
DIPLOMARBEIT

SPEAR2 - An Improved

Version of SPEAR

ausgeführt am Institut für

Technische Informatik, Embedded Computing Systems Group

Technische Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

und

Univ.Ass. Dipl.-Ing. Dr.techn. Martin Delvai

von

Martin Fletzer

Kreuzgassee 6A

2130 Mistelbach

Mistelbach, 8. Februar 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Für meine Eltern

Danksagung

Bedanken möchte ich mich besonders bei Martin Delvai für die Unterstützung

bei der Erstellung und die umfassende und gute Betreuung bei dieser Arbeit.

Ich möchte mich auch bei allen Professoren und Lehrbeauftragten, sowie al-

len sonstigen Mitarbeitern der TU Wien für die gute Ausbildung bedanken.

Der größte Dank gilt meinen Eltern, die mir diese Ausbildung ermöglicht

haben. Auch bei meiner Freundin möchte ich mich für die vielen mit Geduld

ertragenen Entbehrungen während meines Studiums herzlich bedanken.

Kurzfassung

Ein Soft-core Prozessor ist ein konfigurierbarer Mikrocontroller der mit einer

Hardwarebeschreibungssprache definiert wurde. Solche Prozessoren können

für einfach Systeme angepasst werden, deren Aufgabe es ist I/O-Schnittstellen

zu steuern. Sie können aber auch für komplexe Systeme geeignet sein, die ein

Betriebssystem und Schnittstellen wie Ethernet oder DDR-SDRAM benötigen.

Im Rahmen dieser Diplomarbeit wurde der Soft-core Prozessor SPEAR2 ent-

wickelt. Die SPEAR2 Architektur ist ein 16/32 Bit Prozessor und basiert auf

SPEAR (Scalable Processor for Embedded Applications in Real-time En-

vironments). Der Vorgnger wurde am Institut für Technische Informatik -

Embedded Computing Systems Group and der Technischen Universität Wien

entwickelt.

Es gab mehrere Gründe eine verbesserte Version zu entwickeln: Den Code

für neue Zieltechnologien anpassen, einige Nachteile von SPEAR entfernen,

Konfigurierbarkeit unterstützen oder um nützlich Funktion zu ergänzen, wie

zum Beispiel byteweise adressierter Speicher.

Um diese Ziele zu erreichen, wurde SPEAR2 von Grund auf neu geschrie-

ben. Um leichtes konfigurieren von Speicher und Datenpfad zu ermöglichen,

wurde ein eigene Art der Konfiguration definiert. Grundsätzlich handelt es

sich bei SPEAR2 um eine 16 Bit Architektur. Der Datenpfad kann jedoch auf

32 Bit erweitert werden. Großer Aufwand wurde betrieben, damit die beiden

unterschiedlich breiten Datenpfade korrekt mit den anderen Komponenten

zusammenarbeiten. Die gröte Schwierigkeit war ein einheitlicher Speicher-

zugriff sowie eine einheitliche Schnittstelle zu den externen Modulen. Ein

vorrangiges Ziel während der Entwicklung war die Verwendung der gleichen

Befehle und Werkzeuge für beide Datenpfad Konfigurationen.

Obwohl beide Prozessoren beinahe die selben Befehle verwenden, verfügen

beide über unterschiedliche Eigenschaften. Der erweiterte Datenpfad ermöglicht

einen höheren Durchsatz und größeren Adressbereich, jedoch erhöht sich der

Ressourcenbedarf um ca. 70 Prozent.

Abstract

A soft core processor is a configurable microcontroller defined in software.

Such processors can be adapted to be appropriate for a simple system, where

the only functionalities are the manipulation of general purpose I/O. More-

over, they may also fit a complex system, where an operating system and

interfaces like Ethernet or DDR-SDRAM are required.

In the course of this master thesis, the soft core processor SPEAR2 was de-

veloped. The SPEAR2 architecture is a 16/32-bit processor and is based on

SPEAR (Scalable Processor for Embedded Applications in Real-time Envi-

ronments), which has been developed at the Institute for Computer Engi-

neering - Embedded Computing Systems Group at the Vienna University of

Technology.

The motives for developing an improved version were versatile: fitting the

code to new target technologies, eliminating some disadvantages of SPEAR,

enabling configurability, or just adding useful features like byte addressed

memory.

In order to satisfy these goals, SPEAR2 was written from scratch. A config-

uration framework was created to provide adjustable memory sizes and the

option to change the width of the data path. Basically SPEAR2 is a 16-bit

architecture, but the data path can be extended to 32 bit. Considerable

effort had to be done to enable the correct interaction of two different data

path widths with other components of the processor. The chief difficulty

was attaining a uniform memory access as well as a uniform bus interface to

extension modules for both configurations. Using the same instructions and

the same toolchain for both configurations was a priority objective during

development.

Although both processor cores have nearly the same ISA the resulting char-

acteristics of the 16-bit and 32-bit version are quite different. The extended

data path width enables higher performance and larger address space, but

increases resource consumption by about 70 percent.

CONTENTS vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 3

2 State of the Art 4

2.1 MicroBlaze . 5

2.1.1 Overview . 5

2.1.2 Instruction Set Architecture 6

2.1.3 Registers . 6

2.1.4 Pipeline Architecture 7

2.1.5 Memory Architecture 7

2.1.6 Exceptions . 8

2.2 Nios II . 9

2.2.1 Overview . 9

2.2.2 Instruction Set Architecture 10

2.2.3 Registers . 10

2.2.4 Pipeline Architecture 11

2.2.5 Memory Architecture 11

2.2.6 Exceptions . 13

2.3 LatticeMico32 . 14

2.3.1 Overview . 15

2.3.2 Instruction Set Architecture 15

2.3.3 Registers . 16

2.3.4 Pipeline Architecture 16

2.3.5 Memory Architecture 17

2.3.6 Exceptions . 18

2.4 Comparison . 20

3 SPEAR - Basis for a new Architecture 21

3.1 Overview . 21

3.1.1 Pipeline . 21

3.1.2 Memory Architecture 22

CONTENTS vii

3.2 Exceptions . 23

3.3 Register File . 23

3.3.1 Frame Pointer Registers 23

3.3.2 RTSX- and RTSY-Register 24

3.3.3 RTE-Register . 25

3.4 Instruction Set Architecture 25

3.4.1 Structure of Instructions 25

3.4.2 Conditional Instructions 25

3.5 Extension Modules . 27

3.5.1 Processor Control Module 28

3.5.2 Programmer Module 28

4 Analysing the Old Architecture 29

4.1 Three Processor Cores . 29

4.2 Analysing SPEAR . 29

5 SPEAR2 32

5.1 Overview . 32

5.2 Customizable Data Path . 33

5.2.1 Implementation Overview 34

5.2.2 Performance Improvement 34

5.2.3 Addressable Memory 34

5.3 Processor Architecture . 35

5.3.1 First Stage . 35

5.3.2 Second Stage . 36

5.3.3 Third Stage . 38

5.3.4 Fourth Stage . 39

5.4 Instruction Set Architecture 39

5.4.1 Instruction Format . 40

5.4.2 Conditional Instructions 41

5.5 Implementation . 42

5.5.1 Program Counter . 42

5.5.2 Instruction Memories 43

CONTENTS viii

5.5.3 Decoder . 44

5.5.4 Register File . 45

5.5.5 Forwarding Unit . 46

5.5.6 ALU . 47

5.5.7 Frame Pointer . 49

5.5.8 Data Memory . 50

5.5.9 Memory Access Unit 53

5.5.10 Exceptions Vector Table 54

5.5.11 Optimization . 55

5.6 Extension Modules . 57

5.6.1 System Control Module 59

5.6.2 Programmer Module 62

5.7 Differences: 16 vs. 32 bit Version 64

5.7.1 Interface . 64

5.7.2 Instruction Set Architecture 64

5.7.3 Addressable Memory 65

6 Configuration and Interface Description 66

6.1 Configuration . 66

6.2 Interface . 67

7 Results 71

7.1 Processor Characteristics . 71

7.1.1 Resource Usage . 72

7.2 Performance . 73

8 Conclusion 75

9 Outlook 76

A Appendix - Code Listing 78

A.1 Face Recognition Program . 78

A.1.1 C Code . 78

CONTENTS ix

B Appendix - Instruction Set Reference 84

B.1 Overview . 84

B.2 Description . 88

LIST OF FIGURES x

List of Figures

1 Block Diagram of SPEAR . 22

2 Exception Vector Table of SPEAR 23

3 Organization of a Frame . 24

4 Interface for Extension Modules 28

5 Block Diagram of SPEAR2 . 33

6 Parts Affected by Configuration 35

7 The Fetch Stage in More Detail 36

8 The Decode Stage in More Detail 37

9 The Execute Stage in More Detail 38

10 The Write Back Stage in More Detail 40

11 Two different Implementations of the Program Counter 43

12 8 bit Barrel Shifter . 48

13 Organisation of Data Memory 51

14 Architecture of Data Memory 52

15 Exception Vector Table of SPEAR2 54

16 Generic Status Byte . 57

17 Generic Config Byte . 58

18 Interface of the System Control Module 60

19 Customized Status and Configuration Byte of the System Con-

trol Module . 61

20 Interface of the Programmer Module 63

21 Customized Config Byte of the System Control Module 63

22 Interface of SPEAR2 . 68

LIST OF TABLES xi

List of Tables

1 Features of State of the Art Soft Core Processors 20

2 Instruction Formats used by SPEAR 26

3 Configuration Options of SPEAR2 67

4 General Interface of SPEAR2 67

5 Input Interface of SPEAR2 . 68

6 Output Interface of SPEAR2 69

7 Synthesis Results of SPEAR2 72

8 Execution Time of Different Functions 74

1

1 Introduction

In our daily life embedded systems play a more and more important role.

A modern car for example contains between 50 and 100 embedded systems

and the usage is rapidly growing. They are used in products even where

we do not expect them. These products range from toys through home

appliances to airplanes - from simple and uncritical to complex and highly

critical applications.

The operational areas of embedded systems are very different. To provide

the required flexibility, an embedded system comprises hardware (e.g. pro-

cessing unit, sensors, communication interfaces, etc.) and software. The

combination enables the possibility to customize embedded systems to meet

different requirements.

1.1 Motivation

The requirements to embedded systems are very diverse. Thus there is a great

diversity of available components. When starting a new embedded systems

project an appropriate processor has to be chosen. For small applications a

cheap 8-bit standard microcontroller can be sufficient. If much computational

power is needed and no specific features are required (e.g. untypically high

quantity of I/O pins or more UARTs than usual), then a dedicated processing

unit (e.g. 32-bit embedded processors or digital signal processors (DSP))

may satisfy the needs. Between these two extremes various requirements

specifications are possible. The drawback of such dedicated hard cores is

their limited flexibility.

The opposite of a dedicated hard core is a soft core processor. A soft core

processor is a microprocessor defined in software using a Hardware Descrip-

tion Language (HDL). The soft core processor can be synthesized and run in

Field Programmable Gate Array (FPGA) or Application Specific Integrated

Circuit (ASIC). Soft core processors are very flexible and can be configured

with exactly what is needed - no more, no less. Thereby it is possible to tune

the processor for less area or more performance. For example, the same pro-

cessor can be used with or without caches and different number of pipeline

1.1 Motivation 2

stages - flexibility, unreachable by a dedicated hard core processor.

In addition, the hardware used to implement the soft core processor can be

used to implement any parts of the intended task for optimal design imple-

mentation. In general, implementing an algorithm only in software is a flex-

ible solution and saves development time. On the other hand, implementing

an algorithm in hardware can enable great performance improvements and

at the same time requires less energy to fulfil the task. Some algorithms

can be accelerated up to 100 times, if implemented in hardware. Together,

implementing some parts of a problem in software and the other parts in

hardware is a powerful solution and sometimes the only choice. Video com-

pression in real time for example requires a lot of computational power. If low

power consumption is required, the compression algorithm has to be imple-

mented partially in hardware. Another big advantage of FPGAs and ASICs

is their flexible interface. Nearly all known interfaces are realizable. Starting

with a small UART through to PCI-Express interface, packages are available

with up to several hundred pins and in a variety of sizes. The advantage

of FPGAs over ASICs is their flexibility since an FPGA can be updated

like software. On the other hand developing a design for ASICs takes more

time and money, but ASICs provide much more performance than an FPGA.

The concept of using a soft core processor has several advantages. For exam-

ple, only one chip is necessary and thereby the board layout can be simplified

which results in a cheaper design. Soft core processors can be customized

to provide the required performance without wasting resources. This can

be achieved by extending the processor with special functions like a floating

point unit or an encryption core. All needed interfaces can be provided by

the FPGA/ASIC whereby the processor is very flexible.

The objective of this master thesis is the soft core processor SPEAR2. The

processor bases on its predecessor SPEAR [3, 4, 5] and was newly-developed.

There was some reasons why we developed a successor. The most critical

factor was the use of asynchronous memory by SPEAR, because this type of

memory is not supported by new FPGAs. But synchronous memory requires

1.2 Outline 3

an additional pipeline stage. We also tried to find a solution for the low I/O

throughput capability of SPEAR, when accessing extension modules. Since

elementary parts of the processor had to be changed, we decided to develop

a new soft core processor. All the experience gathered with SPEAR helped

us to develop an efficient and attractive soft core processor.

1.2 Outline

The next chapter gives an overview of state of the art soft core processors.

For this purpose three different processor architectures are presented. The

subsequent chapter gives detailed information about SPEAR, the predeces-

sor of SPEAR2. Afterwards, the drawbacks of SPEAR are analysed and

possible solutions are provided. The succeeding part of the master thesis

is about SPEAR2. First the architecture and implementation of SPEAR2

are explained in detail. A separate chapter focuses on the specification of

SPEAR2. The specification comprises the instruction set architecture and

the hardware interface. Then the results of this master thesis are presented.

Finally the conclusion is drawn.

4

2 State of the Art

In this chapter three different processor architectures are introduced to give

an overview of available soft core processors. These soft core processors where

chosen since they are widely used and comparable to SPEAR2 regarding

resource usage and provided features. At the end of this chapter, the soft

core processors are compared regarding some basic features.

Chosen soft core processors:

MicroBlaze: A soft core processor developed by Xilinx

Nios II: A soft core processor developed by Altera

LatticeMico32: A soft core processor developed by Lattice Semiconductor

The main business of the three companys is developing FPGAs. That’s why

every company optimized its soft core processor for its own FPGA platform.

Since the source code for MicroBlaze and Nios II is not available, it is nearly

impossible to use one of these soft core processors on different hardware.

Only LatticeMico32 is available for free with an open IP core licensing, en-

abling easy adaption of the processor. All processors are 32-bit architectures

and highly configurable. All three companies provide a toolchain for their

processor.

There are several reasons why no 16-bit processor was chosen for introduc-

tion. First of all, 16-bit soft core processors are hardly used. Often they are

not state of the art, or no sufficient toolchain is available. Nios for exam-

ple - the predecessor of Nios II - represented a 16-bit processor but is not

recommended for new projects.

8-bit processors are available, but not comparable to SPEAR2. Every com-

pany mentioned above has an 8-bit soft core processor in its product line.

Since SPEAR2 is positioned between 16-bit and 32-bit processors only 32-bit

soft core processors were chosen.

The information about the three soft core processors rests basically on three

documents. The MicroBlaze Processor Reference Guide [13] was used as main

information source for MicroBlaze, the Nios II Processor Reference Handbook

2.1 MicroBlaze 5

[1] for information about Nios II, and the LatticeMico32 Processor Reference

Manual [7] for the LatticeMico32 soft core processor.

2.1 MicroBlaze

Is an embedded processor soft core developed by Xilinx. It is a reduced

instruction set computer (RISC) optimized for implementation in Xilinx

FPGAs.

2.1.1 Overview

The MicroBlaze soft core processor is highly configurable, allowing to select

a specific set of features required by design.

The processor’s fixed features set includes:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• 32-bit address bus

• Single issue pipeline

In addition to these fixed features, the MicroBlaze processor is parameter-

ized to allow selective enabling of additional functionality. A subset of the

optional features is listed below:

• The processor pipeline depth can be 3 or 5.

• Several buses are supported. Namely the On-chip Peripheral Bus (OPB)

and the Local Memory Bus (LMB).

• To provide more performance, a hardware barrel shifter and/or divider

can be enabled.

• Separate instruction and data caches are supported.

• If required, a floating point unit (FPU) can be used.

2.1 MicroBlaze 6

• Hardware debug logic can be added.

A complete list of available optional features is given in the MicroBlaze pro-

cessor reference guide.

2.1.2 Instruction Set Architecture

All MicroBlaze instructions are 32 bits and are defined as either Type A or

Type B. Type A instructions have up to two source register operands and

one destination register operand. Type B instructions have one source reg-

ister and a 16-bit immediate operand (which can be extended to 32 bits by

preceding the Type B instruction with an IMM instruction). Type B instruc-

tions have a single destination register operand. Instructions are provided

in the following functional categories: arithmetic, logical, branch, load/store

and special.

2.1.3 Registers

MicroBlaze has an orthogonal instruction set architecture. It has thirty-two

32-bit general purpose registers and in addition up to eighteen 32-bit spe-

cial purpose registers, depending on configuration options. Special purpose

registers are used for handling exceptions or floating point unit.

Overview of general purpose registers:

• Register 0 is defined to always have the value of zero. Anything written

to register 0 is discarded.

• Registers 1 through 13 are general purpose registers.

• Register 14 is used to store return addresses for interrupts.

• Register 15 is recommended for storing return addresses for user vec-

tors.

• Register 16 is used to store return addresses for breaks.

• Register 17 through 31 are general purpose registers.

2.1 MicroBlaze 7

2.1.4 Pipeline Architecture

MicroBlaze instruction execution is pipelined. For most instructions, each

stage takes one clock cycle to complete. Consequently, the number of clock

cycles necessary for a specific instruction to complete is equal to the number

of pipeline stages, and one instruction is completed on every cycle.

A few instructions require multiple clock cycles in the execute stage to com-

plete. This is achieved by stalling the pipeline. Two different pipeline con-

figurations are supported by MicroBlaze:

• Three Stage Pipeline - When area optimization is enabled, the pipeline

is divided into three stages to minimize hardware cost: Fetch, Decode,

and Execute.

• Five Stage Pipeline - When area optimization is disabled, the pipeline

is divided into five stages to maximize performance: Fetch, Decode,

Execute, Access Memory, and Writeback.

Branches

Normally the instructions in the fetch and decode stages are flushed when

executing a taken branch. The fetch pipeline stage is then reloaded with a

new instruction form calculated branch address. A taken branch in MicroB-

laze takes three clock cycles to execute, two of which are required for refilling

the pipeline. To reduce this latency overhead, MicroBlaze supports branches

with delay slots.

Delay Slots

When executing a taken branch with delay slot, only the fetch pipeline stage

in MicroBlaze is flushed. The instruction in the decode stage (branch delay

slot) is allowed to complete. This technique effectively reduces the branch

penalty from two clock cycles to one.

2.1.5 Memory Architecture

MicroBlaze is implemented with a Harvard memory architecture, i.e. in-

struction and data access are done in separate address spaces. Each address

2.1 MicroBlaze 8

space has a 32 bit range (i.e. handles up to 4 gigabytes of instruction and

data memory respectively).

Memory Organization

Both instruction and data interfaces of MicroBlaze are 32 bit wide and use

big endian, bit-reversed format.

Data access must be aligned (i.e. word access must be on word boundaries,

halfword on halfword boundaries), unless the processor is configured to sup-

port unaligned exceptions. All instruction access must be word aligned.

Memory and Peripheral Access

MicroBlaze does not separate data access to I/O and memory (i.e. it uses

memory mapped I/O). The processor has up to three interfaces for memory

access: Local Memory Bus (LMB), On-Chip Peripheral Bus (OPB), and Xil-

inx CacheLink (XCL). MicroBlaze supports word, halfword, and byte access

to data memory.

MicroBlaze has a single cycle latency for access to local memory (LMB) and

for cache read hits, except with area optimization enabled when data side

access and data cache read hits require two clock cycles. A data cache write

normally has two cycles of latency.

2.1.6 Exceptions

MicroBlaze supports reset, interrupt, user exception, break, and hardware

exceptions. Exception vectors are located at the first memory addresses.

Reset

When a reset occurs, MicroBlaze flushes the pipeline and starts fetching

instructions from the reset vector.

Hardware Exceptions

MicroBlaze can be configured to trap the following internal error conditions:

illegal instruction, instruction and data bus error, and unaligned access.

2.2 Nios II 9

Interrupt

MicroBlaze supports one external interrupt source. On an interrupt, the

instruction in the execution stage completes, while the instruction in the

decode stage is replaced by a branch to the interrupt vector.

User Vector (Exception)

A user exception is caused by inserting a exception instruction in the software

flow.

2.2 Nios II

Is a general-purpose RISC processor core, developed by Altera. The Nios

II processor is a configurable soft-core processor, as opposed to a fixed, off-

the-shelf microcontroller. In this context, ”configurable” means that you can

add or remove features on a system-by-system basis to meet performance or

price goals.

2.2.1 Overview

A Nios II processor system is equivalent to a microcontroller or ”computer

on a chip” that includes a processor and a combination of peripherals and

memory on a single chip. The term ”Nios II processor system” refers to a

Nios II processor core, a set of on-chip peripherals, on chip memory, and

interfaces to off-chip memory, all implemented on a single Altera device.

Like a microcontroller family, all Nios II processor systems use a consistent

instruction set and programming model. The Nios II processor is optimized

for implementation is Altera FPGAs, providing:

• Full 32-bit instruction set, data path, and address space

• 32 general-purpose registers

• 32 external interrupt sources

• Single-instruction 32 ∗ 32 multiply and divide

• Floating-point instructions for single-precision floating-point operations

2.2 Nios II 10

• Single-instruction barrel shifter

• Hardware-assisted debug module enabling processor start, stop, step

and trace

The Nios II architecture describes an instruction set, not a particular hard-

ware implementation. A functional unit can be implemented in hardware,

emulated in software, or omitted entirely. For example, in control applica-

tions that rarely perform complex arithmetic, the division instruction can be

chosen to be emulated in software.

2.2.2 Instruction Set Architecture

There are three types of Nios II instruction word format: I-type, R-type, and

J-type. The defining characteristic of the I-type instruction-word format is

that it contains an immediate value embedded within the instruction word.

I-type instructions words contain a 6-bit opcode field, two 5-bit register fields,

and a 16 it immediate data field. The defining characteristic of the R-type

instruction-word format is that all arguments and results are specified as

registers. R-type instructions contain a 6-bit opcode field, three 5-bit register

fields, and an 11-bit opcode-extension field. J-type instructions contain a 6-

bit opcode field and a 26-bit immediate data field. J-type instructions, such

as call and jmpi, transfer execution anywhere within a 256 MByte range.

2.2.3 Registers

The Nios II architecture supports a flat register file, consisting of thirty two

32-bit general-purpose registers, and up to thirty two 32-bit control registers.

The control registers can be used for interrupt handling or hold an unique

processor ID. The architecture supports supervisor and user modes that allow

system code to protect the control registers from errant applications.

Overview of general purpose registers:

• Register 0 always returns the value zero, and writing has no effect.

• Register 29 through 31 are used to store return addresses.

2.2 Nios II 11

2.2.4 Pipeline Architecture

Nios II instruction execution is pipelined. Some instructions require multiple

clock cycles in the execute stage to complete. The consequent data conflict

is solved by stalling the pipeline. Three different pipeline configurations are

supported by Nios II.

One Stage Pipeline

When only one pipeline stage is used, a single instruction is dispatched at a

time, and the processor waits for an instruction to complete before fetching

and dispatching the next instruction. Because each instruction completes

before the next instruction is dispatched, branch prediction is not necessary.

This greatly simplifies the consideration of processor stalls. Maximum per-

formance is one instruction per six clock cycles.

Five Stage Pipeline

A 5-stage pipeline provides a trade off between performance and hardware

cost. Up to one instruction is dispatched and/or retired per cycle. Instruc-

tions are dispatched and retired in-order. Static branch prediction is imple-

mented. The pipeline is divided into five stages: Fetch, Decode, Execute,

Memory, and Writeback.

Six Stage Pipeline

A 6-stage pipeline should be used, if maximum performance is required. Up

to one instruction is dispatched and/or retired per cycle. Instructions are

dispatched and retired in-order. Dynamic branch prediction is implemented

using a 2-bit branch history table. The pipeline is divided into three stages to

maximize performance: Fetch, Decode, Execute, Memory, Align, and Write-

back.

2.2.5 Memory Architecture

The flexible nature of the Nios II memory organization is the most notable

difference between Nios II processor systems and traditional microcontrollers.

2.2 Nios II 12

A Nios II core uses one or more of the following to provide memory access:

• Instruction master port

• Instruction cache

• Data master port

• Data cache

• Tightly-coupled instruction or data memory port - Interface to fast

on-chip memory outside the Nios II core

The Nios II architecture supports separate instruction and data buses, clas-

sifying it as a Harvard architecture. The data master port connects to both

memory and peripheral components, while the instruction master port con-

nects only to memory components.

Instruction Master Port

The instruction master port performs a single function: it fetches instructions

to be executed by the processor. The instruction master port is pipelined

which minimize the impact of synchronous memory with pipeline latency

and increases the overall maximum frequency of the system. The instruction

master port can issue successive read requests before data has returned from

prior requests. The Nios II processor can prefetch sequential instructions and

perform branch prediction to keep the instruction pipe as active as possible.

Tightly-coupled Memory

Tightly-coupled memory provides guaranteed low-latency memory access

for performance-critical applications. Compared to cache memory, tightly-

coupled memory provides the following benefits:

• Performance similar to cache memory

• Software can guarantee that performance-critical code or data is lo-

cated in tightly-coupled memory No real-time caching overhead, such

as loading, invalidating, or flushing memory

2.2 Nios II 13

Physically, a tightly-coupled memory port is a separate master port on the

Nios II processor core, similar to the instruction or data master port. A Nios

II core can have zero, one, or multiple tightly-coupled memories for both

instruction and data access. Each tightly-coupled memory port connects

directly to exactly one memory with guaranteed low, fixed latency.

Memory Organization

Nios II addresses are 32 bits, allowing access up to a 4 gigabyte address

space. However, many Nios II core configurations restrict addresses to 31

bits or fewer. The Nios II architecture is little endian. Words and halfwords

are stored in memory with the most significant bytes at higher addresses.

Contents in memory are aligned as follows:

• A function must be aligned to a minimum of 32-bit boundary.

• The minimum alignment of a data element is its natural size, which

can be 8, 16, or 32 bit. A data element larger than 32-bits need only

be aligned to a 32-bit boundary.

Memory and Peripheral Access

The Nios II architecture provides memory-mapped I/O access. Both data

memory and peripherals are mapped into the address space of the data master

port. The processor’s data bus is 32 bits wide. Instructions are available to

read and write byte, half-word (16-bit), or word (32-bit) data.

2.2.6 Exceptions

The Nios II architecture provides a simple, non-vectored exception controller

to handle all exception types. All exceptions, including hardware interrupts,

cause the processor to transfer execution to a single exception address. The

exception handler at this address determines the cause of the exception and

dispatches an appropriate exception routine. The exception address is spec-

ified at system generation time.

2.3 LatticeMico32 14

Integral Interrupt Controller

The Nios II architecture supports 32 external hardware interrupts. The pro-

cessor core has 32 level-sensitive interrupt request (IRQ) inputs, providing

a unique input for each interrupt source. IRQ priority is determined by

software. The architecture supports nested interrupts.

The software can enable and disable any interrupt source individually through

the ienable control register, which contains an interrupt-enable bit for each

of the IRQ inputs. Software can enable and disable interrupts globally using

the PIE bit of the status control register. A hardware interrupt is generated

if and only if all three of these conditions are true:

• The PIE bit of the status register is 1

• An interrupt-request input is asserted

• The corresponding bit of the ienable register is 1

Interrupt Vector Custom Module

The Nios II processor core offers an interrupt vector custom module which

accelerates interrupts vector dispatch. Every interrupt source gets its own

interrupt vector.

The interrupt vector custom module is based on a priority encoder with one

input for each interrupt connected to the Nios II processor. The cost of

the interrupt vector custom module depends on the number of interrupts

connected to the Nios II processor.

If a large number of interrupts is used, adding the interrupt vector module

might lower the maximum frequency.

2.3 LatticeMico32

Is a configurable 32-bit soft processor core for Lattice FPGA devices. The

processor is available for free with an open IP core licensing, enabling easy

adaption of the processor.

2.3 LatticeMico32 15

2.3.1 Overview

With separate instruction and data buses, this Harvard architecture proces-

sor allows for single-cycle instruction execution as the instruction and data

memories can be accessed simultaneously. Additionally, the LatticeMico32

uses a RISC architecture, thereby providing a simpler instruction set and

faster performance. As a result, the processor core consumes minimal device

resources, while maintaining the performance required for a broad applica-

tion set. Some of the key features of the 32-bit processor include:

• RISC architecture

• 32-bit data path

• 32-bit instructions

• 32 general-purpose registers

• Up to 32 external interrupts

• Optional instruction cache

• Optional data cache

• Dual WHISHBONE memory interfaces (instruction and data)

To accelerate the development of processor systems, several optional periph-

eral components are available with the LatticeMico32 processor. Specifically,

these components are connected to the processor through a WISHBONE bus

interface, a royalty-free, public-domain specification.

2.3.2 Instruction Set Architecture

All LatticeMico32 instructions are 32 bits wide. They are in four basic for-

mats, as listed below:

• Register Immediate (RI) Format:

• Register Register (RR) Format

2.3 LatticeMico32 16

• Control Register (CR) Format

• Immediate (I) Format

LatticeMico32 supports a variety of instructions for arithmetic, logic, data

comparison, data movement, and program control. Not all instructions are

available in all configurations of the processor. Support for some types of

instructions can be eliminated to reduce the amount of FPGA resources

used.

2.3.3 Registers

The LatticeMico32 processor has thirty-two 32-bit general purpose registers

and several control and status registers.

Overview of general purpose registers:

• Register 0 must always hold the value 0.

• Registers 1 through 28 are truly general purpose and can be used as

the source or destination register for any instruction.

• Register 29 is used by the call instruction to save the return address

but is otherwise general purpose.

• Register 30 is used to save the value of the program counter when an

exception occurs.

• Register 31 saves the value of the program counter when a breakpoint

or watchpoint exception occurs.

2.3.4 Pipeline Architecture

The LatticeMico32 processor uses a 6-stage pipeline. It is fully bypassed

and interlocked. The bypass logic is responsible for forwarding results back

through the pipeline, allowing most instructions to be effectively executed in

a single cycle. The interlock is responsible for detecting read-after-write haz-

ards and stalling the pipeline until the hazard has been resolved. This avoids

2.3 LatticeMico32 17

the need to insert nop directives between dependent instructions, keeping

code size to a minimum, as well as simplifying assembler-level programming.

The six pipeline stages are:

• Address - The address of the instruction to execute is calculated and

sent to the instruction cache.

• Fetch - The instruction is read from memory.

• Decode - The instruction is decoded, and operands are either fetched

from register file or bypassed form the pipeline.

• Execute - The operation specified by the instruction is performed. For

simple instructions such as addition or a logical operation, execution

finishes in this stage, and result is made available for bypassing.

• Memory - For more complicated instructions such as loads, stores, mul-

tiplies, or shifts, a second execution stage is required.

• Writeback - Results produced by the instructions are written back to

the register file.

2.3.5 Memory Architecture

The LatticeMico32 processor has a flat 32-bit, byte-addressable address space.

For LatticeMico32 processors witch caches, the portion of the address space

that is cacheable can be configured separately for both the instruction and

data cache. This allows for the size of the cache tag RAMs to be optimized

to be as small as is required (the fewer the number of cacheable addresses,

the smaller the tag RAMs will be).

Memory Organization

The LatticeMico32 processor is a big-endian, which means that multi-byte

objects, such as half-word and words, are stored with the most significant

byte at the lowest address.

All memory accesses must be aligned to the size of the access, as listed below:

2.3 LatticeMico32 18

• Byte Access: No address requirements.

• Half-word Access: Address must be half-word aligned (bit 0 must be

0).

• Word Access: Address must be word aligned (bits 1 and 0 must be 0)

No check is performed for unaligned access. All unaligned accesses result in

undefined behavior.

2.3.6 Exceptions

The LatticeMico32 processor can raise eight types of exceptions, as listed

below:

• Reset: Raised when the processor’s reset pin is asserted.

• Breakpoint: Raised when either a break instruction is executed or when

a hardware breakpoint is triggered.

• InstructionBusError: Raised when an instruction fetch fails, typically

due to the requested address being invalid.

• Watchpoint: Raised when a data access fails, typically because either

the requested address is invalid or the type of access is not allowed.

• DivideByZero: Raised when an attempt is made to divide by zero.

• Interrupt: Raised when one of the processor’s interrupt pins is asserted,

providing that the corresponding field in the interrupt mask is set and

the global interrupt enable flag is set. The LAtticeMico32 processor

supports up to 32 active-low, level-sensitive interrupts.

• SystemCall: Raised when an scall instruction is executed.

Exceptions occur in the execute pipeline stage. If there is an instruction in

the memory pipeline stage, that instruction is first allowed to finish. All

instructions from the execute stage back are then killed and do not cause

any user-transparent state changes. For example, no flags are set.

2.3 LatticeMico32 19

Exception Handler

When an exception occurs, the CPU branches to an address that is an offset

from a predefined value. The offset is calculated by multiplying the exception

ID by 32. Since all LatticeMico32 instructions are four bytes long, this means

each exception handler can be eight instructions long. If further instructions

are required, the handler can call a subroutine.

2.4 Comparison 20

2.4 Comparison

This section is used to give a short comparison of previously explained soft

core processors. Table 1 gives an overview of supported features:

MicroBlaze Nios II LatticeMico32
General Purpose
Registers

32 32 32

Pipeline Stages 3/5 Stages 1/5/6 Stages 6 Stages
Instruction
Cache

Optional Optional Optional

Data Cache Optional Optional Optional
Floating Point
Unit

Optional Optional No

Interrupts 1 32 0-32
HW-Debug
Support

Optional Optional Optional

Hardware
multiplier

Optional Optional Optional

Hardware
divider

Optional Optional Optional

Hardware
barrel shifter

Optional Optional Optional

Memory
Management
Unit

Optional No No

Table 1: Features of State of the Art Soft Core Processors

The reachable clock frequency and resource consumption have not been con-

sidered, since these attributes depend strongly on configuration and target

technology.

21

3 SPEAR - Basis for a new Architecture

SPEAR stands for Scalable Processor for Embedded Applications in Real-

time environments. A detailed description is given in [3, 5, 4]. SPEAR was

designed for embedded systems with real-time requirements. Thus the two

most important features for such a processor are adaptability and real-time

capability.

To enable adaptability, SPEAR is able to use extension modules. The exten-

sion modules are mapped to uppermost data memory and can be accessed

like normal memory with load/store operations.

The execution time of a given real-time task is influenced by many fac-

tors. SPEAR offers a better support for real-time execution by reducing

the hardware-jitter to the granularity of one clock cycle. This is achieved by

constant execution time of all instructions, deterministic behaviour on inter-

rupt execution, and all data and control hazards of the pipeline are resolved

in hardware.

3.1 Overview

SPEAR features 16-bit RISC architecture. That means that all buses and

registers are 16 bit wide. The design executes instructions in a 3-stage

pipeline. The instruction set comprises 80 instructions. The data memory

and instruction memory are both 4 KB in size and are separated (Harvard ar-

chitecture). The uppermost 1 KB of the data memory is reserved for memory

mapping of the extension modules. The register file consists of 32 registers.

26 of them are general purpose registers and 6 registers are used for special

functions. Figure 1 shows the structure of the processor.

3.1.1 Pipeline

The pipeline is built by the three stages. First comes the fetch stage which

is responsible to read one instruction from the instruction memory. The

next stage decodes this instruction and is hence called decode stage. The

decoding comprises the generation of control signals for the ALU, generation

3.1 Overview 22

P
ro

g
ra

m
 C

o
u

n
te

r

P
ip

e
 R

e
g
is

te
r

1

P
ip

e
 R

e
g

is
te

r
2

Data
Memory

Instr.
Memory

Ext. Mod

SysCtrl
Ext.

Register
File

Except.
Vector
Table

Instr.
Decoder

P
C

P
C

fetch decode execute/
write back

ALU

tri-state bus

Figure 1: Block Diagram of SPEAR

of immediate values and read out of the operands from the register file. The

execute/write-back stage performs the intended operation. This can be an

arithmetic/logical ALU operation or an access to the memory respectively

to an extension module. The result of a memory read out or ALU operation

is afterwards written to the write back bus.

The pipeline supports full data forwarding between pipeline stages to prevent

data hazards. In addition also control hazards are resolved by hardware and

it is not necessary to insert pipeline stalls. This simplifies the calculation of

worst case execution time.

3.1.2 Memory Architecture

The memory architecture was designed to be as simple as possible. In fact,

data and instruction memory allow only 16-bit access. Beside the simpli-

fied hardware, this approach enables to address as twice as much memory

compared to a byte-based memory.

3.2 Exceptions 23

3.2 Exceptions

SPEAR supports two types of exceptions:

1. Interrupts, which are triggered by hardware.

2. Traps, which are triggered by software.

For both types 16 different sources are possible. Therefore 32 exceptions are

supported. The addresses of the service routines are stored in the exception

vector table, a dedicated memory block located in the decode stage of the

SPEAR processor core. Figure 2 depicts the exception vector table, it con-

tains 32 entries, whereas the trap vectors are stored at positive and interrupt

vectors are stored at negative positions. There are special instructions to

build and manipulate the exception vector table.

Trap
Vectors

Interrupt
Vectors

-1

-16

0

15

Figure 2: Exception Vector Table of SPEAR

3.3 Register File

The register file holds 32 registers and six of them are special function regis-

ters: FPTRX, FPTRY, FPTRZ, RTSX, RTSY, and RTE.

3.3.1 Frame Pointer Registers

These registers are used to build frames. Frames are similar to stacks with the

difference that each data element inside the frame can be accessed without

emptying the stack. The address of a data element is given by the content

3.3 Register File 24

of the frame pointer register plus an offset specified in the instruction. Thus

for using frame pointers, first the base address of the frame has to be load

to the corresponding register. After that, the frame can be used with the

frame pointer instructions. These instructions can hold a 5 bit offset. Hence

a frame comprises 32 words. Figure 3 shows a frame.

Data
Memory

O
ff
se
t

O
ff
se
t

Framepointer

Fr
a
m
e

Figure 3: Organization of a Frame

Frames are useful for accessing extension modules where some adjacent ad-

dresses will be accessed several times. The registers r26 (FPTRX), r27 (FP-

TRY) and r28 (FPTRZ) are used for this purpose, allowing to manage three

independent frames contemporaneously.

3.3.2 RTSX- and RTSY-Register

Depending on the subroutine call instruction, SPEAR saves the return ad-

dress either in register r29 (RTSX) or in r30 (RTSY). Thus allows two sub-

sequent subroutine calls without additional overhead. If more nested sub-

routine calls are required, the return address has to be saved and restored

manually.

3.4 Instruction Set Architecture 25

3.3.3 RTE-Register

This register is used to save the return address in case of an exception. If

nested interrupts are used, the return address has to be saved and restored

manually.

3.4 Instruction Set Architecture

The instruction set comprises 80 instructions whereof 32 instructions are

implemented as conditional instructions. All instructions are 16 bit and

have the same execution time.

3.4.1 Structure of Instructions

The structure of instructions can be described using instruction formats.

Some 32 bit architectures like the MIPS architecture uses only two different

instruction formats (R-format and I-format). Information about the MIPS

architecture is given in [9, 10]. Using only few different instruction formats

make the decoding of instructions easier. This was not possible for SPEAR

because of the tight instruction set when using only 16-bit instructions. Table

2 shows the instruction formats used by SPEAR. A list of instructions is given

in [3].

3.4.2 Conditional Instructions

This type of instructions is required to apply the One-Path programming

paradigm [11], which allows to implement programs with a data-independent

execution time. For conditional instructions the processor condition flag is

used to decide if an instruction is going to be executed. If not, a NOP is

inserted and executed instead of the instruction. This provides a constant ex-

ecution time. The processor condition flag can only be modified by a compare

or bit-test instruction and is located in the processor status register. Below

an if-statement as example to show the usage of conditional instructions:

If (r1 == 3) then

r2 = r3 + 1;

3.4 Instruction Set Architecture 26

Bit Number
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Register Register
6 bits 5 bits 5 bits

Opcode Constant Register
3 bits 8 bits 5 bits

Opcode Constant Register
6 bits 5 bits 5 bits

Opcode Constant Register
7 bits 4 bits 5 bits

Opcode Register
10 bits 5 bits

Opcode Constant
5 bits 11 bits

Table 2: Instruction Formats used by SPEAR

else

r2 = r4;

end if;

with conditional instructions without conditional instructions

cmpi_eq r1, 3 /*r1 equal 3?*/ cmpi_eq r7, 3

mov_ct r2, r3 /*yes => r2=r3*/ jmpi_cf +4

addi_ct r2, 1 /*yes => r2=r2+1*/ mov r2, r3

mov_cf r2, r4 /*no => r2=r4*/ addi r2, 1

jmp +2

mov r2, r4

The implementation on the left side uses conditional instructions and re-

quires 4 instructions. Independent whether the value of register r7 is equal

3 or not, the execution time is always the same. This data-independent con-

stant execution time programming style requires at least a conditional move

instruction, described by the One-Path programming paradigm mentioned

above. However, conditional instructions can also improve the performance.

3.5 Extension Modules 27

Let us take a closer look to the example:

The right side implementation requires 6 instructions and its execution time

depends on the value of register r7. In the best case only 3 instructions

and in the worst case 5 instructions have to be executed. Because of the

3 pipeline stages two NOPs have to be inserted during the execution of a

jump. So without conditional instructions the worst case execution time is

7 cycles. To produce more efficient code with conditional instructions, the

if-then-else construct has to contain only few expressions and the required

instructions have to be available as conditional instructions. This was the

reason, why SPEAR provides more conditional instructions than the pure

conditional move instruction.

3.5 Extension Modules

Extension modules are used to adapt the processor for different requirements.

To easy the integration of an extension module a generic interface has been

defined to be used by all different extension modules and processor cores.

The interface consists of 8 registers which are mapped to the data memory.

Hence only load and store instructions are needed for accessing an extension

module. The first two registers are the status and configuration registers.

The status register is defined as read only. The lower 8 bit of these registers

are defined by the interface specification, thus they are the same for all

extension modules. The upper 8 bit are module specific. The other 6 registers

are named DATA 0 to DATA 5 and are used for module specific purpose.

Figure 4 shows the interface used by extension modules.

There are three types of extension modules which are classified by their

functionality:

System-Extension Modules have an extended interface to the processor

and improves the functionality of the processor itself.

Function-Extension Modules can be used to implement operations in

hardware which otherwise have to be emulated by software.

3.5 Extension Modules 28

DATA 0

DATA 1

DATA 2

DATA 3

DATA 5

DATA 4

Generic - Config

Generic - StatusCustomized - Status

Customized - Config

8 bit 8 bit
16 bit

Generic Part

Customized Part

Figure 4: Interface for Extension Modules

IO-Extension Modules used to implement interfaces for the processor like

RS232 or PS/2. Only this modules have I/O capability.

Two system-extension modules are worth for mentioning, because they are

very important for the processor:

3.5.1 Processor Control Module

The processor control module is mandatory for the correct working of the

processor, because it contains the processor status register and the interrupt

handler. This module is also responsible for saving the processor status in

case of an exception.

3.5.2 Programmer Module

The programmer module is used to store the program code into the pro-

cessors instruction memory. The program code itself has to be provided by

an EEPROM or a PC for example. Thus the programmer module can only

be used in cooperation with an I/O-extension module to access the source

of program code. Dividing this task to a programming and a communica-

tion part enables easy changing of the source since only the communication

module has to be replaced.

29

4 Analysing the Old Architecture

When developing a successor, first the predecessor has to be analysed in order

to identify weak points but also to identify proved features.

This chapter describes the first step of the SPEAR2 design process, namely

the identification of the weaknesses of the SPEAR architecture. Finally so-

lutions for these weaknesses will be presented.

4.1 Three Processor Cores

Beside the SPEAR processor core two further processor cores, namely NEEDLE

and LANCE, were developed at the department. The motivation for the addi-

tional processor cores was to achieve scalability with respect to performance.

All three cores are fully code compatible and have the same extension module

interface.

NEEDLE, a small processor with less performance and small resource con-

sumption. SPEAR, designed for medium requirements. And LANCE, a

superscalar 16-bit processor with high performance.

Basically, each one of this processor cores could be used as starting point

of SPEAR2. However, the experience showed, that there was no reason for

using neither NEEDLE nor LANCE. Indeed, the resource consumption of

NEEDLE were only two-thirds compared to SPEAR, but also the maximum

clock frequency were nearly halved and executing one instruction took several

clock cycles. Therefore the performance was reduced to less than one quarter.

In contrast, LANCE needed much more resources than SPEAR and in return

doubled the instructions executed per cycle. But through heavily reduced

maximum clock frequency the performance of LANCE was not even good as

the performance of SPEAR.

4.2 Analysing SPEAR

Since SPEAR is the most efficient processor core compared to NEEDLE and

LANCE, it was chosen as the basis for a new processor. However, SPEAR

had also several disadvantages which we tried to remove within SPEAR2.

4.2 Analysing SPEAR 30

The list below identifies the parts of SPEAR with potential for improvement:

Type of Memory: One problem of SPEAR was the use of asynchronous

memory, because this type of memory is not supported by new FPGAs

and has to be replaced with synchronous memory.

Additional Pipeline Stage: The maximum clock frequency could easily

be improved by braking up the critical path with an additional pipeline

stage. Apart from reaching higher clock frequencies an additional

pipeline stage would be required anyway because of the registered out-

put of synchronous memory.

Access to Extension Modules: In some situations the throughput be-

tween the processor and extension modules was to low. Especially

if the processor had to copy data between to extension modules. The

solution would be the capability of transferring more than 16 bit at

once.

Computational Power: The performance of SPEAR was enough for typi-

cal microcontroller tasks. But writing complex algorithms using 32 bit

variables was difficult, since 32 bit arithmetic is inefficient on a entire

16 bit processor. It would be nice if SPEAR2 could handle 32 bit values

efficient.

Addressable Memory: SPEAR was able to address 128 KB of memory.

SPEAR2 should be able to extend the amount of addressable memory.

Memory Organisation: Only 16 bit access was supported by SPEAR.

Thus using values smaller than 16 bit was inefficient since byte values

wasted half of used memory. And standard tools like the gnu compiler

collection or gnu debugger have problems when the memory does not

use byte addresses.

Conditional Instructions: Many but not all arithmetic operations were

available as conditional instructions. But all arithmetic operations

should be supported to utilize the benefit of conditional instructions

with respect to performance.

4.2 Analysing SPEAR 31

Frame Pointer: They were intended for efficient access to extension mod-

ules and accomplished this task very well. But they are no replacement

for stack pointers which accelerate sub-routine calls and register swap-

ping considerable.

Write Back Bus: This bus is implemented as tri-state bus which is con-

verted by synthesis tools to multiplexer configurations since FPGAs

do not have on-chip tri-state buffers. And large multiplexer structures

need much resources and slow down the design. A solution would be

to merge the signals by a disjunction.

Shifting: It was only possible to shift a data word for one position. Shift-

ing a specific number of bits at once would improve these arithmetic

operations noticeably.

The solution for the first two points will be the use of synchronous mem-

ory and an additional pipeline stage. To gain more computational power, to

increase the throughput to extension modules and to extend the amount of

addressable memory SPEAR2 will dispose of a customizable data path. In

return of higher resources usage the data path of SPEAR2 can be enlarged

to 32 bit. This feature will be described in detail in Section 5.2. The memory

organisation will be changed. 8 bit, 16 bit and 32 bit memory access will be

supported. All arithmetic operations will be available as conditional instruc-

tions. Real stack pointer will be available for stack management. Shifting

operation will support to shift several positions at once.

A more detailed description about the improvements in SPEAR2 is given in

Chapter 5.

32

5 SPEAR2

This chapter gives an overview and treats all design decisions and improve-

ments of SPEAR2. The customizable data path is explained in detail, due

to its high impact to the processor core. Afterwards the specification and

implementation details are going to be treated.

5.1 Overview

SPEAR2 is the successor of SPEAR and stands for Scalable Processor for

Embedded Applications in Real-time environments 2. Although it is the

successor and a lot of features are adopted from SPEAR, the code required a

complete redesign. SPEAR2 represents a RISC architecture which executes

instructions in a pipeline. The pipeline has four stages and supports full data

forwarding between stages to prevent data hazards. Also control hazards are

resolved in hardware. Thus it is not necessary to insert any pipeline stalls.

These feature simplifies the programming and simplifies the prediction of

worst case execution time. The memory for data and instructions is sepa-

rated (Harvard-architecture). The size of the memory is configurable and 1

KB of the data memory is reserved for memory mapping of the extension

modules. The instruction set comprises 122 instructions. The width of every

instruction is 16 bit and all of them have the same execution time of one

cycle. Most of the instructions are conditional ones. The register file holds

16 registers which are split into 14 general purpose and 2 special function

registers which are used to save the return address in case of an interrupt or

subroutine call. SPEAR2 supports 32 exceptions. 16 of them are hardware

exceptions (=interrupts) and 16 can be activated by software (=trap). For

building stacks there are four stack pointer available. If the processor is idle,

it can be put to sleep mode for energy saving. The processor returns from

sleep mode as soon as an interrupt occurs. The most interesting feature is the

capability to change the width of the data path. This enables two versions

with different performance but same instruction set and interface. Figure 5

shows the structure of the processor.

5.2 Customizable Data Path 33

P
ip

e
 R

e
g
is

te
r

1

P
ip

e
 R

e
g

is
te

r
3

Data
Memory

Instr.
Memory

Ext. Mod

SysCtrl
Ext.

Register
File

Except.
Vector
Table

Instr.
Decoder

P
C

P
C

fetch decode write back

ALU

P
ip

e
 R

e
g

is
te

r
2

execute

ADDR

Figure 5: Block Diagram of SPEAR2

5.2 Customizable Data Path

A customizable data path enables the capability of having two versions of the

same processor but with different performance. Both versions use the same

toolchain, have the same features and an identical interface. Hence it is easy

to switch between different configurations even during a running project.

For example at the beginning of a project the small version of SPEAR2 is

used. After some source code and extension modules have been developed,

it becomes clear that the performance is insufficient. If the performance of

the 32 bit version is enough, only the configuration of the processor has to

be changed and the same source code and extension modules can be used

furthermore. The following steps are required to switch the configuration

and to acquire more performance:

• First the configuration has to be changed by editing the configuration

file of SPEAR2. Afterwards the source code of SPEAR2 has to be

5.2 Customizable Data Path 34

synthesized again.

• The source code of the project has to be recompiled for the 32 bit

version.

Since the 32 bit version requires more resources the FPGA must has enough

free resources left when switching to 32 bit.

5.2.1 Implementation Overview

Figure 6 shows which parts of SPEAR2 are modified when changing the

configuration. Since the majority of parts are affected, the resource require-

ments are quite different. However, with an enlarged data path the resource

requirements are still less compared to an entirely 32 bit implementation.

The advantage is not saving some resources, but the big advantage of a cus-

tomizable data path is the compatibility of both configurations. The same

toolchain can be used. The same source code runs on both processors, since

the instruction decoder stays unchanged. And no extension modules have to

be adapted when changing the configuration.

More information about how the individual parts of the processor are affected

by the customizable data path is given in Section 5.5.

5.2.2 Performance Improvement

When SPEAR2 is configured as an entirely 16 bit processor, the performance

will be comparable to other 16 bit processors. With an enlarged data path the

performance can be improved, because 32 bit values can be handled by the

ALU without overhead and the enabled 32 bit access to extension modules.

But the performance of other 32 bit processors will not be reached, since the

instruction set is still less powerful.

5.2.3 Addressable Memory

Since with an enlarged data path also the addressable memory extends, data

path configuration is not only a question about performance. The 16 bit

5.3 Processor Architecture 35

P
ip

e
 R

e
g
is

te
r

1

P
ip

e
 R

e
g

is
te

r
3

Data
Memory

Instr.
Memory

Ext. Mod

SysCtrl
Ext.

Register
File

Except.
Vector
Table

Instr.
Decoder

P
C

P
C

fetch decode write back

ALU

P
ip

e
 R

e
g

is
te

r
2

execute

ADDR

Figure 6: Parts Affected by Configuration

version can address 64 KB memory and the 32 bit version is able to address

4 GB memory.

5.3 Processor Architecture

In this section the architecture of SPEAR2 will be described in detail. The

data-flow for every stage and the interaction of the architectural components.

5.3.1 First Stage

The fist stage of the pipeline is called fetch stage. Figure 7 depicts this stage.

The only task of this stage is address generation for instruction memories.

The program counter is always incremented by one except when a jump

is performed. The boot memory is read only and is used at boot time,

afterwards it is possible to switch to the instruction memory.

5.3 Processor Architecture 36

P
ro

g
ra

m
 C

o
u
n

te
r

Instr.
Memory

Fetch Stage

ADD

Boot
ROM

1 N
e
x
t

S
ta

g
e

Dec - Jump Control

ALU – Jump Result

Figure 7: The Fetch Stage in More Detail

The pipe register 1 is build by the program counter an the output of the

memories.

5.3.2 Second Stage

This stage is used for decoding the instruction. The stage is depicted in Fig-

ure 8. The multiplexer at the input of the decode stage determines whether

the instruction to decode is taken from the bootrom or form the instruction

RAM. This decision is controlled by the source-selection-signal of the pro-

grammer module. The decoding task determines the type of instruction and

generates the opcode for the ALU, checks if a jump has to be performed, ex-

tracts the immediate value, and generates addresses for the extended register

file and the exception vector table. If the processor is currently executing a

jump in the execute stage caused by an exception or even by a jump instruc-

tion, then the instruction in the decode stage has to be flushed. However, in

order to reduce resource usage not all signals are flushed, instead only the

control signals are disabled.

5.3 Processor Architecture 37

Decode Stage

P
re

v
io

u
s

S
ta

g
e

Exe - Jump Control

ALU – Jump Result

Exception

NOP

Instruction
Decoder

Instr.
Memory

PC

Boot
ROM

N
e
x
t

S
ta

g
e

Dec - Jump Control
P
C

P
ip

e
 R

e
g

is
te

r
2

SysCtrl - Exc Control

ProgMod – Src. Select

Ext.
Register

File

Except.
Vector
Table

Forward
Unit

Figure 8: The Decode Stage in More Detail

Depending whether the processor executes a jump or not, either the jump

destination address or the program counter of the current instruction will be

saved in the pipe register 2. In this way the execution time of a program is

constant and does not depend whether the exception happens during a jump

or not.

The pipe register 2 consist of the control signals, the output of the exception

vector table, the output of the extended register file and the saved program

counter.

5.3 Processor Architecture 38

5.3.3 Third Stage

The third pipe stage executes the instruction. Figure 9 depicts this stage in

detail. The data hazards are resolved by the forwarding unit, which is located

Execute Stage

P
re

v
io

u
s

S
ta

g
e

N
e
x
t

S
ta

g
e

Ext. Register File

Except. Vector Table

ALU

Pointer
Calculation

SysCtrl

Data
Memory

Ext. Mod
Ext. Register File -
Bypass Register

Decode PC

Imm. Value

Forward Ctrl.

Forward Ctrl.

Fetch PC

Frame Offset

Address Ctrl.

Jump Ctrl.

Decode PC

ALU Result

P
ip

e
 R

e
g
is

te
r

3
Write Enable

ALU Op

M
e
m

o
ry

 A
cc

e
ss

 U
n
it

Figure 9: The Execute Stage in More Detail

in the execute stage. The forwarding unit assures that the ALU is always feed

with latest information and is described in detail in Section 5.5.5. Instead of

an expensive forwarding unit in terms of hardware and delays, stalls could

be used to resolve the data hazards. But this solution would make it more

complex to predetermine the execution time of a program.

Depending on the executed instruction, different input sources are used as

operands. These sources can be: The values of a register read from the

5.4 Instruction Set Architecture 39

register file, the immediate value encoded in the instruction, the destination

address of a jump, or the output of the exception vector table.

In order to reduce the amount of registers in pipe register 3, a multiplexer

regulates which value will be saved in pipe register 3: Normally, the result

of the ALU will be used, if a jump to subroutine is performed, the program

counter of the fetch stage will be used instead because this program counter

holds the address from the subroutine call. Due to the fact, that in the case

of an interrupt service routine the decoded instruction in replaced by a NOP,

the program counter of the decode stage has to be used as return address.

Another task carried out by this stage is the access to data memory and

extension modules. The data used for write access is always taken from the

forward unit. The applied address can be delivered by the forward unit or

frame pointer calculation. Frame pointer are described in detail in Section

5.5.7. By default, the output of an extension module is set to zero. Only

when the extension module is selected, the internal signals are propagated to

the output. In this way the output of all extension modules can be merged

using a simple OR-gate instead of a complex multiplexer.

The pipe register 3 consist of some control signals, the result of the ALU,

the merged output of extension modules and the output of data memory.

5.3.4 Fourth Stage

The last stage merges the output of ALU, extension modules, and data mem-

ory. Afterwards the result will be written back to the extended register file

and the bypass register. The bypass register is used by the forward unit when

the same register is read and written within one clock cycle. This makes the

implementation independent of the used memory technology. Figure 10 de-

picts this stage.

5.4 Instruction Set Architecture

This section provides information about design decisions and instruction for-

mats used by SPEAR2. Detailed information about individual instructions

is given in Appendix B.

5.4 Instruction Set Architecture 40

Write Back Stage

P
re

v
io

u
s

S
ta

g
e

Data Memory

Write Back Ctrl.

Ext. Modules

ALU Result/ PC
Ext. Register File

Ext. Register File -
Bypass Register

Write Enable

Address

M
e
m

o
ry

A
cc

e
ss

 U
n
it

Figure 10: The Write Back Stage in More Detail

All instructions are 16 bit wide. The number of instructions increased from

80 in the original SPEAR processor to 122 in the SPEAR2 processor, whereof

40 instructions are implemented as conditional instructions.

5.4.1 Instruction Format

Five major instruction formats are used. They can be distinguished by their

operands:

• Two registers

• Only one register

• One register and an immediate value

• Only one immediate value

• No operand

Normally, a regular structure of the opcodes is desired, where the width of

opcode and operands are equal for all instructions. Since SPEAR2 uses only

16-bit instructions, decode space for instructions is limited. Therefore we

could not use a regular structure, instead we use variable amount of bits for

5.4 Instruction Set Architecture 41

opcode and immediate values. The width of an immediate value ranges from

4 to 7 bits and the opcode from 5 to 8 bits.

5.4.2 Conditional Instructions

The characteristics of conditional instructions is unchanged, but the com-

plete instruction set was reworked for more efficient encoding of conditional

instructions. Before, 2 bits were used to define one out of three possibilities:

• ”00”: The instruction will always be executed, independent of the con-

dition flag.

• ”11”: The instruction will only be executed, if the condition flag is

true.

• ”10”: The instruction will only be executed, if the condition flag is

false.

• ”01”: Not used.

Using the remaining bit combination without rearranging the instruction set

would have increased the complexity of the instruction decoder. By smart

regrouping of the instructions, it was possible to increase the efficiency of

the instruction set without complicating the decoder. Now three bits are

used to determine the type of an instruction. The first bit indicates if it is a

conditional instruction:

• ”0”: No conditional instruction

• ”1”: Conditional instruction

If an instruction was identified as a conditional one, the third and fourth bit

are used to determine the exact condition type:

• ”00”: The instruction will only be executed, if the condition flag is

false.

• ”01”: The instruction will only be executed, if the condition flag is

true.

5.5 Implementation 42

• ”10” or ”11”: The instruction will always be executed, independent of

the condition flag.

Beside the increased density of instruction set, the new organisation enables

to determine the conditional character of an instruction without decoding the

whole instruction and thus can be done concurrently enabling higher clock

frequencies.

5.5 Implementation

In this section detailed information about the components of the processor

will be given and sometimes differences between SPEAR and its successor

are mentioned. The chapter closes with some information about optimization

used to decrease resource usage.

5.5.1 Program Counter

Compared to the original SPEAR architecture, a significant improvement was

made in SPEAR2 with respect to the program counter. Figure 11 compares

both approaches.

Instead of using a dedicated program counter register, the value of the pro-

gram counter is stored in the pipe register 1. Incremented by 1 it is used

as address for the instruction memories. One benefit of this solution is less

resource usage. And even better it reduces the latency of a jump due to the

fact that the destination address is not buffered as in the original SPEAR

architecture but is directly applied to the instruction memories through a

multiplexer.

Since the program counter and pipe register 1 have merged, the logical path

between program counter and instruction memory is extended. This has

no impact to design, because synchronous memories are used for instruction

memories and the fetch stage has no time critical path. For correct start up

of the processor, the program counter has to be initialized with -1.

The reason why the program counter is incremented by one is given in the

next section, which describes the instruction memories and their organisa-

tion.

5.5 Implementation 43

Instr.
Memory

ADD

1

Jump Control

Jump Destination

P
ro

g
ra

m
 C

o
u
n

te
r

P
C

P
ro

g
ra

m
 C

o
u

n
te

r

Instr.
Memory

SPEAR2

ADD

1

Jump Destination

Jump Control

SPEAR

Figure 11: Two different Implementations of the Program Counter

Impact of the Customizable Data Path

The width of the program counter depends on the configuration. It can be

16 bit in the small version and 32 bit in the extended version.

5.5.2 Instruction Memories

The Spear2 architecture provides two memories for instructions: A ROM,

called the bootrom because it is used by default at start up. And RAM,

called the instruction memory which can be programmed by the programmer

module, an extension module described in Section 5.6.2. Which memory is

used for instruction fetching is controlled by software. The content of the

instruction memory can be changed at run time and thus enables a flexible

updating of the program code. This feature makes it possible to reduce time

required for software development and testing.

Since all instructions are 16 bit wide and in order to improve the addressable

memory space, we decided to use memories with 16-bit data width. Hence,

5.5 Implementation 44

the program counter has to be incremented by one, after the fetch of a new

instruction.

For small and simple applications the program code can be directly stored

in the bootrom. Thus the configuration file does not only allow to set the

size of the instruction memories but offers also the possibility to disable the

instruction RAM, yielding to compacter processor architecture.

Impact of the Customizable Data Path

The customizable data path has no impact on this component.

5.5.3 Decoder

The decoder decodes the instructions and sets all control signals for sub-

sequent pipe stage. For efficiency reasons, the decoder was split into two

parts:

• One part of the decoder is small and sets control signals without knowl-

edge of the decoded instruction.

• The other part has to determine which instruction is involved before

the control signals can be set.

Control signals which can be set without knowing the type of an instruction

are the exception vector table and register file addresses, several control sig-

nals for frame pointer and signals used for enabling conditional instructions.

This part of the decoder is very simple.

The control signals which depend on the instruction type are again divided

into two groups. One group contains control signal which are set and after-

wards left unchanged. An example for such a signal is the immediate value.

The second group of control signals comprises all control signals which are

affected by a flush operation which may be initiated by a jump. In the case of

normal operation, this signals are set according to the decoded instruction.

If a flush takes place, only this signals have to be disabled and the remaining

signals are left unchanged. Examples for such signals are the write enable

5.5 Implementation 45

signals for the register file and data memory. This reduces the resource us-

age further, because fewer multiplexer are required and in turn affects the

feasible clock rate of the design positively.

Impact of the Customizable Data Path

The width of the generated immediate value depends on the configuration.

The 32-bit version provides three additional instructions for the data memory

access: load word, load halfword unsigned, and store word. If one of the

three instructions is used with the 16 bit configuration, an interrupt will be

triggered.

5.5.4 Register File

Compared to the original SPEAR architecture, the number of registers was

reduced from 32 to 16 registers. The register file of SPEAR2 comprises 16

registers whereof 14 registers are general purpose. This change was necessary

to make the customizable data path possible on the one hand and to design a

more efficient instruction set with bigger immediate values on the other hand.

To compensate this reduction also the number of special function registers

was reduced from 6 to 2. The frame pointer registers were moved into the

system control module and SPEAR2 provides only one register to save the

return address in case of a subroutine call.1

The resulting two special function registers are mapped to the register file of

SPEAR2:

• RTS: Saves the return address in case of a subroutine call. The register

r14 is used for this purpose. If nested subroutine calls are required, the

return address has to be saved and restored manually.

• RTE: This register is used to save the return address in case of an

exception. If nested interrupts are used, the return address has to be

saved and restored manually.

1SPEAR supported 2 registers for saving the return address of subroutine calls, but
the second register was only used by programs written in assembler because the compiler
was not able to use it.

5.5 Implementation 46

The register file is realized using two mirrored dual-port memories. Since

we needed a memory with three independent ports it was the only solution

which is supported by many FPGA technologies.

Impact of the Customizable Data Path

Since the width of the registers depends on the configuration, possible data

widths of used memories are 16 and 32 bit.

5.5.5 Forwarding Unit

The forwarding unit was split into two parts. One part generates the control

signals and is located in the decode stage. The second part performs the

multiplexing and is located in the execute stage in front of the ALU. The

distribution over two stages helps to improve the feasible clock rate of the

design: Since the multiplexer in front of the ALU affects the critical path,

the delay can be reduced if the control signals for the multiplexer are set in

advance in the decode stage and afterwards saved in the pipe register 2.

The following sources may be forwarded by the forwarding unit:

• Register File Output: This is the default case, no forwarding is re-

quired.

• Pipe Register 3: If the previous instruction used one of our source

registers as destination register, it is necessary to use the value stored

by the pipe register 3.

• Register File - Bypass Register: This register has to be used if the same

register of the register file would be used for read and write at the same

time. This situation arises if the instruction two cycles ago used one of

our source registers as destination register.

• Program Counter: Has to be used to calculate the destination address

of a relative jump. The use of the program counter is controlled by the

decoder.

5.5 Implementation 47

• Immediate Value: Several instructions use an immediate value, which

is used as operand for arithmetic operations. The use of the immediate

value is also controlled by the decoder.

Usually the program counter and immediate value have nothing to do with

the forwarding unit. The reason why they are handled by the forwarding unit

is because we tried to conflate multiplexer where possible and to simplify the

ALU. This results in a reduced number of ALU operation codes since only

one operation code is needed for two versions of the same operation. For

example an add operation may use either two registers or one register and

an immediate value as operands. Instead of providing dedicated inputs for

each operation, the immediate value is provided through the forwarding unit

to the ALU. Thus only one add operation has to be implemented inside the

ALU.

Impact of the Customizable Data Path

The control logic located at the decode stage is not affected. The width of

the multiplexers in front of the ALU depends on the configuration.

5.5.6 ALU

The inputs of the ALU are connected to the two outputs of the forward unit

and output of the exception vector table. In order to reduce the amount

of different operations the ALU is able to perform, the inputs of the ALU

are preprocessed: Setting the internal carry flag and the second operand

accordingly or inverted, instructions such as add, add with carry, sub, and

sub with carry can be reduced to a single operation inside the ALU. This

preprocessing made it possible to reduce the 32 different ALU operation codes

in the original SPEAR architecture to 22 operation codes in SPEAR2 which

enables a smaller and faster implementation of the ALU.

A feature missed by the old ALU was the ability to shift register content by

a specific number of bits at once. It was only possible to shift one bit left or

right. Now a barrel shifter is used to perform this operation. This yields a

more powerful instruction set for SPEAR2. The barrel shifter is implemented

5.5 Implementation 48

as a sequence of multiplexers. For example an 8 bit barrel shifter is depicted

in Figure 12.

124
Control

In In In In In In In In

Out Out Out Out Out Out Out Out

Fill

Figure 12: 8 bit Barrel Shifter

The 8 bit barrel shifter is able to shift a data word by 7 bits. To control the 8

bit barrel shifter three control signals are required, one for each multiplexer

stage. Another input is used to fill up undefined bits. For shift left operations

this bit is zero. For logical shift right operations the bit is zero and for

arithmetic shift right operations the value of the most significant bit is used.

Spear2 uses two separate barrel shifter: One for shift left and another for

shift right operations. The 16-bit version of SPEAR2 requires a 16-bit barrel

shifter which has 4 multiplexer stages and the 32-bit version requires a 32-bit

barrel shifter with 5 stages and much higher resource usage. The number of

required multiplexer can be calculated by n ∗ log2(n), where n is the number

of bits. Hence the 16 bit implementation requires 64 multiplexer, while the

32 bit barrel shifter requires 160 multiplexer.

The use of a barrel shifter is one reason for the high resource usage and

lower maximum clock frequency of the 32-bit version compared to the 16-bit

version of SPEAR2.

5.5 Implementation 49

Impact of the Customizable Data Path

Since the ALU is an integral part of the data path, it is strongly affected by

the configuration of the customizable data path. Depending on the configu-

ration all operations are performed with 16 or 32-bit operands. Either two

16 bit or two 32 bit barrel shifters are used, depending on the configuration.

The width and delay of the ALU is affected in great extent.

5.5.7 Frame Pointer

The frame pointer concept used by SPEAR had limited capabilities. Hence a

complete redesign was required. In the following an overview what changed

with the new implementation is given:

• Originally the frame pointer registers were part of the extended register

file. In SPEAR2 they are located in the system control module.

• The number of independent frame pointer was increased by one. Now

four registers are available for frame management.

• The size of frames was enlarged from 32 to 64 words.

• Frame pointer based memory access and concurrent manipulation of the

frame pointer register is now possible within a single instruction. This

allows to emulate push and pop to support efficient stack management.

There was several reasons for moving the frame pointer registers away from

the extended register file. First of all the reduces number of available registers

in the SPEAR2 architecture. Another problem constitutes the the additional

write port which would be required when incrementing or decrementing the

frame pointer automatically for stack emulation. This would yield a register

file with 4 ports which have to be accessible contemporaneously.

After the completion of SPEAR2 it turned out the decision to move the

frame pointer registers into the system control module was right, because

the critical path was shorted and the performance of SPEAR2 increased.

The rearranged instruction set architecture provided emerged encoding space

to add a fourth frame pointer and to enlarge the addressable size of frames.

5.5 Implementation 50

Although having an efficient access to the frame pointer register, the ab-

sence of auto increment and decrement was a substantial disadvantage of

SPEAR. After it got clear that the frame pointer registers will be moved

to the system control module it was impossible to abandon this feature, be-

cause changing the content of frame pointer register will get more costly in

terms of required instructions. The supported operations are post-increment

and post-decrement. However, pop requires pre-increment instead of post-

increment. The problem is solved using post-increment and an offset of -1.

Push is emulated with post-decrement and an offset of zero.

Frame pointers can only be used to access the data memory by word. That

means 16 bit access in the small configuration and otherwise 32 bit. Thus the

constant value for auto-increment and auto-decrement is affected by the con-

figuration: When using a 16 bit data path the value has to be two otherwise

the value has to be four.

Impact of the Customizable Data Path

The width of the frame pointer is controlled by the configuration of the

customizable data path. Furthermore, the value for increment and decrement

depends on the configuration. Since the frame pointer registers are located

at the system control module the interface of this module is also affected.

More information about the impact to the system control module is given in

Section 5.6.1.

5.5.8 Data Memory

In contradiction to SPEAR, which used asynchronous memory, synchronous

memory is used to implement the data memory of SPEAR2. Since most

FPGA platforms have only synchronous memory for implementing large

memory structures. The synchronous memory implied an additional pipeline

stage.

Next the changed memory organisation is explained and afterwards how this

memory is implemented.

5.5 Implementation 51

Memory Organisation

As mentioned in Paragraph 3.1.2, SPEAR was only able to access and ad-

dress 16-bit data types. This restriction simplified the memory access and

the memory organisation. Furthermore twice as much memory could be ad-

dressed. But this memory implementation had several drawbacks. First of

all, it was hard to port the GNU C Compiler to SPEAR, since the compiler

was designed for byte addressed data memories. Furthermore, memory was

wasted if 8 bit values had to be stored.

The new memory organisation is depicted in Figure 13. SPEAR2 uses byte

addressing for its data memory. As shown in the Figure concerning data

0x000x010x020x03
0x040x050x060x07
0x080x090x0A0x0B
0x0C0x0D0x0E0x0F

...

Data
Memory

0x10......
...

8 bit

16 bit

32 bit

Figure 13: Organisation of Data Memory

memory organisation, every byte has its own address and so it is possible

to address every byte directly. The width of the data path limits the type

of memory access. Only with the 32 bit data path it is possible to read or

write four bytes at once. 8 and 16 bit access is supported by both data path

configurations. Every memory access has to be aligned. This means that for

a 32 bit access the address has to be evenly divisible by four and for 16 bit it

has to be evenly divisible by two. The SPEAR2 architecture is little endian.

Words and halfwords are stored in memory with the more significant bytes

at higher addresses.

5.5 Implementation 52

Memory Architecture

Since the data memory has to enable write access to single bytes, four parallel

memories were used to implement the data memory. The internal architec-

ture is depicted in Figure 14. To connect the data memory several signal

Data Memory

Sync
Memory

0x00(0x00)

...
0x01(0x04)

Sync
Memory

0x00(0x02)

...
0x01(0x06)

Sync
Memory

0x00(0x01)

...
0x01(0x05)

Sync
Memory

0x00(0x03)

...
0x01(0x07)

1 8

32

30

4

Address

Data
In

Byte
Enable

Write
Enable

32Data
Out

32

8 8 8 8

Clk

1 8 30 1 8 30 1 8 30

Figure 14: Architecture of Data Memory

vectors are used. The data in and out ports for example consist of 32 lines.

Inside the data memory the vectors are split into 8 bit vectors and are con-

nected to the four memories. Also the byte enable vector is split. The same

address is applied to all memories but without the two least significant bits.

Instead the information carried by these bits is used to derive the byte en-

able vector. This vector is generated by the memory access unit which is

described in the next section.

Since most memories, provided by FPGAs, have only one write-enable signal,

four separate memories were used to build the data memory.

Impact of the Customizable Data Path

At an early stage of development two different implementations were used for

5.5 Implementation 53

16-bit and 32-bit data path. For the 16-bit version, only two 8-bit memories

were used in parallel, acting as 16-bit memory. And for the 32-bit version

an implementation similar to the current solution was used. But it turned

out that a uniform interface to the data memory and also to the extension

modules would be the better solution. Hence a separate memory access unit

was implemented which generates the byte enable signals and aligns the data

for memory access. In this way, the same memory architecture can be used

for both data path configurations.

5.5.9 Memory Access Unit

To enable a configuration independent memory interface a separate memory

access unit was designed. Thereby the width of data path can be changed

without notice by data memory or extension modules.

The main task of this unit is the alignment of bytes and half words. The

required shift is determined by the two least significant bits. Depending on

these two bits, there are four possibilities to align a byte:

• Both bits are zero. No alignment is necessary and the byte enable bit

for the lowest byte will be set.

• If only the least significant bit is set, the byte has to be shifted left by

8 bits. Now the second byte enable bit will be set.

• If only the higher bit is set, the byte has to be shifted left by 16 bits.

Only the third byte enable bit will be set.

• If both bits are set, the byte has to be shifted left by 3 bytes. Only the

highest byte enable bit will be set.

The alignment of 16 bit values is quite simple. Since only memory aligned

access is allowed the least significant bit has to be zero. If the other bit is

set, the half word has to be shifted left by two bytes. The two corresponding

byte enable bits have to be set. For 32 bit values no alignment is required,

all byte enable bits have to be set.

5.5 Implementation 54

For correct read access the alignment of 8 and 16 bit values has to be done

in reverse.

Beside the alignment for read and write the memory access unit is responsible

for sign extension.

Without the memory access unit the data memory and every extension mod-

ule would be responsible for alignment and sign extension. This would result

in higher resource usage and more complex extension modules.

Impact of the Customizable Data Path

The impact is small: 32-bit access is not supported by the 16 bit data path.

5.5.10 Exceptions Vector Table

As before exceptions can be classified into two groups:

1. Interrupts, which are triggered by hardware.

2. Traps, which are triggered by software.

For both types 16 different sources are possible. Therefore 32 exceptions are

supported. The addresses of the service routines are stored in the exception

vector table. The instruction set provides special instructions to build and

manipulate the exception vector table. The table contains 32 entries. The

trap vectors are stored at the bottom half and interrupt vectors at the upper

half of the exception vector table, which is depicted in Figure 15.

Trap
Vectors

Interrupt
Vectors

31

16

0

15

Figure 15: Exception Vector Table of SPEAR2

5.5 Implementation 55

The trap instruction can be used to trigger the exceptions from 0 to 15. The

exception vector at position 16 is used for interrupt line 0, which has the

lowest priority. The higher the interrupt number the higher the priority and

the position in the exception vector table.

The interrupt controller is located at the system control module and com-

prises an interrupt protocol and an interrupt mask register. Every interrupt

will be noted and saved to the protocol register. But the interrupt service

routine will only be executed if the corresponding bit in the mask register

is cleared. If an interrupt occurs and the mask bit is set, the interrupt can

be cleared by software or will be trigger as soon as the mask bit is cleared.

What changed with SPEAR2 is how an interrupt can be cleared. Before it

was necessary to load the interrupt protocol register, change the intended

bits and write back the result. Thereby it was possible to miss interrupts

if the interrupt had occurred between the read out and write back of the

protocol register. Now the read out is not needed anymore. If now a value is

written to the protocol register, the final value is build by an exclusive OR

operation between the write value and the content of the protocol register.

In othe! r! words, all bits which are set will be inverted. Since the bits are

inverted, it is also possible to trigger hardware interrupts by software.

The new way to change the protocol register is faster and more importantly,

no interrupts can be missed.

Impact of the Customizable Data Path

Only the exception vector table is affected by the configuration of the cus-

tomizable data path.

5.5.11 Optimization

This section gives some information about the development and describes

some design issues of SPEAR2.

The order in which the components of the processor were implemented is

similar to the outline of this chapter. The program counter was implemented

first. Afterwards the processor was completed incrementally component after

component. For the first development step, only the functionality of the

5.5 Implementation 56

processor was taken into account. The first implementation already included

the customizable data path. After a first version with basic functionality

was implemented, for further development two requirements were taken into

account:

• Economical resource usage

• Improve achievable clock frequency

Often the resource usage and achievable clock frequency depend on each

other. The lower the resource usage the faster the achievable clock frequency.

Large multiplexer structures for example have long delays. Trying to reduce

the size of multiplexer structures has positive impact to both aspects and

was kept in mind during development.

In general two basic approaches were used to enable a cost effective and fast

design:

• Use multiplexer only where needed.

• Calculate the control signals for multiplexer one cycle before the control

signals are used.

The first method seems quite simple. The whole trick is to switch only

the required signals. As mentioned in Section 5.3.2, only the crucial signals

are changed when an instruction has to be flushed due an ongoing jump or

exception. For example, to set the register destination address to a defined

value would have no impact but requires more resources. This technique was

mostly used to improve the efficiency inside the second pipeline stage.

The second method, already mentioned in Section 5.5.5, increases the re-

source usage minimal but can improve achievable clock frequency notable.

In particular the delay of the forwarding unit was improved by this technique.

The method can only be applied if it is possible to split the multiplexer struc-

ture and calculate the control logic in advance. Thereby the multiplexer can

be switched without the time delay for calculating control signals.

5.6 Extension Modules 57

5.6 Extension Modules

Since the requirements of every project are slightly different, extension mod-

ules are used to customize the processor. A generic interface between pro-

cessor core and extension modules has been designed. The generic interface

interface is build by a physical and a logical interface.

The physical interfaces of the extension modules are mapped to a unique

address in the data memory address space. Hence only conventional load and

store instructions are required to access an extension module. The interface

provides 32 registers a 8 bit. The byte oriented description enables to use the

same interface, however the data path is configured. It is possible to access

single bytes or any other supported data type.

The logical interface describes the usage of the interface. The first two bytes

are used to indicate the module status and are read only. The next two bytes

are used for configuration. The first status and the first configuration byte

are predefined. The other bytes can be used for module specific issues.

Generic Part of Interface

The generic part of the extension module interface comprises two registers.

The generic status register and the generic configuration register. Both regis-

ters have a width of one byte. First the generic status byte will be explained,

which is depicted in Figure 16.

ERRLOOR RDY INTBUSYFSS- -

Bit 2 Bit 1 Bit 0Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 16: Generic Status Byte

The generic status register holds the following status bits:

• INT (Interrupt): This bit is set automatically if the module triggers

an interrupt. This feature can be used to determine which module

triggered an interrupt, if several extension modules share the same

interrupt line.

5.6 Extension Modules 58

• RDY (Ready): This bit is used to indicate the ready-to-operate state

of the extension module.

• ERR (Error): This bit is automatically set if an error occurs.

• BUSY: This bit indicates if the extension module is not ready for new

tasks.

• FSS (Fail Safe State): FSS is used to indicate if the extension module

is in a fail safe state. The extension module can switch to this state

automatically or manually by software.

• LOOR (Loop Ready): In interaction with LOOW, this bit can be used

to determine the presence of an extension module. The bit written to

LOOW appears at LOOR after one cycle.

The generic configuration byte is depicted in Figure 17.

SRESLOOW ID INTAOUTDEFSS- -

Bit 2 Bit 1 Bit 0Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 17: Generic Config Byte

The generic configuration register holds the following configuration bits:

• INTA (Interrupt Acknowledge): Can be used to acknowledge the in-

terrupt of an extension module and clears the INT flag in the generic

status register.

• ID (Identify): If this bit is set, byte 4 to 7 can be used to read the

manufacturer and version number of the extension module.

• SRES (Soft Reset): This bit can be used to reset an extension module.

The extension module should make no difference between a soft and a

hardware reset.

5.6 Extension Modules 59

• OUTD (Output Disable): If this bit is set, the extension module shall

not drive the interfaces to its environment. Thereby it should be pos-

sible to disconnect an extension module from its environment.

• EFSS (Enter Fail Safe State): It can be useful for some extension mod-

ules to define a fail safe state. For example, if the extension module

is responsible for controlling a motor a fail safe state which stop the

motor could be useful. By setting this bit, the extension module enters

the fail safe state.

• LOOW (Loop Write): In interaction with LOOR it can be used to

determine the presence of an extension module. The bit written to

LOOW appears at LOOR after one cycle.

Classification of Extension Modules

As mentioned in Section 3.5, extension modules are classified by their func-

tionality:

• System-Extension Module, which have an extended interface to the

processor and improve the functionality of the processor core.

• Function-Extension Module, which can be used to implement functions

in hardware which otherwise have to be emulated by software.

• IO-Extension Module, which are used to implement interfaces to the

processor like RS232 or PS/2.

The next paragraphs will describe some important extension modules.

5.6.1 System Control Module

Although the system control module acts as an extension module, it can

not be omitted. Since it contains the processor status register, the inter-

rupt handler, and four registers used as frame pointer register, this extension

module is an integral part of the processor. Moving all these registers into

5.6 Extension Modules 60

an extension module, which in turn is memory mapped, allows simple ma-

nipulation by using conventional load and store instructions. The interface

of the system control module is depicted in Figure 18.

Config StatusStatusConfig

Generic Part

Customized Part

+ 0x0000

Address
Offset

+ 0x0004

+ 0x0008

+ 0x000C

+ 0x0010

+ 0x0014

+ 0x0018

+ 0x001C

Interrupt Mask Register Interrupt Protocol Register

Unused

+ 0x03 + 0x02 + 0x01 + 0x00

Frame Pointer W / Unused

Frame Pointer X

Frame Pointer Y

Frame Pointer Z

Unused

Unused Unused

Unused Unused

Unused Unused

Frame Pointer W

Frame Pointer X / Unused

Frame Pointer Y / Unused

Frame Pointer Z / Unused

Figure 18: Interface of the System Control Module

Processor Status

The customized status byte holds the processor status flags which are manip-

ulated by the processor. In the case of an exception, the processor status byte

is copied to the processor configuration register. The processor status regis-

ter is automatically restored by returning from exception. The customized

status and configuration byte are nearly identical, but only the configuration

byte can be overwritten manually. Thus the only way to manipulate the pro-

cessor status register is to manipulate the processors configuration register

and using the return from exception instruction to write to the processor

status register.

Beside processor status flags, the processor status register holds some addi-

tional flags. One bit of the processor status register and one of the processor

configuration register are not used.

The processor status register is depicted in Figure 19.

The processor status register holds the following flags:

5.6 Extension Modules 61

NEGGIE CARRY OVERZEROCOND0 -

Bit 2 Bit 1 Bit 0Bit 3Bit 4Bit 5Bit 6Bit 7

Status Byte

NEGGIE CARRY OVERZEROCONDSLEEP -

Bit 2 Bit 1 Bit 0Bit 3Bit 4Bit 5Bit 6Bit 7

Configuration Byte

Figure 19: Customized Status and Configuration Byte of the System Control
Module

• OVER: The first bit is used as overflow flag. It indicates whether the

result of an operation has overflowed according to the two’s complement

representation.

• CARRY: Bit 1 is used as carry flag. It is used to indicate when a

arithmetic carry has been generated out of the most significant ALU

bit position.

• NEG: The negative flag indicates if the result of the ALU operation is

negative.

• ZERO: The zero flag indicates whether the result of a mathematical or

logical operation was zero.

• COND: The condition flag is used to determine if a conditional in-

struction has to be executed or not. The conditional flag can only

manipulated by special instructions.

• SLEEP: The sleep flag is used to activate the sleep mode of the pro-

cessor, which is described at the end of this section. This bit can only

be set in the processor configuration register and is alway zero in the

processor status register.

• GIE: The global interrupt enable flag is used for interrupt controlling.

Interrupts can be disabled when clearing this flag.

5.6 Extension Modules 62

Interrupt Configuration Registers

Two registers of the system control module are used by the interrupt handler:

• Interrupt Protocol Register: This register is used to protocol incoming

interrupts.

• Interrupt Mask Register: This register is used to mask the interrupt

sources individually.

The Interrupt handler is described in more detail in Section 5.5.10.

Frame Pointer Registers

Four registers of the system control interface are used as frame pointer. Thus

the amount of addressable data memory depends on the data path config-

uration, the width of the frame pointer registers can be 16 or 32 bit. The

frame pointer concept is described in Section 5.5.7.

Sleep Mode

A new feature introduced with SPEAR2 is the sleep mode. As known by

other processors it can be used to reduce power consumption, when the

processor is idle. Since the processor will only wake up from sleep mode

when an interrupt service routine has to be executed, the sleep mode can

only be used by interrupt driven programs.

To put the processor to sleep mode, the sleep bit has to be set. After the

bit is set, all flip-flops of the processor - except the flip-flops of the interrupt

handler - are stopped.

5.6.2 Programmer Module

The programmer module provides a write access to the instruction memory.

In conjunction with an extension module with a communication interface,

this module can be used for downloading new program code into the instruc-

tion memory. Dividing this task into a programming and a communication

part enables easy changing of the download interface since only the commu-

nication module has to be replaced. The interface of the programmer module

is depicted in Figure 18.

5.6 Extension Modules 63

Config StatusStatusConfig

Generic Part

Customized Part

+ 0x0000

Address
Offset

+ 0x0004

+ 0x0008

+ 0x000C

+ 0x0010

+ 0x0014

+ 0x0018

+ 0x001C

Address / Unused Address

Unused

+ 0x03 + 0x02 + 0x01 + 0x00

Unused

Unused Unused

Unused Unused

Unused Unused

Instruction

Unused Unused Unused Unused

Unused Unused Unused Unused

Unused Unused Unused Unused

Unused Unused

Figure 20: Interface of the Programmer Module

Only two data registers are used:

• Address Register: This register holds the destination address for the

instruction. The width of this register can be 16 or 32 bit, depending

on the configuration of the data path.

• Instruction Register: This register holds the instruction which has to

be saved to the instruction memory.

The customized status register is not used. Only the customized configura-

tion register, which is depicted in Figure 21.

-PREXE CLR SRC--- -

Bit 2 Bit 1 Bit 0Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 21: Customized Config Byte of the System Control Module

The customized configuration register holds the following configuration bits:

• SRC: This bit is used for source selection. After reset, this bit is zero

and the boot memory is selected as instruction source. To use the

instruction memory as instruction source, this bit has to be set.

5.7 Differences: 16 vs. 32 bit Version 64

• CLR: This bit can be used to trigger a soft-reset of the processor. In

distinction from a normal reset, the registers of the programmer module

are not affected by an soft-reset.

• PREXE: This bit is used to trigger the write to instruction memory.

After the correct values are loaded to the address and instruction regis-

ter, this bit has to be set. In order to provide a more efficient program

download, the address register is automatically incremented by one,

when the store procedure is finished.

If the program download is completed, the src and crl bit have to be set

at once. Afterwards the program execution starts at address zero, and the

instructions are taken from the instruction memory.

5.7 Differences: 16 vs. 32 bit Version

This paragraph will summarize the implementation differences between the

16-bit and enlarged 32-bit data path. The effects on performance and re-

source usage will be discussed in Chapter 7.

5.7.1 Interface

The interface to extension modules and memory is not affected by the width

of the data path. This is possible, since always the 32-bit interface is used.

Thereby a consistent interface is provided and the overhead for the 16-bit

configuration is negligible. The interface is described in detail in Paragraph

6.2.

5.7.2 Instruction Set Architecture

The width of data path has small impact to the instruction set. Practically

the same instruction set is used for both configurations.

The 32-bit version provides 3 additional instructions compared to the 16-bit

version. Following instructions are only available if the extended data path

is used:

5.7 Differences: 16 vs. 32 bit Version 65

• Load word - Loads 32 bit from memory

• Store word - Stores 32 bit to memory

• Load half word unsigned - Loads 16 bit from memory without sign

extension

A processor with 16 bit data path triggers an exception, if such an instruc-

tion has to be executed.

Additional some instructions are different regarding width of the second

operand. The affected instructions are listed below:

• Shift left - Shifts the content of a register

• Shift right - Shifts the content of a register

• Shift right arithmetic - Shifts the content of a register

• Bit clear - Clears a specific bit

• Bit set - Sets a specific bit

• Bit test - Tests if a specific bit is set

The second operand is used to specify the number of bits to shift or to specify

a certain bit in a register. Therefore only 4 bits are necessary if the registers

width is 16 bit and 5 bits are required for 32-bit registers.

Detailed information about individual instructions is given in Appendix B.

5.7.3 Addressable Memory

The width of data path affects also the amount of addressable memory, since

the width of all address registers is the same as the width of the data path.

Hence, choice of data path configuration is not only a question of performance

and resource usage, but also how much memory is required. If more than

128KB program memory and 64KB data memory is required, the extended

data path has to be used. With extended data path, SPEAR2 can address

8GB program and 4GB data memory.

66

6 Configuration and Interface Description

This chapter describes the configuration options and interfaces of SPEAR2.

6.1 Configuration

This section provides information about the configuration options of SPEAR2.

The configuration is stored in a vhdl file. Five different options are supported:

• TECH C - Specifies the target technology. If no certain technology is

selected, only device independent generic components are used. Using

of device specific components enables higher optimization.

• WORD CFG C - Specifies the width of data path. If 1, the smaller data

path configuration is selected. If 2, the data path will be extended to

32 bit.

• INSTR RAM CFG C - Specifies the width of instruction memory. More

precisely, specifies the number of address lines used for instruction

memory. Hence if INSTR RAM CFG C is set to 5, 32 byte of in-

struction memory are addressable, if 6, 64 byte and so on. Without

extended data path, the maximum number of address lines is 16.

• DATA RAM CFG C - Specifies the size of data memory. More pre-

cisely, specifies the number of address lines used for data memory.

Hence if 5, 32 byte of data memory are addressable. If 6, 64 byte

and so on. Without extended data path, the maximum number of

address lines is 16.

• USE IRAM CFG C - The basic configuration of SPEAR2 includes only

the bootrom as instruction memory. By enabling USE IRAM CFG C

the instruction RAM is included as additional instruction memory.

This option also determines whether the programmer module is in-

cluded. If no instruction RAM is available, the programmer module is

not needed.

6.2 Interface 67

Assignment Type Allowed Values

TECH_C String NO_TARGET

XILINX

ALTERA

WORD_CFG_C Integer 1 → 16-bit data path
2 → 32-bit data path

INSTR_RAM_CFG_C Integer 5 to 16 (independent of data path width)
17 to 32 (only with extended data path)

DATA_RAM_CFG_C Integer 5 to 16 (independent of data path width)
17 to 32 (only with extended data path)

USE_IRAM_CFG_C Boolean TRUE → Instruction RAM available
FALSE → No Instruction RAM available

Table 3: Configuration Options of SPEAR2

Table 3 shows the available options and their allowed values.

The options of the AMBA module [8] will also be configured through this

configuration file after the AMBA module has been integrated into SPEAR2.

6.2 Interface

The interface is divided into general signals, an input record, and an output

record. Records contain several signals. The interface of SPEAR2 is depicted

in Figure 22.

Global Signals

Three signals are common signals which are listed in Table 4.

Signal I/O Description
clk I Clock
extrst I External reset
sysrst O Internal reset

Table 4: General Interface of SPEAR2

clk

All operations of SPEAR2 are synchronous to this clock.

6.2 Interface 68

SPEAR2
Interface

clk
extrst

sysrst

interruptin [12:0]
data [31:0]

data [31:0]
addr [14:0]

byte_en [3:0]

write_en
cpu_halt

hold

extsel [X:0]

Input Output

Figure 22: Interface of SPEAR2

extrst

The external reset puts SPEAR2 into initial state. The reset is syn-

chronous and low-active.

sysrst

The internal reset indicates a reset of SPEAR2, which can be triggered

by an external reset or by soft reset triggered by software. The signal

is low-active.

Input Signals

The items of the input record are listed in Table 5.

Input Signal Description
hold Extend extension module access
interruptin [12:0] Interrupt source lines
data [31:0] Input from extension modules

Table 5: Input Interface of SPEAR2

hold

Is used to extend the bus cycle. If the signal is sampled high, all outputs

of SPEAR stay unchanged. Hold is sampled on the rising edge of the

clock.

6.2 Interface 69

interruptin

SPEAR2 distinguish 16 different interrupts. Thirteen interrupt lines

are available, the other interrupts are used for internal interrupt sources.

Interrupts are high-active.

data

The read data bus carries data read from extension modules. Due to

the fact, that all extension module data outputs are set to zero when

not selected, the data bus of different extension modules is merged by

a simple OR-operation. Thus, SPEAR2 needs only one data input bus

and no additional control logic is required.

Output Signals

An overview of the output record is given in Table 6.

Output Signal Description
data [31:0] Output to extension modules
addr [14:0] Address for extension modules
byte_en [3:0] Byte enable signals
extsel [X:0] Extension module select signal
write_en Write enable signal
cpu_halt CPU state

Table 6: Output Interface of SPEAR2

data

The write data bus is an output of the core and contains the data that

is written to extension modules.

addr

The address bus indicates the extension module address that is being

accessed by the current transfer.

byte en

The byte enable signals indicate which byte lanes of the data bus con-

tain valid data.

6.2 Interface 70

extsel

The select signal indicates if an access to extension modules is in

progress. This signal is generated for every extension module and can

only be active for one extension module at the same time. The number

of different extsel signals is equal to the number of attached extension

modules.

write en

The write enable signal indicates if a write or read transfer is in progress.

If the extension module is selected and write enable is low: a read is in

progress. If the module is selected and write enable is high: a write is

in progress.

cpu halt

The cpu-halt signal indicates if the core is in sleep state.

All extension modules get the same input signals, except the extsel signal is

different.

71

7 Results

This chapter summarizes the results of this master thesis, and compares

resource usage and performance of both data path configurations.

7.1 Processor Characteristics

Among the most interesting features of a soft core processor are resource

usage and maximum clock frequency. Both are analysed in this section.

The toolchain of Xilinx was used for analysis, namely the Xilinx Synthe-

sis Technology (XST) [14] in version 9.1. As FPGA a Spartan-3 was used,

which is the current low-cost FPGA family of Xilinx. Before the results of

synthesis will be presented, a short introduction on the internals of Spartan-3

devices is given.

Spartan-3 Devices

The resource usage of Spartan-3 devices is best measured in slices and block

RAMs.

A slice is the basic element of a Xilinx device. One slice has the following

elements:

• 2 Look-Up Tables (LUT) - main resource for implementing logic func-

tions. Every LUT has 4 inputs.

• 2 Flip-Flops

• Some multiplexers to effectively combine LUTs in order to permit more

complex logic operations.

• Some carry logic and various dedicated arithmetic logic gates, to sup-

port fast and efficient implementations of math operations.

All Spartan-3 devices support block RAM, which are synchronous 18Kbit

memory blocks. The aspect ratio – i.e. width vs. depth – of each block

7.1 Processor Characteristics 72

RAM is configurable. Furthermore, multiple blocks can be cascaded to cre-

ate still wider and/or deeper memories.

The Spartan-3 device, which we used for analysis was the xc3s2000-fg656-5.

This device has 20.480 slices and 40 block RAMs.

7.1.1 Resource Usage

We tested SPEAR2 with different options. XST provides the possibility to

optimize for speed or resource usage. The results are shown in Table 7.

Optimization
Speed Area

1132 Slices 837 Slices
16-bit data path 9 RAMB16s 11 RAMB16s

60 MHz 54 MHz
1896 Slices 1455 Slices

32-bit data path 9 RAMB16s 11 RAMB16s
58 MHz 43 MHz

Table 7: Synthesis Results of SPEAR2

Resource usage and maximum clock frequency depend strongly on the chosen

optimization.

If optimized for speed, only 9 block RAMs are used. Otherwise, two more

are needed to implement the design. The reason is how the register file is

implemented. There are two possible solutions:

1. Using distributed memory

2. Using block RAM

If the register file is implemented with block RAMs, two of them are needed,

because the register file requires three ports and block RAMs have only

two ports. Therefore two mirrored dual-port memories have to be used to

implement one three-port memory.

7.2 Performance 73

16-bit vs. 32-bit data path

An interesting detail of Table 7 is, how much resource usage increases for the

extended data path. Because this value gives information about additional

costs for the extended data path.

Independent of optimization, the resource usage increases by about 70 per-

cent. There are several reasons for the increased resource usage:

• Most parts of the processor are affected by the data path configura-

tion, and all affected data and address registers have doubled resource

consumption.

• The barrel shifter for the 32-bit data path requires 160 multiplexer,

and for the 16-bit data path only 64 multiplexer are required.

Basically the decoder and control logic have nearly constant resource con-

sumption.

7.2 Performance

In this section the performance benefits of the extended data path are anal-

ysed. Therewith and with the information about increased resource usage, a

cost-benefit analysis can be done.

To analyse the performance, a face recognition program were used. The pro-

gram and test conditions are listed in Appendix A.

Table 8 compares execution time of different functions and provides informa-

tion about performance improvements, possible with an extended data path.

The execution time is measured in clock cycles.

The results provide interesting information: The execution time of functions

depend strongly on the used data types. The functions fix fft() and square-

Root() use mostly 32-bit data types and the functions TransposeImage() and

findMax() use mostly 16-bit data types. If most used variables are of 32-bit

data types, the use of extended data path is recommendable. On the other

side, if most used variables are of 16-bit data types, the execution takes longer

if the data path is configured for 32 bit.

7.2 Performance 74

SPEAR2 SPEAR2
16-bit data path 32-bit data-path

fix fft() 97,329 cycles 27,085 cycles
complexPointMatrixMult() 7,472 cycles 5,736 cycles

squareRoot() 5,218 cycles 3,119 cycles
TransposeImage() 4,220 cycles 7,064 cycles

findMax() 1,961 cycles 2,793 cycles

Table 8: Execution Time of Different Functions

16-bit vs. 32-bit data path

The used data types have a massive impact to the execution time. If possible,

the coder of a program should use the width of data path as size for the used

variables, because processing 32-bit variables with 16-bit registers cause a

big overhead and processing 16-bit variables with 32-bit registers requires to

mask the upper 16 bit before the variable is used for arithmetic or compare

operations.

75

8 Conclusion

In the course of this master thesis a processor with a configurable data path

width - 16 bit or 32 bit - was proposed.

The advantages of such a processor are that it has one instruction set, one

toolchain, and the same extension module interface. Regardless, the proces-

sors can be configured for different performance.

The processor was implemented successfully, which was the main objective

of this master thesis. The data path can be extended to 32 bit in return for

additional resource usage of about 70 percent. Developed extension modules

work with both data path configurations without adaptation.

Tests with SPEAR2 showed that one condition has to be fulfilled to gain

optimal performance with different data path widths:

• If possible, the data type of variables should be 16 bit if the 16-bit

data path is used and 32 bit for the 32-bit data path. Otherwise some

overhead is produced by the compiler to handle data type sizes different

to the register widths.

Additional to the concept of configurable data path, other useful features

were successfully implemented. SPEAR2 is prepared for future FPGA fami-

lies and provides improved functionality compared to SPEAR.

76

9 Outlook

Since SPEAR2 is already used and tested in some projects, the feedback

gotten gives information about improvable features.

One idea is to remove the exception vector table and to use predefined ex-

ception vectors. This would reduce resource usage and result in a simpler

architecture. On the other hand, the latency of interrupt handling would be

increased by a few clock cycles, applying this optimization.

It would also be possible to modify the forwarding unit of the pipeline. Us-

ing stalls instead of forwarding in some cases, would allow higher frequencies

by reducing resource usage. On the other hand, some instructions would be

stalled and the execution time prediction would be more difficult.

An idea with much more potential for improvements would be a fundamental

change of the ISA.

Another Approach - 32-bit ISA for SPEAR2

The main disadvantage of SPEAR2 compared to SPEAR is the reduced num-

ber of general purpose registers. It is hard to handle thirty-two 32-bit regis-

ters and supporting conditional instructions with a 16-bit ISA. So we decided

to reduce the number of general purpose registers.

Compared to other architectures, the main drawback of the SPEAR2 archi-

tecture is the limited 16-bit ISA. Even without conditional instructions, 16

bit for instruction coding is limited.

An idea which would noticeably improve performance would be the use of

32-bit instructions. The advantages of 32-bit ISA would be as follows:

• The number of general purpose registers could be scaled up to 32 reg-

isters.

• One instruction could determine two source and one separate destina-

tion register.

77

• Reduction of the number of instructions would be possible; if one regis-

ter was defined to always be zero, some instructions could be removed

and emulated by other instructions. The load-immediate instruction,

for example, could be emulated by an OR-immediate instruction, re-

sulting in a much simpler architecture.

• The immediate values could be 16-bit, enough for most operations.

• The decoder could be designed more primitively - only two or three dif-

ferent instruction formats would be required, resulting in lower resource

usage and faster decoding.

The only drawback would be that the required amount of program memory

would increase. But not by a factor of two, rather less. Since more registers

and larger immediate values would be available, fewer instructions would be

required to solve the same problem. Another reason to weaken this draw-

back are the characteristics of program memory. Program memory is fast

and cheap.

A soft core processor like SPEAR2 with customizable data path and 32-

bit ISA would be an interesting and probably highly efficient architecture.

However, this optimization step would also involve a complete revision of the

toolchain, especially of the C-compiler, and is therefore out of the scope of

this master thesis.

78

A Code Listing

This appendix lists all code examples.

A.1 Face Recognition Program

As example, the face recognition program was used. This program was devel-
oped by Kristian Ambrosch and Peter Tummeltshammer, and uses a fixed-
point fast fourier transform developed by Tom Roberts, Malcolm Slaney, and
Dimitrios P. Bouras.
The code of the face recognition program was separated for a better analy-
sis. This way more detailed information is provided about the performance
differences between both data path configurations.
For compilation the spear16-gcc and spear32-gcc were used with optimization
level 2.

A.1.1 C Code

First the C code for the fixed-point fast fourier transform function is pre-
sented. This function was used by the face recognition program. To analyse
the execution time, parameter m was set to 5 and parameter inverse was
set to zero. The other function parameters have no impact to the execution
time.

1 /∗ f i x f f t . c − Fixed−po i n t in−p l a c e Fast Four i e r Transform ∗/
2 /∗
3 A l l da ta are f i x e d−po i n t s h o r t i n t e g e r s , in which −32768
4 t o +32768 r e p r e s e n t −1.0 to +1.0 r e s p e c t i v e l y . I n t e g e r
5 a r i t hme t i c i s used f o r speed , i n s t e a d o f t h e more na t u r a l
6 f l o a t i n g −po i n t .
7
8 For th e forward FFT (t ime −> f r e q) , f i x e d s c a l i n g i s
9 per formed to p r e v en t a r i t hme t i c ove r f l ow , and to map a 0dB

10 s i n e / co s i n e wave (i . e . amp l i t ude = 32767) to two −6dB f r e q
11 c o e f f i c i e n t s . The r e t u rn va l u e i s a lways 0 .
12
13 For th e i n v e r s e FFT (f r e q −> t ime) , f i x e d s c a l i n g cannot be
14 done , as two 0dB c o e f f i c i e n t s would sum to a peak amp l i t ude
15 o f 64K, o v e r f l ow i n g t h e 32 k range o f t h e f i x e d−po i n t i n t e g e r s .
16 Thus , t h e f i x f f t () r o u t i n e per forms v a r i a b l e s c a l i n g , and
17 r e t u rn s a va l u e which i s t h e number o f b i t s LEFT by which
18 t h e ou tpu t must be s h i f t e d to g e t t h e a c t u a l amp l i t ude
19 (i . e . i f f i x f f t () r e t u rn s 3 , each va l u e o f f r [] and f i []
20 must be mu l t i p l i e d by 8 (2∗∗3) f o r proper s c a l i n g .
21 Clear l y , t h i s cannot be done w i t h i n f i x e d−po i n t s h o r t
22 i n t e g e r s . In p r a c t i c e , i f t h e r e s u l t i s t o be used as a
23 f i l t e r , t h e s c a l e s h i f t can u s u a l l y be ignored , as t h e
24 r e s u l t w i l l be app rox ima t e l y c o r r e c t l y norma l i z ed as i s .
25
26 Writ ten by : Tom Rober t s 11/8/89
27 Made p o r t a b l e : Malcolm S laney 12/15/94 ma lco lm@in te rva l . com
28 Enhanced : D im i t r i o s P . Bouras 14 Jun 2006 dbouras@ieee . org
29 Modi f i ed : K r i s t i a n Ambrosch and Peter Tummeltshammer 8/5/07
30 reduced N WAVE from 1024 to 32
31 ∗/
32
33 #include <s t d i n t . h>
34
35 #define N WAVE 32 /∗ f u l l l e n g t h o f Sinewave [] ∗/
36 #define LOG2 N WAVE 5 /∗ l o g 2 (N WAVE) ∗/
37

A.1 Face Recognition Program 79

38
39 /∗
40 Hence for th ” U in t 16 t ” imp l i e s 16− b i t word . I f t h i s i s not
41 t h e case in your a r c h i t e c t u r e , p l e a s e r e p l a c e ” U in t 16 t ”
42 wi th a t ype d e f i n i t i o n which ∗ i s ∗ a 16− b i t word .
43 ∗/
44
45 /∗
46 Since we on ly use 3/4 o f N WAVE, we d e f i n e on l y
47 t h i s many samples , in order to conse rve data space .
48 ∗/
49
50 i n t 1 6 t Sinewave [N WAVE−N WAVE/4] = {
51 0 , 6392 ,12539 ,18204 ,23169 ,27244 ,30272 ,32137 ,32767 ,32137 ,30272 ,27244 ,23169 ,
52 18204 ,12539 ,6392 , 0 , −6392, −12539 ,−18204 ,−23169 ,−27244 ,−30272 ,−32137
53 } ;
54
55 /∗
56 FIX MPY() − f i x e d−Point m u l t i p l i c a t i o n & s c a l i n g .
57 S u b s t i t u t e i n l i n e assemb ly f o r hardware−s p e c i f i c
58 o p t im i z a t i o n s u i t e d to a p a r t i c l u a r DSP pro c e s s o r .
59 Sca l i n g ensure s t h a t r e s u l t remains 16− b i t .
60 ∗/
61 // i n l i n e
62 i n t 1 6 t FIX MPY(i n t 1 6 t a , i n t 1 6 t b)
63 {
64 /∗ s h i f t r i g h t one l e s s b i t (i . e . 15−1) ∗/
65 i n t 3 2 t c = ((i n t 3 2 t) a ∗ (i n t 3 2 t)b) >> 14 ;
66 /∗ l a s t b i t s h i f t e d out = rounding−b i t ∗/
67 b = c & 0x01 ;
68 /∗ l a s t s h i f t + rounding b i t ∗/
69 a = (c >> 1) + b ;
70 return a ;
71 }
72
73 /∗
74 f i x f f t () − perform forward / i n v e r s e f a s t Four i e r t rans form .
75 f r [n] , f i [n] are r e a l and imaginary arrays , bo th INPUT AND
76 RESULT (in−p l a c e FFT) , w i th 0 <= n < 2∗∗m; s e t i n v e r s e to
77 0 f o r forward t rans form (FFT) , or 1 f o r iFFT .
78 ∗/
79 i n t 3 2 t f i x f f t (i n t 1 6 t f r [] , i n t 1 6 t f i [] , i n t 1 6 t m, i n t 1 6 t i nv e r s e)
80 {
81 i n t 3 2 t mr , nn , i , j , l , k , i s t ep , n , s ca l e , s h i f t ;
82 i n t 1 6 t qr , qi , tr , t i , wr , wi ;
83
84 n = 1 << m;
85
86 /∗ max FFT s i z e = N WAVE ∗/
87 i f (n > N WAVE)
88 return −1;
89
90 mr = 0 ;
91 nn = n − 1 ;
92 s c a l e = 0 ;
93
94 /∗ dec imat ion in t ime − re−order data ∗/
95 for (m=1; m<=nn ; ++m) {
96 l = n ;
97 do {
98 l >>= 1;
99 } while (mr+l > nn) ;

100 mr = (mr & (l −1)) + l ;
101
102 i f (mr <= m)
103 continue ;
104 t r = f r [m] ;
105 f r [m] = f r [mr] ;
106 f r [mr] = t r ;
107 t i = f i [m] ;
108 f i [m] = f i [mr] ;
109 f i [mr] = t i ;
110 }
111
112 l = 1 ;
113 k = LOG2 N WAVE−1;
114 while (l < n) {
115 i f (i nv e r s e) {
116 /∗ v a r i a b l e s c a l i n g , depending upon data ∗/
117 s h i f t = 0 ;
118 for (i =0; i<n ; ++i) {
119 j = f r [i] ;
120 i f (j < 0)

A.1 Face Recognition Program 80

121 j = −j ;
122 m = f i [i] ;
123 i f (m < 0)
124 m = −m;
125 i f (j > 16383 | | m > 16383) {
126 s h i f t = 1 ;
127 break ;
128 }
129 }
130 i f (s h i f t)
131 ++s c a l e ;
132 } else {
133 /∗
134 f i x e d s c a l i n g , f o r proper no rma l i z a t i on −−
135 t h e r e w i l l be l o g 2 (n) passes , so t h i s r e s u l t s
136 in an o v e r a l l f a c t o r o f 1/n , d i s t r i b u t e d to
137 maximize a r i t hme t i c accuracy .
138 ∗/
139 s h i f t = 1 ;
140 }
141 /∗
142 i t may not be obv ious , bu t t h e s h i f t w i l l be
143 per formed on each data Point e x a c t l y once ,
144 dur ing t h i s pass .
145 ∗/
146 i s t e p = l << 1 ;
147 for (m=0; m<l ; ++m) {
148 j = m << k ;
149 /∗ 0 <= j < N WAVE/2 ∗/
150 wr = Sinewave [j+N WAVE/4] ;
151 wi = −Sinewave [j] ;
152 i f (i nv e r s e)
153 wi = −wi ;
154 i f (s h i f t) {
155 wr >>= 1;
156 wi >>= 1;
157 }
158 for (i=m; i<n ; i+=i s t e p) {
159 j = i + l ;
160 t r = FIX MPY(wr , f r [j]) − FIX MPY(wi , f i [j]) ;
161 t i = FIX MPY(wr , f i [j]) + FIX MPY(wi , f r [j]) ;
162 qr = f r [i] ;
163 q i = f i [i] ;
164 i f (s h i f t) {
165 qr >>= 1;
166 q i >>= 1;
167 }
168 f r [j] = qr − t r ;
169 f i [j] = q i − t i ;
170 f r [i] = qr + t r ;
171 f i [i] = q i + t i ;
172 }
173 }
174 −−k ;
175 l = i s t e p ;
176 }
177 return s c a l e ;
178 }

A.1 Face Recognition Program 81

Now the C code of the face recognition program is presented. The function
squareRoot() was used to calculate the square root of 50,000. For the function
TransposeImage() and findMax() the values of ImageWidth and ImageHeight
were set to 16 and for the function complexPointMatrixMult() the values of
ImageWidth and ImageHeight were set to 4. The other function parameters
have no impact to the execution time.

1 // ///
2 // T i t l e : Face Recogn i t i on
3 // Pro j e c t :
4 // ///
5 // F i l e : f r c o n s o l e . c
6 // Author : Kr i s t i a n Ambrosch , Pe ter Tummeltshammer
7 // Company : TU Wien
8 // Created : 2007/05/08
9 // Last update : 2007/05/29

10 // Pla t form : SPEAR2
11 // ///
12 // De s c r i p t i o n : This App l i c a t i o n t a k e s as i npu t an image and a f i l t e r and
13 // c a l c u l a t e s t h e Peak to S i d e l o b e Rat io .
14 // For more i n f o see : h t t p :// t i . tuwien . ac . a t / ec s / t e a c h i n g / cou r s e s / hwswcode lu
15 // ///
16 // Copyr i gh t (c) 2007 TU Wien
17 // ///
18
19 // squareRoot : Compute t h e Square Root − math . h does not e x i s t on SPEAR
20 i n t 3 2 t squareRoot (i n t 3 2 t value)
21 {
22 i n t 3 2 t xn , xn old ;
23 i n t 1 6 t counter ;
24
25 xn = value ;
26 xn old = 0 ;
27
28 for (counter = 0 ; (counter < 100) && (xn old != xn) ; counter++)
29 {
30 xn old = xn ;
31 xn = (xn old + (value / xn old)) >> 1 ;
32 }
33
34 return xn ;
35 }
36
37 //TransposeImage : Ca l c u l a t e s t h e t r an spo s ed matr ix o f an image
38 // nece s sa r y f o r r o t a t i n g t h e image dur ing FFT
39 void TransposeImage (i n t 1 6 t ∗ image)
40 {
41 i n t 1 6 t temp [ImageWidth ∗ ImageHeight] ;
42 i n t 1 6 t counter1 , counter2 ;
43
44 // Ca l c u l a t e Transposed Matr ix
45 for (counter1 = 0 ; counter1 < ImageHeight ; counter1 ++)
46 {
47 for (counter2 = 0 ; counter2 < ImageWidth ; counter2++)
48 {
49 temp [counter1 + ImageWidth ∗ counter2] = image [ImageWidth ∗ counter1 + counter2] ;
50 }
51 }
52
53 //Copy Resu l t back to Bu f f e r
54 for (counter1 = 0 ; counter1 < ImageHeight ; counter1 ++)
55 {
56 for (counter2 = 0 ; counter2 < ImageWidth ; counter2++)
57 {
58 image [counter1 + ImageWidth ∗ counter2] = temp [counter1 + ImageWidth ∗ counter2] ;
59 }
60 }
61 }
62
63 // findMax : Returns t h e peak va l u e o f a matr ix and s t o r e s i t s c o o r d i n a t e s in x and y
64 i n t 1 6 t findMax (i n t 1 6 t ∗matrix , i n t 1 6 t ∗x , i n t 1 6 t ∗y)
65 {
66 i n t 1 6 t counter1 , counter2 , max , akt ;
67
68 ∗x = 0 ;
69 ∗y = 0 ;
70 max = matrix [0] ;
71

A.1 Face Recognition Program 82

72 for (counter1 = 0 ; counter1 < ImageHeight ; counter1 ++)
73 {
74 for (counter2 = 0 ; counter2 < ImageWidth ; counter2++)
75 {
76 akt = matrix [ImageWidth ∗ counter1 + counter2] ;
77 i f (akt > max)
78 {
79 ∗x=counter1 ;
80 ∗y=counter2 ;
81 max = akt ;
82 }
83 }
84 }
85 return max ;
86 }
87
88 // complexMult : Performs the m u l t i p l i c a t i o n o f two complex v a l u e s
89 void complexMult (i n t 1 6 t ∗ realX , i n t 1 6 t ∗imagX , i n t 1 6 t ∗ realY , i n t 1 6 t ∗imagY ,
90 i n t 1 6 t s c a l e)
91 {
92 i n t 1 6 t realXtemp = (∗ realX) ;
93
94 ∗ realX = ((((i n t 3 2 t) (∗ realX)) ∗ ((i n t 3 2 t) (∗ realY))) −
95 (((i n t 3 2 t) (∗ imagX)) ∗ ((i n t 3 2 t) (∗ imagY)))) >> s c a l e ;
96 ∗imagX = ((((i n t 3 2 t) realXtemp) ∗ ((i n t 3 2 t) (∗ imagY))) +
97 (((i n t 3 2 t) (∗ imagX)) ∗ ((i n t 3 2 t) (∗ realY)))) >> s c a l e ;
98 }
99

100 //GetMulMaxBits : Eximates t h e maximum p o s s i b l e b i t s ,
101 // t h a t would r e s u l t from a mu l t i p l i c a t i o n o f x and y
102 i n t 1 6 t getMulMaxBits (i n t 1 6 t x , i n t 1 6 t y)
103 {
104 i n t 1 6 t counter ;
105 for (counter = 0 ; (x > 0) && (counter < 16) ; counter ++)
106 {
107 x = x >> 1 ;
108 }
109 x = counter ;
110
111 for (counter = 0 ; (y > 0) && (counter < 16) ; counter ++)
112 {
113 y = y >> 1 ;
114 }
115 y = counter ;
116
117 i f ((x==0) | | (y==0))
118 return 0 ;
119 else i f (x==1)
120 return y ;
121 else i f (y==1)
122 return x ;
123 else
124 return x + y ;
125 }
126
127 // complexPointMatr ixMul t : C a l c u l a t e s t h e p o i n tw i s e Mu l t i p l i c a t i o n o f two mat r i c e s
128 void complexPointMatrixMult (i n t 1 6 t ∗ realX , i n t 1 6 t ∗imagX ,
129 i n t 1 6 t ∗ realY , i n t 1 6 t ∗imagY)
130 {
131 i n t 1 6 t counter1 , counter2 ;
132 i n t 1 6 t s ca l e , maxbits , a k tb i t s ;
133
134 s c a l e = 0 ;
135 maxbits = 0 ;
136
137 // Est imate t h e max . r e s u l t i n g b i t s a f t e r t h e complex m u l t i p l i c a t i o n
138 for (counter1 = 0 ; counter1 < ImageHeight ; counter1 ++)
139 {
140 for (counter2 = 0 ; counter2 < ImageWidth ; counter2++)
141 {
142 // + 1 , because t h e a d d i t i o n a f t e r t h e m u l t i p l i c a t i o n s
143 // can i n c r e s a s e v a l u e on l y by one b i t .
144 ak tb i t s = 1 + getMulMaxBits (realX [counter1 ∗ ImageHeight + counter2] ,
145 realY [counter1 ∗ ImageHeight + counter2]) ;
146 i f (ak tb i t s > maxbits)
147 maxbits = ak tb i t s ;
148
149 ak tb i t s = 1 + getMulMaxBits (imagX [counter1 ∗ ImageHeight + counter2] ,
150 imagY [counter1 ∗ ImageHeight + counter2]) ;
151 i f (ak tb i t s > maxbits)
152 maxbits = ak tb i t s ;
153
154 ak tb i t s = 1 + getMulMaxBits (realX [counter1 ∗ ImageHeight + counter2] ,

A.1 Face Recognition Program 83

155 imagY [counter1 ∗ ImageHeight + counter2]) ;
156 i f (ak tb i t s > maxbits)
157 maxbits = ak tb i t s ;
158
159 ak tb i t s = 1 + getMulMaxBits (imagX [counter1 ∗ ImageHeight + counter2] ,
160 realY [counter1 ∗ ImageHeight + counter2]) ;
161 i f (ak tb i t s > maxbits)
162 maxbits = ak tb i t s ;
163 }
164 }
165
166 //Dynamic S c a l i n g i f more than 16 B i t s e s t ima t e d
167 i f (maxbits > 16)
168 s c a l e = maxbits − 16 ;
169
170
171
172 //Perform the p o i n tw i s e m u l t i p l i c a t i o n
173 for (counter1 = 0 ; counter1 < ImageHeight ; counter1 ++)
174 {
175 for (counter2 = 0 ; counter2 < ImageWidth ; counter2++)
176 {
177 complexMult (realX + counter1 ∗ ImageHeight + counter2 ,
178 imagX + counter1 ∗ ImageHeight + counter2 ,
179 realY + counter1 ∗ ImageHeight + counter2 ,
180 imagY + counter1 ∗ ImageHeight + counter2 ,
181 s c a l e) ;
182 }
183 }
184 }

84

B Instruction Set Reference

This appendix provides a detailed guide to the instruction set architecture
of SPEAR2.

B.1 Overview

This section provides an overview of available instructions.

Instruction Operands Description

1. ldli rX, IMM8 Load low byte immediate
2. ldhi rX, IMM8 Load high byte immediate
3. ldliu rX, IMM8 Load low byte immediate without sign extension
4. ldfpw rX, IMM6 MEM(FPTRW + IMM6) → rX
5. ldfpx rX, IMM6 MEM(FPTRX + IMM6) → rX
6. ldfpy rX, IMM6 MEM(FPTRY + IMM6) → rX
7. ldfpz rX, IMM6 MEM(FPTRZ + IMM6) → rX
8. stfpw rX, IMM6 rX → MEM(FPTRW + IMM6)
9. stfpx rX, IMM6 rX → MEM(FPTRX + IMM6)

10. stfpy rX, IMM6 rX → MEM(FPTRY + IMM6)
11. stfpz rX, IMM6 rX → MEM(FPTRZ + IMM6)
12. ldfpw inc rX, IMM5 MEM(FPTRW + IMM5) → rX, FPTRW ++
13. ldfpx inc rX, IMM5 MEM(FPTRX + IMM5) → rX, FPTRX ++
14. ldfpy inc rX, IMM5 MEM(FPTRY + IMM5) → rX, FPTRY ++
15. ldfpz inc rX, IMM5 MEM(FPTRZ + IMM5) → rX, FPTRZ ++
16. stfpw inc rX, IMM5 rX → MEM(FPTRW + IMM5), FPTRW ++
17. stfpx inc rX, IMM5 rX → MEM(FPTRX + IMM5), FPTRX ++
18. stfpy inc rX, IMM5 rX → MEM(FPTRY + IMM5), FPTRY ++
19. stfpz inc rX, IMM5 rX → MEM(FPTRZ + IMM5), FPTRZ ++
20. ldfpw dec rX, IMM5 MEM(FPTRW + IMM5) → rX, FPTRW −−
21. ldfpx dec rX, IMM5 MEM(FPTRX + IMM5) → rX, FPTRX −−
22. ldfpy dec rX, IMM5 MEM(FPTRY + IMM5) → rX, FPTRY −−
23. ldfpz dec rX, IMM5 MEM(FPTRZ + IMM5) → rX, FPTRZ −−
24. stfpw dec rX, IMM5 rX → MEM(FPTRW + IMM5), FPTRW −−
25. stfpx dec rX, IMM5 rX → MEM(FPTRX + IMM5), FPTRX −−
26. stfpy dec rX, IMM5 rX → MEM(FPTRY + IMM5), FPTRY −−
27. stfpz dec rX, IMM5 rX → MEM(FPTRZ + IMM5), FPTRZ −−
28. cmpi eq rX, IMM7 Compare immediate equal
29. cmp eq rX, rY Compare equal
30. cmpi lt rX, IMM7 Compare immediate less than

B.1 Overview 85

Instruction Operands Description

31. cmp lt rX, rY Compare less than
32. cmpi gt rX, rY Compare immediate greater than
33. cmp gt rX, rY Compare greater than
34. cmpun lt rX, rY Compare unsigned less than
35. cmpun gt rX, rY Compare unsigned greater than
36. btest rX, IMM5 Bit test
37. bset rX, IMM5 Bit set
38. bset ct rX, IMM5 Bit set if cond-flag true
39. bset cf rX, IMM5 Bit set if cond-flag false
40. bclr rX, IMM5 Bit clear
41. bclr ct rX, IMM5 Bit clear if cond-flag true
42. bclr cf rX, IMM5 Bit clear if cond-flag false
43. sl rX, rY Shift left
44. sl ct rX, rY Shift left if cond-flag true
45. sl cf rX, rY Shift left if cond-flag false
46. sli rX, IMM4 Shift left immediate
47. sli ct rX, IMM4 Shift left immediate if cond-flag true
48. sli cf rX, IMM4 Shift left immediate if cond-flag false
49. sr rX, rY Shift right
50. sr ct rX, rY Shift right if cond-flag true
51. sr cf rX, rY Shift right if cond-flag false
52. sri rX, IMM4 Shift right immediate
53. sri ct rX, IMM4 Shift right immediate if cond-flag true
54. sri cf rX, IMM4 Shift right immediate if cond-flag false
55. sra rX, rY Shift right arithmetic
56. sra ct rX, rY Shift right arithmetic if cond-flag true
57. sra cf rX, rY Shift right arithmetic if cond-flag false
58. srai rX, IMM4 Shift right arithmetic immediate
59. srai ct rX, IMM4 Shift right arithmetic immediate if cond-flag true
60. srai cf rX, IMM4 Shift right arithmetic immediate if cond-flag false
61. rrc rX Rotate right with carry
62. rrc ct rX Rotate right with carry if cond-flag true
63. rrc cf rX Rotate right with carry if cond-flag false
64. mov rX, rY rY → rX
65. mov ct rX, rY rY → rX if cond-flag true
66. mov cf rX, rY rY → rX if cond-flag false
67. addi rX, IMM6 rX + IMM6 → rX
68. addi ct rX, IMM6 rX + IMM6 → rX if cond-flag true

B.1 Overview 86

Instruction Operands Description

69. addi cf rX, IMM6 rX + IMM6 → rX if cond-flag false
70. add rX, rY rX + rY → rX
71. add ct rX, rY rX + rY → rX if cond-flag true
72. add cf rX, rY rX + rY → rX if cond-flag false
73. addc rX, rY rX + rY + Carry → rX
74. addc ct rX, rY rX + rY + Carry → rX if cond-flag true
75. addc cf rX, rY rX + rY + Carry → rX if cond-flag false
76. sub rX, rY rX - rY → rX
77. sub ct rX, rY rX - rY → rX if cond-flag true
78. sub cf rX, rY rX - rY → rX if cond-flag false
79. subc rX, rY rX - rY - Carry → rX
80. subc ct rX, rY rX - rY - Carry → rX if cond-flag true
81. subc cf rX, rY rX - rY - Carry → rX if cond-flag false
82. and rX, rY rX and rY → rX
83. and ct rX, rY rX and rY → rX if cond-flag true
84. and cf rX, rY rX and rY → rX if cond-flag false
85. or rX, rY rX or rY → rX
86. or ct rX, rY rX or rY → rX if cond-flag true
87. or cf rX, rY rX or rY → rX if cond-flag false
88. eor rX, rY rX xor rY → rX
89. eor ct rX, rY rX xor rY → rX if cond-flag true
90. eor cf rX, rY rX xor rY → rX if cond-flag false
91. not rX rX → ¬rX
92. not ct rX rX → ¬rX if cond-flag true
93. not cf rX rX → ¬rX if cond-flag false
94. neg rX rX → −rX
95. neg ct rX rX → −rX if cond-flag true
96. neg cf rX rX → −rX if cond-flag false
97. trap IMM4 Call trap
98. trap ct IMM4 Call trap if cond-flag true
99. trap cf IMM4 Call trap if cond-flag false

100. jsr rX Jump to subroutine
101. jsr ct rX Jump to subroutine if cond-flag true
102. jsr cf rX Jump to subroutine if cond-flag false
103. jmpi a10 Jump immediate
104. jmpi ct a10 Jump immediate if cond-flag true
105. jmpi cf a10 Jump immediate if cond-flag false
106. jmp rX Jump

B.1 Overview 87

Instruction Operands Description

107. jmp ct rX Jump if cond-flag true
108. jmp cf rX Jump if cond-flag false
109. ldw rX, rY Load word
110. ldh rX, rY Load half word
111. ldhu rX, rY Load half word unsigned
112. ldb rX, rY Load byte
113. ldbu rX, rY Load byte unsigned
114. stw rX, rY Store word
115. sth rX, rY Store half word
116. stb rX, rY Store byte
117. rts Return from subroutine
118. rte Return from exception
119. ldvec rX, IMM5 Load vector
120. stvec rX, IMM5 Store vector
121. nop No operation
122. illop Illegal opcode

B.2 Description 88

B.2 Description

This section provides a detailed reference of the SPEAR2 instruction set.
The following notations are used to describe instruction format:

• n: An immediate value, embedded in the instruction word

• r: One of the general purpose registers

The following notation conventions are used to describe instruction operation:

Notation Meaning

PC Program Counter
SR Status Register
SSR Saved Status Register
VECTAB() The exception vector table
cond-flag The condition flag of the status register
rX, rY One of the 16 general purpose registers
IMMn An n-bit immediate value, embedded in the instruction word
MSB(X) Most Significant Bit of X
LSB(X) Least Significant Bit of X
X + Y Add
X - Y Subtract
X >> n The value X after being right-shifted n bit positions
X << n The value X after being rleft-shifted n bit positions
X & Y Bitwise logical AND
X | Y Bitwise logical OR
X ^ Y Bitwise logical XOR
~X Bitwise logical NOT
MEM32(X) The word located in data memory at byte-address X
MEM16(X) The halfword located in data memory at bate-address X
MEM8(X) The byte located in data memory at bate-address X
sign_extend(X) Sign-extend X

B.2 Description 89

1. ldli
load low byte immediate

Instruction Format

0 0 0 0 n n n n n n n n r r r r
Opcode IMM8 rX

Syntax ldli rX, IMM8

Semantics 16/32-bit
rX = sign_extend(IMM8)

Description
Loads the IMM8 value into the register rX. IMM8 is written to the
lower end of rX. The remaining bits of rX are set as the MSB of IMM8.

2. ldhi
load high byte immediate

Instruction Format

0 0 0 1 n n n n n n n n r r r r
Opcode IMM8 rX

Syntax ldhi rX, IMM8

Semantics 16/32-bit
rX = rX & 0x0f

rX = rX | (sign_extend(IMM8) << 8)

Description
Loads the IMM8 value into the register rX. IMM8 is written to the
second byte of rX. The low byte of rX will remain unaffected. The
remaining bits are set as the MSB of IMM8.

3. ldliu
load low byte immediate without sign extension

Instruction Format

0 0 1 0 n n n n n n n n r r r r
Opcode IMM8 rX

B.2 Description 90

Syntax ldliu rX, IMM8

Semantics 16/32-bit
rX = rX & ~(0x0f)

rX = rX | IMM8

Description
Loads the IMM8 value into the register rX. IMM8 is written to the
second byte of rX. The low byte of rX will remain unaffected. The
remaining bits are set as the MSB of IMM8.

4. ldfpw
load (half)word with frame pointer W

Instruction Format

0 1 1 0 0 0 n n n n n n r r r r
Opcode IMM6 rX

Syntax ldfpw rX, IMM6

Semantics 16-bit
rX = MEM16(FPTRW + IMM6)

32-bit
rX = MEM32(FPTRW + IMM6)

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register W and the instruction’s
signed 6-bit immediate value. The data is placed in register rX. The
data width used for memory access is determined by the processor
configuration.

5. ldfpx
load (half)word with frame pointer X

Instruction Format

0 1 1 0 0 1 n n n n n n r r r r
Opcode IMM6 rX

Syntax ldfpx rX, IMM6

Semantics 16-bit

B.2 Description 91

rX = MEM16(FPTRX + IMM6)

32-bit
rX = MEM32(FPTRX + IMM6)

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register X and the instruction’s
signed 6-bit immediate value. The data is placed in register rX. The
data width used for memory access is determined by the processor
configuration.

6. ldfpy
load (half)word with frame pointer Y

Instruction Format

0 1 1 0 1 0 n n n n n n r r r r
Opcode IMM6 rX

Syntax ldfpy rX, IMM6

Semantics 16-bit
rX = MEM16(FPTRY + IMM6)

32-bit
rX = MEM32(FPTRY + IMM6)

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register Y and the instruction’s
signed 6-bit immediate value. The data is placed in register rX. The
data width used for memory access is determined by the processor
configuration.

7. ldfpz
load (half)word with frame pointer Z

Instruction Format

0 1 1 0 1 1 n n n n n n r r r r
Opcode IMM6 rX

B.2 Description 92

Syntax ldfpz rX, IMM6

Semantics 16-bit
rX = MEM16(FPTRZ + IMM6)

32-bit
rX = MEM32(FPTRZ + IMM6)

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register Z and the instruction’s
signed 6-bit immediate value. The data is placed in register rX. The
data width used for memory access is determined by the processor
configuration.

8. stfpw
store (half)word with frame pointer W

Instruction Format

0 1 1 1 0 0 n n n n n n r r r r
Opcode IMM6 rX

Syntax stfpw rX, IMM6

Semantics 16-bit
MEM16(FPTRW + IMM6) = rX

32-bit
MEM32(FPTRW + IMM6) = rX

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register W and the instruction’s signed
6-bit immediate value.

9. stfpx
store (half)word with frame pointer X

Instruction Format

0 1 1 1 0 1 n n n n n n r r r r
Opcode IMM6 rX

B.2 Description 93

Syntax stfpx rX, IMM6

Semantics 16-bit
MEM16(FPTRX + IMM6) = rX

32-bit
MEM32(FPTRX + IMM6) = rX

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register X and the instruction’s signed
6-bit immediate value.

10. stfpy
store (half)word with frame pointer Y

Instruction Format

0 1 1 1 1 0 n n n n n n r r r r
Opcode IMM6 rX

Syntax stfpy rX, IMM6

Semantics 16-bit
MEM16(FPTRY + IMM6) = rX

32-bit
MEM32(FPTRY + IMM6) = rX

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register Y and the instruction’s signed
6-bit immediate value.

11. stfpz
store (half)word with frame pointer Z

Instruction Format

0 1 1 1 1 1 n n n n n n r r r r
Opcode IMM6 rX

Syntax stfpz rX, IMM6

Semantics 16-bit
MEM16(FPTRZ + IMM6) = rX

B.2 Description 94

32-bit
MEM32(FPTRZ + IMM6) = rX

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register Z and the instruction’s signed
6-bit immediate value.

12. ldfpw inc
load (half)word with frame pointer W and increment W

Instruction Format

0 1 0 0 0 0 0 n n n n n r r r r
Opcode IMM5 rX

Syntax ldfpw_inc rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRW + IMM5)

FPTRW = FPTRW + 2

32-bit
rX = MEM32(FPTRW + IMM5)

FPTRW = FPTRW + 4

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register W and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register W is incremented by 2 or 4. The
value for incrementing the frame pointer register and data width used
for memory access is determined by the processor configuration.

13. ldfpx inc
load (half)word with frame pointer X and increment X

Instruction Format

0 1 0 0 0 1 0 n n n n n r r r r
Opcode IMM5 rX

B.2 Description 95

Syntax ldfpx_inc rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRX + IMM5)

FPTRX = FPTRX + 2

32-bit
rX = MEM32(FPTRX + IMM5)

FPTRX = FPTRX + 4

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register X and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register X is incremented by 2 or 4. The
value for incrementing the frame pointer register and data width used
for memory access is determined by the processor configuration.

14. ldfpy inc
load (half)word with frame pointer Y and increment Y

Instruction Format

0 1 0 0 1 0 0 n n n n n r r r r
Opcode IMM5 rX

Syntax ldfpy_inc rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRY + IMM5)

FPTRY = FPTRY + 2

32-bit
rX = MEM32(FPTRY + IMM5)

FPTRY = FPTRY + 4

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register Y and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register Y is incremented by 2 or 4. The
value for incrementing the frame pointer register and data width used
for memory access is determined by the processor configuration.

15. ldfpz inc
load (half)word with frame pointer Z and increment Z

B.2 Description 96

Instruction Format

0 1 0 0 1 1 0 n n n n n r r r r
Opcode IMM5 rX

Syntax ldfpz_inc rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRZ + IMM5)

FPTRZ = FPTRZ + 2

32-bit
rX = MEM32(FPTRZ + IMM5)

FPTRZ = FPTRZ + 4

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register Z and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register Z is incremented by 2 or 4. The
value for incrementing the frame pointer register and data width used
for memory access is determined by the processor configuration.

16. stfpw inc
store (half)word with frame pointer W and increment W

Instruction Format

0 1 0 1 0 0 0 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpw_inc rX, IMM5

Semantics 16-bit
MEM16(FPTRW + IMM5) = rX

FPTRW = FPTRW + 2

32-bit
MEM32(FPTRW + IMM5) = rX

FPTRW = FPTRW + 4

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register W and the instruction’s signed
6-bit immediate value. Afterwards frame pointer register W is
incremented by 2 or 4, depending on the processor configuration.

B.2 Description 97

17. stfpx inc
store (half)word with frame pointer X and increment X

Instruction Format

0 1 0 1 0 1 0 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpx_inc rX, IMM5

Semantics 16-bit
MEM16(FPTRX + IMM5) = rX

FPTRX = FPTRX + 2

32-bit
MEM32(FPTRX + IMM5) = rX

FPTRX = FPTRX + 4

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register X and the instruction’s signed
6-bit immediate value. Afterwards frame pointer register X is
incremented by 2 or 4, depending on the processor configuration.

18. stfpy inc
store (half)word with frame pointer Y and increment Y

Instruction Format

0 1 0 1 1 0 0 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpy_inc rX, IMM5

Semantics 16-bit
MEM16(FPTRY + IMM5) = rX

FPTRY = FPTRY + 2

32-bit
MEM32(FPTRY + IMM5) = rX

FPTRY = FPTRY + 4

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register Y and the instruction’s signed
6-bit immediate value. Afterwards frame pointer register Y is
incremented by 2 or 4, depending on the processor configuration.

B.2 Description 98

19. stfpz inc
store (half)word with frame pointer Z and increment Z

Instruction Format

0 1 0 1 1 1 0 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpz_inc rX, IMM5

Semantics 16-bit
MEM16(FPTRZ + IMM5) = rX

FPTRZ = FPTRZ + 2

32-bit
MEM32(FPTRZ + IMM5) = rX

FPTRZ = FPTRZ + 4

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register Z and the instruction’s signed
6-bit immediate value. Afterwards frame pointer register Z is
incremented by 2 or 4, depending on the processor configuration.

20. ldfpw dec
load (half)word with frame pointer W and decrement W

Instruction Format

0 1 0 0 0 0 1 n n n n n r r r r
Opcode IMM5 rX

Syntax ldfpw_dec rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRW + IMM5)

FPTRW = FPTRW - 2

32-bit
rX = MEM32(FPTRW + IMM5)

FPTRW = FPTRW - 4

Description

B.2 Description 99

Loads a word or halfword form the memory location that results from
adding the value in frame pointer register W and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register W is decremented by 2 or 4. The
value for decrementing the frame pointer register and data width
used for memory access is determined by the processor configuration.

21. ldfpx dec
load (half)word with frame pointer X and decrement X

Instruction Format

0 1 0 0 0 1 1 n n n n n r r r r
Opcode IMM5 rX

Syntax ldfpx_dec rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRX + IMM5)

FPTRX = FPTRX - 2

32-bit
rX = MEM32(FPTRX + IMM5)

FPTRX = FPTRX - 4

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register X and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register X is decremented by 2 or 4. The
value for decrementing the frame pointer register and data width
used for memory access is determined by the processor configuration.

22. ldfpy dec
load (half)word with frame pointer Y and decrement Y

Instruction Format

0 1 0 0 1 0 1 n n n n n r r r r
Opcode IMM5 rX

B.2 Description 100

Syntax ldfpy_dec rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRY + IMM5)

FPTRY = FPTRY - 2

32-bit
rX = MEM32(FPTRY + IMM5)

FPTRY = FPTRY - 4

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register Y and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register Y is decremented by 2 or 4. The
value for decrementing the frame pointer register and data width
used for memory access is determined by the processor configuration.

23. ldfpz dec
load (half)word with frame pointer Z and decrement Z

Instruction Format

0 1 0 0 1 1 1 n n n n n r r r r
Opcode IMM5 rX

Syntax ldfpz_dec rX, IMM5

Semantics 16-bit
rX = MEM16(FPTRZ + IMM5)

FPTRZ = FPTRZ - 2

32-bit
rX = MEM32(FPTRZ + IMM5)

FPTRZ = FPTRZ - 4

Description
Loads a word or halfword form the memory location that results from
adding the value in frame pointer register Z and the instruction’s
signed 5-bit immediate value. The data is placed in register rX.
Afterwards frame pointer register Z is decremented by 2 or 4. The
value for decrementing the frame pointer register and data width
used for memory access is determined by the processor configuration.

24. stfpw dec
store (half)word with frame pointer W and decrement W

B.2 Description 101

Instruction Format

0 1 0 1 0 0 1 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpw_dec rX, IMM5

Semantics 16-bit
MEM16(FPTRW + IMM5) = rX

FPTRW = FPTRW - 2

32-bit
MEM32(FPTRW + IMM5) = rX

FPTRW = FPTRW - 4

Description
Stores the content of register rX into memory at the address
specified by the sum of frame pointer register W and the instruc-
tion’s signed 6-bit immediate value. Afterwards frame pointer register
W is decremented by 2 or 4, depending on the processor configuration.

25. stfpx dec
store (half)word with frame pointer X and decrement X

Instruction Format

0 1 0 1 0 1 1 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpx_dec rX, IMM5

Semantics 16-bit
MEM16(FPTRX + IMM5) = rX

FPTRX = FPTRX - 2

32-bit
MEM32(FPTRX + IMM5) = rX

FPTRX = FPTRX - 4

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register X and the instruction’s signed
6-bit immediate value. Afterwards frame pointer register X is
decremented by 2 or 4, depending on the processor configuration.

B.2 Description 102

26. stfpy dec
store (half)word with frame pointer Y and decrement Y

Instruction Format

0 1 0 1 1 0 1 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpy_dec rX, IMM5

Semantics 16-bit
MEM16(FPTRY + IMM5) = rX

FPTRY = FPTRY - 2

32-bit
MEM32(FPTRY + IMM5) = rX

FPTRY = FPTRY - 4

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register Y and the instruction’s signed
6-bit immediate value. Afterwards frame pointer register Y is
decremented by 2 or 4, depending on the processor configuration.

27. stfpz dec
store (half)word with frame pointer Z and decrement Z

Instruction Format

0 1 0 1 1 1 1 n n n n n r r r r
Opcode IMM5 rX

Syntax stfpz_dec rX, IMM5

Semantics 16-bit
MEM16(FPTRZ + IMM5) = rX

FPTRZ = FPTRZ - 2

32-bit
MEM32(FPTRZ + IMM5) = rX

FPTRZ = FPTRZ - 4

Description
Stores the content of register rX into memory at the address specified
by the sum of frame pointer register Z and the instruction’s signed
6-bit immediate value. Afterwards frame pointer register Z is
decremented by 2 or 4, depending on the processor configuration.

B.2 Description 103

28. cmpi eq
compare equal immediate

Instruction Format

1 0 1 1 1 n n n n n n n r r r r
Opcode IMM7 rX

Syntax cmpi_eq rX, IMM7

Semantics 16/32-bit
if (rX - IMM7 == 0)

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the sign-extended immediate, setting
the condition flag if they are equal, otherwise the condition flag is
cleared.

29. cmp eq
compare equal

Instruction Format

1 0 1 1 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax cmp_eq rX, rY

Semantics 16/32-bit
if (rX == rY)

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the value in rY, setting the condition
flag if they are equal, otherwise the condition flag is cleared.

30. cmpi lt
compare less than immediate

Instruction Format

B.2 Description 104

0 0 1 1 0 n n n n n n n r r r r
Opcode IMM7 rX

Syntax cmpi_lt rX, IMM7

Semantics 16/32-bit
if (rX < IMM7)

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the sign-extended immediate, setting
the condition flag if they value in IMM7 is greater than the value in
rX, otherwise the condition flag is cleared.

31. cmp lt
compare less than

Instruction Format

1 0 1 1 0 0 0 1 r r r r r r r r
Opcode rY rX

Syntax cmp_lt rX, rY

Semantics 16/32-bit
if (rX < rY)

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the value in rY, setting the condition
flag if they value in rY is greater than the value in rX, otherwise the
condition flag is cleared.

32. cmpi gt
compare greater than immediate

Instruction Format

0 0 1 1 1 n n n n n n n r r r r
Opcode IMM7 rX

B.2 Description 105

Syntax cmpi_gt rX, IMM7

Semantics 16/32-bit
if (rX > IMM7)

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the sign-extended immediate, setting
the condition flag if they value in rX is greater than the value in
IMM7, otherwise the condition flag is cleared.

33. cmp gt
compare greater than

Instruction Format

1 0 1 1 0 0 1 0 r r r r r r r r
Opcode rY rX

Syntax cmpi_gt rX, rY

Semantics 16/32-bit
if (rX > rY)

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the value in rY, setting the condition
flag if they value in rX is greater than the value in rY, otherwise the
condition flag is cleared.

34. cmpu lt
compare less than unsigned

Instruction Format

1 0 1 1 0 0 1 1 r r r r r r r r
Opcode rY rX

Syntax cmpu_lt rX, rY

Semantics 16/32-bit
if (rX < rY)

B.2 Description 106

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the value in rY, setting the condition
flag if they value in rY is greater than the value in rX, otherwise
the condition flag is cleared. Both operands are treated as unsigned
intergers.

35. cmpu gt
compare greater than unsigned

Instruction Format

1 0 1 1 0 1 0 0 r r r r r r r r
Opcode rY rX

Syntax cmpu_gt rX, rY

Semantics 16/32-bit
if (rX > rY)

cond-flag = 1

else cond-flag = 0

Description
Compares the value in rX with the value in rY, setting the condition
flag if they value in rX is greater than the value in rY, otherwise
the condition flag is cleared. Both operands are treated as unsigned
intergers.

36. btest
bit test

Instruction Format

1 0 1 1 0 1 1 n n n n n r r r r
Opcode IMM5 rX

Syntax btest rX, IMM5

Semantics 16-bit
if (rX(IMM4) == 1)

cond-flag = 1

B.2 Description 107

else cond-flag = 0

32-bit
if (rX(IMM5) == 1)

cond-flag = 1

else cond-flag = 0

Description
Tests the bit in rX on specific position determined by the immediate
value. The condition flag is set, if the specific bit is set. Otherwise the
condition flag is cleared. The width of the immediate value depends
on the processor configuration.

37. bset
bit set

Instruction Format

1 0 1 0 0 1 0 n n n n n r r r r
Opcode IMM5 rX

Syntax bset rX, IMM5

Semantics 16-bit
rX = rX | (1 << IMM4)

32-bit
rX = rX | (1 << IMM5)

Description
Sets one bit in rX. The position is specified by the immediate
value. The width of the immediate value depends on the processor
configuration.

38. bset ct
bit set if cond-flag true

Instruction Format

1 0 0 1 0 1 0 n n n n n r r r r
Opcode IMM5 rX

Syntax bset_ct rX, IMM5

Semantics 16-bit

B.2 Description 108

if (cond-flag == 1)

rX = rX | (1 << IMM4)

32-bit
if (cond-flag == 1)

rX = rX | (1 << IMM5)

Description
Sets one bit in rX, if condition flag is set. The position is specified by
the immediate value. The width of the immediate value depends on
the processor configuration.

39. bset cf
bit set if cond-flag false

Instruction Format

1 0 0 0 0 1 0 n n n n n r r r r
Opcode IMM5 rX

Syntax bset_cf rX, IMM5

Semantics 16-bit
if (cond-flag == 0)

rX = rX | (1 << IMM4)

32-bit
if (cond-flag == 0)

rX = rX | (1 << IMM5)

Description
Sets one bit in rX, if condition flag is cleared. The position is specified
by the immediate value. The width of the immediate value depends
on the processor configuration.

40. bclr
bit clear

Instruction Format

1 0 1 0 0 1 1 n n n n n r r r r
Opcode IMM5 rX

B.2 Description 109

Syntax bclr rX, IMM5

Semantics 16-bit
rX = rX & ~(1 << IMM4)

32-bit
rX = rX & ~(1 << IMM5)

Description
Clears one bit in rX. The position is specified by the immediate
value. The width of the immediate value depends on the processor
configuration.

41. bclr ct
bit clear if cond-flag true

Instruction Format

1 0 0 1 0 1 1 n n n n n r r r r
Opcode IMM5 rX

Syntax bclr_ct rX, IMM5

Semantics 16-bit
if (cond-flag == 1)

rX = rX & ~(1 << IMM4)

32-bit
if (cond-flag == 1)

rX = rX & ~(1 << IMM5)

Description
Clears one bit in rX, if condition flag is set. The position is specified
by the immediate value. The width of the immediate value depends
on the processor configuration.

42. bclr cf
bit clear if cond-flag false

Instruction Format

1 0 0 0 0 1 1 n n n n n r r r r
Opcode IMM5 rX

B.2 Description 110

Syntax bclr_cf rX, IMM5

Semantics 16-bit
if (cond-flag == 0)

rX = rX & ~(1 << IMM4)

32-bit
if (cond-flag == 0)

rX = rX & ~(1 << IMM5)

Description
Clears one bit in rX, if condition flag is cleared. The position is
specified by the immediate value. The width of the immediate value
depends on the processor configuration.

43. sl
shift left

Instruction Format

1 0 1 0 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax sl rX, rY

Semantics 16-bit
rX = rX << (rY & 0x0f)

32-bit
rX = rX << (rY & 0x1f)

Description
Shifts the value in rX left by the number of bits specified by the value
in rY.

44. sl ct
shift left if cond-flag true

Instruction Format

1 0 0 1 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax sl_ct rX, rY

Semantics 16-bit

B.2 Description 111

if (cond-flag == 1)

rX = rX << (rY & 0x0f)

32-bit
if (cond-flag == 1)

rX = rX << (rY & 0x1f)

Description
Shifts the value in rX left, if condition flag is set. The number of bits
is given by the value in rY.

45. sl cf
shift left if cond-flag false

Instruction Format

1 0 0 0 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax sl_cf rX, rY

Semantics 16-bit
if (cond-flag == 0)

rX = rX << (rY & 0x0f)

32-bit
if (cond-flag == 0)

rX = rX << (rY & 0x1f)

Description
Shifts the value in rX left, if condition flag is cleared. The number of
bits is given by the value in rY.

46. sli
shift left immediate

Instruction Format

1 0 1 0 0 0 0 1 n n n n r r r r
Opcode IMM4 rX

Syntax sli rX, IMM4

Semantics 16/32-bit
rX = rX << IMM4

B.2 Description 112

Description
Shifts the value in rX left by the number of bits specified by the
immediate value.

47. sli ct
shift left immediate if cond-flag true

Instruction Format

1 0 0 1 0 0 0 1 n n n n r r r r
Opcode IMM4 rX

Syntax sli_ct rX, IMM4

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX << IMM4

Description
Shifts the value in rX left, if condition flag is set. The number of bits
is given by the immediate value.

48. sli cf
shift left immediate if cond-flag false

Instruction Format

1 0 0 0 0 0 0 1 n n n n r r r r
Opcode IMM4 rX

Syntax sli_cf rX, IMM4

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX << IMM4

Description
Shifts the value in rX left, if condition flag is cleared. The number of
bits is given by the immediate value.

49. sr
shift right

Instruction Format

B.2 Description 113

1 0 1 0 0 0 1 0 r r r r r r r r
Opcode rY rX

Syntax sr rX, rY

Semantics 16-bit
rX = rX >> (rY & 0x0f)

32-bit
rX = rX >> (rY & 0x1f)

Description
Shifts the unsigned value in rX right by the number of bits specified
by the value in rY.

50. sr ct
shift right if cond-flag true

Instruction Format

1 0 0 1 0 0 1 0 r r r r r r r r
Opcode rY rX

Syntax sr_ct rX, rY

Semantics 16-bit
if (cond-flag == 1)

rX = rX >> (rY & 0x0f)

32-bit
if (cond-flag == 1)

rX = rX >> (rY & 0x1f)

Description
Shifts the unsigned value in rX right, if condition flag is set. The
number of bits is given by the value in rY.

51. sr cf
shift right if cond-flag false

Instruction Format

1 0 0 0 0 0 1 0 r r r r r r r r
Opcode rY rX

B.2 Description 114

Syntax sr_cf rX, rY

Semantics 16-bit
if (cond-flag == 0)

rX = rX >> (rY & 0x0f)

32-bit
if (cond-flag == 0)

rX = rX >> (rY & 0x1f)

Description
Shifts the unsigned value in rX right, if condition flag is cleared. The
number of bits is given by the value in rY.

52. sri
shift right immediate

Instruction Format

1 0 1 0 0 0 1 1 n n n n r r r r
Opcode IMM4 rX

Syntax sri rX, IMM4

Semantics 16/32-bit
rX = rX >> IMM4

Description
Shifts the unsigned value in rX right by the number of bits specified
by the immediate value.

53. sri ct
shift right immediate if cond-flag true

Instruction Format

1 0 0 1 0 0 1 1 n n n n r r r r
Opcode IMM4 rX

Syntax sri_ct rX, IMM4

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX >> IMM4

Description

B.2 Description 115

Shifts the unsigned value in rX right, if condition flag is set. The
number of bits is given by the immediate value.

54. sri cf
shift right immediate if cond-flag false

Instruction Format

1 0 0 0 0 0 1 1 n n n n r r r r
Opcode IMM4 rX

Syntax sri_cf rX, IMM4

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX >> IMM4

Description
Shifts the unsigned value in rX right, if condition flag is cleared. The
number of bits is given by the immediate value.

55. sra
shift right arithmetic

Instruction Format

1 1 1 0 1 0 0 0 r r r r r r r r
Opcode rY rX

Syntax sra rX, rY

Semantics 16-bit
rX = rX >> (rY & 0x0f)

32-bit
rX = rX >> (rY & 0x1f)

Description
Shifts the signed value in rX right by the number of bits specified by
the value in rY.

56. sra ct
shift right arithmetic if cond-flag true

Instruction Format

B.2 Description 116

1 1 0 1 1 0 0 0 r r r r r r r r
Opcode rY rX

Syntax sra_ct rX, rY

Semantics 16-bit
if (cond-flag == 1)

rX = rX >> (rY & 0x0f)

32-bit
if (cond-flag == 1)

rX = rX >> (rY & 0x1f)

Description
Shifts the signed value in rX right, if condition flag is set. The
number of bits is given by the value in rY.

57. sra cf
shift right arithmetic if cond-flag false

Instruction Format

1 1 0 0 1 0 0 0 r r r r r r r r
Opcode rY rX

Syntax sra_cf rX, rY

Semantics 16-bit
if (cond-flag == 0)

rX = rX >> (rY & 0x0f)

32-bit
if (cond-flag == 0)

rX = rX >> (rY & 0x1f)

Description
Shifts the signed value in rX right, if condition flag is cleared. The
number of bits is given by the value in rY.

58. srai
shift right arithmetic immediate

Instruction Format

1 1 1 0 1 0 0 1 n n n n r r r r
Opcode IMM4 rX

B.2 Description 117

Syntax srai rX, IMM4

Semantics 16/32-bit
rX = rX >> IMM4

Description
Shifts the signed value in rX right by the number of bits specified by
the immediate value.

59. srai ct
shift right arithmetic immediate if cond-flag true

Instruction Format

1 1 0 1 1 0 0 1 n n n n r r r r
Opcode IMM4 rX

Syntax srai_ct rX, IMM4

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX >> IMM4

Description
Shifts the signed value in rX right, if condition flag is set. The
number of bits is given by the immediate value.

60. srai cf
shift right arithmetic immediate if cond-flag false

Instruction Format

1 1 0 0 1 0 0 1 n n n n r r r r
Opcode IMM4 rX

Syntax srai_cf rX, IMM4

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX >> IMM4

Description
Shifts the signed value in rX right, if condition flag is cleared. The
number of bits is given by the immediate value.

B.2 Description 118

61. rrc
rotate right with carry

Instruction Format

1 1 1 0 1 0 1 0 0 0 0 r r r r r
Opcode rX

Syntax rrc rX

Semantics 16/32-bit
rX = rX >> 1

MSB(rX) = carry

carry = LSB(rX)

Description
Rotates the value in rX right by one bit. At the same time the MSB of
rX is written with the carry value and the LSB of rX is stored to carry.

62. rrc ct
rotate right with carry if cond-flag true

Instruction Format

1 1 0 1 1 0 1 0 0 0 0 r r r r r
Opcode rX

Syntax rrc_ct rX

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX >> 1

MSB(rX) = carry

carry = LSB(rX)

Description
Rotates the value in rX right by one bit, if condition flag is set. At
the same time the MSB of rX is written with the carry value and the
LSB of rX is stored to carry.

63. rrc cf
rotate right with carry if cond-flag true

Instruction Format

B.2 Description 119

1 1 0 0 1 0 1 0 0 0 0 r r r r r
Opcode rX

Syntax rrc_cf rX

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX >> 1

MSB(rX) = carry

carry = LSB(rX)

Description
Rotates the value in rX right by one bit, if condition flag is cleared.
At the same time the MSB of rX is written with the carry value and
the LSB of rX is stored to carry.

64. mov
move

Instruction Format

1 1 1 0 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax mov rX, rY

Semantics 16/32-bit
rX = rX

Description
Moves the value in rY to rX.

65. mov ct
move if cond-flag true

Instruction Format

1 1 0 1 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax mov_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

B.2 Description 120

rX = rX

Description
Moves the value in rY to rX, if condition flag is set.

66. mov cf
move if cond-flag false

Instruction Format

1 1 0 0 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax mov_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX

Description
Moves the value in rY to rX, if condition flag is cleared.

67. addi
add immediate

Instruction Format

1 0 1 0 1 0 n n n n n n r r r r
Opcode IMM6 rX

Syntax addi rX, IMM6

Semantics 16/32-bit
rX = rX + sign_extend(IMM6)

Description
Calculates the sum of rX and the sign-extended immediate. Stores
the result in rX.

68. addi ct
add immediate if cond-flag true

Instruction Format

B.2 Description 121

1 0 0 1 1 0 n n n n n n r r r r
Opcode IMM6 rX

Syntax addi_ct rX, IMM6

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX + sign_extend(IMM6)

Description
Calculates the sum of rX and the sign-extended immediate, if
condition flag is set. Stores the result in rX.

69. addi cf
add immediate if cond-flag false

Instruction Format

1 0 0 0 1 0 n n n n n n r r r r
Opcode IMM6 rX

Syntax addi_cf rX, IMM6

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX + sign_extend(IMM6)

Description
Calculates the sum of rX and the sign-extended immediate, if
condition flag is cleared. Stores the result in rX.

70. add
add

Instruction Format

1 1 1 0 0 0 0 1 r r r r r r r r
Opcode rY rX

Syntax add rX, rY

Semantics 16/32-bit
rX = rX + rY

Description
Calculates the sum of rX and rY. Stores the result in rX.

B.2 Description 122

71. add ct
add if cond-flag true

Instruction Format

1 1 0 1 0 0 0 1 r r r r r r r r
Opcode rY rX

Syntax add_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX + rY

Description
Calculates the sum of rX and rY, if condition flag is set. Stores the
result in rX.

72. add cf
add if cond-flag false

Instruction Format

1 1 0 0 0 0 0 1 r r r r r r r r
Opcode rY rX

Syntax add_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX + rY

Description
Calculates the sum of rX and rY, if condition flag is cleared. Stores
the result in rX.

73. addc
add with carry

Instruction Format

1 1 1 0 0 0 1 0 r r r r r r r r
Opcode rY rX

B.2 Description 123

Syntax addc rX, rY

Semantics 16/32-bit
rX = rX + rY + carry

Description
Calculates the sum of rX, rY, and carry. Stores the result in rX.

74. addc ct
add with carry if cond-flag true

Instruction Format

1 1 0 1 0 0 1 0 r r r r r r r r
Opcode rY rX

Syntax addc_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX + rY + carry

Description
Calculates the sum of rX, rY, and carry, if condition flag is set. Stores
the result in rX.

75. addc cf
add with carry if cond-flag false

Instruction Format

1 1 0 0 0 0 1 0 r r r r r r r r
Opcode rY rX

Syntax addc_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX + rY + carry

Description
Calculates the sum of rX, rY, and carry, if condition flag is cleared.
Stores the result in rX.

B.2 Description 124

76. sub
subtract

Instruction Format

1 1 1 0 0 0 1 1 r r r r r r r r
Opcode rY rX

Syntax sub rX, rY

Semantics 16/32-bit
rX = rX - rY

Description
Subtracts rY from rX. Stores the result in rX.

77. sub ct
subtract if cond-flag true

Instruction Format

1 1 0 1 0 0 1 1 r r r r r r r r
Opcode rY rX

Syntax sub_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX - rY

Description
Subtracts rY from rX, if condition flag is set. Stores the result in rX.

78. sub cf
subtract if cond-flag false

Instruction Format

1 1 0 0 0 0 1 1 r r r r r r r r
Opcode rY rX

B.2 Description 125

Syntax sub_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX - rY

Description
Subtracts rY from rX, if condition flag is cleared. Stores the result in
rX.

79. subc
subtract with carry

Instruction Format

1 1 1 0 0 1 0 0 r r r r r r r r
Opcode rY rX

Syntax subc rX, rY

Semantics 16/32-bit
rX = rX - rY - carry

Description
Subtracts rY from rX. Considers the carry flag and stores the result
in rX.

80. subc ct
subtract with carry if cond-flag true

Instruction Format

1 1 0 1 0 1 0 0 r r r r r r r r
Opcode rY rX

Syntax subc_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX - rY - carry

Description
Subtracts rY from rX, if condition flag is set. Considers the carry
flag and stores the result in rX.

B.2 Description 126

81. subc cf
subtract with carry if cond-flag false

Instruction Format

1 1 0 0 0 1 0 0 r r r r r r r r
Opcode rY rX

Syntax subc_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX - rY - carry

Description
Subtracts rY from rX, if condition flag is cleared. Considers the carry
flag and stores the result in rX.

82. and
bitwise logical and

Instruction Format

1 1 1 0 0 1 0 1 r r r r r r r r
Opcode rY rX

Syntax and rX, rY

Semantics 16/32-bit
rX = rX & rY

Description
Caluclates the bitwise logical AND of rX and rY. Stores the result in
rX.

83. and ct
bitwise logical and if cond-flag true

Instruction Format

1 1 0 1 0 1 0 1 r r r r r r r r
Opcode rY rX

B.2 Description 127

Syntax and_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX & rY

Description
Caluclates the bitwise logical AND of rX and rY, if condition flag is
set. Stores the result in rX.

84. and cf
bitwise logical and if cond-flag false

Instruction Format

1 1 0 0 0 1 0 1 r r r r r r r r
Opcode rY rX

Syntax and_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX & rY

Description
Caluclates the bitwise logical AND of rX and rY, if condition flag is
cleared. Stores the result in rX.

85. or
bitwise logical or

Instruction Format

1 1 1 0 0 1 1 0 r r r r r r r r
Opcode rY rX

Syntax or rX, rY

Semantics 16/32-bit
rX = rX | rY

Description
Caluclates the bitwise logical OR of rX and rY. Stores the result in rX.

B.2 Description 128

86. or ct
bitwise logical or if cond-flag true

Instruction Format

1 1 0 1 0 1 1 0 r r r r r r r r
Opcode rY rX

Syntax or_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX | rY

Description
Caluclates the bitwise logical OR of rX and rY, if condition flag is
set. Stores the result in rX.

87. or cf
bitwise logical or if cond-flag false

Instruction Format

1 1 0 0 0 1 1 0 r r r r r r r r
Opcode rY rX

Syntax or_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX | rY

Description
Caluclates the bitwise logical OR of rX and rY, if condition flag is
cleared. Stores the result in rX.

88. eor
bitwise logical exclusive or

Instruction Format

1 1 1 0 0 1 1 1 r r r r r r r r
Opcode rY rX

B.2 Description 129

Syntax eor rX, rY

Semantics 16/32-bit
rX = rX ^ rY

Description
Caluclates the bitwise logical exclusive OR of rX and rY. Stores the
result in rX.

89. eor ct
bitwise logical exclusive or if cond-flag true

Instruction Format

1 1 0 1 0 1 1 1 r r r r r r r r
Opcode rY rX

Syntax eor_ct rX, rY

Semantics 16/32-bit
if (cond-flag == 1)

rX = rX ^ rY

Description
Caluclates the bitwise logical exclusive OR of rX and rY, if condition
flag is set. Stores the result in rX.

90. eor cf
bitwise logical exclusive or if cond-flag false

Instruction Format

1 1 0 0 0 1 1 1 r r r r r r r r
Opcode rY rX

Syntax eor_cf rX, rY

Semantics 16/32-bit
if (cond-flag == 0)

rX = rX ^ rY

Description
Caluclates the bitwise logical exclusive OR of rX and rY, if condition
flag is cleared. Stores the result in rX.

B.2 Description 130

91. not
bitwise logical not

Instruction Format

1 1 1 0 1 1 0 0 0 0 0 0 r r r r
Opcode rX

Syntax not rX

Semantics 16/32-bit
rX = ~rX

Description
Caluclates the bitwise complement of rX. Stores the result in rX.

92. not ct
bitwise logical not if cond-flag true

Instruction Format

1 1 0 1 1 1 0 0 0 0 0 0 r r r r
Opcode rX

Syntax not_ct rX

Semantics 16/32-bit
if (cond-flag == 1)

rX = ~rX

Description
Caluclates the bitwise complement of rX, if condition flag is set.
Stores the result in rX.

93. not cf
bitwise logical not if cond-flag false

Instruction Format

1 1 0 0 1 1 0 0 0 0 0 0 r r r r
Opcode rX

B.2 Description 131

Syntax not_cf rX

Semantics 16/32-bit
if (cond-flag == 0)

rX = ~rX

Description
Caluclates the bitwise complement of rX, if condition flag is cleared.
Stores the result in rX.

94. neg
negative

Instruction Format

1 1 1 0 1 1 0 1 0 0 0 0 r r r r
Opcode rX

Syntax neg rX

Semantics 16/32-bit
rX = ~rX + 1

Description
Caluclates the negative of rX. Stores the result in rX.

95. neg ct
negative if cond-flag true

Instruction Format

1 1 0 1 1 1 0 1 0 0 0 0 r r r r
Opcode rX

Syntax neg_ct rX

Semantics 16/32-bit
if (cond-flag == 1)

rX = ~rX + 1

Description
Caluclates the negative of rX, if condition flag is set. Stores the result
in rX.

B.2 Description 132

96. neg cf
negative if cond-flag false

Instruction Format

1 1 0 0 1 1 0 1 0 0 0 0 r r r r
Opcode rX

Syntax neg_cf rX

Semantics 16/32-bit
if (cond-flag == 0)

rX = ~rX + 1

Description
Caluclates the negative of rX, if condition flag is cleared. Stores the
result in rX.

97. trap
trap

Instruction Format

1 1 1 0 1 0 1 1 n n n n r r r r
Opcode IMM4 rX

Syntax trap rX, IMM4

Semantics 16/32-bit
r15 = PC

PC = VECTAB(IMM4)

SSR = SR

SR = 0

Description
Raises a system call exception, saves the status register, and saves
the address of the next instruction in register r15. Afterwards the
status register is cleared and thereby interrupts are disabled.

98. trap ct
trap if cond-flag true

Instruction Format

B.2 Description 133

1 1 0 1 1 0 1 1 n n n n r r r r
Opcode IMM4 rX

Syntax trap_ct rX, IMM4

Semantics 16/32-bit
if (cond-flag == 1)

r15 = PC

PC = VECTAB(IMM4)

SSR = SR

SR = 0

Description
Raises a system call exception, if condition flag is set, saves the status
register, and saves the address of the next instruction in register r15.
Afterwards the status register is cleared and thereby interrupts are
disabled.

99. trap cf
trap if cond-flag false

Instruction Format

1 1 0 0 1 0 1 1 n n n n r r r r
Opcode IMM4 rX

Syntax trap_cf rX, IMM4

Semantics 16/32-bit
if (cond-flag == 0)

r15 = PC

PC = VECTAB(IMM4)

SSR = SR

SR = 0

Description
Raises a system call exception, if condition flag is cleared, saves
the status register, and saves the address of the next instruction in
register r15. Afterwards the status register is cleared and thereby
interrupts are disabled.

100. jsr
jump to subroutine

Instruction Format

B.2 Description 134

1 1 1 0 1 1 1 0 0 0 0 0 r r r r
Opcode rX

Syntax jsr rX

Semantics 16/32-bit
r14 = PC

PC = rX

Description
Saves the address of the next instruction in register r14. Loads the
address in rX to the program counter.

101. jsr ct
jump to subroutine if cond-flag true

Instruction Format

1 1 0 1 1 1 1 0 0 0 0 0 r r r r
Opcode rX

Syntax jsr_ct rX

Semantics 16/32-bit
if (cond-flag == 1)

r14 = PC

PC = rX

Description
Saves the address of the next instruction in register r14, if condition
flag is set. And loads the address in rX to the program counter.

102. jsr cf
jump to subroutine if cond-flag false

Instruction Format

1 1 0 0 1 1 1 0 0 0 0 0 r r r r
Opcode rX

Syntax jsr_cf rX

Semantics 16/32-bit
if (cond-flag == 0)

B.2 Description 135

r14 = PC

PC = rX

Description
Saves the address of the next instruction in register r14, if condition
flag is cleared. And loads the address in rX to the program counter.

103. jmpi
jump immediate

Instruction Format

1 0 1 0 1 1 n n n n n n n n n n
Opcode IMM10

Syntax jmpi IMM10

Semantics 16/32-bit
PC = PC + IMM10

Description
Performs a branch to the address given by the sum of the program
counter and the sign-extended immediate.

104. jmpi ct
jump immediate if cond-flag true

Instruction Format

1 0 0 1 1 1 n n n n n n n n n n
Opcode IMM10

Syntax jmpi_ct IMM10

Semantics 16/32-bit
if (cond-flag == 1)

PC = PC + IMM10

Description
Performs a branch, if condition flag is set. The destination address
is given by the sum of the program counter and the sign-extended
immediate.

B.2 Description 136

105. jmpi cf
jump immediate if cond-flag false

Instruction Format

1 0 0 0 1 1 n n n n n n n n n n
Opcode IMM10

Syntax jmpi_cf IMM10

Semantics 16/32-bit
if (cond-flag == 0)

PC = PC + IMM10

Description
Performs a branch, if condition flag is cleared. The destination
address is given by the sum of the program counter and the sign-
extended immediate.

106. jmp
jump

Instruction Format

1 1 1 0 1 1 1 1 0 0 0 0 r r r r
Opcode rX

Syntax jmp rX

Semantics 16/32-bit
PC = rX

Description
Loads the address in rX to the program counter.

107. jmp ct
jump if cond-flag true

Instruction Format

1 1 0 1 1 1 1 1 0 0 0 0 r r r r
Opcode rX

B.2 Description 137

Syntax jmp_ct rX

Semantics 16/32-bit
if (cond-flag == 1)

PC = rX

Description
Loads the address in rX to the program counter, if condition flag is set.

108. jmp cf
jump if cond-flag false

Instruction Format

1 1 0 0 1 1 1 1 0 0 0 0 r r r r
Opcode rX

Syntax jmp_cf rX

Semantics 16/32-bit
if (cond-flag == 0)

PC = rX

Description
Loads the address in rX to the program counter, if condition flag is
cleared.

109. ldw
load word

Instruction Format

1 1 1 1 0 0 0 0 r r r r r r r r
Opcode rY rX

Syntax ldw rX, rY

Semantics 16/32-bit
rX = MEM32(rY)

Description
Loads a word from memory and stores the result in rX. The address
is given by rY. This instruction is only available, with enlarged data
path.

B.2 Description 138

110. ldh
load halfword

Instruction Format

1 1 1 1 0 0 0 1 r r r r r r r r
Opcode rY rX

Syntax ldh rX, rY

Semantics 16/32-bit
rX = MEM16(rY)

Description
Loads a halfword from memory and stores the sign-extended result in
rX. The address is given by rY.

111. ldhu
load halfword unsigned

Instruction Format

1 1 1 1 0 0 1 0 r r r r r r r r
Opcode rY rX

Syntax ldhu rX, rY

Semantics 16/32-bit
rX = MEM16(rY)

Description
Loads a halfword from memory and stores the zero-extended result
in rX. The address is given by rY. This instruction is only available,
with enlarged data path.

112. ldb
load byte

Instruction Format

1 1 1 1 0 0 1 1 r r r r r r r r
Opcode rY rX

B.2 Description 139

Syntax ldb rX, rY

Semantics 16/32-bit
rX = MEM8(rY)

Description
Loads a byte from memory and stores the sign-extended result in rX.
The address is given by rY.

113. ldbu
load byte unsigned

Instruction Format

1 1 1 1 0 1 0 0 r r r r r r r r
Opcode rY rX

Syntax ldbu rX, rY

Semantics 16/32-bit
rX = MEM8(rY)

Description
Loads a byte from memory and stores the zero-extended result in rX.
The address is given by rY.

114. stw
store word

Instruction Format

1 1 1 1 0 1 0 1 r r r r r r r r
Opcode rY rX

Syntax stw rX, rY

Semantics 16/32-bit
MEM32(rY) = rX

Description
Stores rX to memory. The address is given by rY. This instruction is
only available, with enlarged data path.

B.2 Description 140

115. sth
store halfword

Instruction Format

1 1 1 1 0 1 1 0 r r r r r r r r
Opcode rY rX

Syntax sth rX, rY

Semantics 16/32-bit
MEM16(rY) = rX

Description
Stores the low halfword of rX to memory. The address is given by rY.

116. stb
store byte

Instruction Format

1 1 1 1 0 1 1 1 r r r r r r r r
Opcode rY rX

Syntax stb rX, rY

Semantics 16/32-bit
MEM8(rY) = rX

Description
Stores the low byte of rX to memory. The address is given by rY.

117. rts
return from subroutine

Instruction Format

1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0
Opcode r14

Syntax rts

Semantics 16/32-bit
PC = r14

Description
Performs a jump to the address saved in r14.

B.2 Description 141

118. rte
return from exception

Instruction Format

1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1
Opcode r14

Syntax rte

Semantics 16/32-bit
PC = r15

SR = SSR

Description
Performs a jump to the address saved in r15 and restores the status
register.

119. ldvec
load vector

Instruction Format

1 1 1 1 1 0 1 n n n n n r r r r
Opcode IMM5 rX

Syntax ldvec rX, IMM5

Semantics 16/32-bit
rX = VECTAB(IMM5)

Description
Reads the vector on position IMM5 from the vector table and stores
the result in rX.

120. stvec
store vector

Instruction Format

1 1 1 1 1 0 0 n n n n n r r r r
Opcode IMM5 rX

B.2 Description 142

Syntax stvec rX, IMM5

Semantics 16/32-bit
VECTAB(IMM5) = rX

Description
Stores a vector to the vector table.

121. nop
no operation

Instruction Format

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
Opcode

Syntax nop

Semantics 16/32-bit
-

Description
nop does nothing.

122. illop
illegal operation

Instruction Format

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Opcode

Syntax illop

Semantics 16/32-bit
-

Description
Raises the illop exception.

REFERENCES 143

References

[1] Altera Corporation, 101 Innovation Drive - San Jose, CA 95134, USA. Nios
II c©Processor Reference Handbook, 2007.

[2] ARM Ltd., 110 Fulbourn Road - Cambridge, CB1 9NJ, United Kingdom.
AMBA Specification rev 2.0, 1999.

[3] M. Delvai. Handbuch für SPEAR. TU Wien, Institut für Technische Infor-
matik, 2002.

[4] M. Delvai, W. Huber, P. Puschner, and A. Steininger. Processor Support
for Temporal Predictability - The SPEAR Design Example. In Proc. 15th
Euromicro International Conference on Real-time Systems, Porto, Portugal,
2003.

[5] M. Delvai, W. Huber, B. Rahbaran, and A. Steininger. SPEAR - Desig-
nentscheidungen für den Scalable Processor for Embedded Applications in
Real-time Environments. In Austrochip 2001, Tagungsband:25–32, October
2001.

[6] W. Huber. Spezifikation der Schnittstelle zwischen Extension-Modulen und
SPEAR. Technical report, TU Wien, Institut für Technische Informatik,
Vienna, 2001.

[7] Lattice Semiconductor Corporation, 5555 NE Moore Court - Hillsboro, OR
97124, USA. LatticeMico32 c©Processor Reference Manual, 2007.

[8] J. Mosser. AMBA4SPEAR2 - An AMBA extension module for the SPEAR2
processor core. Master’s thesis, TU Wien, Institut für Technische Informatik,
2008.

[9] D. A. Patterson and J. L. Hennessy. Computer Architecture A Quantitative
Approach. Morgan Kaufman Publishers, 2rd edition, 1996.

[10] D. A. Patterson and J. L. Hennessy. Computer Organization and Design.
Morgan Kaufman Publishers, 3rd edition, 2005.

[11] P. Puschner and A. Burns. Writing Temporally Predictable Code. In Proc.
7th IEEE International Workshop on Object-Oriented Real-time Dependable
Systems, pages 85–91, Januar 2002.

[12] J. Reichardt and B. Schwarz. VHDL-Synthese. Oldenbourg, 1st edition, 2000.
[13] Xilinx, Inc., 2100 Logic Drive - San Jose, CA 95124-3400, USA.

MicroBlaze c©Processor Reference Guide, 2007.
[14] Xilinx, Inc., 2100 Logic Drive - San Jose, CA 95124-3400, USA.

Xilinx c©Synthesis Technology (XST) User Guide, 2007.

