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Introduction

Präzision ist nicht Wahrheit.

Henri Matisse

The simple statement ‘Precision is not truth’ of the great French painter Henri

Matisse could be the central theme of this master thesis, that deals with vagueness

- a concept, that at first sight seems to be the contrary of precision, a property

usually very appreciated by scientists and engineers. Observing the world in which

we are living, one notices quickly, that it is not precise at all, a circumstance, that

does not cause any problem for us in our everyday life, but many if we want to

understand the phenomenon of vagueness and even more if we want to understand

the way humans reason in its presence.

Reasoning is a mental activity that usually takes place in a natural language and

even if the available information is vague or imprecise humans can use it to come

to a conclusion. Logic is the systematic study of valid inference, where the terms

of reasoning, deduction or thinking could be used as synonyms for inference, and is

both, a branch of philosophy and a branch of mathematics and consequently also

a branch of computer science. Hence, the question of how reasoning works in the

presence of vagueness is a central theme for philosophers as well as for scientists

working in the field of logic.

Thus, on the one hand, there is a lively discourse on vagueness in analytic phi-

losophy, which aims at understanding the principles of reasoning in the presence of

vagueness.

On the other hand, the aim to understand the principles of reasoning in the

presence of vagueness and of reasoning in general is an issue, that concerns also

mathematicians, engineers and computer scientists. Although reasoning seems to

be a purely human ability, in this time of rapidly advancing technology the wish

to create machines which imitate human behavior has become very exigent. There-
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fore it is necessary to formalize the human ability of reasoning in the presence of

vagueness for the purpose of automation in expert systems, computer vision, con-

trol engineering or pattern recognition, to mention just a few examples. To this

end, formal languages, deductive systems and model-theoretic semantics have to be

developed. However, most of the scientists and engineers working in the field of

vagueness are convinced that the truth comes in degrees and support so-called de-

gree theories. Often they consider fuzzy logics, in particular logics based on t-norms,

as the logics of vagueness as these formalisms are well-understood and have had a

lot of success in the past.

Altogether, these two fields of research seem to be closely related and the chal-

lenge of formalizing reasoning in the presence of vagueness seems to be met best

by an interdisciplinary team of philosophers, scientists, researchers and engineers.

Surprisingly, these apparently closely related fields of research almost ignore each

other. Many philosophers dismiss the formalisms of many-valued logics as inade-

quate, while according to many engineers and computer scientists the theories of

vagueness supported by philosophers often lack concrete applications. The reasons

for the reciprocal disregards are surely manifold: probably not only ignorance and

prejudices, but also differences in methodology and research objectives may make

their contributions to it.

The curious fact, that philosophers and computer scientists are mainly working

separately from each other, shall be the point of departure for this diploma thesis,

which is intended to present both points of view, pointing out the strong points and

problems of every theory as well as showing possible ways of combing philosophical

approaches with fuzzy logic. That is also the reason for the choice of the title ‘Fuzzy

logics in the context of theories of vagueness’.

Concretely, the aims of the thesis are:

• to provide an overall view of the ongoing discourse in analytic philosophy and

to discuss the most important theories of vagueness, giving a useful classifica-

tion;

• to discuss fuzzy logics, the approach mostly supported by computer scientists;

• showing different possibilities of how to derive fuzzy logic from the first prin-

ciples of approximate reasoning.
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Point of departure for my diploma thesis was Rosanna Keefe’s book Theories

of Vagueness [Kee00] upon the advice of my supervisor, Christian G.Fermüller, in

March 2006. Shortly after, Steward Shapiro’s book Vagueness in Context [Sha06]

(see also subsection 3.5.5) was published, another book recommended by my super-

visor as an introductive literature to enter the philosophical debate on vagueness,

but at that time I had already begun my work, so that it would have been time-

consuming to change the structure of my thesis, which is as follows:

Chapter 1 addresses the problems arising in the presence of vagueness. After

a short discussion about vagueness in our everyday life, I will explain what vague-

ness is for my purpose, describing its most important characteristics proposed by

Keefe [Kee00]. Afterwards a short definition of multi-dimensional and higher-order

vagueness is given, followed by a list of related concepts from which vagueness has to

be distinguished. I will conclude the chapter with some basic considerations about

reasoning in the presence of vagueness.

Chapter 2 is supposed to summarize the most important criteria that should be

met by any theory of vagueness. Hereby I will mainly follow Keefe [KSe02], [KSe02]

and Fermüller [Fer03].

The aim of chapter 3 is to present the philosophical discussion on vagueness. For

this purpose, I will present the main ideas of at least one defender of the epistemic

approach [Wil94], [Wil], of the gap theories [Kle52], of the degree theories [Mac], of

supervaluationism [Kee00], [KSe02] and of the pragmatic approach [Lew83], [Lew69],

explaining the point of view of at least one defender of each theory of vagueness. This

classification for theories of vagueness is obviously not the only possible one. The

plurality of the various contributions to the on-going discourse on vagueness allow a

lot of different classifications and it is a big challenge to find a useful classification.

Chapter 4 deals with fuzzy logic. This degree theoretic approach of approximat-

ing reasoning in the presence of vagueness has produced many different formalisms.

I will discuss Petr Hájek’s basic logic BL (see [Háj98], [Háj]) and three of its most

important extensions:  Lukasiewicz logic ( L), Gödel logic (G) and Product logic (
∏

).

Chapter 5 explain different approaches which try to derive fuzzy logics from the

first principles of approximate reasoning. I will mainly concentrate on Christian

Fermüller’s approaches described in [Fer03], [Fer04], [FP03], [FK] and [Fer07].

Chapter 6 summarizes very briefly the results of this paper.



Chapter 1

Basic Concepts

Einerseits ist klar, dass jeder Satz unserer Sprache ‘in Ordnung ist, wie er ist.’ D.h., dass wir

nicht ein Ideal anstreben: Als hätten unsere gewöhnlichen, vagen Sätze noch keinen ganz

untadelhaften Sinn und eine vollkommene Sprache wäre erst von uns zu konstruieren.

-Anderseits scheint es klar: Wo Sinn ist, muss vollkommene Ordnung sein. -Also muss die

vollkommene Ordnung auch im vagsten Satze stecken.

Ludwig Wittgenstein [Wit77, p.32]

Introduction

Does one grain of sand make a heap? Do two grains of sand make a heap? Do

three grains of sand make a heap? Do ten thousand grains of sand make a heap?

Everyone will agree that a single grain of sand does not make a heap while ten

thousand grains of sand do. However, how many grains of sand are necessary so

that we call a certain quantity of grains of sand a heap?

Is a man with one hair on his head bald? Is a man with two hairs on his head

bald? Is a man with three hairs on his head bald? Is a man with hundred thousand

hairs on is head bald? Obviously a man with one hair on his head is bald just as a

man with two or three hairs on his head, while a man with hundred thousand of hairs

distributed properly is definitely not bald. But there are some cases for which it can

be difficult for us to decide whether a man is bald or not. In our everyday language

we would typically define him as neither clearly bald nor clearly not bald. But how

many hairs must a man have to be considered as (clearly) bald or as (clearly) not

bald? What is the difference between men who are clearly bald and those who are

not?
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Is a man measuring 1.60m tall? Is it a man measuring 1.75m? What about

a man measuring 1.90m? If we consider the term ‘tall’, we would all agree that

persons measuring 1.60m are short while people measuring 1.90 are tall, but a man

of 1.75m height is neither clearly tall nor clearly short. That means that there are

people of a certain height for whom it is not easy to decide whether they are tall or

not. But where is the border between short people, people that are neither clearly

short nor clearly tall and those who are tall? Can we define a precise height that

indicates the minimal height of a tall person? Does the information that someone

is neither tall nor not tall have a meaning to us?

The questions mentioned above seem nearly impossible to be answered because

they involve vague predicates. But these examples are not special cases, on the

contrary, most expressions in our language are vague, a fact, that is illustrated

very well by the cartoon shown in Fig.1.1, in which a woman describes suspect

using the vague predicates ‘tall’, ‘young’ and ‘thin’. Despite the great amount of

vague predicates our communication works and our vague expressions make sense,

an observation that was made also by the famous Austrian philosopher Ludwig

Wittgenstein, as the citation at the beginning of the chapter shows.

Fig. 1.1: Vague expressions are frequently used in our natural language.1

Often, our expressions are vague even if they pertain to concrete observable

properties of physical objects. Let us consider, for instance, the color ‘red’. It is

perfectly obvious, since colors form a continuum, that there are shades of colors for

1 The cartoon is taken from the website http://www.cartoonstock.com.
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which it is difficult for us to call them simply red or not red, while for others we can

undoubtedly say whether they are red or not. All these categorizing problems do not

arise because we are ignorant of the meaning of the words, but because the meaning

of these words are vague. As the precedent example demonstrates, graduality seems

to be a feature which is closely connected with vagueness, but it has be pointed out

that these are two different concepts.

But what is vagueness? How can we define it? What are the characteristics of

vague predicates?

In this chapter I try to give an answer to these questions. For this purpose, I

will discuss three main characteristics of vague expressions proposed by Rosanna

Keefe [Kee00], illustrating them by clear examples. Afterwards a short definition

of multi-dimensional and higher-order vagueness is given, followed by a list of other

phenomena from which vagueness has to be distinguished. At the end of the chapter

I will reflect on reasoning in the presence of vagueness.

1.1 Vagueness

There are a lot of different ideas of how to treat vague predicates and of how to

formalize reasoning in the presence of this type of predicates, but before entering

this debate, I want to give a definition of vagueness, which is useful for the purpose

of this thesis. The definitions of vagueness suggested in literature are numerous and

this shows that the intuitions about vagueness differ greatly and that the notion of

the term ‘vagueness’ is not perfectly clear.

I decided to mention three main characteristics proposed by Rosanna Keefe [Kee00]

to define vague predicates. These characteristics are shared by all vague predicates

and are closely connected with their vagueness. The advantage of this definition is

that most of the various parties debating about vagueness largely agree about it.

However, one has to bear in mind that these characteristics are not completely in-

dependent from each other, on the contrary, one characteristic implicates the other

and vice versa.
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1.1.1 Borderline cases

A first characteristic of vague predicates is that they admit borderline cases.

Borderline cases are cases to which the predicate in question neither (clearly) applies

nor (clearly) does not apply.

Paradigm examples of vague concepts that admit borderline cases are color pre-

dicates. Of course, there are situations in which all objects have a definite color,

but in most contexts no definite color can be identified. Consider the sun at dawn

that often is neither (clearly) red nor (clearly) not red. Often its color seems to be

a mixture of red and orange. It is not possible to find the exact point at which the

change of color begins.

Fig. 1.2 shows the different greyscales, starting with the color ‘black’ and ending

with the color ‘white’. But where is the exact point that separates these two colors

from each other?

Fig. 1.2: Where is the exact point that separates the color ‘black’ from the color
‘white’?

Baldness is a typical vague concept, too. There are some men who are definitely

not bald, others who are definitely bald, while between them there are men who

seem impossible to be called bald or not bald.

As mentioned above, also ‘tall’ is a vague predicate, as some people are borderline

tall, which means that they are neither (clearly) tall nor (clearly) not tall.

There are many different ideas concerning the origin of borderline cases and how

they have to be treated. To give a brief outlook, I will resume here the point of view

of the main approaches, that will be discussed in detail in chapter 3. The epistemic

approach described in section 3.1 claims that the indeterminateness if a certain

predicate (clearly) applies to a special instance or not is an epistemic problem.

Defenders of this theory argue that borderline case predications are always true
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or false and that it is our ignorance which makes it impossible for us to make a

decision whether a certain predicate applies to a special instance or not. Defenders

of gap theories (see section 3.2) on the other hand claim that vague statements

apparently lack proper truth values, as they seem to be neither true nor false. On

this approach all borderline cases receive the same truth value indefinite. Degree

theories (see section 3.3) assign truth values from the unit interval [0,1] to borderline

cases where 0 stands for absolute (classical) falsity and 1 for absolute (classical)

truth. According to supervaluationism borderline cases can be either true or false,

as discussed in section 3.4. Pragmatic approaches (see section 3.5) define borderline

cases as sentences over which there are disagreements among the languages in the

clusters.

1.1.2 Fuzzy boundaries

A second, related characteristic of vague predicates is, that they apparently lack

well-defined extensions. That means, that there are no sharp boundaries between

e.g. the set of people that are (clearly) tall and those who are (clearly) not tall,

nor is there an exact point in the color spectrum that separates the color ‘red’

from ‘orange’. Turning back to Fig.1.2 it can be easily noticed that the boundary

between the colors ‘white’ and ‘black’, or if you want the boundaries between the

colors ‘white’, ‘grey’ and ‘black’ are fuzzy, i.e. not sharp.

More generally, the lack of well-defined extensions means, that, if spatial close-

ness indicates similarity, no sharp line can be drawn between the candidates sat-

isfying some vague predicate and those who do not. Indeed, vague predicates are

described as having fuzzy boundaries, while predicates according to classical logic

and semantics have to have well-defined extensions.

To illustrate the idea of fuzzy boundaries, let us consider the example of the word

‘chair’ proposed by Max Black [Bla]. Consulting a monolingual English dictionary2,

a chair can be defined as ‘a piece of furniture for one person to sit on.’ The definition

is very general and there is indeed an extraordinary variety of objects to which the

same word ‘chair’ is applied. There are armchairs, reading chairs, dining-room

chairs, kitchen chairs, chairs of different materials, height and size. There are chairs

2 Collins Cobuild New Student’s Dictionary, Harper Collins Publishers, 1997, p.96.
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with backs and some without backs. The variety of the application results from the

fact that the definition of chair, namely that a chair is a single seat, is compatible

with a lot of objects varying in form, size and material. But there can also be found

objects, like a lump of wood, for which it is difficult to say whether they are chairs

or not. Obviously, there are a lot of objects that are definitely no chairs.

Other examples of vague predicates that do not have sharp boundaries can be

found in geography, as pointed out by Achille Varzi [Var01]. Many geographical

names and descriptions are vague, for instance, we do not know where the Sahara

desert exactly begins and where it ends. It is not clear where the Missouri exactly

enters the Mississippi and what the extensions of a city like Rio de Janeiro exactly

cover. According to Varzi, these problems do not only arise in geography, but also

in history. The baroque era and the Renaissance are periods that most people can

distinguish, even though their temporal boundaries may be indeterminate.

A ‘more philosophical’ and ‘more artistic’ example for borderline cases and fuzzy

boundaries can be found in the famous drawing Sky & Water I (see Fig.1.3) of the

Dutch graphic artist Maurits Cornelis Escher in which light plays on shadow to

morph fish in water into swans in the sky.

Fig. 1.3: M.C.Escher’s painting Sky & Water I.3

Considering only the white parts of the drawing, at the top the color white

serves only as sky, while at the bottom fish can be recognized. In the middle of the

3 The painting is taken from M.C.Escher’s official website http://www.mcescher.com.
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drawing it is not clearly recognizable whether it still serves as sky or if there are

already fish. Considering only the black parts of the drawing, at the bottom the

color black serves only as water, while at the top swans can be recognized. In the

middle of the drawing again it is not clearly recognizable whether it still serves as

water or if there are already swans.

Thus, speaking in terms of borderline cases, the white parts of the drawing which

cannot be definitely recognized either as sky or as fish as well as the black parts which

cannot be definitely recognized as water or swans can be interpreted as borderline

cases. The boundary between the sky and the fish as well as the boundary between

the water and the swans is not are sharp, but fuzzy.

1.1.3 Sorites paradoxes

A third characteristic of vague predicates is that they are susceptible to sorites

paradoxes. The name of the paradox is derived from the Greek word soros (meaning

‘heap’) and as explained by Dominic Hyde [Hyd05] it originally referred to a puzzle

known as The Heap: Would you describe a single grain of sand as a heap? No.

Would you describe two grains of sand as a heap? No. Sooner or later the presence

of a heap has to be admitted, but where can be drawn the line?

This puzzle of antiquity is now more usually described as a paradox that can be

presented as a formal argument, having the following logical structure:

1 grain of sand does not make a heap.

If 1 grain of sand does not make a heap then 2 grains of sand do not.

If 2 grains of sand do not make a heap then 3 grains do not.

...

If 9999 grains of sand do not make a heap then 10 000 do not

10 000 grains of sand do not make a heap.

Formally, two versions of the sorites paradox can be distinguished which are

explained in the following paragraphs.

Sorites paradox with a series of conditionals

The first possibility is to describe the sorites paradox as a series of conditionals.

Let F be the soritical predicate (i.e. ‘does not make a heap’) and xn a subject
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expression in the series with regard to which F is soritical (i.e. ‘n grains of sand’),

then the sorites paradox can be represented schematically as follows:

Fx1

If Fx1 then Fx2

If Fx2 then Fx3

...

If Fxn−1 then Fxn

Fxn, where n can be arbitrarily large

Sorites paradox with a universally quantified premise

The second variant replaces the set of the conditional premises by a universally

quantified premise, the so-called inductive premise. Let n be a variable ranging over

the natural numbers, let ∀n (...n...) assert that every natural number n satisfies the

condition ...n... and let ∀n (Fxn−1∧Fxn) represent a claim of the form ∀ n(if Fxn−1

then Fxn). Then the sorites paradox can be represented by mathematical induction:

Fx1

∀ n (Fxn−1 ∧ Fxn)

∀ n (Fxn)

Many different versions of the sorites paradox exist. For instance, we can inverse

the heap-paradox, starting with the assumption that 10 000 grains of sand do make

a heap. If you take away one single grain, obviously, the result would be a heap

too, because intuitively, one single grain cannot make a difference whether or not a

number of grains are a heap. But if we now took 10 000 grains of sand and took

away grains one by one, we would come to the conclusion that even 1 grain of sand

does form a heap.

Wang paradox

A special version of the ancient Greek paradox is the Wang paradox [Dum]

defined as follows:
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(1) 0 is small;

(2) If n is small, n + 1 is small too.

(3) Therefore, every number is small.

In this case as well, the premise (1), the induction basis, is clearly true, while

the conclusion (3) is clearly false.

Sorites paradox in our everyday life

However, sorites paradoxes are not mere curiosities. Arguments with a sorites

structure are part of our everyday life and can be found everywhere.

It is enough to think of the height of persons. If we argue that someone who

measures 1.80m is tall, then a person being a hundredth of an centimeter shorter is

tall too. But if you imagine a line of persons, starting with someone who is 1.80m

of height, and each of them a hundredth of a centimeter shorter than the previous

one you might inevitably come to the conclusion, that even a person that is 1.40m

is tall.

The same phenomenon happens with our (natural) language abilities. Immedi-

ately after birth a baby is not able to speak a language, but there will be a time

when the child does have the ability to speak a language. If we now serially order

the life of the child by seconds, starting from the first breath, we all agree that the

child cannot speak a language at the first second nor a second later. If we apply

this rule arbitrary many times, we come to the conclusion, that the person cannot

speak a language even at the age of 50 years.

Another example is the so-called ethical ‘slippery slope’. We all agree that it

is wrong to abort a baby nine months after conception. I am sure everyone would

consent with the following principle: if it is wrong to abort a baby nine months after

conception then it is wrong to abort a baby nine months minus one second after

the conception. Continuing this reasoning we would come to the conclusion, that

abortion is wrong even immediately after conception. But, on the other hand there

are a lot of persons who consider abortion as acceptable up to a certain moment

after conception, because for them up to this specific moment, the future baby is

‘only’ an accumulation of cells and not a human being.
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In the field of jurisdiction vagueness is also a relevant aspect. On the one hand,

there are expressions like ‘minor’ or ‘is of responsible age’ that draw lines arbitrarily.

On the other hand, there are expressions like ‘can be aborted’ that have to be

combined with vague concepts like ‘is a person’.

Possible ways of responding to the sorites paradox will be presented in the next

chapter.

1.1.4 Comparatives

Apart from the predicates mentioned in the examples above, comparatives can

be vague as well. At first sight this might be surprising. Considering the natural

numbers, a unique ordering is possible and the comparative ‘is a smaller number

than’ will not cause any problem. For each natural number we can clearly say

whether it is smaller than another given natural number or not. Considering the

comparative ‘older than’ the case becomes already more difficult because there can

be borderline instances of the comparative due to the fact that we might not know

what to count as the instance of birth of someone. It would be possible to count as

birth the moment of the first breath, the moment of the first crying or the moment

when the baby comes out of the womb. As a consequence we cannot always say

whether the birth of someone is before or after the birth of someone else.

1.1.5 The ‘definitely’ operator

When dealing with vagueness, it seems to be useful to have a possibility to

express formally that a given predication is or is not of borderline status. Crispin

Wright [Wri, p.229] actually claims that ‘when dealing with vagueness, it is essential

to have the expressive resources afforded by an operator expressing definiteness or

determinacy ’ and Rosanna Keefe [Kee00, p.28] adds that ‘we will fail to fulfil the

central tasks of a theory of vagueness unless we introduce the D operator.’ This

operator, also called ‘definitely’ or ‘determinately’ operator, is defined as follows:

Dp holds when p is determinately or indeterminately true. The I operator holds

when p is indeterminate or borderline and is equivalent to (¬Dp & ¬D¬p).

As I will discuss in subsection 1.3, the D operator can also be used to treat the

phenomenon of higher-order vagueness.
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1.2 Multi-dimensional vagueness

The height of a person is measured by a single continuous parameter, but many,

if not most vague predicates are influenced by more than one parameter. If we use

the term ‘big’ to describe a person, it depends at least on two parameters, namely

on height and volume, and is therefore (at least) two-dimensional. Nevertheless,

the term ‘big’ seems to be a quite simple example. There are other predicates like

‘nice’, ‘ugly’ or ‘dangerous’ for which it is definitely more difficult to say on which

and on how many parameters they depend on.

However, the three features mentioned in section 1.1 which characterize vague

predicates are also valid for multi-dimensionally vague ones.

• Multi-dimensionally vague predicates admit borderline cases. Let us consider

the term ‘friendly’. Some persons scoring well in some relevant aspects but

not in others are neither (clearly) friendly nor (clearly) unfriendly.

• Multi-dimensionally vague predicates do not have sharp boundaries because no

uniquely appropriate ordering can be found so that boundary-marking points

can be placed.

• Finally, multi-dimensionally vague predicates are also susceptible to sorites

paradoxes.

I want to illustrate the validity of the three features of vague predicates (see

section 1.1) by a two-dimensional example. We could characterize the ‘intelligence’

of persons by the number of exercises solved correctly within a determinate time,

disregarding other features relevant to being intelligent4. In this case the intelligence

of a person would depend on two parameters: the number of exercises solved and the

time used for solving these exercises. Consider a series of persons differing gradually

in this respect, starting with a person who solved all exercises within the minimum

of time and ending with a person who was not able to solve a single exercise within

the maximum of time. Without doubt the first person who solved all exercises

correctly within a minimum time is intelligent, as well as the person who solved

all the exercises but one within the minimum of time and the person who solved

4 Even subjectiveness and context-dependence are eliminated.
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all the exercises within the minimum of time plus one second. If you carry on this

reasoning you come to the conclusion that every person, even the person who was

not able to solve a single exercise within the maximum of time, is intelligent. This

result is obviously false according to the established maxims of time and solutions.

1.2.1 Incomparability of multi-dimensionally vague

propositions

Another phenomenon closely related to multi-dimensional vagueness is the fre-

quent incomparability of statements that contain vague predicates. Let us consider

the multi-dimensional vague predicate ‘nice’. Comparing persons to each other with

regard to this characteristic, one will certainly find pairs of persons about who there

is no doubt about which one is ‘nicer’ or whether they are equally ‘nice’. But there

will also be pairs of persons for who it is nearly impossible to decide who is ‘nicer’,

especially if we compare persons to each other who are ‘nice’ in different ways. If we

compare two vague statements to each other, it is even more difficult to decide which

statement is ‘more true’ than the other. It is nearly impossible to decide whether

the statement ‘the sky is blue’ is ‘more true’ than ‘Anna is a friendly person’.

1.3 Higher-order vagueness

As I have mentioned above, vague predicates are characterized by having bor-

derline cases, i.e. cases to which the predicate in question neither clearly applies

nor clearly does not apply. The lack of a sharp boundary between the positive and

negative extensions of a vague predicate is responsible for the appearance of these

borderline cases. Usually, also the set of borderline cases of vague predicates is not

sharply bounded, because the existence of a sharp border of borderline cases is as

implausible as the existence of a sharp border for the appliance of the predicate.

This means, that judging an instance to be a borderline case is not a matter of

definite truth or definite falsity. This nonexistence of sharp boundaries of a pred-

icate between its borderline cases and its positive and negative extensions leads

to the conclusion that there are borderline borderline cases, so-called second-order

borderline cases. Obviously, this argument can be repeated indefinitely, resulting
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in an unlimited hierarchy of possible borderline cases of different orders. This phe-

nomenon can be called unlimited higher-order vagueness. However, Kit Fine [Fin,

p.150] says about higher-order vagueness that ‘our intuitions seem to run out after

the second or third orders of vagueness. Perhaps this is because our understanding

of vague language is, to a large extend, confused. One sees blurred boundaries, not

clear boundaries to boundaries.’

Timothy Williamson [Wil94] explains the concept of higher-order vagueness by

a concrete example: He claims that the difficulties presented by the question ‘When

did Rembrandt become old?’ are also presented by the question ‘When did Rem-

brandt become clearly old?’. That means that at some time it was unclear whether

it was unclear whether Rembrandt was old. The same difficulties arise from the

question ‘When did Rembrandt become clearly clearly old?’. This point reiterates

ad infinitum.

Rosanna Keefe [Kee00, p.27] suggests to use an iterated application of the D and

the I operator defined in subsection 1.1.5 to express higher-order vagueness: the lack

of sharp boundaries to the borderline cases of the predicate F can be expressed by

(¬DFx & ¬D¬Fx). Second-order vagueness, speaking in terms of the D operator

this means that there are borderline cases of ‘definitely’ F , can be expressed with

the statement ¬DDFx & ¬D¬DFx.

Summarizing, we could say that ‘vague’ itself is a vague concept because of the

lack of sharp boundaries between the negative and positive extensions of a vague

predicate and its borderline cases, between its borderline cases and its second-order

borderline cases and so on, creating in this way higher-order vagueness.

A predicate with borderline cases does not necessarily have to lack sharp bound-

aries between its positive and negative extensions and its borderline cases. However,

there is a discussion going on between the scientists whether predicates with sharply

bounded borderline cases should actually be considered as vague.
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1.4 Related concepts

In ordinary language the term ‘vague’ is often used in an imprecise and am-

biguous way. Consulting an English thesaurus5 one can find numerous synonyms of

‘vague’: amorphous, blurred, dim, doubtful, fuzzy, generalized, hazy, ill-defined, im-

precise, indefinite, indeterminate, indistinct, lax, loose, nebulous, obscure, shadowy,

uncertain, unclear, unknown, unspecified, woolly.

As these synonyms demonstrate, the adjective ‘vague’ often seems to refer to the

large sphere of the ‘unspecific’. Therefore it is important to emphasize that for my

purposes vagueness should not be mixed up with the following concepts:

1. Underspecifity

2. Ambiguity

3. Context dependence

4. Probability

5. Generality

Underspecifity

Vagueness, as understood here, is not underspecifity. If someone replies to the

question ‘How many bottles of wine do we have in our cellar?’ with ‘More than

five’, the answer is indeterminate but not vague in a philosophical relevant sense.

Although ‘more than five’ is only a vague hint at the number of bottles in the cellar,

the statement fixes an exact boundary and it is not susceptible to sorites paradoxes.

According to that the apparent vagueness in this case depends only on the lack of

precise information.

Ambiguity

Vagueness should not be mixed up with ambiguity. A word or a phrase that is

ambiguous has at least two specific meanings. If we hear the sentence ‘Jack went

to the bank’, it can mean that Jack went to a river bank to relax or that he went

5 Pons Collins English Thesaurus in A - Z Form, Harper Collins Publishers, Glasgow, 1992,
p.773.
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to a bank to take his money there. In this case, the English language denominates

two different concepts (a bank to sit down and a bank to take the money there)

with the identical sequence of letters and the same sequence of sounds. Only from

the context in which a person says this sentence we can understand which bank is

meant. In other natural languages these two different concepts can be denominated

with two different expressions, like it is in Italian. The bank to sit down is called

‘panchina’, while the bank to bring the money there is called ‘banca’.

However, for us vagueness and ambiguity are two different phenomena. The

contrast between vagueness and ambiguity is obscured by the fact that most words

are both, vague and ambiguous. The word bank - in both indicated senses - is a

vague term: it is not only ambiguous, but also a vague term. Analogically to the

example of the ‘chair’ (see subsection 1.1.2), it is not well-defined which objects can

be called a bank to sit down as it is not clear what the precise extensions of a money

bank are.

Context dependence

Vagueness cannot be understood by only concentrating on context-dependence,

which often helps to eliminate ambiguity as the example of the ambiguous expression

‘bank’ demonstrated.

Obviously, a lot of terms have different extensions or meanings in different con-

texts. The extension of the term ‘tall’ is supposed to vary from context to context.

Speaking about the height of persons, a person of 1.90m is tall, but considering the

height of mountains a mountain of 1.90m is negligibly small. On the other hand,

even if one fixes the context, the term ‘tall’ remains vague, with borderline cases

and fuzzy boundaries and is still susceptible to sorites paradoxes.

Similarly, the word ‘now’ is not vague only because its reference depends on the

time of utterance. Conversely, vagueness remains even when the context is fixed.

Probability

Vagueness should not be mixed up with probability. For instance, if the weather

forecast says that it is going to rain in the afternoon with a probability of 50%, this

probability of 50% does not indicate vagueness.
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To emphasize the difference between these two concepts we can use the example

of a dice. If we consider the statement ‘Next time Anna dices a number higher than

three’, we can say, that this will happen with a probability of 50%. If we consider

on the other hand the statement ‘Most of the time Anna dices a high number’, we

cannot assign any probability to this statement, because it involves at least two

vague predicates: ‘most of the time’ and ‘high number’.

Generality

Furthermore, vagueness should not be identified with (excessive) generality. As

mentioned above, ‘chair’ is a vague term (see subsection 1.1.2). As it is a general

word, the expression ‘chair’ can be (clearly) applied to a lot of objects differing in

size, material or shape, as there are a lot of objects like a lamp which are definitely

no chairs. But we can also find objects for which it is difficult to say whether they

are chairs or not. This incapability to decide whether a certain object is a chair or

not arises because the term ‘chair’ is a vague term and therefore lacks well-defined

boundaries. It does not arise because ‘chair’ is a general word.

A general term does not necessarily have to be a vague term. E.g. the mathe-

matical concept of ‘prime numbers’ show thats a term can be general without being

vague. The set of prime numbers is exactly defined as it is given by all natural num-

bers which have exactly two divisors: 1 and itself. Also expressions of pragmatic

generality like ‘more than once’ are not necessarily vague, while in contrast ‘many

times’ is a vague expression.

1.5 Reasoning in presence of vagueness

Without doubt, vagueness forms part of our life: It is present in nature, in

geography, in our language, in short, it is present in every part of the world that

surrounds us. Usually, in our daily life vagueness does not cause any problems for us,

as vague predicates do have a certain meaning for us that everybody can understand

which is satisfactory to us.

However, for computer scientists and logicians, who usually aim to automate

information processing, vagueness is a problem because they have to find a way to



Chapter 1. Basic Concepts 20

formalize reasoning in the presence of vague predicates. For this purpose they have

to create a theory of vagueness which means, that they have to identify a formal

logic, including a semantics for a vague language. But what is the best semantic

treatment for vague terms? What is the best logic involving vague expressions?

The simplest approach would certainly be retaining classical logic and semantics.

At the core of classical logic and semantics is the principle of bivalence. That

means, that in classical logic there are only two truth values, namely true and false.

Therefore every statement is either true or false and also borderline case predications

assume only one of these two values. Retaining classical logic and semantics has a

lot of advantages. The syntax and semantics of classical logic is quite simple, but

nevertheless powerful. Classical logic has had a lot of success in the past and has been

integrated in theories of other domains. But retaining classical logic and semantics

carries its own problem when facing vague predicates. Once we are ready to leave

classical logic there are a lot of non-classical options.

Before entering the debate on the different theories dealing with vagueness, I

will discuss in chapter 2 the most important general criteria which have to be met

by any theory of vagueness. Chapter 3 addresses the discourse going on in ana-

lytical philosophy, discussing the most important theories, which try to model the

phenomenon of vagueness, both inside and outside classical logic. Chapter 4 on the

other hand is dedicated to fuzzy logics for which usually opt engineers and computer

scientists.



Chapter 2

General considerations concerning

theories of vagueness

La ciencia consiste en sustituir el saber que parećıa seguro por una teoŕıa, o sea, por algo

problemático.

José Ortega y Gasset [OyG05, p.25]

Introduction

According to the famous Spanish philosopher José Ortega y Gasset science con-

sists in substituting knowledge, which seems to be reliable and assured, by a theory,

i.e. something problematic. In my opinion this statement mirrors perfectly the

difficulties and problems of the attempt to comprehend natural phenomena.

Nevertheless, for the purpose of technical innovation and progress, natural phe-

nomena have to be studied and analyzed in order to create theories based on facts

which help to find algorithms that allow machines to mimic human behavior. There-

fore this short chapter addresses the explanation of the most important criteria men-

tioned in literature that a theory of vagueness should meet. Some of these criteria

like simplicity or comprehensiveness are very general and are valid for any theory

about any phenomenon, while others, like the exigence of finding an answer to the

sorites paradoxes, are very specific for theories that deal with vagueness.

2.1 Important criteria

It is nearly impossible to decide objectively and without prejudices which of the

competing theories of vagueness described in chapter 3 is the best one because it
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is not easy to compare them to each other. One of the reasons why comparing

different theories of vagueness is so difficult is the fact that the defenders of the

various theories have different points of view concerning the origin of vagueness.

In some theories, vagueness is a purely linguistic phenomenon, in others it is an

epistemic or an ontological phenomenon. An further reason why comparing the

various theories causes problems is the disagreement among the researchers whether

classical logic and semantics should be preserved at all costs or could be abandoned,

generating a lot of non-classical options.

However, in literature different criteria have been discussed for evaluating theo-

ries of vagueness. In this section I shall examine the most important ones. Obvi-

ously, this list will not be complete and one could add other criteria as the problem of

vagueness represents also a philosophical problem and is therefore partly a question

of beliefs. Some of the mentioned criteria will be very general and suitable for any

theory about any phenomenon; others are very specific for theories that deal with

vagueness. Besides, it has to be considered that not all of the criteria are completely

independent from each other and sometimes a trade-off has to be made. Moreover,

certain criteria can be more important in some theories of vagueness while in other

they are less important.

2.1.1 Pre-philosophical judgements and intuitions

We all have a lot of pre-philosophical judgements and intuitions that influence

our everyday reasoning in the presence of vague statements. A theory of vagueness

should preserve as many of these pre-philosophical judgements and intuitions as

possible. This criterion is obviously a very general one.

It can be possible that a certain theory has to give up some of these widely hold

opinions, for instance, for the sake of theoretical benefits like simplicity. It is too

quick to assume that a theory of vagueness that contradicts to some of our intuitions

has to be rejected. On the other hand, a theory that preserves all our intuitions and

pre-philosophical judgements has not to be defended conclusively. Sometimes our

intuitions conflict with one another or we cannot trust them in problematic cases.

Besides, the body of relevant opinions and pre-philosophical judgements is obvi-

ously nothing predefined and there can be a dispute about which are the opinions
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that we should save in any case and which are less important.

However, if a theory judges our strong, seemingly upon agreed opinions and

intuitions as false or mistaken, the theory should at least explain why so many

people judge this situation in a different way.

2.1.2 Compatibility with natural language-use

Another very general criterion for a theory of vagueness arises from the idea that

vague expressions have a determined meaning for the group of speakers of a certain

language. Sometimes, the meaning of a vague expression can change, depending on

e.g. the situation. For human speakers of the same language there is no problem to

understand different meanings of an expression in different situations. Considering

the term ‘tall’, everyone will agree that 1.80m is tall for a woman, but rather small

for a professional basketball player.

If we want to develop a theory of vagueness, we always have to keep in mind what

the different meanings of the vague expressions are and how the meaning of vague

expressions can change according to different situations. A theory of vagueness

should be compatible with the different meanings of a vague expression and with

the way those meanings sometimes change. Furthermore, no theory of vagueness

should confer meanings on vague expressions which are contrary to the meanings

that a vague expression has for the speakers.

2.1.3 Simplicity and clarity

Adequate implicity and clarity are very important criteria. That seems to be

evident and should be met by any theory about any phenomenon. Proceeding this

thought, a theory of vagueness should be as simple and as clear as possible without

compromising its explanatory value. The explanation of the main ideas of a theory

should be understandable and plausible to other persons.

Certainly, it is not always easy to evaluate theories with respect to these criteria.

2.1.4 Comprehensiveness

A theory of vagueness should explain all phenomena regarding reasoning in the

presence of vagueness in a plausible way. However, it can happen that a phenomenon
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usually treated by theories of vagueness is judged by a certain theory as not relevant

for reasoning in the case of vague statements. In such a case, the defenders of this

theory should at least explain, why the phenomenon is not concerned with vagueness

from their point of view and why this phenomenon seems to be relevant for rival

researchers, when reasoning in the presence of vagueness.

2.1.5 Relation to classical logic

Classical logic with its two truth values true and false has been adopted success-

fully in various domains. Indeed, for many researchers of vagueness it is problematic

to abandon classical logic and semantics when creating a theory of vagueness be-

cause of its simplicity, power, former success and the integration into theories of

other domains.

Although it seems desirable to preserve classical logic, it is not obligatory to

retain classical syntax and semantics in its entirety. There are theories that adopt a

certain non-classical logic in order to formalize reasoning in the presence of vague-

ness. However, as classical logic is successful to such an extent, theories that opt for

non-classical syntax and semantics should explain why classical-logic was abandoned

and does not work for this theory.

Summarizing, one can say that classical logic might be revised, but any deviation

from it must be well motivated.

2.1.6 Borderline cases

In the previous chapter (see subsection 1.1.1) vague predicates were characterized

by having borderline cases. Borderline cases are instances to which the predicate in

question neither (clearly) applies nor (clearly) does not apply.

Obviously, we might expect a theory of vagueness to deliver an answer the ques-

tion of how borderline cases should be treated. The possibilities are numerous.

Retaining classical logic, borderline cases are either true or false. This is exactly

what defenders of the epistemic approach, discussed in section 3.1 claim. However,

according to this theory sometimes we do not or cannot know, if the borderline cases

are true or false, because we are ignorant of the fact where the boundaries are.

Similarly, also in the pragmatic account (see section 3.5) each precise language
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of the cluster of similar languages used by the community of speakers classifies

borderline cases as being true or false, whereas different languages of the cluster can

classify borderline cases of a certain predicate differently.

Also according to the supervaluational approach (see section 3.4), by making

precise the predicate in question borderline cases of this predicate are either true

or false. It is a characteristic feature of borderline cases that they can be classified

differently by different precisifications.

But, as mentioned above, classical logic does not have to be preserved at all costs

and there can be a lot of non-classical solutions to the problem of borderline cases.

There are theories in which a predication for a borderline case is both true and false.

They admit so-called truth value gluts. In other theories borderline predications are

neither true nor false. They admit so-called truth value gaps. Alternatively, a third

truth value can be introduced which allows to classify borderline cases as neutral,

indeterminate or indefinite, leading to a three-valued logic, like Michael Tye’s [Tye]

logic described in section 3.2. Degree theories, that will be discussed in section

3.3, admit truth values from the real unit interval [0,1]. Borderline cases assume

some real truth value between 0 and 1. Also fuzzy logics ,which will be discussed

in chapter 4, admit truth values from the real unit interval [0,1], where 0 means

absolute falsity and 1 absolute truth, while the values in between are assigned to

borderline cases. From this point of view, fuzzy logic can be considered a degree

theory.

2.1.7 Solution to sorites paradoxes

One important characteristic of vague predicates is their susceptibility to sorites

paradoxes (see subsection 1.1.3). Every serious contribution to the discourse of

vagueness should provide a solution to this kind of paradox.

As I already have discussed in the previous chapter, sorites paradoxes have -

considering the version of the sorites paradox with the universally quantified premise

- the following structure:

(1) Fx1

(2) For all n, if Fxn−1 then Fxn
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(3) Fxn

where n is a variable ranging over the natural numbers, F is the soritical predicate

and xn is a subject expression in the sequence with regard to which F is soritical.

The two premises (1) and (2) of a sorites paradox seem both true, but nevertheless

for a suitably large n the putative conclusion (3) appears false.

Remembering the example of the heap of sand, we said, that

(1) one grain of sand does not make a heap,

(2) for all i, if i grains of sand do not make a heap, also i + 1 grains do not

make a heap,

(3) therefore, even 10000 grains of sand, (distributed properly), do not make a

heap of sand.

Intuitively in this example the premises (1) and (2) are true as well, while the

conclusion (3) is obviously false.

There are various responses to soritical reasoning. I will discuss four particu-

lary important possibilities, considering the version of the sorites paradox with the

universally quantified premise:

• One could deny the validity of the argument and claim that the conclusion does

not necessarily follow from premise (1) and the universally quantified premise

(2). At first sight this seems to implicate that absolutely fundamental rules

of inference have to be given up, as modus ponens1 is denied, the only rule

of inference that is used for this argument. But there is another possibility:

alternatively, considering the sorites paradox with the series of conditional, we

could accept each step on its own, but claim, that too many steps of inference

can put into question the truth of the conclusion.

• It is possible to put into question the strict truth of the inductive premise (2).

As a consequence, since classical logic requires sharp boundaries of predica-

tions, within a classical framework, there has to be an n so that ‘Fn ∧ ¬Fn+1’.

In a nonclassical framework there are a lot of other ways of questioning the

1 Modus ponens is a rule of inference which, from a given conditional sentence and its antecedent,
allows you to conclude its consequent.
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strict truth of the inductive premise. These possibilities will be mentioned

when discussing the various particular theories in detail.

• We can accept the validity of the argument and the truth of the inductive

premise (2), but contest the truth of premise (1) or the falsity of the conclusion

(3).

Let us consider the sorites paradox (H+) with the two premises ‘One single

grain of sand is not a heap’ and ’adding one grain of sand will not turn it into

a heap’. Accepting the argument and the two premises leads to the conclusion

that there are no heaps. But accepting the conclusion of every sorites paradox

creates problems. This can be illustrated by the example of the sorites paradox

(H-) with the two premises ‘ten thousand grains of sand make a heap’ and

‘removing one grain of sand does not change anything about the fact that it is

a heap’. Accepting the argument and these two premises implicate that even

the solitary last grain of sand is a heap. This conclusion is incompatible with

the conclusion of (H+).

A solution could be to deny the initial premise of (H-). This implicates that

there are no heaps at all as (H+) shows us. As a consequence it is not true

that ten thousand grains of sand make a heap.

If we argue this way, at least one problem remains: How can we decide which

of a pair of sorites paradoxes is valid? Why there are no heaps rather than

everything being a heap? The necessity to decide this in turn leads to the fact

that vague predicates do not have any serious applications because they apply

either to nothing (‘is a heap’) or to everything (‘is not a heap’).

• We can accept premise (1) and the inductive premise (2) and deny the con-

clusion (3). Accepting the validity of the argument and the two premises but

denying the conclusion implicates that there cannot be any coherent logic gov-

erning vague language, because semantic rules dictate the two premises to be

true and they dictate the conclusion to be false. In this case sorites paradoxes

reveal the incoherence of rules governing vague language.
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2.1.8 Higher-order vagueness

As mentioned before, higher-order vagueness arises from the fact that ‘vague’

itself is a vague concept. As a consequence it lacks sharp boundaries between its

positive extensions and negative extensions and the borderline cases. This leads to

the conclusion that there are ‘borderline borderline cases’, so-called ‘second-order

borderline cases’. This reasoning can be repeated infinitely, resulting in an unlimited

hierarchy of borderline cases of different order, a phenomenon called ‘higher-order

vagueness’.

The observation that ‘vague’ itself is a vague concept seems to be obvious, but

on the other hand one could claim that ‘vague’ is not a vague concept, arguing that

it is only ambiguous, applied inadequately or too general. Such a point of view has

to be proved by incontestable arguments.

In any case, any serious theory of vagueness should address the issue of higher-

order vagueness explicitly.

2.1.9 Degree of formalization

The criterion of the degree of formalization and mathematization of a theory is

certainly of different importance for philosophers, logicians, mathematicians, scien-

tists and engineers. While mathematicians, logicians and engineers tend to search

for an elegant, non-trivial and coherent body of mathematical definitions and theo-

rems for the analysis for certain concepts, some philosophers often ignore the need

of an adequate mathematical model.

2.1.10 Applicability

Vagueness is a wide field of research and there are a lot of different scientists

working on it: philosophers, logicians, mathematicians, engineers and computer

scientists. Obviously, not all of them have the same motivations and objectives of

research. While some of them may try to find out the reasons why vagueness arises,

others would place emphasis on the practical aspects of a theory of vagueness like

applicability. When evaluating a theory of vagueness, one should always keep in

mind these different motivations.
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Especially for computer scientists the practical benefit of a theory of vagueness,

its possible applications, may be the most important goal of their research as they

want to find solutions for existing problems. Therefore it is useful to evaluate con-

tributions to the vagueness discourse also with regard to their applicability.

2.2 Conclusions

As explained in section 2.1, the criteria for evaluating a theory of vagueness

are numerous and manifold and probably it is not possible that one single theory

matches all of them perfectly. Therefore one has always to keep in mind the purpose

of the theory of vagueness and concentrate on the criteria that are important to reach

this goal. The importance of the different criteria may change according to the aim

to be reached.

Summarizing, perhaps we could say that theorists who are trying to elaborate

a theory of vagueness should preserve as many of our judgements or opinions of

various kind as possible and should meet theoretical requirements like simplicity

and practical benefit like applicability.



Chapter 3

Theories of vagueness

La filosofia sembra che si occupi solo della verità, ma forse dice solo fantasie, e la letteratura

sembra che si occupi solo di fantasie, ma forse dice la verità.

Antonio Tabucchi [Tab94, p.30]

Introduction

Citing the great Italian writer Antonio Tabucchi, philosophy is a discipline which

seems to deal with truth only, but perhaps it is about fantasy, while literature is a

discipline which seems to deal with fantasy only, but perhaps it is about truth. This

statement, whether it is true or not, addresses one big challenge that has to be faced

by philosophers: they cannot prove their theories by experiments or facts, because

their theories are often at least partly a question of beliefs. On the one hand, this

fact makes philosophy so fascinating for many people, but on the other hand, it is

a reason why many people do not take it serious.

However, in this chapter I will present the main theories discussed in analytic

philosophy which are challenging the phenomenon of vagueness. For this purpose I

will discuss the different theories of vagueness in detail, presenting the point of view

of at least one defender of each approach, and I will try to give an answer to the

question if and in which way these different theories meet the criteria mentioned in

section 2.1.

There are various approaches trying to model the phenomenon of vagueness both

inside and outside of classical logic. The issue of classifying these theories has been

addressed by many philosophers, logicians, psychologists and computer scientists.

The plurality of the various contributions to the on-going discourse on vagueness

allows a lot of different classifications. Therefore, one of the biggest challenges is
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to find a useful classification of the theories which points out similarities and the

essential differences between the different contributions.

According to Christian G. Fermüller [Fer03] one possible classification of theories

of vagueness is the following division into the following five groups:

1. Epistemic account

2. Gap theories

3. Degree theories

4. Supervaluationism

5. Pragmatic account

This classification considers mainly two parameters, namely on the one hand the

number of truth values introduced to handle borderline cases and on the other hand

the idea of the origin of vagueness. Perhaps it would also be possible to classify

with regards to their answer to sorites paradoxes or the degree to which they retain

classical logic and semantics.

In the epistemic approach, which will be discussed in section 3.1, vagueness is seen

as a type of ignorance and fuzzy boundaries occur because we are ignorant about

the extensions of vague predicates. As a consequence borderline case predications

are always true or false. It is our ignorance which makes it impossible for us to

make a decision whether a certain predicate applies to a special instance or not.

The epistemic view retains classical logic and semantics.

Supporters of gap theories described in section 3.2 are convinced that classical

logic is the only ‘correct’ logic. As the semantics of classical logic cannot be applied

to vague predicates, for researchers supporting this theory no correct reasoning in

the presence of vagueness is possible. On a less radical view, vague statements lack

proper truth values and in addition to the two classical truth values true and false

there is a third truth value indefinite denoting the ‘truth value gap’.

Researches supporting degree theories discussed in section 3.3 usually are con-

vinced that truth comes in degrees and assign to borderline case predications truth

values from some algebraic structure. Most degree theories agree that possible de-

grees of truth can be identified by real numbers of the closed interval [0,1]. An

example for degree theories are fuzzy logics, described in chapter 4.
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The supervaluational approach presented in section 3.4 retains classical logic but

adopts non-classical semantics. Defenders of this theory do not believe that vague

predicates actually do have crisp and fixed boundaries. To evaluate a statement cor-

rectly, supervaluationists think that we have to consider all possible precisifications

of the meaning of the components of a statement. Therefore a statement is true if

and only if it is true on all possible precisifications. As a consequence there can

be borderline cases for which it is impossible to decide whether a certain predicate

(clearly) applies to it or (clearly) does not apply.

Also the pragmatic approach, which will be discussed in section 3.5, retains classi-

cal logic and semantics in its entirety. Philosophers supporting this theory, consider

vagueness as a pragmatic phenomenon caused by the relation between the use of a

language and the language itself. Language itself is precise on this account.

3.1 The epistemic approach

According to the epistemic approach vagueness is a form of ignorance. Vague

predicates have sharp boundaries like exact ones, it is only our ignorance which

makes it impossible for us to decide whether a vague predicate (clearly) applies to a

certain instance or (clearly) does not apply. As a consequence vague predicates can

be handled in the same way as exact ones and classical logic and semantics can be

retained in its entirety.

One of the most elaborated and sophisticated defences of the epistemic approach

can be found in Timothy Williamson’s[Wil94] book Vagueness. A further very elab-

orated defence can be found in Roy Sorensen’s[Sor01] book Vagueness and Contra-

diction. My discussion of the epistemic approach is mainly based on the ideas of

Timothy Williamson.

3.1.1 Timothy Williamson’s view of vagueness

Although epistemic theorists are convinced that vague predicates have sharp

boundaries, they do not deny that vagueness exists. As mentioned above, they

claim that vagueness arises because we humans are ignorant about something that

would make us able to understand where the limits of a predicate’s extensions fall.
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To clarify the concept of ignorance, Timothy Williamson [Wil94, p.185] gives the

following example:

No one knows whether I am thin. I am not clearly thin; I am not clearly

not thin. The word ‘thin’ is too vague to enable an utterance of ‘TW is

thin’ to be recognized as true or as false, however accurately my waist

is measured and the result compared with vital statistics for the rest of

the population. I am a borderline case for ‘thin’. [...] Then since we

do not know that TW is thin and do not know that TW is not thin, we

are ignorant of something. Either ‘TW is thin’ expresses an unknown

truth, or ‘TW is not thin’ does. We do not even have an idea how to

find out whether TW is thin, given my actual measurements and those of

the rest of the population. Arguably, we cannot know the circumstances

that TW is thin or that TW is not thin; in that sense, we are necessarily

ignorant of something.

3.1.2 Borderline cases

If the epistemic theory of vagueness was true, each proposition would have a

single truth value, true or false. As a consequence, on the epistemic view of vague-

ness, a vague predicate cannot be characterized by having borderline cases, if a

borderline case is defined as an object that falls neither in the positive nor in the

negative extension of a predicate, but in a region, so that vague utterances about

these borderline cases are neither true nor false. Kit Fine [Fin] uses the expression

‘penumbra’, derived from the Latin umbra (shadow), to indicate the area in which

borderline cases fall.

Therefore, in the epistemic view, vagueness and borderline cases have to be

characterized epistemically. Accordingly, vagueness does not mean that a vague

predicate lacks sharp and well-defined boundaries. Quite the contrary, from the

epistemic point of view even vague predicates have sharp boundaries, but we do

not - and perhaps even cannot - know where the limits of the positive and negative

extension of the vague predicate fall. In other words, also vague utterances in

borderline cases are true or false, but we humans have no idea how to find out

which.
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Summarizing, Timothy Williamson holds the view that borderline cases have

sharp boundaries, but that we do not know where they fall. Many philosophers,

logicians, researchers and computer scientists working in the field of vagueness con-

sider this thesis to be unworthy of any serious consideration and therefore reject the

epistemic theory of vagueness, arguing that a term is vague if and only if it admits

borderline cases for which we do not know whether a predicate (clearly) applies or

(clearly) does not apply and a case is said to be a borderline case if our ability to

decide it does not depend on our ignorance.

For Timothy Williamson [Wil] supporting this very technical definition of border-

line cases means committing a petitio principii to the epistemic view of vagueness.

According to him an utterance like ‘TW is thin’ would be typically called a bor-

derline case, but one should not assume automatically without argument that our

inability to decide the matter does not depend on our ignorance. But what is the

fact of which we are ignorant? For Williamson [Wil, p.271] the answer is obvious:

‘we are ignorant either of the fact that TW is thin or the fact that TW is not thin

(our ignorance prevents us from knowing it).’

3.1.3 Classical logic and semantics, principle of bivalence

The most obvious argument for the epistemic view of vagueness is probably

the fact that classical logic and semantics can be retained and do not have to be

revised. As Timothy Williamson [Wil94, p.186] claims, ‘classical semantics and

logic are vastly superior to the alternatives in simplicity, power, past success and

integration with theories in other domains’.

As a consequence, bivalence holds as well. Abandoning bivalence for vague utter-

ances one pays a high price: classical truth-conditional semantics cannot longer be

applied and probably not even classical logic. But how is the principle of bivalence

to be understood from the epistemic point of view?

The principle does not say that everything is either true or false. It only claims

truth or falsity if and only if something has been said to be the case. Thus, the

principle of bivalence says that each proposition has a single truth value, true or

false.

For Timothy Williamson [Wil] every theory of vagueness should respect the prin-
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ciple of bivalence, because according to him it cannot be denied consistently. His

argumentation for demanding that the principle of bivalence has to be respected is

the following: suppose that Anna is a borderline case of ‘tall’ and ‘Anna is tall’ is

neither true nor false. As ‘Anna is tall’ is not true, Anna cannot be tall - if Anna

were tall, ‘Anna is tall’ would be true. As Anna is not tall, ‘Anna is short’ has to

be true and ‘Anna is tall’ should to be false, which is contradicting the assumption

that ‘Anna is tall’ is neither true nor false.

The margin of error principle

It is certainly very advantageous that the epistemic approach of vagueness retains

classical logic and semantics and the principle of bivalence.

However, can one seriously claim that there is a last second of our childhood

followed by the first second of our adulthood? Is it not absurd to think that there

is a precise point on the spectrum where red turns into orange, that the loss of one

single hair can turn someone bald or that one millimeter can make the difference

between the group of the short and the group of the tall people?

Let us suppose that such precise and sharp boundaries exist also for vague pred-

icates. Why are we not able to find out where they fall? Why are we ignorant of

the correct classification of borderline cases?

According to Rosanna Keefe [Kee00] there are a lot of very general and unsatis-

fying responses to these questions like suggesting that ignorance is our default state

and that this lack of knowledge has no need to be explained.

Timothy Williamson [Wil94], by contrast, offers a very specific and detailed ex-

planation of the source of our ignorance. He is convinced that knowledge from per-

ceptual sources is typically inexact because our apparatus of perception has limited

sensitivity and cannot guarantee complete accuracy. The concept of the so-called

‘inexact knowledge’ can be made clear by the following examples: our sense of sight

can give us an idea about the number of people in a football stadium, but it is

almost impossible to find out the exact number of the people in this stadium only

by looking at the crowd, without obtaining any other information. Our sense of

hearing can give us an idea about the loudness of a noise, but we would not know

the exact volume in decibel only by listening. Our sense of taste can give us an idea

about the ingredients of some food, but in order to find out the exact consistency
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we have to use other methods.

Therefore, a certain margin of error is necessary when perceptual sources are used

to acquire information. More explicitly, where our knowledge is inexact, our beliefs

are reliable only if we leave room for some error. For given cognitive capacities are,

reliability increases with the width of the margin. The more accurate the cognitive

capacities are, the narrower is the margin needed to achieve a given level of reliability.

This idea can be illustrated very well by the following example. Let us suppose

that Anna is borderline ‘tall’ on the tall-side of the boundary, but only just. Our

(true) belief that Anna is tall should not count as real knowledge, because it should

not be true just by luck. If our use of ‘tall’ was only a little bit different, so that

Anna is just on the short-side of the boundary, we would still believe that ‘Anna is

tall’, but in this case our persuasion that ‘Anna is tall’ would be wrong.

According to Williamson this reasoning leads to the following margin of error

principle:

Margin of error principle 1. ‘A’ is true in all cases similar to cases in which ‘It

is known that A’ is true.

That means, if x and y differ only marginally regarding one characteristic and

if we know, that x has one feature that depends on this characteristic, also y has

this feature. The following example illustrates this idea very clearly: we know that

x has one hair less on his head than y. If we know that x is a bald, than y is bald

as well.

The margin of error principle should explain our ignorance. Suppose that x

consists of n grains of sand and still makes a heap, while y consists of n− 1 grains

of sand and does not make a heap anymore. If we want to know where the positive

and negative extensions of the predicate ‘heap’ fall, we should also know that ‘x

is a heap and y is not a heap’. But if we know that ‘x is a heap’ the margin of

error principle implicates that also y is heap. Thus, we cannot know that y is not

a heap. It is impossible for us to know a conjunction of the form ‘n grains of sand

make a heap and n− 1 grains do not make a heap’. Summarizing, we should know

something that we cannot know if we want to understand where the extensions of a

vague predicate are.
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3.1.4 Sorites paradoxes

In the epistemic view of vagueness, the argument of the sorites paradoxes is

valid, but the strict truth of the inductive premise is put into question (see the

explanation of version of the sorites paradox with a universally quantified premise

in subsection 1.1.3).

Roy Sorensen [Sor01, p.1] for instance argues that ‘the argument is valid by

mathematical induction. The first premise is obviously true. The conclusion is

obviously false. Therefore, my only recourse is to reject the induction step.’

That means, that vague terms are sensitive to arbitrarily small differences: there

will be a millisecond that makes the difference between a child and an adult and

there will be a grain that turns a ‘non-heap’ into a heap.

However, Sorenson [Sor01, p.32] makes another observation regarding the argu-

ment of sorites paradoxes:

Many vague phrases are too complex to ever be thought about. Iterat-

ing ‘the mother of’ a thousand times yields a grammatical predicate of

English. No one will have a gestalt switch concerning ‘grand998-mother’.

Yet we know there are sorites arguments that use ‘grand998-mother’ as

the inductive predicate. The infinite class of sorites argument that are

beyond our limits of memory and attention cannot owe their existence

to a human penchant. [...] Human beings cannot [...] even grasp those

arguments.

In other words, Sorenson claims that sorites paradoxes often come to conclusions

that are too long and too complex to be judged by anyone. Reproducing Stephan

Shapiro’s [Sha06, p.41] example ‘such and such a scene is a very interestingly sort of

weird ... funny ...’ it seems to be obvious that no human being is able to understand

this complex sentence.

3.1.5 Higher-order vagueness

Not only borderline cases, but also higher-order vagueness is characterized epis-

temically by the epistemic approach of vagueness: there are sharp boundaries be-

tween the cases to which the vague predicate (clearly) applies and the borderline
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cases of this vague predicate, as there are sharp boundaries between the cases to

which the predicate (clearly) does not apply and its borderline cases. The bound-

aries only appear fuzzy to us because we are ignorant of the exact boundaries and

thus we do not know whether the predicate (clearly) applies or not.

All different orders of vagueness are treated in the same way, i.e. as a matter of

ignorance, with classical logic applicable at every stage.

3.1.6 Compatibility with natural language-use

The epistemic approach of vagueness is often criticized because it is not compat-

ible with natural language use as far as it does not preserve a necessary connection

between meaning and use. If nature does not draw a border between the negative

and the positive extensions of a predicate, there will be a border only if we draw

it by the use of this predicate. In the case of vague predicates there is no precise

border, because our use only draws a border zone (also called penumbra as explained

in subsection 3.1.2) instead of a real border. In other words, a term means what

it means because it is used in the way it is used. The epistemic view of vagueness

however postulates sharp boundaries even in borderline cases and thus draws lines

where our use does not.

However, this view of language is controversial. Defenders of the epistemic ap-

proach are convinced, as described in subsection 3.1.2, that even vague predicates

have sharp boundaries, but we do not know where the limits of the positive and the

negative extensions of the vague predicates fall.

The compatibility with the natural langue-use, as Sven Walter [We05] argues, is

fundamental. The reliability of a mechanism often depends just on the fact that it

does not react neither in a positive nor in a negative way in the event of borderline

cases. The price that we have to pay for a clearly positive or clearly negative reaction

is very high, because there would also be false reactions. Sometimes mechanisms

that do not react are safer than mechanisms that react in a wrong way.
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3.2 Gap theories

As mentioned in the introductory section of this chapter, some defenders of gap

theories regard classical logic as the only correct logic. If classical logic cannot be

applied to a certain phenomenon, it will be classified as inconsistent with correct

reasoning. In other words, correct reasoning in the presence of vagueness seems to

be impossible for them.

Less radical defenders of the gap theory defend another approach based on a

simple observation: vague statements apparently lack proper truth values, as they

seem to be neither true nor false.

In practice, calculi and formal semantics of these theories correspond to a three-

valued logic. In addition to the two classical truth values true and false, there is a

third one, namely indefinite, the so-called truth value gap.

There are many different contributions to gap theories from different researchers.

One of the most important three-valued logic is the one of Stephen Cole Kleene [Kle52].

Based on the ideas of Kleene, Michael Tye [Tye] developed his three-valued logic

that I am going to present in the next paragraphs because it is, as I think, one of

the most elaborated ones.

3.2.1 Michael Tye’s use of Kleene’s three-valued logic

As vague statements in the event of borderline cases seem to be neither true nor

false, Michael Tye introduced a third truth value which is different from true and

false (namely indefinite). Strictly speaking, this third value is not a real truth value,

but rather a truth value gap. According to Tye there are two reasons from which

truth value gaps can result:

• there are gaps due to vagueness when something is said which is neither true

nor false and

• gaps due to failure of reference or presupposition.

The connectives

The introduction of the third truth value indefinite for vague propositions that

is different from true and false is not sufficient to solve the problem. Also, the
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truth values of complex statements have to be determined. Corresponding to the

two-valued connectives, Michael Tye [Tye, p.282] proposes the following truth tables

for the the three-valued connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction),

→ (implication) and ≡ (equivalence), where I is denoting indefinite, T true and F

false:

p ¬p
T F
I I
F T

Tab. 3.1: Tye’s truth table for the connective ¬.

p ∧ q
p
q T I F

T T I F
I I I F
F F F F

Tab. 3.2: Tye’s truth table for the connective ∧.

p ∨ q
p
q T I F

T T T T
I T I I
F T I F

Tab. 3.3: Tye’s truth table for the connective ∨.

p→ q

p
q T I F

T T I F
I T I I
F T T T

Tab. 3.4: Tye’s truth table for the connective →.

p ≡ q

p
q T I F

T T I F
I I I I
F F I T

Tab. 3.5: Tye’s truth table for the connective ≡.
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Stephen Cole Kleene [Kle52, p.335] maintains that ‘these strong tables are uniquely

determined as the strongest possible regular extensions of the classical two-valued

tables, i.e. they are regular, and have a true or a false in each position where any

regular extension of the two-valued tables can have a true or a false.’

The rules for the construction of these truth tables follow the rules of Kleene [Kle52]

and are comparatively simple:

1. If the truth value of a statement is true, then its negation is false and vice

versa.

2. A conjunction is true if both its conjuncts are true, and false if at least one

conjunct is false; otherwise it is indefinite.

3. A disjunction is true if at least one disjunct is true, and false if both its

disjuncts are false; otherwise it is indefinite.

4. The truth value of p→ q is the same as the truth value of ¬p ∨ q.

5. The truth value of p ≡ q is the same as the truth value of (p→ q) ∧ (q → p).

As far as only the two truth values true and false are involved, the tables corre-

spond to the usual two-valued truth tables, described e.g. in [Háj98].

In Kleene’s and hence also in Tye’s logic there are no tautologies1, since two-

valued tautologies can take the value indefinite in Tye’s three-valued logic. For

instance, the classical tautologies p ∨ ¬p, ¬(p ∧ ¬p) or p → p are indefinite, if p

is indefinite. At least, classical tautologies cannot be false and classical contradic-

tions2 cannot be true; at most they can be indefinite. Michael Tye introduced the

term ‘quasi-tautology’ for statements that have no false substitution instance and

‘quasi-contradiction’ for statements that have no true substitution instance. Like in

classical logic, a conclusion is true if all premises are true.

1 A tautology is a statement that is necessarily true because, by virtue of its logical form, it
cannot be used to make a false assertion.

2 A contradiction is a statement that is necessarily false because, by virtue of its logical form,
it cannot be used to make a true assertion.
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Interpretation of predicates

For the purposes of the formal semantics, Michael Tye suggests a special treat-

ment for vague predicates that he explains by means of monadic vague predicates3.

The generalization to n-place predicates is straight-forward.

Let F be a monadic vague predicate and D a non-empty domain. To F there are

assigned an extension S (the set of objects of which F is true) and an anti-extension

S ′ (the set of objects of which F is false). One should pay attention to the fact that

the sets S and S ′ are not classical sets, but vague sets.

The concept of vague sets can be explained in the following way: Let x be a

borderline F , if there is no determinate matter of fact about whether x is an F

or not. A set S is vague, if and only if it has borderline members and there is

no determinate matter of fact about whether there are objects that are members,

borderline members nor non-members.

With the introduction of vague sets, Tye enunciates the truth conditions for

vague proposition as follows: Let x be an individual constant and ix the object in

D assigned to x. Then Fx is true if and only if ix ∈ S, Fx is false if and only if

ix ∈ S ′ and Fx is indefinite if and only if there is no determinate matter of fact

about whether ix belongs to S (or to S ′).

Interpretation of quantifiers

In Tye’s three-valued logic the quantifiers are introduced as follows:

An existential quantification (∃x) Fx is true if Fx is true for some assignment of

an object of D to x and false if Fx is false for all assignments; (∃x)Fx is indefinite,

if Fx is indefinite at least for one assignment and for all remaining assignments.

A universal quantification (∀x)Fx is true, if Fx is true for all assignments of

objects of D to x and false if Fx is false for at least one assignment; otherwise it is

indefinite.

3.2.2 Classical logic and semantics

As mentioned above, classical logic and semantics cannot be retained. A three-

valued logic is adopted with a third truth value indefinite.

3 A monadic predicate is a predicate that takes only one argument.
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3.2.3 Borderline cases

All borderline cases receive the same truth value indefinite, an idea that can

create some problems in connection with higher-order vagueness, as discussed in the

next paragraphs.

3.2.4 Higher-order vagueness

As I have stated before, Michael Tye eliminated the sharp boundary between the

positive and the negative extensions of a vague predicate F by introducing a third

category of objects for which it is indefinite whether F (clearly) applies or (clearly)

does not apply. These objects receive the third truth-value indefinite.

However, difficulties still arise in connection with higher-order vagueness. Even

if there is no last object xi so that ‘Fxi is true and Fxi+1 is false’, it seems that

there is a last object xi for which ‘Fxi is true and Fxi+1 is indefinite’. In other

words, it seems that the three-valued logic replaces the classical sharp boundary

between the positive and the negative cases by two sharp boundaries: one sharp

boundary between the positive cases and the indefinite ones and a second sharp

boundary between the indefinite cases and the negative ones. Consequently, there

still seems to be a single hair that makes the difference between a man who is bald

and a man who is borderline bald. This seems to be as implausible as the idea

that the removal of one hair makes the difference between a man who is bald and

a man who is definitively not bald. However, there is still another problem: the

fact that the borderline cases are sharply bounded implies that there is no room

for borderline borderline cases and thus for second-order vagueness. In fact, this

contradiction is one of the major reasons which prompt a lot of logicians to move

from a three-valued logic to many-valued or even infinite-valued logics, which are

described in section 3.3. Tye on the other hand adheres to his three-valued logic.

So, how does Tye [Tye, p.290] address the problem of higher-order vagueness?

First of all he tries to avoid the sharp boundary between the positive cases and the

borderline cases as well as the sharp boundary between the borderline cases and the

negative cases, claiming ‘that it is not true that there are sharp transitions between

the true and the indefinite statements and the indefinite and the false statements’, as

for him this idea is purely intuitive: according to him the most competent language
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users will not precisely agree upon where the boundaries are to be drawn in the

sequence between the true, the indefinite, and the false statements. Of course this

people may specify a precise point if they are forced to assign either true or false

or neither to each statement Mo,M1, ...M100000 one after the other. But probably,

even one and the same person will not pick up exactly the same points twice.

These considerations are closely connected to David Lewis’ pragmatic approach

of vagueness which will be described in detail in section 3.5. Lewis claims that there

is a cluster of similar precise languages from which the speaker of a language can

choose. The different languages of a cluster can classify borderline cases of a certain

predicate differently and the same speaker can choose different languages from the

cluster in different situations, depending on his beliefs, habits and intentions.

However, Tye is convinced that neither the transition from the true to the in-

definite statements nor the transition from the indefinite to the false statements

is sharp. Thus, for Tye there are statements, for which it is not clear which truth

value has to be assigned to them - the semantics does not require that they have to

be true, false or indefinite. If there was a sharp boundary between the positive and

the indefinite as well as between the negative and the indefinite cases, then every

statement would either have to be true, false or indefinite, but as this is indefinite,

there are no sharp transitions.

3.2.5 Sorites paradoxes

Michael Tye’s view of higher-order vagueness leads us directly to his response on

the phenomenon of sorites paradoxes: for him, both versions of the sorites paradox

described in subsection 1.1.3 are valid, but the argument is not coherent. If we

consider the version of the sorites paradox with the series of conditionals according

to Tye at least one of these conditionals is not true. In the case of the sorites paradox

with the inductive premise Michael Tye puts into question the strict truth of the

universally quantified premise. According to him Fxi and Fxi+1 are indefinite, if xi

and xi+1 are borderline F . Hence, also the inductive premise ‘For every n: If Fxn,

then Fxn+1’ and the conditional premises ‘If Fxi, then Fxi+1’ are indefinite.



Chapter 3. Theories of vagueness 45

3.2.6 Prephilosophical judgements and intuitions

Many critics of Michael Tye’s three-valued logic claim that the truth values

assigned to some statements are contradictory to our intuitions. Leaving aside the

‘quasi tautologies’ and the ‘quasi contradictories’, we come across truth values which

seem to not coincide with our intuitions especially in the case of complex statements,

like the following example of Sven Walter [We05, p.12] demonstrates: suppose that

Anna and Maria are both borderline tall, but that Maria is taller than Anna. In

this case, according to Tye’s logic, the statement ‘Anna is tall and Maria is not tall’

is indefinite just like the statement ‘Anna is tall and Maria is tall’. Intuitively, we

would say that the first proposition should be false, because nobody who is taller

than someone who is tall can be not tall. Statements like ‘Everybody who is taller

than someone who is tall’ are intuitionally true, while for Tye they are indefinite.

He does not provide any satisfactory explanation why our intuitions in this case are

completely false.

These ideas remember Kit Fine’s penumbral connections (see subsection 3.4.2),

which according to supervaluationism have to be respected when a predicate is made

precise. Also fuzzy logic requests that semantic constraints and meaning postulates

are part of a theory of vagueness.

Another arguable aspect is, that Tye’s three-valued logic assigns the same truth

value to all borderline cases, even if intuitively 50 grains of sand form more plausibly

a heap than 10 grains of sand. As mentioned before, this problem is the reason why

many researchers are in favor of a many-valued logic. However, Tye argues that

the introduction of a many-valued or even infinite-valued logic does not solve the

problem and defends his logic: according to him, the introduction of more truth

values, even if it seems to have sense, still implicates that there have to be sharp

boundaries between the last conditional that assumes the truth value 0 and the first

conditional that assumes a truth value unequal 0 and this is utterly implausible

for Michael Tye. It is a feature of vague propositions that there is no determinate

matter of fact, at which exact point the truth value changes between a man without

hair and a man with one million of hairs on his head. A theory with gradual truth

values cannot represent this feature, regardless of the number of truth values that

are introduced.
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However, Michael Tye [Tye, p.293] claims that the advantage of his theory is due

to the fact that

[...] unlike other prominent semantics, it concedes that the world is, in

certain respects, intrinsically and robustly vague; and it avoids, at all

levels, a commitment to sharp dividing lines. This position is, I suggest,

consonant with both our ordinary, commonsense view of what there is

and our pre-theoretical intuitions about vagueness.

3.3 Degree theories

In this section I am going to consider degree theories, i.e. theories of vagueness

that introduce, apart from the two classic truth values true and false, new truth

values and therefore adopt a many-valued or even indefinite-valued logic. Rosanna

Keefe[Kee00] defines a many-valued logic as a logic which has more than two truth

values and which is truth-functional. A logic is truth-functional if the truth value

of a compound sentence is determined by the values of its compounds.

This definition is very general and applies to a lot of theories. In this sense,

fuzzy logic described in chapter 4 can be seen as a many-valued logic, i.e. as a

degree theory. In section 4.4.1 I will discuss this idea in more detail.

Also Michael Tye’s three-valued logic described in section 3.2 can be seen as a

special case of a many-valued logic, because it introduces a truth value gap that,

strictly speaking, represents a third truth value. As Tye’s three-valued logic has some

difficulties in connection with higher-order vagueness, the introduction of logics with

a high or even infinite number of truth values seems to be the logical consequence.

The theory on which I am going to focus in the next paragraphs is the infinite-

valued logic of Kenton Machina [Mac] who makes use of  Lukasiewicz logic. In this

context I will also refer to Petr Hájek’s basic fuzzy propositional logic BL (see

section 4.2) and his design choices (see subsection 4.2.1), drawing comparisons.

3.3.1 Kenton Machina’s use of  Lukasiewicz logic

In his contribution Kenton Machina introduces a many-valued logic, taking as

truth values the real numbers from the unit interval [0,1], where 0 represents com-
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plete (classical) falsehood and 1 complete (classical) truth. The values in between

are used to characterize borderline cases. The higher the real number, the ‘truer’

the proposition. In other words, the truth value of the proposition ‘Anna is bald’ is

growing, if the number of Anna’s hairs is declining.

As I have discussed before, Tye’s three-valued logic has been criticized several

times, because it assigns the same (non-classical) truth value indefinite to all bor-

derline cases, even if intuitively a man with 10 hairs on his head is balder than a

man with 100 hairs. Machina infers from that observation, that there is a sort of

continuum of borderline cases and tries to give consideration to this intuition by

suggesting a continuum of truth values, with an ordering relation defined on it. As

mentioned before he uses the unit interval [0,1].

However, for Machina there is no unique solution for the assignment of truth

values to the borderline cases, but he offers several reasonable possibilities: as the

assignments of truth values should not be completely arbitrary, Machina suggests to

use empirical investigations to find out some patterns of the common man’s classifi-

cation of borderline cases which could help us to assign truth values to propositions.

In this way we can receive an assignment that is neither completely determined by

the empirical data, nor completely arbitrary, but - as Machina [Mac, p.188] claims -

‘fortunately, the assignment of exact values usually does not matter much for decid-

ing on logical relations between vague propositions; what is of importance instead

is the ordering relation between the values of various propositions.’

The connectives

In the next paragraphs I am going to discuss the definition of the connectives

¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication) and ≡ (equiva-

lence) proposed by Kenton Machina. His system was originally proposed by Jan

 Lukasiewicz, but  Lukasiewicz did not see it as a logic of vagueness and interpreted

the values as probabilities.

In the following explanations |p| stands for the truth value of the proposition p.

• Negation ¬

As it seems natural for Machina that as p gets truer, ¬p gets falser and vice

versa, he defined the negation ¬ in the usual way:
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|¬p| = 1− |p| (3.1)

• Conjunction ∧

Machina sees the conjunction ∧ in a fairly classical way; i.e. if one conjunct

is false, the whole conjunction becomes false, no matter how true the other

conjunct is. Therefore he requires:

|p ∧ q| = min(|p|, |q|) (3.2)

If someone allows |p ∧ q| > min(|p|, |q|), then the conjunction of the premises

could be truer than the falsest premise in the argument.

• Disjunction ∨

Similarly, the disjunction ∨ is defined in a fairly classical way:

|p ∨ q| = max(|p|, |q|) (3.3)

This definition, however, puts into the question the law of the excluded middle

as p ∨ ¬p is not necessarily always completely true. In most of the cases the

value is an intermediate (i.e. non-classical) one. However, as the disjunction

cannot become more than half-way false, Machina claims that we have a ‘law

of the more or less excluded middle’.

• Implication →

The implication → is defined in the following way:

|p→ q| = 1 if |q| > |p|

1 − |p| + |q| if |q| ≤ |p|
(3.4)

Kenton Machina chose this definition for the implication instead of the clas-

sical definition |p → q| = |¬p ∨ q| because according to him, the classical
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definition could lead to cases that are contradictory to our intuitions, as the

following example demonstrates: intuitively, the formula p→ p should always

be absolutely true, but, adopting the classical definition of the implication, if

|p| = 1
2
, then also |p→ p| = 1

2
.

But what are Machina’s reasons to define the implication in this way?

There are mainly two considerations which led Machina to adopt this defini-

tion:

1. First of all, the classical connection between → and logical inference

should be preserved. That means, that an argument should be completely

true, if its logical form requires truth-preservation, i.e. if it instantiates an

argument scheme which has the property that its conclusion must be at

least as true as the falsest premise. Accordingly, Machina’s definition of

the implication coincides with the classical definition of the implication,

as far as only the classical truth values 0 and 1 are concerned. General-

izing this classical principle, a conditional has to be completely true, if

the consequent is at least as true as the antecedent.

These conditions leads to the following restriction:

if |p| < |q| and |r → p| = 1, then |r → q| = 1 (3.5)

2. Secondly, Machina defines that

if |q| < |p| and |q| 6= |r|, then |p→ q| 6= |p→ r|. (3.6)

Alternatively, one could claim that |p → q| is uniformly 0 for all val-

ues of |q| such that |q| < |p|. The disadvantage of this definition is

that even the many-valued system cannot make any distinction between

arguments which are nearly truth-preserving and those which are not

truth-preserving at all and that is the reason why Machina rejects the

second alternative. To make a distinction between arguments which are
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nearly truth-preserving and those which are not truth-preserving at all,

he suggests the following conditions:

if |p| < |q| ≤ |r|, then |r → p| < |r → q| (3.7)

if |r| ≤ |p| < |q|, then |q → r| < |p→ r| (3.8)

Considering the conditions 3.5, 3.6, 3.7 and 3.8, the definition of |r → p| given

in 3.4 can be easily found. We only know that the conditional has the value

1, if |r| ≤ |p|. In case of |p| ≤ |r| the value of the conditional has to increase

if |p| increases and to decrease if |p| decreases, while |r| is kept fixed at some

intermediate value.

• Equivalence ≡

The equivalence ≡ is defined in the classical way:

|p ≡ q| = |(p→ q) ∧ (q → p)| (3.9)

In this context I want to refer to Petr Hájek’s design choices for his basic fuzzy

propositional logic described in subsection 4.2.1. As we will see, the motivation for

his choices are quite similar and therefore also his definition of the connectives.

Kinds of vagueness

In order to add quantifiers to his logic, Kenton Machina employs a generalized set

theory described by Lofti Zadeh and Joseph Goguen which differs from an ordinary

set theory by the fact that the membership relation is a gradual relation. Formally,

this is achieved by mapping an ordinary set into an index set. The degree of the

membership of an element of the domain is indicated by the element of the index

set to which the element is mapped.

According to Machina, this set theory has to be modified to meet the require-

ments of vagueness. Both, the reasons for the modifications and the modifications
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themselves are going to be discussed in the next paragraphs.

Machina claims that in a natural language there are at least three different kinds

of vagueness:

1. Conflict vagueness, which occurs if the application of a predicate is governed

by contradictory semantical rules.

2. Gap vagueness, which occurs if the semantic rules fail to say anything about

whether certain objects fall into the positive or the negative extension of a

predicate.

3. Weighting vagueness, which occurs if the relevant properties of an object

indicate only to a limited extend whether the object can be placed in the

extension of the predicate or not.

Machina’s conclusions from these observations are the following:

1. To represent conflict vagueness, Machina allows a given predicate letter to

be assigned more than one partial extension. Each extension is intended to

represent the extension determined by one nonconflicting set of criteria for the

application of the predicate denoted by the predicate letter.

2. To represent gap vagueness it has to be possible that the function which assigns

extensions to predicate letters, do not necessarily need to indicate whether an

element of the domain falls into the fuzzy extension of a predicate letter.

3. To represent weighting vagueness, it is necessary that the predicate letter can

have fuzzy extension so that some members of the domain fall in the extension

of a given predicate letter only to a limited extend.

However, as long as we only want to find out the truth values of vague utterances,

these definitions are not important. But if we want to reveal semantic relationships,

the different kinds of vagueness are an important aspect.

Predicates and quantifiers

In detail, Machina defines that the interpretation, M, of his language consists of

the following:
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• A non-empty set D, the domain of the interpretation M.

• The unit interval I, the index of the interpretation M.

• The set E of possible extensions, i.e. the set of all ordered pairs, consisting of

an n-place predicate letter (n ≥ 1) and an n-tuple of elements of D, where the

number of places in the predicate equals the number of places in the n-tuple.

• A finite set F of predicate interpretation functions. Each member of this set

is a function having a subset of E as domain and a subset of I as range. For

each predicate letter at least one element of F has in its domain an element

of E, which has the predicate letter as first member.

• A denotation function d which assigns to each individual constant an element

of D.

• A valuation function v such that

– v assigns to each sentence letter a value in [0,1]

– v assigns to each n-place predicate letter Φ followed by n individual

constants a1, a2, ..., an a value in [0,1] according to the following conditions

∗ If no element f of F interprets Φ for 〈a1, a2, ..., an〉, then

v(Φ(a1, a2, ..., an)) = 0.5

∗ If only one element f of F interprets Φ for 〈a1, a2, ..., an〉, then

v(Φ(a1, a2, ..., an)) = f(〈Φ〈a1, a2, ..., an〉〉)

∗ If more than one element of F interprete Φ for 〈a1, a2, ..., an〉, then

v(Φ(a1, a2, ..., an)) should be chosen so that it is somewhere within

the range of values given to 〈Φ〈a1, a2, ..., an〉〉 by these elements of F

– If a predicate letter contains variables in any of its argument places, a

value of D has to be assigned to them; afterwards the evaluation is done

in the usual way.

– As mentioned before, for every wellformed formulas A and B and assign-

ments of values to variables the following coherences have to be conserved:

∗ v(¬A) = 1 − v(A);

∗ v(A ∧B) = min(v(A), v(B));
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∗ v(A ∨B) = max(v(A), v(B));

∗ v(A → B) = 1 - v(A)+v(B) if v(B) ≤ v(A) and v(A → B) = 1

otherwise.

– For any well-formed formula A, v((∀)A)) is, relative to an assignment of

values to variables, the greatest lower bound of the values of v(A) rela-

tive to all possible assignments that differ from each other at most with

respect to the value assigned to x, denoted by glbx(v(A)).

v((∃x)A) is, relative to an assignment of values to variables, the least

upper bound of the values of v(A) relative to all possible assignments

that differ from each other at most with respect to the value assigned to

x, denoted by lubx(v(A)).

At this point, I would like to refer once more to Petr Hájek’s definition of his

basic fuzzy propositional calculus which will be described in subsection 4.2.2.

3.3.2 Sorites paradoxes

In classical logic, a conditional with a true antecedent cannot be true, if its

consequent is false; Machina generalized this classical principle and defined that in

his logic a conditional cannot be absolutely true, if its consequent is ‘more’ false

than its antecedent.

Machina’s idea seems to coincide with our intuitions: In the case of borderline

predictions our intuitions say that anyone who has one more hair on his head than

someone bald has to be bald as well, as it seems implausible that one hair makes

the difference between the group of the bald people and the group of the people who

are not bald. Nevertheless, anyone who has one more hair on his head than a bald

person seems to be a little bit ‘less’ bald. At a certain point, when n is sufficiently

high, a proposition like ‘Anyone with n hairs on his head is bald’ does not seem to

be absolutely true anymore. For Machina this means that the truth values of the

proposition has to decrease. Hence there are conditional premises to which a value

6= 1 is assigned.

More precisely, suppose that the proposition ‘Someone with n hairs on his head

is bald’ receives the truth value 0.99 and the proposition ‘Someone with n+ 1 hairs
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on his head is bald’ receives the truth value 0.98, as it seems a little bit ‘more’ false

that the person with one more hair is bald than the same claim about the other

person. The conditional ‘If a person with n hairs is bald, a person with n+1 hairs is

bald as well’ receives the truth value 0.99. This implicates that modus ponens is not

valid, because the conclusion with 0.98 is ‘more’ false than the falsest premise which

has the truth value 0.99. Modus ponens, the rule of inference, is quasi valid, but

with each repetition the guarantee of truth diminishes, so that plenty of repetitions

can lead to an absolutely false premise.

Reassuming, the inductive premise of the argument is interpreted as being quite

true, because this seems to be plausible. The argument form has some validity and

therefore it preserves truth quite well for many steps when the initial premise is

quite true. There is no point in the argument chain where we lose the guarantee of

truth all in one big jump. As Machina [Mac, p.201] argues, this ‘[...] is, what the

common man wants: he is convinced that such ‘slippery slope’ arguments are fine

if they are not carried too far.’

3.3.3 Pre-philosophical judgements and intuitions

Also Machina’s degree theory seems to contradict some of our pre-philosophical

judgements and intuitions.

As mentioned above, Machina uses the unit interval [0,1] as truth values for his

logic, where 0 stands for absolute falsity and 1 for absolute truth, while the values in

between are used to characterize borderline cases. This is advantageous, because in

this way there are different truth values which can be assigned to borderline cases in

order to satisfy our intuitions that some borderline cases may be ‘more’ true than

others. Nevertheless, the assignment of a completely exact truth value like 0.453 to

a proposition like ‘This man is bald’ is problematic. What should express a truth

value like this?

There is also a further problem which cannot be resolved by the introduction of an

infinite number of truth values: it still seems that there are sharp boundaries between

the propositions which are completely true, the propositions which are completely

false and the rest of the propositions which are neither clearly true nor clearly false.

There is still one last conditional which receives the value 1, followed by a first
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conditional which receives a value 6= 1, as well as there is a last conditional which

receives a value ¬ 0, followed by the first conditional which receives the value 0.

Another arguable aspect is Machina’s evaluation of complex propositions. In

case |p| = 0.5, classical tautologies like |p ∨ ¬p| and classical contradictions like

|p∧¬p| are 0.5 uniformly. Suppose, Marco and Anna are borderline tall, but Marco

is a little bit taller than Anna. Therefore the statement ‘Marco is tall’ has the truth

value 0.5, while the proposition ‘Anna is tall’ has the truth value 0.4. According to

Machina’s definition of the conjunction, the proposition ‘Anna is tall and Marco is

not tall’ receives the truth value 0.4, as well as ‘Anna is tall and Marco is tall’. This

does not seem to be plausible, because the first statement should be completely false,

as nobody who is taller than someone tall can be not tall. In the latter case, however,

a truth value of 0.4 seems adequate, as Marco and Anna are both borderline tall.

3.4 Supervaluationism

Michael Tye and Kenton Machina try to imitate our intuitions which seems to tell

us that propositions about borderlines are neither true nor false by introducing new

truth values. However, these approaches can be problematic, as discussed before,

because they abandon classical logic.

Nevertheless, it seems that an ideal theory should retain classical logic, but at

the same time provide the possibility that propositions about borderline cases can

be classified as neither true nor false without implicating the exigence to draw sharp

boundaries for vague predicates.

In this section I will discuss supervaluationism, a theory of vagueness which

foregoes the semantic ‘principle of bivalence’ in order to keep the semantic ‘principle

of the law of the excluded middle’ and the rest of classical logic.

3.4.1 Rosanna Keefe’s supervaluationism

One of the most vehement defenders of supervaluationism is Rosanna Keefe[Kee00]

whose theory I will explain in the following paragraphs. She [KSe02, p.153] wants a

theory of vagueness to meet the following three conditions:

1. borderline cases should be classified as neither true nor false without the
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exigence that they have to take some specific numerical value;

2. sharp boundaries for vague predicates should be avoided, because according to

Keefe there is nothing in our language or the world that determines particular

locations for such hidden boundaries;

3. the logic should be tried and tested and surprising and counter-intuitive con-

sequences concerning principles or inferences - classical logic would be ideal.

The core piece of her approach is the idea to come to a classical valuation of a

vague language by so-called complete precisifications or sharpenings. The principle

of precisification will be explained in the next paragraph.

Precisifications

If Tek is neither clearly tall nor clearly not tall but borderline tall, he is neither

a member of the positive nor of the negative extension of the predicate ‘tall’, but a

member of a so-called penumbra. Surely, the predicate ‘tall’ could be made precise

by fixing a height boundary among the heights of the borderline tall people, such

that anyone above it counts as tall, but this boundary would be arbitrary. However,

as long as these boundaries are drawn in the penumbra, we do not make a mistake.

It is a characteristic of borderline cases that they can classified as either true or false

by different precisifications.

Nevertheless, the instance of the law of the excluded middle formed by a bor-

derline case is true and its negation is necessarily false. This is possible because a

statement is true only if it is true under all admissible precisifications, neither true

nor false in case it is true under some admissible precisifications and false under

others and it is false in case it is false under every admissible precisification. In

this way, a statement of the form p ∨ ¬p is guaranteed to be true even when, being

borderline, neither p nor ¬p is true, since in every admissible precisification one of

the statements p or ¬p will be true.

Admissible precisifications

Citing Stephan Schiffer [Sch], an ‘admissible precisification of a statement is [...]

the assignment to it of a precise bivalent interpretation under which the statement
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may be either true or false if it is borderline, but will be true under the interpretation

if it is determinately true, and false under the interpretation if it is determinately

false’.

Fig. 3.1 illustrates a possible precisification of the vague predicate ‘heap’. As

long as the border for the precise predicate ‘new heap’ is drawn in the penumbra of

the predicate ‘heap’, the precisification is admissible.

Fig. 3.1: Precisification of the predicate ‘heap’.4

Complete precisifications

By drawing a sharp boundary for every vague predicate one receives a complete

precisification, i.e. a classical valuation of a vague language without any type of

vagueness: every predicate has its positive and its negative extensions which are

sharply bounded and complimentary to each other.

3.4.2 Uncontroversial truths and penumbral connections

We have to consider mainly two aspects, when we try to make precise a predicate.

First of all, we have to preserve uncontroversial truths. If Tek is 1.90 meter tall

he is clearly tall and the proposition ‘Tek is tall’ has to be true on all precisifications.

4 A similar figure can be found in [Böh95, p.13].
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If Tek measures 1.60 meter he is clearly short and the proposition ‘Tek is tall’ has

to be false on all precisifications. If Tek is 1.75 meter tall he is neither clearly tall

nor clearly short and some precisifications will place him in the positive extension

of the predicate ‘tall’, while others will place him in the negative extension of the

predicate ‘tall’.

Secondly, valid precisifications have to respect certain semantic constraints. Any-

one taller than a tall person has to be tall as well. These so-called penumbral truths

or penumbral connections can be internal or external. Internal penumbral truths

concern the instances of the same predicate. There is no acceptable precisification

of ‘tall’ according to which people who measure 1.80 meter are tall, but those of

1.85 are not. External penumbral truths concern related predicates. The predicate

tall cannot be sharpened so that someone measuring 1.75 meter is tall, while simul-

taneously the predicate short is sharpened in order that someone measuring 1.75

meter is short.

3.4.3 Classical logic and semantics

Supervaluationism retains classical logic by introducing an extended semantics

for vague languages which is a result of the so-called supervaluation: our natural

language use does not determine precise extension for vague predicates, but a (vague)

range within which the precise extensions would fall, if there were precise extensions.

Super-truth and super-falsity

Substituting vagueness for exactness, hence making precise a predicate, would

involve fixing a sharp boundary between the predicate’s positive and negative ex-

tensions and as a consequence every borderline would fall either in the positive or

in the negative extension of the predicate. Vague predicates have a lot of admissi-

ble precisifications with different positive and negative extensions. A proposition is

super-true if and only if it is true on all complete precisifications and false if and

only if it is false on all complete precisification. Otherwise it is neither super-true

nor super-false. That means, that some cases are undetermined, but otherwise the

demands of classical logic are still satisfied.

Rosanna Keefe uses the definitely operator discussed in subsection 1.1.5 to de-
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scribe her point of view concerning vagueness. According to the supervaluational

approach Dp is true just in case p is true on all possible precisifications and is

false otherwise. Keefe [Kee00, p.28] claims that the introduction of this operator

is necessary because otherwise ‘we will fail to fulfil the central tasks of a theory

of vagueness [...]. It is only when we have that operator that we can state that

borderline cases occupy a gap between definite truth and definite falsity without

committing ourselves to a gap between truth and falsity.’

Classical rules of inference and classical principles

However, the introduction of the D-operator causes some problems for classical

logic. A number of critics like Kenton Machina, Timothy Williamson or Kit Fine

(see [Kee00, p.176]) have emphasized how supervaluationist logic fails to preserve a

series of classical rules of inference and classical principles, like reductio ad absurdum,

contraposition, deduction theorem and disjunction elimination, when theD-operator

comes into play, as the following examples show:

1. The reductio ad absurdum5 cannot be retained, as Kenton Machina [Mac,

p.178] argues.

2. As far as the contraposition6 is concerned, in classical logic holds:

if A |=CL B, then ¬B |=CL ¬A. (3.10)

With supervaluationism on the other hand it is not always the case that if

A |=SV B then ¬B |=SV ¬A. More precisely, if we consider the example of

A |=SV DA, it is not always the case that DA |=SV A, namely if A is true

only on some but not on all precisifications. In this cases ¬DA is super-true,

while A is not.

5 The reductio ad adsurdum is a type of logical argument where one assumes a claim for the
sake of argument, derives an absurd or ridiculous outcome, and then concludes that the original
assumption must have been wrong as it led to an absurd result.

6 Contraposition is a form of immediate inference in which from a given proposition another is
inferred having for its subject the contradictory of the original predicate.
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3. According to the classical deduction theorem7 we can infer that

if A |=CL B, then |=CL A→ B. (3.11)

If we have A |=SV DA, it is not usually the case that |=SV A → DA; namely

for borderline A there can be complete specifications on which A is true, while

DA is false. In this case also |=SV A→ DA is false.

4. Classically, according to the argument by cases we can infer that

if A |=CL C and B |=CL C, then A ∨B |=CL C. (3.12)

With supervaluationism and the D-operator we have A |=SV DA and ¬A |=SV

D¬A. If we introduce the connective ∨, it is the case that A |=SV DA∨D¬A

and ¬A |=SV DA ∨ D¬A, but this does not implicate that A ∨ ¬A |=SV

DA ∨D¬A. If A is borderline, the premise is true and the conclusion false.

New supervaluational principles

Because of the problems mentioned above, Rosanna Keefe suggested the following

new principles, if the D-operator is involved:

1. The reductio ad absurdum: If from A and B derives a contradiction A and B

cannot be both true; so when B is true, A is not true, i.e.

from A,B |=SV C ∧ ¬C infer B |=SV ¬DA. (3.13)

2. The contraposition: Suppose A |= C, which guarantees that it is not possible

that A is true and C false. This seems to be compatible with the possibility

that C is false, while A is neither true nor false. According to Keefe, from the

falsity of C we should infer that A is not true, i.e.

from A |=SV C infer ¬C |=SV ¬DA. (3.14)

7 The deduction theorem states that if a formula B is deducible from A then the implication
|=CL A→ B is demonstrable.
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3. The deduction theorem: Suppose A |=SV C, where A or C contains the D-

operator. If A is true then C, which can be captured as |=SV DA → C.

Accordingly,

from A,B |=SV C infer B |=SV DA→ C. (3.15)

4. The disjunction elimination: If C derives from A and also from B, the truth

of A guarantees the truth of C as does the truth of B. Keefe suggests the

following new rule:

from A |=SV C and B |=SV infer DA ∨DB |=SV C. (3.16)

Disjunction and conjunction

As mentioned above, the semantics of supervaluationism is not a classical se-

mantics. A proposition of the form (p ∨ ¬p) like ‘Tek is bald’ or ‘Tek is not bald’

is super-true, even if Tek is borderline bald. Independently from where we draw the

boundary between the bald people and the people who are not bald the proposition

is true, because one disjunctive is always true, while the other disjunctive is false.

In other words, a disjunction can be super-true, even if none of its disjunctives is

super-true.

Equally, a conjunction can be super-false, even if none of its conjunctives is super-

false. A proposition like ‘Tek is bald’ and ‘Tek is not bald’ can be super-false if Tek

is borderline bald, even if neither ‘Tek is bald’ nor ‘Tek is not bald’ is super-false.

Existential and universal quantification

Furthermore, an existential quantification can be super-true, even if no concrete

instance is super-true. This can be shown best by the following example: on each

precisification there is a n so that ‘A man with n hairs is bald and a man with n+ 1

hairs is not bald’ is true; but there is no concrete n for which the statement ‘A man

with n hairs on his head is bald and a man with n+1 hairs is not bald’ is super-true,

because for each n this proposition is false on some precisifications.

Similarly, also a universal quantification can be super-false, even if no concrete

instance is super-false. A proposition like ‘For each n: if a man with n hairs on his
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head is bald, then also a man with n+ 1 hairs is bald’ is false on each precisification

and therefore super-false, even if there is no concrete n for which the proposition ‘If

man with n hairs on his head is bald, then also a man with n + 1 hairs is bald’ is

super-false.

Principle of bivalence

Also the principle of bivalence does not hold, because propositions about border-

line cases can be neither super-true nor super-false. Rosanna Keefe [Kee00, p.154]

argues that the failure of the principle of bivalence ‘fits our intuitions about bor-

derline cases, our attitudes towards them and our associated linguistic behavior (in

particular, the typical hesitancy and disagreement over borderline cases).’

3.4.4 Borderline cases

The supervaluational approach of vagueness comes up to the characteristic fea-

tures of borderline cases by admitting truth value gaps. As explained before, su-

pervaluationism claims that all possible precisifications have to be considered to be

able to classify a proposition, so that a proposition is super-true if and only if it is

true on all possible precisifications and super-false if and only if it is false on all

possible precisifications; otherwise it is neither super-true nor super-false.

3.4.5 Sorites paradoxes

Turning back to the problem of a sorites paradox described in subsection 1.1.3,

I will discuss the answer of supervaluationism by means of the example of the heap:

supervaluationism can easily meet at the same time both our intuition that 1 grain

of sand does not make a heap, as Fx1 is super-false, and our intuition that 10 000

grains do make a heap, as Fx10000 is super-true. On the other hand, there is at

least one statement Fxi, where 1 < i < 10 000, which is neither super-true nor

super-false, as there are admissible precisifications such that Fxi evaluates to 0 and

others such that Fxi evaluates to 1. As a result we obtain that there is an i such

that FxithenFxi+1 is not true on all admissible precisification and hence neither

super-true nor super-false.

More generally, the universally quantified premise of a sorites argument
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for all i, ¬(Fxi ∧ ¬Fxi+1) (3.17)

seems to be very plausible according to our intuitions and intuitively we are

inclined to agree to it. Nevertheless supervaluationism claims that this premise is

false, while its negation

for some i, Fxi ∧ ¬(Fxi+1) (3.18)

is considered to be true, even if this seems - at least at first sight - to be contrary

to our intuitions.

Even if the treatment of sorites paradoxes is one of the least appealing facets of

the supervaluational approach, Rosanna Keefe [KSe02, p.183ff.] defends the answer

of the supervaluational approach and argues in the following way:

• firstly, we must accept something counter-intuitive, if we want to find an an-

swer to sorites paradoxes;

• secondly, it is not always the case that we would assent to the inductive premise

of a sorites argument. Taking the color spectrum as an example, everyone

would agree that somewhere me must stop to call a color ‘red’ and begin to

call it ‘orange’, even if there is no particular point in the spectrum which

separates the color ‘red’ from ‘orange’;

• thirdly, our intuitions about 3.17 and 3.18 are mistaken: our belief that there

is no true instance of the universal quantification 3.17 gets confused with the

belief that the universally quantified statement is not true; our belief that no

instance of the existential quantification 3.18 is false gets confused with the

belief that 3.18 is not false.

3.4.6 Higher-order vagueness

At first sight, higher-order vagueness does not seem to create any problem for

supervaluationism. It seems that sharp boundaries would exist only if there was a
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concrete n so that a proposition like ‘A man with n hairs is bald, while a man with

n + 1 hairs is not bald’ would be true. Such a concrete n does not exists, as every

precisification draws the boundary between bald men and men who are not bald at

a different point. But there are still three sharpen-bounded sets: propositions that

are super-true, proposition that are super-false and propositions that are neither

super-true nor super-false. Accordingly, a statement is either true or false on all

possible precisifications; a third possibility, that would allow borderline borderline

cases does not exist.

3.5 The pragmatic approach

‘Languages themselves are free of vagueness but [...] the linguistic conventions

of a population, or the linguistic habits of a person, select not a point but a fuzzy

region in the space of precise languages.’ explains David Lewis [Lew83, p.228]. This

is the point of view of researchers who treat vagueness as a pragmatic phenomenon

which arises from the way we humans use our language.

In this section I will consider the pragmatic account of vagueness, presenting

mainly the point of view of David Lewis [Lew83, Lew69].

3.5.1 David Lewis’ philosophy of language

According to David Lewis, languages are represented by set-theoretic entities

which assign meanings to the strings of symbols. Sentences receive their meaning

only relative to a context; more precisely, the meaning of a sentence in a language

is a function from the specification of a context to a set of possible worlds in which

the sentence would be true, if stated in a given context.

For David Lewis languages themselves are precise. Citing Rosanna Keefe [Kee00,

p.141] for defenders of the pragmatic approach of vagueness ‘there is no vagueness in

languages themselves, nor need there be any vagueness in the world; instead it arises

as a feature of the relation between language-users and languages.’ Vagueness, on

Lewis’ approach, depends on the fact which precise language is used by a community

of speakers. The beliefs, intentions and habits of language users do not determine a

convention of one single language, but a cluster of similar languages among which
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the speakers can choose. Different languages of the cluster can classify borderline

cases of a certain predicate differently; some languages will draw the boundary of

‘tall’ at 1.75m, some at 1.76m and so forth. Also the proposition ‘Italy is boot-

shaped’ is a good example of a sentence that is precise enough, hence true, for many

contexts, but not true enough for many others.

3.5.2 Borderline cases

From the supervaluational point of view, borderline case predications are sen-

tences over which there are disagreements about their meaning among the different

precise languages of the cluster.

3.5.3 Higher-order vagueness

If the clusters of languages were sharply bounded, then the borderline cases

would be sharply bounded as well and hence there would be no room for higher-order

vagueness. However, Lewis recognizes the importance of treating the phenomenon

of higher-order vagueness. Therefore he claims that there is a fuzzy region in the

space of precise languages from which we chose one language, providing in that way

a possibility for higher-order vagueness. However, Keefe[Kee00] objects that simply

asserting this is not enough and asks for a detailed explanation of what a cluster

with fuzzy boundaries would be.

3.5.4 Relations to other theories of vagueness

At first sight the pragmatic account of vagueness may seem independent from

other theories of vagueness, but in fact it is closely related to the epistemic account

and to supervaluationism, as I will show in the next paragraphs.

The relation to the epistemic account can be explained in the following way: as

vagueness is a pragmatic matter according to the pragmatic approach, the languages

of a cluster are not vague themselves. Vagueness arises from the relation between

language-users and the languages, i.e. the people do not use one single language,

but chose among a cluster of similar languages. If we consistently sticked to one

single of these non-vague languages, the pragmatic view would collapse into the

epistemic view: vague predicates would have unique and sharp meanings, even if
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our linguistic behavior suggested otherwise. One may argue that it is only the

lack of knowledge that impedes us to use the correct exact language. Therefore, to

distinguish the pragmatic from the epistemic approach, a cluster of precise languages

must be involved.

One reason Lewis gives for denying that there is only one single common lan-

guage, is, that otherwise language learning could not be explained. For someone

who wants to learn the meaning of a predicate, it would be too difficult to identify

the uniquely relevant extension of a communal language on the basis of the limited

experience of other people’s use of the predicate. It is easier to grasp a cluster of

extensions which correspond to a cluster of languages, because thus the learner does

not need to narrow the options down to one.

As mentioned above, the pragmatic account of vagueness is also closely related to

supervaluationism as the following considerations show: from the supervaluational

point of view, we can make all our vague predicates precise by a complete precisi-

fication of the language. In other words, by means of a complete precisification we

get a completely precise language since each predicate has precise extensions. These

complete precisifications of the language correspond one to one to the Lewisian pre-

cise languages of the appropriate cluster, so that the pragmatic account coincides

exactly with supervaluationism; the only difference is the denotation: one theory

uses the expression ‘precisification of the vague language’, while the other adopts

the expression ‘precise language of a cluster’ to label the same entities. In fact,

it is very difficult to distinguish between the concept of the precisification and the

choice of a specific exact language from the cluster of all possible languages. But

- as claimed by Rosanna Keefe [Kee00, p.143] - ‘the pragmatic account could be

a substantially different theory were it to give the precise languages a significantly

different role from what supervaluationism attributes to precisifications.’

Defenders of a pragmatic theory of vagueness often argue that it is - saying it

with the words of Christian Fermüller [Fer03] - ‘more appropriate to base supervalu-

ationism or epistemic accounts of vagueness on pragmatic principles than to reduce

the pragmatic account to supervaluationism or epistemology.
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3.5.5 Steward Shapiro’s Vagueness in Context

A very recent publication is Stewart Shapiro’s [Sha06] book Vagueness in Con-

text. Also Shapiro is convinced that vagueness is a linguistic phenomenon due to

the kinds of languages that humans speak. In his book he tries to develop both a

philosophical and a formal, model-theoretic account of the meaning, function, and

logic of vague terms in an idealized version of a natural language like English. As he

writes in the preface of his book, it is a commonplace that the extensions of vague

terms vary with contextual factors. For instance, a person can be tall with respect

to the average man, but not tall (or maybe even short) with respect to professional

basketball players. The main feature of Shapiro’s account is the extensions of vague

terms also vary during a conversation. There are situations in which a competent

speaker of the language con go either way in the borderline area of a vague predicate

without sinning against the meaning of the words. Shapiro calls this open-texture.

The technical model theory has a similar structure to the supervaluational approach,

even if the notion of super-truth does not play a central role in the development of

validity.

3.6 Comparison of the different theories

As discussed in chapter 2, it is not easy to compare the different theories of

vagueness to each other, because there are so many different criteria (see section 2.1)

that can be used to evaluate a theory of vagueness. However, it is not only the high

number of criteria that makes the comparison so difficult, but also the fact that not

every criterion is equally important in all theories.

However, in table 3.6 I try to give a brief overview over the most important

theories of vagueness, summing up the main statements of one defender of each

theory described in this chapter. Hereby, I concentrate on the most important

criteria that should be met by a theory of vagueness, disregarding other general

criteria as simplicity or clearness which should be valid for any theory about any

phenomenon; in my opinion it is necessary that a theory of vagueness delivers an

answer to the question of how to treat borderline cases and the sorites paradox (the

third characteristic feature, namely that vague predicates have fuzzy boundaries,
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described in section 1.1, is closely related with the two other features and will not

be treated separately here). Apart from these three characteristics also higher-order

vagueness is a phenomenon that has to be considered by any theory of vagueness.

Furthermore, I consider classical logic and semantics to be a very important aspect.

Syntax and semantics of classical logic are comparatively simple, but nevertheless

powerful. Classical logic and semantics have been very successful in the past and

have been integrated in theories of other domains.

The epistemic and the pragmatic approaches are the only theories which retain

classical logic and semantics in their entirety. For both accounts language itself is

free from vagueness. In the former case it is some type of ignorance which prevents us

from knowing the exact extensions of vague predicates; in the latter case vagueness

is caused by our use of the language. Supervaluationism is a middle course. It

retains classical logic, but adopts non-classical semantics. Gap theories like Michael

Tye’s approach normally adopt a three-valued logic, while degree theories adopt a

many-valued or even infinite-valued logic normally with truth-values from the real

unit interval [0,1].

As discussed before, borderline cases are cases for which it is unclear whether a

vague predicate (clearly) applies or (clearly) does not apply (see subsection 1.1.1).

From the epistemic point of view, borderline cases in this classical sense do not exits,

because also vague predicates have sharp and unique boundaries, even if we humans

cannot find out where they fall. The pragmatic account defines borderline cases

as those sentences over which there are disagreements among the languages of a

cluster. Gap theories usually assign the same truth value indefinite to all borderline

cases, while degree theories normally assign to them truth from the real unit interval

[0,1]. On the other hand, the supervaluational approach admits truth value gaps for

borderline cases which are considered to be neither super-true super-false.

Vague predicates are susceptible to sorites paradoxes (see subsection 1.1.3). The

answers to this phenomenon are quite different: considering the version of the sorites

paradox with the inductive premise, the epistemic approach judges the argument as

valid by mathematical induction, but contests the truth of the inductive premise,

because the first premise is obviously true and the conclusion is obviously false.

That means that vague predicates are sensitive to arbitrarily small differences and

that they have sharp boundaries: there is a grain of sand that makes the difference
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between a heap and a non-heap. According to the theory of Michael Tye, considering

the sorites paradox with the conditional premises, at least one conditional premise

is not true, while Kenton Machina argues that with each repetition of the inductive

premise the guarantee of truth diminishes so that it is possible to come to an absolute

false conclusion after many steps. According to Rosanna Keefe’s supervaluationism,

for some i, (Fxi ∧ ¬Fxi+1) is true, i.e. there is a point where one hair makes the

difference between someone being bald and someone not being bald. However, the

precisifications of a vague predicate can draw the border between the positive and

the negative extensions differently. This is the main difference to the way in which

the epistemic approach responds to sorites paradoxes, as the latter account says that

there is one special grain of sand that discriminates a heap from a non-heap.

The last column of table 1.1 provides information about the answers of the

different theories to the phenomenon of higher-order vagueness. On the epistemic

account higher-order vagueness does not exist, because according to this theory there

are sharp boundaries between borderline cases and the positive or negative cases.

Also Michael Tye’s gap theory does not model higher-order vagueness. The idea of

defenders of this theory is that there are fuzzy boundaries between the positive or

negative and the borderline cases. Also in Kenton Machina’s infinite-valued logic

higher-order vagueness is not modeled. Defenders of supervaluationism claim that

the admissibility of the precisifications itself is subject of further precisification.

David Lewis claims that the cluster from which the speakers of a language choose

it not sharply bounded.
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Chapter 4

Fuzzy logics

Fuzzy logic in the narrow sense is a beautiful logic, but it is also important for applications: it

offers foundations.

Petr Hájek [Háj98, p.5]

Introduction

Vagueness is not merely a philosophical problem. It has to be faced by logi-

cians, engineers and computer scientists as well. In this time of rapidly advancing

technology, the dream of producing machines which mimic human reasoning, that

is often based on uncertain and imprecise information, has become one of the main

challenges for many scientists. Therefore it is necessary to formalize reasoning in the

presence of vague information. Fuzzy concepts have to be modeled mathematically,

as Hung T.Nguyen and Elbert A. Walker [NW99] write in the preface of their book

A First Course in Fuzzy Logic, ‘for the purpose of automation in expert systems,

computer vision, control engineering and pattern recognition’.

Fuzzy set theory provides a machinery for imitating reasoning if the available

information is imprecise or vague. It is now one of the leading and most successful

methodologies for the treatment of the phenomenon of vagueness and it is a well-

established sound formal system with numerous applications in the field of automatic

control and experts system, as Petr Hájek’s statement at the beginning of the chapter

emphasizes. In this connection, it is fascinating to see that precision seems to be

the most important prerequisite to understand the imprecise.

Indeed, logicians, engineers and computer scientists are often accused of treat-

ing language as though it were precise and ignoring its vagueness, as Timothy

Williams [Wil94] states. According to some critics the standards of computer scien-
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tists regarding valid and invalid reasoning are good enough for artificial precise lan-

guages, but when they are applied to natural vague languages in which humans rea-

son about the world which they experience they nearly break down. For Williamson

a perfectly precise language for such type of human reasoning is an idealization

which cannot be realized. Although we can make our language less vague, we can-

not make it perfectly precise. Even by stipulating what our words are to mean, we

cannot reach a perfectly precise language, because our stipulations would be made

in not perfectly precise terms and so also the reformed language would inherit some

of that vagueness.

However, it seems true that computer scientists and engineers in a way remain

prisoners of their work which has to be precise and probably sometimes they envy

Henri Matisse for who - like for nature - the precise did not matter, because for

the French painter precision did not necessarily mean truth or reality. Probably he

foresaw, like Bernd Demant [Dem93, p.1] writes in his book Fuzzy-Theorie oder Die

Faszination des Vagen, that no technical apparatus, even if it was equipped with

the best electronic system and the best software, could imitate the grace and ease

with which a cat runs on a garden fence, stops in the middle of it, turns around and

goes back the same way with the same secureness.

Nevertheless, fuzzy logic is the most successful machinery for imitating reason-

ing in case of imprecise or vague information and therefore this chapter addresses

fuzzy logic, explaining the main concepts regarding fuzzy logic. A very elaborated

presentation of fuzzy logic can be found in Petr Hájek’s [Háj98] book Metamathe-

matics of Fuzzy Logic. The most important aspects of this book were reassumed by

Hájek [Háj] in his article Why fuzzy logic?. This chapter is mainly based on these

elaborations.

4.1 Lofti Zadeh’s fuzzy logic

Citing Vilém Nóvak [Nov05] the main idea for motivationg the development

of fuzzy logic can be formulated as follows: ‘Fuzzy logic is a special many-valued

logic addressing the vagueness phenomenon and developing tools for its modeling

via truth degrees taken from an ordered scale. It is expected to preserve as many

properties of classical logic as possible.’
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As mentioned in the citation of Vilém Nóvak, fuzzy logic is a many-valued logic,

which allows intermediate values between the conventional values 0/1, black/white,

yes/no, etc, like Fig.4.1 shows in an amusing way.

Fig. 4.1: Fuzzy logic.1

The term fuzzy logic emerged for the first time in 1965 in connection with the

development of the theory of fuzzy sets, when Lofti Zadeh [Zad65] presented his

mathematical modeling of fuzzy concepts. Zadeh’s main idea was that meaning in

natural language is a matter of degree: if we consider a proposition like ‘x is a long

river’ it is not always possible for us to assert that it is either true or false. For

this reason, according to Zadeh, the ordinary indicator function, or characteristic

function, χA of a subset A of a set X which specifies whether or not an element is

in A, is not sufficient in case of vague concepts, because there are only two values

that the characteristic function χA can take:

χA(x) =

 1, if x ∈ A

0, if x /∈ A
(4.1)

To suit vague concepts, Zadeh generalized this notion by allowing images of

elements to be in real unit interval [0,1] rather than being restricted to the two

element set {0,1} which leads to his definition of fuzzy subsets (usually, fuzzy subsets

are referred to as fuzzy sets):

1 The figure is taken from the website of the Association for the Advancement of Artificial
Intelligence www.aaai.org.
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Definition 4.1. A fuzzy subset A of a (crisp) set X is determined by a function

fA(x): X 7→ [0,1].

In other words, a fuzzy subset A of a (crisp) set X is characterized by a mem-

bership function fA(x) which associates with each point in X a real number in the

unit interval [0,1]. The value of fA(x) represents the degree of membership of x in

A. The nearer the value of fA(x) to 1, the higher is the grade of membership of x

in A; the nearer the value of fA(x) to 0, the lesser is grade of membership of x in A.

The functions whose images are contained in the two element set {0, 1} corre-

spond to ordinary subsets of X. In this case fA(x) would be reduced to the familiar

indicator or characteristic function χA of a set A. This implicates that ordinary

subsets are special cases of fuzzy subsets.

For a fuzzy concept, different membership functions can be considered. The

choice which function should be adopted is subjective and context dependent.

The membership function can be represented graphically. Fig.4.2 shows two ex-

amples of possible membership functions fA(x):

Fig. 4.2: Examples of possible membership functions fA(x).

Two main directions in fuzzy logic suggested by Lofti Zadeh have to be distin-

guished: fuzzy logic in narrow sense and fuzzy logic in broad sense, as illustrated in

Fig. 4.3.
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Fuzzy logic

uujjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTT

Fuzzy logic in narrow sense

��

Fuzzy logic in broader sense

��
Theory of approximate

reasoning based on
multi-valued logics

Fuzzy set theory
and its applications

Fig. 4.3: Fuzzy logic in narrow and broader sense.

4.1.1 Fuzzy logic in narrow sense

Fuzzy logic in narrow sense is an attempt to define formal apparatus to define an

adequate notion of approximate reasoning in presence of vague information based

on many-valued logic. It is a truth functional logical system, i.e. a truth value of

a compound formula can be computed from truth values of its subformulas using

truth functions of connectives. Quoting Petr Hájek [Háj98, p.2] fuzzy logic is ‘a logic

with a comparative notion of truth: sentences may be compared according to their

truth values.’ In narrow sense, fuzzy logic can be seen as an extension of traditional

multi-valued logics.

4.1.2 Fuzzy logic in broad sense

Fuzzy logic in broad sense is an extension of fuzzy logic in narrow sense and

serves mainly as apparatus for fuzzy control, analysis of vagueness in natural lan-

guage and several other application domains. I quote once more Petr Hájek [Háj,

p.2], who explains that ‘in broad sense, the term fuzzy logic has been used as anony-

mous with fuzzy set theory and its applications ’. Fuzzy logic in broad sense can be

considered as one of the techniques of soft-computing, i.e. computational methods

tolerant to suboptimality and impreciseness (vagueness) which give quick, simple

and sufficiently good solutions.

For my purpose, the practical applications of fuzzy logic are only of marginal

interest and therefore I will concentrate on fuzzy logic in narrow sense.
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4.2 Basic fuzzy propositional logic

In logic and mathematics, a propositional calculus (or a sentential calculus)

is a formal system in which formula representing propositions can be formed by

combining atomic propositions using logical connectives, and a system of formal

proof rules allows certain formula to be established as ‘theorems’ of the formal

system.

There are various systems of fuzzy logic, not just one. There is one basic logic

(BL) and there are three of its most important extensions:  Lukasiewicz logic ( L),

Gödel logic (G) and the Product logic (
∏

), which will be discussed in subsec-

tion 4.2.3.

The basic fuzzy propositional logic, that I present in this chapter, was developed

by Petr Hájek [Háj98] [Háj] and the calculus he describes is the result of his design

choices, which I will sketch in the next paragraph. Obviously, these design choices

are not obligatory, but they seem to be rather reasonable.

4.2.1 Petr Hájek’s design choices

1. One of the most important properties of vagueness is its continuity, as Antońın

Dvořák and Vilém Novák [DN] claim. This means that for similar objects the

extent in which they have a certain property should also be similar. Therefore

it seems natural to require the continuity of the truth functions of the logical

connectives. Hájek takes the real unit interval [0,1] to be the standard set of

truth values, where 1 stands for absolute (classical) truth and 0 for absolute

(classical) falsity. The natural ordering ≤ of reals serves as comparison of the

truth values, as the logic should be a logic with a comparative notion of truth.

2. The constructed logic is truth functional. A logic is truth functional if the

truth value of a compound sentence can be computed from the truth values

of its subformulas by using the truth functions of the connectives. Thus, e.g.,

the truth value of the conjunction ϕ & ψ is uniquely determined by the truth

value of ϕ, of ψ and by the chosen truth function for &.

3. Continuous t-norms are taken as possible truth function of the conjunction.

Intuitionally, a high truth value for the conjunction ϕ & ψ should indicate
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that the truth values of ϕ and ψ are high, reason why the truth function of

the conjunction should be non-decreasing in both arguments. 1 should be

the unit element, while 0 its zero element. All these requirements are met by

continuous t-norms.

Definition 4.2. A t-norm is a binary operation ∗ defined on [0,1] (t: [0,1] ∗

[0,1] 7→ [0,1]) which satisfies the following conditions:

• ∗ is associative, i.e. for all x, y, z ∈ [0,1]: (x ∗ (y ∗ z) = (x ∗ y) ∗ z)

• ∗ is commutative, i.e. for all x, y ∈ [0,1]: (x ∗ y = y ∗ z)

• ∗ is non-decreasing in each argument (if x ≤ x′ then x ∗ y ≤ x′ ∗ y and

if y ≤ y′ then x ∗ y ≤ x ∗ y′)

• 1 is the unit element (1 ∗ x = x).

Definition 4.3. A t-norm ∗ is a continuous t-norm if it is continuous as a

real function.

The three most important continuous t-norms are:

• x ∗ y = max(0, x + y - 1) ( Lukasiewicz t-norm)

• x ∗ y = min(x, y) (Gödel t-norm)

• x ∗ y = x · y (Product t-norm)

These continuous t-norms are fundamental because any other continuous t-

norm is an ordinal sum construction of these three.

4. The truth value of the implication in the classical two-valued logic is defined

in the following way:

(ϕ→ ψ) = (¬ϕ ∨ ψ) = max(1− ϕ, ψ) (4.2)

This definition can be problematic if fuzzy concepts are involved, as the fol-

lowing example shows: consider the ‘fuzzy’ version of the proposition ‘When

it rains, the street is wet’. Suppose that it is drizzling, thus to the proposition
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‘it is raining’ is assigned a truth value of 0.5. As the street is not wet, but only

wettish, the proposition ‘the street is wet’ has a truth value of 0.6. Using the

classical definition of the implication, ‘When it rains, the street is wet’ receives

a truth value of 0.6 and is only ‘half ’ true, which is an absurd conclusion.

The idea of the classical definition of the implication is, that ϕ → ψ is true iff

the truth value of ψ is at least as high as the truth value of ϕ, otherwise it is

false.

Generalizing this classical principle, Hajék proposes to require that a high

truth value should indicate that the truth value of ψ is not much lesser than

the truth value of ψ. Thus, the truth function of x ⇒ y should be non-

increasing in x and non-decreasing in y. Furthermore, it should be possibile

to compute a lower bound of the truth degree y of ψ, if the truth degree x of

ϕ and the truth degree x⇒ y of (ϕ→ ψ) is known. The operation computing

the lower bound for y should be non-decreasing in both arguments. 1 should

be the unit element and 0 the neutral element. Even if it may be difficult

to justify commutativity or associativity, Hájek proposes to take a t-norm ∗

which requires:

if a ≤ x and b ≤ x⇒ y then a ∗ b ≤ y. (4.3)

Substituting in 4.3 a for x and b for z, we get:

if z ≤ x⇒ y then x ∗ z ≤ y. (4.4)

On the other hand, to make the rule powerful, Hájek requests that

if x ∗ y ≤ y then z ≤ x⇒ y (4.5)

and hence

x ∗ z ≤ y iff z ≤ (x⇒ y). (4.6)

Then it follows that x ⇒ y is the maximal z satisfying x ∗ y ≤ z. In other
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words, if ∗ is our continuous t-norm, then its residuum is the operation ⇒,

defined as follows:

x⇒ y = max{z | x ∗ z ≤ y}. (4.7)

Iff x ≤ y, then x ⇒ y = 1; if x > y, the residua of the above t-norms are:

• x ⇒ y = 1 - x + y (residuum of the  Lukasiewicz t-norm)

• x ⇒ y = y (residuum of the Gödel t-norm)

• x ⇒ y = y
x

(residuum of Product t-norm)

These implications are also calledR-implications, whereR stands for residuum.

5. The truth function of the negation is (-)x = x ⇒ 0, i.e. x implies falsity.

4.2.2 The basic fuzzy propositional calculus

The result of Hájek design choices is the basic fuzzy propositional logic (BL). BL

has classical syntax and hence all notions known from classical logic are identical

with the corresponding classical ones. It differs from the classical boolean logic only

by the set of axioms. By fixing a continuous t-norm ∗, also a propositional calculus

PC(∗) is fixed.

Definition 4.4. PC(∗) is a propositional calculus with the propositional variables

p1, p2, ... , the connectives & and → and the truth constant 0̄ denoting falsity. Each

propositional variable is a formula; also 0̄ is a formula. If ϕ and ψ are formulas,

then also ϕ & ψ and ϕ → ψ are formulas. Each formula with the connectives ∧,

∨ and ≡ or the negation ¬ is semantically equivalent to a formula built with the

constant 0̄ and the connectives & and →:

ϕ ∧ ψ is ϕ & (ϕ → ψ)

ϕ ∨ ψ is ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

¬ϕ is ϕ → 0̄

ϕ ≡ ψ is (ϕ → ψ) & (ψ → ϕ)
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The conjunction (∧) and the disjunction (∨) can be also expressed as follows:

ϕ ∧ ψ = min (ϕ, ψ)

ϕ ∨ ψ = max(ϕ, ψ)

Evaluation of propositional variables

Definition 4.5. An evaluation of the propositional variable p is a mapping e that

assigns to the propositional variable p a truth value e(p) ∈ [0,1].

All formulas are evaluated as follows:

e(0̄) = 0

e(ϕ → ψ) = (e(ϕ) ⇒ e(ψ))

e(ϕ & ψ ) = (e(ϕ) ∗ e(ψ)).

For any formulas ϕ, ψ

e(ϕ ∧ ψ) = min(e(ϕ), e(ψ))

e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)).

Hence, also the conjunction (∧) and the disjunction (∨) can be expressed in

terms of ∗ and ⇒∗:

min(x, y) = x ∗ (x⇒∗ y)

max(x, y) = min((x⇒∗ y)⇒∗ y, (y ⇒∗ x)⇒∗ x).

Tautologies

Definition 4.6. A formula ϕ is a ∗-tautology of the propositional calculus PC(∗)

if e(ϕ) = 1 for each evaluation e.

In other words, a formula ϕ is a ∗-tautology if it is absolutely true under each

evaluation. For different t-norms t1, t2, the set of the ∗-tautologies of PC(t1) can

be different from the set of the ∗-tautologies of PC(t2).

Definition 4.7. A formula ϕ is a 1-tautology if it is ∗-tautology for each continuous

t-norm ∗.
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Axioms of the basic fuzzy propositional logic

The axioms of the basic logic BL are formulas that are 1-tautologies, i.e. they

are ∗-tautologies in each PC(∗) (∗ is a continuous t-norm).

The following formulas are taken as axioms of the basic fuzzy propositional logic

BL:

(A1) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))

(A2) (ϕ & ψ) → ϕ

(A3) (ϕ & ψ) → (ψ & ϕ)

(A4) (ϕ & (ϕ→ ψ)) → (ψ & (ψ → ϕ))

(A5a) (ϕ→ (ψ → χ)) → ((ϕ & ψ) → χ)

(A5b) ((ϕ & ψ) → χ) → (ϕ→ (ψ → χ))

(A6) ((ϕ→ ψ) → χ) → (((ϕ→ ψ) → χ) → χ)

(A7) 0̄→ ϕ

Axiom (A1) expresses the transitivity of the implication. (A2) says that the

&-conjunction implies its first element, while (A3) guarantees the commutativity

of the &-conjunction. (A4) expresses the commutativity of the ∧-conjunction and

(A5) the residuation. (A6) says that: if χ follows from ϕ → ψ then if χ also follows

from ψ → ϕ then χ. (A7) says that 0̄ implies everything.

Deduction rule

The deduction rule of the basic logic BL is modus ponens, i.e. from ϕ and (ϕ →

ψ) we infer ψ.

Completeness

The basic fuzzy propositional logic proves ϕ iff ϕ is a 1-tautology. Making use

of modus ponens, we can follow that if ϕ and ϕ → ψ are 1-tautologies, also ψ is a

1-tautology.

4.2.3  Lukasiewicz ( L), Gödel (G) and Product logic (
∏

)

There are three well-known logics given by the three important t-norms defined

above that are stronger than the basic logic: the  Lukasiewicz ( L), Gödel (G) and

Product (
∏

) logic.
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1.  Lukasiewicz logic  L

The propositional calculus PC(∗ L) is determined by the  Lukasiewicz t-norm

which is taken as the truth function of the conjunction:

x ∗ z = max(0, x+ y − 1). (4.8)

For a complete axiomatization of the  Lukasiewicz logic it is enough to add to

the axioms of the basic logic the axiom (¬¬) of the double negation:

¬¬ϕ→ ϕ. (4.9)

Rational Pavelka Logic

We receive Pavelka logic when we add to  Lukasiewicz’s logic a truth constant

r̄ for each rational r ∈ [0, 1], postulating that e L(r̄) = r. The key observation is

that, for any evaluation e, if e(ϕ) = r, then for any formula ψ, e(ψ) ≥ r iff e(ϕ →

ψ). More formally, e L(r̄ → ϕ) = 1 iff e L(ϕ) ≥ r and e L(ϕ → r̄) = 1 iff e L(ϕ) ≤

r. This provides us with the possibility to express estimates of the truth degree of

a formula.

2. Gödel logic G

The propositional calculus PC(∗G) is determined by the Gödel t-norm which is

taken as the truth-function of the conjunction:

x ∗ y = min(x, y). (4.10)

Gödel logic G is the basic logic plus the idempotence of the conjunction:

ϕ ≡ (ϕ&ϕ). (4.11)
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3. Product logic
∏

The propositional calculus PC(∗∏) is determined by the Product t-norm which

is taken as the truth-function of the conjunction:

x ∗ y = x · y. (4.12)

Product logic
∏

is the basic logic plus two additional axioms:

(ϕ→ ¬ϕ)→ ¬ϕ (4.13)

¬¬χ→ (((ϕ&χ)→ (ψ → χ))→ (ϕ→ χ)). (4.14)

Remark: the truth-function of the negation in  L is (-)x = 1 - x, while in G logic

and
∏

logic the truth-function of the negation is (-)0 = 1 and (-)x = 1 for x 0.

Hence, BL in general has no dual disjunction. Only  Lukasiewicz logic has a dual

disjunction, because in  L (-)(-)x = x.

4.2.4 BL-algebras

For each t-norm ∗, the unit interval [0,1] endowed with the truth functions of

the connectives is a linearly ordered BL-algebra. For detailed definitions and proofs

I refer to Petr Hájek’s book Metamathematics of Fuzzy Logic [Háj98, p.46ff].

4.3 Basic fuzzy predicate logic

In this section the extension of the propositional calculus to a predicate calculus

will be described. Basic fuzzy predicate logic has the same formulas as classical

predicate logic.

4.3.1 The basic fuzzy predicate calculus

Extending the propositional calculus from subsection 4.2.2 we come to the fol-

lowing predicate calculus:
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Definition 4.8. Let P1, P2, ... be predicates, each having its arity (unary, binary, ...),

c, d, ... constants, x, y, ... object variables, & and → connectives, 0̄ and 1̄ the truth

constants and ∀ the universal and ∃ the existential quantifier. The other connectives

(∧,∨,¬,≡) are defined as described in subsection 4.2.2. Terms are object constants

and object variables.

P (t1, ..., tn) is an atomic formula where P is a predicate of the arity n and

t1, ..., tn are terms. The truth constants 0̄ and 1̄ are formulas. If ϕ and ψ are

formulas and x is an object variable, then ϕ → ψ, ϕ & ψ, ∀(x)ϕ and ∃(x)ϕ are for-

mulas. By using this rule arbitrarily many times, each formula results from atomic

formulas.

Evaluation of object variables

Definition 4.9. An interpretation of P1, ..., Pn is a structure M = 〈M , (rP )
P predicate〉

where M is a non-empty set (domain) and for each predicate P of the arity n, rp

is an n-ary fuzzy relation on M , i.e. a mapping that associates with each n-tuple

(a1, ..., an) of elements of M a truth degree rp(a1, ..., an) ∈ [0,1].

The truth value of a formula ϕ in M depends on the semantics of the connectives,

i.e. the chosen t-norm ∗ and on the evaluation e of the object variables by the ele-

ments of M . The truth value ‖ ϕ ‖∗M,e of a formula ϕ is defined inductively as follows:

‖ P (x1, ..., xn) ‖∗M,e = rp(e(x1), ..., e(xn)

‖ ϕ&ψ ‖∗M,e = ‖ ϕ ‖∗M,e ∗ ‖ ψ ‖∗M,e

‖ ϕ→ ψ ‖∗M,e = ‖ ϕ ‖∗M,e ⇒ ‖ ψ ‖∗M,e

‖ (∀x)ϕ ‖∗M,e = inf ex ‖ ϕ ‖∗M,e

‖ (∃x)ϕ ‖∗M,e = sup ex ‖ ϕ ‖∗M,e

where ex runs over all evaluations.

Generalizing this from t-norms ∗ to BL-algebras, rp is a mapping into the domain

of the algebra. For the quantified formulas ‖ ϕ ‖LM, e (L being an BL-algebra, see

i.e. [Háj98, p.46ff]) has to be defined if the infimum/supremum does not exist in L.
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Tautologies

Definition 4.10. A formula ϕ is a ∗-tautology of PC(∗) (∗ is a continuous t-norm)

if ‖ ϕ ‖∗M,e = 1 for each interpretation M and M-evaluation e.

Definition 4.11. A formula ϕ is a 1-tautology if it is a ∗-tautology for each con-

tinuous t-norm ∗.

Axioms of the basic fuzzy predicate logic BL∀

The axioms of the basic fuzzy predicate logic BL∀ are 1-tautologies of the basic

fuzzy predicate logic and consist of the axioms of BL described in subsection 4.2.2

plus the following logical axioms for the quantifiers:

(∀1) (∀x)ϕ(x) → ϕ(t) (t substitutable for x in ϕ(x))

(∃1) ϕ(t) → (∃x)ϕ(x) (t substitutable for x in ϕ(x))

(∀2) (∀x)(ν → ϕ) → (ν → (∀x)ϕ) (x not free in ν)

(∃2) (∀x)(ϕ → ν) → ((∃x)ϕ → ν) (x not free in ν)

(∀3) (ϕ ∨ ν) → ((∀x)ϕ ∨ ν) (x not free in ν)

Deduction rules

The deduction rules of the basic fuzzy predicate calculus are two:

1. modus ponens (from ϕ, ϕ → ψ infer ψ)

2. generalization (from ϕ infer (∀x)ϕ).

4.4 Fuzzy logic as a theory of vagueness

Fuzzy logic is one possible methodology for the treatment of vagueness. As

discussed in chapter 2 each theory of vagueness should meet certain criteria. But

what is the response of fuzzy logic to the criteria mentioned in section 2.1? In

this section I will try to answer this question, discussing briefly, corresponding to

table 3.6 in chapter 3, the relation of fuzzy logic to classical logic, how fuzzy logic

treats borderline cases, its solution to sorites paradoxes and how it deals with higher-

order vagueness.



Chapter 4. Fuzzy logics 86

4.4.1 Classical logic and semantics

As mentioned above, defenders of fuzzy logic are convinced that truth comes in

degrees. To come up to this idea, the logical consequence is to introduce new truth

values apart from the classical ones 0 (absolute falsehood) and 1 (absolute truth).

Fuzzy logic uses as the set of truth values the real numbers from the unit interval

[0,1]. The higher the real number, the truer the proposition. In section 3.3, when

talking about degree theories, I cited Rosanna Keefe saying that degree theories are

many valued logics (i.e. that they have more than the classical two truth values 0

and 1) which are truth functional. According to this definition, fuzzy logic can be

seen as a degree theory, because it has an infinite number of truth values and it is

truth functional.

4.4.2 Higher-order vagueness, sorites paradox and

borderline cases

One of the arguments against the degree-theoretical approach of treating vague-

ness, and therefore also against fuzzy logic, is its alleged inability to deal with

higher-order vagueness (see Tab. 3.6 in chapter 3). The usual argument of the de-

fenders of the degree-theoretical approach, namely that higher-order vagueness can

be modeled as borderline cases of a vague predicate receive an intermediate value

between 0 and 1, seems to fail , because in a sorites series Fx1, ..., Fxn there must

still be an n such that xn is determinately F and xn+1 is not. This implicates that

there is still a sharp boundary between the set of

In literature there can be found some approaches that try to come up to the

phenomenon of higher-order vagueness.

Libor Behounek [Beh06] is convinced that a propositional many-valued logic ‘is

just a very simple and crude degree-theoretical model of gradual vagueness, in-

sufficient to capture its subtiler features.’ According to him, more sophisticated

models based on degree-based approaches are provided by first-order and higher-

order many-valued logics of vagueness, which has been developed in the past few

years by advancing propositional and first-order fuzzy logic (see i.e. [Nov04]). Sum-

ming up briefly the main idea of his approach, the multiple use of an imperfectly

true premise decreases the guaranteed truth value of the conclusion. For the sorites
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paradox this means, that the repeated usage of the inductive premise gradually de-

creases the validity of the conclusion and therefore a determinately false conclusion

Fxn can follow from a determinately true premise Fx1, an idea that has already

been proposed by Kenton Machina (see subsection 3.3.2). Very large truth values

are practically indistinguishable from 1 in ordinary arguments and only millions of

repetitions of the inductive premise can lead to the invalidity of the conclusion of

a sorites argument. To represent higher-order vagueness Behounek introduces the

fuzzy predicate True(α), saying that the truth value from α is indistinguishable

from 1 in ordinary arguments and thus represents (practical) truth. The more times

α can be used in an argument without degrading it to falsity, the more α is indis-

tinguishable from 1. Borderline cases of True are the truth values of borderline

borderline cases of the fuzzy predicate F . For a more detailed and more formal

explanation I refer to Libor Behounek’s paper ‘A model of higher-order vagueness

in higher-order fuzzy logic’ [Beh06].

4.5 Summary

Fuzzy logics are motivated by the idea that in the presence of vague notions and

propositions truth comes in degrees. This degree theoretic approach of approximat-

ing reasoning in the presence of vagueness has produced many different formalisms.

In this chapter I discussed Petr Hájek’s basic logic BL and described his ‘design

choices’:

1. The unit interval [0,1] is taken as the set of truth values where 0 represents

absolute falsity and 1 absolute truth. The natural ordering ≤ of reals serves

as comparison of the truth values.

2. The logic is truth functional: The truth value of the compound statements

depends only on the truth values of its subformulas.

3. Continuous t-norms ∗ are taken as the truth function of the conjunction.

4. The residuum ⇒∗ of the t-norm ∗ serves as the truth function for the impli-

cation. ⇒∗: [0,1]×[0,1] → [0,1] is the unique function satisfying x ⇒∗ y =

max{z|x ∗ z ≤ y}.
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5. The truth function of the negation is (−)x = x⇒∗ 0, i.e. x implies falsity.

Table 4.1 gives an overview about the three most important continuous t-norms

and their residua:

t-norm associated residuum

 Lukasiewicz x ∗ L y = max(0, x+ y − 1) x⇒ L y = min(1, 1− x+ y)

Gödel x ∗G y = min(x, y) x⇒G y =

 1 if x ≤ y

y otherwise

Product x ∗P y = x · y x⇒P y =

 1 if x ≤ y

y/x otherwise

Tab. 4.1:  Lukasiewicz, Gödel and Product t-norms and their residua.

These three continuous t-norms are fundamental because any other continuous

t-norm is a combination of them (see [Háj98, p.32]).

Consequently, the following definition of propositional logics associated with a

continuous t-norm ∗ was defined:

Definition 4.12. For a continuous t-norm ∗ with the associated residuum ⇒∗ a

logic L∗ was fixed based on a language with the constant 0̄, the binary connectives

→, & and the defined connectives ϕ ∧ ψ =def ϕ & (ϕ → ψ), ϕ ∨ ψ =def ((ϕ → ψ)

→ ψ) ∧ ((ψ → ϕ) → ϕ), ¬ϕ =def ϕ → 0̄, ϕ ≡ ψ =def (ϕ → ψ) & (ψ → ϕ).

An evaluation of a propositional variable p is a mapping e that assigns to p a truth

value from the real unit interval [0,1]. Formulas are evaluated in the following way:

e(0̄) = 0, e(ϕ → ψ) = (e(ϕ) ⇒ e(ψ)), e(ϕ & ψ ) = (e(ϕ) ∗ e(ψ)).

A formula ϕ is valid in L∗ iff e(ϕ) = 1 for all evaluations e for each continuous

t-norm ∗.

The logics determined by the t-norms ∗ L, ∗G and ∗∏ with the residua ⇒ L, ⇒G

and ⇒∏ are called  Lukasiewicz logic ( L), Gödel logic (G) and Product logic (
∏

).



Chapter 5

Fuzzy logics and models of approximate

reasoning

People are inclined to think there is a world of facts as opposed to a world of words which

describe these facts. I am not too happy about that.

What rebels in us against such a suggestion is the feeling that the fact is there objectively no

matter in which way we render it. I perceive something that exists and put it into words. From

this, it seems to follow up that something exists independent of, and prior to the language;

language merely serves at the end of communication. What we are liable to overlook here is the

way we see a fact - i.e., what we emphasize and what we disregard - is our work.

Friedrich Waismann [Sha06, p.190]

Introduction

This chapter is supposed to show different approaches that try to combine fuzzy

logics with ideas from the philosophical discourse on vagueness. More explicitly,

I will sketch approaches that establish a relation between truth-functional t-norm

based fuzzy logics and competing models of approximate reasoning and contributions

that demonstrate a way how to derive a fuzzy logic from the first principles of

approximate reasoning.

In 1974 Robin Giles tried to derive logics from fundamental reasoning principles

and presented a strategic two-person game as a formal model of reasoning. Giles’

analysis was originally referred to the phenomenon of dispersion in the context of the

physical quantum theory. Only later he tried to apply the same concept of providing

tangible meanings to logically complex fuzzy propositions. In this connection he

discovered that the propositions which can be asserted initially in his game without

having to expect a loss of money on average coincide with those that are valid in



Chapter 5. Fuzzy logics and models of approximate reasoning 90

 Lukasiewicz logic  L.

This approach was fundamental, as Robin Giles addressed a big philosophical

challenge: the problem of how a fuzzy logic can be derived from the principles of

approximate reasoning. Giles’ approach allows to relate two at least at first sight

two very different theories of vagueness, namely degree based fuzzy logic with super-

valuationism with respect to admissible precisification defined in subsection 3.4.1,

a theory introduced by Kit Fine and defended vehemently by Rosanna Keefe (see

section 3.4) which is very popular among philosophers.

Robin Giles’ idea was resumed by Christian Fermüller et al. (see [Fer04], [FP03],

[FK] and [Fer07]). Defining a new logic S  L which extends  Lukasiwiecz logic, they

relate supervaluationism and degree based reasoning. Furthermore, they provide a

game based characterization of S  L which shall also be discussed in this chapter.

5.1 Combining supervaluationism and degree

based reasoning

In 2006, Fermüller and Kosik [FK] presented an approach which tries to com-

bine supervaluationism and t-norm based fuzzy logics. Even if at first sight the

two theories seem to be incompatible, according to the authors there is a common

ground between them: they claim that t-norm based fuzzy logics can be interpreted

as referring to classical precisifications (see subsection 3.4.1) at different levels of

formula evaluation.

Fermüller and Kosik base their argumentation on the answer of the two theories

to the sorites paradox (for supervaluationism see subsection 3.4.5, for fuzzy logic see

subsection 3.3.2 and 4.4.2).

As mentioned before, considering once more the example of the heap, superval-

uationism comes up to our intuitions that ‘one grain of sand does not make a heap’

and that ‘10 000 grains of sand distributed properly do make a heap’, as the first

statement is super-false, while the latter is super-true, but it does not accommodate

our intuition that ‘the removal of one single grain from a heap cannot turn it into

a non-heap’. Fuzzy logics in narrow sense, on the other hand, offers the possibility

to classify this last intuition as almost true assigning to it a truth value close to 1.
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However, as far as the role of the logical connectives in vague statements is

concerned, supervaluationism and degree theories are quite similar: a proposition

of the form (ϕ&¬ϕ) (‘Anna is tall and is not tall’ could be an example) is super-

false according to supervaluationism, because either ϕ or ¬ϕ is evaluated to 0. Also

according to Kit Fine such a proposition is definitely false, because a person cannot

be tall and not tall at the same moment (see penumbral connections described

in subsection 3.4.2), even if both statements per se are neither definitely true nor

definitely false.1 This is the crucial point for Fermüller and Kosik: the truth value

of an atomic proposition p assigned by fuzzy logics can be related to the density of

the admissible precisifications which classify p as true.

5.1.1 Precisification spaces

To formalize their idea Fermüller and Kosik defined the following precisification

space
∏

, i.e. a space which contains only admissible complete precisifications (see

subsection 3.4.1):

Definition 5.1. Let Fxi be the proposition saying that ‘i grains of sand distributed

properly make a heap’.
∏

consists of all classical interpretations I, which fulfill

the following conditions which model the penumbral connections proposed by Kit

Kine [Fin] (see also subsection 3.4.2):

1. I(Fx1) = 0 and I(Fx10000) = 1

2. i ≤ j implies I(Fxi) ≤ I(Fxj) for all i, j ∈ 1,...,10 000

The first condition simply says that Fx1 is super-false, while Fx10000 is super-

true. The second condition imitates Fines penumbral connections as it says that

if a precisification declares i grains of sand to be a heap, for all j ≥ i, the same

precisification has to declare j grains of sand to be a heap as well. I(if Fxi, then

Fxi−1) = 1 in all but one interpretations I and thus intuitively
∏

respects our

intuition that ‘the removal of one grain of sand from a heap cannot turn it into

a non-heap’. Fermüller and Kosik propose to accept the idea that truth comes in

degrees, as defenders of fuzzy logics claim, because this allows to make information

1 By asserting (ϕ&¬ϕ) one may intend to express that both component statements are partly
true and under this reading the statement may receive an intermediate value between 0 and 1.
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explicit which is implicit in precisification spaces but not used in supervaluationism.

More in detail, they suggest to define a global truth value of Fxi with respect to
∏

.

For the example of the heap they chose i−1
9999

as global truth value.

Furthermore, they introduce an probability measure µ in
∏

which should rep-

resent a probability measure. The idea for the introduction of this value, is the

simple consideration, that it is more likely that the border between an accumulation

of grains of sand which form a heap and which do ‘non heap’ is near to 100 grains

than near to 9999.

5.1.2 S L

They follow Hájeks design choices described in subsection 4.2.1 and add a further

design choice, requiring that:

1. the truth function ⇒∗ for the is continuous, as small changes in e∗(A) and

e∗(B) should result in, at most, small changes in e∗(A→ B).

Hence, their logic S L extends  Lukasiewicz logic (see 4.2.3) and incorporates also

classical logic as far as classical vocabulary is adopted. The innovation of their

approach is the introduction of the unary connective S which is intended to make

the concept of super-truth explicit in their logic.

Definition 5.2. Let p ∈ V = {p1, p2,...} be proposition variables, 0̄ the truth con-

stant denoting falsity and & and → connectives. A precisification space
∏

is the

triple 〈 W, e, µ 〉 where W = {π1, π2,...} is a non-empty set whose elements πi are

called precisification points, e is a mapping W × V 7→ {0,1} and µ is a probability

measure on the σ-algebra2 formed by all subsets of W. Given a precisification space

π a local truth value ‖A‖π is defined for every formula A and every precisification

point π ∈ W inductively by:

‖p‖π = e(π, p), for p ∈ V (5.1)

‖0̄‖π = 0 (5.2)

2 A σ-algebra over a set X is a nonempty collection S of subsets of X that is closed under
complementation and countable unions of its members. It is a boolean algebra, completed to
include countably infinite operations.
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‖A&B‖π =

 1 if ‖A‖π = 1 and ‖B‖π = 1

0 otherwise
(5.3)

‖A→ B‖π =

 1 if ‖A‖π = 1 and ‖B‖π = 0

0 otherwise
(5.4)

‖SA‖π =

 1 if ∀σ ∈ W : ‖A‖σ = 1

0 otherwise
(5.5)

The global truth value ‖A‖π depends on the underlying  Lukasiewicz t-norm∗ L
and is defined as follows:

‖p‖∏ = µ({π ∈ W‖e(π, p) = 1}), for p ∈ V (5.6)

‖0̄‖∏ = 0 (5.7)

‖A&B‖∏ = ‖A‖∏ ∗ L ‖B‖
∏ (5.8)

‖A→ B‖∏ = ‖A‖∏ ⇒ L ‖B‖
∏ (5.9)

‖SA‖∏ = ‖SA‖π for any π ∈ W (5.10)

Definition 5.3. A formula F is valid in S L iff F is valid in all precisification spaces

〈 W, e, µ〉 where W is finite.

Axioms of S L

The axioms of S L are the axioms described in subsection 4.2.2 plus the following

axioms for the unary connective S:
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(A1S) S(A ∨ ¬A)

(A2S) SA ∨ ¬SA

(A3S) S(A→ B) → (SA→ SB)

(A4S) S (SA→ A)

(A5S) SA→ SSA

(A6S) ¬SA→ S¬SA

5.2 Dialogue games as a foundation for fuzzy

logics

In this section the concept of dialogue games as well as Robin Giles’s game for

 L, which is the basis for the game of S  L, will be explained.

5.2.1 Robin Giles’ dialogue game for  L

Robin Giles’ dialogue game for  Lukasiewicz logic  L is based on Paul Lorenz’

attempt to provide a dialogical foundation for logic in general. The main ideas of

Paul Lorenz will be sketched in the next paragraph. For a more detailed explanation

see e.g. chapter 3-5 of [BK82].

Paul Lorenz’s dialogic foundation for logic

As indicated above, Paul Lorenz introduced the dialectical or dialogical logic

in modern formal logic. His preference for a dialectical logic is already apparent

in [Lor60] where he puts classical logic on a par with a logic of cooperative de-

bates (dialectics) and intuitionistic logic with a logic of competitive debates (eristics

derived form the Greek word eris which means discord).

For Paul Lorenz the logical constants can be defined in terms of their role in ratio-

nal debates or critical dialogues between to parties: on the one hand the proponent

who defends a thesis and on the other hand an opponent who opposes it. According

to Else M. Barth and Erik C. W. Krabbe [BK82, p.12] this social definition of logi-

cal constants can be regarded as a theoretical elaboration of Wittgenstein’s notion

of language games (as explained, e.g., in [Wit77]). In Wittgenstein’s and Lorenz’s

opinion critical debates between two parties shall constitute the fundamental objects
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for a logical study. The self-critical case, the case in which reasoning is carried out

by one person only, i.e. in which the two parties coincide in one person, should be

regarded and studied as an important special case.

Robin Giles’s game

Robin Giles combined Paul Lorenz’s approach with a risk based evaluation of

atomic propositions. This is specific to the context of vagueness if vagueness is

understood as a phenomenon implying dispersion - Giles’s analysis was originally

referred to the phenomenon of dispersion in quantum theory.

For this purpose he introduced a game that consisting of two independent com-

ponents (see i.e. [Fer04]):

1. Betting for positive results of experiments

2. A dialogue game for the reduction of compound formulas

These components will be described in detail in the following paragraphs.

1. Betting for positive results of experiments

The following components and definitions are needed:

• Two players

The two players of the game - the proponent who defends a thesis and the

opponent who opposes it - agree to pay 1 e to the other player in case the

statement they assert is false.

• The elementary state of the game [p1, ..., pm||q1, ..., qn]

One player asserts each pi in the multiset of the atomic statements {p1, ..., pm},

while the other player asserts each qi in the multiset of the atomic statements

{q1, ..., qn}.

Each propositional variable q refers to an experiment Eq with a binary (yes/no)

result. Consequently, each statement q can be interpreted as ‘Eq yields a pos-

itive result’. When repeated, the experiments Eq may yield different results.

• A fixed risk value 〈q〉r ∈ [0,1] for each assertion q

The risk value 〈q〉r denotes the probability that Eq yields a negativ result.
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The binary yes/no-experiments are not completely arbitrary, even if may show

different outcomes when repeated.

The risk for the special atomic formula ⊥ (falsum) is 〈⊥〉r = 1, the risk for the

multiset {q1, ..., qn} of atomic formulas is defined as 〈q1, ..., qn〉r =
∑n

i=1〈qi〉r

and the risk for the empty multiset is defined as 〈〉r = 0.

The condition 〈p1, ..., pm〉r ≥ 〈q1, ..., qn〉r expresses that first player does not

have to expect any loss (on the contrary, he can possibly expect some gain)

when betting on the truth of atomic statements.

2. A dialogue game for the reduction of compound formulas

Robin Giles defined the meaning of the logic connectives using rules of a dialogue

game which reduces the arguments of compound formulas to arguments of their

subformulas. Following Fermüller [Fer04], the main rule of this game can be stated

as follows:

Implication

Rule 1. If player 1 asserts A → B then, whenever player 2 chooses to attack this

statement by asserting A, player 1 has to assert also B and vice versa.

Hence, the meaning of the implication is determined by the principle that if a

player asserts ‘if A, then B’ (A → B), he is obligated to assert B, in case A is

granted.

In this context it is useful to remember that all formulas in  Lukasiewicz logic can

be built with propositional variables, the connectives & and → and the truth con-

stant 0̄ denoting falsity, as all formulas containing other connectives are semantically

equivalent to formulas built only with these two connectives (see subsection 4.2.2).

Moreover & can be defined as follows: (ψ & ϕ) is ¬(ψ → ¬ ϕ). By substituting

¬ϕ for ϕ → 0̄, (¬(ψ → ¬ ϕ) is (ψ → (ϕ → 0̄))→ 0̄, which in turn means that all

formulas can be build with propositional variables, the connective → and the truth

constant 0̄ (see i.e. [Háj98, p.65]).

Nevertheless it is useful to see that the meaning of all relevant connectives can

be specified by plausible dialogue rules. In the following paragraphs I will briefly

summarize the rules as described by Fermüller (see [Fer07]):
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Weak conjunction ∧

The weak conjunction ∧ can be interpreted as follows:

Rule 2. If player 1 asserts A ∧B, player 1 has to assert also

• B if player 2 attacks A and

• A if player 2 attacks B.

This rule can be generalized easily to a rule for a universal quantification, saying

that if player 1 asserts A1 ∧ ... ∧ Ai, i ∈ N, player 1 has to assert Ai for any i ∈ N

player 2 may choose.

Weak disjunction ∨

The weak disjunction ∨ can be interpreted as follows:

Rule 3. If player 1 asserts A∨B, player 1 has to assert A or B that he may choose

himself.

As described in subsection 4.2.2, in  Lukasiewicz logic all formulas containing ∧

or ∨ are evaluated as follows: For any formula ψ, ϕ e(ϕ ∧ ψ) = min(e(ϕ), e(ψ)) and

e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)).

Strong conjunction &

The strong conjunction & can be interpreted as follows:

Rule 4. If player 1 asserts A&B, then player 1 has to assert either A and B or 0̄.

Analogically, the rules for negation, strong conjunction and equivalence can be

defined.

No special rules are necessary to regulate the succession of the moves in this

dialogue game, but it is required that each assertion is attacked at most once. As

soon as player 1 attacks by asserting A or indicates that he will not attack A →

B at all, A → B is removed from the multiset of all formulas asserted by player 2.

Every run of the game ends in an elementary state [p1, ..., pm||q1, ..., qm]. Given

an assignment of 〈.〉r of risk values to all pi and qi, the condition 〈p1, ..., pm〉r ≥

〈q1, ..., qn〉r expresses that first player does not have to expect any loss.
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To illustrate a move of the game, Fermüller [FK] gives the following example:

Suppose that player 1 asserts p→ q for some atomic formulas p and q. In this case

the initial state of the game is [||p→ q]. Player 2 has the possibility either to assert

p which would force player 1 to assert q or to refuse to attack p → q. In the first

case the game ends in the elementary state [p||q], while in the latter case it ends

in the state [||]. If an assignment 〈.〉r of risk values gives 〈p〉r ≥ 〈q〉r player 1 will

win the game, whatever move player 2 chooses. In this case player 1 has a winning

strategy for p→ q in all assignments of risk values where 〈p〉r ≥ 〈q〉r.

The interesting point of Giles’ theory is the connection that he established be-

tween the sketched game and  Lukasiewicz logic. He discovered that the propositions

that can be asserted by a player at the beginning of the game without having to

expect a loss of money on average coincide with these that are valid in  Lukasiewicz

logic.

Theorem 5.1. Every assignment 〈.〉r of risk values to the atomic formulas occur-

ring in a formula F induces an evaluation e〈.〉r for  Lukasiewicz logic  L such that

e〈.〉r(F ) = 1, iff the player has a winning strategy for F in the sketched game.

In other words, if a player has a winning strategy for the game presented above,

every assignment of risk values to the atomic formulas of a formula F implies that

the evaluation e of the risk values assigned to the atomic formulas of F is 1. Con-

sequently, F is valid in  L, iff the player has a winning strategy for all assignments

of risk values to the atomic formulas of F .

5.2.2 Fermüller’s and Kosik’s extension of Giles’s game for

S  L

Fermüller and Kosik present an extension of Giles’s game for their logic S  L. The

essential idea is to replace the ‘dispersive elementary experiments’ by ‘indeterministic

evaluations’ over precisification spaces.

As mentioned in subsection 5.2.1, Giles’s game consists of two independent com-

ponents which are modified in the following way:
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1. Betting for positive results of experiments

• The two players of the game agree to pay 1 e to the opponent player for

each atomic statement if it is false according to a randomly chosen admissible

precisification.

• Given a precisification space
∏

= 〈W, e, µ〉, the risk value 〈p〉∏, denoting the

probability of a negative result, associated with the proposition p is defined as

follows: 〈p〉∏ = µ({π ∈ W |e(π, p) = 0}); the risk value for the atomic formula

⊥ is 〈⊥〉∏ = 0; the risk value for the multiset {p1, ..., pm} is 〈p1, ..., pm〉=∑m
i=1〈pi〉∏, while for the empty multiset the risk value 〈〉∏ = 0;

2. A dialogue game for the reduction of compound formulas

Formulas in S  L are built up from propositional variables, ⊥ and the connectives

→ and S which was introduced for S  L (all formulas containing other connectives are

equivalent to formulas built with these connectives as described in subsection 5.2.1).

Consequently, also the rules of the dialogue game had to be extended as follows:

Rule 5. If player 1 asserts SA then player 1 has to assert that A holds at every

precisification point π which player 2 may choose and vice versa.

The introduction of this new rule for the connective S makes it necessary to add

the information of the precisification point in question for the formula A. The notion

Aπ indicates that ‘A holds at the precisification point π’ (by contrast, Aε indicates

that A is not referring to a particular precisification point). In consequence, also

the rules defined before have to be adapted. Considering Rule 1 for the implication

→ we have to stipulate that in applying the rule the precisification point index of

A → B is conferred also to the subformulas A and B. If Rule 5 for the connective

S is applied to an already indexed formula, the index is overwritten by an index

chosen by the opponent. Hence, also the definition of the risk values was augmented

by 〈pπ〉∏ = 1 - e(π, p) with respect to the precisification space
∏

= 〈W, e, µ〉.

Theorem 5.2. A formula F is valid in S  L iff I have a winning strategy for the game

starting with my assertion of F for every precisification space
∏

.

A proof of the adequacy of the game as well as for the theorem can be found

in [FK].
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5.3 Open questions and future work

The logic S  L is a first approach to combine supervaluationism with degree-based

reasoning. The introduction of the unary operator S allows to formalize the concept

of super-truth. However, there are still a lot of open questions regarding this logic:

• can there be introduced other modal operators which seem to be relevant in

modeling propositional attitudes arising in contexts of vagueness?

• how can quantifiers be defined?

• is there a possibility to model higher-order vagueness?
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Conclusions

In conclusion, I want to represent the results of my work with respect to the

three objectives made in the introductory chapter of this master thesis:

• Vague terms, such as ‘tall’, ‘red’ or ‘bald’, are part of our everyday life and

are characterized by admitting borderline cases, having fuzzy boundaries and

being susceptible to sorites paradoxes. Vagueness poses a fundamental chal-

lenge for classical logic and semantics which classifies all propositions as either

true or false.

• In analytic philosophy there is a lively discourse going on about vagueness,

producing different approaches inside and outside classical logic. The plu-

rality of contributions allows a lot of different classifications and one of the

biggest challenges is to find a useful one. The classification which I chose

was proposed by Fermüller [Fer03] and divides the different approaches into 5

groups: epistemic approaches, gap theories, degree theories, supervaluationism

and pragmatic approaches.

• The phenomenon of vagueness poses a great challenge also to computer sci-

entists when they want to mimic human behavior and reasoning which often

is based on vague information. Fuzzy logics based on t-norms are for most

people working in this field the methodology for the treatment of vagueness.

Fuzzy logic is a special type of many-valued logic with a comparative notion

of truth, taking truth degrees from the real unit interval [0,1]. In the last

decades it has become a well-established sound formal system with numerous

applications in the field of automatic control and expert systems.

• In literature hardly any contributions to the discourse on vagueness can be
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found that consider the philosophic discussion as well as fuzzy logics and try

to demonstrate a way to derive a fuzzy logic from the first principles of ap-

proximate reasoning. In the 1970s Robin Giles tried to derive logics form

fundamental reasoning principles and presented a strategic two-person dia-

logue game as a formal model for reasoning, which has been resumed and

extended by other researchers. One of these extensions discussed in this thesis

is the logic S  L which combines supervaluationism and degree-based reasoning

and which is the set of those formulas that can be asserted by a player in a

dialogue game over an arbitrary precisification space without having to expect

a loss of money. There are also other approaches trying to characterize t-norm

based fuzzy logics by dialogue and betting games as dialogue games cover a

wide range of topics relevant for approximate reasoning, see [Fer07].

• Traditional approaches developed for fundamental problems in logic can help

to explain fuzzy logics and to derive mathematical structures used in fuzzy

logics from the first assumptions about correct reasoning - reason enough why

the research in this field should be of great interest also for computer scientists.
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[Háj98] Petr Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publish-

ers, Dordrecht/Boston/London, 1998.
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