14.45 69.22 1458.00 14.58 68.59
1000 11823.33 11.82 84.58 11197.00 11.20 89.31
10000 116495.00 11.65 85.84 110731.67 11.07 90.31

Remote

1 18.33 18.33 54.55 20.00 20.00 50.00
10 246.00 24.60 40.65 166.67 16.67 60.00
100 2289.33 22.89 43.68 1780.33 17.80 56.17
1000 14634.00 14.63 68.33 11286.00 11.29 88.61
10000 116459.00 11.65 85.87 102819.33 10.28 97.26

Table 7.6. Variable number of method invocations for SI, OI.

AI

Nr.oper Total time with results Avg Time Rate

Local

1 17.67 18.67 17.67 56.60
10 179.67 181.00 17.97 55.66
100 1422.33 1423.33 14.22 70.31
1000 11099.67 11101.00 11.10 90.09
10000 108095.00 108096.33 10.81 92.51

Remote

1 20.67 21.67 20.67 48.39
10 206.00 207.00 20.60 48.54
100 1670.00 1671.00 16.70 59.88
1000 11578.33 11579.67 11.58 86.37
10000 103229.00 103230.00 10.32 96.87

Table 7.7. Variable number of method invocations for AI

For SI the communication is bi-directional, while for AI and OI this is
uni-directional. Additional time is necessary for AI-benchmark to receive the
results. Since the invoked method is empty (exits immediately), we assume
that the actual execution time is negligible. The tables 7.6 and 7.7 show the
performance values for the SI and OI, respectively for AI benchmarks.

MIG - Migration Benchmark

For the MIG benchmark, we test the overhead for migrating objects. One
Tested object is created and we invoke n times an empty method (with no com-
putation overhead) in two different ways: with or without object migration.

7.9 Scheduling Workflow Applications in JavaSymphony 185

No migration With migration
Nr.Oper. Total time Avg Time Rate (op/sec) Total time Avg Time Rate (op/sec)

1 19.60 19.60 51.02 242.20 242.20 4.13
10 199.20 19.92 50.20 1959.00 195.90 5.10
100 1563.20 15.63 63.97 13597.40 135.97 7.35
1000 12557.00 12.56 79.64 122129.20 122.13 8.19
10000 115643.20 11.56 86.47 1228014.67 122.80 8.14

Table 7.8. Variable number of method invocations/migrations for MIG.

In the first case, the Tested object is migrated before each method invocation.
The migration overhead is the difference between the two executions. Table
7.8 shows that the overhead is significant. This is caused by the complex
migration protocol, which involves a lot of additional communication when
methods for migrated objects are invoked. The results demonstrate that in-
tensive migration is very expansive and suggest that it should be used only
in special cases, when the performance improvement generated is significant
and compensates the cost of migration itself.

7.9 Scheduling Workflow Applications in JavaSymphony

In order to demonstrate the usefulness of JavaSymphony workflow scheduling
technique, we have implemented several real world JavaSymphony workflow
applications.

The original workflow applications comprise a set of scripts and executa-
bles that run on distributed computing resources. The JavaSymphony graph-
ical tool for workflow composition has been used to build the applications’
workflow. Java wrapper classes are used to run the components of the original
applications onto distributed resources, as activities of the workflow. Files are
transferred between activities by using the JavaSymphony Runtime System.

We have enhanced the JavaSymphony enactment engine to export the
workflow application as input file for Condor DAGMan [37]. For each finished
workflow activity, a Condor job submission file is created as well. Condor
DAGMan does not offer support for sequential/parallel loops and conditional
branches. Therefore, these elements of the workflow are not present in the
output DAG, which comprises only the activities that have finished their
execution, and the associated control dependencies.

We compare the scheduling performance of the two schedulers: JavaSym-
phony dynamically builds a schedule for the workflow application, whilst Con-
dor DAGMan uses the static DAG, as built by JavaSymphony workflow en-
actment engine. Consequently, the two schedulers execute the same sets of
activities, restricted by the same control dependencies.

The activities are executed on the same set of computing resources, in a
Condor pool of workstations (Table 7.9). The workstations are heterogeneous,

186 7 Experiments

Machine JavaMFlops

ankogel.dps.uibk.ac.at 34.866943
blindis.dps.uibk.ac.at 38.801613
ganot.dps.uibk.ac.at 27.678907
gramul.dps.uibk.ac.at 39.018559
mulle.dps.uibk.ac.at 34.130119
ochsner.dps.uibk.ac.at 58.082180
olperer.dps.uibk.ac.at 38.438427
petzeck.dps.uibk.ac.at 70.885361
pleisen.dps.uibk.ac.at 33.361057
quirl.dps.uibk.ac.at 37.276459
schareck.dps.uibk.ac.at 34.449875

Table 7.9. Condor pool of workstations ranked by JavaMFlops attribute

ranked according to JavaMFlops attribute of Condor machine ClassAd, which
determines the speed of the machine by using the SciMark2 benchmark [95],
at the time Condor is started onto the machine. We have used artificially
controlled execution times for the workflow activities: Each activity act is as-
sociated with a computing cost cost(act) expressed in FLOPs. Consequently,
the execution time of one activity act on a machine m is determined as
cost(act)/power(m), where power(m) is the value of JavaMFlops attribute
associated with the machine. Therefore, one activity finishes in shorter time
if it is mapped onto the machines that are higher ranked. On the other hand,
the execution of a specific workflow activity takes the same amount of time, if
mapped on the same machine, no matter if the activity is executed by using
the Condor or the JavaSymphony scheduler.

JavaSymphony determines the schedule of the workflow application based
on the activity execution times onto the resources. The activities are mapped
as Java objects onto the workstations. The Condor DAGMan scheduler uses
the DAG file to schedule the DAG of the workflow application. Each activity
is associated with a Condor Java-universe job submission file, which executes
the very same Java class onto the remote resources. The JavaMFlops is used
as a priority associated with the resources, so that the stronger machines
are preferred over the weaker. However, Condor cannot use the estimated
execution times to make scheduling decisions.

7.9.1 Wien2k

WIEN2k [96] is a program package for performing structure calculations of
solids by using density functional theory, based on the full-potential (lin-
earised) augmented plane-wave ((L)APW) and local orbitals (lo) method.

The components of the WIEN2k package can be organized as a workflow
(Fig. 7.21). The lapw1 and lapw2 TOT tasks can be solved in parallel by a
fixed number of so-called k-points. This is modelled by two parallel loops in

7.9 Scheduling Workflow Applications in JavaSymphony 187

(a
)

C
o
n
tr

o
l
fl
ow

(b
)

D
a
ta

d
ep

en
d
en

ci
es

(c
)

P
a
ra

ll
el

lo
o
p

el
im

in
a
ti
o
n

Fig. 7.21. Wien2k workflow

188 7 Experiments

the workflow graph. Without the parallel loops, the workflow graph becomes
quite complex (Fig. 7.21(c)). Various files are sent from one workflow activity
to another, which determine complex data dependencies between the activities
(Fig. 7.21(b)). At the end of the main sequence of the activities, a dummy
activity testconv performs a convergence test to determine if the calculation
needs to be repeated. This is modelled by the main sequential loop.

We have successfully built a JavaSymphony workflow application on top of
the WIEN2k package. We used HEFT (Heterogeneous Earliest Finish Time)
[47] list scheduling algorithm combined with the dynamic scheduling strat-
egy described in Fig. 5.23, to schedule and run this application on a set of
workstations.

Figure 7.22 presents the schedules for the two executions of the Wien2k
workflow: by using the JavaSymphony scheduler, respectively the Condor
DAGMan scheduler. The experimental run uses 8 k-points and the calcula-
tion within the main loop is repeated 3 times. This gives us a number of 67
activities in the execution plan, for both JavaSymphony and Condor DAG-
Man. As we can see in Fig. 7.22, both schedulers prefer to use the better
machines, as ranked by JavaMFlops attribute. Since the width of the graph
(the maximum number of activities that may run in parallel) is 8, the slowest
machines (i.e. pleisen and mulle) are not even used. Moreover, JavaSymphony
scheduler decides not to use two other slow machines (i.e. quirl and ankogel),
based on the estimations of the execution times for each activity. On the other
hand, Condor DAGMan uses the next best available resource whenever a new
activity is ready to run. As we can see in this case, using more resources to
run the workflow application does not necessarily improve the performance
for DAGMan scheduler, and JavaSymphony scheduler outperforms DAGMan
scheduler by a factor of 1.64.

7.9.2 Invmod/Wasim

The IWI Institute uses the hydrological model WaSiM-ETH [97] for the simu-
lation of catchment’s water balances. WaSiM-ETH is an extensive state of the
art program, which allows the user to choose different modules for the sim-
ulation of the single hydrological processes. Depending on the available data
and the simulation scope, various sub-models may be chosen. WaSiM-ETH
is a raster-based model working on a regularly spaced grid. For each grid, a
water balance is calculated by using meteorological data and derived spatial
data.

In order to calibrate the model and to evaluate the model’s efficiency,
time series of observed discharges at river gauges are required. If discharge
measurements for a sufficient time frame exist, an Inverse Modelling approach
allows a fast and more objective estimation of simulation parameters. The
Inverse Modelling software InvMod calibrates WaSiM-ETH parameters by
using a Levenberg-Marquardt- algorithm to minimize the least squares of the
differences of the measured and the simulated runoff for a determined period.

7.9 Scheduling Workflow Applications in JavaSymphony 189

Fig. 7.22. Gannt Chart for Wien2k workflow execution. JavaSymphony vs. Condor

190 7 Experiments

(a
)

C
o
n
tr

o
l
fl
ow

(b
)

P
a
ra

ll
el

lo
o
p

el
im

in
a
ti
o
n

Fig. 7.23. Invmod/Wasim workflow

7.9 Scheduling Workflow Applications in JavaSymphony 191

At the University of Innsbruck, as a cooperation between the Institute of
Hydraulic Engineering and the Institute of Computer Science, a Grid parallel
version [98] of the program has been developed, based on the Java CoG li-
braries. Based on this study, we have implemented a JavaSymphony workflow
application for Wasim/Invmod (Fig. 7.23).

The structure of the workflow graph is quite complex. The application
starts with an initialization phase, which prepares several input data sets to
be distributed onto the computing resources: activities Init and iInitData. The
main computation may be split in several identical runs, which is modelled by
the external parallel loop. For our experiment, we have chosen two identical
runs. Within the external parallel loop, the Invmod computation is split into
three sequential parts:

1. Wasim1 is sequential and comprises the activities iPrepareA, iRunA,
iPackA;

2. Wasim 2-3 is the main part of the original Invmod version and runs in
parallel according with a parameters number input value; At the end of
the phase, iWasimRunBII merges the results of the parallel runs. The
phase is repeated in a sequential loop until a termination condition eval-
uated by iPackC activity is fulfilled. The experiment runs two iterations
of the sequential loop and uses the parameters number with value 4 (i.e.
4 iterations of the internal parallel loop).

3. Wasim 4 comprises a sequence of several other activities.

At the end of the workflow execution, the results are merged. The execu-
tion plan of the experiment comprises 65 activities. Figure 7.24 presents the
schedules for the two executions of the Invmod/Wasim workflow: by using
the JavaSymphony scheduler, respectively the Condor DAGMan scheduler,
as described above. For the same reasons as for the Wien2K experiment (Sec-
tion 7.9.1), JavaSymphony scheduler outperforms DAGMan scheduler by a
factor of 1.22. Both schedulers prefer the better machines. Since the width of
the DAG is 8, some of the slowest machines are not even used. Condor DAG-
Man uses more of them, but this does not help it to improve the performance
in comparison with JavaSymphony counterpart.

7.9.3 Montage

Montage [99] is a software system for generating astronomical image mo-
saics according to user-specified size, rotation, WCS-compliant projection and
coordinate system, with background modelling and rectification capabilities
(Fig. 7.25).

Based on the Montage tutorial [99] and on the study done by Truong et
al. [100], we have built a JavaSymphony workflow for Montage application.
In Fig. 7.26, the activities mProject(i) are used to reproject input images
to a common spatial scale. A mAdd activity is used to co-add the repro-
jected images. Both types of activities access build image tables created by a

192 7 Experiments

Fig. 7.24. Gannt Chart for Invmod/Wasim workflow execution.

7.10 Summary 193

Fig. 7.25. MONTAGE. Process flow overview (Montage Tutorial)

call to mImgtbl module. We consider the calls to this module as part of the
mProject(i), respectively mAdd activities. Initialize activity distributes archive
images, whilst Finalize collects the resulted mosaics. The data transfers be-
tween the activities are modelled by data links (Fig. 7.26(b)): Raw images
are transferred from user site to computing sites, projected images produced
by mProject are transferred to the site where mAdd is placed, and finally the
result mosaics are collected at the user site. The mProject activities work in
a fork-join fashion, which is modelled by a parallel loop (Fig. 7.26(c)), with
the number of iterations specified at design time.

Figure 7.27 presents the schedules for the two executions of the Mon-
tage workflow: by using the JavaSymphony scheduler, respectively the Con-
dor DAGMan scheduler. The workflow graph for the Montage application is
simpler than in the previous experiments (Sections 7.9.1 and 7.9.2). Since
there are no branches or sequential loops, JavaSymphony does not need to
reschedule the workflow application. Therefore, a statically computed sched-
ule is used. We use a number of 64 parallel runs of the mProject activity, which
gives a total of 67 activities in the execution plan. Due to the large width of
the graph, the resource utilization is balanced. However, DAGMan scheduler
introduces gaps in the utilization of the best machine (i.e. petzeck) due to
synchronization problems, which is the main reason for performance deteri-
oration. In this experiment, JavaSymphony scheduler outperforms Condor’s
DAGMan by a factor of 1.15.

7.10 Summary

In this chapter, we have extensively tested the suitability of the JavaSym-
phony for a variety of distributed and parallel algorithms. Several JavaSym-
phony applications have been tested on both homogeneous and heterogeneous
distributed architectures.

Moreover:

1
9
4

7
E

x
p
erim

en
ts

(a) Control flow (b) Data dependencies (c) Parallel loop elimination

F
ig

.
7
.2

6
.

M
o
n
ta

g
e

w
o
rk

fl
ow

7.10 Summary 195

Fig. 7.27. Gannt Chart for Montage workflow execution.

196 7 Experiments

• We have demonstrated several high level features of the JavaSymphony
programming paradigm, including distributed virtual architectures for
managing heterogeneous distributed physical architectures, distributed
events, and distributed synchronization barrier;

• We have investigated the overhead due to our middleware. For this pur-
pose, we have analyzed several real-life applications and a set of special
designed micro benchmarks to test the basic features of JavaSymphony
programming paradigm (e.g. remote object creation, remote method invo-
cations and migration). We have proved that the JavaSymphony middle-
ware overhead is acceptably small, which makes our software suitable for
medium- to coarse-grained parallelism.

• We have compared JavaSymphony with two other Java-based program-
ming paradigms for concurrent and distributed applications, namely Java-
Party and ProActive. The results show that a system such as JavaSym-
phony is likely to achieve superior performance for heterogeneous archi-
tectures, compared to semi-automatic systems.

• We have demonstrated the JavaSymphony workflow scheduling technique.
The comparison with the well-known Condor DAGMan shows the superi-
ority of using a dynamic scheduling strategy.

8

Related Work

This thesis has tackled problems regarding Java-based distributed program-
ming, workflow model, workflow scheduling, and resource brokering. The most
relevant related work in each of these areas will be discussed in separate sec-
tions of this chapter.

8.1 Java-based Distributed Systems

There is a large amount of related work, which makes collaborative use of com-
putational resources over a global network, including low-level communication
systems (e.g. MPI [15] and PVM [101]) or higher-level dedicated systems (e.g.
Globus [12], Legion [102], and NetSolve [103]). Although these systems offer
heterogeneous collaboration of multiple systems in parallel – some of them
in wide-area setting – they involve rather complex maintenance of different
binary code, multiple execution environments, etc. CORBA [19] defines a mid-
dleware that bridges distributed objects across heterogeneous environments.
It allows client objects to invoke server objects across the network. All objects
expose a well-defined interface in the Interface Definition Language (IDL) and
thus can be invoked from anywhere in the network. CORBA as well as Globus
and Legion can be used to build the JavaSymphony Runtime System (JRS).
However, we have decided to use Java/RMI instead, assuming that it entails
less complexity and overhead.

Jini [104] provides a sophisticated technology for interconnecting generic
devices that provide services to other devices or users. Devices and their ser-
vices make themselves public by registering with a lookup service. Once con-
nections to devices are made, the lookup service is no longer involved in the
interactions between clients and services. Jini could be used to build part of
the JRS. However, whereas the JRS is currently built on a thin protocol layer
to provide JavaSymphony functionality (such as providing VAs), we believe
that performance problems may arise by using Jini, due to larger protocol
overheads.

198 8 Related Work

AdJava
Aglets
Aleph
Ajents
Bayanihan

Charlotte
Frontier
JADA
JavaParty
JavaSpaces
JavaSymphony

Javelin/CX

JAWS
Ninflet
POPCORN
ProActive
Voyager

A
rh

it
ec

tu
re

o
n
e-

d
im

en
si
o
n
a
l

X
X

X
X

X
X

X
X

X
X

m
u
lt
i-
d
im

en
si
o
n
a
l

X
X

X
X

X
X

X
d
y
n
a
m

ic
re

co
n
fi
g
u
ra

ti
o
n

X

S
y
st

em
in

fo
rm

a
ti
o
n

X
X

X
?

S
el

ec
ti
v
e

co
d
e

lo
a
d
in

g
X

X
X

X
X

L
o
a
d

b
a
la

n
ci

n
g

st
a
ti
c

X
X

d
y
n
a
m

ic
X

X
X

X
X

X
X

C
o
m

m
u
n
ic

a
ti
o
n

sy
n
ch

ro
n
o
u
s

X
X

X
X

X
X

X
X

a
sy

n
ch

ro
n
o
u
s

X
X

X
X

X
o
n
e

si
d
e

X
X

X
sh

a
re

d
-s

p
a
ce

X
X

X
X

cl
ie

n
t-

se
rv

er
o
n
ly

X
X

X
X

X
X

X

R
em

o
te

o
b
je

ct
si
n
g
le

-t
h
re

a
d
ed

X
X

X
X

X
X

X
X

X
X

X
m

u
lt
i-
th

re
a
d
ed

X
X

?
d
y
n
a
m

ic
co

n
v
er

si
o
n

X

L
o
ca

li
ty

co
n
tr

o
l

X
X

X
X

X
X

M
ig

ra
ti
o
n

ex
p
li
ci

t
?

X
X

X
X

?
X

a
u
to

m
a
ti
c

X
?

X
?

?
X

X
?

X

T
ra

n
sa

ct
io

n
m

ec
h
a
n
is
m

X
X

X
X

X
X

S
y
n
ch

ro
n
iz

a
ti
o
n

lo
ck

/
u
n
lo

ck
X

X
b
a
rr

ie
r

X
X

X
sh

a
re

d
-s

p
a
ce

X
X

X
o
th

er
s

X
X

E
v
en

ts
X

X
X

X
X

F
a
u
lt

to
le

ra
n
ce

X
X

X
X

X
X

X
X

Table 8.1. Properties of related Java-based middleware

In order to overcome system complexity, several research groups have intro-
duced Java-based global computing systems that benefit from Java’s platform
independence. These efforts can be broadly classified into two categories.

The first category concentrates on improving the implementation of the
Java Virtual Machine (JVM) [105, 106]. With a runtime system written in
C, Manta [107] provides a C-runtime system that uses a native compiler to
translate from Java directly to executable code. This system, however, im-
poses changes to the Java syntax and semantics. Other work focuses on im-
proving the performance of Java object serialization [108], or Java/RMI (e.g.
KarMI [109], NRMI [110], or NexusRMI [111]). JavaSymphony could directly

8.1 Java-based Distributed Systems 199

benefit from these optimizations, as the JRS runs on any standard compli-
ant JVM. Several other projects into this category, such as MultiJav [112],
cJVM [107], Jackal [113], Java/DSM [114], JESSICA [115] (and its optimized
successor JESSICA2 [116]), or Jikes RVM [117] (formerly known as Jalapeno
from IBM), modify the JVM and adapt it to a distributed shared memory
model.

The systems in the second category try to alleviate the usage of Java as a
distributed programming language. There are two ways of realizing this thing:

• By extending Java with special distribution constructs and semantics
(e.g. JavaParty and Charlotte), which also require changes to the Java
compiler and/or JVM. Furthermore, several projects extend Java lan-
guage with support for popular lower-level programming model, such as
data-parallel model (e.g. HPJava [118], Timber [119] or Titanium [120]),
PVM (e.g. JavaPVM [121], JPVM [122], or Jcluster [123]) and MPI (e.g.
javaMPI [124] or Jcluster).

• By offering special class libraries, which are compatible with any JVM.
JavaSymphony falls into this sub-category, by providing a Java library
that simplifies the development of distributed Java applications.

Table 8.1 shows a few alphabetically ordered projects, that fall in the
second category, along with a list of supported features. The projects address
different aspects of distributed computing and, therefore, some of the features
do not apply to all of them.

• Architecture. According to the organization of the computing resources,
we classify the systems in: one-dimensional systems, when the resources
are organized as a simple list of machines, and multi-dimensional systems,
which use structures that are more complex. The systems that are ori-
ented to web volunteer computing (e.g. Bayanihan [125], Charlotte [126],
POPCORN [127]), or systems which employ a three-tier architecture (e.g.
Javelin [128], Ninflet [129]) are included in the second category; however,
the resource organization is transparent to the user or application. For
JavaSymphony, the allocation and organization of resources is explicit for
each application. In addition, JavaSymphony can dynamically change the
configuration of the resources at runtime.

• System information. A few systems provide an interface to runtime
information about the computing resources used by the applications.

• Load balancing. Several systems provide automatic load balancing,
which can be static, if the resources are allocated in the initialization
phase, or dynamic, if there is the possibility to reallocate the computing
resources at runtime.

• Selective code loading. This feature is valid if the code for distributed
applications could be selectively loaded onto the distributed computing
resources.

• Communication. We identify a few types of communication which are
supported by related middlewares: Synchronous, asynchronous, one-sided

200 8 Related Work

communication are supported for remote method invocation. Share-spaced
communication is characteristic to systems that use virtual shared memory
or shared objects to coordinate remote threads. Client-server only com-
munication applies to web-computing based systems for which the client
applications use a set of server/hosts that do not communicate with each
other.

• Remote Objects. This concept may have distinct meanings for distinct
systems. Some systems use remote distributed objects for which several
methods can be executed at the same time (multi-threaded). For others,
only a single method can be executed at a time or even the object is in fact
a remote thread (e.g. Aleph [130]). For task-oriented systems, this feature
does not apply. In some cases the users are allowed to dynamically convert
local objects to remote objects.

• Migration. Objects can be migrated among computing resources under
certain conditions (e.g. load balancing strategies, locality). Some systems
support migration among computing resources. Migration can be explicit,
by using library calls inside the code, or automatic, when the system (based
on an internal status) decides to migrate objects/tasks.

• Transaction mechanism. Some systems can interrupt the execution of
a thread of execution, save the current state and resume execution or
rollback. This is in particular useful for safe migration of objects that are
changing their state.

• Synchronization. Some systems provide synchronization mechanism like
lock/unlock, barrier, or based on shared space (shared objects in a virtual
shared memory).

• Events. A few systems offer an event mechanism, which allows asyn-
chronous interaction among parallel threads of execution.

• Fault tolerance. Fault tolerance mechanisms are provided to permit re-
covery when resources become unavailable. Systems oriented to web com-
puting are in particular interested in this feature.

We extensively studied the available documentation for the systems in
Table 8.1. In some cases, in which it was not clear if a specific feature is
supported, we have marked this in our table with ”?”.

Charlotte [126] supports a distributed shared memory on top of the JVM,
but does not enable the programmer to control locality of data. Instead, pro-
grams supported by Charlotte alternate sequential and parallel phases and
define routines for parallel execution. Charlotte also changes the semantics of
Java language and requires special JVM/compiler to run the applications.

POPCORN [127] introduces a market-based mechanism of trade in CPU
time, which motivates processors to provide their CPU cycles for other peo-
ple’s computations.

Bayanihan [125] supplies a framework for volunteer computing based on
Java applets. Hosts over Internet volunteer to do work by visiting a web page
and executing an applet, while client applications provide independent tasks

8.1 Java-based Distributed Systems 201

to be computed. Automatic dynamic scheduling and fault tolerance mecha-
nisms are provided, but none or little support is provided for communica-
tion or synchronization among hosts. A similar approach is implemented by
Frontier [131], a commercial distributed application from Parabon. The client
applications solve tasks distributed as Java class files.

Javelin [128] (and its successor CX [132]), Ninflet [129], SuperWeb [133],
and JaWS [134] employ a three-tier architecture with broker, client and host
entities. Clients seek computing resources by submitting their work in form of
applets or Java objects, register with a broker and submit their work in the
form of an applet/Java object. Hosts donate resources, contact the broker and
run applets. These approaches are appropriate for master/worker and divide-
and-conquer applications, but lack flexible mechanisms for communication
among hosts. They also provide very little help to control locality. Ninflet
and JAWS offer a migration mechanism. JAWS documentation speaks about
possible communication among the hosts, but the mechanism is not clear.
JAWS also uses a credit-based mechanism to allocate computing resources.

Jada [135] and JavaSpaces [136] can be considered as Linda derivatives
which provide none or limited support to control locality. Parallel threads of
execution can coordinate their activity or communicate, by using a virtual
shared space.

Aglets [137] is a mobile agent system in which agents have a relative inde-
pendence and can migrate or communicate via messages or events. Typically,
agent systems do not provide references to remote objects, which restricts the
development of flexible distributed applications.

Aleph [130] extends the thread parallelism by using remote threads that are
distributed among several (remote) JVMs. The remote threads communicate
via GlobalObjects, which provide a virtual shared space.

Voyager [138] is a Java-based commercial middleware with several charac-
teristics similar to JavaSymphony. Voyager supports several messaging types,
remote references, several widely-used messaging protocols, complex resource
utilization mechanism, and security.

JavaParty [139, 86], ProActive [140] and Ajents [141] present more simi-
larities with our middleware. These systems support the creation of remote
objects, which are distributed among computing resources, and communica-
tion among these objects.

JavaParty extends Java with a class modifier remote. Objects generated for
remote classes are distributed among several computing resources. A disad-
vantage is that a special (pre)compiler is required to execute the application.
JavaParty also uses optimized serialization and Java/RMI [142].

AdJava [143] adopts an approach similar to JavaParty: It uses a Distribute
special keyword to indicate objects that can be distributed, and a pre-compiler
to produce Java-compatible code from applications that use this extension.

ProActive (formerly known as Java//) adds a lot of functionality (poly-
morphism, future objects, sophisticated synchronization libraries) at the cost
of increased complexity. The RMI details are not sufficiently hidden and the

202 8 Related Work

programming effort becomes considerable. The functionality of the software
has been recently enhanced with new features to support peer-to-peer, data-
parallelism, several Grid/cluster protocols for communication, fault-tolerance
and checkpointing [87].

Ajents has influenced JavaSymphony’s programming model for remote ob-
ject creation, asynchronous remote method invocation and class loading. How-
ever, Ajents, just as most other systems, does not allow the programmer to ex-
plicitly control object locality. Ajents also does not support multi-dimensional
architectures, one-sided remote method invocations, selective class-loading to
specific computing nodes, and access to hardware/software system parame-
ters as JavaSymphony. Ajents, however, offers a sophisticated check-pointing
mechanism and supports the migration of objects while their methods are
executed.

8.2 Algorithms for Scheduling Tasks-based Applications
in Distributed Systems

Most of the related work assumes that parallel applications comprise a set
of tasks that work together to realize the goal of the main application. A
task, as part of a parallel application is usually supposed to be a computation
unit that runs sequentially on a single computing resource. The goal of the
scheduling algorithm is to find a mapping of the tasks of one or several parallel
applications onto the computing resources such that a performance metric
(e.g. execution time, throughput, communication cost, computation cost) is
optimized (i.e. minimized or maximized). In most of the cases, the scheduling
problem is NP-complete [21], and the algorithms are heuristics that provide
a close-to-optimal solution.

The problem of scheduling multiple tasks on distributed systems was ex-
tensively studied and it still represents an important research problem. There
are plenty of algorithms introduced to solve this problem. However, each al-
gorithm is based on some preliminary assumptions (e.g regarding application
model or target computing architecture), and tries to optimize a specific per-
formance metric. These characteristics may significantly vary from one algo-
rithm to another, which makes the classification of scheduling algorithms and
the comparison of their performance rather difficult.

Detailed comparisons are presented in several papers [49, 46, 42]. However,
none of such overviews could cover all the existing scheduling heuristics. We
propose a simple classification of the scheduling algorithms for task-based par-
allel applications, according to two main criteria: the type of the application
and the type of the target system.

The Application Type

There are two main classes of task-based parallel applications:

8.2 Algorithms for Scheduling Tasks-based Applications in Distributed Systems 203

• Meta-tasks comprise tasks that are executed independently.
• Applications based on inter-dependent tasks assume that there is

a dependency relation over the set of the comprising tasks (usually based
on data communication).

Therefore, we identify two types of scheduling algorithms: scheduling al-
gorithms for meta-tasks, respectively scheduling algorithms for precedence-
constrained task graphs. The algorithms in the second category commonly
have higher complexities in comparison with those in the first category, due
to the more complex structure of the application, and commonly address only
Directed Acyclic Graphs (DAGs) of tasks.

We discuss more details and present several examples for these two types
of algorithms further in this section.

The Target System Type

From this point of view, there are scheduling algorithms that assume a ho-
mogeneous system and algorithms for heterogeneous systems. Generally, the
algorithms for heterogeneous systems have a higher complexity than those for
homogeneous systems.

Scheduling heuristics for homogeneous systems.
Heuristics of this type have been used for the compilation of parallel appli-

cations, to improve their performance on specific target machines. In this case,
it is assumed that a parallel application consists of sequential tasks, and that
the target computing architecture consists of several identical processors. Each
of the tasks is assigned to a processor. Mainly because homogeneous archi-
tectures were commonly used for parallel computing before the heterogeneous
systems, this class of heuristics has been intensively studied. There are several
distinct assumptions and/or scheduling techniques, which further divide these
algorithms in sub-classes:

• Heuristics for unbounded number of processors include DSC [144],
EZ [145], LC [146]. The assumption that the number of processor is unlim-
ited is not applicable in most cases. The algorithms of this type employ a
technique called clustering, which groups the tasks in an unbound number
of clusters, in order to reduce the completion time. A post-processing step
is needed to map the clusters onto actual processors.

• Scheduling heuristics that use duplication for a bounded number of
processor [46, 49] include DSH [45], BTDH [50], CPFD [51], PY [52], LWB
[53], LCTD [54], MJD [55], DFRN [56]. Duplicating task usually results in
better scheduling performance at the cost of significantly higher complex-
ity. The reason for using duplication is to reduce the communication cost
of some schedule, by duplicating the tasks that intensively communicate
with other application tasks.

204 8 Related Work

• Scheduling heuristics without duplication for a bounded number of
processors. Most algorithms in this class are based on the list scheduling
technique. The basic idea is to assign priorities to the tasks of a parallel
application, and to place the tasks in a list in descending order of priorities.
The tasks with higher priority are examined for scheduling before those
with a lower priority. The large number of list scheduling algorithms is the
result of the numerous variations in the method of assigning priorities and
maintaining the list of ready tasks. The algorithms of this type are known
to perform well at relatively low cost.
Radulescu et al. [49] further divide the list scheduling algorithms in two
classes:

– List scheduling with static priorities (eg. MCP [57], DPS [58], HFLET
[59], CPND [60], CPM [61]). For these algorithms, the priorities asso-
ciated with the tasks are computed at the beginning. Thereafter, each
task is selected according to its priority and it is scheduled on the
”best” processor (according to specific criteria).

– List scheduling with dynamic priorities (e.g. ETF [62], ERT [63], DLS
[66], DCP [64]). In this case, the priorities are computed gradually at
each iterative step, taking into consideration the tasks already sched-
uled. Note that, even if the priorities associated with the tasks are
dynamically computed, the algorithms are considered to be static (i.e.
the schedule does not change at runtime).

All the algorithms mentioned above assume a DAG-based application
structure. We could not identify algorithms dedicated for scheduling meta-
tasks on homogeneous systems. However, the work of Hagerup et al. [147]
outlines several scheduling strategies to allocate chunks of tasks onto a paral-
lel machine (i.e. homogeneous system). These include: Static-chunking (SC)
[148], self-scheduling (SS), Guided self-scheduling (GSS) [149], Trapezoid self-
scheduling (TSS) [150], Factoring [148], TAPER [151], and Bold scheduling
[147]. In this case, the basic idea is that the idle processors access a cen-
tral monitor, which assigns a batch of previously unassigned tasks to it. The
above-mentioned scheduling strategies assume that task execution times fol-
low a probabilistic distribution known a priori. Under these assumptions, the
scheduling algorithm tries to determine the optimal size of a batch, in order
to minimize the overall finishing time.

A distinct approach is used by James et al. [152]. This paper focuses
on cluster computing, which may include also heterogeneous systems, but
it describes results obtained on a homogeneous system. Several schedul-
ing algorithms/strategies are described: round-robin scheduling, clustered
round-robin scheduling, minimal adaptive scheduling, continual adap-
tive scheduling, first-come first-served (FCFS) scheduling. These could
be used by the so-called queuing software (e.g. PBS [153], LoadLeveler [154],
Condor [155]), to place independent jobs onto processing nodes, both for
homogeneous and heterogeneous systems. An important advantage of these

8.2 Algorithms for Scheduling Tasks-based Applications in Distributed Systems 205

scheduling strategies is that they do not require estimations of job execution
times.

Scheduling heuristics for heterogeneous systems.
There is a growing interest for building parallel applications, which target

heterogeneous systems. A new class of scheduling algorithms is needed for
the applications that run in heterogeneous environments. The main difference
is that the tasks of an application have distinct behaviours when mapped
onto specific computing elements of a heterogeneous system. The scheduling
algorithms have to consider the machines’ heterogeneity, which makes them
more complex than similar algorithms for homogeneous systems.

There are many heuristics algorithms for scheduling DAGs of tasks onto
heterogeneous systems, including LDBS [65], DLS [66], GDL [66], BIL [67],
Hybrid Re-mapper [68], MH [69, 47], LMT [70, 47], TDS-1 [71], TDS-2 [72],
FCP [73], FLB [73], HEFT [47], HCNF [74], CPOP [47]. Many of these al-
gorithms use the well-known list scheduling technique, as for homogeneous
systems.

On the other hand, many research groups focused on scheduling (large)
sets of independent tasks (meta-tasks) on heterogeneous systems. This class of
algorithms is better represented than in the homogeneous case. Heterogeneous
environments like network of workstations or computational Grids seem to be
more suitable for the so-called embarrassing-parallel applications, which can
be decomposed into a (large) number of independent sub-tasks.

Several heuristics for scheduling meta-tasks on heterogeneous computing
system are presented in [42]. These include:

• OLB - Opportunistic Load Balancing [156, 157] assigns each task in
arbitrary order to the next available machine.

• UDA: User-Directed Assignment [156, 157] (also known as LBA -
Limited Best Assignment) assigns each task in arbitrary order to the ma-
chine with the best expected execution time.

• Min-Min [156, 157, 21] assigns at each step a task that has the minimal
value of the overall minimum completion time.

• Max-Min [156, 157, 21] assigns at each step a task that has the maximal
value of the overall minimum completion time.

• Sufferage algorithm [44] chooses first a task with the highest sufferage
value(i.e. the difference between its best and second best completion time).

• Genetic algorithms (GA) [158, 159], Simulated Annealing (SA)
[160, 159] and Genetic Simulated Annealing (GSA) [161, 159]
use a representation of the schedule as a chromosome and try to find the
chromosome with the best fitness value (the makespan of the schedule).
These algorithms iteratively use random generated solutions to improve
the fitness value, until some specific stopping criteria are met.

206 8 Related Work

• Tabu search [162, 159] also uses random generated solutions to search in
a large solution space. A tabu list is used to keep track of the regions of
the solution space in order to avoid searching for them again.

• A∗ heuristic [163, 159] performs an extensive tree-based search in large
solution spaces. It provides better solutions at the cost of significantly
larger scheduling overhead.

8.3 Workflow Research in Distributed and Grid
Computing

8.3.1 Workflow Languages

Building DAG-based application workflows is an old topic, which has been
widely addressed in numerous scientific fields. Following the recent Grid hype,
workflow applications have become very popular in Grid community too,
and many research and industry groups have proposed language standards
to model and develop workflow applications.

Web services [164] have become the base technology for developing secure
and reliable Grid services, and consequently workflow languages for Web ser-
vices have faced significant development in recent times. Web Services Flow
Language (WSFL) [165], currently developed by IBM, describes the compo-
sition of Web services by combining a flow model and a global model. The
first one defines the workflow activities, interconnected through control and
data links, which correspond to the composite Web services, respectively the
order in which the activities are executed. The global model defines how the
activities are mapped into operations of the individual Web services. The
Grid Service Flow Language (GSFL) [166] is a proposed adaptation to the
OGSI-based Grid services model.

Microsoft has proposed XLANG language [167] to model business pro-
cesses as autonomous agents.

The Business Process Execution Language for Web Services (BPEL4WS)
[168] unifies two previously competing standards: WSFL and XLANG. It pro-
vides a language for the formal specification of the business processes and busi-
ness interaction protocols by extending the Web Services interaction model
to support business transactions.

Gridbus [169, 170] provides a simple XML-based workflow language to
define tasks and their dependencies. The workflow description language of
Gridbus is aimed towards enabling the expression of parameterization and
users’ QoS requirements.

GridAnt [171] re-uses the Ant [172] framework to develop a simple, yet
powerful client side workflow system for Grids. GridAnt is a tool used not
only to map complex client-side workflows, but also as a simplistic client
to test the functionality of different Grid services. Applications with simple

8.3 Workflow Research in Distributed and Grid Computing 207

process flows can benefit from GridAnt without having to endure any complex
workflow architectures.

The above-mentioned languages are based on the widely used XML (eX-
tensible Markup Language) [173]. On the other hand, Condor DAGMan (Di-
rected Acyclic Graph Manager) [174] uses a proprietary format to specify the
DAG-based workflows. An input script describes the DAG, whilst each node
in the graph is associated with a Condor submit description file.

AGWL (Abstract Grid Workflow Language) [175], developed at Univer-
sity of Innsbruck within the Askalon project [176], provides an advanced and
user-oriented Grid workflow language, which shields the complexity of the
underlying Grid infrastructure and runtime environment from the application
developer. AGWL aims to address several commonly drawbacks of the ex-
isting work: control flow limitation (e.g. DAG-based workflows lack branches
and loops), limited mechanism for expressing parallelism, restricted data flow
mechanism (e.g. restricted to sending/receiving files), implementation specifics
and low level constructs, etc. The high level AGWL program is compiled to a
CGWL (Concrete Grid Workflow Language), which is managed by a WfMS.

We do not intend to compete with highly complex workflow definition lan-
guages. Instead, the JavaSymphony specific XML-based specification language
for workflow applications is simple, in order to allow an easy manipulation of
the workflow structure by a scheduler.

8.3.2 Workflow Representation

Graph-based modeling [177] of workflows has been in the attention of workflow
research groups as well. Graphical representation of the workflows is very
intuitive and can be easily handled by non-expert users.

UML Activity Diagrams [178, 41] or Petri Nets [179] have been extensively
studied as alternatives for the representation of the workflows ([180, 39]).

Petri Nets [179] are directed graphs with specific properties that can model
sequential, parallel, repetitive and conditional execution of tasks. Petri Nets
have been used in workflow management systems such as GridFlow [181],
FlowManager [182], and XRL/Flower [183]. However, Eshuis et al. [180] con-
sider that Petri Nets need semantic extensions in order to model workflow
activities accurately. UML activity diagrams do not have these problems.

Van der Aalyst et al. [39] describe in detail a large set of workflow pat-
terns, which are represented in UML activity diagram model. UML activity
diagrams have been extended and are commonly used to represent workflows
in related work [41, 184]. We use ourselves a graphical representation based on
the UML activity diagram. Complex workflow specification languages or com-
plex workflow patterns are not commonly associated with advanced scheduling
techniques for distributed workflow applications. Therefore, we prefer to use
a reduced set of workflow patterns [39], in order to be able to investigate such
advanced scheduling techniques.

208 8 Related Work

Besides Petri Nets, and UML activity diagrams, other workflow manage-
ment system may use their own graphical representation of workflow compo-
nents. For example, Triana [185, 186] allows users to utilize predefined software
components and assemble them into DAG-based workflows.

8.3.3 Workflow Management Systems

The research in the workflow applications field does not confine itself to work-
flow languages or workflow representation model. Research groups also address
enactment engines, scheduling and fault tolerance for workflow applications.
In the following, we describe how several workflow management systems ad-
dress some of these issues.

The XCAT [187] Application Factories address Grid workflow applications
within the Common Component Architecture (CCA). XCAT allows compo-
nents to be connected to each other dynamically. However, scheduling of com-
ponents and fault tolerance are not addressed.

Within the myGrid toolkit [188], the IT Innovation Workflow Enactment
Engine [189] is a workflow orchestration tool for Web services. It supports
an XML workflow definition language that is based on WSFL and supports
control and data flow.

The collaboration of IT Innovation, EBI and other members of myGrid
project has produced SCUFL (Simple Conceptual Unified Flow Language)
used within Taverna [190, 191] workflow management system. Taverna sup-
ports DAG-based workflows and its own graphical representation of the work-
flows. User-controlled fault tolerance is achieved by setting up various specific
parameters such as the number of retries, time delay, alternate processor or
critical level for faults on each processor. Scheduling is not addressed: each
task is individually allocated at the time it is ready to run, according to a
just-in-time planning scheme.

The Unicore project [192, 193] introduces a DAG-based graphical model,
which supports batch jobs that run over a set of distributed resources and
temporal dependencies between them. Recently, advanced flow controls in-
cluding conditional execution (e.g. if-then-else) and repeated execution (e.g.
do-n, do-repeat) have been added. Fault tolerance and scheduling are not ad-
dressed: Unicore assumes that the workflow runs on reliable resources and
uses just-in-time planning to run the jobs.

Pegasus (Plan for Execution in Grids) [194] is a workflow manager for
the Chimera project [195], in the broader context of GryPhyN (Grid Physics
Network) [196]. There are two stages in the development of a workflow applica-
tion: first, an abstract workflow is built. The workflow jobs are interconnected
through data dependencies only. In the second stage, the abstract workflow
is mapped into a concrete one, which maps each graph node into a corre-
sponding resource. The resource selection is based on random allocation or on
performance prediction. The authors advocate artificial intelligence planning
[197]. However, the mapping is static, and the workflow is transformed into

8.3 Workflow Research in Distributed and Grid Computing 209

a script for Condor DAGMan and associated Condor jobs. Pegasus does not
address fault tolerance.

DAGMan [174] submits jobs to Condor in an order that obeys the DAG
dependencies, and processes the results. The jobs are scheduled only when
they are ready to run, based on Condor specific techniques such as resource
matchmaking and cycle stealing. In case of failure, a rescue DAG is created,
which can be used to re-submit the failed jobs.

GridFlow [181] is more concerned about service-level scheduling and work-
flow management, and less about workflow specification. GridFlow is built on
top of ARMS [198], an agent-based resource management system for Grid
computing. A workflow in GridFlow represents a flow of activities, each rep-
resenting a sub-workflow that is executed in a local grid. GridFlow comprises
a user portal and services for both global grid workflow scheduling, built on
top of ARMS, and for local grid sub-workflow scheduling. At each local grid,
sub-workflow scheduling and conflict management are processed on top of
existing performance prediction based task scheduling system.

GrADS (Grid Application Development Software) [43] provides application-
level scheduling to map the tasks of workflow and meta-task applications onto
a set of distributed resources. The research within GrADS project focuses on
developing new scheduling and rescheduling methods. Min-min, Max-min and
Sufferage heuristics are used to schedule DAGs of tasks. The scheduler obtains
resource information by interrogating grid services such as MDS (Monitor-
ing and Discovery Service) [199] or NWS (Network Weather Service) [200].
The scheduling strategy estimates the performance of a workflow compo-
nent on a single Grid node, based on parameters such as resource usage,
number of floating-point operations or memory access patterns. Furthermore,
GrADS approach monitors resource performance and the agreement between
the application demands and resource capabilities (performance contract).
Based on these, corrective actions can be taken, according to two approaches:
stop/restart implies migration of task and data; process swapping implies the
use of idle backup machines.

On the other hand, most systems for allocating tasks on grids, (e.g. DAG-
Man [174], Pegasus [201]), currently allocate each task individually at the time
it is ready to run, without aiming to globally optimise the workflow schedule.
In addition, they assume that workflow applications have a static DAG-based
graph, which may be seen as a too restrictive constraint.

The DAG scheduling problem has been intensively studied in the past,
mostly in connection with parallel application compiling techniques. A parallel
application is represented by a DAG in which nodes represent application tasks
(computation) and edges represent inter-task data dependencies (communi-
cation). Numerous scheduling techniques and scheduling heuristics have been
developed for both homogeneous and heterogeneous systems, including list
scheduling [47, 46, 74, 73], scheduling with task duplication [45, 50, 51, 56, 46],
or clustering technique [144, 145, 46]. However, these heuristics assume a static
application graph and they statically compute the schedule before the execu-

210 8 Related Work

tion is started. Static scheduling of static DAG structures is, however, too
restrictive for the new generation of Grid workflow applications. Therefore,
we propose a new approach that includes loops and conditional branches into
the workflow model and extends the static scheduling with novel dynamic
scheduling techniques to accommodate these new constructs.

8.4 Resource Management Tools

Resource brokering is a fundamental component that addresses the discov-
ering resources for the consumers purposes. Often, the term gets mixed up
with closely related concepts such as resource discovery/dissemination, re-
source monitoring, or resource management. The last concept generally covers
a wider area of research, which may include scheduling as well [202]. In this
section, we investigate several resource management tools for Grid computing,
focusing mainly on their resource brokering features.

Collecting present or predicted information about the available resources is
essential for any resource management system. Globus Toolkit [12] offers Grid
Monitoring and Discovery Service (MDS) [199], a powerful tool for resource
management, which is able to provide dynamic information regarding available
services or machine specifics. Moreover, Network Weather Service (NWS) [200]
produces forecasts for the performance of network and computing resources.
A prototype of NWS was implemented for Globus. However, a resource broker
in the Globus system is still missing.

Numerous resource management systems make use of a well-known match-
making mechanism, which is best illustrated by Condor [155]. Condor sched-
uler is based on the matchmaking between the ClassAdds [203] for the re-
sources and those for the Condor jobs. These include resource properties,
respectively the job placement constraints, similar to the resource attributes
and activity constraints described in Chapter 6.

GrADS [43] resource selection framework [204], addresses the discovery
and configuration of physical resources that match application requirements.
It provides a declarative language, using set matching techniques, which ex-
tends Condor matchmaking.

Legion [102] is in essence an operating system for Grid. The scheduling
process in Legion broadly translates to placing objects on processors. In Le-
gion, a collection object (similar in spirit to MDS) functions as a database
for system information. Application-specific information can be specified in a
class object, which includes the selection of a specific scheduler.

CrossGrid [205] uses a matchmaking scheduling mechanism, based on al-
locating resources to tasks expressed in JDL (Job Description Language).
The scheduling is not separated from the resource brokerage and both are
addressed by the same service called Resource Selector.

Nimrod-G [206] is a Grid resource broker for managing and steering task
farming applications, which follows a computational market-based model for

8.4 Resource Management Tools 211

resource management. Nimrod-G uses the services of other resource manage-
ment systems, such as Globus or Legion, for resource discovery and resource
dissemination.

AppLeS [207] is another example of Grid-level resource management sys-
tem that uses the services of other systems such as NetSolve [103], Globus or
Legion for task execution. Moreover, AppLeS project focuses on developing
scheduling agents for individual application templates. The AppLeS schedul-
ing methodology makes extensive use of NWS facilities.

GridARM [208], part of Askalon project [176] is a Grid resource manage-
ment system that provides automatic resource brokerage, Virtual Organization-
wide fine-grained authorization, advanced reservation and negotiation be-
tween a potential client and resource provider. Further author’s work [209]
proposes an ontology-based resource description, discovery and correlation
mechanism, for an automatic brokerage service of the Grid resource manage-
ment system.

The work of Krauter et al [210], which includes a taxonomy and a survey
of resource management systems for distributed computing, can be consulted
for further details about the related work in this area.

Our theoretical framework presented in Chapter 6 is complementary to
the work described above, by modelling resource attributes and activities re-
quirements for a generic matchmaking mechanism, by proposing a model for
advance reservations, or by addressing the resource monitoring problems. The
model applies well to JavaSymphony Runtime System and to JavaSymphony
scheduler/enactment engine for workflow applications. However, we believe
that its applicability can be easily extended to other related systems.

9

Conclusions

We have developed JavaSymphony, a new high-level programming paradigm
for Java-based parallel and distributed applications. In this thesis, we have
presented JavaSymphony high-level features, which can be used to implement
distributed applications for wide classes of heterogeneous systems, ranging
from small-scale cluster computing to large scale Grid computing. Further-
more, we have implemented the JavaSymphony Runtime System, a middle-
ware to support the execution of distributed applications that have been de-
veloped by using the JavaSymphony programming paradigm. We have en-
hanced this middleware with features for the development and management
of distributed workflow applications, and we have introduced novel scheduling
strategies to improve the performance of such applications. The usefulness of
our programming paradigm is demonstrated through various experiments.

This chapter concludes the thesis with a summary of our main contribu-
tions and an outline of the potential future research directions.

9.1 Contributions

In this section, we outline the main contributions of this thesis.

9.1.1 The JavaSymphony Programming Paradigm

JavaSymphony programming paradigm, on the one hand, supports automatic
mapping, load balancing and migration of objects without involving the pro-
grammer. On the other hand, in order to enhance the performance of dis-
tributed applications, JavaSymphony provides a semi-automatic mode, which
leaves the error-prone, tedious, and time consuming low-level details (e.g. cre-
ating and handling of remote proxies for Java/RMI) to the underlying system,
whereas the programmer controls the most important strategic decisions at a
very high level.

214 9 Conclusions

We have introduced JavaSymphony programming paradigm with various
features highly useful for the implementation of distributed applications:

• Dynamic virtual architectures. The JavaSymphony dynamic architec-
tures (VAs) are used to manage distributed and heterogeneous resources
at a high-level. The VAs support a lock/unlock control mechanism, which
enables safe concurrent access. The locality of the resources is controlled
by an allocation algorithm which optimally maps resources at the creation
of the VAs, so that they are as closed to each other as possible, accord-
ing to a configuration set up by the JavaSymphony Administration Shell
(Sections 4.2, 4.3).

• System parameters and constraints. The VAs allow access to static
and dynamic information regarding the hardware capabilities. JavaSym-
phony constraints can be used to examine the properties of physical re-
sources, which include static parameters such as machine name, operating
system and peak performance parameters, or dynamic parameters such
as system load, idle times, and available memory. This information can
be inspected at runtime, thus allowing the user to take critical decisions
regarding resource management and object mapping/migration, in order
to dynamically enhance the overall performance of the distributed appli-
cation.

• Flexible distributed objects. JavaSymphony objects (JS objects) en-
able the use of various types of remote method invocations: synchronous,
asynchronous or one-sided. Concurrent access to one object can be man-
aged by using a lock/unlock mechanism. JS objects may be migrated to
other computing resources automatically or based on user instructions.
Generic (Java) objects can be transformed into JS objects and may be
accessed by remote entities. Concurrent method calls for one object can
be done in parallel for multi-threaded objects, or sequentially ordered
for single-threaded objects. This behaviour can be changed dynamically.
Moreover, JavaSymphony provides facilities to make JS objects persistent
by saving and loading them to/from external storage.

• Distributed synchronization. The programming paradigm supports
the synchronization of parallel and distributed threads of executions. On
the one hand, synchronization of parallel asynchronous method invoca-
tions allows flexible coordination of multiple threads at the initiation site.
On the other hand, a distributed barrier mechanism allows non-centralized
coordination of concurrent threads.

• Distributed event mechanism is flexible and supports asynchronous
communication between remote entities within a distributed application.
Any two objects can become the producer, respectively the consumer of a
specific event. Moreover, events can be filtered according to event source,
event target, producer location, consumer location, or event type.

9.1 Contributions 215

9.1.2 The JavaSymphony Runtime System

In order to support the JavaSymphony programming paradigm and its high-
level programming constructs, we have designed and implemented the JavaSym-
phony Runtime System. The JavaSymphony Runtime System is a distributed
middleware, whose components (called agents) are running in background
onto each machine that participates to the execution of JavaSymphony appli-
cations. Moreover, the JavaSymphony Runtime System supports monitoring
and management of the distributed resources and the applications, enables
communication based on Java RMI mechanism among application’s objects,
and a simple fault-tolerance mechanism.

We have formally described the JavaSymphony Runtime System by using
a variant of Pi-calculus, a calculus for mobile processes. A formal description
of the middleware is implementation-independent and thus useful for possible
porting it onto other platforms (e.g. Grid or Web services instead of Java
agents and SOAP-based communication instead of Java RMI). Moreover, this
description supports in-depth theoretical analysis and verification.

9.1.3 Scheduling Techniques for Distributed Workflow
Applications

The thesis proposes a novel method for dynamic scheduling of workflow appli-
cations in heterogeneous environments. The method can be used with many of
the existing scheduling algorithms (Section 8.2). In order to use the scheduling
method in the context of JavaSymphony, we have developed:

• A workflow model, which extends the classical DAG-based workflows with
loops and conditional branches elements. The novel workflow model allows
dynamic changes of the execution graph based on data available at run-
time. Furthermore, we introduce a formal representation of the workflow
applications, based on Pi-calculus, which allows theoretical understanding
of the interactions between the workflow elements.

• A XML-based specification language used to describe the workflow and
its element, according to the workflow model. The language is simple,
yet expressive and allows specifying QoS information associated with the
resources and with the workflow activities.

• An user interface for building the graphical representation of the work-
flow. The graphical elements map directly to the elements of the workflow
model. The interface uses the workflow specification language to save/load
the workflow to/from external storage.

• An enactment engine, part of the user interface. The enactment engine
uses our scheduling strategy to schedule workflow applications onto a set
of heterogeneous resources. A JavaSymphony application is automatically
built and executed, according to the workflow specification, respectively
the scheduling strategy.

216 9 Conclusions

We analyze our scheduling method for a few other scheduling objective
functions. Our analysis includes an economical cost model and a scenario
with multiple objective functions.

Moreover, we propose a theoretical approach to model the resources and
QoS associated with the workflow activities in relation with the resource bro-
ker.

9.1.4 Published Contributions

The work described has been widely accepted as important contribution in the
field of programming paradigms for distributed and Grid computing, respec-
tively scheduling for distributed applications. In the following, we present the
list of papers published or accepted for publication, which have contributed
in these areas.

Journals

• Thomas Fahringer and Alexandru Jugravu. JavaSymphony: A new pro-
gramming paradigm to control and to synchronize locality, parallelism,
and load balancing for parallel and distributed computing. in Concurrency
and Computation. Practice and Experience. 17(7-8):1005-1025, June/July
2005.

• Alexandru Jugravu and Thomas Fahringer. JavaSymphony, a Program-
ming Model for the Grid. in Journal for Future Generation Computer Sys-
tems - Grid Computing: Theory, Methods and Applications , Promotional
Issue January 2005

Referred Conferences

• Thomas Fahringer, Alexandru Jugravu, Beniamino Di Martino, Salvatore
Venticinque, Hans Moritsch. On the Evaluation of JavaSymphony for Clus-
ter Applications. in Proceedings of the IEEE International Conference on
Cluster Computing CLUSTER2002, Chicago, Illinois, Sept. 2002.

• Thomas Fahringer and Alexandru Jugravu. JavaSymphony: New Direc-
tives to Control and Synchronize Locality, Parallelism, and Load Balanc-
ing for Cluster and GRID-Computing. in Proceedings of Joint ACM Java
Grande - ISCOPE 2002 Conference, Seattle, Washington, Nov. 2002.

• Alexandru Jugravu and Thomas Fahringer. On the Implementation of
JavaSymphony. in proceedings of HIPS 2003, Nice, France, Apr. 2003.

• Alexandru Jugravu and Thomas Fahringer. JavaSymphony, a Program-
ming Model for the Grid. in PPGaMS workshop at ICCS 2004 conference,
Krakow, Poland, June 2004.

• Alexandru Jugravu and Thomas Fahringer. Scheduling Workflow Dis-
tributed Applications in JavaSymphony. in European Conference on Par-
allel Computing (Euro-Par2005), Lisboa, Portugal, Aug.-Sep. 2005.

9.2 Future Work 217

• Alexandru Jugravu and Thomas Fahringer. Advanced Resource Manage-
ment and Scheduling of Workflow Applications in JavaSymphony accepted
for publication in the proceedings of HiPC 2005, Goa, India, Dec. 2005.

9.2 Future Work

As future work, several potential research directions are currently being con-
sidered. These are described in the following.

Security and Fault Tolerance. In developing JavaSymphony program-
ming paradigm and middleware, security issues have not been considered.
Limited fault tolerance is supported by the JavaSymphony Runtime System
(Section 4.3). These are important issues for any real-world distributed sys-
tem, and therefore future implementations of the JavaSymphony middleware
should address them.

Grid computing. In many aspects, we can consider JavaSymphony as a
programming paradigm for the Grid: it offers high-level features for resource
allocation and monitoring, access to resource dynamic and static properties,
code mapping and migration, and remote execution. However, JavaSymphony
lacks the support for Grid security services and, in the current implementa-
tion, does not use the communication mechanisms largely accepted in the
Grid community (e.g. file transfers using GridFTP [211] or SOAP-based [30]
communication between Grid services).

We see two methods to tackle this issue:

• One solution is to build a new JavaSymphony middleware implementa-
tions on top of Grid services, instead of pure Java RMI. The agents of
the JavaSymphony Runtime System could become Grid services and use
SOAP-based messages for communication. The advantage of this solution
is that it uses already existing security mechanisms for the Grid and other
existing Grid services for allocating and monitoring the resources.

• A second choice would be to build an interface to existing Grid services. For
example, JavaSymphony functionality for resources allocation and moni-
toring, or communication could make use of similar Grid services. This
solution may spare programming efforts necessary for a new from-the-
scratch implementation, as for the first solution.

Dynamic scheduling. Several directions can be considered for the im-
provement and/or diversification of our scheduling techniques. The dynamic
scheduling strategy could support additional scheduling algorithms (see Sec-
tion 8.2). On the other hand, the techniques can be adapted to generic Grid
computing and applied to Grid workflow applications, beyond the applications
built on top of the JavaSymphony programming paradigm.

Further research directions could be concerned with:

• Modelling activity execution and use prediction to estimate the activity
execution times [48].

218 9 Conclusions

• Scheduling techniques that support pre-emption (i.e. activities can suspend
execution, migrate and resume execution onto the new location).

• Investigate more generic applications (e.g. collaborative applications),
which may be suitable for scheduling.

10

Appendix

10.1 Notations and Acronyms

Symbol Description

N Set of natural numbers
R Set of real numbers

R+ Set of positive real numbers
[a, b] Set of real numbers from a to b
[a..b] Set of integer numbers from a to b
⇐⇒ If and only if
iff If and only if
=⇒ Implication
→ Function mapping
∀ For all
∃ Exists

true True boolean value
false False boolean value
∈ Set membership
/∈ Non-membership
φ Empty set
|S| Cardinality of set S
P(S) Power set of S
× Cross product
∧ Logical conjunction
∨ Logical disjunction
∪ Set union
∩ Set intersection
− Set difference
⊂ Subset of

220 10 Appendix

Symbol Description

a 〈x〉, a(x) Output , respectively input prefix1

α.P Prefix1

P + Q Sum1
∑

Sum1

P |Q Parallel1

[x = y]P Match1

[x 6= y]P Mismatch1

(νx)P Restriction operator1

!P Replication1

{P}m Process mapping1

cin, cout Input, output channel (names)1

c̃ Set of channels (names)1

cX Channel associated to X1

caddr,port,name Channel associated to (addr, port, name)1

cA−B Channel for communication A − B1

o 7→ m Object method (process)1

o 7→ data Object data member (name)1

t, T Workflow activity/task
mT Resource allocated to T

startT Start time assigned to T
ct(t/m) Completion time of t, if mapped onto m
st(t/m) Start time of t, if mapped onto m
ready(t) Ready time of t
avail(m) The availability of the machine m
exec(t/m) Execution time of t, if mapped onto m

exec(t) average computation cost for t
comm(t1/m1, t2/m2) communication cost for t1 and t2

comm(t1, t2) average communication cost for t1 and t2
Att Set of resource attributes
atti Attribute function

S(m, T, t) Suitability predicate
B(T, t) Resource broker function

Avail(m, t) Resource availability function

Acronym Definition

CPU Central Processing Unit
SISD Single Instruction Single Data
SIMD Single Instruction Multiple Data
MISD Multiple Instructions Single Data
MIMD Multiple Instruction Multiple Data
SMP Symmetric Multi-Processor (machine, node)

1 Pi-calculus related notations. See Appendix 10.3.

10.1 Notations and Acronyms 221

Acronym Definition

MPP Massive Parallel Processors (machine)
COW Cluster of Workstations
NOW Network of Workstations
LAN Local Area Network
WAN Wide Area Network
RMI Remote Method Invocation
RPC Remote Procedure Call
SOAP Simple Object Access Protocol
XML eXtensible Markup Language
QoS Quality of Service
JS JavaSymphony
JS-Shell JavaSymphony Administration Shell
JRS JavaSymphony Runtime System
NA(s) Network Agent(s)
NAS Network Agent System
OA(s) Object Agent(s)
OAS Object Agent System
PubOA(s) Public Object Agent(s)
AppOA(s) Application Object Agent(s)
EvA(s) Event Agent(s)
EvAS Event Agent System
VA(s) (Distributed) Virtual Architecture(s)
JS object(s) JavaSymphony (distributed) objects

222 10 Appendix

10.2 JavaSymphony System Parameters

Figure 10.1 shows system parameters for one computing resource displayed in
a monitoring window of the JS-Shell interface.

Fig. 10.1. Monitoring system parameters with the JS-Shell

10.2 JavaSymphony System Parameters 223

Table 10.3 lists the parameters supported by JavaSymphony middleware.
There are three types of parameters:

• [B] represents parameters that are provided by benchmarks (e.g. Scimark2
benchmark [95]) that are executed at the initialization of the JavaSym-
phony agents onto the computing resources;

• [S] represents static system parameters that are determined only once, at
the initialization of the JavaSymphony agents;

• [D] represents dynamic parameters that are updated regularly. Mean val-
ues of these parameters are computed at each update step.

The parameters values have some basic types: [D] - decimal (real double)
value, [I] - integer, and [S] - string value. The mean values are available only
for numeric values (integer or decimal); these are of decimal type always.

The availability of the parameters has been determined for two main oper-
ating systems: SunSolaris (availability value [1]), and Linux (availability value
[2]). Availability value [0] means that the parameter does not depend on the
operating system.

Table 10.3: System parameters

System Parameter name Type Value Availability

benchCPU composite score B D [0]
benchCPU fft score B D [0]
benchCPU lu score B D [0]
benchCPU montecarlo score B D [0]
benchCPU sor score B D [0]
benchCPU sparsemat score B D [0]
bench composite score B D [0]
bench fft score B D [0]
bench lu score B D [0]
bench montecarlo score B D [0]
bench sor score B D [0]
bench sparsemat score B D [0]
Java version S S [0]
cpu count S I [0]
cpu type S S [0]
ip S S [1]
last update S S [1] [2]
main memory S S [1]
manufacter S S [1]
sys model S S [1]
system architecture S S [0]
system name S S [0]
system version S S [0]
url S S [0]

224 10 Appendix

Table 10.3: System parameters

System Parameter name Type Value Availability

user name S S [0]
C INTERPROC MSG D D [1]
C INTERPROC SEMA D D [1]
C KMA ALLOCS D I [1]
C KMA SML MEM D I [1]
C SWAP PSWCH D D [1]
cpu idle D D [1] [2]
cpu sys D D [1] [2]
cpu usr D D [1] [2]
cpu wio D D [1] [2]
faults cpu switch rate D D [1]
faults interrupts D D [1]
faults syscalls D D [1]
jsapps count D I [0]
mem free kb D I [1]
mem swap kb D I [1]
procs blocked D I [1]
procs dispatch queue D I [1]
procs waiting D I [1]
swap allocated D I [1]
swap available D I [1]
swap reserved D I [1]
swap used D I [1]
syscalls exec D D [1]
syscalls fork D D [1]
syscalls rchar D D [1]
syscalls scall D D [1]
syscalls sread D D [1]
syscalls swrite D D [1]
syscalls wchar D D [1]
unusedmem freemem D I [1]
unusedmem freeswap D I [1]
memory allocated D I [2] [1]

Table 10.4 illustrates system parameters collected from Condor machine
ClassAdd. The system parameters mechanism is extensible in two ways: On
the one hand, static parameters and their associated values can be added man-
ually in JavaSymphony configuration files available for each available machine,
and are simply collected by the JavaSymphony network agent at initialization.
On the other hand, by building an implementation of SystemPropertyProvider
provided by the JavaSymphony class library, new dynamic system parameters
can be added to the existing ones.

10.2 JavaSymphony System Parameters 225

Table 10.4: System parameters associated with Condor machine
ClassAds

System Parameter name Type Value

CONDOR Activity S S
CONDOR Arch S S
CONDOR COLLECTOR HOST STRING S S
CONDOR ClockDay S S
CONDOR ClockMin S S
CONDOR CondorLoadAvg S S
CONDOR CondorPlatform S S
CONDOR CondorVersion S S
CONDOR ConsoleIdle S S
CONDOR CpuBusy S S
CONDOR CpuBusyTime S S
CONDOR CpuIsBusy S S
CONDOR Cpus S S
CONDOR CurrentRank S S
CONDOR DaemonStartTime S S
CONDOR Disk S S
CONDOR EnteredCurrentActivity S S
CONDOR EnteredCurrentState S S
CONDOR FileSystemDomain S S
CONDOR HasCheckpointing S S
CONDOR HasFileTransfer S S
CONDOR HasIOProxy S S
CONDOR HasJICLocalConfig S S
CONDOR HasJICLocalStdin S S
CONDOR HasJava S S
CONDOR HasMPI S S
CONDOR HasPVM S S
CONDOR HasRemoteSyscalls S S
CONDOR JavaMFlops S S
CONDOR JavaVendor S S
CONDOR JavaVersion S S
CONDOR KFlops S S
CONDOR KeyboardIdle S S
CONDOR LastBenchmark S S
CONDOR LastHeardFrom S S
CONDOR LoadAvg S S
CONDOR Machine S S
CONDOR Memory S S
CONDOR Mips S S
CONDOR MyAddress S S
CONDOR MyType S S

226 10 Appendix

Table 10.4: System parameters associated with Condor machine
ClassAds

System Parameter name Type Value

CONDOR Name S S
CONDOR OpSys S S
CONDOR Rank S S
CONDOR Requirements S S
CONDOR Start S S
CONDOR StartdIpAddr S S
CONDOR StarterAbilityList S S
CONDOR State S S
CONDOR Subnet S S
CONDOR TargetType S S
CONDOR TotalCondorLoadAvg S S
CONDOR TotalDisk S S
CONDOR TotalLoadAvg S S
CONDOR TotalVirtualMachines S S
CONDOR TotalVirtualMemory S S
CONDOR UidDomain S S
CONDOR UpdateSequenceNumber S S
CONDOR UpdatesHistory S S
CONDOR UpdatesLost S S
CONDOR UpdatesSequenced S S
CONDOR UpdatesTotal S S
CONDOR VirtualMachineID S S
CONDOR VirtualMemory S S

10.3 Pi-calculus Preliminaries 227

10.3 Pi-calculus Preliminaries

10.3.1 Basics

Prefixes α ::= a 〈x〉 output
a(x) input
τ silent

Processes P ::= 0 Nil
α.P Prefix
P + Q Sum
P |Q Parallel
[x = y]P Match
[x 6= y]P Mismatch
(νx)P Restriction
!P Replication

Table 10.5. Pi-calculus syntax

The core notion of Pi-calculus2 is the name. We presume that there is
an infinite set of names, ranged over by a, b, ..., z. With names, we build
processes, ranged over by P ,Q ..., according to the rules in Table 10.5.

In the following, we explain the semantics of these constructs:

• The empty process 0 does not perform any action.
• The input prefix process a(x).P receives the name x along the channel

named a, and then continues as process P . The output prefix process
a 〈x〉 .P sends the name x along channel a and continues as process P . In
some literature, the notation ax.P is used. The silent prefix process τ.P
evolves into P without interactions with the environment.

• The sum process P + Q acts like either P or Q. The choice between P
and Q is not deterministic. Some papers present sum as

∑n
i=1 αi.Pi, which

evolves into one of the Pi processes, if data is received/sent over the in-
put/output channel αi.

• The parallel process P |Q acts as P and Q running in parallel. The processes
P and Q may interact or not. The interaction means to exchange names
along channels.

• The matching process [x = y]P acts as P if the names x and y are the same.
An alternative notation matching process is frequently used: if (x = n)
then P .

• Similarly, the process [x 6= y]P acts as P if x and y are distinct. The Match
and Mismatch operators are missing in some variants of the Pi-calculus.

• The restriction (νx)P acts like process P in which x is local, meaning that
no external communication can exist on channel named x.

2 A comprehensive introduction in Pi-calculus can be found in [212]

228 10 Appendix

• Replication !P represents an unbound number of copies of P running in
parallel: !P ≡ P |!P ≡ P |P | . . .

We say that the input prefix a(x).P and the restriction (νx)P bind the
name x in P . For the output prefix a 〈x〉 .P , the name x is said to be free
in P . We define bn(P) and fn(P) as the set of bound names, respectively
free names in P . Note that a name could appear both bound and free in the
formula for one process.

We use the notation P [x/y] to denote the process resulted by replacing
the name y with x.

Renaming of bound variables:
x(y).P ≡ x(z).(P [z/y]) if z /∈ fv(P)
(νx)P ≡ (νz)P [z/y] if z /∈ fv(P)

Abelian monoid laws for | and +
P |Q ≡ Q|P P + Q ≡ Q + P commutativity
(P |Q)|R ≡ P |(Q|R) (P + Q) + R ≡ P + (Q + R) associativity
P |0 ≡ P

Replication
!P ≡ P |!P

Scope extension laws
(νx)0 ≡ 0
(νx)(P |Q) ≡ P |(νx)Q if x /∈ fn(P)
(νx)(P + Q) ≡ P + (νx)Q if x /∈ fn(P)
(νx)[u = v]P ≡ [u = v](νx)P if x 6= u and x 6= u
(νx)[u 6= v]P ≡ [u 6= v](νx)P if x 6= u and x 6= u
(νx)(νy)P ≡ (νy)(νx)P

Fig. 10.2. Pi-calculus structural congruence

a 〈y〉 .P |a(z).Q → P |Q[y/z] Communication
P |R → Q|R if P → Q Reduction under |
(νx)P → Q if P → Q Reduction under ν
[x = x]P → Q if P → Q Match
[x 6= y]P → Q if P → Q and x 6= y Mismatch
P + Q → R if P → R or Q → R Sum
P → Q if P ≡ P ′ → Q′ ≡ Q Structural congruence

Fig. 10.3. Pi-calculus operational semantics

By using these notations, two relations over the processes can be defined.
The first one is the structural congruence that determines which processes
represent ”the same thing” (Fig. 10.2). The second relation, called reduction

10.3 Pi-calculus Preliminaries 229

relation, defines the operational semantics of Pi-calculus (Fig. 10.3). P → R
means that P ”evolves into” Q.

10.3.2 Variants of the Calculus

Currently, many variants of the calculus co-exist. Some of them use a sub-
set of the constructs, which imply a simpler theory. For example the Match
and Mistmatch, Replication are not used in some variants of the Pi-calculus.
Their behaviour can be simulated by using other constructs. The sum is some-
times replaced by the guarded sum:

∑n

i=1 αi.Pi, which restricts the ”random”
choice of the process to which the sum evolves, considered unrealistic from
the implementation perspective.

On the other hand, there are extensions to the classical Pi-calculus (com-
monly called the monadic Pi-calculus), which improve the expressivity of the
calculus. Two of them are important for our work: polyadic Pi-calculus and
higher ordered Pi-calculus [212].

The polyadic Pi-calculus

A straightforward extension is to allow the communication of arrays of names
along the channels. This means to allow inputs like a(x1, x2, ...xn).P with
xi 6= xj if i 6= j, and outputs like a 〈y1, y2, ...yn〉 .P .

The notation x̃ is used for the array of names (x1, x2, ...xn). The commu-
nication rule looks similar to the monadic calculus:

a 〈ỹ〉 .P |a(z̃).Q → P |Q[ỹ/z̃]

Problems may arise if the arity of the output a 〈ỹ〉 is not equal with the arity
of the input a(z̃). This problem is solved by using sorts: For each name (of
a channel) a sort is assigned, which contains information about the type of
the object (e.g. single name, array of names) that can be passed along that
channel.

The polyadic input/output can be encoded with basic Pi-calculus con-
structs as follows:

a(x1, x2, ...xn).Q = a(p).p(x1).p(x2)....p(xn).Q with p /∈ fv(P)

a 〈x1, x2, ...xn〉 .Q = (νp)a 〈p〉 .p 〈x1〉 .p 〈x2〉p 〈xn〉 ().Q with p /∈ fv(P)

Therefore, the theory developed for the monadic calculus is still valid for
the polyadic form. The polyadic Pi-calculus also introduces agents, a gener-
alization of the process notion. The syntax is slightly changed to include the
agents, which have a more complex form than processes. We do not give more
details about these changes.

230 10 Appendix

The higher-order Pi-calculus

The higher-order calculus extends Pi-calculus by allowing agents/processes
to be transmitted along the channels. In the higher-order Pi-calculus, the
input prefix form may look like a(X).Q, which means that the process or
agent X is received along channel a before the process evolves into Q. Q may
contain X in its definition. The higher-order output prefix a 〈P 〉 .Q means that
process/agent P is sent over the channel a, after which the process continues
as Q.

Formally, a new category of agent variables, ranged over by X , Y , is in-
troduced, with a special sort for the ”agent type”, and the higher-order prefix
forms are added to the syntax. The Communication rule is adapted for the
higher-order prefixes:

a(X).P |a 〈Q〉 .R → P [Q/X]|R

The theory for the higher-order calculus becomes quite complex. However,
formulas of the higher-order calculus could be expressed with more complex
constructs of the basic calculus, and the existing theory may be applied. We
can convert higher-order formulas into normal as follows: Each agent sent
along a channel, is replaced by a new name, which triggers the corresponding
agent. The following rules illustrate how the higher-order constructs could be
eliminated from a higher-order process P . The notation ‖P‖ stands for the
formula which is obtained from P by eliminating higher-order constructs.

• ‖X‖ = x. Each agent variable X is associated with a completely new name
x. The process X in a formula becomes an output on channel x.

• ‖a 〈Q〉 .R‖ = (νq)a 〈q〉 .(‖R‖ |!q. ‖Q‖) . Instead of transmitting an agent
Q in the higher-order output process, a new name q is sent. The process
evolves into R in parallel with multiple processes q. ‖Q‖ that wait for (any)
input on channel p.

• ‖a(X).P‖ = a(x). ‖P‖ . A process that receives an agent X as input
receives instead X an unique name x corresponding to X , and evolves to
‖P‖.

• ‖P‖ - each agent variable X is associated with a completely new name
x. The occurrences of X in P in the input prefix form are replaced with
outputs on channel x .

After recursively transforming the higher-order Pi-calculus formulas, the
communication rule applies as follows:

‖a(X).P‖ | ‖a 〈Q〉 .R‖ is a(x). ‖P‖ |(νq)a 〈q〉 .(‖R‖ |!q. ‖Q‖) , which can be
reduced to:

a(x). ‖P‖ |(νq)a 〈q〉 .(‖R‖ |!q. ‖Q‖) → (νq)(‖P‖ [q/x]| ‖R‖ |!q. ‖Q‖)

P is supposed to contain occurrences of X , which are replaced by outputs x
and then by q. Each such occurrence is reduced by communication with one

10.3 Pi-calculus Preliminaries 231

q. ‖Q‖ process, such that we finally get ‖P [Q/X]‖ instead of P . Therefore, we
may reduce the entire formula to:

(νq) ‖P [Q/X]‖ | ‖R‖ |!q. ‖Q‖

and P and R do not contain q. Consequently, the replicated input !q. ‖Q‖ does
not interact anymore. The conclusion is that the two formulas, the higher-
order formula and its transformation, express the same process behaviour.

A variant of the Pi-calculus for JavaSymphony

The Pi-calculus variants discussed above are still at a very low level. We pro-
pose extensions to Pi-calculus in order to express the functionality of JavaSym-
phony at a higher level, closer to a programming language. At the same time,
we want to preserve the properties of the classical calculus, in order to be able
to apply the existing Pi-calculus theory.

Objects in Pi-calculus. The object oriented programming paradigm is
considered to be at an acceptable high level. Expressing object instances in a
formal language is an important advantage.

An object can be seen as the combination of data members and meth-
ods. In terms of Pi-calculus, this can be translated in names for object’s data
members and processes for the object’s methods. We consider obj to range
over the set of object instances. A specific sort is associated to each object
type. Our intention is to use output and input prefix forms such as a(obj).P
and a 〈obj〉 .Q. On the one hand, the polyadic form of Pi-calculus allows us
to send multiple names along one channel at the same time, which is similar
to sending complex data structures. On the other hand, the higher-order Pi-
calculus enables the sending of processes along the channels. We consider an
object instance represented as an array of member data and member meth-
ods: (x1, x2,xn, M1, M2, ...Mm), with xi data member is represented as a
name and Mj method of the object class is represented as a process. The
combination of polyadic Pi-calculus and higher-order Pi-calculus allows such
a construct to be send/received along the channels.

The notation obj 7→ xi denotes the xi data member of the object obj,
which is a name. We denote by obj 7→ Mj (or Execute(obj 7→ Mj)) the
process associated with the execution of the method Mj of obj. At this point,
we ignore the method parameters. The following short example demonstrates
the use of the new constructs:

a(obj).Execute(obj 7→ M1).b 〈obj 7→ id〉 |a 〈obj1〉 .b(id)

For this example, we have two processes running in parallel. The first one
receives an object obj (an object variable) along channel a, executes one of its
methods M1 and then sends id object member along channel b. The second
process sends obj1 (an object instance) along channel a and then waits to
receive a name id on channel b. This extension does not affect the semantics

232 10 Appendix

of the calculus, since the new construct can be expressed in terms of polyadic
or higher-order Pi-calculus.

Mapping processes onto machines. We introduce new constructs to
express the mapping of a computing process (represented by a Pi-calculus
formula) onto a computing resource. For a finite set of computing resources
M = {m1, m2,mn}, we use the notation {P}mi

to express the fact that ”the
process P takes place on machine mi” . We can extend the notation to express
the fact that ”several processes are running in parallel on distinct machines”.
We call mapping the association of a process/sub-process to a resource.

This extension represents an important gain in expressivity of the calculus.
However, a new set of semantic rules is required. The new rules should not
interfere with the Pi-calculus existing rules.

For example, three processes running in parallel as in:

a(x).P |a 〈y〉 .b(z)Q|b 〈w〉 .R

could be mapped onto distinct machines:

{a(x).P}m1|{a 〈y〉 .b(z)Q}m2|{b 〈w〉 .R}m3

or onto a single machine:

{a(x).P |a 〈y〉 .b(z)Q|b 〈w〉 .R}m1

In terms of Pi-calculus, the formulas represent the same process. However,
the two formulas differ in terms of resource usage. The Pi-calculus rules for
structural congruence and reduction relation are still valid, because they are
not affected by the mapping of the processes. This means that: P ≡ Q implies
{P}m ≡ {Q}m and P → Q implies {P}m → {Q}m. In fact, we can omit the
mapping in reasoning about the process behaviour, when this is not relevant.

However, we can assume that the reduction preserves the mapping, which
means that the processes cannot migrate from a resource to another. This
property is expressed as the following formal rule:

if P |Q → R then exist P1 and Q1 such as P → P1 , Q → Q1 , R ≡ P1|Q1

and {P}m | {Q}n → {P1}m | {Q1}n

Postfixes and sequence of processes. To the best of our knowledge, Pi-
calculus (or any of its variants) does not use a construct to express a sequence
of processes. Basically, we intend to use a construct R = P.Q, meaning that
R behaves like P until P is reduced to 0 and thereafter it starts to behave
like Q. We call R a sequence process.

Formally written, this means that:
if P → 0, R = P.Q then R → Q
We analyse a few examples to motivate this construct and point our several

potential problems with this extension to Pi-calculus.

• If P is a sequence of prefixes:
P = α1.α2...αn where αi is ai(x) , ai 〈x〉 or τ .
then P.Q is allowed in the standard Pi-calculus, as well.

10.3 Pi-calculus Preliminaries 233

• Suppose P = A1 + A2 (sum) or P = A1|A2 (parallel construct). In this
case, there is no equivalent in the standard Pi-calculus for P.Q

• Supposing that P =!A (replication). In this case, there is no equivalent in
the standard Pi-calculus for P.Q. Since P could never be reduced to 0, we
may say that P.Q will always behave like P .

• P = a(x)|b 〈y〉 and R = a 〈z〉 .b(x).R′ note that P could reduce to 0 in
parallel with R. Therefore, we may apply the reduction to P.Q|R:

P.Q|R → Q[z/x]|R′[y/x]

Note that a(x).b 〈y〉 .Q|R simulates the behaviour of P.Q|R, but b 〈y〉 .a(x).Q|R
does not.

On the other hand, we could use a simpler form of the sequence construct,
by allowing the postfix process, written as P.α, where α may be a(x) , a 〈x〉
or τ , similar to prefix processes defined in Table 10.5.

Allowing sequence constructs implies allowing postfix processes. This be-
comes clear, by choosing Q = α in P.Q. On the other hand, the sequence con-
struct P.Q may be simulated by using the postfix construct: (νq)P.q 〈〉 |q(x).Q.
After P finishes, data is sent along a private channel q to activate Q.

Therefore, we conclude that using sequence processes is equivalent to using
postfix processes.

234 10 Appendix

10.4 XML Schema for JavaSymphony Workflow
Specification Language

Figures3 10.4, 10.6, 10.5, 10.7, 10.8, 10.9 show the XML Schema that defines
the elements of the JavaSymphony workflow specification language.

Fig. 10.4. XML Schema for workflow definition

Fig. 10.5. XML Schema for workflow definition. Link element

3 The figures have been generated using Altnova XMLSpy Home Edition
(www.altnova.com)

10.4 XML Schema for JavaSymphony Workflow Specification Language 235

Fig. 10.6. XML Schema for workflow definition. Node element

236 10 Appendix

Fig. 10.7. XML Schema for workflow definition. Data-link element

Fig. 10.8. XML Schema for workflow definition. Loop element

Fig. 10.9. XML Schema for workflow definition. Link element

References

1. Designing and Building Parallel Programs. Designing and Building Par-
allel Programs. Addison-Wesley, 1995. available online at:http://www-
unix.mcs.anl.gov/dbpp/.

2. Bart Jacob, Luis Ferreira, Norbert Bieberstein, Candice Gilzean, Jean-Yves
Girard, Roman Strachowski, and Seong (Steve) Yu. Enabling Applica-
tions for Grid Computing with Globus. IBM Red Book, available at
www.ibm.com/redbooks.

3. A Brief History of the Internet. available at:
http://www.isoc.org/internet/history/brief.shtml. last acces date: Jul 25
2005.

4. A Little History of the World Wide Web. available at:
http://www.w3.org/History.html. last acces date: Jul 25 2005.

5. Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java Language
Specification, Second Edition. Sun Microsystems, 2000.

6. Java technology. http://java.sun.com/. last acces date: Aug 25 2005.
7. J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, and R.A. Davey. A bench-

mark suite for high performance java. Concurrency: Practice and Experience,
2000.

8. Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan-Kaufman, San Francisco, CA, USA, 1st edition,
1998.

9. Madhu Chetty and Rajkumar Buyya. Weaving computational Grids: How anal-
ogous are they with electrical grids? Computing in Science and Engineering,
4(4):61–71, Jul - Aug 2002.

10. Geoffrey Fox Fran Berman and Tony Hey, editors. Grid Computing: Making
the Global Infrastructure a Reality. Wiley, March 2003.

11. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid:
An open grid services architecture for distributed systems integration, 2002.

12. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Perfor-
mance Computing, 11(2):115–128, Summer 1997.

13. The globus alliance. http://www.globus.org/. last acces date: Aug 25 2005.
14. Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for

shared-memory programming. IEEE Computational Science & Engineering,
5(1):46–55, January/March 1998.

240 References

15. Message Passing Interface Forum. Document for a Standard Message Passing
Interface, draft edition, November 1993.

16. C. Sivula. A call for distributed computing (RPC). Datamation, 36(1):75–76,
78, 80, January 1990.

17. Ward Rosenberry and Jim Teague. Distributing Applications Across DCE and
Windows NT. O’Reilly & Associates, Inc., 981 Chestnut Street, Newton, MA
02164, USA, December 1993.

18. Nat Brown and Charlie Kindel. Distributed Component Object
Model Protocol - dcom/1.0. Microsoft Corporation Internet-Draft,
URL:http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-
02.txt, January 1998.

19. David S. Linthicum. CORBA 2.0? Open Computing, 12(2):68–??, Feb 1995.
20. William Grosso. Java RMI: Designing and building distributed applications.

O’Reilly & Associates, Inc., Cambridge, MA 02140, USA, 2002.
21. Oscar H. Ibarra and Chul E. Kim. Heuristic algorithms for scheduling inde-

pendent tasks on nonidentical processors. J. ACM, 24(2):280–289, 1977.
22. WfMC. Workflow Management Coalition: http://www.wfmc.org/ , 2003.
23. Michael J. Flynn. Some Computer Organizations and Their Effectiveness. In

IEEE Trans. Computers, volume C-21, pages 948–960. Sept. 1972.
24. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel

Computing: Design and Analysis of Algorithms. Benjamin/Cummings, Red-
wood City, 1994.

25. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall, Jan. 2002.

26. Aad J. van der Steen and Jack J. Dongarra. Overview of re-
cent supercomputers. available at: http://www.phys.uu.nl/ eu-
roben/reports/web05a/overview.html. last acces date: June 15 2005.

27. Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel
Computing. Prentice Hall, 1998.

28. Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stewart Martin,
Warren Smith, and Steve Tuecke. A Resource Management System for Meta-
computing Systems. In PPS/SPDP ’98 Workshop on Job Scheduling Strategies
for Parallel Processing, pages 62–82, 1998.

29. Timothy. G. Mattson, Beverly A. Sanders, and Berna L. Massingill. A Pattern
Language for Parallel Programming. Addison Wesley Software Patterns Series,
2004.

30. Arthur Ryman. Simple object access protocol (soap) and web services. In ICSE
’01: Proceedings of the 23rd International Conference on Software Engineering,
page 689, Washington, DC, USA, 2001. IEEE Computer Society.

31. Wikipedia. The Free Encyclopedia. available at: http://en.wikipedia.org/. last
acces date: June 15 2005.

32. Workflow Management Coalition Terminology & Glossary. The Workflow Man-
agement Coalition Specification, Doc. WFMC-TC-1011, Feb. 1999.

33. David Kra. Six strategies for grid application enablement. available at
http://www-128.ibm.com/developerworks/grid/library/gr-enable/, Apr 2004.

34. R. Milner. Communicating and mobile systems: The pi-calculus. University
Press, Cambridge, UK, 1999.

35. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes
Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Siebel Systems,

References 241

Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business process
execution language for web services (bpel4ws). Specification version 1.1, Mi-
crosoft, BEA, and IBM, May 2003.

36. Dietmar W. Erwin and David F. Snelling. UNICORE: A Grid computing
environment. Lecture Notes in Computer Science, 2150:825–??, 2001.

37. The Condor Team. Dagman (directed acyclic graph manager).
http://www.cs.wisc.edu/condor/dagman/.

38. Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL : A
Workflow Framework for Grid Services. Technical Report, Argonne National
Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, U.S.A., July 2002.

39. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

40. Howard Smith and Peter Fingar. Workflow is just a Pi.
http://www.bpm3.com/picalculus), Nov. 2003.

41. M. Dumas and A. Hofstede. UML Activity Diagrams as a Workflow Specifica-
tion Language. In 4th International Conference on UML, LNCS 2185, Toronto,
Canada, October 2001. Springer Verlag.

42. Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bni, Muthucumaru
Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin
Yao, Debra A. Hensgen, and Richard F. Freund. A comparison study of static
mapping heuristics for a class of meta-tasks on heterogeneous computing sys-
tems. In Heterogeneous Computing Workshop, pages 15–29, 1999.

43. Ken Kennedy et.al. New Grid Scheduling and Rescheduling Methods in the
GrADS Project. In International Parallel and Distributed Processing Sympo-
sium, Workshop for Next Generation Software, Santa Fe, New Mexico, April
2004. IEEE Computer Society Press.

44. Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen,
and Richard F. Freund. Dynamic matching and scheduling of a class of inde-
pendent tasks onto heterogeneous computing systems. In Proceedings of the
Eighth Heterogeneous Computing Workshop, page 30. IEEE Computer Society,
1999.

45. B. Kruatrachue and T.G. Lewis. Duplication scheduling heuristics (dsh): A new
precedence task scheduler for parallel processor systems. Technical Report OR
97331, Oregon State University, Corvallis, 1987.

46. Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and comparison of the task
graph scheduling algorithms. Journal of Parallel and Distributed Computing,
59(3):381–422, 1999.

47. H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for het-
erogeneous processors. In Eighth Heterogeneous Computing Workshop, pages
3–14. IEEE C.S. Press, 1999.

48. T. Fahringer. Automatic Performance Prediction of Parallel Programs. Kluwer
Academic Publishers, Boston, USA, ISBN 0-7923-9708-8, March 1996.

49. Andrei Radulescu and Arjan J.C. van Gemund. Low-cost task scheduling for
distributed-memory machines. IEEE Transactions on Parallel and Distributed
Systems, 13(6), June 2002.

50. Y.C. Chung and S. Ranka. Applications and performance analysis of a compile-
time optimization approach for list scheduling algorithms on distributed mem-
ory multiprocessors. In Supercomputer ’92, 1992.

242 References

51. I. Ahmad and Y.-K. Kwok. On exploiting task duplication in parallel program
scheduling. IEEE Transactions on Parallel and Distributed Systems, 9(9):872–
892, 1998.

52. Christos Papadimitriou and Mihalis Yannakakis. Towards an architecture-
independent analysis of parallel algorithms. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 510–513. ACM Press,
1988.

53. J.Y. Colin and P. Chretienne. C.p.m. scheduling with small computation delays
and task duplication. In Operations Research, pages 680–684, 1991.

54. H. Chen, B. Shirazi, and J. Marquis. Performance evaluation of a novel schedul-
ing method: Linear clustering with task duplication. In Proceedings of Inter-
national Conference on Parallel and Distributed Systems, Dec. 1993.

55. M.A. Palis, J-C. Liou, , and D.S.L. Wei. Task clustering and scheduling for
distributed memory parallel architectures. IEEE Transactions on Parallel and
Distributed Systems, 7(1):46–55, 1996.

56. Gyung-Leen Park, Behrooz Shirazi, and Jeff Marquis. Dfrn: A new approach for
duplication based scheduling for distributed memory multiprocessor systems.
In Proceedings of the 11th International Symposium on Parallel Processing,
pages 157–166. IEEE Computer Society, 1997.

57. Min-You Wu and Daniel Gajski. Hypertool: A programming aid for message-
passing systems. IEEE Transactions on Parallel and Distributed Systems,
1(3):330–343, 1990.

58. G.-L. Parkand B. Shirazi, J. Marquis, and H. Choo. Decisive path scheduling:
A new list scheduling method. In Proc. of the Int. Conf. on Parallel Processing,
pages 472–480, 1997.

59. Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list
schedules for parallel processing systems. Commun. ACM, 17(12):685–690,
1974.

60. Yu-Kwong Kwok, Ishfaq Ahmad, and Jun Gu. Fast : A low-complexity algo-
rithm for efficient scheduling of dags on parallel processors. In 25th Interna-
tional Conference on Parallel Processing, volume 2, pages 150–157, Aug. 1996.

61. Behrooz Shirazi, Mingfang Wang, and Girish Pathak. Analysis and evaluation
of heuristic methods for static task scheduling. J. Parallel Distrib. Comput.,
10(3):222–2232, 1990.

62. J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee. Scheduling precedence
graphs in systems with interprocessor communication times. Journal on Com-
puting, 18(2), 1989.

63. Chung Yee Lee, Jing Jang Hwang, Yuan Chieh Chow, and Frank D. Ange. Mul-
tiprocessor scheduling with interprocessor communication delays. Operations
Research Letters, 7:141–147, June 1988.

64. Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors:. IEEE Trans-
actions on Parallel and Distributed Systems, 7(5):506–521, 1996.

65. A. Dogan and F.Ozguner. LDBS: A duplication based scheduling algorithm
for heterogeneous computing systems. In Int’l Parallel Processing (ICCP’02),
2002.

66. G. C. Sih and E. A. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures. IEEE
Trans. Parallel Distrib. Syst., 4(2):175–187, 1993.

References 243

67. Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous
processors. In Euro-Par, Vol. II, pages 573–577, 1996.

68. M. Maheswaran and H. Siegel. A dynamic matching and scheduling algorithm
for heterogeneous computing systems, 1998.

69. Hesham El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto
arbitrary target machines. J. Parallel Distrib. Comput., 9(2):138–153, 1990.

70. M. Iverson, F. Ozguner, and G. Follen. Parallelizing existing applications in a
distributed heterogeneous environment, 1995.

71. S. Ranaweera and D.P. Agrawal. A task duplication based scheduling algorithm
for heterogeneous systems. In 14 th International Parallel and Distributed
Processing Symposium (IPDPS’00),Cancun,Mexico, May 2000.

72. Yu-Kwong Kwok. Parallel program execution on a heterogeneous pc
cluster using task duplication. In 9th Heterogeneous Computing Work-
shop,Cancun,Mexico, pages 364–374, May 2000.

73. Andrei Radulescu and Arjan J. C. van Gemund. Fast and effective task schedul-
ing in heterogeneous systems. In Heterogeneous Computing Workshop, pages
229–238, 2000.

74. Sanjeev Baskiyar and Prashanth C. SaiRanga. Scheduling directed a-cyclic
task graphs on heterogeneous network of workstations to minimize schedule
length. In Proc. of International Conference on Parallel Processing Work-
shops,Kaohsiung, Taiwan, Oct. 2003.

75. Radu Prodan. Experiment Management, Performance Optimisation, and Tool
Integration in Grid Computing. PhD thesis, Wien Fakultat fur Informatik,
2004.

76. G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS Conference, pages 483–485, 1967.

77. J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: An economy
driven job scheduling system for clusters, 2002.

78. Tan Tien Ping, Gian Chand Sodhy, Chan Huah Yong, and Fazilah Haron
andRajkumar Buyya. A Market-Based Scheduler for JXTA-Based Peer-to-
Peer Computing System. Lecture Notes in Computer Science, 3046:147–157,
Apr 2004.

79. Gilbert Strang. The discrete cosine transform. SIAM Review, 41(1):135–147,
March 1999.

80. Gescher homepage: http://gescher.vcpc.univie.ac.at/.
81. W.T. Vetterling, S.A. Teukolsky, W.H. Press, and B.P. Flannery. Numerical

Recipes: Example Book (FORTRAN). Cambridge University Press, 1990.
82. Donald E. Knuth. The Art of Computer Programming.Fundamental Algo-

rithms, volume 1. Addison-Wesley, 1997.
83. R. Aversa, B. Di Martino, N. Mazzocca, and S. Venticinque. Mobile agents

for distribute and dynamically balanced optimization applications. in High-
Performance Computing and Networking(Lecture Notes in Computer Science
vol.2119), ed. By B. Hertzberger et al. (Springer, Berlin, 2001) pp.161-170,
2001.

84. G. Stefanescu. “Interactive systems”: - from folklore to mathematics. In
Proc. 6th International Workshop on Relational Methods in Computer Sci-
ence, pages 208–221, Oisterwijk (near Tilburg),The Netherlands, 2001. Also
Springer LNCS 2002, to appear.

244 References

85. Michael J. Wiener. Efficient DES key search, technical report TR-244, Car-
leton University. In William Stallings, Practical Cryptography for Data Inter-
networks. IEEE Computer Society Press, 1996.

86. Javaparty homepage: http://www.ipd.uka.de/javaparty/. last acces date: Sep
17 2003.

87. Proactive homepage: http://www-sop.inria.fr/sloop/javall/. last acces date:
Sep 17 2003.

88. R. Aversa, B. Di Martino, N. Mazzocca, M. Rak, and S. Venticinque. In-
tegration of mobile agents and openmp for programming clusters of shared
memory processors: a case study. accepted for publication in proc. of PaCT
2001 Conference, 8-12 Sept. 2001, Barcelona, Spain, 2001.

89. E. Laure and H. Moritsch. A High Performance Decomposition Solver for
Portfolio Management Problems in the AURORA Financial Management Sys-
tem. Technical Report TR01-09, Institute for Software Science, University of
Vienna, October 2001.

90. G. C. Pflug and A. Swietanowski. Selected parallel optimization methods for
financial management under uncertainty. In Parallel Comput., 26:3-25. 2000.

91. A. Ruszczynski. Decomposition methods in stochastic programming. In Math.
Programming, 79:333-353. 1997.

92. A. Ruszczynski. Parallel decomposition of multistage stochastic programming
problems. In Math. Programming, 58: 201-228. 1993.

93. E. Laure and H. Moritsch. Portable Parallel Portfolio Optimization in the
Aurora Financial Management System. In Proceedings of SPIE ITCom 2001
Conference: Commercial Applications for High-Performance Computing, Den-
ver, Colorado, August 2001.

94. H.Moritsch and G.Ch.Pflug. Java Implementation of Asynchronous Parallel
Nested Optimization Algorithms. In Proceedings of the 3rd Workshop on Java
for High Performance Computing, Sorrento, Italy, June 2001.

95. Scimark2 benchmark. available at: http://math.nist.gov/scimark2. last acces
date: June 10 2004.

96. P.Blaha, K.Schwarz, G.Madsen, D.Kvasnicka, and J.Luitz. WIEN2k: An Aug-
mented Plane Wave plus Local Orbitals Program for Calculating Crystal Prop-
erties. Vienna University of Technology, 2001.

97. Wasim homepage: http://www.nccr-climate.unibe.ch/download/wp3
/p32/p32 wasim.html. last acces date: Mar 1 2005.

98. Invmod homepage: http://dps.uibk.ac.at/ marek/projects/invmod wasim/.
last acces date: Mar 1 2005.

99. Montage homepage: http://montage.ipac.caltech.edu. last acces date: Mar 1
2005.

100. Hong-Linh Truong and Thomas Fahringer. Online performance monitoring
and analysis of grid scientific workflows. In European Grid Conference 2005
(EGC2005),Amsterdam, The Netherlands. LNCS, Springer-Verlag, February
14 -16 2005.

101. V. S. Sunderam. PVM: A framework for parallel distributed computing. Con-
currency: practice and experience, 2(4):315–339, December 1990.

102. Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver,
and Paul F. Reynolds, Jr. Legion: The next logical step toward a nationwide
virtual computer. Technical Report CS-94-21, Department of Computer Sci-
ence, University of Virginia, June 08 1994. Mon, 28 Aug 1995 21:06:39 GMT.

References 245

103. Henri Casanova and Jack Dongarra. NetSolve: A network-enabled server for
solving computational science problems. The International Journal of Super-
computer Applications and High Performance Computing, 11(3):212–223, Fall
1997.

104. Ken Arnold, Ann Wollrath, Bryan O’Sullivan, Robert Scheifler, and Jim Waldo.
The Jini specification. Addison-Wesley, Reading, MA, USA, 1999.

105. Ann Wollrath, Jim Waldo, and Roger Riggs. Java-centric distributed com-
puting: Providing a homogeneous view of a heterogeneous group of machines.
IEEE Micro, 17(3), May/June 1997.

106. Rob van Nieuwpoort, Jason Maassen, Heri E. Bal, Thilo Kielmann, and Ronald
Veldema. Wide-area parallel computing in Java. In Proceedings of the ACM
Java Grande Conference, New York, NY, June 1999. ACM Press.

107. Y. Aridor, M. Factor, and A. Teperman. cJVM: A single system image of a
JVM on a cluster. In International Conference on Parallel Processing ICPP,
pages 4–11, Aizu-Wakamatsu,Fukushima, Japan, Sep. 21-24 1999. Springer
Verlag,Heidelberg Germany.

108. M. Philippsen and B. Haumacher. More Efficient Object Serialization. Lecture
Notes in Computer Science, 1586, 1999.

109. C. Nester, M. Philippsen, and B. Haumacher. A more efficient RMI. In Proceed-
ings of the ACM Java Grande Conference, San Francisco, CA., pages 152–159,
New York, NY, June 1999. ACM Press.

110. Eli Tilevich and Yannis Smaragdakis. NRMI: Natural and efficient middleware.
In International Conference on Distributed Computer Systems (ICDCS), pages
252–261, 2003.

111. Fabian Breg, Shridhar Diwan, Juan Villacis, Jayashree Balasubramanian, Esra
Akman, and Dennis Gannon. Java RMI performance and object model in-
teroperability: experiments with Java/HPC++. Concurrency: Practice and
Experience, 10(11–13):941–955, 1998.

112. X. Chen and V. H. Allan. MultiJav: A distributed shared memory system based
on multiple java virtual machines. In Proc. of the Int’l Conf. on Parallel and
Distributed Processing Techniques and Applications (PDPTA’98), volume I,
pages 91–98, Las Vegas, Nevada, USA, July 13 - 16 1998. CSREA Press (ISBN).

113. Ronald Veldema, Rutger F. H. Hofman, Raoul Bhoedjang, Ceriel J. H. Jacobs,
and Henri E. Bal. Source-level global optimizations for fine-grain distributed
shared memory systems. In Eight ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming (PPoPP), Snowbird, Utah, June 18-20
2001. ACM Press, New York, NY, USA.

114. Weimin Yu and Alan Cox. Java/DSM: A platform for heterogeneous comput-
ing. Concurrency: Practice and Experience, 9(11):1213–1224, November 1997.

115. Matchy J. M. Ma, Cho-Li Wang, and Francis C. M. Lau. JESSICA: Java-
Enabled Single-System-Image Computing Architecture. Parallel and Dis-
tributed Computing, 60(10):1194–1222, Oct. 2000.

116. Wenzhang Zhu, Weijian Fang, Cho-Li Wang, and Francis C.M. Lau. A New
Transparent Java Thread Migration System Using Just-in-Time Recompila-
tion. In The 16th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS 2004), pages 766–771, MIT Cam-
bridge, MA, USA, Nov. 9-11 2004.

117. Jikes Research Virtual Machine (RVM). http://jikesrvm.sourceforge.net/. last
acces date: Aug 21 2005.

246 References

118. Han-Ku Lee Bryan Carpenter, Geoffrey Fox and Sang Boem Lim. Applications
of HPJava. In 16th International Workshop on Languages and Compilers for
Parallel Computing, volume LNCS 2958. Springer Verlag, Oct. 2003.

119. Kees van Reeuwijk, Arjan J. C. van Gemund, and Henk J. Sips. Spar: A
programming language for semi-automatic compilation of parallel programs.
Concurrency: Practice and Experienc, 9(11):1193–1205, 1997.

120. Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,
Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,
and Alex Aiken. Titanium: High-performance java dialect. Concurrency: Prac-
tice and Experience, 10(11-13):825–836, 1998.

121. JavaPVM home page. http://www.isye.gatech.edu/chmsr/JavaPVM. last ac-
ces date: Aug 21 2005.

122. Adam J. Ferrari. JPVM: Network Parallel Computing in Java. In ACM 1998
Workshop on Java for High-Performance Network Computing, Palo Alto, Feb.
1998.

123. B.Y. Zhang, G.W. Yang, and W.M. Zheng. Jcluster: An Efficient Java Par-
allel Environment in a Large-scale Heterogeneous Cluster. Concurrency and
Computation: Practice and Experience, 2000.

124. Mark Baker, Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim.
mpiJava: An Object-Oriented Java interface to MPI. In International Work-
shop on Java for Parallel and Distributed Computing, IPPS/SPDP 1999, San
Juan, Puerto Rico, April 1999.

125. Luis F. G. Sarmenta, Satoshi Hirano, and Stephen A. Ward. Towards Bayani-
han: Building an extensible framework for volunteer computing using Java. In
ACM, editor, ACM 1998 Workshop on Java for High-Performance Network
Computing, New York, NY, USA, 1998. ACM Press.

126. A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: metacomput-
ing on the Web. In K. Yetongnon and S. Hariri, editors, Proceedings of the
ISCA International Conference. Parallel and Distributed Computing Systems,
Dijon, France, 25–27 September, 1996, volume 1, Raleigh, NC, USA, 1996.
International Society of Computers and Their Applications (ISCA).

127. N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed compu-
tation over the internet-the POPCORN project, 1998.

128. Michael O. Neary and Peter Cappello. Advanced Eager Scheduling for Java-
Based Adaptively Parallel Computing. Concurrency and Computation: Prac-
tice and Experience, 17:797–819, 2005.

129. Hiromitsu Takagi, Satoshi Matsuoka, Hidemoto Nakada, Satoshi Sekiguchi,
Mitsuhisa Satoh, and Umpei Nagashima. Ninflet: a migratable parallel objects
framework using Java. In ACM, editor, ACM 1998 Workshop on Java for High-
Performance Network Computing, New York, NY 10036, USA, 1998. ACM
Press.

130. Maurice Herlihy and Michael P. Warres. A tale of two directories: implementing
distributed shared objects in java. Concurrency - Practice and Experience,
12(7):555–572, 2000.

131. Parabon Computation - Computing outside the box.
http://www.parabon.com/. last acces date: Aug 21 2005.

132. Peter Cappello and Dimitrios Mourloukos. CX: A Scalable, Robust Network
for Parallel Computing. Scientific Programming, 10(2):159 – 171, 2001. Ewa
Deelman and Carl Kesselman eds.

References 247

133. A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. SuperWeb: Towards
a global web-based parallel computing infrastructure. In The 11th IEEE In-
ternational Parallel Processing Symposium (IPPS), pages 100–106, Geneva,
Switzerland, April 1-5 1997. IEEE Computer Society.

134. S. Lalis and A. Karipidis. JaWS: An open market-based framework for dis-
tributed computing over the internet. In IEEE/ACM International Workshop
on Grid Computing (GRID 2000). Springer Verlag, Dec. 2000.

135. Paolo Ciancarini and Davide Rossi. Jada - Coordination and Communication
for Java Agents. In Jan Vitek and Christian Tschudin, editors, Mobile Object
Systems: Towards the Programmable Internet, volume 1222 of Lecture Notes
in Computer Science, pages 213–228. Springer-Verlag: Heidelberg, Germany,
April 1997.

136. Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces principles, pat-
terns, and practice. Addison-Wesley, Reading, MA, USA, 1999.

137. Danny B. Lange and Mitsuru Oshima. Programming and Deploying Mobile
Agents with Java Aglets. Addison-Wesley, Reading, MA, USA, September 1998.

138. Voyager. http://www.recursionsw.com/voyager.htm. last acces date: Aug 21
2005.

139. Michael Philippsen and Matthias Zenger. JavaParty — transparent remote ob-
jects in Java. Concurrency: Practice and Experience, 9(11):1225–1242, Novem-
ber 1997.

140. Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards seamless com-
puting and metacomputing in Java. Concurrency: Practice and Experience,
10(11–13):1043–1061, 1998.

141. M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an environment for parallel,
distributed and mobile java applications. In Proceedings of ACM 1999 Java
Grande Conferernce, pages 15–25, San Francisco, CA, June 1999.

142. Michael Philippsen, Bernhard Haumacher, and Christian Nester. More effi-
cient serialization and RMI for Java. Concurrency: Practice and Experience,
12(7):495–518, May 2000.

143. Mohammed M. Fuad and Michael J. Oudshoorn. Adjava - automatic distribu-
tion of java applications. In Michael J. Oudshoorn, editor, 25th Australasian
Computer Science Conference (ACSC2002), volume 4 of Conferences in Re-
search and Practice in Information Technology, pages 65–75, Melbourne, Aus-
tralia, 2002. ACS.

144. Tao Yang and Apostolos Gerasoulis. List scheduling with and without com-
munication delays. Parallel Computing, 19(12):1321–1344, 1993.

145. Vivek Sarkar. Partitioning and scheduling parallel programs for multiprocessor.
Technical report, The MIT Press, Cambridge, Massachusetts, 1989.

146. S. Kim and J. Browne. A general approach to mapping of parallel compu-
tations upon multiprocessor architectures. In Proc. of Int. Conf. on Parallel
Processing, volume 2, pages 1–8, Aug. 1998.

147. Torben Hagerup. Allocating independent tasks to parallel processors: an ex-
perimental study. J. Parallel Distrib. Comput., 47(2):185–197, 1997.

148. Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: a
method for scheduling parallel loops. Commun. ACM, 35(8):90–101, 1992.

149. C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practi-
cal scheduling scheme for parallel supercomputers. IEEE Trans. Comput.,
36(12):1425–1439, 1987.

248 References

150. Ten H. Tzen and Lionel M. Ni. Trapezoid self-scheduling: A practical schedul-
ing scheme for parallel compilers. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(1):87–98, 1993.

151. Steven Lucco. A dynamic scheduling method for irregular parallel programs. In
Proceedings of the ACM SIGPLAN 1992 conference on Programming language
design and implementation, pages 200–211. ACM Press, 1992.

152. H.A. James, K.A. Hawick, and P.D. Coddington. Scheduling independent tasks
on metacomputing systems. In Parallel and Distributed Computing Systems
(PDCS’99),Fort Lauderdale, Aug. 1999.

153. Veridian Systems. PBS: The Portable Batch System. http://www.openpbs.org.
154. IBM Corporation. Using and Administering LoadLeveler – Release 3.0, 4 edi-

tion, August 1996. Document Number SC23-3989-00.
155. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor : A hunter of idle work-

stations. In 8th International Conference on Distributed Computing Systems,
pages 104–111, Washington, D.C., USA, June 1988. IEEE Computer Society
Press.

156. R. Armstrong, D. Hensgen, and T. Kidd. The relative performance of various
mapping algorithms is independent of sizable variances in run-time predictions,
1998.

157. R.F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman,
D. Hensgen, E. Keith, T. Kidd, M. Kussow, J.D. Lima, F. Mirabile, L. Moore,
B. Rust, and H.J. Siegel. Scheduling resources in multi-user, heterogeneous,
computing environments with smartnet. In Seventh Heterogeneous Computing
Workshop, Orlando, Florida, March 1998.

158. L.Wang, H.J. Siegel, V.P. Roychowdhury, and A.A. Maciejewski. Task match-
ing and scheduling in heterogeneous computing environments using a genetical-
gorithm -based approach. J. Parallel and Distributed Computing, 47(1):1–15,
Nov. 1997.

159. Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Blni, Albert I.
Reuther, Mitchell D. Theys, Bin Yao, Richard F. Freund, Muthucumaru Ma-
heswaran, James P. Robertson, and Debra Hensgen. A comparison study of
static mapping heuristics for a class of meta-tasks on heterogeneous comput-
ing systems. In Proceedings of the Eighth Heterogeneous Computing Workshop,
page 15. IEEE Computer Society, 1999.

160. M. Coli and P. Palazzari. Real time pipelined system design through simulated
annealing, 1996.

161. P. Shroff, D. Watson, N. Flann, and R. Freund. Genetic simulated annealing for
scheduling datadependent tasks in heterogeneous environments. In 5th IEEE
Heterogeneous Computing Workshop (HCW ’96), April 1996.

162. I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro. Improving search
by incorporating evolution principles in parallel tabu search. In 1994 IEEE
Conference on Evolutionary Computation, volume 2, pages 823–828, 1994.

163. K. Chow and B. Liu. On mapping signal processing algorithms to a heteroge-
neous multiprocessor system. In 1991 International Conference on Acoustics,
Speech, and Signal Processing - ICASSP 91, pages 1585–1588, May 1991.

164. Heather Kreger. Web services conceptual architecture (wsca 1.0). Pre-
pared for Sun Microsystems, Inc., IBM Software Group, http://www-
4.ibm.com/software/solutions/webservices/pdf/WSCA.pdf+.

165. Frank Leymann. Web Services Flow Language. available from http://www-
306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May 2001.

References 249

166. Sriram Krishnan, Patrick Wagstrom, and Gregor von Laszewski. GSFL: A
Workflow Framework for Grid Services. In Preprint ANL/MCS-P980-0802, Ar-
gonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, U.S.A.,
2002.

167. S. Thatte. XLANG, Web Services for Business Process Design. Available from
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, 2001.
Specification, Microsoft Corporation.

168. Tony Andrews et al. Business Process Execution Language for Web Services.
2nd public draft release, Version 1.1, May 2003.

169. Jia Yu and Rajkumar Buyya. A Novel Architecture for Realizing Grid Work-
flow using Tuple Spaces. In Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing (GRID 2004), Pittsburgh, USA, Los Alamitos,
CA, USA, Nov. 8 2004. IEEE Computer Society Press.

170. Rajkumar Buyya and Srikumar Venugopal. The Gridbus Toolkit for Service
Oriented Grid and Utility Computing: An Overview and Status Report. In
Proceedings of the First IEEE International Workshop on Grid Economics
and Business Models (GECON 2004), Seoul, Korea, pages 19–36. IEEE Press,
April 23 2004.

171. Kaizar Amin, Mihael Hategan, Gregor von Laszewski, Nestor J. Zaluzec, Shawn
Hampton, and Al Rossi. GridAnt: A Client-Controllable Grid Workflow Sys-
tem. In 37th Hawai’i International Conference on System Science, Island of
Hawaii, Big Island, 5-8 January 2004.

172. http://ant.apache.org/.
173. Elliotte Rusty Harold. XML: extensible markup language. IDG Books, San

Mateo, CA, USA, 1998.
174. The Condor Team. Dagman (directed acyclic graph manager), 2003.

http://www.cs.wisc.edu/condor/dagman/.
175. Jun Qin Thomas Fahringer and Stefan Hainzer. Specification of Grid Workflow

Applications with AGWL: An Abstract Grid Workflow Language. In Proceed-
ings of IEEE International Symposium on Cluster Computing and the Grid
2005 (CCGrid 2005), Cardiff, UK, May 9-12 2005. IEEE Computer Society
Press.

176. T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,
H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON: A Grid Application
Development and Computing Environment. In 6th International Workshop on
Grid Computing (Grid 2005), Seattle, USA, November 2005. IEEE Computer
Society Press.

177. Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management Sys-
tems for Grid Computing. Technical Report GRIDS-TR-2005-1, Grid Comput-
ing and Distributed Systems Laboratory, University of Melbourne, Australia,
March 10 2005.

178. Object Management Group. Unified Modeling Language (UML).
http://www.uml.org/. last acces date: June 15 2005.

179. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instru-
mentelle Mathematik, Bonn, 1962.

180. Rik Eshuis and Roel Wieringa. Comparing Petri Net and Activity Diagram
Variants for Workflow Modelling - A Quest for Reactive Petri Nets. Lecture
Notes in Computer Science, 2472:321–351, Nov 2003.

181. Junwei Cao, Stephen A. Jarvis, Subhash Saini, and Graham R. Nudd. Gridflow:
Workflow management for grid computing. In CCGRID ’03: Proceedings of the

250 References

3st International Symposium on Cluster Computing and the Grid, page 198,
Washington, DC, USA, 2003. IEEE Computer Society.

182. Lerina Aversano, Aniello Cimitile, and Pierpaolo Gallucciand Maria Luisa Vil-
lani. FlowManager: A Workflow Management System Based on Petri Nets. In
IEEE, editor, 26th Annual International Computer Software and Applications
Conference, Oxford, England, pages 1054–1059, Aug. 2002.

183. H. M. W. (Eric) Verbeek, Alexander Hirnschall, and Wil M. P. van der Aalst.
XRL/Flower: Supporting Inter-organizational Workflows Using XML/Petri-
Net Technology. In CAiSE ’02/ WES ’02: Revised Papers from the Interna-
tional Workshop on Web Services, E-Business, and the Semantic Web, pages
93–108, London, UK, 2002. Springer-Verlag.

184. S. Pllana, T. Fahringer, J. Testori, S. Benkner, and I. Brandic. Towards
an UML Based Graphical Representation of Grid Workflow Applications. In
The 2nd European Across Grids Conference, Nicosia, Cyprus, January 2004.
Springer-Verlag.

185. Ian Taylor, Matthew Shields, and Ian Wang. Resource Management for the
Triana Peer-to-Peer Services. In Jarek Nabrzyski, Jennifer M. Schopf, and Jan
Wȩglarz, editors, Grid Resource Management, pages 451–462. Kluwer Aca-
demic Publishers, 2004.

186. Triana Project. http://www.trianacode.org/. last acces date: June 15 2005.
187. Sriram Krishnan, Randall Bramley, Dennis Gannon, Madhusudhan Govin-

daraju, Rahul Indurkar, Aleksander Slominski, Benjamin Temko, Richard
Alkire, Timothy Drews, Eric Webb, and Jay Alameda. The XCAT Science
Portal. In Proceedings of SC2001, November 10-16 2001.

188. Robert D. Stevens, Alan J. Robinson, and Carole A. Goble. myGrid: person-
alised bioinformatics on the information grid. Bioinformatics, 19:i302–i304,
2003.

189. IT Innovation Workflow Enactment Engine. http://www.it-
innovation.soton.ac.uk/mygrid/workflow/. last acces date: June 07 2005.

190. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver
adn K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: a tool for
the composition and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, 2004.

191. Taverna Team. Taverna. http://taverna.sourceforge.net/.
192. Dietmar W. Erwin and David F. Snelling. UNICORE: A Grid computing

environment. Lecture Notes in Computer Science, 2150, 2001.
193. Jim Almond and Dave Snelling. Unicore: Secure and uniform access to dis-

tributed resources via the world wide web. White paper, October 1998.
194. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Black-

burn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping ab-
stract complex workflows onto grid environments. Journal of Grid Computing,
1(1):25–39, 2003.

195. I. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data Sys-
tem for Representing, Querying and Automating Data Derivation. In 14th In-
ternational Conference on Scientific Database Management, Edinburgh, 2002.

196. GriPhyN - Grid Physics Network. http://www.griphyn.org/. last acces date:
June 01 2005.

197. Jim Blythe, Ewa Deelman, Yolanda Gil, Carl Kesselman, Amit Agarwal, Gau-
rang Mehta, and Karan Vahi. The role of planning in grid computing. In 13th

References 251

International Conference on Automated Planning and Scheduling (ICAPS),
Trento, Italy, 2003.

198. Junwei Cao, Stephen A. Jarvis, and Subhash Saini. Arms: An agent-based
resource management system for grid computing. Scientific Programming,
10(2):135–148, 2002.

199. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith,
and S. Tuecke. A directory service for configuring high-performance dis-
tributed computations. In Proceedings of the 6th IEEE Symposium on High-
Performance Distributed Computing, pages 365–375, Portland, OR, 5-8 August
1997.

200. Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Service: a
distributed resource performance forecasting service for metacomputing. Fu-
ture Generation Computer Systems, 15(5–6):757–768, 1999.

201. Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta,
Karan Vahi, Kent Blackburn, Albert Lazzarini, Adam Arbree, and Scott Ko-
randa. Mapping abstract complex workflows onto grid environments. Journal
of Grid Computing, 1:25–39, 2003.

202. Jan Weglarz Jarek Nabrzyski, Jennifer Schopf, editor. Grid Resource Man-
agement. State of the Art and Future Trends. Kluwer Academic Publishers,
2003.

203. Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: Dis-
tributed resource management for high throughput computing. In HPDC,
pages 140–, 1998.

204. C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evaluation of a resource
selection framework for grid applications. In In Proceedings of the 11th IEEE
Symposium on High-Performance Distributed Computing, July 2002.

205. Crossgrid. http://www.crossgrid.org/. last acces date: Aug 21 2005.
206. Rajkumar Buyya, David Abramson, and Jonathan Giddy. Nimrod/G: An

Architecture of a Resource Management and Scheduling System in a global
Computational Grid. In the 4th International Conference on High-Performance
Computing in the Asia-Pacific Region, pages 283–289. IEEE Press, May 2000.

207. F. Berman and R. Wolski. The AppLeS Project: A Status Report. In The 8th
NEC Research Symposium, May 1997.

208. Mumtaz Siddiqui and Thomas Fahringer. GridARM: Askalon’s Grid Resource
Management System. In Advances in Grid Computing - EGC 2005 - Revised
Selected Papers, volume 3470 of Lecture Notes in Computer Science, pages
122–131, Amsterdam, Netherlands, June 2005. Springer Verlag GmbH, ISBN
3-540-26918-5.

209. Mumtaz Siddiqui, Thomas Fahringer, Juergen Hofer, and Ioan Toma. Grid
resource ontologies and asymmetric resource-correlation. In German Society
of Informatics, editor, 2nd International Conference on Grid Service Engineer-
ing and Management (GSEM’05), Erfurt, Germany, September 19-22 2005.
Lecture Notes in Informatics.

210. Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxon-
omy and survey of grid resource management systems for distributed comput-
ing. Software–Practive and Experience, 32:135–164, 2002.

211. Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl
Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke.
Data management and transfer in high-performance computational grid envi-
ronments. Parallel Computing, 28(5):749–771, May 2002.

252 References

212. R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203–246.
Springer-Verlag, 1993.

