
M A S T E R A R B E I T

Score Following with Dynamic Time Warping

An Automatic Page-Turner

ausgeführt am
Institut für Computational Perception
der Johannes Kepler Universität Linz

unter der Anleitung von
Univ.-Prof. Dr. Gerhard Widmer

durch

Andreas Arzt
Haslingerweg 1, 4553 Schlierbach

__________________________ ____________________________
 Datum Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Every pianist is familiar with the problem: Whether at practicing or during a concert it is often
difficult to turn the pages of the score but at least it’s disturbing. To solve this problem the
Viennese company Quidenus invented a device which, controlled by a foot switch, turns pages
of musical scores. The idea behind this master thesis is to go even further and to automatize
this process completely by using a state-of-the-art score following algorithm.

Score following, the process of following a musical performance with respect to the score
live and in realtime, is being researched intensely since the mid 1980s. Many methods were
proposed, starting with string matching techniques, leading recently to probabilistic algo-
rithms often based on hidden markov models.

In this thesis extensions to a known online algorithm based on dynamic time warping are
presented which improve both precision and stability. As the structure of a musical piece is
fixed in principle but sometimes changed spontaneously by the pianist, a further extension
is presented which based on multiple matching algorithms running simultaneously tries to
recognize these changes.

The result of this master thesis is an easy to use program which, connected to the page turner
hardware using USB, follows the score and sends the signal to turn the pages on predefined
positions.

i

Kurzfassung

Jeder Pianist kennt das Problem: Egal ob während des Übens oder während eines Konzertes,
die Notwendigkeit des Umblätterns des Notentextes ist manchmal schwierig zu bewerkstel-
ligen, zumindest aber störend. Um dieses Problem zu lösen hat die Wiener Firma Quidenus
ein Gerät entwickelt, das, bedienbar per Fußschalter, Notenhefte umblättert. Die Idee hinter
dieser Masterarbeit ist es nun noch einen Schritt weiter zu gehen und diesen Vorgang mithilfe
eines State-of-the-Art Score Following Algorithmus vollkommen zu automatisieren.

Score Following, also das Verfolgen einer musikalische Darbietung anhand des Noten-
textes, live und in Echtzeit, wird seit Mitte der 1980er Jahre intensiv untersucht. Seither
wurden viele Verfahren vorgeschlagen, anfangs hauptsächlich auf String-Matching Techniken
basierend, später vor allem probabilistische Algorithmen, häufig basierend auf Hidden Markov
Models.

In dieser Masterarbeit wird ein bekannter Online-Algorithmus, basierend auf Dynamic
Time Warping, mit einigen Erweiterungen versehen, die sowohl die Präzision, als auch die
Stabilität verbessern. Da die Struktur des Musikstückes zwar grundsätzlich festgelegt ist,
manchmal aber vom Pianisten spontan geändert wird, wird weiters eine Möglichkeit, basierend
auf mehreren parallel laufenden Matching-Algorithmen, beschrieben, die diese Änderungen
erkennen kann.

Das Ergebnis dieser Masterarbeit ist schließlich ein einfach zu bedienendes Programm, das
per USB-Schnittstelle mit der Umblätterhardware verbunden ist, dem Notentext folgt und an
vorher vom Benutzer definierten Stellen Umblättersignale sendet.

ii

Acknowledgments

I would like to thank my supervisor Gerhard Widmer and his colleagues for all their support,
encouragement and helpful suggestions, especially Simon Dixon for providing the MATCH
sources and Sebastian Flossmann for his helping me with the live tests, especially his piano
playing.

David Zarfl and Lukas Achathaler for their help with proof-reading and their suggestions.
My parents for their support, both emotional and financial, and my whole family for being

always there for me.
My girlfriend Lisa Achathaler for being there and her patience and understanding.

iii

Contents

1 Introduction 1

2 Score Following 4

2.1 A Definition of Score Following . 4
2.2 A History of Score Following . 4

2.2.1 Early Approaches to Score Following 4
2.2.2 The Statistical Approach . 6
2.2.3 Other Approaches . 7
2.2.4 Dynamic Time Warping . 8
2.2.5 Comparison and Evaluation . 9

3 Score Following and Dynamic Time Warping 11

3.1 Dynamic Time Warping in Detail . 11
3.2 Features for Score Following by DTW . 12
3.3 Simon Dixon’s Implementation of the DTW algorithm 12

3.3.1 Feature Extraction . 13
3.3.2 Distance Computation . 13
3.3.3 Path Computation . 13
3.3.4 Foward Estimation - Online DTW 14

4 The Automatic Page-Turner 17

4.1 The Hardware . 17
4.2 The Input . 17
4.3 The Main Matcher . 19

4.3.1 The Single Matcher . 20
4.3.2 The Multi Matcher . 20

4.4 The Matching Algorithm . 20
4.4.1 The Function select_advance_direction() 21
4.4.2 The Function update_matrix(direction) 22
4.4.3 The Function update_paths() . 22

4.5 Further Improvements . 24
4.5.1 Preprocessing . 24
4.5.2 The Matching Process . 24

4.6 Summary . 26

iv

Contents

5 Evaluation of the Automatic Page-Turner 27

5.1 The Single Matcher . 31
5.1.1 Scenario 1: “Normal” performance 31
5.1.2 Scenario 2: Bars are left out . 41
5.1.3 Scenario 3: Additional bars are played 44
5.1.4 Scenario 4: False notes are played 47
5.1.5 Scenario 5: Additions, Deletions and Changes of Notes 50
5.1.6 Summary . 52

5.2 The Multi Matcher . 53
5.3 First live tests . 54

6 Future Work and Conclusion 56

v

1 Introduction

The starting point for this master thesis was a page-turning hardware developed by the Vien-
nese company Quidenus to support musicians during concerts. Controlled by a footswitch,
the page-turner relieves the musician of the bothersome manual page-turning.

The goal of this thesis is to use state-of-the-art score following techniques – score following
is the process of following the performance of a musician with respect to the score in realtime –
to automatize the page-turning process.

Figure 1.1 shows a graphical summary of the topic of this master thesis. Before the per-
formance the score of the piece is converted into a MIDI file. From the MIDI file tempo and
bar borders are extracted. Using a software synthesizer an audio representation of the score is
generated. The positions where to turn the pages have to be specified by the musician using
bar numbers.

During the performance the live audio signal is aligned to the audio representation of the
score. If a position in the score representation is reached which was marked by the musician,
a signal to turn the page is sent to the page-turner via USB.

As at the start of this project Simon Dixon, who developed a score following and music
alignment system based on dynamic time warping, was a member of ÖFAI’s1 intelligent music
processing group I could use his expertise in this area and was given the opportunity to use his
source codes as an initial point for my implementations. The goal was to evaluate the existing
implementation and to search for improvements regarding stability and accuracy.

While many previous score following systems need MIDI data of the live performance the
presented algorithm is based solely on the audio signal. This task is much more difficult but
independence of MIDI data is of course a desirable property.

In chapter 2, after a short definition of the problem of score following, a history of audio
alignment and score following can be found. The presented solutions range from the begin-
nings in the mid 80s – mostly string matching techniques – to the first probabilistic works in
the 90s up to recent solutions based on hidden markov models, dynamic time warping and
graphical models.

As my implementation uses dynamic time warping in chapter 3 this technique is discussed
in more detail with special emphasis on the implementation of Simon Dixon.

In chapter 4 my implementation including the hardware connection, the software archi-
tecture and improvements to the algorithm is presented. The proposed improvements range
from simple parameter optimization to a new technique incorporating the score information

1The Austrian Research Institute for Artificial Intelligence

1

1 Introduction

Figure 1.1: The Automatic Page-Turner

2

1 Introduction

explicitly into the dynamic time warping algorithm and multi matcher strategies.
Extensive evaluations of my implementations and a comparison to the old algorithm can

be found in chapter 5. They show that the presented algorithm performs better than the old
implementation regarding both stability and accuracy. Two preliminary live tests showed that
the performance is sufficient for the task of an automatic page turner.

Possible future improvements and a conclusion for this thesis are presented in chapter 6.

3

2 Score Following

2.1 A Definition of Score Following

Score following is the task of following the performance of a musician and deciding at which
position he/she is with respect to a known score. As Arshia Cont puts it in his Master Thesis
[Cont, 2004]:

“Score following serves as a real-time mapping interface from Audio abstractions towards
Music symbols and from performer(s) live performance to the score in question.”

The result of score following is a score-performance alignment. Thus offline score follow-
ing is also often referred to as music alignment.

The challenge lies in the differences between the score and the musical performance. Espe-
cially in classical music tempo diversity, different styles of interpretation and generally errors
of the musicians make it quite hard to find a proper alignment. Of course offline alignment is
generally considered easier than online alignment.

Score followers can be used for a variety of applications including automatic accompani-
ment, live visualization and, as presented in this master thesis, automatic page turning.

In this chapter I will give a brief history of score following without focusing too much on
technical details.

2.2 A History of Score Following

In general two epochs of score following can be identified. While from 1984 until about 1997
mainly string matching techniques were used, later the focus shifted to two methods known
well in speech recognition: statistical approaches (e.g. HMMs) and dynamic time warping
(DTW).

2.2.1 Early Approaches to Score Following

At the International Computer Music Conference (ICMC) in 1984 two papers from Roger
Dannenberg and Barry Vercoe appeared independently and marked the start of research in the
field of score following.

4

2 Score Following

In “An On-Line Algorithm for Real-Time Accompaniment” [Dannenberg, 1984] Dannen-
berg described a score following system based on dynamic programming and a high-level
symbolic representation of the performance. First the score and the audio input (MIDI events)
are converted to strings and then the best match between these strings is computed. Since it
is only useable for monophonic audio, it is not suitable for the problem of following a piano
performance. Later on, this system was extended to handle polyphonic music [Bloch and
Dannenberg, 1985]. Also handling for trills or glissando was introduced by using different
matching techniques for each event. Furthermore he introduced the idea of multiple matchers
running at different locations [Dannenberg and Mukaino, 1988] – an idea which I adopted for
the automatic page-turner (see chapter 4).

As mentioned above Barry Vercoe also presented an article about score following [Vercoe,
1984]. His “Synthetic Performer”1, an automatic accompaniment system, uses pitch as the
main source but as pitch detection was not fast enough he used fingering information on the
flute instead. The goal is to set the parameters of the automatic performance (tempo, loud-
ness, phrasing) with respect to the actual human performance. This is done by pattern match-
ing techniques. The “Synthetic Performer” also includes some learning strategies which are
described in more detail in [Vercoe and Puckette, 1985].

In general Dannenberg’s algorithms are more robust but less responsive than Vercoe’s.
While Vercoe assumes very skilled musicians, which change the tempo on purpose, Dan-
nenberg does not trust his musicians to the same extent [Puckette, 1995].

Based on the above systems a new matching algorithm was presented in [Baird et al., 1990]
and [Baird et al., 1993]. Instead of using single events like notes, matching is performed on
segments of predefined length.

In 1990 Miller Puckette introduced “EXPLODE”, a score follower also based on pitch
detection [Puckette, 1990]. The matching is based on a pointer to the current note and a
skip list containing previously unmatched notes. The algorithm tries to match each played
live note first to a note in the skip list, then to the current note or a note in the near future.
This is described in more detail in [Puckette and Lippe, 1992]. An interesting aspect is that
several pieces were composed with having score following with EXPLODE in mind. Often
the composers were forced to make compromises to ensure the score follower could follow
the performance. One of these compositions – Philippe Manoury’s En Echo for soprano and
computer – showed the limits of an approach based on a finite alphabet of tempered-scale
pitches and led to a more sophisticated method described in [Puckette, 1995].

So far the structure of a piece of music was only used implicitly in the matching process.
In [Desain et al., 1997, Heijink et al., 2000] the temporal structure annotated in the score
(chords, voices, etc) is used explicitly to predict note orders in the performance – for instance,
notes in a melodic line are not likely to be played in a different order but parallel voices may
be timed independently of each other – while dealing with the different voices independently

1At http://www.youtube.com/watch?v=vOYky8MmrEU a video showing the “Synthetic Performer” in action at
the ICMC in 1984 can be found (last visited: September 18, 2007)

5

2 Score Following

from each other. Multiple alternative matches are made and in the end dynamic programming
is used to select the best path.

While all the previous papers mainly use pitch as the feature for score following, in [Van-
tomme, 1995] rhythm is used – only when the algorithm is completely lost pitch is used as
a last chance. Of course, even if the musician plays totally false notes, as long as the timing
is correct the algorithm is able to follow the performance. The algorithm does not seem very
robust regarding typical errors like skipping or adding events.

Another approach based entirely on rhythm can be found in [Toiviainen, 1998]. Here an
adaptive oscillator is used to track the beat of a MIDI input. There is no need for a specified
score, even improvisations can be tracked. Around the beat tracker an accompaniment system
is built which plays a predefined accompaniment in the perceived tempo. More examples on
using a beat tracker for score following can be found in [Dannenberg and Mont-Reynaud,
1987] and [Allen and Dannenberg, 1990]. Of course every beat tracker could be used as a
score follower – especially for improvisation this is a very reasonable technique. But for music
where scores which can be used as an additional source of knowledge exist, an approach based
entirely on rhythm is suboptimal.

While most approaches deal with a score which very closely specifies the pitch and the
ordering of notes, Pardo and Birmingham try to match a performance to a partially specified
score – a lead sheet as it exists in folk and popular music [Pardo and Birmingham, 2001].
This of course implies that a one-to-one mapping is not possible. The alignment is done by
matching the chords extracted from the MIDI performance to the chords in the lead sheet by a
technique to align two series while allowing gaps, drawn from gene-sequence analysis, based
on dynamic programming.

2.2.2 The Statistical Approach

As even with perfect observations – correct information about pitch, tempo etc. in the live
performance – a load of uncertainty due to errors and spontaneous decisions by the performers
remains, a statistical approach is very natural.

The first to work on a solution to score following by using a statistical approach were Dan-
nenberg and Grubb in 1997 [Grubb and Dannenberg, 1997]. In their approach at any point
during the performance the position in the score is represented by a continuous probability
density function, called the score position density. They define an observation distribution
which specifies the probability of observing any possible value of a detected feature when the
performer is performing this event. Using the current score position density and the observa-
tion distributions the new score position density is calculated.

A possibility to use probabilities to extend the string matching approach is shown in [Pardo
and Birmingham, 2002]. They define a model of the transcriber error – useful for example
when a quite unreliable pitch tracker instead of MIDI input is used – based on match proba-
bilities. The search for a good alignment is done by dynamic programming.

6

2 Score Following

Hidden Markov Models

Hidden Markov Models (HMMs) are very popular in speech recognition. As the focus of this
master thesis is on DTW and not on HMMs I will not give an introduction on HMMs. A well
known tutorial was written by Lawrence Rabiner [Rabiner, 1989].

One of the first approaches to use HMMs for score following is presented in [Cano et al.,
1999]. The emissions of their model are a number of sound features like energy, zero crossing
and fundamental frequency. Their note model architecture is based on 3 left-to-right HMMs:
notes, modeled with 3 states (attack, steady state and release), silence and no-notes, which
account for all unpitched sounds in the performance. Note lengths are modeled with self-
transitions. The well known Viterbi algorithm is used for computing the alignment.

The big difference between the approach in [Cano et al., 1999] and Raphael’s work [Raphael,
1999] is that the latter doesn’t rely on pitch tracking routines but emits directly spectral fea-
tures. Additionally to the Viterbi algorithm an alternative decoding technique is proposed.
Using the information in the score, various graph topologies are used for different kinds of
notes, such as long notes, short notes, rests and trills. Using his score following algorithm
Raphael implemented a real-time accompaniment system [Raphael, 2003], [Raphael, 2004b]
consisting of 3 components: listen (done by the HMM), synthesize (an audiofile is played
with variable tempo) and anticipate (mediates between listen and synthesize using a bayesian
network [Raphael, 2001]).

In [Orio and Dechelle, 2001] Raphael’s score follower is extended by taking performer’s er-
rors into account by using “ghost states”, which correspond to local mismatches. A two-level
HMM is used to model the performance as a sequence of musical events and the signal as a se-
quence of features. Instead of the Viterbi algorithm, another algorithm, which was introduced
in molecular genetics, is proposed, which showed lower delay and higher robustness to errors.
A new algorithm for the training of the HMM is discussed too. A more detailed description
of the implementation can be found in [Cont, 2004]. How this approach can be used with
(polyphonic) MIDI data instead of the audio signal of the performance is shown in [Schwarz
et al., 2004]. While the above implementations were only useable with monophonic or slightly
polyphonic audio data, in [Cont, 2006] an extension to treat polyphonic music is described.

An interesting idea, which I did not find in other papers, is brought up in [Pardo and Birm-
ingham, 2005]. As in a live performance musicians sometimes make spontaneous changes
e.g. leaving out a repetition or repeating a part although not noted in the score, it is natural to
take care of such situations in the score follower. So they model such possibilities explicitly
in their score representation in the HMM.

2.2.3 Other Approaches

Neural Networks

One of the musicians who actually use score following algorithms to trigger events during
their live performances even wrote their own software [Schreck-Ensemble, 2001]. Schreck

7

2 Score Following

Ensemble’s ComParser is based on a neural network. They call it a pseudo score follower
as there is no actual score used. The musician just labels events in an existing recording of
the piece of music. From the audio signal spectral features and amplitude measurements are
extracted. The structure of the net is based on the avalanche structure. This approach is not an
exact score follower which recognizes every note in the score. It is especially built to trigger
MIDI events on certain cue points in electroacoustical pieces.

Graphical Models

Lately approaches based on graphical models were proposed for many music information
retrieval tasks including music transcription [Kapanci and Pfeffer, 2005], beat tracking [Lung
and de Freitas, 2004] and music alignment. A tutorial on graphical models can be found
in [Murphy, 2001].

Christopher Raphael was the first to use graphical models for music alignment [Raphael,
2004a]. For him the problem with other approaches like HMMs and DTW lies in the too sim-
ple or not existing modeling of length for the individual notes: If treated at all, note lengths
are either constrained to some range or modeled as random, with the distribution depending
on a global tempo or learned from past examples. In this new approach a note-level model,
explicitly representing tempo variations and note-by-note deviations, is combined with a sim-
ple frame-by-frame data model, based completely on the pitch content of the audio data. In
this paper an offline version of the algorithm is presented, but it is stated that extensions to an
online algorithm are possible.

2.2.4 Dynamic Time Warping

Dynamic time warping (DTW) is a technique for aligning time series. Typical applications are
speech recognition [Rabiner and Juang, 1993], gesture recognition [Gavrila and Davis, 1995]
and handwriting recognition [Rath and Manmatha, 2002], [Vinciarelli, 2002]. Unlike HMMs
there is no training necessary. But DTW can be seen as a special case of HMMs. The cells of
the matrix correspond to the states and the distances serve as output probabilities for a given
state [Durbin et al., 1998].

In this section I will give an overview of the different approaches based on DTW. The
technical background and the implementation for the automatic page-turner will be presented
in chapters 3 and 4.

To my knowledge the first to apply DTW to music alignment were Nicola Orio and Diemo
Schwarz in [Orio and Schwarz, 2001]. Their implementation followed exactly the standard
definition of DTW in which they used the simplest local continuity constraint. As features
they introduced a measure named “Peak Structure Distance” (PSD). The expected peaks in
the spectrum are modeled from the pitches in the score and compared to the audio signal.
To reduce complexity they didn’t store all frames but only the first and the last score frame
for each note. Another try to reduce the complexity is a kind of path pruning where in each

8

2 Score Following

iteration only the best paths – determined by the minimum of this iteration plus a threshold –
are kept [Schwarz, 2004].

Another possibility is to use discrete chromagrams of the audio signal as features for both
sequences as shown in [Dannenberg and Hu, 2003]. A chroma vector is a 12 element vector,
each representing one pitch class in the chromatic equal-tempered scale. The chroma repre-
sentation proved to be a significantly better feature than MFCCs for this approach [Hu et al.,
2003]. An interesting fact is that the chroma representation seems very insensitive regarding
details like which instruments are used in the MIDI file. Even after substituting all instru-
ments by a piano a good matching is still obtained. They took this one step further and tried
to generate (simple) chroma vectors directly from the MIDI instead of using a synthesizer and
analysing the audio signal. Even this worked quite well.

There exist some more approaches for reducing the complexity in time and space. Strictly
speaking the algorithm used in [Mueller et al., 2004] is not DTW but another kind of dynamic
programming. By using only (possible) note onsets – computed separately for every pitch –
of the audio signal as features the amount of data is considerably reduced. The time axis is
split evenly into segments and the onsets are assigned to bins according to their time position,
discarding all empty bins. The score notes too are assigned to bins according to their score
position. These two sequences are now used for the alignment.

Later on the same authors developed another approach which directly uses DTW [Mueller
et al., 2006]. They use two strategies – reduction of the feature sampling rate and a global
constraint region – iteratively in order to generate data dependent constraint regions. Their
algorithm, called Multiscale DTW, showed the same aligning results as standard DTW while
using more than 50 times less space and being 30 times faster.

Also aiming at complexity reduction is the approach presented in [Kaprykowsky and Rodet,
2006]. Based on the observation that one path in the matrix cannot cross another one, the
amount of memory is significantly reduced. By backtracking “fusion points” which determine
parts of the optimal path are found. After finding a fusion point it is sufficient to store the path
found up to this fusion point and to clear all the previous data. Then the calculation continues.
As this is an optimal approach the same result as with standard DTW is guaranteed.

By now all the presented approaches using DTW are purely offline algorithms. To my
knowledge the only one to try to modify DTW to an online algorithm is Simon Dixon. As his
implementations are the starting point of this diploma thesis they will be discussed in depth in
chapter 3.3.

2.2.5 Comparison and Evaluation

I will concentrate here only on realtime audio-to-score alignment and leave all offline and
midi-to-score approaches aside.

Still a comparison between the presented approaches is difficult. As stated in [Cont et al.,
2007] there are hardly any systematic objective evaluations for the presented approaches.
Usually the evaluation is limited to short live demonstrations and subjective ways to assess

9

2 Score Following

the quality of the alignments. Luckily there are efforts now towards standardized evaluation
methods.

In 2006 score following was one of the evaluation topics of the Music Information Retrieval
Evaluation eXchange (MIREX)2. Sadly only 2 algorithms participated. IRCAM’s score fol-
lowing algorithm based on HMM clearly outperformed an extended version of Dannenberg’s
1984 algorithm.

In 2007 score following was postponed to possibly 2008.
If the 2008 evaluation takes place I will participate with my implementation. I’m very

curious about a comparison between state-of-the-art algorithms based on ODTW, HMMs,
graphical models and maybe other approaches.

2An annually evaluation of algorithms in a variety of music information retrieval tasks. More information can be
found at http://www.music-ir.org/mirexwiki/index.php/Main_Page (last visited: February 7, 2008)

10

3 Score Following and Dynamic Time

Warping

3.1 Dynamic Time Warping in Detail

DTW is a technique for aligning two time series or sequences. The series are represented
by 2 vectors of feature vectors U = u1, ...,um and V = v1, ...,vn. To find the alignment with
minimal costs the local distances dU,V (i, j) have to be computed. Usually these distances are
represented as a m× n matrix. This matrix assigns a cost for aligning each pair (ui,v j). The
costs are usually the Euclidean distance between the two vectors.

The goal of the DTW algorithm is to find a minimum cost path W = W1, ...,Wi. Each Wk

is an ordered pair (ik, jk) such that (i, j) ∈W means that the points ui and vi are aligned. The
alignment is done with respect to the local cost matrix. The cost of a path D(W) is the sum of
the local match costs of the path.

Several constraints are placed on the path W:

• W is bounded by the ends of both sequences

• W is monotonic

• W is continuous

Often additional global path constraints are used with the goal to reduce complexity such
as the Sakoe-Chiba bound [Sakoe and Chiba, 1978] which constrains the path to lie within a
fixed distance of the diagonal or the Itakura parallelogram [Itakura, 1975] which constrains
the path to lie within a parallelogram around the diagonal of the matrix.

There are different local path constraints which can be used for the computation of the
minimum cost path. In [Rabiner and Juang, 1993] these are presented. The simplest one is
defined by the following recursion:

D(i, j) = d(i, j)+min

D(i, j−1)
D(i−1, j)

2∗D(i−1, j−1)

This recursion can be computed in quadratic time by linear programming. D(i, j) is the
cost of the minimum cost path from (1,1) to (i, j). D(1,1) = d(1,1). In the end the path is
extracted by following the recursion backwards from D(m,n).

So alignment by DTW is essentially done in 3 steps:

11

3 Score Following and Dynamic Time Warping

• Extraction of comparable features from the 2 time series

• Calculation of local distances between the feature vectors of the 2 time series

• Computation of the optimal path with respect to the global distance

3.2 Features for Score Following by DTW

In the case of score following there are 2 different types of inputs. On the one hand there is the
score and on the other hand there is the audio signal from the performance. Often the score is
treated like the audio signal by creating a midi file and using a synthesizer to create an audio
file [Dannenberg and Hu, 2003]. Then the same algorithms are applicable for the score and
the performance.

Possible features are spectral representations of the audio data, generated from a windowed
FFT of the signal. In [Dixon and Widmer, 2005] Simon Dixon maps the data into 84 frequency
bins. The frequency axis is linear at low frequencies and logarithmic at high frequencies.
This reduces the data and simulates the linear-log frequency sensitivity of the human auditory
system. As the timing of the onsets is a very important factor for the alignment, a half-wave
rectified first order difference is used, so that only increases in energy in each bin are taken
into account.

Another way is to use a chroma representation [Dannenberg and Hu, 2003]. A chroma
vector consists of 12 elements, where each element represents the spectral energy correspond-
ing to one pitch class. This vector is easily computed by assigning each bin of the FFT to
the nearest step in the chromatic scale. While according to [Hu et al., 2003] pitch histograms
were outperformed by the chroma representation, in Dixon’s implementation pitch histograms
proved to be at least equally good.

It is also possible to use statistics over more than one frame. In [Mueller et al., 2005] these
short time statistics, called Chroma Energy distribution Normalized Statistics (CENS), are
computed over 41 chroma frames and used in addition.

A completely different approach is presented in [Schwarz, 2004]. Instead of an audio signal,
a note model is generated from the score and compared to the audio signal.

Of course it is possible to use other well known features like MFCCs but they proved to be
inferior compared to pitch-based representations [Hu et al., 2003].

3.3 Simon Dixon’s Implementation of the DTW algorithm

Simon Dixon’s implementation [Dixon and Widmer, 2005] was the starting point of this
diploma thesis. I used some of his code and later on it was my reference implementation
in the search for improvements.

12

3 Score Following and Dynamic Time Warping

3.3.1 Feature Extraction

As described above he uses a low-level spectral representation of the audio data which is
generated from a windowed FFT of the signal. A Hamming window with the size of 46ms,
and a hop size of 20ms is used. The data is mapped into 84 frequency bins. The lowest 34
bins up to 370Hz were mapped linearly and the bins from 370Hz to 12.5kHz were mapped
logarithmically with semitone spacing. Finally the energy in higher bins was summed up into
one last bin.

Between 2 audio frames a half-wave rectified first order difference is computed. So only
the increases in energy E ′x(f , t) in each bin f of the signal x(t) at time frame t are taken into
account:

E ′x(f , t) = max(Ex(f , t)−Ex(f , t−1),0)

3.3.2 Distance Computation

For comparison of feature vectors the Euclidean distance is used:

d(i, j) =

√

84

∑
b=1

(E ′u(b, i)−E ′v(b, j))2

As usual the distances are stored in a m×n matrix. The cost matrix is computed using the
simplest DTW recursion.

D(i, j) = d(i, j)+min

D(i, j−1)
D(i−1, j)

2∗D(i−1, j−1)

3.3.3 Path Computation

Even with constraints like the Sakoe-Chiba bound or the Itakura parallelogram the time and
space complexity of the standard implementation of the DTW algorithm is quadratic in the
length of the sequences. This is often cited as a limiting factor for the use of DTW with long
sequences. Dixon proposed an easy way to get a linear algorithm by using a constant instead
of a fraction of the total length for the width of the Sakoe-Chiba bound.

The danger is that the optimal solution could be too far away from the diagonal, so this
solution could be excluded if the band is too narrow. To use this approach an (online) forward
estimation of the center of this band – an adaptive diagonal – is necessary. After reaching the
ends of both performances the optimal path is traced backwards as in standard DTW but using
only the cells lying within the band computed by the forward estimation.

13

3 Score Following and Dynamic Time Warping

Dixon also implemented a smoothed path calculation using a least squares fit. This didn’t
improve accuracy at the note level as most unsmoothness occurs between notes and the al-
gorithm recovers at the time of the next onset. But I could successfully use this path for my
backtracking extension which is described in chapter 4.

3.3.4 Foward Estimation - Online DTW

This algorithm is both the heart of Dixon’s DTW algorithm and a stand-alone Online DTW
algorithm. It calculates an “adaptive diagonal” through the cost matrix which can be used to
reduce the complexity of the DTW algorithm. Furthermore, this adaptive diagonal, which is of
computed online, can be seen as a realtime mapping between the score and the performance.

As one of the two sequences is only known partially the algorithm differs from a standard
DTW algorithm in some points:

• The length of the partially unknown sequence is unknown, so the global path constraints
cannot be directly implemented.

• An incremental solution is required

• To run in realtime, the complete algorithm must be linear in the length of the sequence

In the following U is the partially unknown sequence.
At each time t, we seek the best alignment u1, ...,ut to some initial subsequence of V . There

is one parameter, c, which determines the width of the search band. The pointers t and j point
to the current positions in U and V and are initialized to point to the start of each series.

The following pseudo-code of the online DTW algorithm is taken from [Dixon and Widmer,
2005].

Listing 3.1: ALGORITHM On-Line Time Warping

t := 1 ; j := 1
p r e v i o u s := None
INPUT u (t)
U p d a t e P a t h C o s t (t , j)
LOOP

IF Ge t In c (t , j) != Column
t := t + 1
INPUT u (t)
FOR k := j − c + 1 TO j

IF k > 0
U p d a t e P a t h C o s t (t , k)

ELSE IF G e t I nc (t , j) != Row
j := j + 1

14

3 Score Following and Dynamic Time Warping

FOR k := t − c + 1 TO t
IF k > 0

U p d a t e P a t h C o s t (k , j)
IF Ge t In c (t , j) == p r e v i o u s

runCount := runCount + 1
ELSE

runCount := 1
IF Ge t In c (t , j) != Both

p r e v i o u s := G e t In c (t , j)
END LOOP

Listing 3.2: FUNCTION GetInc(i j)

IF (t < c)
r e t u r n Both

IF runCount > MaxRunCount
IF p r e v i o u s == Row

r e t u r n Column
ELSE

r e t u r n Row
k := argmin (p a t h C o s t (t , ∗))
IF k < argmin (p a t h C o s t (∗ , j))

r e t u r n Column
ELSE

k := argmin (p a t h C o s t (∗ , j))
IF k == t

r e t u r n Both
ELSE

r e t u r n Row

In the main loop of listing 3.1 partial rows and columns of the path cost matrix are calcu-
lated. To calculate a row (column) means to increment the pointer to the current position in
the audio data which sits on the row (column). Then the path costs for the last c cells up to the
current column (row) of this new row (column) in the path cost matrix are calculated.

The function GetInc (see listing 3.2) decides if a row or a column should be calculated as
follows (see also figure 3.1). First the minimum path cost of the cells in the current row and
column is found. There are 3 possible cases:

1. This occurs at the current position (t, j): Both the next row and the next column are
calculated.

2. This occurs elsewhere in row j: The next row is calculated.

15

3 Score Following and Dynamic Time Warping

Figure 3.1: An example of the on-line time warping algorithm with search window c = 4,
showing the order of evaluation for a particular sequence of row and column in-
crements. All calculated cells are framed in bold, and the optimal path is colored
grey. (Source: [Dixon and Widmer, 2005])

3. This occurs elsewhere in column t: The next column is calculated.

There are some special cases which override the default behavior:

• Less than c rows and columns have been computed: New rows and columns are calcu-
lated alternately.

• If a sequence is successively incremented more than MaxRunCount times, the other
sequence is calculated next.

The calculation of the path cost up to a newly calculated cell is exactly like in the standard
DTW algorithm, but it is restricted to use only the cells which have already been calculated.
To make the comparison of paths of different lengths in GetInc possible, the path cost is nor-
malized by the path length – in fact diagonal steps are simply multiplied by 2. The parameter
c determines how many cells are calculated in each step. If a new row (column) is being cal-
culated, the row (column) number is incremented and the cells in the last c columns (rows)
are calculated.

In Dixon’s implementation the parameter MaxRunCount is set to 3 which constrains the
slope to range between 1

3 and 3. As musical performances are not arbitrarily fast, the optimal
alignment should always lie inside the reachable regions of the cost matrix.

The parameter c is set to 500 frames, which means that the width of the search band is 10
seconds. According to Dixon this is much larger than any error he had encountered in testing.

16

4 The Automatic Page-Turner

In the following I will present the architecture of the automatic page-turner. The software is
based on Dixon’s online DTW implemention. The hardware of the page-turner is produced
by the Viennese company Quidenus1.

Figure 4.1: The Quidenus Page-Turner for pianists

4.1 The Hardware

The hardware of the page-turner remained unchanged. The pedal controlling the page-turner
by just closing a circuit was replaced by a relay. A Velleman K8055 USB interface board is
used to switch the relay (see figure 4.3 for a picture of the page-turner controller).

4.2 The Input

In my implementation the score is represented as MIDI and converted into an audio file by
a software synthesizer. As figure 4.2 shows there is a file called Base File (see listing 4.1).

1More information about the page-turner can be found at www.quidenus.com (last visited: February 7, 2008)

17

4 The Automatic Page-Turner

Figure 4.2: The Architecture of the Automatic Page-Turner

Figure 4.3: The Page-Turner Controller

18

4 The Automatic Page-Turner

This is a simple text file which contains the path to the MIDI and the audio. From the MIDI
the measure, the length of the offbeat and the position of every note are extracted. With this
information and the tempo of the piece, which is extracted from the MIDI too, it is possible to
calculate the position of every note and every bar border in the audio file. Furthermore in this
file the timing when to turn the pages (as bar numbers) can be specified. It is also possible to
mark positions like repetitions or the start of a new movement in this file. These marks are
important for the multi-matcher which will be described later.

Listing 4.1: A typical Base File

$ d e s c r i p t i o n s t a r t
So na t e Nr . 2 F−Dur KV 280 , 1 . S a t z
$ d e s c r i p t i o n s t o p
$ m i d i _ f i l e =[p a t h _ t o _ m i d i] / kv280_1 . mid
$ a u d i o _ f i l e =[p a t h _ t o _ a u d i o] / kv280_1 . wav
$ p a r t s s t a r t
0 . 0
5 7 . 0
145 .0
$ p a r t s s t o p
$marks s t a r t
2 7 . 0
5 7 . 0
8 9 . 0
114 .0
$marks s t o p

To the audio data specified by the base file the input from the live performance is aligned.
The feature extraction from the audio inputs is analogous to Dixon’s implementation (see
chapter 3.3). Of course the feature extraction from the basis audio file is done before the
performance starts.

4.3 The Main Matcher

The main matcher controls the data flow to the matching algorithm. It receives one audio
frame of the incoming audio stream, calculates the feature vector, hands it over to the matching
algorithms, waits until they are done, then waits for the next frame and so on.

The main matcher can work in two modes: As a single matcher, when one matching algo-
rithm is started which tries to align the performances, or as a multi matcher, when more than
one algorithm runs simultaneously on different positions of the performance.

19

4 The Automatic Page-Turner

4.3.1 The Single Matcher

If the program runs in single matcher mode just one instance of the matching algorithm is
used. The program waits for the live input to start and feeds the data frame by frame to the
matching algorithm. If the algorithm reaches a frame index in the basis audio file which is
marked as “end of page” (specified as bar numbers from the user and converted in frame
indices using the midi information), the page-turner gets its signal to turn the page.

4.3.2 The Multi Matcher

A little bit more sophisticated is the use of more than one matcher. The idea behind this is that
pianists sometimes do not play everything exactly as noted in the score. Sometimes they leave
out or repeat parts, which are not marked as repetitions. This kind of “error” is impossible to
catch with the online DTW implementation by Dixon because the window of about 10 seconds
is just too small to recognize that a repetition of for example 15 bars is left out.

But if after the first repetition a second matching algorithm is started – one runs on the
second repetition and the other one on the part after this repetition – this can be caught. You
just have to pick the matching algorithm, which produced, after some time, the least error.

So my multi matching strategy is as follows: I am using 3 matchers – of course it would
be possible to use more, but 3 are enough to prove the concept. In the input file the borders
between possible repetitions or omissions are marked. I am starting with just one matcher
until I come across the first mark. Then the two other matchers are added and are initialized
as follows:

• Matcher 1 is just continuing matching from the reached mark

• Matcher 2 starts again from the previous mark – checking if this part is repeated

• Matcher 3 starts from the next mark – checking if now a part is skipped

After some time the matcher with the minimum error is selected and the others are stopped
until the next mark is reached. During the evaluation it proved sufficient to decide which
matcher is the correct one after 4 bars while ensuring these have a length of at least 10 seconds
according to the base audio file.

The calculation of the error of the 3 matchers is very simple. The error accumulated during
the last 1000 alignment steps is normalized by dividing by the number of frames processed
during this time.

4.4 The Matching Algorithm

The following pseudo code shows what happens when a new vector describing a frame of the
live performance is handed over to the matching algorithm. Of course this algorithm works
on the path cost matrix.

20

4 The Automatic Page-Turner

w h i l e (i n p u t _ n o t _ a d v a n c e d)
s e l e c t _ a d v a n c e _ d i r e c t i o n ()
u p d a t e _ m a t r i x (d i r e c t i o n)
u p d a t e _ p a t h s ()

end w h i l e

So first the advance direction is computed which means that either the score or the perfor-
mance coordinate (or both) are incremented. Then the matrix – by computing the path costs
up to the new cells – and finally the paths are updated. This is done until the matrix was
expanded into the direction of the live input. After that happened, the algorithm waits for the
main matcher to hand over the next audio frame of the live performance.

I will describe now in detail what happens in the mentioned functions.

4.4.1 The Function select_advance_direction()

The two possible directions are up – meaning the next row of the matrix is computed – and
right – meaning the next column is computed. It’s also possible to advance in both directions,
then the function update_matrix is called for both. In the following the base file sits on the
y-axis and the live input on the x-axis. So to compute the next row – up – means to increment
the score position coordinate, and to compute a new column – right – means to increment the
position coordinate of the live performance.

The decision in which direction to advance next is made exactly as in Dixon’s implementa-
tion. First the minimum path cost of the cells in the current row and column is found. There
are 3 possible cases:

1. This occurs at the current position (t, j): Both the next row and the next column are
calculated.

2. This occurs elsewhere in row j: The next row is calculated.

3. This occurs elsewhere in column t: The next column is calculated.

I used the same special cases which override the default behavior:

• Less then c rows and columns have been computed: New rows and columns are calcu-
lated alternately – while in Dixon’s implementation c is set to 500, I set c in this context
to 50. But the width of search band remains unchanged at 500, only the path calculation
starts earlier.

• If a sequence is successively incremented more than MaxRunCount times, the other
sequence is calculated next. As described in more detail later, I set this variable to 6
while in Dixon’s implementation 3 was used.

21

4 The Automatic Page-Turner

4.4.2 The Function update_matrix(direction)

In this function the path cost matrix is updated. Again the computation is done similar to
Dixon’s implementation which follows the standard DTW algorithm except using only cells
which have already been calculated.

The parameter c determines how many cells are calculated in each step – the width of
the search band – which is 500 in both implementations. If a new row (column) is being
calculated, the row (column) number is incremented and the cells in the last c columns (rows)
are calculated.

In Dixon’s implementation weights – 1 for normal steps and 2 for diagonal steps – were
only used to normalize paths of different lengths to make them comparable. My idea is now to
actually prefer diagonal steps while still leaving enough freedom to correctly align sequences
which differ heavily in tempo. As an onset detection function is used there is few data for
the decision making of the algorithm between onsets. As a result Dixon’s implementation
sometimes showed uncontrolled expansions in one single direction during notes. By preferring
the diagonal such situations can be mostly avoided.

Changing the weights of normal steps to 1.3 while still using 2 for diagonal steps resulted
in a more accurate alignment as can be seen in chapter 5.

4.4.3 The Function update_paths()

This function is the main difference between my implementation and the implementation by
Simon Dixon. The following extension is motivated by a possible earlier discovery of subop-
timal paths and a faster recovery after small errors by the pianists like some false note.

While normally the forward path calculation follows the one of Dixon described in 3.3.4,
every i iterations a (smoothed) backward path is calculated. This path is followed s steps
backwards, leading to a new point x. This point x lies with a high probability nearer to the
globally optimal path than the corresponding point on the forward path because the backward
path had more information for the computation of this point, especially some knowledge about
the future.

From x a new forward path is calculated until a border – the last calculated cells – is reached.
There are three possible situations (see also figure 4.4):

• The new forward path flows into the old path and ends in the same point. This can be
seen as a confirmation for the current point.

• The new forward path ends below the old path. This means that the new point lies in
the past. Of course in the domain of the page-turner it is not possible to go backwards,
but it is possible to stop proceeding in time until the path reaches the old upper border
again.

• The forward path ends above the old path. In this case more rows are calculated until
the path reaches the right border.

22

4 The Automatic Page-Turner

Figure 4.4: Examples for new forward paths: a) The path ends above the old path, b) The path
flows into the old path, c) The path ends below the old path

Of course there are different parameters which control the extension to Dixon’s online DTW
algorithm:

• How often should this backtracking be applied?

• Should the parameter configuration for the computation of the forward path be the same
as in the normal algorithm or can it be more aggressive?

• How far back should the starting point of the new computation be?

In fact it proved useful to use 2 different kinds of backtracking: One to correct small errors
as fast as possible and one with the goal to recover faster from bigger errors. These 2 differ
in only in one point: How far back the new forward path starts. Both share the same type of
backtracking path, namely a path starting in the current point of the forward path, calculated
as in the standard DTW algorithm. To avoid problems due to jumps between the notes the
path is smoothed. There were some experiments using the point with the lowest error in the
current row and column instead of the current point of the forward path, but this proved to be
too unstable.

For the larger backtracking step the starting point lies 50 frames of the live input data in the
past while for the smaller backtracking step the starting point only lies 10 frames in the past.

23

4 The Automatic Page-Turner

In my implementation backtracking is done every 2 frames, where after 4 smaller back-
trackings one larger follows.

Using these backtracking methods it was possible to use a more aggressive path calculation.
While in Dixon’s implementation the algorithm is constrained to advance at most 3 times in a
row in the same direction, I set this parameter to 6 for the normal path calculation and to 3 for
the calculation of the forward path during the backtracking step.

4.5 Further Improvements

So far the alignment only used information from the audio signals. As in the domain of the
score follower a score representation is used, which is MIDI in my case, it is natural to incor-
porate this information into the matching process. My idea is to use the calculated forward
path only as an approximate solution and to search for onsets according to the MIDI infor-
mation around this path. In contrast to the forward path calculation this search is based on a
chroma representation, mainly because computations on chroma vectors are faster compared
to the use of Dixon’s representation. Nonetheless, it’s also possible to use Dixon’s represen-
tation instead.

The idea is simple: When the score representation coordinate of the forward path comes
near to the next event (onset), the search for the onset is started. The goal is to find a frame
which is likely to be a note onset, which is similar to the audio frame representing the note
onset in the score and which is near to the onset coordinate according to the forward path
calculation.

So for every new frame of the live input a function based on onset detection, the similarity
between score representation and live input, and the distance of the forward path to the awaited
onset is computed. If the value is higher than a defined border the algorithm marks the current
event as detected and proceeds to the next event. In the following I will describe this process
in more detail.

4.5.1 Preprocessing

The first step is to extract the note onset times from the MIDI and to compute the correspond-
ing chroma vectors from the synthesized audio file. Then half-wave rectified first order differ-
ences between each chroma vector and the chroma vector of the forgoing frame are built. The
vectors are normalized to sum up to 1. In the following I will refer to the vector corresponding
to the current event as Bs.

4.5.2 The Matching Process

For each audio frame a chroma vector A is calculated. As for the audio representing the score,
a second vector Bl is built using the half-wave rectified first order difference. Both vectors are
normalized to sum up to 1.

24

4 The Automatic Page-Turner

The onset value OV should be a measure of how likely the current audio frame of the live
input represents a note onset. The vectors A of the current and of the last audio frame are
taken and the positive spectral differences are summed up. A maximum of 0.5 is used and the
value is taken times 2 to ensure the value lies between 0 and 1.

The similarity value SV should represent how similar the current audio frame of the live
input and the audio frame corresponding to the onset of the event in the audio file representing
the score are. The Euclidean distance between Bl and Bs is calculated and normalized by a
logarithm of the sum of both vectors. Values under 0.2 are very rare, so SV is lowered by 0.2
and 0 is set as the minimum and 0.5 is set as the maximum value. Then SV is taken times 2
to ensure the value lies between 0 and 1. As corresponding frames should have a high onset
value and a high similarity value, SV is subtracted from 1.

The distance DS in frames between the happening of the event according to the MIDI file
and the score-coordinate of the current point of the forward path is of course easily calculated
by subtracting the path-coordinate from the MIDI-coordinate.

Based on OV , SV and DS a function can be described which accepts or rejects the current
frame as the awaited event:

OV ∗OVw +SV ∗SVw
√

30−DS

48−DS∗4

If the value of the formula is greater than 1 the current frame is accepted, otherwise it is
rejected.

OVw and SVw are weights which should sum up to 1. I had the best results setting OVw to
0.75 and SVw to 0.25.

Of course in the denominator other formulas based on DS are possible. The important
thing is that when we are – according to the forward path – still far away from the event the
current frame should only be accepted if the algorithm is really certain. On the other hand
when according to the forward path the event already happened, the algorithm should accept
a frame even with low similarity.

After accepting a frame of the live input as the current event according to the MIDI the
algorithm of course starts searching for the next event.

This search is only used if, according to the forward path, the current event is not more than
15 frames in the future and not more than 10 frames in the past. If it is too far in the future
the search is simply skipped and if it is too far in the past the current frame is accepted as the
event even with no similarity at all. By doing so it is impossible for the algorithm to get lost –
as long as the forward path does not get lost.

As the algorithm got confused when many onsets occurred in a short time this extension is
only used if there are more than 15 frames between the current and the previous onset.

25

4 The Automatic Page-Turner

4.6 Summary

This section presented both the hardware and the software of the automatic page-turner.
An interface board switching a relay and connected to the PC via USB is used to control

the page-turner.
The software is based on Simon Dixon’s online DTW algorithm. The following improve-

ments were proposed:

Parameter Optimizations: The weights in the recursion calculating the path cost are changed
towards cheaper diagonal steps. This enables the change of the local constraints towards
more freedom for the path calculation and furthermore to start the path calculation ear-
lier.

Backtracking Strategy: By calculating a new forward path starting in a point of a smoothed
backward path – which is usually nearer to the optimal alignment – after every 2 pro-
cessed frames, the algorithm is given the possibilities to wait for the musician and to
jump forward in the score which was strongly constrained in the original algorithm.

Explicit Search for Onsets: As score information is available via the MIDI file it is natural
to explicitly incorporate this information into the matching process. From now on the
calculated path is only used as an approximate solution and a search for onsets is started
based on an onset detection function, the similarity between score and performance and
the distance to the forward path.

Multi-Matcher Strategy: Changes of the structure of the piece are impossible to catch for the
original algorithm as the search window (the width of the “adaptive diagonal”) is very
limited. By using multiple instances of the matching algorithm on different parts of the
piece and trusting the one which produces the least error such changes may be detected.

In the next chapter, these improvements will be evaluated thoroughly.

26

5 Evaluation of the Automatic Page-Turner

As for an evaluation a reference alignment is needed, results from offline-tests are presented.
The results are the same as for the online alignment, only a small latency would occur.

Exact alignments for piano music are very rare, but I was allowed to use data from the
ÖFAI1 collected from the Boesendorfer SE290 grand piano. This piano measures precisely
the time and the velocity of the hammers striking the strings.

The described algorithms were tested on 2 sets of piano recordings [Goebl, 1999]:

• Etude in E major, Op. 10, no. 3, bars 1–21 (40.5 beats in total) by Frederic Chopin
played by 22 different pianists

• Ballade Op. 38, bars 1–45 (274 beats in total) by Frederic Chopin played by 22 different
pianists

For the scores of the pieces see figures 5.1 and 5.2
The etude performances range from 70.1 to 94.4 seconds duration and the ballade perfor-

mances range from 112.2 to 151.5 seconds.
For each piece of music the performances were aligned to an audio file generated from a

MIDI file by the timidity++ software synthesizer. The MIDI files were generated directly from
the score with constant tempo.

There were 5 different scenarios which were tested independently:

• The pianist performs as described by the score

• The pianist makes errors:

– he/she leaves out bars

– he/she plays additional bars

– he/she plays false bars

– “amateur pianist”: errors like leaving out notes, adding notes and playing false
notes are mixed.

Of course scenarios 2–4 are very unlikely to happen, no pianist e.g. plays false notes for a
whole bar. These were just evaluated to find out how fast the algorithm recovers after really

1The Austrian Research Institute for Artificial Intelligence

27

5 Evaluation of the Automatic Page-Turner

Figure 5.1: Etude in E major, Op. 10, no. 3, bars 1–21 (Source: http://www.free-scores.com/)

large errors. Much more common is a mix of added, left out and changed notes as in scenario
5.

As it is not possible to alter the performance for these tests the MIDI files are changed. For
the case of leaving out notes, notes are repeated in the MIDI, for playing additional notes, notes
are deleted from the MIDI and for playing false notes, notes are replaced by an augmented
fourth. The augmented fourth is also known as tritone, often used as the main interval of
dissonance, and was used to change the single notes as much as possible. A comparison
between the results of my implementation and the implementation of Simon Dixon will be
presented.

The described scenarios are tested with the Single Matcher. Additionally the Multi Matcher

28

5 Evaluation of the Automatic Page-Turner

Figure 5.2: Ballade Op. 38, bars 1–45 (Source: http://www.free-scores.com/)

29

5 Evaluation of the Automatic Page-Turner

is tested regarding the recognition of additional repetitions and left out repetitions.
Furthermore the variability of the performance of the score following algorithm between

different performances of the same piece of music will be evaluated.
For all scenarios all 22 performances of both pieces were used. For scenarios where the

MIDI files were changed, the performance of the algorithm was evaluated multiple times for
changes on several positions in the score to get more reliable results. More than 3500 test cases
were computed for the evaluation using both my implementation and Dixon’s implementation.
As most of the test cases were aligned with 3 different algorithms, in total more than 10000
alignments were computed.

Of course the synthesizer and especially the soundfont influences the stability and the accu-
racy of the alignments. All MIDI files were synthesized using timidity++2 and the grand piano
soundfont from the freepats project3. One should not overrate the role of the soundfont. Tests
showed that even with lower quality soundfonts the alignments are still good. Out of curiosity
I tried other instruments than a piano and even with a font “Choir Aahs” the alignment was
reasonable with a mean error of about 0.35 seconds on the etude.

The alignments themselves were evaluated as follows. First for each chord the average
onset time was calculated. Then the corresponding chords in the two performances were
aligned according to the symbolic data. The result was a set of points through which the path
should pass. Now I used 2 different error functions to calculate the error for each point. The
first one was the one used by Dixon in [Dixon, 2005] which calculated the Manhattan Distance
between the note and the nearest point on the time warping path. This is not very meaningful
in the application of an automatic page-turner. More meaningful is a function which computes
the timespan between the supposed happening of an event and the real happening. So simply
for an event e with coordinates (ue,ve) the distance between ue and the point where the path
hits the row ve is calculated.

In the following, I will refer to Simon Dixon’s online DTW algorithm as SODTW, my new
implementation as AODTW and the implementation which incorporates the MIDI information
into the matching process as AOODTW. As I will evaluate the implementations using both
evaluation functions, I will use the abbreviation MDE for the evaluation function based on the
Manhattan Distance and EDE for the function based on the timespan between the supposed
and the real happening of an onset. If not mentioned otherwise, EDE is used.

The 2 pieces by Chopin are simply referred to as etude and ballade. The etude is in 2/4
time and the ballade in 6/8 time which is important to follow the tables as the recovery time
is given in beats. For instance, in a piece in 6/8 time, a bar contains 6 beats with an inter-beat
interval of 1/8 note.

2http://timidity.sourceforge.net/ (last visited: February 7, 2008)
3http://freepats.opensrc.org/ (last visited: February 7, 2008)

30

5 Evaluation of the Automatic Page-Turner

5.1 The Single Matcher

5.1.1 Scenario 1: “Normal” performance

The first notes

The new online DTW algorithm (AODTW) showed excellent results on the test data and
outperformed Simon Dixon’s algorithm (SODTW). One of the problems of SODTW is that at
the beginning – when the first 500×500 frames of the matrix are calculated – the path follows
simply the diagonal of this matrix. If the tempo of the live performance is significantly higher
or lower than the tempo of the synthesized audio file, this of course results in a large error. Of
course it was easy to change that. In AODTW the normal path calculation is started after the
first 50×50 frames were calculated. Despite the small amount of data the path already proves
to be quite stable and accurate (see tables 5.1 and 5.2).

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 0.52 0.08 0.58 0.15 0.11
Largest Error 2.18 0.86 2.46 1.22 1.14
1. Quartile 0.10 0.02 0.14 0.02 0.02
2. Quartile 0.36 0.04 0.42 0.08 0.02
3. Quartile 0.82 0.10 0.90 0.20 0.12

Table 5.1: Comparison of the performance on beats -0.5–4.5 of the etude (error in seconds)

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 0.26 0.04 0.30 0.09 0.06
Largest Error 1.30 0.54 1.30 0.96 0.70
1. Quartile 0.04 0.00 0.06 0.02 0.02
2. Quartile 0.12 0.02 0.18 0.04 0.02
3. Quartile 0.44 0.06 0.48 0.12 0.04

Table 5.2: Comparison of the performance on beats -4.0–23.0 of the ballade (error in seconds)

Furthermore, the explicit use of the MIDI data in AOODTW showed excellent results on
the first notes and outclassed the performance of AODTW.

31

5 Evaluation of the Automatic Page-Turner

Normal alignment

As the last notes in this test set are in a way special too, to evaluate the general performance
I will concentrate first on the middle parts of the etude and the ballade. In table 5.3 the
performance on the beats 4.75–38.25 of the etude and in table 5.4 the performance on the
beats 24.0–254.0 of the ballade can be seen.

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 0.09 0.04 0.16 0.08 0.06
Largest Error 1.60 0.78 2.76 1.76 2.12
1. Quartile 0.02 0.02 0.02 0.02 0.02
2. Quartile 0.04 0.02 0.06 0.04 0.02
3. Quartile 0.08 0.04 0.18 0.10 0.04

Table 5.3: Comparison of the performance on beats 4.75–38.25 of the etude (error in seconds)

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 0.10 0.04 0.17 0.08 0.05
Largest Error 1.86 1.26 2.54 1.74 1.78
1. Quartile 0.02 0.02 0.04 0.02 0.02
2. Quartile 0.04 0.02 0.08 0.04 0.02
3. Quartile 0.10 0.06 0.20 0.10 0.04

Table 5.4: Comparison of the performance on beats 24.0–254.0 of the ballade (error in sec-
onds)

Once again there was a significant gain in both accuracy and stability. The main reason for
this is the simple adjustment of the weights. As due to the reweighting in doubt the diagonal
is preferred now, the path can not go wrong too far in a single direction. In SODTW this
sometimes happened between notes when the path computation was “waiting” for new onset
data.

Additionally the backtracking algorithm improved the stability, so I could give more free-
dom to the path algorithm. While in SODTW the path was constrained to expand at most 3
times into one direction in a row, in AODTW this variable is set to 6. This allows the algorithm
to find back to the optimal path faster after errors. Of course during a “normal” performance
without big errors the effect of this is very small.

32

5 Evaluation of the Automatic Page-Turner

The last notes

The last notes of a of this test set are problematic, especially of the ballade (see table 5.5 and
table 5.6).

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 0.27 0.15 0.42 0.28 0.19
Largest Error 2.42 1.02 3.06 2.02 1.92
1. Quartile 0.04 0.04 0.08 0.04 0.04
2. Quartile 0.12 0.06 0.20 0.10 0.06
3. Quartile 0.34 0.16 0.60 0.42 0.22

Table 5.5: Comparison of the performance on beats 38.0–40.0 of the etude (error in seconds)

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 1.83 1.41 2.94 2.13 2.02
Largest Error 4.52 4.12 9.82 7.56 7.24
1. Quartile 0.36 0.04 0.62 0.12 0.04
2. Quartile 1.94 0.52 2.46 1.60 1.58
3. Quartile 3.24 3.20 5.30 4.18 4.14

Table 5.6: Comparison of the performance on beats 255.0-268.0 of the ballade (error in sec-
onds)

The excerpt of the ballade and the etude end exactly at a phrase boundary. In music the term
“phrase”, adopted from linguistc syntax, describes a section of music which is self contained
and coherent over a medium time scale. In the case of the ballade at the end of the excerpt a
phrase ends with a piano and pianissimo. The next phrase would start with a fortissimo an be
totally different in tempo, figures and motifs.

Phrase boundaries are the most problematic parts in score following because there are very
large variations in tempo and discontinuities in timing. Enormous errors may occur (see espe-
cially table 5.6) but if the performance continues after such a phrase boundary the algorithm
recovers easily. Nonetheless if a page-turning mark happens to be in the area of a phrase
boundary this could cause a delayed or a premature page-turning, which is as experiments
showed more likely. Of course improvements on handling those boundaries should be one of
the main subjects of future work.

33

5 Evaluation of the Automatic Page-Turner

Overall performance

The overall performance on the two pieces is shown in tables 5.7 and 5.8. As can be seen
AODTW and AOODTW perform better than SODTW in every case.

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 0.15 0.05 0.23 0.10 0.07
Largest Error 2.42 1.02 3.06 2.02 2.12
1. Quartile 0.02 0.02 0.02 0.02 0.02
2. Quartile 0.04 0.02 0.08 0.04 0.02
3. Quartile 0.14 0.06 0.26 0.12 0.04

Table 5.7: Overall performance on the etude (error in seconds)

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Mean Error 0.20 0.11 0.32 0.19 0.15
Largest Error 4.52 4.12 9.82 7.56 7.24
1. Quartile 0.02 0.02 0.04 0.02 0.02
2. Quartile 0.06 0.02 0.08 0.04 0.02
3. Quartile 0.14 0.06 0.26 0.10 0.06

Table 5.8: Overall performance on the ballade (error in seconds)

Tables 5.9 and 5.10 show the performance on the 2 pieces as cumulative frequencies. In the
first row the frequency of notes which are aligned with no error is shown, in the second row
the frequency of notes which are aligned with an error smaller or equal 0.02 seconds is shown,
and so on.

The incorporation of the MIDI data into the matching process proved to be very useful.
Especially notes which were aligned with errors between 0.04 and 0.10 seconds by AODTW
benefited from AOODTW (see tables 5.9 and 5.10. Only in very rare cases AOODTW showed
larger errors than AODTW (e.g. the largest error shown in table 5.7).

Figures 5.3 and 5.4 show the error on every single aligned note by SODTW, AODTW and
AOODTW. The direct comparison vividly shows the effect of the earlier start of the path
computation and the improved alignment of AODTW and AOODTW. Once again witness the
problems at the end of the excerpt of the ballade.

As AOODTW uses AODTW as an approximate solution it is not able too correct large

34

5 Evaluation of the Automatic Page-Turner

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Error == 0.00 sec 0.15 0.21 0.10 0.16 0.16
Error <= 0.02 sec 0.37 0.54 0.27 0.40 0.53
Error <= 0.04 sec 0.53 0.73 0.39 0.56 0.79
Error <= 0.06 sec 0.62 0.83 0.46 0.65 0.84
Error <= 0.10 sec 0.72 0.81 0.56 0.75 0.87
Error <= 0.20 sec 0.81 0.97 0.70 0.87 0.92
Error <= 0.50 sec 0.91 0.99 0.87 0.97 0.98
Error <= 1.00 sec 0.97 1.00 0.96 0.99 1.00

Table 5.9: Overall performance on the etude given as cumulative frequencies

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Error == 0.00 sec 0.13 0.21 0.08 0.13 0.18
Error <= 0.02 sec 0.34 0.52 0.23 0.36 0.51
Error <= 0.04 sec 0.49 0.72 0.35 0.52 0.74
Error <= 0.06 sec 0.58 0.83 0.44 0.62 0.84
Error <= 0.10 sec 0.69 0.92 0.55 0.75 0.89
Error <= 0.20 sec 0.82 0.96 0.70 0.88 0.93
Error <= 0.50 sec 0.91 0.97 0.86 0.95 0.96
Error <= 1.00 sec 0.96 0.97 0.95 0.97 0.97

Table 5.10: Overall performance on the ballade given as cumulative frequencies

errors of the path calculation. But, as already mentioned above, one can witness again that in
correcting smaller errors AOODTW is very effective.

Furthermore, larger errors are very rare in the alignments of AODTW and AOODTW, and
if they occur, they are corrected very fast.

According to these results the task of constructing an automatic page-turner could be seen
as fulfilled – assuming correct play by the pianists as in the test data. Errors over 0.2 seconds
are very rare and this should be sufficient for the domain of the page-turner. Of course one
should not forget that there are still big problems at phrase boundaries.

35

5 Evaluation of the Automatic Page-Turner

Figure 5.3: Comparison between AOODTW (left), AODTW (center) and SODTW (right),
showing the error per note onset of the alignments of the 22 performances of the
etude. The error is symbolized by the grey-level where white means no error and
black an error higher or equal 1 second.

36

5 Evaluation of the Automatic Page-Turner

Figure 5.4: Comparison between AOODTW (left), AODTW (center) and SODTW (right),
showing the error per note onset of the alignments of the 22 performances of the
ballade. The error is symbolized by the grey-level where white means no error and
black an error higher or equal 1 second.

37

5 Evaluation of the Automatic Page-Turner

Variability between different performances of the same piece

A score following algorithm should perform equally well on different performance styles. To
evaluate this I once again had a look at the alignments for the 22 performances of the etude
and the ballade.

As can be seen in figure 5.5 the presented extensions to Dixon’s algorithm improved not
only the accuracy but also decreased the variability between different performances. The low
variability can be witnessed in figures 5.3 and 5.4 too.

Figure 5.5: Variability between 22 different performances of the etude (left) and the ballade
(right) as boxplot of the mean errors of the alignments. The lowest line represents
the alignment with the minimum mean error, the lower border of the box the first
quartile, the line in the box the median, the upper border of the box the third
quartile and the upper line the maximum mean error.

The higher error on the ballade is mainly caused by the problems at the phrase boundary
(see chapter 5.1.1).

What’s striking is that even the worst performances of AOODTW are still nearly as good
as the best of SODTW.

Furthermore, there was no performance which was better aligned by SODTW than by
AODTW or which was better aligned by AODTW than by AOODTW.

38

5 Evaluation of the Automatic Page-Turner

Evaluation of the implemented improvements

Now I will have a closer look at the implemented improvements. Again the algorithms
SODTW, AODTW and AOODTW are evaluated where SODTW serves as baseline. For both
AODTW and AOODTW 3 different configurations are presented.

SODTW AODTW AOODTW

A B C A B C

Error == 0.00 sec 0.10 0.12 0.17 0.16 0.14 0.16 0.16
Error <= 0.02 sec 0.27 0.29 0.43 0.40 0.46 0.52 0.53
Error <= 0.04 sec 0.39 0.42 0.58 0.56 0.69 0.79 0.79
Error <= 0.06 sec 0.46 0.51 0.66 0.65 0.74 0.84 0.84
Error <= 0.10 sec 0.56 0.62 0.75 0.76 0.77 0.87 0.87
Error <= 0.20 sec 0.70 0.76 0.87 0.87 0.83 0.92 0.92
Error <= 0.50 sec 0.87 0.93 0.97 0.97 0.94 0.98 0.98
Error <= 1.00 sec 0.96 0.99 0.99 0.99 0.99 0.99 1.00

Table 5.11: Comparison between different implementations (etude)

SODTW AODTW AOODTW

A B C A B C

Error == 0.00 sec 0.08 0.08 0.13 0.13 0.14 0.17 0.18
Error <= 0.02 sec 0.23 0.24 0.37 0.36 0.40 0.50 0.51
Error <= 0.04 sec 0.35 0.36 0.53 0.52 0.59 0.73 0.74
Error <= 0.06 sec 0.44 0.45 0.63 0.62 0.67 0.83 0.84
Error <= 0.10 sec 0.55 0.58 0.75 0.75 0.72 0.88 0.89
Error <= 0.20 sec 0.70 0.72 0.87 0.88 0.78 0.92 0.93
Error <= 0.50 sec 0.86 0.87 0.95 0.95 0.88 0.96 0.96
Error <= 1.00 sec 0.95 0.94 0.97 0.97 0.94 0.97 0.97

Table 5.12: Comparison between different implementations (ballade)

• Configuration A: Only backtracking is used

• Configuration B: Only the reweight towards cheaper diagonal steps is used

• Configuration C: Both improvements are used (this is the standard configuration as used
in all other experiments)

39

5 Evaluation of the Automatic Page-Turner

As can be seen in tables 5.11 and 5.12 the real source for the improved performance regard-
ing accuracy is the change of the weights to make diagonal steps cheaper while there is little
effect of the backtracking compared to SODTW. Sometimes using only reweighting is even
better than using both improvements.

Still the backtracking is generally useful regarding stability as can be seen later.

40

5 Evaluation of the Automatic Page-Turner

5.1.2 Scenario 2: Bars are left out

For this scenario notes in the midi file were added by repeating bars. So it appears that in the
performance the pianist removed some notes. This was done for 1, 2 and 3 consecutive bars,
for every 3rd bar (bar sequence) of the etude (between bars 6 and 15) and every 5th bar (bar
sequence) of the ballade (between bars 10 and 35), and evaluated for all 22 performances. In
total there were 264 runs for the etude and 396 runs for the ballade. The recovery time in beats
is calculated as the time in beats between the first correct note after this added sequence and
the first note which is aligned with an error lower than 0.2 seconds.

An example of a typical path in this scenario is shown in figure 5.6

Figure 5.6: An example of a path where 1 bar is left out by the pianist. The red crosses show
the correct onsets. Live performance on the x-axis, score representation on the
y-axis. The white path is calculated by AODTW, the blue path by SODTW.

As can be seen in table 5.13 and table 5.14 the performance of my implementation with
both “improvements” is slightly worse than the performance of Dixon’s algorithm.

41

5 Evaluation of the Automatic Page-Turner

1 Bar 2 Bars 3 Bars

SODTW AODTW SODTW AODTW SODTW AODTW

Rec. == 0 beats 0 0 0 0 0 0
Rec. <= 1 beats 0.03 0 0 0 0 0
Rec. <= 2 beats 0.41 0.35 0.01 0 0 0
Rec. <= 3 beats 0.86 0.94 0.15 0.03 0 0
Rec. <= 4 beats 1 0.98 0.26 0.19 0 0
Rec. <= 5 beats 1 1 0.45 0.47 0.05 0.05
Rec. <= 6 beats 1 1 0.59 0.61 0.25 0.15
Rec. <= 7 beats 1 1 0.70 0.77 0.35 0.19
Rec. <= 8 beats 1 1 0.75 0.84 0.40 0.29
Rec. <= 9 beats 1 1 0.83 0.94 0.53 0.36
Rec. <= 10 beats 1 1 0.83 0.96 0.59 0.54
Rec. <= 11 beats 1 1 0.83 0.96 0.75 0.58
Rec. <= 12 beats 1 1 0.83 0.97 0.76 0.6
Rec. <= 13 beats 1 1 0.83 0.97 0.77 0.63
Rec. <= 14 beats 1 1 0.83 0.97 0.77 0.64
Rec. <= 15 beats 1 1 0.83 0.97 0.77 0.66

Rec. <= 25 beats 1 1 0.83 0.97 0.80 0.70

Table 5.13: Recovery after n beats (etude)

The reason for this is that my implementation heavily relies on the backward path which
of course shows a slightly slower reaction than the pure forward path. But as can be seen in
the next two sections this is a desired property because it is much more expensive to correct
a path which is ahead of the performance than a path which is behind regarding the score.
When a path is ahead the error can only be corrected by “waiting” for the musician, while a
path which is behind can be corrected by jumping forward in the score representation.

So the slightly bigger errors in this scenario caused by using backtracking are more than
balanced by the better performance in scenario 3 and 4.

42

5 Evaluation of the Automatic Page-Turner

1 Bar 2 Bars 3 Bars

SODTW AODTW SODTW AODTW SODTW AODTW

Rec. == 0 beats 0.01 0 0 0 0 0
Rec. <= 1 beats 0.01 0 0 0 0 0
Rec. <= 2 beats 0.01 0 0 0 0 0
Rec. <= 3 beats 0.03 0 0 0 0 0
Rec. <= 4 beats 0.03 0 0 0 0 0
Rec. <= 5 beats 0.10 0.04 0 0 0 0
Rec. <= 6 beats 0.23 0.12 0.03 0 0 0
Rec. <= 7 beats 0.23 0.12 0.03 0 0 0
Rec. <= 8 beats 0.52 0.41 0.10 0.03 0 0
Rec. <= 9 beats 0.62 0.54 0.20 0.12 0 0
Rec. <= 10 beats 0.62 0.54 0.20 0.12 0 0
Rec. <= 11 beats 0.74 0.66 0.24 0.23 0 0
Rec. <= 12 beats 0.79 0.70 0.29 0.29 0.01 0
Rec. <= 13 beats 0.79 0.70 0.29 0.29 0.01 0
Rec. <= 14 beats 0.88 0.80 0.40 0.44 0.06 0
Rec. <= 15 beats 0.94 0.88 0.55 0.53 0.08 0
Rec. <= 16 beats 0.94 0.88 0.55 0.53 0.08 0
Rec. <= 17 beats 0.96 0.93 0.67 0.68 0.16 0.02
Rec. <= 18 beats 0.99 0.98 0.73 0.82 0.19 0.05
Rec. <= 19 beats 0.99 0.98 0.73 0.82 0.19 0.05
Rec. <= 20 beats 1 0.98 0.80 0.88 0.32 0.14
Rec. <= 21 beats 1 0.99 0.85 0.94 0.41 0.23
Rec. <= 22 beats 1 0.99 0.85 0.94 0.41 0.23
Rec. <= 23 beats 1 0.99 0.90 0.94 0.53 0.36
Rec. <= 24 beats 1 1 0.90 0.99 0.58 0.40
Rec. <= 25 beats 1 1 0.91 0.99 0.58 0.40
Rec. <= 26 beats 1 1 0.95 0.99 0.66 0.49
Rec. <= 27 beats 1 1 0.98 0.99 0.71 0.55
Rec. <= 28 beats 1 1 0.98 0.99 0.71 0.55
Rec. <= 29 beats 1 1 0.99 0.99 0.77 0.62
Rec. <= 30 beats 1 1 0.99 0.99 0.83 0.69

Rec. <= 40 beats 1 1 1 0.99 0.98 0.94
Rec. <= 50 beats 1 1 1 1 1 0.98

Table 5.14: Recovery after n beats (ballade)

43

5 Evaluation of the Automatic Page-Turner

5.1.3 Scenario 3: Additional bars are played

For this scenario notes in the midi file were removed. So it appears that in the performance
the pianist added some additional notes. This was done for 1, 2 and 3 consecutive bars, for
every 3rd bar (bar sequence) of the etude (between bars 6 and 15) and every 5th bar (bar
sequence) of the ballade (between bars 10 and 35), and evaluated for all 22 performances. In
total there were 264 runs for the etude and 396 runs for the ballade. The recovery time in
beats is calculated as the time in beats between the first correct note and the first note which
is aligned with an error lower than 0.2 seconds.

An example of a typical path in this scenario is shown in figure 5.7

Figure 5.7: An example of a path where 1 bar is added by the pianist. The red crosses show
the correct onsets. Live performance on the x-axis, score representation on the
y-axis. The white path is calculated by AODTW, the blue path by SODTW.

44

5 Evaluation of the Automatic Page-Turner

As already mentioned above my implementation outclasses Dixon’s in this scenario by far
(see tables 5.15 and 5.16). There are 2 reasons for this:

• By using the backward path the calculation is generally more cautious. This means that
the algorithm avoids big jumps of the path unless it is really certain.

• If the backward path ends below the current score coordinate, the recovery – the “wait-
ing” – is a real staying at the current score coordinate (witness the straight horizontal
line in 5.7), while in Dixon’s implementation the score coordinate is still expanded ac-
cording to the constraints.

1 Bar 2 Bars 3 Bars

SODTW AODTW SODTW AODTW SODTW AODTW

Rec. == 0 beats 0 0 0 0 0 0
Rec. <= 1 beats 0 0 0 0 0 0
Rec. <= 2 beats 0.01 0.04 0 0 0 0
Rec. <= 3 beats 0.04 0.20 0 0 0 0
Rec. <= 4 beats 0.25 0.53 0 0 0 0
Rec. <= 5 beats 0.55 0.98 0 0.05 0 0
Rec. <= 6 beats 0.74 1 0 0.33 0 0
Rec. <= 7 beats 0.90 1 0.08 0.56 0 0
Rec. <= 8 beats 0.95 1 0.19 0.61 0.01 0
Rec. <= 9 beats 0.99 1 0.34 0.61 0.01 0.02
Rec. <= 10 beats 1 1 0.39 0.63 0.04 0.03
Rec. <= 11 beats 1 1 0.45 0.65 0.05 0.06
Rec. <= 12 beats 1 1 0.46 0.68 0.05 0.09
Rec. <= 13 beats 1 1 0.49 0.68 0.06 0.15
Rec. <= 14 beats 1 1 0.50 0.69 0.06 0.15
Rec. <= 15 beats 1 1 0.52 0.69 0.08 0.15
Rec. <= 16 beats 1 1 0.53 0.69 0.08 0.16
Rec. <= 17 beats 1 1 0.53 0.69 0.09 0.18
Rec. <= 18 beats 1 1 0.53 0.69 0.10 0.21
Rec. <= 19 beats 1 1 0.53 0.69 0.11 0.21
Rec. <= 20 beats 1 1 0.53 0.69 0.13 0.21

Rec. <= 25 beats 1 1 0.53 0.69 0.15 0.26

Rec. <= 30 beats 1 1 0.54 0.69 0.17 0.26

Table 5.15: Recovery after n beats (etude)

45

5 Evaluation of the Automatic Page-Turner

1 Bar 2 Bars 3 Bars

SODTW AODTW SODTW AODTW SODTW AODTW

Rec. == 0 beats 0 0 0 0 0 0
Rec. <= 1 beats 0 0 0 0 0 0
Rec. <= 2 beats 0 0 0 0 0 0
Rec. <= 3 beats 0 0 0 0 0 0
Rec. <= 4 beats 0 0 0 0 0 0
Rec. <= 5 beats 0 0 0 0 0 0
Rec. <= 6 beats 0 0 0 0 0 0
Rec. <= 7 beats 0 0 0 0 0 0
Rec. <= 8 beats 0.05 0.09 0 0 0 0
Rec. <= 9 beats 0.11 0.18 0 0.01 0 0
Rec. <= 10 beats 0.11 0.18 0 0.01 0 0
Rec. <= 11 beats 0.26 0.42 0.01 0.03 0 0
Rec. <= 12 beats 0.33 0.50 0.02 0.10 0 0
Rec. <= 13 beats 0.33 0.50 0.02 0.10 0 0
Rec. <= 14 beats 0.46 0.62 0.05 0.13 0 0
Rec. <= 15 beats 0.53 0.72 0.06 0.23 0 0
Rec. <= 16 beats 0.53 0.72 0.06 0.23 0 0
Rec. <= 17 beats 0.62 0.80 0.18 0.42 0 0.01
Rec. <= 18 beats 0.74 0.91 0.27 0.56 0 0.03
Rec. <= 19 beats 0.74 0.91 0.27 0.56 0 0.03
Rec. <= 20 beats 0.81 0.94 0.42 0.79 0 0.09
Rec. <= 21 beats 0.86 0.97 0.51 0.86 0.01 0.10
Rec. <= 22 beats 0.86 0.97 0.51 0.86 0.01 0.10
Rec. <= 23 beats 0.88 0.98 0.64 0.94 0.03 0.18
Rec. <= 24 beats 0.91 1 0.71 0.94 0.05 0.24
Rec. <= 25 beats 0.91 1 0.71 0.94 0.05 0.24
Rec. <= 26 beats 0.94 1 0.79 0.99 0.11 0.32
Rec. <= 27 beats 0.97 1 0.82 0.99 0.16 0.40
Rec. <= 28 beats 0.97 1 0.82 0.99 0.16 0.40
Rec. <= 29 beats 0.98 1 0.86 0.99 0.26 0.55
Rec. <= 30 beats 0.98 1 0.90 0.99 0.30 0.62

Rec. <= 40 beats 0.99 1 0.98 1 0.62 0.99
Rec. <= 50 beats 1 1 0.98 1 0.75 0.99

Table 5.16: Recovery after n beats (ballade)

46

5 Evaluation of the Automatic Page-Turner

5.1.4 Scenario 4: False notes are played

This scenario was simulated by replacing all notes in a whole bar in the midi file by a aug-
mented fourth. This was done for 1, 2 and 3 consecutive bars, for every 3rd bar (bar sequence)
of the etude (between bars 6 and 15) and every 5th bar (bar sequence) of the ballade (between
bars 10 and 35), and evaluated for all 22 performances. In total there were 264 runs for the
etude and 396 runs for the ballade. The calculation of the recovery time in beats starts with
the first correctly played note after these bars.

Of course this scenario is very unlikely to happen. Nonetheless, it was evaluated to find out
how fast the algorithm recovers after large errors. Small errors like leaving out one single note
did not pose a problem at all to the algorithms.

An example of a typical path in this scenario is shown in figure 5.8

Figure 5.8: An example of a path where 1 bar is changed by the pianist. The red crosses show
the correct onsets. Live performance on the x-axis, score representation on the
y-axis. The white path is calculated by AODTW, the blue path by SODTW.

47

5 Evaluation of the Automatic Page-Turner

1 Bar 2 Bars 3 Bars

SODTW AODTW SODTW AODTW SODTW AODTW

Rec. == 0 beats 0.05 0.09 0 0.36 0.10 0.42
Rec. <= 1 beats 0.10 0.53 0.19 0.82 0.14 0.66
Rec. <= 2 beats 0.27 0.67 0.28 0.90 0.20 0.74
Rec. <= 3 beats 0.47 0.89 0.36 0.91 0.31 0.88
Rec. <= 4 beats 0.55 0.93 0.42 0.97 0.39 0.91
Rec. <= 5 beats 0.61 0.94 0.45 0.97 0.51 0.95
Rec. <= 6 beats 0.69 0.99 0.51 0.97 0.57 0.97
Rec. <= 7 beats 0.76 0.99 0.63 0.99 0.57 0.97
Rec. <= 8 beats 0.81 0.99 0.65 0.99 0.57 0.97
Rec. <= 9 beats 0.89 1 0.65 0.99 0.58 0.97
Rec. <= 10 beats 0.89 1 0.65 0.99 0.61 0.97
Rec. <= 11 beats 0.89 1 0.65 0.99 0.66 0.97
Rec. <= 12 beats 0.89 1 0.68 0.99 0.66 0.97
Rec. <= 13 beats 0.90 1 0.70 0.99 0.66 0.97
Rec. <= 14 beats 0.91 1 0.70 0.99 0.66 0.97
Rec. <= 15 beats 0.92 1 0.70 0.99 0.67 0.97

Rec. <= 20 beats 0.92 1 0.70 0.99 0.67 0.97

Table 5.17: Recovery after n beats (etude)

I originally planned to evaluate this scenario as scenarios 2 and 3 – counting the beats until
the algorithm recovered from the error. But due to the distorted matrix huge errors often
occur some onsets after the incorrect notes. For this reason I accepted the path calculation as
“recovered” if the current onset is aligned with an error lower or equal 0.2 seconds and the
next 10 onsets are aligned with an error not higher than 0.4 seconds each.

This error occurs if the algorithm for a short time finds a “better” alignment by matching
the incorrectly played notes to different notes in the score and recovers some onsets later.
Interestingly this effect more often happend with the ballade than with the etude and more
likely happens for the change of 1 bar – which explains the values in the first rows of table
5.17, where the algorithm sometimes recovers faster after the change of 2 and 3 bars. But in
general larger errors by the musician of course imply a longer recovery time for the algorithms.

Again AODTW shows the better performance (see tables 5.17 and 5.18). This is caused
by both the use of backtracking and changing of the weights. Both make the path calculation
more cautious and the path lies nearer to the diagonal while SODTW produces a very unstable
path which sometimes leads to hard to correct errors.

At smaller errors the speed of the recovery is the main difference between SODTW and

48

5 Evaluation of the Automatic Page-Turner

1 Bar 2 Bars 3 Bars

SODTW AODTW SODTW AODTW SODTW AODTW

Rec. == 0 beats 0.10 0.55 0.05 0.43 0.02 0.18
Rec. <= 1 beats 0.10 0.55 0.05 0.43 0.02 0.18
Rec. <= 2 beats 0.19 0.69 0.11 0.58 0.03 0.31
Rec. <= 3 beats 0.23 0.71 0.18 0.66 0.07 0.43
Rec. <= 4 beats 0.23 0.71 0.18 0.66 0.07 0.43
Rec. <= 5 beats 0.33 0.78 0.25 0.75 0.17 0.55
Rec. <= 6 beats 0.34 0.83 0.30 0.79 0.24 0.61
Rec. <= 7 beats 0.34 0.83 0.30 0.79 0.24 0.61
Rec. <= 8 beats 0.36 0.84 0.39 0.81 0.27 0.72
Rec. <= 9 beats 0.42 0.85 0.43 0.83 0.27 0.73
Rec. <= 10 beats 0.42 0.85 0.43 0.83 0.27 0.73
Rec. <= 11 beats 0.44 0.86 0.38 0.85 0.30 0.73
Rec. <= 12 beats 0.47 0.89 0.54 0.85 0.31 0.73
Rec. <= 13 beats 0.47 0.89 0.56 0.85 0.31 0.73
Rec. <= 14 beats 0.52 0.93 0.56 0.89 0.33 0.80
Rec. <= 15 beats 0.58 0.93 0.59 0.89 0.33 0.80
Rec. <= 16 beats 0.58 0.93 0.69 0.89 0.33 0.80
Rec. <= 17 beats 0.62 0.94 0.62 0.89 0.37 0.85
Rec. <= 18 beats 0.67 0.94 0.63 0.89 0.41 0.88
Rec. <= 19 beats 0.67 0.94 0.63 0.89 0.41 0.88
Rec. <= 20 beats 0.67 0.95 0.66 0.90 0.44 0.89

Rec. <= 25 beats 0.70 0.96 0.70 0.95 0.54 0.91

Rec. <= 30 beats 0.75 0.98 0.80 0.95 0.56 0.92

Rec. <= 35 beats 0.83 0.98 0.80 0.96 0.64 0.93

Table 5.18: Recovery after n beats (ballade)

AODTW and AOODTW. But while at larger errors AODTW and AOODTW still recover
most of the time without a problem, SODTW quite often got completely lost.

49

5 Evaluation of the Automatic Page-Turner

5.1.5 Scenario 5: Additions, Deletions and Changes of Notes

Figure 5.9: An example of a path where some notes are added, changed and removed by the
pianist. The red crosses show the correct onsets. Live performance on the x-axis,
score representation on the y-axis. The white path is calculated by AODTW, the
blue path by SODTW.

Now I’m going to look at a more realistic scenario: a pianist who adds, removes or changes
single notes by error. In fact I simulated a very incompetent pianist. The test data was prepared
as follows:

1. Notes were removed with a probability of 10%.

2. The accidental and the note name of the remaining notes were changed randomly with
a probability of 10%.

3. Existing notes were copied somewhere else between the first and the last midi tick with
a probability of 10%. The octave remained unchanged but the accidental and the note
name were changed randomly.

50

5 Evaluation of the Automatic Page-Turner

This was done 20 times to produce faulty representations of the etude and of the ballade.
They were aligned to the 22 performances. In total for each piece 440 alignments were com-
puted.

A typical path for such a faulty performance is shown in figure 5.9.
Of course these alignments (see tables 5.19 and 5.20) are much worse compared to align-

ments of correct performances.

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Error == 0.00 sec 0.06 0.14 0.04 0.09 0.09
Error <= 0.02 sec 0.16 0.35 0.11 0.25 0.34
Error <= 0.04 sec 0.25 0.50 0.17 0.35 0.52
Error <= 0.06 sec 0.31 0.59 0.22 0.42 0.58
Error <= 0.10 sec 0.40 0.70 0.29 0.53 0.62
Error <= 0.20 sec 0.54 0.81 0.43 0.68 0.71
Error <= 0.50 sec 0.76 0.93 0.66 0.86 0.87
Error <= 1.00 sec 0.92 0.99 0.85 0.95 0.96

Table 5.19: Overall performance on the heavily changed etude given as cumulative frequen-
cies (see text)

SODTW

(MDE)

AODTW

(MDE)

SODTW

(EDE)

AODTW

(EDE)

AOODTW

(EDE)

Error == 0.00 sec 0.03 0.08 0.02 0.05 0.07
Error <= 0.02 sec 0.09 0.22 0.06 0.15 0.22
Error <= 0.04 sec 0.14 0.33 0.09 0.23 0.34
Error <= 0.06 sec 0.18 0.42 0.13 0.30 0.41
Error <= 0.10 sec 0.25 0.53 0.18 0.41 0.47
Error <= 0.20 sec 0.37 0.66 0.30 0.57 0.55
Error <= 0.50 sec 0.58 0.84 0.49 0.75 0.72
Error <= 1.00 sec 0.78 0.94 0.68 0.88 0.87

Table 5.20: Overall performance on the heavily changed ballade given as cumulative frequen-
cies (see text)

Nevertheless, they are still reasonable. A closer look at the alignments shows that after
errors the algorithm recovers very fast if the following 2 or more notes are played correctly.
Only if there are many mistakes in a short time the algorithm needs some more correct notes

51

5 Evaluation of the Automatic Page-Turner

to recover. Despite this huge amount of errors the algorithm got never lost.

5.1.6 Summary

As the evaluation of the single matcher shows all proposed extensions improved the perfor-
mance of the algorithm. While the simple reweighting led to a huge gain in accuracy, the use
of a combination of backward and forward paths increased the ability to correct large errors.
Furthermore, the direct use of the MIDI data in a search process for note onsets (AOODTW)
again led to higher accuracy.

Larger alignment errors still occur at phrase boundaries due to the huge variations in tempo
and discontinuities in timing. Still, after phrase boundaries the algorithm recovers easily.
Nonetheless, a solution to this problem should be a topic for future work.

To summarize, the single matcher is a robust score following algorithm which is capable of
controlling the page-turning hardware with the needed accuracy.

52

5 Evaluation of the Automatic Page-Turner

5.2 The Multi Matcher

The multi matcher was tested on edited versions of the ballade and the etude where repetitions
were inserted. To the ballade a repetition starting at bar 10 and lasting 10 bars and to the
etude a repetition starting at bar 5 and lasting 8 bars were added. Again to this data the 22
interpretations were aligned.

The following marksfiles were used for the alignment:

Listing 5.1: Etude

$ d e s c r i p t i o n s t a r t
$Auto−G e n e r a t e d : op10_3_1_a8_5
$ d e s c r i p t i o n s t o p
$ m i d i _ f i l e =[p a t h _ t o _ m i d i] / op10_3_1_a8_5 . mid
$ a u d i o _ f i l e =[p a t h _ t o _ a u d i o] / op10_3_1_a8_5 . wav
$ p a r t s s t a r t
0
5
13
21
$ p a r t s s t o p

Listing 5.2: Ballade

$ d e s c r i p t i o n s t a r t
$Auto−G e n e r a t e d : op38_1_a10_10
$ d e s c r i p t i o n s t o p
$ m i d i _ f i l e =[p a t h _ t o _ m i d i] / op38_1_a10_10 . mid
$ a u d i o _ f i l e =[p a t h _ t o _ a u d i o] / op38_1_a10_10 . wav
$ p a r t s s t a r t
0
10
20
30
$ p a r t s s t o p

So for both performances the same 4 parts were defined.

1. From the start of the piece until the start of the repetition

2. From the start of the repetition until the end of the first repetition

3. From the start of the second repetition to the end of the second repetition

53

5 Evaluation of the Automatic Page-Turner

4. From the end of the second repetition to the end of the piece

As in the performances no repetition is played there are 2 possible correct paths through the
piece: 1-2-4 and 1-3-4. As described in chapter 4.3.2 the decision which matcher to take is
made after 4 bars while ensuring these have a length of at least 10 seconds according to the
base audio file. This means that a full 500×500 cost matrix has been calculated for the newly
started matching instances – as already mentioned the path calculation has already started after
50 frames – which proved enough for stable results. Of course it would have been possible to
delay the decision until one of the matchers reaches the next border of a part or a page-turning
mark.

Using the described strategy, for all 22 alignments of the etude and all 22 alignments of the
ballade the path calculation followed one of the correct paths which gives a success rate of
100%.

5.3 First live tests

During the work on this theses 2 live tests were done (for some impressions see figure 5.10).
One was done with a simple electronic piano, one with a grand piano. The audio signal was
recorded with a single microphone. No preprocessing was done. Both times an advanced
hobby pianist played two pieces of Chopin: The ballade op. 52 in A-flat major and the etude
op. 25, No. 11 in A-minor.

Figure 5.10: Some impressions of the second live test

In both tests everything worked fine and the algorithm showed sufficient results for the
domain of the page-turner. It turned out that the more onsets are played (the faster the piece
is) the better the alignment becomes. So even the very fast etude was aligned perfectly despite
some errors by the pianist.

We encountered only one real problem during our tests. During very quiet parts the algo-
rithm is not able to follow the performance correctly. As in the tested pieces pianissimo parts

54

5 Evaluation of the Automatic Page-Turner

are very short the algorithm recovered without a problem but there will be problems with
longer pianissimos. One possible solution to this could be to use an audio compressor.

55

6 Future Work and Conclusion

In this master thesis an automatic page-turner based on an online dynamic time warping algo-
rithm was presented. As the extensive evaluation showed the proposed extensions enhanced
both the stability and the accuracy of the algorithm.

This thesis is mainly a demonstration of what is already possible in score following. Of
course the algorithm can prove to be useful in many score following tasks, e.g. live visualiza-
tion and automatic accompaniment. The automatic page-turner may actually be used during
concerts. But I think much more interesting is the idea of building a practicing environment
for musicians around this algorithm.

On the technical side there are some directions for future work. First thing to do would be
to improve the algorithms behaviour during pianissimo passages – maybe preprocessing using
an audio compressor could already do the trick – and at phrase boundaries. As the concept of
multiple matchers is limited to fixed parts of the piece one could also think about better ways
to analyse the structure and determine which part of the piece the pianist is playing.

While this thesis focused on an online algorithm one of the proposed improvements could
especially be of use for offline DTW, namely the incorporation of the MIDI data into the
matching process by taking the path only as an approximate solution and searching around
the path for onsets.

As the algorithm was designed with piano music in mind there were no tests by now on other
types of classical or popular music. I do not see many reasons why it should not perform well
on other kinds of music but as the algorithm uses an onset detection function non-percussive
instruments could be more problematic. Of course further evaluation has to be done.

To summarize, the presented algorithm was tested twice in live environments and showed
high accuracy and – what is even more important for an automatic page-turner – high stability.
It recovered fast from mistakes by the pianist and fulfilled the page turning task reliably.

56

Bibliography

[Allen and Dannenberg, 1990] Allen, P. and Dannenberg, R. (1990). Tracking musical beats
in real time. In Proceedings of the International Computer Music Conference, volume
140-143. International Computer Music Association.

[Baird et al., 1990] Baird, B., Blevins, D., and Zahler, N. (1990). The artificially intelligent
computer performer: The second generation. in interface. Journal of New Music Research,
19:197–204.

[Baird et al., 1993] Baird, B., Blevins, D., and Zahler, N. (1993). Artificial intelligence
and music: Implementing an interactive computer performer. Computer Music Journal,
17(2):73–79.

[Bloch and Dannenberg, 1985] Bloch, J. and Dannenberg, R. (1985). Real-time computer
accompaniment of keyboard performances. In Truax, B., editor, Proceedings of the Inter-

national Computer Music Conference, pages 279–289, San Francisco. International Com-
puter Music Association.

[Cano et al., 1999] Cano, P., Loscos, A., and Bonada, J. (1999). Score-performance matching
using hmms. In Proceedings of the ICMC.

[Cont, 2004] Cont, A. (2004). Improvement of observation modeling for score following.
Master’s thesis, University of Paris 6, IRCAM, Paris.

[Cont, 2006] Cont, A. (2006). Realtime audio to score alignment for polyphonic music in-
struments using sparse non-negative constraints and hierarchical hmms. In Proceedings of

IEEE ICASSP, Toulouse. IEEE.

[Cont et al., 2007] Cont, A., Schwarz, D., Schnell, N., and Raphael, C. (2007). Evaluation of
real-time audio-to-score alignment. In Proceedings of the 8th International Conference on

Music Information Retrieval (ISMIR 2007), Vienna, Austria.

[Dannenberg, 1984] Dannenberg, R. (1984). An on-line algorithm for real-time accompani-
ment. In Proceedings of the International Computer Music Conference, pages 193–198,
San Francisco. International Computer Music Association.

[Dannenberg and Hu, 2003] Dannenberg, R. and Hu, N. (2003). Polyphonic audio match-
ing for score following and intelligent audio editors. In Proceedings of the International

57

Bibliography

Computer Music Conference, pages 27–34, San Francisco. International Computer Music
Association.

[Dannenberg and Mont-Reynaud, 1987] Dannenberg, R. and Mont-Reynaud, B. (1987). Fol-
lowing an improvisation in real time. In Proceedings of the International Computer Music

Conference, pages 241–248. Computer Music Association.

[Dannenberg and Mukaino, 1988] Dannenberg, R. and Mukaino, H. (1988). New techniques
for enhanced quality of computer accompaniment. In Lischka, C. and Fritsch, J., editors,
Proceedings of the 14th International Computer Music Conference, San Francisco. Inter-
national Computer Music Association.

[Desain et al., 1997] Desain, P., Honing, H., and Heijink, H. (1997). Robust score-
performance matching: Taking advantage of structural information. In Proceedings of the

International Computer Music Conference, pages 337–340, San Francisco. International
Computer Music Association.

[Dixon, 2005] Dixon, S. (2005). An on-line time warping algorithm for tracking musical per-
formances. In Proceedings of the Nineteenth International Joint Conference on Artificial

Intelligence, pages 1727–1728, Edinburgh.

[Dixon and Widmer, 2005] Dixon, S. and Widmer, G. (2005). Match: A music alignment tool
chest. In Proceedings of the 6th International Conference on Music Information Retrieval

(ISMIR 2005).

[Durbin et al., 1998] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological

sequence analysis. Cambridge University Press.

[Gavrila and Davis, 1995] Gavrila, D. M. and Davis, L. S. (1995). Towards 3-d model-based
tracking and recognition of human movement. In Bichsel, M., editor, International Work-

shop on Face and Gesture Recognition, pages 272–277.

[Goebl, 1999] Goebl, W. (1999). Numerisch-klassifikatorische interpretationsanalyse mit
dem boesendorfer computerfluegel. Master’s thesis, University of Vienna.

[Grubb and Dannenberg, 1997] Grubb, L. and Dannenberg, R. (1997). A stochastic method
of tracking a vocal performer. In Proceedings of the International Computer Music Con-

ference, pages 301–308, San Francisco. International Computer Music Association.

[Heijink et al., 2000] Heijink, H., Desain, P., Honing, H., and Windsor, W. L. (2000). Make
me a match: An evaluation of different approaches to score-performance matching. Com-

puter Music Journal, 24(1):43–56.

[Hu et al., 2003] Hu, N., Dannenberg, R., and Tzanetakis, G. (2003). Polyphonic audio
matching and alignment for music retrieval. In IEEE Workshop on Applications of Sig-

nal Processing to Audio and Acoustics, pages 185–188, New York. IEEE.

58

Bibliography

[Itakura, 1975] Itakura, F. (1975). Minimum prediction residual principle applied to speech
recognition. IEEE Transactions on Speech and Audio Processing, 23:52–72.

[Kapanci and Pfeffer, 2005] Kapanci, E. and Pfeffer, A. (2005). Signal-to-score music tran-
scription using graphical models. In Proceedings of the 19th International Joint Conference

on Artificial Intelligence, Edinburgh.

[Kaprykowsky and Rodet, 2006] Kaprykowsky, H. and Rodet, X. (2006). Globally opti-
mal short-time dynamic time warping applications to score to audio alignment. In IEEE

ICASSP, Toulouse.

[Lung and de Freitas, 2004] Lung, D. and de Freitas, N. (2004). Beat tracking the graphical
model way. In Advances in Neural Information Processing Systems.

[Mueller et al., 2005] Mueller, M., Kurth, F., and Clausen, M. (2005). Audio matching via
chroma-based statistical features. In Proceedings of the 5th International Conference on

Music Information Retrieval, London, GB.

[Mueller et al., 2004] Mueller, M., Kurth, F., and Roeder, T. (2004). Towards an efficient
algorithm for automatic score-to-audio synchronization. In Proceedings of the 5th Interna-

tional Conference on Music Information Retrieval, Barcelona, Spain.

[Mueller et al., 2006] Mueller, M., Mattes, H., and Kurth, F. (2006). An efficient multiscale
approach to audio synchronization. In Proceedings of the 7th International Conference on

Music Information Retrieval, Victoria, Canada.

[Murphy, 2001] Murphy, K. (2001). An introduction to graphical models. Technical report,
University of California, Berkeley.

[Orio and Dechelle, 2001] Orio, N. and Dechelle, F. (2001). Score following using spectral
analysis and hidden markov models. In Proceedings of the ICMC, Havana, Cuba.

[Orio and Schwarz, 2001] Orio, N. and Schwarz, D. (2001). Alignment of monophonic and
polyphonic music to a score. In Proceedings of the ICMC, Havana, Cuba.

[Pardo and Birmingham, 2001] Pardo, B. and Birmingham, W. (2001). Following a musi-
cal performance from a partially specified score. In Proceedings of the 2001 Multimedia

Technology and Applications Conference, Irvine, California.

[Pardo and Birmingham, 2002] Pardo, B. and Birmingham, W. (2002). Improved score fol-
lowing for acoustic performances. In Proceedings of the International Computer Music

Conference, Gothenburg, Sweden.

[Pardo and Birmingham, 2005] Pardo, B. and Birmingham, W. (2005). Modeling form for
on-line following of musical performances. In Proceedings of the Twentieth National Con-

ference on Artificial Intelligence, Pittsburgh, Pennsylvania.

59

Bibliography

[Puckette, 1990] Puckette, M. (1990). Explode: A user interface for sequencing and score
following. In Proceedings of the International Computer Music Conference, pages 259–
261, San Francisco. International Computer Music Association.

[Puckette, 1995] Puckette, M. (1995). Score following using the sung voice. In Proceedings

of the International Computer Music Conference, pages 175–178, San Francisco. Interna-
tional Computer Music Association.

[Puckette and Lippe, 1992] Puckette, M. and Lippe, C. (1992). Score following in practice.
In In Proceedings of the ICMC, pages 182–185.

[Rabiner, 1989] Rabiner, L. (1989). A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–285.

[Rabiner and Juang, 1993] Rabiner, L. and Juang, B.-H. (1993). Fundamentals of Speech

Recognition. Prentice Hall, Englewood Cliffs, NJ.

[Raphael, 1999] Raphael, C. (1999). Automatic segmentation of acoustic musical signals
using hidden markov models. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 21(4):360–370.

[Raphael, 2001] Raphael, C. (2001). A bayesian network for real-time musical accompani-
ment. Neural Information Processing Systems (NIPS), 14:2001.

[Raphael, 2003] Raphael, C. (2003). Orchestra in a box: A system for real time musical
accompaniment. IJCAI2003 workshop program, APP-5, 5:5–10.

[Raphael, 2004a] Raphael, C. (2004a). A hybrid graphical model for aligning polyphonic
audio with musical scores. In Proceedings of the 5th International Conference on Music

Information Retrieval.

[Raphael, 2004b] Raphael, C. (2004b). Musical accompaniment systems. Chance Magazine,
17(4):17–22.

[Rath and Manmatha, 2002] Rath, T. and Manmatha, R. (2002). Word image matching us-
ing dynamic time warping. Technical Report MM-38, Center for Intelligent Information
Retrieval, University of Massachusetts Amherst.

[Sakoe and Chiba, 1978] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions on Speech and Audio Pro-

cessing, 26:43–49.

[Schreck-Ensemble, 2001] Schreck-Ensemble (2001). Comparser. http://kmt.hku.nl/ pieter/-
SOFT/CMP/doc/cmp.html.

60

Bibliography

[Schwarz, 2004] Schwarz, D. (2004). Data-Driven Concatenative Sound Synthesis. PhD
thesis, Ircam-Centre Pompidou.

[Schwarz et al., 2004] Schwarz, D., Orio, N., and Schnell, N. (2004). Robust polyphonic midi
score following with hidden markov models. In Proceedings of the International Computer

Music Conference, Miami, Florida.

[Toiviainen, 1998] Toiviainen, P. (1998). An interactive midi accompanist. Computer Music

Journal, 22(4):63–75.

[Vantomme, 1995] Vantomme, J. D. (1995). Score following by temporal patterns. Computer

Music Journal, 19(3):50–59.

[Vercoe, 1984] Vercoe, B. (1984). The synthetic performer in the context of live perfor-
mance. In Proceedings of the International Computer Music Conference, pages 199–200,
San Francisco. International Computer Music Association.

[Vercoe and Puckette, 1985] Vercoe, B. and Puckette, M. (1985). Synthetic rehearsal: Train-
ing the synthetic performer. In Proceedings of the International Computer Music Confer-

ence, pages 275–278, San Francisco. International Computer Music Association.

[Vinciarelli, 2002] Vinciarelli, A. (2002). A survey on off-line cursive word recognition.
Pattern Recognition, 35(07):1433–1446.

61

