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Abstract

Motion capture systems today have to deliver high quality motion data, while
being �exible and easily adaptable to di¤erent actors. Therefore, accurately de-
termining parameters of a subject�s skeletal structure is crucial. Inferring these
values automatically from optical motion capture data without additional mea-
surements, however, is a challenging task. This thesis describes the steps neces-
sary to calculate the joint positions and limb lengths using data from a passive
optical tracking system.

The algorithm is a multi-stage process that includes the tasks of automatic
marker labeling, limb-wise clustering of markers and calculation of joint positions.
Finally an estimate of the topology and the parameters of the articulated struc-
ture are computed. Since the topology is inferred from the data, no model has to
exist in advance. This in turn makes the implemented system �exible enough to
capture not only human motions, but motions of an arbitrary articulated struc-
ture, without any adaptations or additional e¤ort. The core functionality of the
system, which is the skeleton �tting task, is done using a distance function, that
is applied to marker positions. This function then is minimized by a non-linear
minimization algorithm.

Tests of the system have been performed with arti�cially generated data and
a construction of rods linked with articulations. The results show high accuracy
for the arti�cial data. For the tracked data sets also satisfactory outcome is
produced.





Zusammenfassung

Motion Capture Systeme müssen heutzutage hochqualitative Bewegungsda-
ten liefern. Trotzdem sollen sie �exibel sein und leicht für verschiedene Darsteller
anzupassen. Deswegen ist die Bestimmung der Parameter des Skeletts ein wichti-
ger Bestandteil solcher Systeme. Die automatische Bestimmung dieser Werte un-
ter Verwendung von optischen Bewegungsdaten ohne Zuhilfenahme zusätzlicher
Messungen ist jedoch eine anspruchsvolle Aufgabe. Diese Arbeit beschreibt welche
Schritte notwendig sind um die Gelenkspositionen sowie die Länge der Gliedma-
ßen zu bestimmen. Dazu werden die Daten eines passiven optischen Tracking
Systems verwendet. Der verwendete Algorithmus ist ein mehrstu�ger Prozess.
Zunächst werden die getrackten Markerpositionen den physikalischen Markern
zugeordnet und nach Körperteilen gruppiert. Dann werden die Gelenkspositio-
nen und die Topologie des Skeletts bestimmt. Schließlich werden die Parameter
der Struktur berechnet. Da die Topologie ausschließlich aus den Daten bemessen
wird ist im Vorhinein kein Modell notwendig. Dieser Umstand macht es möglich
mit dem implementierten System nicht nur menschliche Bewegungen aufzuzeich-
nen. Jede beliebige durch Gelenke verbundene Struktur kann damit ohne jegliche
Adaptierung oder zusätzlichen Aufwand erfasst werden. Die Kernfunktionalität
der Applikation - die Berechnung des Skeletts - wird mit Hilfe einer Distanzfunk-
tion bewältigt. Diese wird auf die Markerpositionen angewendet und durch einen
nichtlinearen Optimierungsalgorithmus minimiert.

Das System wurde mit verschiedenen Daten getestet. Neben menschlichen
Bewegungdaten wurden generiertes Datenmaterial und Messungen einer Kon-
struktion von durch Gelenke verbundenen Holzstäben verwendet. Die Resultate
zeigen hohe Genauigkeit für die künstlichen Daten. Für die getrackten Datensätze
wurden ebenfalls zufriedenstellende Ergebnisse erzielt.
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Chapter 1

Introduction

1.1 Motion Capture

Throughout the literature many di¤erent de�nitions of motion capture exist.
Many of them include statements like "... must now take on the challenge of
de�ning what we mean by the phrase motion capture..." [Fur99] or "Deciding
on which term to employ is one of the challenges..." [JFGT02]. From that it
is easy to see that de�ning the term motion capture is a rather di¢ cult task.
Instead of discussing on several pages what motion capture might or might not
be I will simply take the de�nition from [JFGT02]. It states: "Motion capture
is the recording of a manipulable representation of a motion from sensing that
motion." The result of the motion capture process then is called motion data.
In our case the manipulable representation would be the parameterized skeleton.
The motion data includes its transformations at any point within the considered
time-span. In general, however, the form of representation used is dependent on
the application.

A very common abbreviation of motion capture is MoCap, which I will fre-
quently use throughout the rest of this work.

The process of inferring position and/or orientation data from sensor data is
called tracking. Tracking is a substantial part of motion capture and good quality
of tracking data is crucial for motion capture. All kinds of physical phenomena are
used for tracking depending on the application. The motion data in our system is
derived from images taken by multiple cameras using an optical tracking system.
For a more detailed description of tracking systems please refer to chapter 2.

The process of motion capture in this context does not necessarily include
animation as sometimes is suggested in the literature. It is merely the extraction
of motion data. This data then can be used to create animation in a process
most commonly called performance animation, although many other terms exist
as well. Since there are other applications for motion capture than animation,
strictly separating these terms makes sense. So MoCap can be used for perfor-
mance analysis in sports, biomedical analysis or virtual reality as will described

1



2 CHAPTER 1. INTRODUCTION

in more details in the next section.
MoCap systems for performance animation can be classi�ed into two kinds of

systems. On the one hand there are online-systems, which can be used to create
animation from motion data in real-time. With the improvement of tracking tech-
nologies and computing performance these become more and more common. On
the other hand there are o­ ine systems, where motion data has to be processed
before the animation is started. Our system can only be used o­ ine for reasons
that will become apparent later in this work.

1.2 Areas of Application for Motion Capture

Motion capture has a broad variety of applications. The most prominent area is
of course the entertainment industry, which needs realistic motion data for ani-
mation movies and computer games. However, some other �elds of application
exist, where captured data can be used to analyze motion. These areas of ap-
plication are medicine, sport and virtual reality. The next sections will describe
these �elds. Here an emphasis is placed on the entertainment sector, since our
system is intended primarily for performance animation, while it might not be
suited for other �elds.

1.2.1 Medicine

Motion capture technologies are nowadays often used for clinical purposes. Many
systems have been developed to produce biomechanical analysis based on motion
data. These systems are used in sports medicine, rehabilitation and neurology to
identify anomalies in the movement of single limbs or the whole body. The result
of the analysis can then be used to better diagnose the patient and determine
the best treatment. Especially gait analysis is a common application for motion
capture and can help to identify the causes of walking abnormalities [Mot07a].

1.2.2 Sport

Motion capture systems o¤er an opportunity to analyze the motions of an athlete,
that otherwise wouldn�t be possible. So, fast motions can be captured, split up
into their di¤erent components and analyzed from di¤erent perspectives. The
�ndings then can be used by an athlete to develop better training methods and
improve performance.

1.2.3 Virtual Reality

Real-time motion capture allows a user to control an avatar (a virtual represen-
tation of the user) in a virtual environment. This allows natural interaction with
the virtual world instead of the limited possibilities of the available input devices
(space mouse etc.)
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1.2.4 Entertainment

The entertainment sector is the biggest application area for MoCap. Motion
data is here used for performance animation in movies on the one hand and for
animation in computer games on the other hand. Since our system is intended
for performance animation these two �elds are described in more detail.

1.2.5 Movies and Television

More and more movies contain or are entirely made by animation. This on
the one hand makes the production of movies cheaper, due to for example the
use of animated background characters. On the other hand animation enables
breathtaking e¤ects and stunts that wouldn�t be possible otherwise. So in a
dangerous scene the actor can be simply replaced by a virtual character, which is
animated using the actors motion data. In this case of course the virtual character
has to optically match the actor as much as possible to make the illusion work.

In general, however, motion data is independent from the captured subjects
exterior it can be used to animate any humanoid character. One stunning example
for the use of performance animation is the movie "The Polar Express" . In this
movie the performance of one actor (Tom Hanks) is used to animate several
characters among them a little boy. This without motion capture hadn�t been
possible. Although according to [Gor06] the performance animation was a lot of
e¤ort and added a lot to the projects total cost of 165 Million $ and three years
of work, without it the movie would have been even more expensive. Figure 1.1
shows Tom Hanks wearing a MoCap suit and the corresponding scene from "The
Polar Express".

Even fast motions like skateboard-tricks can be captured using MoCap. So
in the animated movie "Boom Boom Sabotage" staring Tony Hawks 95% of the
animations are done using MoCap according to [Vic07a]. Here not only the actors
motions but also the �ipping and spinning skateboards had to be captured.

In my opinion one of the best examples for successful use of performance
animation in movies is "Lord of the Rings". The seamless integration of the
virtual character Gollum in a real movie is just stunning.

1.2.6 Computer games

With the increase of graphical details in computer games realistic animation of
virtual characters became more and more important within the years. Due to
the harsh competition between the game development studios to produce the
most realistic games the computer game industry became the largest market for
motion data( [Men99]).

According to [Mot07b] two areas of application of motion data exist in com-
puter games. On the one hand there is the real-time playback and on the other
hand the so-called cinematics.
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Figure 1.1: Tom Hanks and one of his virtual counterparts in "Polar Express"
(Courtesy Warner Bros. Pictures)

For real-time playback all motions and according actions that a virtual char-
acter should be able to perform are recorded using MoCap. Depending on the
players input these motions are then replayed during the game.

Cinematics are pre-rendered movie-clips that are intended to introduce the
player to a plot and develop the story of the game. They are used to make games
more immersive and to tie parts of the games together. Cinematics are usually
not done by the game developers themselves but outsourced to specialized stu-
dios. Therefore they are not much di¤erent from a traditional movie production.
Within the last years,however, where graphical details have increased within the
games themselves it can be observed that game developers decide against cine-
matics in a classical sense. Instead the game�s graphics engine is used to produce
animations, which then are composed with voice recordings to produce some kind
of cinematics.



Chapter 2

Related Work

2.1 Classi�cation of Tracking Systems

The following subsections present properties of trackers that can be used to cate-
gorize and evaluate a system. However, it is impossible to give a general standard
for a "good" tracking system by these values. This is because it ultimately de-
pends on the intended area of application if a tracker is adequate.

2.1.1 Outside-In/Inside-Out/Inside-In

Before the tracking process can be started a reference coordinate system has
to be de�ned, so the tracked object (target) can be assigned coordinates. The
coordinate system can be relative to the sensors or the emitters/transmitters.
Depending on this relation and whether the devices are placed on the target or
in the environment three types of tracking systems can be identi�ed.

Inside-In

For inside-in systems the sensors and emitters as well as the reference coordinate
system is placed on the target. This has the advantage of limiting in�uences
from the environment. Also the position/orientation of the limbs relative to each
other can be calculated very fast and precise. On the other hand no global
position/orientation can be calculated since no relation to an outside reference
point exists. Examples for inside-in systems are electromechanical and inertial
systems as described. in 2.2.

Outside-In

Systems where the sensors are on �xed reference points in the environment and
the emitters are �xated on the target are called outside-in. Since the coordi-
nate system is aligned with the sensors in the environment the absolute posi-
tion/orientation of the target can be calculated. Another advantage is that for

5
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example optical emitters are rather small compared to the sensors, which results
in comfortable body suits for motion capture applications.

Inside-Out

When the sensors are located on the tracked object, the emitter/transmitter is
installed in the vicinity and the coordinate system is aligned with the latter we
are talking about inside-out systems. This kind of system has the advantage
that the absolute position/orientation of the emitters and thus of the tracked
object is known. The main drawback of this approach however is that the data
from the sensors has to be somehow transferred to the PC for processing, which
requires wiring of the tracked object or a high bandwidth wireless transmission
technology.

2.1.2 Properties of Tracking System

For all tracking technologies some properties, like latency, accuracy and update
rate can be measured. These characteristics will be used in the next sections
to evaluate the discussed tracking systems. The properties are described shortly
in the following sections and are discussed in more details in [BC03], [RDB01],
and [WF02].

Latency

The time between the change of an object�s orientation/position and the detection
of the change by the sensor/acquisition-subsystem is called latency. For realtime-
tracking it is required to be as small as possible, because otherwise the time delay
between movements and their display might be unacceptable. If the motion is
recorded only latency is less crucial as long as the update rate is su¢ cient.

Update Rate

The update rate of a tracker speci�es the number of measurements that the
tracker outputs every second. For an optical tracking system for example this
would be one divided by the time necessary to process an image and extract the
3D position. The higher the update rate the better the precision of the captured
motions (i.e. less interpolation is necessary for the animation process), which
especially accounts for fast motions.

Phase Lag

The time interval from the change of an object until it is outputted by the tracker
is called phase lag:
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Accuracy

Accuracy is usually separated into static and dynamic accuracy. Static accuracy
is the maximum deviation of the tracker�s output from the actual value, when the
position/orientation of the tracked object is constant. Dynamic accuracy mea-
sures the accuracy for a moving object and is dependent on the static accuracy.
For most tracking technologies the accuracy is a non-constant parameter, but
dependent on the distance between emitter and sensor.

Drift

The drift represents the increase of tracking error over time. This is especially
a problem for inertial trackers, as we will see later. For stationary objects drift
is also called stability or creep in the literature. When the error resulting from
drift grows too large the tracker has to be recalibrated.

Jitter

Jitter speci�es the changes in the tracker output for an object, that has con-
stant position/orientation. While a constant error might be less noticeable for
an observer, large jitter results in tremor an unsteady motions.

2.2 Tracking Hardware/Technologies for whole Body
Motion Capture

Currently three technologies are frequently used for full body MoCap, which will
be described in this section.

2.2.1 Electromechanical

Electromechanical tracking systems o¤er a simple and fast way to obtain the pose
and movements of a human user. For the tracking process an arti�cial skeleton,
made of rigid segments connected with articulations, is built around the body.
Since it is outside the body it is called Exoskeleton. This skeleton is �tted in
a way, that the rigid parts match the limbs and the articulations coincide with
the joints of the human body as well as possible. The better the articulated
skeleton suits the user, the more accurate are the captured motions. Therefore
most systems can be adapted to di¤erent body sizes. Nevertheless it can hardly
be avoided, that the user will be restrained in his movements.

When the user moves his limbs the Exoskeleton follows and in the ideal case
the articulations obtain the same angles as the joints. The angles of the arti�-
cial joints are then being calculated using measurements of goniometers. Often
electromechanical transducers such as potentiometers, which have been used for
electronic products of all sorts for many years, are used for this task. The mea-
surements of the transducers are then transferred to a computer using cables or
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in more recent systems wireless connections. From these readings, the pose of
the exoskeleton is calculated and the position and orientation of the users limbs
can be estimated.

As an alternative to goniometers, bend sensors can be used to retrieve the
angle. Fiber-optic sensors, resistive ink sensors and others are described in more
detail in [BKL04]. Another possibility would be to use two gravito inertial sensors
as a virtual goniometer. No matter which technique is used, the orientation of
the two limbs, adjacent to the joint, to each other is obtained. Now that the
relative orientations are known, forward kinematics can be used to calculate the
pose of the body using a hierarchical model of the body. Starting from a root
(usually the torso or pelvis) the angles are used to �nd the positions of all limbs.
The method is pretty simple - compared to other methods - and can even easily
be done in real time.

The problem, however, as with all inside-in systems, is that an absolute ori-
entation and position cannot be obtained. Therefore, additional tracking tech-
niques, as suggested in [Sta02], can be used or one of the following methods
applied.

One possibility to get ground truth measurements is to simply connect the
exoskeleton to a �xed reference point by additional linkages. In case the link
provides at least 6 DOF the user can roam freely within the (very limited) range,
while position and orientation can be calculated. Again angular measurements
and forward kinematics are used to derive the sought-after values. Besides the
obvious limitations this method has the disadvantage of rendering multi user
applications nearly impossible.

Another method of obtaining the absolute position and orientation is de-
scribed in [Sta02]. It only uses the data provided by the goniometers and relies
on the fact that the position of one foot relative to the other can always be calcu-
lated using forward kinematics. Starting with one foot at a reference point, the
position of the other foot is inferred and , as soon as it is put on the ground used
as new reference point. Although no implementation is known it should work
under certain conditions. Most important of all, it has to be ensured, that a
foot doesn�t move once it touches the �oor, which of course isn�t true for normal
movement. The big problem with this method, however, is that measurement
errors propagate from step to step. Thus, sooner or later a virtual character,
animated with this motion capture data, would face in a totally wrong direction
and probably either �oat or walk below the �oor.

Taking aside the positioning problem and the fact that the exoskeleton hin-
ders the user in his movements electromechanical tracking su¤ers from another
serious drawback: It is not possible with current commercially available systems
to track anything else than the human body. Although not necessary for many
applications, handheld objects or animals for example can�t be tracked.

Electromechanical tracking, however, has some advantages that makes it su-
perior to other tracking technologies for some applications. The �rst and probably
most important reason is, that it is cheap, fast and easy to use. Almost no post-
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processing and very little computational power is needed, which makes its use
in an real time environment possible. Additionally an exoskeleton is an inside-in
system, which makes it independent of in�uences from the surroundings. So the
light conditions in the capture area as well as potential magnetic interferences or
ferromagnetic materials are of no concern. Another advantage of electromechani-
cal systems is their large capture volume. With wireless systems the range within
which the pose can be estimated is only limited by the range of the used transmis-
sion technology. One producer even boasts, that his electromechanical system is
having the largest capture range of any motion capture systems ever built. This,
however, is only true as long as no other tracking technique is used to obtain
the absolute orientation and position. From this additional method also depends
whether or not the system can be used for tracking multiple subjects. As men-
tioned before, a telescope arm �xated on the back of each user doesn�t really help
to "socialize".

2.2.2 Magnetic Tracking

Magnetic tracking technologies have a long history, being introduced in the mid-
seventies and, despite the fact that there are lots of other systems available, still
play a vital role in motion capture. They are using the fact, that sensors can infer
position and orientation information from magnetic �elds due to a phenomenon
called magnetic coupling. If only the 2D orientation is to be inferred the earth�s
magnetic �eld can be used, as it is in a compass. For motion capture, however,
the three-dimensional position and orientation of the captured object�s limbs are
needed. For that purpose at least three magnetic �elds are required and thus
have to be generated arti�cially. The transmitter, that generates those �elds,
is at a �xed location, while the sensors are usually placed on the user�s limbs.
Magnetic tracking systems thus are by de�nition inside-out systems.

The magnetic dipole �elds, necessary for the tracking process, are generated
by circulating an electric current in coils of wire. In the transmitter three coils are
assembled orthogonally to each other, which are excited sequentially to generate
three orthogonal magnetic �elds. To excite the coils AC and DC currents are
being used, generating an oscillating magnetic �eld in the �rst case and a pulsed
in the second. Depending on the source used, the system has speci�c properties
I will describe in detail later in this chapter. The magnetic �elds, generated
by the transmitter, induce a magnetic �ux in the receiver. The three sensors
in the receiver measure the components of the �ux. From these measurements
the system can infer the position and orientation of the receiver. This is done
by an electronic unit, which then transmits the data to a computer for further
processing.

Electromagnetic tracking systems have some advantages over other technolo-
gies, which have made them the most widely deployed for motion tracking. One
of the most important merits is, that they have no line of sight restrictions. Due
to the fact that human limbs as well as other non-metallic objects have no e¤ect
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on magnetic �elds, the user of the system doesn�t have to worry about the sys-
tem loosing track of any body parts. Furthermore receivers of magnetic tracking
systems are lightweight and very compact, which makes them easy to integrate
into a motion capture suit. In addition, most systems have wireless versions,
allowing the user to move unrestricted within the capture volume. Depending
on the desired capture volume is the price of a magnetic tracking system, which
can be relatively inexpensive compared to other systems, if only a short tracking
range is required.

The working volume is limited by the magnetic �eld strength of the transmit-
ter, which can not be arbitrarily increased, because of the possible negative side
e¤ects on the human body or electronic devices. It is therefore limited to a range
of up to 5 meters around the transmitter. There is, however, a trade-o¤ between
the range, latency and resolution as pointed out at the end of the chapter. Yet
the biggest drawback of electromagnetic trackers is, that external noise is created
by metal objects or devices, such as CRT monitors. If they are located close to
or within the tracking area, the magnetic �eld generated by the transmitter and
thus the tracking data is disturbed. This error, however, is a static function of
the position of the receiver, provided that the transmitter is �xed and the sur-
rounding metal doesn�t move. In a phase preceding the tracking process called
"tracker calibration" the error can be measured and stored in a calibration table.
From these measurements the position of the receiver can be corrected. For more
details on the calibration process see [Kin05].

AC Magnetic Trackers

For AC trackers the three coils of the transmitter are fed with an alternating
current of 7-14 kHz. The receiver of such a system contains three orthogonal
coils, into which a current is induced by magnetic coupling. This current is
proportional to the amplitude of the magnetic �ux and the frequency of the
oscillations. The induced voltages are then sampled by an electronics unit, which
produces at least 9 values(3 sensor values in three excitation phases). In some
systems oversampling is used at this point to get cleaner data.

The problem with AC magnetic trackers is that the magnetic �elds generated
by the transmitter induce eddy currents in metal objects. With the conductivity
of these metals the induced current increases. The circulating eddy currents
produce a magnetic �eld, that opposes the magnetic �eld of the transmitter.
This in turn a¤ects the accuracy of the system. It has been observed, that AC
magnetic trackers are less in�uenced by ferromagnetic steel, copper, ferrite and
mild steel than DC magnetic trackers. Furthermore, the earth�s magnetic �eld as
well as mains power wiring causes no interference. Brass, aluminium and stainless
steel, however, produce more noise within an AC magnetic �eld. More details on
that matter can be found in [Sta02] and [BC03].
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DC Magnetic Trackers

In the transmitter of a DC magnetic tracking system one coil at a time is excited
by a pulsed constant current. The receivers of a DC magnetic tracker consist of
an assembly of either the outdated �uxgate magnetometers or solid state tech-
nologies, like hall e¤ect sensors. They measure the induced voltages in the three
phases during which the transmitter generates the orthogonal magnetic �elds.
In a forth time phase no magnetic �eld is generated. This pause is used by the
receivers to measure the in�uence of the earth�s magnetic �eld and other inter-
ferences. This error is subtracted from the values obtained in the other phases
before the position and orientation is calculated.

DC systems are generally less in�uenced by eddy currents due to the fact
that only the rising edge of the DC pulse creates them. A short delay between
creating the magnetic �eld and sampling is usually enough to make sure the eddy
currents die out, before measurements are taken. [BC03], however states that
highly conductive materials like copper pose a problem even for DC magnetic
trackers. Here the induced currents exit longer than the duration of the systems
time delay.

A big problem with DC magnetic trackers is, that the sensors are sensitive to
interferences in a low frequency band. Such interferences are generated by main
power wiring and CRT monitors. [NMFP98] therefore suggests that the sampled
voltages should be synchronized with the main power supply and sampled with
twice the frequency. Averaging over two taps then cancels out the interference.
This of course results in an increase of the latency.

Range, Latency and Resolution

In magnetic tracking systems exists a trade-o¤ between the systems tracking
range, its latency and resolution. The problem is, that the magnetic �eld strength
falls o¤ with the cube of the distance to the transmitter. Resolution even is
proportional to the fourth power of the distance. This applies for the position
as well as for the orientation, which has been shown experimentally. Since the
magnetic �eld strength cannot be increased in�nitely, as was pointed out earlier,
the only chance to improve resolution with increasing distance to the transmitter
is �ltering. [BC03] tries to make this trade-o¤ more vivid using the following
calculation. Assuming that the resolution is su¢ cient at a distance r from the
transmitter and we want the same resolution at distance 2r: The noise at distance
2r is 16 times as high as at r. Using a rectangular �lter we would need 256 taps
to �lter the noise back to the original level. This would increase the latency
of the system by a factor of 128. This example exaggerates a bit, because with
more sophisticated �lters the number of taps needed can be reduced dramatically.
Nevertheless it illustrates the problem of the trade-o¤ very well.
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2.3 Optical Tracking

Optical tracking systems use cameras to obtain position information. Therefore,
objects/features are detected in the images taken by the cameras to infer their
3D coordinates. Most optical trackers are ouside-in systems, where the cameras
are placed on �xed positions and the user moves within a capture space covered
by the cameras. Inside-out systems, where the camera is �xated on the tracked
object (e.g. the users head or head mounted display), can hardly be used for
whole body motion capture and thus are not discussed here.

The coordinates of detected features are calculated within a world coordinate
system, which is de�ned with respect to the positions of the cameras. Furthermore
the world coordinate systems z-plane has to be aligned with the ground �oor. This
is usually done by localizing objects with known physical dimension and position
in the camera images [GF05].

Most commercially available optical motion capture systems use CCD (charge
coupled device) cameras for tracking. The number of cameras often is scalable, so
the tracking area can be custom sized to the application. For the tracking process
the cameras are placed in the environment providing di¤erent perspectives of the
tracked subject. At discrete points in time the cameras then capture images
from which the target�s position information can be inferred. To ensure that the
cameras all capture at the same time they have to be synchronized with high
precision. This is important, because even a small deviation can result in large
measurement errors.

For motion capture, usually systems with high frame rates are used, which
results in a high e¤ort for post-processing. Especially when multiple actors need
to be tracked and many cameras are used to avoid occlusion, processing large
amounts of data becomes an issue. This is even more crucial, when the motion
capture process has to run in real-time, which makes massive parallel processing
necessary. The required computational power in turn, along with the expenses
for the other hardware components, makes optical tracking systems relatively
expensive.

Optical tracking systems can be coarsely divided into two groups: marker-
based systems and marker-less systems. These, along with their properties, will
be discussed in the following sections

2.3.1 Marker-Based Optical Tracking Systems

Markers are objects that are placed on the actors body. The idea of using markers
is that important parts of the body are decorated with landmarks (the markers)
so they can easily be identi�ed on the captured images. Markers either emit light
(active markers) or re�ect light (passive markers).

The markers are usually �xated on a tight �tting suit or for cheaper systems
can be strapped on as presented in [Wei04] and used in the �rst version of our
suit.
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When working within the visible light spectrum problems arise with chang-
ing light conditions and optical noise. The solution to this problems is working
with infrared light. This has the advantages that arti�cial lights can�t cause dis-
turbance and tracking even works in dark environments. In order to work in
the infrared spectrum, cameras have to be equipped with infrared �lters. Ac-
tive markers in turn use infrared LEDs (light emitting diode), while for passive
markers infrared spotlights are used.

Active Optical Systems

As mentioned before active markers emit light using infrared-LEDs or other tech-
nologies. This has the advantage that they appear very bright on the captured
images. Also the identities of the markers can be relayed by having the markers
blink with di¤erent frequencies. This reduces post-processing time compared to
passive markers and ensures correct identi�cation of markers, for example after
they have been occluded for a longer time period. For the identi�cation to work
correctly, however, the markers have to be synchronized with the cameras, which
creates an additional e¤ort. Furthermore, active markers are relatively large and
need a power supply. This can lead to a setup, where the actor is hindered by
an uncomfortable suit and wires. Finally, active markers don�t emit an equal
amount of light into all directions. This can result in phenomenon, that markers
are not recognized correctly even though they are within the camera�s �eld of
view.

Passive Optical Systems

For passive markers mostly spheres coated with retrore�ective material are used.
Also, although not very common, bright patches on a dark suit and other objects
have been used in passive optical motion capture systems [GF05]. The main
advantages of passive markers are that they are untethered and - for the spheres
with some millimeters to centimeters in diameter - relatively small. This in turn
makes it easy to incorporate the markers into body suits, which give the actors
a maximum of freedom.

Passive markers re�ect incoming light back into the direction of the source.
Therefore (infrared)spotlights are placed in the direct vicinity of the cameras or
integrated in the cameras casing. So markers appear as bright spots in the images
captured by the cameras. During the alignment of the cameras and spotlights it
has to be made sure, that the �ashes of the spots don�t blind cameras. For that
reason usually the cameras are placed higher than the captured subject, so they
can be oriented downwards.

The Properties of Marker-Based Optical Tracking Systems

With optical tracking systems good update rates can be expected. This is not
only because the position information is transferred to the sensors(the cameras)
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by the speed of light; also cameras can capture with up to 2000 frames per
second [Vic07b]. To handle all the captured data the cameras often have built-in
processing capabilities to detect marker positions in the images. These are then
transferred via �rewire or Ethernet to the PC. Using such systems, markers of
only a few millimeters in diameter can be tracked with an accuracy in the sub-
millimeter domain. The resolution, however decreases with the distance of the
tracked object to the camera. Since the space between two points on the image
plane becomes smaller with increasing distance, resolving them spatially becomes
harder.

Another advantage of optical tracking systems is the freedom of movement
within a large capture area. As has been mentioned this area is scalable by adding
cameras. In today�s systems dozens or (theoretically) hundreds of cameras can
be combined to gather motion data.

Another merit is the capability of tracking multiple actors as well as objects
of any kind at the same time. Furthermore commercially available systems are
advertised to be easy to operate and calibrated within a few minutes [Pha07]. Vi-
brations, however, make occasional recalibration necessary to ensure high quality
motion capture. Additionally portable systems exist that can be used in almost
any (indoor) environment.

A major problem of optical tracking systems, however, is the occlusion of
markers, which temporarily makes body parts invisible to the system. For ex-
ample a squatting position can cover a lot of markers. Adding more cameras
only helps to a certain extent to overcome this problem, letting aside that with
additional cameras the e¤ort of post-processing increases. So poses sometimes
cannot be reconstructed correctly and for systems with passive markers identities
might not always be reconstructed correctly.

Finally optical tracking systems are relatively expensive compared to other
tracking technologies like mechanical tracking. For applications where high qual-
ity motion capture is needed it nevertheless often is the technology of choice.

2.4 Inertial Tracking

Inertial tracking systems use the physical phenomenon of mass inertia for calcu-
lating position and orientation information. Therefore, two types of sensors are
needed: gyroscopes and accelerometers. Both kinds of sensors measure the rate
at which they are moved. A gyroscope senses the angular velocity (i.e. the rate
of change in orientation), while an accelerometer measures the rate of change in
the translation velocity.

State-of-the-art rate-gyroscopes exploit the Coriolis e¤ect using a vibrating
resonator chip. The angle of orientation can then be determined through inte-
gration over time. To determine the three DOFs for orientation - yaw, pitch, and
roll - three gyroscopes are needed and assembled orthogonally.

Accelerometers on the other hand determine position information. The rate
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of change in translation velocity measured by the sensor has to be therefore
integrated twice over time. Then, as long as the start position is known, the
position in the world coordinate system can be calculated. To calculate the three-
dimensional position three accelerometers are used and ideally aligned with the
axes of the gyroscopes. Modern accelerometers use solid state technologies.

Inertial tracking systems like electromechanical systems are inside-in and
therefore many possible problems, like line of sight issues or in�uences of the
environment, are prevented in advance. Also no additional devices like cameras
or magnetic �eld generators have to be placed in or around the capture area.
Furthermore the range is only limited by the cables used to transfer the measure-
ments to a PC or in more recent systems by the wireless transmission technology
used. In addition the sensors are very small and thus can be easily attached
to a body suit that doesn�t hinder the actor in his movements. Finally inertial
tracking systems have very little jitter, which according to [BC03] is additionally
�ltered through the integration. Therefore, without the need of �ltering latency
is very small.

The main problem with inertial tracking systems, however, is that accumu-
lating errors - the so-called drift - create a deviation between real and measured
motion that increases over time. While the error of gyroscopes increases pro-
portional to the time with accelerometers the increase of error is proportional
to the square of the time. For many applications these errors or a recalibration
might not be acceptable. In [Sta02] the interested reader �nds a more detailed
discussion of drift rates of di¤erent inertial sensors.

2.5 The Tracker

The tracker used for our motion capture system is an iotracker, which is a passive
marker-based infrared-optical motion-tracking system. It was primarily built for
collaborative virtual reality and augmented reality applications, but is also well-
suited for motion capture. The original intention was to provide an a¤ordable
system for smaller educational institutions like secondary schools. Therefore the
components were selected to have good performance, while being relatively cheap.
For that reason commodity hardware is used to minimize the cost. Also calcu-
lations are performed on PC-Workstations. A short overview over the trackers
hard- and software is given in the following paragraphs, while a more detailed
illustration is given in [PK07] and [Pin07].

iotracker relies on 4-8 FireFlyMV cameras from Point Grey Research. They
produce monochrome images with a resolution of 640x480 at 60 frames/ second.
Attached to the cameras are LED-arrays which generate near-IR strobe lights
with a wavelength of below 850 nm. The cameras are synchronized with the
strobes and are equipped with a band-pass �lter to minimize distortion. From
the cameras the pictures are transferred to a PC-Workstation for processing.

The software framework, which calculates the 3D positions from the images
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is written entirely in C++ and supports parallel processing. Only for the camera
calibration a MATLAB toolbox is used. For the intended areas of application the two
main tasks, which are the feature segmentation and the projective reconstruction,
have to be performed not only in real time but with a latency of below about
40 ms. For motion capture that wouldn�t be necessary, however the immediate
inspection of the results facilitates the capturing process. Also improvement of
the program described in this thesis as well as parallelization might lead to a real
time motion capture system.

The performance of iotracker might be slightly better when used for motion
capture than depicted in [PK07] This is because there the targets (clusters of
markers, with �xed distances to each other) have to be identi�ed, which is not
necessary for motion capture. However, the measured accuracy of �5mm and the
jitter of less than 0:05mm and 0:02� (in the center of the capture area) remains
the same.

2.6 Inverse Kinematics

Inverse kinematics (IK) is a technique that was originally developed for robotics
applications. Later it was adopted for use in animation and motion capture
and now plays a key role in these �elds. IK is used to control the movement
of linkages consisting of rigid parts connected by rotational and/or translational
joints. In robotics this is usually a mechanical arm that is connected by some 1
DOF joints. The task of IK is now to set the rotations/translations of the joints
in a way that the tip of the arm - the so-called end-e¤ector - is placed at a desired
position. In the following, however, only kinematic chains with rotational joints
are considered, because translational joints are not needed for our intent.

For animation purposes hierarchical skeletons are modeled to resemble the real
skeleton of the animated subject. Such a skeleton model can contain more than
hundred DOFs, which are hard to control by an animator (if not performance
animation is used). The skeleton, however, can be seen as a collection of linkages
called kinematic chains and connected by a common root. These linkages each
have their own end-e¤ector(e.g. a hand) and therefore IK can be used to control
the joint-angles (e.g. shoulder and elbow).

Another kinematics method is forward kinematics. As opposed to inverse
kinematics, forward kinematics uses the known joint angles to �nd the position
of the end-e¤ector.

2.6.1 Problem De�nition of Forward Kinematics

The problem of forward kinematics can be more mathematically de�ned using
the following notation: v = (q1; ::; qn; t1; :::; tn) is a status vector containing the
rotation parameters qi for the ith joint and the translations resulting from the
length of the ith section of the kinematic chain. Function f(v) then returns the
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position and orientation G of the end-e¤ector. If qi and ti is given for every link
then the resulting G is always unique.

2.6.2 Problem De�nition of Inverse Kinematics

The inverse kinematics problem can be de�ned as �nding the rotations q such
that the given rotation and position G of the end-e¤ector equals f(v). In other
words �nd q where

f(v) =

nY
i=1

Ai(vi) = G where Ai(vi) =
�
R(qi) ti
0 1

�
and G; Ai(vi) 2 R4x4

R(qi) is a 3 by 3 rotation matrix created from the angular values stored in
qi. Ai is a 4 by 4 transformation matrix that for each link holds the rotation
and translation. In case the inverse kinematics problem is solved correctly mul-
tiplying these transformation matrices starting at the end-e¤ector results in the
transformation matrix given by G:Ideally the angles q can be calculated by simply
inverting function f to f�1; which unfortunately most of the time is not possible.

The end-e¤ector has 6 DOFs (3 rotational and 3 translational) depending on
how much DOFs the joints of the kinematic chain are having altogether DOF (q)
the IK problem is said to be:

� well posed if DOF (q) = 6

� under-constrained if DOF (q) > 6 and

� over-constrained if DOF (q) < 6

2.6.3 Classi�cation of IK Algorithms

IK Algorithms can be coarsely divided into analytical and numerical algorithms.
With analytical algorithms it can be further distinguished between closed-form
and algebraic elimination methods. Closed-form methods �nd the rotations of the
joints by evaluating closed-form equations. These methods only work with very
simple well posed and over-constrained problems. In case the problem is modeled
using polynomial equations, which are at least in part of order higher than four
or contain multiple variables, no closed-form solution exists. Then algebraic
elimination is used. Despite the fact that the roots of high-order polynomials
have to be found numerically, methods based on algebraic elimination are still
considered analytic.

The advantages of analytical methods is their computational e¢ ciency and
that they are relatively robust in the vicinity of singularities, which cannot be
guaranteed for numerical algorithms.

Numerical methods use an initial guess for the joint angles to iteratively
approximate the solution. [TGB00] distinguishes between three basic approaches
of numerical algorithms.
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� The �rst approach models the problem as a system of nonlinear equations:

f(v)�G = 0 where f(v) again is the forward kinematics mapping function
and rotation and position of the end-e¤ector is given by G. The solution to
the IK problem is given by the roots of the system. These are found by linear
approximation employing the Newton-Raphson method. The problem with
this algorithm is, that it only converges slow if at all in case the equations
are highly nonlinear. In variations of this algorithm f(v) is not seen as
homogeneous transformation, but as e.g. a screw motion [TGB00].

� Alternatively the IK problem can be expressed as a di¤erential equation.
By integration of the joint velocities the joint angles can be calculated.

� The third group of algorithms tries to formulate a scalar potential function
P (v) that expresses the error between G and f(v) by:

P (v) = (f(v)�G)T � (f(v)�G)
P (v) is positive for all v and has a global minimum. The minimum can be
found by any optimization algorithm that takes general nonlinear functions
as an input (e.g. the nonlinear conjugate gradient method as described in
section 3.6)

2.7 Quaternions

They can be thougth of as a 4D-vector, as a complex number with three imag-
inary parts or as a combination of a 3D-vector with a scalar. In this work the
notation from [Hor87] is used denoting quaternions with a circle on top and their
components as follows.

�
q = q0 + iqx + jqy + kqz =

h�!
v ; s

i
= [(qx; qy; qz); q0] where qx; qy; qz; q0; s 2 R

and
�!
v is a 3D-vector

i; j and k have special properties:

i2 = �1; j2 = �1; k2 = �1 and

ij = k; jk = i; ki = j; ji = �k; kj = �i; ik = �j

Using the notation
h�!
v ; s

i
a 3D-vector can be easily expressed using a quater-

nion with
h�!
v ; 0

i
: Also a scalar can be written as [(0; 0; 0); s] :

The magnitude of a quaternion
�
q is




�q


 =qq20 + q2x + q2y + q2z : If the magni-
tude of a quaternion equals 1 it is called a unit quaternion. These are especially
useful, when it comes to describing rotations, as we will se later.
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The conjugate of a quaternion is de�ned as
�
q
�
= q0� iqx�jqy�kqz =

h�!
�v; s

i
and the inverse as

�
q
�1
=

�
q
�


�q




Given two quaternions p and q addition and subtraction are simply calculated
by applying the corresponding operations on the elements of the quaternions, i.e.

r + q =
h��!
v r +

�!
v q

�
; sr + sq

i
Multiplication, however, is a little bit more complicated. There are two ways

of viewing the products of two quaternions. The �rst is to use the representation
of quaternions as complex numbers. Here every possible combination of elements
of the two numbers is multiplied and added or subtracted depending on the prop-
erties of i; j and k:Since multiplications of these numbers are noncommutative
multiplication of quaternions is also not commutative.

A more concise view is that of expressing the product of two quaternions
as the multiplication of a 4x4 matrix with a 4D-vector. Therefore one of the
quaternions has to be expanded to an orthogonal 4x4 matrix. The product of
two quaternions then looks like this:

�
r
�
q =

2664
r0 �rx �ry �rz
rx r0 �rz ry
ry rz r0 �rx
rz �ry rx r0

3775 �q = R�q or

�
q
�
r =

2664
r0 �rx �ry �rz
rx r0 rz �ry
ry �rz r0 rx
rz ry �rx r0

3775 �q = _
R
�
q

It can be seen that the lower right 3x3 matrix of the second 4x4 matrix is the
transpose of the corresponding 3x3 matrix of the �rst 4x4 matrix. This shows
that the multiplication of quaternions is noncommutative.

The dot product of two quaternions is the product of the quaternions�s ele-
ments.

�
p � �q = p0q0 + pxqx + pyqy + pzqz

2.7.1 Special Properties of Quaternions

Quaternions have some special properties that will help later to derive other
calculation rules and algorithms. These properties will be denoted as QP with
the according number.

1. The expanded matrix of the conjugate of a quaternion is just the transpose
of the quaternions matrix (i.e.

��
q p = QT p).
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2. Since the expanded matrices of quaternions are orthogonal the product of
such a matrix with its transpose is diagonal:

QQT =
�
q � �qI; where I is the 4x4 identity matrix. Also �

q
��
q =

�
q � �q:

3. (
�
p
�
q) � �r = �

p � (�r�q
�
) , for proof see [Hor87] .

2.7.2 Rotation using Unit Quaternions

Unit-quaternions are one comfortable way - among many others -to describe
rotation. So, given a quaternion

�
r with purely imaginary components and a unit

quaternion
�
q the composite product

�
r
0
=

�
q
�
r
��
q has special properties. Viewing the

unit-quaternion
�
q in its vector-form

h�!
v ; s

i
it can in fact be proven that

�
r
0
is the

same vector that would result from rotating
�
r around axis

�!
v by the angle s:

The rotation described by a unit-quaternion can be easily transformed into a
rotation matrix. This is done by expanding

�
q into its matrix representation:

�
r
0
=

�
q
�
r
��
q = (Q

�
r)
��
q due to the multiplication rules equals

_

QT (Q
�
r) or

_

(QTQ)
�
r:

The product of
_

QT and Q can then be written as:

_

QTQ =

2664
�
q
�
q 0 0 0
0 (q20 + q

2
x � q2y � q2z) 2(qxqy � q0qz) 2(qxqz + q0qy)

0 2(qyqx + q0qz) (q20 � q2x + q2y � q2z) 2(qyqz � q0qx)
0 2(qxqz � q0qy) 2(qyqz + q0qx) (q20 � q2x � q2y + q2z)

3775
The lower-right 3x3 matrix is then the rotation matrix R that can be used

to rotate a vector r. The mathematical proof, that this relationship between
quaternions and matrices is true, can be found in [Hor87]. Also the formulas for
transforming a rotation matrix into a quaternion can be found there.

2.8 Matrices

This section presents some special properties and features of matrices, that will
be used later to explain the algorithms used. It is not intended as an introduction
to matrices. Thus, some understanding of matrices and its basic operations is
recommended.

2.8.1 Eigenvalues and Eigenvectors

Given a matrix A 2 Rnxn: A real value � is called the eigenvalue of A, if a vector
x 2 Rn; x 6= 0 exists, with Ax = �x. Then x is called an eigenvector of matrix A
with eigenvalue �.
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2.8.2 Determinant

A determinant is de�ned for every matrix A 2 Rnxn and denoted as det(A):

� For a 2x2 matrix A with

A =

�
a b
c d

�
, the determinant is de�ned as det(A) =

���� a b
c d

���� = ad� bc
� For A being a nxn matrix with n � 3

det(A) =
nX
j=1

(�1)1+j � a1+j � det(A1j) where A1j is the matrix that results

from the deletion of the �rst row and jth column of A.

2.8.3 Characteristic Polynomial

The characteristic polynomial pA of matrix A 2 Rnxn is de�ned as pA(�) =
det(A � �I), where I is the identity matrix of same dimension as A: Note that
the order of pA is n.

The roots of pA are the eigenvalues of A and the corresponding eigenvectors
can be calculated by solving the linear equation system (A� �I)x = 0:
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Chapter 3

Design

This chapter points out the design considerations for our skeleton parameteriza-
tion system. The �rst part of the following presents an analysis of the intended
purpose and goals of the system. Secondly an overview of the tasks necessary to
obtain a parameterized skeleton from optical marker data is given. In the sections
thereafter I describe in more detail the parts of the system as well as algorithms
used to implement the aforementioned tasks.

3.1 Overview

Figure 3.1 shows the tasks and their input/output data as it is passed through
the di¤erent stages. The tracker server is only shown as black box here. Please
refer to [Meh06] for more details on the tracking process of our system. The
design otherwise follows the general approach described in [KOF05], although
some modi�cations where made, as is described later.

3.2 The Goals of the System

As is pointed out in the chapters 1 and 2 a multitude of motion capture systems
exists for a variety of application areas. None of the systems, however, no matter
how sophisticated they are, can be used universally. Therefore it is important to
isolate the main purpose so the design can be created accordingly.

The motion capture system, being developed during this thesis, is intended
primarily for use in a research and teaching environment. On the one hand it is
intended to provide a testbed for sta¤ members to try out new algorithms and
methods. On the other hand students should be able to use it in their projects and
course work assignments (e.g. creating animations for small computer games).

The main design goals are therefore �exibility and a straightforward handling,
which enables the students to use the system with only very little instructions.
The �rst is achieved by using a modular structure with clearly speci�ed interfaces.

23
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Figure 3.1: Overview of the tasks and their input/output
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The latter is ensured by making the algorithms perform the operations automat-
ically, reducing the necessary user interaction to a minimum. Furthermore the
system adapts to di¤erent users without any additional e¤ort, like measurements
of the limbs. In addition there is no limitation to human motion capture; virtu-
ally any articulated structure can be captured, as long as it has a certain size and
the articulations can exercise the necessary degrees of freedom. This includes for
example puppets or animals (as long as they are convinced to stay in the capture
area and perform gym motions) These features, however, come with a price, as
presented in section 6.2.

The following sections describe the tasks depicted in 3.1 in more detail and
discuss the employed algorithms. Firstly section 3.3 explains, how a marker is
identi�ed over all frames. Then section 3.4 describes how the markers that are
placed on the same limb can be grouped/clustered together. After that section
3.5 presents a method to estimate the joint positions and re�ne their precision.
Finally, in section 3.8 the parameters of the skeleton model are calculated and
the pose of parameterized skeleton is inferred from the marker data.

3.3 Temporal Marker Correspondence

The input to the �rst stage comes from the tracker server. It consists of the three-
dimensional positions of the markers as they are recorded at discrete times during
the capture interval. Since we are capturing about 40 markers at a rate of 200Hz
this gathers to be a substantial amount of data. As pointed out in [Meh06]
a passive optical tracking system is used, which has the disadvantage of not
relaying identities with the markers. Thus for every frame a list of positions
exits with no information whatsoever which marker they belong to. This brings
us to the �rst task to be performed, which is �nding the physical markers that
the clouds of 3D points, stored for every frame, belong to. In other words, the
temporal correspondence between the points has to be found. For this matter
numerous algorithms have been developed throughout the years. Mostly only
two consecutive frames are used and the points of the later frame are assigned
to those of the earlier. Some systems, however, employ more complex techniques
using for example marker trajectories trying to predict the marker position in
the next frame. Some of these algorithms use methods applied on the camera�s
image plane, while others solely are performed on 3D coordinates.

[GF05] for example suggests an image space algorithm that employs intensity
and distance measurements to determine which point of two succeeding frames are
to be matched. For every possible match of points of the two succeeding frames
the di¤erence of the intensity values, obtained by the cameras, and the distance
is measured. From these measurements a value is calculated, that determines the
"strength" by which the two points belong to the same marker. The values are
fed into a strength matrix which then is used in turn to determine the optimal
matches.
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[RL02] on the other hand uses a technique called Lagrangian relaxation
to estimate the association of 2D positions in the camera�s image plane with
the markers. With this method both spatial and temporal correspondence are
obtained. The drawback of Lagrangian relaxation, however, is that it is not
guaranteed to come up with the optimal solution, but delivers an estimate of
how close it is to the optimum.

In our system we are basically using the method as described in [KOF05].
It operates solely on the 3D points generated by the tracker from the camera�s
captured image data. Relying on the fact that markers usually move very little
between successive frames, identities are traced from frame to frame. Since the
tracker captures at a relatively high rate and is not intended to track people
performing very fast motions (e.g. sports or �ghting animation) this method can
be expected to work well. As long as no marker disappears due to occlusion it
provides a fast and simple solution to the association problem. How the algorithm
responds to lost markers is described later on in this section. The following steps
are executed to obtain the temporal correspondence of the markers:

1. The 3D positions of the �rst frame are labeled with unique identities.

2. The points of the second frame are matched with the points of the �rst
frame. Therefore two sets of points are created for which a one-to-one
mapping has to be found. For this reason the Euclidean distance between
all points of the two sets is calculated.

3. Then the two points with the smallest distance are marked as a match and
removed from the sets.

4. Repeat 3. until the two sets are empty.

5. For all matches assign the point of the second frame the id of the point of
the �rst frame.

6. Make the second frame the �rst frame. If the second frame isn�t the last
frame, make the next frame the second and go to 2.

As mentioned before, this method works very well for perfect data and for the
tests with arti�cial data. Note that this has only been tried for test purposes. To
prevent unnecessary errors in the test data the ids of the markers are retrieved
from the csm �le. See section 4.12 for details on the csm �le format. In practice,
however, markers get lost and reappear during the tracking process, due to tem-
poral occlusion by clothing or limbs. Even worse the precision of the marker�s
3D position-reconstruction might seriously su¤er shortly before they disappear/
after they reappear. This results in markers �jumping around�, thus changing
their position dramatically in consecutive frames. Since for our tracking system
that doesn�t occur too often, these problematic markers are simply discarded.
Therefore a threshold, which marks the maximum a marker is allowed to move
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from one frame to another, is used. Markers that "jump" over this threshold
are then ignored for a short period of time. The threshold as well as the time
delay, which shouldn�t be more than a couple of frames, depend on the tracking
system used. To retrieve the identity of a reappeared marker, however, a more
sophisticated algorithm has to be applied.

A marker that reappears, after it has been occluded, is treated as if it were
a new marker in the �rst frame and assigned a new identity. Thus, one physical
marker on the actor�s body suit can have multiple identities over the captured
time span. As long as that only happens to very few markers it could very
well be ignored and every identity treated as if it were a marker on the tracked
subject. For more markers disappearing/reappearing, however, this results in a
degradation of the following stages�s accuracy. Therefore an algorithm is needed
to �nd all those identities, that belong to one marker, and merge them into a
single data set.

For this purpose [KOF05] suggests a method that exploits the fact, that the
tracked subject often moves through the same poses. When two frames are iden-
ti�ed to show the same pose and two markers have similar coordinates, it is very
likely that they correspond to the same physical marker. The pose, however, is
subjected to global rotation and translation, which has to be removed before the
positional data of markers can be compared.

To accomplish this task [KOF05] introduces a data structure they callMarker
Set. Each of the n virtual markers, for which an identity is found, has its own
Marker Set. AMarker Set contains the data of all the frames for which the virtual
marker exists and thus holds all information available about it as well as the
relationships to other markers. I will use a nomenclature consistent with [KOF05]
in this section, thus naming the Marker Set of the ith marker pi. These n Marker
Sets are now to be grouped together into the n0 physical markers. n0 is assumed
as the maximum number of markers captured in a single frame. So, if no frame
exists, that contains all markers, the algorithm will evidently fail to deliver a
correct result.

To determine which Marker Sets should be grouped and which shouldn�t
a distance function is created. This distance function allows us later to use a
clustering algorithm on the Marker Sets. The distance Dij between a Marker Set
pi and a Marker Set pj according to [KOF05] is de�ned as the minimum distance
between markers i and j over all pairs of poses, that is

Dij = min
a2pi;b2pj

kmi;a �Amj;bk

Here a and b denote single frames of the Marker Sets pi and pj . mi;ais the
position of marker i in frame a, while A is the matrix that performs the global
rotation and translation necessary to align the pose in frame b with that in frame
a. So, for all frames of pi, the distance to all frames of pj is calculated one frame
at each side at a time. Then the minimum of those distances is considered the
distance between the Marker Sets.

To be able to calculate these distance values one assumption has to be made.
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It is crucial that theMarker Sets have at least three markers in common, of which
the identity is already known. Otherwise A and thus the rotation and translation
can not be estimated, which, however, should never happen anyway. If there are
less than three markers, it would mean in our case, that the tracker has lost more
than 90 percent of the markers. That in turn would mean serious trouble for the
other stages as well, because they are depending on continuous data.

Since each Marker Set has hundreds or even thousands of frames, it is evident
that calculating the distance between all pairs of frames of two sets generates a
gigantic computational overhead. Due to the fact that there are no huge changes
of the pose in consecutive frames, especially at high capture rates, the calculations
can be speed up signi�cantly. [KOF05] suggests using only sample frames from
everyMarker Set. Starting from the sample frames that had the smallest distance,
neighboring frames can be evaluated as well. Results prove that this optimization
produces the same matches as the original algorithm.

Furthermore it has to be taken into account that Marker Sets which overlap
can not belong to the same physical marker. Thus calculating the distance of
Marker Sets that have frames in common is avoided setting it to the highest
possible value.

Finally, having calculated the distance values of all pairs of Marker Sets,
a clustering algorithm can be applied to group the sets together, producing n0

markers. For that purpose Spectral Clustering is used, which is explained in more
detail in 3.4.2.

3.4 Clustering Markers

3.4.1 Concept

After the 3D- trajectories of all markers have been found, the next step is to
determine which markers are placed on the same limb and group them together.
This can be done either manually or automatically. In the manual case the user
selects the marker-limb association for the �rst frame. Due to the fact that the
temporal correspondence between the captured markers is known through the
trajectories these associations apply for all captured frames.

This manual labeling task, however, requires an extra e¤ort and user inter-
vention, which is not welcomed in most systems. Therefore automatic methods
for partitioning markers have been developed, like those suggested in [KOF05]
[SPB+98] [GF05]. These algorithms are all using measurements of the distance
between markers to determine marker-limb associations. The basic idea is, to as-
sume that a limb of a human body is an (almost) rigid object. Thus two markers
placed on a single limb are never to move apart from or closer to each other, but
always remain at a constant distance. In practice, however, the markers of one
segment will move relative to each other due to skin or muscle movements, an
ill-�tting body suit, as described in 4.14, or measurement errors of the tracking
system. So the algorithm has to determine whether the movement comes from
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errors or - in case it is large enough- from the bend or twist motion of a joint.
As a measurement of the distances�alteration, the variance of the distance over
all frames is used. Therefore �rst the average distance avgDistij between all
markers i and j, where i 6= j; has to be calculated.

avgDistij =
1
nf
�
X
nf

p
(mxi �mxj)2 + (myi �myj)2 + (mzi �mzj)2

Here nf is the number of all frames and mxi;myi and mzi are the coordinates
of the marker i respectively. The variance of the distance varDistij between i
and j can then be determined by

varDistij =
1
nf
�
X
nf

(
p
(mxi �mxj)2 + (myi �myj)2 + (mzi �mzj)2�avgDistij)2

Using these variances a cost matrix W is created, where the elements Wij are
depending on the variance varDistij . W is symmetric and elements in the major
diagonal are zero.

Section 3.4.2 explains how the cost matrix is used by a Clustering algorithm,
namely Spectral Clustering, to calculate a marker-limb association. The number
of clusters (the number of sections/limbs of the articulated model) that are to
be created has to be speci�ed by the user. In a di¤erent approach the number
of clusters could be inferred automatically by clustering multiple times with a
di¤erent number of clusters. The number of clusters is increased until the maxi-
mum variances of distance within one cluster are below a certain threshold. This
value, however, is di¢ cult to determine and changes with tracking precision and
marker con�guration. [ZMP04] suggests a method that evaluates the eigenvec-
tors, created during the clustering process, to determine the number of clusters.
This, however, is computationally not trivial and additionally increases the risk
of creating a wrong cluster.

For example the torso section is a di¢ cult matter, since the model generated
by our method is supposed to have only two clusters - one for the hip and one for
the breast/back. Dividing that section into more clusters might result in prob-
lems with the joint estimation (e.g. only two markers for two adjacent clusters
would make it impossible to make a useful prediction of the joint between them).
We, therefore, have the user specify the number of limbs the tracked subject is
supposed to have.

Besides Spectral Clustering other algorithms, using variance of distance, have
been proposed, e.g. in [RL02] [SPB+98]. These for example are using a threshold
to group the markers together. All marker-pairs that have an entry in the cost
matrix below that threshold are considered being on the same segment. The
threshold is set to a value so that exactly the user-speci�ed number of clusters
are being produced. This straight-forward approach is decisively faster than
Spectral Clustering from a computational point of view. Compared to the process
of �nding joint positions as described in 3.5 , however, the expense is relatively
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small. Therefore, in our system the Spectral Clustering algorithm is favored over
the fast approach, which might not perform very well under harsh conditions.

As was pointed out in 3.3 poses and thus distances between markers placed on
di¤erent limbs do not change much in consecutive frames. Therefore, sampling
can be used again to reduce the number of frames that have to be considered
and thus to speed up the calculations. [KOF05] suggests to take samples every
half second with a jitter of some thirtieths of a second. The jitter ensures that
periodic errors only have little in�uence on the outcome of the clustering. Sam-
pling changes the number of frames nf in the formulas above to nsf , the number
of sampled frames, but otherwise leaves the algorithm intact producing correct
clusters. For good data even as little as ten frames are enough for the clustering,
as is shown in 5.

To ensure optimal clustering and remove the e¤ect of sporadic jumps of mark-
ers the system described in [KOF05] samples and clusters multiple times. The
solution that has the smallest standard deviation of distance within its clusters
is chosen to be the optimal. For our system this variation does not seem to be
necessary, because jumping markers are already �ltered at an earlier time. So
markers that move more than a certain threshold from one frame to another are
simply discarded as is described in 3.3.

3.4.2 Spectral Clustering

According to [JMF99] "clustering is the unsupervised classi�cation of patterns
(observations, data items, or feature vectors) into groups (clusters)". Clustering is
used in a variety of disciplines, like image segmentation, information retrieval and
pattern/ object recognition/ classi�cation. What is considered a good clustering
in one of these �elds, however, is not necessarily one in another application.
Therefore lots of clustering algorithms exist for di¤erent application areas.

A class of methods, which has been developed and improved in the last couple
of years, is Spectral Clustering. These methods rely on the spectral analysis of a
distance(or a¢ nity) matrix .Distance here has to be understood not only as the
Euclidean distance, but is used in a broader sense as a measurement of similarity
between two objects. As mentioned before, this matrix in our case is created
using the variance of distance between markers over time. To analyze the matrix,
concepts from spectral graph theory are used. Graph theory derives properties
of a graph from the graphs a¢ nity matrix or more precise from the Laplacian of
the matrix. The main idea of Spectral Clustering, thus, is to �rst transform the
clustering problem into a graph partitioning problem using the data objects as
nodes and the a¢ nities as edge weights. Then the spectral graph theory is used
to change the representation of the objects, that ought to be clustered, so cluster-
properties are ampli�ed. After that the alternate representation is clustered using
some clustering algorithm (usually k-means is used). The results of the clustering
algorithm �nally are re-converted into the original form of the data.

Spectral Clustering has many advantages over other clustering algorithms. So
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it is easy to implement, because many linear algebra packages and libraries exist,
that aid the programmer. Furthermore Spectral Clustering delivers better results
than most traditional algorithms on non-trivial clustering problems. Additionally
it doesn�t require restarts with di¤erent parameterization and can�t get trapped
in local minima. Parameterization of the a¢ nity matrix, although, might be an
issue, as will be pointed out later in this chapter.

Nevertheless, it is not easy to see at �rst glance why Spectral Clustering
actually works. Therefore, three approaches have been developed to explain the
algorithm: graph cut (e.g. in [YS03]), random walk (e.g. in [MS00]), and
perturbation theory (e.g. in [ZMP04] and [NJW02]). These di¤erent points of
view are summed up in [vL06]. I consider the graph cut approach the most
straight-forward and therefore used it in this thesis to derive Spectral Clustering.
To keep things simple, however, some mathematical proofs are left aside and can
be looked up in [vL06] or [YS03].

The next two sections present the graph notation used and the de�nition and
properties of the Laplacian. Then follows the graph cut approach and �nally the
clustering algorithm itself is presented.

Graph Notation and the Similarity Graph

Before spectral graph theory can be used for clustering the data objects/points
S = fs1; s2; :::; sng have to be mapped on a so-called similarity graph. Di¤er-
ent graphs exist for that matter, like "�neighborhood graph, k-nearest neighbor
graph or fully connected graph. The main purpose of such a graph is to repre-
sent local neighborhood relationships. For our system a fully connected graph
is used. Here all vertices vi and vj are connected and weighed with the value
wij as it is produced by the similarity function. The graph used is represented
by G = (V;W ) with the set of vertices V = fv1;v2; :::::vng and the adjacency
matrix W . The adjacency matrix contains the edge weight between all vertices.
Weight between two vertices vi and vj is denoted with wij and given by the

Gaussian similarity function wij = e
�distance2(si;sj)

2�2 :Furthermore wij = wji for all
i; j = 1:::n making G an undirected graph. The degree of a vertex vi is given by

di =
nP
j=1
wij ,which is the sum of W�s ith row. The degree matrix D is a diagonal

matrix with values d1; d2; ::::dn on the diagonal.
A partition is a set fA1; A2::::Akg of subsets of V , where Ai \ Aj = ? for

i 6= j and A1 [ A2::: [ Ak = V . For simpli�cation the set of indices fijvi 2 Ajg
is denoted as i 2 A. The complement V nAi of a subset Ai � V is denoted as �Ai.
The number of vertices contained in Ai is jAij. Another measure for the size of
Ai incorporating the weights of its edges is given by vol(Ai) =

P
i2Ai

di.

The transpose of a vector f or a Matrix M is denoted by fT and MT . Fur-
thermore the constant one vector (1; 1; ::::1) is speci�ed by {·. Similarly the vector
{Ai ; has 1 on the ith place, if vi 2 Ai and 0 otherwise.
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The Laplacian

As mentioned before Spectral Clustering uses the Laplacian matrix of a graph
for its analysis. In the literature multiple de�nitions of the Laplacian exist and
therefore one has to be careful of which to use and how they are denoted (see
[vL06] for a discussion on that matter). Starting with a graph as described in
the last section the unnormalized Laplacian L is de�ned as

L = D �W

The properties of L, which are relevant for Spectral Clustering, are then

1. For all vectors f 2 Rn

fTLf = fTDf � fTWf =
nP
i=1
dif

2
i �

nP
i;j=1

wijfifj =

= 1
2

 
nP
i=1
dif

2
i � 2

nP
i;j=1

wijfifj +
nP
j=1
djf

2
j

!
=

= 1
2

nP
i;j=1

wij (fi � fj)2

2. L is symmetric and positive semi-de�nite (Since W is symmetric and D is
a diagonal matrix , L has to be symmetric too. fTLf � 0 characterizes a
positive semi-de�nite matrix, which easily proofs true, when looking at 1.)

3. L has the constant one vector { as eigenvector, which has 0 as eigenvalue.
(can be easily seen in 1.)

4. L has n non-negative real eigenvalues 0 = �1 � �2 � ::: � �n (Due to
2. and 3. L is a Hermitian matrix, which is why the �nite-dimensional
spectral theorem can be applied resulting in property 4)

The normalized Laplacian Lsym is here de�ned as

Lsym = D
�1=2LD�1=2

Note that in the algorithm later we will apply Lsym2 = I �Lsym instead (i.e.
Lsym2 = D�1=2WD�1=2 ). For the analysis of Spectral Clustering in the next
sections Lsym is examined, because it is easier to handle. The subtraction from
the identity matrix, however, doesn�t change much for the algorithm. Only the
eigenvalues � of the matrix change to 1 � �. For more details on this matter
please refer to [KOF05]

The Laplacian as de�ned above has the following speci�c properties that will
be used in the next sections to derive Spectral Clustering.
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1. For all vectors f 2 Rn

fTLsymf =
1
2

nP
i;j=1

wij

�
fip
di
�

fjp
dj

�2
2. 0 is an eigenvalue of Lsym with eigenvector D1=2{.

3. Lsym is positive semi-de�nite

4. Lsym has n positive real eigenvalues 0 = �1 � �2 � ::: � �n
5. Lsym as L is a Hermitian matrix.

The properties of the normalized Laplacian can be proven similarly to those
of the unnormalized one, as can be seen in [vL06].

The Graph Cut Approach

This section shows how Spectral Clustering can be derived as an approximation
to graph partitioning problems. When a coherent graph is split up into multiple
partitions, two objectives have to be considered. First of all edges between two
di¤erent groups(those that are "cut") are supposed to have low weight. Secondly,
edges within a partition should have high weight. Given a graph G = (V;W ) for
these objectives the following measurement functions can be de�ned.

For A and B being two subsets of V and A \ B = ? we de�ne cut(A;B) =P
i2A;j2B

wij .

The task of �nding the partition fA1; A2::::Akg that has minimal edge weight
between groups is called mincut problem. It can be written as

minimize cut(A1; A2::::Ak) =
kP
i=1
cut(Ai; �Ai)

The best solution to the mincut problem, as it is written here, however, would
be to separate single vertices from the graph. This is usually not desirable, be-
cause the groups are expected to have "reasonable" size. Therefore the objective
function has been extended. In [vL06] two functions are suggested: RatioCut
and Ncut. Here Ncut is used, which is de�ned as

Ncut(A1; A2::::Ak) =
kP
i=1

cut(Ai; �Ai)
vol(Ai)

. where

 
vol(Ai) =

P
i2Ai

di

!
When Ncut is minimized the division by the sum of edgeweights, that exert

from a partition, ensures that larger groups don�t have a disadvantage over small
groups. The mincut problem, however, formulated in this way, is NP hard. In
the following it is shown how Spectral Clustering is derived as a relaxation of this
problem, which makes use of the Rayleight-Ritz theorem.
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The Rayleigh-Ritz Theorem The theorem works with Hermitian matrices,
which can be complex as well as real. In our case the matrices contain only
real numbers and are symmetric, which makes them a special case of Hermitian
matrices. Only these are considered here.

According to [Mey00] given a Hermitian matrix A 2 Rnxn A`s eigenvectors
are the critical points (vectors) of the "Rayleigh quotient". The eigenvalues of
these vectors are the values at the critical points. The quotient is a real function
R : Rn �! R with

R(x) = xTAx
xT x

with kxk 6= 0

Consequentially the minima of this function are determined by the eigenvec-
tors with the smallest eigenvalues. A minimization problem, which is brought into
the form of the theorem, thus, can easily be solved using eigendecomposition.

Approximation of Ncut This sub-section presents a way to reformulate the
Ncut-problem using the Laplacian so the Rayleigh-Ritz theorem can be used to
approximate it. At �rst it is shown, how Spectral Clustering works for k = 2
partitions. Vertices can, therefore, only be in partition A or in partition �A The
goal therefore is to optimize the problem

min
A�V

Ncut(A; �A).

The �rst step is to �nd an indicator vector f; so that min
A�V

c � Ncut(A; �A) =

min
A�V

fTLf (c being some constant)

For this reason f is de�ned as

fi =
� r

vol( �A)
vol(A)

if i2A

�
q

vol(A)

vol( �A)
if i2 �A

Using the unnormalized Laplacian the Ncut function can be derived

fTLsymf =
nP

i;j=1
wij (fi � fj)2 =

=
P

i2A;j2 �A
wij

�q
vol( �A)
vol(A) +

q
vol(A)
vol( �A)

�2
+

P
j2A;i2 �A

wij

�
�
q

vol( �A)
vol(A) �

q
vol(A)
vol( �A)

�2
=

since cut(A; �A) =
P

i2A;j2 �A
wij we can combine the sums (of the now calculated

squares)
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2cut(A; �A)
�
vol( �A)
vol(A) +

vol(A)
vol( �A)

+ 2
�
= 2cut(A; �A)

�
vol( �A)+vol(A)

vol(A) + vol(A)+vol( �A)
vol( �A)

�
=

2vol(V )cut(A; �A)
�

1
vol(A) +

1
vol( �A)

�
= 2vol(V )Ncut(A; �A)

In Addition we can proof, that Df is orthogonal to the constant one vector {

by

(Df)T {
n

=
P

i=1
difi =

P
i2A
di

�q
vol( �A)
vol(A)

�
+
P
i2 �A
di

�
�
q

vol(A)
vol( �A)

�
=

which, due to the de�nition of vol() can be reduced to

vol(A)

�q
vol( �A)
vol(A)

�
�vol( �A)

�q
vol(A)
vol( �A)

�
=
p
vol(A)

p
vol( �A)�

p
vol( �A)

p
vol(A) =

0

Thus Df?{ is true. Similarly fTDf = vol(V ) can be proven.

By plugging things together, the minimization of Ncut can be written down
as

min
A
fTLf where Df?{ and fTDf = vol(V )

This is a discrete optimization problem, since the entries of the solution vector
f can only have the two particular values. The minimization problem then is
relaxed by ignoring the condition of discrete values for allowing f 2 Rn. This,
although making an exact solution impossible, results in a problem that is much
easier to solve.

minfTLf where Df?{ and fTDf = vol(V )

Then g = D
1
2 f is created, where g 2 Rn;and f is substituted. The orthogonality-

condition and the property of gT g = vol(V ) can be determined from the condi-
tions of f . The problem then can be rewritten as

mingTD�
1
2LD�

1
2 g where g?D 1

2 { and gT g = fTDf = vol(V )

So, having brought the problem into the form of the Rayleight-Ritz theorem
it can be solved with the eigenvectors of Lsym:Since D�

1
2LD�

1
2 = Lsym, we know

from 3.4.2 that D
1
2 { is the �rst eigenvector of Lsym.So the vector g, which is the

eigenvector with the second smallest eigenvalue is the solution to the problem. To
approximate the minimum of Ncut the solution vector g, which has real values,
serves as an indicator for the discrete problem of partitioning the graph. In case
of k = 2 this is done simply by assigning vi to A if gi � 0 and �A elsewise.
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Approximation of Ncut for k�2 The approximation of Ncut for k � 2 can
be similarly derived as in the case of k = 2. At �rst, indicator vectors have to be
de�ned for every partition. These k vectors are denoted hi = (h1;i; h2;i; ::::hn;i)
with

hi;j =
� 1p

vol(Ai)
if i2Aj

0 otherwise

Then the matrix H 2 Rnxk is de�ned as the matrix, that contains the vectors
hi as columns. Since the vertices are assigned exclusively to one partition hi is
orthonormal to hj for i 6= j (all h vectors having unit length): Therefore HTH =
I. Furthermore HTLH is a square matrix 2 Rkxk and hTi Lhi = (HTLH)ii,
where ii indexes the diagonal elements. This can be easily checked considering
the rules for matrix multiplication.

Similarly to the last sub-section it can be shown that

hTi Lhi = 2cut(Ai;
�Ai)=vol(Ai)

Instead of hi; hl is written in the following so the indices can�t be confused

hTl Lhl =
nP

i;j=1
wij (hi;l � hj;l)2 =

=
P

i2Ai;j2 �Ai
wij

�
1p

vol(Ai)

�2
+

P
j2Ai;i2 �Ai

wij

�
� 1p

vol(Ai)

�2
=

= 2cut(Ai; �Ai)=vol(Ai)

For the next step of the reformulation we are using a construction from linear
algebra called a trace. The trace of a square matrix is the sum of its diagonal
elements. It is denoted here as Tr. The trace of a matrix equals the sum of the
matrix�s eigenvalues. So Ncut is reformulated as

Ncut(A1; A2::::Ak)

k

= 1
2

X
i=1

hTi Lhi

k

= 1
2

X
i=1

(HTLH)ii =
1
2Tr(H

TLH)

To solve trace minimization problems a special version of the Rayleigh-Ritz
theorem can be used. According to the theorem the matrix H that contains the
eigenvectors with the smallest eigenvalues is the optimal solution to the problem.
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min
A1;A2::::Ak

Tr(HTLH) subject to HTDH = I (one can check the de�nition of

H for proof on the latter)

Again the discreteness condition is relaxed allowing the matrix H to contain
arbitrary real values. Then a matrix U = D

1
2H is created substituting H, which

leads to

min
A1;A2::::Ak

Tr(UTD�
1
2LD�

1
2U) where UTU = HTD

1
2
TD

1
2H = HTDH = I

After calculating U; discrete partitioning information has to be retrieved from
U `s real-valued entries. The heuristic used for k = 2 cannot be used any more,
since it only partitions into two clusters. Thus another method has to be found.
Considering the de�nition of H, we know that a value in the ith row of the
jth column vector of U should be relatively high if vi in Ai and low if not.
Viewing the rows of U as points in multidimensional space vertices belonging
to one Ai can then be observed to have a greater distance to the other points
on the ith coordinate axis. Therefore a clustering algorithm can be used to
�nd corresponding points/rows. As is pointed out in the next section k-means
clustering is used to perform this task.

To use a full-grown clustering algorithm within another clustering algorithm
doesn�t seem to make much sense. For many clustering problems, however, espe-
cially when clusters are not convex or don�t have Gaussian distribution, Spectral
Clustering performs much better than traditional algorithms. This can be seen
in the experiments conducted in [NJW02].

The Spectral Clustering Algorithm

This section sums up the tasks that have to be performed for Spectral Cluster-
ing. Our system basically implements the algorithm described in [NJW02] and
extends it with the local scale of analysis suggested in [ZMP04]. The notation
here, though, is slightly di¤erent, so it matches with the last sections. Changes
according to the extension are marked by brackets like these: "hi". The goal is
to cluster a set of n objects/points S = fs1; s2; :::; sng in Rl into k clusters. To
achieve that, the following steps have to be taken:

1. Calculate the a¢ nity matrixW 2 Rn�n with the elements wij = e
�distance2(si;sj)

2�2

hwij = e
�distance2(si;sj)

�i�j i for i 6= j and wii = 0. distance(si; sj) denotes some
distance function between si and sj . � is a global scaling parameter and
has to be either speci�ed by the user or determined by clustering multiple
times and selecting the value which delivers the best result.
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�i, however, is a local parameter, which describes the scale factor of si�s
neighborhood. Distances are thus scaled di¤erently, depending on the point
they have been observed from. distance(si; sj) is therefore scaled by �i to
distance(si;sj)

�i
, when in the context of si, and to

distance(sj ;si)
�j

, in the context

of sj . Squaring the distance then results in
distance(si;sj)distance(sj ;si)

�i�j
, which

�nally produces the formula hWij = e

�distance2(si;sj)
�i�j i given above.

The scale factor is dependent on the local statistics of si�s neighbors making
�i = distance(si; sm) as used in [ZMP04] a simple solution. The points are
being sorted by distance to si. Here sm is themth point in the neighborhood
of si. In [ZMP04] m = 7 is used, which seems to work well for their
applications. In our case, however, that is probably not the optimal choice.
Since we have substantially less points to cluster we have to choose a lower
number for m.

2. Calculate, Lsym2, the normalized a¢ nity matrix of W . First create the

diagonal degree matrix D with the elements Dii =
nP
j=1
wij , which is the

sum of W s ith rows, and Dij = 0 for i 6= j (of course, for D being a
diagonal matrix). Use D and W to calculate the normalized a¢ nity matrix
Lsym2 = D

� 1
2WD�

1
2 , e.g.:

L =

264
1p
D11

0 0

0 1p
D22

0

0 0 1p
D33

375W
264

1p
D11

0 0

0 1p
D22

0

0 0 1p
D33

375
3. Perform eigenvalue decomposition on matrix Lsym2 and calculate the eigen-
vectors x1;x2;:::; xk for the k largest positive eigenvalues (k being the number
of clusters). For this purpose Jacobi decomposition is used, which provides
a relatively slow but reliable iterative method to �nd eigenvectors- and val-
ues. Use these eigenvectors to form the Matrix X = [x1;x2;:::; xk] 2 Rn�k
by making the eigenvectors columns of X.

4. Normalize the rows of X to obtain matrix Y , where Yij =
Xijs
kP
j=1

X2
ij

This normalization is necessary if some of the vertices in the similarity
graph have particularly low degree compared to the other vertices ( i.e. the
edges going from a vertex of one partition to other partitions have very low
weight.). In that case the entries in the eigenvectors are very small and
thus for such a vector have to be scaled up. For a formal discussion of that
matter please refer to [vL06].

5. Treat each normalized row of Y as a point in k�dimensional space Rk
and cluster these points to form k clusters. Here we are using k-means
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clustering as suggested in [NJW02], but any other clustering algorithm, that
is capable of minimizing a formal objective function, can be used as well.
The objective function of k-means is the means squared distance between
the data points and so-called centers, which are points in Rk representing
the middle of a cluster. The most popular heuristic method, that performs
k-means clustering is the generalized Lloyd�s algorithm. This algorithm,
however, gets stuck in local minima easily, which is why our system uses a
hybrid approach. Adding a heuristic that, based on local search, swaps in
and out centers of the existing solution, helps escaping local minima.

6. Evaluate the result of Lloyd�s algorithm. If the ith row of Y is assigned to
cluster c, then si is to be assigned to cluster c.

For a more detailed theoretical analysis and examples of clusterings done by
Spectral Clustering please refer to [vL06] and [NJW02]. In Addition [ZMP04]
holds further improvements to the algorithm. [KMN+02b] and [KMN+02a] o¤er
a more detailed description as well as an implementation of k-means clustering.

3.5 Estimating the Topology and Joint Positions

After having clustered the markers into groups for every segment of our skeleton
model, the topology and the joint positions can be estimated. These two tasks
are very closely related; in fact we are using the same method to infer them. To
decide whether or not a joint is placed between two segments and, in case it is, to
determine where to site it, a cost function is needed. Two assumptions concerning
our model are necessary for this cost function to work. First of all human joints in
our model are approximated by ball joints. This of course is a harsh idealization,
especially for joints like the knee, where the center is moving about between
one and two centimeters. For our purpose, however, this approximation is close
enough. The second assumption, which has to be made, is that markers stay at
the same place relative to the bones. This, however, might not be entirely true
either, - skin movement and muscle deformation introduce variations - but we
expect the overall error to be negligible.

Consider the case of only two segments A and B for which the assumptions
apply. They are thus connected by an idealized rotational joint AB. A marker
�xated on segment B of this structure can now be observed to always be at the
same distance to AB. In fact it is moving around on a sphere centered at the
joint position, when A is used as a �xed reference. Assuming that AB is unknown
this information can be used to estimate the joints position. An optimal joint
between the two segments, thus, is placed on a position where the distance to
the markers of the adjacent segments remain the same over the whole capture
time. In other words, the variance of distance over time between the joint and
the markers has to be minimized in order to optimize the joint position. The
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variance of distance thus can be used as cost function. The minimization is done
using a non linear optimization algorithm, which is explained in more detail later
in this section.

This leaves open the question of how many markers are needed to perform
the optimization. The problem can be visualized using intersecting spheres. The
markers m1;m2; ::: on A and B are assumed to have the distances r1; r2; ::: to the
joint AB. Considering one marker m1 the joint position has to be somewhere
on the sphere that has center m1and radius r1. Adding a second marker m2

the joint is restricted to the circle created by the intersection of the markers
spheres. Three markers in turn produce two points, where the joint can possibly
be. Finally four markers enable us to determine the joint position exactly. Both
segments, however, have to have at least one marker.

Using the variance as a cost function the topology of the skeleton model can be
inferred. The value produced by the cost function for a (virtual) joint between
two segments is called joint cost. To obtain the topology we now look at the
segments and joints as being a graph, where the segments are the nodes and the
joints are the edges. The joint costs is considered the edge weight. Therefore,
the joint cost for all possible pairs of segments has to be calculated. The optimal
skeleton then is the minimum spanning tree of the graph, which is inferred by
the algorithm of Prim [Sed84]. This gives us a hierarchical tree as representation
of the skeleton model.

Minimizing the joint cost for every pair of segments, however, is computation-
ally very costly, which is why [KOF05] suggests an optimization for that matter.
Instead of calculating the variance of distance over all frames only sample frames
are used. Furthermore decreasing the precision by which joint positions are op-
timized can be reduced for that matter, reducing computation time even more.

3.5.1 The Global Minimization Function and its Derivative

The core of all these calculations is the cost function, a sum of variances, which
has to be minimized. Therefore the function and its properties and parts are
described here in more detail using a bottom-up approach. The variance is always
evaluated between the markers of two clusters ba and bb, which in turn contain
jbaj and jbbj markers. Only one joint c - between ba and bb - is considered at a time
and its position in frame f (of Nf total frames) cf . Furthermore the coordinates
of cf are xcf ; ycf and zcf , which are the variables of the cost function. Note that
these coordinates have to be optimized for every frame in order to minimize the
function. The position of marker n at frame f is given by mn;f and the number
of frames for which a position of mn exists jmnj. xn;f ; yn;f and zn;f denote the
coordinates of marker n at frame f .

Starting with the basic building block of the function, the average distance
between a marker and the current joint is



3.5. ESTIMATING THE TOPOLOGY AND JOINT POSITIONS 41

�d(c;mn) =
1

jmnj

jmnjP
f=1

p
(xcf � xn;f )2 + (ycf � yn;f )2 + (zcf � zn;f )2

The variance in distance can then be written as

�(c;mn) =
1

jmnj

jmnjP
f=1

�p
(xcf � xn;f )2 + (ycf � yn;f )2 + :::� �d(c;mn)

�2
Finally the joint cost is the sum of all the involved markers�s variances divided

by the number of markers:

jc(a; b) = 1
jbaj+jbbj

P
mn2ba[mn2bb

�(c;mn) +
�
� � �d(c;mn)

�
The expression in brackets is suggested by [KOF05] to avoid that the al-

gorithm �nds the trivial solution, which would be placing the joint in�nitely
far away. A joint at in�nity has a variance of zero, as does the optimal solu-
tion. Adding a penalty to the joint cost, that increases with the distance to the
markers, thus, avoids this problem. � here serves as a weight determining the
importance of the additional term. The penalty, however, is only important for
the determination of the topology. When the position of a joint is to be found be-
tween segments, that are really connected, the algorithm is very unlikely to drift
o¤ to in�nity. Good initialization values for the optimization also help avoiding
this error as will be pointed out later.

Now that the joint cost has been de�ned the next step is to minimize it.
Since the function depends nonlinearly on the parameters, the joint positions,
sophisticated algorithms like Levenberg-Marquard or nonlinear gradient descent
have to be used. According to [KOF05] these two iterative algorithms have
about the same performance, in both, speed and accuracy. Since the nonlinear
conjugate gradient is a little bit more straight-forward to implement, it is used
in our system. Crucial for this algorithm, however, is a good initial guess for
the joint positions. This becomes obvious considering the fact, that the joint
positions are found recursively. So start values close to the optimum require far
less iterations and avoid being trapped in local minima. For the estimation of the
topology the center of gravity of two segment�s markers is used as initialization
for their in between joint. Once the topology is inferred a local optimization
algorithm ensures good initialization for the precise calculation of the joints�s
positions.

The nonlinear conjugate gradient method, as the name suggests, uses gradient
information for the optimization. Therefore the joint cost�s �rst derivation has
to be calculated for all parameters. First �d(c;mn) is derived, since it is needed
for the partial derivation of the whole joint cost function. The derivation is
demonstrated only for xcf , but is almost the same for ycf and zcf .

�d0xcf (c;mn) =

 
1

jmnj

jmnjP
f=1

p
(xcf � xn;f )2 + (ycf � yn;f )2 + (zcf � zn;f )2

!0
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We are di¤erentiating by xcf for a certain f , which is only contained in a single
summand of the sum give above Therefore the other summands are constants and
their derivation 0. �d0xcf (c;mn) can thus be written as

=
�

1
jmnj

p
(xcf � xn;f )2 + (ycf � yn;f )2 + (zcf � zn;f )2

�0
= 1

jmnj�
p
(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

� (xcf � xn;f )

Then likewise the other coordinates can be calculated

�d0ycf (c;mn) =
1

jmnj�
p
(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

� (ycf � yn;f )

and

�d0zcf (c;mn) =
1

jmnj�
p
(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

� (zcf � zn;f )

The derivation of the variance then can be written as

�0xcf (c;mn) =

 
1

jmnj

jmnjP
f=1

�p
(xcf � xn;f )2 + (ycf � yn;f )2 + (zcf � zn;f )2 � �d(c;mn)

�2!0

=

�
1

jmnj

�p
(xc1 � xn;1)2 + (yc1 � yn;1)2 + (zc1 � zn;1)2 � �d(c;mn)

�2�0
+ :::

+
�

1
jmnj

�p
(xcf � xn;f )2 + (ycf � yn;f )2 + (zcf � zn;f )2 � �d(c;mn)

�2�0
+ :::

+

�
1

jmnj

�p
(xcmn � xn;mn)

2 + (ycmn � yn;mn)
2 + (zcmn � zn;mn)

2 � �d(c;mn)
�2�0

= � 2
jmnj

�p
(xc1 � xn;1)2 + (yc1 � yn;1)2 + (zc1 � zn;1)2 � �d(c;mn)

�
� �d0(c;mn)�

:::
+ 2
jmnj

�p
(xcf � xn;f )2 + (ycf � yn;f )2 + (zcf � zn;f )2 � �d(c;mn)

�
�

�
�

1p
(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

� (xcf � xn;f )� �d0(c;mn)

�
� :::

� 2
jmnj

�p
(xcmn � xn;mn)

2 + (ycmn � yn;mn)
2 + (zcmn � zn;mn)

2 � �d(c;mn)
�
�

�d0(c;mn)

because of the de�nition of �d(c;m) we can reduce to

= 2
jmnj

�p
(xcf � xn;f )2 + (ycf � yn;f )2 + (zcf � zn;f )2 � �d(c;mn)

�
�

� 1p
(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

� (xcf � xn;f )
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= 2
jmnj

�
1� �d(c;m)p

(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

�
� (xcf � xn;f )

Then similarly for ycf

�0ycf (c;mn) =
2

jmnj

�
1� �d(c;m)p

(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

�
� (ycf � yn;f )

and for zcf

�0zcf (c;mn) =
2

jmnj

�
1� �d(c;m)p

(xcf�xn;f )2+(ycf�yn;f )2+(zcf�zn;f )2

�
� (zcf � zn;f )

Finally the derivation of the joint cost can be constructed by di¤erentiating
the parts

jc0xcf (a; b) =
1

jbaj+jbbj
P

mn2ba[mn2bb
�0xcf (c;mn) +

h
� � �d0xcf (c;mn)

i
jc0ycf (a; b) =

1
jbaj+jbbj

P
mn2ba[mn2bb

�0ycf (c;mn) +
h
� � �d0ycf (c;mn)

i
jc0zcf (a; b) =

1
jbaj+jbbj

P
mn2ba[mn2bb

�0zcf (c;mn) +
h
� � �d0zcf (c;mn)

i
Using this formulas it is possible to di¤erentiate by the joint coordinates xcf ,

ycf and zcf for all frames f .

3.5.2 The Local Optimization Function and its Derivative

As is suggested earlier, the results of the topology estimation can be used to �nd
good initialization values for the �nal joint calculation. This is an improvement to
the algorithm described in [KOF05], where no speci�c initialization procedure is
suggested. As an input my method uses the average distance �dold(c;mn) between
the joint c and the markers mn, as it was found during the calculation of the
topology. Then, for every frame(local), the initial position of the joint is set
to a value where the square of di¤erence between the actual and the average
distance is minimized. Again nonlinear conjugate gradient method is used for
the minimization and thus the cost function and its derivation are presented
here.

Since the optimization is performed frame by frame and joint by joint only
three parameters xc, yc and zc are needed for the joint coordinates. Before the
local optimization, they are initialized to the center of gravity of the segments�s
b0as and b

0
bsmarkers. The coordinates of the nth marker at the frame to be treated

are given by xn,yn and zn.

ljc(a; b) = 1
jbaj+jbbj

P
mn2ba[mn2bb

�p
(xc� xn)2 + (yc� :::� �dold(c;mn)

�2



44 CHAPTER 3. DESIGN

�dold(c;mn) is considered a constant for the di¤erentiation, therefore the deriv-
ative of the local joint cost function is:

ljc0xc(a; b) =
2

jbaj+jbbj
P

mn2ba[mn2bb

��
1� �dold(c;mn)p

(xc�xn)2+(yc�:::

�
� (xc� xn)

�

Before implementing this approach I tried triangulation (lateration to be pre-
cise; see [Val06] for more details), to generate good initialization values. As was
pointed out earlier at least four markers m1;m2::: and their distances to the joint
r1; r2::: are needed to precisely specify the joints�s position. Using trilateration
the joint can easily be inferred. In theory and as well in most test case it works
very well. For frames, however, where the distance between two markers mx and
my of di¤erent segments is bigger than the sum of rx and ry, problems arise.
Since the spheres drawn by r1; r2::: are required to intersect at least at one point
the algorithm �nds no useful solution. This can be �xed by continually increas-
ing the radii until an intersection can be calculated, which however drastically
decreases accuracy and thus makes the whole optimization pointless. The big
advantage of the lateration method over the least squares approach is that it has
a closed form solution. Least squares, however, proves more stable, especially for
measured data, and is therefore used.

3.6 Nonlinear Conjugate Gradient Method

The nonlinear conjugate gradient Method(NLCG) is an algorithm that can be
used to iteratively solve optimization problems. To make the method applicable
the problem has to be expressed as a function f(x). This function as well as
the gradient f 0(x) has to be continuous. In our case NLCG is used to �nd the
minimum of the function and only this case will be considered here, although
calculating the maximum is not very di¤erent.

The description of NLCG here is kept as short as possible and much of the
mathematical background is therefore left away. This chapter is only intended
to present the idea of NLCG. For mathematical proofs and more details on this
topic please refer to [She94] and [PTVF92]. Before getting started, nevertheless,
some terms have to be de�ned. Then the steepest descent and the conjugate
direction/gradient methods are presented to show the initial concepts, from which
NLCG is derived.

The Gradient

Given a function f(x), where x is a n- dimensional point. The gradient of f is
de�ned as the vector holding the partial derivatives, thus:



3.6. NONLINEAR CONJUGATE GRADIENT METHOD 45

f 0(x) = rf(x) =

26664
@
@x1
f(x)

@
@x2
f(x)

:::
@
@xn
f(x)

37775
For a point x the gradient gives the direction of greatest increase.

The Quadratic Form

A quadratic form according to [She94] is de�ned as "a scalar, quadratic function
of a vector with the form

f(x) = 1
2x
TAx� bTx+ c, where A is a matrix, x and b are vectors and c is a

scalar constant."

As shown in [She94] the gradient is then f 0(x) = Ax� b

Linear Independence

In linear algebra a set of vectors fv1; v2; v3; :::::vng is called linearly independent
if no vector of the set can be constructed by a linear combination of the other
vectors. In other words a1 � v1 + a2 � v2 + :::: + an � vn = 0 for all scalars
a1; a2; :::an:For a more detailed description of linear independence please refer
to [Mey00].

Line Search

Given a function f(x), where x is a n- dimensional point and r is a n- dimensional
vector. Starting from a point x0 line search is set to �nd the � for which f(x0 +
� � r) takes on a minimum value. For NLCG some di¤erent algorithms have
been suggested, e.g. Brent�s algorithm by Press et al. in [PTVF92] or Newton-
Raphson/Secant by Shewchuk in [She94]. In our system Brent�s algorithm is
implemented, because it spares us from having to deal with the second order
derivative of the function described in section 3.5.1. For the rest there is not
much di¤erence between the two algorithms. Both iteratively try to �nd at least
a local minimum and are limited in precision only by round-o¤ errors, which is
more then su¢ cient. Shewchuk in [She94] even suggests to use a fast and inexact
line search in order to save calculation time that can better be invested at another
point in the NLCG algorithm.

3.6.1 The Method of Steepest Descent

The method of steepest descent, which is sometimes also called gradient descent
method uses gradient information to �nd the (local) minimum of a function.
Starting at an arbitrary point x(0) this approach always follows the direction of
the steepest descent to iteratively �nd the minimum.
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Since the direction of the greatest increase is given by the gradient the so-
called residual r(i) = �f 0(x(i)) describes the direction of steepest descent. The
algorithm therefore takes a step in the direction of r(i). For fast convergence
it is now important to set the step size � to a value that evaluates to a mini-
mum of f . The function can now be seen as a one-dimensional function f(�).
Since a continuous function has its extremes at a value where the �rst deriva-
tive is 0, we are setting @

@�f(x(i)) equal to 0. Following [She94] it can be shown
that @@�f(x(i)) = f 0(x(i))

T @
@�x(i) = f 0(x(i))

T r(i�1). The two vectors f 0(x(i)) T

and r(i�1) have to be orthogonal to equal 0. This fact can be used as a criterion
to �nd the optimal �. In case the function f(x) is given in quadratic form and
the matrix A is known there is a closed form solution for �. Otherwise � has
to be found with line search. The � calculated is then used to �nd the next
position by x(i+1) = x(i)+�r(i): Then again the residual r(i+1) and the new � can
be evaluated for x(i+1): This is then repeated until some convergence criterion is
reached. Figure 3.2 shows the convergence of the steepest descent method �nding
the minimum of a paraboloid.

To sum things up the steepest descent algorithm looks like this:

� Choose some starting point x(0)

� While the number of iterations is under some limit

�Calculate the residual r(i) at current position x(i) : r(i) = �f 0(x(i))
�Find � that minimizes f(x(i) + �r(i))

�Compute new position x(i+1) = x(i) + �r(i)

3.6.2 Conjugate Directions

From �gure 3.2 we can see that steepest descent takes a lot of steps into the same
directions. This of course can not be considered optimal. Instead we would want
to take exactly one step into each of the orthogonal directions and then arrive
at the minimum. Unfortunately �nding the minimum this way like depicted in
�gure 3.3 is impossible without knowing the minimum in advance. This now is
where conjugacy and the method of conjugate directions comes into play.

Considering two vectors d(i) and d(j) and a square matrix A: The criterion,
which has to be satis�ed in order to make the vectors A-orthogonal or conjugate
is:

dT(i)Ad(j) = 0

For a n- dimensional quadratic form n conjugate search directions d(i) are
needed to �nd the minimum in n steps. The mathematical proof for this and
the algorithm for calculating such a set of conjugate directions - the so-called
conjugate Gram�Schmidt process - can be found in [She94].
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Figure 3.2: Topview of a paraboloid and the steps taken by the steepest descent
method (zig-zag line) from [She94]

Figure 3.3: Topview of a paraboloid with an optimal(and unfortunatly impossi-
ble) two-step �nding of the minimum
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To calculate the search directions the Gram-Schmidt conjugation needs n
linearly independent vectors as an input. This vectors are then made conjugate.
The drawback of this approach however is that Gram-Schmidt conjugation has
to keep all directions in memory and needs O(n3) operations, which might be
a rather large number for a lot of optimization problems. In our case, for the
optimization of the joint positions, n is a four-, or for larger motion-sequences
even a �ve-�gured, number. These problems are �nally solved in the conjugate
gradient algorithm, which is a special case of the conjugate direction method.

3.6.3 Conjugate Gradients

For the conjugate gradient method the residuals are used to calculate the search
directions with the Gram-Schmidt conjugation. A residual is always orthogonal
to the previous search directions as well as the previous residuals. Therefore
residuals meet the requirement of being linearly independent. For the mathe-
matical proof please refer to [She94]. The conjugate gradient method thus is
a combination of steepest descent and conjugate direction inheriting the best
properties from both algorithms. Therefore only n steps are needed to �nd the
minimum. In addition, due to the special orthogonality-attributes described at
the beginning of the section, the search directions of a step can be calculated us-
ing only the residual of the current and the previous step. This deprives us from
having to store all the residuals and incredibly speeds up the process. According
to [She94] for quadric forms "space complexity and time complexity per iteration
are reduced to O(m), where m is the number of nonzero entries of A":

3.6.4 The Method of Conjugate Gradients for General Continu-
ous Functions

As already indicated before the conjugate gradient method can be used to �nd
the minimum of any continuous function f(x) as long as the gradient f 0(x) can
be computed and is then usually referred to as the nonlinear conjugate gradient
method. The only di¤erence to having a quadratic form is that it might not
converge as nicely or in some cases at all to the minimum point. After the
description of the algorithm in the next section follows a more detailed analysis
of the convergence. This is important to understand why it is not possible to
calculate a perfect solution to our minimization problem and the joint positions
can not be found in a single step. Therefore measures like the local optimization
described in section 3.5.2 are taken to further improve the results. Also it is
essential to �nd the skeleton�s parameters and �t the skeleton back to the data
to eliminate outliers in the joints�positions.

The Algorithm of the Nonlinear Conjugate Gradient Method

Starting at some point x0 the �rst search direction d0 is initialized to the residual
r0 = �f 0(x0). Then the NLCG-algorithm looks like this:
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1. Minimize f(x) along the search direction of di starting at xi. In other words
�nd the �i that minimizes f(xi + �i � di):

2. Calculate the new position xi+1 = xi + �i � di:

3. Compute the new residual as the negation of the gradient at the new posi-
tion: ri+1 = �f 0(xi+1):

4. Now the residual ri+1 has to be made conjugate to the old search directions
using the Gram-Schmidt method. The new search direction is produced
using the formula: di+1 = ri+1+�i+1�di. For �i+1 multiple choices are sug-
gested throughout the literature. The most prominent ones are Hestenes-
Stiefel, Fletcher-Reeves and Polak-Ribiere. The later two are considered
the more reliable and therefore used in our system. For an evaluation of
the results produced by the two algorithms please refer to chapter 5. A dis-
cussion on the convergence of NLCG using the two methods can be found
in the next section. Fletcher-Reeves(FR) and Polak-Ribiere(PR) use the
following formulas to calculate �i+1:

� FR: �i+1 =
rTi+1�ri+1
rTi �ri

� PR: �i+1 =
rTi+1�(ri+1�ri)

rTi �ri

5. Go to 1 if the maximum number of iterations is not reached yet and the
di¤erence between x+1 and xi is larger than a certain threshold.

Convergence of NLCG

The main problem with minimizing general functions is, that they might have
multiple local minima. In that case the NLCG method may converge towards
one of these instead of the global minimum. Even worse, if the function has no
lower bound, the algorithm might not even �nd a local minimum. For that reason
it is advisable to start with a position close to the global minimum in case that
is possible. In our system relatively good initialization values can be produced
as described in section 3.5.2. In general Fletcher-Reeves is said to converge if
the start position is close to the minimum, while Polak-Ribiere converges faster,
while it might in some rare worst cases get stuck.

Another problem is, that the search directions easily loose conjugacy due to
round-o¤ errors and when the minimized function is di¤erent from a quadratic
function. Shewchuk therefore suggests in [She94] to restart the algorithm every n
iterations (i.e. resetting the search direction to the current residual as it is done
in the initialization step described in the previous section). In our case, however,
this is not possible since processing of even n iterations would take an enormous
computational e¤ort.
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For most cases the precision of the calculated minimum position nevertheless
is more than su¢ cient. Additionally, for the calculation of the joint positions in
our system, the results are further improved using inverse kinematics as described
in chapter 2.6.

3.7 Closed-Form Solution of Absolute Orientation Us-
ing Unit Quaternions

The method presented in this section was developed by Horn and is described
in more detail in [Hor87]. It is intended to transform one coordinate system
to another given measurements of the same points in both systems. Initially
the method was developed for the photogrammetric problem of matching two
pictures taken from di¤erent perspectives. Therefore besides orientation and
translation also a scale parameter can be determined. For our purposes, which
are skeleton parameterization and a hierarchical inverse kinematics algorithm
scale is not needed and is therefore left away.

As the heading suggests the algorithm uses unit quaternions to represent rota-
tions. Therefore at least some understanding of quaternions and their properties
is advised. A short introduction to quaternions is given in section 2.7.

Since the algorithm is intended for measuremet-data (like our marker-positions)
we are not expecting to �nd a transformation that perfectly matches the two co-
ordinate systems. The method instead minimizes the square of residual errors.
Numerous other algorithms like NLCG (section 3.6) can be used to achieve this
goal. The advantage of the method described here is that it �nds a closed-form
solution instead of iteratively approximating the minimum. Thus it is faster,
more robust and one doesn�t have to think about �nding a start value. Also the
number of the measurements incorporated in the calculations is arbirtrary as long
as there is more then two.

3.7.1 Finding the Optimal Translation and Rotation

Given are two coordinate systems called left and rigth here as well as measured
coordinates of n points. The coordinates are denoted frl;ig and frr;ig : The trans-
formation that is to be found can be written as rr = R(rl) + r0, where r0 is the
translation and R is the rotation matrix. Since there can�t be found a perfect
transformation, unless for perfect data, there will almost always be a residual
error ei = rr;i�R(rl;i)� r0: The sum over all points of the squares of these errors

is now to be minimized. Thus we are looking for the minimum of
nX
i=1

keik2 :
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3.7.2 The Translation

To �nd the translation �rst the averages of all measurements in both coordinte
systems - the so-called centroids - have to be calculated. They are de�ned as:

_
r l =

1
n

nX
i=1

rl;i and
_
rr =

1
n

nX
i=1

rr;i

The measured points now can be expressed relative to the centroid by r0l;i =
rl;i �

_
r l, r0r;i = rr;i �

_
rrand the translation by r00 = r0 �

_
rr +R(r

0
l;i)

The sum of squared errors, that we want to minimize, can now be written as

nX
i=1

keik2 : =
nX
i=1




r0r;i �R(r0l;i)� r00


2
This term can also be written as

nX
i=1




r0r;i �R(r0l;i)


2 � 2r00 nX
i=1

(r0r;i �R(r0l;i)) + n kr00k
2

Since the measurements are relative to the centroids the middle term is 0.
This leaves

nX
i=1




r0r;i �R(r0l;i)


2 + n kr00k2
This means that the error is minimized where r00 = 0: Thus r0 =

_
rr �R(

_
r l):

In other words the translation is optimally de�ned as the di¤erence of the right
centroid and the rotated left centroid. This di¤erence can be dealt with, after
the rotation has been determined.

3.7.3 The Rotation

To �nd the optimal rotation the error-term is expanded further. ( n kr00k
2 is

eliminated since it will be 0 in the end)

nX
i=1




r0r;i


2 � 2 nX
i=1

r0r;i �R(r0l;i) +
nX
i=1




R(r0l;i)


2
Since the �rst and the third term of the expression don�t change with the

rotation only the second term is left to optimize. The sign of the second term
is negativ, which leaves as the following term to maximize in order to �nd the
optimal rotation R:
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nX
i=1

r0r;i �R(r0l;i)

Now the problem is reformulated using quaternions. Knowing that the ro-
tation can be performed by multiplication with a unit quaternion and that the
dot-product is commutative the expression can be rewritten as

nX
i=1

(
�
q
�
r
0
l;i
�
q
�
) � �r

0
r;i

. The goal now is to �nd the
�
q for which the term is maximized. Following

QP3 from 2.7 the former expression is equivalent to

nX
i=1

(
�
q
�
r
0
l;i) � (

�
r
0
r;i
�
q) , where expansion of

�
r
0
l;i and

�
r
0
r;i to 4x4 matrices leads to

nX
i=1

(
_
R
T

l;i
�
q) � (Rr;i

�
q) and

nX
i=1

�
q
T _
R
T

l;iRr;i
�
q which equals

�
q
T

 
nX
i=1

_
R
T

l;iRr;i

!
�
q

By de�ning a 4x4 matrix N =
nX
i=1

Ni where Ni =
_
R
T

l;iRr;ithe problem can be

�nally written as:

�
q
T
N
�
q

3.7.4 Calculating matrix N

The matrix N is calculated from sums and products of the n measurement�s

coordinates.(
�
r
0
l;i = ((x

0
l;i; y

0
l;i; z

0
l;i); 0) and

�
r
0
r;i = ((x

0
r;i; y

0
r;i; z

0
r;i); 0)) For reasons of

e¢ ciency and clarity a helper-matrix M can be used. It is a 3x3 matrix and
de�ned as

M =

24 Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

35

where
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Sxx =
nX
i=1

x0l;ix
0
r;i and Sxy =

nX
i=1

x0l;iy
0
r;i and so forth.

The elements of matrixN can then be computed as sums of elements of matrix
M .

N =

2664
(Sxx + Syy + Szz) Syz � Szy Szx � Sxz Sxy � Syx

Syz � Szy (Sxx � Syy � Szz) Sxy + Syx Szx + Sxz
Szx � Sxz Sxy + Syx (�Sxx + Syy � Szz) Syz + Szy
Sxy � Syx Szx + Sxz Syz + Szy (�Sxx � Syy + Szz)
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3.7.5 Finding the optimal
�
q

Now that the problem has been de�ned as
�
q
T
N
�
q the next step is to �nd the unit

quaternion
�
q, which maximizes it. Horn proofs in [Hor87] that

�
q
T
N
�
q is maximal,

when
�
q is set to the eigenvector of N; which has the greatest eigenvalue. There-

fore, �rst the greatest eigenvalue has to be found and then the corresponding
eigenvector can be computed. The eigenvalues are the roots of the character-
istic polynomial of N . The coe¢ cients of the characteristic polynomial can be
calculated by det(N � �I) as described in 2.8.

The characteristic polynomial of N is of fourth order - a so-called quartic
- since N is a 4x4 matrix. The roots of a quartic can be found closed-form
using Ferrari�s method. Substituting the largest positive � the linear equation
system (N � �I)x = 0 is solved to get the eigenvector corresponding to �: This
is done using Gaussian elimination, which brings (N ��I) into echelon form and
then calculates the components of the vector starting at the lowest row and then
substitutes back into the upper rows.

Finally the optimal
�
q can be derived from the eigenvector. It is the unit

quaternion, that points in the same direction as the eigenvector. From the quater-
nion then the rotation matrix can be calculated using the formulas presented in
2.7.

3.7.6 The Algorithm

Putting the things from the last sub-sections together the algorithm can be
summed up in the following steps.

1. Calculate the centroids of the two coordinate system
_
rl and

_
rras the average

of the measured points.

2. Express the measured coordinates relative to the centroids r0l;i = rl;i �
_
r l,

r0r;i = rr;i �
_
rr
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3. From r0l;i and, r
0
r;i calculate the matrix M

4. Use the elements of M to produce N .

5. Compute the determinant det(N��I) in order to retrieve the characteristic
polynomial of N

6. Find the roots of the characteristic polynomial and select the largest positive
eigenvalue �:

7. Replace � in (N � �I)x = 0 and solve for vector x:

8. Calculate unit quaternion
�
q that points in the same direction as x:

9. Derive rotation matrix R from
�
q:

10. Finally compute the translation vector r0 =
_
rr �R(

_
r l):

11. A measured coordinate rl;i from the left coordinate system can now be
transformed to the right coordinate system using the expression R(

_
r l;i �_

rl) + r0

Note that the rotation R can also be performed using quaternion products or
another representation. In our system, however, for transformations 4x4 matrices
are used and thus have been emphasized here.

3.7.7 Minimum Spanning Tree

After calculating an approximate cost of putting a joint between two limbs, the
next step is to decide which joints are to be kept for the �nal skeleton structure.
This problem can be easily modeled using an undirected weighted graph(like the
one displayed in �gure 3.4. Here the limbs are the nodes and joints are the edges.
The joint cost calculated in the previous step is used as edge weight. Since the
edge weight has to be stored for all possible pairs of nodes an adjacency matrix
is the best choice to store them.

Our goal now is to sort out all edges/joints, which have a joint cost too high
to coincide with a joint on the real skeleton. At the same time it is important
that the skeleton remains connected. This goal can be achieved by �nding the
minimum spanning tree (MST) of the graph described before. An MST of a
weighted graph is de�ned as the set of edges that connects all nodes, so that
the sum of the edge-weights is at least as small as the sum of edge-weights of
any other set of edges that connects all nodes. For the calculation of MSTs
many algorithms have been developed. Most of them are based on the property
that with any partitioning of a graph into two sets the MST always contains the
shortest of the edges, which connect one set with the other. This can be easily
proven as is demonstrated in [Sed84].
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Figure 3.4: Example of an undirected weighted graph

Using the above property an MST can be generated by starting at an arbitrary
node and connecting it to the node, which it is closest to. In other words the
edge with the smallest weight, which connects nodes already in the tree to nodes
outside the tree is added to the MST. In case two or more edges are having the
same weight one can be chosen arbitrarily, thus di¤erent MSTs can be generated.
In our case, however, the MST should be unique and ideally coincide with the
real skeleton.

For our system the algorithm of Prim is used to �nd the MST, because it
is the method of choice for dense graphs. The computation time of the MST,
however, is very short compared to the rest of the calculations. Since the number
of nodes won�t be much more than 15 for a human skeleton the algorithm used is
not decisive for the overall performance of the system. In an additional step, after
the algorithm of Prim has been executed, the root of the MST is set to the node
with the most connected edges. This is done to improve the result of the inverse
kinematics routine later on. The advantages of this approach are described in
section 2.6.

The algorithm of Prim

The algorithm of Prim is illustrated in �gure 3.5. It works on three sets of nodes:
tree-nodes(circles), fringe-nodes(squares) and invisible nodes(grey circles). Each
node in the fringe has a so-called priority, which is the smallest edge cost of the
edges connecting the fringe-node to the tree. At the start of the algorithm one
node is added to the tree, which can be arbitrarily selected. The rest of the nodes
are marked invisible, while the fringe is empty. The following steps are executed
"number of nodes -1" times:

1. Any invisible nodes which are connected to the node last added to the tree
are added to the fringe.
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Figure 3.5: Steps taken by the algorithm of Prim in a sample graph display-
ing the di¤erent node types throughout the process tree-nodes(circles), fringe-
nodes(squares) and invisible nodes(grey circles). Edges added to the MST are
shown red/blue.

2. For each node in the fringe check, whether it has edges connecting it to the
last node. If there are edges and if the edge-weight of one of these edges is
smaller than the nodes priority, make the smallest edge-weight priority.

3. Find the edge that connects the tree-set with the fringe-set that has mini-
mum weight. In other words we are looking for the edge between the tree
and the node in the fringe with the lowest priority value.

4. Add the edge and the fringe-node at the end of the edge to the tree(and
out of the fringe-set).

Finally the tree-set contains all nodes and a set of edges, where a path between
any pair of nodes exists. The other sets should be empty at this point.

3.8 Fitting a Rigid Body Skeleton

After the joint positions have been optimized two joints connected to a single
limb can still vary in distance. Thus the length of a limb is not �xed. This
phenomenon can have a number of reasons:

� Noise in the input data due to the inaccuracy of the tracking system
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� NLCG algorithm gets trapped in local minimum for some frames or other
errors introduced by the iterative nature of this algorithm.

� Human joints are only approximate rotational joints.

� Markers move relative to the limb due to skin motion etc.

Then again, it might be important to have a skeleton with rigid segments,
because

� It provides a base, which can be used to compute an estimate for the noise
contained in the data.

� For performance animation usually a rigid body skeleton is needed.

� For performance animation smooth movements are more important then
inaccuracies, which might be introduced for some frames.

� Parameterization allows measurement of error.

� It for many cases improves accuracy.

For this reasons a skeleton with rigid segments is created and then �tted back
to the data.

3.8.1 Finding the Parameters

The idea is to collect as much useful marker and joint data as possible over all
frames. Then the sections of the skeleton are lined up individually and marker
and joint data is averaged over multiple frames. These averages are then used in
a second step to put the skeleton back together. The length parameters that can
be inferred from the newly assembled skeleton are the best compromise between
the measurements of all frames.

The Algorithm

In order for the algorithm to work at least one frame is required to have not
missing markers at all. The �rst frame for which this is true is considered the
reference frame fr. The data is treated limb by limb for the �rst part of the
algorithm. Thus only the marker positions of one segment and the positions of
the attached joints are considered at a time. The set of marker/joint positions
of the current limb in the ith frame fi is denoted li. For all limbs the following
steps have to be processed

1. Iterate over all frames and �nd the set of limb-frame data L = fl1; l2:::lng,
where no markers of the current limb are occluded. Positions of markers
and joints will be treated equally in the following and denoted with x0ji
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for the jth marker/joint in li. Thus li = fx01i; x02i; :::x0mig, where m is the
number of markers and joints of the limb. These positions are no absolute
values but seen relative to the centroid as de�ned in section 3.7. Here the

centroid of li is
_
c i =

1
m

mX
j=1

xji,where xji are the absolute positions. (Thus

x0ji = xji �
_
c i)

2. The method described in section 3.7 is used to �nd the rotation and trans-
lation Ti(li) that best aligns the limb li (i.e. its marker and joint positions
x0ji) with the position it has in the reference frame lr. (thus Ti(li) � lr)
Note that connections between limbs are broken up and therefore after the
transformation the skeleton for one joint has two di¤erent positions for both
adjacent limbs.

3. For every marker or joint now a cloud of positions Cj exists with Cj =
fTi(x0j1); Ti(x0j2); ::Ti(x0jn))

4. The coordinates of Cj are assumed to be approximately normally distrib-
uted around the average of Cj . Therefore we can use statistical means

to identify outliers. For that reason the average position
_
Xjand the stan-

dard deviation � =

s
1
n

nP
i=1
(
_
Xj � Ti(x0ji))2are calculated. All x0ij which are

farther from
_
Xj than the standard deviation � are not considered for the

following calculations. Thus a new average position
_
X
0
j is calculated from

the data within the standard deviation. This average position is used as an
o¤set in the second part of the algorithm. Additionally the average position
of the centroids

_
c i is calculated and denoted

_
c .

In the second step the o¤sets
_
X
0
j and the information about the topology are

used to compose a skeleton in reference position. As mentioned in section 3.7.7
the root of the hierarchical skeleton structure most probably is the torso. In the
following a joint on a limb will be called inner joint, if in the hierarchy it is closer
to the root, while the other joint(s) will consequently be called outer joint. Note
that the root only has outer joints and every other limb has exactly one inner
joint and arbitrary outer joints.

For the outer joints and markers of the root the o¤sets given by the corre-

sponding
_
X
0
j can be used directly to set the positions. So the absolute position

of the joint/marker belonging to
_
X
0
j can be calculated as the sum of the root�s

centroid and the o¤set:
_
c(root) +

_
X
0
j :

For limbs other than the root things are a little more complicated. Starting
with the limbs adjacent to the root we have to work our way through the hierarchy.
The following steps have to be taken to add a limb to the skeleton:
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1. Select the joint corresponding to the inner joint of the limb. This joint has
to be an outer joint of a limb already added, thus the absolute position has
already been calculated.

2. Since we know the o¤set between the inner joint and the centroid we can
calculate the absolute position of the limb�s centroid (

_
c(current)).

3. Using the o¤sets
_
X
0
j we can now calculate the absolute positions of the

limb�s markers and outer joints by
_
c(current) +

_
X
0
j :

After these steps have been done for all limbs a reference skeleton has been
created. This can be used to measure parameters like limb lengths and can be
used for example for animation. Additionally it will be used to improve the
accuracy of joint positions by �tting it back to the marker data in the next
section.

3.8.2 Fitting the Skeleton Back to the Data

After having calculated a rigid section skeleton, its pose has to be adapted for each
frame, so it �ts the originally captured markers as good as possible. Therefore a
process called inverse kinematics is used. An introduction to inverse kinematics
can be found in section 2.6.

The skeleton calculated by the algorithms in the last sections has a high
number of degrees of freedom. This is the drawback of having a �exible system,
which adapts to di¤erent skeleton structures, because it doesn�t allow us to put
constraints on certain joints. If we had a skeleton model in advance, we could for
example limit the knee to only one DOF. Without constraints �tting the skeleton
as a whole is a lot more di¢ cult. Since numerical algorithms would have to be
used with all their drawbacks, I decided to use a di¤erent approach.

The skeleton is �tted to the data one limb at a time, which allows a closed-
form solution. This in turn has the advantage of being very fast and robust,
while the result still proves satisfactory as can be seen in chapter 5. Additionally
intermediate results from the previous section can be used.

The idea is rather similar to that in the previous section. There the poses of
the skeleton were changed into that of the reference frame in all frames. Now the
joints of the skeleton in the reference frame�s posture are rotated in a way, that
the markers best match the originally tracked markers.

The Algorithm

First the root of our parameterized skeleton has to be matched with the root at
frame i. In other words the transformation Ti has to be found, where lroot;i �
Ti(lroot;r). Again the method of section 3.7 is used. For the other limbs the
following calculations have to be made starting at the sections adjacent to the
root.
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1. First of all the o¤sets
_
X
0
j are relative to the centroids. In this case, however,

we need the o¤sets to be relative to the inner joint, since this is supposed
to be the center of rotation. Therefore the o¤set to the inner joint is added

resulting in
_
X
00
j =

_
X
0
j +

_
X
0
innerjoint: The set of these coordinates is now

denoted l0r = f
_
X
00
1;
_
X
00
2; :::

_
X
00
mg

2. For all frames the centroid
_
c i =

1
m

mX
j=1

xji has to be calculated. Then the

o¤sets from the centroid x0ji = xji �
_
c ican be calculated. Finally x00ji =

x0ji + x
0
innerjoint;i and li the set of coordinates of the ith frame relative to

the inner joint is l0i = fx001i; x002i; :::x00mig:

3. Now the rotation Ri is calculated, where l0i � Ri( l
0
r ). No translation is

used, because we want the sections of the skeleton to stay connected.

4. After having calculated the rotation for the inner joint over all frames the
absolute position of the outer joints can be calculated. Lets for the sake
of simplicity of this discussion assume that the current limb has only one
outer joint ( xouterjoint;i ... outer joint in frame i). Then xouterjoint;i =
xinnerjoint;i + x

00
outerjoint;i. Note that the position of the outer joint just

calculated in�uences the centroid of the limb, which has this joint as inner
joint. Thus it is evident, that the skeleton has to be �tted from the root
down the hierarchy.

This way the joint positions and rotations can be calculated for all frames
using a rigid body skeleton. This data can be easily used for animation employing
forward kinematics as described in section 2.6.

Care has to be taken in case of occluded markers. In case a marker is missing
in a frame it has no e¤ect on the centroid

_
c i: Therefore the centroid of the

reference
_
c also has to be calculated without that marker in order to allow a

good match.



Chapter 4

Implementation

This chapter�s main focus is the software implementation of the motion capture
system. For the hardware implementation and the tracker software please refer
to [PK07] and [Meh06]. The program is written using C++ using various libraries
like Qt, stl and newmat. References to detailed descriptions of these can be found
in the bibliography. Although Visual Studio was used I tried to keep the program
platform independent by renouncing system speci�c libraries.

The program has four main subsystems, which to some extent can each be run
independently given that the subsequent steps have already been executed be-
fore. These four parts are the temporal correspondence (section 4.2), the spectral
clustering (section 4.3), joint estimation (sections 4.4, 4.5 and 4.6) and skeleton
parameterization (section 4.7). The remainder of sections in this chapter is mainly
about helper classes like those for I/O and the GUI. The order of the sections
corresponds with the sequence in which the parts are executed during a normal
program run starting o¤ with the GUI.

4.1 The GUI

The graphical user interface is designed using Qt from Trolltech ( [Tro07]) There-
fore some basic knowledge of this library might be helpful for understanding this
section. Since most of the implementation is already done in the Qt base classes
the classes described here are rather small and contain only minor modi�cations.

Every GUI application that uses Qt needs one QApplication object, which
in our case has been subclassed by MyQApp to allow modi�cation of the ex-
ception handling. This is done in the overridden notify method, which catches
events and outputs a message according to the exception that has been thrown.
The MyQApp itself contains no visible elements, which is why it gets passed a
MainWindow object.

61
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4.1.1 The MainWindow Class

TheMainWindow, which contains all the GUI elements is a subclass of QMainWindow.
It contains two QLineEdits a QPushButton and �ve OneStepWidgets. We will
get to the latter soon. The QLineEdits are used for inserting the number of mark-
ers and limbs. The QPushButton executes the whole procedure using the slot
executeButtonPressed in MainWindow. The other methods are listed in the
following.

� setupGUI places the GUI elements in the window and is called in the con-
structor.

� clearParameters and loadParameters reset all the parameters or load them
from con�g.xml.

� processTempCorr starts the calculations that �nd the temporal correspon-
dence of the markers.

� processSpecClu initiates the clustering of markers into limbs.

� processJointFind starts the processing of the joints and the skeleton para-
meters.

4.1.2 The OneStepWidget Class

OneStepWidget is a QWidget which is used to specify whether a processing
step is to be taken (i.e. the process... methods of MainWindow executed) and
where the input is to be taken from or the output written to. For this reason
OneStepWidget has a QLineEdit to insert the path and �le name. Also a
QPushButton can be used to open a �le dialog. Finally the QCheckBox can be
used to prevent the processing of a step and instead refer to saved intermediate
results.

4.2 Step 1: Temporal Marker Correspondence

This section deals with the implementation of the �rst preconditioning step,
which has the task of giving the representation of a physical marker in the pro-
gram an identi�er. As described in section 3.3 �nding this temporal correspon-
dence is rather easy as long as all markers are visible during the entire capturing
process. Markers, however, usually get occluded once in a while. Therefore I
implemented some classes that execute the algorithms explained in section 3.3.
These classes are CorrespondenceFinder, PairClustering, MarkerSet and
SpectralClustering. The latter is documented in more detail in section 4.3.
While the central processing of this stage is done by CorrespondenceFinder,
it uses the others to perform certain operations or represent sub structures like
MarkerSet.
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utils::mfml_container
markersOrg

Data structure that is used to load from the
*mfml �le.

iod::data_container
markers

Container which stores the markers frame by
frame. See section 4.10 for more details on this.

std::map<unsigned
short,MarkerSet>
markerSets

Maps the (preliminary) id of a virtual marker to
the corresponding MarkerSet.

Matrix *distanceMa-
trix

Contains the distances between the Marker-
Sets.

Table 4.1: Member variables of CorrespondenceFinder

CorrespondenceFinder has three ways of obtaining raw marker data. These
modes are mapped onto three constructors, which either load the markers from
�le (*.mfml, *.csm) or generate a simple chain of bones, with some attached
markers. The standard mode of operation is that of using *.mfml �les, while the
others can be used for testing purposes. Testing here is meant primarily for the
following stages, because the algorithm that �nds the temporal correspondence
is not executed for these modes of operation. The ids of the markers are simply
taken from �le/generated and only the preprocessing for the spectral clustering
is done. This preprocessing results in a matrix, which contains values that can be
interpreted as cost of putting two markers on the same limb. Spectral Clustering
is then used in the next processing stage to �nd the markers attached to a limb.
Details on the �le formats can be found in section 4.11 and 4.12.

The member variables of CorrespondenceFinder are listed in table 4.1.
As already mentioned CorrespondenceFinder has three constructors of

which two are for testing purposes. The latter are rather similar and I will
therefore describe them together in this paragraph. They both get passed an
output �le name. The constructor for the *.csm �les additionally requires an input
�le name and the number of markers. At �rst the parameters are loaded from the
con�g.xml �le using the setParameters method. Then the marker positions are
loaded from �le/generated by the methods load_csm_frames or generateData.
Since the ids are already determined the distance matrix can be calculated using
the method calculateCostMatrix4x4. The matrix holds the variations of distance
between the markers, which will be used in the next processing step to group the
markers by limb. Finally the marker positions together with the marker ids are
stored in the output �le using saveAll().

For captured data the procedure is more complicated and the constructor
has to be passed a certain parameter, which is later used for the clustering of
the MarkerSets. After the parameters have been set and the marker positions
have been loaded using read_mfml the algorithm described in the �rst part of
section 3.3 is processed. This is done in unifyIdentitiesMarkers and �nds the
ids of markers over the periods where no marker gets occluded. (by using the
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PairClustering class, which will be described later in this section) The prob-
lem with missing markers is solved in the method reduceData, which creates the
MarkerSets. Subsequently the method getDistMatrix calculates the distances
between theMarkerSets. Now the second algorithm described in 3.3 is executed
and theMarkerSets are cojoined using the SpectralClustering class and the
combineClusteredMarkers method. After that the markers are sorted by id for
every frame using the method sortMarkers. This makes further processing faster
and visual inspection of the output �le easier. Finally again the cost matrix is
calculated and together with the results written to �le.

The methods of the CorrespondenceFinder are listed in the following by
the order they are used during the processing of an *.mfml �le. The rest of the
methods, which are used primarily for testing purposes, will be documented in
the following paragraphs.

� setParameters loads the parameters from con�g.xml.

� read_mfml loads the content of the *.mfml �le to markersOrg. The �le con-
tains the marker positions plus some attributes generated by the tracker.
These are reprojection error, number of blobs from which they are recon-
structed and a unique id for each marker in di¤erent frames. Most of these
attributes are of no interest for the motion capture and therefore will be
discarded by copying to markers.

� unifyIdentitiesMarkers gives the id of a marker in an old frame to the closest
marker in the new frame. The method relies on the class PairClustering
for this task. One instance of PairClustering is created for every frame
except the �rst.

� reduceData in a �rst step iterates over all frames and markers and inserts
all known marker positions into markerSets. Then all MarkerSets that
are smaller than MINRANGE are erased and the updated MarkerSets
rewritten to markerSets.

� getDistMatrix computes the distance matrix, which is used to �nd Mark-
erSets that belong to the same physical marker. The distance is calculated
using the method getMinDistTo of theMarkerSet class, which implements
the formula explained in section 3.3.

� combineClusteredMarkers rewrites the ids of markers, after the Marker-
Sets have been clustered. After the method has been executed the number
of MarkerSets is reduced to the number of physical markers.

� sortMarkers arranges the markers of every frame in a way that the marker
ids are in ascending order.
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� calculateCostMatrix calculates the cost matrix on which the clustering is
performed later on. As a cost function of two markers the standard devia-
tion of the distance of those markers is used. Therefore a matrix containing
the average distance is calculated �rst. In case SAMPLING is de�ned as
zero all frames contribute to this average distance. Otherwise SAMPLING
describes a step size and only samples are used for the calculation of the
cost. Thus is recommended for longer capture sessions. Finally the matrix
is written to an ASCII �le using the method saveStdDevMatrix.

� saveAll writes the markers including the newly found id to a speci�ed out-
put �le. Additionally for every frame the timestamp and number of markers
are saved.

Finally the methods for test purposes:

� createData produces simple test data by simulating a three bone chain
connected by two ball joints, which moves around a bit.

� load_csm_frames loads a csm �le, which contains only points. These are
interpreted as markers and stored in a iod::data_container.

� simpleClustering is a simple and fast clustering method that can be used
instead of spectral clustering. The main disadvantage though is that it
doesn�t work if the clusters are too close to each other.

The purpose of the PairClustering class is to �nd a marker match for two
successive frames. This means that for each marker in the �rst frame a marker
in the second frame has to be found, which belongs to the same physical marker.
The selection criteria for this process is the spatial proximity (for a detailed
explanation of the algorithm please see section 3.3). Then the marker ids are
transferred from the �rst to the second frame. In case no markers get occluded
during the tracking process temporal marker correspondence can be established
this way.

For the calculations PairClustering needs a couple of member variables,
which are listed in table 4.2.

The constructor of PairClustering takes two frames (or to be more pre-
cise two iterators pointing to a std::pair of a f_fsml and a std::vector of
f_markers) as arguments. Depending on the number of markers a custom sized
matrix is created and �lled with the distances between all possible matches of
markers. Thereafter the actual match is determined using either runClustering-
MarkerNew or runClusteringMarkerLost. Which method is used depends on the
number of Markers in the frames. In case there is more or equally many markers
in the second frame runClusteringMarkerNew is called and runClusteringMark-
erLost else. Both methods set the array clusterAssignment, which is then used
in assignIds() to transfer the marker ids to the second frame.

The methods used by the constructor are described in the following.
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Matrix *A Matrix holding the distances between all mark-
ers of the �rst and the second frame.

u_int32_t num-
berOfOldMark-
ers,numberOfNewMarkers

Number of Markers in the �rst and the second
frame.

u_int32_t *clus-
terAssignment

Array that contains the matching markers. By
indexing into the array using the marker id in
the �rst frame the matching marker in the sec-
ond frame can be found.

Table 4.2: Member variables of PairClustering

� runClusteringMarkerNew iterates over all entries in the distance matrix
�nds for each marker in the �rst frame a marker in the second frame that
has minimal distance (in other words, we are looking for the minimum in
each row of the distance matrix under the constraint, that no column is
used twice. The result is the �lled clusterAssignment array.

� runClusteringMarkerLost does the same as runClusteringMarkerNew ex-
cept it searches matching markers for the points in the second frame.

� assignIds sets the ids of the markers in the second frame depending on the
entries in clusterAssignment.

The subject ofMarkerSets has already been touched on earlier in this section
and section 3.3. As introduced there, aMarkerSet is a data structure holding a
marker position over a set of successive frames. These positions are supposed to
belong to the very same physical marker. Additionally some information about
the relationship with other markers is contained as can be seen in the member
variables in table 4.3.

MarkerSet is instantiated inCorrespondenceFinder::reduceData() by pass-
ing a pointer to markers and the index of the marker to the constructor. There
the SAMPLINGMS parameter is loaded and some initializations take place. The
other methods of MarkerSet are itemized in the following list.

� setRangeStart and setRangeEnd sets the start and end indices of the frames,
which are spanned by the MarkerSet

� getRange returns the number of frames spanned by the MarkerSet.

� setMarkerIndex, getMarkerIndex, getStep, getNumOfSamples return/set the
values of the corresponding variables.

� sample initializes the sampleFrames array.
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u_int64_t rangeStart Index of the frame the MarkerSet starts with.
u_int64_t rangeEnd Index of the frame the MarkerSet ends with.
u_int64_t samples Parameter loaded from con�g.xml. It is used to

determine how many frames are used for com-
parison with other MarkerSets.

u_int64_t *sample-
Frames

Array of indices that can be used to access the
sample frames.

iod::data_container
*markers

Pointer to the CorrespondenceFinder::
markers data structure. Used to index into
for the sample frames so they don�t have to be
copied.

u_int64_t step Determines how many frames are between two
sample frames.

unsigned short mark-
erIndex

Index of the marker theMarkerSet belongs to.

bool sampled Shows if theMarkerSet has already been sam-
pled.

Table 4.3: Member variables of MarkerSet

� sampleAround gets passed an index and �lls the array sampleFrames with
the indices around the parameter.

� getSampleFrame returns the frame with the index, which is passed as pa-
rameter.

� getMinDistTo computes the distance between the currentMarkerSet and
another one, passed as argument. This is done by �nding the minimal
distance between two frames of the two MarkerSets as expressed by the
formula Dij in section 3.3. To decrease processing time the frames are
sampled and in a �rst step the minimal distance of the sample is calculated
using the method calculateDist. Then, instead of sampling over the whole
captured time span, only frames around the minimal sample are taken using
sampleAround and calculateDist executed again. According to [KOF05]
this delivers nearly the same results as comparing all frames in the �rst
place.

� calculateDist calculates the distance between the sampled frames of the
currentMarkerSet and the one passed as argument. Therefore the method
getSampleFrame is used to iterate over all the sample frames. The frame
indices where the two sets match best are returned as reference parameters.
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4.3 Step 2: Spectral Clustering

The class SpectralClustering implements the spectral clustering algorithm as
it is described in 3.4. Thus it clusters a set of n objects/points S = fs1; s2; :::; sng
in Rl into k clusters.

SpectralClustering uses two special libraries. The �rst is Newmat10, which
is a matrix library o¤ering di¤erent matrix types and basic as well as more ad-
vanced matrix operations like eigenvalue decomposition. Newmat10 is optimized
to work with large matrices (i.e.: matrices with over hundred entries). This is very
useful since the input to the spectral clustering algorithm is a distance matrix con-
taining the distance values between the markers, which results in about thousand
entries. SpectralClustering uses the Matrix, SymmetricMatrix and Diago-
nalMatrix classes, its basic operations and the Jacobi decomposition. Please
refer to [Dav06] for a detailed documentation of these classes and the Newmat10
library. Furthermore Meyer describes in [Mey00] how the Jacobi method for
eigenvalue decomposition works.

The second library used is the Kmlocal package in the version 1.7.1. This
library contains classes that can be used to perform k-means clustering as needed
in step 5 of the spectral clustering algorithm presented in 3.4.2. Kmlocal imple-
ments Lloyd�s algorithm for k-means clustering as well as a local search heuris-
tic. Also a hybrid approach combining these two methods is available. Doc-
umentation of kmlocal and a discussion on k-means clustering can be found
in [KMN+02b], [KMN+02a] and [DGK04].

The constructor of SpectralClustering takes the dimension and number of
the points as well as the number of clusters as arguments. The other important
methods are described in the next paragraphs.

� The distance matrix, which is used to calculate the a¢ nity matrix can
be either set directly using the method setCostMatrix or loaded from an
ASCII-�le using loadCostMatrix.

� runClustering performs spectral clustering by calling the necessary subrou-
tines:

� eigenDec This method executes steps 2 through 4 of the Spectral Clus-
tering Algorithm 3.4.2. First theDiagonalMatrix D and theMatrix
L are calculated from a¢ nity matrix A. Then k eigenvectors are cal-
culated from L using the Jacobi method from the Newmat10 library.
The method then calculates the renormalized rows of the eigenvector
matrix and returns the normalized Matrix.

� initKM initializes the data structures necessary for the k-means clus-
tering. It copies the elements of the eigenvector matrix to the KM-
data object, which is then used to create the centers for the k-means
algorithm.
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� executeAlgorithm executes k-means clustering with the selected algo-
rithm.

� getClustering �nally returns the assignments of the markers to clusters
in an array, where the marker-ids can be used to index into the array
for �nding the associated cluster-id.

� saveClusters is �nally used to store the grouped markers with their cluster
ids in an ASCII �le.

Table 4.15 in section 4.9 gives an overview over the parameters that in�uence
the clustering process and can be set in con�g.xml.

4.4 Step 3: Computation of the Joint Positions

The part of the program this section is about can be considered the center piece of
the system. It is responsible for the estimation of the joint positions. All previous
steps basically are preprocessing steps for this component while the succeeding
steps only re�ne the results. The calculations necessary for the computation of
the joints are executed by two classes: The JC (short for joint calculator) and
the NLCG (nonlinear conjugate gradient method) class.

JC implements the local and global minimization function as described in
section 3.5 as well as some other methods necessary to process the clustered
markers so they can be used in the functions. Furthermore JC contains the
datastructures, which are necessary to ensure fast processing (described in more
detail in 4.10). NLCG implements the nonlinear conjugate gradient method and
is documented in section 4.5.

After the spectral clustering has grouped the markers, according to the limbs
they belong to, a single instance of JC is created. This object then loads the
marker data stored in a �le as described in section 4.3. After an initialization
phase a sample of frames is extracted from the marker data. This sample data
together with the minimization function and some initialization values is then
passed to an instance of NLCG. This is done for every possible combination of
limbs. The minimization method then produces joint positions for the sample
frames. These in turn are then re�ned by local optimization. The step, which
has just been described, will be called the �rst stage in the following. Having
done that, the minimization function can be used to evaluate the joints. This
is done using the MST (Minimum Spanning Tree) class as described in 4.6.
Therefore the limbs are viewed as nodes, while the joints are considered edges in a
graph. The edge cost in this case is the return value of the minimization function.
These cost values are passed to MST, which produces a skeleton structure by
discarding the more expensive joints. The following calculations are considered
the second stage of the joint calculation process. Now that the joints connecting
limbs are identi�ed the joint positions for every frame are calculated similarily to
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int k Number of clusters/limbs
int numOfSampledFrames Quantity of frames, which have been

selected for the �rst optimization
phase

int numOfFrames Number of tracked frames
int numOfMarkers Overall number of markers attached

to all limbs
iod::data_container markers Contains (sampled) marker data or-

dered by frames and secondarily by
marker id

iod::marker_container perMark-
erFrames

Holds the markers ordered by
marker ids and then by frames

iod::data_container markersO-
riginal

Contains all the marker data or-
dered by frames and secondarily by
marker id

std::multimap <unsigned
short, unsigned short> cluster-
ToId

Used to �nd all the markers that be-
long to one cluster/limb

std::map <unsigned short, un-
signed short> idToCluster

Finds the cluster id that belongs to
a marker id

unsigned short �rstCluster, sec-
ondCluster

ids of the two clusters involved in
the calculation of the current joint

std::vector <iod::
data_marker> markersInFrames

Bu¤er for the marker data for the
current joint in a single frame used
for communication between localOp-
timization() and funcLocal()

unsigned long currentFrame id of markersInFrames
double alphaAvg � in the minimization term
std::map <std::pair<unsigned
short,unsigned short>,
std::vector<double>> av

Table 4.4: Member variables of JC

the sampled frames. Then the parameters of the skeleton are calculated and the
joint positions further re�ned. For more details on that please refer to section
4.7.

The member variables of JC are listed in table 4.4.
JC is a singleton class instanciated in MoCap. The constructor of JC gets

passed the �lename and path of the output �le from spectral clustering. It then
does the necessary initializations of the datastructures and loads the parameters
from con�g.xml. Other important methods are itemized in the following list.
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� loadClusteredMarkers loads the positions, ids and corresponding cluster ids
from the �le it gets from the constructor and �lls the datastructures. This
way k, numberOfMarkers, clusterToId, idToCluster and markersOriginal
are initialized to the correct values.

� sampleFrames, when executed by the constructor, copies samples of mark-
ersOriginal to markers and perMarkerFrames. The number of samples
taken depends on the SAMPLING parameter in the con�g.xml.

� initIdtoInt is the next method to be called by the constructor and initializes
numberOfSampledFrames.

� calculateJointPos is called by the MoCap class and gets passed path and
name of the output �le. It calls all the methods necessary to do the process-
ing in the stage of the program, which includes parts of the initialization,
calculation of the joints and �nally creation of the XML elements for the
output. calculateJointPos has a local array of doubles x, which has num-
berOfSampledFrames*3 entries for the �rst stage. This array holds the
position of the current joint over all (sampled) frames. These joint po-
sitions in turn are the unknowns we want to determine using the NLCG
method. Since NLCG depends on good initialization values for good results
the array is preset in the initJointPos method. After that x together with
two variables for statistical evaluation and the two pointers to the methods
funcMain and dFuncMain are passed to the NLCG::frprmn method. For
detailed information on this method please refer to section 4.5. After this
global optimization the local optimization, as described in 3.5.2 is started.
For that reason av has to be �lled with values. This is done using the
calcAvLocOpt method. Then localOptimization is executed with x as para-
meter. Then anMST object is created and handed a matrix containing the
joint costs. ThatMST object produces a stl::multimap containing pairs
of limbs that are supposed to have joints inbetween them. Thereafter the
datastructures markers and perMarkerFrames are cleared and re�lled with
data from all frames. Also a Skeleton instance is created. After that the
second stage of the optimization process is started, iterating only over the
list of joints returned by MST instead of all possible joints as in the �rst
stage. For every joint the positions as well as some statistical evaluation
are set in the Skeleton object and stored in a QDomElement.

� initJointPos initializes the joint positions for the �rst stage before process-
ing in the NLCG class. For the initialization some assumptions have to be
made:

� a joint is approximately half way between the centers of two limbs,
when the joint is streched.

� the markers are approximately evenly distributed around those cen-
ters.
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� extreme positions, such as the knee completly bent are rare and do
not last very long.

From these assumptions we can expect the markers�average position of the
two limbs adjacent to the joint to be a good initialization:

� calcAvLocOpt calculates the average distance between the current joint and
the adjacent limbs�markers. The results are stored in the av stl::map.

� localOptimization implements the idea described in 3.5.2. It uses the fact
that in the ideal case the joint always stays at the same distance to a
marker. It is assumed that the average distance over all frames computed
by calcAvLocOpt is a good approximation to that optimal range. Therefore
the joint position is optimized - again using NLCG - to be as close to the
average distance to all markers as possible. This is done by minimizing
the funcLocal function with the derivative dfuncLocal. Since the starting
point is crucial to the result of the NLCG method localOptimization can be
parameterized using MAXFRET and MAXFALLBACK. In case the return
value of funcLocal after the optimization is bigger than MAXFRET the
local optimization can be repeated with an old joint position as start value.

Now again its getting a little more mathematical while discussing the imple-
mentation of the formulas described and derived in section 3.5. I will start with
the terms for the global optimization and continue with the local functions.

� funcMain implements the formula
jc(a; b) = 1

jbaj+jbbj
P

mn2ba[mn2bb
�(c;mn) +

�
� � �d(c;mn)

�
:

The joint cost is the sum of all the involved markers�s variances divided
by the number of markers. It can be calculated for any combination of
two limbs a and b whether or not there really is a joint between them. The
above term is evaluated using some helper functions. They will be described
in the following paragraphs in the order they are used in funcMain().The
processing is started by iterating over all markers mn of limb ba and bb.
Thereby the average distance between a marker and joint �d(c;mn) is calcu-
lated(c here is the joint position, which is contained in the array x in our
case). The average is computed in the averageDist method. As mentioned
before � is a member variable of JC and loaded from con�g.xml. The term
between the square brackets is optional and ensures that the ball joint is
close to the markers in case of an (approximated) rotation axis. �(c;mn) is
calculated using the sigma method and uses the results from averageDist.
The results are summed (

P
mn2ba[mn2bb

) up during the iteration and then

devided by the number of markers on the limbs (jbaj+ jbbj) adjacent to the
joint.
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� dfuncMain calculates the derivative of funcMain for every unknown with
the current value given by x[] and store it in df[]. Note that every element of
x is used to di¤erentiate by. Thus the derivative has to be calculated (num-
berOfFrames*3) times, which makes the performance of this method rather
important. The derivative can be mathematically denoted with the followin

formula:jc0xcf (a; b) =
1

jbaj+jbbj
P

mn2ba[mn2bb
�0xcf (c;mn) +

h
� � �d0xcf (c;mn)

i
The derivative of the average distance �d0xcf (c;mn) is calculated in the method
derivAverage and �0xcf (c;mn) by derivSigma. dfuncMain also uses the av-
erage method, which is called once for every marker and passed to the
other subroutines for reasons of e¢ ciency. The derivative is �rst summed
up over all frames for each marker and then all the results of the markers
are added. The array df �nally becomes a vector of numbers that points
up the slope of the multidimensional function funcMain at point x[]. The
opposite direcition of that slope should then take as closer to the (at least
local) minimum.

� averageDist calculates the average distance between the marker given by
its id and the current joint positions for all (sampled) frames.

� derivAverageDist calculate the derivative by x[startIndex]..x[startIndex+2]
of the averageDist function for one marker and stores them in a three ele-
ment array.

� sigma computes the standard deviation of the distance between the marker
given by its id and the current joint positions for all (sampled) frames

� derivSigma calculates the derivative by x[startIndex]..x[startIndex+2] of the
sigma func given a marker and the derivatives of the average da[] and stores
them in a threedimensional array ds[].

� funcLocal computes the di¤erence between the distance of a marker and a
joint in a speci�ed frame and the average distance of these two entities.

� dfuncLocal produces the derivative of the function described in funcLocal.
The values of x[] are then entered and the resulting three values returned
in an array.

� getStatsXMLElement returns a QDomElement containing the evalutation of
the joint cost minimization process. A joint is identi�ed by the ids of the
adjacent bones. The XML element holds information about the distances
between the markers on the bones and the joint, the average distance be-
tween the marker and the joint over all frames and the standarddeviation
thereof. Also contained are number of iterations necessary during the min-
imization to reach the speci�ed threshold, the value of the minimization
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int numOfUnknowns Number of the unknown variables, the function
value of which is to be minimized

double *pcom,*xicom Dynamic arrays, which are initialized to size
numOfUnknowns. They are used to simulate
a one-dimensional function from a multidimen-
sional one, a vector and a start point. pcom
here is the start point and the vector xicom is
the direction along which the functions variable
is allowed to change.

Table 4.5: Member variables of NLCG

function at the result (below 1 is usually a good one) and the � of the
minimization function.

� saveData writes a QDomDocument containing all the skeleton and animation
data to a speci�ed �le. For a detailed documentation of the contents of a
�le please refer to section 4.13.

� some other methods exist for JC, which are not described here because
they are not used in the current release but still might be useful for further
experimenting.

4.5 Implementation of the Nonlinear Conjugate Gra-
dient Method

NLCG implements the nonlinear conjugate gradient method described in sec-
tion 3.6 and in many cases relies on the implementation remarks and code from
[PTVF92]. Therefore at this point the methods used are not documented as in-
depth as one might expect, since the interested reader can refer to [PTVF92].
The NLCG class can be used for any nonlinear optimization problem as long as
a minimization function and its derivative are available. Vice versa any nonlinear
optimization method can be used to minimize the joint cost function of section
4.4, as long as it implements the same interface asNLCG. The member variables
of NLCG are documented in table 4.5:

The constructor of NLCG is passed the number of unknowns as parameter
from which numOfUnknowns, pcom and xicom are initialized. Also setParame-
ters() is called here. After this initialization the function frprmn can be called,
which starts the minimization and is described with its helper methods in the
following paragraphs.
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� frprmn does the central processing in NLCG. It is passed multiple para-
meters.

� p[] is an array of double which is used to hold the values of the
unknowns (i.e. the coordinates of the joint positions in our case)

� iter is used to return the number of iterations, which are needed to
�nd the minimum.

� fret holds the return value of the function after the minimization.

� func() is a pointer to the function, which has to be minimized.

� dfunc() is a pointer to the derivative of the minimization function.

At �rst func() and its derivative are evaluated using the initialization values
from p. After that the arrays with the residual, the search direction and the
derivative can be set. Thereafter the iterative process of the minimization
is started (Maximal ITMAX iterations). Additionally to the nonlinear
conjugate gradient method I have implemented a random component, which
is intended to escape a local minimum. This random vector is generated
anew for every iteration using RAND_MAX and MAXJITTER and gets
smaller linearly with the number of iterations. Then the method dlinmin
is used to �nd the minimum in the current searchdirection. In case the
desired minimum, which is speci�ed by FTOL and EPSBREAK, is reached
the frprmn exits and the current minimum returned to JC. If the criterions
are not matched the new position is used to run func and dfunc again.
Then the gradient and the search direction are calculated. Two choices for
the latter can be speci�ed in con�g.xml using METHOD. As mentioned in
section 3.6 Fletcher-Reeves converges relatively sure for good initializations,
while Polak-Ribiere is faster but sometimes gets stuck. After that the next
iteration is started.

� dlinmin gets passed a point p, a direction vector xi, a dimension n, a variable
to return the minimum value as well as pointers to func() and dfunc(). The
task of dlinmin is to �nd the point on the vector xi starting at p where
func() takes on a minimum. First the minimum has to be bracketed using
the method mnbrak. Before the method is called the values of p and xi have
to be copied to the member variables pcom and xicom, which are used for
communication between the functions. The resulting bracketing interval is
then passed to dbrent, which executes Brent�s method to �nd the minimum.
The resulting minimum is copied to p and xi and returned.

� mnbrak receives an initial guess for the bracketing as well as func and dfunc
as parameters. Following the downhill direction from the initialization val-
ues new brackets are calculated by �tting a parabola and evaluating its
minimum. For the evaluation the method f1dim is used. TINY is used for
a return condition, which �res when no better bracketing can be reached.
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The return value is a triplet of positions with function values, where the
middle function value is smaller than the outer two.

� dbrent is passed the triplet from mnbrak() as well as a tolerance, func()
and dfunc(). Then Brent�s method, which is modi�ed to use derivatives
(df1dim) of f1dim, is executed. Break condition is the tolerance parameter,
which holds the precision that has to be met. As a result the minimum
value is returned and the middle value of the bracketing triplet holds the
position along the direction vector calculated in frprmn.

� f1dim is an arti�cial one-dimensional function that uses the member vari-
ables pcom, xicom and ncom to emulate a one dimensional function for the
minimization algorithms implemented in mnbrak and dbrent. Calls func
and returns its value at position pcom+x*xicom (Note that pcom and xi-
com are the vectors used for communication, x is a scalar that is passed to
f1dim() as parameter).

� df1dim is the derivative of f1dim and is similarly parameterized to it. The
return value is the derivative at position pcom+x*xicom.

� setParameters loads the parameters from con�g.xml.

4.6 Minimum Spanning Tree

The class MST implements the algorithm of Prim as described in 3.7.7. The
nodes of the graph are represented by the Cluster class. In addition to the
data needed for Prim�s algorithm Cluster objects contain information on the
connections to other nodes. Therefore it is possible to travel within the graph,
which is needed for the reorganization after the minimum spanning tree has
been calculated. The edges of the spanning tree are stored in MST using a
std::multimap as a std::pair node indices, while the nodes are stored as in a
std::vector.

Cluster objects contain the information necessary for Prim�s algorithm (pri-
ority value and their status e.g. fringe). Also information on where they are in
the trees hierarchy (parent and children nodes) is stored. The Cluster class is
derived from iod::Iteratee (4.10), which allows to retrieve an Iterator that can be
used to access the children of a Cluster object.

The constructor of MST takes a Matrix object as input that contains the
Adjacency matrix and thus the edge cost. The following gives a short description
of the crucial methods in MST:

� calculateMST executes the algorithm. To change the algorithm - to for
example Kruskal instead of Prim - one has to alter this method including
the helper-methods updateWith(step 2 of the algorithm) and �ndMinClus-
ter(step 3 of the algorithm).
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� optimizeMST �nds the node in the graph that has the most edges (i.e. the
node that is assumed to be the most central) and makes it root. Then the
structure information stored in the Cluster objects is rewritten accordingly.

� saveMST writes the tree to an ASCII �le for inspection or further process-
ing.

� getEdges returns the edges of the tree as std::multimap, which contains pairs
of Cluster Ids. For each edge the Ids of the Cluster objects it connects is
stored.

� getRoot returns the ID of the root node

� getCluster returns the Cluster speci�ed by an index.

These methods provide two ways of accessing the spanning tree. On one
hand getEdges can be used if only edge information is needed. On the other
hand the minimum spanning tree can be traveled starting at the root, which
reveals the hierarchical structure. This is important for the inverse kinematics
implementation described in 4.7.2.

4.7 Step 4: Skeleton Representation and Parameter-
ization

There are two main purposes of the classes described here. The �rst is to produce
a skeleton with speci�ed bone lengths. Secondly this skeleton has to be �tted back
to the captured data. Therefore the rotations of all joints have to be calculated
for all frames over the duration of the animation.

To perform the above tasks the classes Skeleton, Limb, LimbFrame,
Joint, JointFrame, Marker and PolySolver are used. An instance of Skele-
ton is created before the joints are computed. It holds Limb and Joint instances.
Limb in turn holds the positions of the markers attached to it, which are stored
in Marker instances. Additionally the local structure of the skeleton (i.e. adja-
cency of limbs and joints) is recorded in Limb and Joint.

As a precondition the hierarchical structure of the skeleton has been deter-
mined by the classMST as described in section 4.6. In a �rst step the structure
data has to be merged with the position data (joint- and marker-positions) to
perform the next calculations. This is done while constructing the Skeleton in-
stance. The next computations are rather similar to that described in [KOF05].
First, the lengths of the limbs are determined by averaging over all available
frames (i.e. frames where enough markers are visible to the tracking system in
order to perform the operations). Depending on the length of the captured time
span a sample of frames can be used as well. To make the captured data compara-
ble over the frames, the limbs have to be rotated and translated in a way that the
marker and joint positions of two frames match as well as possible. [Hor87] o¤ers
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u_int16_t id identi�er of the marker
std::vector <iod::
data_markerPMF *>
positions

for each frame one instance of
iod::data_markerPMF is created holding
the position and if it was visible to the tracker
(exists) or not

Table 4.6: Member variables of Marker

a method that does just that using quaternions. This algorithm is implemented
in the classes LimbFrame and PolySolver. As a result the average marker-
and joint-o¤sets relative to the centroid (the center of mass of the marker and
joint positions) are produced.

These o¤sets are then used to reassemble a complete skeleton. Then the joint
rotations are determined using inverse kinematics so the skeleton �ts the data .
This is done using the algorithm described in chapter 3.8. These results and some
statistic evaluation are then written to an XML �le using the QT library. The
format used is a mixture of the cal3d XML format and the XML format used
for tracking data of our optical tracker (see [PK07] for more details on that).

The classes are documented below in a bottom-up approach. The �rst class
presented is theMarker class, because it is the smallest entity of the skeleton. It
is followed by Limb(Frame), Joint(Frame) and �nally Skeleton. In addition
the PolySolver class is documented here.

4.7.1 The Marker Class

TheMarker class is the smallest class among those used for the skeleton recon-
struction. It is a representation of a physical marker during the whole captured
sequence. At the start of the algorithm it is initialized with the tracked positions
of the markers and the id of the markers as they are found by the clustering
algorithm as described in 4.3.

The member variables of Marker are listed in table 4.6.
The methods of Marker can be used to set and retrieve this data.

� getPosition returns a iod::data_markerPMF speci�ed by the frame index.

� getPositionRelativeTo does the same as getPosition except it passes back
the position relative to a Vec3 passed as argument.

� setData sets ALL the positions of Marker to a vector passed as argument.

� setId sets the id of the Marker.

� getId hands back the id.
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Figure 4.1: a) Shows a single LimbFrame with two attached JointFrames,
Markers and the centroid. b) A Limb consisting of multiple LimbFrames.

4.7.2 The Limb And LimbFrame Classes

Limb and LimbFrame are probably the two most important classes of this part
of the program. While Limb represents one bone of the skeleton at all frames, it
contains a vector of LimbFrame instances, that hold the data of a bone in one
speci�c frame. This can be seen in �gure 4.1 a) and b).

The member variables of Limb are listed in table 4.7.
Note: A limb can have multiple outer joints, but only one inner joint!

The constructor of Limb takes an id and the number of frames as input.
Many other methods exist for the Limb class, which for this reason I will group
into three categories in order to provide concise view of the class. The �rst area
that will be discussed is that of simple methods setting or retrieving data elements
or performing basic operations. While the second section will deal with the more
elaborate functions, the third with the interface to other classes. (this doesn�t
include LimbFrame which is de�ned to be a friend class of Limb and therefore
has access to other methods as well)
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u_int16_t clusterId id of the Limb/corresponding cluster
u_int64_t reference-
Frame

index of the �rst frame that contains all markers
of the limb

Limb *parent adjacent limb that is higher in skeleton hierarchy
std::vector
<LimbFrame*>
limbFrames

for each frame an instance of JointFrame exists

Joint *innerJoint pointer to the Joint closer to the root (if exis-
tent)

std::vector
<Joint*> outerJoints

adjacent joints farther away from the root

std::vector
<Marker*> mark-
ers

markers that are placed on the limb

std::vector <Vec3
*> outerJointsO¤sets

average o¤sets of the outer joint relative to the
centroid

Vec3* innerJointO¤-
set

average o¤set of the inner joint to the centroid

std::vector <Vec3
*> markerO¤sets

average o¤sets of the markers relative to the cen-
troid

Table 4.7: Member variables of Limb

Simple methods:

� setClusterId sets the clusterId to the speci�ed value.

� getClusterId/getId return the clusterId.

� setReferenceFrame sets the referenceFrame to the id of the frame that is
passed as parameter.

� getReferenceFrame hands back the id referenceFrame.

� getRefFrame returns a pointer to the LimbFrame instance that is identi-
�ed by referenceFrame.

� isMarkerOfLimb checks if the marker determined by the id is placed on the
limb.

� getName hands back the id of the limb converted into a std::string.

� getParent passes back a pointer to the Limb that is one level higher in the
skeleton�s hierarchy. Note that only the relationship towards the root can
be referenced directly. In the other direction the adjacent limbs can only
be referenced via the joints.
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� setParent sets a Limb to be the parent.

� getMarker returns the Marker speci�ed by an index. The parameter is
not the global index of the Marker instance as it was determined by the
clustering algorithm. It is only a local index with a range between 0 and
the number of markers placed on the limb.

� getMarkerPosition passes back the position of a speci�ed Marker in a
certain frame. For this methods the same constraints as for getMarker
apply.

� getAvgPosMarker returns the average position relative to the centroid of a
speci�edMarker over all frames. The position is calculated after the limb
has been transformed into the location and orientation of the reference
frame.

� getNumMarkers hands back the number of the markers, which are placed
on the limb.

� getMarkerO¤set returns the o¤set of a speci�ed marker relative to the cen-
troid. The o¤set is calculated using position and orientation of the reference
frame. Note that calculateO¤sets has to be called before useful o¤sets can
be retrieved.

� getAvgPosInnerJoint passes back the o¤set of the inner joint relative to the
centroid.

� setInnerJoint sets a Joint to be the innerJoint, thus the joint that links
the limb to either the root or a limb closer to the root than the current
limb.

� getInnerJoint returns a pointer to the Joint innerJoint.

� getInnerJointO¤set hands back the o¤set of the innerJoint relative to the
centroid as it was calculated in calculateO¤sets.

� getJointFrame hands back a pointer to the JointFrame speci�ed by the
id.

� getAvgPosOuterJoint passes back the average o¤set position of one joint
over all frames for an outer joint speci�ed by its id.

� getAvgPosOuterJointsInFrame returns the average o¤set position of the
outer joints in a certain frame speci�ed by the id.

� getNumOuterJoints passes back the number of joints attached to the limb
minus one for the inner joint (i.e. the size of outerJoints)

� addOuterJoint adds a pointer to a Joint to outerJoints.
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� getOuterJointO¤set hands back the o¤set of a certain outer joint speci�ed
by the position in the std::vector outerJoints.

� getOuterJoint returns a pointer to a Joint speci�ed by its id in outerJoints.

� addMarker adds a pointer to a Marker to markers.

� getOuterJointFrame returns a pointer to a JointFrame speci�ed by the id
of the joint in outerJoints and the frame id.

� hasOuterJoint passes back a boolean determining wether the Limb has
limbs/joints attached to it, other than the inner limb/joint.

� getLimbFrame hands back a LimbFrame determined by the frame id.

� setNumberOfFrames sets numberOfFrames.

� getNumberOfFrames passes back numberOfFrames.

The more elaborate functions are:

� calculateCentroids iterates over all LimbFrames and executes the methods
of LimbFrame that are necessary in order to calculate the positions of the
centroids (i.e. the centers of mass of marker- and joint-positions for all
frames).

� calculateMatrices calculates the transformation matrices that rotate and
translate the limb so that it matches the reference frame as well as possible.
The reference frame is the �rst frame that contains all markers of the limb
(i.e. is valid for our purpose).

� calculateO¤sets calculates and stores the average o¤sets of the markers,
outer joints and the inner joint (i.e. markerO¤sets, outerJointsO¤sets and
innerJointO¤set)

Finally there are methods to retrieve the results produced by Limb.

� getAnimationXMLElement returns a QDomElement holding the id of the
limb, the number of keyframes (i.e. number of all frames in our case) and
the rotation and translation of the inner joint for each frame.

� getSkeletonXMLElement is similar to getAnimationXMLElement, but re-
turns only the rotation and translation for the reference frame. In addition,
however, the rotation and translation, which is needed to transform a point
from model space into bone space, is returned.
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Limb *limb pointer to the Limb that the LimbFrame be-
longs to

u_int64_t frameIn-
dex

position that the LimbFrame is located in the
limbFrames vector of Limb

Vec3* centroid center of mass of the markers and joints attached
to the limb

bool valid is true if all markers have been tracked in this
frame

Quaternion* rotation quaternion that can be used to rotate the limb
from the reference frame into the current frame

Table 4.8: Member variables of LimbFrame

The LimbFrame class is closely tied to Limb, since much of the Limb data
is stored as a std::vector of LimbFrames. Every instance of LimbFrame
contains data for one speci�c limb in a certain frame.

The member variables of LimbFrame are itemized in table 4.8
The constructor of LimbFrame takes the frame index and a pointer to the

corresponding Limb as parameters and resets all other member variables. The
other methods are similarly to the documentation of Limb divided into three
subsections.

First of all the basic methods:

� setLimb sets the corresponding limb.

� getLimb passes back a pointer to the limb.

� setFrameIndex sets the frameIndex to the index of the std::vector limbFrames
in the Limb instance.

� getFrameIndex returns the frameIndex.

� setCentroid sets the position of the centroid, which is computed by calcu-
lateCentroids.

� setValid sets the valid �ag in case all Markers are visible to the tracker in
the current frame.

� isValid hands back the valid �ag.

� setRotation sets the rotation Quaternion to the parameter, that is passed
as an argument.

� getRotation passes back the rotation Quaternion.
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� getGlobalRotation returns a Quaternion, which can be used to rotate a
vertex from modelspace to the bonespace of the LimbFrame.

� getInnerJointFrame hands back a pointer to the JointFrame that is ad-
jacent to the limb and closest to the root.

� getOuterJointFrame passes back a pointer to the JointFrame speci�ed by
an index.

� getInnerLimbFrame returns a pointer to the LimbFrame closer to the root
(if one exists).

� getMarkerPosition hands back the position of aMarker in markers deter-
mined by its index.

� getPosRelCent same as getMarkerPosition, except it calculates the position
relative to the centroid.

� getPosRelCentIJ same as getMarkerPosition, except it calculates the posi-
tion relative to the inner joint.

� getPosRelCentTrans same as getMarkerPosition, except it calculates the
position relative to the centroid.

� getPosRelCentOJ same as getPosRelCentTrans, except it calculates the po-
sition relative to an outer joint speci�ed by its index.

� getPosRelCentIJTrans similar to getPosRelCentIJ, but returns a copy of
the marker position, which is transformed from modelspace into bonespace.

� getPosRelCentOJTrans same as getPosRelCentIJTrans, except it calculates
the position relative to an outer joint speci�ed by its index.

� getAvgPosOuterJoints passes back the average o¤set position of the Joint-
Frames in outerJoints.

� getNumMarkers returns the number of markers which are visible to the
tracker in the current frame.

� getNumOuterJoints hands back the size of outerJoints.

� getMarkerO¤set same as in Limb.

� getInnerJointO¤set same as in Limb.

� getOuterJointO¤set same as in Limb.

� setOuterJoint sets the position of a speci�ed JointFrame in Limb:: out-
erJoints to a speci�ed value.
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� hasOuterJointFrame checks if the limb has an outer joint.

� getRelTransRefFrame passes back a vector containing the translation be-
tween the limb in the reference frame and the current frame.

� getWorldTransMatrix passes back a translation matrix that can be used to
transform a vertex from modelspace into bonespace.

� getInnerWorldTransMatrix does the same as getWorldTransMatrix, except
it returns the matrix for the bonespace of the inner LimbFrame.

� getGlobalTranslation returns a vector with the translation between the cen-
troid of the limb in the reference frame and in the current frame.

� getId passes back the id of the limb.

� getNumOfChilds hands back the size of Limb:: outerJoints.

� getName returns the id of limb as std::string.

The three more complex methods contained in LimbFrame are calculate-
Centroid, calculateMatrix and calculateMatrixNew. These are - among others -
used for the inverse kinematics part of the program (see 2.6 for more details on
that matter).

� calculateCentroid �nds the center of mass of either all markers on the limb
for the current frame, or all markers and the joints attached to the Limb.
This is dependent on the Parameter USE_JOINTS_ FOR_CENTROID
in the con�g.xml. From the results of the �rst tests it can be said that in
case of enough visible markers (three or more per limb) the joints should
not be used.

� calculateMatrix produces a quaternion and a vector, which can transform
the limb in the current frame in a way that it matches the reference frame
as good as possible. This is necessary in order to calculate the limb lengths
and marker o¤sets in Limb using the algorithm presented in 3.8. The trans-
lation is simply the vector between the centroids of the two LimbFrames.
(Note that only LimbFrames where all markers are visible(valid) are used.
So occluded markers cannot result in deviation.) For the calculation of the
rotation quaternion the method described in 3.7 is used. A closed form
algorithm introduced by Horn in [Hor87] is used to �nd the transforma-
tion that best matches two coordinate systems based on the measurement
of some points in both systems. As already mentioned in 3.7 these points
in our case are the markers and - in case there are less then two markers
per limb - the joint positions. Following the algorithm the matrices are
calculated and then passed to the PolySolver class, where the rotation
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Limb* innerLimb pointer to the limb closer to the root
Limb* outerLimb pointer to the limb farther away from the root
stl::vector
<JointFrame*>
jointFrames

for each frame exists an instance of JointFrame

Table 4.9: Member variables of Joint

quaternion is produced. This quaternion is used to set the rotation of the
current limb.

� calculateMatrixNew calculates the rotation of the limb in the current frame
for the inverse kinematics algorithm described in 3.8.2. This method works
similarly to calculateMatrix except that for limbs, other than the root, the
center of rotation is the inner joint instead of the centroid. Furthermore
the joint positions are also used for the calculation of the matrix, since in
cases, where markers are occluded there might not be enough measurements
otherwise.

The results of the skeleton �tting algorithm can then be retrieved using the
following two methods.

� getAnimationXMLElement passes back a QDomElement with the frameId,
an estimate of the time that has passed since the start of the animation and
rotation and translation relative to the parent bone. (con�g.xml holds the
parameter FRAMES_PER_SEC, which can be used to adapt to di¤erent
capture rates.)

� getLimbFrameXMLElement returns a QDomElement holding Limb:: clus-
terId, the id of the parent limb as well as translational and rotational in-
formation as calculated by getRelTranslationParBone, getRelRotationPar-
Bone, getGlobalTranslation and getGlobalRotation.

4.7.3 The Joint And JointFrame Classes

The Joint class is used to store and manipulate joint positions for all captured
frames as they are calculated by the optimization algorithm as described in 4.5.
A joint always has to be adjacent to exactly two limbs and between two limbs
there can be only one joint. Thus a joint can be exactly de�ned by two Limbs.
The member variables of Joint are listed in Table4.9.

The constructor of Joint is passed two Limb instances as parameters and
can therefore be uniquely identi�ed. Without data, however, an instance cannot
be properly used, which is why the following method is used.
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� empty returns true if no data has been entered in the instance

To set the position data that is handled down from the joint calculator (JC)
to Skeleton and then �nally to Joint another method is available:

� setData takes an array of doubles as input, which holds the positions of the
speci�ed joint over all frames.

Other important methods are listed in the following.

� getJointFrame passes back the JointFrame speci�ed by its frame id. The
ids have a range from 0 to (numberOfFrames -1).

� getPosition returns a Vec3 containing the position of the joint in a certain
frame. Parameterization is similar to getJointFrame.

� getPositionRelativeTo works analog to getPosition except it passes back
the position relative to a parameter position. This is especially useful for
local calculations, where positions relative to the centroid of a limb are of
interest.

� setPosition sets the position of the joint in a speci�ed frame.

� getInnerLimb hands back the Limb adjacent to the joint, which is closer
to the root.

� setInnerLimb sets innerLimb to an actual instance.

� getOuterLimb returns the Limb, which is farther away from the root.

� setOuterLimb sets the outerLimb pointer to a speci�ed instance of Limb.

� getInnerJoint checks if there is a joint adjacent to the inner limb, which is
higher in the skeleton hierarchy and returns it.

� addJointFrame adds a frame with the speci�ed position and index of the
joint.

� getInnerWorldTransMatrix calculates a transformation matrix that trans-
forms a point from modelspace into bonespace of the inner limb/bone for
a speci�ed frame (i.e. given the o¤set from the centroid this matrix can be
used to determine the actual position of a marker in an arbitrary frame).

� getLengthInnerLimb passes back the bone length of the inner limb.

� getXMLElement returns a QDomElement containing positions for all frames.
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Joint* joint pointer to the Joint the JointFrame belongs
to

Vec3* position actual position of the joint at the frame with
frameIndex

u_int64_t frameIn-
dex

index of the frame in the jointFrames vector in
the corresponding Joint

Table 4.10: Member variables of JointFrame

The JointFrame class is responsible for storage and manipulation of a joint
position in one speci�c frame. The member variables are itemized in table 4.10.

JointFrame is constructed with an index, the 3D position and a pointer of
the Joint it belongs to. The following methods are available to edit the data.

� getName hands back the frameIndex converted into a std::string.

� getPosition passes back the position.

� getPositionRelativeTo returns the position relative to a speci�ed vector.

� setPosition sets the position to the speci�ed vector.

� getVecToInnerJoint passes back the vector to the joint that is adjacent to
the inner limb and higher in the hierarchy of the skeleton if it is available.

� getJoint returns the Joint that JointFrame belongs to.

� setJoint sets the Joint that JointFrame belongs to.

� getXMLElement passes back a QDomElement containing position and frameIn-
dex.

4.7.4 The Skeleton Class

Skeleton is the central class for this part of the system. It provides the interface
to other components of the program and holds pointers to all Limb, Joint
and Marker instances. These are stored in the form of an stl::vector(e.g.
stl::vector<Limb *>limbs). Figure 4.2 shows a schematic view of the skeleon
structure. Furthermore table 4.11 shows the member variables of Skeleton.

The constructor of Skeleton takes as arguments a reference to an MST
object (section 4.6), a marker_container(see section 4.10 for details) and a
stl::map<unsigned short,unsigned short> (maps the id of the marker to
the id of the limb it is placed on).

The latter two are used in the constructor to create the Marker instances
and set the references to their corresponding limbs. The method
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Figure 4.2: Schematic view of the Skeleton structure with Joints and Mark-
ers. Note that for each Joint/Limb there exists an instance of Joint-
Frame/LimbFrame in every frame.

stl::vector<Limb *>
limbs

limbs(or bones) of the skeleton

stl::vector<Joint *>
joints

joints between the bones

stl::vector<Markers*>
markers

all the markers placed on the body

u_int64_t numberOf-
Frames

number of the tracked frames

Limb* root pointer to the root of the skeleton

Table 4.11: Member variables of Skeleton

� copySkelStructure recursively copies the skeleton structure from the MST
object to the Limb and Joint instances.

Other important private methods in Skeleton are listed in the following.

� calculateSkeletonParameters iterates over all limbs and calls limb member
functions to calculate the parameters (limb lengths, o¤sets, rotations etc.)
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� �ndJoint returns the joint, which is identi�ed by the ids of the adjacent
limbs.

� addJoint adds a joint to the skeleton.

� getLimb passes back the limb with the speci�ed id.

� addLimb adds a limb to the skeleton.

Note: Some of the following functions�purposes is to create XML elements,
which are then stored in a XML �le. The structure of the output XML �le and
its elements can be found in 4.9. For documentation on the Qt library and its
XML components please refer to [Tro07].

� getSkeletonXMLElementInFrame hands back a QDomElement which stores
all the available information for a certain frame (i.e. rotations for the joints
and translations for the bones, as well as the marker positions as they are
calculated from the o¤sets and skeleton parameters)

� getSkeletonXMLElement returns a QDomElement containing the structure
of the skeleton (i.e. joint positions, the o¤sets between joints, angels of the
joints for a reference frame)

� getAnimationXMLElement passes back a QDomElement holding the anima-
tion data for all frames (joint rotations and translations/bone-lengths)

� getAnimationXMLElementOfLimb returns the animation data for a speci�c
limb.

� setNumberOfFrames, getNumberOfFrames and getNumberOfLimbs

� calculateSkeletonParameters calls for each limb the methods that calculate
the parameters (o¤sets, length, rotations etc.).

� recursiveCalcMatricesNew, starting with the root-limb, executes the meth-
ods that produce the joint rotations of the parameterized skeleton so it best
�ts the captured data.

The following methods provide the interface to other classes.

� setDataJoint sets the positions to the values given as parameter.

� getJointsXMLElement returns a QDomElement containing the positions of
all joints over all frames.

� getJointXMLElement passes back a QDomElement with the positions of a
speci�ed joint over all frames.
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double A [5][5] is used to hold the input matrix and intermedi-
ate results during most of the processing

RUNTESTSVAR This variable is loaded from con�g.xml. If true
the eigenvectors are calculated using the newmat
library instead. This can be useful since the
closed form methods crash in some cases. Es-
pecially if the structure of the skeleton is wrong
this tends to happen.

Table 4.12: Member variables of PolySolver

� getSkelAniXMLElement hands back a QDomElement holding all the skeleton
and animation data.

� getMarkerXMLElement returns a QDomElement containing all the informa-
tion on markers that has been collected during the previous processing
steps. That includes the tracked positions, the bones they belong to as well
as the averaged o¤sets from the centroids of the limbs. Furthermore the
positions of the markers are reconstructed from the o¤sets and the joint
rotations to provide a means for error measurement.

4.7.5 The PolySolver Class

PolySolver is the last class used to reconstruct the skeleton. It is used to
execute steps 3 (or 4 depending on the mode PolySolver is run in) through 8
of the rotation �nding algorithm described in 3.7. The three preprocessing steps
are done in LimbFrame::calculateMatrix (New). Thus as an input PolySolver
has a 3-by-3 or 4-by-4 matrix constructed by the component products of the
corresponding points in two coordinate systems. As an output LimbFrame
delivers a rotation quaternion, which can be used to rotate one coordinate system
so the measured points match the points in the other as well as possible. The
member variables of PolySolver are listed in table 4.12.

The constructor of PolySolver gets passed an array of doubles, which is used
to initialize the matrix A, as well as an array B for the return values and the
mode �ag. In case mode is 0, 16 values are supplied and the Matrix is set directly.
If mode is 1 then 9 values are supplied which are used to calculate a symmetric
matrix. After that, the eigenvector of A has to be found which has the largest
eigenvalue. The eigenvector, which at the same time can be seen as quaternion
representing the optimal rotation, is then stored in B. These calculations are
performed using the following methods:
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� setMatrix and setMatrixByCompProduct are used to set (mode 0) or cal-
culate A (mode 1) from the array passed as argument.

� calculatePoly is the main method that calls the other methods necessary
to produce the largest eigenvector of the matrix A. It uses the functions
calculateCoe¢ cient, solveQuartic, echelon and calculateEigenvector in this
exact order.

� calculateCoe¢ cient calculates the coe¢ cients of the charcteristic polyno-
mial of A. This method uses the formulas described in [Hor87] to produce
the coe¢ cients of the characteristic polynomial of matrix A and stores them
in an array passed as parameter.

� solveQuartic can solve a general 4th order equation given by an array of
coe¢ cients coe� .

0 = coeff [0] + coeff [1] � x+ coeff [2] � x2 + coeff [3] � x3 + coeff [4] � x4

The results of the equation are returned using the array re and im for the
real and imaginary part. Both are 4-dimensional. Note that for the use
in our case only the real part is needed, since the equation we obtain from
the matrix has real eigenvalues and eigenvectors. The equation is solved
by reducing it to equations of smaller order following the basic idea of
Ferrari. These are then solved by the methods solveCubic, solveQuadric and
solveLinear. For the mathematical background please refer to [Vil04]. The
formulas in my code have been taken from Olaf Müller�s java code [Mül03].

� solveCubic solves a general 3rd order equation given by an array of coe¢ -
cients coe� .

0 = coeff [0] + coeff [1] � x+ coeff [2] � x2 + coeff [3] � x3

� solveQuadric can solve a general 2nd order equation.

� solveLinear solves a linear equation.

� echelon transforms the A matrix into row echelon form. This means that

1. the �rst non zero element in each row is 1 and

2. all elements below are zero

i.e. in the form

1 a b c
0 1 d e
0 0 1 f
0 0 0 1

The methods echelonRec, pivotSearch, swap and addRows, which are de-
scribed in the following, are all helper methods of echelon. For a more detailed
mathematical description please refer to [Mey00] or another linear algebra book.
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� echelonRec is called recursively. Needs two indices (row- and column index)
as parameters, which are used to de�ne the matrix�s area of interest (i.e.
the manipulated elements are those right/below the speci�ed values).

� pivotSearch looks for the (absolute) largest element in a speci�ed column
of the A matrix. The search starts in a row, which is determined by a
parameter, and goes down.

� swap exchanges the ith and the jth row of the matrix A to place a pivot
element at the desired position. This process is called partial pivoting. Full
pivoting would be swapping rows and columns.

� addRows adds the ith row multiplied by a certain factor to the jth row.

� calculateEigenvector produces the eigenvector of the largest eigenvalue of
matrix A. Having calculated the eigenvalues and having transformed the
matrix A into row echelon form, this method calculates the eigenvector
corresponding to the largest eigenvalue of matrix A. The eigenvector is
then normalized to unit length.

� runTests calculates the eigenvector using an iterative approach, when the
RUNTESTSVAR �ag is set.

� printMatrix prints matrix A to the screen.

� initMatrix initializes the elements of matrix A to 0.

� cosh passes back the cosinus hyperbolicus of the given value

� sinh returns the sinus hyperbolicus of the given value.

4.8 Helper Classes

In this section some of the helper classes used throughout the system are de-
scribed. These includes classes for matrix calculations, vector representation and
iterators.

4.8.1 Transformation Matrix

The class Matrix4x4 represents a square transformation Matrix with 16 ele-
ments that can be used to transform a 3D vector. The vector has to be an
object of the class vec3 as described in the next section or a array of doubles.
Matrix4x4 provides a number of set-methods that can be used to set speci�c
transformations (e.g. a rotation around the x-axis). Also standard matrix op-
erations like multiplication, translation or inversion are available. The methods
available are:
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� Constructors taking the following elements as parameter:

� a reference to a Matrix4x4 object

� a �oat array with 16 entries

� a quaternion

� For setting the whole matrix or parts of it some methods are available

� set takes a 16 element double array as an argument and sets the matrix
accordingly

� setMatrixbyQuaternion sets the matrix�s elements to the rotation de-
scribed by the quaternion that it has been passed as four doubles.

� loadIdentity resets the matrix to a 4x4 identity matrix

� Matrix multiplications

� preMultiply multiplies the current instance M of Matrix4x4 with
the matrix A it received as an argument and stores it in M . Thus
M = AM

� postMultiply multiplies the current instance M of Matrix4x4 with
the matrix A it received as an argument and stores it in M . Thus
M =MA

� transformVec3 multiplies a vector v of dimension four, given as an
argument, by the matrix: v = vM

� transformVec3Pre multiplies a vector v of dimension four, given as an
argument, by the matrix: v =Mv

� set(Inverse)Translation sets the translation of the current matrix to
the (inverse) values of the double array or Vec3 object passed as an
argument and erases any previous values.

� set(Inverse)RotationRadians/setRotationDegrees sets the rotation part
of the matrix to the (inverse) rotation given by an array of doubles
that contains the Euler angles

4.8.2 3D Position/Vector

Vec3 is a class used to represent and manipulate a 3D vector. Therefore some
basic algebraic operations are available as well as some speci�cally designed for
our application. For the storage of the three coordinate values member variables
of type double exist. The constructor can either be initialized with a Vec3
reference, three double or an array of double. Also the standard constructor
can be used. The other methods are itemized in the following list.
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� set sets the coordinates to another Vec3 passed as reference or to three
single values.

� reset sets the coordinates to the point of origin.

� getData writes the coordinate values to an array, which has to be passed as
an argument.

� The binary operators +,-,^ and % return the sum/ di¤erence/ cross prod-
uct/ dot product of two Vec3 objects.

� The operations * and / are used for scalars.

� length returns the length of the vector.

� lengthsq returns the sum of squares of the coordinates.

� getDistTo returns the distance to another Vec3 object handed over as pa-
rameter.

� normalize shortens/stretches the vector to length 1.

� The operator [] returns the coordinate de�ned by an index. (e.g. 0 for x )

� rotateX, rotateY and rotateZ rotates the Vec3 object around the X,Y or
Z axis by an angle speci�ed in radians.

� componentProduct calculates the component product of the elements of two
Vec3 and stores it in a 3 by 3 matrix passed as argument

4.9 The Parameter XML File and the Parameters
Class

The parameter XML �le named con�g.xml is used to store values, which in�uence
the behavior of almost all parts of the motion capture system. Due to the fact
that lots of parameters are included, the �le is organized hierarchically. The
root is the <Parameters> element. Its sub-elements group the parameters into
categories depending on the part of the program they are used in. The parameter
elements of the subsystems can be of the three types double, int, and string
(Note that int is also used as boolean). Tables 4.13, 4.14, 4.15 and 4.16 list the
parameters as they appear in the �le. The XML elements are loaded into the
program using the Parameters and the Handler class.
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Name Type Description
tempCorFileName string Default name of the *.mfml �le which

is to be loaded
specCluFileName string Default name of the �le which is used

to store the marker data after the tem-
poral correspondence over the frames
has been established

jointFinderFileName string Default name of the �le holding the
clustered markers

skelFitFileName string Default name of the �le, where the
structure of the skeleton is stored

saveFileName string Default name of the XML �le that
holds the results and evaluation of the
whole program

Table 4.13: Parameters of GUI in con�g.xml

4.9.1 The Handler Class

The Qt SAX parser is used to process the con�g.xml. This makes sense in our
case since the parameters are loaded only once at the start of the program and we
don�t want to modify them nor is there a need to keep the whole tree in memory.
In order to read a �le using the SAX parser one has to implement a handler
class, which inherits from the QXmlDefaultHandler class. This is done by the
Handler class, which overwrites the startElement method so the behaviour can
be customized, when the parser reads a new element. Apart from that function
Handler has only one additional method and no member varibles. A short
description of the mehtods can be found in the next paragraphs.

� startElement processes parameter elements. Each element needs to have
two attributes - one for the value and the second for the type. Depending
on the type of the parameter the Parameters singleton is called with the
set method for either a numerical value or a string.

� fatalError is called in case an exception occurs during parsing and writes
an error message to the standard output.

4.9.2 The Parameters Class

The Parameters class is a singleton, which means it has only one instance and
a static getInstance method. This is convenient, because many classes need to
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Name Type Description
SAMPLING int Determines how many frames are used

to calculate the variations of distance
between markers (Note that the matrix
produced by this values is calculated
in the CorrespondenceFinder class
but used by the clustering algorithm)

MINRANGE int Marker sets which have less than MIN-
RANGE frames are removed. This is
done because tracking accuracy is usu-
ally rather bad if a marker pops up
just for a view frames and then gets
occluded again.

TRIMRANGE int The beginning and end of each Marker
set is cut of by TRIMRANGE frames
to ensure accuracy.

TIMEONEFRAME int Time between two frames (depending
on the capture rate)

ADDRANDOMTC int This variable determines whether or
not jitter is added to the input data.
This can be useful for testing purposes,
when clean data is generated by some
animation program.

MAXJITTERTC double Maximum of added random value in
millimeter.

SAMPLINGMSTC int Sampling interval for the frames that
are picked to �nd corresponding mark-
ers.

Table 4.14: Parameters of Temporal Correspondence Finder in con�g.xml

load their parameters from this instance. Parameters also has some member
variables as listed in table 4.17.

Additional methods of Parameters are listed below. Note that the construc-
tor (standard constructor) is only called in getInstance().

� getParameterValue receives a name and returns its numerical value.

� setParameterValue gets a name and a numerical value and sets the para-
meter accordingly in values.

� getStringParameterValue returns the string stored as value for the parame-
ter with the name it gets passed as argument.
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Name Type Description
SPECCLUEPS double Used to determine if a value is 0 or suf-

�ciently close to assume it is not 0 due
to numerical errors

SIGMAQUAD double Determines the value of the constant
global sigma, which is used for calcu-
lating the a¢ nity matrix

LOCALSIGMA int 0...global sigma is used, 1... local sigma
is used

M int Number of points used for the calcula-
tion of local sigma

ALG int Selection of di¤erent implementations
of k-means (0-Lloyds, 1-Swap, 2-
Hybrid, 3-LocalHybrid)

POLYEPS, SOLVEPS,
TINYEPS

double The di¤erent "eps"s are used in the
methods echelonRec, calculateEigen-
vector and calculatePoly to determine
if a value is 0 or su¢ ciently close to as-
sume it is not 0 due to numerical errors

PI double Mathematical constant
ALPHA double Constant in the formula that is min-

imized in order to �nd the best joint
positions

ALPHAWEIGHT double Constant in the formula that is mini-
mized in order to to �nd the best joint
positions

SAMPLING int Determines for how many frames the
joints are calculated (computing joints
for a sample of frames only is used to
�nd good initialiization values for the
actual processing step)

MAXFRET double Is used as a threshold for the local op-
timization

MAXFALLBACK int For the local optimization the position
of the joint in a previous frame is used
as initialization value. This parameter
gives the number of frames the algo-
rithm is is allowed to go back.

Table 4.15: Parameters of Spectral Clustering, JointFinder and JointFinder:: JC
in con�g.xml
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Name Type Description
FTOL double Is used together with EPSBREAK to

determine when the minimization algo-
rithm has reached its goal and should
break. (normal termination)

EPSBREAK double Is needed when converging to exactly
zero function value

ITMAX int Speci�es the maximum number of iter-
ations the algorithm is allowed to run.
If this value is su¢ ciently large and
nevertheless is exceeded the algorithm
is most likely trapped in a local mini-
mum.

EPS double Small value used by the minimization
algorithm for a break condition.

GLIMIT double "Is the maximum magni�ca-
tion allowed for a parabolic-�t
step" [PTVF92]

ITMAXDBRENT int Maximum number of iterations that
Brent�s method is allowed to take

ZEPS double Small value used by Brent�s method for
a break condition.

ADDRANDOM int Determines whether or not a random
value is added to the joint position dur-
ing the optimization process in a sim-
ulating annealing approach. In some
special cases this helps escaping local
minima, but also increases processing
time.

MAXJITTER double Maximum of added distance in the �rst
iteration.

TOLBRENT double Tolerance used by Brent�s method and
line minimization method.

METHOD int Chooses the method for calculation of
the new search direction (0...Fletcher-
Reeves, 1...Polak-Ribiere)

Table 4.16: Parameters of JointFinder:: NLCG in con�g.xml

� setStringParameterValue same as setParameterValue except the type of the
parameter has to be a string and is set in stringValues.

� clear empties values and stringValues.
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std::map
<std::string,
double> values

Maps the name of the parameter to the numer-
ical value. For the sake of simplicity also int
and double are stored in the same map.

std::map
<std::string,
std::string> string-
Values

Maps the name of the parameter to the string
value.

static Parameters
*instance

The only instance of the Parameters class.

Table 4.17: Member variables of Parameters

4.10 Implementation Data Structures

During the di¤erent processing steps massive amounts of computations are per-
formed using the captured data. Furthermore the markers are captured at up to
200 times per second, which results in rapidly growing amounts of 3D positions
that have to be stored. It is therefore crucial to use data structures, which sup-
port fast access and at the same time contain only the minimum of the needed
data to limit memory consumption. Therefore, instead of using for example one
marker class for the whole program, multiple classes and structures exist and
are speci�cally designed for each processing step. Most classes make use of the
stl (standard template library), which makes some understanding of std::map,
std::vector and std::iterator etc. helpful for comprehending the following.
I will start with the smallest entity: the marker.

4.10.1 The Marker

The only attribute of a marker, which is needed in all processing steps is the
position. Therefore all marker structures inherit fromVec3, which o¤ers methods
to store and manipulate a 3D position or vector (see section 4.8.2 for details on
that class). The next struct data_idmarker adds an id to the marker, which
is needed for the temporal correspondence (section 4.2). data_idmarker is
then extended with a cluster id to data_marker. This structure is used for
the spectral clustering algorithm and the joint �nder (Sections 4.3 and 4.4). For
skeleton parameterization �nally the classMarker is used, which is described in
section 4.7.1.

Depending on the intended use the markers are addressed in two ways. The
�rst mode of access is to read/write a single marker over all frames then continuing
with the next marker. The other option is addressing one marker in a frame after
the other then jumping to the next frame. The structures for the latter mode have
been described in the above paragraph. For the calculations of the joints, however,
a structure like data_markerPMF (the PMF stands for "per marker frame")
is needed to provide fast and simple access. Like the other marker structures
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u_int32_t
n_markers

Number of markers visible to the tracker.

u_int64_t timestamp Time passed since the start of the animation as
read from the *.mfml �le.

std::vector
<iod::data_marker>
markerVector

Markers, which are visible to the tracker.

Table 4.18: Member variables of dataframe

it holds the position, but no id or cluster information. This is not needed since
data_markerPMF is used only as element of an std::vector, where the id and
cluster is stored once for a marker. For simplicity these std::vectors contain
as much data_markerPMF entries as there are frames. This means that there
even exists one if the physical marker is occluded to the tracker. Therefore a �ag
has to be set in data_markerPMF if the marker actually exists in the frame.

4.10.2 The Frame

For access frame by frame the class data_frame is being used. This class has
some member variables listed in table 4.18.

data_frame can be constructed either using a std::vector of data_markers
or as an empty frame. Furthermore data_frame has a number of methods to
manipulate the data and compare two objects of type data_frame.

� getTimstamp, setTimestamp, setNumOfMarkers and getNumOfMarkers re-
turn/set the according member variables.

� pushBack adds a data_marker to the markerVector.

� clear empties the markerVector.

� setMarkerId sets the id of a marker at speci�ed position in markerVector
to a certain value.

� globalTransform transforms a std::vector containing pairs of positions
(std::pair<Vec3,Vec3>) using two di¤erent matrices, which are passed
as arguments.

� getDist returns the sum of distances between the markers of two di¤erent
data_frames after they have been transformed using the globalTransform
method. This is used when the temporal correspondence of two markers is
looked for. See section 4.2 for more details on that matter.
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u_int32_t n_markers Number of succeeding f_marker blocks
u_int64_t timestamp Time since the start of the capturing session

Table 4.19: Member variables of f_sfml

4.10.3 The Whole Data Set

For quick access the frames and markers are stored in stl containers by the
classes which use them. To somewhat unify the use of these containers I created
some typedefs. These are named marker_container and data_container. While
the marker_container is intended to access a single marker in di¤erent frames,
the data_container contains all the marker data frame by frame. Therefore the
di¤erent classes for markers can be used as described in section 4.10.1.

The marker_container is de�ned as:
std::map<unsigned short, std::vector<data_markerPMF>>
Thus the index of the marker can be used to �nd a vector that contains the

positions (or an invalid �ag) for each frame. The data_container is de�ned as:
std::vector<data_frame> data_container
A vector of frames, where the index of the vector can be used to access an

arbitrary frame. These two types make possible fast iterations over the mark-
ers/frames.

4.11 mfml File Format Description

The *.mfml �le is the interface between the tracker server and the motion capture
system as described in this thesis. Thus �rst the tracker (as described in section
2.5) has to record data. After processing by the tracker software 3D positions of
the markers and some information about the reconstruction are available. This
data is then written to an *.mfml �le for further processing. The �le format was
designed by Thomas Pintaric, who is a member of the virtual reality research
group at the IMS institute of the Vienna University of Technology. Unfortunately
no documentation exists so far and I will therefore describe it here in short.

An *.mfml �le is a binary �le that can be saved/loaded using two struct and
a typedef. These are f_sfml (frame), f_marker (marker) and mfml_ con-
tainer (whole data set). The latter is similarily de�ned to the data_container
described in section 4.10 (std::vector <std::pair <f_sfml, std::vector <f_marker>
> >). The di¤erence between the two is that here the marker data is not included
in the frame but paired together.

4.11.1 The f_sfml Struct

The f_sfml struct is used to store some information about a frame. It therefore
has two member variables as described in table 4.19.
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�oat center [3] Coordinates
�oat reproj_err Average reprojection error in millimeter
u_int32_t n_blobs Number of blobs used for projective reconstruction
core::unique id A unique id for every marker in every frame

Table 4.20: Member variables of f_marker

Two methods are available for f_sfml - read_from_�le and write_to_�le,
which get passed a �le pointer and read/write the two variables from/to �le.

4.11.2 The f_marker Struct

The f_marker struct saves position and other data as it is generated by the
tracker. The member variables are listed in the following.

As f_sfml f_marker has a read_from_�le and write_to_�le method and
additionally can calculate the distance between two markers using getDistTo( f_marker
&secondMarker).

4.12 The csm File

The csm format has been developed by Autodesk (the software producer devel-
oping 3d Studio Max). It is primarily used to store unconstrained joint positions
without any information about the underlying skeleton. When used for anima-
tion the positions are then imported into the animation program. There they
have to be manually connected to the model by the animator.

In our case the stored values are not the positions of the joints but those of
the markers. They are then loaded into the program along with their ids. (which
can be retrieved from the order the markers appear in the �le)

For evaluation also the joint positions were exported so they could be com-
pared to the �ndings of the algorithms.

4.13 The Output XML File

The output of the motion capture system is designed to be used for animation
as well as evaluation of the quality of the motion capture data. Therefore not
only the skeleton data is included but also some statistical values of the di¤erent
processing steps. As hinted in section 4.7 the format is a mixture of the cal3d
XML format and the XML format used for tracking data. The output is explained
using a commented (and shortened) sample �le. The use of "..." indicates that
parts similar to others, which have already been explained have been removed
from the �le.

<StatsE lem ents> //evaluation of the jo int cost m in im ization pro cess
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<Joint SecondBone="0" F irstBone="1" /a jo int is identi�ed by the ids of the adjacent b ones

A lpha="0" > //alpha of the m in im ization formula

<DistanceStats> //in formation about the d istances b etween the markers on the b ones and the jo int

<FirstBone>

<MarkerD istToJoint MarkerId="0"

AverageD ist="100" //average d istance b etween the marker and the jo int over all fram es

S igma="0.3" //standard deviation of the d istance

/>

<MarkerD istToJoint ...

</F irstBone>

<SecondBone>

<MarkerD istToJoint ...

</SecondBone>

<Calcu lationStats NumberO fIterations="24" //number of iterations necessary during the m in im ization to

reach the sp eci�ed threshold

FuncValueAtSolution="0.3387904120855729" /> //value of the m in im ization function at the resu lt (b elow

1 is usually a good one)

</Joint>

<Joint...

</StatsE lem ents>

<SkeletonAndAnimation> //contains the skeleton param eters and animation data

<SKELETON //hierarch ica l skeleton structure sim ilar to cal3d

NUMBONES="3" > //number of b ones in the skeleton

<BONE PARENT="-1" //parent "-1" m eans root, any other the id of the parent b one

BONEID="1" > //id of the b one

<vector length="3" name="TRANSLATION" > //relative translation to parent b one (zero for ro ot)

<vec_elem val="0" pos="0" />

<vec_elem val="0" pos="1" />

<vec_elem val="0" pos="2" />

</vector>

<vector length="4" name="ROTATION" > //relative rotation to parent b one (quatern ions are used to rep-

resent rotation)

<vec_elem val="-0.4394910733252021" pos="0" />

<vec_elem val="0.6901917616168408" pos="1" />

<vec_elem val="0.4056551345082463" pos="2" />

<vec_elem val="-0.4073411844029531" pos="3" />

</vector>

<vector length="3" name="LOCALTRANSLATION" > //translation to bring a vertex from model space

into b one space

<vec_elem val="507.4327708016544" pos="0" />

<vec_elem val="90.47017325877077" pos="1" />

<vec_elem val="1096.061977017274" pos="2" />

</vector>
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<vector length="4" name="LOCALROTATION" > //rotation to bring a vertex from model space into b one

space

<vec_elem val="-0.6901918053627014" pos="0" />

<vec_elem val="-0.4056551456451416" pos="1" />

<vec_elem val="0.4073411524295807" pos="2" />

<vec_elem val="0.4394910931587219" pos="3" />

</vector>

</BONE>

<BONE...

</SKELETON>

<ANIMATION> //animation data is stored here sim ilarily to cal3d

<TRACK NUMKEYFRAMES="554" BONEID="1" > //every b one has its own track which in turn contains

the keyfram es (in our case every fram e is a keyfram e)

<KEYFRAME FRAMEID="0" T IME="0" > //id of the fram e and recorded tim e in sec (starts at 0 for the

�rst fram e)

<vector length="3" name="TRANSLATION" > //relative translation to parent b one

<vec_elem val="0" pos="0" />

<vec_elem val="0" pos="1" />

<vec_elem val="0" pos="2" />

</vector>

<vector length="4" name="ROTATION" > //relative rotation to parent b one

<vec_elem val="-0.4394910733252021" pos="0" />

<vec_elem val="0.6901917616168408" pos="1" />

<vec_elem val="0.4056551345082463" pos="2" />

<vec_elem val="-0.4073411844029531" pos="3" />

</vector>

</KEYFRAME>

<KEYFRAME ...

</TRACK>

</ANIMATION>

<RawJointPositions> //output of the jo int cost m in im ization algorithm (no param eterized skeleton yet, d is-

tances b etween jo ints can vary)

<jo int1-0> //jo int identi�ed by bone ids

<JointFram e Fram eIndex="0" >

<vector length="3" name="0" > //position of the jo int in the fram e

<vec_elem val="679.8912338402603" pos="0" />

<vec_elem val="73.63353316984644" pos="1" />

<vec_elem val="1078.880517499108" pos="2" />

</vector>

</JointFram e>

<JointFram e...

</jo int1-0>

<jo int...
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</RawJointPositions>

<FinalJointPositions> //jo int p ositions after the skeleton has b een param eterized and �tted back to the data

<JointPositions>

<jo int1-2>

<JointFram e Fram eIndex="0" >

<vector length="3" name="0" >

<vec_elem val="685.0930273019305" pos="0" />

<vec_elem val="74.81968406307466" pos="1" />

<vec_elem val="1032.696020394059" pos="2" />

</vector>

</JointFram e>

<JointFram e...

</jo int1-2>

</JointPositions>

</F inalJointPositions>

<MarkerPositions> //Marker data: o¤sets, tracked positions, rep ositioned markers based on o¤sets and para-

m eterized skeleton

<MarkerO¤sets> //O¤sets of the markers relative to the center of m ass of the markers p laced on a limb(b one)

<Bone id="1" >

<vector length="3" id="0" name="O¤set" >

<vec_elem val="-18.51422637891027" pos="0" />

<vec_elem val="80.22158642655715" pos="1" />

<vec_elem val="-61.92627443099342" pos="2" />

</vector>

<vector length="3" id="3" name="O¤set" >

<vec_elem val="26.48784626154123" pos="0" />

<vec_elem val="18.01506651535026" pos="1" />

<vec_elem val="-5.237626582135748" pos="2" />

</vector>

<vector length="3" id="6" name="O¤set" >

<vec_elem val="3.54961506921352" pos="0" />

<vec_elem val="-90.95700198353677" pos="1" />

<vec_elem val="58.94121610482424" pos="2" />

</vector>

</Bone>

<Bone ...

</MarkerO¤sets>

<Frame Fram eIndex="0" > //for every fram e the tracked position and the reconstructed one (corrected in

version 1.1)

<Bone id="1" >

<Marker id="0" >

<vector length="3" name="FinalM arkerPosition" > //reconstructed position (corrected in version 1.1)

<vec_elem val="424.7317975810138" pos="0" />
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<vec_elem val="61.56459956171633" pos="1" />

<vec_elem val="1150.266772097681" pos="2" />

</vector>

<vector length="3" name="OrgMarkerPosition" > //tracked position

<vec_elem val="601.187927246" pos="0" />

<vec_elem val="129.389923096" pos="1" />

<vec_elem val="1072.55993652" pos="2" />

</vector>

</Marker>

<Marker...

</Bone>

<Bone...

</Fram e>

<Frame...

</MarkerPositions>

4.14 The Motion Capture Suit

During the development of the MoCap system two suits were used to capture
motion data. The �rst version of the suit is a hand-crafted assembly of plastic
plates with markers. The single pieces can be strapped on the actors�limbs by
rubber bands (It can be seen in �gure 4.3). The second suit is an o¤-the-self
product of 3x3 Designs.

The big advantage of the �rst suit is that most markers placed on a single
limb stay in constant distance to each other. (Except for the ones placed on the
breast, which has two plates and the hip, which on the other hand is rather solid
itself) This makes clustering the markers easier. Furthermore the modular design
of the suit allows it to adapt to di¤erent users. Also it is more comfortable to
wear compared to a full suit, especially during the summer months. The mark-
ers, however, were placed relatively close together on the plates, which largely
increased the probability of assigning a wrong id in the �rst step of the applica-
tion �ow. Increasing the size of the plates is di¢ cult because then they would be
too easily deformed or dislocated by skin and muscle movement. Since marker
labeling still is a problem in the current version of the software now the other
suit is used.

The second suit is a standard MoCap suit as used for movies and computer
games. Markers can be �exibly attached to most body areas. As a basis for
marker placement we used the positions described in [Dat07]. Additional markers
were used to allow for some redundancy were it seemed necessary. The suit and
�nal marker con�guration can be seen in �gure 4.4.

The standard deviation of distance between the markers is used for clustering
them into limbs. Due to muscle and skin movement it can get as high as 1. (mea-
surements taken in millimeter) This is acceptable and allows good segmentation
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of the body. Therefore results shown in this work are mostly based on capture
sessions using this suit.

Figure 4.3: Hannes Kaufmann wearing the �rst MoCap suit.
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Figure 4.4: The author wearing the second MoCap suit.
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Chapter 5

Results

This chapter will present the results of the MoCap program described in the
earlier chapters of this thesis. Therefore the calculations of the main steps are
analyzed and discussed in the next sections.

Note that the big advantage of the approach described in the chapters above
is the �exibility to capture the motion of an arbitrary kinematic chain. Other,
simpler, faster or more e¢ cient methods exist for the human skeleton to be re-
constructed. They, however, all lack �exibility, which is a prerequisite for many
areas of application. In the next sections it can be seen how the ability of the
system to adapt to non-human structures also helps evaluation. This primarily
comes from the fact, that various types of input can be used for the program.

Three di¤erent classes of input were used to test the functionality of the
system. On the one hand MoCap data has been simulated using 3D Studio Max.
On the other hand an articulated structure consisting of three rods with markers
was used to provide some real world measurement of joint distances. Finally the
optical tracker described in section 2.5 was used to capture human data sets. For
the latter the human body was either partially captured (e.g. upper body) or
captured as a whole. The upper body data set has 21 markers placed on breast,
back, hip and upper- as well as forearms and was captured for about 900 frames.
The whole body data set consists of 28 markers placed on 10 body parts and is
captured for almost 2000 frames. Whole body MoCap, however, has proven to be
di¢ cult for reasons described in the next section. Therefore results in this case
only exist partially.

5.1 The Input data sets

First simulated data was used as an input to the application. It was modeled in 3D
Studio Max and has the advantage of being more precise than captured data. Also
ground truth measurements can be taken, which is rather di¢ cult for a human
skeleton. The animated skeleton consists of 13 bones roughly approximating the
human body. On the skeleton are placed 31 virtual markers. The positions of

111
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the markers are output for every frame of the animation and stored in a csm �le.
For test purposes two �les with lengths 400 and 1500 frames were used. These
�le were then fed to the application.

A second class of input data sets was generated using an articulated rod
construction consisting of three wooden rods connected by metal articulations.
The length of each rod was about 35 centimeters. Three markers were placed
on each of the parts using carbon �ber sticks attached to the rods. The marker
positions were tracked over a sequence of between 400 and 500 frames.

Finally some data sets where captured using a MoCap suit with about 30
markers. Some data sets were obtained only with the upper part of the suit,
while some were captured with the whole suit. For the whole body MoCap
occlusions posed a great problem as will be explained in the following.

5.2 Results of Step 1: Temporal Marker Correspon-
dence

Finding the temporal correspondence of the markers and labeling them accord-
ingly has proven to be the most challenging task. Unfortunately at this point
of time (December 2007) it still does not work perfectly. Due to the fact that
only four cameras are used for the optical tracking many occlusions occur. These
make it di¢ cult to unambiguously identify a marker over the whole time of cap-
ture. This in turn is essential for the rest of the algorithms. Given the methods
described in section 3.3 this is a very hard to accomplish goal. For some captured
data-sets, however, the �rst step of the program produced su¢ cient results, which
will be presented in the following. Also ideas for improvement of the marker la-
beling exist and will be described in short in chapter 6. A visualization of the
result of step 1 (labeled markers) can be seen in �gure 5.1.

The data sets obtained by simulation in 3D Studio Max contain markers,
which are already labeled. Therefore they are not discussed in this section. For
the articulated rod construction the marker labeling worked �ne.

The �rst part of the temporal correspondence �nding step as described in
section 3.3 is labeling markers in successive frames. Two markers are assigned
the same id if they don�t move much from one frame to the other. This works
rather well for both simulated and captured data as long as no marker gets
occluded. However, this �rst step was replaced for this system by a prediction
algorithm as described in [LaV03]. The method has been implemented in the
tracker software. Thus it will not be described here in much detail. The basic
idea is to predict the position of a marker for the next consecutive frames. This
has two advantages over the method used before. Firstly, even in fast motions
the id of the marker can be found in the next frame. Secondly, if the marker gets
occluded for some frames - mostly markers only get occluded for a fracture of a
second - the algorithm can �nd it and assign the correct id after it reappears.
Our experiments showed that this works �ne as long as markers are not placed
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Figure 5.1: Markers labeled with ids placed on the model of a human body.

too close together on the suit. In this case marker ids of two close markers easily
get switched, which is a hard to detect error. Finally it results in very bad joint
calculations, although it might not even in�uence the process of assigning the
markers to limbs as explained in the next section.

After the prediction algorithm has been run Marker Sets are created as de-
scribed in sections 3.3 and 4.2. The second phase of the marker labeling task is to
cluster the Marker Sets so each group corresponds to a physical marker. Here for
this system lays the most likely point of failure. Since for a whole body MoCap
data set there are created dozens or even hundreds of Marker Sets which have
to be clustered into about 30 groups for the physical markers. Depending on the
length of the captured sequence this can require a lot of computations since the
distance has to be calculated between all the Marker Sets. Nevertheless for my
test cases a capture sequence of about 400 to 2000 frames was usually su¢ cient
to calculate the skeleton parameters. Thus the e¤ort is somewhat limited. Also I
can con�rm the �ndings of Kirk et al. in [KOF05] that sampling produces almost
identical results. Depending on the length of the Marker Sets and the number
of poses therein even ten samples can be enough. In addition I am using a local
approach, which further reduces calculation time and often makes the distance
values more accurate. The basic idea of this algorithm is not to transform the
whole body pose of the Marker Sets for comparison. Instead only a part of the
body is transformed. Ideally for example an arm is rotated and translated into a
local coordinate system based on the positions of a subset of markers placed on
that arm. Since the arm is much more likely to pass through the same pose than
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the whole body this should work much better. Unfortunately at this point of
the application �ow there is no information, which limb the markers are assigned
to. However, taking markers that are close to the marker which the Marker Set
belongs to also works �ne in a lot of cases. For the test runs about 4-5 markers for
a 30-35 marker suit produced the best result. Three markers produced too much
errors due to skin movement and other in�uences, while more than 5 destroy the
advantages of the local transformation.

As mentioned above the unambiguous identi�cation of the markers is crucial
for the correct calculation of the skeleton parameters. Therefore in many cases it
is better to ignore a marker for a series of frames than to use it with a wrong id.
This counts only if there are enough markers available and the capture sequence
is long enough. I use some strategies to avoid wrong identi�cation of markers
by reducing the data. First all Marker Sets which are less than half a second of
length are removed. There are two reasons for this. On the one hand it doesn�t
signi�cantly improve the overall result. On the other hand a Marker Set this
short is not very likely to contain more than a single pose. This means that
the other Marker Sets that it is matched with have to have exactly that pose to
produce a useful result. Otherwise the Marker Set gets clustered wrong and the
whole system fails. For the same reasonsMarker Sets which are longer (e.g. some
seconds) but are not long enough to be useful without being clustered to other
Marker Sets are removed in some cases. If the distance to every other Marker
Set is larger than a threshold it gets deleted. (Currently 10 cm are used, which
is about the minimum distance between markers on the MoCap suit)

Once the number ofMarker Sets is reduced they are clustered into groups.(One
group for each physical marker) I have tried multiple clustering algorithms for
that purpose. First I tried Spectral Clustering as suggested [KOF05]. Since the
parameter sigma is di¢ cult to determine I also implemented and used a version
with local sigmas as described in [ZMP04]. Also K-means (LLoyds, with a lo-
cal search heuristic, a hybrid solution [KMN+02b] and K-means++ [AV07]) has
been tested for this purpose. For the latter I implemented an exclusion list, which
prevents overlapping Marker Sets to be clustered together. The best results were
produced by Spectral Clustering with local sigmas. Also Spectral Clustering
produced good results, when the correct parameters were used. The parameter
sigma for that reason was inferred automatically by iterating it over a certain
range. The clustering then was evaluated and the best clustering chosen. As an
estimate for the quality of a clustering the distance between Marker Sets within
the clusters as well as the distance of the Marker Sets of di¤erent clusters has
been used. (The �rst has to be minimized while the latter should be maximized)
Unfortunately in the current implementation the clustering sometimes produces
errors for the captured data sets. It has proven especially tricky if multiple mark-
ers placed on the same limb get occluded at the (almost) same time. Due to the
spatial proximity of the markers the distance values calculated between the two
corresponding Marker Sets are also very close. This fact sometimes is the reason
for markers to switch ids. This in turn, while not necessarily causing the articu-
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Figure 5.2: Skeleton produced from a dataset where markers switched ids. Es-
pecially the elbow on the left side of the image is reconstructed very badly:

lated structure to be wrong as a whole, results in a very crooked skeleton as can
be seen in �gure 5.2. Even worse than this phenomenon is the wrong assignment
of ids to markers of di¤erent limbs. In that case most of the time no useful result
can be produced by the subsequent steps.

5.3 Results of Step 2: Spectral Clustering

As mentioned before Spectral Clustering - or clustering in general - is being used
at two points in the application �ow. The �rst is the clustering of Marker Sets,
which is needed to label the markers. Secondly, once the markers can be uniquely
identi�ed, they are clustered into groups consistent with the limb they are placed
on. (Note that limb is used here more as a generic term, since for sake of �exibility
the system doesn�t (need to) know, whether the limb is an arm, leg, hip etc.) This
section mainly focusses on the latter point of application for clustering, since the
�rst was already discussed in the last section. A visualization of clustered markers
can be seen in �gure 5.3.

For the intended purpose it is rather di¢ cult to classify the result of a cluster-
ing algorithm except into correct and incorrect. This is since a wrong grouping
of limbs usually results in a false skeleton structure. (e.g. The upper arm con-
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Figure 5.3: Visualization of clustered markers. (color indicates the cluster)

nected directly to the hip) For that reason the discussion of clustering algorithms
will be rather short. The k-means algorithm used in the current version is k-
means++ [AV07]. This is primarily for reasons of e¢ ciency. Due to the good
initialization the clustering with this algorithm usually needs less than a dozen
iterations. Results with Lloyds and the hybrid solution described in [KMN+02b]
are correct as well.

Simulated data has proven to be rather trivial to cluster. This comes from the
fact that the distance between markers placed on a single limb does not change
at all (except for numerical errors resulting from conversion into and from csm
format etc. ). Since the deviation from the average distance determines the cost
values for the clustering the result is rather obvious. (For the cost function please
refer to section 3.4) In our case the cost values between markers on the same limb
and on di¤erent limbs di¤er by a factor of 106. For test purposes I implemented a
greedy algorithm that simply looks for the lowest cost values in the cost matrix.
Then it clusters the markers with the lowest cost together until the intended
number of clusters is reached. For the arti�cial data sets this method works
perfectly correct. For the captured data on the other hand Spectral Clustering
again proofs to be the most reliable.

In the current version of the MoCap system Spectral Clustering with local
sigma parameters is used. For calculation of the local sigmas �ve markers seem to
work well. (See also section 4.9 parameter LOCALSIGMAK) It also is the most
convenient solution since it doesn�t require any user interaction. For captured
data it usually produces correct results provided that the marker ids are correct.
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Even in cases where marker ids on one or two limbs are switched the algorithm in
many cases produces a correct marker-limb association. (Note that for a limb with
only two markers it doesn�t change the cost if the marker ids are switched) The
cost values between markers on the same limb and on di¤erent limbs for captured
data usually change by a factor of about 3 to 100. This of course depends on
a number of factors. First of all the joint needs to be adequately exercised.
Secondly, bad marker placement might result in wrong clustering. (e.g. Spectral
Clustering had di¢ culties correctly assigning a marker placed on the shoulder
- for most test runs it would cluster it with the upper arm) Also the number
of samples used for the clustering strongly in�uences the result. While for the
simulated data 3-5 samples produced correct results for the captured data sets
about every �fth frame was used to calculate the cost matrix. Additionally skin-
and muscle movement introduces certain errors. In general, however, clustering
the markers into limbs is not a problem when using Spectral Clustering.

5.4 Results of Step 3: Joint Positions

Calculating the joint positions is the computationally most expensive part of the
system. Especially minimizing the functions described in sections 3.5.1 and 3.5.2
requires most of the programs runtime, since there are thousands of unknowns
involved. Therefore special e¤ort has been taken to speed up these calculations.
First of all it is crucial to initialize the joint positions to values that are close
to the result to reduce the number of the iterations. Note that this should not
only be done for e¢ ciency. When using the origin as initialization for the joint
positions the optimization algorithm got trapped in local minima for many joints.
This is especially true for the simulated data, where the knee for example was
modelled as perfect rotation axis. Thus the correct joint could lie anywhere on
the axis as far as the minimization is concerned. In addition to the initialization
the parameter � from the function in section 3.5.1 is being set to 0:1 to keep
the joints close to the limbs it connects. This, however, introduces a small error
because it is likely to move the joint away from its "perfect" position as I will
explain later.

To speed up the joint calculation I used parallelization. The joint positions
can be calculated independently since they don�t in�uence each other by only
reading the marker positions. Depending on the number of joints this can largely
decrease computation time. I use parallelization at two points in the program.
The �rst is for the joint calculations for the skeleton structure. Here hundreds of
"joints" are calculated between all limbs. This is easy to distribute among the
di¤erent processors. For the �nal joint positions it is not so e¢ cient since only 10
to 15 joints have to be calculated. These calculations can not be well distributed
since the computation time for the joints can di¤er signi�cantly. However, the
overall computation time is about cut in half by using parallelization on the test
machine with four processor cores.
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FTOL 10�6 is currently used for the break condition of the
minimization algorithm.

ITMAX 100-250 iterations produced the best results. For sim-
ulated data usually less iterations were needed than for
captured data.(Except for test purposes were nanome-
ter precision was wanted)

ITMAXBRENT Using 500 sometimes produces better results than the
suggest default 100 from [PTVF92], but also slows
down processing.

TOLBRENT 2*10�8 produces good results
METHOD Polak-Ribiere is choosen for the reasons outlined in

section 3.6. With Fletcher-Reeves start positions seem
to be not good enough because sometimes it doesn�t
converge.

Table 5.1: Parameters used for NLCG

The nonlinear conjugate gradient method(NLCG) was used to minimize the
functions mentioned above. Since good minimization is crucial to the success of
the system I will take a closer look at the parameters used. Table 5.1 shows the
values that seem to work �ne. For a more detailed description of the parameters
please refer to section 4.9. Parameters not mentioned here have the default values
speci�ed in [PTVF92].

One way of evaluating the quality of a joint position is to look at the return
value of the minimization function. Others will be discussed in the next section,
where the skeleton�s parameters are used to measure joint correctness. (Note that
all measurements taken and discussed in the following are in millimeters.) A low
return value of the minimization function tells us that the distances between the
joint and the markers of the adjacent joints remains constant over the captured
timespan. If this is the case we can assume that we found a good joint position.
For the simulated data this return value is theoretically only limited by numerical
precision, which is primarily limited by the output of the csm-export script. This
only reads out �oating point numbers with a mantissa size of six. (Also a break
condition is used since the program should terminate in �nite time) Due to the
parameterization return values in this case can go as low as 10�7. Sometimes,
however, there is a local minimum the optimization algorithm gets trapped in,
or roundo¤ errors strongly e¤ect the return value. Especially for joints that are
not exercised very much like the wrist or joints with less than six markers in the
adjacent limbs this can happen. These local minima, however, usually are not a
problem, because they are very close to the optimum (return values between 0.001
and 0.5) and accuracy in a submillimeter domain is not a goal for the system.

The captured data obviously can not perform as well, since numerous errors
are introduced by the human body (skin and muscle movement, approximated
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rotational joints) and to a lesser degree the tracker. Also approximating the
spine by a single rotational joint introduces some error. However, return values
are usually in a range of 2-20. This means that the average deviation of a marker
to the joint is the square root of these numbers (in millimeter). For joints like
the elbows, the shoulders, the hip and the knees the return values are generally
more in the lower area (about 2-9) while for the back and the neck they are
higher. (about 15) Due to the fact that the joints in the human body are only
crude approximations of rotational joints this values can be considered su¢ cient.
This is especially true for the shoulder and the knee, where the center of rotation
moves depending on the current pose of the limb. (According to [SR05] the knee
centers vary with up to 9 mm for adults and the shoulder, because of its complex
nature, might deviate signi�cantly stronger)

The return values produced by the optimization of our rod construction�s joint
positions are between 0.3 and 1.5. This also seems quite acceptable, considering
the improvised joints and tracking errors.

The performance of the system is largely determined by the calculations of the
joint �nding optimization described here. The tests were run on a workstation
with 2 AMD Opteron 280 dual core processors with 2.4 GHz. On this machine
joint optimization took about �ve seconds for the rod construction. This is for
9 markers and three limbs captured for about 400 to 500 frames. The captured
data set with 28 markers on ten body parts in about 2000 frames required up to
one and a half minute. Note that the 2000 frames are after the cleanup, where
frames are removed, which contain too little markers. For the arti�cial data with
1500 frames the optimization took about 70 seconds. Although for the simulated
data sets more markers (31) and more limbs (13) were used than for the captured
calculation time remains lower. This is not only due to the smaller number of
frames. Also for some joints only very little iterations have to be calculated for
acceptable results. These time values are taken using the parameters described
in this section. Note that these can vary for di¤erent parameters. Especially
the sampling, when determining the structure of the skeleton, has an important
impact on the calculation time.

5.5 Results of Step 4: Skeleton Parameterization

Finally I will present the results of the last step, which is �nding the skeleton�s
parameters. The quality of the output of this step very much depends on the
correct �ndings of the joint optimization in the last step. Bad optimization val-
ues there usually result in a skeleton that has limb lengths that strongly deviate
from the ones of the captured subject. Unfortunately measuring limb lengths on
a human skeleton is not an easy thing to do. Therefore lengths measurements
are only taken from simulated data and from the rod construction. As a univer-
sal measurement of correctness, which can be applied to all the data sets, the
parameterized skeleton is �tted back to the captured data. This is done using
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the inverse kinematics algorithm described in 3.8.2. Then the average distance
between the reconstructed marker positions and the original ones is measured
and averaged.

For a start evaluation of the simulated data is presented. As said before
precision of the output here is largely limited by the numerical precision of the
input. Also rotation axis pose a certain problem as can be seen later. The
evaluation of two csm �les is shown here to prove the correct functionality of the
skeleton parameterization algorithms. The data sets contain the marker positions
of the skeleton described at the beginning of this chapter over a period of 400
and 1500 frames. For the algorithm probably less frames (or samples of the
animation sequence) also would be su¢ cient. However, I wanted to keep the
input comparable to the captured data set and therefore tried to animate the
skeleton with reasonably lifelike motions at a realistic speed. Tables 5.2 and 5.3
show the average deviation of the marker positions from the positions in the csm
�le after the skeleton has been �tted back to the data. From that values multiple
conclusions can be drawn. First of all the values given there strongly indicate
that the parameterized skeleton almost perfectly �ts the one animated in 3D
Studio Max. Since the deviations are very low for most limbs joint o¤sets and
marker o¤sets have to be correct in order to allow the IK algorithm to �t them
back to the data. Secondly as described in section 3.8.2 the skeleton is adjusted
to the data hierarchically. This means that errors of the IK algorithm propagate
along the limbs as they are �tted. (e.g. starting at the breast followed by upper
arm, forearm and hand) The increase of deviation from the torso to the outer
extremities therefore not only stems from numerical inaccuracies or calculation
errors but also from the IK algorithm. The third conclusion that can be drawn
from the data is the fact that marker placement strongly a¤ects the result of
the parameterization. Thus the "bad" reconstruction value for the right hand
that can be seen for all three animations is from a slightly unfortunate marker
placement. As can also be seen in �gure 5.1 marker 16 and 29 are placed very
close together producing the criticized result. Note that for the simulated data
markers always maintain their ids because it is exported with the data from 3D
Studio Max.

To show that the above method provides a good means to measure the quality
of skeleton parameterization the joint positions of the 400 frame animation were
also evaluated. Therefore the joint positions were exported from 3D Studio Max
and compared to the �ndings of the MoCap system. This was done after calcu-
lating the joint positions in step 3 and after the skeleton was parameterized and
�tted back to the data. The result can be seen in table 5.4. Comparing the two
righter columns of this table clearly shows an improvement, after the parameter-
ization for almost every joint. The largest deviation is produced by the knees,
which can be considered a special case. This is because they are modelled by a
rotational axis. Thus any point on the axis can be a perfect joint as far as the
optimization algorithm is concerned. (Although a position close to the markers is
favored) For that reason a deviation of 10 can be considered a good value. This
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Limb Marker Average deviation
Breast 8 0.0009944471620018838

9 0.0009854093906319728
23 0.0009929703796803173

Head 13 0.001053717895964039
14 0.0010885129095937198

R. Upper Arm 18 0.019372854501369687
30 0.019877490959252953

R. Forearm 17 0.02619963194425512
28 0.03013364570837896

R. Hand 16 1.1682378545645293
29 1.6265735381409094

L. Upper Arm 10 0.001021008935532011
24 0.0010259126044370166

L. Forearm 11 0.16695957608696657
25 0.3544017028244262

L. Hand 12 0.38819061525847887
26 0.41291686881058676

Hip 15 0.001039108117499345
27 0.0010261218304355028

R. Thigh 2 0.05226658780682448
3 0.05105508606809256
20 0.04878096073048679

R. Lower Leg 0 0.055946226356728634
1 0.054645184870330786
19 0.052358214328769234

L. Thigh 6 0.2759348371328221
7 0.2536390742656726
22 0.2615930451353708

L. Lower Leg 4 0.18809646096329097
5 0.20223278213782447
21 0.19222953292862388

Table 5.2: Average deviation between the original and reconstructed marker
positions for the simulated dataset with 1500 frames

counts especially since visual inspection shows that the joint does stays in place
along the rotational axis and is therefore not troublesome for e.g. animation pur-
poses. Comparing the values of tables 5.3 and 5.4 also produces some interesting
�ndings. Leaving the knees aside there can be observed a correlation between the
values of the two tables. So the right hand/wrist has the worst deviation followed
by the left hand/wrist and the right forearm/elbow. The breast/spine head/neck
thigh/hip joint combination on the other hand show only minimal error.
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Limb Marker Average deviation
Breast 8 0.0009993540877580689

9 0.00099137673909368
23 0.0009943304356966772

L. Upper Arm 10 0.0010337998665188885
24 0.0010379928463720046

L. Forearm 11 0.004284588521316699
25 0.007746556963900375

L. Hand 12 0.25100862029414855
26 0.18982405094275848

Head 13 0.001055851087810452
14 0.0010663656720730033

R. Upper Arm 18 0.12197313118800823
30 0.16017175191713812

R. Forearm 17 0.21883503340144853
28 0.22195148959048136

R. Hand 16 1.7186381536680644
29 1.5898171821315759

Hip 15 0.0010695627215237399
27 0.0010346725509701694

R. Thigh 2 0.0010538344234221817
3 0.0010571968961394665
20 0.001045088599133401

R. Lower Leg 0 0.001056190230784203
1 0.001070835715337769
19 0.0010451868546563603

L. Thigh 6 0.001060967788309057
7 0.0010710289045731012
22 0.0010780554763261533

L. Lower Leg 4 0.0010653798965889025
5 0.001084343795232593
21 0.0010621389667053581

Table 5.3: Average deviation between the original and reconstructed marker
positions for the simulated dataset with 400 frames

In this paragraph a closer look will be taken a the results of the rod con-
struction depicted in tables 5.5, 5.6, 5.7 and 5.8. Note that these data sets were
captured using the tracker described in [Meh06], which was later upgraded to
what is described in [PK07]. Unfortunately there wasn�t time for a second cap-
ture session with the new tracker, which would have allowed for higher frame
rates and more accuracy. The results, however, are nevertheless acceptable with
average deviations of 0.2 to 3 millimeters. Again it can be observed that the ac-
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Joint Average Deviation Average Deviation after Param.
Spine 0.000569756 0.000575338

Right Elbow 1.82806 0.338819
Right Hip Joint 0.000834624 0.000633745
Right Knee 9.28491 9.28484

Right Shoulder 1.29147 0.520079
Right Wrist 12.0792 4.44404

Neck 0.000704843 0.000814122
Left Elbow 0.0976497 0.0216419

Left Hip Joint 0.00202592 0.000974378
Left Knee 9.30966 9.30965

Left Shoulder 0.000571244 0.000549666
Left Wrist 5.26235 1.40935

Table 5.4: Average Deviation of the calculated joint positions from the original
joint positions. The second column shows the deviation after step 3, while the
third column presents the deviation after step 4. The values are taken from the
400 frame simulated dataset.

Limb Marker Average deviation
2 0 0.4147361012924929
2 5 0.37781916256059556
2 7 0.26672217942744125
0 1 1.5963650926389057
0 2 2.0352633099941686
0 3 1.6813691979813832
1 4 1.9305034533459826
1 6 2.3899574574708047
1 8 2.4588358414915517

Table 5.5: Average deviation between the original and reconstructed marker
positions for the captured rod construction. (First recording)

curacy for the centerpiece (the root) is better than the ones for the outer pieces.
In Addition to the deviation of the markers the length of the middle rod was
measured and compared as by Kirk et al. in [KOF05]. The measured length
is 359 millimeters +-1.5 millimeters for the slackness of the articulations. The
values calculated by the algorithm can be seen in table 5.9. The average distance
between the two joints was computed to be 360.46 millimeters, which is rather
close to the original length, when considered the slackness. (For a more precise
statistical evaluation more data sets would have been necessary)

Finally the evaluation of the captured human motions is being presented.
Two data sets were processed to test the functionality of the system. Due to
the marker labeling problems pointed out earlier no complete correct data set of
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Figure 5.4: Visualization of a parameterized skeleton. The joints(white spheres)
are connected to the markers(colored spheres) of the adjacent limbs.

Limb Marker Average deviation
0 4 0.4930096306771767
0 6 0.8462943467045175
0 7 0.6356741256914126
2 2 1.8171900838161508
2 3 1.983348238076757
2 8 2.045353616876127
1 0 2.21632336100837
1 1 2.1025654559648967
1 5 2.3977470500103215

Table 5.6: Average deviation between the original and reconstructed marker
positions for the captured rod construction. (Second recording)

whole body capture was produced. I will nevertheless use one of the data sets
produced here to point out how the system gets along with erroneous marker ids.
The second data set described in the following paragraphs consists of a captured
torso, which has correct marker labeling.

The whole body data set contains three errors related to marker labeling.
One is in the breast the other is in the right thigh, while the third is in the left
forearm. In all cases markers switch ids for a certain amount of time. This,
however, in this case does not result in wrong clustering of the markers in step 2.
For step 3 and 4, the joint calculation and the parameterization the e¤ect is quiet
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Limb Marker Average deviation
1 1 0.8709467629047596
1 3 0.5883733946165258
1 4 0.855782477316303
2 2 2.420136676821549
2 6 3.2790877180064992
2 8 2.5413330360419484
0 0 2.3121023866948653
0 5 1.9858107545649495
0 7 2.4726080992295763

Table 5.7: Average deviation between the original and reconstructed marker
positions for the captured rod construction. (Third recording)

Limb Marker Average deviation
1 1 0.4835725362370122
1 2 0.5783252175350256
1 7 0.4668084807516744
2 4 1.880682268129612
2 5 2.1169604998853453
2 8 2.370866398233638
0 0 2.6072404299729732
0 3 1.9735770404335953
0 6 2.259741558746566

Table 5.8: Average deviation between the original and reconstructed marker
positions for the captured rod construction. (Fourth recording)

Measurement Value (mm)
Measured Distance 359 +-1.5
Data set 1 365.03
Data set 2 359.03
Data set 3 360.97
Data set 4 356.80
Average of Data set 360.46

Table 5.9: Measured and calculated distances between the two joints of the rod
linkage

dramatically. The biggest problem is, that one switch occurs between markers
placed on the breast. Because of that joint values between the breast and the
other limbs are rather bad. Therefore the spanning tree algorithm doesn�t �nd
the breast limb to be the root. Instead the left upper arm becomes root and is
connected to the hip. The other errors only have local e¤ect on the left elbow and
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Limb Marker Average deviation
L. Upper Arm 5 2.4022750586371466

18 2.402280803122446
R. Upper Arm 6 131.48548639516954

8 125.83802232848232
25 125.07409100557012

R. Forearm 4 116.38256615519327
13 123.22801348474934
24 119.44519064558801

Breast 7 94.72896264401112
15 78.39185808420885
22 96.87829236078828
23 102.55187195139979
26 99.03937150775894

L. Thigh 14 52.52161211225093
16 56.03526577878675

L. Lower Leg 3 48.188698176736644
12 85.64028591349198

Hip 9 44.3944565368421
11 136.52220363882273
17 72.65360401700173

R. Thigh 10 103.99633485200287
19 86.88035651295951

R. Lower Leg 1 89.02004073845008
2 94.25114722777029
27 79.58357849740945

L. Forearm 0 53.44981708249444
20 69.59897715470238

Table 5.10: Average deviation between the original and reconstructed marker
positions for the captured whole body dataset

the right knee. This only leaves the left leg and right arm untouched. However,
due to the error propagation in the IK algorithm the deviations here too are in
the centimeter domain as can be seen in table 5.10.

The last data set for which the results are evaluated is that of a captured upper
body (with arms). Figure 5.5 shows the parameterized skeleton together with the
reconstructed marker positions. From visual inspection it appears to be correct,
except the joint approximating the spine shows to be too much on the right side.
This, however is a result of the fact, that the spine is hardly exercised during the
captured time span. Otherwise again it can be observed that the errors sum up
at the outer extremities, while the root has relatively good distance values. With
distance values between 4 and 22 millimeters ultimately the parameterization can
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Figure 5.5: Visualization of the skeleton produced for a captured upper body.

be considered successful.
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Limb Marker Average deviation
Breast 8 4.6598545027611324

11 4.896348347319935
13 5.479694854741079
16 4.112358674976455

Hip 1 4.800415751645614
2 6.892094587665252
3 6.101659467333794
12 5.287672032688435
14 5.490909491832862

L. Upper Arm 5 5.762807038418709
6 6.0897567003876025
19 8.203250144989813

L. Forearm 7 14.651537550944884
10 12.942072550283347
20 14.235432796730349

R. Upper Arm 0 6.956793875333789
4 8.749547061568276
9 13.422635816712248

R. Forearm 15 22.93096995363695
17 22.239811825942017
18 20.3775491160917

Table 5.11: Average deviation between the original and reconstructed marker
positions for the captured upper body dataset



Chapter 6

Future Work & Conclusion

6.1 Improvement of Marker Labeling

Since assigning ids to the markers (i.e. clustering the Marker Sets) still is a
problem in the current version of the system I�m trying to improve it. One method
I am currently implementing is to merge the �rst two steps of the system into
one. Then using information that is only available after clustering the markers
into limbs for the marker ids.

The basic idea is to iteratively improve the id labeling and the limb association
using the following algorithm:

1. Cluster the Marker Sets (MS) into Merged Marker Sets (MMS) using the
minimum distance Dij described in section 3.3. This is similar to the orig-
inal step1 except there can be more MMSs than physical markers.

2. Cluster the MMSs into Limb Merged Marker Sets (LMMS) using the vari-
ance of distance varDistij 1from section 3.4. This is analogue to step 2 in
the original algorithm.

3. Iterate over the LMMSs and �nd the LMMS lx for which the varDistij
2is largest between two MMSs mmsi and mmsj . Then �nd the MS(s)
responsible in mmsi and mmsj and remove them to a pool of MMSs P .

4. Try �nding MMS(s) were one/(some) member(s) of P can be �t into so
that varDistij does not get signi�cantly increased for all the pairs mmsi
and mmsj in the corresponding LMMS.

5. If the overall varDist is below a certain threshold stop. Otherwise goto 3.

1Note that varDistij is calculated from markers in the same frame, while Dij is computed
from Marker Sets that don�t overlap in time

2 Instead of varDistij I am using the di¤erence of the distance of the MSs in mmsi and mmsj
because varDistij is computationally expensive. That in theory should produce a similar result.

129
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Unfortunately I couldn�t �nish the implementation of this method yet and
thus can not say for sure how much it improves the labeling. The e¤ect of the
algorithm also is depending on the number of markers on the limbs. The two
main advantages it should have are:

� Detect if two MS belonging to di¤erent limbs are clustered together and
correct it.

� Given there are two or more markers on a limb and at least one of the
markers has an id. Then the Distij to that marker can help to identify
other MSs on that limb. Or in other cases it might rule out that a MS
belongs to a certain limb.

The method described above does not help to avoid markers switching ids
when on the same limb if there is only two of them, because the Distij stays the
same if they do. Also it might generate some computational overhead. However,
I�m quite con�dent it will make the system more �exible and reliable.

6.2 PlayMancer & Real Time

PlayMancer is an EU project which has the goal of developing a Serious Game
environment. A main goal of the project is to support the development of Univer-
sally Accessible Games, which for example can be used for physical rehabilitation.
Among other modes of user interaction it will contain a module for player motion
tracking. This will be developed by the Virtual Reality Group of the Institute
for Software Technology and Interactive Systems at Vienna University of Tech-
nology. As a part of this group I will adapt and improve the system described
in this thesis to generate and parameterize the skeleton of players. For Play-
Mancer usability, reliability and performance are crucial design goals. Therefore
it is not yet clear if the improvements described in section 6.1 are su¢ cient or if
the �exible approach described in this thesis has to be given up. Using a prede-
�ned skeleton, which is adapted to the users proportions, would be one way to
accomplish the above goals. Also real-time parameterization could be interesting
in this context. The algorithms described in this thesis do not work in real time
since they require a certain amount of captured movement data. Also some time
is needed to process the data. This is a drawback for areas of application, were
results are needed fast. (like for example PlayMancer) An approach like in [CL05]
might help to achieve results faster. Which of the above methods �nally will be
used, however, is yet uncertain.

6.3 Conclusion

In this work the theoretical foundations necessary for the generation of a skeletal
structure from optical motion capture data have been discussed. This includes a
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small survey of tracking methods, their properties and the mathematical founda-
tions of the algorithms used.

Based on these a software application to retrieve the skeleton parameters
was designed. Design considerations were made for the program to be used in
a teaching and research environment. Comparison to algorithms used in other
MoCap systems have been drawn where it seemed interesting. The design also
speci�es the application �ow as data is passed from stage to stage.

Also the implementation of the MoCap software has been documented dur-
ing this work. The main part of the implementation is the four stages from
marker labeling, marker clustering, joint calculation and estimation of the skele-
ton structure. This includes the algorithms used in these steps. Furthermore the
properties of the graphical user interface and the input and output formats have
been described. Additionally an inverse kinematics algorithm was implemented,
which allows to �t the parameterized skeleton back to the captured data.

The software implemented was also thoroughly tested using simulated and
captured data. For that purpose a low cost optical tracking system with passive
markers was used. The results, which have been presented, show that the software
works if during the tracking process markers don�t get occluded too often. Then
the algorithms �nd the correspondences between tracked and physical markers
over the whole captured time span. This is a prerequisite for correct computations
in the other steps.

If the markers can be identi�ed they are correctly grouped into limbs as
has been documented. Also the joint optimization algorithm has been proven
to work �ne. Finally the parameters calculated have been shown to be within
an acceptable range of accuracy. Therefore di¤erent data sets and methods of
measurement were used. Due to the lack of ground truth measurements for the
captured data a new measurement method was introduced using the deviation
of tracked and reconstructed marker positions. Results of the evaluations have
been presented for each data set. Additionally the performance of the software
has been analyzed including the improvements of multi processor usage.

Before it can be expected to produce stable results for whole body MoCap,
however, some improvement to the marker labeling has to be implemented. Due
to a lack of time, this has not been done during this work. Nevertheless sugges-
tions for enhancements have been made in the above sections and the author is
optimistic that these issues can and will be resolved in future work.
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