
DIPLOMARBEIT

Transport and Thermoelectric
Performance

of Ba8-based Clathrates

Ausgeführt am
Institut für Festkörperphysik

der Technischen Universität Wien

unter der Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Ernst Bauer

durch

Friedrich Röhrbacher
Grinzinger Straße 137/1/15

1190 Wien

Februar 2007
Unterschrift

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Contents

1 Introduction 3

2 Theoretical Aspects 5
2.1 Transport Phenomena . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Electronic Contribution . . . . . . . . . . . . . . . . . 6
2.1.2 Lattice Contribution to the thermal conductivity . . . 12
2.1.3 Electrical Resistivity . . . . . . . . . . . . . . . . . . . 14
2.1.4 Thermopower . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Thermal Conductivity . . . . . . . . . . . . . . . . . . 19
2.1.6 The Lorenz Number . . . . . . . . . . . . . . . . . . . 24

2.2 Efficiency of Thermoelectic Systems: Figure of Merit . . . . . 25
2.3 Clathrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Experimental Design 31
3.1 Electrical Resistivity . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Low Temperatures . . . . . . . . . . . . . . . . . . . . 32
3.1.2 High Temperatures . . . . . . . . . . . . . . . . . . . . 35

3.2 Thermopower . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Low Temperatures . . . . . . . . . . . . . . . . . . . . 41
3.2.2 High Temperatures . . . . . . . . . . . . . . . . . . . . 44

3.3 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 46

4 Measurement Results and Analysis 51
4.1 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Thermopower . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 General Analysis of Thermal Conductivity . . . . . . . 59
4.3.2 Fits and Analysis of the Lattice Contribution to Ther-

mal Conductivity . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Fits and Analysis of the Electronic Contribution to

Thermal Conductivity . . . . . . . . . . . . . . . . . . 68



ii CONTENTS

4.4 Thermoelectric Performance and Figure of Merit . . . . . . . . 74

5 Conclusion 77

A Measurement Results - Detailed View 79
A.1 Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.2 Thermopower . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.3 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 88
A.4 Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B Schematic Diagrams 96

C How a Thermo-Couple Works 99

D User Defined Functions 101
D.1 Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . 101

D.1.1 Semi-Conductor Behaviour . . . . . . . . . . . . . . . . 101
D.1.2 Metallic Behaviour . . . . . . . . . . . . . . . . . . . . 102

D.2 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . 103
D.2.1 Lattice Contribution . . . . . . . . . . . . . . . . . . . 103
D.2.2 Electronic Contribution . . . . . . . . . . . . . . . . . 105



Acknowledgments

The research reported herein was supported by the Austrian FWF project
P16370.

Furthermore, I would like to thank ...

... Prof. Ernst Bauer for mentoring and financial support as well as for
the opportunity to join conferences,

... Robert Lackner for help and assistance to all kind of problems in the-
ory and practice and

... Heinrich Kaldarar for his support to thermal conductivity measurements



2 CONTENTS



Chapter 1

Introduction

Thermoelectric materials have the ability to convert thermal energy into
electrical energy. This offers the opportunity to use waste heat from engines
for conversion into electricity. This reduces energy losses and improve their
efficiency.

In 1821 Thomas Johann Seebeck discovered that a temperature difference
between the two ends of a metal rod causes an electric voltage [1]. This was
the first time that heat could be converted into electricity. The voltage
U , depending on the difference in temperature ∆T , is then defined by the
Seebeck coefficient (also called thermopower) and is derived by S = U

∆T
. The

magnitude of S is solely a property of the material to which the temperature
gradient is applied. However, the efficiency of thermoelectric conversion is
not only determined by S but also by the thermal conductivity (λ) and the
electrical resistivity (ρ) of this material. Therefore, the "figure of merit" Z
needs to be investigated to get useful information about the suitability of the
material for converting heat into electrical energy [2]. It is expressed by the
formula Z = S2

λ·ρ [3]. Consequently, when searching for materials with large
S-values, (λ) and (ρ) should be as small as possible.

As shown by the formula above, promising materials need to have a large
Seebeck coefficient but low thermal conductivity and low electrical resistiv-
ity to be effective. Nature, however, does not favour such a combination
since large thermopower requires usually materials with low charge carrier
concentration.

In order to improve the thermoelectric performance of clathrates, substi-
tution and doping is a promising method. Clathrates are compositions of
elements that form large cages in their crystal structure in which other ele-
ments are caught as in a trap. The interaction of this trapped element with
the crystal lattice influences the transport coefficients (λ, ρ, S) of the mate-
rial. As the elements in the samples are changed, the transport properties
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are, of course, changed as well. This might then lead to an improvement of
the figure of merit.

Consequently, the change of elements and their concentrations in clathrates
by substitution and doping can improve the efficiency of thermoelectric pro-
cesses and therefore increase the figure of merit.

This diploma thesis focuses on the investigation of Ba8-based clathrates
with copper, zinc and cadmium as variable elements. Furthermore, the con-
centration of cadmium is altered. As the results of the measurements will
show, some of these compositions offer an outstanding figure of merit and,
thus, promise to have useful applications in technical processes.



Chapter 2

Theoretical Aspects

This chapter is mainly based on the book Thermoelectrics - Basic Principles
and New Materials Developments by G.S.Nolas, J.Sharp and H.J.Goldsmid
published by Springer-Verlag as well as on the scripts of the lectures Highly
Correlated Electron Systems and Metallphysik Praktikum - Transportphänomene
in Festkörpern given by E. Bauer and S. Bühler-Paschen at the Vienna Uni-
versity of Technology in 2006.

2.1 Transport Phenomena
Transport phenomena describe the ability of a material to transport energy
and electrical charge in consequence of external electric and magnetic fields as
well as temperature gradients. While the external fields and the temperature
gradient act as driving forces, various scattering processes finally lead to
a state of equilibrium. This combination of driving forces and scattering
processes provide transport coefficients such as

• Electric Resistivity (ρ)

• Thermal Conductivity (λ)

• Seebeck Coefficient (S)

• Peltier Coefficient (Π)

• Magneto Resistance

• Hall Coefficient

which are characteristic for each material. Consequently, the measurement
of these physical values is important in the investigation of thermoelectric
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materials. For this thesis the first three transport coefficients (ρ, λ, S) are
investigated and explained in detail in this chapter. Since the transport
of energy and the scattering processes consist partly of two contributions,
namely that of the lattice and that of the electrons, these two are described
first.

2.1.1 Electronic Contribution

To explain the behaviour of electrons it turned out that their distribution
described by the Maxwell-Boltzmann distribution function

f0(E) =
1

e
E−EF
kBT

(2.1)

in the theory of a free electron gas failed in the description of most pro-
cesses in solid state physics like for example the electronic contribution to
specific heat. Enrico Fermi and Paul Dirac developed an alternative model
that combines the Maxwell-Boltzmann distribution function with quantum
mechanics. This led to the Fermi-Dirac distribution function

f0(E) =
1

e
E−EF
kBT + 1

(2.2)

where kB = 1.38 × 10−23J/K is the Boltzmann constant and EF the Fermi
energy for free electrons, given by

EF =
h2

2me

(
3nπ2

) 2
3 . (2.3)

EF is the energy at T = 0 K below that all states are occupied by electrons
while above none of the states are occupied and me is the electron mass. n
is the number of free electrons per unit volume, derived by

n =
1

V

∫ ∞

0

f0(E)g(E)dE. (2.4)

The Fermi-Dirac distribution function (2.2) represents the probability that
a state is occupied by an electron. The number of states within the energy
range (E, E + dE) is given by

g(E)dE =
V (2m∗

e)
3
2

√
|E|

4π2h3
d|E| (2.5)
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with m∗
e as effective mass of an electron given by

1

m∗
e

=
1

h̄2 ·
d2E

dk2
. (2.6)

The increase of energy an electron aquires due to thermal excitation can
only be of the order of kBT . Since for metals at ordinary temperatures kBT
is always much smaller than the Fermi energy EF only very few electrons
can be excited from a state below EF to a state above EF and therefore
contribute to transport properties of materials. However, for semi-metals
and semiconductors kBT might be in the same order of magnitude as EF or
even higher. As Equation (2.3) shows EF is proportional to the number of
free electrons. Since n is much smaller for semi-metals and semiconductors
than for metals kBT can become larger than EF for such materials. Then it
is possible to obtain the condition kBT � EF at room temperature and the
Fermi-distribution can be replaced by the Maxwell-Boltzmann-distribution.
In this case the electron gas is said to be non degenerate whereas when n is
large enough so that kBT � EF a degenerated electron gas is responsible for
the electronic contribution to the transport properties.

Additionally to the free electron gas theory the band theory of solids
needed to be developed in order to explain their transport properties. Each
electron in crystalline solids is exposed to a periodical potential caused by the
nuclei. It furthermore undergoes the field determined by all other electrons.
Thus the electron’s movement is strongly influenced by these two forces. The
periodic boundary conditions and the translation symmetry lead to discrete
solutions of the wave function. These solutions are always within bands of
energies that are separated from one another by forbidden areas, so called
energy gaps.

The relation between energy and wave number of an electron is given by

E(k) =
h2k2

8π2m∗
e

(2.7)

which is the same as for the free electron gas except that in this case the
electron mass me is replaced by its effective mass m∗

e. However, this relation
is only correct for small values of E and k, that is, next to the center of
the first Brillouin zone. The second derivation d2E/dk2 is of special interest
because if it is negative the charge carriers seem to be negative with negative
mass. However, it is convenient to regard it as positive carrier of positive
mass. In this case, the energy E must be measured downward from the band
edge and f0(E) is the probability that a state is unoccupied by an electron,
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that is, occupied by a hole. Hence, equation (2.4) needs to be separated into
an electronic part and a part representing the density of holes:

nn =

∫ ∞

EF

f0(E)N(E)dE, (2.8)

np =

∫ EF

−∞

(
1− f0(E)

)
N(E)dE. (2.9)

Now the electric behaviour of conductors, semiconductors and insulators
could be explained. If the Fermi energy lies within an energy band the
electrons can be excited easily and the material is a conductor. In case
the Fermi energy lies within a band gap the material is an insulator since
the excitation of the electrons requires an energy of the order of Eg - the
difference between the valence and the conduction band. The situation for
semiconductors is similar, however, in this case Eg is small enough so that
electrons can be excited from the valence band into the conduction band.
Such materials are called intrinsic semiconductors. In case conduction and
valence band overlap one another the material is a semi-metal. Its transport
properties are similar to that of narrow-gap semiconductors.

On the other hand one can change the electric properties of a material by
adding impurities. Such materials are called extrinsic semiconductors. If the
impurity consists of atoms with one more valence electron than the original
semiconductor has an additional energy level (donor level) for electrons right
below the conduction band edge is created. The electrons of this level can
therefore be excited easily into the conduction band. In contrast, if the added
atoms have one electron less than the original semiconductor an additional
energy level for holes (acceptor level) is created right above the band edge of
the valence band. Consequently, the excitation of holes into the valence band
requires only a small amount of energy. Due to the major charge carriers the
first one is called n-type semiconductor whereas the latter one is said to be
a p-type semiconductor.

Electron Scattering Processes

The electronic contribution to transport properties and their coefficients are
determined by their scattering processes. An electron can be scattered by

• lattice imperfections (impurities, crystal defects)

• thermal vibrations of the lattice (phonons)

• magnetic moments of the lattice atoms
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• ionised atoms (piezoelectric scattering)

• other electrons.

The transport coefficients can be derived from the linearised Boltzmann
equation1 (

∂

∂t
+ ~̇r∇r + ~̇k∇k

)
fγ =

(
∂fγ(E)

∂t

)
coll

(2.10)

in which γ = (~k, ~r), ~k is the wave vector, ~r the position vector, ~v the velocity
and fγ(E) the Fermi-Dirac distribution function of an electron. The left
term (=field term) represents the driving forces due to external fields and
temperature gradient while the right term represents scattering processes. A
common way to solve this equation is the relaxation time approximation. If
the Fermi-Dirac distribution function is distributed from its equilibrium f 0

γ

because of external fields and |fγ − f 0
γ | � f 0

γ as well as the velocity at which
fγ returns to f 0

γ is proportional to |fγ − f 0
γ | the system relaxes according to(∂fγ(E)

∂t

)
coll

=
fγ(E)− f 0

γ (E)

τγ

(2.11)

in which τ is the time the system needs for this relaxation process and fγ(E)
and f 0

γ (E) are the perturbed and unperturbed distribution functions, re-
spectively. According to Matthiessen’s rule the scattering processes can be
regarded as independent from each other in a first approximation, thus

1

τe

=
∑

i

1

τe,i

(2.12)

where i is the index of the various scattering processes. In order to obtain
fγ(E) − f 0

γ (E) in terms of the electric field and the temperature gradient
the Boltzmann equation can be solved with the help of the relaxation time
approximation:

fγ(E)− f 0
γ (E)

τγ

= −~̇k
∂fγ(E)

∂~k
− ~̇r

∂fγ(E)

∂~r
(2.13)

Since |fγ(E) − f 0
γ (E)| � f 0

γ (E) (only small displacements of fγ(E)) fγ(E)
can be replaced on the right-hand side of equation (2.13) by f 0

γ . Because
the displacement of fγ(E) is caused by the temperature gradient and the
external electric field equation (2.13) can be written like

fγ(E)− f 0
γ (E)

τγ

= u
∂f 0

γ (E)

∂E

(
∂EF

∂x
+

E − EF

T

∂T

∂x

)
(2.14)

1To simplify the work all calculations are only in x-direction
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where u is the velocity of the charge carriers in x-direction. The electric
current density j is given by

j = ∓
∫ ∞

0

eufγ(E)g(E)dE (2.15)

with - for electrons and + for holes as charge carriers. The density of the
rate of heat flow is

q =

∫ ∞

0

u(E − EF )fγ(E)g(E)dE (2.16)

where E−EF represents the total energy transported by each carrier. Again
the approximation of small displacements is used and fγ(E) in Equation
(2.15) and (2.16) can be replaced by fγ(E)− f 0

γ (E). Since we only consider
one direction and because all movements are equally distributed over all
directions (i.e. one third for each direction) the velocity of the charge carriers
may be set as

u =

√
2E

3m∗
e

. (2.17)

Thus i and w can be calculated as follows:

j = ∓ 2e

3m∗
e

∫ ∞

0

g(E)Eτe

∂f 0
γ (E)

∂E

(
∂EF

∂x
+

E − EF

T

∂T

∂x

)
dE (2.18)

and

q = ±EF

e
j +

2

3m∗
e

∫ ∞

0

g(E)E2τe

∂f 0
γ (E)

∂E

(
∂EF

∂x
+

E − EF

T

∂T

∂x

)
dE. (2.19)

To derive the electrical conductivity σ the temperature gradient can be set
to zero since it does not influence the conductivity. Since the electric field is
given by

~E =
1

e

∂EF

∂x
the electrical conductivity is

σ =
j

~E
=

2e2

3m∗
e

∫ ∞

0

g(E)Eτe

∂f 0
γ (E)

∂E
dE. (2.20)

According to the same consideration as above the electric current can be set
equal to zero in order to find a formula for the Seebeck coefficient. Hence,
equation (2.18) may be written as

∂EF

∂x

∫ ∞

0

g(E)Eτe

∂f 0
γ (E)

∂E
dE = ± 1

T

∂T

∂x

∫ ∞

0

g(E)Eτe(E − EF )
∂f 0

γ (E)

∂E
dE.

(2.21)
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Since the Seebeck coefficient S is the relation of a resulting voltage due to
an applied temperature gradient it is given by

S =
∆U

∆T
=

1

e

∂EF

∂x
∂T
∂x

. (2.22)

In combination with equation (2.21) S can be expressed as

S = ± 1

eT

(
EF −

∫∞
0

g(E)E2τe
∂f0

γ (E)

∂E
dE∫∞

0
g(E)Eτe

∂f0
γ (E)

∂E
dE

)
(2.23)

where S is negative if the charge carriers are electrons and positive if they
are holes. In order to get an expression for the electronic contribution to
thermal conductivity the same consideration as for the Seebeck coefficient
can be used. Thus, the electrical current i can be set again equal to zero.
The thermal conductivity λe is basically given by

q = −λe
∂T

∂x
(2.24)

and therefore calculated as follows:

λe =
2

3m∗
eT

[( ∫∞
0

g(E)τeE
2 ∂f0

γ (E)

∂E
dE
)2

∫∞
0

g(E)τeE
∂f0

γ (E)

∂E
dE

−
∫ ∞

0

g(E)τeE
3
∂f 0

γ (E)

∂E
dE

]
.

(2.25)
To simplify the formulas for the transport coefficients their integrals can be
replaced by so called transport integrals Kn given by

Kn = − 2T

3m∗
e

∫ ∞

0

g(E)τeE
n+1

f 0
γ (E)

∂E
dE. (2.26)

Thus, the transport coefficients can be simplified to

σ =
e2

T
K0 (2.27)

S = ± 1

eT

(
EF −

K1

K0

)
(2.28)

λe =
1

T 2

(
K2 −

K2
1

K0

)
(2.29)

For the calculation of these transport coefficients it is necessary to use numer-
ical methods. Otherwise, equation (2.27) to (2.29) together with appropriate
measurement results can be used to find out important parameters of the
investigated materials such as Fermi energy, effective mass, relaxation time
and lattice conductivity.
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2.1.2 Lattice Contribution to the thermal conductivity

In contrast to electrons the lattice contributes only to the thermal conductiv-
ity (except for the phonon-drag that contributes to the thermopower). The
atoms in a solid do not vibrate independently. The vibrational energy of one
atom is transfered to its neighbours due to inter atomic forces. Thus, the
energy moves through the solid in waves called phonons which are respon-
sible for heat conduction by the lattice. One way to describe the thermal
conductivity is based on the kinetic theory of gases leading to

λl =
1

3
cvνlt (2.30)

where cv is the specific heat, ν the speed of sound and lt the mean free path
length. According to Debye’s model [4] the specific heat is given by

cv = 9NkB

( T

θD

)3
∫ θD

T

0

x4ex

(ex − 1)2
dx. (2.31)

θD is the Debye temperature and N is the number of atoms per unit volume.

Scattering Processes

In order to explain physical properties like for example thermal resistivity
various scattering processes have to be taken into account. Phonons can be
scattered by

• other phonons (normal- and Umklapp-processes),

• lattice imperfections (impurities, crystal defects),

• electrons and

• grain boundaries

Phonon-Phonon Scattering, Umklapp-Processes: In many materials
the thermal conductivity shows a 1/T-dependence as long as their tempera-
ture is not much less than θD. This rule is based on observations by Eucken
[5]. In order to explain Eucken’s 1/T-law Peierls [6] introduced the concept of
the quantisation of the lattice vibrations called phonons. In pure crystals at
high temperatures, phonons are scattered predominantly by other phonons.
This interaction process between two phonons with wave vector ~q1 and ~q2

results in a third one with wave vector ~q3:

~q1 + ~q2 = ~q3.
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If ~q3 lies within the first Brillouin zone |~q| and therefore momentum is con-
served (Normal-processes). Thus heat is transported without resistivity of
the crystal lattice. However, in case ~q3 points outside the first Brillouin
zone it is backscattered due to Bragg reflexion. This can be described if
~q3 is reduced to the first Brillouin zone by subtracting the reciprocal lattice
vector (Umklapp-processes). Since the absolute value of the wave vector is
proportional to the temperature, Bragg reflexion is the common process at
higher temperatures. Hence, thermal conductivity decreases with increasing
temperature.

Scattering of Phonons by Defects, Normal-Processes: In addition
to scattering of phonons by other phonons, scattering of phonons by defects
occur frequently in real crystals. Such defects can be foreign impurities,
vacancies, density variations or dislocations, for example. The probability of
scattering processes of waves on point-like defects are usually proportional to
the fourth power of the frequency. Thus, we would expect for the scattering
time

τ ∝ 1

ν4
. (2.32)

Since the probability for Umklapp-processes also decrease with temperature
an exceedingly large thermal conductivity at lowest temperatures would be
the consequence. However, this is not the case because of the redistribution of
phonons by Normal-processes into modes for which the scattering is stronger.

The model developed by Callaway [7, 8, 9] includes such Normal-processes.
The model furthermore uses the relaxation time τ instead of the mean free
path length lt. Since Umklapp-processes do not conserve momentum the
perturbed phonons relax toward an equilibrium distribution while the mo-
mentum conserving Normal-processes cause them to relax towards a non
equilibrium distribution. If only Umklapp-processes occur (as it is the case
at higher temperatures) the total relaxation time is given by

1

τl

=
1

τU

+
1

τl,0

+
1

τl,e

+
1

τl,b

, (2.33)

where τU is the relaxation time for non-momentum-conserving processes
(Umklapp-processes), τ0, τe and τb are the relaxation times corresponding
to scattering on lattice imperfections, electrons and boundaries, respectively.
In order to take Normal-processes into consideration Callaway obtained an
additional factor β which is calculated by

β =

∫ θD
T

0
τl

τn

x4ex

(ex−1)2
dx∫ θD

T

0
1

τl,n

(
1− τl

τl,n

)
x4ex

(ex−1)2
dx

. (2.34)
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Thus, the lattice contribution to thermal conductivity is obtained by

λl =
k4

BT 3

2π2vsh̄

∫ θD
T

0

[
τl

x4ex

(ex − 1)2
+ β

]
dx (2.35)

where vs = kBθD

h̄(6π2n)1/3
is the speed of sound, x = h̄ω

kBT
and θD the Debye-

temperature.

2.1.3 Electrical Resistivity

The electric resistivity is determined by the scattering of electrons as de-
scribed in Section 2.1.1. The average time for an electron between two scat-
tering processes is the relaxation time τe that is determined by the electron
velocity and the mean free path length. Although all scattering processes as
described in Section 2.1.1 contribute to the electrical resistivity only those
due to lattice imperfections and phonons are important for simple metals
without magnetic moments. According to Matthiessens’s rule the relaxation
times of both processes can be considered as independent from each other.
Subsequently, for simple metals without magnetic moments τe can be calcu-
lated to

1

τe

=
1

τe,0

+
1

τe,ph

. (2.36)

τe,0 is the time between two electron-imperfection scattering processes and
τe,ph the time between two electron-phonon scattering processes. The relation
between the relaxation time and the electrical resistivity is given by the Drude
formula

ρ =
me

ne2τ
. (2.37)

It is the relaxation time that is responsible for the magnitude and tempera-
ture dependence of the electrical resistivity of a material. Since interactions
between electrons and lattice imperfections are independent of temperature
it follows that

ρ(T ) = ρ0 + ρph(T ) (2.38)

where ρ0 and ρph(T ) are the resistivities due to scattering processes on crys-
tal defects and phonons, respectively. While the first term can be deter-
mined only by measurements the second one can also be calculated by the
Bloch-Grünseisen formula [10] which is derived from the linearised Boltz-
mann equation:

ρph = R
(

T

θD

)5 ∫ θD
T

0

z5(
ez − 1

)(
1− e−z

)dz. (2.39)
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where R represents the interaction strength between conduction electrons
and phonons and contains the ionic mass, Fermi velocity, etc. For high
temperatures the electrical resistivity shows approximately a linear behaviour

ρph(T ) ≈ R
4

T . . . T � θD (2.40)

whereas for low temperatures ρph(T ) shows T 5 dependence given by

ρph(T ) ≈ R
θD

(
T

θD

)5

. . . T � θD (2.41)

In order to calculate θD and R in practice these two values are used as fit
parameters to approximate ρph(T ) to actual measurement curves.

Depending on the elements the investigated material consists of, electron
scattering on magnetic moments might occur. This is the case when the
lattice atoms have a resulting magnetic moment (e.g. the 4f moments of the
rare earth elements). Thus, equation (2.38) has to be completed by adding
ρmag(T ):

ρ(T ) = ρ0 + ρph(T ) + ρmag(T ). (2.42)
The contribution of ρmag(T ) to the total electric resistivity depends on the
temperature. If the temperature is low enough so that all magnetic moments
of the lattice atoms are aligned parallel (i.e. T < TC → ferromagnetic state)
one obtains

ρmag(T ) = AT 2, (2.43)
where A is a constant. Consequently, the contribution of the magnetic mo-
ments is zero at 0 K. This behaviour can be explained if the conduction
electrons are regarded as waves. At 0 K without any phonons and perfect
magnetic order the electrons move as Bloch-waves, hence, they do not suffer
scattering processes. However, as soon as the temperature is above that of
magnetic order (Currie temperature TC) the contribution of magnetic mo-
ments becomes temperature independent:

ρmag =
3πNm∗

e

2e2h̄EF

|J |2(g − 1)2j(j + 1) (2.44)

where (g− 1)2j(j +1) is the deGennes-factor, g the Landé-factor, J the cou-
pling constant between the spin of the conduction electron and the spin total
angular momentum of the magnetic ion and j the total angular momentum
of the magnetic ion.

Figure 2.1 shows the temperature dependence of each contribution and
of the total electric resistivity. From the explanations above it follows that
the electric resistivity of a perfect crystal (no defects at all) next to 0 K is
zero.
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Figure 2.1: Example of temperature dependent resistivity behaviour of magnetically
ordered rare earth compounds. Diagram taken from [11].

2.1.4 Thermopower

The thermopower of a material, represented by its Seebeck coefficient, is
a consequence of the movement of the charge carriers due to a temperature
gradient. The resulting displacement of electrons and holes causes an electric
voltage. The relation between this voltage and the temperature gradient is
then the Seebeck coefficient. Hence, the Seebeck coefficient Sx of a material
x is given by

U = Sx∇T (2.45)

For homogeneous materials ∇T can be replaced by ∆T .
For metals, the contributions to their thermopower is given by

S = Se + Sph + Sm (2.46)

where Se is the diffusion term, resulting from the movements of the electrons
due to the temperature gradient. Sph and Sm are the drag terms represent-
ing the phonon-electron drag (caused from electron drag due to phonons)
and the magnon-electron drag (caused from electron drag due to magnons),
respectively. However, due to their small contribution the drag terms are
usually neglected. Since the kinetic energy of the electrons correspond to
their temperature the average movement of the electrons is from the warmer
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to the colder part of the material (figure 2.2). The one-dimensional average
velocity due to the temperature gradient can be derived to

vdiff =
v1 + v2

2
=

v(x− vτ)− v(x + vτ)

2
, (2.47)

which can be developed in first order to

vdiff = −τ

2

dv2

dT

dT

dx
. (2.48)

For three dimensions v can be replaced by 1
3
v2 leading to

vdiff = −τ

6

dv2

dT
∇T. (2.49)

The electron velocity due to the electric field is given by

vdrift = −eτ

m
~E. (2.50)

Since in equilibrium both contributions compensate each other so that the
resulting current is zero one obtains

1

3

d

dT

(
mv2

2

)
∇T + e ~E = 0. (2.51)

Together with d
dT

(
mv2

2

)
= cV

n
2 and (2.45) the Seebeck coefficient is given by

Se = −π2k2
BT

6eEF

. (2.52)

In contrast to electric resistivity and thermal conductivity Matthiessen’s
rule cannot be used in this case. In order to split the contributions to Se the
Kohler rule is used instead.

SeWe = Se,0We,0 + Se,phWe,ph + Se,magWe,mag (2.53)

We represents the thermal resistivity for electrons. Since it is difficult to
derive this value from thermal conductivity measurements the Wiedemann-
Franz law (see section 2.1.6) is used so that

Seρ = Se,0ρ0 + Se,phρph + Se,magρmag. (2.54)
2In a first approximation the inner energy U is given by the kinetic energy: U ≈ kBT ≈

mv2

2 . The specific heat is the change of U with respect to temperature: cV = dU
dT
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Figure 2.2: The temperature gradient causes the electrons to move from the warmer
end at TH to the colder end at TC . The resulting field takes an opposite effect on the
electrons. In equilibrium the currents compensates each other.

An analytical expression for S can be derived via the Peltier coefficient

Π = T · S (2.55)

with
Π =

∑
i hivi

e
∑

i vi

. (2.56)

vi is the velocity of the ith electron and hi its thermal energy. The latter one
is the difference between the energy of the ith electron and the Fermi-energy

hi = Ei − EF . (2.57)

Hence, the nominator in equation (2.56) represents the total amount of trans-
ported thermal energy while the denominator stands for the electric current.
If follows that

S =
1

eT

∑
i(Ei − EF )vi(x)

jx

(2.58)

If only the contribution of the energy interval (E, E + dE) is considered we
obtain

S =
1

eT

∫
(E − EF )jx(E)dE∫

jxdE
. (2.59)

The current can be derived from the linear Boltzmann equation and the
relaxation time approximation to

jx = −e2 ~Ex

4π3h̄

∫ ∫
τ
v2

x

v
dA

df0

dE
dE, (2.60)
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where
∫

dA is a surface integral. The electrical conductivity σ can be ex-
pressed as follows

σx =
e2

4π3h̄

∫
τ
v2

x

v
dA (2.61)

Thus, the electric current in x-direction is given by

jx = − ~Ex

∫
σx(E)

df0

dE
dE. (2.62)

The general expression for the thermopower is therefore given by

S =
1

eT

∫
σx(E)(E − EF )df0

dE
dE∫

σx(E)df0

dE
dE

. (2.63)

As equation (2.63) shows the Seebeck coefficient is correlated to the electrical
conductivity and its energy dependence. Thus, S = 0 if σ(E) is constant over
a range of energy E ∈ (−kBT, +kBT ) for which df0

dE
6= 0. Further assumptions

such as df0/dE has only in the range kBT above EF appreciable large values
and E = EF finally lead to

S =
(πkB)2

3e
T

(
∂

∂E
ln σ(E)

)
(2.64)

The complete derivation of equation (2.64) was made under the assumption
that only elastic scattering processes occur and that all transport processes
are independent of direction (no anisotropic effects).

2.1.5 Thermal Conductivity

The thermal conductivity of a material is described by the coefficient λ which
is the relation between an applied temperature gradient∇T and the resulting
heat flow ~q expressed by Fourier’s law :

~q = −λ∇T (2.65)

As explained in Section 2.1 electrons as well as phonons contribute to thermal
conductivity, thus

λ = λe + λl. (2.66)
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Contribution of Electrons

Concerning the electronic part, Matthiessen’s rule can be used to describe the
different scattering processes. For simple metals the electronic contribution
can be split into interaction processes between electrons and crystal defects
and that between electrons and phonons.

1

λe

≡ We = We,0 + We,ph (2.67)

Analogue to the electrical resistivity, model calculations have been devel-
oped based on the linearised Boltzmann equation and the relaxation time
approximation. The thermal resistivity We at low temperatures is mainly
determined by interaction processes of electrons and crystal defects:

We,0 =
α

T
. (2.68)

At higher temperatures electron-phonon interaction processes become dom-
inant. These are described by the Wilson equation, which is similar to the
Bloch-Grüneisen formula:

We,ph =
4R

L0T

(
T

θD

)5[(
1 +

3

4π2

(θD

T

))
J5(z)− 1

2π2
J7(z)

]
(2.69)

where Jn(z) are Debye-integrals given by

Jn(z) =

∫ θD
T

0

zn(
ez − 1

)(
1− e−z

)dz. (2.70)

L0 is the Lorenz number (see Section 2.1.6) and R is a constant depending on
electronic properties and on the strength of the electron-phonon interaction.
For low temperatures (T � θD) the thermal resistivity can be approximated
by

We,ph ≈ const ·
(

124.4

θD

)3

T 2 . . . T � θD, (2.71)

whereas for high temperatures (T � θD) the thermal resistivity is tempera-
ture independent:

We,ph ≈
R

L0θD

. . . .T � θD (2.72)

Thus, concerning thermal conductivity, the contribution of electrons cause a
T 2-dependence at low temperatures but remains constant as the temperature
increases.
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As for the electric resistivity, additional scattering processes have to be
considered if the material contains atoms with permanent magnetic moments.
This increases the thermal resistivity due to interactions between electrons
and the magnetic moments leading to

1

λe

≡ We = We,0 + We,ph + We,mag. (2.73)

Naturally, scattering processes of electrons on magnetic moments depend on
their structure. For a magnetically disordered range (T > TC , paramagnetic
state) the thermal resistivity is approximately given by

We,mag · T = D|J |2(g − 1)2j(j + 1) (2.74)

where D is a constant. For the ferromagnetic state (T < TC) no analytical
expression has been derived so far. However, from experiments we know that
below the Curie-temperature We,mag · T increases with temperature.

Lattice Contribution

Thermal resistivity due to phonon scattering results from interaction be-
tween phonons and crystal defects, phonon-phonon processes and scattering
of phonons by conduction electrons and boundaries. Analog to λe the con-
tributions of the lattice thermal conductivity can be added up leading to

1

λl

≡ Wl = Wl,0 + Wl,ph + Wl,e + Wl,B. (2.75)

Based on the relaxation time approximation Callaway developed a model
assuming that these different scattering processes can be regarded as inde-
pendent from each other. According to Matthiesen’s rule, the total relaxation
time is given by

1

τl

=
1

τl,0

+
1

τU

+
1

τN

+
1

τl,e

+
1

τl,b

(2.76)

The corresponding relaxation times for phonon-phonon interactions are τN

for Normal-processes and τU for Umklapp-processes. τl,0 denotes for scatter-
ing on crystal defects, τl,b for scattering on boundaries and τl,e for phonon-
electron interaction processes. The contribution of each single process to the
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total relaxation time is given by

1

τl,0

= Ax4T 4, (2.77)

1

τU

= BT 3x2e
−θD
3T , (2.78)

1

τl,b

= C, (2.79)

1

τl,e

= DTx (2.80)

(2.81)

where x =
(

h̄ω
kBT

)
. Normal processes are represented by equation (2.34). The

lattice thermal conductivity is then given by equation 2.35. Due to their
small contribution Normal processes are usually neglected.

The temperature dependence is at low temperatures mainly determined
by interactions between phonons and conduction electrons, yielding λl,e ∝ T 2.
As the temperature increases Umklapp-processes become dominant leading
to a λl ∝ 1

T
. Figure 2.3 gives an overview about the influence of the scattering

processes to thermal conductivity and resistivity. At lowest temperatures
boundary and point defect scattering are the most important interactions
while Umklapp processes become dominant as the temperature increases.

Both Contributions

The separation of both contributions (λl and λe) is difficult and is only pos-
sible under certain circumstances. For example, in metals and inter-metallic
compounds with excellent conductivity at low temperatures λ can be approx-
imated as follows:

λ = λe + λl =
1

We,0 + We,ph

+ λl,e =
1

α
T

+ γT 2
+ δT 2 (2.82)
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Figure 2.3: On the left side of this figure the lattice thermal conductivities are displayed
as they would look like if only one of the scattering processes occure. In contrast, the
contributions to thermal resistivity for phonons are plotted on the right side.
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2.1.6 The Lorenz Number

The descriptions of thermal and electrical conductivity have shown a lot of
similarities. The relation between both coefficients was already discovered in
1853 by Wiedemann and Franz [12].

In the model of a classical electron gas the electronic part of the thermal
conductivity can be expressed as

λe =
1

3
ncevele, (2.83)

where ce is the electronic heat capacity per electron, n the number of con-
duction electrons per unit volume, ve the electron velocity and le the elec-
tron free path length. Since for a free electron gas one can set ve = vF ,
ce = π2k2

BT/mv2
F and l = vF τ the thermal conductivity becomes

λe =
π2nk2

BTτ

3m
. (2.84)

If this is compared with the Drude formula (2.37) one obtains

λe

σ
=

π2k2
B

3e2
T = L0T, (2.85)

in which L0 = 2.45 · 10−8WΩK−2 is the Lorenz number for a free electron
model. For this calculation the mean life time τ is assumed to be the same
for thermal and electrical transport processes. The Lorenz number can be
defined for real metals as follows:

Le =
λeρ

T
. (2.86)

Since Le is temperature dependent it can significantly differ from L0. In
order to calculate Le one has to subtract λe from λ. However, since λl is
difficult to calculate the expression

L(T ) =
λρ

T
(2.87)

is mostly used. For metals where the thermal conductivity is mainly de-
termined by the electronic contribution the situation can be simplified by
setting L(T ) ≈ Le ≈ L0
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2.2 Efficiency of Thermoelectic Systems: Fig-
ure of Merit

Thermoelectric processes based on the Seebeck- and Peltier-effect can be used
in order to generate electrical energy from a temperature gradient (Seebeck)
or to pump heat via electricity (Peltier). However, in all applications of ther-
moelectric processes their efficiency and performance have to be considered.
As described above thermoelectric processes are not independent, rather they
influence each other, mostly in a negative way. Thus, for example, materi-
als with large thermopower S also offer large values of the Peltier-coefficient
Π (see equation (2.55)). Consequently, the temperature gradient is reduced
which lowers the performance for electric power generation.

In order to calculate the efficiency of a thermoelectric system the Figure
of Merit Z has to be derived. Figure 2.4 shows a sketch of an idealised
thermo-couple consisting of two branches (one p-type and one n-type). They
are of different length and cross section and arranged in an electric (serial)
and thermal (parallel) assembly. An external electric voltage is applied at the
end of each branch causing an electrical current that works as a heat pump
due to the Peltier effect. Additionally, the upper endings of the branches are
connected to a heat source with constant temperature TH while the lower
endings are connected to a heat sink with constant temperature TC . This
temperature gradient generates a heat flow and, because of the Seebeck effect,
an electrical current. Both currents lead to an increase of the temperature
of the branches.

For this consideration all losses due to radiation are neglected. Further-
more, electrical and thermal resistances at the junctions are assumed to be
zero. The coefficients S, λ and ρ should not vary with temperature and the
only way to exchange heat between source and sink are the thermo-couples.
Because of the major charge carriers S is positive in the p-type branch and
negative in the n-type. Based on equation (2.55) and (2.56) the total heat
flow within each branch is

qp = SpIT − λpAp
dT

dx
and qn = −SnIT − λnAn

dT

dx
(2.88)

The first terms in these equations represent the heat flow due to the current
(Peltier-effect) while the second one stands for the heat flow resulting from
the temperature gradient. Since Sn is negative the Peltier heat flow is positive
in both branches. The rate of heat generation within each branch due to the
Joule-effect is given by

dq

dx
= I2 ρ

A
. (2.89)
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Figure 2.4: Principle design of a thermo-couple for electric power generation or heat
pumping. (Scetch taken from [3].)

This causes a non constant thermal gradient:

−λp,nAp,n
d2T

dx2
=

I2ρp,n

Ap,n

(2.90)

Since T = TH at x = 0 and T = TC at x = Lp,n it follows

λp,nAp,n
dT

dx
= −

I2ρp,n(x− Lp,n

2
)

Ap,n

+
λp,nAp,n∆T

Lp,n

(2.91)

with ∆T = TH−TC . Since the rate at which heat is removed from the source
is qC = (qp + qn)|x=0 the net heat pumping rate is given by

qC = (Sp − Sn)ITC −K∆T − I2R

2
(2.92)

with the total thermal conductance

K =
λpAp

Lp

+
λnAn

Ln

(2.93)

and the total electrical resistance

R =
Lpρp

Ap

+
Lnρn

An

. (2.94)
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The current at which the maximum cooling power is reached is calculated by
dqC

dI
= 0:

Imax =
(Sp − Sn)TC

R
. (2.95)

If follows that

qC,max =
(Sp − Sn)2T 2

C

2R
−K∆T. (2.96)

A positive cooling effect only can be obtained if QC,max ≥ 0. Introducing the
definition for the figure of merit

Z =
(Sp − Sn)2

KR
(2.97)

the maximum achieveable temperature gradient is given by

∆Tmax = (TH − TC) =
1

2
ZT 2 (2.98)

From equations (2.97), (2.93) and (2.94) it follows that Z depends on length
and cross section of the branches. However, for material sciences the geom-
etry of the investigated material should not be of importance. To maximise
Z the factor KR has to be minimised. This is the case if

LnAp

LpAn

=

(
ρpλn

ρnλp

)1/2

. (2.99)

This leads to an independent formula for the figure of merit:

Z =
(Sp − Sn)2

[(λpρp)1/2 + (λnρn)1/2]2
(2.100)

This definition is of convenience for combined thermoelectric devices. In
order to characterise a single material the figure of merit is defined as

Zp,n =
S2

p,n

ρp,nλp,n

. (2.101)

An optimum thermoelectric performance of a material is therefore given by a
large Seebeck coefficient. However, due to irreversible thermoelectric effects
(heat conduction and Joule heating) the values for thermal conductivity and
electrical resistivity should be small. Since the overall unit of the fraction
on the right side of (2.101) would be 1/K it is more convenient to use ZT
instead of Z.
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2.3 Clathrates
Glen Slack announced 1995 his idea of the PLEC-concept (Phonon Lattice
and Electron Crystal) that combines the properties of a crystal with that
of a glass [13]. This combination offers a rigid structure, responsible for
good electrical conductivity, and heavy atoms rattling in cages of this struc-
ture leading to a lower thermal conductivity due to additional scattering of
phonons. Clathrates are compounds with such properties. The framework,
usually realised with germanium or silicon atoms, provides large cages filled
by heavy electropositive elements like for example barium, caesium, stron-
tium, europium or rubidium. In order to stabilise the framework and for
a proper adjustment of the electronic structure p and d elements like cad-
mium, zinc or copper are added to the compound. For this diploma thesis
the ternary clathrate phases Ba8CdxGe43− 5

8
x23− 3

8
x were investigated, with x

= 2.4, 4.7, 6.5 and 7.6. The number of vacancies 2 decreases almost linearly
with increasing cadmium content. Additional measurements were taken on
Ba8Cu5Ge41 and Ba8Zn7.7Ge38.3 in order to get a better understanding about
how the included elements influence the thermoelectric properties.

The electronic structure of clathrates can be understood in terms of the
Zintl concept. Although this model simplifies the real situation, it provides
a good description of their thermoelectric behaviour. According to this con-
cept, the electronic structure of binary clathrates, like for example Ba8Ge4323

with three framework defects, can be formulated as [Ba+2]8[Ge0]43[2
−4]3

[14, 15]. This leads to a deficiency of four electrons and, thus, to an im-
proved electrical conductivity. Substitution and doping is a fruitful way in
order to tune the charge carrier concentration and therefore to optimise the
thermoelectric performance of a material. Figure 2.5 shows the crystal struc-
ture of two compounds, namely Ba8Cd2.4Ge41.122.2 and Ba8Cd7.6Ge38.4 and
how the cadmium content is changed.
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Figure 2.5: Crystal structure of Ba8Cdx(Ge43− 5
8 x23− 3

8 x) clathrates and how their cad-
mium content is changed [16].
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Chapter 3

Experimental Design

This chapter describes the setup of the experiments and some necessary de-
tails about materials and devices. Except of the thermal conductivity the
thermoelectric factors (ρ and S) were measured at two different temperature
ranges1. From 4.2 K up to 300 K, in the following named as low temperature,
and from 300 K up to 700 K named as high temperature. Furthermore, in all
cases the measurement is from lower to higher temperatures in order to get
more stable conditions. Finally, measurement values (S, ρ and λ) and the
respective temperatures are displayed graphically on the screen and stored
in a text file.

Although furnace and sample holders would provide even higher temper-
atures none of the measurements are above 700 K since the clathrates might
then melt and the results become more inaccurate. For all measurements at
low temperatures liquid helium was used as cooling medium.

The procedure is similar for each measurement. First the sample needs
to be contacted with the sample holder. Afterwards the sample holder is
inserted either into a cryostat (in case of low temperature measurement) or
into the furnace (for measurements at high temperatures). The next step is
then to plug the sample holder to the devices and to start the program that
controls the measurement.

Clathrates show very interesting behaviour concerning their transport
properties. However, it is one of the clathrates feature to break into pieces
as soon as they are touched not absolutely smoothly. Contacting the sample
can therefore be a tough challenge.

1As it will be explained later on no samples for λ-measurements at high temperatures
were left (see Section 3.3).
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3.1 Electrical Resistivity

For both temperature ranges a 4-terminal system is used to contact the
sample in which a current is applied via two contacts at its ends and the
resulting voltage drop along the sample is detected via two more contacts in
between them. Figures 3.1 and 3.3 show sketches of both sample holders.
The result is then the absolute resistivity R of the sample given by Ohm’s
law

R =
U

I
.

Since R still includes the sample’s geometry (length l and cross section A)
the parameters l and A need to be known in advance. Based on the equation

ρ = R
A

l

the specific resistivity ρ is finally calculated by

ρ =
U

I

A

l
. (3.1)

The SI-unit for ρ is then Ωm.

3.1.1 Low Temperatures

Measurement Setup

As explained above the sample is contacted via four terminals, two outer
ones to apply the current and two inner ones to measure the resulting voltage
drop. In case of low temperatures these terminals are implemented by gold
pins that are supported elastically and pushed towards the sample by small
springs at their base. The samples should be bar-shaped, between 5 and 12
mm long and have a cross section of about 1 mm2. Figure 3.1 shows a sketch
how the sample holders are constructed.

The list of devices for this measurement is pretty short. Only a PC and
the Lakeshore Resistance Bridge 370AC are necessary. The measurement
is controlled by the PC while the resistance bridge applies the current and
measures voltage and temperature. The data are then sent to the PC where
the specific resistivity ρ is calculated via equation (3.1). Its results against
temperature are displayed graphically and, furthermore, stored in a text file.
An overview of the measurement station is given by Figure 3.2.
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Isolation
Sample

Gold Pins
(movable)

Movable Base

Screw to fix the 
sample

I+ I-
U+U-

Wires
Springs to push 
the gold pins onto 
the sample

Figure 3.1: Sample holder for resistivity measurements at low temperatures. The current
is applied via the two outer pins while the voltage is detected between the inner pins. The
resistivity is finally calculated by equation (3.1)

Work Flow

After the sample is mounted to the sample holder that is inserted into the
cryostat it is cooled down to 4.2 K by pumping liquid helium from a can into
the sample chamber of the cryostat. The setup offers even lower temperatures
of about 1.5 K if the pressure in the sample chamber is reduced by pumping
the helium from the cryostat back into the recirculation system. As soon as
the desired temperature is reached the measurement can be started via PC.
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Resistance Bridge
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Figure 3.2: Measurement station for resistivity measurements at low temperatures
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3.1.2 High Temperatures

Measurement Setup

The concept of this measurement is similar to the previous one, however,
instead of gold pins copper wires are used to contact the sample. This is
more useful for high temperatures measurements since the fragile springs of
the gold pins would loose their tension as the temperature increases. This
might then lead to worse contacts to the sample and therefore to wrong
results. Usually it is no problem to fix copper wires onto the sample by
spot-welding. However, in the case of clathrates this method does not work
since either the electrical performance would not be sufficient to melt the
copper or the sample would be destroyed because of the point like heat caused
by the current. Instead of spot-welding conduction silver was used for the
contact between copper wire and clathrate. This of course influences the
result twofold: The cross section as well as the tap length diverge from that
of the sample and the specific resistivity is influenced by silver. The first error
occurs due to the silver contacts which are much larger and more imprecise
than the contacts of the welded copper or the gold pins would be. The second
one arises from the diffusion of silver into the sample as the temperature
increases. While the first problem can be solved easily by multiplying the
result with the ratio ρHT

ρLT
(= geometrical correction factor)2 the second one is

impossible to be solved. However, since the high-temperature measurement
curves of all samples fit quite well to that at low-temperatures (concerning
value and slope at room temperature) the error due to the diffusion can be
neglected in a first approximation.

As Figure 3.3 shows, the sample holder offers two measurement places
where the samples are fixed between two small mica dies. Each mica die is
mounted by two screws onto a ceramic plate. To contact the copper wires of
the sample with the measurement wires of the sample holder both are spooled
around a screw that has to be tightened before the measurement starts. The
temperature is detected via a Ni-NiCr thermocouple and a thermo flask filled
with ice water as reference.

Like for the low temperature measurement a constant current is sent
through the sample via the outer contacts and the voltage drop due to its
resistivity is measured via the inner contacts. However, in this case it is not
a resistance bridge that applies the current and measures voltage and tem-
perature but two different devices: A constant DC-Calibrator (Knick J152 ),

2Comparison measurements using two samples of NBS-steel, one contacted by spot-
welding and one with conduction silver, have shown that this kind of correction works
fine.
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controlled by the PC, supplies the current and a nanovoltmeter (Keithley
181 ) measures the voltages of the samples as well as of the thermocouple.
In order to compensate thermo voltages the voltage drop along the sample is
measured twice with opposite direction of the current. The voltage drop used
to calculate ρ is then the arithmetic average of both values. Since the nano-
voltmeter has only one line-in a multi-plexer with gold coated mechanical
contacts (Burster 1630 ) is used to switch between the different signals. The
data are subsequently sent to the PC where the voltage of the thermocou-
ple is converted into temperature while the voltage drop along the sample
together with equation (3.1) is used to calculate the specific resistivity ρ.
Figure 3.4 shows what the whole measurement station looks like. More de-
tailed information are given in the Appendix where a schematic diagram is
displayed.

Work Flow

First four copper wires of appropriate length (approx. 10 cm) are spooled
around the sample. The wires are then fixed onto the sample by conduction
silver. After both samples are clamped between the mica dies the copper
wires are spooled around the screws that need to be tightened to provide
good electrical contact between the copper wires from the sample and the
measurement wires of the sample holder. Furthermore, the sample holder is
inserted into the steel pipe (= sample chamber) of the furnace (Naber R70/9 )
and connected to the devices via two plugs. To prevent the sample and the
sample holder from oxidation the steel pipe needs to be evacuated before the
heating starts. After program and furnace are started the measurement is
controlled automatically by the PC that displays ρ against temperature on
the screen and stores the data in a text-file.



3.1 Electrical Resistivity 37

I+

Sample 1 Sample 2

Thermo Couple

U-

U+ U+

U-

I+

I- I-

= ceramics = metal
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3.2 Thermopower
As described in Section 2.1.4 the measurement of the Seebeck coefficient
of a material requires the measurement of the resulting voltage due to the
applied temperature gradient. The temperature gradient is measured by two
thermocouples one at each end of the sample. The voltage drop at the sample
is then measured by detecting the voltage at the two ends of the unalloyed
wires. The thermal voltage inside the wires cancel out each other except of
the voltage that rises from the additional temperature at the warmer end
of the sample. The temperatures at each end of the sample are measured
with thermocouples3. The measurement principle is illustrated in figure 3.5
where a sample is contacted between two thermocouples. Each thermocouple
consists of two thermo-wires of material A and B, respectively. Based on
equation (2.45) the Seebeck coefficient of a sample is calculated as follows:

Umeas =

∫ T1

Tmeas

SA(T )dT +

∫ T2

T1

Ssample(T )dT +

∫ Tmeas

T2

SA(T )dT (3.2)

Since the relations of the temperatures are (T2 > T1 > Tmeas) the last integral
can be split. Thus, we obtain

Umeas =

∫ T1

Tmeas

SA(T )dT+

∫ T2

T1

Ssample(T )dT+

∫ T1

T2

SA(T )dT+

∫ Tmeas

T1

SA(T )dT

(3.3)
The first and the last integral sum up to zero. It follows, that

Umeas =

∫ T2

T1

(
Ssample(T )− SA(T )

)
dT (3.4)

Assuming that dS
dT

is constant for small ∆T 4 we finally get

Umeas =
(
Ssample(Tm)− SA(Tm)

)
∆T (3.5)

Hence, the Seebeck coefficient is derived by

SSample = SA −
Umeas

∆T
. (3.6)

Consequently, the SI-unit of S is V
K

.
The principles of the experimental design of the high and low temperature

measurements are the same. The sample is fixed between two plates of noble
3See Appendix for details
4This allows to replace the integral by a difference and set Tm = T2−T1

2
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Figure 3.5: Measurement principle of thermopower measurements. The temperatures
at each end of the sample are detected via the thermo couples (AB) (∆T = T2−T1) while
the voltage drop along the sample is measured at the ends of the copper wires.
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metal that are connected to the thermocouples at their back side to measure
temperature gradient and voltage. A thermocoax-wire is spooled next to the
lower plate to apply the temperature gradient. An electrical current heats
up the wire that, in turn, heats up the plate and therefore the sample. The
average sample temperature is then the arithmetic temperature average of
the upper and lower thermocouple.

Furthermore, both sample holders are flexible concerning the size and
shape of the sample as long as the opposite conduction surfaces are parallel
to each other. The length can be from a few millimeters up to approximately
1.5 cm.
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3.2.1 Low Temperatures

Measurement Setup

The equipment used in our laboratory offers a temperature range from ap-
proximately 4 K up to room temperature ( < 300 K). The cooling is provided
by liquid helium that surrounds the evacuated tube where the sample holder
is placed. The temperatures at both ends of the sample are measured by
Pb-Au0.07%Fe thermocouples for the range from 4 K up to 15 K and by
Pb-Chromel5 for 15 K up to 300 K. The splitting is necessary due to the
better accuracy of Pb-Au0.07%Fe thermocouples at temperatures below 15
K, whereas Pb-Chromel is more accurate above.

The sample is placed between two small plates of gold which offers a good
thermal and electrical contact. Each plate has a socket at its backside where
the connected thermocouples are fixed with tin-solder. Due to the good con-
ductivity of gold temperature and voltage at the thermocouples are assumed
to be the same as at the sample. Below the lower plate the thermocoax wire
is spooled around the isolated thermo-wires. As soon as the electrical current
is sent through it, the wire heats up the lower gold plate and therefore applies
the temperature gradient to the sample. The temperature of a copper pod,
installed approximately 20 cm above the upper gold plate, is the reference for
the thermocouples. Inside this pod the thermo-wires are connected to wires
made of copper that finally lead to the measurement devices. This setup
allows to reduce the costs since less thermo-wire is needed. To determine the
temperature of the pod two temperature sensors (one Pt- and one Ge-sensor)
are installed inside it. For the range up to 40 K the Ge-sensor is used while
the Pt-Sensor is for the range from 40 K up to 300 K.

The measurement temperature of the sample is determined by the aver-
age temperature of its both ends measured by upper and lower thermocouple
while the temperature gradient is the difference between them. The voltage
drop at the sample is measured via the Lead wires. Figure 3.6 shows a sketch
of the the sample holder and how the sample is contacted. The lower part
of the sample holder (right side of the picture) is equipped with two springs
to push the lower gold plate (including the heater and the thermo-wires) up-
wards. Samples of different size and shapes can then be fixed between the two
parallel gold plates. According to equation (3.6) and to the thermocouples
used in this setup the equation for this measurement is

SSample = SPb −
U

∆T
(3.7)

5Chromel is an alloy of 90% Nickel and 10% Chromium
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The measurement station furthermore consists of a multiplexer with gold
coated mechanical contacts (Burster 1630 ) to switch between the signals of
the thermocouples and the temperature sensors, a temperature controller
(Lakeshore 91C ) to convert the signals from these sensors into tempera-
ture and to stabilise the absolute temperature as well as of a nanovoltmeter
(Keithley 2182 ) to detect the voltages of the thermocouples. Two constant-
DC supplies (Knick J152 ) provide the Pt- and Ge-sensor as well as the heater
with electrical current. Due to the isolation of this setup it would take quite
a long time to heat the sample up to room temperature only by means of
the gradient heater. Thus, another heater is installed inside the cryostat.
It consists of a thermo coax wire that is spooled around the outer side of
the sample chamber and controlled by the Lakeshore Temperature Controller
91CA. All devices are connected to a PC that controls the whole measure-
ment. Figure 3.7 gives a rough overview about how the measurement station
looks like.

Work Flow

After the sample is mounted between the two gold plates the sample holder
is inserted into the sample chamber of the cryostat. To cool down the sample
liquid helium is pumped from the can into the helium tank of the cryostat
while the interspace vacuum and the sample chamber are flooded with helium
from the recirculation system. This offers a good thermal contact of the
sample to the liquid helium and therefore cools it down rapidly. As the sample
has the same temperature as the liquid helium (4.2 K) the connection to the
helium recirculation is closed and interspace vacuum and sample chamber
are evacuated. This reduction of pressure leads to even lower temperatures
of about 3.8 K. The measurement program can be started as soon as the
desired temperature is reached.
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Figure 3.6: Sample holder for thermopower measurements at low temperatures. The
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3.2.2 High Temperatures

Measurement Setup

For thermopower measurements from 300 K up to 900 K thermocouples of
type S (Pt-Pt10%Rh) are used to detect the termparatures and voltages
at each end of the sample that is placed between two plates of platinum.
This arrangement is similar to the low temperature setup, however, in this
case the thermocouples are not connected to each other but are weld on
the plates directly. The point where the temperarure is measured is then
exactly where the PtRh-wire contacts the Pt-plate. Since this arrangement
and the applied materials offer good thermal and electrical conductivity the
difference between the measured temperature and that on the sample can
be neglected in a first approximation. Like for resistivity measurements at
high temperatures a thermo flask filled with ice water is used as reference
temperature. The voltage drop along the sample is detected via the platinum
wires. Consequently, the Seebeck coefficient is calculated by

SSample = SPt −
U

∆T
. (3.8)

In contrast to the setup of the low temperature measurement it is the in-
ner part of the upper sample holder that is movable and pushed by a spring
downwards so that samples of different size and shape can be fixed between
the two platinum plates. To switch between the voltages of the thermocou-
ples a multi-plexer with gold coated mechanical contacts (Buster 1630 ) is
used which sends each signal to a nanovoltmeter (Keithley 181 ). A power
supply provides the heater with electrical current to apply the temperature
gradient. The whole experiment is finally controlled by a PC. Figure 3.8
shows a sketch of the sample holder and Figure 3.9 gives an overview about
how this measurement station looks like. More detailed information about
how this measurement works can be found in the schematic diagram in the
Appendix.

Work Flow

As for the other experiments the sample needs to be mounted first. In this
case it has to be placed between the two platinum plates. After the sample
holder is inserted into the steel pipe of the furnace (Naber R70/9 ) evacuation
and heating procedure can be started. The vacuum should be sufficient before
the furnace is turned on to prevent oxidation of the sample and the sample
holder. Finally the measurement program can be started which controls all
devices except of the furnace. This has to be programmed manually via its
control board.
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3.3 Thermal Conductivity
Measurements for thermal concuctivity at high temperatures are carried out
using a Flash-Line devise. However, the setup requires cylindrical samples
with a diameter of 6 mm and a thickness of a few mm. Since all sample
pieces were used for the other thermoelectric measurements none was left to
be prepared for this one. Therefore only the thermal conductivity at low
temperatures could be measured.

In the following section the measurement equation is derived. The geo-
metric factors of the sample are its tap length l and its cross section A. The
basic principle of heat transport due to a temperature gradient is the Fourier
law

~q = −λ∇T (3.9)

where ~q is the heat flux density given by

~q =
1

A

dQ

dt
=

1

A
Q̇. (3.10)

Q is the total amount of heat that can be transported. Because ∇T can be
approximated by

∇T =
dT

dl
≈ T2 − T1

l
=

∆T

l
(3.11)

and |~q| = λ|∇T | we finally get

1

A
Q̇ = λ

∆T

l
(3.12)

Hence, the measurement equation is

λ =
l

A

Q̇

∆T
(3.13)

Thus, in order to measure the thermal conductivity one needs to know the
sample’s cross section A and to detect the heat quantity per time unit Q̇ as
well as the temperature difference ∆T along the tap length l. Consequently,
the SI-unit of λ is W

cmK
.

Measurement Setup

To measure the temperature gradient ∆TS the sample is contacted to two
Au0.07%Fe-Chromel thermocouples. One at its upper end and the second
one at approximatley 2/3 of the sample length. Their voltages are detected
by a Keithley 181 nanovoltmeter. The sample is mounted onto a heat sink by
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clamping its lower part (below the lower thermocouple) between a movable
and a fixed panel of the heat sink. The former one can then be pushed towards
the latter one by two screws. The area between these two parts is filled up
with a conduction paste to provide good thermal contact between the sample
and the heat sink. On the one hand this heat sink is necessary to keep one end
of the sample at a stable temperature and on the other hand it provides the
reference temperature for the thermocouples. Its temperature is measured by
two sensors, a Pt-sensor and a Ge-sensor, both controlled by a temperature
controller (Lakeshore 91CA). Due to their temperature dependent sensibility
the Ge-sensor is used for the range up to 40 K while the Pt-Sensor is used
for the range from 40 K up to 300 K (analog to the thermopower setup at
low temperatures). In order to get a stable temperature gradient along the
sample and to cool the shieldings (see below) the heat sink is cooled by a
flux of liquid helium. This flux can be limited on the one hand by a needle
valve on the sample holder and, on the other hand, by a computer controlled
valve at the helium pump.

To apply the temperature gradient to the sample a strain gauge is mounted
on its top. As the current I controlled by the constant DC calibrator (Knick
J152 ) flows through the strain gauge it heats up the upper part of the sample.
The voltage drop U at the strain gauge is measured by a voltmeter (Prema
5000 Digital Multimeter). Thus, if radiation losses of the strain gauge are
neglected, the thermal flux Q can be set equal to the electrical performance
P and calculated by Q = P = U · I. For the calculation of the sample’s
average temperature TS equation

TS = T0 + ∆TB +
∆TS

2
(3.14)

is used where T0 is the temperature of the heat sink, ∆TS the difference
between the two thermocouples and ∆TB the difference between heat sink
and lower thermocouple.

In order to protect the measurement against radiation three radiation
shieldings surround the setup. While the outer ones are normal shieldings
the purpose of the inner shielding is to establish radiation balance between
the sample and its surrounding. Therefore, it should always have the same
temperature as the sample which is enabled by a heater controlled by the
Lakeshore Temperature Controller 91C and the thermal contact to the heat
sink. While the temperature controller sends a current through a thermo
coax wire that is spooled around the inner shielding to heat it up the heat
sink and therefore the shielding is cooled by the flux of helium. This ar-
rangement allows to control the temperature in the range of 4.2 K and room
temperature and to keep it always at the same temperature as the sample.
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Figure 3.10: Sample holder for thermal conductivity measurements at low temperatures.
The sample is fixed on the heat sink. On top of the sample the strain gauge is sticked
up to apply the temperature gradient. ∆T is measured via the two thermocouples. Their
temperature is ∆TB and ∆TS above that of the heat sink (T0).

The measurement of the shielding’s temperature is done by a Si-diode Sensor
that is connected to the Lakeshore 91C. However, the results show that in
practice there are still radiation losses at higher temperatures. This error
has to be corrected afterwards as the measurement results are analysed. A
futher explanation about this correction is given in Section 4.3.

Figure 3.10 gives an overview on how this measurement works. To evac-
uate the whole measuring fixture it is surrounded by a steel mantle (which
also works as a shielding) that can be connected to the vacuum pump system.
Figure 3.11 shows a sketch of the whole measurement station.
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Work Flow

In order to contact the thermocouples to the sample a copper wire is spooled
around it which is fixed with tin-solder. This arrangement provides good
thermal contact between the thermocouples and the sample. Afterwards,
a strain gauge is glued onto the sample’s top. Subsequently, the sample is
mounted onto the heat sink and the tin-plated copper wires are soldered to
the thermocouples of the sample holder as well as the contacts of the strain
gauge are connected to the current supply. After the shieldings and the steel
cover are mounted the sample holder must be evacuated before it is inserted
into the helium can. Finally helium pump and measurement program are
started. It first opens the valve to cool down the measurement equipment
and then starts the measurement. The program controls the measurement
automatically and uses the formula above together with the detected values
to calculate the thermal conductivity λ.



Chapter 4

Measurement Results and
Analysis

All measurements were taken on the devices described in Chapter 3. Based
on their performance the measurement for ρ, S and λ were carried out from
approximately 4 K up to room temperature and for ρ and S from room tem-
perature to 700 K. In order to find materials offering excellent performance for
thermoelectric applications the ternary clathrate phases Ba8MxGe43− 5

8
x23− 3

8
x

with M = Cd, Cu and Zn were investigated. The respective chemical com-
positions are

• Ba8Cd2.4Ge41.122.2,

• Ba8Cd4.7Ge40.321,

• Ba8Cd6.5Ge39.120.4,

• Ba8Cd7.6Ge38.4,

• Ba8Cu5Ge41 and

• Ba8Zn7.7Ge38.3.

The physical data of these compositions such as the lattice parameter a, the
atoms per unit cell and the resulting number of atoms per cubic meter are
listed in Table 4.1.

Materials with large thermopower values are usually found in the prox-
imity of a metal-to-insulator transition. To find an optimum between large
thermopower but low electrical resistivity and thermal conductivity the in-
cluded elements as well as their concentration are varied as described above.
As the measurement data will show such kind of doping and substitution is
a useful method to tune the charge carrier concentration [16, 17].
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a atoms/unit cell n
[nm] [1/m3]

Ba8Cd2.4Ge41.122.2 1.07571 51.8 4.16E28
Ba8Cd4.7Ge40.321 1.08555 53.0 4.14E28
Ba8Cd6.5Ge39.120.4 1.09149 53.6 4.12E28
Ba8Cd7.6Ge38.4 1.09539 54.0 4.11E28
Ba8Cu5Ge41 1.08555 53.0 4.14E28
Ba8Zn7.7Ge38.3 1.07678 54.0 4.33E28

Table 4.1: Physical data of all compounds. a is the lattice parameter and n
the number of atoms per cubic meter.

4.1 Resistivity

The interaction processes between electrons and defects as well as phonons
cause a temperature dependent and independent contribution to electrical
resistivity given by

ρ(T ) = ρ0 + ρph(T ). (4.1)

The temperature dependent part of a simple metal follows from the Bloch-
Grüneisen equation

ρph = R
(

T

θD

)5 ∫ θD
T

0

z5(
ez − 1

)(
1− e−z

)dz, (4.2)

while ρ0 represents the resistivity due to scattering processes on crystal im-
perfections.

From equations (2.40) and (2.41) a T 5-dependence for low temperatures
(T � θD) would be expected while at high temperatures (T � θD) the
dependence should be linear. Furthermore, the increasing cadmium content
should lead to a more metallic like behaviour due to the larger charge car-
rier concentration. As expected from the Zintl concept, samples with larger
cadmium content (7.6 and 6.5) show metallic like behaviour while that with
lower cadmium content (4.7 and 2.4) show only at lower temperatures metal-
lic behaviour. As the temperature increases their resistivity reaches a maxi-
mum value and decreases afterwards, thus, showing a resistivity behaviour of
an semi-conductor. Since such an attitude belongs to semi-conductors these
measurement data cannot be described by the Bloch-Grüneisen formula. Fur-
thermore, the temperature dependence below 10 K is approximately T 2.5 and
not T 5. Consequently, the electron-phonon scattering process (as described
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Figure 4.1: Overview on the resistivity measurements of all compounds. The compounds
with lower cadmium content of x = 2.4 and 4.7 show semiconductor temperature depen-
dence whereas as the compounds containing x = 6.5 and 7.6 cadmium atoms per unit cell
show clearly metallic behaviour.
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by the Bloch-Grüneisen formula) needs to be accounted for by an alternative
model, which is a combination of the Bloch-Grüneisen law with a temper-
ature dependent charge carrier density [18]. It includes a band gap in the
density of states right above the Fermi energy. In order to simplify the cal-
culations the band structure is assumed to be rectangular (see Figure 4.2).
Within this model the charge carrier densities (nn and np) as well as the
width of the energy gap (Eg) can be calculated. According to the rectangu-
lar shape of the density of states and to the equations (2.8) and (2.9) nn and
np are given by

nn(T ) = −N0Eg + N0kBT ln

(
1 + eEg/kBT

)
(4.3)

and
np(T ) = −N0kBT ln 2. (4.4)

The total charge carrier density follows then from

n(T ) =
√

nn(T )np(T ) + n0 (4.5)

where n0 accounts for the residual resistivity1. The overall resistivity based
on this model is therefore

ρ(T ) =
ρ0n0 + ρph

n(T )
, (4.6)

where ρ0 is the residual resistivity due to crystal defects. Both measure-
ments showing semi-conductor behaviour can be fitted by this model using
the physical terms R, Eg, n0, N(E), ρ0, θD and the difference in energy
between the lower band edge and the Fermi energy as fit parameters. The
measurement data and their corresponding least square fits are displayed in
Figure 4.3. As a reason for the metallic temperature dependence the narrow
distance between E1 and EF could be identified.

The measurements of the compounds showing metallic-like temperature
dependence can be fitted by the Bloch-Grüneisen equation if the residual
resistivity ρ0 is added. The corresponding fit parameters are θD, ρ0 and R,
respectively. Measurement data and fit curves are displayed in figure 4.4.

Program and functions used for these least square fits are explained in
more detail in the Appendix, Section D.1. In Table 4.2 all relevant physical
terms and their corresponding fit parameters and values are listed.

1ρ(T = 0) = ρ0 6= 0 due to crystal defects
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Figure 4.2: The model for the density of states as a function of energy.

Figure 4.3: Measurement data and fit curves of the electrical resistivity of
Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321. Both samples show semiconductor tempera-
ture dependence, thus, the fit was performed by the model described in the text (equation
(4.6)).
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R Eg n0 N(E) ρ0 θD E1 − EF

[µΩcm] [K] [1/J] [µΩcm] [K] [K]
Ba8Cd2.4Ge41.122.2 2714 2459 0.24 2.23E21 7926 188 1.71E-3
Ba8Cd4.7Ge40.321 1352 3134 0.06 9.34E21 22240 135 1.50E-5
Ba8Cd6.5Ge39.120.4 1073 - - - 150 298 -
Ba8Cd7.6Ge38.4 750 - - - 249 264 -
Ba8Cu5Ge41 1513 - - - 456 376 -
Ba8Zn7.7Ge38.3 3559 - - - 701 461 -

Table 4.2: List of fit parameters used for least square fits for electrical resistiv-
ity measurements. Due to their semiconduction temperature dependence the fits for
Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 are based on the model including a tempera-
ture dependent charge carrier density (equation (4.6) [18]). All other fits are carried out
using equation (4.1) and (4.2). For more details see D.1 in the Appendix.

Figure 4.4: Measurement data and fit curves of the electrical resistivity of
Ba8Cd6.5Ge39.120.4, Ba8Cd7.6Ge38.4, Ba8Cu5Ge41 and Ba8Zn7.7Ge38.3. The temperature
dependences show metallic-like behaviour. Hence, the fits are carried out using equation
(4.1) and (4.2).
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4.2 Thermopower

Except of the low temperature range of the Cd6.5-sample all thermopower
values of the samples containing cadmium are below zero, showing that the
main charge carriers are electrons. Only for Ba8Cd6.5Ge39.120.4 below 200
K the charge transport consists obviously rather of holes than of electrons.
In contrast to the electrical resistivity the temperature dependences of the
Seebeck coefficients do not offer any special behaviour (except of the Cd6.5-
compound). Thus, the electronic transport can be assumed to be without any
significant change in the temperature correlations. Furthermore, the small
measurement values indicate a small energy dependence of the density of
states next to the Fermi energy. However, the results also yield a more com-

Figure 4.5: Overview on the thermopower measurements of all compounds.

plex behaviour concerning the change of the cadmium content. As Figure 4.5
shows the Cd6.5-compound exhibits outstanding Seebeck values compared to
the other Cd-compounds. The same holds for the resistivity measurements.
Cd2.4- and Cd4.7-compounds show semi-conducting characteristics while the
samples containing Cd6.5 and Cd7.6 offer metallic characteristics. Thus, as
the cadmium content increases from below six atoms to an amount of more
than six atoms per formula unit, the transport properties change signifi-
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Figure 4.6: Dependency of electrical resistivity and thermopower on given concentrations
of cadmium [16]. Each value is taken at room temperature.

cantly. Figure 4.6 compares the values for resistivity and thermopower at
room temperature of compounds with different cadmium content. Like for
the resistivity it is the increasing charge carrier density due to the increas-
ing cadmium content that replaces the vacancies. The investigation becomes
more interesting regarding the outstanding Seebeck value of Ba8Zn7.7Ge38.3.
It offers an almost constant slope of −0.28 µV/K until a thermopower of
−180 µV/K at 700 K. This linearity can be explained by the free-electron
model [19]. For T > θD the Seebeck effect due to the electron-phonon drag
dominates leading to

Sd(T > θD) =
2π2k2

Bm

eh̄2(3nπ2)2/3
T. (4.7)

Since for systems without significant electronic correlations at high tempera-
tures m can be replaced by me. Thus, equation (4.7) allows an estimation of
the charge carrier density n which is one of the most important parameters
for thermoelectric properties. Based on the measurement data the charge
carrier density is estimated to n = 6 · 1026 m−3.
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4.3 Thermal Conductivity

The measurement data (Figure 4.7) show interesting temperature dependence
of most compounds. Except of the Cd2.4-compound all samples have a strong
increasing thermal conductivity at lowest temperatures. After a maximum
below 20 K the values decrease rapidly down to a minimum between 50 and
150 K. Beyond this temperature the values for λ seem to increase again.
However, the slope is now much smaller than it was before. As it will be
explained later on this rise of the values is not due to an increase of λ but
to an measurement error caused by radiation losses. Since this error can be
calculated the results can simply be corrected by subtracting this error from
the measurement data(see Figure 4.8). The overall values for the thermal
conductivity are small as it was expected for clathrates.

4.3.1 General Analysis of Thermal Conductivity

The overall values for λ are small as is was expected for clathrates. At lower
temperatures (from 4 K up to the minimum) the lattice is responsible for
heat transport. The strong increase at lowest temperatures refer to small
contributions of phonon scattering on point defects and boundaries. As the
temperature increases Umklapp-processes become dominant yielding lower
thermal conductivity.

Additionally to the temperature dependence the elements included in the
compounds and their concentration show a strong influence on this transport
property. As described in Section 2.3 the atoms substituting the vacancies
and the germanium atoms are placed in cages where they represent additional
scattering centers for the phonons. The heavier this atom the stronger is the
scattering process and the lower is the thermal conductivity. Therefore, the
compound containing Zn8 has larger values at low temperatures than the
Cd8-compound. However, as the electronic contribution becomes dominant
this aspect cannot be observed anymore.

The difference between the values of the compounds containing different
cadmium content can be explained on the one hand by phonon-electron scat-
tering and on the other hand by interaction between phonons and crystal de-
fects and boundaries. A larger cadmium content leads to higher charge carrier
concentration that increases the probability for scattering of phonons by elec-
trons. Thus, at medium temperatures, the thermal conductivity of the Cd8-
and Cd6-compounds is lower than that of the Cd4- and Cd2-compounds. In
contrast, the larger amount of vacancies inside the Cd4- and Cd2-compounds
lead to more scattering processes of phonons on crystal defects than for the
compounds with larger cadmium content. Thus, in the low temperature
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Figure 4.7: Overview on the thermal conductivity measurements of all compounds.
The values increase rapidly at lowest temperatures governed by boundary- and point
defect scattering. As the temperature increases Umklapp-processes become dominant
leading to strong reductions of the thermal conductivity. At around 50 K the electron
based conduction shows stronger influence for the compounds with larger Cd-content (x
= 6.5 and 7.6). The rise of the values above 100 K is not due to λe but because of the
measurement errors due to radiation losses.
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range where the lattice contribution dominates, the thermal conductivity
increases with increasing cadmium content.

Since it is difficult to separate the lattice and the electronic contribution,
λl and λe the Wiedemann-Franz law is used in order to analyse the measured
data. Thus, λl is calculated by

λl = λ− λe, (4.8)

where the latter one is given by the Wiedemann-Franz law:

λe =
L0T

ρ
. (4.9)

L0 = 1
3

(
πkB

e

)
= 2.45 × 10−8 WΩK−2 is the Lorenz number. Figure 4.9

displays lattice and electronic contribution of all compounds.
As explained above radiation losses at elevated temperatures lead to an

error of the measurement data. Since inner shielding and sample are not at
the same temperature heat is lost due to radiation between the two mea-
surement points. If TS and A are temperature and surface of the sample,
respetively, and T0 is the temperature of the inner shielding the heat loss due
to radiation is given by the Stefan Boltzmann law

Q = εσSBA(T 4
S − T 4

0 )

In a first approximation this equation can be transformed to

Q = 2εσSBAT 3
S∆TS

which explains why radiation effects show a T 3-dependence of λ(T ) at ele-
vated temperatures. ε is the emission coefficient of the sample and σSB =
5.67×10−8 Wm−2K−4 is the Stefan-Boltzmann constant. In order to get rid
of these losses one has to subtract a T 3-term from the measurement data.
The corrected values for thermal conductivity are plotted in Figure 4.8 while
Figure 4.7 shows the values as they were measured. Thus, analyses of each
sample contain the measurement data and the separation in an electronic
as well as a lattice part based on the Wiedemann-Franz law. Furthermore,
one curve fit of the lattice contribution using the Callaway model including
the correction due to radiation losses and one fit of the electronic contribu-
tion using the Wilson equation were carried out. The least square fits were
performed in Table Curve 2D 5.01 using user defined functions. For more
details see Chapter D.2 in the Appendix.
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Figure 4.8: Overview on the thermal conductivity measurements of all compounds. In
contrast to Figure 4.7 the values are corrected for radiation losses.
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Figure 4.9: Lattice and electronic contribution to thermal conductivity of all compounds.
The correction for radiation losses are based on the considerations explained in Section
4.3.1. Their calculation was carried out by least square fits using the Callaway model.
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4.3.2 Fits and Analysis of the Lattice Contribution to
Thermal Conductivity

Analyses and fits of the lattice thermal conductivity can be performed using
Callaway’s model (Section 2.1.5):

λl = G
T 3

θD

∫ θD
T

0

τl
x4ex(

ex − 1
)2dx + FT 3 (4.10)

FT 3 is the temperature dependent correction due to radiation losses and τl

is the total relaxation time derived by

1

τl

=
1

τl,0

+
1

τU

+
1

τl,e

+
1

τl,b

. (4.11)

τU represents the relaxation time due to Umklapp-processes and τl,0, τl,e as
well as τl,b stand for phonon-defect, phonon-electron and phonon-boundary
interaction processes, respectively. These contributions are calculated by

1

τl,0

= Dx4T 4, (4.12)

1

τU

= AT 3x2e
−θD
aT , (4.13)

1

τl,e

= CTx and (4.14)

1

τl,b

= B (4.15)

(4.16)

where x = h̄ω
kBT

. The pre-factors A, B, C and D, the Debye temperature θD,
the exponent a in equation (4.14) and F are used as fit parameters while G
is calculated from the sample data (see Table 4.1) based on equation

G =
k3

B(6π2n)
1
3

2π2h̄2 (4.17)

In order to simplify this fit Normal-processes are neglected. The correspond-
ing values of all samples are listed in Table 4.3. Measurement data (resulting
from the split due to Wiedemann-Franz law) and fit curves are displayed in
figure 4.11 while figure 4.10 compares the lattice thermal conductivity of all
compounds.

Table 4.3 shows the influence of each parameter and, therefore, of each
physical process of the lattice contribution to thermal conductivity. For ex-
ample parameter B represents the probability for Umklapp-processes that



4.3 Thermal Conductivity 65

Figure 4.10: Comparison of lattice thermal conductivity of all samples. At lowest
temperatures the compositions containing less unoccupied points in the crystal (Zn7.7,
Cd7.6 and Cd6.5) have larger values for λl than such with more unoccupied sites due to
scattering processes of phonons on crystal defects. These data are corrected for radiation
losses.
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Figure 4.11: Measurement data and fit curves of the lattice contribution to thermal
conductivity including the correction for radiation losses. Fit parameters are summarised
in Table 4.3.
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A B C D
[1/K4s] [1/K3s] [1/s] [1/Ks]

Ba8Cd2.4Ge41.122.2 149300 5467 987.90E6 87.66E6
Ba8Cd4.7Ge40.321 99841 46.78E6 591.25E6 78.18E6
Ba8Cd6.5Ge39.120.4 57799 79.79E6 16.42E6 11414
Ba8Cd7.6Ge38.4 49481 393.28E6 39.32E6 1.40E6
Ba8Cu5Ge41 91923 52.94E6 59.62E6 4.42E6
Ba8Zn7.7Ge38.3 91577 36.94E6 146329 29993

θD #F a G
[K] [mW/cmK4] [mW/cmK3s]

Ba8Cd2.4Ge41.122.2 189 9.4420E-7 3.0 5.08726E9
Ba8Cd4.7Ge40.321 130 1.3338E-6 3.0 5.07978E9
Ba8Cd6.5Ge39.120.4 224 8.1071E-7 3.5 5.07113E9
Ba8Cd7.6Ge38.4 200 1.2865E-6 3.5 5.06361E9
Ba8Cu5Ge41 300 2.4123E-6 3.0 5.07978E9
Ba8Zn7.7Ge38.3 321 9.3695E-7 4.0 5.15316E9

Table 4.3: List of fit parameters used for least square fits for the lattice contribution to
thermal conductivity measurements.

increases the more cadmium atoms a unit cell contains. Since Umklapp-
processes become dominant as the temperature increases above 20 K the
influence of other parameters decreases as the values show. Because the
added cadmium atoms replace the vacancies in the crystal lattice scattering
of phonons on crystal defects such as unoccupied places become less im-
portant. Parameter A denotes for phonon scattering on defects. Thus, it
decreases with increasing cadmium content. Electron-phonon scattering pro-
cesses are represented by the parameter D. Since the probability for this kind
of interaction increases with increasing electron concentration, the value of
D is larger for the compounds containing less cadmium. Parameter C gives
an idea, how the grain size changes as the cadmium content increases.

The values of the Debye temperature do not correspond to those calcu-
lated by the fit for electrical resistivity because θD is temperature dependent.
For the Callaway-fit the low temperature range is more important. Thus θD

was optimised in this range in order to improve the quality of the fit. How-
ever, the fits based on the Bloch-Grüneisen model were optimised for higher
temperatures (up to 300 K). Consequently, the Debye temperature resulting
from the lattice thermal conductivity fits is lower than that resulting from
the fits for electrical resistivity.
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4.3.3 Fits and Analysis of the Electronic Contribution
to Thermal Conductivity

Figure 4.12: Temperature dependence of the electronic contribution to thermal conduc-
tivity of all compounds. The values were calculated from electrical resistivity measure-
ments using the Wiedemann-Franz law. Thus, λe is nothing else, but a different way to
display the electrical resistivity.

The values for the electronic thermal conductivity were derived from
the measurements of electrical resistivity using the Wiedemann-Franz law.
Hence, the values for λe of Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 are small
compared to the other compounds. The overall thermal conductivity of these
samples is therefore almost solely determined by the lattice contribution.
Figure 4.12 displays the temperature dependence of λe of all compounds.

Further analyses were carried out using

1

λe

= We,0 + We,ph (4.18)

with (Wilson equation)

We,ph =
4R

L0T

(
T

θD

)5[(
1 +

3

4π2

(θD

T

))
J5(z)− 1

2π2
J7(z)

]
(4.19)
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θD α 4R/L0 R
[K] [cmK2/mW] [cmK2/mW] [µΩcm]

Ba8Cd2.4Ge41.122.2 190 303.83 447.83 2743
Ba8Cd4.7Ge40.321 140 863.33 783.62 4799
Ba8Cd6.5Ge39.120.4 305 5.54 45.47 278
Ba8Cd7.6Ge38.4 260 9.48 31.49 192
Ba8Cu5Ge41 380 17.57 65.56 401
Ba8Zn7.7Ge38.3 465 26 151.51 928

Table 4.4: List of fit parameters used for least square fits for the electronic contribution to
thermal conductivity. Since the values for λe are based on that of the electrical resistivity
the values of the fit parameters are associated with that of table 4.2.

and
We,0 =

α

T
(4.20)

to fit the measurement curves. The Debye temperature θD, the factor α in
equation (4.20) and the pre-factor 4R/L0 in Wilson’s equation were used
as fit parameters. Because the calculation of We is based on the electrical
resistivity, α is related to ρ0 via the Lorenz number L0.

The values for λe and the corresponding Fits are plotted in Figure 4.13
while in Table 4.4 the parameters resulting from these fits are listed. Com-
paring the values for θD to that derived in the fit for the lattice thermal
conductivity large differences can be observed. As explained for the lattice
thermal conductivity θD depend on the temperature range the fit is optimised
for. Since the calculation of the values for λe are based on the corresponding
values for electrical resistivity using the Wiedemann-Franz law the values for
θD listed in Table 4.4 correspond better to that listed in Table 4.2 than with
the values calculated for λl.

The factor α represent the influence of electron-defect interaction pro-
cesses to the total thermal resistivity. Because the number of defects de-
creases with increasing cadmium content We,0 and, thus, the values for α
are much larger for Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 than for the
compounds containing more cadmium. Furthermore, also the values of R
depend on the cadmium concentration. The values of the electron thermal
conductivity are based on the electric resistivity and R has the dimension of
ρ. Thus, the change of its values as the cadmium content changes correspond
to that of ρ for all compounds.

Based on the fit-curves the electronic contribution to the thermal resistiv-
ity as described by (4.18) was split into its parts, namely the resistivity due
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Figure 4.13: Measurement data and fit curves of the electronic contribution to thermal
conductivity. The measurement and fit curves for the Cd2.4– and Cd4.7–sample were
abandoned at 180 K since the fit by Wilson’s equation requires a metallic temperature
dependence. Thus, no fit can be performed as soon as the second derivation of λe becomes
positive.
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to electron-phonon interaction processes as described by the Wilson equa-
tion and that because of the crystal defects (see (4.20)). Figure 4.14 and
4.15 compare these contribution for all compounds. Because of the increas-
ing phonon density at elevated temperatures the probability for electron-
phonon interaction increases as well as leads to larger values for We,ph. Con-
sequently, the influence of scattering processes of electrons on crystal defects
decreases causing lower values for We,0. The reason for the larger We,0-value
for Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 is their larger number of va-
cancies compared to the other compounds. The same two compounds offer
also larger values for We,ph. However, the number of electrons do not in-
crease the probability of electron-phonon interactions. Thus, the thermal
resistivity should be in the same range for all compounds. The reason for
this contradiction is situated in the way the electronic thermal conductivity
is calculated. As explained in Section 2.1.6 the simplification of using L0

instead of Le(T ) within the Wiedemann-Franz law is only correct for metals.
The electrical resistivity of Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 show,
however, semiconductor temperature dependence. Thus, their values for λe

probably do not represent the true values.
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Figure 4.14: Overview on the contribution of electron-crystal defect interaction processes
to thermal resistivity of all compounds. For the compounds with lower cadmium content
We,0 is much larger than for that with more cadmium atoms per unit cell due to the larger
probability for electron-defect scattering.
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Figure 4.15: Overview on the contribution of electron-phonon interaction processes
to thermal resistivity of all compounds. The difference between the λe-values of
Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 do not represent the truth. The reason for
this discrepancy is within the way the values for λe are calculated. Since ρ(T ) of these
two samples show semi-conductor behaviour the calculation via the Wiedemann-Franz law
(only correct for metallic samples) might lead to wrong results. Nevertheless, in literature
the Wiedemann-Franz law is used in most cases.
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Figure 4.16: Figure of merit of all compounds. The values are calculated using Z =
S2/λρ where the values for λ are corrected for radiation losses. The most interesting
compound for thermoelectric application is Ba8Zn7.7Ge38.3 due to its enhanced values for
thermopower.

4.4 Thermoelectric Performance and Figure of
Merit

The thermoelectric performance for each material is given by its figure of
merit calculated by

ZT =
S2

λρ
. (4.21)

In Figure 4.16 the temperature dependence of the values for ZT are plotted
up to room temperature2. Above that no values for λ are available since no
bulks of the samples were left for this measurement. However, Figure 4.16
shows clearly the basic temperature dependences. The compound consist-
ing of Ba8Zn7.7Ge38.3 shows excellent values as the temperature increases.
This performance is based on outstanding thermopower values of this sam-
ple. Furthermore, the Cu5- and Cd7.6-samples show interesting values for
thermoelectric applications. The thermoelectric performances of the other

2For the calculation of ZT values of λ corrected for radiation losses are used.
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Figure 4.17: Extrapolation of the figure of merit of Ba8Zn7.7Ge38.3 based on a rough
least square fit of the data for thermal conductivity. The fit data were then extrapolated
up to 700 K.

compounds are too small to be useful. For Ba8Cd6.5Ge39.120.4 the ther-
mopower is too small while for Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 it
is the large electrical resistivity that is responsible for the small values of ZT .

Within this selection of compounds Ba8Zn7.7Ge38.3 seems to be the most
promising composition for thermoelectric applications. Since most applica-
tions are used in temperature ranges above 300 K a careful estimation up to
700 K was carried out. For thermal conductivity no data above room tem-
perature are available. Thus, the low temperature data were first fitted by a
rough least square fit. Subsequently, these fit data were extrapolated up to
700 K. Finally, the extrapolated data for λ together with the measured data
for ρ and S were used to estimate the figure of merit at elevated tempera-
tures for this compound. Figure 4.17 shows the extrapolated values. The
estimated value for ZT (700 K) of the Zn7.7-sample is approximately 0.35.
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Chapter 5

Conclusion

Based on the parent compound Ba8Ge43 various d-elements such as cad-
mium, copper and zinc were added in order to investigate clathrates with
interesting thermoelectric properties. While the basic crystal structure is
made of germanium atoms barium atoms are used as electropositive element
to fill up the cages. Cadmium, zinc or copper atoms fill up the voids of this
structure and, susequently, replace the germanium atoms. This change of
elements and their concentration in clathrates by substitution and doping
has a strong influence on their charge carrier concentration and thermoelec-
tric properties. For thermoelectric applications compounds with large zinc
content turned out to be the most interesting ones. The figure of merit ZT
for Ba8Zn7.7Ge38.3 is derived as 0.09 at 300 K and extrapolated to 0.35 at 700
K. Furthermore, Ba8Cd7.6Ge38.4 and Ba8Cu5Ge41 show interesting behaviour
at elevated temperatures. However, their figure of merit is much lower than
for the Zn7.7-compound. The ZT -values for the other compounds are much
too low to be of any interest.

In addition to the change of the thermoelectric performance, a metal-
to-insulator transition can be observed as the cadmium content increases.
Compounds containing a lower number of cadmium atoms (Cd2.4 and Cd4.7)
show semiconductor temperature dependence concerning their electrical re-
sistivity whereas the Cd6.5 and Cd7.6-compounds show metallic behaviour.

Further analyses were carried out using theoretical models to fit the mea-
surement data. For the samples with semiconductor behaviour in their elec-
trical resistivity a model was developed including a gap of rectangular shape
in the density of states right above the Fermi energy [18]. Measurements
of compounds with metallic temperature dependence were fitted using the
Bloch-Grüneisen equation. The lattice contribution to thermal conductiv-
ity is fitted by the Callaway-model while for the electronic contribution the
Wilson-model is used. The parameters calculated by these fits show how the
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change of the elements and their concentrations influence the charge carrier
concentration and therefore the thermoelectric properties.

For further study of this topic fine-tuning of the charge carrier concen-
tration based on substitution and doping needs to be carried out.



Appendix A

Measurement Results - Detailed
View

In this section the data as they were measured are displayed without any fits
or corrections. Only the curves of the figure of merit are based on calcula-
tions.

ρ λ S ZT
[µΩcm] [mW/cmK] [µV/cmK]

Ba8Cd2.4Ge41.122.2 8400 41 -15.3 4.5E-4
Ba8Cd4.7Ge40.321 10700 52 -18.4 4.6E-4
Ba8Cd6.5Ge39.120.4 400 49 -4.3 4.7E-4
Ba8Cd7.6Ge38.4 450 54 -18.5 9.8E-3
Ba8Cu5Ge41 740 79 -24.0 11.3E-3
Ba8Zn7.7Ge38.3 1230 42 -82.8 82.0E-3

Table A.1: Values of the transport coefficients for electrical resistivity, thermal conduc-
tivity, thermopower and figure of merit at room temperature for all compounds.
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A.1 Resistivity

Figure A.1: Resistivity of Ba8Cd2.4Ge41.122.2
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Figure A.2: Resistivity of Ba8Cd4.7Ge40.321

Figure A.3: Resistivity of Ba8Cd6.5Ge39.120.4
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Figure A.4: Resistivity of Ba8Cd7.6Ge38.4

Figure A.5: Resistivity of Ba8Cu5Ge41
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Figure A.6: Resistivity of Ba8Zn7.7Ge38.3
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A.2 Thermopower

Figure A.7: Thermopower of Ba8Cd2.4Ge41.122.2
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Figure A.8: Thermopower of Ba8Cd4.7Ge40.321

Figure A.9: Thermopower of Ba8Cd6.5Ge39.120.4
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Figure A.10: Thermopower of Ba8Cd7.6Ge38.4

Figure A.11: Thermopower of Ba8Cu5Ge41
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Figure A.12: Thermopower of Ba8Zn7.7Ge38.3
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A.3 Thermal Conductivity

Figure A.13: Thermal conductivity of Ba8Cd2.4Ge41.122.2
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Figure A.14: Thermal conductivity of Ba8Cd4.7Ge40.321

Figure A.15: Thermal conductivity of Ba8Cd6.5Ge39.120.4
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Figure A.16: Thermal conductivity of Ba8Cd7.6Ge38.4

Figure A.17: Thermal conductivity of Ba8Cu5Ge41
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Figure A.18: Thermal conductivity of Ba8Zn7.7Ge38.3
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A.4 Figure of Merit

Figure A.19: Figure of Merit of Ba8Cd2.4Ge41.122.2
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Figure A.20: Figure of Merit of Ba8Cd4.7Ge40.321

Figure A.21: Figure of Merit of Ba8Cd6.5Ge39.120.4
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Figure A.22: Figure of Merit of Ba8Cd7.6Ge38.4

Figure A.23: Figure of Merit of Ba8Cu5Ge41
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Figure A.24: Figure of Merit of Ba8Zn7.7Ge38.3



Appendix B

Schematic Diagrams
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Appendix C

How a Thermo-Couple Works

As explained in Section 2.1.4 a voltage results inside a material if a tempera-
ture gradient is applied. The relation between this voltage and the gradient
is given by the Seebeck coefficient of the material (see equation (2.45)). This
effect can be used to measure temperatures. The setup requires two thermo-
wires with known Seebeck coefficient, a known reference temperature (e.g.
ice bath), measurement wires (e.g. lead or copper wires) and a voltmeter.
Figure C.1 describes the principle of measuring the temperature by using
thermo-couples. Based on equation (2.45) the measurement equation can be
derived as follows:

Umeas =

∫ ref

meas

SPb(T )
dT

dx
dx +

∫ tip

ref

SA(T )
dT

dx
dx+

+

∫ ref

tip

SB(T )
dT

dx
dx +

∫ meas

ref

SPb(T )
dT

dx
dx (C.1)

The first and the last integral sum up to zero. Since this measurement is not
influenced by its geometry but only by the differences in temperature we can
replace

∫
dx by

∫
dT . Assuming a perfect thermal contact between the tip

of the thermo-couple and the sample we get

Umeas =

∫ Tsample

Tref

SA(T )dT −
∫ Tsample

Tref

SB(T )dT ≡
∫ Tsample

Tref

SAB(T )dT (C.2)

In case SAB has a constant slope for T ∈ (Tref , Tsample) the integral can be
replaced by a difference.

Umeas = SAB(T ) · (Tsample − Tref ). (C.3)

Consequently, the sample temperature can be measured by

Tsample = Tref +
Umeas

SAB

. (C.4)
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Figure C.1: Sketch of the principle how a measurement of temperature with thermo-
couples works.



Appendix D

User Defined Functions

For analyses performed in Chapter 4 least square fits to the data were carried
out using the program TableCurve 2D 5.01.

D.1 Electrical resistivity
In order to fit the low temperature ranges (4 K up to room temperature) of
the resistivity measurements for all samples two fit functions were used.

D.1.1 Semi-Conductor Behaviour

For Ba8Cd2.4Ge41.122.2 and Ba8Cd4.7Ge40.321 the model explained in Section
4.1 [18] was used with R, Eg, n0, N(E), ρ0, θD and the width above EF as
fit parameters (see Table 4.2):

ρ(T ) =
ρ0n0 + ρph

n(T )
. (D.1)

ρ0 is the residual resistivity while ρph describes the electron-phonon interac-
tion given by the Bloch-Grüneisen equation:

ρph(T ) = R
(

T

θD

)5 ∫ θD/T

0

z5

(ez − 1)(1− e−z)
dz. (D.2)

User defined function:

F7=1.381*10ˆ(-23)
F1=$ˆ5/(EXP($)-1)/(1-EXP(-$))
F2=#A*(X/#F)ˆ5*AI(1,1E-10,#F/X)
F3=F7*(-#B+X*LN(2)-X*LN(1+EXP(#G/X))+X*LN(1+EXP((#G+#B)/X)))
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F4=#D*SQRT(F3*X*F7*LN(2))+#C
Y=(#C*#E/F4)+(F2)/F4

Variables and Fit Parameters:

• F7 ... Boltzmann’s constant kB

• F1 ... integrand of Bloch-Grüneisen

• F2 ... ρph (Bloch-Grüneisen)

• F3 ... density of electrons as charge carriers nn(T )

• F4 ... total charge carrier density n(T )

• X ... temperature

• #A ... R (electron-phonon interaction constant)

• #B ... energy gap Eg

• #C ... residual densityn0

• #D ... DOS N(E)

• #E ... residual resistivity ρ0

• #F ... Debye temperature θD

• #G ... energy difference between EF and the lower band edge

D.1.2 Metallic Behaviour
Due to their more metallic like behaviour the measurement data of the other sam-
ples were fitted using the Bloch-Grüneisen equation adding a constant for the
residual resistivity:

ρ(T ) = ρph + ρ0 (D.3)

User defined function:

F1=$ˆ5/(EXP($)-1)/(1-EXP(-$))
Y=#C*(X/#A)ˆ5*AI(1,1E-10,#A/X)+#B
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Variables and Fit Parameters:

• F1 ... integrand for Bloch-Grüneisen

• X ... temperature

• #A ... Debye temperature θD

• #B ... residual resistivity ρ0

• #C ... R (electron-phonon interaction constant)

The values of these fit parameters can be found in Table 4.2.

D.2 Thermal Conductivity

D.2.1 Lattice Contribution
Based on the model of Callaway [7, 8, 9] introduced in Section 4.3 the lattice
thermal conductivity λl (in units of [mW/cmK]) is given by

λl = G
T 3

θD

∫ θD/T

0
τl

x4ex

(ex − 1)2
dx + #FT 3 (D.4)

where the pre-factor G is derived by

G =
k3

B(6π2n)
1
3

2π2h̄2 (D.5)

x in equation (D.4) is equal to h̄ω/kBT and n in equation (D.5) is the number of
atoms per unit volume. 1

τ is the sum of the reciprocal relaxation times for Umklapp
processes, point defect scattering, boundary scattering and scattering of phonons
by electrons, respectively:

1
τl

=
1

τl,0
+

1
τU

+
1

τl,e
+

1
τl,b

(D.6)

1
τl,0

= Ax4T 4, (D.7)

1
τU

= BT 2x2e
−θD
3T , (D.8)

1
τl,b

= C, (D.9)

1
τl,e

= DTx (D.10)
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User defined function:

G= see table 4.3
F1=#A*$ˆ4*Xˆ4
F2=#B*$ˆ2*Xˆ2*EXP(-#E/(a*X))
F3=#C
F4=#D*X*$
F5=F1+F2+F3+F4
F6=($ˆ4*EXP($)/(EXP($)-1)ˆ2)*(1/F5)
Y=F*Xˆ3#E*AI(6, 0, (#E/X)) + #F*Tˆ3

Variables and Fit Parameters:

• F1 ... 1
τl,0

• F2 ... 1
τU

• F3 ... 1
τl,b

• F4 ... 1
τl,e

• F5 ... 1
τl

• F6 ... integrand of Callaway equation

• X ... temperature

• #A ... parameter for scattering processes on defects

• #B ... parameter for Umklapp-processes

• #C ... parameter for scattering processes at boundaries

• #D ... parameter for scattering processes on electrons

• #E ... Debye temperature θD

• #F ... correction parameter for radiation losses

The values of the fit-parameters #A – #F, of the pre-factor G and that of the
factor a in the exponent of τl,ph are listed in table 4.3.
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D.2.2 Electronic Contribution
The fits for the electronic contribution to thermal conductivity were carried out
using Wilson’s equation and the formula for the residual thermal resistivity:

1
λe
≡ We = We,0 + We,ph (D.11)

where
We,0 =

α

T
(D.12)

and

We,ph =
4R

L0T

(
T

θD

)5[(
1 +

3
4π2

(θD

T

))
J5(z)− 1

2π2
J7(z)

]
. (D.13)

User defined function:

F1=#A/X
F2=#B/X
F3=#C/X
F4=$ˆ5/(EXP(-$)+EXP($)-2)
F5=$ˆ7/(EXP(-$)+EXP($)-2)
F6=F3*F1ˆ-5*((1+(3*F1ˆ2/(4*PIˆ2)))*AI(4,0,F1)-AI(5,0,F1)/(2*PIˆ2))
Y=1/(F2+F6)

Variables and Fit Parameters:

• F1 ... θD
T

• F2 ... We,0

• F3 ... 4R
L0T

• F4 ... J5

• F5 ... J7

• F6 ... We,ph (Wilson’s equation)

• X ... temperature

• #A ... θD

• #B ... α

• #C ... 4R
L0

The values of the fit parameters are listed in Table 4.4.
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