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Introduction

An important and powerful technique for solving combinatorial enumeration problems is thegenerating function approach. A generating function is a formal power series in one or moreindeterminates where the coe�cients equal the number of objects in a given combinatorialclass having certain characteristics (e.g., the coe�cient of zn in B(z) de�ned by B(z) =

1 + zB(z)2 equals the number of binary trees having n internal nodes). The generatingfunction approach can be summarised as follows. Using combinatorial arguments we derivebijections between or decompositions of certain sets of composite combinatorial structures.These bijections are then reduced to functional relationships between formal power series.Our enumeration problem can now be solved by extracting the coe�cients of the formalpower series occurring. In the case of simple relationships between known power series wecan immediately �nd the solution to our problem and in some other cases we can apply theInversion Theorem of Lagrange. But most often the situation is not so easy and we have toresort to other methods.In Chapter 1 we give a short overview on how to transform certain given types of decom-positions into relations between formal power series. For a detailed discussion of this step werefer to the books of Goulden and Jackson [GJ04], Wilf [Wil90] and Flajolet and Sedgewick[FS].Fortunately many formal power series occurring in combinatorial enumeration can beidenti�ed with analytic functions. Hence we can use methods from complex analysis for ex-tracting the coe�cients. This fact also makes it possible to �nd asymptotic expressions forthe coe�cients since we can express them by means of complex contour integrals and asymp-totically evaluate these integrals. In Chapter 2 we discuss two methods yielding asymptoticexpressions for the coe�cients in question, namely singularity analysis and the saddlepointmethod. The third method presented in this chapter is the analytic version of Lagrange'sInversion Theorem.The central analytic method in this work is the saddlepoint method. It can be success-fully applied to functions which are large for positive real arguments and satisfy su�cientdecay conditions for nonreal arguments. Hayman [Hay56] de�ned classes of analytic functionswhich satisfy all requirements necessary for successfully applying the saddlepoint method andproved an asymptotic expression for the coe�cients of such functions. In accordance to theliterature these functions will be called H-admissible functions. In his work Hayman alsoproved certain closure properties satis�ed by the classes of H-admissible functions. And inview of the decompositions mentioned above it is exactly the existence of these closure prop-erties which makes Hayman's concept a very comfortable tool for combinatorial enumeration.
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CONTENTS 2
A detailed presentation of Hayman's results is given in Chapter 3.In Chapter 4 we discuss some generalisations of Hayman's work. Harris and Schoenfeld[HS68] tightened Hayman's conditions and obtained complete asymptotic expansions for thecoe�cients but did not provide any closure properties. Some simple closure properties havelater been provided by Odlyzko and Richmond [OR85] and M�uller [M�ul97].Mutafchiev [Mut92] proposed a univariate generalisation of H-admissibility, called GH-admissibility, where the asymptotics required by H-admissibility are replaced by weaker con-ditions. Mutafchiev's goal was a concept that can be used to establish local limit theoremsin combinatorial classes. Unfortunately none of the examples presented in his paper [Mut92]constitute valid applications of GH-admissibility as will be shown in this work. Valid ap-plications of this concept can be found in [Mut97] where Mutafchiev proved some weakconvergence results for the number of distinct component sizes.We also present two multivariate extensions of Hayman's work which give answer toquestions dealing with the distribution of some parameters on combinatorial classes (e.g. thedistribution of the number of classes of a partition of a set of size n as n → ∞). Bender andRichmond [BR96] presented a multivariate generalisation which yields local limit theoremsfor the parameters considered. They also proved some closure properties satis�ed by theirclasses. In this work we present an additional simple closure property which seems to benew (see Section 4.3.1). Drmota, Gittenberger, and Klausner [DGK05] stated a concept forbivariate functions in the spirit of Hayman's concept and obtained central limit theorems forthe parameter considered. An important fact to note on this last concept is the existenceof many simple algebraic closure properties. This makes their concept (besides Hayman'sconcept itself) the only concept amenable to automated membership testing.In Chapter 5 we apply the methods of Chapters 3 and 4 to some combinatorial problemsconcerning the number of components a randomly chosen combinatorial structure consistsof. Some general remarks on this class of combinatorial problems can be found in [BBCR00]and [BCOR99].Besides Can�eld's [Can77] results, we present some examples taken from [BR96], [DGK05],and [GJ04]. The examples are chosen such as to show applicability as well as limitations ofthese methods.



Chapter 1

Generating Functions

Combinatorial structures consist of a �nite set of atoms together with some relations betweenthem (e.g. graphs consist of nodes that are related to others via edges). In some cases allatoms are considered equal while in others they are considered distinguishable by attachedlabels. In the former case the structures are called unlabelled combinatorial structures whilein the latter case they are called labelled combinatorial structures. It proves convenient touse ordinary generating functions (ogf) in the unlabelled case and exponential generatingfunctions (egf) in the labelled case.The decompositions of combinatorial structures considered here can all be reduced toa number of disjoint-sum-operations and product-operations. While the disjoint-sum is es-sentially the same for labelled and unlabelled structures the product is a di�erent one inthese cases. The reason for this is that in the labelled case we have to consider all possibledistributions of the set of labels over the factors.In this chapter we show how to reduce given decompositions of the type described aboveto functional relationships between generating functions. This step is also known as \thesymbolic method" and is extensively discussed in [FS], [GJ04] and [Wil90] using a verydi�erent notation. We have adopted the notation of [FS].In Sections 1 and 2 we present the symbolic method for unlabelled and labelled combina-torial structures assuming that we are only interested in the total number of structures of agiven size. If we want to keep track of more than one parameter we have to use multivariategenerating functions (mgf). In this situation we can use a simple modi�cation of the symbolicmethod described in the �rst two sections which is presented in Section 3. The last sectioncontains some de�nitions concerning limiting distributions needed in later chapters.All power series considered in this chapter will be treated as formal power series andall operations are performed in the ring of formal power series (see [GJ04] for necessaryde�nitions).
1.1 Unlabelled Constructions

An example of a class of unlabelled structures is the class of all binary trees where the nodesin each tree are indistinguishable. The size of a tree can for example be de�ned as the number
3



CHAPTER 1. GENERATING FUNCTIONS 4
of its internal nodes. This example is an instance of
Definition 1.1. A pair (A, |�|A) is called an unlabelled combinatorial class if and only if
(i) |�|A is a function |�|A : A → N and
(ii) for each n 2 N the set {

α 2 A�� |α|A = n
} is �nite.

For each α 2 A the nonnegative integer |α|A is called the size of α. The sequence�card{
α 2 A�� |α|A = n

}�
n2N is called the counting sequence of (A, |�|A).

Remark. As a consequence of (i) and (ii), the set A is at most denumerable.
Remark. The following naming convention will be adopted: If the unlabelled combina-torial class is called (A, |�|A), then its counting sequence is denoted by (an)n2N and thecorresponding ordinary generating function is denoted by a(z) =

∑
n�0 anzn (analogousfor (B, |�|B), (bn)n2N and b(z)).

Definition 1.2. Two unlabelled combinatorial classes (A, |�|A) and (B, |�|B) are said tobe isomorphic if and only if their counting sequences are identical:
(A, |�|A) ∼= (B, |�|B) ⇐⇒ (an)n2N = (bn)n2N.

Definition 1.3. For a given unlabelled combinatorial class (A, |�|A) , the subclass con-sisting of all elements of size � n, n 2 N, is denoted by (A, |�|A)[n] =
�A[n], |�|A[n]

�:
α 2 A[n] ⇐⇒ α 2 A ∧ |α|A � n.

Definition 1.4. Given two unlabelled combinatorial classes (A, |�|A) and (B, |�|B), theCartesian product (C, |�|C) = (A, |�|A)� (B, |�|B) is de�ned as the class
C = A� B 8(α, β) 2 A� B : |(α, β)|C = |α|A + |β|B .

The Cartesian product constitutes a combinatorial construction since the resulting setis an unlabelled combinatorial class. It is associative in the sense that (for any possibleplacement of the parenthesis) all resulting classes are isomorphic.For n � 1, the n-th power of a class (A, |�|A) (Cartesian product of n copies of (A, |�|A))is denoted by (A, |�|A)n = (An, |�|An). The 0-th power is de�ned as the class consisting of onestructure of size 0.
Definition 1.5. Given two unlabelled combinatorial classes (A, |�|A) and (B, |�|B) and twodi�erent structures ε1 and ε2 of size 0, the disjoint sum (D, |�|D) = (A, |�|A) + (B, |�|B) isde�ned as the class

D =

0
@ [

α2A{ε1}� {α}

1
A [

0
@ [

β2B{ε2}� {β}

1
A .

The size of the objects remains unchanged.



CHAPTER 1. GENERATING FUNCTIONS 5
The disjoint sum is an associative combinatorial construction in the same sense as theCartesian product.

Theorem 1.1. Let (A, |�|A) and and (B, |�|B) denote two unlabelled combinatorial classes.Then the following holds:
(i) (C, |�|C) ∼= (A, |�|A)� (B, |�|B) if and only if c(z) = a(z)b(z).
(ii) (D, |�|D) ∼= (A, |�|A) + (B, |�|B) if and only if d(z) = a(z) + b(z).
Proof. (i) For any n 2 N, the number of structures of size n in (A, |�|A)� (B, |�|B) is givenby

cn =
∑

n1+n2=n

an1bn2

which is equal to [zn]
�
a(z)b(z)

�.
(ii) Any object of size n in (A, |�|A) + (B, |�|B) has either the form (ε1, α) or (ε2, β) where

α 2 A and β 2 B are structures of size n. Thus, the total number of elements of size
n in (A, |�|A) + (B, |�|B) is given by an + bn which is equal to [zn]

�
a(z) + b(z)

�.
The class of all �nite sequences of a given unlabelled combinatorial class (A, |�|A) satis�esDe�nition 1.1 if and only if A does not contain any structures of size 0. In case of existence,this structure is denoted by seq� (A, |�|A)

�.Under the same restriction, the class of all �nite subsets and the class of all �nite multisetsof (A, |�|A) exist as unlabelled combinatorial classes and are denoted by set� (A, |�|A)
� andmultiset� (A, |�|A)

�, respectively.As a consequence of the last theorem, one gets
Theorem 1.2. Let (A, |�|A) denote an unlabelled combinatorial class not containing anyobjects of size 0. Then the following holds
(i) (B, |�|B) ∼= seq� (A, |�|A)

� if and only if
b(z) =

∑
n2N

�
a(z)

�n
=

1

1 − a(z)
.

(ii) (C, |�|C) ∼= set� (A, |�|A)
� if and only if

c(z) = exp
0
@∑

k�1

(−1)k+1 a(zk)

k

1
A .

(iii) (D, |�|D) ∼= multiset� (A, |�|A)
� if and only if

d(z) = exp
0
@∑

k�1

a(zk)

k

1
A .
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Proof. (i) Since all elements of (A, |�|A) have size � 1, all sequences of length k � 0 ofelements of (A, |�|A) have size � k. Therefore (B, |�|B) ∼= seq� (A, |�|A)

� implies for any
m � 0

[zm]b(z) = [zm]

m∑
n=0

a(z)n = [zm]
1

1 − a(z)
.

(ii) Sets of elements of (A, |�|A) of size k � 0 have cardinality of at most k. Let ε denote astructure of size 0. The class of all �nite subsets of (A, |�|A) satis�es
�set (A, |�|A)

�[k] ∼=

0
@ ∏

α2A[k]

({ε}� {α}, |�|
1
A[k]

for all k � 0. Therefore (C, |�|C) ∼= set� (A, |�|A)
� implies for all m � 0

[zm]c(z) = [zm]

m∏
n=0

(1 + zn)an = [zm] exp
0
@ m∑

n=0

an ln (1 + zn)

1
A

= [zm] exp
0
@∑

j�1

m∑
n=0

an
zjn

j
(−1)j+1

1
A =

a0=0
= [zm] exp

0
@∑

j�1

∞∑
n=1

an
zjn

j
(−1)j+1

1
A =

= [zm] exp
0
@∑

j�1

(−1)j+1 a(zj)

j

1
A .

(iii) The class of all multisets of (A, |�|A) satis�es
�multiset (A, |�|A)

�[k] ∼=

0
@ ∏

α2A[k]

seq�{α}, |�| �
1
A[k]

for all k � 0. Therefore (D, |�|D) ∼= multiset (A, |�|A) implies for all m � 0

[zm]d(z) = [zm]

m∏
n=0

(1 − zn)−an = [zm] exp
0
@−

m∑
n=1

an log(1 − zn)

1
A

= [zm] exp
0
@∑

n�1

a�m(zn)

n

1
A = [zm] exp

0
@∑

n�1

a(zn)

n

1
A .

The next example demonstrates the application of the results in this section. Once theclass of interest is de�ned in terms of simple classes combined using Cartesian products anddisjoint sums, the corresponding counting sequence is obtained in a rather mechanical way.
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Example 1. The class (B, |�|B) of binary trees. A binary tree is either an external nodeor it consists of an internal node with two binary trees (the left and the right subtree)attached. The size of a tree is de�ned as the number of internal nodes.This can be formalised using the class (E , |�|E) consisting of one structure, the exter-nal node, of size 0 and the class (N , |�|N ) consisting of one structure, the internal node,of size 1. The class of all binary trees is then given by

(B, |�|B) ∼= (E , |�|E) +
�
(N , |�|N )� (B, |�|B)� (B, |�|B)

�
.

Since E(z) = 1 and N(z) = z, the ogf B(z) of the counting sequence of the class of binarytrees satis�es
B(z) = 1 + zB(z)2.

One root of the equation above involves a negative power of z. Therefore, B(z) isuniquely determined by
B(z) =

1 −
p

1 − 4z

2z
= −

1

2z

∑
j�1

 
1/2

j

!
(−4z)j =

=
1

2z

∑
j�1

2

j

 
2(j − 1)

j − 1

!
zj =

∑
j�0

1

j + 1

 
2j

j

!
zj.

Thus, the number bn of binary trees of size n is equal to 1
n+1

�2n
n

�.
1.2 Labelled Constructions

This section deals with structures consisting of a �nite number of di�erent atoms each ofwhich bears a label di�erent from all others. Examples are labelled graphs (or trees) andpermutations. For simplicity, all labels are assumed to be integers.Since the disjoint sum and the labelled product (as de�ned below) do not depend on theway the labels are connected, the following de�nition can be used:
Definition 1.6. A pair (S, f) is called labelled combinatorial structure of size n, n 2 N, ifand only if
(i) S is a set of cardinality n (the set of atoms) and
(ii) f : S → Z is an injective function (the labelling).
For each a 2 S, the number f(a) is called the label of a. The size of (S, f) is denoted by
|(S, f)|.

(S, f) is called well labelled if and only if f(S) = {0, 1, . . . n − 1}.
Definition 1.7. Let (S, f) be a labelled combinatorial structure and let g : S → Z be aninjective function. Then the pair (S, g) is a labelled combinatorial structure, too, andthe function g � f−1 is called relabelling.The relabelling g�f−1 : Z → Z is called admissible if and only if it is order preserving.
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Remark 1.1. For any labelled combinatorial structure (S, f) and a set L � N of cardi-nality |(S, f)| there exists exactly one function g : S → L such that g�f−1 is an admissiblerelabelling.
Definition 1.8. A set C is called a labelled combinatorial class if and only if
(i) C is a set consisting of well labelled combinatorial structures only and
(ii) for every n 2 N the set Cn =

{
γ 2 C

��|γ| = n
} is �nite.

The sequence (cn)n2N satisfying cn = card(Cn) is called the counting sequence of C.
Remark 1.2. For any sequence (an)n2N the corresponding exponential generating func-tion is denoted by â(z) =

∑
anzn/n!.

As in the last section, two labelled combinatorial classes C and D are said to be isomorphic,
C ∼= D, if and only if their counting sequences are identical.The disjoint sum can be de�ned similar as in the case of unlabelled structures:

C + D ∼=
�
C ? {ε0}

� [ �D ? {ε1}
� (1.1)

where ε0 and ε1 denote two di�erent structures of size 0.
Definition 1.9. Let α = (Sα, fα) and β = (Sβ, fβ) denote two labelled structures where
Sα \ Sβ = ;.Then α ? β is de�ned as the set of well labelled structures satisfying

(Sα [ Sβ, g) 2 α ? β ⇐⇒ g � f−1
α and g � f−1

β are admissible relabellings.
The set α ? β is called the labelled product of α and β.

As a consequence of Remark 1.1 the function g in the last de�nition is uniquely de�nedif g(Sα) � {0, 1, . . . , |α| + |β| − 1} is known. This set can be chosen in �|α|+|β|
|α|

� ways, thus
card(α ? β) =

 
|α| + |β|

|α|

!
. (1.2)

The labelled product constitutes an associative and commutative operation. Equation(1.2) can be extended to card(α1 ? α2 ? � � � ? αm) =
�|α1|+|α2|+���+|αm|

|α1|,|α2|,...,|αm|

�.The labelled product of two labelled combinatorial classes A and B is de�ned as
A ? B =

[
α2A

[
β2B

α ? β.

Theorem 1.3. Let A,B and C denote labelled combinatorial classes with correspondingcounting sequences (an)n2N, (bn)n2N and (cn)n2N. Then the following holds:
(i) C ∼= A + B if and only if ĉ(z) = â(z) + b̂(z).
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(ii) C ∼= A ? B if and only if ĉ(z) = â(z)b̂(z).
Proof. (i) This is true since the counting sequences satisfy

(cn)n2N = (an)n2N + (bn)n2N.

(ii) From (1.2) it follows that the number of elements of size n in A ? B is given by∑n
k=0

�n
k

�
akbn−k which is equal to [zn/n!]â(z)b̂(z):

â(z)b̂(z) =
∑
n�0

n∑
k=0

ak

k!

bn−k

(n − k)!
zn =

∑
n�0

0
@ n∑

k=0

 
n

k

!
akbn−k

1
A zn

n!
.

For any labelled combinatorial class A containing no structure of size 0 the sets of all�nite sequences and �nite sets of A exist as labelled combinatorial classes and are denotedby seq(A) and set(A), respectively.Let ε denote the empty sequence. The class of all cycles of elements of A is denoted bycyc(A) and is de�ned as cyc(A) ∼=
�seq(A) − {ε}

��� (1.3)
where β � γ, β, γ 2 �seq(A) − {ε}

�, if and only if β can be transformed into γ using a cyclicshift.
Theorem 1.4. Let A denote a labelled combinatorial class that contains no element ofsize 0. Then the following holds
(i) B ∼= seq(A) if and only if

b̂(z) =
1

1 − â(z)

(ii) C ∼= cyc(A) if and only if
ĉ(z) = log� 1

1 − â(z)

�

(iii) D ∼= set(A) if and only if
d̂(z) = exp �â(z)

�
Proof. (i) All elements of seq(A) of size � k must be sequences of length � k since A doesonly contain elements of size � 1. Therefore B ∼= seq(A) implies for all m � 0

[zm/m!]b̂(z) = [zm/m!]

m∑
k=0

â(z)k = [zm/m!]
1

1 − â(z)
.
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(ii) Every sequence of length k � 1 of elements of A consists of k di�erent components sincetheir set of labels are pairwise disjoint. Therefore each cycle of length k � 1 can beassociated with exactly k di�erent sequences (of length k). Hence C ∼= cyc(A) impliesfor all m � 0

[zm/m!]ĉ(z) = [zm/m!]

m∑
n=1

â(z)n

n
= [zm/m!] ln 1

1 − â(z)
.

(iii) Every set of size k � 0 can be arranged in k! ways and thus can be associated with k!sequences of length k. Therefore, D ∼= set(A) implies for all m � 0

[zm/m!]d̂(z) = [zm/m!]

m∑
n=0

â(z)n

n!
= [zm/m!] exp �â(z)

�
.

Example 2. The Bell numbers. The n-th Bell number bn, n � 0, is de�ned as thenumber of partitions of a set of cardinality n (b0 = 1).Since the interesting parameter of a given set is its cardinality, the size of the set,viewed as labelled structure, should be equal to its cardinality. Thus in this context theclass S of all �nite sets (viewed as labelled structures) can be modelled as
S ∼= set�{α}

�
where α is a structure of size 1. The egf of its counting sequence is given by

ŝ(z) =
∑
n�0

zn

n!
= exp(z).

Let ε denote the empty set. Every partition can be viewed as a set of non-emptysets. Therefore the class B of all partitions satis�es
B ∼= set�S − {ε}

�
∼= set�set�{α}

�
− {ε}

�
.

This is readily translated into the language of exponential power series:
b̂(z) = exp �ez − 1

�
Di�erentiation yields

d

dz
b̂(z) = ezb̂(z).

and comparison of the coe�cients of zn/n! on both sides results in the well-knownrecurrence relation
bn+1 =

n∑
k=0

 
n

k

!
bk n � 0.
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1.3 Parameters

Often, one is not only interested in the number of objects of size n, but would also like to keeptrack of certain other parameters (e.g. the number of components) and obtain probabilisticinformation on these parameters.
Definition 1.10. Let A denote a combinatorial class. A parameter on A is a mapA → Nd, d � 1.

The symbolic approach described in the last two sections can be nicely adapted in orderto ful�l these needs for a certain type of parameter:
Definition 1.11. Let A, B and C denote combinatorial classes (labelled or unlabelled)with parameters χ, ξ and ζ, resp., all of which have the same dimension. Then, theparameter χ is said to be inherited from ξ,ζ in the following cases:

� A = B + C and
χ(α) =

{
ξ(α) if α 2 B
ζ(α) if α 2 C 8α 2 A

� A = B 
 C and
χ(hα, βi) = ξ(α) + ζ(β) 8 hα, βi 2 Awhere 
 and hα, βi denote either ? and α ? β (labelled case) or � and (α, β)(unlabelled case).

This is extended for all �nite sums and products and combinations thereof.
Remark 1.3. For simplicity, we will adopt the following conventions: Vectors will bedenoted by bold variables (e.g. v). If z and u denote two vectors of dimension d + 1,we use the abbreviation

zu := z
u0
0 z

u1
1 � � � zud

d .If z is a vector of dimension d + 1 and r an arbitrary complex number then we set
rz = (rz0 , rz1 , . . . , rzd) .

Remark 1.4. For the combinatorial class A with parameter ξ, we de�ne
An,k :=

{
α 2 A �� |α|A = n ∧ ξ(α) = k

}
and

an,k := card(An,k).(For the class B, it would be Bn,k and bn,k.)
Definition 1.12. (i) For the unlabelled combinatorial class A with parameter ξ, the(formal) power series ∑

α2A z|α|Auξ(α),

where u is a vector of indeterminates of same dimension as ξ, is called the mul-tivariate generating function for the combinatorial class A with parameter ξ.
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(ii) For the labelled combinatorial class B with parameter ζ, the (formal) power series

∑
β2B

z|β|B

|β|B!
uζ(β)

is called the multivariate generating function for the combinatorial class B with pa-rameter ζ.
With this de�nitions, one can prove the same translation rules as stated in the Theorems1.2 and 1.4 using analogous arguments.As can be seen in the following example, one has to �nd an appropriate symbolic descrip-tion of the class(es) in question before translating it into an equation between multivariatepower series.

Example 3. The combinatorial class G of planar unlabelled trees is de�ned by
G ∼= N � seq(G)

where N denotes the class consisting of one element of size 1 (a node).If we want to introduce the parameter ξ on G which counts the number of leafs, therecursive de�nition above cannot be used. But the de�nition above can be rephrased as
G ∼= N + Z � �seq(G) − ε

�
where ε denotes the empty sequence and Z any class satisfying Z ∼= N . Now, N playsthe role of an external node and Z that of an internal node.It is found, that the parameter ξ is identical with the parameter inherited from theparameter on N with constant value 1 and the parameter on Z with constant value 0.The classes N and Z thus have the mgf uz and z, resp.This leads to the equation

G(z, u) = zu +
zG(z, u)

1 − G(z, u)

where G(z, u) denotes the mgf of the class G with u marking the number of leafs.
1.4 Limiting Distributions

Given a combinatorial class A (labelled or unlabelled) with parameter ξ of dimension d �
1. The corresponding multivariate generating function F(z,u) can be directly related to asequence of random variables (Xn : n 2 I), I � N, on Nd de�ned by

P{Xn = k} =
[znuk]F(z,u)

[zn]F(z, 1)
8n 2 I, 8k 2 Nd

where I consists of those numbers for which [zn]F(z, 1) > 0.
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In the case d = 1, the m-th factorial moment of Xn can simply be expressed as

E
�
Xn(Xn − 1) � � � (Xn − m + 1)

�
=

1

[zn]F(z, 1)
[zn]

∂m

∂um
F(z, u)

����
u=1

which gives, denoting the partial derivatives w.r.t u with Fu and Fuu, the expressions
EXn =

[zn]Fu(z, 1)

[zn]F(z, 1)

VXn =
[zn]Fuu(z, 1)

[zn]F(z, 1)
+

[zn]Fu(z, 1)

[zn]F(z, 1)
−

�
[zn]Fu(z, 1)

[zn]F(z, 1)

�2

for the mean and variance, resp.For applications in later chapters, we give the following de�nitions.
Definition 1.13. A sequence (Xn : n � 0) of random variables is called asymptoticallyconcentrated if and only if there exists a sequence (µn) such that

8 ε > 0 : lim
n→∞ P

{
1 − ε <

Xn

µn
< 1 + ε

}
= 1.

Definition 1.14. A sequence (Xn : n � 0) of random variables satis�es a central limittheorem if and only if there exist sequences (µn) and (σn) such that
lim

n→∞ sup
x

�������P
{

Xn − µn

σn
� x

}
−

1p
2π

x∫
−∞

e−t2/2dt

������� = 0.

Definition 1.15. A sequence (Xn : n � 0) of random variables satis�es a local limittheorem on S if and only if there exist sequences (µn) and (σn) such that
lim

n→∞ sup
x2S

����σnP
{

Xn − µn

σn
= bσnx + µnc} −

1p
2π

e−x2/2

���� = 0.



Chapter 2

Asymptotic Methods

The methods of the last chapter result in equations satis�ed by the generating function inquestion. For certain types of equations one can immediately extract the desired informationabout the coe�cients of the gf (see Example 1). But this is not always possible.It is often the case that the generating function considered is analytic in some domain.One can then use methods of complex analysis in order to obtain exact or asymptotic repre-sentations for the coe�cients in question.The Lagrange Inversion Theorem can be applied to certain equations and results in anexact representation. We note that an analogous theorem holds for the larger class of formalpower series (see [GJ04] for details).A source of asymptotic information about the coe�cients are the singularities on thecircle of convergence of the generating function. The asymptotic behaviour can then oftenbe determined by an application of Cauchy's theorem using an appropriate path and esti-mating the resulting integral. In the case of small singularities of an algebraic-logarithmictype Flajolet and Odlyzko's [FO90] so-called singularity analysis applies. If the dominantsingularities are large singularities, that is the function is growing exponentially near thesesingularities, or in the case of entire functions one can often apply the saddle point method.
2.1 Lagrange Inversion

Consider a class T of trees with generating function F(z). T is called simply generated if andonly if there exists a power series Φ(u) such that
F(z) = zΦ(F(z)), Φ(0) > 0. (2.1)

Lagrange proved a theorem that gives the power series expansion of F(z) in terms of z. Thefollowing formulation is taken from [WW96, p.133] where one can also �nd a proof for it.
Theorem 2.1 (Lagrange Inversion Theorem). Let Φ(z) be analytic on and inside acontour γ surrounding a point a. If t 2 C is such that |tΦ(z)| < |z − u| for all z 2 γ,then we have:

14
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(i) The equation

ζ = u + tΦ(ζ)has exactly one root ζ(t) in the interior of γ.
(ii) If f(z) is analytic on and inside γ, we have the expansion

f(ζ(t)) = f(u) +
∑
n�1

tn

n!

dn−1

dzn−1

�
f 0(z)Φ(z)n������

z=u

. (2.2)
A reformulation of equation (2.2) gives

[tn]f(ζ(t)) =
1

n
[(z − u)n−1]

�
f 0(z)Φ(z)n� (2.3)

for n � 1.Theorem 2.1 can be applied to the inversion problem (2.1) using f(z) = z and u = 0. Weapply formula (2.3) to the generating functions of some families of trees.
Example 4 (plane rooted trees). The family T of plane rooted trees is de�ned by theequation T = N � seq(T ).Thus, the ordinary generating function F(z) and the exponential generating function
G(z) satisfy

F(z) =
z

1 − F(z)
and G(z) = zeG(z).

An application of Theorem 2.1 using Φ(z) = (1 − z)−1 and u = 0 gives
[zn]F(z) =

1

n
[tn−1](1 − t)−n =

(−1)n−1

n

 
−n

n − 1

!
=

1

n

 
2n − 2

n − 1

!

and setting Φ(z) = ez and u = 0 yields
[zn]G(z) =

1

n
[tn−1]ent =

nn−1

n!
.

Since G(z) is an egf, the actual number of labelled trees of size n is given by nn−1.
Example 5 (t-ary trees). The family T of t-ary trees is de�ned by

T = E +N � T t.

Thus, the ordinary generating function F(z) satis�es
F(z) = 1 + F(z)t.

By Langrange's Theorem, the number of t-ary trees of size n � 1 is given by (setting
φ(z) = zt and u = 1)

[zn]F(z) =
1

n
[(w − 1)n−1]

�
(w − 1) + 1

�nt
=

1

n

 
nt

n − 1

!
.
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2.2 Singularity Analysis

We consider functions having a unique dominant algebraic-logarithmic singularity on theircircle of convergence. By normalisation, we may always assume that this singularity occursat z = 1.Flajolet and Odlyzko [FO90] considered a special class S of functions as described aboveand proved an asymptotic expansion for their Taylor coe�cients (Theorem 2.3). Having thisclass at hand, they obtained asymptotic expansions for the Taylor coe�cients of functions
f(z) of the form

f(z) = h0(z) + h1(z) + � � �+ hk(z) + O(g(z)), z → 1, (2.4)
where h0(z), . . . , hk(z), g(z) 2 S and h0(z) � � � � � hk(z) � g(z) as z → 1. Moreover, theso-called transfer-theorems (Theorem 2.2) proved in [FO90], which guarantee that

[zn]O(g(z)) = O([zn]g(z)), g(z) 2 S,

show that the coe�cients corresponding to (2.4) satisfy
fn = h0,n + � � �+ hk,n + O(gn)

and that h0,n � � � � � hk,n � gn.We continue by stating the results mentioned above. The proofs are mainly based onCauchy's theorem using a Hankel-contour as integration path and can be found in [FO90].
Theorem 2.2. Assume that f(z) is analytic in

∆ = ∆(φ, η) =
{

z
��� |z| � 1 + η and | arg(z − 1)| � φ

}
where η > 0 and 0 < φ < π

2 and that z = 1 is a singularity of f(z). Set L(z) =

(log z)β(log log z)δ. If
f(z) = O

�
(1 − z)αL

�
1

1 − z

��
, z 2 ∆, z → 1

for some real numbers α, β, δ then
[zn]f(z) = O

�
n−α−1L(n)

�
, n → ∞.

Analogous results hold for o and ∼ instead of O.
Theorem 2.3. Let α, β, δ 2 C − {0, 1, 2, . . .} and de�ne

f(z) = (1 − z)α
�

1

z
log 1

1 − z

�β �1

z
log�1

z
log 1

1 − z

��δ

. (2.5)
Then we have

[zn]f(z) ∼
n−α−1

Γ(−α)
(logn)β(log logn)δ

0
@1 +

∑
k�1

ek(log logn)

(logn log logn)k

1
A (2.6)
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where

ek(z) = Γ(−α)Ek(z)
dk

dsk

1

Γ(−s)

�����
s=αwith ∑

k�0

Ek(z)uk = (1 − uz)β
�

1 −
1

z
log(1 − uz)

�δ

.

Remark 2.1. Note that the functions considered in Theorems 2.2 and 2.3 di�er by z−1.The reason for introducing this factor is the fact that �−z−1 log(1 − z)
�β is analytic at

z = 0 even for non-integral β. Noting that
1

z
log 1

1 − z
= log 1

1 − z
+ O

�
(1 − z) log 1

1 − z

�
and applying Theorem 2.2 we see that

[zn]

�
1

z
log 1

1 − z
− log 1

1 − z

�
= O

� logn

n2

�
.

Hence we may replace −z−1 log(1 − z) with − log(1 − z) in (2.5) without destroying thetruth of (2.6).
Example 6. The generating function for the harmonic numbers (Hn)n�1 is known tobe

H(z) =
∑
n�1

Hnzn =
1

1 − z
log 1

1 − z
.

Adopting the notation of Theorem 2.3 we have α = −1,β = 1 and δ = 0 as well as
Ek(z) =

{
−z k = 1

0 k > 1
ek(z) =

{
γ k = 1

0 k > 1

where γ = 0.577 . . . is Euler's constant and therefore obtain
Hn = logn + γ + o(1) n → ∞.

Example 7. An undirected labelled graph is said to be 2-regular if and only if all itsnodes have degree 2. All connected 2-regular graphs are given by undirected cycleshaving at least 3 nodes. Hence, the egf for connected 2-regular graphs is
c(z) =

∑
n�3

(n − 1)!

2

zn

n!
=

1

2

 log 1

1 − z
− z −

z2

2

!
.

Applying Theorem 1.4 we see that the egf for 2-regular graphs is
f(z) = ec(z) =

e−z/2−z2/4p
1 − z

= e−3/4
�

1p
1 − z

+
p

1 − z + O(1 − z)3/2
�

, z → 1.
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Now, Theorem 2.2 shows that

[zn]O(1 − z)3/2 = O(n−5/2), n → ∞,

and from Stirling's formula for Γ(z) we obtain
[zn](1 − z)−1/2 =

�
1

nπ

�1/2 �
1 +

1

8n
+ O(n−2))

�

[zn](1 − z)1/2 = −
1

2

�
1

n3π

�1/2 �
1 + O(n−1)

�
as n → ∞ (note that Theorem 2.3 would have given only the main term of the last twoexpansions).The number fn of 2-regular graphs having n nodes therefore satis�es

fn =
e−3/4p

π

�
1p
n

−
3

8n3/2
+ O(n−5/2)

�
, n → ∞.

2.3 The Saddle Point Method

The saddle point method is a heuristic, that often yields good approximations to integrals ofthe form ∫
γ(t)

F(z, t)dz as t → ∞ (2.7)
where t is a real parameter, F is analytic w.r.t. z in some domain G(t) � C and γ(t) is apath that entirely lays in G(t).In this section, we will only give a rough sketch and a sample application of the saddlepoint method and refer to [dB81, ch.5,6] for a thorough discussion.Essentially, the method relies on the Theorem of Cauchy and the Method of Laplace (see[dB81, ch.4] for details) and can roughly be summarised as follows:
(i) Substitute the path of integration γ(t) with another one, σ(t) say, without changingthe value of the integral such that along σ(t) |F(z, t)| has some sharp peaks and is smalleverywhere else and
(ii) apply the Method of Laplace:

(a) choose neighbourhoods of these peaks so large that the main contribution to thevalue of the integral is being captured,(b) in these neighbourhoods, substitute the integrand with simpler functions and(c) asymptotically estimate the resulting integrals.
The name \saddle point method" stems from the way of obtaining an appropriate path:By the maximum modulus theorem, |F(z, t)| does not have any maxima or minima in theinterior of G(t) (except for zeros). Thus, the only points where d

dz |F(z, t)| = 0 and F(z, t) 6= 0are saddle points.
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Suppose that ζ 2 G(t) is a saddle point of F(z) = F(z, t), that is F(ζ) 6= 0, F 0(ζ) = � � � =

F(k−1)(ζ) = 0 and F(k)(ζ) 6= 0 for some k � 2.Suppose that k = 2. Then, for |z−ζ| small enough, the function log F(z) can be expandedas log F(z) = log F(ζ) +
F 00(ζ)

F(ζ)

(z − ζ)2

2
+ O((z − ζ)3). (2.8)

Since |F(z)| = e< log F(z), |F(z)| is of fastest decrease for
z = ζ + t exp� i

2

�
π − arg F 00(ζ)

F(ζ)

��
, t 2 R (2.9)

where the second addend of (2.8) is real and negative. The straight line (2.9) is called theaxis of the saddle point or the direction of steepest descent.In the case k > 2 there are several directions of steepest decent. See [FS] for some remarkson this.So, for appropriate functions, the path σ in step (i) should be chosen such that the highestpoints of |F(z)| along σ are also saddle points of |F(z)| and in small neighbourhoods of thesesaddle points, σ approximates its axis.
2.3.1 An Illustrating Example

The goal of this section is an estimation of the number of permutations of n elements havingonly cycles of length � 2 as n → ∞. The corresponding egf will be denoted by F.Each permutation can be represented as a set of (labelled) cycles. In this case, all cyclesare of length 1 or 2 (corresponding to �xed points and transpositions, resp.). Thus, the egfis given by
F(z) =

∑
n�0

Fn
zn

n!
= exp z +

z2

2

!
.

The starting point for the asymptotic analysis is the residue theorem which reads
Fn

n!
=

1

2πi

∮
ez+z2/2

zn+1
dz, n � 0, (2.10)

where the path of integration encircles the origin exactly once (counterclockwise).Rewriting the integrand of (2.10) as
eh(z) := exp z +

z2

2
− (n + 1) log z

!

we see that there are two saddle points, determined by the equation z2 + z = n + 1, namely
−

1

2
�
s

5

4
+ n = −

1

2
�pn

�
1 +

5

8
n−1 + O(n−2)

�
.
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First, consider the saddle point at

ζn = −
1

2
+

s
5

4
+ n, n � 0. (2.11)

The power series expansion of h centred in ζn is given by
h(z) = h(ζn) +

�
1 +

n + 1

ζ2
n

�
(z − ζn)2

2
+

∑
k�3

(−1)k n + 1

k

�
z − ζn

ζn

�k (2.12)
which is convergent for |z− ζn| < ζn. The coe�cient of (z− ζ)2 is real and therefore the axisof the saddle point ζn is perpendicular to the real line.The other saddle point is negligible as will be seen below. Furthermore, we will showthat the path γ = γ1 + γ2 given by

γ1 :=
{
z : z = ζn + it, −δ � t � δ

}
γ2 :=

{
z : |z|2 = ζ2

n + δ2, arg(ζn + iδ) � arg(z) � 2π − arg(ζn + iδ)
}
,

where δ 2 R+ has yet to be chosen, can be used to estimate the integral (2.10).For successfully replacing ∫
γ1

eh(z)dz by a complete Gaussian integral, δ has to be chosensuch that for z 2 γ1 we have
(i) h(z) ∼ h(ζn) + h 00(ζn)(z − ζn)2 and
(ii) h 00(ζn)δ2 → ∞

as n → ∞.The last sum of (2.12) can be rewritten as
−(n + 1)

�
z − ζn

ζn

�3 ∑
k�0

(−1)k

k + 2

�
z − ζn

ζn

�k

.

Since ζn ∼
p

n we have
(n + 1)(z − ζn)3ζ−3

n ∼ (n−1/2 + n−3/2)(z − ζn)3

and therefore condition (i) is satis�ed if δ is chosen so small that
δ3 = o(

p
n) as n → ∞. (2.13)

The quantity h 00(ζn) = 1
2 + n+1

ζ2
n

tends to 1
2 from above as n → ∞ since ζ2

n ∼ n. Thus, inoder to satisfy condition (ii), δ has to be chosen such that
δ2 → ∞ as n → ∞. (2.14)

A possible choice satisfying (2.13) and (2.14) is
δ = n1/8
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which will be used in the sequel.For z 2 γ1, we have

1

i

∫
γ1

eh(z)dz =

∫δ

−δ
eh(ζn+it)dt

=

∫δ

−δ
eh(ζn)−h 00(ζn)t2/2�1 + O(nδ3ζ−3

n )
�
dt

=
eh(ζn)

�
1 + O(n−1/8)

�p
h 00(ζn)

δ
p

h 00(ζn)∫
−δ
p

h 00(ζn)

e−u2/2du

=
eh(ζn)

�
1 + O(n−1/8)

�p
h 00(ζn)

 ∫∞
−∞ e−u2/2du + O

�
e−δ2/2

�!

=
eh(ζn)

p
2πp

h 00(ζn)

�
1 + O(n−1/8)

�
For z 2 γ2, we have���eh(z)

��� = e<h(z) � exp ζn +
ζ2

n

2
− (n + 1) log ζn

!

= exp (n + 1)(1 − log ζn) −
ζ2

n

2

!
=

�
e

ζn

�n+1

e−ζ2
n/2

and therefore �����
∫
γ2

eh(z)dz

����� � 2π
q

ζ2
n + δ2

�
e

ζn

�n+1

e−ζ2
n/2

= 2π

s
1 +

�
δ

ζn

�2 � e

ζn

�n

e−ζ2
n/2+1

which tends to zero as n → ∞.From (2.11) we get ζ2
n = n −

p
n + 3

2 + O(n−1/2) and since
ζn+1

n = (n + 1) log�pn

�
1 −

1

2

p
n +

5

8
n−1 + O(n−2)

��
= (n + 1) logpn − (n + 1)

�
1

2
p

n
−

5

8n
+ O(n−2) +

1

2

�
1

4n
+ O(n−3/2)

��

= (n + 1) logpn −

 p
n

2
−

1

2
+ O(n−1)

!

we have
eh(ζn) = eζn+ζ2

n/2ζ
−(n+1)
n =

en/2+
p

n/2+1/4+O(n−1/2)

n(n+1)/2e−
p

n/2+1/2+O(n−1)

=
p

n
n+1 exp�n

2
+
p

n −
1

4

� �
1 + O(n−1/2)

�
.
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Figure 2.1: Surface of |ez+z2/2z−16| with the dominant saddlepoint at z = −1
2 +

q
5
4 + 15

This gives the intermediate result
Fn

n!
∼

1

2π

eh(ζn)
p

2πp
h 00(ζn)

∼
1

2
p

πnn+1
exp�n

2
+
p

n −
1

4

�

Using Stirling's formula we �nally obtain
Fn ∼

nn/2p
2

exp�−
n

2
+
p

n −
1

4

� as n → ∞.



Chapter 3

Hayman-admissible Functions

3.1 H-admissibility

Hayman [Hay56] stated conditions of power series ∑
n�0 fnzn,cn 2 C, which ensure thedetermination of the behaviour of fn as n → ∞ (in the sense of ∼) using the saddle pointmethod.A notable fact about these functions is the existence of certain closure properties. Thisoften simpli�es the task of establishing these conditions (see below) for a given function andcan also be used for an automation of this process.

Definition 3.1 (H-Admissibility). Let f(z) denote a function regular for |z| < R, 0 <

R � ∞. Assume further that there exists R0 < R such that f(r) > 0 for all r 2 [R0, R).De�ne for r 2 [R0, R) the two functions
a(r) = r

f 0(r)
f(r)

and
b(r) = ra 0(r) = r

f 0(r)
f(r)

+ r2 f 00(r)
f(r)

− r2
�

f 0(r)
f(r)

�2

.

Then f is said to be Hayman-admissible in |z| < R (or H-admissible) if and only if itsatis�es
(i) b(r) → ∞ as r → R and

there exists a function δ : [R0, r) → (0, π) such that the following holds
(ii) Uniformly for φ � δ(r) we have

f(reiφ) ∼ f(r) exp�iφa(r) −
1

2
φ2b(r)

� (3.1)
as r → R and

23
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(iii) uniformly for δ(r) � φ we have

f(reiφ) =
o(f(r))p

b(r)
(3.2)

as r → R.
Remark 3.1. As a consequence of conditions (ii) and (iii) we have for δ = δ(r)

|f(reiδ)|

f(r)
∼ e−δ2b(r) = o(b(r))−1/2

which is o(1) as r → R by condition (i). Thus, we have
δ2b(r) → ∞ as r → R. (3.3)

Remark 3.2. Without loss of generality, we may assume that
δ(r) � s2

log b(r)

b(r)
(3.4)

since otherwise we have for p2 log b(r)/b(r) � |φ| � δ(r), applying (3.1),
|f(reiφ)|

f(r)
∼ exp −b(r)

φ2

2

! � 1

b(r)

which implies (3.2).
Theorem 3.1. Let f(z) =

∑
n�0 fnzn be H-admissible in |z| < R and de�ne fn = 0 for

n < 0. Then we have
fnrn =

f(r)p
2πb(r)

0
@exp

0
@−

�
a(r) − n

�2
2b(r)

1
A+ o(1)

1
A (3.5)

uniformly for all integers n as r → R.
Proof. The claim can be proved by an estimation of Cauchy's Integral

fnrn =
1

2π

0B@ δ∫
−δ

+

2π−δ∫
δ

1CA f(reiφ)

einφ
dφ

where δ = δ(r).From (3.2), we have�������
2π−δ∫

δ

f(reiφ)

einφ
dφ

������� � 2(π − δ) max
δ�φ�2π−δ

���f(reiφ)
��� =

o(f(r))p
b(r)
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uniformly in n as r → R.Equations (3.1) and (3.3) give

δ∫
−δ

f(reiφ)

einφ
dφ = f(r)

δ∫
−δ

(1 + o(1)) exp�iφ(a(r) − n) −
1

2
φ2b(r)

�
dφ

= f(r)

0B@ δ∫
−δ

eiφ(a(r)−n)− 1
2
φ2b(r)dφ + o

0B@ ∞∫
−∞

e− 1
2
b(r)φ2

dφ

1CA
1CA

= f(r)

0B@ δ∫
−δ

eiφ(a(r)−n)− 1
2
φ2b(r)dφ + o(b(r))−1/2

1CA
as r → R.An application of Cauchy's Theorem gives

∞+iW∫
−∞+iW

e−t2/2dt =

∞∫
−∞

e−t2/2dt =
p

2π, W 2 R,

and thus, by noting that
iφ(a(r) − n) −

1

2
b(r)φ2 = −

1

2

 
φ
q

b(r) − i
a(r) − np

b(r)

!2

−
(a(r) − n)2

2b(r)
,

we get
δ∫

−δ

eiφ(a(r)−n)− 1
2
φ2b(r)dφ =

1p
b(r)

exp −
(a(r) − n)2

2b(r)

! δ
p

b(r)∫
−δ
p

b(r)

e−t2/2dt

=

s
2π

b(r)
exp −

(a(r) − n)2

2b(r)

!
(1 + o(1))

where the last equality follows from (3.3).Combining the two estimates gives
fnrn =

f(r)

2π

s
2π

b(r)
exp −

(a(r) − n)2

2b(r)

!
(1 + o(1)) +

o(f(r))p
b(r)

=
f(r)p
2πb(r)

0
@exp

0
@−

�
a(r) − n

�2
2b(r)

1
A+ o(1)

1
A .



CHAPTER 3. HAYMAN-ADMISSIBLE FUNCTIONS 26
Corollary 3.1. We have

a(r) → ∞, as r → R. (3.6)
Furthermore, there exists an R1 < R such that a(r) is strictly monotonic increasing in
[R1, R).As a consequence thereof, we have

b(r) = o(a(r))2, as r → R. (3.7)
Proof. Since b(r) = ra 0(r) → ∞ as r → R, we know that a(r) is strictly monotonic increasingin some range R1 < r < R, R1 < R.Putting n = −1 in equation 3.5 yields

exp −
(a(r) + 1)2

b(r)

!
= o(1), as r → R,

and as a consequence we get
(a(r) + 1)2

b(r)
→ ∞, as r → R,

which proves (3.6) since b(r) → ∞ as r → R.
In particular, the last corollary shows, that for n 2 N large enough the equation a(r) = nhas a unique solution rn that satis�es rn → R as n → ∞. This observation leads to

Corollary 3.2. Let f(z) =
∑

n�0 fnzn be H-admissible in |z| < R and let rn denote theunique solution of a(r) = n. The coe�cients satisfy
fn ∼

f(rn)

rn
n

p
2πb(r)

, as n → ∞. (3.8)
Corollary 3.3. Assume that f(z) =

∑
n�0 fnzn is H-admissible in |z| < R.For any n 2 Z, we have

f(r)

rn
→ ∞, as r → R (3.9)

and for any ε > 0, we have
a(r) = O(f(r))ε and b(r) = O(f(r))ε, as r → R. (3.10)

Proof. From (3.5) it follows that fn > 0 if n is su�ciently large. Also, if r is su�ciently nearto R, (3.5) gives
f(r)

rn
>

1

2
fn

q
2πb(r).

Since b(r) → ∞ as r → R we obtain 3.9.Clearly, b(r) = O(f(r))ε follows from a(r) = O(f(r))ε/2 and (3.7).
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For proving the remaining claim, we suppose on contrary that there exists ε > 0 suchthat

a(r) = r
f 0(r)
f(r)

� f(r)ε

for r 2 [R1, R) and some 0 � R1 < R. This gives, for R1 < ρ < R,∫ρ

R1

f 0(r)
f(r)1+ε

dr � ∫ρ

R1

dr

r

and therefore
f(R1)

−ε − f(ρ)−ε

ε
� log ρ

R1
.

If R = ∞, we obtain a contradiction by letting ρ → ∞ since the left hand side of the lastequation remains �nite. The proof for R < ∞ involves some additional technicalities and willbe omitted (see [Hay56]).
The next lemma gives su�cient conditions for (3.1).

Lemma 3.1. Let f(z) be analytic and not zero in |z − r| < 2ηr for some r 2 R+ and
0 < η � 1

2 and set
a(z) = z

f 0(z)
f(z)

and b(z) = za 0(z).
If b(z) satis�es

|b(z)| < Cb(r), |z − r| < 2ηr, (3.11)
for some constant C 2 R+ then we have the expansion

log f(reζ) = log f(r) + a(r)ζ + b(r)
ζ2

2
+ ε(r, ζ)

where
|ε(r, ζ)| <

Cb(r)|ζ|3

2ηfor |ζ| < η.
Proof. The function b(reζ) = ∂2

∂ζ2 log f(reζ) is analytic for |ζ| < η since we have���reζ − r
��� = r

���eζ − 1
��� � r

�
e|ζ| − 1

� � r(eη − 1) < 2ηr

for η � 1
2 and thus has a power series development

b(reζ) =
∑
n�0

cnζn.

Cauchy's inequality together with (3.11) yields
|cn| � Cb(r)

ηn
.
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Integrating twice w.r.t. ζ gives

log f(reζ) = log f(r) + a(r)ζ + b(r)
ζ2

2
+

∑
n�1

cn

(n + 1)(n + 2)
ζn+2

and noting that
∑
n�1

cn

(n + 1)(n + 2)
ζn+2 � Cb(r)|ζ|3

η

∑
n�1

1

(n + 1)(n + 2)
=

Cb(r)|ζ|3

2η

completes the proof.
The remaining part of this section is devoted to the study of the behaviour of H-admissiblefunctions. Theorem 3.2 shows how H-admissible functions and their derivatives behave forreal arguments, Lemma 3.2 gives a better approximation than (3.1) for arguments near thereal line and �nally, Theorem 3.3 shows that H-admissible functions attain their maximumon {z 2 C : |z| = r}, r properly chosen, at z = r. The technical proofs for the Theorems 3.2and 3.3 will be omitted and can be found in [Hay56].

Theorem 3.2. Let f(z) be H-admissible in |z| < R. Then
� for any �xed positive constant K and |h| < K/a(r) we have

a(reh) ∼ a(r) (3.12)
uniformly as r, reh tend to R from below;

� for any �xed κ 2 R
f

�
r +

κr

a(r)

�
∼ ekf(r), as r → R; (3.13)

� for any �xed k 2 N,k > 0,
f(k)(r) ∼ f(r)

�
a(r)

r

�k

, as r → R; (3.14)
Lemma 3.2. Assume that f(z) is H-admissible in |z| < R.We have, uniformly for |φ| < a(r)−1,

f(reiφ) = f(r) + iφf 0(r) −
φ2

2

�
rf 0(r) + r2f 00(r)�+ O

�
φ3f(r)a(r)3� (3.15)

as r → R.
Proof. We obtain the result by applying Lemma 3.1 to the function F(z) = exp(f(z)). Set

A(z) = z
F 0(z)
F(z)

= zf 0(z) and B(z) = zA 0(z) = zf 0(z) + z2f 00(z).
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By (3.14), we have

B(r) ∼ f(r)a(r)2, as r → R.

B(z) has, by de�nition, only a �nite number of negative coe�cients in its power series ex-pansion. Therefore,
|B(ζ)| � B

�
r +

2r

a(r)

�
+ O(rN)

for |ζ − r| � 2r
a(r) and some N � 0. Now we have, by (3.12) and (3.13),

B

�
r +

2r

a(r)

�
∼ f

�
r +

2r

a(r)

�
a

�
r +

2r

a(r)

�2

∼ e2f(r)a(r)2.

Thus, if r is su�ciently near to R, we may apply Lemma 3.1 to F(z):
f(reiφ) = f(r) + iφA(r) −

φ2

2
B(r) + ε(r, φ)

where, for |φ| < a(r)−1 and some C > 0,
ε(r, φ) < Cf(r)a(r)3|φ|3.

Theorem 3.3. Suppose that f(z) is H-admissible in |z| < R.There exists R1 < R such that for R1 < r < R and f(r)−2/5 � |φ| � π we have
|f(reiφ)| � f(r) − f(r)1/7 (3.16)

and there exists R0 < R such that for R0 < r < R and 0 < |φ| < π we have
|f(reiφ) < f(r). (3.17)

Example 8. The function ez is H-admissible in C with δ(r) = r−2/5 and the functionsof De�nition 3.1 associated with ez are given by
a(r) = b(r) = r, r 2 R+.

Thus, the unique positive real solution to a(r) = n is given by rn = n. Corollary 3.2now yields the main term of Stirling's approximation to n!, viz.
[zn]ez =

1

n!
∼
�

e

n

�n

(2πn)−1/2.
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3.2 Classes of H-admissible Functions

For given R > 0 de�ne the class
HR := {f : C → C | f(z) is H-admissible in |z| < R} .

In this section we will prove certain closure properties satis�ed by HR: Theorems 3.5 and 3.4show how to construct new H-admissible functions from given ones and Theorems 3.6 and3.7 show that \small perturbations" do not destroy H-admissibility.These facts can often be used to simplify the task of establishing H-admissibility for agiven function. Starting from a basic set of H-admissible functions, one can establish H-admissibility for many functions by use of the theorems below without having to check theconditions of De�nition 3.1.
Theorem 3.4. f1(z), f2(z) 2 HR =⇒ f1(z)f2(z) 2 HR.
Proof. Set f(z) = f1(z)f2(z). The corresponding functions δ(r), a(r), b(r) of De�nition 3.1will be denoted using no subscript, subscript 1 or 2, resp. These functions satisfy a(r) =

a1(r) + a2(r) and b(r) = b1(r) + b2(r).We show that the function f(z) satis�es the conditions for H-admissibility with
δ(r) = min �δ1(r), δ2(r)

�
.

The only thing that needs to be shown is condition (iii)(b) of H-admissibility all otherproperties immediately follow from H-admissibility of f1 and f2.Suppose that in R0 < r < R we have b1(r) > e and b2(r) > e and that with ε < 1
2 wehave

|f1(re
iφ)|

f1(r)
� ε

b1(r)1/2
, δ1(r) � |φ| � π, (3.18)

|f2(re
iφ)|

f2(r)
� ε

b2(r)1/2
, δ2(r) � |φ| � π. (3.19)

Now, consider those r for which b1(r) � b2(r). We have to show that (3.18) is valid for
δ(r) � |φ| � π. If δ1(r) � δ2(r) there is nothing to prove. If δ2(r) < δ1(r) then we have by(3.1)

|f1(re
iφ)|

f1(r)
∼ e−b1(r)φ2/2 � e−b1(r)δ2(r)2/2, r → R, (3.20)

as well as
|f2(re

iδ2(r))|

f2(r)
∼ e−b2(r)δ2(r)2/2, r → R.

This gives for r su�ciently near to R

e−b2(r)δ2(r)2/2 <
2ε

b2(r)1/2
.
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The function pte−at is decreasing for a > 0 and t 2 h 1

2a ,∞�. Thus, for b2(r) � δ2(r)
−2, thelast equation implies

e−b1(r)δ2(r)2/2 <
2ε

b1(r)1/2
.

Hence (3.20) yields for r su�ciently near to R

|f1(re
iφ)|

f1(r)
<

3ε

b1(r)1/2
. (3.21)

Note that by (3.16) we have for r su�ciently near to R

|f2(re
iφ)|

f2(r)
< 1, 0 < |φ| < π. (3.22)

Since b(r) = b1(r) + b2(r) � 2b1(r) we �nally obtain (3.2) for f by multiplying the relations(3.21) and (3.22).
Theorem 3.5. f(z) 2 HR =⇒ exp(f(z)) 2 HR.
Proof. We show that F(z) = exp(f(z)) is H-admissible with δ(r) = f(r)−2/5. The functionsof De�nition 3.1 read

A(z) = z
F 0(z)
F(z)

= zf 0(z) and B(z) = zA 0(z) = zf 0(z) + z2f 00(z).
First, note that, by (3.14),

B(r) ∼ f(r)a(r)2 → ∞, r → R.

We have f(r)−2/5 = o(a(r)−1) as r → R by (3.10) and may therefore apply Lemma 3.2 for
|φ| � f(r)−2/5 to F(z) which yields

log F(reiφ) = log F(r) + iφA(r) −
φ2

2
B(r) + O(f(r))−1/5a(r)3

which gives (3.1) because of (3.10). Finally, for f(r)−2/5 � |φ| � π we have by (3.16) and(3.10) for r su�ciently near R

|F(reiφ)| � F(r) exp �−f(r)−1/7
� � F(r) exp �−B(r)1/8

�
which gives (3.2).
Theorem 3.6. If f(z) 2 HR and p(z) = bmzm + � � �+ b0 2 R[z] is a polynomial satisfying

� p(R) > 0 if R < ∞ or
� bm > 0 if R = ∞

then we have p(z)f(z) 2 HR.
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Proof. Set a(r) = rf 0(r)/f(r) and b(r) = ra 0(r) and let f(z) satisfy (3.1) and (3.2) with afunction δ(r) that satis�es (3.4).Since δ(r) → 0 as r → R we have, for any R,

P(reiφ)

P(r)
∼ 1, r → R,

uniformly for |φ| � δ(r). Hence, we get
f(reiφ)

f(r)

P(reiφ)

P(r)
∼ eiφa(r)−φ2b(r)/2, r → R, (3.23)

uniformly for |φ| � δ(r).For any R, we have
P(riφ)

P(r)
= O(1), r → R

for any φ and thus, we deduce
f(reiφ)

f(r)

P(reiφ)

P(r)
= o(b(r))−1/2, r → R, (3.24)

uniformly for δ(r) � |φ| � π.In order to complete the proof we have to show that we may replace a(r), b(r) by
a(r) + r

P 0(r)
P(r)

, b(r) + r
d

dr
r
P 0(r)
P(r)

in (3.23) and (3.24). But this follows immediately since rP 0(r)/P(r) and its derivative remainsbounded, while a(r),b(r) tend to in�nity as r → R.
Theorem 3.7. If f(z) 2 HR and h(z) is a function, regular in |z| < R and real for real z,such that for some η > 0 we have

max
|z|=r

|h(z)| = O(f(r))1−η as r → R

then we have f(z) + h(z) 2 HR.
Proof. Again, let a(r), b(r), δ(r) denote the functions of De�nition 3.1 corresponding to f(z).Assuming that δ(r) satis�es (3.4) we deduce that

|f(reiφ)| ∼ f(r)e−φ2b(r)/2 � f(r)

b(r)
> f(r)1− η

2

uniformly for |φ| � δ(r) as r → R. Hence we have, for |φ| � δ(r),
(f + h)(reiφ) ∼ (f + h)(r)eiφa(r)−φ2b(r)/2, r → R (3.25)
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and similarly, for δ(r) � |φ| � π,

(f + h)(reiφ) =
o((f + h)(r))

b(r)−1/2
. (3.26)

Set
A(r) = f

(f + h) 0(r)
(f + h)(r)

, B(r) = rA 0(r).
We have to show that A(r) = a(r) + o(1) and B(r) = b(r) + o(1) since we may then replace
a(r),b(r) by A(r),B(r) in (3.25) and (3.26). Suppose that |r − z| < ra(r)−1. Then we have

h(z) = O

�
f

�
r +

r

a(r)

��
= O(f(r))1−η

by (3.13). Thus for every �xed k 2 N

|h(k)(r)| � k!

�
a(r)

r

�k max
|z−r|�r/a(r)

|h(z)| =
O(f(r))1−η/2

rk

by Cauchy's inequality. Hence
A(r) = r

(f 0 + h 0)(r)
(f + h)(r)

= r
f 0(r)
h 0(r)

�
1 + O

�
h(r)

f(r)

���
1 + O

�
h 0(r)
f 0(r)

��
= a(r)

�
1 + O(f(r))−η/2

�
, r → R.

Similarly, B(r) = b(r) + o(1).
3.3 Examples

Without proof we quote three theorems that give a basic set of H-admissible functions andclose this chapter with some simple examples.
Theorem 3.8. Let P(z) = bkzk + . . . + b1z + b0, bk 6= 0, k � 1, be a real polynomial andset

f(z) =
∑
k�0

fnzn = eP(z).

Then the following four conditions are equivalent.
(i) f(z) is H-admissible in C.
(ii) For all su�ciently large r we have

|f(reiφ)| < f(r), 0 < |φ| � π.

(iii) For every integer d > 1, there exists an integer m, such that d is not a factor of
m and bm 6= 0. Further if m = m(d) is the largest such integer, then bm(d) > 0.
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(iv) an > 0 for all su�ciently large positive integers n.
Theorem 3.9. Suppose that f(z) is an integral function of genus zero, positive for largepositive z, having for some positive δ at most a �nite number of zeros in the angle
| arg z| � π/2 + δ, and such that

b(r) = r
d

dr
r

d

dr
log f(r) → ∞, r → R.

Then f(z) is admissible in the plane.
Theorem 3.10. Suppose that f(z) =

∑
n�0 fnzn is regular in |z| < 1. Furthermore, thereexist positive constants α, β < 1 and R0 < 1 and a positive function C(r), 0 < r < 1such that

� as r → 1 we have
(1 − r)

C 0(r)
C(r)

→ 0;

� uniformly for | arg z| � β(1 − r) we have
log f(z) ∼ C(|z|)(1 − z)−α, z → 1;

� for r su�ciently near 1 we have
|f(reiφ)| � |f(reiβ(1−r))|, β(1 − r) � |φ| � π.

Then f(z) is H-admissible in |z| < 1.
Example 9. (i) ez;
(ii) The function of Section 2.3.1, ez+z2/2, is H-admissible by Theorem 3.8.
(iii) The function ez − 1 is H-admissible by Theorem 3.7 and Theorem 3.5 shows thatthe generating function for the Bell numbers, exp(ez − 1), is H-admissible, too.



Chapter 4

Generalisations and Related
Concepts

We consider some concepts strongly related to H-admissibility.Harris and Schoenfeld [HS68] de�ned a class of functions f : C → C, called HS-admissible,and proved an asymptotic expansion for their coe�cients. Their method is closely relatedto Hayman's but unfortunately their result is rather hard to apply. Odlyzko and Richmond[OR85] and M�uller [M�ul97] provided theorems which establish HS-admissibility for certainclasses of functions.Mutafchiev [Mut92] generalised the local limit result implied by H-admissibility (Corollary3.2) by weakening the restrictions on the asymptotic behaviour of H-admissible functions.While Hayman requires that only the terms up to order 2 are signi�cant, Mutafchiev onlyassumes that the function occurring in the asymptotic is the characteristic function of anin�nitely divisible and absolutely integrable distribution with �nite variance.Bender and Richmond [BR96] stated a rather general analogue of H-admissibility forfunctions f : Cn → C, n � 1, and proved an asymptotic formula for the coe�cients ofsuch functions. Their concept is useful for establishing local limit theorems for variouscombinatorial structures. In their paper they also proved some theorems which simplify thetask of establishing this so-called BR-admissibility. Unfortunately it is not easy to use thisconcept for automatically obtaining asymptotic formulae for the coe�cients in question andproving limit theorems for combinatorial structures.In view of this, Drmota, Gittenberger, and Klausner [DGK05] stated an analogue of H-admissibility for functions f : C2 → C and proved a central limit theorem for their coe�cients.These so-called e-admissible classes satisfy various closure properties of an algebraic type.With this concept at hand, computers can, given a description of the combinatorial class asin Chapter 1, automatically prove central limit theorems. In their paper they also presenteda Maple-implementation demonstrating this concept.

35
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4.1 HS-admissibility

Definition 4.1. Let f(z) =
∑

n�0 fnzn be a function analytic in |z| < R,0 < R � ∞ andreal for real z.
f is said to be HS-admissible if and only if

(i) There exists R0 2 (0, R) and a function d : (R0, R) → (0, 1) such that for r 2 (R0, R)we have
1 + d(r) <

R

rand
|z − r| � rd(r) =⇒ f(z) 6= 0.

(ii) For k � 1 and r 2 (R0, R) set
A(z) =

f 0(r)
f(r)

, Bk(z) =
zk

k!

�
d

dz

�k−1

A(z), B(z) =
z

2
B 0

1(z).

We have B(r) > 0 for r 2 (R0, R) and B1(r) → ∞ as r → R−.
(iii) For R1 < R and n 2 N suitably large the equation B1(r) = n + 1 has a uniquesolution un 2 (R1, R). De�ne

Cj(z, r) = −
Bj+2(z) +

(−1)j

j+2 B1(r)

B(r)

and suppose that for a certain �xed N � 0 there exist non-negative numbers Dn,Enand n0 such that for all n � n0 and for 1 � j � 2N + 1 we have
|Cj(un, un)| � EnDj

n.

In addition, we have for all n � n0 that either
(a) |Cj(un, un)| � EnD

j
n for all j � 2N + 2 or(b) |C2N+2(un + iρun, un)| � EnD2N+2

n for ρ 2 [−d(un), d(un)].
(iv) As n → ∞, we have

B(un)d(un)2 → ∞, DnEnB(un)d(un)3 → 0, Dnd(un) → 0.

We can now state the main theorem for HS-admissible functions. Using the abbreviations
� βn = B(un);
� γj(n) = Cj(un, un);
� Q(r) is the path consisting of the line segment L from r+ ird(r) to r

q
1 − d(r)2 + ird(r)and the circular arc C from the last point to ir to −r (see �gure 4.1).
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� λ(r; d) is the maximum value of |f(z)/f(r)| on Q(r);
�

µ(r; d) = max
0
@λ(r; d)

q
B(r),

exp �−B(r)d(r)2
�

d(r)
p

B(r)

1
A ;

� E 0n = min(1, En) and E 00n = max(1, En);
� hN(n; d) = max �µ(un; d), E 0n(DnE 00n/

p
βn)2N+2

�;
�

Fk(n) =
(−1)kp

π

2k∑
m=1

Γ(m + k + 1
2)

m!

∑
j1 + � � �+ jm = 2k

j1, . . . jm � 1

γj1(n) � � �γjm(n)

we have
Theorem 4.1. Let f(z) =

∑
n�0 fnzn be HS-admissible (with either (iii)(a) or (iii)(b)).Then for the given N we have, as n → ∞, the expansion

fn =
f(un)

un
n

p
πβn

0
@1 +

N∑
k=1

Fk(n)

βk
n

+ O(hN(n; d))

1
A (4.1)

In case of (iii)(a) equation (4.1) is valid for all N � 0.
Remark 4.1. The detailed proof can be found in [HS68]. It mainly consists of anapplication of the saddle point-method to the function f(z)z−n−1 which has the dominantsaddle point at un. The path of integration used in the proof of Theorem 4.1 is depictedin Figure 4.1. It consists of a vertical line running through the dominant saddle pointof the integrand, a circular arc of radius un and centre 0 and two horizontal lines withconstant imaginary part und(un).Harris and Schoenfeld [HS68] gave two reasons for preferring the integration pathdescribed above over the circle |z| = un−1 as used in Hayman's proof:

� The quantities Bk(z) arising in De�nition 4.1 are usually easier to determine thanthe quantities (z d
dz)kA(z) which would arise when using the circle |z| = un−1.

� In applications considered by Harris and Schoenfeld it turns out that the conceptas presented above produces better numerical results than the alternative conceptbased on the circle |z| = un−1.
Remark 4.2. Theorem 4.1 does not necessarily give a meaningful asymptotic result forevery N. If we apply the Theorem as stated above to f(z) = ez and make the (optimal)choice d(r) =

p
2 log r/

p
r, then for all N � 0 we merely obtain hN(n; d) = O(logn/

p
n)which is independent of N. Noting that Fk(n)/βk

n � n−k as n → ∞ for any �xed k � 1
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−un un

un + iund(un)

un

<

=

Figure 4.1: The integration path used in the proof of Theorem 4.1.
we see that for N > 0 Theorem 4.1 does not give a better approximation to 1/n! thanfor N = 0.For this reason, Harris and Schoenfeld [HS68] stated an alternative form of Theorem4.1 based on the circle |z| = un−1. Details can be found in [HS68].
Example 10. Let Tn denote the set of functions mapping the set {1, 2, . . . , n} into itselfand let � denote the composition of functions. Then, hTn, �i is a semi-group. We areinterested in the number Un of idempotent elements in hTn, �i, i.e., functions f 2 Tnsuch that f � f = f. Harris and Schoenfeld [HS67] showed that

1 +
∑
n�1

Un
zn

n!
= ezez

and in [HS68] they showed that this functions is HS-admissible. In this case, R = ∞,
A(z) = (z + 1)ez, Bk(z) =

zk

k!
(z + k)ez, B(z) =

z

2
(z2 + 3z + 1)ez,

and the function d(r) is chosen such that d(r) = e−2r/5. A calculation yields
hN(n; d) = O

� logn

n

�N+1

, n → ∞,

and
Fk(n)

βk
n

=
Pk(un)

C3k
n (n + 1)k
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where un is the positive solution of u(u + 1)eu = n + 1, Cn = u2

n + 3un + 1, and Pk(u)is a polynomial of degree 7k. Hence, by Theorem 4.1,
Un =

s
un + 1

2π(n + 1)Cn

n!

un
n

e(n+1)/(un+1)

0
@1 +

N∑
k=1

Pk(un)

C3k
n (n + 1)k

+ O

� logn

n

�N+1
1
A

as n → ∞ for any �xed N � 0.
In general it is quite hard to check the conditions of HS-admissibility. However, Odlyzkoand Richmond[OR85] showed that for a special type of function HS-admissibility can beestablished using H-admissibility only:

Theorem 4.2. If f(z) is H-admissible in |z| < R then exp(f(z)) is HS-admissible in
|z| < R. Furthermore, the error term hN(n; d) of equation (4.1) is o(β−N

n ) as n → ∞ forevery �xed N � 0.
M�uller[M�ul97] proved HS-admissibility for exponentials of certain polynomials which hasan interesting implication on the relation between HS-admissibility and H-admissibility (seenext remark).

Theorem 4.3. Let P(z) =
∑m

k=1 pkzk be a polynomial of degree m � 1 with complexcoe�cients pk and let f(z) = exp(P(z)). Then the following assertions are equivalent:
(i) f(z) is HS-admissible in C.
(ii) P(z) 2 R[z] and cm > 0.
M�uller[M�ul97] also gave an upper bound for the error term for a more special class ofpolynomials.

Theorem 4.4. Suppose that P(z) =
∑m

k=1 pkzk is a polynomial of degree � 2 and that
p1 > 0 and pk � 0 for 1 < k � m.Then the function f(z) = exp(P(z)) is HS-admissible and the auxiliary function d(r)can be chosen in such a way that for each �xed N � 0

hN(r, d) = O
�
n−N−1

�
, n → ∞.

Remark 4.3. Theorem 4.3 shows that HS-admissibility does not imply H-admissibility.In fact, Theorem 4.3 shows that the function ez(z−1) is HS-admissible. But the functionis not H-admissible by Theorem 3.8 since its power series expansion at z = 0 hasin�nitely many negative coe�cients.Note that the functions of Theorem 4.4 are H-admissible.
Example 11. The function of Section 2.3.1,

F(z) =
∑
n�0

Fn
zn

n!
= exp z +

z2

2

!
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is HS-admissible in C by Theorem 4.3 with the auxiliary functions

A(z) = 1 + z, Bk(z) =


z + z2 if k = 1
z2

2 if k = 2

0 else ,

B(z) = z
2 + z2, Cj(z, r) =

(−1)j+1

j+2

�
1 + 1

1+2z

�
.

The unique positive solution of B1(u) = n + 1 is given by
un =

−1 +
p

4n + 5

2
=

p
n

0
@−

1

2
p

n
+

s
1 +

5

4n

1
A

=
p

n

�
1 −

1

2
n−1/2 +

5

8
n−1 −

25

128
n−2 + O(n−3)

�
.

Hence
Cj(un, un) =

(−1)j+1

j + 2

�
1 +

1p
4n + 5

�

=
(−1)j+1

j + 2

�
1 +

1

2
n−1/2 −

5

16
n−3/2 + O(n−2)

�
B(un) =

un

2
+ u2

n = n + 1 −
un

2

= n + 1 +

p
n

2

�
1 −

1

2
p

n
+

5

8n
+ O(n−2)

�
= n

�
1 +

1

2
n−1/2 +

3

4
n−1 +

5

16
n−3/2 + O(n−2)

�
Theorems 4.1 and 4.4 now give (putting N = 1) after some simpli�cations

Fn

n!
=

eun+u2
n/2

2un
n

p
πB(un)

�
1 +

7

24
n−1 +

5

96
n−3/2 + O(n−2))

�
.

Calculating
u−n

n = n−n/2 exp�−n log�1 −
1

2
p

n
+

5

8n
−

25

128
n−2 + O(n−3)

��

= nn/2 exp pn

2
−

1

2
−

13

48
n−1/2 −

13

128
n−1 + O(n−2)

!

un +
u2

n

2
= n + 1 −

u2
n

2

= n + 1 −
n

2

�
1 − n−1/2 +

3

2
n−1 −

5

8
n−3/2 +

25

128
n−5/2 + O(n−3)

�
=

n +
p

n

2
+

1

4
+

5

8
p

n
−

25

256
n−3/2 + O(n−2).
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and

un

2
+ u2

n = n + 1 −
un

2

= n

�
1 −

1

2
n−1/2 +

5

4
n−1 −

5

16
n−3/2 + O(n−2)

�
�

un

2
+ u2

n

�−1/2

=
1p
n

�
1 +

1

4
n−1/2 −

17

32
n−1 −

35

128
n−3/2 + O(n−2)

�
we obtain

Fn

n!
=

exp �n
2 +

p
n − 1

4

�
2
p

πnn−1

�
1 +

55

48
n−1/2 +

2245

4608
n−1 + O(n−3/2)

�
and an application of Stirling's formula gives the �nal result

Fn =
nn/2p

2
exp�−

n

2
+
p

n −
1

4

��
��1 +

55

48
n−1/2 +

2629

4608
n−1 +

19061

663552
n−3/2 + O(n−2)

�
. (4.2)

4.2 GH-admissibility

Mutafchiev [Mut92] proposed a generalisation of Hayman's concept of admissibility, calledGH-admissibility, with the asymptotics (3.1) and (3.2) of De�nition 3.1 replaced by weakerconditions.In the following we present Mutafchiev's de�nition and results but follow Hayman moreclosely and prove an analogue of Theorem 3.1 for GH-admissible functions. We will �rst listsome important facts concerning characteristic functions of distribution functions. Then westate a slightly modi�ed de�nition of GH-admissibility followed by some remarks. We thenproceed stating the main results of this sections and show how GH-admissibility can be usedto infer local limit theorems for the number of components of combinatorial structures.Mutafchiev [Mut92] also applied his concept to three combinatorial problems alreadyknown to satisfy a local limit theorem. Unfortunately, as we will show in this section, thegenerating functions of the problems considered by Mutafchiev are not GH-admissible andtherefore his paper [Mut92] does not contain any valid applications of the concept of GH-admissibility.
Remark 4.4. We summarise some important properties of absolutely integrable andin�nitely divisible characteristic functions h(t). Details and proofs of these facts can befound in [Luk70]. Let H(x) denote the probability distribution function correspondingto h(t). We have

� H(x) is absolutely continuous w.r.t. the Lebesgue-measure with continuous density
H 0(x);
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� The probability density H 0(x) satis�es

H 0(x) =
1

2π

∞∫
−∞

e−itxh(t)dt, −∞ < x < ∞. (4.3)
Definition 4.2. Suppose that f(z) is analytic in |z| < R, R > 0, and real for real z.Assume further that there exists R0, 0 � R0 < R, such that f(r) > 0 for R0 � r < R. Forthis range de�ne the functions

a(r) = r
f 0(r)
f(r)

and b(r) = ra 0(r) = r
f 0(r)
f(r)

+ r2 f 00(r)
f(r)

−

�
r
f 0(r)
f(r)

�2

.

Then f(z) is said to be GH-admissible in |z| < R if and only if there exists a function δ :

[0, R) → [0, π] and an absolute integrable and in�nitely divisible characteristic function
h(t) de�ned by a non-degenerate probability distribution with �nite variance such that
(i) b(r) → ∞ as r → R;
(ii) the probability density function H 0(x) corresponding to h(t) satis�es H 0(0) > 0;
(iii) f(reiφ) ∼ f(r)eiφa(r)h(φ

q
b(r)) as r → ∞ uniformly for |φ| < δ(r);

(iv) ∫
δ(r)�|φ|�π

s(r, φ)f(reiφ)dφ =
o(f(r))p

b(r)
as r → R for any complex valued function

s(r, φ) satisfying s(r, φ) = O(1) as r → R uniformly for δ(r) � |φ| � π.
Remark 4.5. Instead of condition (iv) in De�nition 4.2 Mutafchiev originally requiredthat
(iv') ∫

δ(r)�|φ|�π

s(r, φ)f(reiφ)e−iZφ
p

b(r)dφ =
o(f(r))p

b(r)
as r → R for any real Z 6= 0 and any

complex valued function s(r, φ) satisfying s(r, φ) = O(1) as r → R uniformly for
δ(r) � |φ| � π.

Conditions (iv) and (iv') are equivalent since s(r, φ)e−iZφ
p

b(r) also satis�es the assump-tions imposed on s(r, φ). Hence the factor e−iZφ
p

b(r) need not be mentioned explicitly.
Remark 4.6. We adopt the notation of the last de�nition.Consider the power-series distributed random variable ξ(r) whose distribution isdetermined by

P
�
ξ(r) = k

�
=

fkrk

f(r)
, k � 0, 0 < r < R.

Then we have Eξ(r) = a(r) and Vξ(r) = b(r) and the characteristic function of thenormalised random variable (ξ(r) − a(r))/
p

b(r) is seen to be
α(t; r) =

f
�
reit/

p
b(r)
�

f(r)
exp −it

a(r)p
b(r)

!
.
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Setting φ = t/

p
b(r) in De�nition 4.2, condition (iii), we see that

α(t; r) → h(t), r → R,

whenever |t| � δ(r)
p

b(r).H-admissible functions are GH-admissible with h(t) = e−t2/2, i.e., the coe�cients ofH-admissible functions satisfy a normal limit law (see Corollary 3.2.).
As for H-admissible functions, we have

Lemma 4.1. We adopt the notation of De�nition 4.2. Then
δ(r)

q
b(r) → ∞, r → R.

The proof of Lemma 4.1 is more di�cult than the proof of this fact for H-admissiblefunctions and can be found in [Mut92].
Theorem 4.5. Suppose that f(z) =

∑
n�0 fnzn is GH-admissible in |z| < R with char-acteristic function h(t) and corresponding probability distribution function H(x) andde�ne fn = 0 for n 2 Z−. Then we have uniformly for all integers n

fn =
f(r)

rn
p

b(r)

 
H 0 −

a(r) − np
b(r)

!
+ o(1)

!
, r → R. (4.4)

Proof. The starting point is Cauchy's formula, viz.
fnrn =

1

2π

π∫
−π

f(reiφ)
dφ

einφ
.

We set
I1 :=

1

2π

δ(r)∫
−δ(r)

f(reiφ)
dφ

einφ
and I2 :=

1

2π

2π−δ(r)∫
δ(r)

f(reiφ)
dφ

einφ
.

Putting s(r, φ) = exp (−inφ) in condition (iv) of De�nition 4.2 we see that
I2 =

o(f(r))p
b(r)

, r → R,

and condition (iii) together with the absolute integrability of h(t) gives uniformly in n

I1 =
f(r)

2π

0B@
δ(r)∫

−δ(r)

h

�
φ
q

b(r)

�
eiφ(a(r)−n) dφ + o(b(r))−1/2

1CA .
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Finally, substituting t = φ

p
b(r) and using condition (i) as well as the absolute integrabilityof h(t) and (4.3) we obtain as r → R

δ(r)∫
−δ(r)

h

�
φ
q

b(r)

�
eiφ(a(r)−n) dφ =

1 + o(1)p
b(r)

∞∫
−∞

h(t) exp it
a(r) − np

b(r)

!
dt

=
2πf(r)p

b(r)
H 0 −

a(r) − np
b(r)

!
+

o(f(r))p
b(r)

which completes the proof.
Corollary 4.1. We have

a(r) → ∞, r → R. (4.5)
Furthermore, there exists R1 < R such that a(r) is strictly monotonically increasing for
R1 � r < R and

b(r) = O(a(r))2, r → R. (4.6)
Proof. We have b(r) = ra 0(r) → ∞ as r → R which shows that a(r) is �nally strictlymonotonically increasing as r → R.Putting n = −1 in (4.4) yields

H 0 −
a(r) + 1p

b(r)

!
= o(1), r → R.

Since H 0(x) is continuous and H 0(0) 6= 0 by De�nition 4.2 there exists M 2 R+ such that�����a(r) − 1p
b(r)

����� � M, r → R.

From this and the fact that b(r) → ∞ as r → R it follows that a(r) → ∞ as r → R and
b(r) = O(a(r))2.
Corollary 4.2. For n large enough the equation a(r) = n has a unique solution rn whichsatis�es rn → R as n → ∞. Furthermore

fn ∼
f(rn)H 0(0)

rn
n

p
b(rn)

, n → ∞. (4.7)
Proof. From (4.5) and the fact that a(r) is �nally strictly monotonic increasing we see thatthe equation a(r) = n has, at least for n large enough, a unique positive solution rn. Thissolution satis�es rn → R as n → ∞. Putting r = rn in (4.4) proves the asymptotic for fn.

We now turn to the problem of determining the distribution of the number of componentsin combinatorial classes.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 45
Suppose that G and F are two labelled combinatorial classes related via G = setF . Thecorresponding exponential generating functions

g(z) =
∑
n�0

gnzn/n! and f(z) =
∑
n�1

fnzn/n!

then satisfy
g(z) = ef(z). (4.8)

Now let ξ1(r), ξ2(r), . . . denote a sequence of i.i.d. random variables generated by f(z), thatis
P {ξ1 = k} =

fkrk

f(r)k!
, 0 < r < R, k = 0, 1, . . . , (4.9)

where R denotes the radius of convergence of f(z), de�ne the sequence of random variables
SN(r) = ξ1(r) + � � �+ ξN(r), N = 1, 2, . . . (4.10)

and let X = X(ω) denote the number of components of ω 2 G. Finally, let Pn and En denotethe uniform probability measure and expectation de�ned on the set of structures of size n ofG. Then we have
Pn {X = N} =

f(r)Nn!

gnrnN!
P {SN(r) = n} , N = 1, 2, . . . , n, n = 1, 2, . . .

and ∑
n�0

(EnX)
gnzn

n!
= f(z)g(z).

Proofs for these facts can be found in [Kol86] and [Com87].We can now state Mutafchiev's results concerning the distribution of X.
Theorem 4.6. Suppose that f(z) and g(z) are power series with nonnegative coe�cientssatisfying (4.8) and let R > 0 denote their common radius of convergence. Moreover,let g(z) be GH-admissible with distribution function H(x) and functions a(r) and b(r)as de�ned in De�nition 4.2 such thatq

b(r) ∼ dg(r), r → R,

for some 0 < d < ∞.Then
(i) If N = f(r)(1 + o(1)) as r → R, then the distribution of the sums SN(r) de�ned by(4.10) satisfy

P {SN(r) = k} =
H 0(γ) + o(1)p

b(r)
, r → R,

where γ = (a(r) − k)/
p

b(r). This convergence is uniform w.r.t. γ belonging to anarbitrary compact set.
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(ii) If rn is de�ned by a(rn) = n then

Pn {X = N} ∼
1p

2πf(rn)
exp −

(N − f(rn))2

2f(rn)

!
, n → ∞,

uniformly w.r.t. N such that (N− f(rn))/f(rn)7/12 belongs to an arbitrary compactset.
Remark 4.7. The last theorem can be applied to all GH-admissible functions which arenot H-admissible (see [Mut92, Remark 2.2] for details).
Theorem 4.7. Suppose that f(z) and g(z) are analytic for |z| < R and satisfy (4.8). If
g(z) is GH-admissible then

EnX ∼ f(rn), n → ∞,

where rn is de�ned by a(rn) = n.Proofs for the last two theorems can be found in [Mut92].We close this section with a comment on the examples given by Mutafchiev in his paper[Mut92].
Remark 4.8. Mutafchiev [Mut92] applied the concept of GH-admissibility to three com-binatorial problems. Unfortunately, all these applications constitute invalid applicationsof this concept since the characteristic functions occurring in these examples are notabsolutely integrable contrary to the assumptions of De�nition 4.2. This will be shownin the following.(i) The egf for the number of permutations of a set of size n, n � 0, is given by

f(z) = e− log(1−z) =
1

1 − z
.

We have
a(r) =

r

1 − r
, b(r) =

r

(1 − r)2
.

Now, let δ : [0, 1) → [0, π] be such that
(1 − r) � δ(r) � (1 − r)1/2, r → 1.

Then we have, uniformly for |φ| � δ(r),
f(reiφ)

f(r)
=

1 − r

1 − reiφ
=

1

1 − a(r) (eiφ − 1)

∼
1

1 − iφa(r)
∼ eiφa(r) e−iφ

p
b(r)

1 − iφ
p

b(r)as r → 1. This shows that f(z) is not GH-admissible since the characteristicfunction
h(t) =

e−it

1 − it
, −∞ < t < ∞,

is not absolutely integrable.
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(ii) The egf for the number of permutations having cycles of odd length only is givenby

f(z) =

s
1 + z

1 − z
.

We have
a(r) =

r

1 − r2
∼

1

2(1 − r)
,

b(r) = r
1 + r2

(1 − r2)2
∼

1

2(1 − r)2
,

as r → 1. Now, let δ : [0, 1) → [0, π] be such that
(1 − r) � δ(r) � (1 − r)1/2, r → 1.

Then we have, uniformly for |φ| � δ(r),
f(reiφ)

f(r)
=

s
1 + reiφ

1 + r

1 − r

1 − reiφ
∼

s
1 − r

1 − reiφ

∼ eia(r)φ e−iφ
p

b(r)/
p

2�
1 − iφ

p
2
p

b(r)
�1/2

as r → 1 and we see that f(z) cannot be GH-admissible since
h(t) =

e−it/
p

2q
1 − it

p
2

, −∞ < t < ∞,

is not absolutely integrable.
(iii) The egf for the number of unary mappings from {1, 2, . . . , n} into itself is given by

f(z) =
1

1 − T(z)
where T(z) = zeT(z).

We have
T(z) ∼ 1 −

p
2
p

1 − ez, z → 1

e
,

and therefore obtain
a(r) =

T(r)

(1 − T(r))2
∼

1

2(1 − er)
,

b(r) =
T(r) + T(r)2

(1 − T(r))4
∼

1

2(1 − er)2
,
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as r → 1/e. Let δ :

h
0, 1

e

i → [0, π] be such that
(1 − er) � δ(r) � (1 − er)1/2, r → 1

e
.

Then we have, uniformly for |φ| � δ(r),
f(reiφ)

f(r)
=

1 − T(r)

1 − T(reiφ)
=

s
1 − er

1 − ereiφ
∼

s
1

1 − 2ia(r)φ

∼ eiφa(r) e−iφ
p

b(r)/
p

2�
1 − iφ

p
2
p

b(r)
�1/2

as r → 1/e. We may now, again, conclude that f(z) is not GH-admissible sincethe characteristic function
h(t) =

e−it/
p

2q
1 − it

p
2

, −∞ < t < ∞,

is not absolutely integrable.
We note that local limit theorems for the examples (i) and (iii) have already beenestablished by Kolchin [Kol86].

Remark 4.9. Mutafchiev [Mut97] considered the distribution of the parameter 'num-ber of distinct component sizes' on the set of combinatorial structures of size n incertain combinatorial classes as n → ∞. Using the concept of GH-admissibility Mu-tafchiev [Mut97] established weak convergence results to a convolution of two distribu-tions, where one of them is always Gaussian.In his paper [Mut97] he also presented three examples. In case of the �rst twoexamples, namely set-partitions and integer-partitions, the generating function is notonly GH-admissible but even H-admissible. Unfortunately, the third example constitutesan invalid application of his results since the generating function for the number offunctions from {1, 2, . . . , n} into itself is not GH-admissible (see Remark 4.8).
4.3 BR-admissibility

In this section we consider a multivariate generalisation of the notion of H-admissibility whichis due to Bender and Richmond [BR96]. They proved a theorem analogous to Theorem 3.1which can be used to obtain local limit theorems for a variety of combinatorial problems.First, we need some de�nitions concerning the notation:
Definition 4.3. For the d-variable function f(z) =

∑
n�0 anzn we de�ne:

� Λf is the Z-module spanned by di�erences of those n for which an 6= 0.



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 49
� d(Λf) denotes the absolute value of the determinant of a Z-basis of Λf.
� Λ�

f is the polar lattice of Λf,
Λ�

f =
{

x 2 Rd : 8n 2 Λf we have x � n 2 Z
}

where x � n denotes the usual scalar product.
� Let {v1, . . . , vd} be a Z-basis of Λ�

f . Then we de�ne the fundamental region of f asthe parallelepiped
Φf = {c1v1 + . . . + cdvd | 8 1 � k � d : −π � ck � π} . (4.11)

We will also make use of the following asymptotic notation:
Definition 4.4. We write f(z) = ou(z)(g(z)) for z in some set S, if there exists a function
λ(t) such that λ(t) → 0 as t → ∞ and |f(z)/g(z)| � λ(|u(z)|) for z 2 S.

Now, we can state the central de�nition and the main theorem of [BR96]. Remarks willbe given right after the proof of this theorem.
Definition 4.5 (BR-Admissibility). Let f(z) be a d-variable function analytic at theorigin having a fundamental region Φf. If Λf is d-dimensional, then we say that f(z)is BR-admissible in R � Rd

+ with angles Θ if there exist functions
� Θ : R → {S � Φf | 0 2 S and S is an open set},
� a : Cd → Cd and
� B : Cd → Cd�d

such that (we write oB for odetB(r)))
(i) f(z) is analytic whenever r 2 R and |zi| � ri for 1 � i � d,
(ii) B(r) is positive de�nite for r 2 R,
(iii) the diameter of Θ(r) is oB(1),
(iv) for r 2 R and θ 2 Θ(r), we have

f(reiθ) = f(r)(1 + oB(1)) exp �ia(r) 0θ − θ 0B(r)θ/2
� (4.12)

(v) and for r 2 R and θ 2 Φf − Θ(r), we have
f(reiθ) =

oB(f(r))pdetB(r)
. (4.13)
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The function f(z) is called BR-super-admissible if condition (4.13) can be replacedby

f(reiθ) =
oB(f(r))

(detB(r))t
(4.14)

for arbitrary t 2 R, where oB(f(r)) may depend on t.
Theorem 4.8. Let f(z) =

∑
n�0 anzn be a d-variable function that is BR-admissible inR with angles Θ and let k 2 Nd be such that [zk]f(z) 6= 0 and set v = a(r) − n. Then wehave

[zn]f(z) =
d(Λf)f(r)r

−n

(2π)d/2
pdetB(r)

�exp �−v 0B−1(r)v/2
�

+ oB(1)
� (4.15)

for r 2 R and n − k 2 Λf.
Proof. For brevity, we omit the arguments of B(r) and Θ(r).By Cauchy's theorem, we have

anrn =
1

(2π)d

∫
[−π,π]d

f(reiθ)e−in 0θdθ. (4.16)
Assume that an 6= 0 and c 2 Λ�

f . By de�nition of Λ�
f , the integrand remains unchanged if θis replaced with θ + 2πc. Thus, we can write

anrn =
d(Λf)

(2π)d

∫
Φf

f(reiθ)e−in 0θdθ. (4.17)
Now, let Θ? = Θ?(r) denote the greatest star-shaped region contained in Θ, that is

θ 2 Θ? ⇐⇒ 8 0 < ρ < 1 : ρθ 2 Θ.

We can work with Θ? instead of Θ since
� The interior of Θ? is contained in Θ.
� The boundary of Θ? is contained in Φf − Θ and therefore we have

exp(−θ 0Bθ/2) =
oB(1)pdetB

on the boundary of Θ?.
� For every θ, there is a κ = κ(r) such that κθ 2 Θ? because 0 2 Θ?.
� B is positive de�nite, that is (ρθ) 0B(ρθ) > θ 0Bθ for ρ > 1. Therefore we have

exp �−θ 0Bθ/2
�

=
oB(1)pdetB

for all θ 62 Θ?. (4.18)
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Now, the integral (4.17) can be rewritten as

anrn =
d(Λf)

(2π)d

∫
Θ?

f(reiθ) exp �−in 0θ�dθ +
oB(f(r))pdetB

.

B is a positive de�nite matrix and thus, there exists a real d�d matrix S such that B = S 0S.Using the abbreviations y = Sθ and w2 = w 0w, we have
iv 0θ − θ 0Bθ/2 = iv 0S−1y − y2/2 =

= −(S 0−1v)2/2 − (y − iS 0−1v)2/2 =

= −v 0B−1v/2 − (y − iS 0−1v)2/2.

Hence, using equation (4.12), we get∫
Θ?

eiv 0θ−θ 0Bθ/2dθ =
e−v 0B−1v/2pdetB

∫
SΘ?

e−(y−iS 0−1v)2/2dy =

=
e−v 0B−1v/2pdetB

∫
Rd

e−(y−iS 0−1v)2/2dy +

+
O(1)e−v 0B−1v/2pdetB

∫
T

e−x2/2dx.

As in the proof of Theorem 3.1 we get
∫

Rd

e−(y−iS 0−1v)2/2dy =

0B@∫
R

e−(x−ic)2/2dx

1CA
d

= (2π)d/2.

For x 2 T we have, by equation (4.18), e−x2
= oB(1)/

pdetB and therefore, we get∫
T

e−x2/2dx = oB(1)

by essentially the same argument as in the proof of Theorem 3.1. Combining these resultswe obtain equation (4.15).
Remark 4.10. (i) Usually, one can let a(z) and B(z) be the �rst and second loga-rithmic derivatives of f(z).
(ii) De�nition 4.5 does not demand the unboundedness of detB(r) in R. So, the oB-terms in the equations (4.12) and (4.13) need not be small anywhere in R. Hence,if f is BR-admissible in some set R, then f is BR-admissible in every set R1 � R,too.In applications, however, one is usually interested in maximal regions or at leastregions large enough for detB being unbounded.
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(iii) If the function f(z) is H-admissible for |z| < R, then f(z) is BR-admissible in everyset R � (0, R).
(iv) Let f(z) be BR-admissible in R. For every k 2 N,ki � 1, the function g(z) := f(zk)is BR-admissible, too.As a simple example take ez, which is H-admissible and thus BR-admissible in

R. This function has a fundamental region [−π, π] and we can set Θ(r) = [0, δ(r)]where δ(r) is the function of De�nition 3.1 (in this case, we can use δ(r) = r−2/5).The function ez2 is BR-admissible (but not H-admissible) with fundamental region
[−π/2, π/2] and Θ(r) = [0, δ(r)/2].

(v) Besides R � Rd
+, De�nition 4.5 does not impose any restriction on the set R.Thus, one has to verify that BR-admissibility holds in a region R having the rightshape before applying this concept. In Section 5.2.3, we consider a function whichis BR-admissible only in regions which cannot be used for proving an asymptoticnormal distribution.

(vi) Theorem 4.8 allows one to compute asymptotics for the coe�cients of BR-admissiblefunctions if one has got su�ciently good estimates for the solution rn of a(r) = nas well as f(rn) and rn
n.

(vii) In many cases, BR-admissibility can be used to establish local limit theorems:Suppose that f(z,u) is BR-admissible and ordinary in u. Partition all vectorsand matrices into block form according to the two sets of variables x and y. Solve
a(r, 1) = (n,k�) for r asymptotically in terms of n and use this to compute k� and
B(r, 1) asymptotically in terms of n. Let n → ∞ in a way such that (r, 1) 2 R anddetB(r, 1) → ∞. It follows that [znuk]f(z,u) satis�es a local limit theorem withmeans vector asymptotic to k� and covariance matrix asymptotic to�

B2,2 − B 0
1,2(B1,1)

−1B1,2
�−1

where
B(z,u) =

 
B1,1 B1,2

B 0
1,2 B2,2

!
is the block form according to the variable sets x and y.If z and u are 1-dimensional then the variance is given by detB/B1,1.Note, that BR-admissibility does not necessarily entail a local limit theorem. Seesection 5.2.3 for a counter example.

If we want to combine functions having di�erent sets of variables, we have to extend thesefunctions and the de�nitions of R, Θ, a and B to include all occurring variables.
Remark 4.11. Let f(z) be BR-admissible in R with angles Θ and let y be a variablenot appearing in f. Set

�R = R� (0,∞) and �Θ(r, ρ) = Θ(r)� [−π, π]
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for r 2 R and ρ 2 (0,∞). The functions a and B are extended to �a and �B by addingentries of zeroes. Note that det �B = 0.Generalisation to more variables is straight forward.

From now on, we will always assume that the functions are properly extended as describedabove.
Theorem 4.9. Let f and g be BR-super-admissible in Rf with angles Θf and in Rg withangles Θg, resp. Assume that det( �Bf + �Bg) is unbounded in R = �Rf \ �Rg.If there are constants C and k such that

det( �Bf(r) + �Bg(r)) � Cmin(det(Bf(r))
k,det(Bg(r))k), r 2 R, (4.19)

then fg is BR-super-admissible in R with angles Θ = �Θf \ �Θg and we may take
afg = �af + �ag and Bfg = �Bf + �Bg.

Furthermore, we have Λ = �Λf + �Λg.
Theorem 4.10. Let f be BR-(super-)admissible in R with angles Θ. If the function
g(reiθ) is analytic for r 2 R and for some functions ag and Bg, g satis�es
(i) Λg � Λf;
(ii) for r 2 R and θ 2 Θ

(reiθ) = g(r) exp �ia 0
gθ − θ 0Bgθ + oB(1)

�
;

(iii) there is a constant C such that |g(reiθ| � Cg(r) for r 2 R;
(iv) there is a constant K such that det(Bf + �Bg) � KdetBf for r 2 R.
Then fg is BR-(super-)admissible in R with angles Θ and we may take

afg = af + ag and Bfg = Bf + Bg.

Theorem 4.11. Let f(z) =
∑

anzn be BR-(super-)admissible. For any sub-lattice Λ of
Λf de�ne

g(z) =
∑
n2Λ

ak+nzk+n

where k is such that ak 6= 0. Then the function g is BR-(super-)admissible with
Λg = Λ, ag = af, Bg = Bf, Rg = Rf, and Θg = Θf.

Theorem 4.12. Assume that
� f(z) =

∑
n�1 anzn is H-admissible in |z| < R;

� S is a subset of {0, 1, . . . ,m − 1};
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� for 0 � k < m, choose λk 2 R+ such that λk > 0 if and only if k 2 S;
� for n > m, de�ne λn = λk whenever n � k mod m;
� de�ne

g(z) =

∞∑
n=0

λnanzn

and �λ = m−1
∑m−1

k=0 λk.
Then
(i) For some R0 < R, the function h(z) = eg(z) is BR-super-admissible in R = (R0, R)with angles Θ(r) = {θ : |θ| < g(r)−1/3−ε} and the functions a and B, provided ε > 0is su�ciently small.
(ii) For some R0 < R and all δ > 0, the function h(x, y) = eyg(x) is BR-super-admissiblein R =

{
(r, s)

���R0 < r < R and g(r)δ−1 < s < g(r)1/δ
}

with angles
Θ(r, s) =

{
θ
���|θk| < (sg(r))−1/3−ε

}
and functions a and B, provided ε > 0 is su�ciently small.

Example 12. Consider the function
F(z, u,w) = eu(cosh z−1)ew sinh z.

The coe�cient of znukwm/n! in F(z, u,w) equals the number of partitions of a set ofsize n having k blocks of even size and m blocks of odd size. We show that F(z, u,w) isBR-admissible.We consider the two functions
f(z, u) = eu(cosh z−1) and h(z,w) = ew sinh z.

Theorem 4.12, applied to the H-admissible function ez − 1 with m = 2, S = {0} and
λ0 = 1 shows that f(z, u) is BR-super-admissible in

Rf =
{

(r, s)
��� R0 < r and (cosh r − 1)δ−1 < s < (cosh r − 1)1/δ

}
with angles

Θf(r, s) =
{

(θ1, θ2)
��� |θk| < (s(coshr − 1))−ε1−1/3 , k = 1, 2

}
and matrix

Bf(r, s) = s

 
r2 cosh r + r sinh r r sinh r

r sinh r cosh r − 1

!
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for any δ > 0, any R0 > 0 and ε1 su�ciently small. Putting S = {1} and λ1 = 1 instead,we see that h(z,w) is BR-super-admissible in

Rh =
{

(r, t)
��� R0 < r and (sinh r)δ−1 < t < (sinh r)1/δ

}
with angles

Θh(r, t) =
{

(θ1, θ2)
��� |θk| < (t sinh r)−ε2−1/3 , k = 1, 2

}
and matrix

Bh(r, t) = t

 
r2 sinh r + r cosh r r cosh r

r cosh r sinh r

!
for any δ > 0, any R0 > 0 and ε2 su�ciently small.We now extend the functions f and h and the corresponding matrices to include allvariables occurring as described in Remark 4.11 and set B(r, s, t) = �Bf(r, s, t)+ �Bh(r, s, t),that is

B(r, s, t) =

0B@ r(rs + t) cosh r + r(rt + s) sinh r rs sinh r rt cosh r

rs sinh r s(cosh r − 1) 0

rt cosh r 0 t sinh r

1CA .

Furthermore, we set R = �Rf \ �Rh.The determinants of the matrices Bf, Bh and B are given by
detBf(r, s) = rs(sinh r − r)(cosh r − 1)detBh(r, t) = rt(cosh r sinh r − r)detB(r, s, t) = (sinh r)detBf(r, s) + (cosh r − 1)detBh(r, t).

For brevity we set detBf = detBf(r, s) and detBh = detBh(r, t). We have
detBf ∼ s

re2r

4
and detBh ∼ t

re2r

4
as r → ∞

and therefore detBfdetBh
∼

s

t
, t 6= 0, r → ∞.

Now if (r, s, t) 2 R then
(cosh r − 1)δ−1

(sinh r)1/δ
<

s

t
<

(cosh r − 1)1/δ

(sinh r)δ−1

which gives
e−r(1−δ+1/δ)

21−δ
(1 + o(1)) <

s

t
<

er(1−δ+1/δ)

21/δ
(1 + o(1)), r → ∞.

If we let R0 > 0 be so large that
e−r(1−δ+1/δ)

22−δ
<

s

t
<

er(1−δ+1/δ)

21/δ−1
, r � R0,
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as well as

s
re2r

8
< detBf < s

re2r

2
and t

re2r

8
< detBh < t

re2r

2we see that there exist constants C > 0 and η > 1 such that
detBf < K(detBh)η and detBh < K(detBf)

η.

Since sinh r ∼ cosh r − 1 ∼ er/2 as r → ∞ we get
detB � K ((detBf)

κ, (detBh)κ)

for some constants K > 0 and κ > 1.Hence, by noting that detB(r, s, t) is unbounded in R we see that all assumptions ofTheorem 4.9 are satis�ed and we conclude that F(z, u,w) is BR-super-admissible in Rwith angles
Θ(r, s, t) = �Θf(r, s) \ �Θh(r, t)

=
h
−(s(cosh r − 1))−ε1−1/3, (s(cosh r − 1))−ε1−1/3

i2 �
� h−(t sinh r)−ε2−1/3, (t sinh r)−ε2−1/3

i
and matrix B(r, s, t).
4.3.1 Perturbation of BR-admissible Functions

If f(z2) is BR-admissible then g(z) = f(z2)+z is not. The reason for this lies in the de�nitionof the corresponding lattices. We have Λf = 2Z and Λg = Z, but clearly [z2k+1]g(z) = 0 for
k > 0. Bender and Richmond [BR96] remarked that the de�nition of BR-admissibility couldbe modi�ed to include g(z). But then the product rules for BR-admissible functions wouldnot hold anymore.In this section we show that if f(z) is BR-admissible then (f+g)(z) is BR-admissible, too,provided that g(z) is su�ciently small and that Λf+g � Λf. Our reasoning will essentially bethe same as in the proof of Theorem 3.7 for H-admissible functions. As a matter of fact theproof for this theorem is a bit shorter than the corresponding one for H-admissible functions.For details see the remark following the proof.
Remark 4.12. Suppose that f : Cn → C is BR-admissible in R with angles Θ andfunctions a = a(r) and B = B(r).We may suppose that for r 2 R

Θ(r) � {
θ 2 [−π, π]n

�� θ 0Bθ � 2 logm(r)
} (4.20)

where
m(r) = max(1,detB)since otherwise we should have for θ 0Bθ > 2 logm(r)

exp �−θ 0Bθ/2
�

< exp (− logm(r)) = m(r)−1

which implies implies (4.13) for f(z).



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 57
Theorem 4.13. Let f(z) be BR-super-admissible in R with angles Θ and functions aand B and let g(z) be a function such that
(i) g(z) is analytic for |z| 2 R;
(ii) Λg � Λf.
(iii) for any t > 0 we have

max
|z|=r

|g(z)| =
oB(f(r))

(detB(r))t
, r 2 R; (4.21)

Then f + g is BR-super-admissible in R with angles Θ and functions a and B.If f is BR-admissible and g satis�es condition (iii) with t = 1, then f + g is BR-admissible.
Proof. We adopt the notation of Remark 4.12 and assume that Θ(r) satis�es (4.20).First, we note that

f(r) = f(r) + g(r) − g(r) = (f + g)(r)(1 + oB(1)) (4.22)
by (4.21).Suppose now that θ 62 Θ(r). Since f(z) is BR-super-admissible we have

f(reiθ) =
oB(f(r))

(detB(r))t

for any t > 0. Now we get from this, (4.21) and (4.22)
(f + g)

�
reiθ

�
=

oB(f(r))

(detB(r))t
+

oB(f(r))

(detB(r))t

=
oB(f(r))

(detB(r))t
=

oB((f + g)(r))

(detB(r))t

uniformly for θ 62 Θ(r) which implies (4.14) for f + g. In the same way we obtain (4.13) forBR-admissible f.If θ 2 Θ(r) then we get from (4.20)���f �reiθ
���� = f(r)(1 + oB(1))e−θ 0Bθ/2 � f(r)

m(r)
(1 + oB(1))

where m(r) = max(1,detB). As a consequence of this and (4.21) we obtain
g(reiθ)

f(reiθ)
� g

�
reiθ

� m(r)

f(r)
(1 + oB(1)) = oB(1)

uniformly for θ 2 Θ(r). Hence by BR-admissibility of f and (4.22) we get
(f + g)

�
reiθ

�
= f(reiθ)(1 + oB(1)) = f(r)(1 + oB(1))eia(r)θ−θ 0Bθ/2

= (f + g)(r)(1 + oB(1))eia(r)θ−θ 0Bθ/2

uniformly for θ 2 Θ(r). This proves (4.12) for f + g.
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Remark 4.13. De�nition 4.5 does only require the existence of functions a(r) and B(r)but does not assume that these are equal to the �rst and second logarithmic derivativesof f(z).This results in a shorter proof compared to the proof of Theorem 3.7 where wealso had to show that the asymptotics hold with the appropriate functions (namely thelogarithmic derivatives).
Example 13. Consider the function

G(z, u,w) =
�
eu(cosh z−1) − 1 − u(cosh z − 1)

�
ew sinh z

which is a simple modi�cation of the function F(z, u,w) considered in Example 12.
G(z, u,w) is the exponential generating function for set partitions having at least 2blocks of even cardinality and the coe�cient of znukwm/n! in G(z, u,w) equals thenumber of partitions of size n having k blocks of even cardinality and m blocks of oddcardinality.We adopt the notation of Example 12 and set

f(z, u) = eu(cosh z−1) and g(z, u) = 1 + u(cosh z − 1)

We have max
|z|=r,|u|=s

g(z, u) = g(r, s) = 1 + s(cosh r − 1) < 1 + s
er

2and for r � R0

f(r, s)detBf(r, s)
> 2

f(r, s)

rse2r
> 2

erser/2

rse2r

which gives
g(r, s)

f(r, s)/detBf
<

rs

2

e2r + se3r/2

erser/2
= o(1), r → ∞.

The last asymptotic is su�cient for proving (4.21) since detBf remains bounded in Rif r remains bounded. The other conditions of Theorem 4.13 are satis�ed, too, andtherefore we may conclude that G(z, u,w) is BR-super-admissible in R with angles Θas de�ned in Example 12.
4.4 E-admissibility

In this section we present a bivariate analogon of H-admissibility developed by Drmota,Gittenberger, and Klausner [DGK05]. In their paper [DGK05] they de�ned classes of bivariatefunctions f(z, u), called extended-admissibility (e-admissible) functions, such that the randomvariable X de�ned by
Pn{X = k} =

[znuk]f(z, u)

[zn]f(z, 1)
, k � 0, (4.23)
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satis�es a central limit theorem. An important property of these classes of e-admissiblefunctions is the existence of many simple closure properties which simplify the task of es-tablishing e-admissibility and can be used to automatically prove a central limit theorem for
X given only a deconstruction of the combinatorial class considered. For details concerningthis automation we refer to their paper [DGK05] where they also present an implementationof this concept using Maple.Roughly speaking, a bivariate gf f(z, u) is e-admissible if it is

� H-admissible w.r.t. z for u in some real interval around u = 1 and
� satis�es Lemma 3.1 w.r.t. u for z 2 R+.

Some additional requirements are needed in order to have simple algebraic closure properties.We have
Definition 4.6 (e-admissibility). Let f(z, u) =

∑
n,k�0 ankznuk be a bivariate functionanalytic in the domain

∆R,η =
{
(z, u) 2 C2 : |z| < R, |u| < 1 + η

}
for some R > 0 and η > 0. Assume further that there exists R0 < R such that

f(r, 1) > 0, R0 < r < R.

Let a, �a, b, �b, c denote the derivatives of log f(z, u) w.r.t. log z and logu, that is
a(z, u) = z

fz(z, u)

f(z, u)
, �a(z, u) = u

fu(z, u)

f(z, u)
,

b(z, u) = zaz(z, u) = z
fz(z, u)

f(z, u
+ z2 fzz(z, u)

f(z, u)
− z2

�
fz(z, u)

fz, u

�2

,

�b(z, u) = u�au(z, u), c(z, u) = uau(z, u).The function f(z, u) is called e-admissible in ∆R,η if and only if
(i) Let K > 0 be an arbitrary constant and set

ε(r) = K

 �b(r, 1) −
c(r, 1)2

b(r, 1)

!−1/2

. (4.24)
Then, for each choice of K there exists a function δ(r) : (R0, R) → (0, π) such thatuniformly for |φ| < δ(r) and 1 − ε(r) � u � 1 + ε(r) we have

f(reiφ, u) ∼ f(r, u) exp iφa(r, u) −
φ2

2
b(r, u)

!
, as r → R, (4.25)

and uniformly for δ(r) � |φ| � π and 1 − ε(r) � u � 1 + ε(r) we have
f(reiφ, u) =

o(f(r, u))p
b(r, u)

, as r → R. (4.26)
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(ii) b(r, 1) → ∞ as r → R;
(iii) Uniformly for 1 − ε(r) � u � 1 + ε(r) we have b(r, u) ∼ b(r, 1) as r → R.
(iv) For r 2 (R0, R) and u 2 [1 − ε(r), 1 + ε(r)] we have

a(r, u) = a(r, 1) + c(r, 1)(u − 1) + O(c(r, 1)(u − 1)2). (4.27)
(v) For all r < R and u in some arbitrary but �xed complex neighbourhood of 1 wehave �a(r, u) = O(�a(r, 1)) and �b(r, u) = O(�b(r, 1)). (4.28)
(vi) �b(r, 1) −

c(r,1)2

b(r,1) → ∞ as r → R;
(vii) ε(r)3�b(r, 1) → 0 as r → R;
(viii) For every λ > 0 we have, as r → R,

�a(r, 1) = O(f(r, 1)λ) and �b(r, 1) = O(f(r, 1)λ).

Remark 4.14. The class of functions that are e-admissible in a domain ∆R,η will bedenoted by ER.
Remark 4.15. The de�nition of e-admissibility implies that for every f(z, u) 2 ER wehave f(z, 1) 2 HR.
Theorem 4.14. Let f(z, u) be e-admissible for |z| < R. Then we have

[zn]f(z, u) =
f(r, u)

rn
p

2πb(r, u)

 exp −
(a(r, u) − n)2

2b(r, u)

!
+ o(1)

!

uniformly in n and u 2 [1 − ε(r), 1 + ε(r)] as r → R.
The same arguments as in the proof of Theorem 3.1 can be used to prove Theorem 4.14.

Theorem 4.15. Let f(z, u) be e-admissible in ∆R,η such that for su�ciently large n allcoe�cients ank are nonnegative. Let (Xn) be the sequence of random variables relatedto f(z, u) via (4.23). The positive solution of a(r, 1) = n will be denoted by rn.For n � 0 set
µn = �a(rn, 1),

σ2
n =

|detB(rn, 1)|

b(rn, 1)
= �b(rn, 1) −

c(rn, 1)2

b(rn, 1)

Yn =
Xn − µn

σn
.

Then the following central limit theorem holds:
Yn

w→ N (0, 1), n → ∞. (4.29)
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Furthermore, we have, as n → ∞,

EXn = µn + o(σn)2 (4.30)
and

VXn = σn(1 + o(1)). (4.31)
Proof. First note that f(z, 1) is H-admissible and therefore rn is uniquely determined at leastfor n su�ciently large and rn → R as n → ∞.Next, consider the moment generating function of Xn,

mn(t) =
[zn]f(z, et)

[zn]f(z, 1)
, |t| < ε(rn).

We note that t → 0 as n → ∞. An application of Theorem 4.14 gives
[zn]f(z, 1) =

f(rn, 1)

rn
n

p
2πb(rn, 1)

(1 + o(1))

[zn]f(z, et) =
f(rn, et)(1 + o(1))

rn
n

p
2πb(rn, et)

exp −
(a(rn, et) − a(rn, 1))2

2b(rn, et)

!

as n → ∞. (4.28) ensures applicability of Lemma 3.1 to the second argument of f(r, et), viz.
f(r, et) = f(r, 1) exp t�a(r, 1) +

t2

2
�b(r, 1) + O(�b(r, 1)t3)

!
, r → R.

Conditions (iii) and (iv) of De�nition 4.6 give, as n → ∞ (and so t → 0),
(a(rn, et) − a(rn, 1))2

2b(rn, et)
=

c(rn, 1)(et − 1)2 + O(c(rn, 1)(et − 1)3)

2b(rn, 1)(1 + O(t))

=
c(rn, 1)t2

2b(rn, 1)

 
1 + O

 
c(rn, 1)2

b(rn, 1)
t3

!!
.

Combining these results we obtain
mn(t) = exp tµn +

t2

2
σ2

n + O

 
c(rn, 1)2

b(rn, 1)
t3

!
+ o(1)

!

for |t| < ε(rn) as n → ∞. Condition (vi) shows that c(r, 1) < �b(r, 1)b(r, 1) and thereforecondition (vii) �nally gives
mn(t) = exp tµn +

t2

2

 �b(rn, 1) −
c(rn, 1)2

b(rn, 1)

!!
(1 + o(1)) (4.32)

for |t| < ε(rn) as n → ∞.
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Hence the moment generating function of Yn is given by

Mn(s) = e−sµn/σnmn

�
s

σn

�
= es2/2(1 + o(1)) (4.33)

for |s| < K which proves (4.29).The convergence Mn(s) → et2/2, n → ∞, is uniform in every compact set and thereforethe sequence (Yn) has an exponential tail (see [Flajolet,Soria,Sec.4] for details). This impliesthe convergence of all moments. In particular we have
EXn = µn + σnEYn = µn + o(σn)

VXn = σ2
nVYn = σ2

n(1 + o(1)).

Without proof we state the following two theorems which establish various closure prop-erties satis�ed by ER. The proofs can be found in [DGK05].
Theorem 4.16. The following classes of functions are e-admissible:

� Let P(z, u) =
∑

n pnzknuln be a polynomial in z and u with real coe�cients andset P(z, 1) =
∑

m bmzm. De�ne
K = maxE = max{

ki + kj : det ki li
kj lj

! 6= 0

}
I = {(i, j) : ki + kj = K}.

Then eP(z,u) 2 E∞ if and only if the following conditions are satis�ed:
(i) For every d > 1 there exists an m 6� 0 mod d such that bm 6= 0. Moreover,for md = max{m 6� 0 mod d : bm 6= 0} we have bmd > 0.(ii) E 6= ; and ∑

(i,j)2I

pipj

 det ki li
kj lj

!!2

> 0.

(iii) max{kj : pj 6= 0} < 3K/5.
� If f(z) 2 HR and g(u) is analytic for |u| � 1 + ζ and satis�es g(1) > 0 as well as

g 0(1) + g 00(1) >
g 0(1)2

g(1) , then exp �g(u)f(z)
� 2 ER.

Theorem 4.17. Suppose that f(z, u), g(z, u) 2 ER, h(z) 2 HR and P(z, u) is a polynomialwith positive real coe�cients. Then the following functions are in ER, too:
� f(z, u)g(z, u)

� h(z)f(z, u)



CHAPTER 4. GENERALISATIONS AND RELATED CONCEPTS 63
� P(z, u)f(z, u)

� ef(z,u)

� eP(z,u)h(z) if P(z, u) is not independent of u

� eP(z,u)+h(z) if R = ∞ and P(z, u) is not independent of u

� f(z, u) + Q(z, u) where Q(z, u) is an arbitrary polynomial.
Example 14. Consider the bivariate gf for permutations having cycles of length � `only with u marking the number of cycles, viz.

g(z, u) = exp
0
@u

∑̀
k=1

zk

k

1
A .

In order to establish e-admissibility for g(z, u) we have to check the conditions of The-orem 4.16:We see that K is well-de�ned if and only if ` � 2. In this case K = 2` − 1 and
I = {(` − 1, `), (`, ` − 1)}. Conditions (i) and (ii) are clearly satis�ed and from condition(iii) we see that g(z, u) is e-admissible if and only if ` > 3.The same argumentation shows that all functions of the form

exp
0
@u

∑̀
k=1

αkzk

1
A , αk > 0,

are e-admissible if and only if ` > 3.



Chapter 5

Number of Components

Let C and S denote two labelled combinatorial classes with exponential generating functions
C(z) =

∑
n�1 Cnzn and S(z) =

∑
n�0 Snzn respectively. We assume that C does not containobjects of size zero and that every object of S can be uniquely represented as a disjoint unionof objects in C. The elements of C will be referred to as connected objects. Theorem 1.4 tellsus that C(z) and S(z) are related via

S(z) = eC(z). (5.1)
Bell, Bender, Cameron, and Richmond [BBCR00] investigated the possible behaviour ofthe sequence Cn/Sn and proved the following theorem.

Theorem 5.1. Let S, C, S(z) and C(z) be as described above. Furthermore, assume that
C(z) is analytic in |z| < R, 0 � R < ∞.Consider the sequence {ρn : n 2 I} where ρn = Cn/Sn and I = {n 2 N : Sn 6= 0} andset

ρinf = lim inf
n2I

ρn, ρsup = lim sup
n2I

ρn.

Then
(i) If R = 0 then 0 � ρinf � ρsup = 1;
(ii) If R > 0 and C(R) diverges then 0 = ρinf � ρsup � 1;
(iii) If R > 0 and C(R) converges then (ρinf, ρsup) 2 [0, 1]2 − {(0, 0), (1, 1)}.

If S(z) is an H-admissible function then the second implication of the last theorem applies.But in this case, we can say even more as was shown by Bender, Cameron, Odlyzko, andRichmond [BCOR99].
Theorem 5.2. We adopt the notation of the last theorem. If S(z) is H-admissible in
|z| < R, 0 < R � ∞, then C(R) diverges and we have ρn → 0 as n → ∞. That is, theprobability of connectedness tends to zero as the size of the structures considered tendsto in�nity.

64
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Proof. The H-admissibility of S(z) implies that S(r) → ∞ as r → R and this implies that
C(R) = ∞ which means divergence.Set b(r) =

�
d

d log r

�2 log S(r). Then we have for any 0 < ε < 1 and M = (1 − ε)2/2

Sn ∼
eC(rn)

rn
n

p
2πb(rn)

>
e(1−ε)C(rn)

rn
n

> MC(rn)
C(rn)

rn
n

� MC(rn)Cn.

Hereby, the �rst relation is a consequence of H-admissibility (Corollary 3.2) and the secondone follows from the fact that b(r) = S(r)ε for all ε > 0 (Corollary 3.3). The remaininginequalities hold since the sum of nonnegative terms is at least as large as a single term.The proof is completed by noting that C(rn) → ∞ as n → ∞.
In the remaining of this section we consider some instances of the general setting describedabove.

5.1 The Polynomial Case

Can�eld [Can77] established the normal limit law for polynomials C(z) having real nonneg-ative coe�cients.Although all functions (except the degenerated case) considered in this section are BR-admissible, too, Can�eld's assumptions can be checked more easily and a central limit theo-rem follows without much work.Can�eld's method of proof is similar to the one establishing the normal limit law fore-admissible functions (see Theorem 4.15): using Hayman's ideas, Can�eld proved the limitlaw via pointwise convergence of the corresponding moment generating functions. The proofswill be omitted can can be found in [Can77].
Theorem 5.3. Let C(z) =

∑m
k=1 ckzk be a polynomial having real nonnegative coe�cientsand set

S(z, u) = euC(z).

Further de�ne the functions
A(z) = zC 0(z) and B(z) = zA 0(z)

and let r(z) denote the inverse function of A(z). Without loss of generality, we assumethat gcd{k : ck 6= 0} = 1 and m > 1.Then the random variable Xn de�ned by
P{Xn = k} =

[znuk]S(z, u)

[zn]S(z, 1)
8n 2 I, 8k 2 Nd

where I consists of those numbers for which [zn]S(z, 1) > 0 is asymptotically normalwith mean
µn = C(r(n))
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and variance

σ2
n =

s
C(r(n)) − A(r(n))2

B(r(n)
.

Remark 5.1. (i) If gcd{k : ck 6= 0} = d > 1 then we have Cn = 0 if d 6 |n and thepolynomial C(z1/d) satis�es the requirements of the last theorem.
(ii) The case m = 1 constitutes a degenerate case since then the whole probabilitymass is concentrated at µn.We continue with the example of Section 2.3.1. Note that this function is not e-admissible(see Section 4.4, Example 14).

Example 15. Recall the egf P(z, u) for the permutations having only cycles of length 1and 2 (u marking the number of cycles):
P(z, u) = eu(z+z2/2).

Thus, we have
C(z) = z +

z2

2
, A(z) = z + z2, B(z) = z + 2z2.

The inverse function r(x) of A(x) for x 2 [−1/4,∞) is given by
r(x) = −

1

2
+

s
1

4
+ x.

Therefore, one sees, using Theorem 5.3, that the number of cycles is asymptoticallynormal with mean
µn =

n

2
+

1

2

s
1

4
+ n −

1

4and variance (setting y = n + 1
4)

σ2
n =

s
y2 + y(1 − 2

p
y)

4(2y −
p

y)
=

r
y

8

vuut1 +
1 − 3

2

p
y

y − 1
2

p
y

∼

s
n

8
+

1

32
.

This shows that the distribution is asymptotically concentrated.
5.2 Set Partitions

The exponential generating function for the number of partitions of a set of size n is givenby
F(z) =

∑
n�0

$n
zn

n!
= exp (ez − 1) . (5.2)

The number $n is known as the n-th Bell number.Applying the concepts of Hayman [Hay56] and Harris and Schoenfeld [HS68] we obtainasymptotics for $n as n → ∞. We will then study some parameters on the set of partitionsas n → ∞ and obtain limit laws for these parameters.
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5.2.1 Total Number

The function F(z) is seen to be H-admissible in C with the functions
a(r) = rer and b(r) = (r + 1)rer.

Thus, we get a �rst approximation to $n by an application of Corollary 3.2, viz.
$n ∼

n! exp (ern − 1)

rn
n

p
2πnrn

(5.3)
where rn is the unique positive solution of the equation

rer = n. (5.4)
De Bruijn [dB81, sec. 2.4] shows that, for n large enough, the solution of (5.4) can berepresented as

rn = logn − log logn +
∑
k�0

∑
m�0

ckm
(log logn)m+1

(logn)k+m+1
, ckm 2 C. (5.5)

As F(z) is the exponential of an H-admissible function it is HS-admissible, too, and wecan get a full asymptotic expansion by an application of Theorem 4.1. The quantities ofDe�nition 4.1 now read
A(z) = ez − 1

Bk(z) =

{
z(ez − 1) if k = 1
zk

k! e
z else

B(z) =
zez

2

�
1 + z − e−z�

Cm(un, un) = −
2um+1

n

(m + 2)! (1 + un − e−un)
−

(−1)m (1 − e−un)

(m + 2) (1 + un − e−un)

where un is the unique positive solution of
u(eu − 1) = n + 1. (5.6)

Thus we get the re�nement
$n =

n!eeun−1

2un
n

p
πB(un)

 
1 +

1

8

u2
n

eun
+

5

24

u3
n + 2un(1 − e−un)

eun(1 + un − e−un)
+ o(e−un)

!
. (5.7)

We close this section by showing that the expressions (5.7) and (5.3) are indeed asymp-totically equal. For brevity set u = un and r = rn. Setting u = r + w in (5.6) yields
n(ew − 1) + wer+w = u + 1. (5.8)
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From (5.6) we see that

u + 1 ∼ logn − log logn, n → ∞
and therefore we know that w → 0 as n → ∞. Moreover, since er ∼ n/ logn as n → ∞ wehave

n(ew − 1) + wer+w ∼ n

�
ew − 1

wewlogn

�
∼ nw.

Combining these results we obtain
w = wn ∼

logn

n
, n → ∞.

Hence un admits the same asymptotic expansion (5.5) as rn. Now we have
un = (r + w)n = rn

�
1 +

w

r

�n

= rn
�

1 +
1

n
+ o(n−1)

�n

∼ ern

eu − er = er (ew − 1) ∼
nlogn

logn

n
= 1

B(u) ∼
u2eu

2
∼

r2er

2
∼

nrn

2

which shows that (5.7) and (5.3) are asymptotically equal.
5.2.2 Stirling Numbers of the Second Kind

We determine the behaviour of the number of subsets of a randomly chosen partition of aset of size n consists of as n → ∞.The bivariate exponential generating function with u marking the parameter \number ofsubsets" is given by
G(z, u) = exp (u (ez − 1)) =

∑
n�0

∑
k�0

Sn,kuk zn

n!

where the Sn,k denote the Stirling numbers of the second kind. The �rst and second loga-rithmic derivatives read
a(z, u) =

 
a(z, u)�a(z, u)

!
=

 
uzez

u(ez − 1)

!

B(z, u) =

 
b(z, u) c(z, u)

c(z, u) �b(z, u)

!
=

 
u(z + z2)ez uzez

uzez u(ez − 1)

!
.

Setting m = 0 and λ0 = 1 in theorem 4.11 we see that G(z, u) is BR-admissible in
R =

{
(r, s)

���R0 < r and er(δ−1) < s < er/δ
}
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with angles

Θ(r, s) =
{

θ
���|θ| < (s(er − 1))−1/3−ε

}
for some R0 > 0, any δ > 0 and ε > 0 su�ciently small.Let (rn,k, sn,k) 2 R denote the solution to a(r, s) = (n, k). The solution of reκr = n,
κ > 0, satis�es κr = logn − log logn + log κ + o(1) as n → ∞ and we therefore see that

� rn,k satis�es, as n → ∞,
1 + o(1)

δ
logn � rn,k � δ(1 + o(1))

1 + δ
logn

and
� we have

n

k
=

rn,k

1 − e−rn,k
∼ rn,k, n → ∞.

Hence, for any positive constants c and C, Theorem 4.8 provides uniform asymptotics for
Sn,k when

cnlogn
< k <

Cnlogn
.

The equation a(r, 1) = (n, k�) leads to
rer = n

er − 1 = k�. (5.9)
The solutions rn and k�n of (5.9) satisfy

rn ∼ logn − log logn ∼ logn,

k�n ∼
nlogn

as n → ∞. Calculating
detB(rn, 1)

b(rn, 1)
= (ern − 1) −

(rnern)2

(r2
n + rn)ern

∼
ern

rn
∼

n

(logn)2
, n → ∞,

we see that Sn,k satis�es a local limit law with mean and variance asymptotic to n/ logn and
n/(logn)2, respectively.The function G(z, u) is seen to be e-admissible, too, by Theorem 4.17 and the Sn,ktherefore satisfy a central limit law with mean and variance

�a(rn, 1) = k�n ∼
nlogn

, n → ∞,

detB(rn, 1)

b(rn, 1)
∼

n

(logn)2
, n → ∞.
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5.2.3 Singleton Blocks

Now, we determine the asymptotic behaviour of the parameter \number of singleton blocks"as n → ∞.The bivariate gf f(z, u), exponential w.r.t. z, with u marking the subsets of cardinality 1is given by
f(z, u) = exp (ez − 1 − z + uz) . (5.10)

The �rst and second logarithmic derivatives are given by
a(z, u) =

 
a(z, u)�a(z, u)

!
=

�
zez − z + uz

�

B(z, u) =

 
b(z, u) c(z, u)

c(z, u) �b(z, u)

!
=

 
z + z2)ez − z + uz uz

uz uz

!

and we have detB(z, u) = uz2ez(z + 1 − e−z). (5.11)
Write

f(z, u) = exp (ez − 1) euz−z. (5.12)
Theorem 3.5 shows that exp (ez − 1) is H-admissible in C with δ(r) = (er − 1)−2/5.Now, let k1 and k2 denote arbitrary reals satisfying 0 < k1 < k2 < ∞ and set

R =
{

(r, s) 2 R2
+

���� k1 � s

r
� k2

}
,

Θ(r, s) = [0, δ(r)]2 , (r, s) 2 R.

In the following, we will also use the abbreviation α = (φ, θ) 0. Let (r, s) 2 R. For α 2 Θ(r, s)we have, as r → ∞,
f
�
reiφ, seiθ

�
= f(r, s)(1 + o(1))eia(r,s) 0α−α 0B(r,s)α/2. (5.13)

If α 2 [−π, π]2 − Θ(r, s) then���exp �rsei(φ+θ) − reiφ
���� � ers−rer (5.14)

and from the proof of Theorem 3.5 we obtain���exp �ereiφ
− 1

���� � exp (er − 1) exp �−r1/4e3r/8
� (5.15)

as r → ∞. Combining (5.15) and (5.14) yields
f
�
reiφ, seiθ

�
= f(r, s)o

�exp �−er/4
��

, r → ∞. (5.16)
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Finally note that for (r, s) 2 R

B(r, s) � r3er, r → ∞. (5.17)
Hence (5.13) and (5.16) imply (4.12) and (4.13) respectively and therefore f(z, u) is BR-admissible in R with angles Θ(r, s) and functions a(r, s) and B(r, s). We may therefore applyTheorem 4.8 to f(z, u). The combinatorial interpretation of f(z, u) reveals that Λf = Z2, thatis d(Λf) = 1, and the equation a(r, s) = (n, k) 0 reads

rer − r + rs = n,

rs = k.
(5.18)

This leads to
rer �1 − e−r� = n − k (5.19)

and therefore we see that the solution rn,k has got the same asymptotic expansion as rn−kin (5.5).Let (rn,k, sn,k) 2 R denote the solution to (5.18). Theorem 4.8 now yields
[znuk]f(z, u) =

f(rn,k, sn,k)r−n
n,ks−k

n,k

2π
q

r3
n,kern,k

(1 + oB(1)) (5.20)
and from (5.18) we see that (5.20) is valid for (n, k) satisfying

k1(1 + o(1)) � k

(logn)2
� k2(1 + o(1)), n → ∞.

An interesting fact to note is that normality cannot be established using the concept ofBR-admissibility. Adopting the notation of De�nition 4.5, we have
Proposition 5.1. If f(z, u) is BR-admissible in R � R2

+ with angles Θ, then detB(r, 1)is bounded in R.
Proof. If r is bounded away from 0, it follows from (5.11) that

detB(r, s) � r3ser.

Therefore, we haveqdetB(r, s)
|f(r, seiθ)|

f(r, s)
� s1/2r3/2 exp�r(s cos θ − s +

1

2
)

�
. (5.21)

Observing that the exponent of (5.21) is nonnegative for
cos θ � 1 −

1

2s
(5.22)

and using the inequality cos x � 1 − x2

2 , x 2 R, we see that
diamΘ(r, s) � 1p

s
. (5.23)
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f(z, u) is BR-admissible and thus, we know that

diamΘ(r, s) = oB(1), (r, s) 2 R. (5.24)
Combining (5.23) and (5.24) we see that detB(r, s) is bounded in R if s remains bounded.

The function (5.10) is seen to be e-admissible by Theorem 4.17 and thus the parameterconsidered is asymptotically normal distributed. The solution rn of a(r, 1) = rer = n satis�es
rn ∼ logn − log logn as n → ∞ and therefore the asymptotic mean and variance are givenby

�a(rn, 1) ∼ logndetB(rn, 1)

b(rn, 1)
=

(r3
n + r2

n)ern − r2
n

rn(rn + 1)ern
∼ logn

respectively.
5.2.4 A Multivariate Limit Law

In Section 4.3, Example 12 we showed that the function
F(z, u,w) = eu(cosh z−1)ew sinh z

is BR-admissible in
R =

{
(r, s, t)

��� R0 � r, (cosh r − 1)δ−1 < s < (cosh r − 1)1/δ, (sinh r)δ−1 < t < (sinh r)1/δ
}

with matrix
B(r, s, t) =

0B@ r(rs + t) cosh r + r(rt + s) sinh r rs sinh r rt cosh r

rs sinh r s(cosh r − 1) 0

rt cosh r 0 t sinh r

1CA .

The corresponding function a(r, s, t) is given by
a(r, s, t) =

0B@ r(s sinh r + t cosh r)

s(cosh r − 1)

t sinh r

1CA .

In order to determine the local limit we proceed as described in Section 4.3, Remark 4.10.The equation
a(r, 1, 1) =

0B@ rercosh r − 1sinh r

1CA =

0B@ n

k�
m�

1CA
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leads to the solutions rn and k�n, m�

n asymptotically given by
rn ∼ logn − log logn

k�n ∼
n

2 logn

m�
n ∼

n

2 logn

as n → ∞. Furthermore, we have
B(r, 1, 1) ∼

0B@ n logn n
2

n
2

n
2

n
2 logn 0

n
2 0 n

2 logn

1CA , n → ∞.

In this case we have
B1,1 = n logn, B1,2 =

1

2

 
n

n

!
, B2,2 =

1

2

 
n

logn 0

0 n
logn

!

which gives
D = B2,2 − B1,2(B1,1)

−1B 0
1,2 =

1

2

 
n

2 logn − n
2 logn

− n
2 logn

n
2 logn

!
.

Now, let (Xn : n � 0) denote the sequence of random variables associated with F(z, u,w)as described in Section 1.4. If π is a partition of a set of size n, then Xn(π) = (k,m) where
k is the number of blocks of π of even cardinality and m is the number of blocks of oddcardinality. Furthermore,

P{Xn = (k,m)} =
[znukwm/n!]F(z, u,w)

[zn]F(z, 1, 1)
.

It follows from the BR-admissibility of F(z, u,w) that Xn satis�es a local limit theoremwith means vector asymptotically equal to (k�n,m�
n) and covariance matrix asymptoticallyequal to D as n → ∞. So we can expect that a randomly chosen partition has about equallymany blocks of even and odd size.
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