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Abstract 

The thesis at hand describes a system for the recognition of predefined situations in buildings. 
The definition of the situations is based on a hierarchy of symbols, which are also predefined. The 
archetype for this design is the human brain. Based on the findings of neurologists, neuro-psychologists, 
and neuro-psychoanalysts, a technical model of hierarchies of symbols and valuation mechanisms has 
been developed. In the presented approach, data from the periphery are collected, divided into known 
pieces, and compared with known patterns in order to perceive situations. In another project, the 
perceived situations are used as basis for decision-making in the interaction of the whole system with its 
environment. 

Modern building automation uses fieldbus systems in order to connect sensors and actuators. On 
the market, several different standards of fieldbus systems are successful. These standards cannot be 
directly connected and offer different interfaces for applications. Therefore, this thesis discusses 
approaches of abstraction of data, which are also suitable for fieldbus nodes with limited resources. 

The system presented here can be seen as a further development of building automation systems. 
Nowadays, such systems fulfill mainly control tasks. But in future it will be possible to fulfill by far more 
complex tasks as for example the recognition of an individual falling down, a child being in danger, or 
detecting the present position of people. We discuss here a prototype implementing these applications. In 
order to ensure that the defined scenarios are recognized, the building has to be equipped with a large 
number of redundant and diverse sensors. Since this is not feasible at the moment, beside a showcase in 
one room, a simulator has been used for the proof of concept. The simulator generates sensor values 
based on a defined virtual environment and scenarios. Although the presented system is concentrated on 
building automation, the concepts can be used in all areas of automation. 

 

 

 

 

 

 



 



Kurzfassung 

Die vorliegende Arbeit beschreibt ein System für die Erkennung von vordefinierten Situationen in 
Gebäuden. Die Definitionen der Situationen erfolgen auf Grundlage von mehreren Abstraktionsschichten 
von ebenfalls vorbestimmten Symbolen. Als Vorbild für diesen Aufbau dient das menschliche Gehirn. 
Basierend auf den Erkenntnissen von Neurologen, Neuropsychologen und Neuropsychoanalytikern wurde 
ein technisches Modell von Symbolhierarchien und Bewertungsmechanismen entworfen. Wie beim 
Menschen werden daher auch bei dem hier vorgestellten Ansatz die Daten von der Peripherie gesammelt, 
in bekannte Einheiten eingeteilt und mit bekannten Mustern verglichen, um daraus Situationen zu 
erkennen. In einem weiterführenden Projekt werden die erkannten Situationen als Entscheidungs-
grundlage für die Interaktion des Systems mit dessen Umwelt verwendet. 

In der modernen Gebäudeautomation werden Feldbusse zur Vernetzung der Sensoren und 
Aktuatoren eingesetzt. Am Markt haben sich verschiedene Standards von Feldbussystemen durchgesetzt. 
Diese können jedoch nicht direkt miteinander verbunden werden und bieten unterschiedliche 
Schnittstellen für Anwendungen. Deshalb werden in dieser Arbeit Ansätze einer Abstraktion von Daten 
diskutiert, die auch auf Feldbusknoten mit limitierten Ressourcen eingesetzt werden können. 

Das hier vorgestellte System kann als Weiterentwicklung der Gebäudeautomation gesehen 
werden. Heutzutage werden vorwiegend Regelungs- und Steuerungsaufgaben von derartigen Systemen 
erfüllt. In Zukunft wird es aber möglich sein, weitaus komplexere Anwendungen zu realisieren. Die 
Anwendungen, auf die sich diese Arbeit konzentriert, sind z. B. eine Erkennung, ob ein Mensch stürzt, ob 
Kinder in Gefahr sind, oder die Erkennung, wo sich Menschen aufhalten. Diese Anwendungen wurden als 
Prototyp implementiert. Um zu gewährleisten, dass die definierten Szenarien erkannt werden, ist es 
notwendig, Gebäude mit einer großen Zahl von redundanten und diversitären Sensoren auszustatten. Da 
dies derzeit noch nicht sinnvoll zu realisieren ist, wird neben einem realen Aufbau in einem einzelnen 
Raum auch ein Simulator für die Überprüfung des Konzepts verwendet. Mit dem Simulator ist es 
möglich, Sensordaten, beruhend auf einer definierten virtuellen Umgebung und Szenarien, zu generieren. 
Obwohl das hier vorgestellte System auf die Gebäudeautomation ausgerichtet ist, sind die Konzepte 
prinzipiell in allen Bereichen der Automatisierung anwendbar. 
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Preface 

Since building automation systems are available, engineers have been trying to find applications and 
solutions how sensor data can be used to ease the life of the user and the owner of a building. The ARS 
(Artificial Recognition System) project continues with this attempt, as is described in the introduction of 
this work. In the application of the project, we are trying to use data from the building to obtain an 
overview of the present situation in the building. On the basis of this representation, decisions are made 
on how the system should interact with its environment. Nevertheless, such a system can also be used in 
other automation areas where it is possible to perceive and interact with the environment. Such 
application areas could be autonomous robots, e.g. soccer playing robots, or software agents, e.g. for 
energy management systems. 

The difference to most other approaches to the development of applications is the design of the system, 
which is the most important aim of the project. The design uses the functions of the human brain as 
archetype. The central theme of the ARS project is to use the results of the study of neuroscientists, 
psychoanalysts, and neuro-psychoanalysts as basis for our research work and therefore also for this work. 
The research work of the ARS model in general and in particular the ARS-PC (Artificial Recognition 
System - PerCeption), which is the focus of this work, is described in the second chapter. As relevant to 
the ARS-PC part, there follows a description of the neuro-scientific models from which a technical model 
is derived. The main concepts that where used are the layered perception model and the basic emotion 
systems as evaluation system of the perception. Since the main application area of this work is scenario 
recognition in buildings, an interface for classical building automation had to be defined. The third 
chapter presents a new approach, which allows data abstraction of the major fieldbus systems in building 
automation. 

The forth chapter gives a definition and description of the application fields of types of scenario 
recognition. These definitions are the basis for the symbols defined in the sixth chapter. To ensure the 
universal application of these symbols, the fifth chapter presents a framework for symbolic processing in 
ARS, which includes the formal definition of symbols including an evaluation system, a communication 
system for symbols, i.e. the so-called SymbolNet, the provision of data either from building automation or 
from a simulator, and databases for sensor values and perceived symbols. 

As mentioned above, the sixth chapter gives a definition and description of the symbols for scenario 
recognition. At the end of the chapter, there is an illustration of the joint symbol tree. The seventh chapter 
describes the prototype of the ARS project. It includes the different types of data provision, namely direct 
connection to the sensors, and access to the data points of different building automation system via a data 
point abstraction layer and with a simulator for data points. Further methods for the generation of symbols 
will also be discussed in this chapter. The eighth chapter describes the realization of a prototype of the 



ARS system. It describes the techniques which have been used and the resulting outcomes. The last 
chapter presents a conclusion and an outlook for future work. 

The implementation of the presented work here was part of a technology demonstration on the ENF 
(Engineering and Neuro-Psychoanalysis Form) [ENF] in July 2007. The ENF was organized as a joint 
workshop of the International Neuro-Psychoanalysis Congress (N-PSA 2007) [NPSA07], and the IEEE 
International Conference on Industrial Informatics (INDIN 2007) [INDIN]. In combination with the 
simulator, which is described in Chapter Seven, the scenario recognition has been shown, as described in 
Chapter Eight. 
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1 

1 Introduction 

For years Building Automation and Control Systems (BACS) have been used in buildings and homes. 
These systems are usually used to control processes within certain areas such as so-called industries. For 
example, the HVAC (Heating Ventilation Air Conditioning) industry is built of a group of sensors, 
controllers, and actuators which are necessary for controlling the room temperature. Within this group 
communication is well defined. The devices are tested with each other to ensure a high degree of 
interoperability. But if a device of a certain industry is not used within its designated industry, it cannot 
be guaranteed that it adheres to the rules of that particular industry. The main reason for this separation 
into industries is to reduce complexity. The cost of the installation of such a system can be reduced, 
because the control processes just cover one area (or even only certain parts of one area). This situation is 
even worse if different BACS standards are used. Different BACS usually mean that different data types, 
service types and application-specific objects are used [Kab02]. 

However, the approach to define industries and devices for a special purpose is suitable for rather simple 
applications. Hence, the mathematical description of the control applications is rather simple too. 
Assuming that from additional sensors additional information can be generated, the functionality of a 
system can be increased by using this additional information. But in this case the mathematical 
description of the control application becomes increasingly complex and is no longer feasible. 

One way of dealing with that complexity is not to describe the control application mathematically. 
Artificial neural networks [Arb95, Roj96, Sch97, and Cal03] use that approach. The sensors of a system 
are connected to the network, which is then trained. During the training phase, it usually needs an 
interaction with humans, who "tell" the system which information can be derived from the sensor inputs 
and what should be the reaction to them. Another way is to use sensor-driven, high-resolution building 
models (SDBM). That approach uses a model of the building and models of the physical processes 
together with the sensor values of the building in order to obtain a virtual image of the building. [Sut03, 
Mah06] describes a system for a simulation-assisted lighting control. 

Although such systems are used in some special area with great success, these systems are usually greatly 
specialized. The complexity grows with the number of interdependent control circuits. This approach, 
first proposed in [Die00, Die01], tries to avoid growing complexity by using a bionic approach. This 
proposal was incorporated in the Smartkitchen project [Rus03, Tam03]. The project ARS (Artificial 
Recognition System) [ARS06] has been started as a successor program on the ICT (Institute of Computer 
Technology) of the Vienna University of Technology. The project is split into three major parts, ARS-PC 
(PerCeption), ARS-PA (Psycho Analysis) and ARS-BASE (Building Assistance system for Safety and 
Energy efficiency). The ARS-BASE part uses the statistical methods to analyze sensor data in order to be 
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able to detect abnormal sensor values [Bru07]. The ARS-PA part develops a technical model which 
supports the decision process of an intelligent autonomous system. It uses the ARS-PC part to obtain 
environment-relevant information. 

This work focuses on the provision of data from the field, and the perception of scenarios based on sensor 
data. Unified system architectures, especially designed for embedded systems in building automation, are 
proposed to provide the data. Such a unified representation of sensor data from the field is necessary as 
basis for the ARS-PC project. The ARS-PC project focuses on the perception of scenarios based on the 
symbolic processing of information from sensors in an environment. As a basis it uses the model 
proposed in [Pra06], which takes the human brain as an archetype. It tries to identify already known 
information in the stream of information received from the sensors of a human. These known items of 
information are so-called symbols. In a multi-stage process, the brain combines known combinations of 
symbols to new symbols. The weight of the symbol grows in every stage, whereas the amount of 
information is reduced. Such a system is able to deal with a high amount of redundant and diverse 
sensors. 

The model proposed in [Pra06] and [Pra07] has been extended by a valuation system, which was inspired 
by the basic emotional systems of the mammalian brain. The symbols, which are associated from the 
sensor inputs, are valuated with emotions. In addition the definition of scenarios has been extended and 
improved. Still, [Pra06] does not address learning in the model. The system can only recognize objects or 
situations, which are pre-defined. The scenarios, that are to be recognized, are such typical for scenarios 
in buildings as tracking people and monitor their activities. 
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2 The ARS Model 

The ARS project of the ICT has been founded in order to enhance automation systems. The number of 
data points even in current building automation systems is in the area of 100000, as for example in the 
Parliament Buildings in Berlin [BAC04]. However, a growing number of data points sees the effort of 
installing and extracting information increase. The idea of the ARS project is to use the human brain as 
archetype for automation systems. The human brain is able to deal with a great deal of information from 
the environment via the sensors of the body, and is able to react to them. To reduce complexity within the 
ARS project, the project is split into three parts (see Figure 1), namely ARS-PC (PerCeption), ARS-PA 
(Psycho Analysis), and Execution. Sensor values from sensors in the environment comprise the input of 
the ARS-PC part. In this part, the values are interpreted in a way that predefined symbols and scenarios 
are recognized. The output of the ARS-PC module is a world representation, which comprises in turn the 
input for the ARS-PA part. Using associations, the ARS-PA module arrives at decisions about actions that 
have to be taken in a certain situation. The Execution transforms these decisions into actions, which 
influence the environment via actuators. As mentioned above, this work deals for the main part with the 
ARS-PC part. 

  

Figure 1: Overall view of the ARS project 

The following chapters give a rough overview of models of the human brain, which is used as archetype 
for the technical model of the ARS project. The advice of neuro-psychoanalysts, psychoanalysts, 
pedagogues, and neurologists has guided the decision which models of the human brain to use for this 
project. 



Chapter 2  The ARS Model 

4 

2.1 Archetype Brain 

The models of the human brain form the basis of the technical models used in the ARS project. This 
chapter describes how perception is performed in the human brain, which is of particular interest to the 
ARS-PC project. The ARS-PC model is based on theories by the neuropsychologist and psychoanalyst 
Mark Solms [Sol02], Jaak Panksepp [Pan98], a neuroscientist working in the field of emotion, and 
Aleksandr Romanovich Luria1 [Lur73], often claimed to be the founder of neuropsychology. Both Mark 
Solms and Jaak Panksepp are co-chairmen of the International Neuro-Psychoanalysis Society [n-psa], 
which promotes the inter-disciplinary work between the fields of psychoanalysis and neuroscience.  

The main task of the ARS-PA project is decision making. The models used as archetype are based on the 
theories by Mark Solms [Sol02], António Rosa Damásio [Dam99], Sigmund Freud [Fre03], and Rainer 
Krause [Kra00]. Some of António Damásio's main areas of research are the human consciousness, the 
philosophy of mind, and cognitive science. Sigmund Freud was one of the founders of the psychoanalytic 
school of psychology, and is also known as the father of psychoanalysis. The used concept of complex 
emotions was developed by Rainer Krause [Bur07]. 

However, the human brain is an organ of the human body, which is interposed between the inner world 
(internal milieu of the body) and the outer world (external environment). According to Solms [Sol02], the 
inner world refers to respiration, digestion, temperature control, and the like. The information about the 
internal state is routed via the hypothalamus and the limbic system to the cortex. The sensory apparatus 
and the motor apparatus of the body are the interface to the outer world. The following chapter gives a 
brief overview of the cortex. The cortex is the area of the human brain that processes information from 
the sensors. Here, information from the outer world is combined with information from the inner world. 
Based on this combined body of information, the control of the motor apparatus of the body is managed. 

2.1.1 The cortex 

The theory of the human brain has changed in the last century from a mechanical model to a complex 
model [Lur73]. Following is a brief description of the parts of the brain that are according to Solms 
[Sol02] and Luria [Lur73] relevant for the perception and representation of the external world. The 
physical features of the external world are transformed by the sense organs (e.g. eye, ear, etc.) into nerve 
impulses. Via different parts of the brain (mainly the thalamus, which plays a major role generating basic 
emotions; see also 2.1.3) the nerve impulses are routed to dedicated areas in the lobes of the cerebral 
cortex. The different areas in the cortex are responsible for analyzing, processing, and storing information 
from the sensors, as well as creating the impulses necessary for taking actions. 

Figure 2 shows the main areas in the cortex. The visual information is processed in the occipital lobe 
(red), the acoustical information in the temporal lobe (green). The parietal lobe (yellow) receives the 
somatic sensations, which are not only the sense of touch, but also other senses like temperature sense, 

                                                      
1 Александр Романович Лурия; in this work the English transcription Aleksandr Romanovich Luria is used; the 
transliteration is Aleksandr Romanovič Lurija 
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vibration sense, or muscle and joint position sense. The frontal lobe (blue) in Figure 2 is the area that 
connects the motor organs of the body. 

 

Figure 2: Principal fissures and lobes of the cerebral cortex viewed laterally [Gray728] 

In the frontal lobe, information from the outer world (processed via the posterior lobes) and information 
from the inner world (processed via the hypothalamus and the limbic system) are used to program, 
regulate, and verify the actions of the person. The following chapter gives a brief overview of the 
functional units of the brain. 

2.1.2 The functional units of the brain 

The above sketch describes the main areas of the brain and where they are located. Aleksandr Luria 
defined a model of the functions of the human brain [Lur73]. This model has three basic function 
modules as represented in Figure 3. One module is responsible for the control of tone and waking, one 
module controls the obtaining, processing and storing of information arriving from the outer world, and 
the third module manages the programming, regulating and verifying mental activities. It should be 
stressed here that these functional units can be associated with regions of the brain, but not with small 
areas or even with single neurons. 

The human consciousness comprised all three modules – tone, reception and action module. The tone and 
waking unit is essential for the human mental process. Only under optimal conditions of waking can the 
human brain receive information, analyze it, and direct its own actions. The reception module receives its 
stimuli from the sense organs and divides them into a huge amount of parts. These parts are then 
assembled into dynamic-functional structures. The action module is not only responsible for the reaction 
on the inputs from the reception module but also for planning and coordinating the action of the human 
with his aims. It controls the motor activity of the body and monitors whether the actions fit the aims. 

The reception and the action unit are part of the cortex. The reception unit includes the parietal lobe, the 
temporal lobe, and the occipital lobe, and the action unit contains the frontal lobe. The cortical tone is not 
generated in the cortex, but below in the subcortex and brainstem. 
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Figure 3: Model of the human brain 

Since this work focuses on perception, we need to take a closer look on the reception module and the 
identification and description of its sub modules. According to Luria [Lur73], the module for reception, 
analysis and storage of information has a hierarchical architecture. This architecture has at least three 
layers. The layers of the reception module are shown in Figure 4. 
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Figure 4: The reception module 

The primary field of the reception unit, which is also called projection field, consists of highly specialized 
neurons. It reacts only to very specific patterns. In the visual primary field such patterns are e.g. 
chromaticity or a direction of movement. It processes the information that comes in from the sensors. The 
next hierarchical field is the secondary or so-called projection-association field. The neurons of these 
fields are not as specialized as the ones in the primary fields but still have a relatively high degree of 
specialization. The secondary field has synthesizing functionality. 

Incoming stimulations from the primary field are associated with patterns. The combination of 
information from all secondary fields is completed in the tertiary field. The specialization of the neurons 
of that field is even lower than in the secondary field. In the tertiary field, the transformation from 
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specific perception into abstract thinking takes place. Based on the structure of the brain as described 
above, Luria derives three basic laws [Lur73], which are illustrated in Figure 5: 

1. The first law is that the structure of the cortical zones is hierarchical. The higher fields control the 
lower fields2. 

2. The second law is the law of the diminishing specificity of the hierarchically arranged cortical 
zones that are composing it. The primary fields (occipital, temporal, and parietal) of the cortex 
contain a very large number of neurons, which have highly differentiated modally specific 
functions. In the secondary fields the associative neurons dominate, whose specificity is lower 
than in the primary fields. In the tertiary fields of the reception unit, the modal specificity is 
represented to an even lesser degree. 

3. The third law is the law of the progressive lateralization of functions. The primary fields of both 
cerebral hemispheres have identical roles, whereas in the secondary and tertiary field one 
hemisphere is dominant.3 

Tertiary field

Secondary field 
(projection -
association)

Primary field 
(projection)

Hierarchy

1th law 2nd law 3rd law

Specificity Lateralization of 
functions

 

Figure 5: Basic laws of the architecture of the human brain 

Additional to the perception of the environment, the human brain uses basic emotions as a valuation 
system of the sensory input. The following chapter describes this valuation system and the basic 
emotions. 

2.1.3 Basic Emotions 

The literature is rich with definitions of basic emotions. An anthology of these definitions can be found in 
[Ort90]. Despite different views on basic emotions by different theorists, there is consent about the 
existence of a set of basic emotions. Mark Solms uses in [Sol02] the nomenclature of basic emotions 
according to Jaak Panksepp [Pan98]. I will use the same nomenclature in this work in order to achieve 
consistency in the description of the human brain. It should be noted here that according to [Sol02] and 
[Dam99], the term emotion is used to refer to emotions which are unconscious. In contrast, conscious 

                                                      
2 This applies to the brain of an adult. During the ontogenetic development, the higher fields depend on the lower 
fields. After the secondary and tertiary field are developed, the dependencies change according to the first law. 
3 For right-handed persons the left cerebral hemisphere is dominant. 
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beings can register their emotions as feelings of emotions. I will focus here exclusively on unconscious 
emotions and use therefore the term emotion. 

The basic emotions are the same in all mammals. These basic emotions are hardwired and allow 
mammals to evaluate situations, and in particular situations of biological significance (e.g. danger). With 
adhering to what these basic emotions propose, an individual can increase the likelihood of the survival of 
its organism. Therefore, Panksepp suggests in [Pan98] that the basic emotions should be thought of as e-
motions – elocutionary emotions. Figure 6 shows the interaction of the emotional systems in the brain 
according to [Pan98]. 

 

Figure 6: Interaction of the basic emotional systems with other functions of the brain [Pan98] 

The basic emotion systems are typically triggered by events in the outer world (1). The emotions can 
trigger instinctual motor outputs (2) and modulate sensory inputs (3). With a positive feedback loop (4) 
emotions are sustained also after their trigger has passed. The emotional system can be modified by 
cognitive inputs as well as the emotional system modifies and channels the cognitive activities. The basic 
emotions defined by Panksepp [Pan98] are seeking, rage, fear, and panic. Figure 7 shows these basic 
emotions and their dependencies on the inner and outer world. 

 

Figure 7: Basic Emotions [Pan98] 

The seeking system is influenced by positive incentives (e.g. food, water, social contacts, etc.). The 
system is responsible for activating the organism’s interests in the outer world. The panic system is 
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triggered if the individual loses social contacts (e.g. lost child). The rage system is activated when goal-
directed actions are thwarted. The fear system is triggered in case of threat of destruction. 

2.1.4 Résumé 

As outlined in the previous chapters, the model of the brain according to Luria and Solms comprises on 
the one hand reception of information from the body’s sensors (sense organs, outer world). This 
information is directed to the dedicated parts in the brain, namely the cortex. Within the cortex, the 
information is then split into a great amount of components and clues, which are coded and synthesized 
afterwards. On the other hand, the internal world is projected to the frontal lobe of the cortex, where it is 
combined with information about the outer world. 

Additional to the dataflow described above the basic emotion systems valuate the inputs from the inner 
and outer world. I use here Panksepp’s model of basic emotional systems. The basic emotion systems 
cause instinctive actions and influence the perception and higher thinking activities of the human. These 
major functional systems of the brain for perceiving the environment are used in the following chapters to 
derive from them a technical model which has similar properties as describe above. 

2.2 Derived Technical Model 

Before deriving the technical model from the presented functional systems of the brain, two research 
projects, i.e. Blue Brain [BBP06] and Ccortex™ [Cco06], are described briefly in order to demonstrate 
why it is difficult or even impossible to simulate functions of the (mammal) brain by simulating the 
functionality of neurons. Although only parts of the functions of the brain are simulated, enormous 
computational power is required. The Blue Brain project uses the Blue Gene supercomputer to simulate a 
neocortical column of a rat in real-time. It contains of about 10000 neurons and about 108 synapses. A 
neocortical column of a human consists of about 60000 neurons, has a diameter of about 0.5mm and a 
height of about 2 mm. According to the list of the top 500 supercomputers4 [TOP500], the IBM eServer 
Blue Gene Solution system, installed at IBM’s Thomas Watson Research Center where the Blue Brain 
project is simulated, has a performance of 91.20 Tflops (Linpack). 

The goal of the Ccortex project is to simulate the human cortex, basal ganglia, thalamus, and 
hippocampus. For this purpose, 20*109 neurons and 20*1012 synapses [Cco06] have to be simulated. The 
supercomputer used in the Ccortex project is expected to reach a theoretical peak performance of 4.800 
Gflops. However, the last update of the site was done in September 2005 and no recent publications could 
be found. Therefore, I have to assume that the project was stopped. 

Although these numbers are imposing, the total number of neurons and synapses is not reached by some 
order of magnitude. The neocortex of the human has about 1010 neurons and the estimated number of 
synaptic connections is 1013 [Pan98]. It does not seem possible in the near future to achieve enough 
computational power to simulate the human neocortex even by using the most powerful supercomputers 

                                                      
4 28th TOP500 List was released in November 2006 



Chapter 2  The ARS Model 

10 

available. Comparing the numbers of neurons and synapses of the Blue Brain project, it has to be 
emphasized here that 106 less neurons and 105 less synapses are simulated than are in the human 
neocortex. 

However, to apply models of the human brain to applications like Ambient Assisted Living (AAL), the 
approach of neuron simulation is not feasible. Moreover, there are no models available at present which 
can explain how higher functions of the brain like consciousness are derived from the functionality of 
neurons. Therefore, models of higher brain functions cannot use a simulation approach. Hence, the ARS 
project chooses a different path. It does not simulate neurons in the brain, but it uses neuro-
psychoanalytic models. These models describe the functionality of the brain and the mind of humans, but 
do not refer to single neurons in the brain. Using this approach, we can expect following benefits. 

Neuroscientists, psychoanalysts, and pedagogues like Solms or Panksepp have developed their models in 
the last decades based on theories by Freud and Luria. Therefore, engineers do not need to create new 
models from scratch, but can use the results of research by experts in the field of neurosciences. The 
engineers for their part can give feedback and thus add to the improvement of the models. So both 
neuroscientists and the engineers collaborate to obtain better models of the brain. 

The mammalian brain, and especially the human brain, is the brain which has the highest cognitive 
abilities known to scientist. Using neuro-scientific models of the human brain, there is a high chance that 
related technical models have similar functionalities. In order to reach this ambitious target it is necessary 
to unit models of the brain which can then be transferred into a unitary technical model [Die07]. 

2.2.1 Interaction of ARS-PC and ARS-PA 

The separation of the ARS project into the subprojects ARS-PC (see Chapter 2.2.3) and ARS-PA (see 
Chapter 2.2.4) has two main reasons. The first and pragmatic reason is to reduce complexity. Using 
simulators, it is not necessary to implement the whole system at once or to develop and test all parts of the 
system. Figure 8 illustrates the division of the project. On the left side of the functions of the overall ARS 
system are depicted, symbolized with small ellipses. The functions which are based on psychoanalytic 
models and are therefore higher level functions are grouped in the blue ellipsis, the hierarchical lower 
functions in the orange ellipsis. The symbolized functions in the orange ellipsis are based on neuro-
scientific models. In order to aid the development and testing of all ARS functions, ARS is split into 
ARS-PC and ARS-PA as shown on the right hand side of Figure 8. In the ARS-PA part, the lower 
functions of the brain are replaced with a simulation of perception. This project part is therefore 
concentrated on the functionality of decision making, based on the psychoanalytic model. 
Complementary, the research work in the ARS-PC part is concentrated on the perception of the 
environment. However, the interface between the projects is defined as the world representation of the 
outer world (see also Figure 1). 

The second reason is the use of different designs. The ARS-PC uses a bottom-up design where symbols 
are used as building blocks, which are assembled according to world representation. The ARS-PA project 
uses the top-down approach, transforming the psychoanalytic model into a technical model [Deu06]. 
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Figure 8: Reducing complexity in the ARS model with splitting 

Nevertheless, both projects are designed to work together. Figure 9 shows the simplified modular view of 
the ARS project as proposed in [Pra06] and [Deu06]. The ARS-PC project has only the module 
Symbolization. This module compares sensor data from the environment with predefined situations. If a 
predefined situation matches with the situation perceived by the sensors, the situation is identified as a 
known situation. The symbolization uses hierarchy of symbols to define situations. Similar to situations, 
the symbols are predefined as well. Higher-level symbols depend on symbols which belong to a lower 
hierarchical level. The symbols of the lowest hierarchical level, the so-called microsymbols, are 
composed of the sensor values. The interface between the ARS-PC and ARS-PA project is the world 
representation, which is described with representation symbols. A detailed description of the ARS-PC 
part follows in Chapter 2.2.3. 

The ARS-PA project, as described in [Deu06], uses world representation and internal states to make 
decisions. The color gradient from red to green in Figure 9 is to point out that the decision making 
process is not a straightforward approach, but is multi-layered and contains a number of feedback loops. 
The internal state is derived from semantic and episodic memory, from the so-called superego, and from 
drives and emotions (basic and complex emotions). According to the psychoanalytic model, decisions are 
made as a result of the contrast between superego and drives. Further, the module Decision is responsible 
for changing the inner state according to input from the world representation and the expected response 
from the taken actions. The module Execution transforms the decisions from the module Decision into 
commands to the actuators of the system. The first implementation of the ARS-PA is the so-called Bubble 
Family Game [Deu07]. Detailed description of the ARS-PA part follows in Chapter 2.2.4. 

In the current ARS model [Pra06] and [Deu06], the basic emotions are part of the ARS-PA project. The 
basic emotions do not influence the world representation. However, according to [Pan98], basic emotions 
in the mammalian brain also influence the perception of the outer world. Therefore, the ARS model was 
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modified in this work as described in the following chapter. The modification of the ARS model is based 
on the neuro-scientific model presented in Chapter 2.1. 
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ExecutionSymbolization

Sensor data

Symbols

Actuator 
commands

Decisions

Environment

Decision making

 

Figure 9: Modular view of the ARS project 

2.2.2 Modified ARS model 

The current ARS model described above is missing a concept of basic emotions as described in Chapter 
2.1.3 and illustrated in Figure 6. The basic emotions are only part of the higher brain functionality (ARS-
PA), and do not influence the perception (ARS-PC) but are influenced by it. Since the emotional systems 
in a mammalian brain influence other subsystems of the brain and are themselves influenced by these 
subsystems, the emotional system cannot be modeled as a single functional module. Every subsystem, 
which is dependent in the emotional system, has to implement interfaces to interact with the emotional 
system [Bur07]. Therefore, I modified the ARS model in order to integrate the basic emotional systems 
into both the ARS-PC and ARS-PA model. 

The emotional systems influence the modules in the ARS-PC project as well as in the ARS-PA. A 
modular overview of the ARS project concerning the integration of the basic emotion systems into ARS-
PC and ARS-PA is shown in Figure 10. It uses the same colors and numeration as Figure 6, which depicts 
the interactions and functionality of the basic emotional systems of the mammalian brain, as well as 
Figure 9, which illustrates the modular view of the ARS project. 

The e-systems are in the centre of Figure 10. The term e-system stands for the technical model of the 
functionality of a basic emotional system as described in [Pan98]. It consists of a number of e-systems, 
where each system represents a basic emotion. In order to have a flexible system, which can be adapted to 
particular applications, the number and type of basic emotions are not defined or limited in the concept of 
the ARS system. The functionality of the characteristics of the mammalian brain is partly implemented in 
the e-systems, and partly in the other modules of the ARS model. Introducing the e-systems as module 
into the ARS model, the world representation and therefore the perception of the ARS system is 
influenced by the internal states of the system. 
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Figure 10: Introduction of e-systems into the ARS model 

The module Symbolization has beside sensor values from the field an additional input from the e-systems 
(3’). This input influences the symbolization of the sensor values. The symbols of the module 
Symbolization are sent to the module Modulation (3’’) and the e-systems (1). The module Modulation 
valuates the symbols of the module Symbolizations according to the values of the e-systems. The output 
of the module Modulation is then the world representation of the outer world. The modules 
Symbolization and Modulation form together the ARS-PC project. 

The ARS-PA project comprises the modules Decision and Execution. The module Decision has two 
inputs, the valuated symbols of the module Modulation (world representation) and the input from the e-
systems (6). Decisions are generated from the input and knowledge within the module. Theses decisions 
influence the e-systems (5). The module Execution controls the actuators, which influence the 
environment. Additional to the decisions of the module Decision, the module Execution receives input 
from the e-system (2). Both inputs can cause actuator commands. 

The e-systems are influenced by the sensor data (1) as well as by the decision of the module Decision (5). 
Within the central modules, the positive feedback loop (4) is implemented. Together with the inputs of 
the e-systems, the current values of the e-systems are determined. Via the interfaces of the modules 
Symbolization (3’), Modulation (3’’), and Decision (6), perception and decisions are influenced. The 
interface of the module Execution (2) is used to model instinctive behavior. 

The modified ARS model constructs the functionality of the basic emotional system as described in 2.1.3. 
It is triggered by events from the outer systems (1). The emotions can trigger (instinctual) motor outputs 
(2) and influence the word representation (3) of the perception. The influence on the world representation 
was separated into two parts, namely how the environment (3’) is perceived and what is perceived (3’’). 
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Within an e-system, a positive feedback loop (4) makes sure that an emotion is sustained even after the 
trigger for it has passed. As in the ARS-PA model, emotions control decisions (5) as well as decisions 
influence emotions (6). In the following chapters, the ARS-PC and ARS-PA model are described in more 
detail. 

2.2.3 ARS-PC model 

Gerhard Pratl proposed in [Pra06] the ARS-PC model. I adapt this model here according to the neuro-
psychoanalytical model as described in Chapter 2.1 primarily with the introduction of basic emotional 
systems. The second major adaptation is the reworking of symbolization according to the neuro-scientific 
principals set-up by Luria as formulated in Chapter 2.1.2. This chapter illustrates the rework of the 
layered symbolization model of the ARS-PC project according to the principals Luria. 

The ARS PC project should be seen as the technical implementation of the functionality of the reception 
module, which is one of the three main functional units of the cortex of the human brain. As shown in 
Figure 10, the ARS-PC model consists of two main modules, i.e. Symbolization and Modulation. The e-
system modules are part of both the ARS-PC and ARS-PA project. The module Symbolization 
implements the perceptive functionality of the cortex. This includes the processing of sensor data from 
the periphery as well as a valuation of the outer world according to the values of the e-systems. The 
module Modulation can be seen as filter, which filters the world representation depending on the e-
systems. But before the relationship between the neuro-psychoanalytical model and the ARS-PC model is 
described, we need to define the term symbol as used in our approach. 

The term symbol is used in many areas and in each of them it has at least a slightly different meaning. It 
originates from the Greek word σύμβολον (symbolon), which is consists of the words συν (sym-) 
meaning “together” and βολή (bole) meaning “throw”. Literally, the word symbol has the approximate 
meaning of “to throw together” or “the joined”. The Latin word is symbolum. The most basic meaning of 
the term symbol is a conventional representation of a concept, idea, quantity, object, etc. Within this work 
and the ARS project, a symbol is seen as a representation of a collection of information [see Pra06 and 
Goe06]. Since learning is not addressed here, symbols are pre-defined. This means that the system is only 
capable of recognizing known information patterns of the sensors. 

The relationship of the neuro-psychoanalytical model and the ARS-PC model is shown in Figure 11. The 
reception module in the neuro-psychoanalytical model is divided into three parts, the primary 
(projection), secondary (association) and tertiary field. In the ARS-PC model [Pra06] the module 
Symbolization is equivalent to the reception module of the neuro-psychoanalytical model. It is also 
divided into three layers, the microsymbol layer, the snapshot symbol layer and the representation 
symbol. In the primary field are highly specialized neurons, which react only to special patterns. In the 
ARS-PC model, this layer corresponds to the so-called microsymbol layer. In this layer, microsymbols 
are generated from sensor values. 

The secondary field in the reception module of the cortex combines the features which have been 
extracted in the primary field. In the technical model, the microsymbols are synthesized to new symbols. 
In [Pra06] the second layer is called snapshot symbol layer. It has to be mentioned here, that in [Pra06] 
snapshot symbols are defined as symbols which represent the world at one point of time (or a short time 
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span, respectively). This definition does not cover its use a hundred percent here. According to [Lur73] 
synthesis is the key task of the secondary fields. As a matter of course, this represents part of the world, 
but in this work here, snapshot symbols are seen as building blocks used by the next higher layer, the 
representation symbol layer. 

Another reason for the slight change in the definition of snapshot symbols is the fact that the primary and 
secondary fields are separated and do not join the sensory information together. A representation of (a 
part of) the world would then be limited to one sense. In our work, it is the tertiary field that has this 
ability of combining symbols from all senses, thus creating a world representation. 

The neuro-psychoanalytical model is limited to the senses of a human. The technical model of the ARS-
PC project is not limited in this regard. For every type of information connected to the model, a 
microsymbol layer and a snapshot symbol layer can be attached to the model. It is the key task of the 
representation layer to link the (snapshot) symbols of the different areas of information together in order 
to create a consistent world representation. The ARS-PC model in Figure 11 is an example of this. In any 
implementation, a visual sub-system or acoustic sub-system can but does not necessarily have to be 
integrated. 
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Figure 11: Relationship of the neuro-psychoanalytical model and the ARS-PC model 

Two of the three basic laws defined by Luria [Lur73] and briefly summarized in Chapter 2.1.1 apply also 
to the technical model of the human brain. The first law says that the cortex has a hierarchical structure. 
The technical model is also designed as a hierarchical model. The symbols of the microsymbol layer are 
the basis for the synthesis of the symbols of the higher layers. The same applies to all other symbol layers. 

The second law says that the specificity of the higher layers is lower than the specificity of the layer 
below. In the ARS model the microsymbols are only generated from of one kind of sensors, e.g. 
temperature, and represent a very specific pattern in the sensor data. The higher-layer symbols are 
synthesized out of the microsymbols. Higher-layer symbols therefore have a lower specificity than the 
symbols of the layer below. They have integrative functionality. 
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The third law says that especially the higher functional layers are processed only in one hemisphere of the 
brain. For an implementation of microprocessors the spatial distribution of the computing power is not so 
important. Contrary to the human brain, the number of processors and the computing power of a single 
processor can be increased. One could interpret the third law as a strategy to distribute the tasks of the 
model to different processors in a multiprocessor system. However, in the ARS model the distribution of 
the computational power is not modeled in this work. 

The equivalents of the basic emotional systems of the human brain are the e-systems and the modules, 
which are influenced by the basic emotions. The two characteristics of the basic emotional systems, 
sensor stimuli and modulate sensory inputs, are modeled in the ARS-PC project and therefore part of this 
work. In the technical model the stimulus from the sensors is not modeled as a direct input from the 
periphery, but the symbols generated in the module Symbolization are used as the stimuli for the e-
systems. It has to be pointed out here that not only representation symbols can influence e-systems, but 
also snapshot symbols and microsymbols. 

The second characteristic of the basic emotional systems of the neuro-psychoanalytical model is the 
modulation of the sensor inputs. In the technical model this characteristic is split. Both the module 
Symbolization and the module Modulation are influenced by e-systems. Thereby, the module 
Symbolization creates all symbols which are included in the world representation. The module 
Modulation does not create additional symbols itself, but can modify symbols or even filter them out 
completely, according to the e-status of the e-systems. 

2.2.4 ARS-PA model 

The ARS-PA model covers the higher cognitive functions of the human brain. It uses the psychoanalytic 
model according to [Sol02], [Dam99], [Fre03], and [Kra00]. [Bur07] gives a rough overview of the main 
modules in the ARS-PA (see Figure 12), which is described below. This model is a simplification of the 
model presented in [Pra07]. 

 

Figure 12: ARS-PA model [Bur07] 

Figure 12 shows the ARS-PA part including basic emotions. It has to be emphasized here again, that the 
basic emotions are part of both the ARS-PC and ARS-PC part. However, basic emotions together with 
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drives form the so-called pre-decision module. The pre-decision module can cause very fast reactions if 
the path to the reactive module is activated. The decision module obtains valuated information about the 
environment from the pre-decision module. The decision module is responsible for long term decision 
making. 

In the decision making module, complex emotions and desires are used. Typical human complex 
emotions are hope, disappointment, joy, or gratitude. The goal of the decision-making unit is to satisfy the 
needs of an individual. Desires are experienced situations that lead to the satisfaction of a need. These 
desires push the individual to reproduce such experienced situations. The strategies module plans the 
actions or reactions to a certain situation. It simulates what would happen if a certain action were to be 
taken in the current situation (Acting-As-If). The decision making control module chooses one action 
from different actions planned by the strategy module5. It chooses the action which best satisfies the 
needs. 

The decision making control module has the ability to inhibit reactions which were triggered by basic 
emotion systems. The routine module controls action series which have been learned by the individual. 
Typical examples of routine actions by humans are walking, cycling, or swimming. Once it has learned 
how to do it, the brain stores the actions necessary for the execution of these actions. 

It has to be stressed here that the decision making module does not only react on input from the 
perception module (ARS-PC) but has also the ability to take actions without input from the external 
world. The drives and desires can push the individual to take actions. Therefore, the ARS project has to 
be seen as a loop, as mentioned in the beginning of Chapter 1 and depicted in Figure 1. 

2.2.5 Résumé 

As seen in the previous chapters the ARS model consists of two main parts, the ARS-PC part and the 
ARS-PA part. For both parts the functionality of the human brain serves as model. The ARS-PC part uses 
a neuro-psychoanalytical model; the ARS-PA part uses a psychoanalytic model. Since neither 
psychoanalysis nor psychology, nor neurology have models which describe the functionality of the 
human from low-level functions up to high-level functions, models of these disciplines were taken which 
can be combined for a consistent and unitary ARS project. In particular in this work, the technical model 
of the ARS-PC part has been derived from the neuro-psychoanalytic model presented in Chapter 2.1. 

The output of the ARS-PC part is a world representation which uses the ARS-PA part as basis for 
decisions. Both parts are influenced by a valuation system of the so-called e-systems. Each of the e-
systems, which are comparable to basic emotional systems of the brain, is influenced by the ARS-PC and 
ARS-PA parts. An overview of the main tasks of the ARS system is illustrated in Figure 10 above. 

As mentioned previously, this work deals mainly with the ARS-PC part. Based on sensor data it creates a 
world representation of the outer world by using symbolization. The symbolization is split into three 

                                                      
5 For the evaluation of the planned action/reaction the emotional systems are used (basic and complex). The planned 
actions are transformed into expected perceptions which are then evaluated. This feedback is not included in Figure 
12 
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hierarchically ordered layers, the microsymbol layer, the snapshot symbol layer, and the representation 
layer as outlined in Chapter 2.2.3. Each layer is represented by its own symbols. In this work a symbol 
should be understood as a collection of information. Figure 13 shows an example of a tree of symbols. 

Representation
Symbols

Snapshot
Symbols

Microsymbols

Sensors

 

Figure 13: Tree of symbols in the ARS-PC project 

In the hierarchical model the lower-layer symbols are building blocks of the higher-layer symbols. The 
microsymbols are generated from sensor data. A snapshot symbol is a synthesis of microsymbols. The 
representation symbols have an even higher abstraction, which allows the description of simple scenarios. 
Symbols, hierarchy concept, and scenarios of the ARS project are defined in Chapter 4 and Chapter 5. 
The next chapter describes how data from sensors in a building can be accessed in case more than one 
building automation system is used. 
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3 Provision of Sensor Data 

It is intended that the ARS system is an extension of Building Automation and Control Systems (BACS) 
as defined in CEN TC247 (European Committee for Standardization Technical Committee 247 “Building 
automation, controls and building management”) [TC247]. In [Tam03] it is proposed to expand6 the 
ISO/OSI model [OSI94] in order to implement the Perceptive Awareness Model (PAM), which is 
depicted in Figure 14. The current fieldbus technology is based on the ISO/OSI model. The basic access 
functions are interoperable functions to access the sensors and actuators of the fieldbus systems. Above 
the data abstraction layer, which is described in this chapter, the functions of the ARS model (perception, 
recognition and reaction) are illustrated. The main task of the data abstraction layer is to hide the specific 
representation of data and services of the underlying communication protocols. 

 

Figure 14: Perceptive Awareness Model according to [Tam03] 

In the last years the fieldbus systems KNX [ISO14543], CNP [EN14908-1 and EN14908-2] and BACnet 
[ISO16484-5] were standardized by the international standardization. Within these standards it is possible 
to work more or less seamlessly [Bur05] because standard data types, standard services, standard 
semantics and profiles are the main elements to ensure interoperability [Kab02]. Unfortunately, the 
interoperability is only addressed within one standard. The lack of interoperability between different 
BACS leads to additional costs in installation and maintenance [Die01a]. Moreover it is not possible to 
develop applications that are based directly based on different BACS. 

The classical approach to overcome the missing interoperability between different BACS is to use gate-
ways. Their task is to “translate” between different protocols. This translation usually involves a certain 
degree of loss. However, the fieldbus systems have been developed for special application areas (field 

                                                      
6 The ISO/OSI model is an abstract description of communication network protocols. The extension in [Tam03] 
covers high data processing and does not refer to the layers of the ISO/OSI model. 
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level, automations level, and management level7), and therefore data types and services usually differ 
between the fieldbus systems. An application designer normally develops an application for a fieldbus 
system, and therefore used its special data types and services. However, applications like the ARS system 
need data from all hierarchical levels, and therefore usually from different types of fieldbus systems. 

This work develops two approaches, which avoid the problems caused by the use of gateways. The first 
approach describes a gatewayless communication between CNP and BACnet [Bur04]. The second 
approach is an abstraction layer, which hides the fieldbus specific data representation and services. 

Other approaches have been developed for industry automation. [Sau07, Lob06, and Sau05] give a 
technology survey how fieldbus can be integrated into IP-based networks. A discussion of different 
approaches can be found in [Wol01, Wol02, Lob02, and Cal03]. However, [Sau04] maintains that no 
ideal solution for all occasions has been found yet. The following chapters describe the fieldbus systems 
CNP and BACnet. Further, the ISO standard for the mapping between CNP and BACnet is described 
briefly in order to develop the gatewayless communication approach and the data abstraction approach, 
which is needed to overcome the use of gateways. 

3.1 Control Network Protocol CNP 

CNP [Loy01] uses as transport protocol the LonTalk protocol, which is standardized by the American 
National Standards Institute (ANSI) in the standard EIA/CEA-709.1 (Electronic Industry 
Alliance/Consumer Electronic Association) [EIA709] as the so-called Control Network Protocol (CNP). 
Further it is specified in the European standard series EN 50090 [EN14908-1] and [EN14908-2]. 
Additional to this standard the Interoperability Guidelines for layer8 one to six [LIGP05] and the 
Interoperability Guidelines for the application layer [LIGA05] define standards of configuring, managing 
and communicating components on a CNP network in an interoperable way. 

In the CNP, two types of communication objects are introduced, the Network Variables (NV) and the 
Explicit Messages. The NVs can be used within an application program similar to variables known from 
programming languages like C. If a new value is assigned to a NV within the application, the new value is 
propagated automatically to all NVs that have a so-called binding with that NV. NVs can have bindings 
with NVs from the same node as well as with NVs from other nodes. The protocol stack automatically 
generates the messages exchanged between the nodes. 

Explicit Messages have to be managed by the application program. This means that the messages 
exchanged between nodes have to be composed by the application program. That includes addressing as 
well as the type of service. Explicit Messages have a message code, which defines how the explicit 
message is processed by the protocol stack. In the CNP the range of the message code between 0 and 62 
is defined for application messages, which can be used by the application program. The range between 

                                                      
7 The levels are defined in ISO16484-2. 
8 The layers correspond to the ISO/OSI reference model (International Organization for Standardization/Open 
System Interconnection) [OSI94]. 
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128 and 255 is reserved for NVs, and is managed by the protocol stack. The range between 64 and 78 is 
used for foreign frames, which can be used by other protocols to tunnel messages through a CNP 
network. In the BACnet standard the CNP is defined as a transport protocol using these explicit messages 
(see Chapter 3.2). 

The communication on a CNP network according to the Interoperability Guidelines is based on NVs. To 
ensure that all partners interpret the NVs in the same way, the Standard Network Variable Types 
(SNVTs) has been defined. These communication objects are published in the SNVT Master List 
[LSML03]. For CNP a various number of transport media are defined. Widespread media are TP/FT10 
(Twisted Pair/Free Topology), which allows a free topology cabling, twisted pair or transmission over the 
Internet Protocol (IP). Therefore, all media that are defined for IP can be used as transport media as e.g. 
“Ethernet” [ISO8802]. 

3.2 BACnet 

BACnet was first defined as an ANSI/ASHRAE (American National Standards Institute / American 
Society of Heating, Refrigerating and Air-Conditioning Engineers) standard [ASH135] and is now also 
standardized by ISO in [ISO16484-5]. It was developed mainly for the management level, but can also be 
used in the automation/control level or field level. Data are represented as objects, which are 
characterized by their properties. To increase interoperability, standard objects are defined. Standard 
objects have mandatory properties and optional properties. An example of mandatory and some optional 
properties of the Analog Input Object are presented in Table 1. An Analog Input Object would be used to 
represent the value of analogue sensor, e.g. temperature sensor. The name of the property is listed in the 
first column of the table, and the data type of the property is shown in the second row. CC in the third 
column stands for Conformance Code. It describes whether the property is required (R) or optional (O). 

Table 1: Example of properties of the Analog Input Object 

Property Identifier Property Data type CC 
Object_Identifier BACnetObjectIdentifier R 
Object_Name CharacterString R 
Object_Type BACnetObjectType R 
Description CharacterString O 
Device_Type CharacterString O 
Present_Value REAL R 
Status_Flags BACnetStatusFlags R 
Event_State BACnetEventState R 
Out_Of_Service BOOLEAN R 
Units BACnetEngineeringUnits R 

 

In the following, a short explanation of the concept of the BACnet objects is given. The only optional 
properties presented in Table 1 are the properties Description and the property Device_Type. They can 
contain a general description and a description of the connected sensor. All other properties in Table 1 are 
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mandatory. The properties Object_Identifier, Object_Name and Object_Type are used to identify a 
BACnet object within a BACnet network. The property Present_Value represents the value, which is 
measured by the sensor. In case of a temperature sensor this would be temperature. The unit of the value 
is defined by the property Units. In the BACnet standard a list of units is defined. The property 
Status_Flag, the property Event_State, and the property Out_Of_Service describe the status of the 
BACnet object. 

To access the properties of a BACnet object, so-called BACnet services are defined. Depending on the 
application of the BACnet device, different services are offered. The services follow the client-server 
architecture where the one device initiates the communication (request, BACnet type A) and the other 
node replies (response, BACnet type B). Table 3 shows the example of a BACnet Read Property service. 
On the left side the arguments of the request are shown. The second row shows whether the argument is 
mandatory (M) or a user option (U), which may not be provided. The next rows show the arguments of 
the response and the occurrence of the arguments. 

Table 2: BACnet Read Property Service 

Request  Response  
Argument M Object Identifier  M 
Object Identifier M Property Identifier  M 
Property Identifier  M Property Array Index  U 
Property Array Index U Property Value M 

 

If the value of a temperature should be read by e.g. an operator workstation, this device would act as the 
client (BACnet type A) and would send the Read Property Service (type A) to the sensor node where the 
temperature sensor is attached. To read the value of the temperature value the Object Identifier and the 
Property Identifier of the BACnet object associated with the temperature value have to be addressed. The 
node with the attached temperature sensor acts a server (BACnet type B) and sends the Read Property 
Service (type B) as response. If the value could be read, the arguments from the request and the value are 
returned, otherwise an error is returned. 

In addition to the Read Property Service, BACnet offers a Write Property Service to change the value of a 
property (e.g. the value of a ventilator output). Multiple read and write services allow reading or writing 
more than one property at once. The so-called change-of-value (COV) service allows an automatic 
notification when the value of a property changes. Event and Alarm services allow the notification in case 
of an event or alarm. 

Although BACnet defines its own transport protocol and media, namely MS/TP (Master Slave / Token 
Passing), it uses other communication protocols. These protocols are IP and “Ethernet” [ISO8802] and 
the CNP. It uses the foreign frame concept of CNP as briefly described in Chapter 3.1. This allows 
communication between CNP and BACnet without a gateway. Gateways are the concept which is used to 
map data points between different communication protocols as explained in the next chapter. The BACnet 
standard defines a mapping between CNP and BACnet as well as a mapping between BACnet and KNX. 
These mappings should ease the work of system integrators in case different communication protocols are 
used and the data points have to be mapped between these protocols. 
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3.3 Mapping CNP to BACnet using gateways 

In building automation systems different communication protocols may be used. In order to allow 
communication between the different protocols gateways have to be used. A three-layered hierarchical 
model is proposed by the international standard for building automation and control systems [ISO16484-
2]. The task of the two lower layers, the field level and the automation or control level, is to control the 
application in the field. The top level is the management level, which interconnects several control 
networks and allows the operator to manage the building. In the standard [ISO16484-2], there is no 
assignment of fieldbus systems to hierarchical levels. Nevertheless, BACnet is mainly used in the 
management level, whereas CNP is used in the automation and field level. Figure 15 shows a traditional 
approach to connect CNP and BACnet. 
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Figure 15: Communication with gateways 

In the management level the BACnet is used. In the field level the CNP with different physical media (RS 
485 and FT 10) is used. These two subnets are connected with CNP routers with the CNP backbone. 
Messages between nodes within a subnet are blocked by the CNP router and therefore not forwarded to 
the CNP backbone. If node A (subnet FT 10) and C (subnet RS485) of Figure 15 have to communicate 
with each other, the messages are routed via the CNP backbone from one CNP subnet (RS 485) into the 
other subnet (FT 10). 

The BACnet/CNP gateway allows communication between the two protocol worlds. If the BACnet 
operator workstation has to poll a value from the CNP node A, the BACnet request has to be translated by 
the BACnet/CNP gateway into a CNP poll request. Via the CNP backbone and the CNP router this 
message is routed to the FT 10 subnet. The answer of the node takes the same way back and again has to 
be translated in the BACnet/CNP gateway before it reaches the BACnet operator workstation. 

This approach is used nowadays in building automation systems. Nevertheless, it has some disadvantages, 
which originate from the use of gateways. The gateway is a very complex device and therefore expensive 
not only to purchase but also in operation. It needs an application-specific configuration and has to be 
adopted with every change in the network. Since the different protocols use different representations and 
types of data, usually there is a loss of information and precision during protocol conversion. If complex 
data type conversion is necessary the performance of the installation may suffer under high load. 
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Another major problem is that the gateway is a single point of failure. If the gateway is out of order, no 
communication between the management level and the field level is possible. Using a redundant gateway, 
which can ensure that communication is possible even if other gateway is out of order, increases the costs 
for installation, configuration, service, and operation. 

To reduce or even eliminate these problems, communication without gateways can be used, provided that 
one protocol standard can use the transport protocol of the other standard. The next chapter describes how 
that this can be done with the protocols BACnet and CNP. 

3.4 Gatewayless Communication between CNP and BACnet 

As mentioned above, the concept of gatewayless communication between two different communication 
protocols is only possible if one of the communication protocols can use the transport protocol of the 
other communication protocol. In the BACnet standard [BAC04] this possibility is defined in clause 11. 
This approach minimizes or even eliminates the drawbacks of using a gateway, because of the lack of the 
gateway. It is clear that still a protocol conversion is necessary, but this conversion is done in the nodes of 
the field-level. 

Such a node is a so-called NeuBAC node. A NeuBAC node is a node which implements a CNP stack and 
additionally the necessary parts of the BACnet protocol stack. In Annex L of the BACnet standard 
[BAC04] profiles of BACnet standard devices are defined. In these profiles it is defined, which BACnet 
Interoperability Building Blocks (BIBB) have to be implemented in a device. The BIBBs are defined in 
Annex K and describe a certain BACnet service and whether it is the client side implementation or the 
server side implementation of the service. For the BACnet Smart Sensor only the server side 
implementation of the read property service has to be implemented. For the BACnet Smart Actuator the 
server side implementation of the write property service has to be implemented in addition. A NeuBAC 
node therefore should at least implement the read property service and the write property service of the 
BACnet standard. Figure 16 shows again the network topology as used in Figure 15 and shows a network 
without a gateway. 

Figure 16 differs from Figure 15 is several points. The BACnet operator workstation and the Ethernet 
backbone are left unchanged, but in the backbone not only BACnet messages are forwarded, but also 
CNP messages. The BACnet/CNP gateway and the Ethernet backbone for the CNP are omitted. 
Combined CNP/BACnet routers replace the CNP routers. A Combined CNP/BACnet router is a router 
that can route CNP messages as well as BACnet over CNP messages. Since the messages are routed 
independently from each other, such a device could also be composed out of a CNP router and a BACnet 
router. However, it should be mentioned here, that in the Ethernet backbone the BACnet messages either 
conform to the BACnet over ISO 8802.3 standard or conform to the BACnet/IP standard. The CNP 
messages conform to the EIA 852 (IP/Ethernet channel for CNP) standard [EIA852]. 
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Figure 16: Gatewayless communication between CNP and BACnet 

In the field-level, pure BACnet nodes, NeuBAC nodes, and/or pure CNP nodes can be used, even 
simultaneously. It is clear that a CNP node can communicate only with other CNP nodes or NeuBAC 
nodes, and a BACnet node can only communicate with other BACnet nodes or NeuBAC nodes. If the 
node A and C have to communicate with each other, the CNP messages are used as defined within the 
CNP standard. A request from node A is sent to the CNP router, which routes the message into the 
Ethernet backbone as an EIA 852 message. The CNP router for the RS 485 network translates the packet 
back into a CNP message and sends it into the subnet where the CNP node C is located. The answer to the 
request is routed the same way back. 

If the BACnet operator workstation has to poll a value from node A, which is in this approach a NeuBAC 
node, the communication differs from communication with a gateway. The BACnet operator workstation 
sends out a BACnet message into the Ethernet Backbone. This message is routed by the BACnet part of 
the CNP/BACnet router into the subnet, where node A is situated. The message in the subnet is still a 
BACnet message, following the BACnet standard. The NeuBAC node A receives the message and can 
interpret it as request for a certain value. The response is sent as a BACnet message back following the 
same way to the BACnet operator workstation. 

Using this approach, the gateway as a single point-of-failure is eliminated. The configuration of the 
network is easier, because no gateway has to be configured. The additional configuration effort within the 
routers can be reduced using learning algorithms within the routers. To configure the gateway the 
network integrator needs knowledge about the applications in order to configure a gateway. Using 
NeuBAC nodes, this problem is delegated to the application designer, who has this knowledge in the first 
place. He can design the NeuBAC node in a way that the node provides all necessary communication 
objects for both protocols. Therefore, the loss of information due to protocol conversion is zero. In Annex 
H of the BACnet standard a mapping between CNP and BACnet is defined which can ease the work of 
the system integrator for assigning the addresses and identifier. 

A general-purpose gateway has to fully implement the stacks of both protocols. A multi-protocol node 
like a NeuBAC node only implements the functions required for the application. This reduces costs 
during development, functional testing, conformance testing, and certification. A NeuBAC node, which is 
used as a BACnet smart sensor device, only has to implement the read property service. Since one 
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backbone and the gateway are omitted, the response time of the system can be increased. A gateway 
usually has a high delay time because the payload of the message has to be converted. 

A NeuBAC node can also be used in pure BACnet installations, which do not use the CNP protocol as an 
application protocol, but only as transport protocol. In such a case already existing CNP devices can be 
used as BACnet devices without changing or redesigning the hardware. 

There are also some limitations and restrictions when using NeuBAC nodes. The maximum length of the 
Network Protocol Data Unit (NPDU) is limited to 228 Bytes. If ARCNET9, MS/TP, point-to-point is used 
the maximum NPDU length is 501 Byte, with ISO 8802.3 (Ethernet) or BACnet/IP 1497 Bytes allowed. 
But again, the payload limit is not an issue for simple devices. In BACnet analogue values are transmitted 
as single precision floating-point values according to ANSI/IEEE Standard 754-1985 [IEEE754]. One 
value requires therefore four bytes plus protocol overhead. 

Typically, a CNP node uses the Neuron Chip hardware [Mot97], which has very limited resources. A 
typical node has a RAM ranging from 1 to 4 Kbytes; the EEPROM is available up to 62 Kbytes. 
Nevertheless, the hardware architecture and the programming model of the Neuron Chip are very 
specialized, so it is possible to meet the requirements of simple devices. However, if the resources of a 
Neuron Chip are not sufficient, alternative hardware based on the LC3020 [LC3020] can be used. 

As described in Chapter 3.2, BACnet uses the concept of foreign frames defined in CNP. A CNP node 
usually ignores such messages, unless the application programmer develops a program, which deals with 
these messages. According to the CNP standard not only BACnet can use the message code 0x4E but also 
other protocols or applications. This may lead to malfunction of the system if beside the NeuBAC nodes 
other devices send CNP messages with the message code 0x4E. Therefore, measures have to be taken to 
ensure that only BACnet messages use this message code. 

The probably most restrictive limitation for practical use is that this concept is only suitable for BACnet 
and CNP, but not for other protocols like KNX. If a more common approach has to be used, an 
abstraction of data as presented in the following chapters could be used. 

3.5 Abstraction of Data 

Usually, interoperability within a system can only be achieved, if only one (communication) standard is 
used. Several projects have tried to overcome this problem. The NOAH project (Network Oriented 
Application Harmonization) [DiS00, Mel99] tried to harmonize the device profiles of the EN 50170 
[EN50170]. Other standardization bodies also tried to harmonize the communication objects, like the 
CEN TC247 [Fis99]. CEN TC 247 [TC247] has also been working on the BACnet onto CNP mapping 
mentioned in Chapter 3.4. 

The OSGi (Open Services Gateway Initiative) has carried out a high-level data point abstraction of EIB 
data points [Kas04]. It is based on multi-threaded environments like Java. In [Vel03] a model is described 
for Internet-based access on control and automation data using virtual industrial devices and a virtual 
                                                      
9 Attached Resource Computer NETwork, is a local area network protocol, defined in ATA/ANSI 878.1-1999 
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industrial protocol. They are based on SOAP (Simple Object Access Protocol) and XML (Extensible 
Markup Language). Such implementations are only suitable for some nodes within a system like an 
operator workstation because Java SOAP or XML-based protocols need a degree of computational power 
that usually cannot be provided by embedded systems. However, in the field-level only nodes can be 
integrated which are cost-efficient and therefore they have limited computational power. To overcome 
this problem a proposal is made here and in the following chapter for data-point abstraction suitable also 
for embedded systems like hardware based on the LC3020 [LC3020]. 

The abstraction of data of communication systems is necessary, since systems like the ARS system need 
access to all data available within the system. But also in modern building automation applications like 
energy saving applications it is necessary to combine data from different industries and automation levels 
in order to find optimal strategies for energy distributions [Pal03]. But also applications like shadowing, 
lighting, and climate control belong to different industries. In a conventional building automation system, 
shadowing and lighting would be realized within industry lighting, whereas climate control would belong 
to the HVAC (Heating, Ventilating, Air-Conditioning) industry. But physically these two industries are 
linked together. Sunlight heats and illuminates the rooms where it shines into. So the sunblind can 
influence both light control and climate control of the room. CEN/TC 247 prepares a standard for energy 
performance in buildings [prEN15232], which shows the interconnection between solar gains, heating, 
cooling and lighting energy for buildings. 

However, applications which have to access data-points in more than one industry or communication 
protocol can only be developed efficiently if the data point representation and the services of the fieldbus 
standard are abstracted. The abstractions have to be done in a way that the application can be developed 
independently from the underlying communication protocol. The abstraction of data points requires firstly 
the analysis of different representations of data-points of different communication protocols in order to 
define a representation which is suitable for a data abstraction for embedded systems. 

3.6 Data point representation 

In the area of building automation there are different fieldbus and communication systems using their 
own characteristic representation of data and services to transfer the data. In Chapter 3.1 and Chapter 3.2 
the communication protocols CNP and BACnet are briefly described. Additionally the protocols 
SOAP/XML, oBIX (Open Building Information Xchange) [oBIX05], BACnet/WS (Web Services) OPC 
XML-DA [OPC05] were investigated in this work in order to develop a data abstraction model. 

The present value of a data point is its main characteristic. Additional properties describe the value in 
more detail. They are classified into three main groups. The first group is value characteristics, which 
describe the meaning of the value. The second group describes the application characteristics. Properties 
of this group describe parameters of the application. User characteristics comprise the third group. They 
describe, mostly verbally, characteristics of the data point and are usually only used by the user of the 
system. Table 3 shows the classification and properties assigned to the group. 

The properties of the value group describe how the present value is represented. The data type of common 
communication protocols for building automation are Boolean, integer (8, 16 and 32 bits), and floating 
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point (e.g. single or double precision of the ANSI/IEEE floating-point standard [IEEE754]). The data type 
normally determines whether the data point is an analogue or a binary data point. Non-numeric values 
like strings have not been investigated in this work. 

Table 3: Groups of value properties 

Group Properties 
Value Data type, Range, Unit, Resolution, Precision, Timestamp 
Application Direction, Status, Poll cycle, Change of value interval 
User Name, Description, Unit Text 

 

The data type on the one hand can limit the range of the present value, and also the application. For 
example, a sensor might have only a certain range or the value is not meaningful as it would be for clock. 
Assuming the time is transmitted as an array of integers, where the first value represents the hours, the 
second the minutes and the third the seconds, the meaningful range of the first value would be 0 to 23, 
and 0 to 59 in case of the second and third value. Additional communication protocols may define special 
values within the range of the data type, which indicates that the value is not valid. CNP e.g. defined for 
some SNVTs, which use 16-bit integer as data type, the value 0xFFFFh as invalid value. In the 
ANSI/IEEE 754 standard for floating point data types, so-called NaNs (Not a Number) are specified, 
which define invalid values. However, whether explicit or implicit, the range of the value has to be 
defined for every data type. 

The property unit describes the physical unit of the data point. The metric system is standardized in the 
International System of Units SI (from the French: Système international d’unités) in ISO 1000 
[ISO1000]. But almost all communication protocols investigated in this work allow also non-SI units. 
Similar to the property range, the properties resolution and precision describe how the present value has 
to be interpreted. The property resolution defines the smallest interval e.g. measured by a sensor, the 
property precision describes the number of the meaningful digits of the present value. The timestamp 
indicates when the value was generated or updated. 

The application specific characteristics are classified in the group application. Usually in communication 
protocols there is a distinction between input (the value is only readable) and output (the value is readable 
and writeable). Additionally, calculated values (readable and writeable), which have no physical 
representation in the field, can be seen as a separate category. The property status describes the “health” 
of the data point. Finally, the investigated communication protocols provide status information, which 
distinguishes between “normal” and “alarm”. However, this information can also be encoded in the 
present value of the data point, as mentioned above (see property range). 

The property poll cycle defines the time between two poll requests to a data point. Several factors can 
limit the minimum poll cycle, like the available bandwidth on the fieldbus, the resources on the fieldbus 
node, or the conversion time of the analogue digital converter for analogue sensors. On the other hand, 
applications like controllers or visualizations have an upper limit for the poll cycle in order to fulfill their 
tasks properly. If the communication protocol provides only asynchronous communication services, this 
parameter can be used to emulate synchronous communication services. If a change of value (COV) 
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service is provided by the communication protocol, the property COV interval specifies the hysteresis for 
analogue data points. 

The third group comprises the user-specific characteristics and is usually a verbal description. It can be 
distinguished between the property name, which is mostly a unique name of the data point within the 
system, the property description, providing a verbal description of the data point and the property unit 
text, which defines the physical unit of the data point value. 

Not all of the properties described above can be found in the investigated communication protocols. 
Properties might be only optional properties, which means that it depends on a certain type of 
implementation whether the property is present or not. If the property is available, different ways to 
access it have been identified. Either it is transmitted with every message (like the timestamp of the 
present value), or it can be found out with a certain request (e.g. description), or it is not accessible from 
the data point, but from other sources like a configuration database or file. 

Using the properties identified in this chapter, a data point abstraction layer can be developed for 
centralized applications like visualizations or gateways, but it is especially suitable for decentralized 
applications like the ARS system, which need the ability to access all data available in the building, 
regardless of the type of communication protocols used in the building. The next chapter describes a data 
point abstraction layer for embedded systems. 

3.7 Abstraction of data for Fieldbus Nodes 

An abstraction of data points for fieldbus nodes allows developers to design decentralized applications 
independent from the communication protocol. This means that applications can be developed without 
having any knowledge of the used fieldbus system. In this work a hardware based on the LC3020 
[LC3020] was used for the fieldbus node. This platform provides as transport media 100base-T Ethernet 
and various CNP transceiver variants (among FT 10, RS 485), which allows the use of IP-based 
communication protocols like EIA-852, BACnet/IP, KNX/IP, and MODbus/IP. Since this platform 
provides all standardized communication protocols for building automation in Europe (BACnet, CNP, 
and KNX), it is highly suitable for the implementation of an abstraction as proposed in [Tam03]. 

The results arrived at in Chapter 3.6 are used here to develop a model for data point abstractions suitable 
for fieldbus nodes. An overview of the modules and interfaces is given in Figure 17. It shows the 
applications and configuration modules on the highest layer, which use the data access services and the 
configuration services of the Data Point Abstraction Layer (DPAL). The DPAL uses the DPAL native 
system services of the adaptation modules. For each communication protocol a dedicated adaptation 
module is necessary, which provides these DPAL native system services. For their part, these modules 
use the services of the stacks of the communication protocols. 

DPAL plays the central role in this architecture. It is responsible for representing the values of the data 
points and provides the appropriate services for accessing them. Instead of developing a completely new 
model, the BACnet model is used and modified in order to meet the requirements defined in Chapter 3.6. 
BACnet is already a proven model in many building automation installations. The BACnet standard 
already includes mappings that can be adopted and reused for the DPAL. Annex H defines the mapping 
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between BACnet and KNX and BACnet and CNP, and Addendum C of the BACnet standard defines the 
mapping between BACnet and BACnet/WS. 

As in BACnet, the data points are represented as objects. The following definition of the model uses as 
explanation the analogue, binary, and multi-state objects. However, the model is designed to implement 
also other objects like string objects, data-time objects or node objects. Analogue objects are used to 
represent analogue values, binary objects to represent Boolean values. The multi-state objects can 
represent a defined number of discrete values as it would be used for a switch with more than two 
possible positions. String objects are used to represent character strings, e.g. for a display text, and data-
time objects are used to represent a date and/or time. The node object is not a data point with a value. It is 
used to structure the data point as described later in this chapter. 

Application 1

Data Point Abstraction Layer (DPAL)

Application 2 DPAL-
Configuration

DPAL Data Acces Services

ORION Stack BACnet Stack

DPAL Configuration Services

ORION Services BACnet Stack Services

Host CPU

LonWorks 
Adaptation Layer

DPAL Native System Services

BACnet Adaptation 
Layer

KNX Stack

KNX Stack Services

KNX Adaptation 
Layer

 

Figure 17: DPAL (Data Point Abstraction Layer) overview 

DPAL uses properties similar to BACnet. But different from BACnet, these are divided into general static 
properties (see Chapter 3.7.1), general dynamic properties (see Chapter 3.7.2) and extended (static) 
properties (see Chapter 3.7.3). The general static properties and the general dynamic properties consist of 
properties which are common for all data point objects. The extended properties are specific for the type 
of the data point object. This splitting of properties into three groups has been done to structure the 
properties to ease implementation and handling of the data points. In the following chapters these 
properties are described. 

3.7.1 General Static Properties 

The general static properties define the behavior of the data point. In Table 4 the general static properties 
are listed. The general static properties are defined during the creation of the object and are fixed, except 
for the poll cycle, which can also be changed during runtime (see later in this chapter). The property 
object type defines the type of the data point. Table 5 shows the object types defined for DPAL. 
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Table 4: General Static Properties 

Property Fixed/changeable 
Object Type Fixed 
Direction Fixed 
Data Type Fixed 
Poll cycle Changeable by configuration instance 
DPAL name Fixed 
Native name Fixed 
Description Fixed 

 

Table 5: DPAL object types 

Object Type Description 
Analogue Value is an analogue value 

Binary The value can be either zero (FALSE) or 
one (TRUE) 

Multi-state Represents objects with a defined amount 
of discrete states 

Node Has no value, can be used to be a parent 
object of other objects 

User The type of the value is not known 
String The value is a string 
Date/Time The value is data and time 

 

The analogue object type has a value represented as an analogue value. A typical data point for such a 
type might be a temperature sensor. To represent a simple switch as a data point, the binary object is 
suitable, because its data type is Boolean. The multi-state object should be used if more than two discrete 
values are necessary as e.g. a multi-state switch. A node object has no value at all; it is used to group data 
points, as described later in this chapter. The data type of the user object type is not defined within DPAL. 
This object type can be used for data points, which do not fit to any other object types. The string object 
type is intended to be used for data points which have to represent strings, as with devices with displays. 
The date/time object type represents date and time and is therefore suitable for data types like time 
sources within a system. 

The property direction of the general static properties can be input, output, value, or node. If the property 
direction is input, the data point is only readable. Therefore, this direction should be used for sensors, 
where the value of the sensor can be read, but does not change. Actuators should use the direction output. 
This value is readable and writeable. The direction value is also readable and writeable. The difference 
from the direction output is that the value is intended to represent a calculated value, which has no 
physical representation (actuator) in the field. The direction node is used for the object type node. It 
indicates that there is no value and therefore can neither be read nor written. 
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Table 6: DPAL data types 

Data Type Description Possible Object Types 
Double IEEE 754 double precision float 

point (64 bit) [IEEE754] 
Analogue object 

Unsigned unsigned integer (32 bit) Multi-state object, analogue object 
Integer signed integer (32 bit) Multi-state object, analogue object 
Boolean Boolean (1, 0) Binary object 
String string of ASCII characters String 

Date Time Time information including 
date and time 

Date/Time 

 

Table 6 shows the defined data types in DPAL. Defining data types independent from the object type 
allows a more flexible configuration for analogue and multi-state objects. The data type of an analogue 
object may be a double, an unsigned integer, or a signed integer. Multi-state objects have either signed 
integer values or unsigned integer values. Especially in fieldbus nodes with limited resources the flexible 
use of data types can reduce the conversion effort between different data types. Assuming that the output 
of a sensor has only integer values, as well as the input of an actuator depending on that sensor, the 
control loop can be calculated with integer values instead of floating point values. 

The property poll cycle of the general static properties is only used if the underlying communication 
protocol does not provide synchronous services. In that case, the data point is updated periodically with 
the update rate defined with the property poll cycle. The poll cycle is the only general static property 
which can be changed during runtime. The property DPAL name is a unique name of the data point 
within the DPAL implementation, and the native name is the name of the data point of the underlying 
communication system. The property description is intended to hold a verbal description of the data point. 

3.7.2 General Dynamic Properties 

In contrast to the general static properties described above, the general dynamic properties are not fixed. 
They are updated continuously. In Table 7 the general dynamic properties are listed. 

Table 7: General dynamic properties 

Property Fixed/Changeable 

Timestamp Changes automatically when the value of 
the data point changes 

Status Changeable 
 

The property timestamp is updated whenever the value of the of the data point changes. Data points 
received from the native communication protocol have two possibilities to receive a timestamp. If the 
communication protocol provides a timestamp, that timestamp should be used. If such a timestamp is not 
available, the DPAL implementation should assign the timestamp of the system at the point of time when 
the new value has been received. For values generated by a DPAL application, the timestamp has to be 
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handled similarly. If the application provides a timestamp, that timestamp should be used. If not, DPAL 
should use the system time at the moment when the application sends the value to DPAL. The general 
dynamic property status gives information about the “health” of the data point. Table 8 shows the defined 
values of the property status. 

Table 8: DPAL status 

Status Description 
Not configured The DPAL data point is not configured 
Normal DPAL point is in normal operation 
Out of Service DPAL point is out of service 
Overridden The value is overridden 
Invalid Value is invalid 
Offline No value set 

 

The general dynamic status not configured is assigned to the data point’s properties during configuration 
and when the data point is not configured properly. If the data point is in normal operation, the property 
status is normal. The status out of service indicates that the data point is configured properly, but for some 
other reason the data point is not in operation. Such a reason might be that communication is faulty due to 
an error in the cable system. If the value of a data point that has been received from a native 
communication protocol has been changed by an application, the status overridden is used to indicate this. 

If the value is invalid the status invalid is used. A value might be invalid for several reasons. Protocols 
like CNP (see Chapter 3.1) use special values for indicating invalid values. If a conversion of the value 
between data types or units is necessary, it might happen that the value range is not suitable and therefore 
the value cannot be converted. The data point can be set offline by the application. In that case, the status 
is set to the value offline. 

3.7.3 Extended Properties 

The extended properties hold the properties, which are specific to the object type. Except for the node 
object type all object types defined in Chapter 3.7.1 have extended properties. In the following chapters 
these properties are briefly described. 

Extended Properties of the Analogue Object 

The extended properties of the Analogue Object are listed in Table 9. They define the value of the data 
point itself and how this value has to be interpreted. The property value of the extended properties of the 
analogue object holds the value of an analogue data point. The data type of the value is defined in the 
general static properties of the data point (see Chapter 3.7.1). Since the value of the data point can 
change, it is clear that this property has to be changeable. The property unit defines the unit of the data 
point. It uses the seven exponents of the SI base units [ISO1000]. With dimensional analysis, every 
physical unit can be expressed in this way. To have the possibility to distinguish between dimensionless 
quantities like radian, percent, or decibel an additional enumeration is used. For better usability a text 
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string may be added, holding the unit as characters. In Table 10 examples are given for velocity [v], 
power [W] and percent [%]. 

Table 9: Extended Properties of Analogue Object 

Property Fixed/changeable 
Value Changeable 
Unit Fixed 
Resolution Fixed 
Precision Fixed 
High limit Fixed 
Low limit Fixed 
COV increment Changeable 

 

Table 10: Examples for dimensional analysis 

Unit m kg s A K Mol cd Enum text 
v 1 0 -1 0 0 0 0 SI “m/s
W 2 1 -3 0 0 0 0 SI “W” 
% 0 0 0 0 0 0 0 PERCENT “%” 

 

The unit velocity [v] is defined as m/s. Therefore, the factor of meter (m) is 1 of the time (s) is -1. All 
other factors are zero. SI in the Enumeration field indicates that the unit is defined with the SI units. The 
text field holds the unit as character and is therefore “m/s”. The same applies to the power [W]. The factor 
of meter (m) is 2, for mass (kg) and time (s) is -3. In the Enumeration field SI indicates that the power is 
expressed in SI units, the text field holds “W”. Percent [%] is dimensionless. Therefore all factors for all 
SI base units are zero. PERCENT in the enumeration indicates that the value shall be interpreted as 
percent. The text holds the sign for percent “%”. Since the unit of a data point does not change, the 
property is not changeable. 

The extended property resolution of an analogue object describes the smallest possible increment of the 
value. The property precision describes the number of meaningful digits of the value. The properties high 
limit and low limit describe the maximum and minimum of the value. These four properties are specific 
for the data point and will not change during operation. The property COV increment defines the delta of 
the value, which causes a COV (change of value) notification. For details on COV-notification see 
Chapter 3.9. This property can change during operation and is therefore changeable. 

Extended Properties of the Binary Object 

The extended properties of the binary object are listed in Table 11. They define the value of the data point 
itself and how this value has to be interpreted. The property value holds the value of the data point. 
According to Table 6 the only data type possible for the binary object is Boolean. The properties active 
text and inactive text are a description of both possible values. For a simple switch the active text might 
be “on”, the inactive text “off”. 
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Table 11: Extended Properties of the Binary Object 

Property Fixed/changeable 
Value Changeable 
Active Text Fixed 
Inactive Text Fixed 

 

Extended Properties of the Multi-state Object 

The extended properties of the Multi-state object are listed in Table 12. They define the value of the data 
point itself and how this value has to be interpreted. The property value holds the value of the data point. 
According to Table 6, the data type of the multi-state object can be either unsigned integer or signed 
integer. The property number of states defines the number of states of the data point. The state text is the 
description of the states. Both number of states and state text are assigned during the configuration phase 
and cannot change during runtime. 

Table 12: Extended Properties of the Multi-state Object 

Property Fixed/changeable 
Value Changeable 
Number of states Fixed 
State text Fixed 

 

Extended Properties of the String Object 

The extended properties of the string object are listed in Table 13. They define the value of the data point 
itself and how this value has to be interpreted. Both properties value and length are changeable. The 
property value holds a character string; the property length defines the length of the value string. 

Table 13: Extended Properties of String Object 

Property Fixed/changeable 
Value Changeable 
Length Changeable 

 

Extended Properties of the User Object 

The extended properties of the user object are listed in Table 14. They define the value of the data point 
itself and how this value has to be interpreted. Similar to the string object, properties, value and length are 
changeable. Since the user object has no defined data type, the value cannot be interpreted without 
additional knowledge. The property length defines how much memory is used by the value of the data 
point. 
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Table 14: Extended Properties of Multi-state Object 

Property Fixed/changeable 
Value Changeable 
Length Changeable 

 

Extended Properties of the Date/Time Object 

The date/time object has just one extended property, the value property. As defined in Table 6 only the 
date/time data type is allowed for that value. 

3.8 Organizing the Data Points 

The previous chapter described the architecture of DPAL data points. These definitions allow an 
application designer to describe values in the field. However, in order to associate data points with each 
other, a DPAL repository is introduced into the DPAL concept. Following is a brief explanation on how 
the grouping of values is implemented in CNP. Subsequently follows the presentation of the DPAL 
repository which has been developed for this work. In CNP, a data point (network variable) may have one 
or more values. An example is the SNVT_switch [LSML03]. This network variable type has two values 
as follows:  

typedef struct { 
    unsigned value; 
    signed state; 
} SNVT_switch; 
 

The first value defines the intensity as percentage of full scale (resolution 0.5). Therefore, the range is 
between 0 and 100. The second value (state), which can be either 0 or 1, indicates whether the switch is 
on or off. In the CNP protocol these two values are seen as one data point. But in the DPAL model 
presented above, every data point has exactly one value. Therefore, a repository of the data points is 
introduced into DPAL, which allows the applications to browse the data points and find out which data 
points are correlated. A graphical representation of the DPAL repository is shown in Figure 18. 

 

Figure 18: DPAL repository 
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The root object is a DPAL point with the object type node and therefore has no value. The reason for 
introducing it is to have a well-defined starting point for the browsing functions of the repository. All data 
points in the first level are children of the root object. Additionally, they are linked in their hierarchy 
level. Every data point can have child objects, as e.g. DP1 and DP3 in Figure 18. These child objects are in 
the next lower level. The child objects of DP1 are labeled DP1,1 and DP1,2, and the ones of DP3 are DP3,1. 
Because the data points DP1,1 and DP1,2 are both child objects of the data point DP1 they are linked 
together in the second hierarchy level. But the child object of DP3, DP3,1, is not linked with the other data 
point of hierarchy level 2, because it has not the same parent object as the other data points. This tree can 
be expanded to any number of levels as long as the resources of the hosting system are sufficient. 
Returning to the example above, there are two possibilities to map a CNP data point of the type 
SNVT_switch to the DPAL repository. Both are depicted in Figure 19. 

 

Figure 19: Mapping SNVT_switch to DPAL data points 

The variant on the left-hand side uses a node object, which is labeled switch. It has no value and is only 
used to group the data points holding the two values of the CNP data point. The child object of the node 
object switch is the first value of the structure as defined in [LSML03], which is the percentage value. It 
is labeled switch.value and is an analogue object. The DPAL data point switch.state is mapped to the 
second value of the SNVT_switch structure, the state. Since the state has a binary value, the DPAL object 
type binary can be used for this object. As shown in Figure 19, the DPAL node object switch is the parent 
object of the data points switch.value and switch.state. Since these two data points are in the same 
hierarchy level and have the same parent object, they are also linked together. 

The right-hand side of Figure 19 shows the second possibility. No node object type is used. The first 
object of the structure is used as the first DPAL data point. In the case of the SNVT_switch this is the 
data point switch.value. The next objects, in this case only the data point switch.state are child objects of 
the first value of the data structure. This method of mapping data structures to DPAL data points is more 
resource-efficient because it uses one element less, but does not reflect the correlation of the elements of 
the data structure. The data points holding the values of the structure (in this example switch.value and 
switch.state) are not in the same hierarchy level. 

The DPAL repository can also be used to optimize the handling of dynamic data points. Dynamic data 
points are data points which can be created and deleted during runtime. In the CNP protocol these data 
types are called dynamic network variables [LIGA05 p 110f]. Especially for fieldbus nodes the creating 
and deleting of data points might be not very time-efficient. To avoid this, once a dynamic data point has 
been created, it may not be deleted completely from the system but just removed from the repository. A 
data point than can be inserted into the DPAL repository is very resource efficient. 
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The DPAL repository can not only be used to reflect the data structures of data points as shown above, 
but also to represent geographical or logical grouping of data points. For example the first hierarchy level 
can represent buildings, the second level floors, the third rooms and so on. The next chapter describes 
how the values and properties of data points can be accessed. 

3.9 Data point access 

As already mentioned above, the DPAL repository is intended to organize the DPAL data points. For 
accessing the value and properties of the DPAL data points, the use of dedicated interfaces is proposed. 
These interfaces are introduced to implement a simple right management of DPAL. As shown in Figure 
17, there are applications and the DPAL configuration instance. In contrast to applications, only the 
DPAL configuration instance can access the DPAL configuration interface. This interface provides the 
functions to create and delete DPAL data points, to insert and remove data points into and from the DPAL 
repository. However, if a data point is manipulated, the applications using the data point are informed 
about the changes. Moreover, all properties of the DPAL data point are readable in every application. 

Although the value of the data point is a property of the data point, it is treated in a special way. In 
principle there are two approaches to access the values of the native systems. The first approach is to 
cache all data in the DPAL. The applications have access to the cache and can read the value from it. A 
write operation on the data point first changes only the value in the cache of the DPAL data point. It is up 
to the system integrator which type of service of the underlying communication protocol is used to 
propagate the change of the value on the network. The advantages of this approach are that the 
applications can access the value of the data points very fast (it is only a read and write access in the 
memory of the host CPU). Further, it can be implemented with every underlying communication system 
and the characteristics of the underlying communication system can be completely hidden. DPAL 
responds automatically to requests from the native communication system. 

The drawbacks of this caching method are that the data in the cache are not necessarily consistent with 
the data in the field. Further, when powering up the system it may take quite some time until the cache is 
updated and DPAL can be set into operational mode. If the underlying communication system only 
provides synchronous services, it can not be ensured that every change of the value in the cache is 
propagated to the network. It might happen that the application changes the value faster than the value is 
updated via the network. 

The second approach is that DPAL “translates” every data access function directly to the services of the 
underlying communication protocol. On the other hand, every request or update from the native 
communication system has to be processed by the application. The advantages of this approach are that it 
guarantees the most accurate value of the DPAL data point and there is no dead time when powering up 
the system. The drawback is that the applications can only use services which are provided by the 
underlying communication protocol. The access of the data points is slower, because the value is no 
longer read from the cache but from the native communication system. 

For DPAL a mixed approach was chosen, which combines both variants described above. It implements a 
cache, which caches the values as described in the first variant. For reading the value of a data point, two 
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functions are introduced, one which reads the value from the cache, the other which translates the request 
to the native system in order to get the most accurate value. However, if the DPAL cache is not valid (e.g. 
at powering up), a read request from the cache is translated to native read request. If the value of the 
DPAL data point is changed by the application, the value is updated in the DPAL cache as well as being 
propagated via the network. If the underlying communication system does not provide asynchronous 
services, it is emulated by the DPAL polling the value periodically. 

Beside the read/write value functions, there are also read/write multiple value functions. These functions 
are used to read or write more than one value at once. These functions are necessary to read/write values 
from different (native) data points, but especially to read native data points which have a structure of 
different values as the SNVT switch mentioned above. Like BACnet [BAC04] the DPAL provides also a 
change of value notification (COV). If an application uses this service, it obtains a notification of the 
change of value from DPAL. In case of an analogue object, the hysteresis can be configured (see Chapter 
3.7.3). 

3.10 Mapping BACnet to DPAL 

The services in the BACnet protocol (see Chapter 3.2) comprise two types, the server side and the client 
side. The server side provides data, whereas the client side sends request for reading or changing the data. 
The following chapters describe the mapping between these two types and DPAL. 

3.10.1 DPAL as application of BACnet server 

One possibility is to use DPAL as an application of a BACnet server. From the network side, the node 
behaves like a BACnet server. This means that a BACnet input object is typically read and that it sends 
out COV notification messages in case of implementing a service as shown in Figure 20. 

 

Figure 20: DPAL acts as BACnet server 

The value of the BACnet output object and BACnet value object can be written via the BACnet network. 
DPAL maps the BACnet output and value objects to DPAL input objects. It uses the read property service 
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and the COV service of the BACnet server stack to synchronize the value of the BACnet output and value 
object with the DPAL cache. The application can access the DPAL input object with the read functions 
and receives COV notifications if subscribed. 

The BACnet input object is either mapped to DPAL output or DPAL value object. The application writes 
the DPAL value and output objects. DPAL propagates the new values using the write service of the 
BACnet server stack. 

3.10.2 DPAL as application of BACnet client 

In case of implementing DPAL as an application of a BACnet client stack, within the BACnet stack there 
are no BACnet objects, as shown in Figure 21. A read request on a DPAL input object is translated into a 
BACnet read request. The BACnet client stack sends out a BACnet read request to the BACnet server, 
which holds the value. The response of the server is sent back by the network to the BACnet client, which 
forwards the value to DPAL. DPAL updates the cache and sends the new value to the application. If the 
application has subscribed for the DPAL COV notification, it is informed whenever the value of the 
DPAL object changes. The value of the DPAL object can change when DPAL has subscribed (via the 
BACnet client stack) to the COV service of the BACnet server on the remote node or when DPAL 
periodically sends out read requests to the BACnet client stack in order to emulate a synchronous service. 

W
rit

e

V
al

ue

R
ea

d

V
al

ue

R
ea

d

V
al

ue

R
ea

d

W
rit

e
W

rit
e

C
O

V
n

C
O

V
n

C
O

V
n

 

Figure 21: DPAL acts as BACnet client 

If the application uses the write service of DPAL, the cache of the DPAL output or value object is 
updated. DPAL uses the BACnet client stack to write the new value via the BACnet network to a BACnet 
server. 
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3.11 Mapping DPAL to CNP 

There are two possibilities to map the DPAL data points to CNP communication objects. On the one 
hand, the communication objects in CNP can be implemented as NVs as described in Chapter 3.1. On the 
other hand, the CNP stack under DPAL does not use NVs but poll and update requests in order to read 
and write NVs on remote nodes. In the following chapters these possibilities are described in detail. 

3.11.1 DPAL as application on a CNP stack with NVs 

This variant of mapping CNP to DPAL is intended to use for devices that have NVs in the CNP stacks, 
which are visible on the CNP network, as shown in Figure 21. A controller node could be such a device. 
In this case, DPAL input objects are mapped to CNP input NVs. In case of a read request of the 
application, DPAL sends the read request to the CNP stack. In case the NV has a binding with a remote 
output NV, the value is updated automatically by the CNP protocol. Therefore, no request has to be sent 
by the network. The CNP stack returns the value immediately. In case there is no asynchronous service 
available, the value is polled by the CNP stack from the remote NV. 
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Figure 22: DPAL acts as CNP application with NVs 

In case the application writes the value of an output or value object, the new value is changed in the 
corresponding output NV of the CNP stack of the node. If the NV is bound with a remote input NV, the 
value is automatically propagated via the network, otherwise the remote node has to poll the value. 

3.11.2 DPAL as application on a CNP stack without NVs 

Beside the communication with NVs the CNP protocol offers communication using so-called explicit 
NVs [Loy01, Mot97]. To poll or update the value of remote NVs CNP network management commands 
are used. Explicit NVs are not visible from the network side. Devices which serve a huge amount of data 
points like visualizations or gateways us that possibility. Explicit NVs are more flexible, but require a 
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higher configuration effort. Figure 23 shows a configuration where DPAL acts as application a CNP stack 
without NVs. 

If an application reads the value of a DPAL input object, DPAL sends a request to the CNP stack which 
sends out a poll request to the network. The response with the current value of the remote node is used to 
update the value in the DPAL cache and respond to the application. Using explicit NVs, only a 
synchronous service is available. To emulate an asynchronous service, DPAL has to request periodically 
the value NV of the remote node. 
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Figure 23: DPAL acts as CNP application without NVs 

A write command of the application of output or value objects is forwarded by DPAL as a write 
command of the CNP stack. The CNP stack uses the network management command update to change 
the value of the NV of the remote node. 

3.12 Résumé 

The presented approaches above, i.e. gatewayless communication and DPAL, are both methods to 
provide applications with data origin from two or more communication protocols. Both have the 
advantages that a gateway does not exist as a separate device, which has to be configured by the system 
integrator. The conversion is carried out on the nodes where the application runs. Therefore, the protocol 
conversion is also done on the node and is configured by the application designer, who has the best 
knowledge about the applications. The gateway as a single-point-of-failure is completely eliminated from 
the system. 

The first approach, the NeuBAC node, is only suitable for communication protocols which rely on each 
other, as e.g. BACnet, which uses the LonTalk protocol of the CNP protocol. Nevertheless, this approach 
needs only a CNP stack and the BACnet Application layer and the BACnet Network Layer. The lower 
layers are provided by the CNP stack. Existing CNP devices can be extended with the BACnet interface 
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without changing the hardware, in case enough computational resources are available on the node. Since 
the approach assumes that a node is used which provides a full CNP stack, the applications on such 
NeuBAC nodes are most probably designed for the CNP protocol and its services, because the 
communication objects (NVs) and services of the stack are used for the CNP part. The BACnet 
communication objects and services are then mapped on the CNP objects and services. However, 
applications which only “observe” what happens in the field like visualization or a system like the ARS 
system can use this interface to access data. Due to the limited resources of a NeuBAC node, it is not 
intended to host complex applications. 

The second approach, DPAL, is a more common approach than the first one. Nevertheless, it is still 
suitable for fieldbus nodes like the LC3020 [LC3020]. Using DPAL applications the stacks of every 
supported communication protocol has to be implemented on the node. Since the data points of the field 
as well as the services of the underlying communication system are completely abstracted, an application 
on top of the DPAL is developed independently. If a service of the DPAL is not available by the native 
system, it is emulated with other services of the system. Therefore, this approach is also suitable for 
applications which control processes in the field. 

 





 

45 

4 Applications 

The ARS system is designed as a system, which is not limited to a special purpose. Nevertheless, its 
implementation on the ICT (Institute of Computer Technology) is focused on home and building 
automation and the possible application of the ARS system in these fields. The applications are based on 
symbols as proposed in [Pra06]. The applications in this work are based on home and building automation 
sensors. DPAL (Data point Abstraction Layer) defined in Chapter 3.7 can be used to hide the specifics of 
the communication systems used in the building. Additionally to the building automation system, cameras 
can be used to provide visual data.  

4.1 Kitchen as an Environment for Applications 

The applications of the ARS system can be demonstrated in the kitchen of the ICT. Another possibility is 
the use of a simulator, which was designed to generate sensor values based on a virtual environment. 
Such a simulator is described briefly in Chapter 7.1.3 and in detail in [Har07]. 

The layout of the kitchen [Goe06] is shown in Figure 24. Entering the room on the left-hand side there is 
a kitchenette with sink, dishwasher, stove, coffee machine, fridge and cupboards. Behind the door on the 
right-hand side there are a cupboard and copier. Near the window on the left-hand side is a cupboard, in 
the middle of the room a table and on the right-hand side a bookshelf. The room is equipped with a 
pressure sensor field, which covers almost the whole floor. Each individual sensor has the dimensions 17 
cm x 40 cm [Goe06]. Three motion detectors, two on the side of the kitchenette and one on the opposite 
side are installed to detect motion in the kitchen. A shock detector is mounted on the coffee maker to 
register its usage. Two cameras are installed above the window. Distance sensors are mounted on the door 
and at the stove. The following applications are defined in this work of the setup in the kitchen on the 
ICT: 

• People tracker 

• Recognition of a person putting down an object 

• Recognition of a child approaching a hot stove 

• People meeting round the table 

• Person making coffee 
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Figure 24: Layout of the kitchen in the ICT 

The people tracker is one of the most important applications of the system since applications that involve 
people are based on it. The main task of the people tracker is to identify the position of people in the room 
and to record their walk path through it. The second application recognizes a person putting down an 
object onto the floor and leaving the place without taking the object. Recognizable objects are suitcases, 
packets or boxes. If a child is approaching a hot stove it is usually a dangerous situation, since the child 
might get injured. So the system should recognize this dangerous situation, but should also recognize 
whether there is an adult near the child. The fourth application is the recognition of meetings. A meeting 
is assumed to take place when two or more people sit around the table. The last scenario recognized in the 
kitchen of the ICT is a person making coffee. 

All these applications are designed for the kitchen in our department. They were chosen because the 
events which trigger them occur quite frequently in our kitchen. Therefore, they can easily be put to the 
test. Of course the child safety application is not regularly used at university, but it was chosen to show 
other application fields of the system. Further applications developed for the ARS system but not 
implemented in the ICT kitchen and therefore in the prototype are: 

• A person falls and lies on the floor 

• Danger of fire 

• A person takes reading material from the shelf 

• Audio system self-test 

Similar to the safety application for children mentioned above, the scenarios of a person falling or lying 
on the floor are suitable for detecting dangerous situations for elderly people. An example of recognizing 
dangerous situations with no people involved is the detection of flammable objects near a fire. A system 
could also have the ability to test its own functions. This does not mean that it is able to detect software 
failures but rather that it detects failures on the periphery. The third application recognizes whether 
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someone takes reading material from a shelf. This application sounds the alarm if the material is carried 
out of the room. If the system interacts verbally with a user (e.g. tests whether the user reacts to a certain 
question), microphones should be able to detect the output of the system; otherwise there is a failure in 
the audio system. In the following chapters, the applications mentioned above are described in more 
detail. 

4.2 People tracker 

The people tracker has the task to identify the position of people within a scenario. Nowadays, people 
trackers usually use one or more cameras and image processing methods [Ham05] combined with other 
methods like Bayesian estimation [Bal05]. Here not only cameras but also other sensors like pressure 
sensors, distance sensors or light barriers are used. They are not directly combined (e.g. in the image 
processing module), but are connected through different snapshot symbols. 

The position of a person is taken from the property position of the representation symbol person. The 
history of positions is stored in the symbol database (see Chapter 5.8). Therefore, the walk path of the 
person can be extracted by tracing back the property position of the symbol person. The representation 
symbol person is based on other symbols (for a detailed description of the representation symbol person 
see Chapter 6.1.5), which are based on diverse sensors. These sensors are pressure sensor on the floor, 
distance sensors on various positions, motion detectors, and a camera. Using geometric algorithms and 
classification numbers for the reliability of the different sensors, the position of a person cannot be 
identified with higher accuracy than using just one type of sensors. The output of the application is a 
periodical update of the position of a person. 

The people tracker is not only used as a stand-alone application, but also as input for the applications in 
the following chapters. Since these applications do not need the identity of a person, it is not planned that 
the people tracker application identifies a person. This reduces the impact on the privacy of the user of 
such systems. The symbols which are defined within the ARS system used for people tracking are 
described in Chapter 6.1. 

4.3 Recognition of a person putting down an object 

The sequence of actions in this scenario is that a person carries a packet into the room, places it on the 
floor and leaves the room without taking it out of the room. To reduce the complexity in this work, the 
packet is not necessarily detected when the person carries it into the room. The application people tracker 
(see Chapter 4.2) is used to recognize the position of the person. To detect the packet, the symbol object 
passed is used (see Chapter 6.1.2), which is triggered in this case by the pressure sensors. In future, a 
camera could be used in addition to detect the packet. The camera would then generate the snapshot 
symbol packet. If RFID (Radio Frequency Identification) is used to identify packets, RFID read at the 
door could also be used not only to detect a packet in the room, but also to determine its contents. The 
output of this application is the notification of a predefined person of someone having left a packet in the 
room. The symbols used in this application are described in Chapter 6.4. 
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4.4 Recognition of a child approaching a hot stove 

This scenario shall be applied to the dangerous situation of a child near a hot stove without the 
supervision of an adult. The child is detected with the application people tracker (see Chapter 4.2). But in 
this case information on the position of the person has to be extended by information on his or her age. 
Although there is no possibility to derive the age of a person from known sensors, a person’s height is 
used as an indicator. It is assumed that in this application it is acceptable to derive the age of a child from 
the child’s height10. Another possibility to estimate the age of a person would be voice analysis as shown 
in [Schö04]. The drawback of this solution is that a person would have to speak before the age can be 
estimated. 

Similar scenarios are the recognition of an unattended child near stairs or in the lift. These scenarios are 
similar because the system has to be distinguished whether the people it has recognized are adults or 
children. The necessary child safety symbols are defined in Chapter 6.2. 

4.5 Meeting 

The meeting scenario recognizes when more than two people sit around the table. It is not taken into 
account what the people do. This scenario would also be triggered if two people sit at the table and read. 
Nevertheless, additional sensors like microphones or cameras could ensure that the scenario meeting is 
only detected when people talk to each other or look at each other. 

However, in the prototype of the ARS-PC system the meeting scenario application is based on the people 
tracking application, which detects the position of people in a room. Certain objects like a table or a stove 
are represented as a special symbol, e.g. symbol table within the system. If two or more people, 
represented by the symbol person, are in the vicinity of the symbol table, the scenario meeting is detected. 
Chapter 6.4 shows the relationship between the symbols used in this scenario. 

4.6 Person makes coffee 

The scenario person makes coffee is divided into two similar scenarios. Both detect a person making 
coffee with the coffee maker. The difference is that a distinction is made whether the person is an adult or 
an unattended child, similar to the scenario child approaches a hot stove (see Chapter 4.4). Using the age 
estimation of the people tracking application, a person is identified as child or adult. The symbol coffee 
machine (see Chapter 6.2.20) represents the coffee machine and its status. The distance between child, 
adult, and the dangerous object is used for deciding whether a particular situation is classified as 
dangerous or not. Additionally to the person making the coffee, the amount of coffee made by the person 
is registered. The symbols and the dependencies between the symbols used in the application person 
makes coffee are described in Chapter 6.2.18. 

                                                      
10 The drawback of this application is that a small person would be classified as child, and thus causes alarm. 
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4.7 Person falls and lies on the floor 

This scenario is intended for geriatric care. It is defined as a scenario where a person falls down and does 
not stand up, which is usually a sign of a dangerous situation. As mentioned above, this application is not 
implemented in the ARS system on the ICT. Nevertheless, the scenario is defined as follows: A person, 
who is detected with the people tracker, falls down. The fall can be detected with image processing or 
pressure sensors. These sensors are combined to the symbol person fell (see Chapter 6.3.7). If the person 
does not get up, the symbol person lies (see Chapter 6.3.9) is generated. To improve the scenario, the 
severity of the fall could be estimated by detecting the force of the impact11. The speed of getting up 
could also be used to determine the severity of the fall. Since a fall can have severe consequences in any 
case, and especially in the case of elderly people, the output of this application should always be the 
notification of the caregiver. Chapter 6.3 defines the symbols which are used to detect harmless and 
harmful falls. 

4.8 Danger of fire 

Similar to the previous scenario, this scenario can be used in geriatric care. It is defined as detection of 
objects like candles or cigarettes as well as flammable objects (e.g. bed or curtain). If flammable objects 
are near open fire, an alarm will sound. The detection of a cigarette or candle could be achieved with 
image processing using either a camera that is sensible to the visible light spectrum, or a camera that is 
sensible to the infrared spectrum. There are flame detectors available now, but no sensors that are also 
capable of detecting the position of a fire. To avoid or at least minimize the occurrence of false alarms, it 
is essential to determine the distance between fire and flammable object. 

4.9 Recognition of a person taking reading material from a shelf 

The kitchen of the ICT also has a bookshelf with journals. Members of the institute can read them but 
should not remove them from the kitchen (without signing a list). This scenario is therefore defined as 
follows: A persons enters the room and takes a journal from the bookshelf. Before the person leaves the 
room, the journal has to be returned. The output of this application is the notification of a predefined 
person of a person leaving the room without having put back the journal into the bookshelf. The people 
tracker application (see Chapter 4.2) is used to determine the position of the person in the room. Image 
processing is used to detect that someone takes a journal. Other or additional possibilities are the use of 
distance sensors in each shelf or RFIDs in each journal. Chapter 9.2 discusses a possible implementation. 

                                                      
11This could be done e.g. by measuring the force with pressure sensors, which is not possible in the ARS project 
since pressure sensors have only a binary output detecting whether there is pressure above a certain threshold or not. 
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4.10 Audio system self-test 

If a system interacts with the user verbally, it has both audio input and audio output components. If the 
system sends a message to the user, the microphones in the room should be able to record the message 
and the speech recognition system should be able to recognize the message. If the recognized message is 
the same as the emitted message, the system has no malfunction. The output of this application is sending 
an error message to the maintenance department. Similar mechanisms could also be used for other inputs 
and outputs of the system. Since there is no audio system in the ARS project, this self-test is not 
implemented either. 

However, this application shows that not only observing task are possible applications for the ARS 
system. As mentioned in the Chapter 2 the ARS system forms a loop. The ARS-PC part observes the 
environment and the ARS-PA part uses the perceived world representation in order to make decisions 
how to interact with the environment. This loop is essential for this application. The system generates an 
output and has to be able to perceive its own interaction with the environment. This loop is also necessary 
to implement higher cognitive functions like planning or learning. Nevertheless, these are functions of the 
ARS-PA part and therefore out of the scope of this work. The next chapter describes the ARS-PC system 
as it is used to implement the applications described above. 
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5 ARS-PC System 

The system in the ARS project uses symbols as defined in [Pra06] and modified in this work according to 
the model by Luria and Solms (see Chapter 2.2.3) and extended with the concept of basic emotional 
systems according to Panksepp (see Chapter 2.2.2). As already mentioned, learning is not addressed in 
this work, so the symbols used for the applications defined in the previous chapter have to be predefined. 
In order to do so and to process the symbols, a framework is necessary. The next chapter defines this 
framework. 

5.1 ARS Framework 

The symbols are used on the one hand to consolidate data (from one ore more sources), and on the other 
hand to perform plausibility tests (from different sources and/or prediction). Figure 25 gives an overview 
of the ARS framework. It consists of the definition of symbols, transport mechanism (SymbolNet) and the 
representation of the symbols. Additionally, a database for symbols and a database for sensor values are 
included. 

The framework of the definition of the symbols is used to define the specific properties of a symbol. A 
symbol represents people/objects, actions or states, which are derived from the sensor inputs of the 
system. As described in [Pra06], a symbol belongs either to the inner world or the outer world. This 
classification is based on [Sol02]. In the human brain, the representation of the inner world is the 
representation of the inner milieu of the body. Parameters like blood pressure or temperature are used to 
arrive at these symbols. The outer world representation is the representation of sensations from the 
environment. The sensors on which these symbols rely are e.g. eyes, ears or the nose. If sensors then 
recognize known patterns (e.g. an edge), these patterns are represented as outer world symbols. 

Symbols in the ARS system have a symbol class and a symbol name, which both identify the semantic 
meaning of the symbol. The name is a string of characters whereas the symbol class consists of numbers. 
The name of the symbol was introduced to have both a human-readable and machine process-able version 
of a unique identifier. This definition of the symbol determines the number and types of properties. 
Similar to the symbols, the properties also have two unique identifiers, the property class and the property 
name. They define the semantic meaning of a property. A property has at least one schema. A schema 
defines how the data are stored. A detailed description of the definition of symbols using XML-files can 
be found in Chapter 5.3. The graphical representation of the symbols and the dependencies between them 
are defined in Chapter 5.2. 
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Figure 25: ARS framework 

SymbolNet is the transport mechanism for symbols. It was designed to distribute symbols especially 
between the symbol factories of the symbolization. A detailed description of SymbolNet is given in 
Chapter 5.5, the usage of SymbolNet and the symbols in Chapter 5.6. The symbol database is used as a 
repository for the symbols. In this repository both the actual symbols with their actual properties and the 
expired symbols and properties are stored (see Chapter 5.8). Similarly, the sensor database is used to store 
the sensor value from real sensor implementations or simulations (see Chapter 5.7). The databases have 
been introduced to ease the implementation of the system. They have no functionality in terms of a 
memory as it would be found in the human brain. The ARS-PC system is designed to work without the 
sensor and symbol databases as well. In the lower right side of Figure 25 two views of visualization are 
shown. In the upper part of the visualization the recognized symbols and scenarios are shown, in the 
lower part the virtual environment and the objects and persons in it. The various types of visualizations 
for the ARS project are described in Chapter 5.9. Not explicitly shown in Figure 25 are the valuation 
systems, the so-called e-systems. The value of the e-system is represented by the e-status as described in 
Chapter 5.4. The term e-status stands for the technical representation of the basic emotional status. 
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5.2 Implementation of Symbols 

A symbol consists of properties which describe it, as shown in Figure 26. This chapter gives a rough 
overview of the concept of symbols as used in the ARS project. A more detailed description is given in 
Chapter 5.3. Every symbol has the mandatory properties (which are not shown in the graphical 
representation) Identifier, Type, Class and Timestamp, the optional property Lifetime and a list of 
properties which define the specific properties of the symbol and are therefore shown in the graphical 
representation of the symbol. 

The Identifier has to be unique in all symbols in a system. The Type specifies which “world” and 
representation hierarchy the symbol belongs to. The world to which the symbol belongs can either be the 
inner or outer world. Three representation hierarchy levels are defined, the microsymbol for the lowest 
level, the snapshot symbol for the middle representation level, and the representation symbol for the top 
level. The Class property of a symbol is a combination of both world qualifier and hierarchy level 
qualifier. The Timestamp specifies the time when the symbol was created or changed. The optional 
property Lifetime can be used to define how long a symbol should exist before it is automatically deleted. 

 

Figure 26: Representation of a symbol with properties 

The List of Properties defines the individual properties of the symbol. These properties are all optional. A 
property is defined with its property class, which describes the semantic meaning. The schema how the 
data are stored is defined in the Property Schema. The following example should help to clarify this 
concept. The microsymbol Footprint (see Chapter 6.1.1) has also the property classSymbolicPostion to 
describe the position of the footprint and the property classSymbolicDirection, which describes the 
direction of the footprint. Although these properties have different semantic meanings, they both have the 
same property schema, namely schemeSymbolicPosition. 

In this work, a symbol is illustrated as shown in Figure 26. The left frame on the top gives the name of the 
symbol. To distinguish between symbols and scenario symbols a red triangle or a pink ellipse is used. The 
right frame on the top shows the icon of the symbol. This icon is used in graphical representations of the 
symbols in this work and in the visualization within the ARS project. Along the vertical line the 
properties of the symbol are arranged. 

The graphical representation of applications and the dependencies on symbols are illustrated as shown in 
Figure 27. The name of the application is in the green frame. The application is usually on the top of the 
tree of symbols. The symbols on which the application depends are in a black frame containing the icon 
of the symbol. It is the same icon as used in the representation of symbols with properties. The 
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dependencies of an application on symbols or of symbols on other symbols respectively are depicted as 
red arrow. Sensors are usually drawn as blue circles. An exception is the camera, which is drawn as a 
camera symbol. The dependencies of a symbol on a sensor are shown as blue arrows. 

 

Figure 27: Graphical representation of application, symbols and sensors, and their dependencies 

The application is responsible for setting all necessary parameters of the involved symbols. These 
parameters are like templates to recognize characteristics as well as the focus attribute, which exists in 
every symbol and shows that there are one or more applications which listen to this symbol or a symbol 
that depends on this symbol. 

The symbols themselves have the “knowledge” of how they are generated, updated and terminated. They 
have attributes which describe their “meaning”. Inherent to symbols is the attribute activity, which 
represents the reliability and/or intensity of the symbol. The next chapter describes how the symbols and 
the relationships between the symbols are formally defined using XML-files. 

5.3 Formal Definition of Symbol and Symbol Trees 

In the pervious chapter the graphical representation of the symbols and the relationships between the 
symbols were defined. This chapter describes the formal definition of symbols and their relationships 
using XML-files. XML was chosen because it is both readable for humans and machines. Although not 
implemented now, the possibility of automatically generating code templates, which can be used to 
implement applications, has been taken into account. Additionally, a verification tool for symbols is 
possible. The task of this tool is to inspect symbols on the SymbolNet connections in order to find 
symbols which do not fit their definitions and dependencies. The following chapters describe how 
symbols, properties of symbols, schemes and symbolic values are defined. 

5.3.1 Definition of a Symbol 

Exemplarily, the symbol gait (for a detailed description see Chapter 6.1.4) is used to explain the most 
important tags of the file. The symbol gait represents a sequence of footprints which can be connected to 
the gait of a person. The specification of the symbol gait is defined as follows: 
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<symbolTemplate> 
    <symbolClass>0.0.0.4</symbolClass>  
    <symbolName>ossGait</symbolName>  
    <symbolType>snapshot</symbolType>  
    <symbolWorld>outer</symbolWorld>  
    <properties> 
        <property> 
            <propertyClass>0.0.0.1</propertyClass>  
        </property> 
        <property> 
            <propertyClass>0.0.0.8</propertyClass>  
        </property> 
        <property> 
            <propertyClass>0.0.0.9</propertyClass>  
        </property> 
        <property> 
            <propertyClass>0.0.0.6</propertyClass>  
        </property> 
        <property> 
            <propertyClass>0.0.0.3</propertyClass>  
        </property> 
        <property> 
            <propertyClass>0.0.0.4</propertyClass>  
        </property> 
    </properties> 
    <icons> 
        <icon>gait.png</icon>  
        </icons> 
    <dependencies> 
        <dependence> 
            <symbolClass>0.0.0.1</symbolClass>  
        </dependence> 
        <dependence> 
            <symbolClass>0.0.0.2</symbolClass>  
        </dependence> 
        <dependence> 
            <symbolClass>0.0.0.10</symbolClass>  
        </dependence> 
        <dependence> 
            <symbolClass>0.0.0.11</symbolClass>  
        </dependence> 
    </dependencies> 
        . 
        . 
</symbolTemplate> 
 

The symbol is defined within the root element symbolTemplate. The first elements define the mandatory 
properties of a symbol. The element symbolClass defines the class of the symbol. It has to be unique 
within the system. The symbol gait has the unique symbol class 4. The element symbolName was 
introduced to increase the human readability of the symbol definition. However, the name of the symbol 
gait is ossGait. Oss stands for Outer (world) Snapshot Symbol as proposed in [Goe06]12. The name of the 
symbol is combined by its type (world and hierarchy level) and name. This allows us to use similar 
symbols on different hierarchy levels using the same name. Nevertheless, the name of the symbol is not 
intended to be processed within the system. The elements symbolType and symbolWorld define the 
hierarchy level and world of the symbol as also coded in the symbol name. 

                                                      
12 Further prefixes are oms for Outer world MicroSymbol, orp for Outer world RePresentation symbol, and osc for 
Outer world SCenario. 
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The distinction between inner and outer world in the ARS project is not necessary for the ARS-PC part, 
because the task of this part is only to process sensor data from the environment. The ARS-PA part (see 
Chapter 2.2.4) then uses the symbols and evaluates them, using concepts like complex emotions and 
associations [Bur07] and [Deu06]. However, all symbols generated by the ARS-PC part are symbols of 
the outer world. 

The list of properties is capsulated within the element properties. The element propertyClass defines the 
property class. For each defined property class a XML file is defined as illustrated below. The properties 
specified for the symbol gait are position, velocity, acceleration, orientation, weight, length, and width. 
However, a detailed description of the symbol gait can be found in Chapter 6.1.4. The icons used in the 
visualization can also be included in the definition of the symbol. For this purpose a list of image files can 
be included in the element icons. 

The element dependencies holds all symbols, on which the symbols depend. To identify these symbols 
the class of the symbol is used. For this work it is defined that the symbol gait depends on the 
microsymbol footprint, step, object, and movement. Using this information, a tree of symbols can be 
built. Not shown in the XML-code segment above are additional elements like verbal description, version 
numbering, change logs and so on. 

5.3.2 Definition of a Property 

The following gives a XML-code segment defining the class symbolic position is given: 

<classTemplate> 
    <propertyName>classSymbolicPosition</propertyName>  
    <propertyClass>0.0.0.1</propertyClass>  
    <schemaId>0.0.0.1</schemaId>  
                    . 
                    . 
</classTemplate> 
 

The class symbolic position is used to describe a position within a room. Instead of numeric values it uses 
symbolic values which describe areas. The root element of class definition is classTemplate. Similar to 
the XML-definition of the symbols above, a name of the property is introduced, defined in the element 
propertyName. In this case the class is called classSymbolicPosition. Again, the name is not intended to 
be processed in normal operation of the system. The element propertyClass holds the unique class 
identifier of the property class. In this case it is 0.0.0.1. The element schemaId then defines, which 
scheme is used for the representation of the value. The scheme schemaSymbolicPosition is used for the 
property class classSymbolicPosition. The definition of that scheme is as follows below. Additional to the 
element shown in the code segment above, elements like description, change logs and versioning are 
added. 

5.3.3 Definition of a Scheme 

An example of the code segment for the definition of the scheme schemaSymbolicPosition is shown here 
in order to explain the most important tags of the XML-file: 
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<schemaTemplate> 
    <schemaId>0.0.0.1</schemaId>  
    <schemaName>schemaSymbolicPosition</schemaName>  
    <values> 
        <value> 
            <name>valSymbolicPosX</name>  
            <index>0</index>  
            <class>5</class>  
            <description>The symbolic position in x axis</description>  
            <type>32 bit signed integer</type>  
            <unit>none</unit>  
        </value> 
        <value> 
            <name>valSymbolicPosXReliability</name>  
            <index>1</index>  
            <class>13</class>  
            <description>reliability of position of x axis</description>  
            <type>32 bit signed integer</type>  
            <unit>none</unit>  
            <behaviourSpecification> 
                <minVal>0</minVal>  
                <maxVal>100</maxVal>  
            </behaviourSpecification> 
        </value> 
        <value> 
            <name>valSymbolicPosY</name>  
                    . 
                    . 
            <name>valSymbolicPosYReliability</name> 
                    . 
                    . 
        </value> 
        <value> 
            <name>valSymbolicPosZ</name>  
                    . 
                    . 
            <name>valSymbolicPosZReliability</name> 
                    . 
                    . 
        </value> 
    </values> 
        . 
        . 
</schemaTemplate> 
 

The schema schemaSymbolicPosition defines how a position can be described. It assumes that a position 
is described using three orthogonal axes like the Cartesian coordinate system. The difference is that no 
numbers are used to define a point, but a symbolic description of the position. This additional abstraction 
allows on the one hand defining an area around a position instead of an exact position, on the other hand 
the definition is not limited to classical mathematics. A description like close to object could be used 
instead. 

The element schemaTemplate encapsulates the definition of the schema. The element schemaId is used 
to identify the schema. In this case it is 0.0.0.1 for the schemaSymbolicPosition. As is the case with the 
definitions above the schemaName is only introduced for better readability by people. The element 
values holds a list of values which define the position. A single value has a name which is again only 
introduced for better readability by people. The element index is used to identify the value within the list 
of values of the property. The valSymbolicPosX (symbolic value of the position in the x-axis) is on the 
index 0. The element class defines the description of the symbolic value. The definition of the symbolic 
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value for positions is given below. The data type is defined with the element type. The type of the 
valSymbolicPosX is a 32-bit signed integer. The unit of the value is defined with the element unit. A 
symbolic value has no unit and is therefore defined as none. 

Additionally to the symbolic value its reliability is defined. This value is used to describe the reliability of 
valSymbolicPosX. A definition of the reliability for every axis is useful if the position can be determined 
in one or two axes, but not in all three axes. For the axes where the position can be determined, the 
reliability is high, for the others it is low. The elements name, index, class, type, and unit have the same 
meaning as the valSymbolicPosX described above. The name is valSymbolicPosXReliability, the index 1, 
the class 13, the type is a floating point and the unit is dimensionless. The definition of the 
valSymbolicPosXReliability has the additional element behaviourSpecification, which is used to define 
the size of the increment and limits of the value. With the elements minVal and maxVal the minimal and 
maximum value (in this case 0 and 100) are defined. Equivalent to the x-axis the position and the 
reliability of the value of the position of the y- and z-axis are defined. 

5.3.4 Definition of a Symbolic Value 

Following is an example of the definition of a description of a symbolic value. 

<symbolicValueTemplate> 
    <id>0.0.0.5</id>  
    <uniqueName>valSymbolicPosition</uniqueName>  
    <behaviourSpecification> 
        <minVal>0</minVal>  
        <maxVal>7</maxVal>  
    </behaviourSpecification> 
    <values> 
        <value> 
            <name>symbolicPosition0</name>  
            <description>position is in the point of the origin of the axis</description>  
            <index>0</index>  
        </value> 
        <value> 
            <name>symbolicPosition1</name>  
            <description>position is between the point of origin and including 0.5m on the 
axis</description>  
            <index>1</index>  
        </value> 
        . 
        . 
        <value> 
            <name>symbolicPosition7</name>  
            <description>position is grater than 3.0m on the axis</description>  
            <index>7</index>  
        </value> 
    </values> 
        . 
        . 
</symbolicValueTemplate> 
 

As with all other definitions above, the XML-file contains an element for a unique identifier (id) and a 
unique name (uniqueName), where the identifier is intended to be used for automatic processing and the 
name to increase the readability for people. The element behaviourSpecification defines the limits of the 
used values. For the valSymbolicPosition eight values (0 – 7) are defined. The element values 
encapsulates the values of the symbolic values. The first value has the index 0 and the name 
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symbolicPosition0. The element description contains the verbal description of the symbolic value. The 
value symbolicPosition0 is defined as position between the origin and 0.5 m of the axis. The value 
symbolicPosition7 (index 7) is defined as a position greater than 3.0 m of the axis. 

Using symbolic values to describe positions of e.g. a person in a room can be defined as a position which 
describes an area. It is also possible to define symbolic values like the position of a certain place. An 
example in the kitchen of the ICT would be in front of the stove, at the door or nearby the window. 
However, a symbolic position can always be expressed in a Cartesian coordinate system. The next chapter 
describes how XSL (eXtensible Stylesheet Language) can be used to increase the readability of the XML 
definitions for people. 

5.3.5 Representation of Symbols using XSL 

In order to increase the readability for people and to introduce error checking in the definition of symbols, 
properties, schemes and symbolic values, the XSL (eXtensible Stylesheet Language) is used. XSL [XSL] 
is a W3C (World Wide Web Consortium) [W3C] recommendation for defining XML document 
transformation and representation. It consists of three parts, XSL Transformations (XSLT) [XSLT], XML 
Path Language (Xpath) [XPath], and XSL Formatting Objects (XSL-FO) [XSL-FO]. XSLT is a language 
for transforming XML; Xpath is an expression language used by XSLT to access or refer to parts of an 
XML document as well as being used by the XML Linking specification. Theses two parts of XSL are 
used to format the XML definitions given above. The third part, XSL-FO, which is mentioned here for 
completeness, is an XML vocabulary for specifying formatting semantics. Figure 28 shows the view of 
the example symbol gait as described in the previous chapters using a web browser. 

The mandatory properties of the symbol are in the top. The list of properties is listed in a table. The table 
holds the property class as defined in the XML definition of the symbol (see Chapter 5.3.1). Using Xpath, 
the definitions of specific properties and the scheme of the property are included in the view of the 
symbol. Following the links, the property or schema can be viewed. 

The symbols on which the viewed symbol depends are depicted in the second table. Additionally to the 
symbol class, which is displayed in the first column and taken from the definition of the viewed symbol, 
the name and the description of the referred symbols is attached. 

The symbols that depend on the view symbol are not explicitly defined in a XML file. Instead, with XSL 
the dependencies element of all XML symbol definitions are inspected in order to find the symbols which 
depend on the viewed symbol. The third table displays the symbol class, name and its description. 
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SYMBOL ossGait 

outer world snapshot symbol, version 1.0.0 

describes a gait 

Symbol Class: 0.0.0.4 

 

Properties 
Property 
Class 

Property Name Property Description Property 
Schema ID 

Property Schema Name 

0.0.0.1 classSymbolicPosition vector describing a point in a 
Cartesian axis system 

0.0.0.1 schemaSymbolicPosition 

0.0.0.8 classSymbolicVelocity symbolic velocity 0.0.0.5 schemaSymbolicVelocity 
0.0.0.9 classSymbolicAcceleration symbolic acceleration  0.0.0.6 schemaSymbolicAcceleration
0.0.0.6 classSymbolicWeight symbolic weight 0.0.0.4 schemaSymbolicWeight 
0.0.0.3 classSymbolicLength symbolic length 0.0.0.2 schemaSymbolicLength 
0.0.0.4 classSymbolicWidth symbolic width  0.0.0.2 schemaSymbolicLength 
 

Dependencies on other Symbols 
Symbol Class Symbol Name Symbol Description 

0.0.0.1 omsFootprint describes a human footprint 
0.0.0.2 omsStep describes the position of a human step 
0.0.0.10 omsObject describes the symbolic position and weight of an object 
0.0.0.11 omsMovement describes the symbolic movement by position, direction, and velocity.
 

Symbols depending on this Symbol 
Symbol Class Symbol Name Symbol Description 

0.0.0.4 orpPerson describes how a person is represented

Description 

This Symbol represents a gait which belongs to a human 

Icons 

 

Figure 28: Definition of the symbol gait as it is displayed in the browser 

5.4 E-state and Symbols 

In this work the basic emotional systems (e-systems) is introduced. The e-systems (see Chapter 2.2.2) 
follow the archetype of the mammalian brain with its basic emotional systems (see Chapter 2.1.3). Basic 
emotional systems valuate the current situation in which the individual is and influence the individual’s 
state and actions. Since the ARS-PC part is the focus of this work, only the parts of the e-systems are 
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defined which are integrated within this model. However, e-systems have to be seen as a system which 
correlates with the whole ARS system (see Figure 10). 

Figure 29 depicts the part of the e-systems and their influence on the modules of the perception. The input 
from the sensors in the environment is first processed in the symbolization module, where the generated 
symbols are evaluated according to the situation perceived from the environment and the current state of 
the e-systems (3’). The perceived and evaluated situations influence for their part the state of the e-
systems (1). The modulation module works like a filter, which generates a world representation according 
to the perceived situation and the state of the e-systems (3’’). The e-systems are responsible for providing 
e-states of the entire system. Each e-state represents the status of an e-system. The e-status depends on the 
e-status itself (4) and the perceived situations. 

Symbolization

Sensor data

E-states

Modulation

E-states

World 
representation

Enviroment

1

3''

4

3'

Symbols

E-system 
n

E-system 
1

 

Figure 29: Perception and e-systems 

In the ARS system the e-states are treated similarly to symbols. The e-state is used to propagate the global 
value of the state of an e-system to the modules. The global value is calculated from all symbols which 
are evaluated with the e-system and the value of the e-status in the past. Figure 30 shows the 
representation of an e-status by symbols. As described in Chapter 5.2 symbols have mandatory properties 
and a list of properties which are specific to it. Therefore, the e-state symbol has to have all mandatory 
properties. Since an e-state never expires, the lifetime of an e-state symbol is not set. The only property in 
the list of specific properties is the property e-status itself. It holds the system-wide value of the e-status. 

Symbols (micro-, snapshot and representation) and scenario symbols are evaluated according to the e-
systems. Since these symbols are not required to have all e-states used within the system, the symbol-
inherent e-state is represented as a property within the list of symbol-specific properties. The value of the 
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symbol-inherent e-state is calculated from the current situation and the current system-wide e-status. In 
the following chapter the transport mechanism of symbols is described. 

 

Figure 30: Representation of an e-status 

5.5 SymbolNet 

SymbolNet is a communication framework of the ARS project. [Pra06] briefly describes SymbolNet. It 
has been designed to distribute symbols as defined in this work. Therefore, it has to provide the necessary 
services to transmit the properties of the symbols. It has to be mentioned that SymbolNet is designed for 
the temporary processing of symbols. Since memory and processing power are limited in a computer, the 
main task of SymbolNet is to distribute the active symbols and their properties. SymbolNet does not 
implement memory like semantic memory or episodic memory as used in the ARS-PA model. In the 
following chapters the design of SymbolNet, its services and the included symbol repository are 
described. 

5.5.1 Model of SymbolNet 

SymbolNet provides functionality for generating, distributing, synchronizing and expiring symbols within 
the ARS system. In principle, symbols in SymbolNet are either stateless or stateful. If a symbol is 
stateless, the symbol cannot be changed after it has been created. It expires automatically. Symbols that 
are stateful can be changed during their lifetime. If a symbol is changed by a module within the system, 
the new values of the properties are propagated automatically by SymbolNet to all instances of the 
symbol. Figure 31 shows the possible lifecycles in SymbolNet. 

 

Figure 31: Lifecycle in SymbolNet 
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After a symbol has been created, it is private, stateful or stateless. A private symbol means that the 
symbol and its properties are not distributed to other modules in the system. It only exists in the module 
which created the symbol. However, after the properties of the symbol are set, the symbol is either 
stateful or stateless. SymbolNet sends the symbol automatically to all modules within the system. As 
mentioned above, stateless symbols cannot be updated and expire automatically at the end of their 
lifetime. 

If a symbol is stateful, its properties can be updated. In case a module changes one ore more properties of 
the symbol, the symbol in this module is in the state dirty. This means, that its properties have only been 
changed within the module, but the changes were mot propagated to the other modules within the system. 
After SymbolNet has updated the symbol in all modules, the state of the symbol is set back to stateful. 
The lifetime of stateful symbols can be undefined. This means that the symbol does not expire 
automatically. To remove such a symbol from the system, a special message, the so-called expire 
message, has been introduced. The messages in SymbolNet are described in the next chapter. 

5.5.2 Messages in SymbolNet 

SymbolNet messages are used for the communication between the modules. SymbolNet provides three 
messages for handling symbols, i.e. new symbol, update property, and expire. Additionally, a so-called 
heartbeat message has been introduced to provide a timeframe for the whole system. After a symbol has 
been created and is in either the stateful or stateless state (see Chapter 5.5.1) of the module in which it 
was created, a new-symbol message is sent to all other modules. When the other modules receive this 
message, the symbol is created in theses modules. To save computational resources, the symbol is only 
sent to the modules that registered for it, which means that the module processes the symbols. If a symbol 
is not needed in a certain module, no messages are sent to it. 

In case the symbol propagated with the new-symbol message is a stateless symbol, no further message is 
sent which refers to that symbol. If the new symbol is a stateful symbol, update-property messages are 
sent in case one or more properties of the symbol have changed. For stateful symbols a lifetime may be 
specified. If the lifetime is not specified, the symbol does not expire. However, whenever an expire 
message is sent, the symbol expires immediately despite its property lifetime. 

 

Figure 32: Pipe concept of SymbolNet 

Figure 32 is an illustration of the pipe concept of SymbolNet. The pipe needs two types of ends, i.e. type 
A and B. Type A is the source of symbols. In SymbolNet a pipe can only have one end of type A. The 
type B is the sink of the symbol. A pipe in SymbolNet can have more than one end of type B. SymbolNet 
messages sent into the pipe (type A) are duplicated if the pipe has more than one end of type B. 
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This concept has been introduced in order to provide two properties of the communication framework in 
the ARS project. SymbolNet has to be portable to a broad range of systems with varying CPUs, operating 
systems and programming languages supported for the application using the communication framework. 
The second reason is to create a communication framework that is able to form a tree of symbols. Such a 
tree is necessary to form symbol trees as described in the following chapters. 

The concept of the pipes as described above meets these requirements. Using TCP/IP as underlying 
communication protocol, SymbolNet can be used on a number of platforms, especially on PCs with 
various operating systems and embedded systems. A TCP/IP stack is available for a broad range of 
platforms. In order to have a representation and encoding of the data which is independent of the 
representation and encoding of data on different platforms, ASN.1 (Abstract Syntax Notation One) is 
used. ASN.1 [X.680] is a joint standard of ISO (International Organization for Standardisation) and ITU-
T (International Telecommunication Union – Telecommunication Standardization Sector), which defines 
rules for describing the structure of objects that are independent of machine-specific encoding techniques. 
The Distinguished Encoding Rules (DER) [DER02] are used to encode the SymbolNet messages. DER is 
part of ASN.1 standard. Chapter 5.5.4 defines the symbols according to ASN.1 for SymbolNet. It has to 
be mentioned here that SymbolNet only propagates the representations of symbols but not the 
associations between them. The relationships between the symbols are shown in the graphical 
representation of symbols and symbol trees (see Chapter 5.2) and the formal definition using XML-files 
(see Chapter 5.3). 

5.5.3 Structure of SymbolNet 

A principal structure of how SymbolNet can be used is shown in Figure 33. The modules shown in Figure 
33 are also called symbol factories. Symbol factories are intended to create new symbols, modify 
symbols, and expire symbols. They are used to build logical modules for handling symbols. A symbol 
factory can be used for every layer as proposed in Chapter 2.2.3. Thus, a possible arrangement of modules 
would be a microsymbol factory, a snapshot symbol factory, and a representation symbol factory. 

Module 1

Module 3

Module 4

Module 5

Module 2

Module 7

Module 6

 

Figure 33: Principal communication structure of SymbolNet [Pra06] 

However, SymbolNet supports also more complex structures than depicted in Figure 33. In this case, the 
symbol factories are split up again so that the microsymbol layer consists of two (independent) symbol 
factories. The second hierarchy (snapshot symbol layer) is split into three symbol factories. One symbol 
factory (module 4) has inputs from both microsymbol factories. The representation layer is also split into 
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two modules, module 6 and module 7. Module 6 gets input from snapshot symbol factory module 3. 
Module 7 gets input from the snapshot symbol factories module 4 and module 5 and additionally from the 
representation symbol factory module 6. 

It is important to note that the system designer has to monitor the stability of the system. SymbolNet 
allows building loops so that symbols in lower hierarchy levels depend on symbols of higher levels. If the 
higher symbols also depend on hierarchically lower symbols, the system might become unstable. So when 
using methods for creating the symbols (both the higher and lower level symbols) one has to take into 
account that they are part of a loop13. 

5.5.4 Symbol and its Properties 

ASN.1 is used for the representation of symbols in SymbolNet. In principle, the formal definition of 
symbols using XML-files (see Chapter 5.3) could also be used with some extensions (a unique identifier 
for each instance of the symbol). Nevertheless, the XML definition was introduced into this project when 
the first version of SymbolNet was already in use. Moreover, the ASN.1 approach allows a more efficient 
encoding than XML, and therefore less data have to be transmitted. However, the ASN.1 XML Encoding 
Rules (XER) [X.693] specify rules for encoding values of ASN.1 types using XML. 

The predefined properties of a symbol are identifier, type, class, timestamp, and optionally the property 
lifetime. A list of properties specific to every symbol is used to specify the specific properties. The 
predefined properties of a symbol are defined as follows: 

Symbol ::= SEQUENCE { 
    id            Int64, 
    type          SymbolType, 
    class         Int32 
    timestamp     Int64, 
    lifetime      Int32 OPTIONAL, 
    properties    SEQUENCE OF Property OPTIONAL 
} 
 

The first property id is a system-wide unique identifier of the symbol. The data type of the id is a 64-bit 
integer. The value is generated during the creation of the symbol. In the XML definition of the symbol 
this value is not present. The type of the symbol defines the world (inner or outer) and hierarchy level 
(micro, snapshot, or representation) to which the symbol belongs. The data type of the property type is 
SymbolType. In the XML definition of the symbol the type is split up into a hierarchy level (symbolType) 
and the world to which the symbol belongs (symbolWorld). The property class specifies the symbol, and 
therefore which properties are defined in the list of individual properties. The data type is a 32-bit integer. 
The equivalent in the XML-definition is the element symbolClass. 

                                                      
13 In this context loop means a loop in the perception part of the ARS system (ARS-PC). As shown in Figure 1, the 
ARS system forms a loop together with the environment. This loop always exists because the ARS system is 
intended to obtain feedback from the environment. 
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The property timestamp14 is a 64-bit integer value and defines whether the symbol has recently been 
changed. Together with the lifetime it defines how long the symbol is valid within the system. The 
property lifetime is an optional property. If it is not defined, the symbol does not expire automatically. 
The symbol can only be removed from the system with an expire message from SymbolNet (see Chapter 
5.5.2). In the XML-definition the time information is not included. The property properties holds a 
sequence of properties which are specific to the symbol. As mentioned above, the property class defines 
which properties are within the list of specific properties. In the XML-definition the specific properties of 
the symbol are encapsulated in the element properties. The specific properties of ASN.1 are defined as 
follow: 

Property ::= SEQUENCE { 
    class              Int32, 
    schema             Int32, 
    confidence         REAL, 
    value              SEQUENCE OF CHOICE { 
        pInt64         Int64, 
        pInt32         Int32, 
        pInt16         Int16, 
        pInt8          Int8, 
        pIeeeDouble    IeeeDouble, 
        pIeeeSingle    IeeeSingle, 
        pNull          NULL 
    } 
} 
Every property within the property list is identified with the property class. It defines the semantic 
meaning of the property of the symbol. The schema defines how the data are represented. In case there is 
only one representation schema for a property, the schema is redundant information because the definition 
is already included in the property class. Nevertheless, introducing the property schema has two 
advantages. The representation of the value of the property can be changed without changing the symbol 
itself because the property class does not change. And secondly it allows the reuse of code for different 
symbols using the same representation of data. The following examples are given to provide further 
clarification. 

Let us assume two symbols have a property position. The semantic meaning of this property is the current 
position of the symbol within the system. Therefore, the property class is identical. But the position can 
be represented in different ways, e.g. different coordinate systems, data types, with or without confidence 
information, or two- or three- dimension ional. For every representation a schema is defined. So although 
the symbol property class of two symbols is identical, the representation of the data may differ based on 
different schemas. 

In the second example, it is assumed that a symbol has two properties, one describing the current position, 
and one giving the starting point. Since the properties have different semantic meanings, the property 
                                                      
14 Since SymbolNet is a technical implementation suitable for modern processors, a mechanism had to be introduced 
which allows a chronological ordering of symbols. The concept of timestamp is a commonly known concept for the 
chronological ordering of data structures, and therefore supported by programming languages and existing software 
like databases. 



Chapter 5  ARS-PC System 

67 

class differs. Nevertheless, the schema of these two properties can be identical if the same representation 
is used for both positions. Therefore, the code for calculating the current position can also be used for 
calculating the starting position. Further, and especially in the case of geometric information, the schema 
can be used to determine whether a transformation of data is necessary. If the distance between the 
starting position and the current position has to be calculated, the property schema is used to determine 
whether the two positions use the same representation. 

The property confidence is intended to describe the confidence of the property. Confidence means here 
the confidence of the property defined with the property class. Additionally, confidence can be defined 
for every value in the value field. A position in Cartesian coordinates could define a confidence for every 
coordinate axis. If for example the position of an object is determined with a light barrier, two axes of the 
position can be determined with a high confidence, whereas the third dimension can not be determined. 
Therefore, the confidence of the two axes which can be determined is high, the confidence of the third 
axis is low. The confidence of the property is also high because the method to determine a position of an 
object with light barriers has a high confidence. 

The value of the property is a list of values. The number of values and their semantic meaning are defined 
by the property schema. As mentioned above, the semantic meaning of the property of the symbol is 
defined with the property class. The data type of the value can either be an 8-, 16-, 32-, or 64-bit Integer, 
an ANSI/IEEE 754 [IEEE754] single or double precision floating point value, or null. Null is used to set 
the value of a property to a value which represents an undefined value. In the XML definition the 
elements of the list of properties are defined in various files as described in Chapter 5.3. 

A symbol defined according to the schema presented above is suitable for propagation with SymbolNet 
(see Chapter 5.5). Nevertheless, in order to define the relationship between symbols (building symbol 
trees), an additional definition is necessary. The principles of how SymbolNet and the symbols can be 
used are discussed in the next chapter. 

5.6 Usage of Symbols 

The chapters above present the definition of symbols and their transport mechanism, SymbolNet. 
SymbolNet provides three functions to manipulate, generate, update, and expire symbols. The symbol 
factories use these functions to associate the sensor values and symbols with each other in order to 
perceive types of situation and scenarios. 

In a microsymbol factory, microsymbols are processed. Correspondingly, snapshot symbols are processed 
in the snapshot symbol factories and representation symbols in the representation symbol factories. They 
form a hierarchical structure as shown in Figure 25. In general, the rules for the generation of a symbol 
are implemented in the symbol factories. In principal, it is possible to use every kind of decision making 
process for the manipulation of symbols. In the ARS-project, different strategies are implemented. A rule-
based approach is shown in [Pra06] and [Goe06]. This approach ensures a predefined behavior. The 
approach using Fuzzy Logic in [Ric07] allows the definition of rules in a more flexible way. Statistical 
models (Hidden Markov models) are used in [Bru07]. This approach uses no rules, but extracts a 
characteristic behavior from inputs and can be used to detect unusual behavior. Further, it is planned to 
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use an artificial neural network and fuzzy inductive reasoning [Ayy06 and Cel91] in order to manipulate 
symbols. This approach will make it possible to introduce learning into a symbolic approach. 

[Pra06] proposes that the symbol trees are hierarchical and exactly three layers are used, i.e. microsymbol 
layer, snapshot symbol layer and representation layer. This fits to the model derived from the human 
brain as shown in Chapter 2.2.3. Nevertheless, [Pra06] proposes that the microsymbols and snapshot 
symbols are the representation of the world at one moment in time or a short period of time, which does 
not fit to Luria’s neuro-psychoanalytic model. According to this model, the second level is not the world 
representation of a short period of time but combines the lower-layer symbols (of one sense) to more 
complex symbols. In the next higher layer, i.e. the representation layer, a world representation is 
generated. 

The implementations mentioned above ([Goe06 and Ric07]) experienced a number of problems in their 
attempt to accommodate [Pra06]’s constraint of the definition of snapshot symbols. An example of this is 
the symbol gait. As described in more detail in Chapter 6.1.4, the symbol is a snapshot symbol which 
depends on the microsymbols step and footprint. The microsymbols represent a short time span, but the 
snapshot gait is valid for as long as a person can be tracked. Therefore, the definition in [Pra06] according 
to the time constraints of symbols should be reduced to the integrative functionality. This means that a 
symbol of higher hierarchical levels is composed from symbols of lower levels. 

The hierarchical structure of the layers ensures a stable system because the symbols depend only on 
symbols of lower hierarchical levels but not on symbols of higher levels. However, the implementation 
phase showed that a strict hierarchical model is not always suitable. The people tracking application, 
described in detail in Chapter 6.1, can also use cameras for tracking people, as shown in Figure 36. The 
output of the (complex sensor) camera is used by the snapshot symbol gait and the representation symbol 
person. In a strict hierarchical structure of symbols, only microsymbols and no higher-layer symbol 
depend on sensors. However, if a strict hierarchy of symbols is not observed, the designer of the symbols 
has to take into account that loops within the symbol tree may lead to instable systems. Chapter 6 will 
show how symbol trees can be used for special applications. 

5.7 Sensor database 

The sensor database is used to store data from real implementations like the kitchen on the ICT and from 
virtual environments generated with the simulator (see Chapter 7.1.3). In Figure 34 the tables of the 
sensor database are depicted. The table ARS_SEN_TYPEDEF defines the data types which can be used 
for the values of the sensors. In the current implementation sensors with binary values, integer values and 
floating point values can be used. The type of sensor is defined in the table ARS_SEN_DEFINITION, 
e.g. tactile sensor or temperature sensor. In the table ARS_SEN_PROPDEF properties of the sensor are 
defined like the position where the sensor is mounted or where the active area is. 

The table ARS_SEN_ENVIROMENT is used to define the environment, e.g. the building in which the 
sensor is located. Within that environment objects can be defined. These objects are e.g. rooms and are 
stored in the table ARS_SEN_OBJECT. A sensor is defined in the table ARS_SEN_SENSOR. In this 
table the sensor id, the object id, the environment id, and the sensor definition id are defined. The sensor 
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definition id refers to the table ARS_SEN_DATADEF. This table defines the value type (e.g. Boolean) of 
the sensor. The properties of the sensor (e.g. position) are defined in the table 
ARS_SEN_PROPERTY_INT. 

 

Figure 34: Sensor database tables 

The tables described above are used to define a sensor, its properties, and the environment in which it is 
mounted. Although this structure is quite complicated, it is a very flexible way to store the required data 
for the ARS system. However, the sensor values are stored in the tables ARS_SEN_DATA_BIN (binary 
values), ARS_SEN_DATA_INT (integer values), and ARS_SEN_DATA_FLOAT (float values). Beside 
the value, the unique definition of the sensor (sensor id, object id and environment id) and the timestamp, 
of when the value was generated are stored in these tables. Additionally, the value simulation run id has 
been introduced. This id is intended to be used by simulators. In order to store different simulation runs of 
the same environment, only the simulation run id has to be changed to generate unique sensor values, and 
the timestamp of a simulation can always start with the same value. 

The sensor database is used to store the input data of the ARS-PC system. The output of the ARS-PC 
system is also stored in a database as shown in Figure 25, namely the symbol database. This database is 
described in the next chapter. 

5.8 Symbol Database 

Similar to the sensor database, the symbol database has been introduced into the ARS framework to ease 
development. The database is not necessary for the functionality of the system. Nevertheless, the symbols 
generated by the ARS system can be stored in the database in order to have a logger of the events 
recognized by the system. In the following, the tables of the database are briefly described. 
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The tables of the symbol database are shown in Figure 35. Like the sensor database the symbol database 
allows the storage of data from different (simulation) runs which have the same timestamp. In the table 
Run, a simulation is described with the unique id, the username of the person who generated the run, date 
and description. The table message holds the messages received from SymbolNet. The message is 
characterized by a sequence number, the time (from the database) when it was received, the timestamp of 
the SymbolNet message, the type of the message, and the type of run it belongs to. 

In case the received message is a heartbeat message, the message is stored in the table Heartbeat. If a new 
symbol message is received, a new entry is generated in the table Symbol, identified with the symbol id, 
the class and type of the symbol, and the lifetime if available. If an expire message is received, the 
reference to the expire message is inserted in the entry mentioned above. The properties of the symbol are 
stored in the table PropertyInstance. The class and schema together with q reference to the symbol to 
which the property belongs identify the property. Additionally, a reference to the message (new symbol 
message or update property message) is stored as well as the confidence of the value. The value itself is 
either stored in the table PropertyValueInt in case of an integer value or in the table PropertyValueFloat in 
case of a floating point value. 

 

Figure 35: Sensor database tables 

The database is mainly used to log the symbols created by the ARS-PC system, but also to buffer the 
symbols for the three-dimensional visualization of the simulator as described in Chapter 7.1.3. The 
implementation of the database is described in Chapter 7.4. The recorded symbols can be visualized with 
various visualizations. These visualizations are described briefly in the next chapter. 

5.9 Visualizations 

The ARS Framework offers various types of visualizations, i.e. a logical visualization, a two-dimensional 
visualization and a three-dimensional visualization. The logical visualization shows the symbol tree of the 
system. Within this tree it is shown which symbols and how many of each kind of symbols are currently 
active. Additionally, the dependencies between the symbols are shown. This type of visualization gives an 
observer a good view of the system. 

The two-dimensional visualization is based on the floor plan of the kitchen of the ICT as depicted in 
Figure 24. In this floor plan, the sensor activities and symbols can be displayed. In order to get a clearer 
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view, the visualization can be manifold. A filter can be defined for each type of visualization. For 
example, the sensors and microsymbols are shown on one floor plan, the snapshot symbols are on the 
second and the representation symbols on the third plan. Thus, it is possible to get an impression of the 
spatial relationship of symbols and sensor activities. The implementation of the two-dimensional 
visualization is described in Chapter 7.5. 

The three-dimensional visualization is based on the simulator. It shows the virtual environment used in 
the simulator. Symbols can be displayed in this three-dimensional representation of the virtual 
environment. As is the case with the two-dimensional visualization, a filter can be used to mask symbols 
which should not be displayed. With these three different types of visualization an observer gets different 
views of the system. This allows the analysis of the association process of the system, and therefore its 
optimization. The implementation of the three-dimensional visualization is described in Chapter 7.1.3. 
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6 Definitions of Symbols for Applications 

In this chapter, the symbols for the applications as defined in Chapter 4 are introduced. The applications 
are grouped into the areas where they are intended to be used. The people tracking application is the basis 
for all other applications and determines the position of the persons in buildings. The child safety 
application was developed to detect dangerous situations for children e.g. danger of burning at a hot 
stove. Fall detecting scenarios of the geriatric care application are intended to be used in buildings for 
elderly people. 

The definition of the symbols follows their description, representation (see Chapter 5.2) and transport 
mechanism SymbolNet (see Chapter 5.5). Furthermore, these definitions are intended to be used with e-
systems (see Chapter 5.3). The sensor values used to generate the (micro-)symbols are intended to be 
provided from a simulator, form a special installation as shown in [Goe06], a fieldbus system, or DPAL 
as proposed in Chapter 3.5. 

6.1 People Tracking 

Carrying out the research for this work, it emerged that a key application of the ARS project needs to be 
the tracking of people. In almost every application defined within the project, the position (or at least the 
presence) of people has to be detected. This chapter describes how the people tracking application is 
defined within the ARS project, and therefore how the tracking of people in buildings could be carried out 
in the future. 

Approaches to track individuals are visibility of the individual, ground reaction force caused by 
individual, sound caused by individual (by voice or movement), different temperature from the 
surrounding environment, or tags like RFID tags. A substantial amount of research work has already been 
carried out in the area of detecting people with a camera. One example of an open-source implementation 
of computer vision is OpenCV library [OCV06]. Amongst others, face and gesture recognition, motion 
tracking, and object identification are implemented in this library. 

Another biometrical feature of an individual is his or her ground reaction force, which can be measured 
with pressure sensors in the floor. [Orr00] and [Add97] explain how the recognition of footsteps on a 
sensor pressure field and their assignment to an individual is possible. [Orr00] claims that the system has 
a recognition accuracy of 93% for a user who is known to the system. 

In addition to the footsteps, e.g. the human voice can be used to identify and localize a person. By using 
microphone arrays, it is possible to localize the sound source, and it is even possible to infer face-to-face 
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conversations [Bia04] from this. As well as cameras sensitive to the visible spectrum, infrared cameras 
can be used to detect people in a room. Even simpler types of infrared sensors in connection with an 
analysis system (e.g. based on Bayesian networks) are enough to track persons [Tai05]. 

However, the methods mentioned above, focus on one type of sensor. If in an environment the sensor 
fails, e.g. it is to dark that a camera can take pictures, the recognition is not possible any more. Therefore 
the ARS system is designed that it can recognize situations based on diverse and redundant sensors. The 
symbols and sensors, which are used for the application people tracking in the ARS, are shown in Figure 
36. 
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Figure 36: Dependencies of symbols and sensors for the people tracking application 

Starting at the bottom of the figure, the microsymbol step, footprint, and object passed are generated from 
different kinds of sensors like light barriers, pressure sensor fields, Smart Shoes15, microphones, cameras, 
or temperature sensor fields. The microsymbols step, footprint, and object passed are combined to the 
symbol gait. The camera is not treated as the other sensor where information output forms microsymbols, 
but as an object creating symbols. Thus, the output of a camera could be used to verify the symbol gait. 
The symbol person depends on the symbol gait. Again, a camera is used to recognize a person and to 
validate the results from these symbols. The following chapters describe the symbols used for the 
application person tracking. 

                                                      
15 Smart Shoe is a shoe, which sends out position signals (e.g. GPS signals or RFID reader together with the carpet 
RFID-Tags http://www.heise.de/newsticker/meldung/70782) for every step made with it. This signal can be received 
and used for the localization of the wearer of the Smart Shoe. 
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6.1.1 Symbol footprint 

The symbol footprint describes an individual’s footprint. In our context, footprint means not only a step, 
but the sequence of imprints beginning with the heel, and followed by the whole foot and lastly the toes, 
as shown in Figure 40. Figure 37 shows the properties of the symbol footprint. 
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Figure 37: Symbol footprint 

Figure 38 shows how the dimensions of a footprint are defined. The position of the footprint is in the 
origin of the coordinate system. In the symbol footprint this position is represented with the property 
position. The property orientation defines the orientation of the footprint (y-coordinate of the footprint) 
within the reference system (e.g. room). The property length is the length between the toes and the heel 
the property width is the broadest part of the footprint. The origin of the footprint is in the middle i.e. half 
length and width. 
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Figure 38: Orientation and dimension of a footprint 

The property side describes whether the footprint is the left or right foot of the person. The weight of the 
person is given in the property weight. It is assumed that the person is walking, and when a step is made 
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the weight of the person weighs down on the one foot that has ground contact. The dynamic change of the 
weight (more precisely the force which is measured by pressure sensors) is not taken into account with 
the property weight. If the person stands still, his or her weight is equally distributed on both feet. In this 
case, the property weight represents half of the person’s weight. 

A typical curve of the value of the property weight is shown in Figure 39. In this figure, the y-axis shows 
the normalized value of the property weight, the x-axis the time. In case the person stands still, the value 
of the property weight is half of the value of the person’s weight. When the person is walking, the value 
of the property weight alternates between zero and the value of the person’s weight. 

 

Figure 39: Behavior of the value of the property weight 

The pressure and/or temperature sensor field or Smart Shoes can be used to generate the symbol footprint. 
If a pressure sensor field or a temperature sensor field is used, the detection of the symbol footprint 
follows the principle shown in Figure 40. When the footprint starts, the person first activates the sensor A 
with the heel. Next, the toes touch the floor and trigger sensor B, as shown in the middle of Figure 40. 
When the person continues to walk, s/he first raises the heel, which deactivates sensor A. If this sequence 
of activation of sensors is detected, the symbol footprint is generated. The property position is calculated 
from the position of the sensors; the property orientation is derived from the spatial and temporal 
sequence of the step. 

Using pressure sensor fields, the weight of the person can be determined from the force measured by the 
sensors. If the resolution of a sensor field is high enough (e.g. an area of 1 cm² per single sensor), also the 
width, length, and side of the footprint can be determined. 

 

Figure 40: Detection of a human footprint 

The third possibility mentioned above to determine the properties of the symbol footprint is a Smart Shoe. 
A Smart Shoe is a shoe which is able to determine its position. There are different possibilities to measure 
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the position within a building. One of them is the usage of RFIDs situated in the floor. Each of the RFIDs 
has its position stored within the coordinate system. If the smart shoe touches the floor, it reads out this 
information from the RFID. Sensors within the shoe can measure the weight of the person. The length, 
width, and side of the shoe are known parameters and can be sent together with a unique id to the module, 
dedicated for the generation of the symbol footprint. This module sends the unique id together with the 
position of the RFID in the floor, and therefore obtains the position of the footprint. The disadvantage of 
this approach is that the person always has to wear the shoe; otherwise footprints would not be detected 
within the system. 

The symbol footprint is updated when there are significant changes to the weight. Such changes can be 
caused by a person standing still before starting to walk. On the foot which remains standing, the weight 
is then approximately double of what has previously been measured. On the contrary, the weight is cut in 
half when the person stops. The symbol footprint expires when the foot is raised and no sensor is 
activated. 

6.1.2 Symbol object passed 

The symbol object passed indicates that an object has passed a defined place. Figure 41 shows its 
properties. The difference from the symbol footprint (see Chapter 6.1.1) is that the symbol footprint 
represents only the footprint of an individual, whereas the symbol object passed appears always when one 
or more sensors within the system detect an object. 

 

Figure 41: Symbol object passed 

The property position is the position where the object is recognized. The property direction is the 
direction of the object16. The property height is the height of the object. The symbol object passed can be 
derived from pressure sensors, light barriers, or distance sensors. 

If a pressure sensor on the floor detects a change of the pressure, the x- and y-coordinates of the position 
where the object has been detected can be determined. Every time the symbol footprint (see Chapter 
6.1.1) is generated, the symbol object passed is generated as well. Light barriers are sensitive in one 
direction and have a very small beam angle. Therefore, it can be assumed that the object passes along a 

                                                      
16 A property velocity could also be introduced but is not necessary for the ARS system. It can be assumed that 
within this system only people move (or move something), and therefore the velocity would not differ in a wide 
range. 
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line. If a distance sensor is used instead of a light barrier, the object with the smallest distance to the 
sensor can be determined. 

The examples in Figure 42 show how these sensors can be used to derive the height e.g. of a person who 
passes a door. On the left-hand side, light barriers are mounted in the doorframe, and their sensitive area 
is horizontal to the opposite post. Depending on the height of a person, the light barriers are interrupted 
on a certain level. Therefore, the height of the person lies between the height of this level and the next 
higher light barrier. The distance between the light barriers limits the resolution of this method. The 
application in the ARS system uses the height of an object primarily to determine whether a person is a 
child or an adult (see Chapter 4.4). For this purpose, a resolution (distance between sensors) of 20 cm is 
sufficient. 

If a higher resolution is necessary, more light barriers can be used (it might be sufficient to use more 
sensors in a special area e.g. between 160 cm and 190 cm, if it is necessary to get a higher resolution of 
the height of adults). Another possibility is to use distance sensors which are mounted on the lintel of the 
door as shown on the right side of Figure 42. The sensitive area is vertical down to the floor. If a person 
passes the door, the lowest distance measured by the sensor is used for further calculation. The highest 
point of the person is the height where the sensor is mounted minus the lowest distance measured by the 
sensor. To increase the probability that the head is the highest measured point, it is proposed to mount 
several distance sensors in the specific area. For a normal door (e.g. 90 cm width), three sensors are 
proposed as shown in Figure 42. 

It is clear that both methods can lead to faulty results, especially if the person passing the door is not 
cooperative, i.e. raises the hand or bends the head when passing, which would lead to an incorrect 
measuring of his or her height. But even in the case of a person being cooperative but carrying something 
(e.g. a long object), the height could be measured incorrectly. Therefore, it is proposed to use additional 
methods to measure the height. One possibility is computer vision. Another possibility is the use of tags 
which identify a person and access his or her height from a database. 

a) light barriers b) distance sensors  

Figure 42: Examples for mounting sensors on a door for detecting the height of a person 

The property direction of an object can be determined if at least two sensors (both either light barriers or 
distance sensors) are used, which are mounted on two planes parallel to the closed door, marked as (1) 
and (2). On the left side of Figure 43, it is shown that both light barriers on both planes have their own 
sensitive area. On the right side, three distance sensors are illustrated, one sensor (1) has its active area on 
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the first plane closer to the room, and two sensors (2 and 2’) on the second plane closer to the corridor. 
The direction of the person can be derived from the temporal relationship of the trigger of the sensors. If a 
person enters the room from the corridor (direction: entering the room), first the sensors in plane 2 are 
activated and then the sensor in plane 1. Leaving the room, a person first triggers the sensor in plane 1 
and then the sensor in plane 2. 
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Figure 43: Example for mounting sensors on a door for detecting the direction of a person’s motion 

The symbol object passed expires when the stimuli from the sensors, which caused the generation of the 
symbol, are again inactive. If more than one sensor causes the generation, and one or more continue to be 
active, the symbol is not deleted. 

In case the sensors detect an object at a special place like the door, additionally to the symbol object 
passed the symbol person enters is generated. This symbol is identical to the symbol object passed (in 
terns of properties and ways of generating it) but indicates with its type the special place where it was 
generated. The symbol person enters has been introduced into the system in order to ease filtering of 
symbols. For example for the generation of the symbol person upright (see Chapter 6.3.6) it is necessary 
to recognize when a person enters a room. If the symbol object passed is used instead of the symbol 
person enters, all symbols object passed within the system would need to be checked to determine 
whether this object passed a special position like the door. 

6.1.3 Symbol step 

The symbol step describes the step of a person. The difference from the symbol footprint (see Chapter 
6.1.1) and object passed (see Chapter 6.1.3) is that it only occurs if a person’s step has been recognized 
acoustically. Figure 44 shows the structure of the symbol step. 

 

Figure 44: Symbol step 

The property position describes where the step was recognized. It is generated when a step has been 
recognized acoustically, e.g. with a sound localization system as described in [Bia04]. The property 
position, and therefore the symbol step are never updated. Since a single step of a person can only be 
recognized within a fraction of a second, the symbol expires immediately after it has been generated. It 
just has to be guaranteed that the system is able to recognize the symbol. For such cases, SymbolNet (see 
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Chapter 5.5) offers the possibility to define a symbol’s lifetime at the time of its generation. It is ensured 
that every module subscribed to a certain symbol receives this symbol, even if, a symbol has already 
expired at the time of reception due to delays within the system. 

6.1.4 Symbol gait 

The symbol gait describes the gait of a person. It is assumed that the person to whom the gait belongs 
walks in a regular fashion, meaning s/he does not limp, jump, dance, or do something similar. If more 
than one person is in a room, it is assumed that they do not collide. Figure 45 shows the structure of the 
symbol gait. The properties position, velocity, acceleration, and orientation define the current kinematics 
of the gait. Figure 46 shows the frame of reference (room) and the reference point of the gait. The vectors 
for orientation, position, velocity, and acceleration of the gait are within the frame of reference of the 
room. The vectors originate at half length and half width between two footsteps and therefore move 
within the frame of reference of the room when the person moves. The property weight is the weight of a 
person. The properties width and length describe the length of the last step and the width between the last 
steps according to Figure 4617. 
The symbol gait is usually generated near special points (e.g. front door). Only the property weight is a 
quasi-static property18 all other properties are dynamic. These properties may be updated by the symbol 
footprint (see Chapter 6.1.1) or symbol step (see Chapter 6.1.3). Alternatively a symbol generated with a 
computer vision system could be used. 
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Figure 45: Symbol gait 

                                                      
17 It is assumed that the last two steps recognized are a left and a right footstep. If not, the properties width and 
length should not be updated because it would not fit into the definition of Figure 46. 
18 This assumes that the person does not carry anything. The change in a person’s weight can therefore be used to 
detect whether a person carries something or not. 
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If one of these symbols is available and it fits to a current symbol gait, that symbol is being updated. In 
this context fit means that the position of the new symbol has to be within a certain range. This range can 
either be defined statically (e.g. the maximum step length) or be calculated from past behavior. Thus, if a 
person has always made short steps in the past, it is assumed that the next step will also be a short step. 
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Figure 46: Orientation and dimension of the gait 

The activity is calculated from the activity of the symbol which triggered the update and the plausibility 
of the parameters length and width of step. If the symbol gait is updated, the symbol which caused the 
update is inserted into the reference list. To reduce the calculation power, only footprints “near” the 
current position shall be observed. The symbol expires if the person is outside the scope of the system 
(e.g. leaves the building). 

6.1.5 Symbol person 

The symbol person describes a person and his (physical) properties. Figure 47 shows the properties of the 
symbol person. The properties position, velocity, acceleration, and orientation define the current 
kinematics of the person. Figure 48 shows the frame of reference (room) and the reference point of the 
person. The reference point of the person is in half the person’s height. The property height is the 
person’s size. The property weight is the person’s weight. If an application needs additional (physical) 
properties of a person, they can be added to the symbol. In principle, non-physical properties like mood 
can also be added to the symbol. 

The property type defines whether the person is a child or an adult. If necessary for other applications, 
other categories like the person’s role (caregiver, patient…) can be added. The property action describes 
what the person is doing. The actions stand, sit, walk, and usage have been defined in [Pra06]. The 
property action is not used in this work. However, for the geriatric care application (see Chapter 6.3) 
symbols have been defined, which indicate the action of the person. 

However, in this work human activities applications are introduce in Chapter 6.4 instead. The reason was 
that with additional applications the action property would get additional actions. But more values of the 
property actions will cause more SymbolNet update messages since it has to be assumed that the value of 
the property changes more often. This means, that every symbol dealing with the symbol person gets a 
SymbolNet update message when the action of the person changes. That leads to a waste of 
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computational resources, in case the value of the property action is irrelevant. Further In case a person 
performs more than one action simultaneously, the property action as introduced is not suitable since 
SymbolNet allows only one value for a property. 
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Figure 47: Symbol person 
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Figure 48: Orientation of the person 

The generation of the symbol will usually be triggered at a special place, e.g. the front door. At this place 
sensors could be concentrated to determine most of the properties of the symbol. Dynamic properties are 
of course updated periodically, whereas the static properties will not change during the lifetime of the 
symbol. Since the ARS system assumes that only people can move themselves, a new symbol person is 
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generated if a symbol gait (see Chapter 6.1.4), step (see Chapter 6.1.3), and object passed (see Chapter 
6.1.2), or the symbol from the camera cannot be assigned to any symbol person in the system. If such a 
symbol can be assigned to the above-mentioned symbols, the properties are updated. The symbol will be 
destroyed if the person it represents leaves the observed area. 

6.2 Child Safety 

Of course there are various sources of danger in homes and buildings, especially for children. The 
following example describes a situation where a child without an adult nearby approaches a stove with 
hot plates. Since children are curious, they are attracted to usually busy places like stoves. They observe 
their parents cooking there and want to inspect that place. Unfortunately, this thirst for knowledge can 
lead to burns on the child’s hand or all over its body, in case there is for example a pot with hot water on 
the stove. Therefore, the application child safety has been designed to prevent such dangerous situations 
for children. 
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Figure 49: Child safety application 

The symbols used in the application child safety are shown in Figure 49. The application uses the symbol 
person (see Chapter 6.1.5) as also used in the application people tracking in Chapter 6.1. For 
simplification, the symbols on which the symbol person depends are left out in Figure 49. The symbol 
stove depends on the microsymbols hotplate, which on its part consist of the values from temperature 
sensors and the microsymbol hot object. The symbol hot object is derived from infrared sensors in order 
to recognize hot objects. Each hotplate of the stove is represented by a separate symbol. From the 
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symbols person and stove the symbols adult near stove, child near stove, and stove is hot are generated, 
which are used by the application to recognize possible danger for a child. 

6.2.1 Symbol hotplate 

The symbol hotplate describes a hotplate of a stove. Such a symbol is created for each hotplate of a stove. 
Figure 50 shows the properties of the symbol hotplate. 
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Figure 50: Symbol hotplate 

The property position describes the position of the hotplate. It is assumed that the hotplate has the shape 
of a circle. The position therefore defines the centre of the hotplate. Further, it is assumed that the stove 
and thus the hotplate are at fixed points in the kitchen and the position of the hotplate is static. This means 
that no sensor is required for the position of the hotplate. 

The property temperature represents the current temperature of the plate. As shown in Figure 49, it is 
derived from temperature sensors, which have to be mounted near the hotplate (e.g. at its bottom side) in 
order to deliver fast and accurate measurements. Since a hotplate exists even without the usage of a stove, 
a symbol hotplate is generated for each hotplate in the observed area at on the starting time of the system. 
Since the property position is assumed to be static, the only property of the symbol that is updated is the 
property temperature. The update is done when the temperature of the hotplate changes. Given that the 
hotplate does not disappear from its place, the symbol hotplate does not expire. 

6.2.2 Symbol hot object 

The symbol hot object describes a general hot object. The difference from the symbol hotplate (see 
Chapter 6.2.1) is that it is not static in position and time. The symbol hot object is dynamic and can 
appear in different places. Figure 51 shows the properties of the symbol hot object. 

This symbol has been introduced in the system to detect hot objects near the stove, which have not been 
heated with the hotplates of the stove. In such a case, the temperature sensors mounted on the bottom side 
of the hotplate would not measure an increase in temperature, or would measure it only after some time 
has elapsed19. Thus, if someone heats water in a microwave and then puts the pot on the stove, the 
property temperature of the symbol hot plate would not be updated. 

                                                      
19 Especially if the hot object that was put on the stove is not on a hotplate, the temperature sensors of the hotplate 
would not be influenced. 
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Values form sensors that are sensible to the infrared spectrum can be used to derive the symbol hot object. 
Since the position of the object has to be determined as well, an infrared camera in combination with a 
computer vision system could be used. Since such a camera can only detect differences in temperatures 
only objects which are colder or warmer than the surrounding environment can be detected. 

 

Figure 51: Symbol hot object 

The property position describes the centre of the hot object. The temperature of the object is described 
with the property temperature. The symbol hot object is generated, when an object that is warmer than the 
surrounding environment is detected. If a pot is heated on the hotplate, the symbol hot object is generated 
later than the property temperature of the symbol hotplate is updated. But after a while, the property 
temperature of both symbols has a higher value than the surrounding environment. The symbol hot object 
is updated when the position of the object or the temperature of the object changes. If the object cannot be 
detected anymore, the symbol hot object expires. 

6.2.3 Symbol stove 

The symbol stove represents a stove. Similar to the symbol hotplate (see Chapter 6.2.1) it is static; the 
position of the stove does not change. Figure 52 shows the properties of the symbol stove. 

 

Figure 52: Symbol stove 

The property position describes the position of the stove. It is assumed that the position is static and does 
not change. Therefore, no sensors are installed to measure the position of the stove. There are two 
possibilities to obtain the position of the stove. Firstly, it can be configured statically, as is the case with 
the property position of the symbol hotplate (see Chapter 6.2.1). The second possibility is to derive the 
position of the stove from the position of the hotplates. 

The property temperature of the symbol stove describes the temperature of the stove. Since this symbol is 
used in the application child in danger, the property temperature describes the highest temperature of the 
stove. The property is derived from the symbols hotplate (highest temperature of all hotplates, which 
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belong to the same stove) and the symbols hot object (highest temperature of all hot objects, which are 
close to the stove). 

Since the symbol stove is static, the symbol is generated once for each stove in the observed area at start-
up time of the system. The symbols never expire. The only property of the symbol stove that is updated is 
the property temperature as described above. 

6.2.4 Symbol stove is hot 

The symbol stove is hot represents a hot stove. The difference from the symbol stove (see Chapter 6.2.3) 
is that it is only generated when the temperature of the stove has reached a level that might be dangerous 
for a child. As Figure 53 shows, it has just the property position. 

 

Figure 53: Symbol stove is hot 

If a dangerous temperature level is reached, the symbol stove is hot is generated. The only property 
position has the same value as the symbol stove. Since the position of the stove is given as a static 
property, the symbol stove is hot is never updated. If the temperature of the stove is below the dangerous 
level, the symbol expires. This symbol has been introduced to represent the fact that the temperature of 
the stove has reached a dangerous level and therefore points out a possible danger for a child. 

6.2.5 Symbol adult near stove 

The symbol adult near stove represents an adult who is near the stove. It is derived from the symbol 
person (see Chapter 6.1.5) and the symbol stove (see Chapter 6.2.3). The properties of the symbol adult 
near stove are shown in Figure 54. 

 

Figure 54: Symbol adult near stove 

The symbol adult near stove has only the property position. It describes the current position of an adult. 
The property type of the symbol person is evaluated in order to determine, whether the person is an adult. 
If this is not defined in the symbol person, the symbol adult near stove should not be created since the 
symbol is used in a child safety application. 

Whether the adult focus his or her attention on the child cannot be measured, at least not with simple 
sensors. However, one indication of attention on a child near the stove is that the property orientation of 
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the symbol person points to the direction of the stove. Therefore, the symbol is generated when a person 
is near the stove and faces the stove. If the property orientation of the symbol person is not defined, it has 
to be assumed that the person does not face the stove and the symbol adult near stove should not be 
generated. 

The property position is updated when the person moves and the property position of the symbol person 
changes. The symbol adult near stove expires, when the person leaves the area near the stove or does no 
longer face the stove. Figure 55 gives some examples, when the symbol adult near stove exists. 

stove

fridge

a

b
c

 

Figure 55: Examples for the symbol adult near stove 

The person marked with a is the only person who would be represented with the symbol adult near stove. 
S/he is near the stove and faces it. The people marked with b and c are not represented with the symbol 
adult near stove. The person b does not face the stove, and person c is too far away from it. 

6.2.6 Symbol child near stove 

The symbol child near stove represents a child who is near a stove. Similar to the symbol adult near 
stove, it is derived from the symbols person (see Chapter 6.1.5) and stove (see Chapter 6.2.3). It has the 
properties shown in Figure 56. 

 

Figure 56: Symbol child near stove 

The symbol child near stove is generated when a person is near the stove who is not an adult. To 
determine whether a person is an adult or not, the property type of the symbol person is used. As 
previously mentioned with the symbol adult near stove, the symbol child near stove is generated when 
the type of the person is not defined since the symbols are used in a child safety application. 

The same safety concept applies to the orientation of the person. If orientation has not been defined for 
the person it has to be assumed that the child faces the stove, and therefore the symbol child near stove 
has to be generated if the child is within a certain area around it. If the child does not face the stove, the 
symbol is not generated. 

The property position is updated when the child moves and the property position of the symbol person 
changes. The symbol child near stove expires when the child leaves the area around the stove or does no 
longer face it. 
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6.2.7 Application child in danger 

The application child in danger20 detects when a child is near a hot stove and no adult takes care of the 
child. It uses the symbols stove is hot (see Chapter 6.2.4), child near stove (see Chapter 6.2.5) and adult 
near stove (see Chapter 6.2.6). These symbols are only generated, when the conditions for a dangerous 
situation are given. Therefore, the rules for detecting dangerous situations are reduced to check whether 
the symbols exist or not. If more than one stove is within the system, it is not sufficient to check only the 
existence of the symbols. The property position of the symbols has to describe positions around a certain 
stove. 

6.2.8 Scenario danger child falling down stairs 

The application danger child falling down stairs detects when a child is near a staircase and no adult takes 
care of it. Figure 57 shows the symbol hierarchy of the application. It uses the symbols person (see 
Chapter 6.1.5) and the symbol stairs (see Chapter 6.2.9). From these symbols the symbols adult near 
stairs (see Chapter 6.2.10) and the symbol child near stairs (see Chapter 6.2.11) are derived. 

 

Figure 57: Scenario danger child falls down stairs 

6.2.9 Symbol stairs 

The symbol stairs represents stairs in a building. This symbol is not derived from sensor values, since 
stairs in a building are static. It makes no sense to detect them instead of configuring them statically. The 
properties of the symbol stairs are shown in Figure 58. 

                                                      
20 The name child in danger for this application was chosen early in the project. At this stage of the project, more 
than one scenario is defined which represent that a child is danger. Nevertheless, the name was not change to avoid 
inconsistence with earlier works of the ARS project. 
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Figure 58: Symbol stairs 

The symbol stairs has only the property position. It describes the position of the stairs in the building. The 
symbol stairs is generated at start-up of the system and does not expire. The symbol is never updated 
because it depends on no sensors or symbols. 

6.2.10 Symbol adult near stairs 

The symbol adult near stairs is similar to the symbol adult near stove (see Chapter 6.2.5). It defines the 
presence of an adult near the stairs and the orientation of the adult to the stairs. The properties of the 
symbol adult near stairs are shown in Figure 59. 

 

Figure 59: Symbol adult near stairs 

The symbol adult near stairs has only the property position. It describes the current position of an adult. 
The symbol is generated when an adult is near the stairs and is facing them. Since the symbol adult near 
stairs is used in a safety application, the symbol should not be generated, if the type of the person cannot 
be determined as an adult or if the orientation of the adult is not known. 

The property position is updated whenever the position of the adult changes but is still near the stairs. If 
the person’s orientation does not point to the stairs, or the person is too far away from the stairs, the 
symbol adult near stairs expires. 

6.2.11 Symbol child near stairs 

The symbol child near stairs describes a child who is near stairs similar to the symbol child near stove 
(see Chapter 6.2.6). Figure 60 shows the properties of the symbol child near stairs. 

 

Figure 60: Symbol child near stairs 
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The symbol child near stairs has only the property position. It describes the position of the child who is 
near the stairs. The symbol is generated when a child is near the stairs. The property position is updated 
when the position of the child changes. When the child walks away from the stairs, the symbol child near 
stairs expires. 

6.2.12 Application child in danger falling down the stairs 

The application child in danger falling down the stairs is derived from the symbols adult near stairs (see 
Chapter 6.2.10) and child near stairs (see Chapter 6.2.11). If only symbol child near stairs exists, the 
child might be in danger and the application has to give alarm. 

6.2.13 Scenario unattended child in lift 

Usually it is forbidden for children to use lifts on their own. Nevertheless, the operation of a lift is simple 
enough for children to operate it. The scenario unattended child in lift recognizes the presence of an 
unattended child in the lift and raises alarm. Figure 61 shows the symbols and the dependencies between 
the symbols used for this application. It uses the symbols person (see Chapter 6.1.5), lift (see Chapter 
6.2.14), adult in lift (see Chapter 6.2.15), and child in lift (see Chapter 6.2.16) that are derived from the 
symbols person and lift. 

PersonLift

Adult in lift Child in lift

Child unattended
in lift

 

Figure 61: Scenario unattended child in lift 

6.2.14 Symbol lift 

The symbol lift describes a lift in a building. The properties of the symbol lift are shown in Figure 62. The 
symbol lift has only the property position. For the symbols depending on the symbol lift only the position 
in the x-y plane of the building is relevant but not the floor on which the cabin is at a given moment, 
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therefore there is no need to define the z-coordinate of the property position21. Because the x-y 
coordinates of the lift do not change, the position is static, similar to the symbol stairs (see Chapter 6.2.9). 
The symbol is generated at start-up of the system. The property position is never updated and the symbol 
lift never expires. 

 

Figure 62: Symbol lift 

6.2.15 Symbol adult in lift 

The symbol adult in lift represents an adult, who is in a lift. It depends on the symbols person (see 
Chapter 6.1.5) and lift (see Chapter 6.2.14). Figure 63 shows the properties of the symbol adult in lift. The 
symbol adult in lift has only the property position. It describes the current position of the adult and has the 
same value as the property position of the symbol lift. It is generated when an adult is in the lift. As with 
all child safety applications, this symbol should only be generated when the property type of the symbol 
person defines the person as an adult. The symbol adult in lift expires when the adult leaves the lift. 

 

Figure 63: Symbol adult in lift 

6.2.16 Symbol child in lift 

Analogously to the symbol adult in lift, the symbol child in lift represents a child, who is in the lift. It is 
derived from the symbol person (see Chapter 6.1.5) and the symbol lift (see Chapter 6.2.14). The 
properties of the symbol child in lift are shown in Figure 64. The symbol child in lift has only the property 
position. It describes the position of a child in the lift. It is generated, when a child is in the lift. The 
property position of the symbol child in lift is identical with the property position of the symbol person, 
which represents the child. Whenever the position of the child in the lift changes, the property position of 
the symbol child in lift is updated. When the child leaves the lift, the symbol child in lift expires. 

                                                      
21 If necessary for another application to have the z-coordinate of the lift, this information can be derived from the 
controller of the lift. 
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Figure 64: Symbol child in lift 

6.2.17 Application unattended child in lift 

The application unattended child in lift monitors whether a child is unattended in a lift. If it is, an alarm is 
raised and the lift will not react to the inputs from the control panel. The application uses the symbols 
adult in lift (see Chapter 6.2.15) and child in lift (see Chapter 6.2.16). If only the symbol child in lift 
exists, the application child unattended in lift is active. Whenever the symbol adult in lift exists, it is 
assumed that the adult monitors the child, and the application should stay inactive. 

6.2.18 Scenario person makes coffee 

The scenario person makes coffee is on the one hand an application for child safety. On the other hand, it 
is also used to detect human activities (see Chapter 6.4). Therefore, it is split into two scenarios, i.e. child 
makes coffee and adult makes coffee. The child makes coffee scenario detects an unattended child making 
coffee with the coffee maker, which is a dangerous situation since the child might burn itself with hot 
water. The scenario adult makes coffee is detected when an adult makes coffee. The symbols used in both 
scenarios are the same as shown in Figure 65. 

 

Figure 65: Scenario person makes coffee  
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From a shock detector the microsymbol status coffee machine and the usage of the coffee maker is 
derived and represented in the symbol coffee machine. In case the coffee machine is in use, the symbol 
make coffee is generated. Depending on the properties of the symbol person, which is generated with the 
people tracker application (see Chapter 6.1), either the scenario child makes coffee or the scenario adult 
makes coffee is generated. Similar to the application person makes coffee, the application that detects an 
unattended child near a hot stove (see Chapter 6.2.7) can be extended to detect human activities. In the 
following chapters the symbols used for this application are described. 

6.2.19 Symbol status coffee machine 

The symbol status coffee machine describes the status of a coffee machine. In this application, only the 
machine’s usage is detected. Additionally, other parameters could be set to detect e.g. the filling level of 
water or coffee beans, or the connection of the coffee machine to the power supply. However, here only a 
shock detector is used for this application. Figure 66 shows the properties of the symbol status coffee 
machine. 

 

Figure 66: Symbol status coffee machine 

The symbol status coffee machine has only the property operation. It indicates whether the coffee 
machine is making coffee or not. The symbol is generated at the start of the system and never expires. 

6.2.20 Symbol coffee machine 

The symbol coffee machine represents a coffee machine. It is derived from the symbol status coffee 
machine. The properties of the symbol coffee machine are shown in Figure 67. 

 

Figure 67: Symbol coffee machine 

The symbol coffee machine has two properties, the property position and the property operation. The 
property position describes the place where the coffee machine is situated. The position of the coffee 
machine is defined statically, since it is assumed that the place of the coffee machine does not change. 
The property operation is derived from the symbol status coffee machine (see Chapter 6.2.19). The 
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symbol is generated at start-up of the system and does not expire. Since the position is defined statically, 
only the property operation may change. 

6.2.21 Symbol make coffee 

The representation symbol make coffee describes the usage and the place of the coffee machine. It is 
derived from the symbol coffee machine (see Chapter 6.2.20). The properties of the symbol are depicted 
in Figure 68. 

position

make coffee

 

Figure 68: Symbol make coffee 

The symbol make coffee has only the property position. It defines where a coffee is made. The symbol is 
generated when the property operation of the symbol coffee machine indicates the usage of the coffee 
machine. When the usage of the coffee machine has ended, the symbol make coffee expires. 

6.2.22 Application child/adult makes coffee 

As mentioned above the symbols and the dependencies of the symbols are equal for the application child 
makes coffee and adult makes coffee. As shown in Figure 69, both scenario symbols have the same 
properties. However, the scenario symbol child makes coffee is generated when an unattended child 
makes coffee, the scenario symbol adult makes coffee is generated when an adult makes coffee. Both 
symbols are derived from the symbol make coffee (see Chapter 6.2.21) and the symbol person (see 
Chapter 6.1.5). 

 

Figure 69: child/adult makes coffee 

Both symbols have the property position and the property coffee size. The property position describes the 
position where the coffee is made. The property coffee size describes the size of the coffee. The duration 
of the symbol make coffee indicates how much coffee has been made. When the person (child and/or 
adult) leaves the room, the symbol make coffee expires. 
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6.3 Geriatrics 

A routine job for the staff in homes for aged people is to monitor when the residents fall down. Here a 
scenario is described which is able to detect the fall of a person. Figure 70 shows the used symbols and 
their hierarchy. For a better overview, the connections between the sensors and the microsymbols have 
been left out. These dependencies are described in chapters that deal with the microsymbols shown in 
Figure 70. The sensors used for the scenario person falls are microphones, cameras, pressure sensors, or 
motion detectors. They generate the microsymbols upright, fall, lie down, lie, and stand up. These 
microsymbols are used together with the symbol person (see Chapter 6.1.5) to generate the symbols 
person upright, person fell, person lying down, person lying, or person standup up. From these symbols, 
the scenarios harmful fall and the harmless fall are generated. In the following chapters, these symbols 
and scenarios are discussed. 

Camera
Pressure 

sensor field
Motion

detectorMicrophone

Person

Person 
fell

Person
lay down

Person
lies

Person 
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Fall Lie down Lie Stand upUpright
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Figure 70: Geriatrics application 

6.3.1 Symbol upright 

The symbol upright describes a person who is upright. It does not matter whether the person stands still or 
moves. It can be derived from a camera, pressure sensor fields, microphones, orientation sensors, 
accelerometers, or motion detectors. Figure 71 shows the properties of the symbol upright. The symbol 
upright has only the property position. It describes the position of a person who stands or moves in the 
upright position. The symbol is generated whenever a person is detected who is upright. It is updated 
when the position changes. When the person leaves the room or is no longer upright, e.g. falls or lies 
down, the symbol upright expires. 
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position

upright

 

Figure 71: Symbol upright 

6.3.2 Symbol fall 

The symbol fall describes the fall of a person. It can be derived from a camera, pressure sensor fields, 
microphones, orientation sensors, accelerometers, or motion detectors. Figure 72 shows the properties of 
the symbol fall. 

position

severity

fall

 

Figure 72: Symbol fall 

The symbol fall has two properties, position and severity. The property position describes the position, 
where the person fell, the property severity the severity of the fall. To detect a fall a broad spectrum of 
detection systems are currently developed, which can all be used in principle to detect a fall, and therefore 
can be used to generate the symbol fall. In the following, these methods are briefly described. 

Excursus fall detection 

[Dou00] gives a classification of fall detection systems as shown in Figure 73. Fall detection systems are 
divided into primary detection systems, which detect the falls (and usually only falls) directly and 
secondary detection systems, which detect a fall indirectly (a fall results from a departure from normal 
patterns of activity). Both types of systems can be further divided into worn devices and built-in devices. 

Worn devices of the primary fall detection techniques are shown on the left-hand side of Figure 73. They 
are devices with orientation sensors, impact sensors, or a combination of sensors, the so-called smart 
multi-stage fall detectors. The orientation sensors measure the orientation of the person22. If the person 
falls, the orientation changes within a short amount of time and usually by 90 degrees from an upright to a 
horizontal position. Impact sensors are accelerometers, which detect the shock of the impact of the body 
at the end of the fall. The retardation which is detected during the impact is higher than retardation 
measured during usual movement. Smart multi-stage fall detectors use both types of sensors, orientation 
and acceleration sensors combined with an algorithm. The algorithm decides whether the values from 
both sensors indicate a dangerous fall or not. 

                                                      
22 More precisely, the orientation of the fall detector is measured. But it is assumed that people who have a high risk 
of falling wear the device. 
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Figure 73: Classification of fall detection systems [Dou00] 

The built-in devices of the primary fall detection systems are image analysis systems and acoustic and 
shock detectors. Image analyzing systems use either video cameras or infrared cameras as data source to 
detect the fall of a person as demonstrated in [CHA04]. Acoustic sensors are used to detect the impact of 
a fall, whereas shock detectors are used to detect the vibrations in the (wooden) floor [ALW03]. 

As with the primary fall detection techniques, the secondary fall detection techniques are divided into 
worn devices and built-in devices (see the right hand-side of Figure 73). Worn devices (e.g. on chest, 
wrist, and waist) measure physiological parameters, which are used as an indicator for the activity level. 
The built-in devices derive the activity level from the movement of the people who are measured e.g. with 
cameras as shown in [CHA04]. For both worn and built-in devices, the level of activity is then used to 
detect unusual situations. These secondary fall detection techniques are therefore not very reliable and 
fast because it usually takes at least some minutes until an unusual situation can be detected. Further, it is 
hard to identify the reason and the consequences of an unusual situation, and thus it is difficult to 
determine whether a fall occurred. 

Fall detection in the ARS system 

To generate the symbol fall, it is proposed to use a combination of the fall detection techniques mentioned 
above and pressure sensor fields. The position of the fall of a person can be determined with camera and 
vision systems, pressure sensor fields, and microphones. Additionally, worn devices can be used to 
increase the reliability of the overall system. When a person falls in the sensitive area of a motion 
detector, the detector has to detect the motion. 

If pressure sensor fields are used, a fall is detected when the number of activated pressure sensors 
increases in the vicinity of the last known position of a person as shown in Figure 74. On the left side a 
person is shown who triggers only one pressure sensor. The right side shows the person lying on the floor, 
triggering five pressure sensors. If the sensors are also able to measure weight, instead of only activation, 
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the sum of the measured weight of all activated pressure sensors has to be equal to the weight of the 
person. 

1 2  

Figure 74: Detecting a fall with pressure sensors 

The property severity of the symbol fall can be derived from accelerator sensors in the worn devices, the 
speed of falling with vision systems, and the shock and noise measured on impact of the body. Pressure 
sensor fields, which measure the dynamic behavior of the impact, can also be used to determine the 
severity of the fall, similar to the methods used in the worn devices. 

The symbol fall is generated, when the fall of a person is detected. Since the property position and the 
property severity are determined when the fall occurs, the symbol is not updated. The symbol fall expires 
immediately after it has been generated. 

6.3.3 Symbol lie down 

The symbol lie down describes that a person is lying down. The difference from the symbol fall (see 
Chapter 6.3.2) is that the person wants to lie down and does not tip over. Since the ARS system is not 
capable to detecting the intentions of a person, indirect methods have to be used to decide whether a 
person wants to lie down or has tripped over. Such indirect methods are the position where the person 
assumes a horizontal position and the manner of how s/he gets into this position. Dedicated positions for 
lying down are e.g. a bed or sofa. In the ARS system, it is assumed that the floor is not a dedicated place 
for lying down. Further, it is assumed that a person who wants to lie down, will first sit down or sit on the 
knees before lying down. In principle, the same sensors as for the symbol fall are used. Figure 75 shows 
the properties of the symbol lie down. 
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Figure 75: Symbol lie down 

The symbol lie down has the property position and the property manner, which describe the position 
where a person lies down and the manner how the person lies down. The same methods as described for 
the symbol fall can be used to determine the properties of the symbol lie down, except the pressure sensor 
field since it is assumed that a person does not want to lie down on the floor. 
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The symbol lie down is generated when the fall of a person is detected. Since the property position and 
the property manner are determined when the fall occurs, the symbol is not updated. The symbol lie down 
expires immediately after it has been generated. 

6.3.4 Symbol lie 

The symbol lie describes a person who is lying. It does not matter how the person came into the 
horizontal position. Rather, the symbol is generated after the symbol fall (see Chapter 6.3.2) or the 
symbol lie down (see Chapter 6.3.3) has occurred. Figure 76 shows the properties of the symbol lie. 
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Figure 76: Symbol lie 

The symbol lie has the property position and the property movement. The property position describes the 
position, where the person is lying. It can be detected with cameras, accelerometer, pressure sensor field, 
and orientation sensors. The property movement describes how the person is lying, whether s/he is calm 
or not. For detecting how the person moves while lying, cameras and accelerometers can be used. 

The symbol lie is generated after a fall has been detected or a person lay down. It is also generated if 
neither a fall nor a person lying down were detected but a lying person is detected. The property 
movement is updated when the person changes his or her behavior while lying. Since the person might 
move when lying, the property position is updated. The symbol lie expires when the person stands up. 

6.3.5 Symbol stand up 

The symbol stand up describes a person standing up. Figure 77 shows the properties of the symbol stand 
up. The symbol stand up has the property position and the property manner. The property position 
describes the position where the person stands up. It can be detected with cameras, accelerometer, 
pressure sensor field, and orientation sensors. The property manner describes how fast the person rises. 
Cameras and accelerometers can be used for this. 
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Figure 77: Symbol stand up 
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The symbol stand up is generated when the symbol lie (see Chapter 6.3.4) expires. Additionally, the 
symbol is generated when the features extracted from the sensors fit to the pattern of a person standing 
up. Since the properties of the symbol do not change, the symbol is never updated. The symbol stand up 
expires immediately after it has been generated. 

6.3.6 Symbol person upright 

The symbol person upright describes a person who is in the upright position. It is derived from the 
symbols upright (see Chapter 6.3.1) and person (see Chapter 6.1.5). Figure 78 shows the properties of the 
symbol person upright. 

position
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Figure 78: Symbol person upright 

The symbol person upright has two properties. The property position describes the position of the person 
who is upright and is composed of the position of the property position of the symbol person and the 
property position of the symbol upright. The property person defines a person who is upright and is a link 
to the symbol person, which is associated with the upright position. 

 

Figure 79: Spatial relationship between symbols person and upright 

The association between the symbols person and upright can be conducted spatially and/or logically. 
Figure 79 shows the spatial relationship, while Figure 80 shows the logical relationships, which lead to 
the generation of the symbol person upright. 

The spatial relationship between a symbol person and a symbol upright is derived from the shortest 
distance between the positions of both symbols (see Figure 79). The position of the symbol person I 
(black symbol on the left side) is closer to the position of the symbol upright (blue-framed symbol in the 
centre) than the symbol person II (black person on the right). Therefore, the symbol upright is associated 
with the symbol person I and the symbol person upright is generated. 
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Figure 80: Logical relationship for generating symbol person upright 

Figure 80 shows three logical relationships which lead to the generation of the symbol person upright. On 
the left, only one person is in the room. Therefore, the symbol upright is associated with the only existing 
person in the room. In the middle, a person enters the room, represented by the symbol person enters (see 
Chapter 6.1.2). The symbol upright, which is generated almost at the same time and the same place (near 
the door), is therefore associated with the symbol person enters and thus with the person, who is 
associated with the symbol person enters. 

On the right, two persons are in the room. The person in the upper right-hand corner is lying, represented 
by the symbol person lies (see Chapter 6.3.9). The other person in the middle on the left-hand side is 
standing up, represented with the symbol person stood up (see Chapter 6.3.10). The symbol upright is 
therefore associated with the symbol person stood up, because s/he can be upright if s/he first stood up, 
and not with the symbol person lies. 

The symbol person upright is generated when the conditions for its generation are fulfilled, as described 
above. Since the person can move when s/he is upright, the property position of the symbol person 
upright is updated. The symbol expires when the person who is associated with the symbol leaves the 
room or is no longer upright. 

6.3.7 Symbol person fell 

The symbol person fell describes a person who fell down. It is derived from the symbols fall (see Chapter 
6.3.2) and person (see Chapter 6.1.5). Figure 81 shows the properties of the symbol person fell. 
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Figure 81: Symbol person fell 
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The property position of the symbol person fell describes the position where the person fell. Since the 
symbol person fell is a combination of the symbols person and fall, the value of the property position of 
the symbol person fell is taken from the symbols person and fall. If the value of the property position of 
the symbols person and fall are not identical, the value of the property position is taken from the symbol 
where the value has a higher reliability. 

The severity of the fall is represented by the property severity. Since no additional information is 
available, the property severity of the symbol person fell is the same as the property severity of the 
symbol fall. 

The property person defines the person who fell down. The value of the property person is a link to the 
symbol person, who is associated with the fall. For the association between the symbols fall and person, a 
spatial relationship, logical relationship (see Figure 82) and/or a statistical relationship (see Figure 83) can 
be used. Analogously to Figure 79 with the symbol upright, the symbols person and fall are associated 
with each other when the distance between the positions of the symbols is shorter than the distance of 
another pair of symbols. 

 

Figure 82: Logical relations between symbol person and symbol fall 

Two examples of logical relations between the symbols person and fall are demonstrated in Figure 82. On 
the left-hand side only one symbol person is in the room where the fall is detected. Therefore, the symbol 
fall is associated with this symbol person and the symbol person fell is generated. On the right-hand side, 
two people are in the room, illustrated as the symbol person upright (blue symbol on the left) and the 
symbol person lies (yellow symbol on the upper right). Since it is assumed that the person who is lying 
cannot fall, the symbol fall is associated with the symbol person upright and the symbol person fell is 
generated. 

Assuming that more than one person is in the room, the association between the symbols person and fall 
can be conducted by using statistics of a person’s risk of falling down. On the left is person I, who has a 
high risk of falling, as indicated by the bar on the right. The second person in the room, represented with 
the symbol person II, has a low risk of falling as the bar shows. Therefore, the symbol fall is associated 
with the symbol person I because the person has a higher risk of falling.  

The symbol person fell is generated when a symbol fall is available within the system. If an association of 
the symbol fall with a symbol person is not possible because no symbol person is available in the room, 
the symbol person fell is generated anyway, but the property person is left blank. The property position 
and the property severity are taken from the symbol fall. Since it is assumed that the properties of the 
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symbol person fell do not change, the symbol person fell is never updated. The symbol expires 
immediately after it has been generated. 

 

Figure 83: Statistical relations between symbols person and fall 

6.3.8 Symbol person lay down 

The symbol person lay down describes a person, who lay down intentionally, meaning he did not fall. It is 
derived from the symbols person (see Chapter 6.1.5) and lie down (see Chapter 6.3.3). The properties of 
the symbol person lay down are shown in Figure 84. 

 

Figure 84: Symbol person lay down 

The symbol person lay down has the properties position, manner and person. The property position 
describes the position where the person lay down. The property manner describes how the person lay 
down. The person who lay down is referred to with the property person. The relationship between the 
symbols person and lie down can be spatial, logical, and/or statistical. The spatial relationship is similar to 
the symbol upright illustrated in Figure 79. The symbol person, which is next to the symbol lie down, is 
combined with the symbol person lay down. 

Corresponding to the logical relationships to generate the symbol person fell the symbol person is 
associated with the symbol lie down, when only one person is in the room as shown on the left of Figure 
85. In the second example, the symbol lie down is associated with the symbol person upright because the 
person represented by the symbol person lies is already lying and is therefore is not able to lie down. 
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Figure 85: Logical relationship leads to generate the symbol person lay down 

 

Figure 86: Statistical relationship to generate the symbol person lay down 

A statistical method to associate the symbol lie down with a person is to use knowledge about a person’s 
habits. If a person goes to bed at the same time (almost) every day and sleeps in the same bed, the 
probability is high that s/he will do so also in future.23 The person on the left part in Figure 86 has a high 
probability to lying down at the time and place when the symbol lie down is active. The other person 
(symbol person II) usually lies down at another time and/or at another place. Since the probability is 
higher that person I is the person who is lying down, the symbol lie down is associated with the symbol 
person I and the symbol person lay down with a reference to symbol person I is generated. 

The symbol person lay down is generated when a symbol lie down is available within the system. If an 
association of the symbol lie down with a symbol person is not possible because no symbol person is 
available in the room, the symbol person lay down is generated anyway but the property person is left 
blank. The property position and the property severity are taken from the symbol fall. Since it is assumed 
that the properties of the symbol person lay down do not change, the symbol person lay down is never 
updated. The symbol expires immediately after it has been generated. 

                                                      
23 The probability may change depending on the situation (e.g. day of the week). 
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6.3.9 Symbol person lies 

The symbol person lies represents a person who is lying. It is derived from the symbols person (see Chap-
ter 6.1.5) and lie (see Chapter 6.3.4). The properties of the symbol person lies are shown in Figure 87. 

position

person lies

person

movement

 

Figure 87: Symbol person lies 

The symbol person lies has the properties position, movement and person. The property position describes 
the position of the lying person. As with the symbol lie the property movement describes whether the 
person lies quietly or is restless. The property person is a link to the symbol person, which is associated 
with the symbol person lies. 

The relationship between a symbol lie and a symbol person can be spatial, logical and/or statistical. With 
the spatial relationship, the symbols person and lie with the shortest distance between them are associated 
with each other. 

 

Figure 88: Logical relationship leading to generate the symbol person lies 

Figure 88 shows the logical relationships between the symbol lie and other symbols, which lead to the 
generation of the symbol person lies. If only one person is in the room, the symbol lie is associated with 
the symbol person which represents this person. In the second example the symbol lie is associated with 
the symbol person fell, because it is assumed that after a fall the person is lying. The symbol person 
upright and the symbol person stood up are not associated with the symbol lie because a person who is 
upright or standing up cannot lie without falling or lying down in-between. 
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Similar to the symbol person lay down the habit of a person can be used for a statistical association 
between the symbols stand up and person. As is the case with going to bed, people often stand up at the 
same time24. 

The symbol person lies is generated when a symbol lie is available within the system. If an association of 
the symbol lie with a symbol person is not possible because no symbol person is available in the room, 
the symbol person lies is generated anyway but the property person is left blank. The property position 
and the property severity are taken from the symbol lie. Since it is assumed that the properties of the 
symbol person lies do not change, the symbol person lies is never updated. The symbol expires 
immediately after it has been generated. 

6.3.10 Symbol person stood up 

The symbol person stood up describes a person who is standing up. It is derived from the symbols person 
(see Chapter 6.1.5) and stand up (see Chapter 6.3.5). Figure 89 shows the property of the symbol person 
stood up. 
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person
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Figure 89: Symbol person stood up 

The symbol person stood up has the properties position, manner and person. The property position 
defines the position where the person is standing up. The property manner describes the way, how the 
person is standing up. The property person is a link to the symbol person, which is associated with the 
symbol person stood up. Again the association between a person and the symbol stand up can be done 
spatially, logically and/or statistically. 

In case more than one symbol person is in a room, a symbol stand up is associated with the symbol 
person who is closest to it (spatial relationship). Statistical information about the time and place when a 
certain person stood up can be used to associate the symbols. Examples of situations that lead to the 
generation of the symbol person stood up are given in Figure 90. 

On the left part is a situation where only one person is in the room. Therefore, the symbol stand up is 
associated with the symbol person and the symbol person stood up is generated. On the right-hand side 
the symbol stand up is associated with the symbol person lies because the other person in the room, 
represented with the symbol person upright, is upright and therefore cannot stand up. 

                                                      
24 The probability of a person standing up at the same place as he fell down or lay down is assumed to be equal to 1. 
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Figure 90: Logical relationship leading to generate the symbol person stood up 

The symbol person stood up is generated whenever a situation occurs in the system as described above. 
The property position is derived from the property position of the symbols, which are associated. The 
property manner receives the same value as the property manner of the symbol stand up. The value of the 
property person is a link to the symbol person, which is associated with the symbol. The symbol person 
stood up is not updated, since the properties do not change. The symbol expires immediately after it has 
been generated. 

6.3.11 Scenario symbol harmless fall 

The scenario harmless fall describes a scenario in which a person falls and stands up immediately after 
the fall without requiring any help. It consists of symbols person fell (see Chapter 6.3.7), and person 
stood up (see Chapter 6.3.10). The properties of the scenario symbol harmless fall are shown in Figure 
91. 

harmless fall

position

person
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manner

 

Figure 91: Scenario symbol harmless fall 

The scenario symbol harmless fall has the properties position, severity, manner, and person. The property 
position describes the position where the fall happens. The value of the property is taken from the value 
of the property position of the symbol person fell. The property severity describes the severity of the fall. 
The value of this property is also derived from the symbol person fell, but from the property severity. The 
property manner describes the manner how the person stands up after the fall. The value for the property 
is taken from the property manner of the symbol person stood up. The property person is a link to the 
symbol person, which represents the person who fell. 
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The association between the symbol person fell and the symbol person stood up can be done logically and 
spatially. A harmless fall can only be detected when both the symbol person fell and the symbol person 
stood up are detected. The value of the property person of both symbols has to be equal. If they are not 
equal, the symbol harmless fall does not have to be generated. Assuming that the person stands up where 
s/he fell down, the property position of both the symbol person fell and the symbol person stood up has to 
be the same. 

If the association between the symbol person fell and the symbol person stood up is carried out as 
described above, the following conditions have to be fulfilled in order to generate the scenario harmless 
fall. These conditions are also illustrated in Figure 92. First the person is upright, symbolized with the 
symbol person upright. At the time tfall the person falls down which is illustrated with the symbol 
person fell. The property severity of the symbol person fell must not be higher than a certain value 
(medium). This value should represent the severity of the fall. It can be assumed that the person is not 
hurt. If the property severity is higher than the threshold level the scenario symbol harmless fall must not 
be generated. If the scenario harmless fall should be recognized, the person has to stand up at the time 
tstood up, represented with the symbol person stood up. 

The time between person fell (tfall) and stood up (tstood up) should not be more than a certain amount 
(tmax lie). This period of time represents the amount of time a healthy person usually needs to stand up 
after a fall. The manner how the person stands up, represented by the property manner of the symbol 
person stood up, represents a value which indicates that the person standing up is not injured (medium). 

 

Figure 92: Conditions for generation of scenario harmless fall 

After the person stood up the symbol person upright is generated. If all the conditions mentioned above 
are fulfilled, the scenario harmless fall is recognized. The properties of the scenario symbol are defined at 
the time of generation and do not change after that. The scenario symbol expires immediately after it has 
been generated. 

6.3.12 Scenario symbol harmful fall 

The scenario harmful fall describes a scenario in which a person falls and cannot stand up without any 
help or stands up slowly. It consists of the symbols person fell (see Chapter 6.3.7), person lies (see 
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Chapter 6.3.9) and person stood up (see Chapter 6.3.10). The properties of the scenario symbol harmfull 
fall are shown in Figure 93. 

position
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Figure 93: Scenario symbol harmful fall 

In addition to the properties position, severity, manner and person as described with the scenario symbol 
harmless fall (see Chapter 6.3.11) the scenario symbol harmful fall has the property movement. This 
property describes how the person lies on the floor. The value is taken from the property movement of the 
symbol person lies. 

The association between the symbols person fell, person lies, and person stood up is logical and spatial. 
Different from the scenario symbol harmless fall the scenario symbol harmful fall is also generated if the 
association of the symbols is not possible. The logical association uses the property person of the 
symbols. If the properties link to the same symbol person, the symbols should be associated with each 
other. The spatial association uses the property position of the involved symbols. If the property position 
of the symbols describes positions within a certain area, the symbols can be associated with the scenario 
symbol harmful fall. 

The time when the scenario symbol harmful fall is generated depends on the conditions described below 
and illustrated in Figure 94 and Figure 95. On the left, the property severity of the symbol person fell has 
a value which is higher than the value medium. The value medium describes the severity of the fall of a 
person, which is so high that it has to be assumed that the person might be injured. Nevertheless, if the 
symbol person fell can be associated with the symbol person lies, the scenario symbol harmful fall is 
generated. 

On the right-hand side of Figure 94, a scenario is illustrated where a person fell down at the time tfall. 
The property severity of the symbol person fell is low enough to let us assumed that the person was not 
injured, so the scenario symbol harmful fall is not generated. But the period of time during which the 
person lay on the floor is longer than the maximum time (tmax lie). Therefore, at the time tharmful fall 
the scenario symbol harmful fall is generated. 

Figure 95 shows a scenario similar to the scenario harmless fall. The difference from Figure 92 is that the 
person stands up too slowly, which is represented by the property manner of the symbol person stood up. 
Therefore, the scenario symbol harmful fall is generated at the time tstood up although the person stood 
up. 
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Figure 94: Conditions I for generation of scenario symbol harmful fall 

 

Figure 95: Conditions II for generation of scenario symbol harmful fall 

Whenever the scenario symbol harmful fall is generated as described above, the property severity and the 
property position are taken from the symbol fall. The property manner is taken from the symbol person 
stood up. The property movement is taken from the symbol person lies. The value of the property person 
is a link to the symbol person, which is associated with the symbol. 

6.4 Human Activities Application and Joint Symbol Tree 

The applications described above form together a symbol tree (see Figure 96),which shows the symbols 
and the relationships between them as used in the applications described in the previous chapters. 
Additionally, the scenario meeting and the scenario person and object are introduced which can be seen 
as human activities applications. They have not been described separately because they are quite simple 
scenarios. 

The scenario meeting is described in detail in Chapter 4.5. In it, it is detected when two or more people sit 
around a table. For this application, the symbols person, generated by the people tracking application (see 
Chapter 6.1.5) and the table are used. The symbol table is defined statically and describes a table and its 
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position. If more than one person is detected at the position of the table, the scenario symbol meeting is 
generated. The property position of the symbol is identical with the position of the table. The symbol 
meeting expires when less than two people are detected. 

The scenario person and object is described in Chapter 4.3. It recognizes when someone puts down an 
object in a room and then leaves the room. The scenario symbol person and object is generated, when on 
the same place a symbol person and a symbol object are generated and the object does not change its 
position, but the person moves away from the place. The same place means that the property position of 
the symbol person and the symbol object are located nearby. The scenario symbol expires when the 
object is taken away. In principle this could also be seen as scenario on its own. 

The gray field on the left part of Figure 96 shows the geriatric care applications. Two scenarios, the 
scenario harmful fall and the scenario harmless fall are detected as described in Chapter 4.7. A harmful 
fall is detected when a person falls down and does not stand up again. A harmless fall is recognized when 
a person falls down but stands up quickly. 

The green, field in the upper middle part of Figure 96 shows examples of the human activities 
applications. These scenarios are adult makes coffee (see Chapter 6.2.18) and the scenarios described 
above i.e. scenarios meeting, and person and object. However, all other symbols that represent a person 
and his or her action can be seen as a human activity application. 

The blue field in the lower middle part of Figure 96 illustrates the people tracking application. This 
application is the basis for all scenarios where people are observed, it recognizes the position of persons. 
The application is described in detail in Chapter 4.2, and the used symbols and the dependencies of the 
symbol are listed in Chapter 6.1. 

In the red field on the right part of Figure 96 the child safety applications are depicted. These are the 
scenarios child makes coffee (see Chapter 6.2.18), child unattended in lift (see Chapter 6.2.17) and child 
in danger (see Chapter 6.2.7). Due to reduced complexity, the scenario child in danger falling down the 
stairs is not shown in Figure 96. It is constructed analogously to the scenario child unattended in lift as 
described in Chapter 6.2.8. All these scenarios represent a situation where a child is near a dangerous 
object or device. Being near a hot stove or a coffee maker, the child is in danger of getting burned. In the 
near of stairs, the child can be hurt when falling downstairs. In a lift, children are usually not in danger of 
getting injured, but it is forbidden that unattended children operate a lift. 

The bottom of Figure 96 shows the sensor on which the symbols are based. The microphones, cameras, 
pressure sensor field, and motion detectors are mainly used in the people tracking application and the 
geriatric care application. The shock detector is used in the coffee making scenario, and the infrared 
sensor and the temperature sensor in the child in danger scenario. However, as is the case with people, the 
assignment of a sensor to an application is invariant. Good examples of this variance are the human 
activities applications. As described above and illustrated in Figure 96, a range of symbols represent the 
action of a person. And these symbols are practically all derived from sensors used in the system. 
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Figure 96: Joint symbol tree of ARS-PC 
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7 Prototype of the ARS project 

In this chapter an implementation is described which uses the model described in the previous chapters. It 
uses data from the kitchen of the ICT and is based on the ARS framework (see Chapter 5). The layout of 
the kitchen and the used sensors, and the implemented applications are described in Chapter 4. An 
embedded system is used to collect the sensor data [Goe06]. A prototype of proposed DPAL (Data Point 
Abstraction Layer, see Chapter 3.5) has been implemented in order to provide data independently from a 
building automation system. 

Alternatively, the data can be provided with a simulation tool [Har07]. This tool allows simulating 
scenarios in a virtual environment. The output of the simulator consists of sensor values of the virtual 
sensors. At present, pressure sensors, light barriers, and motion detectors are implemented. It is planned 
to add temperature sensors, cameras, vibration sensors, and others. An editor of the scenarios allows their 
definition, which is simulated by the simulator. 

The sensor values of both the real implementation and the simulation can be stored in the sensor database 
or can be fed directly into the ARS system. A rule-based symbolization and a fuzzy-logic based 
implementation can be used as implementation for the ARS-PC module. 

In [Goe06], a rule-based approach for a coffee making scenario is described. The coffee making scenario 
is defined as a person entering the room, taking a cup from the cupboard, using the coffee machine, taking 
milk from the fridge (optional), and leaving the room. This implementation was intended as a proof-of-
concept prototype of the ARS architecture. The recognition rate of the scenario has reached about 90%. 

[Ric07] presents a fuzzy logic-based implementation, which is based on this work and the work of 
[Pra06] and [Goe06]. It was designed to track people, recognize whether a person is making coffee, when 
someone is having a meeting, when someone puts down an object and leaves the room, and when an 
unattended child is near the stove. This software was also tested with the simulation tool described above. 
In the following chapters, the implementation of the concept presented in this work is described in more 
detail. 

7.1 Provision of Sensor Data 

In principle various methods for the provision of data are possible. In this work, DPAL (Data Point 
Abstraction Layer) is proposed for a fieldbus-independent abstraction of data points. In [Goe06], 
hardware with direct access was implemented, which allows an easy access to sensor values. A virtual 
environment including objects and sensors was described in [Har07]. Virtual people can interact with the 
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environment and thereby trigger the sensors, which generate values similar to a real implementation. In 
the following chapters, these possibilities are described in more detail. 

7.1.1 Implementation of the Data Point Abstraction Layer 

In Chapter 3 methods for data point abstractions without explicit gateways are presented and discussed. 
The proposed Data Point Abstraction Layer (DPAL) (see Chapter 3.7) was implemented to CNP and 
BACnet. Since the used protocol stacks (CNP stack and BACnet stack) use an operating system service 
interface, it was also used for the adoption layers, DPAL, DPAL configuration instance and test 
applications (for the layout of the modules see Figure 17). This interface provides an abstraction for 
operating system services like threads, file access, and inputs/outputs. It is available for the operating 
systems Windows NT 4.0™, Windows2000™, Windows XP™, Linux, and RTEMS (Real Time 
Executive for Multiprocessor Systems). Therefore, the DPAL implementation can be used in principle on 
any hardware that supports one of the above operating systems and has access to the fieldbus network 
interfaces. 

A prototype has been developed for the verification of the concept. In the meantime this approach has 
been developed further and is used in commercial products. However, a solution was chosen for the 
implementation in the ARS project without using a fieldbus system. Due to our limited budget, only one 
room (kitchen on the ICT, see Chapter 4) was equipped with sensors. This approach is described briefly 
in the next chapter. 

7.1.2 Implementation of Direct Access 

The sensors are connected to an embedded system which provides the sensor values of the ARS system 
[Goe06]. Via an I2C (Inter-Integrated Circuit) [I2C] interface the analogue input modules are connected 
with the processor of the system. Furthermore, the system has an ISO 8802.3 interface (Ethernet) 
[ISO8802] and an IP-Stack [RFC791]. The values of the input modules are polled cyclically. In case a 
value has changed, the new value is propagated via the TCP (Transmission Control Protocol) [TAN02]. 
The cycle time of reading the inputs is 75 ms, including a noise reduction mechanism. 

On the basis of this real world implementation, a virtual environment has been developed. This virtual 
environment is able to simulate people and their actions. Actions are detected by virtual sensors, which 
lead to sensor values that are similar to the sensor values measured in the real-world implementation. The 
following chapter describes this simulator briefly. 

7.1.3 Implementation of the Simulator 

[Har07] describes the simulator of a virtual office environment. The simulator was designed to simulate 
sensor values in order to perceive scenarios in this virtual environment. The reasons for simulating the 
sensor values are on the one hand cost reduction of such installations, on the other hand, the simulator 
enables the evaluation of which sensors are necessary and where they should be mounted. 

As described in [Har07] and depicted in Figure 97, the simulator is split into three parts. The first part is 
the scenario editor, which allows defining the virtual environment and the scenarios within this 
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environment. The second part is the simulation engine. The simulation engine calculates the sensor values 
based on the virtual environment and the scenarios defined by the scenario editor. The third part is the 
visualization. On the one hand the virtual environment and the scenarios are displayed. On the other hand 
the visualization also has an interface to the ARS system. Using that interface, the scenarios and symbols 
recognized by the ARS system can be displayed simultaneously with the virtual environment. 

The scenario editor is used to define the physical properties of the environment, e.g. the building or room. 
Within that environment, not only objects like table, stove, etc. can be placed but also people who are 
referred to as objects in the simulation environment. Unlike the environment, objects are part of 
scenarios, which means that they can be involved in actions and can cause a change of values. Sensors are 
the third group of entities which are defined in the environment editor. From these definitions scenarios 
are compiled and stored in the scenario database. The sensor properties are also stored in the sensor 
database of the ARS system (see Chapter 5.1) because the ARS system needs the sensor properties to 
interpret the sensor values. 

The simulator imports the scenarios from the scenario database. The sensor output simulation uses the 
mathematical models of the simulator to generate sensor values from the scenarios. The simulated sensor 
values are stored in the ARS sensor database. In the ARS part, scenarios are recognized from the values 
of sensor database by using symbols as described in the previous chapters. 
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Figure 97: Concept of the simulator [Har07] 

With the visualization a three-dimensional virtual environment can be displayed as well as scenarios as 
defined in the scenario editor and stored in the scenario database. Additionally, the sensor values from the 
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sensor database can be visualized in the virtual environment. The symbols and recognized scenarios are 
imported from the symbol database of the ARS system into the visualization. On a separate screen these 
symbols are displayed. With this visualization, the user can compare the simulated scenarios and the 
recognized simulated scenarios. Chapter 8 shows the results of this comparison by means of the scenarios 
meeting and child in danger. 

As described in [Har07], the scenario editor, the simulator, and the visualization are implemented in C++. 
They use DirectX 9, which is an application programming interface for handling tasks related to 
multimedia form Microsoft platforms. Therefore, a Microsoft operating system like Windows 2000 or 
Windows XP is needed. A special hardware requirement is, that a graphic card has to be used which 
supports DirectX 9. 

7.1.4 Implementation and Integration of the Sensor Database 

As described in Chapter 5.1 and depicted in Figure 25, the sensor data can be stored in the sensor 
database. In Chapter 5.7 the tables of the database are defined and shown in Figure 34. The sensor 
database is intended to store the sensor values. Therefore it does not matter whether the data come from a 
real-world implementation (DPAL or direct access) or from a virtual environment. The database is 
designed to store data in an efficient way but flexible enough to store data from different sources. 

The code for the generation of tables of the database as well as the code to access the sensor data is 
written in SQL92 (Structured Query Language) [SQL92], which can be used for a broad range of 
currently available databases. In the implementation described in this work an Oracle database was used. 

Introducing the database into the ARS project has eased the development of the components of the ARS-
PC part tremendously. Scenarios of the real-world implementation have been recorded and they used the 
decision-making algorithms as described in Chapter 7.2. Furthermore, the database allows training 
statistical methods in reasonable time since the data from the sensors of the kitchen have been recorded 
from the beginning of the project. If the sensor values are simulated with the simulator (see Chapter 
7.1.3), the sensor database is required to buffer the sensor data, since the simulator does not generate the 
sensor values in real-time. 

7.2 Methods for Decision Making 

Methods to provide the ARS system with data are described in the previous chapters. To generate and 
manipulate symbols, decision making-algorithms have to be used. Using SymbolNet (see Chapter 5.5), 
the following decisions have to be made: creation of a symbol, update of a symbol and expiring of a 
symbol. To make these decisions, the following approaches have been discussed. A rule-based approach 
has fixed rules, usually expressed by an if-then relationship. Stochastic methods calculate the reparability 
of different decisions, usually based on the Bayes’ rule. Artificial neural networks are trained to bring 
similar results in similar situations. Knowledge-based systems, also called expert systems, make decisions 
based on knowledge of the system (rules) and the analysis of current information (input to the system). 
Fuzzy Logic uses membership values and fuzzy sets to make decisions. In the following chapters these 
methods are briefly described. 
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7.2.1 Rule-based approach 

The rule-based approach is the most intuitive approach for decision making. The (fixed) rules of decisions 
are stored in a rule base (e.g. if-then clauses). A rule associates the value range of the variables with 
decisions. The value range is fixed. [Goe06] has chosen this approach. In the kitchen on the ICT, 
scenarios like the coffee-making scenarios have been implemented. In particular, the rule-based approach 
is suitable for sensors set up with binary sensors (light barrier, pressure sensors, door contacts…) since 
binary values consist of only two values. 

However, in some cases the fixed definition of the value ranges is a disadvantage, e.g. in case of human 
gait, the distance between two footsteps is used as criterion to decide whether two recognized steps 
belong to the same person. Steps smaller than the defined maximum length of a step are associated with 
belonging to the same person, whereas steps longer than the defined length are not. Yet, our experience in 
day-to-day life tells us that an exact (maximum) length of a step is hard to define. 

7.2.2 Stochastic methods 

[Bru07] describes how to use stochastic methods for building automation. Here, the system learns from 
sensor values which values (and changes of values) have a high likelihood. After this learning phase, the 
system associates similar sensor values with the learned states. In [Bru07], a system is described, which 
uses sensor values from an office building to train a Hidden Markov Model. However, in many cases the 
learned states can be interpreted by people but there are also states which are meaningless for people. 

In systems like the ARS system, the symbols are predefined and meaningful for people. This does not 
match the training phase because the symbols cannot be predefined. However, in future learning will be 
introduced into the ARS project. Therefore, there is currently research work being conducted on the ICT 
to combine Hidden Markov Models and symbol trees25. 

7.2.3 Artificial neural networks 

Artificial neural networks [Arb95, Roj96, Sch97, and Cal03] consist of layers of artificial neurons. They 
were designed as an emulation of natural neuronal networks, which can be found in the spinal cord and 
brain. Artificial neural networks usually have to be trained. However, it is impossible to predict whether a 
similar situation as the one that has been trained will be recognized by the network. Therefore, input data 
of an artificial neural network have to be pre-processed. 

Moreover, some symbols of the symbol tree used in ARS cannot be trained in a real installation, e.g. the 
child-in-danger scenarios. Such scenarios could only be trained using simulators (see Chapter 7.1.3). The 

                                                      
25 However, Hidden Markov Models are not appropriate to simulate learning in a high level sense according to 
psychoanalytical model. If Hidden Markov Models are suitable for the learning symbols without contradicting the 
neuro-psychoanalytic model has to be checked in that research work. Nevertheless, from my point of view Hidden 
Markov Models can only be used for learning of low level symbols if the basic emotional systems are considered. 
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configuration of artificial neural networks has to be done very carefully, and therefore experienced stall is 
required. 

7.2.4 Expert systems 

Expert systems, which are also known as knowledge-based systems, try to emulate the knowledge and 
skills of a human expert [Jac99]. Such systems usually consist of a knowledge base and an interference 
engine. The knowledge base contains expert knowledge (problem dependent), and the interference engine 
is used to operate on the knowledge base (problem-independent). 

The separation of knowledge and the problem-solving method facilitates the operation of these systems as 
well as their configuration and maintenance. Changing and growing knowledge of a certain problem type 
can be included. However, expert systems are usually specialized for a problem domain. Therefore, I did 
not concentrate the research work on the system itself rather than on the methods on which the system is 
based. A widely used method is the Fuzzy Logic as described in the next chapter. 

7.2.5 Fuzzy Logic 

In contrast to Boolean logic, fuzzy logic does not represent the values true and false but rather 
membership of truth. Membership is usually expressed as a value between zero and one. This allows 
creating systems that can deal with fuzzy information, as people are used to. Linguistic rules are used to 
map the input of the system to the fuzzy output values [Kru95]. These linguistic rules can be formulated 
similarly to a verbal description of a problem that needs solving. Therefore, fuzzy logic is suitable for the 
description of systems which cannot be mathematically described or can only be presented with very 
complex models [Bon92]. 

7.3 Used Decision-Making Algorithms 

Some restrictions have been defined for the decision-making algorithm within the ARS project. At the 
current status of the project, learning should be excluded. Therefore, the stochastic methods and the 
neural networks cannot be used. Nevertheless, learning has to be implemented in future implementations. 
However, in the ARS-BASE branch of the project stochastic methods (Markov Models) are used to 
identify unusual situations [Bru07], but without identifying the situation itself. 

The rule-based approach is implemented in [Goe06]. This approach is straightforward in its 
implementation and very well suited for binary sensors. However, this approach is not always suitable for 
higher-layer symbols (snapshot and representation symbols). The following example this should be 
clarified. The human gait has several characteristics, which are interdependent. [Heg00] lists the 
relationship between relative step length26 and relative velocity27. In the current implementation, the step 

                                                      
26 Length of (double) step in relation to body height 
27 Walking speed in relation to body height 
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length is measured. To decide which steps belong to the gait of a particular person, the length and 
velocity of a step have to be taken into account. Simple if-then rules do no longer apply. As described 
above, the algorithms that have to be trained prior to their application are not used in the first part of the 
project. Therefore, artificial neural networks and stochastic algorithms are not used. 

The decision to use fuzzy logic in the project was made because it meets the needs of the project. It makes 
it possible to describe problems in a verbal manner as people would do. Another constraint was that open-
source implementation should be used because of the limited budged of the project. 

The ARS-PC system was developed in Java because a SymbolNet implementation was already available 
[Pra06]. Further, a fuzzy logic package is available in Java. The open source package jFuzzyLogic [JFL] 
is published under the GNU License GPL [FSFE]. It implements a complete Fuzzy Inference System 
(FIS) as well as Fuzzy Control Language (FCL) according to IEC 1131 [IEC1131-7]. The target platform 
of the ARS-PC system is a standard PC with either a Microsoft Windows ® or Linux operation system. In 
[Ric07], the implementation of the ARS-PC system is described. This implementation uses the symbols 
as defined in Chapter 6 in order to recognize the scenarios defined in Chapter 4. 

7.4 Implementation of Symbol Database 

Within the ARS framework (see Chapter 5.1) a database for storing symbols is introduced. In this symbol 
database, all messages received from the ARS-PC system via SymbolNet are recorded. The design of the 
tables of the database is described in Chapter 5.8. Similar to the implementation of the sensor database 
(see Chapter 7.1.4), the symbol database uses the SQL 92 standard for accessing the tables [SQL92]. 
Similar to the sensor database, a broad range of database products can be used for the implementation of 
the symbol database. For the implementation described in this work an Oracle database was used. 

Since SymbolNet (see Chapter 5.5) has been designed to distribute symbols and their properties within 
the ARS-system, an interface to the symbol database had to be developed. Using this interface, the 
symbols of the ARS-PC system can be recorded in the database. The three-dimensional visualization of 
the simulator (see Chapter 7.1.3) and the two-dimensional visualization of the kitchen on the ICT (see 
Chapter 5.9) read the data from the symbol database and display the recognized symbols and scenarios. 

7.5 Implementation of Visualizations 

As described in Chapter 5.9, a two-dimensional and a three-dimensional visualization are integrated in the 
ARS framework. The implementation of the three-dimensional visualization is part of the simulator and 
described in Chapter 7.1.3. The two-dimensional visualization uses the SymbolNet as communication 
interface. It makes it possible to obtain the symbols either directly from the ARS-PC system or from the 
symbol database. The visualization is implemented in Java. Therefore, it can be used with standard PCs 
together with a Microsoft Windows ® or Linux operating system. Figure 104 shows a screenshot of the 
two-dimensional visualization. Additionally to the two-dimensional visualization of the scenarios and 
symbols recognized in the kitchen on the ICT two visualizations were implemented in [Ric07] which 
have direct access (i.e. without SymbolNet) to the symbols within the ARS system. These visualizations 
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have been introduced to facilitate the design of the ARS-PC system. One visualization type gives a spatial 
overview like the two-dimensional visualization, and the other gives a logical overview of the symbols 
within the system. In Figure 98 two spatial views of a meeting scenario are shown. In the upper 
screenshot the (active) sensors and the symbol person are visible, and the lower screenshot shows the 
recorded gait and the recognized scenario meeting. 

 

Figure 98: Integrated visualization 

The logical view of the symbols in the system is depicted in Figure 99. It is divided into five layers, i.e. 
sensor layer, microsymbol layer, snapshot symbol layer, representation layer and scenario detection layer. 
In the bottom layer, the sensor layer, the types of sensors used in the system are shown. In the 
implementation in the kitchen of the ICT the sensors are tactile sensor, door contact sensors, motion 
detectors, fridge door contacts, and a sensor in the coffee maker. The next higher layer is the 
microsymbol layer. In this layer the microsymbols implemented in the system are shown. The lines 
between sensor layer and microsymbol layer indicate which sensor type is associated with a microsymbol. 

In general, the symbols are visualized in frames. In case the frame is black, no symbol of this type is 
currently active in the system. In case the frame is red, at least one symbol of this type currently exists in 
the system. If more than one symbol exists, the number of symbols is shown in the lower right-hand 
corner of the frame. The association between the symbols is indicated with lines. Black lines mean that 
currently no association between the symbols is active, red lines indicate active associations. 
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In the representation layer, snapshot symbol layer and microsymbol layer the symbols are displayed 
according to their membership. The detected scenarios in the implementation in the kitchen are the 
recognized scenarios of a person putting down an object (see Chapter 4.3), a meeting (see Chapter 4.5), a 
person making coffee (see Chapter 4.6), a child approaching the hot stove (see Chapter 4.4), and a child 
making coffee (see Chapter 4.6). If any of these scenarios is recognized, the black frame changes its color 
to green. In Figure 99, the logical view of the meeting scenario is depicted. The spatial view of this 
scenario is shown in Figure 98. 

 

Figure 99: Screenshot of logical view of the symbols 

Since these visualizations have direct access (embedded within the Java application) to the ARS software, 
it is possible to display the process within the system in more detail than with the two-dimensional 
visualization mentioned above. Nevertheless, these visualizations do not have user interfaces, which can 
be used to parameterize the displayed items. The parameterization has to be done within the Java source 
code. Therefore, the two-dimensional and three-dimensional visualizations are intended to be used by the 
user of the system. However, the logical view also gives the user a good impression of the mechanism of 
the ARS-PC system. Using the tools described in the previous chapters, the concept of this work is 
verified as described in the next chapter. 
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8 Realizations and Results 

The system described in the previous chapter has been evaluated in order to realize the concepts described 
in this work. The concepts have been developed in order to gather sensor data from the environment and 
find predefined situations and scenarios. To extract these situations and scenarios from the sensor data, a 
symbolic approach has been chosen based on the brain models by Aleksandr Luria and Mark Solms. In 
the following chapter, the results of these tests are presented. 

8.1 Data Provision 

As described in Chapter 7.1 three variants for data provision are designed in the ARS system, i.e. the 
direct access of the sensor via a specialized hardware, the DPAL (Data Point Abstraction Layer) to access 
data in an abstract way from (different) fieldbus systems, and the simulator which generates data based on 
a virtual environment and predefined scenarios. However, the generated data can be stored in the sensor 
database. Since the sensor database holds besides sensor values also additional information about the 
sensor (active region, units, etc. - see Chapter 5.7), the access of the database is necessary for the 
operation of the ARS-PC system. 

In this work, the direct access of the sensors and simulator has been used for the provision of data in the 
ARS-PC system. Additionally, a sensor database was used because on the one hand, it provides the 
properties of the installed sensors (mounting position, active area, units, etc.) and on the other hand it 
stores sensor values. The outline and sensors of the kitchen are shown in Figure 24. 

The simulator [Har07] of the ARS system was designed to simulate sensor values of a virtual 
environment. [Pra06] has proposed the outline of such a virtual environment as depicted in Figure 100. It 
consists of four rooms and a corridor. In order to model the corridor, it was split into two rooms. This had 
to be done because according to the definition by [Pra06] a room consists of four rectangular walls. 
However, this virtual environment was used as outline for the simulation of sensor values. 

In the scenario editor (see Chapter 7.1.3), this virtual environment was defined in order to be used as 
outline for the simulator. Room 1 is equipped with a table and six chairs and is intended as meeting room. 
In room 2 there is a kitchen with stove and coffeemaker. The rooms 3, 5, 6, and 7 are office rooms with 
desks and chairs. The hallway (room 4 and 8) is empty. The exact equipment of the rooms can be seen on 
the left of Figure 103. The following scenarios have been defined in the simulator, meeting in room 1 and 
adult making coffee, child making coffee, and child approaching the hot stove in room 2. In the other 
rooms people either walk around or sit at their desks. 
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Figure 100: Outline of virtual environment [Pra06] 

Both the direct access to the sensors of the real implementation and the simulated sensor values of the 
described virtual environment are used as input data of the ARS-PC system. In the following chapter, the 
test based on these two data sources is described. 

8.2 Recognized scenarios 

The ARS-PC system is designed to recognize predefined scenarios, independently from the environment. 
In this work, the system has been tested with the real implementation in the kitchen of the ICT and with 
the virtual environment of the simulator. However, the simulator was not available during the 
development of the ARS-PC system, so the test with the simulator had to be done after the work on the 
ARS-PC prototype was finished. Therefore, the applications of the ARS-PC system rely only on the 
sensors that were available in the real implementation (see Chapter 7.5). To test the concepts proposed in 
this work, the following applications have been tested: recognition of a person putting down an object 
(see Chapter 4.3), meeting (see Chapter 4.5), person making coffee (see Chapter 4.6), child approaching 
the hot stove (see Chapter 4.3), and a child making coffee (see Chapter 4.6). However, after its 
completion, the ARS-PC system has been tested with the simulator. 

8.2.1 How to test scenarios 

The scenarios defined in Chapter 4 are described verbally. It is not defined how persons exactly have to 
behave. People who reproduce such scenarios will always act differently, and therefore trigger different 
sensors. Even the same person acts differently if s/he is asked to reproduce a scenario twice. Furthermore, 
people interpret scenarios differently. If a recorded scenario (or simulated scenario) is to be evaluated by 
different people, the results may differ. Therefore, in principle it cannot be assured that a scenario will 
always be recognized by the system as it would be recognized by a human observer. 

Beside that principal problem of testing scenarios, the sensors used in the real implementation or the 
simulated sensor data can limit the possibility of scenario recognition. As with the recognition of a person 
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taking a journal from a shelf, a person falling and lying on the floor, danger of fire, and audio system self-
tests, no sensors were available to recognize these scenarios. In principle it would be possible to use the 
simulator to generate such sensor data. But to do so the physical properties of people and objects have to 
be modeled first in order to obtain realistic sensor values. 

Nevertheless, testing the ARS-PC system is possible. On the one hand, tests have been carried out during 
the development phase to make the definitions of fuzzy sets and fuzzy rules possible. Figure 101 shows 
the test setup. The left shows the two sources of sensor data, the real implementation in form of the 
kitchen on the ICT and the virtual environment from the simulator. The ARS system uses the sensor data 
in order to recognize the predefined scenarios described above. On the right side of the figure the 
visualization of the recognized symbols is shown. 

 

Figure 101: Setup of the test environment 

It has to be mentioned that the software of the ARS-PC system, which is shown in the middle of the 
figure, was changed minimally in order to be used with the simulator instead of the real implementation. 
The adaptation is only related to changed dimensions, which means the symbols of the ARS-PC system 
have not changed. After its implementation, the system has been tested during permanent installation in 
the kitchen of the ICT. However, the tests in the real implementation have only been carried out with 
people were cooperative. This means that they showed normal behavior. The ARS-PC system is not 
designed to replace e.g. alarm systems, at least not as long as the hardware is not secured. The results of 
the tests are presented in the next chapters. 

8.2.2 People tracker 

The application people tracker is described in Chapter 4.2. It is the basis of the other applications, in 
which scenarios are detected. The task of the people tracker is to find people in a room and determine 
their position. In the implementation in the smart kitchen, this task can be seen as successfully applied. 
Nevertheless, the system has weaknesses in detecting people leaving the room. As shown in Figure 24, 
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the floor sensors do not cover the whole room. Around the door no floor sensors have been mounted 
because the floor sensors need to be mounted in the floor and covered with an additional floor coating, 
and the space between door and floor is too small for mounting the pressure sensors. 

To overcome this problem, several mechanisms have been implemented in the system. It is assumed that 
a person leaves the room when no pressure sensor or motion detector is active. But if more than one 
person is in the room, the system cannot detect one person leaving the room. Another assumption is that 
someone who goes straight to the door will leave the room. But considering Figure 24, it can be seen that 
due to the dimensions of the pressure sensors it is difficult to determine whether a person walks straight to 
the door or not. Another strategy to detect a person leaving the room is to consider the status of the door. 
If the door is closed, someone wanting to leave the room needs to open the door first. Thus, it can be 
assumed that a person opening the door will also leave the room, especially if afterwards the door is 
closed again and no one can be detected in the room anymore. 

However, the sensor configuration mentioned above does not allow a reliable detection of someone in the 
room. Therefore, additional sensors are needed especially in the area around the door. Such sensors can 
be pressure sensors, light barriers as proposed in Chapter 6.1.2, or camera systems with person detection 
algorithms. This problem does not exist in the virtual environment of the simulator. On the one hand, the 
floor pressure sensors cover the whole room. On the other hand, the neighboring room, into which the 
person goes when leaving the first room, has sensors which allow the detection of the person. Therefore, 
there are no “blind” areas especially around the door. 

A similar problem as the problematic detection of a person in the area around the door is the detection of 
people in the area around the table. Although the entire area around the table is covered with pressure 
sensors, people cannot be tracked well because the table activates some of the sensors permanently. If 
someone is standing on such a pressure sensor, no new microsymbol object is generated, and therefore the 
gait detection fails. However, in such a case the person is still detected, just not in the right position. If the 
person leaves the area around the table, the property position of the symbol person is again updated. The 
system could be improved using pressure sensors with an analogue output instead of a binary one. The 
output of the used pressure sensors gives only information about the activation of the sensor (activated or 
not) but not about the pressure on it, in which case it would be possible to generate a microsymbol object 
whenever the pressure changes. In this case, a footstep could be detected even if a table is placed on the 
same pressure sensor. Another solution would be to increase the resolution of the pressure sensor field on 
the floor. 

Another weakness of the system is the recognition of the exact number of people in a room. Depending 
on their position, up to seven people have been detected correctly. However, if people stand too close to 
each other, the detection mechanisms may fail. In such a case either two people are detected as one, or the 
system detects more people. To overcome this limitation, a higher resolution of the pressure sensors or 
additional sensors which allow people tracking, e.g. computer vision, might be used. Pressure sensors 
which are able to detect the weight of a person could be used to increase the accuracy of the tracking 
algorithms. Nevertheless, in both the real installation and the simulator, the people tracking application 
has been extensively tested. It has been tested explicitly and also implicitly during the tests of the other 
applications, since the people tracking application is the basis of all scenario recognition applications. The 
results of the scenario recognition application are presented in the next chapter. 
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8.2.3 Results of scenario recognition 

As described in the previous chapter, the people tracker application is the basis of the scenario recognition 
applications of the ARS-PC system. Therefore, all problems connected with the weakness of the people 
tracking application can also cause problems with the detection of scenarios. The scenarios which can be 
detected with the implementation of the ARS-PC system are described at the beginning of Chapter 8.2. 
As with the people tracking application, the scenario recognition applications have been tested in both the 
real implementation and with sensor data from the simulator. Exemplarily, the scenario meeting and the 
scenario child in danger are described. 

Meeting Scenario: The scenario meeting is described in Chapter 4.5. The scenario meeting occurs when 
two or more people sit around a table. A screenshot of the three-dimensional visualization of the scenario 
is depicted in Figure 102. The left side shows the visualization of the virtual environment. It shows a table 
and six chairs. The green objects are people, who sit on three chairs. On the left side of the room are 
cupboards, and there are doors in the opposite wall and the lower wall. 

 

Figure 102: Test scenario meeting 

The right side of the Figure 102 shows the recognized symbols and scenarios. To increase the clarity, only 
recognized symbols are shown. The green shapes represent objects in the room. In this case, the objects 
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are cupboards, chairs, and a table. Special objects like table or door are also visualized with a symbol. 
However, these symbols and shapes are static and do not change. They are generated at the start of the 
system and never expire. When a person enters the room, the symbol person enters is generated. In the 
screenshot, this symbol is still active and therefore displayed. It was generated when the third person 
entered the room. The symbols, generated when the other two entered, have already expired and are 
therefore no longer displayed. 

When a person walks around, it triggers the floor sensors which generate the microsymbol object and the 
microsymbol footstep. These symbols are not shown in Figure 102. However, the symbol gait is 
generated from these symbols which can be seen in Figure 102 as well as the symbol person. When two 
or more people sit around the table, the scenario symbol meeting is generated. The icon with a table and 
persons around it represent this scenario symbol. In the lower part of the screenshot, four tables can be 
seen, one for each type of symbol. Within the tables the recognized symbols are shown. 

The scenario meeting was always detected when the simulator was used as data source. In case of data 
from the real environment, the scenario meeting has only been detected correctly when the people could 
be detected properly. The challenges for the detections of people in a real environment are described in 
Chapter 8.2.2. 

Child in danger scenario: The scenario child in danger is described in Chapter 4.4. The scenario occurs 
when an unattended child is near a hot stove. In Figure 103, a screenshot of the three-dimensional 
visualization of the simulator is shown. Differing from Figure 102, only the simulated environment and 
the recognized symbols and the scenario are depicted, the tables of the recognized symbols have been 
omitted. 

 

Figure 103: Test scenario child in danger 

The left side of Figure 103 shows a kitchen environment with cupboards, stove, coffeemaker, a table, and 
chairs. The purple shape in front of the stove depicts a child. In contrast, adults are depicted as green 
shapes (see Figure 102). On the right side of Figure 103, the recognized symbols are shown. Special 
equipment like stove and coffeemaker have their own symbols and are therefore visualized with special 
icons. The chairs, table, and cupboard are green. The symbol footstep was generated when the child 
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approached the stove. The symbol person shows the currently recognized position of the child. The red 
hotplates of the stove show that the stove is hot. Therefore, the scenario is recognized and the scenario 
symbol child in danger is present. 

Not shown in Figure 103 is the scenario with an attended child. In this case, the scenario is not detected as 
it is defined. Since up until now no child detection has been implemented in the implementation (a 
possible solution is proposed in Chapter 9.2), the child is detected by a button in the graphical user 
interface of the ARS-PC system. If the button is pressed and a person is recognized near the kitchen door, 
this person is recognized as child. However, the recognition was successful in the simulator, provided that 
an adult pressed the button when a child is was in the room. 

In the real implementation no child detection is implemented either. To test the scenario, the same 
mechanism is used as described above. Therefore, adults triggered the scenario child in danger, since 
every person is recognized as child when a user presses the child button of the ARS-PC system. However, 
as is the case in the meeting scenario, the correct detection of the position of people is necessary. 
Regarding the layout of the real implementation of the kitchen on the ICT (see Figure 24), it can be seen, 
that the stove is close to the door, where no sensors are mounted. Thus, someone entering the room might 
be detected quite late, especially if the person enters the room very quickly. Improved person detection, as 
described in Chapter 8.2.2, would also help to improve the detection of the scenario child in danger. 
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9 Discussion 

The thesis at hand presents the technical model of a system which is able to perceive predefined situations 
in buildings. Although the applications are designed for buildings and the data provision of proposed data 
abstraction is designed for fieldbus systems in building automation, the concept of the scenario 
recognition presented in this thesis is not limited to building automation, which has been chosen as 
environment here because the scenarios are easier to define, and it is simpler to integrate sensors into a 
building with showcases. Other applications might be service robots, e.g. for homes of elderly people, or 
in principle any other kind of automation. In the following the thesis is discussed and possible future 
work is presented. 

9.1 Conclusion 

The situations defined in this work can be categorized roughly into the applications people tracking, child 
safety, geriatric care, and human activities. The people tracking application is the basis for the detection 
of scenarios in which people are involved. Examples for child safety are the detection of an unattended 
child near dangerous objects like a hot stove, or near stairs or lift. Examples of geriatric care application 
are the detection of a fall and its possible impact on the person. The category of human activities 
detection is very general and includes therefore the activities of the child safety and geriatric care 
applications. An additional example of human activities is the detection of a person making coffee. For 
the applications described in Chapter 4, the symbols and their relationships are defined in this work. 

Symbols are the building blocks of the ARS-PC (Artificial Recognition System - PerCeption) system. 
They represent people, objects, and actions. The mammalian, respectively the human brain is the 
archetype of the technical model of these symbols. The results from neuroscientists, psychoanalysts, and 
neuro-psychoanalysts, namely Panksepp, Luria, and Solms, were taken as basis for this technical model. 
The main features of the technical system are symbolization, hierarchy of symbols, and the valuation 
system. The reason for choosing this approach is that the ARS-PC model is the basis for the ARS-PA 
(Artificial Recognition System - PsychoAnalysis) model, which implements the higher cognitive 
functions of the brain. Together, the ARS-PC and ARS-PA parts should form a unitary model which, like 
the human brain, is able to fulfill the functions of receiving sensor data from the periphery to the high-
level decision-making process. 

In order to fulfill the task of the ARS-PC part, i.e. the recognition of people, objects and scenarios, this 
work proposes a framework, which includes a database for storing sensor values, the ARS symbol tree, 
SymbolNet as communication protocol for symbols and the definition of symbols in XML, and a symbol 



Chapter 9  Discussion 

132 

database for storing perceived symbols. Around this framework, different kinds of data provisions and 
visualizations are presented. For the provision of data, a concept of abstracting sensor values in different 
fieldbus systems is introduced, which is suitable to be the basis of the ARS system. In the showcase of the 
kitchen, a direct approach was chosen in order to collect the sensor values. A specially developed 
simulator for scenario simulation is the third possibility for the provision of data. Two-dimensional and 
three-dimensional visualizations can be used to visualize the results of the work presented here. 

In order to demonstrate the concept of the model presented here, a showcase in the kitchen of the ICT 
(Institute of Computer Technology of the Vienna University of Technology) was installed. In this 
showcase, several scenarios, as defined in this work, can be detected. Additional to the real 
implementation, scenarios have been simulated. The simulated sensor values can be used as an input for 
the ARS-PC system. The results of the test, as described in the previous chapter, showed that the 
approach proposed in this work is suitable for the scenario detection in buildings. The defined scenarios 
can be detected in the real implementation and in the simulation. During the tests in the real 
implementation, it turned out that especially for the people tracking application the positions of sensors is 
of high importance, e.g. near the door is essential to obtain accurate data on whether a person is leaving 
the room or not. Therefore, the outlook of this work lists improvements for the system which are partly 
related to the model and partly to the implementation and the used sensors. 

Although in both the simulator and the real implementation a lot of sensor and sensor types are simulated 
or installed, respectively, a lot of sensor types are of course still missing. Beside the vision and audio 
system as described below for example smell or smoke detectors could be integrated, especially if the 
system is used with safety applications. Nevertheless, all sensors I have mentioned so far are used to 
obtain information about the outer world, the environment. But for us human beings the inner world also 
plays a major role for our perception of the world as described in Chapter 2.1. The inner world is 
practically ignored by the current model and its implementation. The reason for this is that we need a 
body or at least the simulation of a body that can have an inner world. In [Pra06], it is proposed to see the 
hardware (network, sensors, CPU, etc.) as the inner world of a technical system. However, it is also stated 
there that in fact the system itself cannot satisfy the needs of the hardware itself. Therefore, it is proposed 
to see maintenance (by a human operator) as the satisfaction of a need of a technical system. Another 
possibility is proposed in the Bubble Family Game (BFG) as presented in [Deu07]. Here, a software agent 
has to interact with its environment in order to get energy from energy sources.  

But still, if such an approach is taken, it still would not solve how the outer world (environment) 
influences the inner world (body). One example would be the basic emotional systems. Although I 
presented a model for the technical implementation of the basic emotional systems, it is not integrated 
into the prototype presented in this work. As described in Chapter 2.2, the internal states of a basic 
emotional system are also determined by the sensor values from the inner and outer world. In a technical 
sense, this means that a relationship between sensor values and change of the emotional states exists. And 
that leads to the question: How do sensor values of the environment influence the internal world of a 
technical system? The seeking system of mammalians pushes the individual to observe the environment 
for objects which will satisfy its needs. In the simulation of the BFG, the bubbles have to do the same in 
order to survive. But in an environment like a kitchen or a building, a system usually does not have to 
take any actions to have enough energy or be maintained. However, robots, e.g. service robots for elderly 
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people, have to take their needs into account in order to serve properly. Another possibility to use the 
evaluation system is proposed below for the installation of sensors. 

9.2 Outlook 

The implementations presented in this work are still in their prototype state, and therefore a lot of 
improvements and additions can be made. Some ideas of how the current implementation and ARS model 
can be enhanced are presented in the following. 

Vision System: Currently, a master thesis is testing the integration of cameras into the ARS project. It is 
planned and partly implemented that the symbols person and object, and various symbols item (fridge, 
coffee machine, etc.) are also based on camera information and not defined statically, as proposed in this 
work. But the major innovation of this work is the integration of computer vision into the ARS system. 
The computer vision software has direct access to the ARS system with SymbolNet in order to improve 
both, the ARS system and the computer vision algorithms. The ARS system gets additional symbols of 
recognized objects and properties of symbols. The computer vision system uses the symbols that are 
depending on other sensors to increase accuracy. For example, the position of a person is (indirectly via 
different symbols) determined by the pressure sensors, light barriers, motion detectors, etc. Using the 
symbol person and its property position in the computer vision algorithms, only one camera can 
determine the height of a person. As described in Chapter 6.1.2, a person’s height can be used to decide 
whether the person is a child or an adult. Another enhancement is the calibration of the cameras. For 
example, objects like the door, which are represented with the symbol door, are known objects in the 
building. Besides its position also the shape and possibly even the color of the door are known. Using this 
information, the position of the camera can be determined in case a known object is detected by the 
computer vision algorithm. 

Also in this work, the scenario person taking reading material from a shelf as described in Chapter 4.9 
will be implemented. A screenshot of the two-dimensional visualization of this scenario is shown in 
Figure 104. Additionally, the scenario meeting is detected. A camera is used to observe the bookshelf. 
After a person, represented with the symbol person, has been detected in the vicinity of the bookshelf, 
and the person has again disappeared, computer vision algorithms help to detect whether a journal was 
taken from the bookshelf or not. On left side of Figure 104, the three layers of the visualization are 
shown. On the first layer, active sensors and the recognized microsymbols are shown. The screenshot 
shows the microsymbols object and motion. In the snapshot symbol layer the objects are shown. In the 
kitchen, the special objects are fridge, coffee maker, stove, and door. The other objects like table, 
bookshelf and copier are shown as colored shapes. Since the people do not move, no gait or footsteps are 
detected. In the third layer, the representation and scenario symbols are shown. In the Figure 104 two 
people are recognized. Since they sit at the table, the scenario meeting is active. In the bookshelf, the 
symbol for the missing journal can be seen, which was generated by the computer vision. 

On the right side, the visual output of the vision system is depicted. In the upper left picture, the 
bookshelf is shown as it was before a person approached it. As the person left the bookshelf, the picture 
on the upper right side was taken. The information of a person being near the bookshelf is taken from the 
ARS-PC system. The picture on the lower left side is the result of the subtraction of the first two pictures. 
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The difference is the missing magazine. On the lower right side, the position of the magazine is detected, 
shown by the red square in the magazine. The blue squares visualize the positions where no pictures have 
been taken. 

 

Figure 104: Meeting scenario and person tales reading material scenario 

Similar to the scenario described above, the scenario person puts down an object can be improved. This 
scenario is detected when a person puts down an object in a room, leaves the room and the object remains 
in the room, as described in Chapter 4.3. With computer vision algorithms, both the person and the object 
can be detected and hence the symbol person and symbol object can be detected or the accuracy of the 
object’s properties can be increased. However, all applications defined in Chapter 4 except the audio 
system self-test (see Chapter 4.10) can be improved by using additional information from one or more 
cameras in the room. 

Audio System: As with the vision system described above, an audio system could be integrated into the 
ARS system. A number of (micro-) symbols could be generated on the basis of audio data. An example 
would be the symbol fall (see Chapter 6.3.2). But also additional symbols like a symbol scream or a 
symbol wail could be introduce in order to detect an accident happening in the room. Even more complex 
than the detection of screaming or wailing would be the recognition of spoken language. The question 
whether it is feasible to integrate language recognition into the ARS system should be the topic of further 
research work. 

In principle it is also imaginable that the integration of the ARS system into a speech recognition system 
could improve the results of the ARS system in general and speech recognition in particular. This could 
be done in two ways. The ARS system can be used to identify the speaker and his or her position. This 
information can be used to adjust the parameters of the speech recognition system. The second way to 
improve speech recognition cannot be done with ARS-PC alone but needs also the semantic and episodic 
memory of the ARS-PA system. As described in [Die07], the generation of symbols in the human brain is 
not only based on the sensor input itself, but also on our knowledge and expectations of what we hear. So 
the idea of this particular item of improvement is that depending on the situation the speech recognition 
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systems are adopted. This principle also applies to all other sensor types, but especially to the vision 
systems. 

Installation of sensors: One of the problems of integrating huge amounts of sensors into a building is 
their commissioning. In the current implementation this problem is solved by using a sensor database. 
Beside the values of the sensor, the position and the active area of every single sensor are stored. This 
solution is suitable for our current (prototype) implementation. But when using a lot more sensors (e.g. up 
to ten thousand per room) this solution is no longer suitable, at least not in case the configuration data 
cannot be filled into the database automatically. For movable sensors e.g. mounted on movable objects, 
the database has to be updated permanently. 

One possible solution could be that the system “learns” the configuration of its sensors. It is assumed that 
sensors, which are activated simultaneously, have a similar active area. To improve this method, the 
evaluation system can be used. Thus, not only sensors which are activated simultaneously are associated 
but also sensors which have similar individual e-status. For moveable sensors, tracking mechanisms have 
to be implemented in addition to object tracking sensors. 

Another possibility would be to combine the position and active area information with the value data of 
the sensor. Therefore, at least each moveable sensor has to determine its position. For fixedly mounted 
sensors, the position could be configured. In order to reduce the bandwidth use, the position could be used 
as the address of the communication protocol. A communication protocol which uses the geographical 
position of the nodes as address would not only minimize the configuration effort of the network, but also 
the routing and services of the network. Typically, a router uses routing tables in order to decide how to 
route a packet through a network. Using geographical addresses, these tables can be omitted because the 
decision in which direction a packet should be routed can be easily calculated. A request of what the 
temperature at position X is or how many people are in room Y would then have only the position as 
address for the request. All nodes which have the requested information would answer the request. The 
network would automatically find the addressed sensors, even if the sensors are moveable. Such a 
scenario is illustrated in Figure 105. 

 

Figure 105: Active region of a temperature sensor 

A temperature sensor is located in a room at position (1). Assuming that the temperature is equal in the 
room, the active area of the sensor is defined as the room. If an application would request the current 
temperature at position (2) or (3), the node of the sensor (1) would respond. Assuming that in the room 
there is not only one temperature sensor but e.g. 10 or even more, all sensors which have the active area at 
the point or area of request will respond. And that shows another advantage of the geographical addresses 
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for communication systems. It offers at least a kind of redundant and fault tolerant system. Analyzing the 
responds of the sensors, the system can decide which sensors are out of order or respond with wrong 
values. 

Introducing learning: One of our most exiting abilities as human beings, at least in a technical sense, is 
the ability to learn. In this context, learning should be understood as the forming of new symbols and the 
dependencies between the symbols. The presented model in this work has no ability to develop new 
symbol types. Every symbol and their dependencies are predefined. However, in [Lur73] it is described 
how the learning of symbols is achieved by people. It has been shown that the secondary fields (see 
Chapter 2.1.2) could not be formed properly without the integrity of the primary zones during the 
ontogeny. The same applies to the tertiary zone. In the ARS-PC system this means, that first the 
microsymbols have to be derived from the sensor values. Then the snapshot symbol layer has to be 
formed and so on. As mentioned above, hardwired evaluation systems could play a major role in that 
learning process. Sensors which have the same active area would be simultaneously active in case of 
changes in that area. This could be a way how microsymbols could be learned. A possible way to learn 
the associations is shown below. 

Different view on symbols: In this work, the symbols have been described as data structures which are 
determined by their properties. The association between symbols can be done in various ways. As an 
example, let us consider the symbol person upright (see Chapter 6.3.6). To associate the symbol upright 
with the symbol person the spatial relationship is used. This means that symbols with similar properties 
are associated with each other. In other words, similar properties of symbols mean that the symbols have 
a relationship. This does not only apply to the position but to all properties. Symbols with the properties 
which have the same or similar values are associated with each other. Thus, in a system like ARS-PC the 
relationship between the systems could not only be established with the association of existing symbols 
with new ones as proposed in this work, but additionally, the system could itself could associate symbols 
by observing their properties. In Figure 106 shows some examples. 

 

Figure 106: Properties and associated symbols 

Beside position as one property of almost all symbols, the direction or velocity of movable objects are 
properties which can be used to associate symbols with each other. Another category of properties which 
might be used to associate properties might be the e-status of an e-system. In addition objects which cause 
a similar e-status are associated with each other. As proposed above, this could be used to associate 
sensors which each other. 
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Focus of Attention: In the current state of the project, a typical PC has enough computational resources 
for the manipulation of the defined symbols. However, assuming a much higher number of sensors 
connected to such a system and a larger number of scenarios that can be detected, the required 
computational power would rapidly increase unless measures are taken against it. One measure could be 
to introduce a focus of attention. Depending on the current situation (including inner and outer world) of 
the system, parts of the symbol trees could be activated or disabled. This might be done with simple rules, 
e.g. if a dangerous situation is detected, the comfort functions shall be reduced to the necessary minimum. 
Another way could be to use fuzzy logic or similar algorithms to take into account more factors and get 
graduated results for switching off parts of the symbol tree. However, the detection of dangerous or 
essential situations, events, or objects should never be disabled. 
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