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Abstract

With the advent of spectrally efficient wireless communication systems employing modulation
schemes with varying amplitude of the communication signal, linearisation techniques for
nonlinear microwave power amplifiers have gained significant interest. The availability of fast
and cheap digital processing technology makes digital pre-distortion an attractive candidate as
a means for power amplifier linearisation since it promises high power efficiency and flexibility.
Digital pre-distortion is further in line with the current efforts towards software defined radio
systems, where a principal aim is to substitute costly and inflexible analogue circuitry with
cheap and reprogrammable digital circuitry.

Microwave power amplifiers are most efficient in terms of delivered microwave output power
vs. supplied power if driven near the saturation point. In this operational mode, the amplifier
behaves as a nonlinear device, which introduces undesired distortions in the information bear-
ing microwave signal. These nonlinear distortions degrade the system performance in terms
of increased bit error rate and produce disturbance in adjacent channels. A compensation of
the nonlinear distortions is therefore of significant importance, not only to keep the system
performance high, but also to comply with regulatory specifications regarding the maximum
allowed disturbance of adjacent channels. Nonlinear equalisation at the receiver is possible
but complicated due to the unknown effects of the channel. Further, this method does not
reduce the disturbance in adjacent channels, thus additional analogue filters would have to be
placed at the output of the power amplifier. It is therefore natural to reduce the nonlinear
distortions at the point where they occur, namely at the transmitter.

Different linearisation methods exist which aim to reduce the nonlinear distortions while
keeping the power amplifier in the nonlinear and efficient mode. Traditionally, these techniques
employ additional analogue circuitry. Linearisation by digital pre-distortion is a new method
which applies digital signal processing techniques for compensating the nonlinear distortions.

Digital pre-distortion splits into three tasks: modelling of the microwave power amplifier,
adaptive identification of the model parameters, and development of the pre-distortion filter.
These tasks are addressed in this thesis. Further, a prototype system is developed which allows
to test the pre-distortion algorithm in real-time using a fixed-point environment.

For the first task, measurements on microwave power amplifier were performed in order to
evaluate different models. The difficulty is to find low-complex but at the same time accurate
models, which describe not only the nonlinear effects, but account also for the memory effects
of the power amplifier.

The adaptive identification of the parameters of two nonlinear models, namely a Volterra
model and a Wiener model, is presented thereafter. Gradient-type algorithms are developed
and investigated with respect to stability in a deterministic context.

A powerful method for the determination of the pre-distortion filter is presented next. For
nonlinear systems it is in general not possible to devise analytic solutions for the pre-inverse
which linearises the system for a certain class of input signals. Here, an iterative technique is
presented which finds an approximate solution for the pre-inverse.

Based on the developed pre-distortion algorithm, a real-time prototype system is devel-
oped. This system proves that the algorithm can be implemented with a limited amount of
hardware resources. Further, measurement results show that the algorithm keeps its excellent
performance also in an environment with a limited data- and arithmetic accuracy.

i



ii



Kurzfassung

Mit der Einführung von spektral effizenten drahtlosen Kommunikationsystemen, die Modula-
tionsformate einsetzen, die auch die Amplitude des Nachrichtensignals verändern, gewannen
Linearisierungsverfahren für nichtlineare Mikrowellen-Leistungsverstärker immer mehr an In-
teresse. Die Verfügbarkeit von schneller und billiger digitaler Signalverarbeitungstechnologie
macht die digitale Vorverzerrung als Methode zur Linearisierung von Leistungsverstärkern
sehr attraktiv, da sie hohe Leistungseffizienz und hohe Flexibilität verspricht. Digitale Vor-
verzerrung steht weiters im Einklang mit den gegenwärtigen Bestrebungen eine möglichst
Software-definierte Funkübertragung zu schaffen. Ein wichtiges Ziel hierbei ist, kostspielige
und unflexible analoge Schaltkreise auf das unbedingt nötige Maß zu reduzieren und durch
billige und re-programmierbare digitale Technologie zu ersetzen.

Mikrowellen-Leistungsverstärker sind am effizientesten wenn sie in der Sättigung betrieben
werden. Effizienz heißt hier, daß möglichst viel zugeführte Leistung in abgegebene Mikrowel-
lenleistung umgesetzt wird. In dieser Betriebsweise ist der Verstärker nichlinear, was zu Verz-
errungen im informationstragenden Mikrowellensignal führt. Diese ungewollten Verzerrungen
führen zu erhöhten Bitfehlerraten und verschlechtern somit die Güte des Funksystems. Weit-
ers werden Störungen in benachbarte Frequenzbänder emittiert. Eine Kompensation dieser
Signalverzerrungen erhöht demnach nicht nur die Güte des Funksystems, sondern macht das
System konform mit Regulationsspezifikationen. Eine nichtlineare Entzerrung des Signals am
Empfänger ist möglich aber kompliziert wegen der unbekannten Effekte des Funkkanals. Diese
Methode reduziert weiters nicht die Störungen in benachbarten Frequenzbändern. Zusätzliche
analoge Filter müssen am Sender eingesetzt werden. Es ist daher natürlich, die Verzerrungen
an der Stelle ihres Auftretens, nämlich am Sender, zu kompensieren.

Verschiedene analoge Linearisierungsverfahren existieren. Sie versuchen die Verzerrungen
bei gleichzeitigem nichtlinearen Betrieb des Verstärkers zu kompensieren. Digitale Vorverzer-
rung ist eine neue Methode, die digitale Technologie zur Entzerrung des Verstärkes einsetzt.

Digitale Vorverzerrung kann in drei Teile aufgeteilt werden: Modellierung des Leistungsver-
stärkers, adaptive Identifikation der Modellparameter und Entwicklung des Vorverzerrungsfil-
ters. Alle drei Aufgaben werden in dieser Dissertation behandelt. Weiters wird ein Prototyp-
System entwickelt, das es gestattet, den Vorverzerrungsalgorithmus in Echtzeit in einer Fix-
punkt Umgebung zu testen.

Für die erste Aufgabe wurden Messungen mit verschiedenen Leistungsverstärkern aus-
geführt, um verschiedene Modelle gegeneinander zu evaluieren. Die Schwierigkeit besteht
dabei darin, möglichst genaue und gering komplexe Modelle zu finden, die nicht nur das
nichtlineare Verhalten des Verstärkers sehr genau beschreiben, sondern auch Speichereffekte
berücksichtigen.

Die adaptive Identifikation der Modellparameter von zwei Modellen, eines Volterramodells
und eines Wienermodells, wird danach behandelt. Gradientenverfahren werden entwickelt und
auf Stabilität in einem deterministischen Kontext untersucht.

In weiterer Folge wird eine Methode entwickelt um das Vorverzerrungsfilter für ein ge-
gebenes Verstärkermodell zu bestimmen. Analytische Lösungen sind im Allgemeinen nicht
verfügbar. Hier wird eine iterative Methode präsentiert, die eine Näherungslösung für das
ideale Filter findet.

Basierend auf diesem iterativen Algorithmus wird ein echtzeitfähiger Prototyp entwickelt.
Dieses System zeigt, daß der entwickelte Vorverzerrungsalgorithmus mit einem beschränken
Aufwand realisiert werden kann. Messungen belegen, daß der Algorithmus seine exzellente
Güte auch in einer Umgebung mit beschränkter Zahlen- und Arithmetikgenauigkeit beibehält.
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Chapter 1

Introduction

Amplification of information bearing signals is an integral part of every wireless transmitter.
The aim is to boost the signal to a sufficient power level for transmission in order to supply
the receiver with a sufficiently high level of signal power. Despite of disturbances and signal
distortions, the receiver has the task to retrieve the information from the received signal.

In wireless communication systems such as mobile communication systems (e.g., GSM1,
UMTS2, WLAN3) and satellite communication systems (e.g., radio and television broadcast
satellites) an essential constraint implies that communication in other frequency bands must
not be disturbed excessively. Further, efficient conversion of supplied power into radiated
signal power is a key requirement, especially in satellite communication systems where not
only power supply is limited, but also heat development becomes a serious technical problem.
In mobile communications, efficiency is of particular importance in mobile phones – the power
amplifier still consumes the largest amount of energy despite an excessive and increasingly
complex digital circuitry. Efficiency in the base station stands for lower operating costs due
to a reduced energy supply and smaller cooling units. A common measure for power amplifier
efficiency is the power added efficiency (PAE), defined as

PAE ,
PRF,out − PRF,in

PDC
,

where PRF,out indicates the output power, PRF,in is the input power of the power amplifier (at
radio frequency), and PDC is the supplied power. Typical efficiencies achieved today in mobile
communication systems are 20% for a UMTS base station amplifier, and 40 % for a UMTS
mobile unit.

The two constraints, distortion-free amplification and efficient amplification complicate
the simple-sounding task of boosting a signal to a high power level. Ideal distortion-free
amplification and efficiency tend to be mutually exclusive. Improvements in efficiency are
achieved at the expense of distortions, and vice versa.

1Global System for Mobile communications. It is the second generation (2G) of wireless mobile communi-
cation systems employing digital modulation technology.

2Universal Mobile Telecommunications System. This is the European entrant for third generation (3G) mo-
bile communication systems and subsumed in the IMT-2000 family as the WCDMA (Wideband Code Division
Multiple Access) technology.

3Wireless Local Area Network, a short range radio network normally deployed in traffic hotspots such as
airport lounges, hotels and restaurants. WLAN enables suitably equipped users to have wireless access to a
fixed network, providing high speed access (up to 54Mbit/s download) to distant servers. The key WLAN
technologies is the IEEE 802.11 family.

1



2 CHAPTER 1. Introduction

Signal distortion in power amplifiers occurs due to two mechanisms: non-linearity and
dispersion. Efficiency requirements push the power amplifier into the nonlinear operational
regime, whereas the dispersion effects have their origin in internal memory effects of the ac-
tive device (i.e., the transistor) and in non-ideal matching networks exhibiting a frequency
dependent behaviour. In order to observe dispersion in a well designed power amplifier, the
signal bandwidth has to be large, i.e., it must cover variations in the frequency response of
the power amplifier (if assumed linear). The signal bandwidth of communication systems
increase with every generation: from 200 kHz in GSM (second generation) to approximately
5 MHz (for one carrier) in UMTS, the third generation mobile communication system. This
is a 25-fold bandwidth increase. In the IEEE 802.11n WLAN standard even a transmission
bandwidth of 40MHz is specified. If more communication channels have to be amplified (e.g.,
in a multi-carrier base station) the requirements on linearity and dispersion increase further.
Amplification of more than one carrier using only one multi-carrier power amplifier has several
advantages over the more traditional approach of amplifying each carrier separately and com-
bining the amplified signals before the common antenna. Before combination, each amplified
signal has to pass an isolator and a filter, which must have a high quality factor due to its
small relative bandwidth. These narrowband filters are space-consuming, lossy, and difficult to
retune, which is necessary to accommodate different choices of transmitted carrier frequencies,
making it difficult for system operators to implement a dynamic channel allocation. A second
and very important reason for implementing multi-carrier power amplifiers is the achieved
forward-compatibility with future systems. The system operator has the possibility to change
the modulation scheme without replacing any amplifier. Such multi-carrier power amplifiers
must be designed to permit amplification of different modulation schemes at the same time.

Linearisation methods can increase efficiency indirectly by admitting the usage of efficient
nonlinear power amplifiers. Depending on the linearisation scheme, linear operation is achieved
via an appropriate modification of the input or output signal of the power amplifier. Further,
the linearisation scheme must also be capable of compensating the signal dispersion. It is
therefore not simply a linearisation scheme – it is a (nonlinear) equalisation task that has to
be performed. In order to increase effectively the efficiency of the whole system – linearisa-
tion subsystem and power amplifier – it is essential to design low-complex and power-efficient
linearisation schemes, maintaining at the same time a certain degree of flexibility and compat-
ibility. Different linearisation schemes, working entirely in the analogue domain or applying a
digital approach using digital signal processing techniques, have been proposed and are already
in use in communication systems.

A promising candidate for microwave power amplifier linearisation is digital pre-distortion.
The method works entirely in the digital domain which is attractive since the hardware im-
plementation employs standard and cost-efficient components. A high degree of flexibility is
guaranteed if reprogrammable hardware, such as DSPs4 and/or FPGAs5 is used, which is not
only desirable in a first prototype development, but also in a final product in order to main-
tain the possibility to efficiently adjust for later system changes. The costly analogue part in a
transmitter is minimally augmented applying this technique. The trend of moving the flexible
digital part of a transmitter as close to the antenna while reducing the analogue front-end to
its necessary minimum naturally leads to digital pre-distortion as a means for linearisation.

4DSP stands for Digital Signal Processor. It is a special type of processor micro-architecture, designed for
performing mathematical operations involved in digital signal processing.

5FPGA stands for Field Programmable Gate Array, a type of chip where the logic function can be defined by
the user. Due to this capability and the large number of gates it is especially suited for prototyping of complex
communication systems.
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1.1 Outline of the Thesis and Contributions

In the following the organisation of the thesis including the contributions of the author is
presented.

Chapter 1 Following the motivation for power amplifier linearisation, an overview of com-
monly used analogue linearisation schemes [1, 2] is presented in Section 1.2. The concept
of digital pre-distortion, originally proposed in [3], as an efficient and flexible digital lin-
earisation scheme is introduced.

Chapter 2 Models for power amplifiers are discussed in this chapter. The aim is to have
an accurate and relatively simple model, which not only describes the non-linearity
of the power amplifier, but also the dynamic effects (memory effects). The classical
Volterra series is introduced [4, 5, 6, 7, 8] as the most general model for describing non-
linear dynamic systems. Simpler models, especially Wiener- and Hammerstein models,
a specialisation of the Volterra series, are introduced next. Static models, such as the
often used Saleh-model [9], as well as series expansion are introduced for comparison
reasons. A complex baseband description of the models is derived. Comparisons of
performed measurements on real microwave power amplifiers with the presented models
are evaluated [10, 11, 12]. A discussion of the shortcomings and difficulties associated
with the models concludes the chapter.

Chapter 3 Adaptive identification of the power amplifier is necessary in order to identify the
model parameters and to track changes of the system behaviour over time. Emphasis
is on low complex and robust gradient-type identification schemes, which are predomi-
nantly used in practice. An introduction is devoted to the analysis methods for adaptive
algorithms [13, 14]. A deterministic robustness analysis of an adaptive Volterra filter is
then performed. The formulation of a two-step adaptive gradient-type algorithm for the
identification of the parameters of a Wiener system follows. A robustness analysis for
the derived algorithm is conducted [15, 16].

Chapter 4 The problem of equalisation of a nonlinear dynamic system is addressed. Since
most often analytic solutions describing the inverse of the nonlinear system are not
known, different approaches are proposed in the literature which solve the problem in
an approximate way [17, 18]. A new iterative method is developed here, which is simple
and converges very fast to a good solution [19, 12]. By means of measurements on a
high-power microwave amplifier, the developed linearisation method is tested and the
concept is proven to work in an experimental setup on a real physical system [12].

Chapter 5 A prototype system based on an FPGA implementation of the proposed lineari-
sation method was developed [20]. The implementation allows to test the developed
linearisation algorithm [12, 21] in real-time using various power amplifier models. It is a
very flexible environment for the evaluation of digital pre-distortion for different power
amplifiers requiring different models. Measurement results prove the functionality of the
implementation and prove that a real-time fixed-point implementation of the proposed
algorithm is indeed feasible.



4 CHAPTER 1. Introduction

1.2 Power Amplifier Linearisation: From Analogue Linearisa-
tion to Digital Pre-distortion

In this chapter an overview of power amplifier linearisation techniques is presented. Starting
with a motivation for linear microwave amplification, traditional analogue techniques, such as
feedforward and Cartesian-loop linearisation schemes are briefly presented. The concept of
digital pre-distortion is introduced. The chapter concludes with a literature review.

1.2.1 Motivation

Highly linear transmitters are forced mainly by:

1. regulatory and

2. system requirements.

Regulatory requirements define severe limits of out-of-band radiation in order to not disturb
neighbouring channels excessively. The transmitted signals have to adhere to specific spectral
masks, see, e.g., [22], which defines the base station minimum radio-frequency (RF) require-
ments of the FDD6 mode of WCDMA7.

System requirements on the linearity of power amplifiers are especially important in the
case of multi-channel power amplifiers. Multi-channel power amplifiers must meet stringent
linearity requirements in order to keep the cross-modulation between the channels at a low
level, at the same time the system is required to meet these linearity requirements over a
large bandwidth of tens of MHz. Such broadband signals resolve the dynamic effects of the
power amplifier, a frequency-dependent amplification being the result. These are challenging
requirements that prevent often the usage of a multi-channel power amplifier and favour the
usage of a channelised approach, which has the advantage that each single amplifier has to
meet only moderate linearity requirements over a relatively small bandwidth, thus appear as
static devices.

Linearisation methods aim to ameliorate the situation by adding additional circuitry for
reducing the nonlinear distortions of the power amplifier. Traditionally, analogue linearisation
schemes have been used, the most common, especially in base stations, being the feedforward
scheme. The demand for higher flexibility and lower cost with similar performance as ana-
logue linearisation schemes leads to the concept of digital pre-distortion. Signal processing
techniques, which can be efficiently implemented using digital hardware such as Digital Signal
Processors (DSPs) and/or Field Programmable Gate Arrays (FPGAs), are used to control an
analogue RF-system. The advantage is that a high degree of flexibility is maintained due to
the inherent flexibility of the digital hardware which allows for changes at run-time of the
system. This is in line with the current trend to Software Defined Radio (SDR) [23], where
the ultimate goal is to define highly reconfigurable radios which can accommodate a variety
of standards and transmission/receive modes, controlled entirely by software. This is only
possible if the inflexible and costly analogue circuitry is reduced to a minimum by replacing
as much as possible by reprogrammable digital hardware.

6FDD stands for Frequency Division Duplexing, an application of frequency-division multiple access, used
to separate transmit and receive signals in the frequency domain.

7WCDMA stands for Wideband Code Division Multiple Access, the technology used by UMTS.
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1.2.2 Analogue Techniques

Three analogue linearisation techniques, power back-off, feedforward linearisation, and Carte-
sian-loop linearisation are briefly presented.

Power Back-off

The conventional and simplest approach for achieving highly linear amplification is to use a
class A [1] power amplifier, being inherently inefficient with small input power levels, and
to feed it with an input power far below its (efficient) capabilities. This results in very low
power-efficient and oversized amplifier systems, making this approach very inefficient for most
applications.

Feedforward Linearisation

Feedforward linearisation is a very old method, dating back to 1928 [24, 25]. Nevertheless,
feedforward linearisation is used extensively in nowadays base stations [2, 1], since it is a
mature technology and provides good linearisation performance.
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Equal delay Equal delay� � � �
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u1(t)
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Figure 1.1: Feedforward linearisation scheme

Fig. 1.1 illustrates the feedforward linearisation scheme. It is inherently stable since no
feedback path exists. The nonlinear distortions are corrected at the output, in contrast to
feedback systems. The price for the potentially high performance and inherent stability is
the poor efficiency of the overall scheme. A highly linear and thus power-inefficient error-
amplifier is needed, as well as highly precise analogue RF-components, especially delay-lines.
These analogue components are required to maintain the accuracy over loading, time, and
temperature [26, 27].

A very simple calculation of the output signal y(t) clarifies the operation of the feedforward
scheme. The signal u1(t) is

u1(t) =
1
2
gmu(t− τm) + vNL(t) , (1.1)

where u(t) is the microwave input signal, τm is the delay of the main amplifier, and vNL(t)
models the introduced nonlinear distortion of the main amplifier. The attenuation of the 3 dB
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splitter is taken into account via the factor 1
2 . The signal u2(t) is

u2(t) =
1
2
(
1− c1gm

)
u(t− τm)− c1vNL(t) (1.2)

with the coupling-factor c1. The output signal y(t) is

y(t) = u1(t− τe) + c2geu2(t− τe) , (1.3)

where τe is the delay of the error-amplifier, g2 is the gain of the error-amplifier, and c2 is the
coupling-factor of the coupler at the output. After a simple calculation the output signal

y(t) =
1
2
(
gm + c2ge − c1c2gmge

)
u(t− τm − τe) +

(
1− c1c2ge

)
vNL(t− τ2) (1.4)

follows. If ge = 1
c1c2

the distortion is completely removed and the output signal is simply

y(t) =
1

2c1
u(t− τm − τe) . (1.5)

The coupling-factor c1 determines the overall gain. An obvious choice is c1 = 1
gm

, which results
in

u2(t) = − 1
gm

vNL(t) (1.6)

and
y(t) =

gm
2
u(t− τm − τe) . (1.7)

In this analysis the delays of the delay lines are assumed to be perfectly matched to the
introduced delays of the amplifiers. This perfect match is in practice difficult to maintain over
varying operating conditions, reducing the performance significantly [27].

Cartesian-Loop

The Cartesian-loop linearisation scheme [28, 29, 30] is a feedback scheme, thus able to track
system changes. Fig. 1.2 shows the scheme. The main components are the feedback-path and
the error-amplifiers. The arrangement will force the output signals Iout(t), Qout(t) to track the
input signals I(t), Q(t). The performance of the scheme depends on the gain and bandwidth
of the video-circuitry, and on the linearity of the I-Q de-modulator [31].

With the availability of low-cost and precise quadrature modulators and de-modulators,
the system appears as a simple and attractive architecture. Over a limited range of bandwidths
(tens of kHz), linearity improvements up to 45 dBc have been achieved [1, 30].

A simple analysis reveals the operation principle of this scheme. The input signal u(t) =
I(t)+jQ(t) is introduced. Further, vNL(t) denotes the additive nonlinear distortions produced
by the power amplifier with gain gm. It can easily be shown that the output signal is

y(t) =
gmge

1 + gL
u(t) +

1
1 + gL

vNL(t) (1.8)

with the loop-gain
gL = gmgecα , (1.9)
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composed of the coupling-factor c, the attenuation α, the gain of the error-amplifiers ge, and
the gain of the main power amplifier gm. For a large loop-gain, (1.8) reduces to

y(t) ≈ 1
cα
u(t) + vNL(t)

1
gL

. (1.10)

If 1
cα = gm, this simplifies further to

y(t) ≈ gmu(t) + vNL(t)
1
ge
. (1.11)

The suppression of the nonlinear disturbance depends in this case on the gain of the error-
amplifiers ge.
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Figure 1.2: Cartesian-loop linearisation scheme

1.2.3 Digital Pre-distortion

The Cartesian-loop scheme provides a motivation for digital pre-distortion. The idea is to
build a correction entity which compensates the non-linearity of the power amplifier in dig-
ital baseband. The advantages by using digital techniques are a reduced analogue circuitry,
excellent reproducibility and precision, as well as the high flexibility.

Fig. 1.3 shows a digital pre-distortion system. The similarity to the Cartesian-loop lin-
earisation scheme is obvious – the analogue differential amplifiers are replaced by the digital
pre-distortion (DPD) block. Analogue-to-digital converters (ADCs) are needed for converting
the demodulated output signal of the transmit path, containing the nonlinear power ampli-
fier, to digital. The scheme presented in Fig. 1.3 is a signal pre-distortion scheme, where
the transmit-signal, immediately before the conversion to analogue, is pre-distorted. The
initially proposed data pre-distortion approach [3] pre-distorts the transmit data symbols.
Signal pre-distortion requires even faster operation of the processing devices than in data
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pre-distortion systems, since the signal data-rate is in general higher than the symbol rate.
Signal pre-distortion is further independent of the used modulation scheme, whereas in data
pre-distortion the pre-distortion algorithm depends on the modulation format.
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Figure 1.3: Digital pre-distortion linearisation scheme

Digital Pre-distortion: Building Blocks

Fig. 1.4 shows a detailed view of the building blocks of the digital pre-distortion system and
their interaction. The components I[n], Q[n] of the undistorted transmit-signal pass the pre-
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Figure 1.4: Digital pre-distortion linearisation scheme – building blocks

equalisation filter which distorts the signal in such a way that after passing the nonlinear
analogue circuitry the signal appears linearly amplified. In order to achieve this linear ampli-
fication, the pre-equaliser has to be designed appropriately. The necessary knowledge comes
from the modelling step which creates an accurate model of the nonlinear transmit circuitry.
The analogue feedback-path must obey stringent linearity requirements, as in the case of the
Cartesian-loop linearisation scheme. Thus, in a pre-distortion system the following tasks have
to be performed:

1. Modelling of the power amplifier (addressed in Chapter 2)
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2. Adaptive identification of the power amplifier model-parameters (addressed in Chapter 3)

3. Design of the pre-distortion filter (addressed in Chapter 4)

4. Realisation of the pre-distortion unit (addressed in Chapter 5).

The first task is the modelling of the nonlinear transmit path. Nonlinear systems are basically
all systems which behave nonlinear. Infinitely many possibilities for models exist, making
this task difficult. A model has to be found that is capable of describing the behaviour
of a composite of systems (mixed-signal devices such as DACs, analogue circuitry such as
I-Q modulators, filters, pre-amplifiers, and power amplifiers) and that is at the same time
reasonably low-complex.

Once a candidate model has been found the model-parameters have to be estimated. An
adaptive identification algorithm, in its nature an on-line optimisation method, can perform
this task.

The next task is then to design a pre-equaliser that compensates the nonlinear and dynamic
effects (memory effects) of the transmit path. Analytic solutions for the pre-equaliser are in
general not achievable. At least a method which provides an approximate solution for the pre-
equaliser has to be found. It would be further desirable that this method provides solutions
for the pre-equaliser for a variety of power amplifier models.

Finally, the system has to be realised and tested in an experimental setup. This is not only
a proof-of-principle, but shows also the technical feasibility of the method under technological
constraints.

Digital Pre-distortion – Brief Literature Review

Digital pre-distortion of microwave power amplifiers is a relatively young technique, initiated in
the early 1980s with the paper of A. A. M. Saleh and J. Salz [3]. This and other early contribu-
tions consider data pre-distortion, i.e., the data symbols are distorted, not the transmit signal
after transmit filtering. The pulse-shaping is thus performed after the pre-distortion stage.
The spectral broadening due to the nonlinear amplifier cannot be avoided, but the nonlinear
distortion of the data is compensated. These contributions consider nonlinear memoryless
power amplifiers.

Data pre-distortion considering also memory effects appear in the late 1980s [32, 33, 34,
35], using Volterra filters as models for the nonlinear channel and for the pre-equaliser [36].
Nonlinear equalisation at the receiver, compensating for a nonlinear travelling wave tube
amplifier and a linear channel, are considered in [37], whereas linearisation at the satellite
transmitter is considered in [32], making the task easier since the amplifier can be considered
as memoryless and the channel, which makes post-equalisation complicated, has no impact.

Pre-distortion of the transmit signal after the transmit filters appeared in the late 1980s [38,
39, 40], introducing a look-up table based pre-distortion concept, based on a memoryless
nonlinear power amplifier model. Since then, a vast amount of literature has been published,
based on memoryless as well as dynamic models for the power amplifier, see e.g., [41, 17, 42, 43],
mostly based on computer simulations.
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Chapter 2

Power Amplifier Modelling

The modelling task in the context of power amplifier pre-distortion is essential. Without
knowledge of the system behaviour at a relatively high level of abstraction – in digital pre-
distortion, parametric black-box models are used – equalisation will be an impossible challenge.
The quality of the modelling has a great influence on the quality of the equalisation, since the
pre-distortion unit is built based on the used power amplifier model, as observed in detail in
Chapter 4. Therefore, modelling is a key element for pre-distortion techniques.

Models used commonly in power amplifier design and analysis range from detailed physical
descriptions of the active device, the transistor, e.g., in power amplifier design, to relatively
abstract models, incorporating equivalent circuits, e.g., for power amplifier characterisation.
Here, the most abstract approach will be taken – the power amplifier is modelled as a para-
metric black box1. This brings several advantages, but has its drawbacks, too:

➾ Modelling at a high level of abstraction does not require specific and detailed knowledge
of the functionality of the power amplifier. On the other hand, specific knowledge can
improve the quality of the modelling.

➾ Gaining physical insight into system behaviour from abstract black box models is rarely
possible. In the context of pre-distortion the aim is not to gain physical insight into the
operation of power amplifiers.

➾ If performed in a smart way, black box models of complex dynamic systems can lead to
compact descriptions. Few parameters can suffice to characterise a complex system with
a large number of interconnected subsystems. This is especially important in system
simulation – fast and accurate simulators can be realised.

The most often used approach to deal with a nonlinear system is its linearisation around
a certain operating point; in other words, the nonlinear aspects of the problem are avoided.
Approximating the power amplifier behaviour in some neighbourhood of an operating point
using a linear model is not feasible in the pre-distortion context – the identification of the
nonlinear aspects is essential for being able to compensate them.

In this chapter parametric nonlinear models for power amplifiers are presented. The
Volterra series [45] is presented – it is the most widely investigated model for nonlinear dy-
namic systems. As it is capable of modelling a very large class of systems, it serves as a

1A model-set whose parameters are a vehicle for adjusting the fit to the data is called a black box [44]. The
parameters do not reflect physical entities in the system. Accordingly, model-sets with adjustable parameters
admitting physical interpretations are called grey boxes.

11
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performance measure for the modelling capabilities of low complex models, such as Wiener-
and Hammerstein models, which are presented thereafter. It is not the scope of this work to
present a detailed analysis of the capabilities and difficulties associated with each presented
model. The modelling is viewed from a practically relevant position, mostly with respect to
performance and complexity.

The modelling capabilities of each model structure are tested against measured input/out-
put data from power amplifiers, as well as against data obtained with a widely used simulation
tool, ADS 2. This simulation tool incorporates vendor-specific power amplifier models at circuit
level. The advantage by using such an environment is that no equipment limitations, e.g.,
with respect to a maximum allowed signal bandwidth, have to be taken into consideration, as
well as detrimental effects, such as measurement noise and accuracy limitations (e.g. limited
resolution of analogue-to-digital converters), have no effect on the modelling. This environment
is suited to test different model structures against each other and to gain insight in algorithmic
limitations by excluding undesired effects from the measurement process. On the other hand,
simulations can provide only a very special and restricted picture of reality, where detrimental
effects and limitations have to be taken into account.

In order to prevent wrong conclusions on power amplifier models based only on simu-
lated data, measurements on microwave power amplifiers have been performed. Therefore,
the presented models in the following sections are compared with respect to their modelling
capabilities, i.e., the capability to reproduce the measured output data given the input data.

2.1 The Volterra Series

The Volterra series as a means for describing nonlinear systems was first used by Norbert
Wiener [47, 4]. It is a functional power series of the form

y(t) = H
(
x(t)

)
= h0 +

∞∑
p=1

∫
· · ·
∫
hp(t, τ1, . . . , τp)x(τ1) · · ·x(τp)dτ1 · · · dτp , (2.1)

in which H
(
x(t)

)
is a nonlinear functional of the continuous function x(t), h0 is a constant, t

is a parameter, and hp(· · · ) for p ≥ 1 are continuous functions, called the Volterra kernels.
In the context of modelling of a dynamic nonlinear system such as a power amplifier in

wireless communications, x(t) is the input time-signal and t is (continuous) time. The basic
questions are whether it is possible to approximate the behaviour of a physical nonlinear
dynamic system with a series of the form in (2.1) and for which systems and which input
signals does this series converge. These questions can be answered affirmatively for a large
class of systems, i.e., any time-invariant continuous nonlinear system, and a wide class of input
signals, i.e., signals extending over a finite time interval and belonging to a compact set3 [5,
pp. 34-37]. The basis for proving this is the Stone-Weierstrass theorem, see [49].

2ADS [46] stands for Advanced Design System, a simulation environment developed by Agilent Technologies.
It is capable to simulate microwave designs, as well as complex communication systems.

3A set S in a normed space is compact, if for an arbitrary sequence {xi} in S there is a subsequence
{xin} converging to an element x ∈ S. In finite dimensions, compactness is equivalent to being closed and
bounded [48]. An example of a noncompact set is the unit ball in L2(0, T ), the set of all u(t) such that
‖u(t)‖ ≤ 1, easily verified by an example, violating Weierstrass’ theorem [48] which states that a continuous
functional on a compact subset of a normed vector space achieves a maximum: The continuous functional

f(u) =
R 1/2

0
u(t)dt −

R 1

1/2
u(t)dt does not achieve the supremum of 1 (|f(u)| ≤ ‖u(t)‖ ≤ 1) for continuous

functions u(t), thus proves that the unit ball is not compact.
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In [8] the range of the input signals for which the Volterra series approximation converges
is enlarged to signals extending over the whole time-axis and belonging to non-compact sets,
to which more practical signals belong to. This is achieved by limiting the class of systems
to only those with fading memory. Roughly speaking, this means that the memory of the
system “fades” or that the system is “forgetting”. These strong theoretical results provide the
background for the attempts in representing nonlinear dynamic systems with Volterra series.

The input/output relation of the Volterra model of the power amplifier used in this work
is a truncated and stationary (time-invariant) Volterra series

ỹ(t) =
2P+1∑
p=1

∫
· · ·
∫
h̃p(τ1, . . . , τp)x̃(t− τ1) · · · x̃(t− τp)dτ1 · · · dτp (2.2)

=
2P+1∑
p=1

∫
h̃p(τττp)

p∏
i=1

x̃(t− τi)dτττp , (2.3)

where, for notational compactness, the vector τττp = [τ1, . . . , τp]T for the set of time-arguments
for the p−dimensional kernel h̃p(τ1, . . . , τp) and dτττp = dτ1 · · · dτp is used. The multiple integrals
are compactly described. The constant term h0 is assumed to be zero. The tilde marks the
signals and the kernels as real-valued bandpass, see (2.4) further ahead. In the following, an
equivalent discrete-time complex baseband input/output representation of (2.2) is deduced.
This follows the derivation in [50], where the equivalent complex baseband Volterra kernels of
a real-valued bandpass Wiener model are determined, see also Section 2.2 for more details.

2.1.1 Complex Baseband Volterra Series

During the following analysis it is assumed that the output of the power amplifier is filtered
by a so called zonal filter g̃(t) as depicted in Fig. 2.1. This filter selects the spectral zone of
interest – here, the filter is tuned to the centre-frequency f0 of the transmitter. The bandwidth
is as large as necessary in order to cover nonlinear spectral broadening. In this analysis, the
zonal filter is virtual and only necessary to compute the equivalent baseband Volterra-model
– in a pre-distortion system, the filter exists and is incorporated in the mixer-stage or I/Q-
demodulator, used for the conversion of the output signal of the power amplifier to baseband
or to a lower intermediate frequency, see Fig. 1.3. It is assumed further, that the filter is
perfectly flat in the selection-zone and with a perfect spectral suppression outside the selected
zone. In a realised system the bandwidth is equivalent to the bandwidth of the mixer stage.
Amplitude and phase distortions are present and limit the accuracy. Since this filter is in the
feedback path of the pre-distortion system, deviations from the ideal assumptions have great
influence on the overall behaviour.

PA g̃(t)- - -x̃(t) ỹ(t)

Figure 2.1: Power amplifier with zonal filter g̃(t) at its output
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The real-valued bandpass signal, centred at f0 and input to the amplifier or Volterra model,
is

x̃(t) = <
{
x(t)ej2πf0t

}
. (2.4)

The equivalent complex baseband signal is x(t). Inserting the expression (2.4) into the first
order term in the Volterra series (2.2) gives the output of the first order (linear) term

ỹ1(t) =
∫
h̃1(τ1)<

{
x(t− τ1)ej2πf0(t−τ1)

}
dτ1 = <

{∫
h1(τ1)x(t− τ1)dτ1ej2πf0t

}
(2.5)

with the first order baseband kernel h1(t) = h̃1(t)e−j2πf0t. The (ideal) zonal filter is centred at
f0, the signal passes unchanged. The equivalent complex baseband output signal is therefore
simply obtained by the convolution of h1(t) and x(t).

For the quadratic part insertion of (2.4) into

ỹ2(t) =
∫
h̃2(τττ2)

2∏
i=1

x̃(t− τi)dτττ2 (2.6)

yields already a much more complex behaviour:

ỹ2(t) =
∫
h̃2(τττ2)

2∏
i=1

<
{
x(t− τi)ej2πf0(t−τi)

}
dτττ2

=
1
4

∫
h̃2(τττ2)e−j2πf0τ1e−j2πf0τ2x(t− τ1)x(t− τ2)dτττ2e

j2π2f0t

+
1
4

∫
h̃2(τττ2)ej2πf0τ1ej2πf0τ2x∗(t− τ1)x∗(t− τ2)dτττ2e

−j2π2f0t

+
1
4

∫
h̃2(τττ2)ej2πf0τ1e−j2πf0τ2x∗(t− τ1)x(t− τ2)dτττ2

+
1
4

∫
h̃2(τττ2)e−j2πf0τ1ej2πf0τ2x(t− τ1)x∗(t− τ2)dτττ2

=
1
2
<

{∫
h̃2(τττ2)e−j2πf0(τ1+τ2)

2∏
i=1

x(t− τi)dτττ2e
j2π2f0t

}

+
1
2
<
{∫

h̃2(τττ2)e−j2πf0(τ1−τ2)x(t− τ1)x∗(t− τ2)dτττ2

}
. (2.7)

The second order part produces signals that are centred at f = 2f0 and f = 0. The zonal
filter, centred at f0 with a bandwidth assumed to be small compared with f0, suppresses the
output of the second order term completely.

In a similar manner, the output signal of the third order part of (2.2) can be computed.
The resulting expression is

ỹ3(t) =
1
4
<

{∫
h̃3(τττ3)e−j2πf0(τ1+τ2+τ3)

3∏
i=1

x(t− τi) dτττ3 e
j2π3f0t

}

+
1
4
<
{∫

h̃3(τττ3)e−j2πf0(τ1+τ2−τ3) x(t− τ1)x(t− τ2)x∗(t− τ3) dτττ3 e
j2πf0t

}
+

1
4
<
{∫

h̃3(τττ3)e−j2πf0(τ1−τ2+τ3) x(t− τ1)x∗(t− τ2)x(t− τ3) dτττ3 e
j2πf0t

}
+

1
4
<
{∫

h̃3(τττ3) e−j2πf0(−τ1+τ2+τ3)x∗(t− τ1)x(t− τ2)x(t− τ3) dτττ3 e
j2πf0t

}
. (2.8)
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Only symmetric kernels h̃p(tp) = h̃p(t1, t2 . . . , tp) are considered – the arguments t1, t2, . . . , tp
can therefore be permuted in every order without affecting the output signal. This is no loss
of generality since every asymmetric Volterra kernel can easily be converted into a symmetric
kernel, see [4, pp. 80-81]. The three last parts of (2.8) at f0 yield therefore the same result.
Since the zonal filter is centred at f0, the first component at 3f0 is assumed to be suppressed
perfectly. The only remaining term, written in the equivalent baseband form, is thus

y3(t) =
∫
h3(τττ3)x(t− τ1)x(t− τ2)x∗(t− τ3)dτττ3 (2.9)

with the third order baseband kernel

h3(t3) =
3
4
h̃3(t3)e−j2πf0(t1+t2−t3) . (2.10)

By induction it can be shown that the terms of even order 2p do not contribute to the output
signal if the zonal filter is centred at f0. Only the uneven terms in (2.2) produce components
at f0. The output for the 2p+ 1-th homogeneous part is (in the equivalent baseband form)

y2p+1(t) =
∫
h2p+1(τττ2p+1)

p+1∏
i=1

x(t− τi)
2p+1∏
i=p+2

x∗(t− τi)dτττ2p+1 (2.11)

with the equivalent baseband kernel

h2p+1(t2p+1) =
(

1
2

)2p(2p+ 1
p

)
h̃2p+1 (t2p+1) e−j2πf0(

Pp+1
i=1 ti−

P2p+1
i=p+2 ti) , (2.12)

h̃2p+1 (t2p+1) being the real-valued 2p+ 1-dimensional bandpass kernel.
The equivalent complex baseband Volterra series of order 2P − 1 (with the zonal filter

centred at the centre frequency f0) is thus

y(t) =
P−1∑
p=0

∫
h2p+1(τττ2p+1)

p+1∏
i=1

x(t− τi)
2p+1∏
i=p+2

x∗(t− τi)dτττ2p+1 . (2.13)

It has to be noted that in (2.12) the equivalent baseband kernel h2p+1(t2p+1) is invariant with
respect to a permutation of the first p+1 arguments and with respect to a permutation of the
second p arguments. A permutation of members between these two sets is allowed only if the
corresponding conjugation of the input signal x(t) in (2.13) is also considered.

2.1.2 Frequency Domain Representation of a Volterra Series

Further insight into the behaviour of a nonlinear system, represented by the Volterra se-
ries (2.13), can be gained if the output spectrum is computed. In the following, this calculation
is performed exemplarily for the third order part (see [4, pp.104-108] for the real valued case).
The extension to arbitrary orders is straightforward.

Consider (2.9), the third order homogeneous part. For the calculation of

y(3)(t1, t2, t3) =
∫
h3(τττ3)x(t1 − τ1)x(t2 − τ2)x∗(t3 − τ3)dτττ3 (2.14)
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is introduced. Three dimensional Fourier transform yields

Y(3)(f1, f2, f3) = H3(f1, f2, f3)X(f1)X(f2)X∗(−f3) . (2.15)

Inverse Fourier transformation of (2.15) and setting of t = t1 = t2 = t3 gives

y3(t) = y(3)(t, t, t) =
∫∫∫

H3(f1, f2, f3)X(f1)X(f2)X∗(−f3)ej2π(f1+f2+f3)tdf1df2df3 . (2.16)

With substitution of f2 + f3 = ν1

y3(t) =
∫∫∫

H3(f1, ν1 − f3, f3)X(f1)X(ν1 − f3)X∗(−f3)ej2π(f1+ν1)tdf1dν1df3 (2.17)

is obtained. Further substitution of f = f1 + ν1 results in

y3(t) =
∫∫∫

H3(f − ν1, ν1 − f3, f3)X(f − ν1)X(ν1 − f3)X∗(−f3)ej2πftdν1df3df , (2.18)

which provides the desired result for the spectrum Y3(f)

Y3(f) =
∫∫

H3(f − ν1, ν1 − ν2, ν2)X(f − ν1)X(ν1 − ν2)X∗(−ν2)dν1dν2 . (2.19)

For the general case of the 2p+ 1-th homogeneous part it can easily be shown that

Y2p+1(f) =
∫
Y(2p+1)(f − ν1, ν1 − ν2, ν2 − ν3, . . . , ν2p)dν1 · · · dν2p , (2.20)

with

Y(2p+1)(f1, . . . , f2p+1) = H2p+1(f1, . . . , f2p+1)
p+1∏
i=1

X(fi)
2p+1∏
i=p+2

X∗(−fi) . (2.21)

The frequency domain representation of the Volterra series (2.13) is therefore

Y (f) =
P−1∑
p=0

Y2p+1(f) . (2.22)

Equation (2.20) is very similar to a multi-dimensional convolution integral. From this
integral form the spectral broadening of a signal passing through a Volterra system can easily
be understood. This becomes very clear in the case of a Wiener- or Hammerstein system,
considered in Section 2.2 and Section 2.3 in more detail.

2.1.3 Discrete-time Volterra Series

A discrete-time representation of the Volterra series (2.13), used to model the nonlinear system,
is essential for digital signal processing. In digital pre-distortion, the output of the amplifier
(after attenuation, down-conversion and eventual demodulation) is sampled. This gives a
discrete-time signal, together with the discrete-time input signal it is used to extract the
parameters of the power amplifier model, here, the Volterra kernels. The selection of the
sampling rate is essential – in order to reconstruct the analogue output signal, the sampling
rate must be at least twice the signal bandwidth, see e.g., [51, 52], as requested by the sampling
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theorem. Since nonlinear systems spread the signal in bandwidth, see (2.20), selecting the
sampling rate twice the output bandwidth is challenging in practice, since very fast analogue-
to-digital converters with a high resolution (typically 12-14 bits supporting a dynamic range
of up to 70 dB) have to be used. For system identification it can be shown that it is sufficient
to sample the output with the same rate as used for the input signal [53, 54, 55].

The input signal X(f) is assumed to be bandlimited4 in I = [−B,B]. As can be seen
from (2.21), the kernels H2p+1(f1, . . . , f2p+1), p = 0, . . . , P − 1, can be assumed to be band-
limited. The form of the kernels outside of the hypercube C = I × I × . . .× I is of no impor-
tance, since in this region the kernels will not be excited by the input signal. The spectrum
Y(2p+1)(f1, . . . , f2p+1) is zero outside the hypercube C and therefore strictly bandlimited5.

It is assumed that the input signal is sampled at the Nyquist-rate T = 1
2B yielding x[n] =

x(nT ) = x( n
2B ), n ∈ Z. Discrete Fourier transform yields

X(f) =
∑
n∈Z

x[n]e−jπ
f
B
n . (2.23)

Since the kernels can be assumed to be bandlimited, the spectrum of the kernel in the hyper-
cube C can be determined by the multidimensional Fourier transform, e.g., for the third order
kernel

H3(f1, f2, f3) =
∑

n1,n2,n3∈Z
h3[n1, n2, n3]e−j

π
B

(f1n1+f2n2+f3n3) , (2.24)

the Volterra kernel being sampled at the Nyquist-rate of the input signal, h3[n1, n2, n3] =
h3( n1

2B ,
n2
2B ,

n3
2B ). If the output is sampled, again with the rate of the input sampling y3[n] =

y( n
2B ), with (2.16), (2.23) and (2.24)

y3[n] =
∑

n1,n2,n3∈Z

∑
r1,r2,r3∈Z

h3[n1, n2, n3]x[r1]x[r2]x∗[r3]×

1
2B

∫ B

−B
ejπ

f1
B

(n−n1−r1)df1
1

2B

∫ B

−B
ejπ

f2
B

(n−n2−r2)df2
1

2B

∫ B

−B
ejπ

f3
B

(n−n3−r3)df3

=
∑
n3,r3

h3[n3]x[r1]x[r2]x∗[r3]δ[n− n1 − r1]δ[n− n2 − r2]δ[n− n3 − r3]

=
∑
n3

h3[n3]x[n− n1]x[n− n2]x∗[n− n3] (2.25)

is obtained, showing that the output of the Volterra system, sampled with the Nyquist-rate of
the input-signal, can be obtained by a convolution of the sampled input signal and the sampled
Volterra kernel. In order to shorten the notation the argument vectors n3 = [n1, n2, n3]T and
r3 = [r1, r2, r3]T are introduced. A summation with the here three dimensional argument
vectors as indices stands for a three-fold summation with the entries of the argument vectors
used as individual indices. This notation is used wherever appropriate. Higher order kernels

4It has to be emphasised that in a pre-distortion system the input signal to the power amplifier has been
nonlinearly distorted by the pre-distortion filter. The bandwidth is therefore larger than the bandwidth of the
undistorted input signal, e.g., P × 5MHz for one UMTS carrier and for a pre-distortion filter of nonlinear order
P .

5It has to be noted that H2p+1(f1, . . . , f2p+1) cannot be strictly bandlimited due to causality. Here, it is
assumed that the spectral components of the input signal are sufficiently small outside the interval I = [−B, B].
Therefore, the signal Y(2p+1)(f1, . . . , f2p+1) is assumed to be bandlimited in C.
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are treated equivalently. The discrete-time Volterra series of order 2P − 1 is

y[n] =
P−1∑
p=0

∑
n2p+1∈Z

h2p+1[n2p+1]
p+1∏
i=1

x[n− ni]
2p+1∏
i=p+2

x∗[n− ni] . (2.26)

The continuous-time kernel h2p+1(t2p+1) and the discrete-time kernel h2p+1[n2p+1] are equiv-
alent, since the same output-signal is reproduced exactly at the sampling points. The contin-
uous-time Volterra system Vc, defined by the continuous-time kernels, and the discrete-time
Volterra system Vd, defined by the sampled continuous-time kernels, are therefore equivalent.
Hence, for system identification, sampling with the Nyquist-rate of the input-signal is suffi-
cient for estimating the Volterra-kernels. But it is not possible to reconstruct the continuous-
time output signal y(t) from the discrete-time signal y[n], resulting from a sampling with
the Nyquist-rate of the input signal. Aliasing would occur, since Y (f) is not bandlimited in
I = [−B,B], see (2.20). If the discrete-time Volterra kernels are known, the continuous-time
kernels can be reconstructed, thus, with the knowledge of the continuous-time input signal
x(t), the continuous-time output signal y(t) can be produced. Hence, the knowledge of the
discrete-time kernel and the input signal, either in continuous-time or discrete-time, is sufficient
to reproduce all signals. The commutative diagram [53]

x(t) Vc
//

OO

��

y(t)

��
x[n] Vd

// y[n]

(2.27)

visualises this situation: Taking the path x(t) Vc
//y(t) //y[n] is equivalent to taking the

path x(t) //x[n] Vd
//y[n] .

The consequence is that for modelling a nonlinear system which can be represented by a
Volterra series, it is not necessary to sample the output signal at its Nyquist rate – sampling
with the Nyquist-rate of the input signal is sufficient for estimating the Volterra kernels.

2.1.4 Series Representation of a Static Non-linearity

From the Volterra series (2.26) it is straightforward to specialise to a static non-linearity. The
kernels are assumed to vanish, except if all indices are equal to zero, h2p+1[n2p+1] = 0 if
n2p+1 6= 0, p = 0, . . . , P − 1. The equivalent discrete-time baseband representation of a static
non-linearity, represented by a power series, is therefore

y[n] =
P−1∑
p=0

h2p+1[0]x[n]
∣∣x[n]

∣∣2p = x[n]
P−1∑
p=0

θ2p+1

∣∣x[n]
∣∣2p = x[n]gθ

(∣∣x[n]
∣∣) . (2.28)

The 2p + 1-th order kernel reduces to a simple (complex) scalar θp. A signal-dependent gain
gθ
(∣∣x[n]

∣∣) distorts the input signal. Since this gain is complex, it introduces amplitude and
phase distortions which depend on the amplitude of the input signal. The amplitude distortion
(AM-AM conversion) is ∣∣y[n]

∣∣∣∣x[n]
∣∣ =

∣∣∣gθ(∣∣x[n]
∣∣)∣∣∣ , (2.29)
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whereas the phase distortion (AM-PM conversion) is

arg
(
y[n]

)
− arg

(
x[n]

)
= arg

(
gθ

(∣∣x[n]
∣∣)) . (2.30)

If instead of a power series a set of orthogonal polynomials
{
φp(·)

}
with the real argument∣∣x[n]

∣∣ is used, only even order polynomials will contribute,

y[n] = x[n]
P−1∑
p=0

θ
′
2p+1 φ2p

(∣∣x[n]
∣∣) . (2.31)

E.g., for
{
φp(·)

}
the even Hermite polynomials can be used. Another possibility is to use

linear splines, see [21, 43].

2.1.5 Parameter Estimation for the Volterra Model

The Volterra series is linear-in-parameters – standard least-squares techniques can therefore
be used to estimate the kernels. The composition of the regression matrix is, due to the
special form of (2.26), different from the standard real-valued Volterra series: the kernels are
symmetric with respect to the first p + 1 arguments, e.g., h3[0, 1, 1] = h3[1, 0, 1] since these
kernels are associated with the signal products x[n]x[n− 1]x∗[n− 1] and x[n− 1]x[n]x∗[n− 1],
which are symmetric with respect to the first two components. The kernels are symmetric
also with respect to the second p arguments. These terms are associated with the conjugated
signals. The difference to the real-valued standard formulation of the Volterra series is that
permutations across these two sets, i.e., the kernel arguments corresponding to the product of
the first p+ 1 not conjugated signals and the kernel arguments corresponding to the product
of the second p conjugated signals, are not allowed.

The kernels can be arranged in vectors, e.g., the third order kernel with a one-tap memory
comprises six elements, h3 =

[
h[0, 0, 0], h[0, 0, 1], h[0, 1, 0], h[0, 1, 1], h[1, 1, 0], h[1, 1, 1]

]T , sym-
metries already taken into account. The parameter vector of a Volterra series of order 2P − 1,
containing only uneven components, can therefore be written as

θθθ = [hT1 ,h
T
3 , . . . ,h

T
2P−1]

T . (2.32)

A specific signal matrix H, associated with this parameter vector, is composed of sub-matrices
Xp, which are associated with the kernels hp,

H = [X1,X3, . . . ,X2P−1] . (2.33)

Here, e.g., the sub-matrix X3, considering a time window of M samples, is

X3 = [x3,n,x3,n−1, . . . ,x3,n−M ]T , (2.34)

whereby the vectors

x3,n =
[
x[n]

∣∣x[n]
∣∣2, x2[n]x∗[n− 1], . . . , x[n−N3 + 1]

∣∣x[n−N3 + 1]
∣∣2]T , (2.35)

N3 being the memory-length of the kernel, are used.
The output signal of a Volterra system of order 2P − 1, see (2.26), over the finite time-

horizon n, n− 1, . . . , n−M is thus
yn = Hθθθ (2.36)
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with yn =
[
y[n], . . . , y[n−M ]

]T .

Having available a set of measured output data dn =
[
d[n], d[n − 1], . . . , d[n −M ]

]T , the
parameters (kernels) of a specific Volterra model can be estimated with the least-squares
method:

θ̂θθ = (HHH)−1HHdn . (2.37)

2.2 The Wiener Model

The Wiener model used here is a series connection of a linear finite-impulse response (FIR)
filter and a static (memoryless) non-linearity f(·), see Fig. 2.2. It is not the general Wiener
model, resulting from a construction of orthogonal functionals (Wieners G-functionals) from
the Volterra functionals via a Gram-Schmidt procedure [4, pp. 199ff.]. The general Wiener
model has the advantage to incorporate a larger class of nonlinear systems than a Volterra
series, but is not less complex (in terms of numbers of parameters) as the Volterra series. The
simple Wiener model [44] used here requires substantially fewer parameters compared to a
Volterra model and achieves good modelling results, see Section 2.6.

As in the case of the Volterra model, at the output of the power amplifier a zonal filter
selects the spectral zone around the carrier frequency. The linear filter in the Wiener model is
assumed to be an FIR filter G(q−1) =

∑N−1
i=0 giq

−i, the nonlinear function is represented via a
series as in (2.31). Hence, the discrete-time input/output representation of the Wiener model
is

y[n] = G
(
x[n]

) P−1∑
p=0

θ2p+1 φ2p

(∣∣∣G(x[n]
)∣∣∣) . (2.38)

In contrast to the Volterra series (and the static nonlinear function represented by a series)
the Wiener model is not linear with respect to the parameters {gi}N−1

i=0 of the linear filter, it
is only linear with respect to the parameters of the static non-linearity {θp}P−1

p=0 .

G f(·)- - -x[n] y[n]

Figure 2.2: The Wiener model.

Further insight can be gained in the frequency domain. For this, the static non-linearity
is represented using a power series. In continuous time, the input/output relation reads

y(t) =
P−1∑
p=0

θ2p+1G
(
x(t)

)∣∣∣G(x(t))∣∣∣2p . (2.39)

Exemplarily, the third order part is considered,

y(3)(t1, t2, t3) = θ3G
(
x(t1)

)
G
(
x(t2)

)
G∗
(
x(t3)

)
. (2.40)
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Fourier transform yields

Y(3)(f1, f2, f3) = θ3G(f1)X(f1)G(f2)X(f2)G∗(−f3)X∗(−f3)
= θ3H(f1, f2, f3)X(f1)X(f2)X∗(−f3)
= θ3Z(f1)Z(f2)Z∗(−f3) , (2.41)

with Z(f) = G(f)X(f). The Volterra kernel in the frequency domain is H(f1, f2, f3) =
θ3G(f1)G(f2)G∗(−f3). Again, X(f) is considered exactly bandlimited in I = [−B,B]. There-
fore, Y (f1, f2, f3) is exactly bandlimited in the 3-dimensional cube C = I × I × I. Inverse
Fourier transform yields

y(t) = y(3)(t, t, t) = θ3

∫∫∫
Z(f − ν1)Z(ν1 − ν2)Z∗(−ν2)dν1dν2e

2πftdf , (2.42)

where Y (f) can be recognised to be

Y (f) = θ3

∫∫
Z(f − ν1)Z(ν1 − ν2)Z∗(−ν2)dν1dν2 = θ3Z(f) ∗ Z(f) ∗ Z∗(−f) , (2.43)

a twofold convolution of Z(f) = H(f)X(f) with itself, producing the spectral broadening,
Y (f) ∈ [−3B, 3B]. Via the convolution, the spectrum Y(3)(f1, f2, f3) ∈ C is mapped into
Y (f) ∈ [−3B, 3B].

Again, as in the case of a Volterra system, for system identification input rate sampling
at the output of the Wiener system suffices, i.e., even if the signal is spread in the frequency
domain during the passage through the nonlinear system, no larger sampling rate at the output
is required.

2.2.1 Parameter Estimation for the Wiener Model

The Wiener model is partially linear-in-parameters – the parameters of the static non-linearity
{θp} – and partially nonlinear-in-parameters – the parameters of the linear filter G. Parame-
ter estimation using the conventional least-squares approach is therefore not applicable in a
straightforward manner. For the parameter estimation with the measured and simulated data
the following simple heuristic method is proposed:

1. First, the measured or simulated input/output data is fitted to a purely linear model
using the least squares method:

ĝ =
(
HH
g Hg

)−1HH
g dn , (2.44)

with the estimated parameter vector ĝ = [ĝ0, ĝ1, . . . , ĝN−1]T , the input-signal matrix

Hg =


x[n] x[n− 1] · · · x[n−N + 1]

x[n− 1] x[n− 2] . . . x[n−N ]
...

...
. . .

...
x[n−M ] x[n−M − 1] · · · x[n−M −N + 1]

 , (2.45)

and dn =
[
d[n], d[n − 1], . . . , d[n − M ]

]T , which is the measured output signal. The
nonlinear distortions act here as an additional disturbance.
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2. After the estimation of the parameters of the linear filter, the input signal is passed
through this estimated linear filter, producing the input signal for the estimation of the
static nonlinear filter

ẑ[n] = Ĝ
(
x[n]

)
. (2.46)

3. Using this signal, the parameters of the nonlinear filter are estimated with the least
squares technique

θ̂θθ =
(
HH
θ Hθ

)−1HH
θ dn , (2.47)

with the estimated parameter vector θ̂θθ =
[
θ̂1, θ̂3, . . . , θ̂2P−1

]T , the signal matrix

Hθ =


ẑ[n]φ0

(
|ẑ[n]|

)
· · · ẑ[n]φ2(P−1)

(
|ẑ[n]|

)
ẑ[n− 1]φ0

(
|ẑ[n− 1]|

)
. . . ẑ[n− 1]φ2(P−1)

(
|ẑ[n− 1]|

)
...

. . .
...

ẑ[n−M ]φ0

(
|ẑ[n−M ]|

)
· · · ẑ[n−M ]φ2(P−1)

(
|ẑ[n−M ]|

)
 , (2.48)

and dn =
[
d[n], d[n− 1], . . . , d[n−M ]

]T , which is again the measured output signal. In
this last step a new data set is used, meaning that the input/output signals are not the
same as those used in the estimation of the linear filter parameters.

If, e.g., φ2p(x) = x2p,

y[n] = θ1G
(
x[n]

)
+ G

(
x[n]

) P−1∑
p=1

θ2p+1

∣∣∣G(x[n]
)∣∣∣2p︸ ︷︷ ︸

nonlinear distortion

(2.49)

the nonlinear parts can be seen as a disturbance term for the estimation of the parameters of
the linear filter. If the nonlinear disturbances are not too strong, which is the case for weakly
nonlinear systems, the estimation of the parameters of the linear filter is accurate.

2.3 The Hammerstein Model

The Hammerstein model [44] investigated here is a static non-linearity f(·), followed by a
linear FIR filter, see. Fig. 2.3. Also here, a zonal filter selects the spectral zone around the
carrier frequency at the output of the power amplifier.

Gf(·)- - -x[n] y[n]

Figure 2.3: The Hammerstein model.

If the nonlinear function f(·) is represented by a series, the input/output representation
reads

y[n] = G

x[n]
P−1∑
p=0

θ2p+1 φ2p

(∣∣x[n]
∣∣) , (2.50)
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with the linear filter G(q−1) =
∑N−1

i=0 giq
−i. Similar as in the case of the Wiener model,

the description is linear in a part of the parameters (the parameters of the linear filter), but
nonlinear in the parameters of the static nonlinear function.

As in the case of the Wiener model, the continuous-time representation

y(t) = G

P−1∑
p=0

θ2p+1x(t)
∣∣x(t)∣∣2p

 = G
(
z(t)

)
(2.51)

is transformed into frequency domain

Y (f) = G(f)Z(f) , (2.52)

where, again only for the third-order term,

Z(f) = θ3X(f) ∗X(f) ∗X∗(−f) . (2.53)

Here, Z(f) ∈ [−3B, 3B], G(f) extends in general also over [−3B, 3B], in contrast to the
Wiener model, where the linear filter G(f) can be considered bandlimited in [−B,B].

2.3.1 Parameter Estimation for the Hammerstein Model

Similar as in the case of the Wiener model also the Hammerstein model is linear in part of
the parameters – the parameters of the linear filter – and nonlinear in the parameters of the
static nonlinear filter. A similar two-step estimation procedure is adopted also here:

1. The parameters of the static nonlinear filter are estimated first using the least squares
method,

θ̂θθ =
(
HH
θ Hθ

)−1HH
θ dn , (2.54)

whereby

Hθ =


φ0

(
|x[n]|

)
· · · φ2(P−1)

(
|x[n]|

)
φ0

(
|x[n− 1]|

)
. . . φ2(P−1)

(
|x[n− 1]|

)
...

. . .
...

φ0

(
|x[n−M ]|

)
· · · φ2(P−1)

(
|x[n−M ]|

)
 , (2.55)

θ̂θθ = [θ̂1, . . . , θ̂2P−1]T is the estimated parameter vector and dn =
[
d[n], . . . , d[n −M ]

]T
is the measured output signal.

2. The input signal is then passed through the estimated nonlinear filter producing the new
signal

ẑ[n] = f
(
θ̂θθ, x[n]

)
. (2.56)

3. Using this signal as the input signal for the linear filter, the parameters of the linear
filter are estimated, again using the least squares technique

ĝ =
(
HH
g Hg

)−1HH
g dn , (2.57)

with the estimated parameter vector ĝ = [ĝ0, ĝ1, . . . , ĝN−1]T , the input-signal matrix

Hg =


ẑ[n] ẑ[n− 1] · · · ẑ[n−N + 1]

ẑ[n− 1] ẑ[n− 2] . . . ẑ[n−N ]
...

...
. . .

...
ẑ[n−M ] ẑ[n−M − 1] · · · ẑ[n−M −N + 1]

 , (2.58)
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and dn =
[
d[n], d[n − 1], . . . , d[n −M ]

]T , which is the measured output signal. Also
here, a new set the input and measured output data is used for the second step of the
parameter estimation.

Equivalently as in the case of the Wiener model, the estimation of the first set of parameters
(the parameters of the non-linearity) is not accurate due to the linear filter after that block.
From

y[n] =
P−1∑
p=0

θ2p+1G
(
x[n]

∣∣x[n]
∣∣2p) = (2.59)

g0

P−1∑
p=0

θ2p+1x[n]
∣∣x[n]

∣∣2p + g1

P−1∑
p=0

θ2p+1x[n− 1]
∣∣x[n− 1]

∣∣2p + . . .︸ ︷︷ ︸
memory effects

(2.60)

can be seen that the estimation of the parameters {θp} would be accurate if no dynamic part
would exist, g1 = g2 = . . . = gM = 0. Since the memory lengths of the power amplifiers simu-
lated and measured are not very long (|g0| is large compared to |g1|, |g2|, . . ., see Section 2.6),
the estimation of the parameters {θp} is not disturbed exceedingly.

2.4 The Saleh Model

A simple static power amplifier model requiring only four parameters is the Saleh model [9].
Originally, it is used to model traveling-wave tube amplifiers but it is often used to model solid-
state power amplifiers, too. Both, amplitude distortions and phase distortions are modelled
with simple two-parameter formulas.

If the (real-valued bandpass) input signal of the power amplifier is

x̃(t) = <
{
x(t)ej2πf0t

}
= r(t) cos

(
2πf0t+ ψ(t)

)
(2.61)

with x(t) = r(t)ejψ(t) describing the equivalent low-pass signal, r(t) being the amplitude and
ψ(t) being the phase of the this signal, the output signal of the power amplifier is modelled as

ỹ(t) = A
[
r(t)

]
cos
(
2πf0t+ ψ(t) + Φ

[
r(t)

])
(2.62)

with the nonlinear functions

A(r) =
αar

1 + βar2
and (2.63)

Φ(r) =
αφr

2

1 + βφr2
. (2.64)

If r is very large, A(r) is proportional to 1/r and Φ(r) approaches a constant. The function A(r)
describes the conversion of the input amplitude to the output amplitude (AM-AM conversion),
whereas the function Φ(r) describes the influence of the input amplitude on the output phase
(AM-PM conversion).
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2.4.1 Parameter Estimation for the Saleh Model

The equations (2.63) and (2.64) are reorganised for the estimation of the parameters αa, βa, αφ
and βφ:

r[n]
A[n]

=
1
αa

+
βa
αa
r2[n] (2.65)

r2[n]
Φ[n]

=
1
αφ

+
βφ
αφ
r2[n] . (2.66)

Here, A[n] = A(r[n]) and Φ[n] = Φ(r[n]) are the measured output amplitude and phase-
difference, r[n] is the amplitude of the input signal. The so transformed model allows to
apply the standard least-squares technique for estimating the parameters, summarised in the
parameter-vectors θθθa =

[
1
αa
, βa

αa

]T and θθθφ =
[

1
αφ
,
αφ

βφ

]T :

θ̂θθa =
(
HH
a Ha

)−1HH
a wa , (2.67)

θ̂θθφ =
(
HH
φ Hφ

)−1HH
φ wφ , (2.68)

where

Ha = Hφ =


1 r2[n]
1 r2[n− 1]
...

...
1 r2[n−N + 1]

 (2.69)

and

wa =
[
r[n]
A[n]

,
r[n− 1]
A[n− 1]

, . . . ,
r[n−N + 1]
A[n−N + 1]

]T
(2.70)

wφ =
[
r2[n]
Φ[n]

,
r2[n− 1]
Φ[n− 1]

, . . . ,
r2[n−N + 1]
Φ[n−N + 1]

]T
. (2.71)

Once θ̂θθa and θ̂θθφ are computed, α̂a = 1

θ̂θθa(1)
, β̂a = θ̂θθa(2)

θ̂θθa(1)
, α̂φ = 1

θ̂θθφ(1)
, and β̂φ = θ̂θθφ(1)

θ̂θθφ(2)
can easily

be computed.

2.5 Model-Structure Selection and Model Validation

So far, different kinds of nonlinear models with various complexity have been introduced. The
Volterra model is the most powerful model and comprises a large class of nonlinear dynamic
systems. Wiener-and Hammerstein models are special cases of the Volterra series, as well as
the static nonlinearities – the power series and Saleh’s model. The models can be related to
each other in terms of the size of the model class M : The model class contains all models of a
particular class, e.g., the class (set) MVolterra embraces all models which can be expressed as
a Volterra series, a particular model out of that class is determined by the parameter-vector
θθθ of a certain dimension dM (θθθ) = dimθθθ, which is a measure of the model-complexity. The
described models can be ordered according to

MSaleh ⊂ MPower series ⊂ MWiener,MHammerstein ⊂ MVolterra . (2.72)
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The aim is to describe the input/output behaviour of the power amplifier with a sufficiently
powerful model with the smallest dimension (dM (θθθ)) possible. The evaluation criterion of
choice for a particular model m = M (θθθ) is the mean squared-error between system output
d[n] and model output ym[n]

J(m) =
1
N

N∑
n=1

∣∣d[n]− ym[n]
∣∣2 =

1
N

N∑
n=1

∣∣em[n]
∣∣2 , (2.73)

where an observation interval of length N samples is chosen and system and model are excited
with the same signal. The least-squares parameter estimation minimises this measure – but
care has to be taken with respect to the number of parameters: using more parameters, the
error will decrease monotonically. Unnecessary parameters will adjust themselves to the par-
ticular realisation of the noise (e.g., measurement noise). This is known as overfit – parameters
which are adjusted to the specific noise realisation do not reflect features of the system and
are thus useless.

2.5.1 Model-Structure Selection

Two standard criteria (tailored for least-squares parameter estimation and modifying the
squared-error J(m)) for determining the model structure, i.e., the dimension of the model-
parameter vector θθθ of a model in a particular model class M , are of the form [44]

W (m) = J(m)(1 + U(m)) , (2.74)

where W (m) is a modified least-squares error. The function U(m) measures the dimension of
the model structure and can be interpreted as a penalty-term. In Akaike’s “Final Prediction-
Error Criteria (FPE)” [56], the complexity-penalty is defined as

UFPE(m) =
2
N

dimθθθ , (2.75)

whereas in Rissanen’s “Minimum Description Length Criteria (MDL)” [57], the data length is
also taken into account

UMDL(m) =
ln(N)
N

dimθθθ . (2.76)

This form of the penalty-term is obtained by requiring to achieve the shortest possible descrip-
tion of the observed data.

2.5.2 Model Validation

It is obvious that the derived model is capable of reproducing the data which has been used
for the estimation. In order to test the model and being able to compare with other models,
the models must be tested with different data sets – the validation data [44]. Comparing
two different models m1 and m2 consists thus of computing J(m1) and J(m2), cf. (2.73),
with a data set which is different from the data set used for the parameter estimation. The
model which yields a better performance (smaller mean-squared error) and which complexity
is reasonable for implementation, is favoured. The models are thus cross-validated against
each other in terms of modelling capability and complexity. The comparison does not use any
assumptions about the true system or other probabilistic arguments. The disadvantage of this
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method is the extra complexity of collecting and storing new data from the system, as well as
evaluating the performance measure.

This approach is adopted in the following Section 2.6, where the validation data is different
from the estimation data.

2.6 Modelling Measured and Simulated Power Amplifiers

In this section power amplifiers are modelled with the presented black-box models. The mod-
elling is based on measurements from which input and output data is gathered. One set of
data is generated using a commercially and widely used simulation tool – Advanced Design
System (ADS) [46] – which generates the data from a circuit-based analogue power amplifier
model, supplied by the manufacturer of the specific power amplifier. This is mainly included
for comparison, a realistic measurement setup, although limited in the accuracy and the per-
formance by the measurement equipment, is mandatory for obtaining the correct picture of
reality.

For a first (qualitative) insight Fig. 2.4 shows the measured spectra of the input and output
signal of a power amplifier (Mini-Circuits, ZVE-8G [58]). The power amplifier is excited with a
multi-tone signal with a large number of tones. The crest-factor of the discrete-time multi-tone
input signal x[n] before digital-to-analogue conversion, defined as

CF(x) [dB] = 20 log

(∥∥x[n]
∥∥
∞∥∥x[n]
∥∥

2

)
, (2.77)

is approx. 5,4 dB. Here, the norms for a (discrete-time) periodic signal with period N are
defined [59] as ∥∥x[n]

∥∥
∞ , sup

n

∣∣x[n]
∣∣ (2.78)

∥∥x[n]
∥∥

2
,

√√√√ 1
N

N−1∑
n=0

∣∣x[n]
∣∣2 . (2.79)

The bandwidth of the input signal is 5 MHz.
Spectral regrowth due to the non-linearity of the amplifier can be observed. The distance

between the in-band spectral density and the out-of-band spectral density is in this case only
approx. 20 dB. This cannot be tolerated in a technical application since neighbouring frequency
bands are disturbed excessively. On the other hand, reducing the input power (often called
input back-off – IBO), which gives rise to a more linear behaviour of the power amplifier,
reduces the amplifier efficiency and is thus not a very economic solution.

Fig. 2.5(a) shows the magnitude of the measured output signal vs. the magnitude of the
input signal, here referred to as the AM-AM conversion. The saturation behaviour can easily
be recognised. Dispersive effects, which produce the broadening of the curve, are noticed.
At this early point it has to be emphasised that in all cases where measurements on power
amplifiers have been carried out, dispersive effects have very short time constants – two to
three taps (e.g., in the linear filter of the Wiener model) or Volterra kernels of length two to
three are in all cases adequate to model this effect. With a sampling rate of 100MHz, two
taps correspond to a memory of only 20 ns – this has to be compared with a chip-duration in
WCDMA of approx. 260 ns, which yields a memory of only 7% of a chip. If approximated
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Figure 2.4: Measured spectra of a commercial power amplifier (Mini-Circuits ZVE-8G) –
fs = 100MHz

by a linear system, the investigated amplifiers can be seen as spectrally flat (near constant
amplitude response with a linear phase response), producing not significant dispersive effects.
Other settings, e.g., by increasing the signal bandwidth significantly, are expected to enforce
the usage of more taps in a Wiener model or longer kernels in a Volterra model.

Fig. 2.5(b) shows the effect of the amplitude of the input signal on the phase of the
output signal, here referred to as the AM-PM conversion. The ordinate shows the difference
of the phase of the output signal φd[n] = arg

(
d[n]

)
and the phase of the input signal φx[n] =

arg
(
x[n]

)
, ∆φ[n] = φd[n] − φx[n], as a function of the input amplitude. Besides the memory

effects, (which can be modelled with very short kernels) no significant dependence of the phase
from the magnitude of the input signal can be observed.

2.6.1 Black-Box Modelling of Three Microwave Power Amplifiers

Three microwave power amplifiers are modelled using the presented models. A single stage
medium-power amplifier and a high-power amplifier with three stages are modelled based on
measured input/output data. The high-power amplifier is an LDMOS6 EDGE7 amplifier.
The maximum output power of the high-power amplifier is approx. 80 W in continuous wave
operation (single carrier). The modelled single-stage amplifier is a medium-power amplifier
(Mini-Circuits ZVE-8G, see [58]) with a maximum output power of only 1 W.

6LDMOS stands for Laterally Diffused Metal on Silicon (LDMOS) Field Effect Transistors (FET), a tech-
nology that is used for high-gain and high-linearity power amplifiers.

7EDGE (or Enhanced Data Rates for Global Evolution) is a 3G technology that delivers broadband-like data
speeds to mobile devices. On the physical layer, EDGE only introduces a new modulation technique (8PSK-
GMSK) and new channel coding that can be used to transmit both packet-switched and circuit-switched voice
and data services.
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Figure 2.5: Measured AM-AM and AM-PM characteristic of a commercial power amplifier
(Mini-Circuits ZVE-8G)

Further, an LDMOS high power amplifier for application in WCDMA is modelled based
on input/output data generated by a simulation environment which uses a circuit-based model
of the amplifier.

The performance measure of the modelling is the mean-squared error (2.73), now nor-
malised with the mean power of the output data

Jr(m)[dB] = 10 log

(
J(m)

1
N

∑N
n=1

∣∣d[n]
∣∣2
)
, (2.80)

d[n] being the measured output signal and m denoting a certain model. For model-structure
selection, the penalised mean-squared error (2.74) with the two criteria (2.75) and (2.76), is
used.

Modelling a Three-Stage High-Power LDMOS EDGE Amplifier

Fig. 2.6 shows the measurement setup for gathering input/output data. The test-signal x[n] is
generated in the PC. It is a multi-tone signal with a bandwidth of 1 MHz and 101 equally spaced
tones of identical amplitude and with random phases. The complex digital baseband signal
is then converted to two analogue signals, the in-phase component xI(t) and the quadrature-
phase component xQ(t), using the Rohde&Schwarz [60] I/Q-Modulation Generator AMIQ.
The analogue signals are then used to modulate a carrier at 1,9 GHz using the Rohde&Schwarz
Vector Signal Generator SMIQ. A single-stage driver amplifier (Mini-Circuits ZHL-42W [58])
with a minimum gain of 30 dB boosts the signal to a sufficiently high power level for the
LDMOS-EDGE high-power amplifier. After attenuation, the output signal is down-converted
and demodulated with a PSA signal analyzer from Agilent Techn. [61] which delivers the
complex valued baseband output signal d[n] to the PC. The analysis bandwidth of the signal
analyzer is limited to 8MHz – therefore, with an input-signal bandwidth of 1 MHz, out-of-band
harmonics up to the seventh order can be observed. The sampling rate of the signal analyzer
is 10,24 MHz.

Tab. 2.1 shows the normalised mean-squared errors, defined in (2.80) and (2.74) for different
Volterra models of the power amplifier chain of Fig. 2.6. The penalised mean-squared error
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Figure 2.6: Measurement setup for input/output data generation

is normalised with the penalised mean-squared error of the model with the lowest complexity.
First, the order p is increased stepwise – the specification of the Volterra model is defined by
the vector mV = [N1, N3, N5, N7, N9], Np denoting the length of the kernel hp[n1, . . . , np] in
each dimension.

mV order Jr(m)[dB] Wr,FPE(m)[dB] Wr,MDL(m)
[1,1] 3 -33,04 0 0

[1,1,1] 5 -34,5 -1,85 -1,81
[1,1,1,1] 7 -35,07 -2,33 -2,26

[1,1,1,1,1] 9 -35,1 -2,34 -2,23

Table 2.1: Normalised mean-squared errors of static Volterra models – nonlinear order selection

From Tab. 2.1 it can be seen that a seventh order model is sufficient – however, the mean-
squared error does not increase significantly even if only a fifth order model is selected.

Now the length of the linear kernel is increased stepwise in the seventh order model. Again,
the penalised mean-squared errors are normalised with the lowest-complex model.

mV order Jr(m)[dB] Wr,FPE(m)[dB] Wr,MDL(m)
[1,1,1,1] 7 -35,07 0 0
[2,1,1,1] 7 -35,43 -0,54 -0,51
[3,1,1,1] 7 -35,45 -0,58 -0,51
[4,1,1,1] 7 -35,46 -0,58 -0,48

Table 2.2: Normalised mean-squared errors of Volterra models of order seven with memory
only in the linear kernel

From Tab. 2.2 it can be seen that two taps for the linear kernel are sufficient, adding more
taps reduces the error only marginally, if the memory-length is increased to four, WMDL begins
to increase, indicating an overfit. For the estimation of the length of the third-order kernel the
procedure is repeated, with the reference-model mV = [2, 1, 1, 1]. Adding only one tap is also
here enough. Adding taps in the higher-order kernels does not improve the estimation. The
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number of parameters increases drastically and the estimation becomes very sensitive due to
the ill-conditioned regression matrix.

mV order Jr[dB] Jr,Mag.[dB] Jr ,Phase[dB] num. of param.
Volterra - [2,2,1,1] 7 -35,7 -40,1 -41,3 10

Table 2.3: Normalised mean-squared errors of best Volterra model with memory in the linear
and third order kernel

In Tab. 2.3 the performance figures of the best Volterra model for this specific measurement
are reported.Here, the normalised mean-squared errors of the magnitude and phase

Jr ,Mag.[dB] = 20 log


∥∥∥∣∣y[n]

∣∣− ∣∣d[n]
∣∣∥∥∥

2∥∥d[n]
∥∥

2

 (2.81)

Jr ,Phase[dB] = 20 log


∥∥∥arg

(
y[n]

)
− arg

(
d[n]

)∥∥∥
2∥∥∥arg

(
d[n]

)∥∥∥
2

 (2.82)

are reported, too.
In Tab. 2.4 the modelling results of the other models (Wiener-, Hammerstein-, and Saleh-

model) are listed. The memory-lengths of the linear filters in the Wiener- and Hammerstein-
model are set to two taps. The order of the non-linearity, expressed as a Taylor-series, is seven.
If represented by an equivalent Volterra-series, all kernels (up to the seventh order) have a
two-tap memory.

m order Jr[dB] Jr,Mag.[dB] Jr ,Phase[dB] num. of param.
[2,2,1,1] 7 -35,7 -40,1 -41,3 10
Wiener 7 -35,6 -39,75 -41,9 6

Hammerstein 7 -35,6 -39,78 -42,1 6
Saleh - -25,9 -33,3 -31,5 4(real-valued)

Table 2.4: Comparison of different models with and without memory

The Wiener-and Hammerstein models achieve about equivalent modelling results than the
Volterra model using fewer parameters, the Wiener- and Hammerstein models being more
accurate modelling the phase response. The estimation is also more robust – the least-squares
matrices for Wiener-and Hammerstein systems (2.45), (2.48), (2.55), and (2.58) have condition
numbers which are much smaller (in the range of 10) than in the case of the Volterra model (up
to several hundred, depending on the model structure). The often used Saleh model (originally
derived for modelling travelling-wave tube amplifiers [9]) shows the worst modelling results.
Both, amplitude and phase show errors which are approx. 7-9 dB larger than the errors
achieved with a Volterra-, Wiener-, or Hammerstein model.

Fig. 2.7 shows the spectra of the measured output signal and the output signal of the
Wiener model with a two tap linear filter and a static non-linearity, modelled as a power series
of order seven. The relative error is the power spectrum of the error e[n] = d[n]−y[n], relative
to the power spectrum of the measured system output signal d[n]

Se(f) = 10 log
(
Sd(f)− Sy(f)

Sd(f)

)
in dB . (2.83)
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The in-band signal in the frequency band f/fs ∈ [−0, 048; 0, 048] and the signal in the fre-
quency bands f/fs ∈ [−0, 145;−0, 048] and f/fs ∈ [0, 048; 0, 145] are estimated accurately.
Outside this region the error increases and the estimation is rather poor – the signal power in
this region is more than 60 dB less than in the in-band zone which explains the poor estimation.
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Figure 2.7: Spectra of an LDMOS EDGE power amplifier modelled with a Wiener model with
a two tap linear filter and a seventh-order non-linearity – fs = 10, 24 MHz. The bandwidth of
the input signal is 1 MHz, the analysis bandwidth is 8 MHz.

Modelling a Single-Stage Medium-Power Amplifier

A single stage power amplifier with a maximum output power (1 dB compression point) of
30 dBm and a frequency range extending over 6 GHz from 2GHz-8 GHz (Mini-Circuits ZVE-
8G [58]) is modelled next. The measurement setup differs from that in Fig. 2.6 – the setup is
shown in Fig. 2.8. It uses a mixer-stage which up-converts a bandpass signal at 70 MHz, gener-
ated with a fast digital-to-analogue converter (DAC) (SUNDANCEr SMT370-module [62]), to
the ISM8-band at 2,45 GHz. The down-converter converts the signal at 2,45 GHz to a bandpass
signal at 70MHz [63]. This signal is sampled with an analogue-to-digital converter (ADC) with
sampling frequency of 100MHz and a resolution of 14 bit (SUNDANCEr SMT370-module),
producing a digital bandpass signal at 30 MHz. The signal is then stored in a fast memory-
module (MEM) (SUNDANCEr SMT351-G-module [62]). The bandwidth of the analogue
stages is approx. 20MHz. The bandwidth of the input signal is 5 MHz, again it is a multi-tone
signal with 101 tones, equally spaced and with random phases. The crest-factor is 5,4 dB.

8The industrial, scientific, and medical (ISM) radio bands (900MHz, 2,4 GHz, 5,2 GHz) were originally
reserved internationally for non-commercial use of RF electromagnetic fields for industrial, scientific and medical
purposes. In recent years they have also been used for license-free error-tolerant communications applications
such as wireless LANs and Bluetooth.
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The variable attenuator between the driver power amplifier and the medium-power amplifier
is used to control the saturation level of the following power amplifier.
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Figure 2.8: Measurement setup for input/output data generation

Tab. 2.5 shows the achieved minimal errors for different models for the Mini-Circuits
medium-power amplifier ZVE-8G. The achieved errors are in general not as low as in the
previous measurements – no high-level and highly accurate measurement equipment has been
used. The parameter extraction is affected by the dynamic limitations of the equipment.

m Jr[dB] Jr,Mag.[dB] Jr ,Phase[dB] num. of param.
Volterra - [2,1] -22,1 -36,6 -27,1 3

Wiener -19,5 -37,2 -24,9 4
Hammerstein -19,6 -38,5 -24,8 4

Table 2.5: Comparison of different models with memory for the Mini-Circuits medium-power
amplifier ZVE-8G

Here, the Volterra model, which is also the model with the lowest complexity, seems to be
the best choice. Again, low complex models such as Wiener-or Hammerstein models, both with
a two-taps linear filter and a third order power series, model the system behaviour also quite
well, if compared with the general Volterra model. Memory effects are also in this case not
very pronounced – due to the large frequency range of the power amplifier of 6GHz compared
with an excitation with a multi-tone signal with a bandwidth of only 5 MHz, this has to be
expected. The AM-AM conversion is modelled accurately – very small errors are achieved.
The AM-PM conversion is not predicted very accurately.

Fig. 2.9 shows the spectra of the system output, the model output and the relative er-
ror (2.83). The model in the figure is the Volterra model of Tab. 2.5. The model-quality
degrades with increasing distance to the centre-frequency – the limited dynamic range of the
equipment limits the resolution of the gathered system output-data and thus the achievable
model quality.
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Figure 2.9: Spectra of the modelled Mini-Circuits medium-power amplifier using a third-
order Volterra model. The linear kernel has two taps, the third-order kernel is memoryless
(fs = 100MHz, bandwidth of the input signal is 5 MHz, the analysis bandwidth is 20 MHz).

Modelling a Simulated WCDMA Power Amplifier

A Motorola LDMOS high power amplifier (MRF21125) for application in WCDMA is consid-
ered next. The input/output data is obtained by a simulation environment (ADS2003C [46]),
which uses an equivalent-circuit based model for this power amplifier and a WCDMA input
signal. Using a simulation tool for the generation of input/output data is useful to gain insight
in the capabilities of the different models. Detrimental effects with negative influence on the
modelling, such as measurement noise, are excluded. At the other hand, using only simulated
data for the modelling can lead to a very simplistic perception of reality where non-perfect
equipment has to be used.

Tab. 2.6 shows a comparison of the best models found for this data. The model structure is
selected based on Rissanen’s MDL-criterion (2.76). First, the nonlinear order is estimated by
increasing the order of a static Volterra model step-by-step. A fifth-order model is found to be
sufficient – a further increase of the model-order does not improve the estimation significantly.
Then, the lengths of the kernels are increased step-by-step, observing the achieved errors (2.74)
and (2.76). A length of two taps for all kernels is optimal.

The Wiener- and Hammerstein models both have a two-tap linear filter with a static non-
linearity (Taylor series) of order five. It has to be noted that the estimation of the Volterra
model and Hammerstein model is very sensitive due to the ill-conditioned matrices (2.33)
and (2.55) – in the case of the Volterra model the condition number is larger than 8.000, in
the case of the Hammerstein model the condition number of the matrix Hθθθ is in the range
of 6.000. For the Wiener model, the condition numbers of the matrices (2.45) and (2.48)
are significantly smaller – in the range of 40 – which makes the estimation more robust and
indicates also a good match between model and system.
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m Jr[dB] Jr,Mag.[dB] Jr ,Phase[dB] num. of param.
[2,2,2] -53,5 -61,7 -57,1 20
Wiener -53,5 -59,1 -56,7 5

Hammerstein -53,4 -59,5 -54,4 5
Saleh -17,3 -42,9 -22,1 4(real-valued)

Table 2.6: Comparison of different models for input/output data obtained with an ADS sim-
ulation of a Motorola LDMOS high-power amplifier

Fig. 2.10 shows the power spectra of the output signal of the “system” (simulation) and
the Wiener model. The sampling rate is the eight-fold chip rate of 3,84 MHz which gives
30,72MHz. The signals are normalised with the maximum value of the magnitude of the
system output. The in-band signal is modelled very accurately, the accuracy of the modelling
of the out-of-band components decreases with increasing distance to the in-band, recognised
in the increase of the relative error, see (2.83) – most of the energy is in the in-band region,
allowing therefore a very accurate modelling.
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Figure 2.10: Spectra of a simulated Motorola power amplifier and the Wiener model – fs =
8 · 3, 84 MHz = 30, 72 MHz

In Fig. 2.11 the modelling results regarding the AM-AM and AM-PM conversion is graph-
ically shown. The accuracy of the obtained model can be recognised immediately.

2.7 Discussion

Modelling of the different power amplifiers, using measured and simulated data, where the
measurements are performed under different side-constraints – using a calibrated high-level
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Figure 2.11: Modelled AM-AM and AM-PM characteristics of a Motorola LDMOS power
amplifier

measurement equipment in Section 2.6.1 and a non-perfect in-house [63] build up- and down-
conversion stage, together with a broadband sampling system – showed that

➾ relatively low-order non-linearities (up to order seven) are sufficient,

➾ the memory effects are concentrated – kernels with two to three taps are sufficient,

➾ low-complex models, such as Wiener-and Hammerstein models, are adequate for all
amplifiers, Volterra models do not yield significantly better results.

The necessary degree of the non-linearity depends on the saturation level of the power
amplifier. Driving the amplifier in deep saturation may be efficient in terms of power-added
efficiency, but the gain of the linearisation, compared to a simple input back-off, decreases,
see Chapter 4 for more details. It is therefore not reasonable to use amplifiers driven in deep
saturation, which would require a higher degree of non-linearity in the models.

In the considered cases the memory effects are not very pronounced – using other power
amplifiers could enforce longer kernels in the models and the usage of more complex Volterra
models. The memory effects are naturally associated with the signal bandwidth – in the
performed measurements the bandwidth of the equipment imposes limits. With very high
bandwidths, e.g., multiple-channel arrangements in WCDMA or the WLAN standard 802.11n
with signal bandwidths up to 40 MHz, memory effects are expected to become important.



Chapter 3

Adaptive Identification

In this chapter low complex stochastic-gradient algorithms for the adaptive identification of the
parameters of the Volterra and Wiener models presented in Chapter 2 are developed. A deter-
ministic robustness analysis of an adaptive gradient algorithm for the parameter identification
of a Volterra system and Wiener system is presented. The Wiener model requires significantly
less parameters than a general Volterra model and is thus very attractive. The main disad-
vantage of this model consists of the fact that the description is nonlinear with respect to a
part of the model-parameters, namely the linear filter parameter. The consequence is that a
quadratic cost-function, which is minimised by the adaptive algorithm during the search of the
optimal model-parameters, may be non-convex. This can result in a poor estimation quality if
the adaptive gradient algorithm locates only a local minimum of the cost-function. Whether
the algorithm finds only a local minimum or the global minimum of the cost-function depends
on the initial values for the parameters which are used to start the iterative search.

Here, a two step procedure for the identification of a Wiener system is proposed and an-
alysed in a deterministic context [15, 16]. A stochastic analysis of such an adaptive gradient
identification method for a Wiener system is in practice rarely possible. The signal charac-
teristics are most often not known and even if the signal characteristics are known, further
information regarding the system, especially some knowledge about the static nonlinear func-
tion, must be available. Even if all this is known, a very restrictive convergence analysis
giving only information about convergence-in-the mean assuming a small step-size can be per-
formed [64, 65]. The deterministic approach does not rely on such a-priori knowledge making
it a very general analysis approach. On the other hand, the drawback of this method is that
it provides only sufficient but not necessary conditions for convergence which may be very
conservative.

This chapter begins with a short introduction of the gradient identification algorithm. The
deterministic analysis method for stability is presented briefly for a general adaptive Volterra
filter which is linear-in-parameters. Following this introduction the gradient identification
method is applied for the identification of a Wiener system. Following an idea of [66], a two-
step procedure is proposed: First, an estimation of the parameters which enter nonlinearly in
the description, namely the parameters of the linear filter, based on a gradient identification,
is performed. A deterministic robustness analysis [13, 67] of this identification algorithm
is performed [16]. In the next step, an identification algorithm for the estimation of the
parameters of the static nonlinear output-filter is presented and analysed.

37
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3.1 The Stochastic-Gradient Algorithm

Stochastic-gradient algorithms are widely used as a tool for model-parameter identification.
Linear-in-parameter models lead to various variants, e.g., least-mean-squares (LMS) algorithm
and normalised LMS (NLMS) algorithm. All these algorithms are obtained from the steepest-
decent method by replacing the required gradient vectors with different approximations [68,
14]. By replacing these deterministic quantities by approximations, the update directions
become subject to stochastic fluctuations (gradient noise).

Using these approximations for the gradient there is no need to know the signal statistics
(e.g., first or second order moments) for the implementation of the algorithm. These sta-
tistical quantities are furthermore rarely available in practice. For a statistical convergence
analysis these quantities must be known. Consequently, if the signal statistics are not known
a stochastic analysis of these algorithms is not possible. A deterministic analysis requires far
less a-priori knowledge and is thus, at least in principle, often possible, see Section 3.1.1 and
Section 3.1.2 further ahead.

The stochastic gradient algorithms possess a learning mechanism which enables them to
estimate the required signal statistics. Further, stochastic-gradient algorithms are able to
track the signal statistics and thus system variations. They inherently possess a tracking
capability. Their learning and tracking capability, together with a low-complex and robust
implementation, make these algorithms very attractive for practical applications.

3.1.1 Stochastic-Gradient Identification for Linear-in-Parameter Models

Volterra models are linear-in-parameters. The input-output relation can be stated as an inner
vector product

y[n] = xnθθθ , (3.1)

where xn is the (row) input-signal vector

xn = [x1,n,x3,n, . . . ,x2P−1,n] , (3.2)

composed of all necessary parts corresponding to the specific Volterra model of nonlinear order
2P − 1, e.g.,

x1,n = [x[n], x[n− 1], . . . , x[n−N1 + 1]] (3.3)

x3,n =
[
x[n]

∣∣x[n]
∣∣2, x2[n]x∗[n− 1], . . . , x[n−N3 + 1]

∣∣x[n−N3 + 1]
∣∣2] . (3.4)

Here, x1,n denotes the signal-vector for the linear part and x3,n is the signal-vector for the
third-order part, N1 is the length of the linear kernel, N3 is the length of the third-order
kernel (assumed to be equal in all three dimensions), cf. also Section 2.1.5. The corresponding
filter-parameter (column-) vector comprises of

θθθ =
[
θθθT1 , θθθ

T
3 , . . . , θθθ

T
2P−1

]T
, (3.5)

with the linear and third order parts

θθθ1 =
[
h1[0], h1[1], . . . , h1[N1 − 1]

]T (3.6)

θθθ3 =
[
h3[0, 0, 0], h3[0, 0, 1], . . . , h3[N3 − 1, N3 − 1, N3 − 1]

]T
. (3.7)
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If the observed output-signal from the system is denoted by d[n], the optimal weight-vector
θθθW minimising the mean-squared error

J = E
{∣∣d[n]− xnθθθ

∣∣2} , (3.8)

where E{·} denotes the expectation operator, is the Wiener-solution, (cf., e.g., [14])

θθθW = R−1
xx rdx . (3.9)

Here,

Rxx = E
{
xHn xn

}
(3.10)

rdx = E
{
d[n]xHn

}
, (3.11)

Rxx is the auto-correlation matrix of the input signal and rdx is the cross-correlation vector
between the output sample d[n] and input signal-vector xn. The optimal weight vector results
in a minimum mean-square error

JW = σ2
d − rxdR−1

xx rdx (3.12)

with σ2
d = E

{∣∣d[n]
∣∣2}.

The difficulty is the computation of the correlation matrix Rxx, resp. the correlation vec-
tor rdx. Even if the statistics of the signals x[n] and d[n] are known, due to the complicated
structure of the signal-vector xn, which comprises various products, see, e.g., (3.4), the com-
putation of the expectation is in practice not feasible. Therefore, a direct solution (3.9) or a
steepest-decent approach, which does not require the inversion of the correlation matrix,

θθθi = θθθi−1 + µ [rdx −Rxxθθθi−1] , i ≥ 0 , θθθ−1 = initial guess (3.13)

with a (small) step-size µ are not feasible. Further, in practice the statistics of the signals and
thus the quantities Rxx and rdx tend to vary with time, e.g., due to a system change (in this
case the power amplifier). Therefore, the optimal model-parameters θθθW will also change. A
steepest-decent approach (3.13) or a direct solution (3.9) cannot track system changes.

Stochastic-gradient algorithms provide approximations to the steepest-decent method by
introducing approximations to the non-computable quantities Rxx and rdx. Further, these
algorithms possess a tracking capability which enables them to track signal and/or system
changes. The most popular and widely used algorithm is the least-mean-squares (LMS) algo-
rithm. Here, the deterministic quantities Rxx and rdx are approximated with the instantaneous
estimates

Rxx ≈ xHn xn (3.14)

rdx ≈ d[n]xHn (3.15)

resulting in the LMS-algorithm

θθθn = θθθn−1 + µ[n]xHn (d[n]− xnθθθn−1) , n ≥ 0 , θθθ−1 = initial guess . (3.16)

The iteration index i used in the steepest-descent method has been changed to the time index
n – with each new data sample d[n] and associated signal vector xn a new estimate for the
parameter-vector θθθ is formed by adding a specific correction term to the old estimate θθθn−1. The
fixed step-size µ has also been changed to a time-variant step-size µ[n]. Various selections for
the step-size exist, giving rise to several variants of the classical LMS-algorithm. In Tab. 3.1
the most common modifications for the step-size are listed, together with the name of the
algorithm.
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Algorithm step-size

LMS, constant step-size µ

LMS, time-variant step-size µ[n]

normalised LMS (NLMS) α/‖xn‖22
ε-NLMS α/

(
ε+ ‖xn‖22

)
a-posteriori form LMS α/

(
1 + α‖xn‖22

)
Table 3.1: List of common stochastic-gradient algorithms with corresponding step-sizes

Convergence Analysis – Error-Vector in the Mean

For a statistical convergence analysis the error-vector form of the stochastic-gradient algo-
rithm (3.16) is used,

θ̃θθn = θ̃θθn−1 − µ[n]xHn ẽa[n] , (3.17)

where θ̃θθn = θθθ∗ − θθθn denotes the parameter error-vector and

ẽa[n] = d[n]− xnθθθn−1 (3.18)

is the disturbed a-priori error. If a reference model is assumed so that

d[n] = xnθθθ∗ + v[n] , (3.19)

v[n] denoting zero-mean white noise, independent from xn, the error-vector can be written as

θ̃θθn =
(
I− µ[n]xHn xn

)
θ̃θθn−1 − µ[n]xHn v[n] . (3.20)

Taking the expectation on both sides (assuming further statistical independence of xn and
θ̃θθn−1) gives

E
{
θ̃θθn

}
=
(
I− µ[n]Rxx

)
E
{
θ̃θθn−1

}
. (3.21)

The necessary condition for convergence in the mean is (as in the case of the steepest-descent
method)

0 < µ[n] <
2

λmax
, (3.22)

where λmax = max
(
λ(Rxx)

)
, λ(Rxx) denoting the spectrum of the correlation-matrix Rxx. It

is necessary to have knowledge of the signal statistic, especially the high-order moments of
the input-signal x[n] are required. In contrast to the linear filter case, even for a convergence
analysis considering only the mean of the error-vector, moments of higher than second order
are required. As an example, (3.23) presents the correlation matrix for a very simple third
order Volterra filter mV = [N1, N3] with N1 = 2, corresponding to a two-tap linear part and
N3 = 1, corresponding to a memoryless third-order part,

Rxx =

 E
{
|x[n]|2

}
E
{
x∗[n]x[n− 1]

}
E
{
|x[n]|4

}
E
{
x[n]x∗[n− 1]

}
E
{
|x[n− 1]|2

}
E
{
x[n]x∗[n− 1]|x[n]|2

}
E
{
|x[n]|4

}
E
{
x∗[n]x[n− 1]|x[n]|2

}
E
{
|x[n]|6

}
 . (3.23)
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Moments up to the sixth-order are required. For a Volterra system of order P , moments up
to the order 2P are required for this convergence analysis. In most cases it is not feasible to
compute these moments. Thus, it is not possible to compute the upper bound for the step-size
as given in (3.22). Since in general no upper bound for the step-size can be computed, small
step-sizes are used in order to guarantee convergence.

Furthermore, the terms involving products of the input signal in the correlation matrix
have the negative effect to enlarge the eigenvalue spread of the correlation matrix significantly.
If, e.g., x[n] ∼ B(±1), i.e., x[n] takes on values +1 or −1 with equal probability, and the
process is white, the correlation matrix Rxx becomes simply

Rxx =

 1 0 1
0 1 0
1 0 1

 . (3.24)

This matrix is singular, thus having an eigenvalue spread which is infinity.
Since the convergence-speed is small if the eigenvalue spread is large, the convergence-

speed of nonlinear adaptive Volterra filters can in general be expected to be small compared
to adaptive linear filters.

Deterministic Robustness Analysis – Local Passivity

The difficulty in computing the high-order moments prevents a statistical analysis (convergence
in-the-mean, mean-square behaviour) of the stochastic-gradient algorithm (3.16) for Volterra
filters in most cases. A deterministic approach involving energy relations provides a method to
analyse whether the gradient-algorithm (3.16) is guaranteed to converge [13] to a final estimate
for the optimal parameter-vector θθθ∗ or not.

Rewriting the error-vector update-equation (3.17)

θ̃θθn = θ̃θθn−1 − µ[n]xHn (ea[n] + v[n]) (3.25)

with the undisturbed a-priori error ea[n] = xnθθθn−1 and taking the squared `2-norm on both
sides gives, after rearranging terms,

‖θ̃θθn‖22 − ‖θ̃θθn−1‖22 + µ[n]
∣∣ea[n]

∣∣2 − µ[n]
∣∣v[n]

∣∣2 = µ[n]
∣∣ea[n] + v[n]

∣∣2(µ[n]‖xn‖22 − 1
)
. (3.26)

Whether the right-hand side is positive, negative or zero depends on the quantity µ[n]‖xn‖22−1.
Compactly, the energy relation can be written as [13]

‖θ̃θθn‖22 + µ[n]
∣∣ea[n]

∣∣2
‖θ̃θθn−1‖22 + µ[n]

∣∣v[n]
∣∣2


< 1, if µ[n]‖xn‖22 < 1
= 1, if µ[n]‖xn‖22 = 1
> 1, if µ[n]‖xn‖22 > 1

. (3.27)

The first inequality guarantees that, no matter what the value of v[n] is and no matter how
far away the estimate θθθn−1 from the optimal value θθθ∗ is, it holds that

‖θ̃θθn‖22 + µ[n]
∣∣ea[n]

∣∣2 < ‖θ̃θθn−1‖22 + µ[n]
∣∣v[n]

∣∣2 . (3.28)

The map Tn, mapping the signals
{
θ̃θθn−1,

√
µ[n]v[n]

}
to the output signals

{
θ̃θθn,
√
µ[n]ea[n]

}
is therefore passive, i.e.,[

θ̃θθn√
µ[n]ea[n]

]
= Tn

[
θ̃θθn−1√
µ[n]v[n]

]
, with ‖Tn‖22 < 1 . (3.29)
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The step-size selection according to an NLMS and an ε-NLMS with α < 1 and the a-
posteriori LMS with α > 0, cf. Tab. 3.1, guarantees local stability since the step-sizes are
guaranteed to be smaller than the limit

µ̄[n] =
1

‖xn‖22
. (3.30)

Deterministic Robustness Analysis – Global Passivity

In the previous analysis, local passivity of the map Tn, i.e., from time-index n − 1 to n, was
guaranteed if µ[n] < µ̄[n]. For the stability-analysis over the finite time-horizon n = 0, . . . , N ,
the sum on both sides of (3.28) is performed

N∑
n=0

(
‖θ̃θθn‖22 + µ[n]

∣∣ea[n]
∣∣2) < N∑

n=0

(
‖θ̃θθn−1‖22 + µ[n]

∣∣v[n]
∣∣2) , (3.31)

resulting in

‖θ̃θθN‖22 +
N∑
n=0

µ[n]
∣∣ea[n]

∣∣2 ≤ ‖θ̃θθ−1‖22 +
N∑
n=0

µ[n]
∣∣v[n]

∣∣2 . (3.32)

If
µ[n]‖xn‖22 < 1 for 0 ≤ n ≤ N , (3.33)

the algorithm behaves also globally passive, i.e., the error-energy ‖θ̃θθN‖22 +
∑N

n=0 µ[n]
∣∣ea[n]

∣∣2,
comprising the final remaining distance from the optimal vector θθθ∗ and the accumulated sum
of the undisturbed a-priori errors is guaranteed to be smaller than the energy of the initial
weight-distance and the noise, ‖θ̃θθ−1‖22 +

∑N
n=0 µ[n]

∣∣v[n]
∣∣2.

Feedback Structure – Local and Global Passivity

Equation (3.25) can easily be transformed to

θ̃θθn = θ̃θθn−1 − µ̄[n]xHn (ea[n] + v̄[n]) (3.34)

with the abbreviation

v̄[n] =
µ[n]
µ̄[n]

v[n]−
(

1− µ[n]
µ̄[n]

)
ea[n] . (3.35)

Since now the step-size is µ̄[n], the forward map T̄n, mapping {θθθn−1,
√
µ̄[n]v̄[n]} to the output

signals {θθθn,
√
µ̄[n]ea[n]}, is lossless, ‖T̄n‖22 = 1. A feedback path exists, which produces the

modified noise signal v̄[n]. Together with the forward map, the system equations read[
θ̃θθn√

µ̄[n]ea[n]

]
= T̄n

[
θ̃θθn−1√
µ̄[n]v̄[n]

]
, with ‖T̄n‖22 = 1 (3.36)

√
µ̄[n]v̄[n] =

µ[n]
µ̄[n]

√
µ̄[n]v[n]−

(
1− µ[n]

µ̄[n]

)√
µ̄[n]ea[n] . (3.37)

This feedback-system is illustrated in Fig. 3.1.
For local stability it suffices that the magnitude of the gain of the feedback loop gFB, which

is
gFB = 1− µ[n]

µ̄[n]
, (3.38)
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Figure 3.1: Illustration of LMS filters feedback system based on (3.36), (3.37)

is smaller than one – the forward map is lossless (small gain theorem [69]). Therefore, local
stability can be assured if

0 < µ[n] < 2µ̄[n] , (3.39)

where the upper bound is now twice as large as the upper bound obtained in (3.33).
The global analysis for the finite time-horizon, see Appendix A.1, yields the bound for the

step-size
0 < µ[n] < 2µ̄[n] , n = 0, . . . , N . (3.40)

The mentioned algorithms in Tab. 3.1, especially the NLMS and ε-NLMS with α < 2, and the
a-posteriori LMS with α > 0, fulfill the requirement for a globally stable system.

With this deterministic analysis, requiring only the computation of the signal energies,
bounds for the step-sizes for stochastic-gradient algorithms for general Volterra systems can
be devised.

Example – Learning Behaviour of an Adaptive Volterra Filter

For illustration of the learning-behaviour of adaptive Volterra filters a third order Volterra
system is identified using the stochastic gradient algorithms listed in Tab. 3.1. The parameters
of the Volterra-system are θθθ∗ = [3, 3 + j2, 5; 0, 18 + j0, 12;−0, 5− j0, 3]T , the system is driven
with a multitone-signal. The system is only mildly nonlinear, the coefficient of the third-order
term being relatively small compared to the linear filter tap-weights. In order to work with
a realistic system, the parameters are taken from a least-squares estimation using the input-
and output signals of the simulated WCDMA high power amplifier, see Section 2.6.1. Fig. 3.2
shows the relative misadjustment of the gradient-algorithms from Tab. 3.1, averaged over 50
independent simulation runs,

m[n] = E

(
‖θ̃θθn‖22
‖θ̃θθ−1‖22

)
≈ 1

50

50∑
r=1

‖θ̃θθn(r)‖22
‖θ̃θθ−1‖22

, (3.41)

whereby r denotes the simulation run, θ̃θθ−1 = θθθ∗ − θθθ−1 is the initial error, where the starting-
guess θθθ−1 = 0 in all simulations. A small amount of noise, drawn from a zero-mean, white
gaussian process, is added to the output of the reference system, resulting in an SNR = 80 dB



44 CHAPTER 3. Adaptive Identification

at the output of the system. Tab. 3.2 gives an overview of the step-size parameters used for
each identification algorithm.

LMS NLMS ε-NLMS a-posteriori LMS
µ = 0, 5 α = 1 α = 1, ε = 10−4 α = 1

Table 3.2: Step-size parameters used in the simulation
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Figure 3.2: Learning curves for different stochastic-gradient algorithms identifying a third-
order Volterra-system.

NLMS, ε-NLMS, and a-posteriori LMS are guaranteed to be stable in the `2-sense, since
these algorithms never exceed the derived limits for the step-size (3.40). The LMS-algorithm
with the fixed step-size µ = 0, 5 converges, the upper limit 2µ̄[n] is exceeded during the
time-horizon n = 0, . . . , 3000 in very few cases. The convergence-rate is slow, even for this
minimal system with only three coefficients. The achieved minimal misadjustment is relatively
poor, with LMS and a-posteriori LMS approx. -50 dB can be achieved, the a-posteriori LMS
algorithm having the advantage that it is guaranteed to be stable, whereas the LMS algorithm
can become unstable, even if the step-size is very small. The NLMS algorithm as well as the ε-
NLMS algorithm result in a misadjustment of only -36 dB, 14 dB larger than the misadjustment
achieved with the a-posteriori LMS. The former two algorithms have larger step-sizes than the
a-posteriori LMS, resulting in a relatively high gradient-noise which is responsible for the poor
identification quality.

If the step-size is increased to µ[n] = 1, 5 the LMS-algorithm becomes unstable, as can be
seen from Fig. 3.3(a). Observation of µ̄[n] reveals that in relatively few cases during the whole
time-horizon the step-size limit 2µ̄[n] is exceeded. Fig. 3.3(b) shows the amount of the cases
where the limit is exceeded for every simulation run. Maximally in 10-11 % of the iterations in
some realisations the fixed step-size µ[n] = 1, 5 is larger than the limit 2µ̄[n]. In the mean this
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limit is exceeded in approx. 5-6 % of the iterations. The upper-limits for the step-size which
guarantee `2-stability are therefore relatively tight.
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Figure 3.3: Unstable LMS-algorithm if the step-size is increased to µ = 1, 5

3.1.2 Stochastic-Gradient Identification of a Wiener System

A Wiener system is an interconnection of a linear filter G(q−1) and a static non-linearity f(·),
see Fig. 3.4.

G(q−1) f(·)� � � +
�

v[n]

x[n]
z[n] y[n]

d[n]�

Figure 3.4: Wiener system

In this section the gradient identification of both parts of this system is investigated. The
input/output relation is

d[n] = f
(
G
(
x[n]

))
+ v[n] , (3.42)

where x[n] and d[n] are the input and output signals, respectively. It is a simple model of a
nonlinear power amplifier, experiencing both, nonlinear AM/AM and nonlinear AM/PM con-
version, as well as memory effects. The noise v[n] is added to account for model uncertainties
and measurement noise.

If the static nonlinear function is fixed and known, only the parameters of the linear filter
have to be identified. In this case the input/output description is in general nonlinear with
respect to the linear filter parameters. A gradient-type algorithm, minimising a quadratic
cost-function, may identify only a local minimum of the error-surface. Nevertheless, such
approaches occur frequently in applications, e.g., in the neural network context [68]. A deter-
ministic robustness analysis can be performed also in this case, see [67].
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If the static non-linearity is not known a-priori, a parametrisation of the static nonlinear
function is required, e.g., f(·) =

∑P−1
p=0 θp φp(·), using a set of basis functions {φp(·)}, e.g.,

orthogonal polynomials or simply powers φp (z[n]) = z[n]
∣∣z[n]

∣∣2p can be used. This power
series with only uneven powers is considered here, cf. also the discussion in Section 2.2.

The problem is that two sets of parameters, the linear filter parameters and the parameters
of the static nonlinear function, have to be identified. For the adaptive identification, a two
step procedure is applied:

1. In the first step, the parameters of the linear filter are estimated.

2. In the second step, the parameters of the static nonlinear function are identified.

The accuracy of the estimation of the linear filter parameters depends on the nonlinear func-
tion. The output of the Wiener system (without noise) is

y[n] =
P−1∑
p=0

θpG
(
x[n]

)∣∣∣G(x[n]
)∣∣∣2p = θ0G

(
x[n]

)︸ ︷︷ ︸
linear part

+ G
(
x[n]

) P−1∑
p=1

θp

∣∣∣G(x[n]
)∣∣∣2p︸ ︷︷ ︸

nonlinear part

, (3.43)

where G(q−1) =
∑N−1

i=0 giq
−i is the linear filter, here assumed to be an FIR structure. It can

be seen that the linear gain can be attributed exclusively to one of the two parts, either the
linear filter or the static non-linearity [70]. E.g., the linear filter can be constrained to be
monic (g0 = 1) by attributing the linear gain entirely to the linear part of the static nonlinear
function. Compactly, (3.43) can be written as

y[n] = θ0z[n] + z[n]
P−1∑
p=1

θp
∣∣z[n]

∣∣2p
︸ ︷︷ ︸
nonlinear distortion

, (3.44)

where z[n] = G
(
x[n]

)
, now G(·) being monic. The nonlinear part can be seen as an additive

disturbance term, which is small if the signal amplitude
∣∣z[n]

∣∣ is small. Consequently, a
method for the estimation of the linear filter parameters could be to excite the system with
a small signal amplitude and estimate the linear filter parameters only. The disadvantage of
this method is that the dynamic effects of the system are in general dependent of the signal
amplitude (e.g., due to heating effects). Further, it might not be possible to use a signal with
small amplitude for the estimation of the linear filter parameters.

First Step: Parameter Estimation for Linear Filter

In Fig. 3.5 the adaptive scheme for the identification of the linear filter parameters is shown [16],
following an idea from [66]. The nonlinear distortions produced by the static nonlinear function
at the output of the linear filter, see Fig. 3.4 and (3.43), are reduced by the parameterised
nonlinear function g(·). If the noise v[n] vanishes and the nonlinear function g(·) = f−1(·),
the nonlinear distortion is compensated completely and the problem reduces to the adaptive
identification of a linear filter. In the general case, the inverse f−1(·) is not known. The inverse
f−1(·) is therefore approximated using a truncated series

f−1(·) ≈ g(·) =
K∑
k=1

wkψk(·) , (3.45)
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Figure 3.5: Adaptive identification of the linear filter of a Wiener system

where {ψk(·)}Kk=1 is a set of basis functions. For adjusting the parameters of the linear filter
and the approximated inverse of the static non-linearity f(·), the error

ẽ[n] = G
(
x[n]

)
− g
(
d[n]

)
= zL[n]− zN [n] (3.46)

is used. Both signals, x[n] and d[n] are accessible for the identification. The quadratic objective
function

J [n] = E
{∣∣ẽ[n]

∣∣2} (3.47)

is defined. Since both parts, the linear filter G(·) and the nonlinear function g(·) are linear-in-
parameters, the objective function is convex with respect to both parameter sets. Therefore,
no local minima occur. Explicitly, the objective function is

J [n] = E
{∣∣zL[n]− zN [n]

∣∣2} = E
{
|xng −ψψψnw|2

}
. (3.48)

The parameters of the linear filter are subsumed in the (column-) vector g = [g0, g1, . . . , gN−1]T ,
the input signal for the linear filter is a row-vector xn =

[
x[n], x[n− 1], . . . , x[n−N + 1]

]
, the

parameters of the nonlinear map g(·) are subsumed in the column-vector w = [w1, w2, . . . , wK ]T

and the input signal for this map is ψψψn =
[
ψ1

(
d[n]

)
, ψ2

(
d[n]

)
, . . . , ψK

(
d[n]

)]
. The trivial

solution g = w = 0 has to be excluded. This can be achieved by assuming a monic linear
filter, therefore fixing g0 = 1. The linear gain is entirely attributed to the static non-linearity
f(·). Therefore, the error is

ẽ[n] = x[n] + x
′
ng

′ −ψψψnw , (3.49)

using the reduced vectors x
′
n =

[
x[n− 1], x[n− 2], . . . , x[n−N + 1]

]
and g

′
= [g1, . . . , gN−1]

T .
The optimal solution minimising (3.48) is

{g′∗,w∗} = arg min
g′ ,w

J [n] . (3.50)

A direct solution is not feasible since the required signal statistics are not known. Even if
the statistics of the input signal xn are known, the statistical properties of the output signal
d[n], required to determine the statistics of the signal ψψψn, cannot be known since the nonlinear
function f(·) is not known. Therefore, a stochastic-gradient algorithm is conceived which
approximates the optimal solution and does not require knowledge of the signal statistics.

Derivation of the objective function with respect to the parameter vectors g
′
and w and

simplification of the expectation leads to the following adaptive gradient-algorithm:

g
′
n = g

′
n−1 − µg[n]ẽa[n]x

′H
n , n ≥ 0 ,g

′
−1 given, (3.51)

wn = wn−1 + µw[n]ẽa[n]ψψψHn , n ≥ 0 ,w−1 given . (3.52)
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Here,
ẽa[n] = x[n] + x

′
ng

′
n−1 −ψψψnwn−1 (3.53)

is the disturbed a-priori error. Differently to the cases considered before, the disturbance v[n]
is indirectly contained in this error, i.e., via the signal ψψψn.

For the subsequent analysis, the update-equations are defined in the error-vector form.
With the optimal values for the parameter-vectors g

′
∗ and w∗, the parameter error-vectors

g̃
′
n = g

′
∗−g

′
n and w̃n = w∗−wn are defined. The update equations for the error-vectors read

g̃
′
n = g̃

′
n−1 + µg[n]ẽa[n]x

′H
n (3.54)

w̃n = w̃n−1 − µw[n]ẽa[n]ψψψHn . (3.55)

The update equations (3.54) and (3.55) are coupled via the disturbed a-priori error. The
task is to analyse the stability of the update equations and possibly device bounds for the step-
sizes µw[n] and µg[n] which guarantee a stable operation of the algorithm. In the following, a
deterministic convergence analysis providing bounds for the step-sizes is carried out.

Local Passivity Relations For the derivation of the local passivity relations the disturbed
a-priori error is decomposed into

ẽa[n] = ea,w[n]− ea,g[n] + ve[n] (3.56)

with ea,w[n] = ψψψnw̃n−1, ea,g[n] = x
′
ng̃

′
n−1, and ve[n] = vf [n] + vv[n], where

vf [n] = f−1
(
d[n]

)
−w∗ψψψn (3.57)

vv[n] = f−1
(
y[n]

)
− f−1

(
d[n]

)
(3.58)

are reflecting the errors due to the approximation of f−1(·) using g(·), see (3.45), and the
influence of the noise v[n]. Assuming that f−1(·) is analytic, it can be represented by a Taylor
series. Thus, (3.58) can be simplified to

vv[n] = f−1
(
y[n]

)
− f−1

(
y[n] + v[n]

)
= −∂yf−1

(
y[n]

)
v[n] + O

(
v[n]2

)
, (3.59)

which reveals that, assuming small disturbances, the noise vv[n] depends on the first derivative
of the inverse at the point y[n], ∂yf−1

(
y[n]

)
. Depending on this function the noise can be

amplified or attenuated. This disturbance term vanishes if the noise v[n] vanishes, in contrast
to the disturbance term vf [n].

The disturbed a-priori error can be written as

ẽa[n] = ea,w[n] + vw[n] = −
(
ea,g[n] + vg[n]

)
(3.60)

introducing the new noise terms

vw[n] = −ea,g[n] + ve[n] (3.61)
vg[n] = −ea,w[n]− ve[n] . (3.62)

The update equations in the error-vector form read now

g̃
′
n = g̃

′
n−1 − µg[n]

(
ea,g[n] + vg[n]

)
x
′H
n (3.63)

w̃n = w̃n−1 − µw[n]
(
ea,w[n] + vw[n]

)
ψψψHn . (3.64)
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The equations are coupled via the noise terms vg[n] and vw[n], which depend on the undis-
turbed a-priori errors ea,w[n] and ea,g[n], respectively, see (3.61) and (3.62). The local passivity
relations can now easily be devised, see Appendix A.2: If

0 < µg[n] <
1

‖x′n‖22
= µ̄g[n] (3.65)

0 < µw[n] <
1

‖ψψψn‖22
= µ̄w[n] , (3.66)

then

‖g̃′n‖22 + µg[n]
∣∣ea,g[n]

∣∣2
‖g̃′n−1‖22 + µg[n]

∣∣vg[n]
∣∣2 < 1 (3.67)

‖w̃n‖22 + µw[n]
∣∣ea,w[n]

∣∣2
‖w̃n−1‖22 + µw[n]

∣∣vw[n]
∣∣2 < 1 . (3.68)

Again, the two relations are coupled via the noise terms – the adaptation processes are not
independent. As long as the step-sizes are smaller than the limits µ̄g[n] and µ̄w[n], local
stability is guaranteed no matter how large the noise terms vg[n] and vw[n] are.

In each iteration step the error-energies, the `2-norm of the parameter error-vector and
the squared undisturbed a-priori error are guaranteed to remain smaller than the disturbance
energy, the `2-norm of the parameter error-vector at the previous iteration-step with the
squared noise terms. The noise terms contain the undisturbed a-priori errors of the respectively
other system, cf. (3.61) and (3.62). Therefore, no matter how large these errors are, the error-
energies remain bounded if the conditions (3.65) and (3.66) are satisfied.

Feedback Structure – Local Passivity For the derivation of the feedback structure and
the global stability analysis, the update equations in the error-vector form (3.54) and (3.55)
are combined by defining the following vectors

ϕϕϕn , [−x
′
n,ψψψn] , (3.69)

h̃n , [g̃
′T
n , w̃

T
n ]T , (3.70)

and the positive definite and symmetric step-size matrix Mn. The update equation in error-
vector form reads

h̃n = h̃n−1 −Mn

(
ea[n] + ve[n]

)
ϕϕϕHn , (3.71)

whereby the undisturbed a-priori error is

ea[n] = −ea,g + ea,w[n] = ϕϕϕnh̃n−1 . (3.72)

The passivity relation is (derivation see Appendix A.3)

h̃Hn M−1
n h̃n +

∣∣ea[n]
∣∣2

h̃Hn−1M
−1
n h̃n−1 +

∣∣ve[n]
∣∣2 < 1 if 0 < ϕϕϕnMnϕϕϕ

H
n < 1 . (3.73)

It is assumed that the time-variant step-size matrix Mn can be decomposed in a (positive)
time-variant scalar α[n] and a constant, symmetric and positive definite matrix M, i.e.,

Mn = α[n]M . (3.74)



50 CHAPTER 3. Adaptive Identification

The update equation is
hn = hn−1 + α[n]Mẽa[n]ϕϕϕHn , (3.75)

with ẽa[n] = ϕϕϕnhn−1 − x[n] = ea[n] + ve[n]. With the special step-size matrix M̄n = ᾱ[n]M,
whereby M is, e.g., a diagonal matrix with positive entries, and ᾱ[n] satisfies the condition

ᾱ[n] =
1

ϕϕϕnMϕϕϕHn
= ‖ϕϕϕn‖−2

M , (3.76)

the update equation in error-vector form reads

h̃n = h̃n−1 − ᾱ[n]M︸ ︷︷ ︸
=M̄n

(
ea[n] + v̄e[n]

)
ϕϕϕHn . (3.77)

Here,

v̄e[n] =
α[n]
ᾱ[n]

ve[n]−
(

1− α[n]
ᾱ[n]

)
ea[n]︸ ︷︷ ︸

feedback path

(3.78)

is a new noise term, which defines the feedback path. The local passivity relation is

h̃Hn M−1h̃n + ᾱ[n]
∣∣ea[n]

∣∣2
h̃Hn−1M−1h̃n−1 + ᾱ[n]

∣∣v̄e[n]
∣∣2 = 1 (3.79)

since the step-size in (3.77) is M̄n which satisfies the condition ϕϕϕnM̄nϕϕϕ
H
n = 1.

The forward map T̄n, which maps the input signals
{
M−1/2h̃n−1,

√
ᾱ[n]v̄e[n]

}
to the out-

put signals
{
M−1/2h̃n,

√
ᾱ[n]ea[n]

}
, is lossless,

∥∥T̄n∥∥2
= 1, as the passivity relation (3.79)

shows. The feedback path is defined in (3.78). Since the gain of the forward path is one, the
algorithm (3.71) with the step-size matrix Mn = α[n]M is locally stable if the gain of the
feedback path is less than one. Hence, for local stability∣∣∣∣1− α[n]

ᾱ[n]

∣∣∣∣ < 1 , (3.80)

which yields the bounds
0 < αn < 2ᾱ[n] . (3.81)

Global Passivity Relations The stability of the algorithm (3.71) with the step-size Mn =
α[n]M considering the time horizon n = 0, . . . , N is investigated now. Rewriting the local
relation (3.79)

h̃Hn M−1h̃n + ᾱ[n]
∣∣ea[n]

∣∣2 = h̃Hn−1M
−1h̃n−1 + ᾱ[n]

∣∣v̄e[n]
∣∣2 (3.82)

and summation of both sides over the finite time horizon n = 0, . . . , N gives

h̃HNM−1h̃N +
N∑
n=0

ᾱ[n]
∣∣ea[n]

∣∣2 = h̃H−1M
−1h̃−1 +

N∑
n=0

ᾱ[n]
∣∣v̄e[n]

∣∣2 . (3.83)

Since the quadratic form h̃HNM−1h̃N > 0 (M is positive definite) it holds that

N∑
n=0

ᾱ[n]
∣∣ea[n]

∣∣2 ≤ h̃H−1M
−1h̃−1 +

N∑
n=0

ᾱ[n]
∣∣v̄e[n]

∣∣2 , (3.84)
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which, using the triangle inequality, yields√√√√ N∑
n=0

ᾱ[n]
∣∣ea[n]

∣∣2 ≤√h̃H−1M−1h̃−1 +

√√√√ N∑
n=0

ᾱ[n]
∣∣v̄e[n]

∣∣2 . (3.85)

Insertion of the expression (3.78) for the modified noise term yields the energy-relation (see
Appendix A.4)√√√√ N∑

n=0

ᾱ[n]
∣∣ea[n]

∣∣2 ≤ 1
1− γN

√h̃H−1M−1h̃−1 + δN

√√√√ N∑
n=0

ᾱ[n]
∣∣ve[n]

∣∣2 , (3.86)

with

δN = max
n=0,...,N

α[n]
ᾱ[n]

(3.87)

γN = max
n=0,...,N

∣∣∣∣1− α[n]
ᾱ[n]

∣∣∣∣ . (3.88)

Equation (3.86) relates the error energy (left hand side) to the disturbance energy (right hand
side). If

γN < 1 (3.89)

the algorithm is globally stable. Hence, the bounds

0 < α[n] < 2ᾱ[n] n = 0, . . . , N (3.90)

yield also a globally stable behaviour of the algorithm (3.75) with the step-size Mn = α[n]M.

Example 1: Identification of the Linear Part of a Wiener System – Local Stability
In this example the linear filter (FIR) of a Wiener-system with real valued input signal and
real valued system parameters is identified with the proposed method. The algorithm in (3.51)
and (3.52) is used for identification. Different step-sizes are chosen and their effect on the
stability of the algorithm is determined.

The reference Wiener-system is a linear FIR-filter with 17 taps defining a bandpass filter
and a static nonlinear function with a linear and a third order part, f

(
z[n]

)
= z[n] − 1

9z[n]3.
The nonlinear filter g

(
d[n]

)
is also a power series with only uneven terms up to the third order,

g
(
d[n]

)
= w1d[n] + w2d[n]3. The input signal x[n] is drawn from a white, zero-mean gaussian

process, x[n] ∼ N(0, σ2
x = 1) with unit variance. It is assured that significant nonlinear

distortion occurs, i.e., the magnitude of the linear filter output-signal z[n] is large enough to
fall in the saturation region of the nonlinear output-function. The algorithm is run 50 times
and averages are taken to approximate the relative misadjustment

mg[n] = E

(
‖g̃′n‖22
‖g̃′−1‖22

)
≈ 1

50

50∑
r=1

‖g̃′n(r)‖22
‖g̃′−1‖22

. (3.91)

Here, g̃
′
−1 denotes the initial error-vector. The initial estimate is g

′
−1 = 0, g̃

′
n(r) denotes the

error-vector at iteration-step n for the realisation r. The initial estimate for the nonlinear
adaptive filter g(·) is w−1 = [1, 0]T . No measurement noise v[n] is added, the remaining
misadjustment of the linear filter parameter is therefore entirely due to the nonlinear saturation
characteristic at the output of the Wiener system.
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Case 1 In this case the step-sizes are µg[n] = 0, 001 and µw[n] = 0, thus effectively no
nonlinear filter g(·) is placed at the output of the Wiener system, the nonlinear distortions
remain uncompensated. A relative misadjustment of approx. -20 dB is achieved, see
Fig. 3.6. The system is stable. Since no measurement noise is added at the output of
the Wiener-system, the misadjustment is only due to the nonlinear effects.

Case 2 The step-size µw = 0, 01 in this case, the step-size µg[n] = µ̄g[n]. The adaptive
nonlinear filter g(·) compensates the effects of the non-linearity f(·) and a significantly
better system identification of the linear filter is achieved. A relative misadjustment
of approx. -30 dB is achieved, an improvement of approx. 10 dB, compared to case
1. The system is on the stability bound for guaranteed locally stable behaviour. The
learning-curves for this case and case 1 are illustrated in Fig. 3.6. A significantly different
learning behaviour, compared to case 1, can be observed. After a very fast initial phase,
the learning becomes slower but continues, whereas in case 1 the learning process reaches
the steady-state after approx. 5000 iterations.

Case 3 The time-variant step-size µg[n] is reduced to µg[n] = 0, 5µ̄g[n], the step-size µw[n] =
0, 01. The identification is not as accurate as in case 2, but the learning-process is
smoother due to the smaller step-size µg[n] and the algorithm is guaranteed to be locally
stable. The achieved misadjustment of approx. −26 dB is still significantly smaller than
the misadjustment achieved in case 1. Fig. 3.7 shows the learning curve for this case,
together with the learning-curve for case 2.

Case 4 The step-size µg[n] = 0, 01 again, but now µg[n] = 1, 5µ̄g[n]. The algorithm is not
guaranteed to be locally stable. Compared with case 2 a larger misadjustment results,
together with a relatively turbulent learning behaviour, see Fig. 3.8.

Case 5 Further increase of the step-size µg[n] to the µg[n] = 2µ̄g[n] results in an unstable
system, see Fig. 3.8.

Case 6 A step-size µw[n] = 1, 5 together with the step-size µg[n] = µ̄g[n] results also in an
unstable system (without illustration).

Example 2: Identification of the Linear Part of a Wiener System – Global Stability
In this example a Wiener system with a complex-valued input signal x[n], drawn from a zero
mean, white gaussian process x[n] ∼ N(0,Rxx = I) is identified with the algorithm (3.75).
The correlation matrix of the complex-valued input signal is given as Rxx = E

{
xHx

}
with

xT =
[
<
{
x[n]

}
,=
{
x[n]

}]
. The linear filter of the reference Wiener system is a 17 taps linear

FIR bandpass filter, the static nonlinear filter of the reference system is given as f
(
z[n]

)
=

z[n]− 1
20

(
1+j0, 01

)
z[n]

∣∣z[n]
∣∣2. Nonlinear AM/AM and AM/PM conversion occur in the static

nonlinear filter. The nonlinear filter intended to compensate these nonlinear effects if also of
order three, g

(
d[n]

)
= w1d[n] + w2d[n]

∣∣d[n]
∣∣2. The constant step-size matrix is given as

M =
(
cgI 0
0 cwI

)
. (3.92)

Different constants cg and cw define the adaptation behaviour of the linear part g
′

and the
nonlinear part w, respectively. The initial values for the adaptive algorithm are hT−1 =
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Figure 3.6: Relative misadjustment of the adaptive identification of the linear filter of a real-
valued Wiener system. Case 1 is without the compensation of the nonlinear effects.

0 5000 10000 15000
−35

−30

−25

−20

−15

−10

−5

0

# of iterations n

m
g[n

] 
/ [

dB
]

Case 2

Case 3

Figure 3.7: Relative misadjustment of the adaptive identification of the linear filter of a real-
valued Wiener system. Case 3 is with a smaller step-size µg[n] compared to case 2.
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Figure 3.8: Relative misadjustment of the adaptive identification of the linear filter of a real-
valued Wiener system. Case 4 is with a larger step-size compared to case 2, case 5 is with a
step-size of µg[n] = 2µ̄g[n].

[
0, . . . , 0︸ ︷︷ ︸

=g
′T
−1

, 1, 0︸︷︷︸
=wT

−1

]
. Again, 50 simulation runs are performed and the average is taken. No noise

v[n] is added, thus the misadjustment in steady-state is only due to the nonlinear distortions
of the filter f(·).

Case 1 In this case cg = 1 and cw = 0, thus the linear filter is identified without the com-
pensation of the nonlinear effects. The factor α[n] = ᾱ[n]. The algorithm is locally and
globally stable. A misadjustment of approx. -24 dB is achieved, as Fig. 3.9 illustrates.

Case 2 Now cg = 1 and cw = 0, 08 – the nonlinear effects are compensated with the nonlinear
adaptive filter. Again, α[n] = ᾱ[n], resulting in a stable system. Significantly better
identification is achieved as in case 1, see Fig. 3.9.

Case 3 If cw is increased to cw = 0, 2 and α[n] = ᾱ[n], again a stable algorithm is obtained.
Since the step-size is larger now, a higher misadjustment results in the steady-state, as
can be seen in Fig. 3.9.

Case 4 Increasing α[n] further to α[n] = 1, 99 ᾱ[n] and cg = 1, cw = 0, 1 results in a stable
system as Fig. 3.10 shows. The stability bounds (3.90) are never exceeded. The steady-
state misadjustment is significantly larger compared to the cases 2, and 3.

Case 5 If α[n] = 2 ᾱ[n] the upper stability bound (3.90) is exceeded, resulting in an unstable
algorithm, as Fig. 3.10 illustrates. The derived bounds (3.90) are tight.
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Figure 3.9: Relative misadjustment of the adaptive identification of the linear filter with
complex-valued signal and system parameters. Case 1 is without the compensation of the
nonlinear effects.

Second Step: Parameter Estimation for Static Nonlinear Filter

Once a first estimate for the linear filter parameters has been created using the described
method, an identification algorithm for the nonlinear output-filter of the Wiener system can
be started. The estimated linear filter remains constant during the estimation of the nonlinear
part. Fig. 3.11 illustrates the situation. It is expected that the identification accuracy will
suffer due to the non-perfect estimation of the linear filter. Therefore, after the first estimation
of the nonlinear filter, a second step for improving the estimation of the linear filter parameters
can follow.

The estimation of the parameters of the nonlinear filter is performed using a stochastic-
gradient algorithm. If the nonlinear output-filter of the Wiener system is approximated with
a series, the aim is to minimise the cost

J [n] = E
{∣∣ẽ[n]

∣∣2} = E
{∣∣d[n]− φ̂φφnθθθ

∣∣2} , (3.93)

where φ̂φφn =
[
φ1

(
ẑ[n]

)
, . . . , φK

(
ẑ[n]

)]
, ẑ[n] being the output of the estimated linear filter,

ẑ[n] = Ĝ
(
u[n]

)
,
{
φk(·)

}K
k=0

is a set of basis-functions, e.g., powers, φk
(
z[n]

)
= z[n]|z[n]

∣∣2k,
and d[n] being the output of the Wiener system. Simplification of the expectation operator
leads to the stochastic-gradient algorithm for the estimation of the parameters of the nonlinear
filter:

θθθn = θθθn−1 + µ[n]ẽa[n]φ̂φφ
H

n , n ≥ 0 , θθθ−1 given . (3.94)

Here, the disturbed a-priori error is

ẽa[n] = d[n]− φ̂φφnθθθn−1 = v[n] + f
(
z[n]

)
− φ̂φφnθθθn−1 . (3.95)
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Figure 3.10: Relative misadjustment of the adaptive identification of the linear filter with
complex-valued signal and system parameters. Case 5, where α[n] = 2ᾱ[n], leads to an unstable
behaviour.
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Figure 3.11: Adaptive identification of the nonlinear part of a Wiener system.

Assuming that the approximation with the specified set of basis-functions of the nonlinear
output-filter of the Wiener system leads to an additional noise term

vf [n] = f
(
z[n]

)
−φφφnθθθ∗ , (3.96)

whereby θθθ∗ denotes the optimal parameters in the mean-square sense and the row vector φφφn
is φφφn =

[
φ1

(
z[n]

)
, . . . , φK

(
z[n]

)]
, the disturbed a-priori error can be decomposed into

ẽa[n] = v[n] + vf [n] +φφφnθθθ∗ − φ̂φφnθθθn−1 . (3.97)
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Further,

ẽa[n] = v[n] + vf [n] +φφφnθθθ∗ − φ̂φφnθθθ∗ + φ̂φφnθθθ∗ − φ̂φφnθθθn−1 (3.98)

= v[n] + vf [n] +
(
φφφn − φ̂φφn

)
θθθ∗ + φ̂φφn

(
θθθ∗ − θθθn−1

)
= v[n] + vf [n] + φ̃φφnθθθ∗ + φ̂φφnθ̃θθn−1

= vθ[n] + ea[n]

with

vθ[n] = v[n] + vf [n] + vg[n] (3.99)

vg[n] = φ̃φφnθθθ∗ (3.100)

ea[n] = φ̂φφnθ̃θθn−1 . (3.101)

If it is assumed that the linear filter G(q−1) is identified perfectly, thus φ̃φφn = 0, and, conse-
quently, vg[n] = 0. Only the measurement-noise v[n] remains, as well as the disturbance vf [n],
which is due to the approximation of the nonlinear filter with a truncated series. In general,
the linear filter is not perfectly identified, thus the disturbance vg[n] does not vanish.

With these definitions, the deterministic robustness analysis of the gradient-algorithm (in
error-vector form)

θ̃θθn = θ̃θθn−1 − µ[n]
(
ea[n] + vθ[n]

)
φ̂φφ
H

n , (3.102)

can be performed in a similar way as for linear-in-parameter models, see Section 3.1.1. This
analysis leads to the bounds for the step-size

0 < µ[n] < 2µ̄[n] , n = 0, . . . , N , µ̄[n] =
1

‖φ̂φφn‖22
(3.103)

which assure global stability.

Example 1 continued: Identification of the Nonlinear Part of a Wiener System A
relative misadjustment of −20 dB – −30 dB was achieved in the estimation of the parameters
of the linear filter of the first example, see Fig. 3.6. Having this estimate, the nonlinear part
of the system is identified with a standard gradient algorithm, cf. (3.94). Again 50 simulation
runs for different values of the misadjustment for the linear filter are performed. For this
identification an a-posteriori LMS algorithm with α = 1 is used, see Tab. 3.1, since this type
of algorithm achieved the best results in Section 3.1.1, see Fig. 3.2. The a-posteriori LMS
algorithm has further the advantage to be guaranteed stable.

Fig. 3.12 shows that the algorithm performs well, resulting in an accurate estimation of
the nonlinear filter parameters if the identification of the linear part is accurate. Although the
linear system is not estimated perfectly with a relative misadjustment of, e.g., mg = −30 dB,
a relative misadjustment for the nonlinear filter parameters of −50 dB can be achieved. If
the estimation of the linear filter parameters is less accurate, e.g., if a misadjustment of only
−20 dB is achieved (no compensation of the output non-linearity, cf. Fig. 3.6, the achievable
misadjustment is approx. 10 dB higher. It can be seen that the error in the identification of
the linear filter parameters is propagated into the identification of the nonlinear filter.
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Figure 3.12: Relative misadjustment for the adaptive identification of the nonlinear part of
the example Wiener system.

The Complete Algorithm

The complete algorithm is briefly summarised in the Tab. 3.3:

1. In the first step, the parameters of the linear filter are estimated. The update equations
are given in (3.51) and (3.52). Local stability can be guaranteed if the step-sizes obey
the conditions presented in (3.65) and (3.66). Global stability of the algorithm can be
guaranteed for the special case of the matrix step-size α[n]M (update equation (3.75)),
if α[n] obeys the condition in (3.90).

2. In the second identification step, the nonlinear part is identified with the gradient algo-
rithm (3.94). The bounds for the step-size for stability are presented in (3.103).

If the quality of the identification is not high enough after completing the two identification
steps, the procedure can be repeated.

3.2 Discussion

In this chapter adaptive algorithms for the identification of dynamic nonlinear systems were
discussed. Specifically, gradient-type algorithms for the parameter identification of linear-in-
parameter models, such as Volterra models, and a model which is nonlinear-in-parameters,
namely the Wiener model, were investigated with respect to robustness in the `2-sense. The
analysis of the adaptive algorithms for linear-in-parameter models is straightforward and fol-
lows the same lines as the analysis for adaptive linear filters [71, 13].

The identification of a nonlinear Wiener system with unknown output non-linearity is
performed in two steps: first, the linear filter is identified whereby the influence of the nonlinear
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Step identified part up-date equation(s) ad notation

1 linear filter g
′
n = g

′
n−1 − µg[n]ẽa[n]x

′H
n g

′
. . . linear filter parameter

wn = wn−1 + µw[n]ẽa[n]ψψψHn w . . . inverse output filter

ẽa[n] = x[n] + x
′
ng

′
n−1 −ψψψnwn−1 x

′
n . . . input of filter g

′

locally stable if: ψψψn . . . input of filter w

0 < µg[n] < ‖xn‖−2
2

0 < µw[n] < ‖ψψψn‖−2
2 cf. Fig. 3.5

matrix step-size hn = hn−1 + α[n]Mẽa[n]ϕϕϕHn h = [g
′T ,wT ]T

ẽa[n] = ϕϕϕnhn−1 − x[n] ϕϕϕn = [−x
′
n,ψψψn]

locally and globally stable if: α[n]M . . .matrix step-size

0 < α[n] < 2‖ϕϕϕn‖−2
M ,∀n

2 nonlinear filter θθθn = θθθn−1 + µ[n]ẽa[n]φ̂φφ
H

n θθθ . . .nonlinear filter param.

ẽa[n] = d[n]− φ̂φφnθθθn−1 φ̂φφn . . . input of filter θθθ

locally and globally stable if:

0 < µ[n] < 2‖φ̂φφn‖−2
2 ,∀n cf. Fig. 3.11

Table 3.3: The complete algorithm for the gradient identification of a Wiener system

part of the Wiener filter is compensated with a second adaptive nonlinear filter. Then, having
this estimate, the nonlinear part of the Wiener system is identified. A deterministic analysis
for the identification of the linear part was performed [16], providing tight bounds for the
step-sizes guaranteeing locally and globally stable behaviour.
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Chapter 4

Linearisation by Pre-distortion

After modelling the nonlinear system using one of the models presented in Chapter 2 and iden-
tification of the model-parameters, either using the direct least-squares method as in Chapter 2,
or using an adaptive identification algorithm, discussed in Chapter 3, the next crucial task is
to design a pre-filter (pre-distortion unit) which linearises the nonlinear system. Graphically,
the problem can be represented as in Fig. 4.1. The nonlinear system N (the power amplifier
with additional circuitry, e.g., modulators and mixers) is to be linearised with the nonlinear
pre-filter P. The targeted behaviour is a linear amplification

y[n] ≈ d[n] = L
(
u[n]

)
. (4.1)

If the requirement is only to achieve a linear operation, the dispersion must not be com-
pensated, i.e., L =

∑P−1
p=0 wpq

−1 is simply a linear filter – if the frequency dispersion is also
compensated, the linear operator simplifies to a simple multiplication with a constant, in gen-
eral a complex valued factor g, L

(
u[n]

)
= g · u[n − ∆], ∆ being some delay. This is now

also an equalisation problem. In the following sections the term linearisation refers in general
to linearisation and equalisation. If L = I, the identity operator, the nonlinear system N is
inverted and the pre-filter must be the inverse of N, P = N−1. In this case the gain g = 1 and
∆ = 0.

P N

L

� � �

� �

u[n] z[n]
y[n]

d[n]

Figure 4.1: Linearisation problem

The problem is the design of the pre-filter P, given the nonlinear filter N, which is a more or
less accurate model of a real physical system (the power amplifier with analogue circuitry for
modulation and up-conversion), and the given targeted linear system L. Since N is in general
only a model of the real system, the linearisation will degrade if the model is not accurate. In
Section 4.4.2 this problem is analysed by means of simulations.

61
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In general, since the filter N is nonlinear, an analytical solution for the linearisation problem
is not possible. Local solutions, i.e., a pre-filter P that linearises or inverts the nonlinear system
N for a restricted class of input signals, can often be found. Formally, the nonlinear system N
is linearised around a point u0[n] – the linearisation is accurate in a certain neighbourhood of
this point, i.e.,∥∥∥N(P

(
u[n]

))
− L

(
u[n]

)∥∥∥ < δ if u[n] ∈
{
u[n]

∣∣∣∥∥u0[n]− u[n]
∥∥ < ε

}
. (4.2)

E.g., for static nonlinearities and real-valued signals u[n], the linearisation is accurate in a
certain interval on the real line. In this case, the pre-filter can be implemented as a look-up
table, see e.g., [72, 73]. The table entries are pre-calculated based on the model of the nonlinear
system. The accuracy of the method is heavily dependent on the resolution of the look-up
table – if the input signal is quantised using Q levels, the look-up table has Q entries. For
complex signals Q2 values have to be stored, which can be very large if the resolution is high,
e.g., if Q = 212 = 4096, corresponding to a 12 bit analogue-to-digital converter, the size of the
look-up table is 16, 8 · 106, requiring approx. 34 MB of storage if 2 bytes per sample are used.
If memory effects have to be considered the size of the look-up table becomes very large – for
the linearisation of dynamic nonlinear systems, look-up tables are prohibitively complex.

The inversion of general dynamic nonlinearities, expressed by a Volterra series, was pio-
neered by M. Schetzen in [4, 36], where a pth-order inverse of a Volterra system is derived. The
system response of the tandem connection of the pth order inverse and the Volterra system is

N
(
P
(
u[n]

))
= u[n] + Q

(
u[n]

)
, (4.3)

where Q
(
u[n]

)
=
∑∞

i=p+1 Qi

(
u[n]

)
is a Volterra filter with the second through the pth-order

homogeneous parts Qi

(
u[n]

)
(cf., e.g., (2.26)) equal to zero. Thus, the nonlinear effects up to

the pth order are compensated, but not the higher order nonlinear terms. The drawback of
this approach is the relatively high complexity of the pre-inverse and the appearance of the
high-order nonlinear terms beginning with the p+ 1th term.

In this chapter, two iterative methods for the linearisation of a general Volterra filter are
investigated – the first method is based on a fixed-point approach, presented in [18], the second
approach is based on an alternative formulation of the linearisation problem [19, 74, 12]. Here,
the idea is to modify the formulation of the linearisation problem to a root-search problem
and to solve this problem iteratively. The advantage of this formulation is that fast iterative
algorithms can be used, which reduce the required complexity compared with the fixed-point
approach. The drawback of the two methods is the complex analysis of convergence. For the
fixed-point approach a sufficient condition for convergence of the iterative procedure can be
devised using the contraction-mapping theorem. Since this provides only sufficient conditions
for convergence, they are in general too conservative – even if the conditions are not met,
the algorithm may converge. Further, the verification of the convergence criterion is rather
complex. In the investigated cases, based on models derived from measurements on power
amplifiers, see Chapter 2, both methods showed good convergence behaviour with obvious
restrictions on the targeted linear behaviour L. A further alleviation is that the power amplifier
nonlinearities are usually mild and the linearisation task is “easy” to achieve for the iterative
techniques.

The iterative techniques are investigated with respect to convergence and speed using
simulations. Here, realistic power amplifier models, either obtained from measurements or
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with the commercial simulation tool ADS, see Chapter 2, are used. In all cases (obvious)
settings can be found that lead to stable behaviour.

Finally, measurement results show that the iterative techniques, applied to linearise a real
microwave power amplifier, yield significant performance gains if compared to a simple input
back-off, i.e., a reduction of the input power of the amplifier.

4.1 Formulation of the Linearisation Problem as an Optimisa-
tion Problem

The linearisation problem of Fig. 4.1 can be formulated in different ways. The objective is
to achieve that the system output y[n] using the pre-filter P is close to the desired signal
d[n] = L(u[n]) = g ·u[n−∆], in the pre-distortion setting usually an amplification of the input
signal u[n]. This can be formulated as an optimisation problem:

θ̂θθ = arg min
θθθ
J(θθθ) = arg min

θθθ

∥∥∥N(P
(
θθθ, u[n]

))
− L

(
u[n]

)∥∥∥ , (4.4)

where an optimisation algorithm tries to find the optimal parameters θθθ for the pre-filter. This
formulation assumes that the structure of the pre-filter P is known – with nonlinear systems N
this is in general not possible. The unknown pre-filter could be assumed, e.g., to be a Volterra
filter of a certain structure (specific nonlinear order, specific kernel lengths). Fig. 4.2 shows a
possible configuration using an adaptive algorithm for identification of the parameters of the
pre-filter. The advantage here is that the nonlinear system N is not needed to be known. On
the other hand, the specific pre-filter P can be a poor match to the unknown, exact pre-filter.
Hence, even with the optimal parameters θθθ of the pre-filter, only a poor linearisation quality
can be achieved.

P N

L

� � �

�

+

u[n]
z[n]

y[n]

d[n]

−e[n] �

�

�

Figure 4.2: Linearisation problem – adaptive identification of the pre-filter without knowledge
of the nonlinear system

The configuration in Fig. 4.3 is also often used. See e.g., [17], where this configuration is
applied to linearise a Volterra system. Here, as in the previous configuration, see Fig. 4.2, a
specific filter-structure P has to be assumed. The error e[n] is

e[n] = P
(
u[n]

)
− P

(
1
g
y[n]

)
. (4.5)

If the error e[n] vanishes,

P
(
u[n]

)
= P

(
1
g
y[n]

)
(4.6)



64 CHAPTER 4. Linearisation by Pre-distortion

must hold for all signals u[n]. Hence,

y[n] = g · u[n] . (4.7)

In the general case the error signal will not vanish completely, giving

y[n] = g · P−1

(
P
(
u[n]

)
− e[n]

)
. (4.8)

Consequently, even with optimal parameters for the pre-filter P, the output is not a simple
amplification of the input signal. The problem here is that the assumed filter P can be far
from the optimal filter-structure for the pre-equaliser. Thus, even with optimal parameters of
the filter P, it is possible that only a poor linearisation quality can be achieved.

P N

1
g

z[n]

−
P+

u[n] � y[n]

�

e[n]

�

�

�

� � �

Figure 4.3: Linearisation problem – adaptive identification of the pre-filter without knowledge
of the nonlinear system

4.2 The Fixed-Point Approach

Alternatively to the two presented methods, the linearisation problem can be formulated as
a fixed-point equation – not with respect to the parameters θθθ of a certain pre-filter P, but a
fixed-point equation in the signal z[n] after the pre-filter [18]. This is conceptually different
from the above presented optimisation approach. Now, the structure of the pre-filter must not
be known beforehand, but it is assumed that the nonlinear filter N is given – in most cases as
a model for the specific physical nonlinear system.

It is assumed that the nonlinear system N is a Volterra series – an assumption which is
not very restrictive, since a large class of nonlinear systems can be modelled with Volterra
series. If the signal after the pre-filter is z[n] = P

(
u[n]

)
, the fixed-point equation can easily be

derived:

y[n] = L
(
u[n]

)
⇔ N

(
z[n]

)
=

P∑
p=1

Np

(
z[n]

)
= L

(
u[n]

)
. (4.9)

With the decomposition

N1

(
z[n]

)
+

P∑
p=2

Np

(
z[n]

)
= L

(
u[n]

)
, (4.10)

the signal after the pre-filter is

z[n] = N−1
1

L
(
u[n]

)
−

P∑
p=2

Np

(
z[n]

) = Tu
(
z[n]

)
. (4.11)
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Here, Np are the homogeneous Volterra operators of order p and it is assumed that the first-
order operator N1 (a linear filter) is invertible. The transformation T is indexed with the input
signal u[n] to emphasise the dependence on it (it depends also on L). Here, in contrast to the
above mentioned two methods, the nonlinear Volterra system N, which is in practice the model
for the nonlinear power amplifier, needs to be known. The essential difference in this approach
is, that the signal z[n] after the pre-filter P is identified, not the parameters θθθ of a specific
pre-filter. In (4.11) the signal z[n] is a fixed-point of the transformation Tu. Searching the
fixed-point is thus equivalent to determining the pre-filter P itself. Since an analytic solution
to the above fixed-point equation is rarely available, the fixed-point z[n] is searched iteratively
with successive approximation:

zi+1[n] = Tu
(
zi[n]

)
, z0[n] given . (4.12)

Whether the method converges to a solution z[n] or not depends on the transformation T,
which depends on the input signal u[n] and the targeted linear operation L. Here a simple
linear amplification with a delay ∆, L

(
u[n]

)
= g · u[n−∆] is used. Applying the Contraction

Mapping Theorem [49, 48], which states basically that the method of successive approximation
converges if T is contractive (see Appendix B), it can be determined whether the method of
successive approximation (4.12) is guaranteed to converge. If the transformation T is further
differentiable and

∥∥T′
(z)
∥∥ ≤ α < 1 on a convex set1 K , the transformation is a contraction

mapping, since
∥∥T(z1) − T(z2)

∥∥ ≤ sup
∥∥T′

(z)
∥∥‖z1 − z2‖ ≤ α‖z1 − z2‖, using the mean-value

inequality [48]. Therefore, it is guaranteed that the method converges.
For applying the Contraction Mapping Theorem for the linearisation problem, the problem

must be formulated in a Banach space and, therefore, a specific norm has to be chosen. Many
choices of norms are possible, e.g., any of the `p-sequence norms may be chosen. Once a norm
has been chosen, it must be confirmed that the transformation Tu is contractive. In order to
confirm this, the norms of the homogeneous Volterra operators Np, induced by the chosen sig-
nal norm, have to be computed. In practice, these norms cannot be computed – computable
upper bounds have to be used, which may be tight or loose. Hence, using different signal
norms, different restrictions, necessary to guarantee the contractiveness, are produced [18].
Since the Contraction Mapping Theorem gives sufficient conditions for convergence, the ob-
tained convergence results may be very loose and seldom possible to fulfill in practice. The
complicated nature for proving convergence and the loose bounds obtained are not very helpful
in applications – therefore, the convergence is investigated in Section 4.4 using simulations.

Regarding the convergence rate of the successive approximation procedure applied to a
contraction mapping T with the fixed-point z[n] the inequality∥∥∥T(zi−1[n]

)
− T

(
z[n]

)∥∥∥ =
∥∥zi[n]− z[n]

∥∥ ≤ α
∥∥zi−1[n]− z[n]

∥∥ (4.13)

results. The sequence {zi[n]} converges thus only linearly to the fixed-point z[n] since

lim
j→∞

sup
i≥j

∥∥zi[n]− z[n]
∥∥∥∥zi−1[n]− z[n]
∥∥ = α (4.14)

for some 0 < α < 1. The slow convergence is the main drawback of this linearisation method.
Slow convergence means that for good accuracy of linearisation a large number of iterations

has to be performed. A large number of iterations means a high complexity – either a pipelined
1A set K in a linear vector space is said to be convex if, given x1, x2 ∈ K , all points of the form βx1+(1−β)x2

with 0 ≤ β < 1 are in K .
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approach with a large number of stages or a high operating frequency has to be used. E.g.,
if five iterations are necessary, five equal stages have to be implemented. Alternatively, one
stage has to be executed five times during one sampling interval. Fig. 4.4 shows a graphical
representation of the successive approximation method with three stages. The filter G is, as
can be seen form (4.11),

G(·) = N−1
1

 P∑
p=2

Np(·)

 (4.15)

assuming that N1 is linear and invertible.
For each iteration the filter G has to be evaluated – depending on the complexity of the

Volterra model N this requires possibly a lot of hardware resources. The complexity can be
lowered either by using low complex models, requiring only few calculations, e.g., only static
models or Wiener-or Hammerstein models, or by increasing the convergence rate using other,
faster methods. This later approach has the advantage that still accurate models with a
relative high complexity can be used.
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Figure 4.4: Linearisation with successive approximation – three iterations

4.3 Linearisation using the Secant Method

The successive approximation method, discussed in Section 4.2 suffers from a slow convergence
rate – the convergence rate is only linear. Depending on the specific non-linearity it may be
necessary to use a high number of iterations in order to achieve a small linearisation error.
This increases the requirements on the hardware – either a fast device, e.g., a DSP or an
FPGA clocked by a high frequency, or a large device, e.g., an FPGA with a high number of
gates, have to be used. Increasing the convergence rate is therefore essential for a real-time
implementation.

The origin of the slow convergence is the fixed-point formulation of the linearisation prob-
lem which implies the usage of the successive approximation method with only linear conver-
gence rate. A natural and straightforward formulation of the linearisation problem is of the
form

N
(
z[n]

)
− L

(
u[n]

)
= Tu

(
z[n]

)
= 0 , (4.16)

derived from Fig. 4.1 or from (4.9). This equation has to be solved for the signal z[n]. Again, as
in the case of the fixed-point equation (4.11), an analytic solution is most often not achievable.
Iterative techniques have to be used, and now, in contrast to the fixed-point formulation,
a large number of techniques are available, see, e.g., [75]. Among them, Newton’s method
is the most popular and the most powerful method. As originally conceived, it applies to
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equations of a single real variable but it can be extended to nonlinear transformations on
normed spaces [48]. In order to solve the above equation (4.16) with Newton’s method, the
nonlinear transformation Tu must be differentiable. If this is assured, Newton’s method reads

zi+1[n] = zi[n]−
[
∂zTu

(
zi[n]

)]−1 Tu
(
zi[n]

)
, (4.17)

using some starting value z0[n]. Newton’s method converges quadratically, meaning that∥∥zi+1[n]− z[n]
∥∥ ≤ c

∥∥zi[n]− z[n]
∥∥2
, (4.18)

z[n] denoting a solution of (4.16).
The Newton step

δzi[n] = −
[
∂zTu

(
zi[n]

)]−1 Tu
(
zi[n]

)
, (4.19)

where δzi[n] = zi+1[n]− zi[n], decreases also the cost function

J
(
z[n]

)
=
∥∥∥Tu(z[n]

)∥∥∥2

2
= THu

(
z[n]

)
Tu
(
z[n]

)
. (4.20)

This can be seen if the Newton step is multiplied with the gradient of the cost function
∂zJ

(
z[n]

)
, which is

∂zJ
(
z[n]

)
= ∂z

[
THu
(
z[n]

)
Tu
(
z[n]

)]
= THu

(
z[n]

)
∂zTu

(
z[n]

)
. (4.21)

Multiplication of the gradient at the point zi[n] with the Newton step δzi[n] yields

∂zJ
(
zi[n]

)
δzi[n] =

(
THu
(
z[n]

)
∂zTu

(
zi[n]

))(
−
[
∂zTu

(
zi[n]

)]−1
Tu
(
zi[n]

))
= −THu

(
zi[n]

)
Tu
(
zi[n]

)
< 0 ,

(4.22)

proving that the cost (4.20) is indeed reduced with every step. This means that every solution
of (4.16) minimises also the cost function (4.20). But the converse is not necessarily true, since
there might be local minima of (4.20) which are not solutions of (4.16). This is the fundamental
and important difference between the optimisation approach where an objective function is
minimised and the direct approach presented above, where a solution for a nonlinear (system
of) equation(s) is searched for.

The fast convergence rate of Newton’s method has a price attached: its large complex-
ity [74]. Now, for one iteration, not only the transformation Tu has to be evaluated at zi[n].
Additionally, the Jacobian ∂zTu

(
zi[n]

)
has to be evaluated and inverted. The principal prob-

lem with this method is the computation of the Jacobian, which might not be easy or even
possible – the transformation T has to be differentiable, which, for the specific nonlinear models
discussed in Chapter 2 is not the case, since terms involving the magnitude of the signal

∣∣z[n]
∣∣

are appearing – these terms are only analytic for z[n] = 0. See, e.g., the general equivalent
baseband Volterra series in (2.26). A solution could be to exclude these terms in the modelling,
but this results in a poor model-system match. It is expected that the output is dependent on
the actual magnitude of the input signal, the restriction being thus not well-founded.

The main difficulty in applying the fast Newton’s method for solving (4.16) is thus the
determination and evaluation of the Jacobian. Every simplification will further result in a
slower procedure. The aim is thus to simplify Newton’s method but keep the convergence rate
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as high as possible. A practical and for the purpose well-suited method is the secant method.
The secant method for the specific problem (4.16) is

zi+1[n] = zi[n]− zi[n]− zi−1[n]
N
(
zi[n]

)
− N

(
zi−1[n]

)Tu(zi[n]
)
, (4.23)

with two (different) starting values z−1[n] and z0[n]. A convenient choice is z−1[n] = 0 and
z0[n] = u[n], since it is expected that the signal after the pre-filter differs only slightly from
the original input signal u[n].

The computation of the Jacobian is thus no longer required. The only condition on the
transformation N is to be continuous, a requirement which is naturally fulfilled for the models
discussed in Chapter 2. The above equation (4.23) calculates the output of the pre-filter P
for each time instant n. If the nonlinear transformations N and Tu have memory, they are
time-variant since the outputs N

(
zi[n]

)
, N
(
zi−1[n]

)
, and Tu

(
zi[n]

)
depend on the previously

calculated pre-filter outputs z[n − 1], . . . , z[n − M + 1] (assuming a memory length of M
samples), as well as the pre-filter input signal u[n].

For a formal derivation of the secant method, the general case with signals of length M ,
e.g., z[n] =

{
z[n], z[n− 1], . . . , z[n−M + 1]

}
, M being larger or equal to the memory length

of the nonlinear transformation N, is used. The Newton step in (4.19), whose computation is
the main contribution to the complexity of the method, can be approximated by a so-called
quasi-Newton step [75], which is the solution of

Biδzi[n] = −Tu
(
zi[n]

)
. (4.24)

The secant condition requires [75] that

Bi+1δzi[n] = δTu
(
zi[n]

)
, (4.25)

with δTu
(
zi[n]

)
= Tu

(
zi+1[n]

)
− Tu

(
zi[n]

)
. Considering the general case with M dimensions

and thus avoiding the time-variant formulation of (4.23), a multidimensional secant method
must be used. The problem here is that in more than one dimension the matrix Bi+1 in (4.25)
cannot be uniquely determined, which gives additional degrees of freedom. The most popular
and in practice best performing algorithm is Broyden’s method [76, 75]. For the implementa-
tion in real-time, where the output of the pre-filter must be calculated on a sample-by-sample
basis, the time-variant formulation in (4.23) is adequate. Broyden’s method is block-based,
and thus not applicable for a real-time implementation.

In one dimension, Bi+1 is simply a scalar bi+1 and is for the transformation in (4.16)

bi+1 =
N
(
zi+1[n]

)
− N

(
zi[n]

)
zi+1[n]− zi[n]

, (4.26)

as can easily be verified. Thus, the secant step from (4.24)

δzi[n] = −b−1
i Tu

(
zi[n]

)
= − zi[n]− zi−1[n]

N
(
zi[n]

)
− N

(
zi−1[n]

)Tu(zi[n]
)

(4.27)

results.
If the algorithm converges, the convergence rate of the secant method is superlinear [75]∥∥zi[n]− z[n]

∥∥ ≤ c
∥∥zi−1[n]− z[n]

∥∥φ , (4.28)

with the golden ratio φ = 1
2

(
1 +

√
5
)
≈ 1, 618. The convergence order is smaller than that

of the Newton method, but still much larger than the convergence order of the successive
approximation method.
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4.4 Applying the Linearisation Methods

In Sections 4.4.1 and 4.4.2 the two presented linearisation methods, namely the successive ap-
proximation method, discussed in Section 4.2 and the secant method, discussed in Section 4.3,
are compared with respect to convergence rate and robustness against model uncertainties. A
high convergence rate is essential for a practical real-time implementation of the pre-distortion
filter, e.g., in an FPGA or a DSP, since few iterations are required for a good approximation
of the ideal pre-filter. Further, in a practical implementation the system (power-amplifier
with analogue circuitry such as modulators, demodulators, and mixers) cannot be modelled
perfectly. Various types of disturbances affect the modelling:

➾ At the output of the system, measurement noise affects the estimation of the model
parameters. The noise comes from various sources, e.g., due to the limited resolution of
the analogue-to-digital converters, quantisation noise is introduced. Other components,
such as mixers, demodulators, and amplifiers add thermal noise.

➾ The model-structure does not equal the system-structure. The power-amplifier is not a
specific Volterra-, Wiener-, or Hammerstein system, the model being thus only a more
or less accurate approximation to the system.

These disturbances will ultimately limit the achievable linearisation quality, since the design
of the pre-filter is based on the model.

The following situations are investigated:

1. Model-parameter errors due to measurement noise

2. Memory effects are neglected in the model

3. Underestimation of the nonlinear order of the system

This investigation is performed using simulations since a direct control of the system output
is necessary, e.g., for adding measurement noise. The “test-system” in this section is the
Volterra model of the Motorola power-amplifier of Section 2.6. It can be considered as realistic.
The different situations are then simulated and their influence on the linearisation quality is
investigated.

First, the parameters of the test-system S, see Fig. 4.5, are estimated using the in-
put/output data obtained from the ADS simulation. This test-system replaces the “real”,
physical system in the following simulations. Then, noise is added to the output data ob-
tained from the ADS simulation of the power-amplifier. The noise is white, zero-mean and
with a gaussian amplitude distribution. The model has the same structure as the test-system,
i.e., it is also a Volterra system of order five with kernels of length two. The implication of the
added noise is a higher modelling error.

Subsequently, the effect of model-system mismatch, i.e., a structural difference of system
and model, is investigated. In this case, no measurement noise is added to the output data
obtained by the ADS simulation. The error signal due to imperfect modelling is

ẽmod[n] = ỹ[n]− x[n] = S
(
z[n]

)
+ v[n]− N

(
z[n]

)
. (4.29)

The modelling quality is measured by

Jmod [dB] = 10 log

(∥∥ẽmod[n]
∥∥2

2∥∥ỹ[n]
∥∥2

2

)
. (4.30)
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Figure 4.5: Influence of uncertainties on the linearisation – error signals

Since the linearisation algorithms presented in Section 4.2 and Section 4.3 use the model
N to determine the pre-filter P and thus the output z[n], perfect linearisation of the system S
is in general not possible. The error signal

elin[n] = d[n]− y[n] = L
(
u[n]

)
− S
(
z[n]

)
(4.31)

will not vanish. The quality of the linearisation due to the pre-filter P is measured by

Jlin [dB] = 10 log
(
‖elin[n]‖22
‖d[n]‖22

)
, (4.32)

in which the undisturbed system output y[n] is used, see Fig. 4.5. Therewith, the effective
linearisation of the system is measured.

In Section 4.4.3 measurement results are presented. The high-power EDGE amplifier,
modelled in Section 2.6.1, is linearised with the presented secant method [12]. It is shown
in an experiment that with the presented digital pre-distortion method, a microwave power-
amplifier can be linearised efficiently.

4.4.1 Comparison of the Convergence Rate

The convergence rates of the successive approximation method and the method based on the
secant algorithm are compared. For this, the Volterra model of the Motorola LDMOS power-
amplifier modelled in Section 2.6.1, cf. also Tab. 2.6, is used as the “system” to linearise.
In this case, the model N, which is used by both linearisation algorithms to calculate the
pre-distortion filter output z[n], either using (4.11) or (4.23), equals the system. The targeted
linear system is just a linear amplification L

(
u[n]

)
= g · u[n], where the selected linear gain

g = 3, 7, which is approx. the slope of the AM-AM characteristic, cf. Fig. 2.11.
In Fig. 4.6 the linearisation error

Jlin(i)[dB] = 10 log

(∥∥d[n]− yi[n]
∥∥2

2∥∥d[n]
∥∥2

2

)
(4.33)
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Figure 4.6: Comparison of the convergence speed of the successive approximation method and
the method based on the secant algorithm

vs. the number of performed iterations i is shown. Here, d[n] = g · u[n] = 3, 7 · u[n] and
yi[n] is the output of the system with the pre-filtered input zi[n], corresponding to a pre-filter
employing i iterations, see (4.12) or (4.23).

With successive approximation the linearisation error decreases approx. with 10 dB per
iteration, whereas using the secant method the error-decrease is approx. 16 dB per itera-
tion. This corresponds exactly to the linear convergence rate of the successive approximation
method (4.14) and the superlinear convergence rate of the secant method (4.28), respectively.
With the secant method, the error after only one iteration is about 6 dB smaller than with
successive approximation. The starting values are z0[n] = u[n] for the successive approxima-
tion method and z−1[n] = 0, z0[n] = u[n] for the secant algorithm. To achieve a linearisation
error of, e.g., -56,8 dB, the secant algorithm requires three iterations. With the successive
approximation method at least five iterations have to be performed to achieve this value.

In Fig. 4.7(a) the spectrum of the linearised Volterra system using the secant method after
three iterations with perfect system knowledge (model equals the system) is shown. It can be
seen that the spectral regrowth is perfectly compensated for as expected for a perfect linear
amplification. However, a small decrease in the output power of approx. 0,6 dB is noted. This
effect results from the fact that the targeted linear gain has to be selected in such a way that
the amplifier is still able to deliver the required signal amplitude even in saturation. In part
(b) of the Fig. 4.7 the spectra of the input and output signal of the pre-filter P are shown.
The spectral regrowth due to the nonlinear pre-filter is clearly noticeable.

Fig. 4.8 illustrates the AM-AM and AM-PM conversion of the Volterra system with and
without linearisation. Part (a) shows the AM-AM conversion. The magnitude of the system
output is

∣∣y[n]
∣∣, the magnitude of the digital pre-distortion filter output (DPD-output) is∣∣z[n]

∣∣, and the magnitude of the input signal is
∣∣u[n]

∣∣. Practically perfect linearisation is
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Figure 4.7: Spectra of input and output signals of the Volterra system S (with and without
digital pre-distortion (DPD)) and the pre-filter P

achieved. Part (b) shows that the AM-PM conversion is also compensated perfectly. The
difference between the phase of the system output and the phase of the input signal ∆Φuy[n] =
arg
(
y[n]

)
− arg

(
u[n]

)
and the difference between the the pre-distortion filter output and the

input signal ∆Φuz[n] = arg
(
z[n]

)
− arg

(
u[n]

)
are shown. The overall achieved linearisation

error, defined in (4.32), is Jlin = −56, 8 dB, see also Fig. 4.6.
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Figure 4.8: AM-AM and AM-PM conversion before and after linearisation
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4.4.2 System-Model Mismatches

Influence of Measurement Noise

For the estimation of the model-parameters the output data obtained from the ADS simulation
is disturbed with noise. The amount of disturbance is measured using the signal-to-noise ratio

SNR [dB] = 10 log
(
‖y[n]‖22
‖v[n]‖22

)
. (4.34)

Fig. 4.9 shows the linearisation error of the successive approximation method if the output
signal of the system, cf. Fig. 4.5, is affected by white, zero-mean, gaussian noise v[n]. The
results are obtained by taking the average of the linearisation error of 20 different simulation
runs with different noise realisations. The error shows little dependence on the SNR at the
system output if less then five iterations are performed. The convergence rate of the successive
approximation method is too small – the minimum linearisation error cannot be achieved.
If more iterations are performed, the linearisation error decreases with increasing SNR. In
the considered SNR interval of 50 dB – 65 dB, with seven iterations the lower limit of the
linearisation error can be reached.
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Figure 4.9: Influence of measurement noise on the achieved linearisation error Jlin – successive
approximation method

Fig. 4.10 illustrates the linearisation error of the secant method vs. the SNR at the system
output. Here, the convergence speed is high enough to achieve the minimum possible lineari-
sation error with only four iterations. In the considered SNR range no further improvement
can be achieved if five iterations are performed. If four iterations are performed instead of
only three, the reduction of the linearisation error at an SNR = 55 dB is only a few dB. If
three iterations are performed instead of only two, the reduction of the linearisation error is
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much larger, approx. 16 dB. For a practical dynamic range of 50–60 dB three iterations with
the secant method are therefore sufficient.

The reduction of the number of iterations is essential since it reduces the hardware complex-
ity (e.g., invested number of gates in an FPGA) significantly. If the successive approximation
method is used, at least one or two additional iterations have to be performed to achieve the
same linearisation error as with the secant method. This results in a significant increase of
the hardware complexity.
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Figure 4.10: Influence of measurement noise on the achieved linearisation error Jlin – secant
method

Neglecting Memory Effects

In this section the model is a static nonlinear function of nonlinear order five. Consequently,
the pre-filter can correct only the nonlinear distortions but not the dispersive effects. The
spectrum shows therefore no spectral regrowth, cf. Fig. 4.11(a). The dispersive effects are
not corrected as can be recognised form Fig. 4.11(b). The AM-AM characteristic with the
pre-filter shows the characteristic broadening due to the not compensated dispersive effects.

In Tab. 4.1 the resulting linearisation errors are reported. With both methods, successive
approximation and secant algorithm, three iterations are performed. The loss in linearisation
accuracy due to the static modelling ∆Jlin [dB] = Jlin,static [dB] − Jlin,Volterra [dB] is consid-
erable, in particular if the secant method is used. Here, Jlin,Volterra is the linearisation error
if the Volterra model is used to design the pre-filter and Jlin,static is the linearisation error if
the static model is used for designing the pre-filter. Even if seven iterations are performed
the linearisation error can not be reduced further as Tab. 4.2 reports. Both methods achieve
the lower limit of the linearisation error of Jlin = −37, 8 dB. This shows that with the secant
method the best possible linearisation can be achieved with only three iterations, whereas with
the successive approximation method more iterations are necessary.



4.4 Applying the Linearisation Methods 75

−0,5 0 0,5
−80

−60

−40

−20

0

20

f/f
s

S/
[d

B
]

errorno DPD

with DPD

(a) Spectra of system output with and without pre-
filter

0   0,1 0,2 0,3 
0  

0,2

0,4

0,6

0,8

1  

|u[n]|

|y
[n

]|,
|z

[n
]| no DPD

with DPD

DPD output

(b) AM-AM conversion with and without pre-filter

Figure 4.11: Output signals with and without pre-filter – memory effects are not considered,
fs = 8 · 3, 84 MHz = 30, 72 MHz.

model Jlin [dB], succ. approx. Jlin [dB], secant meth.
Volterra, [2,2,2] -44,2 -56,8
Static, [1,1,1] -37,1 -37,8

∆Jlin [dB] 7,1 19

Table 4.1: Linearisation errors if memory effects are neglected. Three iterations are performed.

model Jlin [dB], succ. approx. Jlin [dB], secant meth.
Volterra, [2,2,2] -90,3 -90,3
Static, [1,1,1] -37,8 -37,8

∆Jlin [dB] 52,4 52,4

Table 4.2: Linearisation errors if memory effects are neglected. Seven iterations are performed.

Underestimating the Nonlinear Order

Assuming a Volterra model of nonlinear order three, each kernel has two taps, and the system
being a Volterra system of order five with each kernel having also two taps, will not result
in a perfect compensation of the nonlinear distortions. The third-order distortion will be
compensated with the pre-filter, the distortion due to the fifth order terms can obviously
not be compensated. Fig. 4.12 visualises the situation: In part (a) the spectrum of the
system output signal is shown with and without pre-filter. The spectral regrowth is not
compensated perfectly. Part (b), where the resulting AM-AM conversion with pre-filter is
shown, the remaining small nonlinear behaviour is also visible. The dispersion is compensated
only partially. The dispersion introduced by the fifth order Volterra kernel of the system is
obviously not compensated.

In Tab. 4.3 the resulting linearisation errors are listed, together with the loss in performance
∆Jlin [dB] = Jlin,[2,2] [dB]−Jlin,[2,2,2] [dB] due to the system-model mismatch. The loss is not as
high as in the previous case, where the memory effects were neglected, but is still considerable.
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Figure 4.12: Output signals with and without pre-filter – the system is of order five, the model
is of order three, fs = 8 · 3, 84 MHz = 30, 72 MHz.

If seven iterations are performed the linearisation error can not be reduced further as Tab. 4.4

model Jlin [dB], succ. approx. Jlin [dB], secant meth.
Volterra, [2,2,2] -44,2 -56,8
Volterra, [2,2] -41,7 -43,6

∆Jlin [dB] 2,5 13,2

Table 4.3: Linearisation errors if the nonlinear order is underestimated. Three iterations are
performed.

reports. Also in this setting, both methods achieve the lower limit of the linearisation error
of Jlin = −43, 6 dB. With the secant method the best possible linearisation can be achieved
with three iterations, whereas with the successive approximation method more iterations are
necessary.

model Jlin [dB], succ. approx. Jlin [dB], secant meth.
Volterra, [2,2,2] -90,3 -90,3
Volterra, [2,2] -43,6 -43,6

∆Jlin [dB] 46,7 46,7

Table 4.4: Linearisation errors if the nonlinear order is underestimated. Seven iterations are
performed.

4.4.3 Linearising a High-Power LDMOS EDGE Amplifier – Measurement
Results

In this section a high-power LDMOS class AB microwave amplifier with three stages for
application in GSM-EDGE is linearised [12]. The secant method is used to calculate the
pre-distorted signal. Three iterations are performed.
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The measurement setup is shown in Fig. 4.13. The test-signals are generated in the PC.
The signal for modelling is a multi-tone signal with a bandwidth of 1 MHz and 101 tones. The
tones are equally spaced and have random phases, drawn from a uniform distribution over the
interval [0, 2π). The crest-factor of this signal is with 8,5 dB relatively high.
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Figure 4.13: Measurement setup – linearisation of the high-power EDGE amplifier

The complex digital signal u[n], created in the PC, is converted to two analogue signals
uI(t) and uQ(t) using the Rohde & Schwarz I/Q Modulation Generator AMIQ. The resolution
of the digital-to-analogue converters is 14 bits. In combination with the Rohde &Schwarz
Vector Signal Generator SMIQ it is possible to create a modulated carrier at a selectable
carrier-frequency, which in this case is fc = 1, 9 GHz, corresponding the the GSM-EDGE
specifications. A single-stage driver amplifier (Mini-Circuits ZHL-42W [58]) boosts the signal
at a sufficiently high power level for the high-power amplifier (HPA). The driver amplifier
has a minimum gain of 30 dB and is a highly linear class A measurement amplifier. If it is
driven well below the 1 dB compression-point, the only source of nonlinear distortions is the
high-power EDGE amplifier.

The Vector Signal Generator allows to vary the power level; with this, the saturation and
the total output power of the EDGE high-power amplifier can be controlled. Different levels
of input-power (corresponding to various levels of input back-off, IBO) can thus be delivered
to the amplifier chain. After attenuation of the output signal of the high-power amplifier, the
signal is fed to a signal analyser (Agilent PSA) and to a power-meter. The power-meter is used
to control precisely the total output power. This is necessary since for a correct evaluation of
the digital pre-distortion the output power with and without pre-distortion must be guaranteed
to be the same. Since the signal analyser allows only for accurate relative power measurements
the power-meter is needed.

The signal analyser down-converts and demodulates the signal to baseband. The signal
analyser is synchronised with the SMIQ Vector Signal Generator to guarantee equal phases of
the internal local oscillators for the I/Q modulation- and demodulation. The baseband signal
is then converted to digital and can be stored on a PC. The signal analyser has an analysis
bandwidth of 8 MHz and uses a sampling frequency of fs,PSA = 10, 24 MHz. Consequently,
applying an input signal with a bandwidth of 1 MHz, harmonic out-of-band distortions up to
the seventh order are completely included in the recorded signal.
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The procedure is now as follows:

1. First, the multi-tone test signal is applied to the power-amplifier chain. Here, three
different levels of input power, corresponding to different levels of saturation, are used.

2. With the input-signal and the recorded output-signal, a black-box model of the amplifier
is created. A Volterra model and a Wiener model are compared for all three levels of
saturation.

3. Since, as is shown in the following, the Wiener model results in a comparable modelling
error, it is used to calculate the pre-distorted signal with the secant method.

4. The pre-distorted signal is then used to excite the power amplifier chain. The output
signal is stored in the PC. The power level is measured with the power-meter.

5. Since the power level with pre-distortion is smaller than in the first step, the undistorted
signal has to be applied once more. The output power of the SMIQ is slightly reduced,
compared to step one, in order to guarantee the same output power of the amplifier chain
as with pre-distortion. This corresponds to an input back-off.

Modelling

Two models are compared using three different degrees of saturation of the high-power ampli-
fier: A Volterra model and a Wiener model. The amplifier input power is adjusted to different
levels with the SMIQ. The models are then fitted to the measured data. Both models have
a nonlinear order of seven. For the Volterra model, the least modelling error was found with
a linear kernel of length five, a third-order kernel with three taps, a fifth-order kernel with
two taps and a seventh-order kernel with one tap (memoryless). The corresponding structural
notation is mV = [5, 3, 2, 1]T . The best Wiener model is a four tap FIR filter followed by a sev-
enth order static non-linearity. In Tab. 4.5 the three different cases, corresponding to the three
different power levels, are compared. The modelling error, defined in (4.30), of the Wiener
model is approx. 1,6 dB higher as the modelling error of the Volterra model. The advantage
of the Wiener model is the small number of parameters: only eight complex parameters are
required whereas the Volterra model requires 36 parameters. The modelling quality decreases
further with increasing output power. This is reasonable, since with increasing output power
the high-power amplifier is driven more and more into saturation, corresponding to a relatively
hard non-linearity, which is difficult to fit with only a seventh order model. On the other hand,
out-of-band distortions higher than seventh-order cannot be analysed by the signal analyser
due to the limited bandwidth of 8 MHz. Only the weak in-band distortions are available for
the modelling, making thus the task of fitting higher nonlinear terms difficult. Therefore, the
nonlinear model-order is kept constant, even if the amplifier is driven in higher saturation.

case Pout/[dBm] Jmod,Wiener/[dB] Jmod,Volterra/[dB]
1 42,3 -37,3 -38,9
2 43,9 -35,5 -37,1
3 45,4 -33,8 -35,3

Table 4.5: Modelling errors – high-power EDGE amplifier
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Fig. 4.14 shows the spectrum of the measured output signal of the EDGE-HPA and the
spectrum of the Wiener model for case 1, see Tab. 4.5. The in-band signal and the out-
of-band third order harmonic distortions are approximated very accurately. The very small
(< −50 dBc) fifth and higher order out-of-band distortions are not well approximated. The
estimation of these intermodulation products is affected by the limited dynamic range (which
is approx. 60 dB) of the equipment and the resulting low signal-to-interference ratio. In this
case of a moderate saturation-level the third-order distortion is clearly dominating. It has to
be noted that also the higher order nonlinear terms are contributing to the distortion in the
third-order out-of-band zone. Using a seventh-order model improves the modelling, although
the distortion in the corresponding out-of-band harmonic zone is very small.
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Figure 4.14: Output spectra of the EDGE-HPA and the corresponding Wiener model, fs =
10, 24 MHz

Linearisation

After modelling, the signal at the output of the pre-distortion filter is computed. For this, the
secant method, described in Section 4.3, is applied. In Sections 4.4.1 and 4.4.2 simulations
demonstrated that with a dynamic range of 50-60 dB three iterations are optimal. More
iterations improve the linearisation only marginally and increase the complexity unnecessarily,
see, e.g., Fig. 4.10.

Once the signal after the pre-filter is determined it excites the power amplifier chain. The
(small) nonlinear distortion of the original multi-tone signal, introduced by the nonlinear pre-
distortion, implicate a change in the input power and thus also a change in the output power
of the high-power amplifier. In general, the power level with pre-distortion is smaller than the
power level without pre-distortion if the amplifier operates in saturation, see Fig. 4.7. This
is due to the fact that only a smaller linear gain guarantees that a solution of (4.16) exists
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for the whole input range. Therefore, for a correct comparison, the original undistorted input
signal has to be applied to the amplifier-chain once again and the input power level has to be
adjusted in such a way that the output power equals the output power with pre-distortion.
This corresponds to an output-power back-off (OBO) and yields thus a more linear behaviour
of the amplifier. The question is whether pre-distortion reduces the nonlinear distortions more
than the simple back-off.

Fig. 4.15 shows the spectra of the measured output signal with and without pre-distortion.
The signals are normalised, for the exact power level cf. Tab. 4.6. The nonlinear distortions
are significantly reduced, with pre-distortion approx. -45 dBc are achieved, with back-off only
-30 dBc are obtained in the immediate neighbourhood of the in-band region. Notice that for
this case, an output back-off of 1,4 dB does not result in a significant decrease of the out-of-
band distortions as can be seen from Fig. 4.14 and Fig. 4.15. The improvement in terms of
reduction of the out-of-band distortion is significantly higher if pre-distortion is used.

Fig. 4.16 shows a detailed view of the third-order out-of-band zones, extending over the
normalised frequency intervals f/fs = [−0, 15;−0, 05] and f/fs = [0, 05; 0, 15]. The perfor-
mance gain by using pre-distortion vs. back-off is clearly visible. With increasing distance
to the in-band region, the improvement decreases, according to the decrease of the nonlinear
distortions.
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Figure 4.15: Spectra of the measured output signal with and without digital pre-distortion,
fs = 10, 24 MHz

In order to quantify the performance gain, the total power in the third-order out-of-band
zone using the back-off approach and the pre-distortion approach is accumulated. For this, the
spectral power density in the (normalised) frequency range IL,3 = [−0, 15;−0, 05] correspond-
ing to the lower third-order zone and the frequency range IU,3 = [0, 05; 0, 15] corresponding to
the upper third-order zone is accumulated. The measure, which quantifies the linearisation-
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Figure 4.16: Spectra of the measured output signal with and without digital pre-distortion –
detailed view of the upper and lower out-of-band third-order harmonic zone, fs = 10, 24 MHz

gain of the pre-distortion vs. back-off is

gLin,3[dB] = 10 log
(
P3,OBO

P3,DPD

)
. (4.35)

Here, P3,OBO is the power in the third-order out-of-band zone with output back-off, whereas
P3,DPD is the power in this zone if digital pre-distortion (DPD) is used. In Tab. 4.6 the so
defined pre-distortion gain is listed for all three cases. With increasing saturation (higher
power level) the gain decreases – higher order nonlinear products become more pronounced
but cannot be reduced due to the inaccurate modelling, caused by the limited bandwidth and
the limited dynamic range of the measurement equipment.

The overall deviation from the targeted linear amplification is quantified by the distance
‖z[n] − d[n]‖2, where d[n] = g · u[n] is the targeted linear amplification of the input signal
and z[n] is the measured output signal, either with back-off or with pre-distortion. The
linearisation-gain using pre-distortion compared to back-off can thus be quantified by

gLin[dB] = 20 log
(
‖zOBO[n]− d[n]‖2
‖zDPD[n]− d[n]‖2

)
, (4.36)

where zOBO[n] is the measured amplifier output signal with back-off, and zDPD[n] is the mea-
sured output signal with pre-distortion. In case 1, which corresponds to the least output
power and therefore to the case where the power amplifier is not too much in saturation, pre-
distortion yields a significant gain compared to the simple back-off. The out-of-band power
in the third-order zone was reduced significantly, as well as the total distortion. Driving the
power amplifier with a higher input power reduces the gain achieved with the pre-distortion,
compared to the back-off approach, but it is still advantageous to use pre-distortion. The
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required back-off is larger in these cases, which corresponds to a larger gain-decrease when
pre-distortion is used.

case Pout/[dBm] OBO/[dB] gLin/[dB] gLin,3/[dB]
1 40,9 1,4 9,7 10,7
2 41,6 2,3 11,1 6,7
3 43,3 2,1 3,3 4,1

Table 4.6: Reduction of out-of-band power in the third-order harmonic zone using pre-
distortion vs. back-off (gLin,3) and reduction of overall distortion gLin

4.5 Discussion

Two approaches for linearisation of a nonlinear dynamic system were presented. The first
approach is based on a fixed-point formulation of the pre-distortion problem and applies the
successive approximation method for its solution [18]. The second approach solves the pre-
distortion problem via a root-search applying the secant method [12]. Hence, both approaches
solve the problem in an approximate way using an iterative technique. Further, these ap-
proaches do not assume a specific nonlinear pre-filter, since for most nonlinear systems the
structure of the linearising pre-filter cannot be determined analytically, even for static non-
linearities of moderate orders. The methods determine therefore not a set of optimal parame-
ters for a given pre-filter, but the signal after the pre-filter. Insofar, the iterative procedures,
the successive approximation method and the secant method can be seen as the approximation
to an ideal linearising pre-filter.

The convergence order of the iterative methods is of significant importance for a real-time
implementation of the pre-filter since a high convergence order implies either few implemented
stages (one stage corresponds to one iteration) or few iterations, if only one linearisation-
stage is implemented. The convergence order of the successive approximation method is only
linear, whereas the secant method converges with a superlinear order. This comes with a
higher complexity: a division has to be performed, which is a rather high-complex operation
if it must be implemented in hardware, e.g., in an FPGA. But it can be achieved with high
accuracy and a reasonable complexity, as will be shown in Section 5.4.1 in Chapter 5.

A further disadvantage of both methods is the lack of a convergence test which can be
performed with reasonable effort. In the case of the successive approximation method, the
convergence analysis can be performed but delivers very conservative results due the the nature
of the proof, which gives sufficient conditions for convergence, and uses various approximations
(upper bounds for operator norms). In the case of the secant method, no feasible method to
prove convergence is known. Due to the fact that the nonlinear power amplifier is in general
only weakly nonlinear, both methods do not experience unstable behaviour. This was shown
using simulations based on a realistic power amplifier model.

The methods were evaluated by simulations with respect to robustness against modelling
errors. Both methods proved to be resistant in the investigated cases. The secant method is,
due to its higher convergence order, advantageous, since in general one to two iterations less
than with the successive approximation method are required to achieve the same linearisation
accuracy.

In an experimental setup, a high-power class AB LDMOS amplifier for the GSM-EDGE



4.5 Discussion 83

standard was linearised with the secant method. It was shown that the proposed method
achieves also very good results in an experimental setup and delivers significantly better results
than the usual back-off approach.
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Chapter 5

Prototype Implementation

This chapter presents a prototype implementation of the pre-distortion algorithm discussed
in Chapter 4. Here, a memoryless power amplifier model with only AM/AM conversion is
considered in order to keep the implementation-complexity very low. The aim is to have a
flexible and extendable first implementation of the presented linearisation algorithm running
in real-time in hardware, concretely on an FPGA. Although the developed pre-distortion
method itself proved to be capable of linearising a high-power microwave amplifier, as shown
in Section 4.4.3, an implementation is necessary to prove that the algorithm can also be realised
using a fixed-point environment with a limited amount of resources. These resource-limitations
can be of different nature:

➾ maximal speed, e.g., maximal clock-frequency of the FPGA,

➾ limited resolution, e.g., 12 bit AD/DA converters, fixed-point arithmetic in the FPGA,

➾ limited number of arithmetic and/or logic units in the FPGA,

➾ maximal bus data-rates, and

➾ maximal allowed power consumption.

If the algorithm can be implemented and proves to be working, further optimisations and/or
extensions are to be performed to satisfy product constraints.

In a prototyping implementation several aspects regarding the future product realisation
can be neglected, e.g., the amount of hardware resources invested. The first principal aim
is to prove the feasibility of the algorithm, without placing the emphasis on implementation
efficiency. If the principal operation in hardware has been shown, the design can be extended
and optimised to satisfy the constraints of a future product. The implementation of a prototype
helps therefore not only to understand and possibly solve implementation problems, but to
prevent a future production from unexpected difficulties and possibly non-realisable parts of
the algorithm. Further, costly parts, as well as parts which are difficult to realise due to high
quality constraints, are detected.

In the following, an overview of the realised pre-distortion prototype is presented. After the
system concept has been introduced, the required hardware-components are briefly discussed.
The realised implementation is then described in a more detailed fashion, before measurement
results from this real-time implementation are presented and conclude this chapter.

85
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5.1 System Concept

The system concept of the digital signal processing part is illustrated in Fig. 5.1. The hardware
details are presented in Section 5.2.

The digital pre-distortion system is divided into two parts: The digital pre-distortion filter
is required to run in real-time. It is therefore implemented in an FPGA. The identification part,
responsible for estimating the model parameters, runs in a block-based mode, i.e., the model-
parameters are not updated continuously using every incoming data-sample, but using stored
data-blocks. This part is implemented in software on the PC. The signal to be transmitted is
stored in a memory section and accessible by the identification algorithm. The output signal
of the RF-part is sampled by the AD-converter and directly stored in a memory section. This
stored output signal, together with the input signal, is then used to estimate the parameters of
the power amplifier model. Once the model-parameters are determined, they are transferred
directly to the FPGA and determine the pre-distortion filter.
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Figure 5.1: Prototype system concept: digital part

The RF-part of the prototype is shown in Fig. 5.2. The DA-converter output signal is first
attenuated in order to drive the up-converter with a sufficiently small power, guaranteeing that
the up-converter behaves highly linear. After frequency-translation, the analogue RF-signal
is amplified with a driver amplifier with fixed gain. In order to have a variable signal-power
for the power amplifier targeted to be linearised, a variable attenuator is placed between the
driver- and the power amplifier. The output-signal of the power amplifier is attenuated and
frequency-translated with the down-converter. Up- and down-converter use both the same local
oscillator. The output-signal of the down-converter must be amplified before AD-conversion in
order to exploit the whole dynamic range of this converter. For this, two low-noise fixed-gain
amplifiers with a variable attenuator are used (not shown in the illustration).

5.2 Signal Processing Hardware – Description

Before the implemented design is presented in more detail the signal processing hardware
and the interface to the PC are briefly described in order to introduce the basic features,
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Figure 5.2: Prototype system concept: analogue RF part

terminology, available resources, and, consequently, hardware constraints.
The available hardware consists of:

➾ an FPGA,

➾ a DSP,

➾ a digital-to-analogue converter (DAC),

➾ a digital up-conversion stage (DUC),

➾ an analogue-to-digital converter (ADC),

➾ and a memory block.

In the following each element is introduced briefly, along with its key performance figures.

FPGA The Field Programmable Gate Array (FPGA) is intended to host the pre-distortion
filter. It is a XILINX Virtex-II FPGA XC2V1000 [77], a user programmable gate array
with various configurable elements. The Virtex-II architecture is optimised for high-
density and high-performance logic designs. The Fig. 5.3 shows an architecture overview.

Four major elements are organised in a regular array:

➾ Configurable Logic Blocks (CLBs) provide functional elements for combina-
torial and synchronous logic, including basic storage elements. CLBs include four
slices and two 3-state buffers. Each slice is equivalent and is comprised principally of
two function generators, which are configurable as 4-input look-up tables (LUTs),
as 16 bit shift-registers, or as 16 bit distributed SelectRAM memory, two storage
elements, arithmetic logic gates, and large multiplexers.

➾ Block SelectRAM memory modules provide large 18 kbit storage elements of
dual-port RAM, which are programmable from 16 kbit × 1 bit to 512 bits × 36 bits,
in various depth and width configurations.
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➾ Multiplier blocks are 18 bit×18 bit dedicated multipliers. Each multiplier block is
associated with each SelectRAM memory block. The multipliers are optimised for
operations based on the block SelectRAM on one port, but can also be used inde-
pendently of the block SelectRAM resource. Read/multiply/accumulate operations
are extremely efficient.

➾ Digital Clock Manager (DCM) blocks provide fully digital solutions for clock
distributions, delay compensation, and clock multiplication and division.

The input/output blocks (IOB) provide the interface to the outside. They are pro-
grammable and can be categorised into input blocks with an optional register, output
blocks with an optional register and an optional 3-state buffer, and a bidirectional block.

DCM DCMIOBIOB
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Figure 5.3: Virtex-II architecture overview

Tab. 5.1 presents the amount of resources of the used FPGA which are available for
custom designs.

CLBs SelectRAM Blocks

System
gates

# of Slices
Max.

distrib.
RAM

Mult.
blocks 18 kbit

blocks
Max. RAM DCMs

1 M 5.120 160 kbit 40 40 720 kbit 8

Table 5.1: Resources of the XILINX Virtex-II XC2V1000 FPGA

DSP The Digital Signal Processor (DSP) used in the realised prototype-design is used as
a control device controlling the ADC, DAC, and for setting the model-parameters of
the pre-distortion filter running in real-time on the FPGA. In further design-extensions,
the DSP is targeted to perform the model-parameter estimation, e.g., using an adaptive
algorithm, discussed in Chapter 3. In Tab. 5.2 the key features are summarised [78].
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Arithmetic Cycle-time # of 32 bit
instr./cycle

operations/cycle # of 32 bit
registers

fixed-point 1,67 ns 8 28 64

Table 5.2: Key performance figures of the DSP (TI TMS320C6416)

DUC, DAC Fig. 5.4 illustrates the digital up-conversion (DUC) and digital-to-analogue con-
version (DAC) stage, integrated in the dual DA-converter AD9777 [79]. The digital in-
phase (I) - and quadrature-phase (Q) input data (with a maximal resolution of 16 bit)
is delivered by the FPGA, concretely it is the output of the implemented pre-distortion
filter. After interpolation the digital samples are digitally up-converted (DUC), whereby
the only possible centre-frequencies fm are fs/2, fs/4, or fs/8, fs being the sampling rate
of the DAC. The clock is retrieved from the FPGA and a phase-locked loop (PLL) is used
to multiply or divide the delivered clock. The DUC, a complex modulator, has two out-
puts: IF and IF. If an analogue quadrature modulator is used for frequency-translation
to the targeted centre-frequency fc + fm, the output IF, centred at fm, is used as the
imaginary input-part for the analogue quadrature-modulator. The lower frequency im-
age at fc − fm can be suppressed with this method. In the presented prototype-design,
the DUC is used for digital modulation to fc = 70MHz, the frequency-translation is
performed with a conventional mixer. The output IF is therefore not used.
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Figure 5.4: Functional diagram of DUC and DAC

Tab. 5.3 presents the key specifications of the DAC. Especially important are the linearity
specifications, the high spurious-free dynamic range (SFDR) and the total harmonic
distortion (THD).

ADC The analogue-to-digital converter (ADC) is required to possess high sampling-rate due
to the large bandwidth of the amplifier output-signal, together with a high resolution.
Further, high linearity requirements have to be fulfilled. The key performance figures of
the used ADC AD6645 [80] are listed in Tab. 5.4.
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Resolution fs,max min. SFDR typ. SNR typ. THD
16 bit 400 MHz 73 dBc 75 dB -71 dB

Table 5.3: Key specifications of the DUC/DAC (AD9777)

Resolution fs,max min. SFDR typ. SNR max. input range
14 bit 105 MHz 89 dBc 75 dB 2,2Vss

Table 5.4: Key specifications of the ADC (AD6645)

In order to fully exploit the dynamic range, the input signal must have the full voltage
range of 2,2 Vss. This causes problems since the down-converter, if driven in a highly
linear mode, is not capable of delivering such a high signal level. Therefore, the signal
after the down-converter must be amplified which degrades the dynamic range due to
the introduced noise. It is important to notice that the highly linear ADC and DAC do
not determine the achieved dynamic range – this is determined by the up- and down-
converters and the required signal-amplification after the down-converter.

Memory The sampled signal as well as the transmit-signal are saved in a fast memory. For the
transmit-signal a bank of 1 M×32 bits of fast memory (up to 166 MHz) is available. Thus,
if the in-phase and quadrature-phase (or, as in the implemented design, the magnitude
and phase) are stored, requiring two bytes (14 bit resolution), a signal of 1 MSamples
can be stored. This buffer can be read-out cyclically, therefore, periodic signals with a
maximum period-length of 1 MSamples can be generated.

For storing the sampled signal a very large memory of up to 2 GB is available, allowing
to save a data stream with a rate of 400 MB/s. Therefore, since 2 Bytes are required per
input sample, a maximum sampling rate of the ADC of 100 MHz is allowed, which is at
the same time also near the maximal sampling-rate of the AD6645 ADC.

5.2.1 Assembled Digital System

Fig. 5.5 illustrates the digital part of the implemented pre-distortion prototype in detail. In
Appendix C.3 the hardware components are illustrated and briefly described.

A user-defined signal, generated in Matlab R©, can be loaded via the DSP into the memory-
section of the Sundance R© SMT370 module [81]. In this prototype-design only the nonlinear
AM-AM conversion is compensated, therefore, only the magnitude of the signal has to be pre-
distorted. Thus, the memory is divided into two sections where the magnitude of the signal and
the corresponding phase of the signal can be stored. The magnitude is then filtered by the pre-
distortion filter, the phase is not modified. The parameters required by the pre-distortion filter,
namely the model-parameters and the targeted linear gain, see (4.23) and (4.16), are computed
using the sampled output signal of the RF-part, stored in the large memory of the Sundance R©

SMT351 module [82]. The pre-distorted signal magnitude and the (undistorted) phase are
then used to calculate the in-phase (I-) and quadrature-phase (Q-) component. The pre-
distortion filter and the calculation of the I/Q-components are implemented in the FPGA on
the Sundance R© SMT370 module and run in real-time with a clock-frequency of fT = 70MHz.
Thus, a theoretical baseband bandwidth of 70 MHz is possible. The implemented pre-distortion
filter design allows for a maximum clock-frequency of fT = 133MHz.
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Figure 5.5: Digital part of the pre-distortion prototype in detail
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After I/Q-mapping the I/Q-components are four-times interpolated and digitally modu-
lated to a carrier at fm = 70MHz, required by the analogue RF-part. This digital signal is
then converted to an analogue signal with a sampling rate of fs = 280MHz, corresponding to
the data-rate after the interpolation filters. These functions are provided by the AD9777-DAC
on the Sundance R© SMT370 module. The parameters, the sampling-rate fs, the interpolation-
factors, as well as the modulation frequency fm, are controlled by the DSP on the Sundance R©

SMT365 module [83]. This module communicates via a 20 MB/s control-bus with the SMT370
module and with the PC, concretely with Matlab R© via the PCI [20] at the PC. The system
can be fully controlled by the PC.

5.3 Radio-Frequency Part – Description

Fig. 5.6 illustrates the analogue radio-frequency (RF) part of the measurement-setup. It
comprises an up-conversion stage, intended to translate an analogue signal, centred at 70 MHz,
to the ISM-band at 2,45 GHz and a down-conversion stage, which translates an RF-signal,
centred at 2,45 GHz to 70MHz [63]. The important aspects for the pre-distortion setup are
the required power-levels for a linear operation of the up- and down-converters, as well as
the bandwidth-limitation to a 3 dB-bandwidth of ∆f3 dB ≈ 20 MHz, which is caused by the
bandpass filters (BPF) in the up- and down-converters. The power levels at the different
positions in the setup are listed in Tab. 5.5. The distortion-free dynamic range of the up- and
down-converter is larger than 50 dB with these input-power levels.

Location P1 P2 P3 P4 P5 P6 P7

approx. Power / [dBm] −20 −17 0 0, (−1) 29, (30) −21, (−20) −18, (−17)

Table 5.5: Power levels at different positions, see Fig. 5.6

The Mini-Circuits power-amplifier ZJL-4HG [84] amplifies the output-signal of the up-
converter to a sufficiently high power-level in order to drive the power-amplifier ZVE-8G [58]
into saturation. This power amplifier is without input back-off (attenuation ATT=0 dB) at
the 1 dB compression point (P5 = 30 dBm), thus operating in the nonlinear region. After
attenuation, the signal is down-converted to a centre-frequency of 70 MHz. Since the output-
power of the down-conversion stage is very small (P7 = −18 dBm÷−17 dBm), the signal must
be amplified again in order to fully exploit the input-range of the ADC (Uss,max. = 2, 2 V),
cf. Tab. 5.4. This is achieved with two low-noise amplifiers (Avantek GPD-461/462/464 and
Mini-Circuits ZHL-1042J [58]) and two attenuators, one of these being variable in order to
adjust the output signal-level to the full input-range of the ADC of 2, 2Vss.
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5.4 Implementation Details

In this section, the implemented pre-distortion algorithm is described in more detail. The
implementation is divided into two parts: the actual pre-distortion filter implementation and
the model-parameter estimation. The pre-distortion filter is implemented in the FPGA and
runs in real-time, whereas the model-parameter estimation is implemented in software on the
PC. Such design supports the fact that the behaviour of the power amplifier is not changing
very rapidly. It is sufficient to estimate the model parameters only after changing the operating
conditions, e.g, using a different input power level.

This pre-distortion filter design is based on a very simple model for the power-amplifier.
Only the nonlinear distortions of the amplitude of the signal are corrected. The design is
intended to demonstrate only the implementation-feasibility of the pre-distortion algorithm,
the complexity is intentionally kept minimal.

The power-amplifier is modelled as a memoryless system with only nonlinear AM-AM
conversion. The model is a Taylor series with linear and third-order part,

y[n] = N
(
u[n]

)
= θ1u[n] + θ3u[n]

∣∣u[n]
∣∣2 =

(
θ1
∣∣u[n]

∣∣+ θ3
∣∣u[n]

∣∣3)ej arg(u[n]) , (5.1)

u[n] being the input-signal and y[n] the output-signal of the power-amplifier model. The phase
of the input signal remains unchanged. Only two model-parameters have to be estimated. It
is clear that only the third-order intermodulation products can be corrected with this model.
The two parameters θ1 and θ3, along with the intended linear gain g, see (5.2), are determined
by the modelling part.

5.4.1 Pre-distortion Filter Implementation

Fig. 5.7 illustrates the basic operation of the pre-distortion filter. Three iterations of the pre-
distortion algorithm, based on the Secant method, see Section 4.3, are implemented in the
FPGA. The first stage of the filter starts with two initial values, z0[n] = u[n] and z−1[n] = 0.
The operator T

(
z[n]

)
is, cf. (4.16),

T
(
z[n]

)
= N

(
z[n]

)
− g · u[n] , (5.2)

with the targeted linear gain g. The input T
(
z−1[n]

)
= T

(
0
)

= −g ·u[n], requires thus only one
multiplication. The product g · u[n] has to be determined anyway for the following iterations.
Therefore, the calculation of the starting value T

(
z−1[n]

)
requires effectively only a sign-change

of the product g · u[n].
Fig. 5.8 illustrates one filter-stage. Based on the four input signals zi[n], zi−1[n], T

(
zi−1[n]

)
and g ·u[n], the new value zi+1[n] is determined, an approximation of the ideal linearising signal
z[n], see (4.23). One stage requires the evaluation of the operator T(·), which is basically
determined by the selected model N(·) for the power-amplifier. In the implemented design,
the evaluation of this operator requires four real-valued multiplications (only the amplitude is
taken into consideration), one addition, and one subtraction, cf. (5.1). Further, one additional
multiplication, one division, and three subtractions have to be performed. The total amount
of arithmetic operations of one stage is summarised in Tab. 5.6.

The amount of operations, especially the (costly) multiplications, are essentially determined
by the power amplifier model. If higher-order terms, e.g., fifth- and seventh-order terms are
also taken into account, along with memory-effects, the complexity grows quickly. If memory
effects are considered additionally, the signal after the pre-distortion filter zI [n− 1], I = 3 in
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Operations/stage ADD,SUB MUL DIV
amount 5 5 1

Table 5.6: Amount of arithmetic operations per filter-stage

the presented design, must be fed back to each iteration stage, indicated by a dashed line in
Fig. 5.7 and Fig. 5.8.

Division

The FPGA provides optimised hardware multipliers but does not provide optimised hardware
dividers. The XILINX R© LogiCore library provides an IP-core for a divider implementation [85]
but it proves to be too costly in terms of resources. Therefore, an alternative method, based
on the Newton-Raphson root-finding algorithm is used [20]. If a division

r =
n

d
= n · 1

d
= n · x (5.3)
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has to be performed, the task is to calculate x = 1
d and multiply the result with the numerator

n. Rearranging terms gives

d− 1
x

= f(x) = 0 (5.4)

which can be solved with the Newton-Raphson method:

xi+1 = xi −
f(xi)
f ′(xi)

= xi(2− dxi) , i ≥ 0 , x0 given . (5.5)

The convergence rate of the Newton-Raphson algorithm is quadratic, therefore, it can be
expected that few iterations are sufficient. Further, the starting value x0 can be chosen freely
and, thus, a list of optimised starting values can be produced. Based on the value of d, the
optimal value x0 can be chosen. If x0 is further chosen to be a power of two, the multiplications
with x0 reduce to cheap shift-operations. In this way, the first iteration x1 is computed without
a multiplication.

The range of the possible values for a fractional number1 [86] is divided into N−1 intervals
Ik ≡ [2−k+∆; 2−(k−1)], k = 1, 2, . . . , N−1, ∆ being the resolution ∆ = 2−(N−1). The starting-
value x0 for each interval is then chosen to be x0 = 2k−1, thus, at the upper limit of the interval,
the correct result is obtained with the starting-value. Tab. 5.7 shows a list of starting values,
assuming that four bits are used to represent the involved signals. Here, the number d is given
by a fractional 1.3 two’s-complement representation and only positive values, ranging from 1
to ∆ are taken into account. The resolution (or numerical value of the least significant bit)
∆ = 2−3 = 1/8.

k Ik Exact value, x = 1
d Starting value, x0 = 2k−1

1
[

5
8 ; 1
] [

8
5 ; 1
]

20 = 1

2
[

3
8 ; 4

8

] [
8
3 ; 2
]

21 = 2

3 2
8 4 22 = 4

4 1
8 8 23 = 8

Table 5.7: Starting values for the Newton-Raphson method applied for performing a division
1/d, d being represented by four bits and interpreted as a fractional number.

It can be easily shown that with these starting-values, the Newton-Raphson algorithm is
guaranteed to converge, see Appendix C.1. Further, an error-analysis, cf. Appendix C.2, shows
that after the second iteration, the relative error ε2 = x2−x

x is only 6, 25 %. The arithmetic
cost for the division, if only two iterations are performed, is only two multiplications (the
multiplications with the initial value in the first iteration are shift operations) and three

1A number x can be represented with N bits in I.Q-format, I = 1, Q = N − 1 as

x = −bN−1 +

N−1X

k=1

bN−1−k2−k , bN−1−k ∈ {0, 1} and − 1 ≤ x ≤ 1− 2−N+1 .

The resolution is ∆ = 2−N+1, if N = 4, ∆ = 2−3 = 0, 125.
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subtractions. With the multiplication of the numerator, three multiplications in total are
necessary.

5.4.2 Model-parameter Estimation

Fig. 5.9 shows how the model-parameter estimation, based on the stored output signal y[n] and
the known input signal u[n], is performed. Since the ADC-converter samples a signal centred
at fm = 70 MHz and bandwidth ∆f ≈ 20 MHz with a sampling-frequency of fs = 100 MHz,
the digital signal results centred at the frequency fm = 30MHz, corresponding to a normalised
frequency θm = fm

fs
= 0, 3 (this is in fact an aliased spectrum). After bandpass-filtering with

a digital bandpass-filter (BPF) and demodulation, the baseband signal is obtained. This
output-baseband signal is then synchronised (aligned in the time-domain) with the input-
signal (via a correlation the experienced delay is estimated). After an interpolation, which
reduces the sampling-rate by a factor of four and at the same time the noise (implicit resolution
enhancement), the model parameters (θ1, θ3) for the simple model (5.1) are estimated using the
least-squares method. These operations are performed on the PC, the estimated parameters
then transferred via the DSP to the FPGA, where the pre-distortion filter is implemented.

Memory BPF Demod.

Delay
estim.

Input sig.

Param. Estim.� � � � �

�

�

�×4

q−∆

to DSP
y[n]
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�
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�

�

Matlab
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Interp.

∆
�

�

Figure 5.9: Model-parameter estimation

The model-parameters can be transferred to the FPGA without the necessity to interrupt
the pre-distortion filter, running continuously on the FPGA. In this way, the model-parameter
estimation can be performed in the background, either on the PC or directly on the DSP, once
a new output-data record is available in the memory.

5.5 Measurements and Performance Results

In this section, measurement results illustrating the performance of the pre-distortion filter
implementation, running in real-time on the FPGA, as well as a short summary, reporting the
invested FPGA-resources, are presented.

5.5.1 Measurement Results: Floating-point vs. Fixed-point

The pre-distortion method based on the secant-algorithm is capable to linearise a nonlinear
dynamic system. Simulations in Section 4.3 and especially measurements on a microwave
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high-power amplifier, reported in Section 4.4.3, proved the functionality. These results are
obtained by double-precision calculations performed on a PC using Matlab R© , i.e., the signal
after the pre-distortion filter is calculated in advance, based on the preceding modelling of the
power amplifier, and then used to excite the power amplifier.

In an FPGA implementation the pre-distortion filter is implemented using a very restricted
number representation, i.e., instead of floating-point numbers with double-precision, fixed-
point numbers are used. In the implemented design, a fixed-point number representation in
fractional 1.17-format is used. Hence, 18 bits are used to represent a signal. This specific
choice is motivated by the hardware-multipliers on the FPGA which can handle 18 bit signed
values.

Before programming the FPGA, a comparison between the floating-point implementation
of the pre-distortion filter (in Matlab R©) and the VHDL2-implementation is performed. The
VHDL-implementation of the pre-distortion filter is in fact an alternative description of the
algorithm. In contrast to the double-precision Matlab R© implementation the signals are repre-
sented and the arithmetic operations are performed using a fixed-point representation. Here,
one or more periods of the signal at the output of the pre-distortion filter are pre-computed
(off-line) with Matlab R© and with ModelSim R©3

Fig. 5.10 illustrates the performance of the pre-distortion algorithm based on the simple
third-order model (5.1) describing only the nonlinear AM-AM conversion. The signal is a
multitone signal with 5MHz bandwidth. After the estimation of the model-parameters (θ1, θ2)
the signal after the pre-distortion filter is calculated using Matlab R© employing three iterations
with the Secant method. This signal is then used to excite the RF-part of the measurement
setup. A spectrum analyser measures the output-signal of the pre-amplifier after the down-
converter, see Fig. 5.6.

Fig. 5.10 is a measurement result of the spectrum analyser and shows the excellent per-
formance of the pre-distortion algorithm using floating-point number representation. The
third-order intermodulation products are compensated perfectly. Approximately 15 dB of in-
terference suppression are achieved.

Fig. 5.11 shows a comparison of the VHDL-description (fixed-point accuracy, calculation
is done in ModelSim R©) and the Matlab R© description (double-precision) of the pre-distortion
filter. Basically no performance degradation can be observed, proving the robustness of the
derived pre-distortion method.

5.5.2 Measurement Results: Real-Time Implementation

Fig. 5.12 shows the measured output spectra, now with the pre-distortion filter running in
real-time on the FPGA. In this setup, the pre-amplifier in front of the AD-converter is not
used, therefore the power level decreases approximately by 20 dB, but with the advantage that
the dynamic range is significantly increased and reaches approx. 57 dB. The disadvantage
is that the input signal of the AD-converter is significantly smaller as the allowed range of
2,2Vss, resulting in a poorer SNR at the output of the AD-converter due to the introduced
quantisation noise. In this case the loss due to the introduced noise by the pre-amplifier is

2VHDL or Very high speed integrated circuit Hardware Description Language, is commonly used as a design-
entry language for FPGAs and ASICs in electronic design automation of digital circuits. VHDL was originally
developed on demand of the US Department of Defense in order to document the behaviour of the ASICs that
supplier companies were including in equipment, i.e., VHDL was developed as an alternative to huge, complex
manuals which were subject to implementation-specific details.

3ModelSimR© is a bit-true simulation and debug environment from Mentor GraphicsR©[87] for VHDL designs.



5.5 Measurements and Performance Results 99

60 65 70 75 80
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10
 RBW=100kHz    VBW=10kHz    ATT=10dB

f/[MHz]

S/
[d

B
m

]

no DPD

DPD (Matlab)

Figure 5.10: Measured output-spectra at 70 MHz intermediate frequency (IF), with and
without pre-distortion: Signal after the pre-distortion filter is calculated in double-precision
floating-point arithmetic.

larger as the loss due to the quantisation noise.

The model parameters are estimated once the power amplifier has reached a thermal
steady-state. Then the model parameters are delivered to the pre-distortion filter and the
pre-distortion filter, implemented in the FPGA, is activated. If the input power-level remains
constant, no new model-parameter estimation is necessary, the performance does not degrade
significantly over time (up to several hours).

A significant suppression of the third-order intermodulation products of up to 15 dB is
achieved, compared with an input power back-off (IBO) of 1 dB which assures the same power
level with and without pre-distortion. Essentially no difference between the real-time opera-
tion, working with fixed-point accuracy, and the Matlab R© calculation, where the signal after
the pre-distortion filter is pre-determined with double precision, exists. This proves that the
implemented pre-distortion algorithm is robust against rounding errors. Fig. 5.13 illustrates
the spectral regrowth and the compensation in more detail.

In order to achieve the same low out-of-band distortions applying only input power back-
off, the input power has to be reduced significantly. As can be seen in Fig. 5.14, a back-off of
approximately 9 dB is necessary to guarantee equal out-of-band distortions.

The measurement results reported here prove not only the principal functionality of the
developed pre-distortion algorithm, but show also that the algorithm is robust enough to
deliver excellent performance results in a fixed-point implementation.
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Figure 5.11: Measured output-spectra at 70MHz IF, with and without pre-distortion: Signal
after the pre-distortion filter is calculated in Matlab R© and via a simulation of the VHDL-
description using fixed-point arithmetic.
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Figure 5.13: Measured output-spectra at 70 MHz IF: Comparison of input-back off (IBO) and
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60 65 70 75 80
−100
−95 
−90 
−85 
−80 
−75 
−70 
−65 
−60 
−55 
−50 
−45 
−40 
−35 
−30 

 RBW=100kHz    VBW=100kHz    ATT=10dB

f/[MHz]

S/
[d

B
m

]

no DPD, 1dB IBO

no DPD, 9dB IBO

DPD, real−time

Figure 5.14: Measured output-spectra at 70 MHz IF: Comparison of input-back off (IBO) and
digital pre-distortion for achieving equal out-of-band distortions



102 CHAPTER 5. Prototype Implementation

5.5.3 Used FPGA Resources

Finally, the used FPGA-resources of the implemented pre-distortion filter are reported in
Tab. 5.8. The design can be clocked with a maximum frequency of fT,max = 133 MHz. Only
approx. 50 % of the available resources are used. Here, an FPGA slice is a subdivision of a
CLB.

resource Multipliers Flip-flop slices Slices Look-up tables
# used 25 4.517 2.918 1.241

usage in % 62 44 56 12

Table 5.8: Used FPGA resources, absolute numbers and used percentage of the total available
resources

Since not all FPGA resources are consumed by the design, further enhancements, e.g.,
using models with higher-order nonlinear terms and/or memory effects, are possible.

5.6 Discussion

The development of a prototype-implementation of the pre-distortion algorithm, introduced
in Chapter 4, was documented in this chapter. The signal processing part is divided in two
parts, the pre-distortion filter which runs in real-time on an FPGA and the model-parameter
estimation, which is performed on the PC. A minimal design, based on a very simple power
amplifier model, describing only nonlinear AM-AM conversion, has been implemented.

The aims of this design were to show that the presented pre-distortion algorithm is

➾ not too complex for an implementation in hardware, and

➾ robust enough to perform also well in a fixed-point implementation.

Both goals have been reached, as measurement results, presented in Section 5.5, prove.
The design uses approx. 50% of the FPGA-resources. This, together with a modular

implementation, enables eventual future extensions of the prototype.



Chapter 6

Conclusions

This thesis addressed digital pre-distortion for linearisation of nonlinear and dynamic mi-
crowave power amplifiers. The aim was the development of a linearisation algorithm which is
capable of linearising a variety of power amplifiers. Such algorithm had to be implemented in
a prototype system in order to prove its practical value.

The devised linearisation method can be considered as very flexible, capable of being ap-
plied in a plurality of applications with different degrees of complexity. These applications can
range from power amplifier linearisation in mobile communication base-stations of the second
generation to multichannel arrangements in base-stations of the third- and future generations,
as well as applications in high data-rate wireless local area networks.

En route to the implementation of a prototype pre-distortion system, four main tasks have
been addressed:

1. Modelling of the microwave power amplifier

2. Low complex and robust identification of the model parameters

3. Development of a pre-distortion algorithm

4. Implementation in signal processing hardware

Various models for nonlinear and dynamic microwave power amplifies have been evalu-
ated. The aim was to identify possible accurate and low-complex candidates for power am-
plifier models. Based on time-domain measurements on different microwave power amplifiers
it was shown that low-order nonlinearities, i.e., up to nonlinear order seven, are sufficient for
an accurate description of the nonlinear effects. The investigated power amplifiers showed
further that memory effects are rather concentrated, meaning that the kernel-lengths of, e.g.,
a Volterra model, are short. It was further shown that low complex models, such as Wiener-
or Hammerstein models, are adequate.

Adaptive gradient-type identification schemes for the identification of the parameters of
a Volterra- and Wiener systems have been presented. The stability analysis of the derived
adaptive algorithms was performed in a deterministic context. The common stochastic analysis
fails because important information regarding the statistics of the signals and required partial
knowledge of system characteristics is in practical applications missing. The deterministic
analysis provided furthermore very strong results about the stability of the devised algorithms
which cannot be provided by a conventional stochastic analysis.

To develop an analytical solution for the pre-equaliser is rarely possible in practice. There-
fore, an iterative procedure for the determination of the output signal of the pre-distortion

103



104 CHAPTER 6. Conclusions

filter has been devised. It is based on the Secant method for root-finding and applicable for all
investigated power amplifier models, providing an approximation to the exact solution for the
pre-equaliser. The presented method is therefore a powerful tool for solving the equalisation
problem in an approximate way. The derived method proved further to be advantageous in
terms of accuracy and complexity if compared with a known method based on a fixed-point
formulation of the pre-distortion problem.

A pre-distortion prototype system, based on the devised linearisation algorithm, has been
developed. The core of this hardware system is a real-time implementation of the linearisation
algorithm in an FPGA. With this experimental setup it has been shown that the derived
pre-distortion method admits also a practical implementation where only a limited amount of
resources and limited arithmetic accuracy is available. Measurement results with microwave
power amplifiers proved the excellent performance of the implemented algorithm.



Appendix A

Appendix: Adaptive Identification

Various definitions and derivations for Chapter 3 are presented.

A.1 Derivation of (3.40)

The local energy relation reads

‖θ̃θθn‖22 +
∣∣ēa[n]

∣∣2 = ‖θ̃θθn−1‖22 +
∣∣¯̄v[n]

∣∣2 , (A.1)

using the definitions

ēa[n] =
√
µ̄[n]ea[n] (A.2)

¯̄v[n] =
√
µ̄[n]v̄[n] . (A.3)

The finite time-horizon n = 0, . . . , N is considered. For a derivation of the global passivity
relation using the feedback structure, the following vectors-signals are defined:

ēa,N =
[√

µ̄[0]ea[0],
√
µ̄[1]ea[1], . . . ,

√
µ̄[N ]ea[N ]

]T
(A.4)

¯̄vN =
[√

µ̄[0]v̄[0],
√
µ̄[1]v̄[1], . . . ,

√
µ̄[N ]v̄[N ]

]T
. (A.5)

Summation over the time-horizon n = 0, . . . , N of (A.1) gives

‖θ̃θθN‖22 + ‖ēa,N‖22 = ‖θ̃θθ−1‖22 + ‖¯̄vN‖22 . (A.6)

A lossless map T̄, with ‖T̄‖22 = 1, transforms the input-vectors θ̃θθ−1 and ¯̄vN to the output-
vectors θ̃θθN and ēa,N .

With the definitions

v̄N =
[√

µ̄[0]v[0],
√
µ̄[1]v[1], . . . ,

√
µ̄[N ]v[N ]

]T
(A.7)

GN = diag
{(

1− µ[0]
µ̄[0]

)
, . . . ,

(
1− µ[N ]

µ̄[N ]

)}
(A.8)

AN = diag
{
µ[0]
µ̄[0]

, . . . ,
µ[N ]
µ̄[N ]

}
, (A.9)
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the system equations read[
θ̃θθN
ēa,N

]
= T̄

[
θ̃θθ−1

¯̄vN

]
, with ‖T̄‖22 = 1 (A.10)

¯̄vN = AN v̄N −GN ēa,N . (A.11)

The gain of the feedback path is

gFB = ‖GN‖22 = max
∣∣λ(GN )

∣∣2 = max
n=0,...,N

∣∣∣∣1− µ[n]
µ̄[n]

∣∣∣∣2 , (A.12)

where λ(GN ) is the spectrum of the matrix GN . Using the small gain theorem [69], the system
is guaranteed to be stable if

gFB gFF < 1 , (A.13)

and, since gFF = ‖T̄‖22 = 1, global stability is assured if

max
n=0,...,N

∣∣∣∣1− µ[n]
µ̄[n]

∣∣∣∣ < 1 . (A.14)

Thus, if
0 < µ[n] < 2µ̄[n] , n = 0, . . . , N , (A.15)

the gradient algorithm is globally stable [13, 14].

A.2 Derivation of (3.67) and (3.68)

Taking the norm on both sides of the update-equation (the derivation of the passivity relation
for the update-equation (3.64) is similar)

g̃
′
n = g̃

′
n−1 − µg[n]

(
ea,g[n] + vg[n]

)
x
′H
n (A.16)

and simple manipulation results in

‖g̃′n‖22 − ‖g̃
′
n−1‖22 + µg[n]

∣∣ea,g[n]
∣∣2 − µg[n]

∣∣vg[n]
∣∣2 =

µg[n]
∣∣ea,g[n]− vg[n]

∣∣2 (µg[n]‖x′n‖22 − 1
) (A.17)

which gives, if (
µg[n]‖x′n‖22 − 1

)
< 0 , (A.18)

(cf. (3.65)) the passivity relation (3.67).

A.3 Derivation of (3.73)

Multiplication of the update-equation

h̃n = h̃n−1 −Mn

(
ea[n] + ve[n]

)
ϕϕϕHn , (A.19)

with M−1/2
n yields

M−1/2
n h̃n = M−1/2

n h̃n−1 −M1/2
n

(
ea[n] + ve[n]

)
ϕϕϕHn . (A.20)
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Taking the squared `2-norm on both sides results in

h̃Hn M−1
n h̃n = h̃Hn−1M

−1
n h̃n−1 +ϕϕϕnMnϕϕϕ

H
n

∣∣ea[n] + ve[n]
∣∣2 (A.21)

− 2
∣∣ea[n]

∣∣2 − ea[n]v∗e [n]− e∗a[n]ve[n] .

If
0 < ϕϕϕnMnϕϕϕ

H
n < 1 (A.22)

h̃Hn M−1
n h̃n ≤ h̃Hn−1M

−1
n h̃n−1 −

∣∣ea[n]
∣∣2 +

∣∣ve[n]
∣∣2 (A.23)

results. This gives the local passivity relation (3.73).

A.4 Derivation of (3.86)

Insertion of the modified noise

v̄e[n] =
α[n]
ᾱ[n]

ve[n]−
(

1− α[n]
ᾱ[n]

)
ea[n] (A.24)

in √√√√ N∑
n=0

ᾱ[n]
∣∣v̄e[n]

∣∣2 =

√√√√ N∑
n=0

ᾱ[n]
∣∣∣∣α[n]
ᾱ[n]

ve[n]−
(

1− α[n]
ᾱ[n]

)
ea[n]

∣∣∣∣2 (A.25)

results in the upper bound√√√√ N∑
n=0

ᾱ[n]
∣∣v̄e[n]

∣∣2 ≤
√√√√ N∑

n=0

ᾱ[n]
∣∣∣∣α[n]
ᾱ[n]

ve[n]
∣∣∣∣2 +

√√√√ N∑
n=0

ᾱ[n]
∣∣∣∣(1− α[n]

ᾱ[n]

)
ea[n]

∣∣∣∣2 . (A.26)

This can be upper bounded further√√√√ N∑
n=0

ᾱ[n]
∣∣∣∣α[n]
ᾱ[n]

ve[n]
∣∣∣∣2 +

√√√√ N∑
n=0

ᾱ[n]
∣∣∣∣(1− α[n]

ᾱ[n]

)
ea[n]

∣∣∣∣2 (A.27)

≤ δN

√√√√ N∑
n=0

ᾱ[n]
∣∣ve[n]

∣∣2 + γN

√√√√ N∑
n=0

ᾱ[n]
∣∣ea[n]

∣∣2 ,
whereby

δN = max
n=0,...,N

α[n]
ᾱ[n]

(A.28)

γN = max
n=0,...,N

∣∣∣∣1− α[n]
ᾱ[n]

∣∣∣∣ . (A.29)

Insertion of the upper bound (A.27) in√√√√ N∑
n=0

ᾱ[n]
∣∣ea[n]

∣∣2 ≤√h̃H−1M−1h̃−1 +

√√√√ N∑
n=0

ᾱ[n]
∣∣v̄e[n]

∣∣2 . (A.30)

yields after simple manipulations the global passivity relation (3.86).



108 CHAPTER A. Appendix: Adaptive Identification



Appendix B

Appendix: Linearisation by
Pre-distortion

B.1 The Contraction Mapping Theorem

The contraction mapping theorem can be stated as follows [49, 48]:

Contraction Mapping Theorem. If T is a contraction mapping on a closed subset S of
a Banach space1, there is a unique vector z ∈ S satisfying z = T(z). Furthermore, z can be
obtained with the method of successive approximation starting from an arbitrary initial vector
in S .

The definition of a contraction mapping is

Definition. Let S be a subset of a normed space S and let T be a transformation mapping
S into S . Then T is said to be a contraction mapping if there is an α, 0 ≤ α < 1 such that
‖T(z1)− T(z2)‖ ≤ α‖z1 − z2‖ for all z1, z2 ∈ S .

1A Banach space is a complete normed linear vector space. A normed linear vector space X is said to be
complete if every Cauchy sequence from X has a limit in X.
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Appendix C

Appendix: Prototype
Implementation

C.1 Convergence of the Newton-Raphson Method Applied for
Division

A method to prove the convergence for the Newton-Raphson algorithm is based on the Con-
traction Mapping Theorem, see Appendix B.1. Starting point is the iteration-rule (5.5),

xi+1 = xi −
f(xi)
f ′(xi)

= xi(2− d · xi) , i ≥ 0 , x0 given . (C.1)

This can be viewed as a method of successive approximation applied to the function

g(x) ≡ x− f(x)
f ′(x)

= x(2− d · x). (C.2)

A fixed-point of g(x) is thus a solution to f(x) = 0. Differentiating with respect to x gives

g
′
d(x) = 2(1− d · x). (C.3)

The index d denotes that g
′
(x) is parameterised by d. For convergence,∣∣g′d(x)∣∣ < 1 , (C.4)

resulting in the limits for x
1
2d

< x <
3
2d

. (C.5)

If x is in this interval, g(x) is contractive. If, e.g., d ∈
[

3
8 ; 1

2

]
, corresponding to the second row

in Tab. 5.7, the starting value x0 = 2 is in the corresponding intervals I1 : 4
3 < x < 4 for d = 3

8
and I2 : 1 < x < 3 for d = 1

2 , thus being in the contractive region of g(x). It has further to be
shown that the function g(x) maps the intervals also in regions where g(x) is contractive. As
can easily be shown,

I1
g(·),d=3/8−−−−−−→

[
2;

8
3

]
∈ I1 (C.6)

I2
g(·),d=1/2−−−−−−→

[
3
2
; 2
]
∈ I2 , (C.7)

g(x) remains therefore contractive. This can be done also for the first row of Tab. 5.7, thus,
the method converges for all four possibilities.
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C.2 Error-Analysis of the Newton-Raphson Method Applied
for Division

The relative error εi at each iteration, assuming that x = 1
d is the correct value, is easily

computed as

εi =
xi − x

x
= d · xi − 1 . (C.8)

Corresponding to Tab. 5.7, the worst-case values of d are the lower limits in each interval, i.e.,
dwc = 2−k + ∆ with k ∈ {1, N − 1} if N bits are used for the number representation, and
∆ = 2−(N−1). The correct value would be x = 1

dwc
= 1

2−k+∆
≈ 1

2−k = 2k, assuming that ∆ is
small (large N) and k � N . The initial value is x0 = 2k−1, thus, if k � N and N �, the
largest errors result. With only the initial value, the relative error is

ε0 = dwc · x0 − 1 =
(
2−k + ∆

)
2k−1 − 1 ≈ 2−1 − 1 = −50 % . (C.9)

The first iteration results in

x1 = x0(2− dwc · x0) = 2k−1
(
2− (2−k + ∆)2k−1

)
≈ 2k

(
1− 2−2

)
, (C.10)

the relative error being thus

ε1 =
x1 − x

x
= −2−2 = −1

4
= −25 % . (C.11)

The second iterations reduces the error to

ε2 =
x2 − x

x
= −2−4 = − 1

16
= −6, 25 % , (C.12)

according to the quadratic convergence rate of the Newton-Raphson method.
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C.3 The Prototyping-Hardware

Fig. C.1 shows a picture of the Sundance R© SMT310Q carrier-board [88]. It is used to carry the
processing modules (SMT365, SMT370-AC, SMT351-G) in the four available TIM-40 slots1.
It provides the interface with the host PC via the PCI (Peripheral Component Interface). The
V363EPC is a bridge-chip responsible for connecting the host PCI-bus to various devices on
the PCI-card bus-system.

Figure C.1: Sundance R© SMT310Q carrier board

Fig. C.2 shows the carrier board equipped with all used modules. The interconnection
between the modules is performed with the high-speed bus (SHB).

The Sundance R© SMT365 module [83], shown in Fig. C.3, is placed in the first TIM-slot
and controls the operation of other modules. It consists principally of an FPGA, a DSP, and
the high-speed bus-interfaces (SHB-interface, up to 400 MB/s) for fast data exchange with the
other modules. In the prototype the DSP is used as a control device for the ADC/DAC and
memory modules and to set the parameters for the pre-distortion filter running in real-time
on the FPGA at the module SMT370.

The ADC/DAC-module SMT370 [81], see Fig. C.4, provides the interface to the analogue
part of the prototype using high-speed ADC/DAC-converters. Further, the FPGA hosts the
pre-distortion filter. Two high-speed SHB-interfaces, one of these being used for transferring
the sampled output signal to the memory module SMT351-G, are also provided.

For storing the sampled output signal the module SMT351-G [82], shown in Fig. C.5, is
used. This module provides 1 GB of fast memory, allowing to capture the sampled output
signal. The interface with the other modules is the high-speed bus SHB (input from the ADC,
the output is connected to the DSP-module SMT365).

1TIM stands for Texas Instruments Module and is an open standard designed to simplify the integration of
multiple TMS320C4xs and other processors with communications ports into a system.



114 CHAPTER C. Appendix: Prototype Implementation

Figure C.2: Sundance R© SMT310Q carrier board, equipped with all modules

Figure C.3: Sundance R© SMT365 DSP/FPGA-module
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Figure C.4: Sundance R© SMT370 ADC/DAC-module

Figure C.5: Sundance R© SMT351 memory-module
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Fig. C.6 illustrates the RF-part of the experimental setup. The small amplifier (Minicircuits
ZJL-4HG, in lower right corner) is used to boost the signal for the power amplifier (Minicircuits
ZVE-8G, shown in the lower left corner).

Figure C.6: RF-part of the experimental setup
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Appendix: Abbreviations and
Symbols

D.1 List of Abbreviations

ADS advanced design system (Agilent Technologies)
AM-AM amplitude-to-amplitude conversion
AM-PM amplitude-to-phase conversion
ADC analogue-to-digital converter
ASIC application specific integrated circuit
BPF bandpass filter
CDMA code division multiple access
DAC digital-to-analogue converter
DUC digital up-conversion
DPD digital pre-distortion
DSP digital signal processor
EDGE enhanced data rates for global evolution
ε-NLMS epsilon-normalised least-mean-squares
FDD frequency division duplex
FIR finite impulse response
FPGA field programmable gate array
GSM global system for mobile communication
HPA high-power amplifier
IBO input power back-off
IF intermediate frequency
ISM industrial, scientific, medical
LMS least-mean-squares
LDMOS laterally diffused metal on silicon
NLMS normalised least-mean-squares
OBO output power back-off
PA power amplifier
PC personal computer
RBW resolution bandwidth
RF radio frequency
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SDR software defined radio
SNR signal-to-noise ratio
VBW video bandwidth
VHDL very high speed integrated circuit hardware description language
UMTS universal mobile telecommunications system
WCDMA wideband code division multiple access
WLAN wireless local area network

D.2 List of Mathematical Symbols

a, α scalar constant
x(t) function, parameter is t
x[n] sequence, parameter is n
X(f) Fourier-transform
x vector
X matrix
V operator
<{y} real part of y
={y} imaginary part of y
θθθ parameter vector
J(·) cost function
Jr(·) relative cost
M set
f frequency
‖·‖ norm
‖·‖2 `2-norm
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Communications and Radio-Frequency Eng.
Vienna University of Technology

Language Skills

German (mother tongue)
English (business fluent)
Italian (business fluent)
Spanish (basics)


	Introduction
	Outline of the Thesis and Contributions
	Power Amplifier Linearisation: From Analogue Linearisation to Digital Pre-distortion
	Motivation
	Analogue Techniques
	Power Back-off
	Feedforward Linearisation
	Cartesian-Loop

	Digital Pre-distortion
	Digital Pre-distortion: Building Blocks
	Digital Pre-distortion -- Brief Literature Review



	Power Amplifier Modelling
	The Volterra Series
	Complex Baseband Volterra Series
	Frequency Domain Representation of a Volterra Series
	Discrete-time Volterra Series
	Series Representation of a Static Non-linearity
	Parameter Estimation for the Volterra Model

	The Wiener Model
	Parameter Estimation for the Wiener Model

	The Hammerstein Model
	Parameter Estimation for the Hammerstein Model

	The Saleh Model
	Parameter Estimation for the Saleh Model

	Model-Structure Selection and Model Validation
	Model-Structure Selection
	Model Validation

	Modelling Measured and Simulated Power Amplifiers
	Black-Box Modelling of Three Microwave Power Amplifiers
	Modelling a Three-Stage High-Power LDMOS EDGE Amplifier
	Modelling a Single-Stage Medium-Power Amplifier
	Modelling a Simulated WCDMA Power Amplifier


	Discussion

	Adaptive Identification
	The Stochastic-Gradient Algorithm
	Stochastic-Gradient Identification for Linear-in-Parameter Models
	Convergence Analysis -- Error-Vector in the Mean
	Deterministic Robustness Analysis -- Local Passivity
	Deterministic Robustness Analysis -- Global Passivity
	Feedback Structure -- Local and Global Passivity
	Example -- Learning Behaviour of an Adaptive Volterra Filter

	Stochastic-Gradient Identification of a Wiener System
	First Step: Parameter Estimation for Linear Filter
	Local Passivity Relations
	Feedback Structure -- Local Passivity
	Global Passivity Relations
	Example 1: Identification of the Linear Part of a Wiener System -- Local Stability
	Example 2: Identification of the Linear Part of a Wiener System -- Global Stability

	Second Step: Parameter Estimation for Static Nonlinear Filter
	Example 1 continued: Identification of the Nonlinear Part of a Wiener System

	The Complete Algorithm


	Discussion

	Linearisation by Pre-distortion
	Formulation of the Linearisation Problem as an Optimisation Problem
	The Fixed-Point Approach
	Linearisation using the Secant Method
	Applying the Linearisation Methods
	Comparison of the Convergence Rate
	System-Model Mismatches
	Influence of Measurement Noise
	Neglecting Memory Effects
	Underestimating the Nonlinear Order

	Linearising a High-Power LDMOS EDGE Amplifier -- Measurement Results
	Modelling
	Linearisation


	Discussion

	Prototype Implementation
	System Concept
	Signal Processing Hardware -- Description
	Assembled Digital System

	Radio-Frequency Part -- Description
	Implementation Details
	Pre-distortion Filter Implementation
	Division

	Model-parameter Estimation

	Measurements and Performance Results
	Measurement Results: Floating-point vs. Fixed-point
	Measurement Results: Real-Time Implementation
	Used FPGA Resources

	Discussion

	Conclusions
	Appendix: Adaptive Identification
	Derivation of (3.40)
	Derivation of (3.67) and (3.68)
	Derivation of (3.73)
	Derivation of (3.86)

	Appendix: Linearisation by Pre-distortion
	The Contraction Mapping Theorem

	Appendix: Prototype Implementation
	Convergence of the Newton-Raphson Method Applied for Division
	Error-Analysis of the Newton-Raphson Method Applied for Division
	The Prototyping-Hardware

	Appendix: Abbreviations and Symbols
	List of Abbreviations
	List of Mathematical Symbols

	Bibliography

