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Kurzfassung

Paralleles und verteiltes I/O ist zur Zeit ein hochaktuelles Thema in der Wissenschaft.

Bis jetzt wurden meistens proprietäre (herstellerbasierende) oder UNIX Techniken

verwendet. Nun gibt es Anstrengungen für einen allgemeinen Ansatz für paralleles

I/O im MPI/2 Entwurf, Kapitel 9. Dieser neuer, einheitlicher Ansatz erfordert vom

Benutzer ein umfangreiches Wissen über die Zugriffsmuster.

Das Ziel dieser Arbeit ist die Präsentation von ADIOS, einer "client server"

basierenden Implementation für verteiltes I/O mit Schnittstellen zu MPI/IO oder

herkömmlichen UNIX System Aufrufen. Die Betonung liegt auf den Design Ansätzen

der Kern Systems.

Wir starten mit einer einleitenden Darstellung von parallel I/O, File Systemen, für

Cluster verfügbare parallele und verteilte Systeme, setzen dann fort mit einer kurzen

Beschreibung und Präsentation von ADIOS, seinen Ähnlichkeiten und Verschieden-

heiten verglichen zu ROMIO, einer weit verbreiteten Implementation von MPI/IO

und vergleichen auch mit PVFS. Dann konzentrieren wir auf das Hauptkapitel, der

umfangreichen Darstellung des systemübergreifenden Designs. Den Abschluss bilden

Leistungstests im Vergleich zu ROMIO und PVFS.
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Abstract

Currently parallel and distributed I/O is a hot topic in science. Until now most of

the times proprietary (vendor) techniques or the Unix like semantics were used. Now

there some efforts to generalize parallel I/O in the MPI/2 draft, chapter 9. This new

generalized techniques assume a comprehensive knowledge of the access patterns by

the users.

The aim of this work is to present ADIOS, a client server implementation of

distributed I/O with interfaces to MPI/IO and native UNIX system calls. We want

to emphasize on the overall design principles of the core system.

We will start with a introduction to parallel I/O, filesystems, available parallel

and distributed I/O systems for clusters, continue with a short description and pre-

sentation of ADIOS, its similarities and its differences compared to ROMIO , a well

known implementation of MPI/IO and also PVFS. Then we will focus on the main

topic, the overall system design, which will be very comprehensive and finally we will

close with some performance tests we ran compared to ROMIO and PVFS .
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Chapter 1

Introduction

1.1 Motivation

Perfection is not achieved when there is nothing left to add, but when there

is nothing left to take away

In the last few years grid computing became very popular. Approaches like

Globus[7], NetSolve, SETI@home attracted more and more people to join. The basic

idea behind these projects is to solve large problems by harnessing the CPU cycles

of participating machines over the internet. This approach is followed in the small

by so called Beowulf cluster type systems [65]. Off-the-shelf workstations are con-

nected by an affordable network interconnect (Fast-Ethernet, Giganet), and suitable

operating and programming environments allow to exploit the cumulative processing

power to solve grand challenging problems. Due to their low price (compared to the

classic supercomputers) these clusters became very popular and representatives can

now even be found in the list of the 500 worlds most powerful computer systems

(http://www . top500. org).

Parallel to this development applications in high performance computing shifted

from being CPU-bound to be I/O bound. That means that performance cannot

1
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be scaled up by increasing the number of CPUs any more, but by increasing the

bandwidth of the I/O subsystem. This situation is known as the I/O bottleneck in

high performance computing.

Besides the cumulative processing power, a cluster system provides a large data

storage capacity as well. Usually each workstation has at least one attached disk,

which is accessible to the system. Using the network interconnect of the cluster,

these disks build a huge common storage resource.

This situation stimulated the development of the Autonomous, Distributed Input

Output System (ADIOS), which represents a fully-fledged distributed I/O runtime

system focusing on workstation cluster systems. It is available as a I/O server con-

figuration; it supports the standardized MPI-IO[54] interface and UNIX semantics.

1.2 Scope of this Work

This thesis is focused on presenting ADIOS, a novel approach for autonomous, dis-

tributed I/O. We have designed this system from scratch and we will test its perfor-

mance comparing it to the state of art in parallel and distributed I/O (e.g. ROMIO,

PVFS, UNIX semantics). We also want to concentrate on implementation issues

when using PYM, MPI and pthreads for designing, implementing andanalyzing the

overall system. Finally we want to prove our concept with practical tests from dif-

ferent applications and give some hints for using ADIOS in a practical environment

like Beowulfs.

The dynamic reorganization of data on disk (the fragmenter tier in ADIOS) via

the usage of hints, is falling out of scope of this thesis.



3

1.3 Aims

• The design of the ADIOS system

- present the overall ADIOS system design, explain the major components

roughly, compare ADIOS to already existing systems

• The implementation of the ADIOS system components

- present the ADIOS components in detail, also give some details about

implementation issues

• implementation specific issues regarding to PYM, MPI and pthreads

- discuss problems, solutions workaround for the implementation of the work-

ing prototype of ADIOS with PYM, MPI and pthreads

• performance of ADIOS compared to Unix semantics, PVFS

- test the performance of ADIOS compared to other systems

• analysis of performance issues of ADIOS compared to Unix semantics, PVFS

- analysis of the above performance tests and conclusions for further direc-

tions
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1.4 Thesis structure

This thesis is organized in chapters as follows:

• Chapter 2 gives a general overview of the target environment of this work,

which are mainly Beowulf Clusters. We present this kind of machine, operating

systems and general assumptions used in this work. We also present the state

of the art in the file system field. The last point are available parallel and

distributed I/O Systems for Beowulf Clusters

• Chapter 3 describes the overall design of ADIOS, its different operating and

implementation modes. We will go through all designed modules and describe

especially those, which are just referenced or used in the remainder of this work .

• Chapter 4 describes the components and their respective interfaces of ADIOS

in detail

• Chapter 5 presents implementation issues which arise, when implementing ADIOS

in an island environment

• Chapter 6 describes all external interfaces of ADIOS

• Chapter 7 tests the performance of ADIOS compared to other systems like

PVFS

• Chapter 8 concludes and give analysis of the overall system and some possible

future directions in this area



Chapter 2

State of the Art in
Parallel/Distributed I/O

2.1 Introduction

I/O has long been the "poor stepchild" of scientific computing, especially high per-

formance computing. Indeed the very fact that we call it computing, rather than

data management or manipulation reflects that bias and vocabulary. We speak of

central processing units and primary memory, but of peripherals, secondary and even

tertiary storage. In scientific computing, we focus on FLOPS (floating point opera-

tions/second) and eagerly rate computers in gigaflops, teraflops, and someday soon,

petaflops, but all too rarely do we discuss petabytes stored or terabytes/second trans-

fered.

This compute-centric view beliefs the fact that scientific computing is increas-

ingly about intelligent data management. Faster and more powerful computer sys-

tems, along with the emergence of computational science as true third member of the

theory, experiment, and computational simulation triumvirate, mean the extracting

meaning from data, both experimental and computer-generated, is central to scientific

discovery.

5
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Terascale simulation can produce enormous amounts of data, and gaining insights

from that data via visualization or intelligent data reduction requires I/O hardware

and software that can move data rapidly across networks and to and from arrays of

storage devices. Equally importantly, and oft overlooked, an new generation of high-

resolution scientific instruments (e.g. CERN) is coming online, and these instruments,

ranging from large radio telescopes to advanced particle detectors, also produce large

volumes of data in real time.

How can all these programs harness those storage systems efficiently ? This leads

to related questions and has motivated the development of ADIOS

• How do file systems manage files ?

• What are the input and output (I/O) patterns of large scientific applications

• How can I/O requests be made to execute more efficiently?

• What programming interfaces are available to read and write data, and how

should they be used ?

2.2 Understanding the Levels of I/O

Ideally, computer architects and system programmers could improve I/O performance

without forcing application developers to change their programs. However, tuning the

overall performance of an application requires an understanding of all the major parts

of computer's architecture, including not only the CPU, cache, and memory, but also

the I/O system. It includes storage devices, interconnection networks, file systems,

and one or more I/O programming libraries.
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Perhaps the most important development in the design of storage devices has

been the advent of RAID technology, which combines many small disk drives to

form, large, high performance storage devices. The combination of multiple disk

drives with RAID software and hardware simultaneously increases capacity, improves

data transfer rates, and makes the system more reliable. One of the basis ideas of

ADIOS is to take the definition of RAID and extend it to a combination of multiple

machines and even further to a group of multiple machines (see ADIOS Islands 5.2),

but to do this on the file system level (see next paragraph).

The capabilities and programming interfaces of storage devices are quite primitive.

File systems, the software, that creates these familiar abstractions and make storage

devices usable to higher-level applications. File systems are also responsible for main-

taining the integrity of stored data and for trying to hide some of the performance

quirks of disk drives.

Parallel file systems do all these tasks for multiple processors and multiple in-

dependent storage devices. Parallel file systems are not the same as distributed file

systems, such as NFS and DFS. While both types of file systems support access

to shared files from multiple processes, parallel file systems must efficiently support

simultaneous access to individual files. Distributed file systems are not designed to

support this kind of fine-grained file sharing efficiently. A key challenge for parallel file

systems is maintaining data integrity during the parallel access without compromis-

ing performance. Computer vendors and research groups have developed a number

of parallel file systems over the years that attack these problems. Some systems

use novel programming interface that let the user customize the system's behavior

to improve performance for specific kinds of data access patterns. Others present a
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standard interface similar to UNIX I/O and try to offer good performance over a wide

range of access patterns. Research file systems have focused on novel programming

interfaces or novel architectures. The growing popularity of parallel computers built

from clusters of workstations has presented a number of challenges to file systems

designers, which several research groups have tried to address with their file systems.

ADIOS tries to satisfy the needs of all of this worlds with a best effort approach sup-

porting e.g UNIX I/O as well as novel programming interface like distributed UNIX

I/O with an underlying XML Meta language.

Despite the best effort of file system designers, many parallel scientific applications

exhibit very poor I/O performance for certain access patterns. Unlike codes on vector

computers with a single pool of memory, the parallel codes often write data in small,

discontiguous pieces, which are difficult for file systems and storage devices to handle

efficiently. To remedy this problem, a number of research groups have developed

techniques for collecting small pieces of data into larger units that lower levels of

storage hierarchy can manage better. These techniques are called collective I/O, and

a number of variations have been proposed and implemented. The most important

are

• two phase I/O

• data sieving

• collective I/O

• disk directed I/O

• server directed I/O
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These methods try to execute I/O in a manner that minimizes or strongly re-

duces the effects of disk latency by avoiding non contiguous disk accesses and thereby

speeding up the I/O process. More details and even some more techniques can be

found in Dictionary on Parallel Input/Output [66].

Another important I/O optimization is the use of hints, which let applications

tell the I/O system about upcoming I/O access patterns. The I/O system can use

this information to select optimization parameters that are likely to yield good per-

formance. A step beyond the use of hints is to analyze the I/O access patterns of a

running application and select optimal parameter settings automatically. We pursuit

the idea of hints in ADIOS with the help of the compiler and a blackboard approach

for a running system, but this topic is falling out of the scope of this thesis.

Both collective I/O and hints require more information from an application than

they through a standard sequential I/O programming interface.

Parallel I/O interfaces are more expressive than the standard sequential Unix I/O

interface. They can describe I/O operations that are coordinated across multiple pro-

cesses, and the operations can involve many separate pieces of data. Many interfaces

also let applications pass in hints or change some of the I/O system's configuration

parameters. Scientific work concentrates on MPI-IO, the I/O interface defined in the

MPI-2 message passing standard. This interfaces uses concepts and data structures

from MPI (message passing interface) to describe parallel I/O operations, and it has

been implemented on many parallel systems.
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2.3 Runtime I/O libraries

are highly merged with the language system by providing a call1ibrary for efficient

parallel disk accesses. The aim is that it adapts graciously to the requirements of the

problem characteristics specified in the application program. Typical representatives

are PASSION [69], Galley [58], or the MPI-IO initiative, which proposes a parallel

file interface for the Message Passing Interface (MPI) standard [56, 14]. Recently the

MPI-I/O standard has been widely accepted as a programmers interface to parallel

I/O. A portable implementation of this standard is the ROMIO library [71].

Runtime libraries aim for to be tools for the application programmer. Therefore

the executing application can hardly react dynamically to changing system situations

(e.g. number of available disks or processors) or problem characteristics (e.g. data

reorganization), because the data access decisions were made during the programming

and not during the execution phase.

Another point which has to be taken into account is the often arising problem that

the CPU of a node has to accomplish both the application processing and the I/O

requests of the application. Due to a missing dedicated I/O server the application,

linked with the runtime library, has to perform the I/O requests as well. It is often

very difficult for the programmer to exploit the inherent pipelined parallelism between

pure processing and disk accesses by interleaving them.

All these problems can be limiting factors for the I/O bandwidth. Thus optimal

performance is nearly impossible to reach by the usage of runtime libraries.
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2.4 File Systems

Most storage devices have no notion of files, directories, or the other familiar abstrac-

tions of data storage, they simply store and retrieve blocks of data. A file system

is the software that creates this abstractions, including not only files and directories

but also access permissions, file pointers, file descriptors, and so on.

File systems have other duties as well:

• Moving data efficiently between memory and storage devices

• Coordinating concurrent access by multiple processes to the same file

• Allocating data blocks on storage devices to specific files, and reclaiming those

blocks when file are deleted

All modern file systems handle, these task, whether they run on parallel or se-

quential computers. A parallel file system is especially concerned with efficient data

transfer and coordinating concurrent file access.

To see how file systems work, let's review the standard characteristics that are

presented to programs and users .

2.4.1 UNIX File Model

1. Sequential consistency

Multiple processes can access the same file at the same time. As long as the

accesses are all read operations, there will be no conflicts. However, if two

or more processes write to the file at the same time, or if one process writes

while another is reading, the file system has to guarantee that the results make
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sense. If the concurrent accesses involve different parts of the file, there is no

problem. The difficulty arises if the accesses overlap. Consider the case of two

processes writing different sequences of bytes to the same locations in the file

at about the same time. What data will end up in the file? Most Unix file

systems guarantee sequential consistency; that is, they guarantee that the result

will be as if the two write operations happened in a specific order. Either the

first sequence of bytes will be written or the second sequence will be written

(and it's unpredictable which sequence will prevail), but in no event will bytes

from the first sequence be intermixed with bytes from the second sequence. It's

relatively easy for a file system to make this guarantee when the conflicting

accesses happen on a single (time-shared) CPU with a single disk drive, but in

parallel and distributed file systems, sequential consistency is much harder to

'guarantee.

2. File Buffering and Caching

Obviously, most files don't fit exactly into a whole number of blocks, and most

read and write requests from applications don't transfer data in block-sited

units. File systems use buffers to insulate users from the requirement that disks

move data in fixed-site blocks. Buffers also give the file systems several ways to

optimize data access. File systems allocate their buffers in units the same size

as a disk block. The most important benefit of buffers is that they allow the

file system to collect full blocks of data in memory before moving it to the disk.

If a file system needed to write less than a full block of data, it would have to

perform an expensive read-modify-write operations. Write buffering improves

performance even when an application writes a full block of data or more. For
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accesses about the size of a block, the file locations where the data will be

written may cross over a block boundary, so a block-sized write may end up

as two partial blocks. For larger writes, the file system can delay writing until

it has several blocks to transfer. Disks can usually handle these multiblock

transfers more efficiently than single-block transfers. The latter technique is

sometimes called delayed write or write behind.

Similarly, when a file system reads data, it must retrieve a full block at a time.

Even if the application program hasn't asked for all the data in the block, the

file system will keep the entire block in memory, since the application may later

request more data from the same block. This technique is called file caching.

If a file system detects that an application is reading data sequentially from a

file in small steps, it may use prefetching (also called read ahead) to improve

performance further: the file system reads not only the block that contains

requested data but also one or more subsequent blocks in the file. The extra

cost of reading the additional blocks in a single request is usually less than

the cost of reading two or more blocks separately. When the program requests

data from the prefetched blocks, they will already be in memory, or at least on

their way. Therefore, the file system can complete these subsequent reads more

quickly than the initial request. Prefetching reduces the apparent data access

time for a disk, since the cost of reading the second and subsequent blocks

is hidden from the application. However, prefetching works poorly when an

application's read requests don't follow a simple, predictable pattern. In that

case, the file system may waste time prefetching blocks that the application

doesn't need right away.
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The file system uses the same pool of memory for both buffering and caching.

This allow it to keep the data consistent when the application writes and the

reads back the same file location. These accesses will be very efficient because

neither request will require access to the disk. An application can create a file,

store a small amount of data, read it back, and delete the file without ever

accessing a disk. Because caching and buffering are closely connected, both

techniques are often referred as buffering.

In some systems, all memory not being used by applications is allocated to the

file buffer pool. Nevertheless, a file system has only a finite amount of buffer

space. so it cannot keep data there indefinitely. When all the buffer blocks are

in use and the file system needs a new block for a read or write request, it must

reuse one of the buffer blocks currently in use. If the buffer to be reused contains

data that was read from the disk, and the application hasn't written data back

to that file block, then the file system can immediately use this buffer to carry

out the new request. However, if the buffer contains data that the application

has written but that the file system hasn't yet moved to disk, then the file

system must flush this data to the disk before it can reuse the buffer. Buffers

containing data that hasn't yet been written to disk are called dirty .

3. Nonblocking I/O

Caching and buffering improve performance in two ways: by avoiding repeated

accesses to the same block on disk and by allowing the file system to smooth

out bursty I/O behaviour. The smoothing happens because the application can

quickly write a large amount of data into file system buffers without waiting for

the data to be written to disk. The file system can write these blocks to disk
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at a slower, steady rate while the application continues with other work that

doesn't require I/O. This delayed writing can make the file system's instanta-

neous transfer rate much higher than its sustained rate.

Nonblocking I/O gives a program controlover prefetching and delayed writing.

An application can issue a read request some time before it expects to need

the data. Then instead of blocking the program until the data has arrived, the

I/O function returns immediately, and the file system completes the request in

the background while the application continues to work. When the application

reaches a point where it needs the data, it can issue another request to check

whether the data is available or to pause execution until the access is complete.

Alternatively, some nonblocking I/O implementations can signal the application

when the data arrives. An application can also issue a request to write data to

a file and then continue computing while the file system moves the data from

the user buffer to the disk. Since the application often knows sooner than the

file system what data it will need, nonblocking I/O can be much more effective

than prefetching. Also, an application can devote a specific memory buffer of

exactly the right size to prefetched and delayed-write data, whereas the file

system must share its buffers among all jobs and try to guess which disk blocks

to keep and which to reuse.

2.5 Distributed File Systems

The file systems discussed so far are designed to run on a single CPU. Several processes

may access a file concurrently, but the file system guarantees sequential consistency.

It usually does this by preventing any processes from writing a file at the same time
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as another process is either reading or writing the file.

Distributed file systems are designed to let processes on multiple computers ac-

cess a common set of files. Although distributed file systems have some features

in common with parallel file systems (see next paragraph), they are not a complete

solution for parallel I/O. In particular, as described below, distributed file systems

are not designed to give multiple processes efficient, concurrent access to the same

file. Nevertheless, distributed file systems are a good point from which to begin an

examination of parallel file systems.

Probably the best know distributed file system is NFS (Network File System) [22],

[43], which Sun Microsystems first released in 1985. NFS allows a computer to share

a collection of its files with other computers on the network. The computer where

the collection of files resides is called a server, and a computer that remotely accesses

these files is a client. In NFS, a computer can be a server for some files an d a client

for others. Clients" mount" a collection of files - a directory on the server and all its

subdirectories - at a particular location in their own directory hierarchy. The remote

files appear to be part of the client's directory hierarchy, an programs running on

the client can access them using the standard UNIX naming conventions. When a

client program reads a file that resides on the server, the client's file system sends a

request to the server, which gets the file (or just a part of it) and sends it back to

the client. The operation is invisible from the applications point of view, except that

accessing a remote file takes longer than accessing a local one. Two other well-known

distributed file systems are AFS and DFS. AFS [46] is based on the Andrew File

System, first developed at Carnegie-Mellon University in the mid-1980s and later

offered as a commercial product. DFS [48], [32] is the Distributed File System, a



17

successor to AFS developed as part of the Open Software Foundation's Distributed

Computing Environment. Like NFS, AFS and DFS allow multiple computers to

access a collection of file over a network, but they have different architectures and

features.

2.6 Parallel File Systems

A distributed file system does only part of what a parallel file system needs to do.

Distributed file systems manage access to files from multiple processes, but they

generally treat concurrent access as an unusual event, not a normal mode of operation.

The design of a parallel file system must deal with several important questions:

• How can hundreds or thousands of processes access the same file concurrently

and efficiently ?

• How should file pointers work?

• Can the Unix sequential consistency semantics be preserved?

• How should file blocks be cached and buffered

2.6.1 Intro: sequential access versus multiple file access

Even though parallel file system development is quite advanced, many parallel appli-

cations continue to use one of two alternative types of I/O: pure sequential access,

in which program sends all of its file accesses through a single task, and multiple file

access, in which each task writes its own file.

Sequential access in distributed memory computers does have two attractive fea-

tures. First, all the data resides in one file, so it is easy to manage. In particular,
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the user can copy the file as a single unit to tertiary storage or to another computer.

Second, sequential access is likely to produce contiguous file accesses that the storage

devices and file system can handle efficiently. This advantage is clearest when the

program accesses a modest amount of data. Reading or writing a block of data from

a single process is often more efficient than having many separate processes access

small amounts of data from the same file.

Sequential access also has some important drawbacks in distributed memory com-

puters. A single process running on a single node may not have enough memory to

hold all the data that the parallel job needs to read or write. To work around this

problem, the program must access the file in several steps, separated by gather or

scatter operations. More importantly, the total transfer rate is limited to what a sin-

gle node can support. For moderately large parallel programs, sequential file access

is to slow.

Multiple file access is an alternative to sending all the data to one process. For

this technique, used mainly in message passing programs, each processor writes data

to a separate file. If the file reside on the node's local disks, file access will be very fast

because the data won't need to travel over the computer's message passing network,

and the data transfer is perfectly parallel. If the files are temporary or if the user

doesn't need a single combined data set, multiple file access is an excellent choice.

However, many applications do need to produce a single data set. The postprocessing

required to collect many separate files into one large file can easily wipe out the

performance benefits of multiple file access. On systems where local disks are not

accessible to other nodes, merging files will require another parallel program that

runs on the same set of nodes as the program that generated the data.
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Parallel file systems try to address the main drawbacks of both sequential access

and multiple file access. They combine the high performance and scalability of mul-

tiple file access with the convenience of collecting data in single files. To do this,

they must allow multiple tasks to access a file at the same time, though not all the

tasks will necessarily access the same locations in a given file. ADIOS follows this

approach.

2.6.2 Concurrent File Access

The first challenge for a parallel file system is to support concurrent access from

several processes. Since parallel file systems usually stripe files over multiple disks

(connected to different I/O nodes), the file system has to manage two separate data

mappings; the mapping from multiple compute nodes to a shared file and the mapping

of the shared file to multiple I/O nodes and storage devices. Figure 2.1 shows two

examples of these mappings with four compute nodes and two I/O nodes.

The top row in each diagram shows four compute nodes, each with two blocks

of data. (Numbers in all the blocks show which compute node produced the data.)

The middle row of the diagrams show how these blocks fit into the logical structure

of the file. The bottom rows show how the file is striped over the I/O nodes. In the

top example, the distribution of data among the compute nodes matches the file's

striping, so each compute node can send whole blocks of data to just one of the I/O

nodes, which will be less efficient. Although the diagram shows the mapping from the

compute nodes to the logical file layout on the I/O nodes, in reality the data moves

directly between the compute nodes and I/O nodes; it never resides all in one place

as shown in the middle rows.

To access a file in parallel, each process begins by opening the file. In a sequential
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Figure 2.1: Mapping of blocks from compute nodes to logical files to I/O nodes

system, the file system translates the file name to an inode number. In parallel file

systems, each I/O node manages a subset of the blocks that make up a file, so every

file has an inode (or a similar data structure) on every I/O node. The file system

needs a way to look up each of these inodes when it opens a file. It's possible to have

each I/O node maintain its own directory information and lookup its own inodes

(ADIOS uses this approach). Another solution is to use a central name server, a

process that file system software on all the nodes can call to look up inode numbers

using file names. This avoids the need to replicate the directory data on each I/O

node. The name server typically resides on an I/O node.

Some file systems fix the strip factor and stripe depth when the system is con-

figured; others like ADIOS allow users to specify these parameters separately for

each file. When a file is first created, the file system chooses the I/O node that will
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store the first block of the file. Varying this location distributes the work among

the I/O nodes; if the location were fixed, all short files would reside at the same I/O

node. Subsequent blocks go to the other I/O nodes in a fixed or pseudorandom order;

ADIOS furthermore supports user defined distributions.

Compute nodes can send requests to the I/O nodes in parallel, an of course the I/O

node can carry out the requests in parallel, since they are accessing data on storage

devices that they control exclusively. As long as processes on different compute nodes

don't try to access the same part of the file, striping is easy to manage.

Problems arise when the system has to enforce sequential consistency. Suppose

two processes write to the same range of locations in a file, and the range spawns two

blocks on different I/O nodes. Sequential consistency requires that the two I/O nodes

write their portions of the data in the same order, ensuring that the write requests

appear to occur in a well-defined sequence. How will each I/O node know what the

other is doing? One solution is to use a locking mechanism on the file that prevents

more than one process from writing a file at the same time. This solution prevents

parallel file access, and it is essentially what sequential Unix does. The problem with

locking the whole file is that it prevents parallel access even when the processes are

not writing overlapping regions of a file. Most applications rarely write the same

file location concurrently from separate processes, so maintaining the Unix model

of sequential consistency using file locking needlessly ruins parallel performance for

common access patterns. As a result, some parallel file systems offer the user a choice

of access modes: one that guarantees sequential consistency at the expense of parallel

performance and another that allow concurrent access by relaxing the consistency

semantics. In the latter case (which is supported by ADIOS), the application is
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responsible for preventing different processes from writing data concurrently to the

same location.

2.6.3 Buffering

Parallel file systems, like sequential ones, use caching and buffering to reduce the

need for disk accesses. In systems with separate I/O and compute nodes, buffering

can happen in both places. Buffering at the compute nodes is called client buffering

and buffering at the I/O nodes is called server buffering. Some file systems use only

client or server buffering; others use both.

File system with client buffering manage a pool of buffer space on each compute

node. As in sequential file systems, data to be written to a file is copied from the

user's address space into the buffer, and the file system might not send the buffer

to the I/O node until some time after the write request appears to the application

to have completed. Read requests copy data from I/O nodes into the buffer, and

subsequent read requests from the same disk block can be satisfied without further

communication with the I/O node.

The problem with client buffering is similar to the caching problem in distributed

file systems. If a process writes data to a file, and the data remains in a buffer

on the compute node for some time, a process on another compute node trying to

read the same location in a file won't see the changes the first node made. This

problem is more severe than the sequential consistency problem noted earlier because

it can happen even if the two processes access the data in a well-defined order (i.e not

concurrently). File systems use a variety of approaches to address the problem. Some

offer a relaxed consistency model that requires the program to synchronize the file

explicitly to make changes visible to all processes. Another solution is to implement
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a cache coherence protocol that allows processes to keep track of which nodes are

reading and writing each location in a file. ADIOS doesn't need to cope with client

buffering, because its on top of the underlying basic file system, so even in the case of

client buffering it looks for all other ADIOS processes like server buffering, when the

ADIOS processes communicate with each other (see more in the overview of ADIOS

in the next chapter)

2.6.4 Commercial Parallel File systems

This section looks at some of the parallel file systems that computer vendors have

developed to address the problems discussed so far in this chapter.

Intel PFS

Intel's PFS (Parallel File System [19]) was a significant early parallel file system.

Intel developed PFS for its Paragon supercomputers. The company used an earlier

file system called file system CFS (Concurrent File System) [59][55] in the Paragon's

predecessor, the iPSC. The Paragon is a distributed memory parallel computer with

I/O nodes that manage access to parallel files. The Paragon also supports NFS

files and ordinary sequential Unix (called UFS files, for Unix File System). NFS

and PFS subdirectories are typically mounted in a UFS directory hierarchy. PFS

stripes files over multiple I/O nodes. The system administrator configures the striping

parameters, and they apply to all the file that PFS manages in a hierarchy.

IBM Vesta, PIOFS and GPFS

IBM developed the Vesta parallel file system [15] [26] as a research project. A central

feature of Vesta is that it abandons the Unix model of a file as linear sequence of
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bytes. When IBM turned Vesta into a commercial product, it renamed the system

to PIaFS (Parallel I/O File System) [18]. The two file systems are similar, but not

identical.

PIaFS was designed for the IBM SP series of parallel computers. These are

distributed memory machines with separate I/O nodes. IBM has replaced PIaFS

as its standard parallel file system with GPFS. Nevertheless, PIaFS is interesting

because ofthe unique file model it defines to improve parallel I/O performance. GPFS

(General Parallel File System) [45] is based on another IBM file system called Tiger

Shark [40]

SGI XFS and CXFS

XFS [1] [68] [20] is the standard file system on Silicon Graphics computers. Since

these machines are all shared memory or distributed shared memory computers, XFS

does not have to deal with many of the problems that arise in the other parallel

file systems discussed so far. In particular, there are no separate I/O nodes and

no replication buffers. As a result, concurrency control is relatively simple. XFS

uses standard Unix-style I/O calls, with a few extensions for special services, and it

supports Unix consistency semantics.

CXFS (cluster XFS) [50] is an SGI extension to XFS that supports clusters of

shared memory computers. A cluster consists of 2 to 16 computers (nodes) commu-

nicating over a private network. The nodes are also connected to a SAN that gives

them access to a shared collection of storage devices. Although CXFS is based on

XFS and shares many features with it, CXFS does not support guaranteed-rate I/O.

CXFS also does not efficiently support concurrent writing of the same file by multiple

processes on different nodes, except in direct I/O mode.
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HPSS

HPSS (High Performance Storage System) [72] IS very different from the parallel

file systems described so far. Strictly speaking, it isn't a file system at all; it's an

archival storage system, designed mainly for storing very large files and moving them

quickly between primary, secondary, and tertiary storage. HPSS has a number of

programming interfaces, one of which is based on Unix.

Miscellaneous

Other systems not mentioned yet would be e.g Thinking Machines' Scalable File

System (sfs) [51] and nCUBEs Parallel I/O System [21].

2.6.5 Conclusion

In comparison to runtime libraries parallel file systems have the advantage that they

execute independently from the application. This makes them capable to provide

dynamic adaptability to the application. Further the notion of dedicated I/O servers

(I/O nodes) is directly supported and the processing node can concentrate on the

application program and is not burdened by the I/O requests.

However due to their proprietary status parallel file systems do not support the

capabilities (expressive power) of the available high performance languages directly.

They provide only limited disk access functionality to the application. In most cases

the application programmer is confronted with a black box subsystem. Many sys-

tems even disallow the programmer to coordinate the disk accesses according to the

distribution profile of the problem specification. Thus it is hard or even impossible to

achieve an optimal mapping of the logical problem distribution to the physical data

layout, which prohibits an optimized disk access profile.
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Therefore parallel file systems also can not be considered as a final solution to the

disk I/O bottleneck of parallelized application programs.

2.7 Cluster File Systems

2.7.1 Introduction

give a combination of the other two approaches, which is a dedicated, smart, con-

current executing runtime system. Cluster of workstations are a popular alternative

to integrated parallel systems designed and built by a vendor. Well-known cluster

projects include the Berkeley Network of (NOW) [3], NASA's Beowulf [5] and Sandia

National Laboratory's Cplant [38]. The architecture of these systems vary, but they

are all built from off-the-shelf components, presumably at a lower cost than an inte-

grated system with equivalent hardware. Workstation cluster consist of a collection of

PCs or other workstation computers (which usually include disk drives) connected by

some kind of message passing network. The systems typically run a standard operat-

ing system such as Linux, and the have additional software to manage communication

between the nodes.

The general architecture of a cluster is similar to a distributed memory parallel

computer; it consists of multiple nodes that exchange data over a message passing

network. Therefore, parallel file system for cluster must address many of the same

problems as distributed memory file systems. These include consistency control and

the choice between client and server buffering. In addition, cluster parallel file systems

must contend with heterogeneity at severallevels; individual clusters differ from each

other; the hardware within a cluster may be heterogeneous. Cluster file systems

manage the first two kinds of heterogeneity by using standard programming interfaces.
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Some implement file service on top of the native file system running on each node

(like ADIOS).

Many cluster computer make do with a distributed file system NFS and DFS

can already work in heterogeneous, dynamic environments. Although many research

projects have developed parallel file systems for cluster computers, no one system has

emerged yet as a de facto standard. The next section looks at some of the design issues

for cluster file systems, and the following section describes a few research systems in

more detail.

2.7.2 Issues for Cluster File Systems

Many cluster have no dedicated I/O nodes, so file systems have to distribute their file

management functions over the compute nodes. A cluster file system may logically

divide its functions between a client interface library and several server tasks, but

the servers often run on the compute nodes and access the local disks. The systems

often use client buffering, and they use partitioning or token passing for concurrency

control, just as file systems for integrated machines do.

A final problem for cluster file systems is how to stripe data. Since every node can

act as both a compute node and an I/O node, the number of storage devices is often

equal to the number of compute nodes. The arrangement offers a large aggregate I/O

bandwidth.

2.7.3 Example Cluster File Systems

Many research groups have developed cluster file systems. This section will look at a

few of these to see how individual systems handle the issues described above
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xFS

The xFS [4] file system was developed at Berkeley for their NOW project. xFS

stripes files over stripe groups, and each stripe group forms a RAID unit controlled in

software. There are no separate servers; file management software runs on all of the

compute nodes, and each file is managed by one node. The manager's tasks include

keeping track of the file's block on disk. ADIOS uses a approach close to xFS.

PVFS (Parallel Virtual File System)

PVFS [12] [49] [11] is a research project at Clemson University. It is aimed at Beowulf-

class clusters. Unlike xFS, PVFS uses I/O server processes that can run on separate

I/O nodes. However, the system also allows the server software to run on compute

nodes. The system focuses on file partitioning for concurrency control. If offers several

interfaces that let processes define their own nonoverlapping subsets of a file. The

model is similar to PIaFS [18] subfiles. Applications can define striping parameters

individually for each file they create. PVFS does not manage file blocks directly;

instead, it relies on the local native file system at each I/O node to handle this task.

Although PVFS doesn't do buffering directly, there may be buffering in the underlying

file system; if so, it's effects would be similar to server buffering.

Other File System Research

Two other parallel computing project of interest are Legion [39] and Globus [29].

These systems focus on widely distributed networks of heterogeneous computers. Le-

gion defines a programming model and an architecture for linking machines over

long distances (i.e across the country) to form a unified metacomputing environment

(compare with ADIOS islands 5.2).
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Globus is another wide are computing project. It has defined a storage system

called GASS [7] that gives multiple processes access to a common group of files.

However, GASS is not a general-purpose parallel file system. In particular, it does

not allow multiple processes to write at arbitrary locations in a file at the same time.

Other approaches for data movement at the Globus project are GridFTP [2] and RIO

[31].

The PANDA [62, 63] and the ADIOS system are examples for client server sys-

tems. (Note that PANDA is actually called a library by its designers. But since it

offers independently running I/O processes and enables dynamic optimization of I/O

operations during run time we think of it as a client server system according to our

classification) ADIOS so far supports the static fit property 1. The programmer can

issue this property via a C function call or with the help ofaXML file when using

ADIOS like a file system.

2.8 Summary

This chapter has shown how file systems organize raw data blocks on storage devices

into the familiar view of file and directories. File systems use caching and buffering

to improve performance, especially for accesses to small amounts of data and for

bursty access patterns. Distributed file systems give programs running on different

computers access to a shared collection of files, but they are not designed to handle

concurrent file access efficiently. Parallel file systems do handle concurrent accesses,

and they stripe files over multiple I/O nodes to improve bandwidth.

Istatic fit: Data is distributed across available disks according to the SPMD data distribution
(i.e. the chunk of data which is processed by a single processor is stored contiguously on a disk; a
different processor's data is stored on different disks depending on the number of disks available)
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Sequential Unix-based file systems have traditionally defined the semantics of read

and write operations in a way that makes concurrent file accesses by separate processes

appear to occur in a well-defined order. Maintaining these semantics in parallel and

distributed file systems is difficult, so some systems relax the traditional semantics

to improve performance. Other systems use various techniques to maintain standard

Unix consistency semantics while endeavoring to offer good parallel performance.

Distributed memory parallel computers often route file access requests through

specialized I/O nodes. Some parallel file systems do "server buffering" on these

nodes, while others do "client buffering" on the compute node. Both approaches

have strengths and weaknesses.

Computer vendors and researchers have developed many parallel file systems,

some with novel programming interfaces. The trend in current commercial parallel file

systems appears to be toward offering standard Unix semantics rather than specialized

parallel I/O interfaces.

This high level overview was partly created with the help of [52].
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Chapter 3

ADIOS Design

3.1 Introduction

ADIOS is a distributed I/O server providing fast disk access for high performance

applications. It is an I/O runtime system, which provides efficient access to persistent

files by optimizing the data layout on the disks and allowing parallel read/write

operations. The client-server paradigm allows clients to issue simple and familiar I/O

calls (e.g. 'read( ..)'), which are to be processed in an efficient way by the server. The

actual file layout on disks is solely maintained by the servers.

Since ADIOS-servers are distributed on the available processors, disk accesses

are effectively parallel. The client-server concept of ADIOS also allows for future

extensions like checkpointing, transactions, persistent objects and also support for

grid enabled computing using the Internet.

ADIOS is primarily targeted (but not restricted) to networks of workstations.

Client processes are assumed to be loosely synchronous.

31



•

32

3.2 Design Goals

The design of ADIOS followed a data engineering approach, characterized by the

following goals.

1. Scalability. Guarantees that the size of the used I/O system, i.e. the num-

ber of I/O nodes currently used to solve a particular problem, is defined by or

correlated with the problem size. Furthermore it should be possible to change

the number of I/O nodes dynamically corresponding to the problem solution

process. The system architecture of ADIOS is highly distributed and decentral-

ized. This leads to the advantage that the provided I/O bandwidth of ADIOS

is mainly dependent on the available I/O nodes of the underlying architecture

only.

2. Efficiency. The aim of optimization is to minimize the number of disk accesses

for file I/O. This is achieved by a suitable data organization (section 3.5.1) by

providing a transparent view of the stored data on disk to the 'outside world'

and by organizing the data layout on disks respective to the static application

problem description .

3. Parallelism. This demands coordinated parallel data accesses of processes to

multiple disks. To avoid unnecessary communication and synchronization over-

head the physical data distribution has to reflect the problem distribution of the

SPMD processes. This guarantees that each processor accesses mainly the data

of its local or best suited disk. All file data and meta-data (description of files)

are stored in a distributed and parallel form across multiple I/O devices. In

order to find suitable data distributions to achieve maximum parallelism (and
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thus very high I/O bandwidth) ADIOS may use information supplied by the

application programmer. This information is passed to ADIOS via prescribing

hints. If no hints are available ADIOS uses some general heuristics to find an

initial distribution.

4. Usability. The application programmer must be able to use the system without

big efforts. So she does not have to deal with details of the underlying hardware

in order to achieve good performance and familiar Interfaces (section 3.5) are

available to program file I/O.

5. Portability. The system is portable across multiple hardware platforms. This

also increases the usability and therefore the acceptance of the system.

3.3 ADIOS Design

The system design has mainly been driven by the goals described in chapter 3.2 and

it is therefore built on the following principles:

• Minimum Overhead. The overhead imposed by the ADIOS system has to be

kept as small as possible. As a rule of thumb an I/O operation using the ADIOS

system must never take noticeable longer than it would take without the use

of ADIOS even if the operation can not be speed up by using multiple disks in

parallel.

• Maximum Parallelism. The available disks have to be used in a manner to

achieve maximum overall I/O throughput. Note that it is not sufficient to just

parallelize any single I/O operation because different I/O operations can very

strongly affect each other. This holds true whether the I/O operations have to
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be executed concurrently (multiple applications using the ADIOS system at the

same time) or successively (single application issuing successive I/O requests).

So in praxis the ADIOS system strives for a very high throughput .

• Use of widely accepted standards. ADIOS uses standards itself (e.g. PYM

for the communication between clients and servers) and also offers standard

interfaces to the user (for instance application programmers may use MPI-

I/O or UNIX file I/O in their programs), which strongly enhances the systems

portability and ease of use .

• High Modularity. This enables the ADIOS system to be quickly adopted to new

and changing standards or to new hardware environments by just changing or

adding the corresponding software module.

Some extensions to support for future developments in high performance comput-

ing also have been considered like for instance grid enabled computing.

3.4 Modules

The ADIOS system consists of the independently running ADIOS servers and the

ADIOS interfaces, which are linked to the application processes. Servers and inter-

faces themselves are built of several modules, as can be seen in figure 3.1.

The ADIOS Interface library is linked to the application and provides the connec-

tion to the" outside world" (i.e. applications, programmers, compilers, etc.). Different

programming interfaces are supported by interface modules to allow flexibility and

extendibility. Currently implemented are a (basic) MPI-IO interface module, and the

specific ADIOS interface which is also the interface for the specialized modules. Thus
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Figure 3.1: Modules of a ADIOS System

a client application can execute I/O operations by calling MPI-IO routines, UNIX

file I/O or the ADIOS proprietary functions.

The interface library translates all these calls into calls to ADIOS functions (if

necessary) and then uses the interface message manager layer to send the calls to

the buddy server. The message manager also is responsible for sending/receiving

data and additional informations (like for instance the number of bytes read/written

and so on) to/from the server processes. Note that data and additional information

can be sent/received directly to/from any server process bypassing the buddy server,

thereby saving many additional messages that would be necessary otherwise and

enforcing the minimum overhead principle as stated in chapter 3.3. (See chapter 4.4

for more details.) The message manager uses PVM-function calls to communicate to

the server processes.

The ADIOS server process basically contains 3 layers:
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• The Interface layer consists of a message manager responsible for the commu-

nication with the applications (external messages) as well as with other servers

(internal messages). All messages are translated to calls to the appropriate

ADIOS functions in the proprietary interface .

• The Kernel layer is responsible for all server specific tasks. It is built up

mainly of three cooperating functional units:

- The Fragmenter can be seen as "ADIOS's brain". It represents a smart

data administration tool, which models different distribution strategies.

- The Directory Manager stores the meta information of the data. Three

different modes of operation have been designed, centralized (one dedicated

ADIOS directory server), replicated (all servers store the whole directory

information), and localized (each server knows the directory information

of the data it is storing only) management. Until now only localized man-

agement is implemented. This is sufficient for clusters of workstations.

- The Memory Manager is responsible for prefetching, caching and buffer

management. Until now only buffer management is implemented .

• The Disk Manager layer provides the access to the available and supported

disk sub-systems. Also this layer is modularized to allow extensibility and to

simplify the porting of the system. Available are modules for ADIO [70], MPI-

10, and Unix style file systems.



37

3.5 Interfaces

To achieve high portability and usability the implementation internally uses widely

spread standards (MPI, PYM, UNIX file I/O, etc.) and offers multiple modules

to support an application programmer with a variety of existing I/O interfaces. In

addition to that ADIOS can use different underlying file systems. Currently the

following interfaces are implemented:

• User Interfaces

Programmers may express their I/O needs by using

- MPI-IO (see [67])

- ADIOS proprietary calls (not recommended though because the program-

mer has to learn a completely new I/O interface. See chapter 6.1.1 for a

list of available functions.)

- UNIX file I/O (see chapter 6.2.)

• Interfaces to File Systems

The filesystems that can be used by a ADIOS server to perform the physical

accesses to disks enclose

- ADIO (see [70]; this has been chosen because it also allows to adapt for

future file systems and so enhances the portability of ADIOS.)

MPI-IO (is already implemented on a number of MPP's.)

- Unix file I/O (available on any Unix system an thus on every cluster of

workstations. )
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Figure 3.2: ADIOS data abstraction

- Unix raw I/O (also available on any Unix system, offers faster access but

needs more administration al effort than file I/O. Is not completely imple-

mented yet.)

• Internal Interface

Is used for the communication between different ADIOS server processes. Cur-

rently only PVM is used to pass messages.

3.5.1 Data Abstraction

ADIOS provides a data independent view of the stored data to the application pro-

cesses.

Three independent layers in the ADIOS architecture can be distinguished, which

are represented by file pointer types in ADIOS .

• Problem layer. Defines the problem specific data distribution among the coop-

erating parallel processes (View file pointer).
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• File layer. Provides a composed view of the persistently stored data in the

system (Global file pointer) .

• Data layer. Defines the physical data distribution among the available disks

(Local file pointer).

Thus data independence in ADIOS separates these layers conceptually from each

other, providing mapping functions between these layers. This allows logical data

independence between the problem and the file layer, and physical data independence

between the file and data layer analogous to the notation in data base systems ([44,

10]). This concept is depicted in figure 3.2 showing a cyclic data distribution.

3.6 System Modes

ADIOS can be used in 2 different system modes, as

• runtime library,

• independent system.

These modes are depicted by figure 3.3.

3.6.1 Runtime Library.

Application programs can be linked with a ADIOS runtime module, which performs

all disk I/O requests of the program. In this case ADIOS is not running on indepen-

dent servers, but as part of the application. The ADIOS interface is therefore not only

calling the requested data action, but also performing it itself. This mode provides

only restricted functionality due to the missing independent I/O system. Parallelism

can only be expressed by the application (i.e. the programmer).
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Figure 3.3: ADIOS system modes

3.6.2 Independent System.

This is the mode of choice to achieve highest possible I/O bandwidth by exploiting

all available data administration possibilities. In this case ADIOS is running similar

to a parallel file system or a database server waiting for application to connect via the

ADIOS interface. This connection is realized by a proprietary communication layer

bypassing MPI. We implemented an approach for coupling MPI worlds via PYM

intermediate layers.

3.6.3 Implementation of a mapping function description

ADIOS has to keep all the appropriate mapping functions as part of the file informa-

tion of the file. So a data structure is needed to internally represent such mapping

functions. This structure should fulfill the following two requirements:

• Regular patterns should be represented by a small data structure.

• The data structure should allow for irregular patterns too.
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struct Access_Desc {
int skip_header;
int no_blocks;
int skip;
struct basic_block *basics;

};

struct basic_block {
int offset;
int repeat;
int count;
int stride;
struct Access_Desc *subtype;

};

Figure 3.4: An according C declaration

Of course these requirements are contradictionary and so a compromise actually was

implemented in ADIOS. The structure which will now be described allows the de-

scription of regular access patterns with little overhead yet also is suitable for irreg-

ular access patterns. Note however that the overhead for completely irregular access

patterns may become considerably large. But this is not a problem since ADIOS

currently mainly targets regular access patterns and optimizations for irregular ones

can be made in the future.

Figure 3.4 gives a C declaration for the data structure representing a mapping

function.

An Access_Desc basically describes a number (no_blocks) of independent basic_blocks

where every basicblock is the description of a regular access pattern. The skip en-

try gives the number of bytes by which the file pointer is incremented after all the

blocks have been read/written. skipJ1eader entry gives the number of bytes which
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are skipped before any information is read/wrote (e.g. skip header information in a

file before data).

The pattern described by the basic_block is as follows: If subtype is NULL then

we have to read/write single bytes otherwise every read/write operation transfers a

complete data structure described by the Access_Desc block to which subtype actu-

ally points. The offset field increments the file pointer by the specified number of

bytes before the regular pattern starts. Then repeatedly count subtypes (bytes or

structures) are read/written and the file pointer is incremented by stride bytes af-

ter each read/write operation. The number of repetitions performed is given in the

repeat field of the basicblock structure.



Chapter 4

Basic System Architecture
Implementation

The ADIOS architecture is built upon a set of cooperating server processes, which run

independentlyon an arbitrary number of network nodes and accomplish the requests

of client applications. For distributed and cluster computing any network node with

access to secondary storage can be used to run a ADIOS server process.

Each application process is linked with the ADIOS interface, which transfers the

client requests and additional information supplied into request to ADIOS servers (see

Figure 4.1). The interface also manages data transfer between client and servers and

translates acknowledge messages from the server processes into appropriate return

values for the request function called by the client process.

In order to keep the size of the interface small and to minimize its runtime overhead

the interface does not keep any information about which server process manages

which disks and files. Therefore it can not choose the server process best suited for

a particular task but sends all the request message to one specific server, which is

called the buddy server to the respective client. The buddy server is assigned to a

client process at the time when the application connects to ADIOS and normally
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remains the same until the termination of the connection. At any point in time each

client process is linked to exactly one buddy server but a ADIOS server can serve

any number of client processes (i.e. there exists a many-to-one relationship between

clients and servers).

Any server process, which is not the buddy server for a specific client is called a

foe server to that client. Because different client processes generally have different

buddy servers the terms 'buddy' and 'foe' are always relative to a client process. So

in figure 4.1 server 1 is buddy to application process A and foe to Band C. On the

other hand server 2 is buddy to Band C and foe to A.

Server processes may run on dedicated or non dedicated nodes. A node is ded-

icated if the ADIOS server process is the only program running on that processor.

Otherwise the node is non dedicated.

On non dedicated nodes the server process has to share the processor and other

system resources with concurrently running tasks (which mayalso be processes of the

client applications) and therefore the processing time consumed for optimizations of

I/O operations has to be kept to a minimum.

However the use of dedicated nodes allows for extensive optimizations.

4.1 Data Access Modes

Naturally every server process can directly access only the disks connected to the

processor node that it is running on. Since an application sends all I/O requests to

its buddy server but can access data on any disk in the system two different types of

data access have to be treated by a ADIOS server.
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• Local data access stands for the case where the buddy server can resolve

a request from the client application on its local disks. We call it also buddy

access. (Examples for local accesses in the system depicted in figure 4.1 are

requests from application A affecting disk a, or requests from applications B

and C affecting disks b,c and d.)

• Remote data access denotes the access scheme where the buddy server can

not resolve the request on its local disks but has to forward the request to other

ADIOS servers. The respective server (foe server) accesses the requested data

and sends it directly to the application via the network. We call this access

also foe access. (Examples for remote access in the system depicted in figure

4.1 are requests from application A affecting disks b,c and d and requests from

applications Band C affecting disk a.)

Note that the terms local and remote refer to the fact that disks are local or remote

to the processor on which the buddy server process is running, not the processor on

which the application process is running. (In case of non dedicated servers this may

be the same processor but it does not have to be.)

If a request affects data on the local disks of the buddy server as well as data

on remote disks, the request is broken into several parts in a way that each of the

resulting subrequests can either be resolved by a local or by a remote data access. A

more detailed description of this request fragmentation can be found in chapter 4.4.

ADIOS servers do not use special services like NFS to process remote access

requests but rely on internal communication between ADIOS server processes. This

speeds up the data access (no additional overhead) and also increases portability

(independence of availability of remote access services).
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4.2 Parallelizing I/O

There are two sources of I/O parallelism inherent in the ADIOS design.

An application according to the SPMD programming paradigm can connect each

single application process (or subsets of application processes) with different buddy

servers. This way each buddy server just performs sequential disk access. For the

application as a whole the I/O operations are executed in parallel, since each buddy

server can read from or write to its local disks autonomously.

In addition to that a ADIOS server can write to severallocal disks in parallel if

allowed by the underlying hardware. Furthermore the data layout can be chosen in

a way that remote disks are accessed. Since remote accesses are served by processes,

which run on different processors they effectively can be processed in parallel to the

local accesses.

4.3 ADIOS Server

A ADIOS server process consists of several functional units as depicted in figure 4.2,

namely:

• The Interface provides the connection to the" outside world" (i.e. applications,

programmers, etc.). Different interfaces are supported by interface modules to

allow flexibility and extendibility. Up to now we implemented a (basic) MPI-IO

interface module, and the ADIOS proprietary interface, which is in turn the

interface for some specialized modules.

Technically the interface is not really a part of the server process but linked to

the client application.
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• The Message manager is responsible for the external (to the applications via

the interface) and the internal (to other ADIOS servers) communication .

• The Fragmenter can be regarded as "ADIOS's brain". It represents a smart

data administration tool, which models different distribution strategies and

makes decisions on the effective data layout, administration, and ADIOS ac-

tions.

• The Directory Manager stores meta information like file names, data distri-

bution, data access logs and so on. In general the directory manager only holds

the information for the (part of) data that resides on the local disks .

• The Disk Manager provides the access to supported disk sub-systems. This

layer is modularized in order to allow extendibility and to simplify the porting

of the system. Currently the Disk Manager supports modules for ADIO [70],

MPI-IO, and Unix style file systems.

4.4 Requests and Messages

The following explains in detail how the various components of ADIOS collaborate to

process an I/O request. The example deals with a write request. Read requests are

processed similarly except where noted. For the sake of clarity the I/O operation is

performed in several phases, which are depicted in figure 4.2 cont. In reality all these

phases may overlap whenever possible.

For each phase the figure only depicts the servers actually involved in the process-

ing of the request. Each server holds some part of the file's data, which is represented

by small geometrical symbols (circle, triangle, square, diamond and trapezium).
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Figure 4.3: The Message Protocol: Phase 2•
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Figure 4.4: The Message Protocol: Phase 3
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Fullline arrows denote the flow of request messages. The request arrows are also

marked with the geometrical symbols indicating the data which is actually requested.

The dotted line arrows show the flow of meta information (directory information) .

• Phase 1: Request. A write request is issued by an application via a call

to one of the functions of the ADIOS interface, which in turn translates this

call into a request message. Finally, this request message is sent to the buddy

server .

• Phase 2: Request Fragmentation. The directory manager of the buddy

server holds all the information necessary to map a client's request to the phys-

ical files on the local disks. The fragmenter uses this information to decompose

the request into two sub-requests. One of which can be resolved locally. The

other (the remote part) has to be communicated to other ADIOS servers (foe

servers).

If a directory controller (DC) exists for the file accessed, the sub-request for the

remote part is forwarded to it. Otherwise the remote part is broadcast to all

the other ADIOS servers and phase 3 can be skipped.

Only for write accesses some part of the data may not be stored on any disk yet

(data is appended to the file). The fragmenter then has to distri bu te this data

over the available disks. After the fragmenter has decided, on which servers to

store the data it can send corresponding request messages to these servers. In

the example the trapezium symbolizes some data appended to the file.

• Phase 3: Directory Controller Access. The fragmenter of the directory

controller once again breaks down the remaining part of the request according



•

54

to information retrieved by its directory manager. In the example at hand one

part (the square) can be resolved locally. For another part (the triangle) the

directory manager can deliver information. This means that the fragmenter

knows on which server this part of the data is stored and can therefore send

this sub-request directly to the appropriate server. The rest is broadcast to the

remaining servers in the system.

• Phase 4: Disk Access and Data transfer. At this point each affected

server has received the request for the part of the data it administers. Note that

messages that have been sent directly to a server can bypass the fragmenter (it

is already known, that this server holds the part of the data in question) but

messages that have been broadcast once again are filtered by the fragmenter.

This time however only the part that can be resolved locally is of interest. Any

other part can be safely ignored without triggering any additional messages (the

request already has been broadcast to all possible servers).

The I/O subsystems actually perform the necessary disk accesses for the local

request and the transmission of data to/from the client process. For perfor-

mance reasons each server communicates directly with the client bypassing the

buddy server (indicated in the figure by the lines without arrows) .

Note that the part of the data symbolized by the trapezium is new and the

appropriate server therefore has no meta data for this file on its disks at the

start of the write operation. This is indicated by the lack of the symbol in the

disk subsystem.
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• Phase 5: Directory Update and function return. After the disk ac-

cesses have been performed all the directories (local and directory controller)

are updated and the function initially called by the client returns indicating the

success of the write operation. (This phase is not depicted in the figure.)

4.5 Customized Environments

ADIOS offers the adjustment of different system parameters to the application pro-

grammer by setting these parameters in an external config file. The path of this config

file must be set in an environment variable (ADIOS_CONF=/home/ ADIOS/src/develop).

We distinguish between different hierarchical config files. (see 4.5.1)

These files are valid only in the scope of an island, which gives the application

programmer the freedom to tune the parameters for different islands based on the

knowledge about that island.

These parameters are not mandatory for ADIOS, we treat them as descriptive

arguments, which ADIOS will fulfill as close as possible. But if there is a logical

inconsistency between parameters, a appropriate value is chosen by ADIOS (e.g dif-

ferent message buffer sizes between servers).

4.5.1 Hierarchical Environment Config System

• local config file: such a file can exist for every Client and BS/FS. This file

should hold data, which is private to that client/server like buffer size, name of

the connection controller. For servers there are additional parameters like how

many applications are supported

A client/server gets an parameter out of the local config file by issuing a request
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with the name of the parameter. Data which is consumed by every client and server

(e.g buffer size, name of connection controller) must be consistent on all machines.

This is in the responsibility of the ADIOS administrator.

4.5.2 Customizing

Till now, the following parameters can be customized

server parameters:

• MAX~PP: How many clients can connect to the BS

• MAX_SRV-FILE: How many file handles are offered by the BS

• DATAßUFLEN: size of the message buffer

• FRAG ~EM_ENTRIES: How many fragments can be concurrently hold in the

fragmenter

• SRV_GROUP~AME: PYM group name for the servers (to distinguish between

server and clients or client groups)

• SRV-DEVICE~IST: How many and what devices are handled by this server

server and client parameters:

• ADIOS-DIR: Virtual mount point for ADIOS

• CC: Hostname of the connection controller (CC)
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4.6 Unified messaging

4.6.1 Introduction

ADIOS is a parallel I/O runtime system, which provides efficient access to stored

data sets by optimizing the data layout on disk and allowing parallel read/write

operations. However in the last few years the focus of research in high performance

computing shifted from parallel computing to distributed computing. New computing

paradigms arose like Grid Computing, which enables world-wide-spread sharing and

coordinated use of networked resources [28]. In the course of this process we extended

ADIOS and developed ADIOS islands [60], which harness I/O resources available in

distributed cluster type systems for high performance (parallel and/or distributed)

applications. ADIOS islands focus on distributed, heterogenous environments, which

is the common infrastructure of the Grid. The conventional approach of ADIOS

using MPI [23] as communication layer fails in this environment by not supporting

specific goals, as dynamic server lifetime, dynamic system configuration and so on.

This situation leads to the development of a new transparent communication layer

for heterogenous environments, which we will present in this paper.

We will describe the communication problem in this chapter, define our goals

and show different solution approaches. Then we present our new communication

architecture and describe ADCL [34], the new ADIOS Communication Layer in more

detail.

4.6.2 The Communication Problem

Focusing the Grid we have to specify a very general Grid architecture hosting our

framework. From our point of view the Grid consists of an arbitrary number of
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collaborations, which are defined by an organizational domain [30], interconnected by

WAN technology. In practice such a collaboration will be usually (but must not be)

a coherent IT infrastructure represented by a cluster like system, which consists of a

number of execution nodes. These nodes are processing nodes and/or data (server)

nodes. The latter type provides data storage resources by a number of storage devices

(e.g. disks, tapes, etc.).

A ADIOS islands consists of a number of interacting ADIOS server processes,

which are spread among a set of logically or topologically unified nodes (typical a

collaboration). Applications can connect to a ADIOS island by contacting a defined

connection controller, which in turn assigns "buddy" servers, responsible for the ful-

filment of data requests, to any requesting application process. The original ADIOS

system was designed as supporting module for parallel, high performance applica-

tions. Thus some typical simplifications were valid, as starting the ADIOS module

together with the application, static configuration (server number and node layout)

and so on. This made the choice of MPI as basic communication layer of ADIOS

simple.

With the design of ADIOS islands and the focus towards the Grid environment

a new functionality for the system and in turn new demands for the communication

layer showed up.

• Dynamic service.

ADIOS islands provide a data administration servIce to Grid applications.

Therefore the lifetime of a ADIOS island is independent from the application

using it. Theoretically an island is providing its service continuously. Thus a

communication layer has to provide its functionality independently from any
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application and has to allow to connect applications dynamically.

• Multi applications.

It must be possible that multiple applications connect concurrently to an islands.

Thus any application must have its own communication handle.

• Dynamic system configuration.

The system must be able to react to external events dynamically. For example

if the workload increases more servers have to be installed, if the disk space

diminishes new devices must be added, if a server crashes a new process has to

be spawned, etc. This must be possible without restarting the communication

infrastructure .

• Heterogenous environment.

An islands is running on a set of defined nodes, but it is possible, that these

nodes show different characteristics, as architecture, operating system, etc.

Thus the communication layer must provide means for portability.

These problems are not totally new for us. We faced a similar situation during

the design of the original ADIOS. We defined the problems and showed some possible

work-arounds then (see [35]). Due to the urge for highest performance we had to

choose MPI, with some specific extensions serving our needs.

MPI-l restricts client-server computing by imposing that all the communicating

processes have to be started at the same time. Thus it is not possible to have the

server processes run independently and to start the clients at some later point in time.

Also the number of clients can not be changed during execution

Some approaches to overcome the limitation are the following:
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• MPI-l based implementations with work-around.

Starting and stopping processes arbitrarily can be simulated with MPI-1 by

using a number of "dummy" client processes which are actually idle and spawn

the appropriate client process when needed. This simple work-around limits

the number of available client processes to the number of "dummy" processes

started .

• MPI-2 based implementations.

Supports the connection of independently started MPI-applications with ports.

The servers offer a connection through a port, and client groups, which are

started independently from the servers, try to establish a connection to the

servers using this port. Up to now the servers can only work with one client

group at the same time, thus the client groups requesting a connection to the

servers are processed in a batch oriented way, i.e. every client group is automat-

ically put into a queue, and as soon as the client group the servers are working

with has terminated, it is disconnected from the servers and the servers work

with the next client group waiting in the queue .

• Thirdparty protocolfor communication between clients and servers (e.g. PVM).

This mode behaves like MPI-IO/PIOFS [16] or MPI-IO for HPSS [47], but

ADIOS uses PYM [37] and/or PVMPI [25] (if it is available sometime) for com-

munication between clients and servers. Client-client and server-server commu-

nication is still done with MPI.

All these above possibilities show limitations or are not applicable specifically in

a Grid environment. Conclusively this led to the development of a novel, proprietary
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Figure 4.6: ADIOS Communication Architecture

transparent communication layer.

4.6.3 The ADIOS Communication Layer

The basic idea of our approach is to develop a new communication layer which inherits

the advantages of our main communication libraries in focus, namely PYM and MPI.

Simply said we are striving for a system usable as MPI but flexible as PYM. This led

to the development of the ADIOS Communication Layer (ADCL).

The structure of our new communication architecture is depicted in Figure 4.6.

Applications connect to a ADIOS island as clients via a small ADIOS library,

which has to be statically linked or dynamically loaded at runtime via the under-

lying operating system. These ADIOS clients have then the possibility to access

the ADIOS functionality by several provided interfaces, a standardized MPI-IO in-

terface, a distributed file system (ADFS), and a proprietary ADIOS interface. The
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ADIOS system itself can have different execution modes, which are defined by the

ADIOS base communication library. This base library is built upon communication

standards, which are dependent or advantageous on the underlying hard- and soft-

ware architecture. Until now we support a PVM-based system for a heterogenous

architecture typical for cluster and Grid environments, and a MPI-based system for

homogenous environments, as found in classical supercomputers. Also a mixture of

both is possible. The ADCL encapsulates the base communication layer transpar-

ently to the user/applications and therefore allows for easy portability. Thus one big

advantage of the ADCL approach is the possibility to support arbitrary protocols. It

is straightforward to move the ADIOS islands to new communication bases, as zero-

copy protocols for new network hardware, or pure TCP /IP for conventional Internet

environment, because only a limited set of ADCL calls has to be rewritten, mostly in

form of simple stubs.

The ADeL Application programming interface

The ADCL API is basically a superset of the PYM and MPI interface inheriting the

advantages of both worlds. It comprises all functions necessary for the communication

layer delivering the above stated properties.

From an abstract point of view the set of functions can be partitioned into 2

groups, external functions, which can be used from both clients and servers, and

internal function calls which are used by the ADIOS servers only.

External API. Functions of the external ADCL API are used for the commu-

nication of the client processes and the servers. They comprise calls for resource

identification, data shipment and communication control. However these functions
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are also used by the ADIOS servers internally, but their main focus is the external

environment.

char *getSrvGrpName ()

Returns the group name of the servers. This name is defined by the environment

variable ADIOS_CONF. It is used to restricted broadcast operations onto ADIOS

servers.

int adios~sg_init ()

Initializes the active send buffer.

int adios~sg_pack (void *inbuf, int incount, int type, void *adios_buf,

int *req_pos)

Packs incount objects of type type referenced by inbuf into the active send buffer

adios_buf.

int adios~sg_unpack (void *adios_buf, int *adios_pos, void *inbuf,

int incount, int type)

Unpacks incount objects of type type from inbuf into adios_buf.

int adios~sg_send (int send, int tag)

Sends the contents of the active buffer to process with tag tag.

int adios~sg_psend (void *inbuf, int incount, int type, int send,

int tag)
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A simplified pack & send call, useful for sending scalar values. Initializes the buffer

and sends incount objects of type type to process identified by tag tag.

int adios-IDsg_recv (int recv, int tag)

Receives the active receiving buffer of process recv identified by tag tag

int adios-IDsg_precv (void *inbuf, int incount, int type, int recv,

int tag)

A simplified receIve & unpack call, useful for receiving scalar values. Receives

incount objects of type type in buffer referenced by inbuf from process recv iden-

tified by tag tag

int adios-IDsg_bcast (const char *gname, int tag)

Broadcasts the active send buffer to all subscribing processes of the process group

gname identified by tag tag. See also the getSrvGrpName call for broadcasts within

the ADIOS server group.

Internal API. The call of the internal API are invisible to the clients. They are

used internally between the ADIOS servers for runtime information gathering. They

basically map dynamic process identification to a unique, persistent (static) global

server identifer (GAJD). The GAJD is similar (can be identical, but in our actual

implementation in coded form) to the IP-address of the processing node the ADIOS

server is running on. Due to the restriction that only one ADIOS server is allowed

per node the GAJD is unique.
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int adios_getJnsgid_from_gaid (GA_ID gaid, int *msgid)

Maps the GAJD to the dynamic process identifer of the server (compare to pvm_tid

0).

int adios_getJnsgid_fromJ1ostname (const char *hostname,

int *msgid)

Maps the hostname of the node to the dynamic server process identifier.

int adios_get_gaid_fromJnsgid (int msgid, GA_ID gaid)

Maps the dynamic process identifier to the GAJD.

int adios_getJ1ostname_fromJnsgid (int msgid, char *hostname)

Maps the dynamic process identifier to the hostname of the server.

int adios_get_gaid_fromJ1ostname (const char *hostname, char gaid[])

Maps the hostname to the GAJD.

4.6.4 Conclusion

ADCL is a proprietary, novel communication layer for ADIOS islands, an I/O service

system for distributed and Grid computing. The use of ADCL solves many problems

typical in an MPI environment and allows for dynamic system lifetime and dynamic

configuration, multi application support and heterogenous environment providing a

conventional MPI interfaces to distributed applications.

A prototype of ADIOS islands is already implemented. Preliminary performance

tests showed that the usage of the ADCL is not for free. To reach the above defined
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design goal and the quality of portability we have to pay about 10% performance loss.

However we are convinced that this is a small price for the new qualities reached.

We are just on the way to adapt ADIOS islands to come closer to the emerging

Grid standards. Specifically we are just working on a version to be more OGSA

[30] compliant. Finally we hope that we will get a fully functional Grid I/O service

specifically targeting the problem domain arising in the CERN Datagrid project [64].

4.7
4.7.1

Queues

Introduction

As mentioned in Chapter 2.4 I/O systems use file buffering and caching to improve

their performance. So we want to explain the techniques which are applied in ADIOS.

To avoid all the issues with cache coherence ADIOS doesn't support client buffer-

ing and replication on servers. Instead we introduce a request queue which uses server

buffering (delayed write) for write requests and data sieving for read requests. The

request queue acts like a FIFO for requests. The current implementation of ADIOS

doesn't support pthreads, so ADIOS always switches between receiving request and

fulfilling them, which could be made autonomous with a thread safe implementation,

where one thread is responsible for receiving requests and one or more other threads

are responsible for fulfilling them.

4.7.2 Optimization for read requests

Read requests gathered from the clients are written into the request queue. The

servers works through the request queue and puts all requests and their data for the

same client on a finite buffer. If either the buffer is full or the server finds a request
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for another client it sends the buffer to the client, which scatters the received data

into the clients memory and resumes.

4.7.3 Optimization for write requests

Write requests gathered from the clients are written into the request queue. The

servers works through the request queue and collects all requests for the same client

on a finite buffer. If either the buffer (request header information plus reserved data

size) is full or the server finds a request for another client it pulls the data from

the client, and writes the data on the disk. This leads to a pipelining on the server

because of delayed write, i.e the program resumes while the I/O buffers are written

to disk.

4.7.4 Conclusion

With this simple optimizations for read and write requests the network trafiie is

reduced to the minimum and the challenge is to find the right size for the "finite

buffer" to optimize the tradeoff between the size of the buffer in memory (which is

lost for other buffer activities and the application demanded memory) and the number

of messages in the network. See the chapter of practical tests for further discussion

of this tradeoff.

Further optimization can be achieved by developing an algorithm which does

"intelligent" reordering in the request queue, but this is out of scope of this thesis.



68

4.8 Solving the EOF problematic in distributed
I/O systems without a centralized directory
structure

This chapter presents a new algorithm for solving the EOF problematic in distributed

filesystems without a centralized directory server. The problem arises because the

canonical form of a file is not in an one-to-one relationship to the physical repre-

sentation (but in an one-to-many relationship). So, the classical way of signaling

EOF doesn't work anymore when reaching the last physical byte like in traditional

UNIX file systems. The novel algorithm will be presented by explaining how it is

manufactured into ADIOS.

4.8.1 Introduction

We want to introduce our novel algorithm with three examples including increasing

complexity. A further constraint is the absence of a centralized directory server, i.e

all participating server only knows the part of files, which they physically manage.

Every ADIOS server has a local directory service, which stores name and size of every

locally managed file. This is basis for our algorithm to signal EOF correctly. We start

with the first, very simple example.

4.8.2 Single server - single directory structure

This is the classical case, the file is stored physically exactly as it is represented by

its canonical form. If the request goes beyond of the size of the file, stored in the

local directory service, the server sends EOF to the client. This is the classical UNIX

behaviour with the difference, that the local directory service decides, if we have

reached EOF and not the physical file itself.
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4.8.3 Single server - multiple directory structure

In this case ADIOS distributes the file guided by the embedded XML structure from

the client or automatically on the server, rather similar to software RAID. Now we

have the issue that the mapping from the canonical to the physical representation of

the file is not an one-to-one, but an one-to-many relationship; e.g an cyclic distribution

with block size of 4K on the server. Compared to the first example we have now

the problem, that the size of the file stored in the local directory service gives no

qualitative usefull answer about EOF, because there are now multiple entries for

every file name (one entry per mount point ).

Excursus: Example of a 13K sized file "test.adios" distributed one a server with

"stripe factor = 3" and "stripe depth = 4K"

Environment variable (see ADIOS.conf on the Server): SRVR_DEVICE_LIST 3

/home/fuerle/ ADIOS/devI/ /home/fuerle/ ADIOS/dev2/ /home/fuerle/ ADIOS/dev3/

Related XML structure:

<?xml version=1I1.011 encoding="ISO-8859-111?>
<!DOCTYPE PARSTORAGESYSTEM IIXparstorage.dtdll>
<PARSTORAGE VERSION=1I1.0IlTIMESTAMP=lItestfile_twodevicesll>
<ISLAND>

<SERVER HOST=lIadclusl01l>
<DEVICE DEVICE_ID=1I01l>

<VIEW SKIP_HEADER=1I01l SKIP=1I8192">
<BLOCK OFFSET=1I01l REPEAT=1I111 COUNT=1I409611 STRIDE=1I01l>

<BYTEBLOCK/>
</BLOCK>

</VIEW>
</DEVICE>
<DEVICE DEVICE_ID=II!,,>

<VIEW SKIP_HEADER="011 SKIP=1I409611>
<BLOCK OFFSET=1I409611 REPEAT=II!" COUNT=1I409611 STRIDE=1I0">

<BYTEBLOCK/>
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</BLOCK>
</VIEW>

</DEVICE>
<DEVICE DEVICE_ID=1I211>

<VIEW SKIP_HEADER=1I01l SKIP=1I01l>
<BLOCK OFFSET=1I819211 REPEAT=1I111 COUNT=1I409611 STRIDE=1I01l>

<BYTEBLOCK/>
</BLOCK>

</VIEW>
</DEVICE>

</SERVER>
</ISLAND> </PARSTORAGE>

Only the addition of all file sizes in the local directory service for the given filename

results in the total size, so that we reach the behaviour of the first example; i.e the

server has to add 4K of device 0 plus 4K of device 1 plus 4K of device 2 plus lK of

device 0, this a simple local addition on the server.

4.8.4 Multiple server - multiple directory structure

In this case ADIOS distributes the file guided by the embedded XML structure from

the client or automatically on the server, rather similar to machine wide software

RAID. Now we have the issue that the mapping from the canonical to the physical

representation of the file is not an one-to-one, but an one-to-many relationship; e.g

an cyclic distribution with block size of 4K on the server. Compared to the second

example we have now the problem, that even the cumulative size of the file stored

in the local directory service gives no qualitative usefull answer about EOF, because

there are now multiple entries on multiple servers for every file name (one entry

per mountpoint on every participating server) and the absence of global directory

controller.



71

Excursus: Example of a 13K sized file "test.adios" distributed one a server with

"stripe factor = 3" and "stripe depth = 4K"

Environment variable (see ADIOS.conf on the Server): SRVRj)EVICE~IST 3

/home/fuerle/ ADIOS/dev1/ /home/fuerle/ ADIOS/dev2/ /home/fuerle/ ADIOS/dev3/

Related XML structure:

<?xml version=11.0" encoding=IISO-8859-1"?>
<lDOCTYPE PARSTORAGE SYSTEM "Xparstorage.dtd">
<PARSTORAGE VERSION=11.0" TIMESTAMP=ltestfile_twodevices"> <ISLAND>

<SERVER HOST=ladclusl0">
<DEVICE DEVICE_ID="O">

<VIEW SKIP_HEADER="O" SKIP=18192">
<BLOCK OFFSET="O" REPEAT="!" COUNT=14096" STRIDE="O">

<BYTEBLOCK/>
</BLOCK>

</VIEW>
</DEVICE>

</SERVER>
<SERVER HOST=ladclusll">

<DEVICE DEVICE_ID="O">
<VIEW SKIP_HEADER="O" SKIP=14096">

<BLOCK OFFSET=14096" REPEAT=ll" COUNT=14096" STRIDE="O">
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>
<SERVER HOST=ladclus12">

<DEVICE DEVICE_ID="O">
<VIEW SKIP_HEADER="O" SKIP="O">

<BLOCK OFFSET=18192" REPEAT="!" COUNT=14096" STRIDE="O">
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>

</ISLAND> </PARSTORAGE>
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An obvious possibility for this issue would be to qualify one server as the master

server, which does the job of adding up the accumulated file sizes per server over

all servers and sends EOF. This concept was part of design of ADIOS, but was not

accomplishable because of technical restrictions. ADIOS servers are not thread-able,

and the implementation of this concept would have resulted in a dead lock situation in

the case of EOF (because all servers would have tried to communicate with a blocking

send-receive with each other).

We needed to find a solution, where not the servers communicate with each other

about EOF, but the client can find a decision via the answers of the servers. But in

this case the problem is, that servers only provide information about bytes they own.

They can also provide a kind of EOF, that they don't own any other bytes, but the

client can't make a final decision about EOF with this information.

Example: client reads test.adios (13 K overall size) in 4K steps

The first 3 requests are working properly, because the request can be fully satisfied.

In the 4th run of the loop the client requests 4K. It gets EOF with 1K from server

1. The clients has now 1K of data and the information EOF (from server 1) and still

waits for another 3K of data.

Questions and Challenges

1. The client is perhaps confronted with multiple EOF answers, what shall it do ?

An example for this behaviour in the above example would be a request size of

16K instead of 4K. In this case all servers would respond with their data and

EOF, i.e the clients gets EOF 3 times?
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2. The overall size can only calculated by accumulating all server answers, but the

client doesn't know the number of participating servers?

3. Even if the client would know the number of participating servers, it would need

to communicate with servers, which doesn't contribute to the final result (see

example 1.) server 2 and server 3) to get the size of the owned files (4K per

server) and to add up to 13K, if the client gets more than one EOF and we

calculate in absolute numbers?

Solution based on an analogon in communications engineering

The solution to this challenge is based on an analogon in communications engineer-

ing, the so called" power factor correction" in neon lights. The have an induction

coil, which consumes additional to the" real current" a considerable fraction of "re-

active current" when starting (i.e when the light switch is powered on), which IS

compensated (i.e neutralized) with a capacitor ("negative reactive current").

Spoken in words of mathematics this means that in the complex numbering system

the sum over the" fictive parts" must be zero.

Back to the example with 4K requests we want to demonstrate this novel approach

in the last run, where the client requests 4K and had already got 12K out of 13K till

now.

The request of the client consists in our case of a "real part" (lK in our example,

i.e the difference between 13K and 12K) of the available physical bytes on the servers

and the" fictive part" (3K in our example, i.e the difference between 4K total request

size and 1K physical available bytes) not available physical (Le "fictive")bytes. The

client doesn't know about the" fictive part" and hence sends the total request (i.e.
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"real part" + "fictive part" = 4K) to the servers. The servers qualify the" real part"

and the "fictive part" ("negative fictive' part" = capacitor effect), that they go on

with reading even in the case of EOF (hint: logical reading in the directory service,

because physical reading wouldn't be feasible) until the whole request is fully satisfied.

All bytes behind EOF are added up to the "negative fictive part" of each server.

Now all servers send their answers to the client which can realize by the use of

the sent "negative fictive parts" its own "fictive part" and neutralizes it, i.e after

processing all answers from the servers the sum of all "fictive and negative fictive

parts" must be zero and the client can decide (hint: total request size must be equal

to sum of"fictive parts" + sum of"real parts") , ifit has received all "real parts" (i.e

physical bytes) and if EOF has appeared (at least one server has send an "negative

fictive part" ,i.e. the "negative fictive part" is greater than zero).

Questions and Challenges revised

1. The client is confronted with multiple EOF answers, what shall it do ?

The client doesn't get EOF anymore, it generates EOF explicitly when at least

one server sends a "negative fictive part" greater than zero.

2. The overall size can only calculated by accumulating all server answers, but the

client doesn't know the number of participating servers?

With our new algorithm it's not necessary anymore for the client, how many

participating servers are around, because it uses instead of absolute only relative

numbers based on the last issued request (e.g request 4K), and after that it

subtracts as long "real and negative fictive parts" as it reaches zero (4K - lK

"real" - 3K "fictive" = 0). The request is finished, when it reaches zero.
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3. Even if the client would know the number of participating servers, it would need

to communicate with servers, which doesn't contribute to the final result (see

exam pIe 1.) server 2 and server 3) to get the size of the owned files (4K per

server) and to add up to 13K, if the client gets more than one EOF and we

calculate in absolute numbers?

The client needs to communicate only with the contributing servers, i.e which

have a "real or negative fictive part" greater than zero for this request. This is

only server 1 in our example, server 2 and 3 don't send an answer to the client,

because the" real and negative fictive parts" for those are servers are zero. As

a positive side effect this also reduces network traffic.

4.8.5 Conclusion

This novel approach doesn't need a centralized directory controller and hence scales

100 %. So this algorithm subsummarizes all previous mentioned (see 4.8.3, 4.8.4)

algorithms and hence is the used algorithm for all use cases in ADIOS.



Chapter 5

Extended System Architecture for
distributed I/O

5.1 Introduction

The basic concepts of ADIOS described thus far need some extensions in order to

harness I/O resources distributed over the internet. The main challenges in this

context are

• The message protocol described in chapter 4.4 uses broadcasts in some situa-

tions. Since it is clearly impossible to broadcast across the internet some notion

of locality is needed, which ensures that broadcast messages only have to be

sent to a (small) well defined subset of all the ADIOS server processes running .

• Name spaces have to be provided to avoid file naming conflicts.

• Client grouping ensures that collaborating client processes can use shared file-

pointers or access a file exclusively (i.e. only processes belonging to a specific

group can use the file concurrently, whereas all other processes are denied ac-

cess).
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• Hard- and software environments across the internet are very inhomogenous.

Hence the adaptability of ADIOS is a major issue. Administrators should be

able to tailor the system to their needs.

5.2 The ADIOS Island

A ADIOS island is defined to be a closed system with its own name space consisting

of a number of ADIOS servers and a connection controller, which assigns application

processes to their buddy servers on request.

The idea is to segment the distributed I/O services into domains (islands). To

reach such an island the client needs to know the hostname (or IP-address) of the

connection controller responsible for that island.

5.2.1 The Connection Controller

At any given time, a client or a group of clients can connect/disconnect to/from a

ADIOS island. To connect the client calls an interface function and specifies the

IP-address of the targeted island's connection controller (see figure 5.1). The ADIOS

interface then sends a connect message to that connection controller, which in turn

selects a buddy server for the client process (based on information about network

topology, data layout and so on). The address of the buddy server is sent back to

the ADIOS interface. The interface converts this address into a buddy handle and

returns this handle to the calling client process. The client has to use this handle for

all further requests to the respective ADIOS island.

A client process may connect to an arbitrary number of ADIOS islands concur-

rently (like indicated in figure 5.2). Since there is a different buddy server to the
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Figure 5.1: Four steps to connect to a ADIOS island
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Figure 5.2: ADIOS islands

application in each island the many-to-one relationship between applications and

buddy server (see 4) holds no more. Each application has exactly one buddy server

in each island it is connected to. This behaviour is currently not implemented. A

simple extension of all function calls in the ADIOS client stub interface with the

buddy server id could do so.

5.2.2 Name Space of ADIOS

Each ADIOS island has its own name space, i.e a file name is unique within an island,

but on the other hand the same file name can occur in different islands.

All parts of a single file are stored on one dedicated island. Therefore it is not

possible that for any file some bytes have to be retrieved from one island and other

bytes have to be retrieved from another island. If a part of the file is located on an

island, the rest can be found on the same island. This simple rule restricts the range

of broadcast messages to one single island. Whenever a part of a file is searched on an

island, which can neither be found locally nor by the directory controller, it suffices

to broadcast the request to all the servers in the island. One of them has to hold the
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data.

To distinguish between files on different islands with the same name, the appli-

cation programmer would need to specify the buddy handle when calling an I/O

operation (see last paragraph in 5.2.1).

Excursion: Technical background of the distributed version of
ADIOS

To be able to connect/disconnect at any given time, ADIOS must be run as a client-

server based system. So the servers are running like daemons, which must be started

ahead of the clients.

So, the current client-server version of ADIOS is implemented in PYM and trans-

forms from MPI to PYM, where necessary. A big advantage of PYM is that is well

prepared for working on heterogeneous platforms, even for heterogeneous message

passing and it offers the possibility to create failure tolerant applications.

We started implementing ADIOS with LAM/MPI to implement such a system,

because mpich doesn't offer such MPI2 functions (spawning of processes, port func-

tions) . But we stopped that development for two reasons

• no possibility for failure recovery in MPI, if one process fails, the whole system

fails. We are not interested to recover from hardware crashes like a harddisk

crash, this is not the aim of the recovery component. But we are more interested

in a system, which can survive minor failures like temporary unavailability of

services or network congestion .

• LAM/MPI in those days, which was 6.1, doesn't seem to be stable enough for

writing programs, which use that kind of MPI2 functionality.
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• Different MPI implementations on different platforms doesn't work together,

whereas PYM programs run on all supported platforms.

We are thinking ofimplementing a LAM!MPI based client-server version of ADIOS

without failure recover component for performance comparison reasons. On the other

hand we want to investigate in the portability of our unified messaging system, which

will be explained later on. This system allows switching of the underlying messag-

ing system without the need to rewrite application code, even the internal code of

ADIOS.

5.2.3 The Global Application ID

After connecting to this island, the client receives a umque GA-ID directly from

the buddy server, which is assigned for this client based on decisions made by the

connection controller. This GA-ID is used by the client for all further requests to

ADIOS, so that the client stub can distinguish, to which buddy server the requests

must be forwarded to. So from the client point of view there is no difference sending

a request to the local or a remote island, this is transparent.

The GA-ID for clients consists ofthe hostname (respective the IP-address, which is

via DNS more or less the same) and the process-ID of the client. We need the process-

ID of the client, because it is possible, that a machine runs one or more clients (at

least in a UNIX multitasking environment), so we need an additional parameter to

the machine name. So, the process-ID seems to be a good choice, because it is as

long valid and unique for that process on the machine, as the process lives.

an according C struct for the GA-ID

union {
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int pvm_id;
MPCComm mpi_id;

} GA_ID;

typedef struct {
long int ip_address; 1* long int because

of upcoming IPv6 *1
int process_id;

char *group_name; 1* for access right *1
GA_ID bh; 1* buddy handle id *1

} FULL_GA_ID;

The buddy server also stores the GAJD for following reasons

• which and how many clients are connected Hint: Only the buddy server stores

the GAJD of the client, because all requests from the client must be sent to

the BS, which forwards requests, which cannot be fulfilled locally to the foe

servers. This doesn't necessarily means, that the foe servers must be aware of

the remote clients.

• access rights for this clients (e.g. shared file pointer)

The GA-ID for servers consists only of the hostname, because we assume, that

there can be only one server process per host.

When disconnecting a client from the server, the BS discards the GA-ID of the

client.

Hint: After deleting all clients, a BS can not be shutdown, because it must still

answer to remote requests issued by foe servers. Le ADIOS servers can be only shut

down together after a broadcast operation, where all servers confirmed, that no clients

are connected anymore.
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The GA..lD is transformed internally to the respective id of the underlying mes-

saging system. This internal id is used for the buddy handle id, which is used for

communication between the client stub and the server. If the respective internal id

is not unique, the FULL_GA..lD is used for that purpose.

The idea of a GA..lD is not implemented currently, we still use the id of the

underlying messaging system for the buddy handle id.

5.2.4 Group tagging

On the first view different processes can connect at any time, so one important feature

of a distributed I/O versions is the tagging of processes, which form together a group

with common access rights (e.g. opening of a shared file pointer).

We pursue the simulation of a SPMD approach for a consumer (e.g. any kind of

calculation) -producer (e.g a visualizer) program. In general there will be at some

discrete time stamp a group of clients for the producer program and at another

(probably some time later) discrete time stamp a group of clients for the visualizer

program. A major problem, when e.g. using PYM is, that even for that discrete time

stamp PYM can't recognize, that this clients are one common group, because PYM

pursues the concept of independent processes (but groups can be formed explicitly by

issuing group functions); compare that with MPLCOMM_WORLD in MPI-l, where

groups are set up explicitly.

From the point of view of the connection controller we need a common tag, that

those clients should tie together to a group and we need to know, how many are

clients are waiting to be connected.

Another property of the common tag must be multiple usability, i.e we need to

know, that all clients of the producer, but also all clients of the consumer program
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establish a common group (e.g. common access rights for a shared file pointer).

To address this requirements we chose two additional parameters for the connect

function in ADIOS

• a user defined group name The application programmer defines a customized

group name, which must be issued at the connect function for all participating

clients (e.g for all clients of the producer-program). This makes it possible, that

e.g. two independent consumer-producer programs work side a side without

disturbing each other. The drawback of this approach is that different groups

of application programer could unintentionally choose the same group name

and each program interferes the other one. But on the other hand this first

approach is aimed for application programmers, which are aware of each other

and choose unique names (e.g. technical reports names or similar) .

• number of clients In the case of issuing a customized group name the con-

nection controller needs to know, how many clients wait for registration at the

CC, because at this time stamp there is no explicit barrier function available

like in MPI-l (e.g when using PYM as underlying messaging system). This is

mainly necessary for letting the CC know, when the registration procedure for

this client group is over, and on the other hand for optimization purposes, so

the CC can assign the best available BS for the waiting clients. Hint: When

using MPI-2 (e.g LAM/MPI) as underlying messaging system, this information

is implicit given by brokering (the ADIOS stub does that automatically in that

case) the MPLCOMM_WORLD communicator of the waiting client group.

Another property of this group tagging functionality as mentioned before (recall

the consumer-producer program) is the extendibility of already registered groups.
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After registering the producer clients at the CC at any given time stamp later the

consumer clients can register at the CC by issuing the same group name as before.

The number of consumer clients may not be same as the number of producer clients,

the internal client table of the CC is just extended by the number of the new clients.

A nice side feature of this functionality is that client groups can be adjusted in

a customized way by the application programer by even just adding/deleting one or

more "worker" processes at any given time stamp.

5.3 File Operations

For all further requests (read, write, close, etc.) the client needs to issue the buddy

handle together with the Island FileJD.

5.3.1 The Island File ID

ADIOS needs to offer the ability of shared file pointers and grants for accessing a

file exclusively (compare with group tagging). Therefore we need a unique fileJD for

every file name in an island.

We denote such a fileJD an Island FileJD. When creating a new file, the buddy

server broadcast such a request to the remaining foe servers. The ADIOS server,

which holds at least the first byte (part) of this file uses its GAJD plus a consecutive

number to establish the IF JD and returns this value to the client, which use the

IF JD and the GAJD for further requests on that file.

When a BS receives a request, it opens (if not done yet) the necessary physical

file handle and broadcasts the IF JD to all remaining FS, which in turn open also the

necessary physical file handle and insert the IF JD in a map, which maps the relation
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between the logical IF -ID and the physical file handle.

A BS distinguishes between a regular/shared file pointer by returning an au-

tonomous reference to that IF-ID in the former case (every group gets a different

reference) and the same reference to the IF -ID (for multiple groups of clients) in the

later case. Shared file pointers are not implemented yet.



Chapter 6

Interfaces

ADIOS offers a wide variety of (external) interfaces for different purposes.

The main interfaces are:

• A native ADIOS interface, which is functionally viewed a superset of the tradi-

tional Unix interface, with extensions similar to MPI-IO and PVFS. It is used

internally, but can also be used for application programming .

• ADMPIOS: a MPI-IO interface, which is an almost complete implementation

of chapter 9 of the MPI-2 draft .

• ADFS: a file system interface, which implements a file system with its com-

mon tools on top of ADIOS delivering persistence and a canonical view for the

distributed files.

We want to concentrate on the native ADIOS and the ADFS interface; ADMPIOS,

the MPI-IO interface of ADIOS is out of the scope of this work (see [67] for details).
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6.1 The Native ADIOS Interface

The native interface of ADIOS is the main interface to ADIOS. It provides functions

for connecting to and disconnecting from the system, file manipulation and data

access and various administrative tasks. Due to its proprietary status it is usually

transparent to the application programmer, but builds the basis for the standardized

interfaces as MPI-IO and ADFS.

The native interface comprises functions for

• ADIOS administration, connecting to and disconnecting from ADIOS,

• basic file administration and manipulation, as creation, opening, closing, query-

ing and deletion of files,

• file access in blocking and non-blocking mode supporting the various data layout

patterns.

To explain how to apply the ADIOS native interface we use as example a simple

application program written in the MPI/MPICH framework. It is assumed that

the ad_serv program has been precompiled and the ADIOS native interface library

libadios.a resides in the same directory as the example program.

First, the application program must be compiled and linked with the ADIOS

library. The syntax is the same as for an usual C or FORTRAN compiler. For

example,

mpicc -0 ad_client applicationl.c libadios.a
Thus, the application program applicationl. c is compiled as a client process called

ad_client.
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Next, the application schema must be written. This is a text file which describes

how many server and client processes are used and on which host they run. A possible

application schema app-schema for one server and one client process is:

adios2 0 /home/usri/ad_serv adiosi i /home/usri/ad_client

In that example the server process ad_serv is started on the host called adios2 whereas

the client process ad_client is started on the host adiosl.

The simple example program connects to the island "adios.tuwien.ac.at", opens

a file called infile, reads the first 1024 bytes of the file and stores them in a file called

outfile and disconnects from ADIOS.

The client program applicationl. c looks like follows:

#include <stdio.h>
#include IImpi.hll
#include lIad_func.hll

void main ( int argc, char **argv ) {
int i,fhi, fh2;
char infile [i5], outfile [i5], buf[i024];
GA_ID bh;

MPI_Init (&argc, &argv);

ADIOS_Connect (lladios.tuwien.ac.atll,NULL, -i, &bh);
ADIOS_File_open (bh, infile, AD_MODE_RDONLY, NULL, &fhi);
ADIOS_File_read (fhi, -i, (void *) buf, i024);
ADIOS_File_close(fhi);

ADIOS_File_open (bh, outfile, AD_MODE_WRONLY I AD_MODE_CREATE,
NULL, &fh2);

ADIOS_File_write(fh2, -i, (void *) buf, i024);
ADIOS_File_close(fh2);

ADIOS_Disconnect(bh);
}
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The next step is to specify e.g the number of servers (2) and clients (4) which

should be involved in the computation. Thus, a text file has to be defined called e.g.

appll-schema, which contains the following lines:

ADIOS1 0 /home/usr1/ad_serv adios2 1 /home/usrl/ad_serv adios2 4
/home/usr2/kurt/ad_client

The server and the client program reside in the specified directories, and the server

process ad_serv is started once on ADIOSi (the 0 denotes the machine, where this

scheme is started from with mpirun -p4pg appll-schema) and on adios2; the four

client processes on adios2.

Note: If you use PYM as the underlying messaging system, you don't need such

schemes. Processes (server and clients) are spawned directly from the PYM console

or can be called directly on the shell.

6.1.1 Native Interface Prototypes

Connecting and Disconnecting

Before an application program can use ADIOS, a connection must be established.

int ADIOS_Connect(const char* ADIOS_lsland_ID, const char *gname,
int gcount, GA_ID *bh)
IN ADIOSJslandJD
IN *gname
IN gcount
OUT bh

Description: Initializes ADIOS via the DNS entry of the CC in the corresponding

island and establishes a connection between an application program and ADIOS.

Returns the buddy server id.
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Example: ADIOS_Connect("adios.tuwien.ac.at", NULL, -1, &bh);

int ADIOS_Disconnect(GAJD bh)
IN bh buddy handle id

Description: Disconnects the application program from ADIOS.

int ADIOS_Shutdown(void)

Description: Shuts ADIOS down. All processes are closed and FAT of ADIOS is

written back by the local Des. This function can only be used by an administrative

interface.

File Manipulation

int ADIOS_File_open(GA_ID bh, const char *filename, int amode,
SERVER_DIST *desc, int *fh)
IN bh buddy handle id
IN filename name of the file
IN amode file access mode
IN *desc desired distribution
OUT fh file identifier

Description: Opens an existing or creates a new file with the mode defined in

am ode.

Example: ADIOS_File_open (bh, "matrix", AD~ODE..RDONLY,NULL, &fh1);

int ADIOS_File_c1ose(int fh)
IN fh file identifier



Description: Closes an open file.

int ADIOS_File_delete(GA_ID bh, const char *filename)
IN bh buddy handle id
IN filename name of the file

Description: Deletes an existing ADIOS file.

int ADIOS_File_seLsize (int th, int size)
IN bh buddy handle id
INOUT fh file identifier
IN size size (in bytes) to truncate or expand file

Description: Resizes the file defined by fh.

int ADIOS_File....geLsize (int th, int *size)
IN bh buddy handle id
IN fh file identifier
OUT size size of the file in bytes

Description: Returns the current size in bytes of the file defined by fh.

Data Access

Blocking Routines

int ADIOS_File_read (int th, int at, void *buf, int count)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN at byte offset
OUT buf initial address of buffer
IN count number of bytes to read from file

92
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Description: Reads data from an open file denoted by the file identifier into buf.

The parameter at states whether the operations is a so-called routine with explicit

offset or not. Further information is given in the next routine.

Example: ADIOS_File_read (fh1, -1, buf, 15);

int ADIOS_File_read_struct (int th, int at, void *buf, int count)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN at offset relative to the displacement
OUT buf initial address of buffer
IN count number of bytes to read from file

Description: Reads data from an open file in a strided way according to the file

access pattern, i.e. the file view, specified by ADIOS_File_seLview (). The parameter

at allows distinguishing between data access with explicit offset and data access with

an individual file pointer. The value -1 means that the file is read from the current

position. Any value greater than 0 sets the file pointer to the specified position.

However, since data access with explicit offsets should not interfere with data access

with individual file pointers (see corresponding section in the chapter about MP1-

la), the file pointer is not updated after the read operation. Thus, the file pointer

is only updated if the value of the parameter at is set to -1. This behaviour is not

implemented yet.

Example: ADIOS_FileJead_struct (fh1, -1, buf, 40);

40 byte values are read according to the file access pattern defined by ADIOS_File_seLview

(). Since the parameter at is set to -1, the data access with an individual file pointer

is simulated. Thus, the file pointer is updated.

Example: ADIOS_File_read_struct (fh1, 80, buf, 40);



buddy handle id
file identifier assigned in ADIOS_File_open
offset relative to the displacement
initial address of buffer
number of bytes to write to file
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Here, data access with explicit offset is simulated. The file is read from position

80 relative to the file access pattern. In contrast to the previous example the file

pointer is not updated.

int ADIOS_File_write (int fh, int at, const void *buf, int count)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN at byte offset
IN buf initial address of buffer
IN count number of bytes read from file

Description: Writes data contained in buf to an open file denoted by the file

identifier. The parameter at states whether the operations is a so-called routine with

explicit offset or not.

Example: ADIOS_File_write (fh1, -1, buf, 15);

int ADIOS_File_write_struct (int fh, int at, const void *buffer,
int count)
IN bh
IN fh
IN at
OUT buf
IN count

Description: Writes data in a strided way according to ADIOSßile_seLview ()

to an open file. The parameters and at have the same meaning as in ADIOS_Read_struct

we have analyzed above.

Example: ADIOS_File_wri te_struct (fh1, -1, buf, 40);



buddy handle id
file identifier assigned in ADIOS_File_open
byte offset
initial address of buffer
number of bytes to read from file
identifier of the request

buddy handle id
file identifier assigned in ADIOS_File_open
byte offset
initial address of buffer
number of bytes read from file
identifier of the request
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Non-Blocking Routines

int ADIOS_FileJread (int fh, int at, void *buf, int count, int *reqJd)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN at byte offset
OUT buf initial address of buffer
IN count number of bytes to read from file
IN req_id identifier of the request

Description: Reads data from an open file denoted by the file identifier into buf

in a non-blocking way.

Example: ADIOS_File_iread (fh1, -1, buf, 15, &req_id) ;

int ADIOS_FileJread_struct (int fh, int at, void *buf, int count,
int *reqJd)
IN bh
IN fh
IN at
OUT buf
IN count
IN req_id

Description: Reads data from an open file denoted by the file identifier into buf

in a non-blocking way.

int ADIOS_FileJwrite (int fh, int at, const void *buf, int count,
int *reqJd)
IN bh
IN fh
IN at
IN buf
IN count
IN req_id



buddy handle id
file identifier assigned in ADIOS_File_open
byte offset
initial address of buffer
number of bytes read from file
identifier of the request
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Description: Writes data contained in bu! to an open file denoted by the file

identifier in a non-blocking way.

Example: ADIOS_File_iwrite (fhi, -1, buf, 15,&req_id);

int ADIOS_FileJwrite_struct (int th, int at, const void *buf, int count,
int *reqJd)
IN bh
IN fh
IN at
IN buf
IN count
IN req_id

Description: Writes data in a strided way according to ADIOSßile_seLview ()

to an open file.

int ADIOS_File_test (int reqJd, int *flag)
IN bh buddy handle id
IN req_id identifier of the request
OUT flag flag

Description: This routine checks whether an outstanding non-blocking routine

has finished. The result is given in flag .

Example: ADIOS_File_test (req_id, &flag);

int ADIOS_File_wait (int reqJd)
IN bh buddy handle id
IN req_id identifier of the request

Description: This routine waits until an outstanding non-blocking routine has

finished.
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int ADIOS_File_seLstruct (int fh, Access_Desc *desc)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN desc initial address of the access descriptor

Description: Stores the given Access_Desc desc as default view for all further

XXX-8truct accesses of file fh in the island bh .

int ADIOS_File_geLstruct (int fh, Access_Desc *desc)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN desc initial address of the access descriptor

Description: Retrieves the current Access_Desc desc of file fh in the island bh.

Further Access Routines

int ADIOS_File_seek (int fh, int offset, int whence)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN offset absolute file offset
IN whence update mode

Description: Updates the file pointer of a file according to whence, whereas

following features are possible:

• SEEK_SET: pointer is set to offset

• SEEK_CUR: pointer is set to the current pointer position plus offset

• SEEK_END: pointer is set to the end of file
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Example: ADIOS_File_seek (fh1, 50, SEEK-SET);

The file pointer is set to position 50 of the file denoted by the file identifier.

int ADIOS_File_seek_struct (int fh, int offset, int whence)
IN bh buddy handle id
IN fh file identifier assigned in ADIOS_File_open
IN offset absolute file offset
IN whence update mode

Description: Updates the file pointer of a file according to whence within a

predefined file access pattern rather than merely in a contiguous way.

Example: ADIOS_File_seek_struct (fh1, 50, SEEK-SET);

The file pointer is set to position 50 of the file according the file access pattern,

i.e. file view set by ADIOS_File_seLview ().

int ADIOS_File~eLposition (int fh, int *pos)
IN bh buddy handle id
IN fh file identifier
OUT pas position of file pointer

Description: Returns the current position of the individual file pointer in bytes

relative to the beginning of the file.

int ADIOS_File~eLcount (int fh, int *count)
IN bh buddy handle id
IN fh file identifier
OUT count number of bytes or entities read/written

Description: Returns the number of bytes (no view) or entities (if there is file

view set on fh) of the last read/write operation on the file handle fh.
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int ADIOS_GeLhostbyname (const char *hostname, GA_ID bh)
IN hostname hostname
OUT bh buddy handle id

Description: Returns the buddy server id bh (the GA.JD) by resolving the real

world hostname hostname. Works rather similar to DNS.

Example: ADIOS_Get-1lostbyname (" adios. tuwien. ac . at", &bh);

6.2 ADFS, the Filesystem Interface

ADFS is a filesystem on top of ADIOS. It provides a set of the common file system

(POSIX standard) calls mapping them transparently to respective ADIOS calls. This

allows on one hand the persistent storage of distributed files viewed in a logical

canonical form, on the other hand the use of ADIOS inherent parallelism to speed up

file accesses.

Summing up ADFS is aiming at

• providing tools to manage files on ADIOS similar to the Unix commands e.g.

cp, mv, rm, Is, ...

• delivering a C-Interface for application development similar to existing 10-

functions e.g. open, write, read, close, fprintf, ...

• viewing files as continuous data - at the file layer - and hiding the physical dis-

tribution from the user. The user can however specify the physical distribution

at file creation and change the distribution of an existing file,

• taking advantage of parallelism due to the underlying physical distribution
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However ADFS does not support logical file views at the problem layer. Thus

files are always handled as continuous data at the file layer. Low level services such

buffering and caching, prefetching, synchronization, and data distribution are not

provided by ADFS itself, but by the functionality of the underlying ADIOS. ADFS

is only an interface that allows users to use easily and efficiently services provided by

ADIOS in a well-known standardized environment.

6.2.1 Design of ADFS

ADFS implements a command-line interface and a C language interface providing

basic functionality similar to the equivalent Unix commands or Unix C-interface.

Further it delivers extended functionality, allowing the user or application to make

use of special features provided only by ADIOS, as choosing the data layout, giving

hints etc.

ADFS consists basically of a library, which maps the well-known POSIX file rou-

tines (as openO, writeO, readO etc.) to equivalent ADIOS calls if applicable. Thus

programs linked with this library use ADIOS transparently bypassing the conven-

tional POSIX calls. Thus it is simple to realize a command line interface to manage

files on ADIOS similar to the Unix Commands. The programs (e.g. for cp, mv, etc.)

have to be simply re-linked with the new library. In case of a dynamic loadable li-

brary this is done during the call of the respective command by the operating system

automatically.

Even more the library can be linked to any application using the POSIX calls,

which accesses ADIOS files automatically.
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Command-line Interface.

The following commands are supported by ADFS:

cp (copy files to ADIOS, copy files from ADIOS, copy files within ADIOS), mv

(move files to ADIOS, move the files from ADIOS, move the files within ADIOS),

rm (remove files from ADIOS), Is (list ADIOS files), cat (concatenate ADIOS files),

more (list the contents of a file), ad (octal dump), vi (edit a file)

All file management commands can be called with additional parameters to define

or change the disk layout of the file in focus.

When installing ADIOS, a Unix directory (default: / ADIOS) is specified which

contains the ADFS file space. Files copied to this directory are transparently dis-

tributed and managed by ADIOS.

C-Ianguage Interface.

ADFS provides a POSIX-type C library which can be linked to applications. Con-

cerning the base functionality, the ADFS function calls for accessing files show the

same synopsis as standard C function calls. Thus the programmer has only to replace

stdio.h by the ADFS header file, compile the program, link it to the ADFS library

and run the new program with ADIOS parallel reads and writes .

The native interface base functionality is derived from the POSIX standard (and

the ANSI standard which is a subset ofthe POSIX standard). The following functions

will be supported:

• fclose, feof, ferror, fRush, fgetc,fgetpos, fgets, fopen, fprintf, fputc, fputs, fread,

freopen, fscanf, fseek, fsetpos, ftell

• getc, pute, rewind, setbuf, setlinebuf, setbuffer, setvbuf, open, close, read, write
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We start now with the description of xDGL, the underlying technique behind

ADFS and will continue with examples for ADFS at the end of this chapter.

6.2.2 Introduction

Meta information in the context of Grid computing has to describe not only the logical

part of the data (semantical information) but also specific structural information on

the physical distribution of the data (syntactical information). Thus we propose an

approach for an XML based language to act as a notational tool to describe all this

information for data stored, administered, searched and processed on the Grid. Any

information stored on the Grid (from a conventional text file to a structured database

relation) is attributed with a semantic description expressed by the XML notation.

In the most simple case the XML description is stored together with the file.

Only a few similar approaches exist, but these are in a early state (e.g. [36]) or

target mostly very specific application domains (e.g. [9] [41]).

In the next section we present xDGDL [27], the XML-based Data Grid Descrip-

tion Language, and give several examples for the usage of the language. Then we

introduce shortly the Meta-ADIOS system [33], which is a client server based I/O

system supporting distributed applications on the Grid. Finally we present an prove-

of-concept implementation of the xDGDL language within the ADFS, the distributed

file system component of the ADIOS system.

6.2.3 xDGDL - the XML Data Grid Description Language

We propose the XML Data Grid Description Language (xDGDL) which aims to

provide a convenient XML framework for the specification of meta information of

data stored on the Grid. xDGDL is a derivative of PARSTORAGE [6], which was
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specifically designed as meta language for parallel 10 data.

The xDGDL descriptor consists of a logical and a physical view to the file. The

logical view describes the semantical information and the physical view the syntactical

information (the physicallayout) of the file.

Focusing the Grid we have to specify a very general Grid architecture hosting

our framework. From our point of view the Grid consists of an arbitrary number of

collaborations, which are defined by an organizational domain [30], interconnected by

WAN technology. In practice such a collaboration will be usually (but must not be)

a coherent IT infrastructure represented by a cluster like system, which consists of a

number of execution nodes. These nodes are processing nodes and/or data (server)

nodes. The latter type provides data storage resources by a number of storage devices

(e.g. disks, tapes, etc.). It is to note that a single data node can host an arbitrary

number of devices.

The goals of xDGDL

The basic idea of the XML based approach is quite simple: Together with any" chunk"

of data a xDGDL description of the meta information of the data is stored, in other

words, any arbitrary number of bytes stored within our framework is attributed with

its describing information, delivering the following properties:

Semantics of data Applications write results to files. There are lots of applica-

tions, there are lots of formats, there are lots of files. But what can be found in these

files? Generally applications do not write simple bytes into a file. They write integers,

real numbers, characters, records of arbitrary types etc. So the contents of a file is

not just a sequence of bytes, but it is a sequence of typed elements. Without the
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knowledge of the semantics of the applications, we have no clue about its contents.

Further the application that created it, used its own format, a format that is known

to this application only. Today we have the urge for analyzing and processing data

found on the Grid (as in typical OLAP applications), thus there is an undeniable

need for semantic description. Simply said, data without semantics is dead, data

with semantics lives. This statement leads naturally to the next issue, persistency of

data.

Persistency of data Data stored without semantic information is lost (can not be

reused), because the semantics is originally only in the program code of the application

producing the data. Without the program the data is just a sequence of bytes without

meaning. With the usage of a framework like xDGDL the data can be reused easily

by any application understanding the meaning of the data. A practical Java- based

example is given in [6].

Portability In a distributed environment parts of data can migrate from one

node/system/environment to another. On different hosting environments naturally

the data formats change. However when moving data from one system to another,

applications must still be able to read the data. By the description of the format the

data can be interpreted and can be easily transformed to any proprietary format of

the target machine [36].

Performance and efficiency To enhance the bandwidth of the 10 media (to fight

the famous 10 bottleneck) it is the most common technique to distributed the data

among different nodes and/or devices and perform the accesses in parallel. If the user
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has knowledge about the available nodes or the application behavior she can describe

the distribution of the file to her needs. This can lead to performance improvements

especially if the user is aware of node's performance, the given network latency, the

network bandwidth to each server, etc.

The xDGDL specification

The Extensible Markup Language (XML) is the universal format for structured docu-

ments and data on the Web. It describes a class of data objects called XML documents

and partially describes the behavior of computer programs which process them.

XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data, and some of which form markups. Markup encodes a description of

the document's storage layout and logical structure. XML provides a mechanism to

impose constraints on the storage layout and logical structure.

The structure of XML is fundamentally tree oriented. Therefore a document can

be modeled as an ordered, labeled tree, with a document vertex serving as the root

vertex and several child vertices. Without the document vertex, an XML document

may be modeled as an ordered, labeled forest, containing only one root element, but

also containing the XML declaration, the doctype declaration, and perhaps comments

or processing instructions at the root level.

To define the legal building blocks of an XML document, a DTD (Document

Type Definition) can be used. It defines the document structure with a list of legal

elements.

A DTD can be declared inline in your XML document, or as an external reference.

It was a clear decision to choose XML as the basis for our framework due to its
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undeniable success within the Internet community and its acceptance as basis for

beneath any standard movement in the Grid community (e.g. WSDL [13]).

The xDGDL document type definition

In our framework a typical xDGDL description consists of the following elements:

• Document Root The root of the document specifies the version and timestamp

of the file of the XML description .

• Island Defines a logical unit with several servers distributed worldwide. This

element resembles the collaboration of our simple Grid architecture given above.

• Server Servers are physical machines identified by their host name. These

servers denote data nodes.

• Devices Devices are the disks holding the data on the specific server.

• View The View element allows a specific distribution within the device .

• Block The Block element specifies the number of bytes to write to the specific

disk.

The complete DTD of xDGDL can be found in the Appendix.

Document root The root ofthe document is described by the element PARSTORAGE.

It has the attribute VERSION that contains the version of the document and the

attribute TIMESTAMP that identifies the external name together with the logical file.

Both attributes are mandatory.

The root element can contain several child elements. The PROCESSORS and the

ALIGN children are optional. The following child elements are possible:
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• PROCESSORSdescribes the named processor arrays. A document may contain

zero or more processor array definition, which are normally derived from the

HPF definition .

• TYPE describes the data types and variables stored in the logical file. Types

enhance the quality of stored data. They allow to define the meaning of the

information stored. This leads to the fact that not only the program that stored

the data can use them. Every program that understands the type information

of the data can use the stored bytes. Because of these meta information it is

also possible to migrate data from one machine to another. There must be at

least one TYPE element in the document .

• ALIGNdescribes the alignments of the variables .

• ISLANDdescribes the physical view of the file.

Example:
<PARSTORAGEVERSION=11.0" TIMESTAMP=ltestfile_twoserver">

<TYPE>

</TYPE>
<ISLAND NAME=ltuwien.ac.at">

</ISLAND>
</PARSTORAGE>

Island The ISLANDdescribes several server interconnected together. These servers

can be distributed across the Grid. The island is identified by an island name. The

ISLANDconsists of one or more servers. At least one server is needed to write the

file sequential to that server. The number of servers are received from the number of

child present. Example:
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<ISLAND NAME="tuwien.ac.at">
<SERVERHOST="adios.tuwien.ac.at">
</SERVER>

<!ISLAND>

Server The SERVERidentifies uniquely a node. It has an attribute called HOSTwhich

mirrors the name of the server.

The SERVERelement consists of one or more DEVICEelements. At least one must

be present for each server to know how the file should be distributed on the several

disks. For this purpose the number of available devices on a specific server should be

known.

Example:

<SERVERHOST="adios.tuwien.ac.at">
<DEVICE DEVICE_ID="/dev/vda1">
</DEVICE>

</SERVER>

Device Devices are the disks holding the data on the specific server. On one SERVER

there could be more than one physical device. The server can have a RAID system for

example with several disks connected onto it. The devices need not be physical, even

a mounted NFS device on another server could be a device which could be accessed

from a processing node. Although there can be many devices on a specific server, in

most cases there will be only one device available.

The DEVICEelement consists of the attribute DEVICLID only, which specifies the

physical device on the system. To describe the structure of file parts to be written

to disk, a VIEW is used. If there is no VIEWdefined we expect that the file should

be written sequential by the "first" logical server and the "first" logical disk on this

server.



109

Example:

<DEVICE DEVICE_ID=II/dev/vdall1>
<VIEW SKIP_HEADER=1I01l SKIP=1I711>
</VIEW>

</DEVICE>

View The VIEW element is the link between logical, physical and application view. It

is responsible for transforming the internal structure of the data layout to application

programs.

A specific distribution is expressed by a VIEW element. The VIEW needs to cor-

respond to the servers available. The NOVIEWelements marks that there is no VIEW

element available. If NOVIEW is the only available child, the pointer to the access-

descriptor is set to NULL and therefore the file will be written sequentially onto the

/ disk. At least a VIEW or a NOVIEWelement has to be present.

The VIEW consists of the SKIP JIEADER attribute that describes how many header

bytes are skipped at the beginning of the data block and the SKIP attribute that

defines the number of bytes to be skipped viewer units.

The VIEW element consists of one or more BLOCK elements. Theoretically there

can be an infinite number of BLOCK elements, but at least one is needed. The BLOCK

itself can have another VIEW element within itself.

Example:

<VIEW SKIP_HEADER=1I01l SKIP=1I711>
<BLOCK OFFSET=1I01l REPEAT=1I311 COUNT=1I511 STRIDE=1I711>

<BYTEBLOCK/>
</BLOCK>

</VIEW>
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Block The BLOCK element can have two types of childs. It can have a BYTEBLOCK
element, which means, that either there are no more VIEW elements or it can consist

of VIEW elements which have one or more BLOCK elements themselves. This leads to a

recursive structure which allows arbitrary distribution. At least one has to be present.

The BLOCK element consists of the following attributes:

• OFFSET describes how many bytes should be skipped from the starting point

of the current BLOCK .

• REPEAT describes how often the BLOCK should be read/written .

• COUNT number of bytes to read/write at each BLOCK operation .

• STRIDE describes the number of bytes to skip at each BLOCK operation.

Example of a regular distributed file onto 2 servers. The definition on server 1

<BLOCK OFFSET="O" REPEAT=13" COUNT=15" STRIDE=17">
<BYTEBLOCK/>

</BLOCK>

corresponds to the definition on server 2:

<BLOCK OFFSET=15" REPEAT=13" COUNT="7" STRIDE=15">
<BYTEBLOCK/>

</BLOCK>

xDGDL examples

The following three examples show several possibilities that the xDGDL description

provides. To depict the mapping between the internal structure and the xDGDL de-

scription two figures are attached to each example. The first figure shows a graphical

tree representation of the underlying XML structure and the second figure the data

distributed onto different servers.
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Figure 6.1: Example ofaxDGDL tree
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A regularly distributed, two-server example The first example introduces the

structure ofthe xDGDL description. It uses two servers and writes data in round robin

fashion to the local disks on each server: adios.tuwien.ac.at and clus9.tuwien.ac.at.

It is also possible to use more than one block. We would call this an interleaved

distribution. The interleaved distribution divides the file into two parts. The first

part is distributed on block one on server one and block one on server two. The

second part is distributed on block two on server one and block two on server two.

The finer the granularity of the distribution gets, the more complex the structure

grows.l

We suppose that server one writes more data to the disk. The factor is 5:7. (Please

note it is an artificial example of minor practical relevance!)

The xDGDL representation of the regular, two-server example:

<?xml version=1I1.011 encoding=IIISO-8859-111?>
< !DOCTYPE PARSTORAGE SYSTEM IIXDGDL. dtd II>
<PARSTORAGE VERSION=1I1.011 TIMESTAMP=lItestfile_regularll>

<TYPE>
<ETYPE TYPE=IICHARII LENGTH=II1"/>

</TYPE>
<ISLAND NAME=lIislandl.tuwien.ac.atll>

<SERVER HOST=lIadios.tuwien.ac.atll>
<DEVICE DEVICE_ID=II/dev/vdall1>

<VIEW SKIP_HEADER=1I01l SKIP=1I711>
<BLOCK OFFSET=1I01l REPEAT=1I311

COUNT=1I511 STRIDE=1I711>
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>
1Beside this it is not wise to use a fine granularity for small files aß the overhead of parsing the

descriptor gets to large. In caßeof small files it would also lead to the situation that the description
file is probably bigger than the files to write.
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<SERVER HOST=ladclus9.tuwien.ac.at">
<DEVICE DEVICE_ID=" /dev /vda1">

<VIEW SKIP_HEADER="O" SKIP="O">
<BLOCK OFFSET=15" REPEAT=13"

COUNT="?" STRIDE=15">
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>

</ISLAND>
</PARSTORAGE>

A graphical view of the regular distributed, two server example can be seen in

Figure 6.2

A regular distributed, nested three-server example The last example handles

three server. Beside the extension to three servers it is also the one that shows a nested

description. The recursion depth itself is not limited.

The nested description gives the user an unrestricted flexibility to express any

data distribution.

The xDGDL description of a regular distributed, nested three-server distribution:

<?xml version=11.0" encoding=IISO-8859-1"?>
< !DOCTYPE PARSTORAGE SYSTEM IIXDGDL. dtd II>
<PARSTORAGE VERSION=11.0" TIMESTAMP="regular_multileveP>

<TYPE>
<ETYPE TYPE="CHAR" LENGTH=11"/>

</TYPE>
<ISLAND NAME=lisland3.tuwien.ac.at">

<SERVER HOST=ladios.tuwien.ac.at">
<DEVICE DEVICE_ID="/dev/vda1">

<VIEW SKIP_HEADER="O" SKIP=112">
<BLOCK OFFSET="O" REPEAT=12"

COUNT=11" STRIDE=112">
<VIEW SKIP_HEADER="O" SKIP="O">
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Text to writEf.TO be, or not to be. that is the question-wheter tis nobler in the mind.

Divided into
following parts:

•

<SERVER HOST=
adios.tuwien.ac.at>

<BLOCK OFFSET=O
REPEAT=3 COUNT=5

STRIDE=7>

<SERVER HOST=
adclus9.tuwien.ac.at>

<BLOCK OFFSET=O
REPEAT=3 COUNT=5

STRIDE=7>

Figure 6.2: Tree representation of a regular distributed, two-server xDGDL distribu-
tion
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<BLOCK OFFSET=1I01l REPEAT=1I311

COUNT=1I511 STRIDE=1I711>
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>
<SERVER HOST=lIadclus9.tuwien.ac.atll>

<DEVICE DEVICE_ID=II/dev/vdall1>
<VIEW SKIP_HEADER=1I01l SKIP=1I1211>

<BLOCK OFFSET=1I01l REPEAT=1I211

COUNT=1I111 STRIDE=1I1211>
<VIEW SKIP_HEADER=1I01l SKIP=1I01l>

<BLOCK OFFSET=1I511 REPEAT=1I211

COUNT=1I711 STRIDE=1I1211>
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>
<SERVER HOST=lIadclusl0.tuwien.ac.atll>

<DEVICE DEVICE_ID=II/dev/vdall1>
<VIEW SKIP_HEADER=1I01l SKIP=1I01l>

<BLOCK OFFSET=1I2911 REPEAT=1I211

COUNT=1I1211 STRIDE=1I2911>
<BYTEBLOCK/>

</BLOCK>
</VIEW>

</DEVICE>
</SERVER>;

</ISLAND>
</PARSTORAGE>

A graphical view of the regular distributed, nested three-server example can be

seen in Figure 6.3
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TellltowritB: I.To be, or not to be, that is the question-wheter tis nobler in the mind to suffer.

llivided into following parts:

<BLOC OFFSET=O
REPEAT=2 COUNT=1

STRIDE=12>

<BLOCK OFFSET=O
REPEAT=3 COUNT=5

STRIDE=7>

<B OC 0 FSET=O
REPEAT=2 COUNT=1

STRIDE=12>

<BLOCK OFFSET=5
REPEAT=2 COUNT=7

STRIDE=12>

<BLOCK OFFSET=29
REPEAT=2 COUNT=12

STRIDE=29>

Figure 6.3: Tree representation of a regular distributed, nested three-server xDGDL
distribution
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6.2.4 An Application of xDGDL
The ADIOS island

ADIOS - the Autonomous Distributed Input Output System - is an I/O system that

tries to solve the well-known I/O bottleneck of high-performance computing [61].

ADIOS was originally designed as a client-server system satisfying parallel I/O needs

of high performance applications. Due to the requirements of the Datagrid initiative

ADIOS was extended to Meta-ADIOS, which harnesses distributed I/O resources [33].

A ADIOS island (resembling roughly a collaboration within our Grid architecture)

can be seen as a logically independent system, residing on a defined set of processing

nodes. Conventionally this is a typical cluster system, but it can also be an arbitrary

set of world-wide distributed machines. An island comprises an arbitrary number

of ADIOS servers processing the I/O requests of connected applications. To reach

such an island the client needs to know the hostname (or IP-address) of a dedicated

connection server responsible for that island (for more information see [60]).

An island provides several interfaces; beside the native interface, an MPI-IO in-

terface (ADMPIOS), a HPF /VFC (Vienna Fortran Compiler) interface as well as a

Unix file access interface (ADFS) are supported.

The system defines two modes to describe the distribution of a file. By default

the automatic modes allows ADIOS to decide how to distribute the given file among

the available servers. The user guided modus in contrast let the user decide how to

distribute the file. In this modus a xDGDL file describes the distribution of a given

file.

ADIOS provides a data independent view of the stored data to the application

process. It is based on a three-tier model. The three specific ADIOS layers are the
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Figure 6.4: Different point of views: The ADIOS layers

following (see Figure 6.4):

• Problem layer. Defines the problem specific data distribution among the

cooperating parallel processes (View file pointer).

• File layer. Provides a composed view of the persistently stored data in the

system (Global file pointer) .

• Data layer. Defines the physical data distribution among the available disks

(Local file pointer).

The three tier architecture allows ADIOS to be completely logical data indepen-
I

dent between the problem and the file layer as well as to be physical independent

between the file and data layer.

The ADIOS interfaces

ADIOS provides a range of interfaces to support a wide variety of applications. The

interfaces are supported by interface modules to allow flexibility and extendibility.

Up to now we implemented the following modules:
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• HPF /VFC - High Performance Fortran interface based on the Vienna Fortran

compiler

• ADMPIOS - a MPI-IO interface

• ADFS - ADIOS distributed file system

• ADIOS proprietary interface for some specialized modules

In the context of this paper we concentrate on the novel ADFS, that allows both

the casual and the experienced user to use ADIOS in form of a distributed file system.

ADFS

Basically ADFS is a library which overloads the standard file calls in UNIX. This

methods allows users easily and efficiently to employ transparently services provided

by ADIOS. Thus all Unix tools for file accesses can be used without recompiling. The

idea is to redirect the calls with" conventional" data files to the standard I/O library

and to redirect the calls with ADFS data files to the ADIOS system. This approach

is similar to PVFS [49].

Beside the overloaded Unix interface ADFS also provides a C-Interface, which can

be linked with C-programs. This interface provides nearly the same functionality as

the standard I/O interface.

For users it is very easy to define the meta information for the data file in focus. A

respective xDGDL file has to be created and stored in the same directory as the data

file, which has the same name as the data file, but with the prefix" .vd."2. With an

open statement the ADFS library checks if there is a corresponding xDGDL file for

2The prefix stands for ADIOS description
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the given file. The prefixed dot is used because these files are not visible with the

common Is command. It is also quite common to use the dot for configuration files

and to a certain extent the " .vd. *" files can be seen as configuration files. When

it is parsed, its is checked against the given data type definition (DTD). If the file

is erroneous or does not exist the respective data file will be distributed with the

standard distribution of ADFS which is a cyclic distribution among the available

ADIOS servers.

Copy Example The copy command is a simple example to show the transparent

usage of the ADFS file system. In this example it is the intent to copy a data file

from a convention Unix file system to ADFS and back.

The preconditions for using ADFS are the following:

• Start of ADIOS

• Configuration of the ADIOS configuration file (ADIOS. conf) that was set up in

the environment. In our example we used:

MAX_APP5 MAX_SRV_FILE32 DATA_BUFLEN4096 SRV_GROUP_NAME
"adios_server" SRVR_DEVICE_LIST 3

/home/fuerle/ADIOS/devl/
/home/fuerle/ADIOS/dev2/
/home/fuerle/ADIOS/dev3/

ADIOS_DIR "/home/fuerle/adios"

• Setting of Unix environment variable that points to the ADIOS configuration

file



121

fuerle@adios:-/adfstests > Is -al .vd.*
-rw-r----- 1 fuerle users 1177 Oct 14 2001 .vd.testfile

fuerle@adios:-/adios > cp testfile /home/fuerle/adios
fuerle@adios:-/adios > cp /home/fuerle/adios/testfile

fuerle@adios:-/adios > Is -1 /home/fuerle/adios
total 0

# copy in
# copy out

-rw-r--r-- 1 fuerle users o Oct 14 2001 testfile

Figure 6.5: ADFS copy of a data file

(e.g. ADIOS_CONF=/home/fuerle/adios/ADIOS. conf). The environment could

be set up with the command export .

• Setting up the LDJ>RELOADenvironment variable. The variable must point to

the adfsinvoke. so shared object. In our example we set it up as follows:

export LDJ>RELOAD=/home/fuerle/adfs/adfsinvoke.so

After these steps the ADFS can be used similar to an NFS mounted device. The

user uses standard Unix calls only for writing and reading files. Internally all I/O calls

on the specified directory (ADIOS.J)IR) are passed to the ADFS library. Therefore

all the Unix commands that use the standard I/O calls can be used with ADFS.

In case of the example above the user can copy a data file simply by the commands

shown in figure 6.2.4

As we did not overload the Is command the user can only see a file with 0 bytes

within the ADIOS.J)IR. This is due to the fact that the file is not really copied into

the directory. For transparency to the user ADFS generates a O-byte file to provide

the user with the information which files are currently distributed on the system.

In the first line we print out all .vd. * files. In our example only one distribution
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file is present. We used the distribution file presented in 6.3. That means, that the

testfile was distributed among three servers with one device on each server. If we did

not declare a .vd. file the testfile would have been written sequentially to the first

disk on the current server.

6.2.5 Conclusion

We presented xDGDL, an XML language for storing meta information for distributed

files on the Grid. The proposed XML approach acts in the system in two ways; on

one hand it provides a user interface to specify the contents (semantical information)

and the layout (physical information) of the file, on the other hand it is the expressive

mechanism within the system to administer the distribution information of the files

stored in the file system across several sites on the Grid. We showed a practical

prove-of-concept implementation by the ADFS distributed file system.

Appendix: xDGDL DTD
<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT PARSTORAGE
(PROCESSORS*,TYPE+,ALIGN*,ISLAND»

<!ATTLIST PARSTORAGE VERSION CDATA #REQUIRED>
<!ATTLIST PARSTORAGE TIMESTAMP ID #REQUIRED>

<!-- processors -->
<!ELEMENT PROCESSORS (PROC_DIMENSION)+>
<!ATTLIST PROCESSORS NAME CDATA #REQUIRED>
<!ELEMENT PROC_DIMENSION EMPTY>
<!ATTLIST PROC_DIMENSION LOWER CDATA "1">
<!ATTLIST PROC_DIMENSION UPPER CDATA #REQUIRED>

<!-- hpf data structure -->
<!-- Intrinsic Data Types -->



<!ELEMENT TYPE (ETYPEIARRAYITYPE)+>
<!ATTLIST TYPE TYPENAME CDATA #IMPLIED>
<!ATTLIST TYPE NAME CDATA #IMPLIED>

<!ELEMENT ETYPE EMPTY>
<!ATTLIST ETYPE TYPE CDATA #REQUIRED>
<!ATTLIST ETYPE LENGTH CDATA #REQUIRED>
<!ATTLIST ETYPE NAME CDATA #IMPLIED>

<!-- Arrays -->
<!ELEMENT ARRAY (TYPE, DIMENSION+»
<!ATTLIST ARRAY NAME CDATA #IMPLIED>
<!ATTLIST ARRAY MAJOR (ROWICOLUMN) "ROW">
<!ATTLIST ARRAY DISTRIBUTE_ONTO CDATA #IMPLIED>

<!ELEMENT DIMENSION EMPTY>
<!ATTLIST DIMENSION LOWER CDATA "1">
<!ATTLIST DIMENSION UPPER CDATA #REQUIRED>
<!ATTLIST DIMENSION DISTRIBUTE

(BLOCKICYCLICINO) #IMPLIED>
<!ATTLIST DIMENSION DIST_SKALAR CDATA "1">

<!-- Alignment -->
<!ELEMENT ALIGN EMPTY>
<!ATTLIST ALIGN WHAT CDATA #REQUIRED>
<!ATTLIST ALIGN WITH CDATA #REQUIRED>

<!-- data distribution in this file -->
<!-- Model Island-Descriptor -->
<!ELEMENT ISLAND (SERVER*»
<!ATTLIST ISLAND NAME CDATA #REQUIRED>

<!-- Model Server-Descriptor -->
<!ELEMENT SERVER (DEVICE*»
<!ATTLIST SERVER HOST CDATA #REQUIRED>

<!-- Model Device-Descriptor -->
<!ELEMENT DEVICE (VIEWINOVIEW»
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<!ATTLIST DEVICE DEVICE_ID CDATA #REQUIRED>

<!-- Model Access-Descriptor -->
<!ELEMENT VIEW (BLOCK+»
<!ATTLIST VIEW SKIP_HEADER CDATA #REQUIRED>
<!ATTLIST VIEW SKIP CDATA #REQUIRED>

<!ELEMENT BLOCK (VIEWIBYTEBLOCK»
<!ATTLIST BLOCK OFFSET CDATA #REQUIRED>
<!ATTLIST BLOCK REPEAT CDATA #REQUIRED>
<!ATTLIST BLOCK COUNT CDATA #REQUIRED>
<!ATTLIST BLOCK STRIDE CDATA #REQUIRED>
<!ELEMENT BYTEBLOCK EMPTY>
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Chapter 7

Practical Tests with ADIOS

7.1 Introduction

Before we show the actual performance data, we should discuss what maximum data

we can achieve. We used standard PCs with a AMD CPU of 1600 MHz, 256 MB RAM,

Gigabit Network Card D-Link DGE-500T on a 64 Bit PCI slot and a 1GBit switch,

which supported only the standard frame MTU size (1500 bytes). So we started with

the measurement of the raw network speed under different circumstances. For this

purpose we used NetPipe [24].

We switched the network speed between 100 MBit/s and 1 GBit/s and measured

on the one hand the resulting transfer rate for TCP trafiic and on the other hand the

transfer rate for PYM to get an idea of the overhead of the underlying message passing

system of ADIOS. The transfer rate for PYM is our theoretical maximum for ADIOS.
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blocksize transfer rate (Mbitjs) transfer rate TCP transfer rate PYM MTU

(KB) (MBitjs) (MBitjs) (MBitjs) (Bytes)

4K 100 64.0 36.0 1500

4K 1000 78.0 78.0 1500

64K 100 100.0 71.0 1500

64K 1000 300.0 173.0 1500

We notice, that a blocksize of 64KByte is enough to saturate the 100MBitjs

network. But surprisingly, the switch from 100MBitjs to 1GBitjs only triples the

transfer rate instead of ten times. Le the 1 GBit network is only utilized to a third.

So we were looking for other possibilities to increase the network speed.

Excursus: MTU (maximum transfer unit) Current TCP networks use 1500

bytes for frame MTU sizes. New switch technology supports so called jumbo frames

which range up to 9000 bytes. This settings are necessary for harnessing the full

range of a Gigabit LAN (up to a 1GBitjs). Unfortunately our switch supported only

a frame MTU size of 1500 bytes. To measure the network speed with a frame MTU

size of 3000 bytes for comparison we used crossed jumper cables. Below are the results

blocksize transfer rate transfer rate TCP transfer rate PYM MTU

(KB) (MBitjs) (MBitjs) (MBitjs) (Bytes)

64K 1000 300.0 173.0 1500

64K 1000 400.0 213.0 3000

We notice, that the frame MTU size has a massive impact on the network perfor-

mance, Le for setting up such an environment it is necessary to work with switches

which support jumbo frames (frame size up to 9000 bytes) to harness almost the full

network speed of Gigabit. Details on this issue can be found in [8].
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Excursus: Zero Copy Protocols [53] Despite technological advantages in mi-

croprocessors and network technology over the last few years, commercially-available

networks of workstations (NOWs [3]) contain inherent communication bottlenecks.

Traditionallayered network protocols will inevitably fail to achieve high throughput

if they access data several times. As a result, applications on NOWs often fail to

observe the performance speed-up that might be expected. Network protocols which

avoid routing through the kernel can remove this limit on communication performance

and support very high transmission speeds, turning NOWs into an attractive alterna-

tive to Massively-Parallel Processors.This kind of protocols improve the performance

of an entire NOW system, but this needs to be supported by the message passing

software. There are some popular hardware vendors like Myrinet [57] or Dolphin

[42], which harness this technology. Myrinet supports PYM and reaches about 1853

MBit/s for TCP transfer rate, which is 5 times faster than plain Gigabit (see above)

and also a small latency time of 32us, which is 2 to 5 times smaller than common

Gigabit cards compare with [17].

Unfortunately, we didn't had that special hardware and even no jumbo frame

aware switch, so for the sake of clarity we must live with the perception that our

theoretical maximum transfer rate is 300Mbit/s for TCP and 173MBit/s for PYM.

Figure 7.1 and figure 7.2 summarize these results.

7.2 The native system interface

To measure the performance of ADIOS, we wrote ad_cp, which works rather similar

to the well known UNIX cpo See following example:

time ad_cp -v testfile.l00M /home/fuerle/adios/testfile.l00M
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This command takes testfile.100M, reads its distribution file .vd.testfile.100M and

distributes it regarding to the entries there. The path jhomejfuerlejadiosj tells

ADIOS, that it should take care of this file (this path is defined in the environment

file ADIOS.conf, which is sourced by the shell, see also 4.5.2). The time command

measures the overall runtime of this process in seconds, i.e less means faster perfor-

mance. Below are the results:

Write: time ad_cp -v testfile.100M jhomejfuerlejadiosjtestfile.100M

Read: time ad_cp -v jhomejfuerlejadiosjtestfile.100M testfile.100M

blocksize transfer rate write read server data MTU

(KB) (MBitjs) (sec.) (sec.) count (MB) (Bytes)

64K 100 27.8 23.9 1 100M 1500

64K 100 55.2 53.9 1 200M 1500

64K 100 109.0 110.0 1 400M 1500

64K 100 218.0 217.0 1 800M 1500

64K 1000 18.9 14.3 1 100M 1500

64K 1000 39.4 36.8 1 200M 1500

64K 1000 74.0 73.0 1 400M 1500

64K 1000 148.0 143.0 1 800M 1500

64K 1000 15.5 14.2 1 100M 3000

64K 1000 31.8 35.7 1 200M 3000

64K 1000 64.0 72.0 1 400M 3000

64K 1000 127.0 135.0 1 800M 3000
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Write: time ad_cp -v testfile.100M jhomejfuerlejadiosjtestfile.100M

Read: time ad_cp -v jhomejfuerlejadiosjtestfile.100M testfile.100M

blocksize transfer rate write read server data MTU

(KB) (MBitjs) (sec.) (sec.) count (MB) (Bytes)

64K 100 22.5 18.4 2 100M 1500

64K 100 44.8 35.6 2 200M 1500

64K 100 86.0 82.0 2 400M 1500

64K 100 176.0 162.0 2 800M 1500

64K 1000 16.6 12.4 2 100M 1500

64K 1000 35.1 24.9 2 200M 1500

64K 1000 68.0 58.0 2 400M 1500

64K 1000 135.0 116.0 2 800M 1500

7.2.1 Network speed settings and Scaleup

Figure 7.3 for writing and figure 7.4 for reading shows similar results to the basic tests.

The performance increases massively from 100MBit to IGBit. To clarify, if we are

still network bounded, we doubled the MTU size from 1500 bytes to 3000 bytes and

got another nice performance gain. For our remaining tests we kept the MTU size at

1500 bytes because ofthe restrictions mentioned in 7.1 and continued only with IGBit

network speed, which results in transfer rate of 10.8MBytejs (1600MBytejI48sec.) .

This results also shows, that we have an constant scaleup, i.e the overall runtime

increases linear with the data size.

7.2.2 Speedup

Figure 7.5 for writing and figure 7.6 for reading shows results when switching from

one to two servers. As the overall time decreases, this result shows clear speedup,
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Figure 7.3: Performance write with different network settings
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Figure 7.5: Performance write with one and two server

which proves this thesis, that clusters with a fast network can setup a distributed file

system, which is faster than a single conventional file server with e.g. NFS.

7.2.3 Network traffic versus Payload

Based on this motivating results we are highly interested, how large is the influence

of the network in those figures and so we made some tests where we first skipped the

write part, so that we only read the file and then skipped the whole read and write

part and reduced to the plain network traffic. Here are the results:
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Figure 7.6: Performance read with one and two server

blocksize transfer rate write read server data MTU comment

(KB) (MBitjs) (sec.) (sec.) count (MB) (Bytes)

512K 1000 15.3 11.8 1 100M 1500 no write

512K 1000 30.1 37.0 1 200M 1500 no write

512K 1000 60.0 77.0 1 400M 1500 no write

512K 1000 120.0 153.0 1 800M 1500 no write

512K 1000 11.5 1 100M 1500 network only

512K 1000 22.9 1 200M 1500 network only

512K 1000 45.8 1 400M 1500 network only

512K 1000 91.6 1 800M 1500 network only
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blocksize transfer rate write read server data MTU comment

(KB) (MBitjs) (sec.) (sec.) count (MB) (Bytes)

512K 1000 13.9 6.9 2 100M 1500 no write

512K 1000 28.0 14.9 2 200M 1500 no write

512K 1000 52.0 37.0 2 400M 1500 no write

512K 1000 103.0 71.0 2 800M 1500 no write

512K 1000 6.8 2 100M 1500 network only

512K 1000 13.7 2 200M 1500 network only

512K 1000 26.2 2 400M 1500 network only

512K 1000 53.5 2 800M 1500 network only

Figure 7.7 for writing and figure 7.8 for reading shows the gap between raw network

traffic and reading and sending the payload (writing is skipped) with a larger block

buffer size of 512KByte. The most impressive conclusion of this test is, that the

network only part (compared to when reading and sending) is almost around 50 % of

the overall runtime, which is much too high. See excursus 7.1, how to minimize this.

On the other hand, the system still shows nice speedup and scaleup, i.e by reducing

the network part could lead to an optimal system. Compared to theoretical maximum

performance of 173MBitjs the two network results show also a convergence to this

value .. With one server we have harnessed 70MBitjs or 40 % of the possible peak

performance while with two servers we have increased the utilization to 120MBitjs or

70 %. So it can be assumed, that we can reach with a third server over 90 % utilization,

which can be treated as a first approach to a local optimum. Unfortunately we had

only three (which results in one client and two servers) boxes for testing available, so

this hypothesis couldn't be verified.
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Figure 7.7: Performance write
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7.2.4 ADIOS versus PVFS

Figure 7.9 for writing and figure 7.10 for reading shows ADIOS compared against his

biggest competitor, namely PVFS. Both systems behave more or less equal perfor-

mance. This is a very promising result, because it shows that a system without a

centralized directory controller can work as sufficient than a comparable" commer-

cial" system. Here are the results in detail:

blocksize transfer rate write read server data MTU comment

(KB) (MBitjs) (sec.) (sec.) count (MB) (Bytes)

1000 11.8 20.7 2 100M 1500 PVFS

1000 32.0 38.2 2 200M 1500 PVFS

1000 58.5 76.0 2 400M 1500 PVFS

1000 98.0 182.0 2 800M 1500 PVFS

512K 1000 12.2 11.8 2 100M 1500 no write

512K 1000 36.2 27.7 2 200M 1500 no write

512K 1000 60.7 64.0 2 400M 1500 no write

512K 1000 115.0 178.0 2 800M 1500 no write

7.3 The ADFS interface of ADIOS

As shown in 6.2 this interface enables a unix user to use ADIOS with the common

unix tools like cp, mv, vi, etc. and it has only a minor overhead to the native ADIOS

interface. But it has still a bad performance because the block size of the underlying

operating system is only 4K, which directs into a very slow performance (see first

measurements in 7.1). So we recommend to use ad_cp instead of the native unix cp

in scripts or on the shell and be aware of the difference. Another recommendation



Performance Write 512 k

140.0

137

1200

1000

800

I
3 60.0

400

200

00

--ADIOS2 Sri.,- MTU 1500(1 GBiI)

....... PVFS 2 Sri.,. MTU 1500 (I Ge")

2000

Data In 100 MB

Figure 7.9: ADIOS write versus PVFS

Performanco Read 512 k

1800

1600 ..--.-.---- -•..

140.0

120,0

80.0

60.0

40.0

20.0

00

OatIl" 100 liB

~ PVFS 2 Servet. MTU 1500 (1 GRil)
___ ADIOS 2 Server - MTU 1500 (1 GBiI)

Figure 7.10: ADIOS read versus PVFS



138

would be to rewrite the programs to the ADIOS or MPI-IO interface (see below), if

the user has source code access and performance is critical.

7.4 The MPI-IO interface of ADIOS

For this test we used the test programs, which are provided with ROMIO and compiled

them against our MPI-IO Interface. The results didn't show any measurable difference

to the native interface, i.e the overhead is negligible.



Chapter 8

Conclusions

8.1 Introduction

We have presented the design and implementation of ADIOS, an autonomous dis-

tributed raid system with a xml metadefinition language.

The growing popularity of parallel computers built from clusters of workstations

has presented a number of challenges to file systems designers, which several research

groups have tried to address with their file systems. ADIOS tries to satisfy the needs

of all of this worlds with a best effort approach supporting e.g UNIX I/O as well

as novel programming interface like distributed UNIX I/O with an underlying XML

Meta language.

Nevertheless it supports basic file system features like sequential consistency,

buffering, non blocking I/O and write behind by sitting on top of the native file

system.

One of the basis ideas of ADIOS is to take the definition of RAID and extend

it to a combination of multiple machines and even further to a group of multiple

machines (see ADIOS Islands 5.2), but to do this on the file system level without any

centralized directory server, but down to a very fine granularity (the user can even
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specify, how a single byte should be distributed).

The novel approaches compared to other available distributed systems are the

• Autonomous Part. We don't use any centralized directory servers (see 4.8 to

find out, how we solved the major challenge). This is the central contribution

of this thesis to the topic of Parallel I/O.

• Failure Tolerance. If a server fails, no operations are affected, as long as the

failed server is not part of the requested data transfers. This is another main

contribution of this thesis, which results out of the idea of the autonomous part.

Furthermore we have fulfilled all the requirements we have claimed in the begin-

nmg

• Scalability. Guarantees that the size of the used I/O system, i.e. the number

of I/O nodes currently used to solve a particular problem, is defined by or

correlated with the problem size. The System Architecture of ADIOS is highly

distributed and decentralized. This leads to the advantage that the provided

I/O bandwidth of ADIOS is mainly dependent on the available I/O nodes of

the underlying architecture only. See the chapter 7 for details.

• Efficiency. The aim of optimization is to minimize the number of disk accesses

for file I/O. This is achieved by a suitable data organization (section 3.5.1) by

providing a transparent view of the stored data on disk to the 'outside world'

and by organizing the data layout on disks respective to the static application

problem description. The organization of this mapping is still the issue of the

user, but he or she gets all necessary tools like the XML structure for distributing



141

the data and the possibility to configure the system properly with the config

file. And as it turned out in chapter 7, the system performed rather good, even

compared to well known systems like PVFS .

• Usability. The application programmer must be able to use the system without

big efforts. So she does not have to deal with details of the underlying hardware

in order to achieve good performance and familiar Interfaces (section 3.5) are

available to program file I/O .

• Use of widely accepted standards. ADIOS uses standards itself (e.g. PYM

for the communication between clients and servers) and also offers standard

interfaces to the user (for instance application programmers may use MPI-

I/O or UNIX file I/O in their programs), which strongly enhances the systems

portability and ease of use .

• Portability. The system is portable across multiple hardware platforms. This

also increases the usability and therefore the acceptance of the system.
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8.2 Conclusions

• Network based distributed I/O systems do work. Starting with the use of GigaBit

networks our system does scale and shows speedups .

• Autonomous based distributed I/O systems do work. We don't use any central-

ized directory servers. This is the central contribution of this thesis to the topic

of Parallel I/O .

• No single point of failure. If a server fails, no operations are affected, as long as

the failed server is not part of the requested data transfers. This result is based

on the idea of autonomous servers .

• Heterogeneous systems are possible. With the use of PYM, a protocol, which

can operate on heterogeneous environments, our system can also work in het-

erogeneous environments transparent for the user .

• GigaBit ethernet transfer rate with default settings is not effective. It harnesses

only a third of the available transfer rate. To increase this value, larger MTU

sizes are needed, which must be supported by the network switches.

• TCP protocol carries to much burden. Network protocols which avoid routing

through the kernel can remove this limit on communication performance and

support very high transmission speeds, turning NOWs into an attractive al-

ternative to Massively-Parallel Processors. This kind of protocols improve the

performance of an entire NOW system, but this needs to be supported by the

message passing software (PYM supports that).
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8.3 Future Directions

Future directions for ADIOS could be

• Full featured MPI-IO Interface. We have only implemented a part of the MPI-

10 Interface (which was necessary to run the test programs), a full featured

MPI-IO Interface would round off our running prototype

• Bullet proof System. It would be interesting to turn our working prototype in

a production system like PVFS and give it to the open source community for

further development

• Test Results with State of the Art Network Equipment and more Servers. A lot

of the results would have been much more interesting with network equipment

like Myrinet or Jumbo frame enabled Switches and large amount of servers,

especially how the overall performance would modify and where the real borders

of the system are.



•

Bibliography

[1] Sweeney Adam, Doug Doucette Wei Hu, Curtis Anderson, Mike Nishimoto, and

Geoff Peck, Scalability in the xfs file system, Proceedings of the Usenix Technical

Conference, January 1996, pp. 1-14.

[2] Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl

Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke,

Data management and transfer in high-performance computational grid environ-

ments, Parallel Computing 28 (2002), no. 5, 749-771.

[3] Thomas E. Anderson, David E. Culler, and David A. Patterson, A case for now

(network of workstations), IEEE Micro, February 1995, pp. 54-64.

[4] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patter-

son, Drew S. Roselli, and Randolph Y. Wang, serverless network file systems,

describes berkeley's xfs file system for now, ACM Transactions on Computer

Systems, February 1996, pp. 41-79 .

[5] Donald J. Becker, Thomas Sterling, Daniel Savarese, John E. Dorband, and

Udaya A. Ranawake, Beowulf: A parallel workstation for scientific computation,

Journal of Parallel and Distributed Computing, June 1997, pp. 147-155.

[6] Andras Belokosztolszki, An xml based language for meta information in dis-

tributed file systems, Master's thesis, University of Vienna / ELTE University

Budapest, 2000.

144



•

145

[7] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven Thecke,

GASS: A data movement and access service for wide area computing systems,

Proceedings of the Sixth Workshop on Input/Output in Parallel and Distributed

Systems (Atlanta, GA), ACM Press, May 1999, pp. 78-88.

[8] Anthony Betz and Paul Gray, Gigabit over copper evaluation,

http://www.syskonnect.com/syskonnect/performance/gig-over-copper.htm.

Apri12002.

[9] Nassem Bhatti, Jean-Marie Le Goff, Hassan Waseem, Zsolt Kovacs, Richard Mar-

tin, Peter McClatchey, Heinz Stockinger, and Ian Willers, Object serialisation

and deserialisation using xml, 10th International Conference on Management of

Data (COMAD 2000) (Pune, India), December 2000.

[10] T. Burns, E. Fong, E. Jefferson, R. Knox, L. Mark, C. Reedy, L. Reich, N. Rous-

sopoulos, and N. Truszowski, Reference model for dbms standardization. database

architecture framework task group (daftg) of the ansi/x3/sparc database system

study group, ACM Sigmod Record 15 (1986), no. 1, 19-58.

[11] Philip H. Carns, Walter B. Ligon III, Robert B. Ross, and Rajeev Thakur,

PVFS: A parallel file system for linux clusters, Proceedings of the 4th Annual

Linux Showcase and Conference (Atlanta, GA), USENIX Association, October

2000, pp. 317-327 .

[12] Matthew M. Cettei, Walter B. Ligon III, and Robert B. Ross, Support for parallel

out-of-core applications on beowulf workstations, Proceedings of the 1998 IEEE

Aerospace Conference, March 1998, pp. 355-365.

[13] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana,

Web services description language (wsdl) 1.1, http://www.w3.org/TR/wsdl,

March 2001.

http://www.syskonnect.com/syskonnect/performance/gig-over-copper.htm.
http://www.w3.org/TR/wsdl,


•

146

[14] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-

Pierre Prost, Marc Snir, Bernard Traversat, and Parkson Wong, Overview of

the MPI-IO parallel I/O interface, Proceedings of the IPPS '95 Workshop on

Input/Output in Parallel and Distributed Systems, April 1995, pp. 1-15.

[15] Peter F. Corbett and Dror G. Feitelson, The Vesta parallel file system, ACM

Transactions on Computer Systems 14 (1996), no. 3, 225-264.

[16] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, George S. Almasi, San-

dra Johnson Baylor, Anthony S. Bolmarcich, Yarsun Hsu, Julian Satran, Marc

Snir, Robert Colao, Brian Herr, Joseph Kavaky, Thomas R. Morgan, and An-

thony Zlotek, Parallel file systems for the IBM SP computers, IBM Systems

Journal 34 (1995), no. 2, 222-248.

[17] ACCS Corporation, Lmbench results tep

http://www.accs.com/p_and_p / gigabit/results_lmbench2. html.

[18] IBM Corporation, The ibm aix parallel i/o file system:

tion,administration, and use, 1995.

latency,

Installa-

•
[19] Intel Corporation, Paragon system user's guide, includes a chapter on using pfs

but has little information on its underlying design, April 1996.

[20] Cortes David, Arthur Evans, Wendy Ferguson, Jed Hartman, and Susan Thomas,

Topics in irix programming, contains information on high performance il0 pro-

gramming for sgi systems, Silicon Graphics, Inc., 1998.

[21] Erik DeBenedictis and Juan Miguel del Rosario, nCUBE parallel I/O software,

Proceedings of the Eleventh Annual IEEE International Phoenix Conference

on Computers and Communications (Scottsdale, AZ), IEEE Computer Society

Press, April 1992, pp. 0117-0124.

http://www.accs.com/p_and_p


147

[22] E.Gould and M.Xinu, The network file system implemented on 4-3 bsd, Proceed-

ings of the USENIX Association Summer Conference, 1986.

[23] Jack Dongarra et al., Mpi - a message passing interface standard, International

Journal of Supercomputer Applications and High Performance Computing 8

(1994), no. 3.

[24] A Network Protocol Independent

http://www.scl. ameslab.govlnetpipe.

Performance Evaluator,

•

[25] G. Fagg, J. Dongarra, and A. Geist, Heterogeneous mpi application interoperation

and process management under pvmpi, Tech. report, University of Tennessee

Computer Science Department, June 1997.

[26] Peter F.Corbett and Dror G.Feitelson, The vesta parallel file system, ACM Trans-

actions on Computer Systems, August 1996, pp. 225-264.

[27] Rene Felder and Erich Schikuta, Towards an xml based data grid description

language, PACT-SPDSEC-02, September 2002.

[28] Ian Foster and Editors Carl Kesselman, The grid: Blueprint for a future com-

puting infrastructure, Morgan Kaufmann, 1999.

[29] Ian Foster and Carl Kesselman, The globus project: a status report, Proceeding

of the Seventh Heterogeneous Computing Workshop, March 1998, pp. 4-18 .

[30] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke, The physiology

of the grid, draft, June 2002.

[31] Ian Foster, David Kohr, Jr., Rakesh Krishnaiyer, and Jace Mogill, Remote

liD: Fast access to distant storage, Proceedings of the Fifth Workshop on In-

put/Output in Parallel and Distributed Systems (San Jose, CA), ACM Press,

November 1997, pp. 14-25.

http://www.scl.


•

•

148

[32] Open Software Foundation, Introduction to osf dce, brief description of all of

dce, including a chapter on dfs, Prentice Hall, Englewood Cliffs, New Jersey,

1992.

[33] Thomas Fuerle, Oliver Jorns, Erich Schikuta, and Helmut Wanek, Meta-vipios:

Harness distributed ilo ressources with vipios, Iberoamerican Journal of Research

"Computing and Systems", Special Issue on Parallel Computing 4 (2000), no. 2,

124-142.

[34] Thomas Fuerle and Erich Schikuta, A transparent communication layer for het-

erogenous, distributed systems, 2003 .

[35] Thomas Fuerle, Erich Schikuta, Christoph Lffelhardt, Kurt Stockinger, and Hel-

mut Wanek, On the implementation of a portable, client-server based mpi-io

interface, EuroPVM/MPI98 (Liverpool, UK) (Springer-Verlag Lecture Notes in

Computer Science, ed.), September 1998.

[36] Feitelson Dror G. and Klainer Tomer, High performance mass storage and parallel

i/o: Technologies and applications, ch. XML, Hyper-media, and Fortran I/O,

John Wiley and Sons, November 2001.

[37] A. Geist et a1., Pvm 3.0 user's guide and reference manual, Oak Ridge National

Labratory, 1994 .

[38] David S. Greenberg, Ron Brightwell, Lee Ann Fisk, Arthur B. Maccabe, and

Rolf Riesen, A system software architecture for high-end computing, Proceedings

of Supercomputing, November 1997.

[39] Andrew S. Grimshaw, Michael J. Lewis, Adam J. Ferrari, and John F. Kar-

povich, Architectural support for extensibility and autonomy in wide-area dis-

tributed object systems, overview of the legion run-time architecture, Technial



149

Report CS-98-12, Department of Computer Science, University of Virginia, June

1998.

[40] R.L. Haksin, Tiger shark - a scalable file system for multimedia, IBM Journal of

Research and Development, March 1998, pp. 185-197.

[41] The ncsa hdf home page, http://hdf.ncsa.uiuc.edu/.

[42] Dolphinics Interconnect Solutions Inc., http://www.dolphinics.com.

[43] Sun Microsystems Inc., The nfs distributed file service, Online whitepaper avail-

able at www.sun.com/software/white-papers/wp-nfs.sw. describes Version 3 of

NFS, 1995.

[44] D.E. Jardine, The ansi/spare dbms model, North-Holland, The Netherlands,

1977.

[45] Barkes Jason, Marecelo R.Barrios, Fancis Cougard, Paul G.Crumley, Di-

dac Marin, Hari Reddy, and Theeraphong Thitayanun, Gpfs: A paral-

lel file system, documentation on gpfs for users and system administrator,

http://www.redbooks.ibm.com. IBM International Technial Support Organiza-

tion, April 1998.

[46] J.H.Howard, An overview of the andrew file system, Proceedings of the USENIX

Association Winter Conference, February 1988, pp. 213-216.

[47] Terry Jones, Richard Mark, Jeanne Martin, John May, Elsie Pierce, and Linda

Stanberry, An MPI-IO interface to HPSS, Proceedings of the Fifth NASA God-

dard Conference on Mass Storage Systems, September 1996, pp. 1:37-50.

[48] Michale Kazar, Bruce W.Leverett, Owen T.Anderson, Vasilis Apostolides, Beth

A.Bottos, Sailesh Chutani, Craig F.Everhart, W.Anthony Mason, Shu-Tsui Tu,

and Edward R. Zayas, Decorum file system architectural overview, introduces

http://hdf.ncsa.uiuc.edu/.
http://www.dolphinics.com.
http://www.sun.com/software/white-papers/wp-nfs.sw.
http://www.redbooks.ibm.com.


150

the file system that became dee's dfs, Proceedings of the USENIX Association

Summer Conference, June 1990, pp. 151-163.

[49] W. B. Ligon and R. B. Ross, Implementation and performance of a parallel file

system for high performance distributed applications, Proceedings of the Fifth

IEEE International Symposium on High Performance Distributed Computing,

IEEE Computer Society Press, August 1996, pp. 471-480.

[50] Johnson Lori, Cxfs software installation and administration guide, available at

techpubs.sgi.com, Silicon Graphics, Inc., 1999.

[51] Susan J. LoVerso, Marshall Isman, Andy Nanopoulos, William Nesheim,

Ewan D. Milne, and Richard Wheeler, sfs: A parallel file system for the CM-5,

Proceedings of the 1993 Summer USENIX Technical Conference, 1993, pp. 291-

305.

[52] John M. May, Parallel ijo for high performance computing, Morgan Kaufmann

Publishers, October 2000.

[53] P. Melas and E.J. Zaluska, Performance ofmessage-passing systems using a zero-

copy communication protocol, International Conference on Parallel Architectures

and Compilation Techniques, October 1998, p. 264 fr.

[54] Message-Passing Interface Forum, MPI-2.0: Extensions to the message-passing

interface, ch. 9, MPI Forum, June 1997.

[55] D. Moody, The intel ipsc/2 concurrent file system. high-level description of cfs,

the predecessor of intel's pfs, Software for Parallel Computers, 1992, pp. 229-241.

[56] MPI-IO: a parallel file I/O interface for MPI, The MPI-IO Committee, April

1996, Version 0.5.

[57] Inc. Myrinet, http://www.myrinet.com.

http://www.myrinet.com.


151

[58] Nils Nieuwejaar and David Kotz, The Galley parallel file system, Proceedings

of the 10th ACM International Conference on Supercomputing (Philadelphia),

ACM Press, May 1996, pp. 374-381.

[59] Paul Pierce, A concurrent file system for a highly parallel mass storage system,

Proceedings of the Fourth Conference on Hypercube Concurrent Computers and

Applications (Monterey, CA), Golden Gate Enterprises, Los Altos, CA, March

1989, pp. 155-160.

[60] Erich Schikuta and Thomas Therle, Vipios islands: Utilizing i/o resources on

distributed clusters, 15th International Conference on Parallel and Distributed

Computing Systems (Louisville), September 2002.

[61] Erich Schikuta, Thomas Fuerle, and Helmut Wanek, ViPlOS: The Vienna Par-

allel Input/Output System, Proc. of the Euro-Par'98 (Southampton, England),

Lecture Notes in Computer Science, Springer-Verlag, September 1998.

[62] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, Server-directed

collective I/O in Panda, Proceedings of Supercomputing '95 (San Diego, CA),

IEEE Computer Society Press, December 1995.

[63] Kent E. Seamons, Panda: Fast access to persistent arrays using high level in-

terfaces and server directed input/output, Ph.D. thesis, University of Illinois at

Urbana-Champaign, May 1996.

[64] Ben Segal, Grid computing: The european data project, IEEE Nuclear Science

Symposium and Medical Imaging Conference (Lyon), October 2000.

[65] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dorband, and

Udaya A. Ranawake, Beowulf: A parallel workstation for scientific computation,

Proceedings, International Conference on Parallel Computing, 1995, vol. 1, Au-

gust 1995, pp. 11-14.



152

[66] Heinz Stockinger, Dictionary on parallel input/output, Master's thesis, Depart-

ment of Data Engineering, University of Vienna, February 1998.

[67] Kurt Stockinger, ViMPIOS - a portable, client-server based implementation of

MPI-IO on ViPlOS, December 1998, Master's Thesis, Dept. ofData Engineering,

University of Vienna.

[68] Ellis Susan and Steven Levine, lrix admin: Disks and filesystems, sgi documenta-

tion for xfs and xlv, aimed at system administrator, available at techpubs.sgi. com,

Silicon Graphics, Inc., 1998.

[69] Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and Sivara-

makrishna Kuditipudi, Passion: Optimized I/O for parallel applications, IEEE

Computer 29 (1996), no. 6, 70-78.

[70] Rajeev Thakur, William Gropp, and Ewing Lusk, An abstract-device interfacefor

implementing portable parallel-I/O interfaces, Proceedings of the Sixth Sympo-

sium on the Frontiers of Massively Parallel Computation, October 1996, pp. 180-

187.

[71] Rajeev Thakur, Ewing Lusk, and William Gropp, Users guide for ROMIO: A

high-performance, portable MPI-IO implementation, Tech. Report ANLjMCS-

TM-234, Mathematics and Computer Science Division, Argonne National Lab-

oratory, October 1997.

[72] Richard W. Watson and Robert A. Coyne, The parallel I/O architecture of the

high-performance storage system (HPSS), Proceedings of the Fourteenth IEEE

Symposium on Mass Storage Systems, IEEE Computer Society Press, September

1995, pp. 27-44.



Mag.Thomas Fürle
löhrgasse 3/5
A-1150 Wien

Email:

LEBENSLAUF

Thomas. Fuerle@gmx.at

Persönliche Daten: Familienstand:
Staatsa ngehörig keit:
Geburtsdatum :
Geburtsort:

ledig
Österreich
23.10.1969
Mödling / NÖ

Ausbildung: Volksschule Südstadt
Gymnasium Mödling
Realgymnasium Mödling
HTL Mödling (Nachrichtentechnik)
Anmerkung: Abschluss HTl mit Vorzug

8 Monate Bundesheer
(Maria Theresien Kaserne, Wien 13)

1976 - 1980
1980 - 1982
1982 - 1984
1984 - 1989

1989 - 1990

Studium der Wirtschaftsinformatik 1990 - 1997
(Technische Universität und Universität Wien)
Sponsion zum Magister der Wirtschafts-
informatik Februar 1997

Visiting Research Student at the Computer
Department (ICl) of the University of
Knoxville/Tennessee (USA)
1998

Aug. - Dez.

mailto:Fuerle@gmx.at


Berufserfahrung (Freelancer mit Gewerbeschein)

Vermessungsbüro Dr. Palfinger (Mödling) 1991 - 1999
Vermessungsbüro GISTECH (Mödling) 2002

• C, C++, Fortran, Java, Xll, Motif u. Qt - Programmierung
• Erstellung eines AutoCad ähnlichen GUIs in Motif
• UNIX Administrator (HP-UX, Linux)
• UNIX Datenbankadministrator (Oracle für Linux, SQL, PL-SQL)
• UNIX-NT PowerUser (Shellscripts, Perl, KDE, VB Makros)
• UNIX Server Solutions with Linux (DHCP, NFS, NIS, Internet

connectivity mit IP-Masquerading, ISDN-Access, Firewall),
High Performance Solutions mit Linux (Beowulf Clusters), z.B.
Channel Bonding (mehrere Netzwerkkarten pro Server) .

• UNIX-NT Connectivity (Samba, telnet, ftp, NFS)
• Win9S, -98, -NT, WinCenter (WinFrame), WTS Administrator
• IT-, Netzwerk- u. Hardware Planung, Einkauf

BFI Wien 1991- 1999
• EDV-Trainer in der Erwachsenenbildung (EDVjPC-

Einführungs-, DOS-, Windows-, Accesskurse, Internet, Linux,
Unix, Perl, KDE)

E + 0 Incentives + Conventions (Wien) 1998-
• UNIX Server Solutions mit Linux (Internet Anschluss, File-,

Fax- u. Print Server) mit Win98 als Clients

Berufserfahrung (Angestelltenverhältnisse)

Herold BusinessData AG 1999

• Aufsetzen, Wartung und technische Projektverantwortlichkeit
der GelbenSeiten (http://www.gelbeseiten.at) unter Linux
(Apache, perl, MySQL, Webalizer für Statistiken), Teamleader
des Entwicklungsteam für Web u. CD

http://www.gelbeseiten.at


Oracle 2000 - 2002

Sonstiges

• B2B Integration mittels dem Oracle Integration Server
• DBA für Oracle Applications (seit Feb. 2001) auf Solaris,

HP-UX;
• Tools: Oracle Bi (bzw. 9i), Apache, SQL, PLjSQL, Jserv
• Administrator für interne Solaris Machinen
• Netzwerkadministrator für interne Consulting Projekte

(Anbindung von VPN wie Checkpoint, Wireless LAN, ...)
• Fortbildung (Oracle):

K1000 - Professioneller Einstieg in Oracle SQL
K1070 - PL/SQL und Datenbankprogrammierung
K1075 - PL/SQL Aufbau
K10BO - New Features für Developer Bi to 9i
K330B - Oracle Bi Datenbankadminstration
K3B11 - New Features 9i für Adminstratoren
K3B51 - Oracle Bi Peformance Tuning
K3B75 - Oracle 9i Real Application Cluster
K5700 - JAVA Programmierung mit Oracle Jdeveloper
K5720 - Entwicklung von DB - Anwendungen mit JAVA
K5760 - Entwicklung von Servlets und Java Server Pages

FremdsDrachen :

Englisch in Wort und Schrift
Technisches Englisch in Wort und Schrift

Führerscheine:

A, B, C, F, G

Hobbies:

Schifahren, Snowboarding, Mountain Bike, Laufen,
Inline Skating, geprüfter Ski- u. Snowboardlehrer, Schach,
Adventure Games, Kartenspiele

Allgemein:

Beobachtung der Entwicklung u. professioneller
Einsatzmöglichkeiten von Linux, im speziellem SuSE Linux



Universtätslaufbahn

Diplomarbeit an der Universität Wien

PANNS (ParaI/el Artifical Neural Network Simulator)

PANNS ist ein Werkzeug zum Erzeugen, Exekutieren und Analysieren von Neuralen
Netzwerkmodellen. Dieser Simulator erlaubt jede beliebe Form von NN' s auf einem
COW (Cluster van Workstations).
Das System basiert auf NeurDS von der Firma Digital@ und wurde durch den Einsatz
von PVM (Parallel Virtual Machine) zu PANNS erweitert.

PANNS läuft auf den meisten UNIX-Systemen, getestet wurde es unter SuSE Linux,
Solaris u. HP-UX.

Master Thesis at the Universitäty of Vienna

PANNS (ParaI/el Artifical Neural Network Simulator)

PANNS is a tool for creation, execution and analysing of neural network models. This
simulator allows any desired form of NN's on a COW (Cluster van Workstations). The
system is based on NeurDS, manyfactured by Digital@ and was extended by the use
of PVM (Parallel Virtual Machine) to PANNS.

PANNS runs on all UNIX platforms, which support PVM, it was tested on SUSE Linux,
Solaris and HP-UX.


