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Kurzfassung

Signalverarbeitungsalgorithmen moderner Mobilkommunikationssysteme stellen

sehr hohe Anforderungen an die Rechenleistung der zugrunde liegenden Hard-

ware bei eng begrenztem Platz und Leistungsverbrauch. Diese Algorithmen

müssen aber in Echtzeit ausgeführt werden, da sonst Dienste wie z.B. die

Sprachtelephonie gar nicht möglich wären. Diese beiden Anforderungen an

Signalverarbeitungsalgorithmen—Bewältigung eines hohen Rechenaufwandes und

Echtzeitfähigkeit—schließen sich aber oft gegenseitig aus. Die vorliegende Disser-

tation liefert Lösungen dieses Problems, indem die Komplexität von Signalverar-

beitungsalgorithmen auf Kosten der Rechengenauigkeit reduziert wird. Das ist vor

allem dann interessant, wenn die Genauigkeit der zugrunde liegenden Hardware oder

die Anforderungen an die Rechengenauigkeit des Algorithmus limitiert sind.

Der erste Teil der Dissertation beschäftigt sich mit der Echtzeitsimulation von

geometriebasierten Kanalmodellen. Derartige Kanalmodelle werden oft zur Simu-

lation von MIMO (Multiple-Input Multiple-Output) Kanälen eingesetzt, da sie die

räumliche Struktur der Mobilfunkkanäle implizit berücksichtigen. Solche Modelle

erfordern allerdings eine sehr hohe Rechenleistung, da für jeden Ausbreitungspfad,

für jeden Zeitpunkt sowie auch für jede Frequenz eine komplexe Exponentialfunk-

tion ausgewertet werden muss. Auf Echtzeit-Kanalsimulatoren ist daher die Anzahl

der Pfade limitiert, die simuliert werden kann.

Zeitvariante, frequenzselektive MIMO Kanäle können mathematisch als vierdi-

mensionale Folgen beschrieben werden, wobei die einzelnen Dimensionen die Zeit,

die Frequenz, den Raum am Sender und den Raum am Empfänger repräsentieren.

In den meisten Mobilkommunikationssystemen sind diese Folgen bandlimitiert: In

der Zeit durch die maximale Dopplerverschiebung, in der Frequenz durch die ma-

ximale Verzögerung im Kanal und im Raum durch die Aufspreizung der Ein- bzw.

Ausfallswinkel.

Für eine block-basierte Kanalsimulation müssen indexlimitierte Teile dieser Fol-

gen ausgewertet werden. Man kann zeigen, dass solche indexlimitierten Teile einer

bandlimitierten Folge einen Unterraum niedriger Dimension aufspannen. Derselbe

Unterraum wird auch von mehrdimensionalen DPS (discrete prolate spheroidal) Fol-

gen aufgespannt.

Ein wichtiger Beitrag dieser Arbeit ist ein neuer Algorithmus zur approximati-

ven Berechnung der Projektion eines geometriebasierten Kanalmodells auf diesen
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Unterraum in O(1) Operationen. Der Approximationsfehler kann über die Unter-

raumdimension kontrolliert werden. Dadurch lässt sich Rechenaufwand und Genau-

igkeit des Kanalmodells auf die zugrunde liegende Hardware abstimmen. Auf einer

Hardware mit 16 bit Fixpunktarithmetik lässt sich dadurch der Rechenaufwand im

Vergleich zu einer konventionellen “Sum-of-sinusoids” Methode um mehr als eine

Größenordung reduzieren.

Der zweite Teil der Dissertation geht auf die Entwicklung und die Simulation von

Empfängerarchitekturen von modernen Mobilfunksystemen ein. Spezielles Augen-

merk wird dabei auf Empfängerarchitekturen mit geringer Komplexität und Robust-

heit gegenüber Interferenz gelegt.

Zuerst untersuchen wir den Durchsatz verschiedener Empfängerarchitekturen des

HSDPA (High Speed Downlink Packet Access) Systems von UMTS mittels einer

Matlab Simulationsumgebung. Das hat den Vorteil, dass Algorithmen schnell

und einfach in einer höheren Programmiersprache umgesetzt werden können. Ein

herkömmlicher Rake-Empfänger, ein Rake-Empfänger mit Interferenzunterdrückung

und ein LMMSE (Linear Minimum Mean Square Error) Entzerrer werden unter-

sucht. Wir zeigen, dass ein LMMSE Entzerrer auf Kosten eines höheren Rechen-

aufwands einen höheren Durchsatz als ein Rake-Empfänger erzielt. Der Rechenauf-

wand kann jedoch erheblich reduziert werden, wenn man einen iterativen Krylov-

Algorithmus zum Lösen des entstehenden Gleichungssystems einsetzt.

Viele Effekte, die in einer Hardwareimplementierung auftreten, können bei einer

reinen Software-Simulation nicht berücksichtigt werden. Daher zeigen wir in ei-

nem zweiten Beispiel die Entwicklung und Implementierung eines GSM-Empfängers

mit Intelligenten Antennen auf einer speziellen Signalverarbeitungshardware. Der

Empfänger muss ein generalisiertes Eigenwertproblem in Echtzeit lösen. Wir zeigen,

wie dieses Problem numerisch in Fixpunktarithmetik gelöst werden kann. Darüber

hinaus zeigen wir Ergebnisse die mit dem ARC SmartSim Kanalsimulator erzielt

worden sind.



Abstract

Many signal processing algorithms in modern wireless communication systems come

with a very high computational complexity. Moreover, these algorithms must be

implemented in real time. Since the computational performance of digital signal

processors is limited, these two requirements—dealing with arithmetic complexity

and real-time constraints—are often mutually exclusive. This thesis tries to solve

this problem by trading the complexity of signal processing algorithms for accuracy.

This approach is feasible if the accuracy of the underlying hardware or the accuracy

requirements of the algorithm’s result is limited.

The first part of this thesis deals with the real-time simulation of geometry-based

channel models. Geometry-based channel models implicitly model the spatial struc-

ture of the channel and are thus ideally suited for simulating MIMO (multiple-input

multiple-output) systems. However, such models are computationally expensive,

since for every propagation path, every time instance, and every delay or frequency

bin, a complex exponential has to be evaluated. On a real-time hardware chan-

nel simulator the number of paths P that can be simulated is thus limited by the

available processing power.

Time-variant, frequency-selective MIMO channels can be described as four-

dimensional sequences, where the dimensions represent time, frequency, space at

the receiver, and space at the transmitter. In wireless communication systems, such

sequences are bandlimited by the maximum Doppler frequency in time, by the max-

imum delay of the channel in frequency, by the angle of arrival spread in the space

at the receiver, and by the angle of departure spread at the space at the transmitter.

For block based channel simulation, index-limited parts of these four-dimensional

sequences need to be evaluated. It can be shown, that such index-limited parts span

a low-dimensional subspace. The same subspace is spanned by the multidimensional

discrete prolate spheroidal (DPS) sequences.

An important contribution of this thesis is a new algorithm that allows to compute

the projection of a geometry-based channel model onto the DPS subspace in O(1)

arithmetic operations. By adjusting the dimension of the subspace it is possible to

trade complexity for accuracy. On a 16 bit fixed-point arithmetic processor, the

computational complexity can be reduced by more than one order of magnitude

compared to conventional sum-of-sinusoids implementations.

The second part of this thesis addresses the development and simulation of receiver
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architectures for state-of-the-art wireless communication systems. Special emphasis

is put on low-complexity receiver designs and robustness of the algorithm against

interference.

First, the throughput performance of different receiver architectures for the High

Speed Downlink Packet Access (HSDPA) subsystem of UMTS are investigated using

a Matlab simulation environment. The advantage of this approach is that ideas

can be quickly implemented in a high-level language using a broad range of tool-

boxes. A conventional rake receiver, a rake receiver with interference cancelation,

and a receiver employing a linear minimum mean square error (LMMSE) equal-

izer are investigated. It is shown that a LMMSE equalizer at the receiver achieves

higher throughput than a conventional rake receiver, at the cost of higher complex-

ity. As a consequence, an iterative algorithm based on Krylov subspace projections

is introduced, which approximates the LMMSE equalizer with negligible loss of per-

formance. Computational complexity as well as storage requirements are strongly

reduced.

Not all effects occurring on the final hardware, such as fixed-point issues and

real-time constraints, can be taken into account in a software simulation. Therefore,

in a second example, a GSM receiver employing multiple antennas is developed

and implemented directly on a DSP board. The smart antenna algorithm requires

the solution of an eigenvalue problem in real-time. It is shown how to solve this

eigenvalue problem numerically on a fixed-point processor. Real-time simulation

results obtained with the ARC SmartSim channel simulator are described.
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1 Introduction

1.1 Scope

Mobile communications are a key technology for the 21st century. There is a never

ending demand for data rate and mobility. To realize the vision of staying “opti-

mally connected anywhere, anytime”, future wireless communication systems must

support high data rates for users with high mobility (traveling by car or train).

Fig. 1.1 depicts mobility vs. bit rate of current (2nd and 3rd generation) and next

generation (4th generation) wireless communication systems [109].

The performance of wireless communication systems is inherently limited by the

wireless channel. There are two physical means to increase the data rates of current

wireless communication systems without increasing the power at the transmitter:

increasing the channel bandwidth [101], and using multiple transmit and receive

antennas [49, 106]. When designing such systems, the frequency domain and the

spatial domain of the wireless channel needs to be taken into account.

The wireless channel is characterized by multipath propagation. Signals transmit-

ted from one transmit antenna are scattered by various objects in the environment on

their way to the receive antenna. A single transmitted signal is therefore replicated

and arrives at a receiver at different times, with different amplitudes, polarities,

angles of arrival and possibly at different frequencies.

Multipath propagation causes time-, frequency-, and space-selective fading. Mo-

bility of either transmitter or receiver causes different Doppler shifts in the channel

and thus time selective fading. Scattering objects at different distances cause delays

between the impinging signals and thus frequency selective fading. Last but not

least, if multiple transmit and multiple receive antennas are used, spatial selective

fading can be observed.

For the simulation of wireless communication systems, channel models are re-

quired. Especially for testing mobile radio hardware devices, real-time implemen-

tations of such channel models are needed. The channel model must be able to

reproduce all properties of the wireless channel that are relevant to the performance

of the system.

For example, first generation mobile communication systems are mainly narrow-

band systems and thus simple path loss models like the Okumura-Hata model [52]

1
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Figure 1.1: Mobility versus bit rate for existing and future mobile communications

systems [109].

are sufficient. Second and third generation wireless communication systems require

time-variant frequency-selective channel models. The most prominent examples

are the COST 207 models [44], which were instrumental for the development of

the GSM system. Fourth generation wireless communication systems employing

multiple-input multiple-output (MIMO) technology require spatial channel models.

In the COST 259 [34] action, a geometry-based stochastic channel model (GSCM)

for the directional characteristics in macro-, micro-, and picocells was derived. Later

on, this model was further refined in COST 273 [35] to include more scenarios and

MIMO channels as well.

The computational complexity of the channel models increases from generation

to generation. Especially geometry-based channel models are computationally in-

tensive, since for every propagation path, every time instance, and every delay or

frequency bin a complex exponential function evaluation is needed. Thus, on a real-

time hardware channel simulator, like the ARC SmartSim [7], the number of paths

P that can be simulated, is limited by the available processing power.

Not only the computational complexity of channel models, but also the computa-

tional complexity of receiver algorithms increases from generation to generation. On

the other hand, the computational performance of digital signal processors (DSPs)

does not grow at the same rate [94,98].

To close the gap between algorithmic complexity on one hand and constraints of

DSPs regarding energy, space, and computational power, low-complexity algorithms

are needed. Such algorithms can be obtained, for example, by trading accuracy

for efficiency. In this thesis, this concept is applied to the simulation of wireless

2
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communication channels as well as to receiver algorithms for various communication

standards. Issues like real-time constraints, numerical stability, numerical accuracy

and complexity are considered. As a target architecture, the ARC SmartSim [7]

development platform is used.

1.2 Synopsis

This thesis is divided in two parts. The first part deals with the low-complexity

real-time simulation of wireless frequency- and time-selective MIMO communica-

tion channels. The focus is put on geometry-based channel models. The second

part focuses on the development and implementation of low-complexity receiver ar-

chitectures for the wireless communication standards UMTS-HSDPA and GSM.

Part I. Chapter 2 provides an introduction into characterization, modeling, and

simulation of wireless communication channels.

Chapter 3 introduces multidimensional discrete prolate spheroidal (DPS) se-

quences. Multidimensional DPS sequences are a generalization of the DPS

sequences—studied by Slepian et al. [103]—to many dimensions. However, unlike

the one-dimensional case, the efficient and numerically stable calculation of multidi-

mensional DPS sequences is not trivial and has not been treated satisfactorily in the

literature. In Chapter 3 a theory of multidimensional DPS sequences based on the

Kronecker product formalism is established, which allows for the efficient compu-

tation of multidimensional DPS sequences. Parts of this work have been published

on [10,19].

In Chapter 4 the multidimensional DPS sequences are used for a subspace repre-

sentation of time-variant, frequency-selective MIMO channels. The most important

contribution of this chapter is an algorithm that allows to compute the projection

onto the DPS subspace in O(1) arithmetic operations. Thus, the subspace method

allows to trade accuracy for efficiency. Using a 16 bit fixed-point processor, the com-

putational complexity can be reduced by more than an order of magnitude. Parts

of this work have been published in [8–10].

In Chapter 5 the results of the previous chapter are applied to the ARC Smart-

Sim real-time MIMO channel simulator. For this purpose, the DPS subspace rep-

resentation is applied independently to every link of the MIMO channel. It can

easily be implemented as an add-on to the COST 259 GSCM of the ARC SmartSim

channel simulator [7]. We show that the functionality of the new implementation is

equivalent to the one of the implementation described in [7]. However, the complex-

ity of the new method is significantly smaller for a wide range of scenarios. Parts of

this work have been published in [6].

Chapter 6 gives a summary and conclusions of part one of the thesis.
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Part II. The second part of the thesis starts in Chapter 7 with an introduction into

the wireless communication standards GSM and UMTS-HSDPA . The following two

chapters describe specific implementations of a receiver based on these standards.

Chapter 8 evaluates the throughput performance of different receiver architec-

tures for UMTS-HSDPA. For this purpose, we develop a simulation environment

specifically tailored to HSDPA for investigating the HSDPA receiver requirements.

A conventional rake receiver, a rake receiver with interference cancelation, and a

receiver employing a linear minimum mean square error (LMMSE) equalizer are

investigated. Last but not least, it is shown how to derive a a low-complexity imple-

mentation of the LMMSE equalizer using Krylov subspace methods. Parts of this

work have been published in [1–4,17].

Chapter 9 describes a GSM receiver employing multiple antennas. The smart

antenna algorithm requires the solution of an eigenvalue problem in real-time. We

show, how to solve this eigenvalue problem numerically on a fixed-point processor.

An implementation and results obtained with the ARC SmartSim channel simulator

are given. Parts of this work have been published in [5, 7, 16].

Finally, Chapter 10 summarizes and concludes part two of the thesis.
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Wireless Channels
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2 Characterization, Modeling, and

Simulation of Wireless Channels

2.1 Multipath Propagation

The mobile radio channel is a very harsh environment. Signals transmitted from

one transmit antenna are reflected, refracted, diffracted, or scattered on their way to

the receive antenna. Such a multipath environment causes a single transmit signal

to be replicated—the equivalent of echoes in an audio environment—and arrive at a

receiver at different times, with different amplitudes, polarization, angles of arrival

and possibly at different frequencies (see Fig. 2.1).

The received signal power varies due to three effects: mean propagation path

loss, large scale fading, and small scale fading. The mean propagation path loss is

proportional to d−n, where d is the distance between the transmitter (Tx) to the

receiver (Rx) and the path loss exponent n varies from 2.5 to 6 depending on the

terrain and foliage. Large scale fading results from blocking effects by buildings and

natural features. Small scale fading results from the constructive and destructive

combination of multipaths [86]. All three propagation effects can be observed in

Fig. 2.2.

In this thesis we are mainly interested in the small scale effects of the channel.

Small scale fading causes the channel to change over time, frequency, and space. A

channel has selectivity if it varies as a function of either time, frequency, or space.

The opposite of selectivity is coherence.

2.1.1 Temporal Selectivity

When the Tx, Rx, or the scatterers in the channel are moving, the received signal

exhibits Doppler shifts, i. e., a pure tone of frequency ωC spreads over a finite spectral

bandwidth [ωC−ωDmax, ωC+ωDmax]. Assuming that the scattering objects are static,

the maximum Doppler frequency ωDmax is given by the maximum speed vmax of the

user

ωDmax =
vmaxωC

c
,
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Figure 2.1: Multipath propagation in mobile radio channels. Transmitted signals

are reflected and refracted on their way to the receiver.
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Figure 2.2: Measured received signal power vs. distance between Tx and Rx in a

typical suburban environment (city of Weikendorf near Vienna [53]).

The mean path loss given by the Okumura-Hata Model [52] is also given.

The large scale fading as well as the small scale fading are clearly visible.
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where c is the speed of light. If ωDmax > 0, waves impinging at the receiver with

different Doppler frequencies can combine constructively and destructively causing

selectivity in time. Time-selective channels are also called time-variant. Non time-

selective channels are called static.

In practice, the question if a channel is time-selective does not only depend on the

maximum Doppler shift ωDmax, but also on other system parameters, e. g., block-

length, type of modulation, training, etc. For example, if the channel changes the

phase of the incoming signal by less than π/4 within a block and BPSK modulation

is used, no detection errors will occur. If in the same channel 16QAM modulation

is used, symbols will be inevitably wrongly detected.

2.1.2 Frequency Selectivity

If the transmitted signal arrives at the receiver via different paths with different de-

lays, one symbol spreads to the next symbol(s) and causes inter-symbol interference

(ISI). If the maximum delay of the channel τmax > 0, waves impinging at the receiver

at different delays can combine constructively and destructively and cause selectivity

in frequency. A non frequency-selective channel is also called frequency-flat.

In practice, the question if a channel is frequency-selective also depends on the

symbol duration TS of the system. If the maximum delay of the channel is very

small compared to the symbol duration, i. e.,

τmax ≪ TS,

ISI is negligible and the channel can be assumed to be frequency-flat.

Fig. 2.3 shows the relationship between frequency-selective, frequency-flat, time-

selective and static channels.

2.1.3 Space Selectivity

If the transmitted signal leaves the transmitter via different paths that eventually

reach the receiver at different directions of departure, the channel changes with the

position of the transmitter. Equivalently, if the transmitted signal reaches the re-

ceiver via different paths with different directions of arrivals, the channel changes

with the position of the receiver. Channels with a directional spread at the transmit-

ter ϕmax > 0 as well as channels with a directional spread at the receiver ψmax > 0

are spatially selective.

In practice, the question if a channel is spatially selective also depends on the

type of antennas used. For example, space selective fading can be observed using

directional antennas or antenna arrays at the receiver and transmitter.
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Figure 2.3: Time and frequency variation of a multipath channel. Frequency-

selectivity is characterized by the maximum delay τmax. Time-selectivity

is characterized by the maximum Doppler shift ωDmax.

2.2 The Signal Model

In the last section, the basic effects of multipath propagation in mobile radio channels

were described. In this and the following sections, a mathematical model for the

mobile radio channel is presented. The model allows a stochastic characterization

of the multipath effects.

We start by describing time-variant frequency-selective single-input single-output

(SISO) channels first in Section 2.2.1. In Section 2.2.2 the concepts are extended to

multiple-input multiple-output (MIMO) channels.

2.2.1 SISO Channels

The basic SISO system model is depicted in Fig. 2.4. It consists of a transmitter

with a pulse shaping filter, a wireless channel, and a receiver with a matched filter.

In this thesis we adopt Bello’s [28] approach of describing the mobile radio SISO

channel H as a linear time-variant system. Such a system is entirely characterized

by one of the four equivalent system functions, such as the time-varying transfer

function, the time-variant impulse response, and the Doppler-delay spreading func-

tion.

The time-varying transfer function h(t, f) characterizes the mobile radio channel

as a function of time t and frequency f . By using a (partial) Fourier transform,

9
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Tx
Pulse

shaping RxMatched
Filter

RTx H RRx

s′(t) s(t) r(t)

H′

r′(t)

Figure 2.4: System model for SISO channels. The actions of the pulse shaping filter,

the wireless radio channel including the effects of the transmit and receive

antenna, and the matched filter are described by the operators RTx, H,

and RRx respectively. The overall system is described by the operator

H′.

spectral domain representations of the time-varying transfer function can be ob-

tained. The spectral domain of time t is the Doppler frequency domain, denoted

by ω. The spectral domain of the frequency f is the delay domain, denoted by τ .

Transformed system functions are denoted by uppercase letters H(·, ·), where the

dependency variables indicate the transformed domain.

For example, the time-variant impulse response is given by H(t, τ) and can be

obtained from the time-varying transfer function h(t, f) by

H(t, τ) =

∫

h(t, f)e2πjfτdτ. (2.1)

The Doppler-delay spreading function H(ω, τ) can be obtained either from the time-

variant impulse response by a partial Fourier transform with respect to t, or by a

full Fourier transform of the time-varying transfer function,

H(ω, τ) =

∫

H(t, τ)e−2πjtωdt (2.2)

=

∫∫

h(t, f)e−2πiωte2πiτfdt df. (2.3)

The action of the channel H on an input signal s(t) can now be written in three

different but equivalent ways:

r(t) =

∫

H(t, τ)s(t− τ)dτ (2.4)

10
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=

∫∫

H(ω, τ)sω,τ (t)dω dτ (2.5)

=

∫

h(t, f)S(f)e2πjftdf, (2.6)

where

sω,τ (t) := s(t− τ)e2πjωt

S(f) :=

∫

s(t)e−2πjftdt.

The action of the pulse shaping filter at the transmitter RTx and the matched

filter at the receiver RRx can be described as a convolution of the input signal with

the filter impulse responses rTx(τ) and rRx(τ) respectively.

s(t) = rTx(t) ∗ s′(t) :=

∫

rTx(τ)s
′(t− τ)dτ,

r′(t) = r(t) ∗ rRx(t) :=

∫

rRx(τ)r(t− τ)dτ.

The action of the filters and the channel can also be combined to a single operator

H′ = RRx ◦ H ◦ RTx, which can be described by one of the four systems functions

h′(t, f), H ′(t, τ), H ′(ω, f), or H ′(ω, τ).

2.2.2 MIMO Channels

The basic MIMO system model is depicted in Fig. 2.5. It consists of a transmitter

with a pulse shaping filter and an antenna array, a wireless channel, and a receiver

with multiple antennas and a matched filter. For the moment we consider contin-

uous arrays which are composed of an infinite number of antennas separated by

infinitesimal distances (In Section 2.4, we will derive a discrete model from the con-

tinuous model). This eliminates the need to specify a priory the number of antennas

and their relative positions on the antenna arrays [90]. The transmit signal s(t,x)

and the receive signal r(t,y) therefore become functions of time and space. The

positions x and y are vectors in R
3, measured from an arbitrary but fixed reference

point at the transmitter and the receiver, respectively.

The characterization of time-variant linear SISO channels can be extended to

MIMO channels by incorporating the spatial domain into the channel transfer func-

tion [41,46,60,90]. Let h(t, f,x,y) denote the time- and space-variant transfer func-

tion. As in the SISO case, we denote transformed system functions by H(·, ·, ·, ·),
where the dependency variable indicates the transformed domain. For example,

H(t, τ,x,y) denotes the time- and space-variant impulse response.

11
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Figure 2.5: System model for MIMO channels. The actions of the pulse shaping

filter, the transmit antenna array, the wireless radio channel, the receive

antenna array, and the matched filter are described by the operators

RTx, GTx, H̄, GRx, and RRx respectively. The wireless radio channel

including the effects of the transmit and receive antenna is described by

the operator H.

In a time- and frequency selective MIMO channel, the receive signal is related to

the transmit signal by

r(t,y) =

∫∫

H(t, τ,x,y)s(t− τ,x) dτ dx

=

∫∫

h(t, f,x,y)S(f,x)e2πjft df dx,

where

S(f,x) =

∫

s(t,x)e−2πjft dt.

The time- and space-variant impulse response and transfer function also include the

effects of the antennas (antenna patterns and mutual coupling). A separation of

the effects of the antennas from the channel is only possible in the far field of the

antennas. This will be discussed next.

The spectral domains of the position vector x and y are the wavevector domains,

with dependence denoted by ζ and ξ respectively. Transformations between position

and wavevector domains are obtained by a three-dimensional Fourier transform [41].

For example, the time- and space-variant transfer function can be transformed in

the wavevector domain by

H(t, f, ζ, ξ) =

∫∫

h(t, f,x,y)e−2πj/λ〈ζ,x〉e−2πj/λ〈ξ,y〉 dx dy,

where λ is the wavelength and 〈x,y〉 =
∑2

l=0 xlyl is the scalar product.
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When looking at the far field of the mobile radio channel only, the wavevector

spectrum is non-zero only for ζ, ξ ∈ S2, the unit sphere in R3. In that case, the

spectral domains of the position vectors x and y can be equivalently and more

intuitively represented by the angular spectra. The angular spectra are functions

of the elevational and the azimuthal angle. However, to keep notation simple, we

assume horizonal propagation only in this thesis and disregard the elevation angle. In

case the channel is modeled as sum of randomly phased, uncorrelated homogeneous

plane waves, the wavevector spectrum is equivalent to the angular spectrum [41].

We can thus define the time-variant double-directional channel transfer function

H(t, f, ϕ, ψ), which describes the complex weight of a signal leaving the transmitter

at the azimuth of departure (AoD) ϕ and received from the azimuth of arrival (AoA)

ψ at time t and frequency f . Similarly, the Time-variant double-directional impulse

response H(t, τ, ϕ, ψ) and the Doppler-delay double-directional spreading function

H(ω, τ, ϕ, ψ) can be defined.

The time-variant double directional channel impulse response H(t, τ, ϕ, ψ) can

now be factored in three terms describing the effect of the transmit array, the effects

of the physical channel, and the effect of the receive array. Let GTx(ϕ) denote the

complex far field antenna pattern at the transmitter and GRx(ψ) denote the complex

far field antenna pattern at the receiver. Further let H̄(t, τ, ϕ, ψ) be the time-variant

double-directional impulse response of the physical channel (without the effects of

the transmitter or receiver). Then

H(t, τ, ϕ, ψ) = GTx(ϕ)H̄(t, τ, ϕ, ψ)GRx(ψ).

The time- and space-variant system impulse response and the time- and space-

variant system transfer function can be recovered from the double-directional func-

tions by setting

ζ =

(
cosϕ

sinϕ

)

, and ξ =

(
cosψ

sinψ

)

,

and writing

H(t, τ,x,y) =

∫∫

H(t, τ, ϕ, ψ)e2πj/λ〈ζ,x〉e2πj/λ〈ξ,y〉 dϕ dψ,

h(t, f,x,y) =

∫∫

H(t, f, ϕ, ψ)e2πj/λ〈ζ,x〉e2πj/λ〈ξ,y〉 dϕ dψ.

2.3 Stochastic Channel Characterization

So far, the mobile radio channel was described by deterministic functions. However,

a deterministic description of the mobile radio channel is far to complex, since ev-

ery scenario would have to be modeled in every detail. In this section, a stochastic

13
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characterization of the mobile radio channel is given. For the remainder of this chap-

ter, we assume that the channel functions defined in the last section are stochastic

processes, i. e., a family of functions [83].

2.3.1 Autocorrelation Functions

The autocorrelation function (ACF) of a stochastic process, e. g., the time-variant

channel transfer function h(t) is given by

Rh(t, t
′) = E{h(t)h∗(t′)}.

The ACF provides a full description of a stochastic process if and only if (iff) the

process is zero-mean Gaussian. The ACF of h(t) is related to the ACF of H(ω) by

a double Fourier transform [78]

RH(ω, ω′) =

∫∫

Rh(t, t
′)e−2πjωte2πjω

′t′ dt dt′. (2.7)

ACFs can be defined for all channel transfer functions described in Section 2.2

including all dependencies. For example, the ACF of the space- and time-variant

channel transfer function writes

Rh(t, t
′, f, f ′,x,x′,y,y′) = E{h(t, f,x,y)h∗(t′, f ′,x′,y′)}.

A stochastic process h(t) is called wide-sense stationary (WSS) iff its ACF Rh(t, t
′)

only depends on the time difference t′ − t, i. e., Rh(t, t
′) = Rh(t − t′) = Rh(∆t).

Including all dependencies, the channel transfer function h(t, f,x,y) is WSS if

Rh(t, t
′, f, f ′,x,x′,y,y′) = Rh(t− t′, f − f ′,x − x′,y − y′).

The second order statistics of a WSS stochastic process do not change over time.

An alternative interpretation of the WSS process h(t) is obtained by investigating

the ACF of its Fourier transform H(ω). Using Equation (2.7),

RH(ω, ω′) =

∫∫

Rh(∆t)e
2πjω′te−2πjω(t+∆t) dt dt+ ∆t

=

∫

e2πjt(ω
′−ω) dt

∫

Rh(∆t)e
−2πjω∆t d∆t

= δ(ω′ − ω)Sh(ω),

where δ(ω′−ω) is the Dirac delta function and Sh(ω) is the Doppler power spectrum

of h(t) (see the next subsection for a detailed discussion). Thus, in a WSS process,

contributions with different Doppler shifts are uncorrelated. This fact is also called

uncorrelated scattering (US). Since WSS and US are equivalent descriptions of a

stochastic process in different domains, in this thesis, only the term WSS is used.

14
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2.3.2 Power Spectra

The power spectrum of a WSS stochastic process h(t) is defined by

Sh(ω) = E{|H(ω)|2},
where H(ω) is the Fourier transform of h(t). By the Wiener-Khintchine Theorem

[93], the power spectrum Sh(ω) is related to the ACF Rh(∆t) by a Fourier transform:

Sh(ω) =

∫

Rh(∆t)e
−2πj∆tω d∆t.

The power spectrum Sh(ω) of a temporal process h(t) is called a Doppler spectrum;

it describes the average power received at a certain Doppler frequency ω. The power

spectrum Sh(τ) of a frequency process h(f) is called a power delay spectrum; it

describes the average power received at a certain delay τ .

The power spectrum Sh(ξ) of a spatial process h(y) is called the wavevector

power spectrum. When looking at the far field of the mobile radio channel only, the

wavevector power spectrum simplifies to an angular power spectrum Sh(ψ), which

describes the average power received at a certain AoA ψ.

For the complete time- and space-variant channel transfer function h(t, f,x,y),

it is possible to define a joint power spectrum that is a function of Doppler ω, delay

τ , and wavevectors ζ and ξ:

Sh(ω, τ, ζ, ξ) = E{|H(ω, τ, ζ, ξ)|2}.
The joint power spectrum is related to the joint ACF Rh(∆t,∆f,∆x,∆y) by the

Wiener-Khintchine Theorem,

Sh(ω, τ, ζ, ξ) =

∫∫∫∫

Rh(∆t,∆f,∆x,∆y)

e−2πj∆tωe−2πj∆fτe−2πj〈∆x,ζ〉e−2πj〈∆y,ξ〉 d∆t d∆f d∆x d∆x. (2.8)

Looking only at the far field, we can again describe the joint power spectrum of

the mobile radio channel more intuitively by a function of Doppler ω, delay τ , AoD

φ, and AoA ψ:

Sh(ω, τ, ϕ, ψ) = E{|H(ω, τ, ϕ, ψ)|2}.
Power spectra depending on three, two or one variable can be obtained from the

joint power spectrum Sh(ω, τ, ϕ, ψ) by integrating out the unwanted variable(s). For

example, the angular delay power spectrum can be obtained by

Sh(τ, ϕ, ψ) =

∫

Sh(ω, τ, ϕ, ψ)dω.

A channel is said to be separable, if its joint power spectrum can be written as a

product of its corresponding single power spectra, i. e., if

Sh(ω, τ, ϕ, ψ) = Sh(ω)Sh(τ)Sh(ϕ)Sh(ψ).
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2.4 The Sampled Signal Model

Until now, the channel was modeled as a continuous function of time, frequency, and

space. For practical purposes, like channel estimation or simulation, the channel has

to be sampled in time, frequency, and space.

2.4.1 SISO channels

Due to the bandlimiting filters at the transmitter and the receiver, the wireless

channel can be assumed to be bandlimited, i. e., h(t, f) = 0 for |f | > B. This

allows to sample the channel also in the delay domain. Denote by B = 1/TS is the

sampling rate in time and by 1/FS the sampling rate in frequency. The sampled

impulse response and the sampled transfer function then write

Hm,n = H(mTS, nTS), (2.9)

hm,q = h(mTS, qFS), (2.10)

where n and m are the discrete time and delay indices and q is the discrete frequency

index.

In order to be able to reconstruct the continuous channel from its samples, by the

sampling theorem we have to choose

1

TS
≥ 1

2ωDmax

and
1

FS
≥ τmax,

where 2ωDmax is the maximum Doppler bandwidth and τmax is the maximum delay

of the channel. While the first condition is always fulfilled in mobile communication

channels, FS has to be chosen carefully to satisfy the latter condition. Often the

sampling rate in frequency is chosen as 1/FS = TSQ, where Q is the number of

frequency bins within the bandwidth B. Then the second condition becomes Q ≥
τmax/TS.

The input-output relation for a sampled SISO channel now writes

rm =
N−1∑

n=0

Hm,nsm−n (2.11)

where sm = s(mTS) and rm = r(mTS) are the sampled input and output signals

and N is the maximum support of Hm,n with respect to n. Due to the bandlimiting

filters rTx(τ) and rRx(τ), the support of Hm,n is actually infinite. However, the

contributions for large n will be very small, so that they can be neglected. We can

assume that N = NC + 2NF + 1, where NC = ⌈τmax/TS⌉ and 2NF + 1 is the length

of the filters rTx(τ) and rRx(τ).
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Figure 2.6: Tapped delay line implementation of a sampled SISO channel.

Equation (2.11) corresponds to modeling the channel as a tapped delay line or a

linear time-variant finite impulse response (FIR) filter. An implementation of the

FIR filter is depicted in Fig. 2.6.

Alternatively, the input-output relation can be written using the sampled transfer

function,

rm =

Q−1
∑

q=0

hm,qSqe
−2πjmq/Q, (2.12)

where Sq =
∑

m sme
2πjmq is the discrete time Fourier transform (DTFT) of the

input signal sm. In practice however, (2.12) is implemented using the overlap-add,

or overlap-save method [93] since the input signal sm is not known a priori for all

time m ∈ Z.

In the overlap-add method, the input signal sm is segmented into blocks of length

K = Q−N +1 and N − 1 zeros are appended to every block to get blocks of length

Q:

s(b) = [sbK , . . . , s(b+1)K−1
︸ ︷︷ ︸

K

, 0, . . . , 0
︸ ︷︷ ︸

N−1

]T . (2.13)

Further define

h(b) = [hbK,0, . . . , hbK,Q−1]
T . (2.14)

Then of every block, the discrete Fourier transform (DFT) or its fast implementation,

the fast Fourier transform (FFT) is taken of every block to get

S(b) = FQs(b). (2.15)

The b-th output block is given by

r(b) = F−1
Q (S(b) ⊙ h(b)), (2.16)
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where ⊙ denotes the Hadamard (element-wise) product. The vectors r(b) are finally

overlapped by N − 1 samples and added to yield

rm =
∑

b

r
(b)
m−bK , (2.17)

where r
(b)
k := 0 if k /∈ {0, . . . , Q− 1}.

From the derivations above it can be seen that the overlap-add method assumes

that the channel hm,q is constant for K samples (cf. (2.14)). Therefore K must be

chosen small enough, so that the assumption is not violated. On the other hand,

choosing K too small renders the overlap-add method more complex than the direct

implementation (2.11).

Since our main interest is in highly time-variant channels, we conclude that the

overlap-add method is not feasible and thus we will stick to the direct method (2.11).

2.4.2 MIMO channels

Let H(t, τ,x,y) denote the time- and space-variant bandlimited channel impulse

response incorporating the complex antenna patterns. Accordingly, let h(t, f,x,y)

denote the time- and space-variant bandlimited channel transfer function incorpo-

rating the complex antenna patterns.

Denote by 1/DS the spatial sampling rate. The sampled time- and space-variant

impulse response and the sampled time- and space-variant transfer function are

given by

Hm,n,u,v = H(mTS, nTS,uDS,vDS) (2.18)

hm,q,u,v = h(mTS, qFS,uDS,vDS), (2.19)

where u ∈ Z
3 and v ∈ Z

3 denote the discrete space indices at the transmitter and

receiver.

When the discrete positions of the transmit and receive antennas are given and

denoted by u0, . . . ,uNTx−1 and v0, . . . ,vNRx−1, it is convenient to collect the transmit

and receive signals in vectors and the channel transfer function or impulse response

in a matrix.

sm = [s(mTS,u0DS), . . . , s(mTS,uNTx−1DS)]
T , (2.20)

rm = [r(mTS,v0DS), . . . , r(mTS,vNRx−1DS)]
T , (2.21)
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Hm,n =






Hm,n,u0,v0 · · · Hm,n,u0,vNTx−1

...
. . .

...

Hm,n,uNRx−1,v0 · · · Hm,n,uNRx−1,vNTx−1




 , (2.22)

hm,q =






hm,q,u0,v0 · · · hm,q,u0,vNTx−1

...
. . .

...

hm,q,uNRx−1,v0 · · · hm,q,unRX−1,vNTx−1




 . (2.23)

The input-output relation of a sampled MIMO channel may be expressed as

rm =
N−1∑

n=0

Hm,nsm−n. (2.24)

Again, we can also write the input-output relation by

rm =

Q−1
∑

q=0

hm,qSqe
−2πjmq/Q, (2.25)

where Sq =
∑

m sme
2πjmq is the DTFT of the input signal sm.

2.4.3 Autocorrelation Functions and Power Spectra

Autocorrelation functions and power spectra can also be defined for the discrete

time functions introduced in the previous subsections.

Let hm = h(mTS) be the sampled time-variant transfer function of a frequency

flat SISO channel. The autocorrelation function of hm is defined as

Rh(m,m
′) = E{hmh∗m′}.

The process hm is WSS, iff Rh(m,m
′) = Rh(m −m′) = Rh(∆m). The correlation

matrix R of the discrete temporal process hm evaluates the autocorrelation function

of M successive samples,

Rm,m′ = Rh(m,m
′) m,m′ = 0, . . . ,M − 1.

The power spectrum of a WSS process hm is defined as

Sh(ν) = E{|H(ν)|2},

where H(ν) is the DTFT of hm. By the Wiener-Khintchine Theorem [93], the power

spectrum Sh(ν) is related to the ACF Rh(∆m) by a DTFT:

Sh(ν) =
∞∑

m=−∞

Rh(∆m)e−2πj∆mν .
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Figure 2.7: Mobile radio channel model characterization.

Autocorrelation functions and power spectra can also be defined for functions of

two or more variables. For example, let hr,s be the time-invariant frequency-flat

transfer function of a MIMO channel. The autocorrelation function of hr,s is given

by

Rh(r, r
′, s, s′) = E{hr,sh∗r′,s′}.

The correlation matrix R of the MIMO channel with NTx transmit antennas and

NRx receive antennas is defined as

Rr+sNTx,r′+s′NTx
= Rh(r, r

′, s, s′) s, s′ = 0, . . . , NTx − 1 r, r′ = 0, . . . , NRx − 1.

2.5 Mobile Radio Channel Models

There exist a vast amount of different channel models for SISO as well as MIMO

channels. A specific model usually serves one specific purpose. In this section, some

basic principles for channel modeling are reviewed.

Mobile radio channel models can be classified in different ways. In this thesis we

classify mobile radio channel models in stochastic and geometry-based models (see

Fig. 2.7). Stochastic models describe the mobile radio channel by means of ACFs

and power spectra introduced in Section 2.3. Geometry-based models on the other

hand describe the time- and space variant transfer function of the mobile radio

channel directly. The classification is based on the classification used in [23] for

physical channel models. However, we use the classification in a wider sense and do

not only focus on models for MIMO channels.

The classification between stochastic and geometry-based models is not always

unique. In fact there exists a channel model that can be seen as both, namely the

geometry-based stochastic channel model (GSCM). The ambiguity results from the

fact, that every GSCM induces a certain stochastic model. Vice versa, for many
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stochastic models, a parameter set for a GSCM can be found. The complement of

the GSCM with respect to geometry-based models is called deterministic models.

The complement of the GSCM with respect to stochastic models is called non-

geometrical stochastic models.

2.5.1 Non-geometrical Stochastic Models

Non-geometrical stochastic models describe the mobile radio channel in a completely

stochastic way by prescribing the ACF or the power spectrum of the channel without

assuming an underlying geometry. In the following, we give examples of models for

the Doppler power spectrum, the power delay spectrum, and the angular power

spectra. We implicitly assume that the channel is WSS.

2.5.1.1 Time-selective Fading

A very popular model for the Doppler power spectrum of time-variant channels is

the Clarke spectrum [33]:

Sh(ω) =







1
πωDmax

√

1 −
(

ω
ωDmax

)2

, |ω| ≤ ωDmax

0, otherwise
(2.26)

where ωDmax is the maximum Doppler frequency. The spectrum Sh(ω) can be ob-

tained by assuming horizontal propagation and a uniform distribution of the angles

of arrival. Those assumptions are not always fulfilled in real channels and measured

Doppler spectra often show a very different behavior [21,122].

2.5.1.2 Frequency-selective Fading

Some very popular models for power delay profiles are the models developed by

the COST 207 action [44], which were later standardized by the ITU for the GSM

standard. The models define power delay profiles for the following scenarios:

• Typical urban (TU):

Sh(τ) =

{
e−τ for 0 < τ < 7µs

0 otherwise

• Bad urban (BU):

Sh(τ) =







e−τ for 0 < τ < 5µs

0.5e5−τ for 5 < τ < 10µs

0 otherwise
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• Rural area (RA):

Sh(τ) =

{
e−9.2τ for 0 < τ < 0.7µs

0 otherwise

• Hilly terrain (HT):

Sh(τ) =







e−3.5τ for 0 < τ < 2µs

0.1e15−τ for 15 < τ < 20µs

0 otherwise

2.5.1.3 Space-selective Fading

Experimental investigations have revealed that in typical macrocellular environ-

ments the azimuth power spectrum at the base station can be accurately described

by a truncated Laplace function

Sh(ψ) = ce−|ψ−ψ0|/σ,

where ψ0 is the mean AoA and σ is the angular spread [46]. Scatterers or groups

of scatterers with a very large geometrical extent give rise to an azimuth power

spectrum given by a truncated Gaussian function,

Sh(ψ) =
1√
2πσ

e−
(ψ−ψ0)2

2σ2 .

The Laplacian as well as the Gaussian distribution have the drawback that they

are defined on the whole real line R. A more natural angular distribution is the

von-Mises distribution, which is defined on the unit sphere S1:

Sh(ψ) =
1

2πI0(κ)
eκ cos(ψ−ψ0),

where In(·) is the modified Bessel function of the first kind and order n, κ ≥ 0 is

called the concentration parameter and ψ0 is the mean AoA. The von-Mises dis-

tribution converges to a Gaussian distribution with σ = 1/κ for κ → ∞ and to a

uniform distribution for κ→ 0 [46].

A model for the bi-azimuthal power spectrum Sh(ϕ, ψ) can be obtained by model-

ing the AoA/AoD spectrum separately and assuming that Sh(ϕ, ψ) = Sh(ϕ)Sh(ψ).

This model is also called the Kronecker model, since the correlation matrix of the

corresponding MIMO channel can be written as the Kronecker product [61],

R = RT
Tx ⊗ RRx, (2.27)

where RTx is the transmit correlation matrix and RRx is the receive correlation

matrix. However, it has been shown that the Kronecker model underestimates the

capacity of large MIMO systems [82]. A more realistic models for the bi-azimuth

power spectrum is the two-dimensional von-Mises distribution [115,116].
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2.5.2 Geometry-based Models

Geometry-based models use the theory of electromagnetic wave propagation to char-

acterize wireless channels. Like all electromagnetic phenomena, wireless transmis-

sions obey Maxwell’s laws of electrodynamics [69,114]. The wireless channel can be

assumed to be an uncharged vacuum. In an uncharged vacuum, Maxwell’s four equa-

tions reduce to a single equation for the electric field E(y, t), called the vector-wave

equation [95, Sec. 105]

∇2E(y, t) − 1

c2
∂2E(y, t)

∂t2
= 0, (2.28)

where ∇2 is the Laplacian operator and c is the speed of light.

If the received signal comprises a narrowband signal modulated on a carrier wave

with angular frequency ωC , the solutions of (2.28) can be restricted to a time-

harmonic, monochromatic waves E(y, t) = Ē(y) exp(−jωCt). The resulting equa-

tion is the Helmholtz equation,

∇2Ē(y) +
ω2
C

c2
Ē(y) = 0. (2.29)

At the receiver, the antenna measures the vector-valued electric field Ē(y) and

converts it to a scalar voltage h(y), which obeys the scalar Helmholtz equation

(2.29) [41]. The entity h(y) can be seen as the transfer function of a narrow-band,

time-invariant SIMO channel. In the following, a model for h(y) will be derived

based on the solutions to the Helmholtz equation.

All possible solutions to the Helmholtz equation can be written as a superposition

of plane waves,

h(y) =
∑

p

βpe
2πj(φp−〈ξp,y〉), with 〈ξp, ξp〉 = k2 (2.30)

where k = 2π/λ = 2πωC/c is the free space wavenumber, βp are the real amplitudes,

φp are the real phases, and ξp are the wavevectors of the plane wave p [41]. The

wavevectors ξp can take real as well as complex values. A real wavevector corre-

sponds to a homogeneous wave and a complex wavevector to a inhomogenous wave.

In [41] it is shown, that the contributions of inhomogenous waves can either be ne-

glected or approximated by homogenous waves. The wavevector of a homogenous

wave always points on the direction of propagation.

If the plane wave has been modulated with a band-limited signal, then the nar-

rowband characterization of Equation (2.30) becomes insufficient to characterize the

channel. In [41] it is shown how the solutions (2.30) can be expanded to a wide-

band characterization of the channel for small frequency displacements f around
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the carrier frequency ωC . The author further simplifies the expansion and shows

that within a local area around the receiver, the channel transfer function can be

approximated by

h(f,y) =
∑

p

βpe
2πj(φp−〈ξp,y〉−fτp), (2.31)

where τp is the time the p-th plane wave needs to travel from the transmitter to the

receiver.

The channel transfer function (2.31) can be extended to also include small dis-

placements x of the transmitter,

h(f,x,y) =
∑

p

βpe
2πj(φp+〈ζp,x〉−〈ξp,y〉−fτp), (2.32)

where ζp is the direction of departure of the p-th plane wave.

Last, but not least, if the transmitter is moving at speed v, the channel transfer

function becomes time-variant.

h(t, f,x,y) =
∑

p

βpe
2πj(φp+〈ζp,x〉−〈ξp,y〉−fτp+tωp), (2.33)

where ωp = 〈ξp,v〉 is the Doppler shift of the p-th plane wave.

To summarize, using the plane wave solutions to the Helmholtz equation (2.29),

we have derived a description of the time- and space-variant transfer function of the

channel. The plane waves in (2.33) are also called multipath components (MPC)

of the channel. Each MPC is characterized by its real weight βp, its phase φp, its

direction of departure ζp, its direction of arrival ξp, its delay τp, and its Doppler

shift ωp.

2.5.3 Geometry-based Stochastic Models

A GSCM assumes that the underlying geometry of the mobile radio channel can be

described by a finite number of singular point scatterers. Those point scatterers also

model effects like reflection, refraction, and diffraction. In a GSCM, the locations

and the weights of the scatterers are described in a stochastic (random) fashion

according to a certain probability distribution.

Looking at the far field only, and assuming plane wave propagation, the param-

eters of the MPCs in the time- and space-variant channel transfer function is then

found using a simplified ray tracing procedure. Every ray corresponds to a MPC p

of the channel and is characterized by its real weight βp, its phase φp, its Doppler

shift ωp, its delay τp, its AoD ϕp, and its AoA ψp (see Fig. 2.8). More sophisticated

models can also include parameters like elevation angles and polarization.
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Figure 2.8: Time-variant frequency-selective double-directional multi-path propaga-

tion model for a wireless radio channel. The signals sent from the trans-

mitter, moving at speed v, arrive at the receiver. Each MPC p has real

weight βp, phase shift φp, time delay τp, Doppler shift ωp, AoD ϕp, and

AoA ψp.

GSCMs either assume single-bounce scattering or multiple-bounce scattering.

Given the distribution of the scatterers and the number of bounces, ACF and power

spectra of the channel can be calculated. In that sense GSCMs are a subset of

stochastic models. Compared to the non-geometrical stochastic models described

in Section 2.5.1, GSCMs are more powerful since then can also model non-WSS

channels and long-term evolutions of the channel.

Examples. A special GSCM for flat fading SISO channels is obtained by placing the

scatterers on a circle around the receiver, moving at speed v, according to a uniform

distribution (see Fig. 2.9). It can be shown that that this model is equivalent to

Clarke’s model presented in Section 2.5.1.1. In particular, the ACF of the fading

process is the zeroth-order Bessel function of the first kind. This implies that the

Doppler spectrum has the classical U-shape given by equation (2.26).

More sophisticated GSCMs are the models developed by the COST (European

Co-operation in the field of Scientific and Technical research) Actions 259 “Wireless

Personalized Flexible Communications” [34] and 273 “Towards Mobile Broadband

Multimedia Networks” [35]. These models are also implemented on the ARC Smart-

Sim real-time channel simulator [7,54] and will be explained in some more detail in

Chapter 5.

Other GSCMs are the 3GPP spacial channel model used for UMTS [71] and the

I-METRA models used for the IEEE 802.11n (WLAN) standard [42]. They can be

seen as subsets of the COST 259/273 channel models with different parameter sets.

See [23] for an overview of those models.
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RxTx
v

Figure 2.9: One-ring scatterer model for a wireless radio channel. The scatterers are

distributed uniformly on a circle around the receiver.

2.5.4 Deterministic Channel Models

Deterministic channel models are also geometry-based models. In contrast to the

GSCM, deterministic models aim at reproducing the geometry of the scenario as ac-

curately as possible. Therefore large databases describing the scenario are required.

To calculate the actual wave propagation, computer programs such as the method

of moments (MoM) of the finite-difference time domain (FDTD) can be used.

For urban areas the databases usually consist of buildings which are represented as

polygonal prisms. In this case the most appropriate simulation method is raytracing

(RT). RT uses the theory of geometrical optics to treat reflections and transmission

on plane surfaces and diffraction on rectilinear edges. Using RT, the space-and-

time-variant transfer function can be written in the same way as (2.33). The only

difference is that the parameters of the MPCs are now calculated by the RT tool.

2.6 Simulation of Mobile Radio Channels

When simulating wireless communication systems on a digital computer, implemen-

tations of channel models are required. In the computer simulation of mobile radio

channels, issues like numerical stability, numerical accuracy and complexity need

to be considered. Different hardware architectures—ranging from general purpose,

floating point arithmetic workstations to specialized, fixed-point arithmetic embed-

ded processors—may require different algorithms or at least different parameters.

We focus on the simulation of the discrete temporal fading process hm = h(mTS).
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Figure 2.10: Doppler spectrum Sh(ν) of the time-variant channel h(t). The max-

imum Doppler bandwidth 2νDmax is much smaller than the available

normalized channel bandwidth.

However, the methods presented in this section are fairly general and can be ex-

tended to the multidimensional case, allowing the simulation of time, frequency and

spatial fading processes.

Let νDmax denote the normalized (one-sided) Doppler bandwidth of the sampled

channel transfer function hm, i. e., the DTFT H(ν) vanishes for |ν| > νDmax. The

normalized (one-sided) Doppler bandwidth is related to the Doppler bandwidth by

νDmax = ωDmaxTS. In typical wireless communication systems, the temporal fading

process hm is highly oversampled (see Fig. 2.10). In other words, the maximum

normalized Doppler bandwidth 2νDmax is much smaller than the available normalized

channel bandwidth,

νDmax ≪ 1

2
. (2.34)

In the following two subsections simulation methods for the channel models de-

scribed in the last section are given. Correlation based simulation is described in

Section 2.6.1. Geometry-based simulation is described in Section 2.6.2.

2.6.1 Correlation-based Simulation

Correlation-based simulation methods calculate realizations of the channel transfer

function using its ACF. Generation of M variates h = [h0, . . . , hM−1]
T with any

correlation matrix R can be achieved by decomposing

R = QQH (2.35)

and writing h = Qg, where g is a vector of M i. i. d. Gaussian variates. The

decomposition (2.35) can be calculated in O(M2) operations using a Cholesky fac-

torization. For band-limited processes however, an approximation using a singular

value decomposition is required due to the ill-conditioned correlation matrix. In this

case, O(M3) operations are required which limits the method to small sample sizes.
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The correlation matrix method can also be used for non-WSS processes. Therefore,

it is very attractive for an application in the spatial domains.

If the process hm is WSS, another possibility to generate M correlated Gaussian

variates is to take a vector of M i. i. d. complex Gaussian variates, multiplying it

with the sampled spectrum Sh(n/M), n = 0, . . . ,M − 1 in the frequency domain

and taking the inverse discrete Fourier transform (IDFT) resp. its fast implementa-

tion, the inverse fast Fourier transform (IFFT). The IDFT method has been used

for the generation of correlated sequences in the time domain [117]. However, due

to the small bandwidth of the process hm, only a few samples of the spectrum

Sh(n/M), n = 0, . . . ,M − 1 are nonzero, which leads to numerical difficulties. Fur-

ther, since all samples are generated with a IFFT operation, the storage requirements

of this approach are very high and make it unattractive for the generation of a very

large number of variates.

Last but not least, hm can be generated by passing a complex white Gaussian

noise sequence through a filter with the desired spectrum Sh(ν). This method has

the advantage, that new elements of the sequence can be generated when needed.

It is therefore very attractive for an application in the time domain. However, the

drawback of this method is that due to the small bandwidth of the process, the

filter is hard to implement (high complexity, numerical problems). Recently, several

approaches have been presented to tackle those problems.

Baddour [26] uses an autoregressive stochastic model for the simulation of corre-

lated Rayleigh channels. Essentially, this technique employs all-pole infinite-impulse

response (IIR) filtering to shape the spectrum of uncorrelated Gaussian variates.

The authors’ main contribution is a procedure that overcomes the numerical difficul-

ties in solving the Yule-Walker equations for the coefficients of the model. Therefore

he uses diagonal loading of the rank deficient covariance matrix.

Selva [100] uses a Farrow interpolation filter structure that approximates a

bounded bandlimited signal in a finite time interval with a given accuracy. The

method uses a polynomial approximation of the signal. The coefficients of the poly-

nomial can be computed with low complexity.

The methods presented in [119] can also be used to generate a fading process

according to Clarke’s model. Similar to [100], the process first has to be generated

at a low sampling rate. Then, a polynomial spline interpolator implemented using

a pre-filter—post-filter structure can be used to interpolate the signal at the desired

rate.

2.6.2 Geometry-based Simulation

Geometry-based simulation methods assume that the channel transfer function can

be written as a finite sum of MPCs (see Equation (2.33)). Geometry-based sim-
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ulation is therefore the natural choice for geometry-based models, which calculate

the parameters of the MPCs directly. However, they can also be used to simulate

non-geometrical stochastic models. Therefore, the MPC parameters are taken as

samples of the underlying distribution. The number of MPCs has to be chosen,

such that the statistics of the geometry-based model match the original ones.

We focus again on the simulation of time-variant frequency-flat SISO channels.

The geometry-based model for the channels transfer function h(t) can be obtained

by setting f = 0, ξ = 0, and ζ = 0 in (2.33):

h(t) =
P−1∑

p=0

βpe
2πj(ωpt+φp). (2.36)

The sampled channel transfer function is then given by

hm =
P−1∑

p=0

βpe
2πj(νpm+φp), (2.37)

where νp = ωpTS is the normalized Doppler shift of the p-th MPC. We refer to

Equation (2.37) as the sum of complex exponentials (SoCE) algorithm for computing

the channel transfer function hm.

Clarke’s model [33] is a special case of (2.37) and can be obtained by relating

the normalized Doppler shift νp to the AoA ψp by νp = νDmax cos(ψp) and setting

βp = 1/
√
P . Assuming that ψp, and φp are mutually independent and that ψp and φp

are uniformly distributed on the interval [−π, π), it can be shown that the spectrum

of the process hm approaches Sh(ν) given by (2.26) as P → ∞.

Jakes [57] proposed a simplified version of this model by setting the initial phases

φp = 0 and spacing the AoAs equidistantly, i. e.,

ψp =
2πp+ ϑ

P
, p = 0, . . . , P − 1, (2.38)

where ϑ is uniformly distributed on the interval [−π, π). If P is a multiple of four,

symmetries can be utilized and only P/4 sinusoids have to be evaluated [57]. This

model is therefore often referenced as the sum-of-sinusoids (SoS) model. Jakes’

model reduces the computational complexity of Clarke’s model by a factor of four.

However, the second order statistics of Jakes’ simplification do not match the ones of

Clarke’s model [85] and Jakes’ model is not wide sense stationary [91]. Attempts to

improve the second order statistics while keeping the reduced complexity of Jakes’

model are reported in [39,68,85,91,118,121,123].

For example, an enhanced version of Jakes’ simplification was proposed by Zheng

and Xiao [123]. By leaving the amplitudes and the initial phases as random variables,
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Zheng and Xiao’s models obtain statistical properties similar to those of the reference

model. Yet another model has been proposed by Zajic̀ and Stüber [118]. Compared

to Zheng and Xiao’s models, it uses slightly different initial phases, which leads to

less correlated I and Q components.

However, due to the equidistant spacing of the AoAs, none of these models

achieves all the desirable statistical properties of Clarke’s reference model [19]. One

of the main contributions of this thesis is an algorithm that allows to reduce the

complexity of Clarke’s original model by more than an order of magnitude without

imposing restrictions on the AoAs.

On the number of MPCs. The number of required MPCs depends on the modeled

scenario, the system bandwidth, and the number of antennas used. In this thesis

we choose the number of MPCs such that the channel is Rayleigh fading (except for

the line-of-sight (LOS) component).

For narrowband frequency-flat systems, approximately P0 = 40 MPCs are nec-

essary to achieve a Rayleigh fading statistic [123]. If the channel bandwidth is

increased, also the number of resolvable MPCs increases. The ITU channel mod-

els [73], which are used for a bandwidth of up to 5MHz in UMTS systems, specify

a power delay profile with up to six delay bins. The I-METRA channel models for

the IEEE 802.11n wireless LAN standard [42] are valid for up to 40MHz and specify

a power delay profile with up to 18 delay bins. This requires a total number of

MPCs of up to P1 = 18P0 = 720. Diffuse scattering can also be modeled with a

geometry-based channel model by increasing the number of MPCs. In theory, diffuse

scattering results from the superposition of an infinite number of MPCs [37]. How-

ever, good approximations can be achieved by using a large, but finite number of

MPCs [81,87]. In MIMO channels, the number of MPCs multiplies by NTxNRx, since

every antenna sees every scatterer from a different AoA and AoD respectively. For a

4× 4 system, the total number of MPCs can thus reach up to P = 16P1 = 1.2 · 104.

2.7 Real-Time MIMO Hardware Channel Simulation

Hardware channel simulators allow to simulate mobile radio channels in real time.

They usually consist of a powerful baseband signal processing unit and radio fre-

quency (RF) frontends for input and output. The RF frontends down-convert and

digitize the RF signals into a digital baseband representation. In the baseband

processing unit, the channel transfer function is calculated according to the under-

lying channel model and the signal is convolved with the channel. Alternatively,

the channel transfer function can be calculated in advance and only played back

by the channel simulator. Finally, the convolved signal is converted to an analog

signal again and up-converted to RF. The benefits of hardware channel simulation
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are real time and repeatable performance evaluation for any device under test. The

challenges in MIMO channel simulation are the high computational complexity and

the multichannel RF frontends.

Channel simulators can be characterized by two fundamental characteristics: the

number of channels and the number of taps. Further characteristics include the RF

frequency and bandwidth. The following subsections give a short overview of MIMO

channel simulators available on the market today (see also [35]).

2.7.1 ARC SmartSim

The SmartSim1 [7] from the Austrian Research Centers GmbH – ARC can simulate

up to eight channels with up to 20 taps each. It implements the COST 259 geometry-

based stochastic channel model. Alternatively, user-defined channel models can be

generated in advance and played back. It has an RF frontend with a center frequency

of 2.58 GHz and a 20 MHz bandwidth. More details about the ARC SmartSim can

be found in Section 5.2.

2.7.2 Azimuth ACE 400NB

The ACE 400NB2 from Azimuth is designed for bi-directional simulation of 4 × 4

MIMO systems (up to 32 channels) with up to 18 taps. The simulator features

built-in IEEE 802.11n channel models. The input RF frequency is scalable from

2400–2500 MHz and 4900–5845 MHz and the bandwidth is 40MHz [25].

2.7.3 Elektrobit Propsim C8

The Propsim C83 [62] from Elektrobit Ltd. features up to 8 channels with up to 24

taps. Channel models must be precalculated and uploaded to the simulator. Elek-

trobit also provides tools to analyze and preprocess channel sounder measurements

for the Propsim C8. The RF frequency range is 350 MHz – 6 GHz and the maximum

RF bandwidth is 70 MHz.

2.7.4 Spirent SR5500

The SR55004 from Spirent features up to 8 channels with up to 24 taps and can

be configured to simulate MIMO systems with up to 8 channels. Channel models

1http://www.smartsim.at
2http://www.azimuthsystems.com
3http://www.propsim.com
4http://www.spirentcom.com
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must be precalculated and uploaded to the simulator. The SR5500 supports an RF

frequency range of 400–2700 MHz and a bandwidth of 28 MHz [105].

2.8 Conclusions and Outlook

The simulation of wireless mobile communication channels is very important for the

design and the testing of receiver algorithms. Channel models should be able to rep-

resent time-selective, frequency-selective, and space-selective fading appropriately.

On the other hand, the model should allow for a low-complexity implementation on

a DSP, so that it can be simulated in real time. This is especially important for the

test of mobile radio hardware devices using hardware channel simulators.

Stochastic channel models describe the mobile radio channel by means of ACF and

power spectra, which are either measured or assumed to be known. Geometry-based

channel models on the other hand characterize the channel on the basis of physical

wave propagation as a superposition of MPCs. The parameters of the MPCs are

obtained either deterministically or from the distribution of the scatterers. The

latter case leads to the GSCM, which can be seen as a subset of stochastic as well

as geometry-based models. GSCM however have the advantage that they can also

model non-WSS channels as well as long-term evolutions of the channel.

Simulation methods for the described models include correlation-based simulation

and geometry-based simulation. It has been shown that especially for temporal

processes correlation based methods lead to numerical problems due to the high

oversampling of the process. Geometry-based simulation methods on the other

hand, are numerically stable but come at a higher computational complexity. Many

attempts to reduce the computational complexity in such models have been made.

However, none of the resulting simulators is able to reproduce the desired statistics

correctly.

We conclude that for the simulation of time-variant, frequency-selective MIMO

channels, geometry-based channel models are perfectly suited. However, the simula-

tion of geometry-based channel models comes with a high computational complexity,

since for every propagation path, every time instance, and every frequency bin, one

or more complex exponentials have to be evaluated. Therefore, on a real-time hard-

ware channel simulator the number of paths P that can be simulated, is limited by

the available processing power.

Hardware channel simulators have a limited accuracy due to their analog/digital

converters and the digital signal processors. For example, the DSP of the ARC

SmartSim channel simulator [7] has a fixed-point arithmetic with 16 bit precision.

In such an architecture, the evaluation of the complex exponential is quite costly

and is usually done by table look-up and interpolation.
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In this thesis the limited accuracy of hardware channel simulators is exploited to

derive a novel low-complexity implementation of geometry-based channel models.

Using a subspace-based simulation method it is possible to increase the number of

paths P that can be simulated on the hardware and reduce the overall computational

complexity at the same time. By adjusting the dimension of the subspace, it is

possible to trade accuracy for efficiency. The ARC SmartSim channel simulator is

used as a reference architecture.
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3.1 Introduction

In Chapter 2, channel models and simulation methods for mobile radio channels were

described. It was shown in Section 2.6 that especially the simulation of time-variant

flat-fading SISO channels is a non-trivial problem, due to the very small normalized

bandwidth of the fading process.

A very effective way to deal with this problem is to use a subspace representation

of the fading process based on discrete prolate spheroidal (DPS) sequences [103].

In [121] this subspace representation was used for the purpose of channel estimation

of time-variant frequency-flat SISO channels. Other applications of DPS sequences

include spectrum estimation [108] as well as approximation and prediction of ban-

dlimited signals [19,103].

In this chapter we firstly review DPS sequences and secondly extend them to

multiple dimensions. These novel multidimensional DPS sequences will then be

used in Chapter 4 for a subspace representation of time-variant frequency-selective

MIMO channels.

Multidimensional DPS sequences are a generalization of the original DPS

sequences—studied by Slepian et al. [103]—to many dimensions. However, unlike

in the one-dimensional case, the efficient and numerically stable calculation of those

sequences is not trivial and has not been treated satisfactorily in the literature. In

this chapter we establish a theory of the multidimensional DPS sequences based on

the Kronecker product formalism, which allows to compute the multidimensional

DPS sequences for rectangular passband regions efficiently.

Related work includes the paper [102] of Slepian, where generalized prolate

spheroidal functions are described. Prolate spheroidal functions are the continu-

ous analog of the DPS sequences. However, Slepian only studies multidimensional

prolate spheroidal functions with spherical passband regions and hence uses spheri-

cal coordinates.

Multidimensional DPS sequences have also been used in [40] for bandlimited ex-

trapolation of multidimensional signals. The authors’ main contribution is a defi-

nition of the essential dimension of the signal subspace in this case. The problem

of calculating the sequences is not treated. In [111] the prolate spheroidal window
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is calculated for the special case, where the passband region is a rhombic dodec-

ahedron. However, they use the defining integral equation for calculation, which

becomes numerically unstable for large sequence lengths.

3.2 One-dimensional DPS Sequences

A square-summable sequence vm ∈ L2(Z), defined on the Euclidean space Z, is

bandlimited over a bounded region W ⊂ R (or W -limited for short) if its DTFT

V (f) =
∑

m∈Z

vme
−2πjfm, f ∈ R (3.1)

vanishes outside the region W :

V (f) = 0 f /∈ W. (3.2)

The W -limited sequence vm can be reconstructed using the inverse DTFT

vm =

∫

W

V (f)e2πjfmdf, m ∈ Z. (3.3)

Bandlimited sequences cannot be index-limited at the same time except for vm ≡ 0

[29]. However, we can look for sequences, whose energy concentration on the index

set I ⊂ Z is maximal, i. e.,

λ =

∑

m∈I |vm|2
∑

m∈Z
|vm|2

→ max . (3.4)

Solutions to this problem are given by the DPS sequences [103].

Definition 3.2.1. The one-dimensional discrete prolate spheroidal (DPS) sequences

v
(d)
m (W, I) with band-limit W = [−νDmax, νDmax] and concentration region I =

{M0, . . . ,M0 +M − 1} are defined as the real solutions of

M0+M−1∑

n=M0

sin(2πνDmax(m− n))

π(n−m)
v(d)
n (W, I) = λd(W, I)v

(d)
m (W, I). (3.5)

They are sorted such that their eigenvalues λd(W, I) are in descending order

λ0(W, I) > λ1(W, I) > . . . > λM−1(W, I). (3.6)
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Figure 3.1: The first three one-dimensional DPS sequences v
(0)
m , v

(1)
m , and v

(2)
m for

M0 = 0, M = 256, and MνDmax = 2.

To ease notation, we drop the explicit dependence of v
(d)
m (W, I) on W and I when

it is clear from the context. Further, we define the DPS vector v(d)(W, I) ∈ C
M as

the DPS sequence v
(d)
m (W, I) index-limited to I.

The DPS vectors v(d)(W, I) are also eigenvectors of the M ×M matrix K with

elements Km,n = sin(2πνDmax(m− n))/π(n−m). The eigenvalues of this matrix

decay exponentially and thus render numerical calculation difficult. Fortunately

there exists a tridiagonal matrix commuting with K, which enables fast and nu-

merically stable calculation of DPS sequences [88, 103]. Figs. 3.1 and 3.2 illustrate

one-dimensional DPS sequences and their eigenvalues, respectively.

Some properties of DPS sequences are summarized in the following theorem.

Theorem 3.2.1.

1. The sequences v
(d)
m (W, I) are band-limited to W .

2. The eigenvalue λd(W, I) of the DPS sequence v
(d)
m (W, I) denotes the energy

concentration of the sequence within I

λd(W, I) =

∑

m∈I |v
(d)
m (W, I)|2

∑

m∈Z
|v(d)
m (W, I)|2

. (3.7)

3. The eigenvalues λd(W, I) satisfy 1 < λi(W, I) < 0. They are clustered around

1 for d ≤ D′−1, and decay exponentially for d ≥ D′, where D′ = ⌈|W ||I|⌉+1.
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Figure 3.2: The first ten eigenvalues λd, d = 0, . . . , 9 of the one-dimensional DPS

sequences for M0 = 0, M = 256, and MνDmax = 2. The eigenvalues

are clustered around 1 for d ≤ D′ − 1, and decay exponentially for

d ≥ D′, where the essential dimension of the signal subspace D′ =

⌈2νDmaxM⌉ + 1 = 5.

4. The DPS sequences v
(d)
m (W, I) are orthogonal on the index set I and on Z.

5. Every band-limited sequence hm can be decomposed uniquely as hm = h′m + gm
where h′m is a linear combination of DPS sequences v

(d)
m (W, I) for some I and

gm = 0 for all m ∈ I.

Proof: See Slepian et al. [103]. The proof of Property 2 is also given in the next

section in the more general multidimensional setting. �

3.3 Multidimensional DPS Sequences

The extension of DPS sequences to multiple dimensions is straightforward. A square-

summable multidimensional sequences vm ∈ L2(ZN), defined on the Euclidean space

Z
N of N dimensions, is bandlimited over a bounded region W ⊂ R

N (or W -limited

for short), if its DTFT

V (f) =
∑

m∈ZN

vme
−2πj〈f,m〉, f ∈ R

N (3.8)
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vanishes outside the region W :

V (f) = 0 f /∈ W. (3.9)

A W -limited sequence vm can be reconstructed using the inverse DTFT

vm =

∫

W

V (f)e2πj〈f,m〉df , m ∈ Z
N . (3.10)

As in the one-dimensional case we can look for sequences, whose energy concen-

tration on the index set I ⊂ Z
N is maximal, i. e.,

λ =

∑

m∈I |vm|2
∑

m∈ZN
|vm|2 → max . (3.11)

Solutions to this problem are given by the multidimensional DPS sequences.

Definition 3.3.1. Let I ⊂ Z
N be an N -dimensional finite index set with L = |I|

elements, and W ⊂ (−1/2, 1/2)N an N -dimensional band-limiting region. Multidi-

mensional discrete prolate spheroidal (DPS) sequences v
(d)
m (W, I) are defined as the

solutions of the eigenvalue problem
∑

m′∈I

v
(d)

m′(W, I)K
(W )(m′ − m) = λd(W, I)v

(d)
m (W, I), m ∈ Z

N , (3.12)

where

K(W )(m′ − m) =

∫

W

e2πj〈f
′′ ,m′

−m〉df ′′. (3.13)

They are sorted such that their eigenvalues λd(W, I) are in descending order

λ0(W, I) > λ1(W, I) > . . . > λL−1(W, I). (3.14)

To ease notation, we drop the explicit dependence of v
(d)
m (W, I) on W and I when

it is clear from the context. Further, we define the multidimensional DPS vector

v(d)(W, I) ∈ C
L as the multidimensional DPS sequence v

(d)
m (W, I) index-limited to

I. In particular, if every element m ∈ I is indexed lexicographically, such that

I = {ml, l = 0, 1, . . . , L− 1}, then

v(d)(W, I) = [v(d)
m0

(W, I), . . . , v(d)
mL−1

(W, I)]T . (3.15)

Example. In the two-dimensional case N = 2 with bandlimiting region W and

index set I given by

I = {0, . . . ,M − 1} × {−⌊Q/2⌋, . . . , ⌊Q/2⌋ − 1} (3.16)

W = [−νDmax, νDmax] × [0, θmax], (3.17)
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Figure 3.3: The real part of the first four two-dimensional DPS sequences v(d), d =

0, . . . , 3 for M = Q = 25, MνDmax = 2, and Qθmax = 5.

Equation (3.12) reduces to

M−1∑

n=0

⌊Q/2⌋−1
∑

p=−⌊Q/2⌋

sin(2πνDmax(m− n))

π(n−m)

e2πi(p−q)θmax − 1

2πi(p− q)
v(d)
n,p = λdv

(d)
m,q. (3.18)

Examples of two-dimensional DPS sequences and their eigenvalues are given in

Figs. 3.3 and 3.4.

All the properties of Theorem 3.2.1 also apply to multidimensional DPS sequences

[40]. The only difference is that m has to be replaced with m and Z with Z
N .

Theorem 3.3.1.

1. The sequences v
(d)
m (W, I) are bandlimited to W .

2. The eigenvalue λd of the DPS sequence v
(d)
m denotes the energy concentration

of the sequence within I

λd =

∑

m∈I |v
(d)
m |2

∑

m∈ZN
|v(d)

m |2
. (3.19)

3. The eigenvalues λd satisfy 1 ≤ λi ≤ 0. They are clustered around 1 for d < D′,

and decay exponentially for d > D′, where D′ = ⌈|W ||I|⌉ + 1.

4. The DPS sequences v
(d)
m are orthogonal on the index set I and on Z

N .
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Figure 3.4: First 100 eigenvalues λd, d = 0, . . . , 99 of two-dimensional DPS se-

quences for M = Q = 25, MνDmax = 2, and Qθmax = 5. The eigen-

values are clustered around 1 for d ≤ D′ − 1, and decay exponen-

tially for d ≥ D′, where the essential dimension of the signal subspace

D′ = ⌈|W ||I|⌉ + 1 = 41.

5. Every W -limited sequence hm can be decomposed uniquely as hm = h′m + gm

where h′m is a linear combination of DPS sequences v
(d)
m (W, I) for some I and

gm = 0 for all m ∈ I.

Proof: Most of the properties are proven in [40]. Property 2 is now proven explicitly.

Parseval’s theorem can be used to transform the maximization problem (3.11)

into ∫

W

∫

W

∑

m∈I e
2πj〈m,f−f′〉V (f)V ∗(f ′)dfdf ′

∫

W
|V (f)|2df

= λ. (3.20)

It can be seen that less a proportionality constant a maximizing V (f) must satisfy
∫

W

V (f)
∑

m∈I

e2πj〈m,f−f′〉df = λV (f ′). (3.21)

Alternatively this can be written as
∫

W

K(f ,f ′)V (f)df = λV (f ′), (3.22)

where the kernel K is defined as

K(f ,f ′) =
∑

m∈I

e2πj〈m,f〉e−2πj〈m,f ′〉. (3.23)
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The integral equation (3.22) is a homogeneous Fredholm equation of the second kind

with an Hermitean degenerate kernel K [92]. Thus the solutions of (3.21) can be

found by writing the left hand side of (3.21) as
∫

W

K(f ,f ′)V (f)df =
∑

m∈I

αme
−2πj〈f ′,m〉, (3.24)

where αm =
∫

W
e2πj〈f,m〉V (f)df . Substituting this into equation (3.21) results in

∑

m∈I

αme
−2πj〈f ′,m〉 = λV (f ′). (3.25)

Multiplying with e2πj〈f
′,n〉 and integrating over f ′ results in

∑

m∈I

αm

∫

W

e2πj〈f
′,n−m〉df ′ = λαn. (3.26)

This equation is the same as (3.12) and the solutions are thus the multidimensional

DPS sequences v
(d)
m with eigenvalues λd, d = 1, . . . , L − 1. The eigenvalues and

eigenfunctions of (3.21) are thus given by λd and

Ud(f
′) =

∑

m∈I

v(d)
m e−2πj〈f ′,m〉 (3.27)

respectively. Returning to the original maximization problem (3.20), the maximum

value of (3.20) is λ0 and it is attained for V (f) = U0(f). Thus, the corresponding

sequence v
(d)
m has an energy concentration of λ0.

Moreover, the sequence bandlimited to W orthogonal to v
(0)
m and most concen-

trated in I is given by v
(1)
m with concentration λ1, etc. �

Note that the functions V (f) are very similar to the DPS wave functions de-

fined by Slepian for the one-dimensional case [103]. They only differ slightly in the

definition of the kernel K in Equation (3.23) and their normalization.

3.4 Calculation of Multidimensional DPS Sequences

In this section a new way of calculating multidimensional DPS sequences is derived,

provided their passband region W can be written as a Cartesian product of one-

dimensional intervals.

Indexing every element m ∈ I lexicographically, such that I = {ml, l =

0, 1, . . . , L− 1}, we define the matrix K(W ) by

K
(W )
k,l = K(W )(mk − ml), k, l = 0, . . . , L− 1, (3.28)
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where the kernel K(W ) is given by (3.13). Let v(d)(W, I) and λd(W, I), d = 0, . . . ,

L− 1 denote the eigenvectors and eigenvalues of K(W )

K(W )v(d)(W, I) = λd(W, I)v
(d)(W, I), (3.29)

where

λ0(W, I) ≥ λ1(W, I) ≥ . . . ≥ λL−1(W, I). (3.30)

It can be shown that the eigenvectors v(d)(W, I) and the eigenvalues λd(W, I) are

exactly the multidimensional DPS vectors defined in (3.15) and their corresponding

eigenvalues. If the DPS sequences are required for m /∈ I, they can be extended

using equation (3.12).

The multidimensional DPS vectors can theoretically be calculated for an arbi-

trary passband region W directly from the eigenproblem (3.29). However, since the

matrix KW has an exponentially decaying eigenvalue distribution, this method is

numerically unstable.

If W can be written as a Cartesian product of one-dimensional intervals (i. e., W

is a hyper-cube),

W = W0 × . . .×WN−1, (3.31)

where Wi = [W0,i −Wmax,i,W0,i +Wmax,i], and the index-set I is written as

I = I0 × . . .× IN−1, (3.32)

where Ii = {M0,i, . . . ,M0,i +Mi − 1}, the defining kernel K(W ) for the multidimen-

sional DPS vectors evaluates to

K(W )(u) =

∫ W0,i+Wmax,i

W0,i−Wmax,i

· · ·
∫ W0,N−1+Wmax,N−1

W0,N−1−Wmax,N−1

e2πjf
′′

0 u0 · · · e2πjf ′′N−1uN−1df ′′
0 · · · df ′′

N−1

=
N−1∏

i=0

K(Wi)(ui), (3.33)

where u = [u0, . . . , uN−1]
T ∈ I. This means that the kernel K(W ) is separable and

thus the matrix K(W ) can be written as a Kronecker product

K(W ) = K(W0) ⊗ · · · ⊗ K(WN−1), (3.34)

where K(Wi), i = 0, . . . , N − 1 are the kernel matrices corresponding to the one-

dimensional DPS vectors. Now let λdi(Wi, Ii) and v(di)(Wi, Ii), di = 0, . . . ,Mi − 1

denote the eigenvalues and the eigenvectors of K(Wi), i = 0, . . . , N − 1 respectively.

Then the eigenvalues of K(W ) are given by [79, Chap. 9]

λd(W, I) = λd0(W0, I0) · · ·λdN−1
(WN−1, IN−1), di = 0, . . . ,Mi−1, i = 0, . . . , N−1

(3.35)
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and the corresponding eigenvectors are given by

v(d)(W, I) = v(d0)(W0, I0) ⊗ · · · ⊗ v(dN−1)(WN−1, IN−1),

di = 0, . . . ,Mi − 1, i = 0, . . . , N − 1. (3.36)

The eigenvalues λd(W, I) and the eigenvectors v(d)(W, I) are index by d =

[d0, . . . , dN−1]
T ∈ I. The multidimensional DPS vectors v(d)(W, I) are obtained by

reordering the eigenvectors v(d)(W, I) and eigenvalues λd(W, I) according to (3.30).

Therefore we define the mapping d = σ(d), such that λd(W, I) = λσ(d)(W, I) is the

d-th largest eigenvalue. Further define the inverse mapping d = δ(d) = σ−1(d), such

that for a given order d of the multidimensional DPS vector v(d)(W, I), the corre-

sponding one-dimensional DPS vectors can be found. When a certain multidimen-

sional DPS sequence of a given order d is needed, the eigenvalues λd, d = 0, . . . , L−1

have to be calculated and sorted first. Then the one-dimensional DPS sequences cor-

responding to d = δ(d) can be selected.
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4 Subspace Representation of

Geometry-Based Channel Models

4.1 Introduction

The computer simulation of mobile radio channels is a computationally intensive

problem in wireless communications. This is especially true for geometry-based

channel simulation introduced in Section 2.6.2, since a large number of complex

exponential functions—one for every MPC—must be evaluated and summed up.

This chapter presents a novel low-complexity algorithm for geometry-based channel

simulation on hardware channel simulators.

On a real-time hardware channel simulator (cf. Section 2.7) the processing power

of the baseband unit limits the number of MPCs that can be calculated and hence

the model accuracy. We note that the accuracy of the channel simulator is lim-

ited by the arithmetic precision of the baseband unit as well as the resolution of

the analog/digital converters. On the ARC SmartSim channel simulator [7] for

example, the baseband processing hardware uses 16-bit fixed-point processors and

an analog/digital converter with 14-bit precision. This corresponds to a maximum

achievable accuracy of Emax = 2−13.

The new simulation algorithm presented in this chapter exploits the limited nu-

merical accuracy of hardware channel simulators by using a truncated basis expan-

sion of the channel transfer function. The basis expansion is based on the fact that

wireless fading channels are highly oversampled. Index-limited snapshots of the sam-

pled fading process span a subspace of small dimension. The same subspace is also

spanned by index-limited discrete prolate spheroidal (DPS) sequences [121]. In this

chapter, we show that the projection of the channel transfer function onto the DPS

subspace can be calculated approximately but very efficiently in O(1) operations

from the MPC parameters given by the model. Furthermore, the subspace repre-

sentation is independent of the number of MPCs. Thus, in the hardware simulation

of wireless communication channels, the number of paths can be increased and more

realistic models can be computed. By adjusting the dimension of the subspace, the

approximation error can be made smaller than the numerical precision given by the

hardware, allowing one to trade accuracy for efficiency. Using the multidimensional
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DPS sequences developed in Chapter 3, the DPS subspace representation can also

be extended to simulate time-variant wideband MIMO channel models.

One particular application of the new algorithm is the computation of Rayleigh

fading processes using Clarke’s [33] channel model. As noted in Section 2.6.1, many

attempts to reduce the computational complexity of Clarke’s model have been made.

However, due to the equidistant spacing of the AoAs, none of these models achieves

all the desirable statistical properties of Clarke’s reference model [19]. Our new

approach presented in this chapter allows us to reduce the complexity of Clarke’s

original model by more than an order of magnitude without imposing restrictions

on the AoAs.

This rest of this chapter is organized as follows. In Section 4.2 a subspace repre-

sentation of time-variant, frequency-flat, single-input single-output (SISO) channels

based on DPS sequences is derived and a low-complexity algorithm for the calcula-

tion of the basis coefficients of the DPS subspace representation is given. Section 4.3

extends the concepts of the first Section to higher dimensions. In Section 4.4, the

multidimensional DPS subspace representation is applied to doubly-selective MIMO

channels and numerical examples are given. Section 4.5 concludes the chapter with

a discussion of the results.

4.2 One-dimensional DPS Subspace Representation

4.2.1 Time-Variant Frequency-Flat SISO Channels

We start deriving the DPS subspace representation for the generic geometry-based

channel model for time-variant, frequency-flat SISO channels depicted in Fig. 4.1.

The sampled channel transfer function hm is given by (2.37), which is repeated here

for convenience:

hm = h(mTS) =
P−1∑

p=0

ηpe
2πjνpm, (4.1)

where the gain βp and the phase shift φp are incorporated in complex weight ηp (i.e.,

ηp = βpe
2πjφp) and νp is the normalized Doppler shift of the p-th MPC.

We assume that the normalized Doppler shifts νp are bounded by the maximum

normalized (one-sided) Doppler bandwidth νDmax, which is given by the maximum

speed vmax of the transmitter, the carrier frequency ωC , the speed of light c, and the

sampling rate 1/TS,

|νp| ≤ νDmax =
vmaxωC

c
TS. (4.2)

Due to (4.2), the time-variant fading process {hm} is bandlimited to W =

[−νDmax, νDmax]. Let I = {M0, . . . ,M0 +M − 1} denote a finite index set on which
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Figure 4.1: Geometry-based channel model for a time-variant, flat-fading SISO chan-

nel. The signals sent from the transmitter, moving at speed v, arrive at

the receiver via different paths. Each MPC p has complex weight ηp and

normalized Doppler shift νp [120].

we want to calculate hm. Due to Property 5 of Theorem 3.2.1, hm can be decom-

posed into hm = h′m + gm, where h′m is a linear combination of the DPS sequences

v
(d)
m (W, I) and hm = h′m for all m ∈ I. Therefore, the vectors

h = [hM0 , hM0+1, . . . , hM0+M−1]
T ∈ C

M (4.3)

obtained by index-limiting hm to I can be represented as a linear combination of

the DPS vectors

v(d)(W, I) = [v
(d)
M0

(W, I), v
(d)
M0+1(W, I), . . . , v

(d)
M0+M−1(W, I)]

T ∈ C
M . (4.4)

Properties 2 and 3 of Theorem 3.2.1 show that the first D′ = ⌈2νDmaxM⌉ + 1

DPS sequences contain almost all of their energy in the index-set I. Therefore, the

vectors {h} span a subspace with essential dimension [121]

D′ = ⌈2MνDmax⌉ + 1. (4.5)

Due to (2.34), the time-variant fading process is highly oversampled. Thus the

maximum number of subspace dimensions M is reduced by 2νDmax ≪ 1. In typical

wireless communication systems, the essential subspace dimension D′ is in the order

of two to five only. This fact is exploited in the following definition.

Definition 4.2.1. Let h be a vector obtained by index-limiting a bandlimited pro-

cess with bandlimit W to the index set I. Further, collect the first D DPS vectors

v(d)(W, I) in the matrix

V = [v(0)(W, I), . . . ,v(D−1)(W, I)]. (4.6)
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The DPS subspace representation of h with dimension D is defined by

ĥ
D

= Vα, (4.7)

where α is the projection of the vector h onto the columns of V

α = VHh. (4.8)

For the purpose of channel simulation, it is possible to use D > D′ DPS vectors

in order to increase the numerical accuracy of the subspace representation. The

subspace dimension D has to be chosen such that the bias of the subspace repre-

sentation is small compared to the machine precision of the underlying simulation

hardware. This is illustrated in subsection 4.2.3 with numerical examples.

In terms of complexity, the problem of computing the series (4.1) was reformulated

into the problem of computing the basis coefficients α of the subspace representation

(4.7). If they were computed directly using (4.8), the complexity of the problem

would not be reduced. In the following subsection, we derive a novel low-complexity

method to calculate the basis coefficients α approximately.

4.2.2 Approximate Calculation of the Basis Coefficients

In this section, an approximate method to calculate the basis coefficients α in (4.7)

with low complexity is presented. Until now we have only considered the time

domain of the channel and assumed that the bandlimiting region W is symmetric

around the origin. To make the methods in this section also applicable to the

frequency domain and the spatial domains (cf. Section 4.3), we make the more

general assumption that

W = [W0 −Wmax,W0 +Wmax]. (4.9)

The projection of a single complex exponential vector

ep = [e2πjνpM0 , . . . , e2πjνp(M0+M−1)]T

onto the basis functions v(d)(W, I) can be written as a function of the Doppler shift

νp, the bandlimit region W , and the index set I,

γd(νp;W, I) =

M0+M−1∑

m=M0

v(d)
m (W, I)e2πjmνp . (4.10)

Since h can be written as

h =
P−1∑

p=0

ηpep (4.11)

47



4 Subspace Representation of Geometry-Based Channel Models

the basis coefficients α (4.8) can be calculated by

α =
P−1∑

p=0

ηpV
Hep =

P−1∑

p=0

ηpγp, (4.12)

where γp = [γ0(νp;W, I), . . . , γD−1(νp;W, I)]
T denote the basis coefficients for a sin-

gle MPC.

To calculate the basis coefficients γd(νp;W, I), we take advantage of the DPS

wave functions Ud(f ;W, I). For the special case W0 = 0 and M0 = 0 the DPS wave

functions are defined in [103]. For the more general case, the DPS wave functions

are defined as the eigenfunctions of
∫

W

sin(Mπ(ν − ν ′))

sin(π(ν − ν ′))
Ud(ν

′;W, I)dν = λd(W, I)Ud(ν;W, I), ν ∈W. (4.13)

They are normalized such that
∫

W

|Ud(ν;W, I)|2dν = 1, (4.14)

Ud(W0;W, I) ≥ 0,
dUd(ν;W, I)

df

∣
∣
∣
∣
ν=W0

≥ 0, (4.15)

d = 0, . . . , D − 1. (4.16)

The DPS wave functions are closely related to the DPS sequences. It can be

shown that the amplitude spectrum of a DPS sequence limited to m ∈ I is a scaled

version of the associated DPS wave function (cf. (26) in [103])

Ud(ν;W, I) = ǫd

M0+M−1∑

m=M0

v(d)
m (W, I)e−jπ(2M0+M−1−2m)ν , (4.17)

where ǫd = 1, if d is even, and ǫd = j if d is odd.

Comparing (4.10) with (4.17) shows that the basis coefficients can be calculated

according to

γd(νp;W, I) =
1

ǫd
ejπ(2M0+M−1)νpUd(νp;W, I). (4.18)

The following definition and theorem show that Ud(νp;W, I) can be approximately

calculated from v
(d)
m (W, I) by a simple scaling and shifting operation [9].

Definition 4.2.2. Let v
(d)
m (W, I) be the DPS sequences with bandlimit region W =

[W0 −Wmax,W0 +Wmax] and index set I = {M0, . . . ,M0 +M − 1}. Further denote

by λd(W, I) the corresponding eigenvalues. For νp ∈ W define the index mp by

mp =

⌊(

1 +
νp −W0

Wmax

)
M

2

⌋

,
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Approximate DPS wave functions are defined as

Ũd(νp;W, I) := ±e2πj(M0+M−1+mp)W0

√

λdM

2Wmax

v(d)
mp(W, I), (4.19)

where the sign is taken, such that the following normalization holds:

Ũd(W0;W, I) ≥ 0,
dŨd(νp;W, I)

dνp

∣
∣
∣
∣
∣
νp=W0

≥ 0, d = 0, . . . , D − 1. (4.20)

Theorem 4.2.1. Let ψd(c, f) be the prolate spheroidal wave functions [104]. Let

c > 0 be given and set

M =

⌊
c

πWmax

⌋

.

If Wmax → 0,

√

WmaxŨd(Wmaxνp;W, I) ∼ ψd(c, νp) (4.21)
√

WmaxUd(Wmaxνp;W, I) ∼ ψd(c, νp). (4.22)

In other words, both the approximate DPS wave functions as well as the DPS wave

functions themselves converge to the prolate spheroidal wave functions.

Proof: For W0 = 0 and M0 = 0, i. e., W ′ = [−Wmax,Wmax] and I ′ = {0, . . . ,M−1}
the proof is given in [103, Sec. 2.6]. The general case follows by using the two

identities

v(d)
m (W, I) = e2πj(m+M0)W0v

(d)
m+M0

(W ′, I ′), (4.23)

Ud(ν,W, I) = eπj(2M0+M−1)(ν−W0)Ud(ν −W0;W
′, I ′). (4.24)

�

The theorem suggests that the approximate DPS wave functions can be used as

an approximation to the DPS wave functions. Therefore, the basis coefficients (4.18)

can be calculated approximately by

γ̃d(νp;W, I) :=
1

ǫd
ejπ(2M0+M−1)νpŨd(νp;W, I). (4.25)

The theorem does not indicate the quality of the approximation. It can only be

deduced that the approximation improves as the bandwidth Wmax decreases, while

the number of samples M = ⌊c/πWmax⌋ increases. This fact is exploited in the

following definition.
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Definition 4.2.3. Let h be a vector obtained by index-limiting a bandlimited process

of the form (4.1) with bandlimit W = [W0 − Wmax,W0 + Wmax] to the index set

I = {M0, . . . ,M0 +M − 1}. For a positive integer r—the resolution factor—define

Ir = {M0,M0 + 1, . . . ,M0 + rM − 1}, and (4.26)

Wr = [W0 −
Wmax

r
,W0 +

Wmax

r
]. (4.27)

Then, the approximate DPS subspace representation with dimension D and resolu-

tion factor r is given by

h̃
D,r

= Vα̃r (4.28)

whose approximate basis coefficients are

α̃rd =
P−1∑

p=0

ηpγ̃d(νp/r,Wr, Ir). (4.29)

Note, that the DPS sequences are required in a higher resolution only for the

calculation of the approximate basis coefficients. The resulting h̃
D,r

has the same

sample rate for any choice of r.

4.2.3 Bias of the Subspace Representation

In this subsection, the square bias of the subspace representation

bias2

ĥ
D = E

{
1

M
‖h − ĥ

D‖2

}

(4.30)

and the square bias of the approximate subspace representation

bias2

h̃
D,r = E

{
1

M
‖h − h̃

D,r‖2

}

(4.31)

are analyzed.

For ease of notation we assume again that W = [−νDmax, νDmax], i. e., we set

W0 = 0 and Wmax = νDmax. However, the results also hold for the general case

(4.9). If the Doppler shifts νp, p = 0, . . . , P − 1 are distributed independently and

uniformly on W , the DPS subspace representation ĥ coincides with the Karhunen-

Loeve transform of h [83] and it can be shown that

bias2

ĥ
D =

1

MνDmax

M−1∑

d=D

λd(W, I). (4.32)
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Parameter Value

Carrier frequency ωC 2 GHz

Sample rate 1/TS 3.84 MHz

Blocklength M 2560 samples

Mobile velocity vmax 100 km/h

Maximum Doppler fDmax 185 Hz

Maximum norm. Doppler νDmax 4.82 × 10−5

Table 4.1: Simulation parameters for the numerical experiments in the time domain.

The carrier frequency and the sample rate resemble those of a UMTS

system [55]. The blocklength is chosen to be as long as a UMTS frame.

If the Doppler shifts νp, p = 0, . . . , P − 1 are not distributed uniformly, (4.32) can

still be used as an approximation for the square bias [9].

For the square bias of the approximate DPS subspace representation h̃
D,r

, no

analytical results are available. However, for the minimum achievable square bias,

we can make the following conjecture

bias2
min,r = min

D
bias2

h̃
D,r ≈

(
2νDmax

r

)2

. (4.33)

The conjecture is substantiated by numerical Monte-Carlo simulations using the

parameters from Table 4.1. The Doppler shifts νp, p = 0, . . . , P − 1 are distributed

independently and uniformly on W . The results are illustrated in Fig. 4.2. It can

be seen that the square bias of the subspace representation bias2

ĥ
D decays with the

subspace dimension. For D ≥ ⌈2MνDmax⌉+ 1 this decay is even exponential. These

two properties can also be seen directly from Equation (4.32) and the exponential

decay of the eigenvalues λd(W, I). The square bias bias2

h̃
D,r of the approximate

subspace representation is similar to bias2

ĥ
D up to a certain subspace dimension.

Thereafter, the square bias of the approximate subspace representation levels out

at bias2
min,r ≈ (2νDmax/r)

2. Increasing the resolution factor pushes the levels further

down.

Let the maximal allowable square error of the simulation be denoted by E2
max.

Then, the approximate subspace representation can be used without loss of accuracy,

if D and r are chosen such that

bias2

h̃
D,r

!

≤ E2
max. (4.34)

Good approximations for D and r can be found by

D = argmin
D

bias2

ĥ
D ≤ E2

max and r = argmin
r

bias2
min,r ≤ E2

max. (4.35)
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Figure 4.2: bias2

ĥ
D (denoted by “bias”), bias2

h̃
D,r (denoted by “bias apx”), and

bias2
min,r (denoted by “bias apx min”) for νDmax = 4.82 × 10−5 and

M = 2560. The factor r denotes the resolution factor.

The first expression can be computed using (4.32). Using conjecture (4.33), the

latter one evaluates to

r =

⌊
2νDmax

Emax

⌋

. (4.36)

On a 14 bit fixed-point processor, the maximum achievable accuracy is E2
max =

(2−13)2 ≈ 1.5 · 10−8. For the example of Fig. 4.2, where the maximum Doppler shift

νDmax = 4.82 × 10−5 and the number of samples M = 2560, the choice D = 4 and

r = 2 makes the simulation as accurate as possible on that hardware. Depending

on the application, a lower accuracy might also be sufficient.

4.2.4 Complexity and Memory Requirements

In this subsection, the computational complexity of the approximate subspace rep-

resentation (4.28) is compared to the SoCE algorithm (4.1). The complexity is ex-

pressed in number of complex multiplications (CM) and evaluations of the complex

exponential (CE). Additionally, we compare the number of memory access (MA)

operations, which gives a better complexity comparison than the actual memory

requirements.

We assume that all complex numbers are represented using their real and imagi-

nary part. A CM thus requires four multiplication and two addition operations. As

a reference implementation for a CE we use a table look-up with linear interpolation
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for values between table elements [7]. This implementation needs six addition, four

multiplication and two memory access operations.

Let number of operations that are needed to evaluate h and h̃ be denoted by Ch

and Ch̃ respectively. For the SoCE algorithm, for every m ∈ I = {M0, . . . ,M0 +

M − 1} and every p = 0, . . . , P − 1, a CE and a CM has to be evaluated, i. e.,

Ch = MP CE +MP CM. (4.37)

For the approximate DPS subspace representation with dimension D, first the

approximate basis coefficients α̃ have to be evaluated, requiring

Cα̃ = DP (CE + 2 CM + MA) +DP CM (4.38)

operations where the first term accounts for (4.25) and the second term for (4.29).

In total, for the evaluation of the approximate subspace representation (4.28),

Ch̃ = MD(CM + MA) + Cα̃ (4.39)

operations are required. For large P , the approximate DPS subspace representation

reduces the number of arithmetic operations compared to the SoCE algorithm by

Ch

Ch̃

→ M(CE + CM)

D(CE + 3 CM)
. (4.40)

The memory requirements of the DPS subspace representation are determined by

the blocklength M , the subspace dimension D and the resolution factor r. If the

DPS sequences are stored with 16-bit precision,

Memh̃ = 2rMD byte (4.41)

are needed.

In Fig. 4.3, Ch and Ch̃ are plotted over the number of paths P for the parameters

given in Table 4.1. Multiplications and additions are counted as one operation.

Memory access operations are counted separately. The subspace dimension is chosen

to be D = 4 according to the observations of the last subsection. The memory

requirements for the DPS subspace representation are Memh̃ = 80 kbyte.

It can be seen that the complexity of the approximate DPS subspace representa-

tion in terms of number of arithmetic operations as well as memory access operations

increases with slope D, while the complexity of the SoCE algorithm increases with

slope M . Since in the given example D ≪ M , the approximate DPS subspace

representation already enables a complexity reduction by more than one order of

magnitude compared to the SoCE algorithm for P = 30 paths. Asymptotically, the

number of arithmetic operations can be reduced by a factor of Ch/Ch̃ → 465.
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Figure 4.3: Complexity in terms of number of arithmetic operations (left abscissa)

and memory access operations (right abscissa) vs. the number of MPCs

P . We show results for the sum of complex exponentials algorithm

(denoted by “SoCE”) and the approximate subspace representation (de-

noted by “DPSS”) using M = 2560, νDmax = 4.82 × 10−5, and D = 4

4.3 Extension to Multiple Dimensions

4.3.1 Multidimensional DPS Subspace Representation

The DPS subspace representation (Definition 4.2.1) can be extended to multiple

dimensions. The multidimensional equivalent of equation (4.1) is given by

hm =
P−1∑

p=0

ηpe
j2π〈fp,m〉 for m ∈ I,f p ∈ W, (4.42)

where I ⊂ Z
N is an N -dimensional finite index set and W ⊂ (−1/2, 1/2)N is an

N -dimensional interval.

It is easily verified that (4.42) is bandlimited to W . The Fourier transform of hm

evaluates to

H(f) =
P−1∑

p=0

ηpδ(f − f p) (4.43)

where δ(f − f p) = δ(f0 − f0,p) · · · δ(fN−1 − fN−1,p) is the N -dimensional delta func-

tion. Since H(f) = 0 for f /∈ W , hm is bandlimited with bandlimit W .
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Define by h the vector obtained by index-limiting the sequence (4.42) to the index

set I and sorting the elements lexicographically. In analogy to the one-dimensional

case, the subspace spanned by {h} is also spanned by the multidimensional DPS

vectors v(d)(W, I) defined in Chapter 3. Therefore, we can formulate the multidi-

mensional (approximate) DPS subspace representation of h.

Definition 4.3.1. Let h be a vector obtained by index-limiting a multidimensional

bandlimited process of the form (4.42) with bandwidth W to the index set I. Let

v(d)(W, I) be the multidimensional DPS vectors for the multidimensional bandlimit

region W and the multidimensional index set I. Further, collect the first D DPS

vectors v(d)(W, I) in the matrix

V = [v(0)(W, I), . . . ,v(D−1)(W, I)]. (4.44)

Then the multidimensional DPS subspace representation of h with dimension D

is defined by

ĥ
D

= Vα, (4.45)

where α is the projection of the vector h onto the columns of V

α = VHh. (4.46)

The square bias of the multidimensional DPS subspace representation is defined

similarly to the one-dimensional case. If all the fp,i, p = 0, . . . , P −1 are distributed

uniformly on Wi, then it can be shown similarly to the one-dimensional case that

bias2

ĥ
D =

1

|I||W |

|I|−1
∑

d=D

λd(W, I). (4.47)

The subspace dimension D has to be chosen, such that the bias of the subspace

representation is small compared to the machine precision Emax of the underlying

simulation hardware, i. e.,

D = argmin
D

bias2

ĥ
D ≤ E2

max. (4.48)

Alternatively, an estimate for D can be obtained by estimating the subspace dimen-

sions Di of the corresponding one-dimensional DPS subspace representations and

noting that D ≤ D0 . . . DN−1.

The following theorem shows how the multidimensional projection (4.46) can re-

duced to a series of one-dimensional projections.
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Theorem 4.3.1. Let ĥ
D

be the N -dimensional DPS subspace representation of h

with subspace dimension D, band-limiting region W , and index set I. If W and I

can be written as Cartesian products

W = W0 × . . .×WN−1, (4.49)

I = I0 × . . .× IN−1, (4.50)

where Wi = [W0,i −Wmax,i,W0,i +Wmax,i], and Ii = {M0,i, . . . ,M0,i +Mi − 1}, then

for every d = 0, . . . , D−1 there exist d0, . . . , dN−1 such that the N -dimensional DPS

basis vectors v(d)(W, I) can be written as

v(d)(W, I) = v(d0)(W0, I0) ⊗ · · · ⊗ v(dN−1)(WN−1, IN−1). (4.51)

Further, the basis coefficients of the approximate DPS subspace representation

h̃
D

= Vα̃ (4.52)

are given by

α̃ =
P−1∑

p=0

ηp

(

γ̃(0)
p ⊗ · · · ⊗ γ̃(N−1)

p

)

, (4.53)

where γ̃
(i)
p,d = γ̃di(fp,i,Wi, Ii) are the one-dimensional approximate basis coefficients

defined in Equation (4.25). Additionally, resolution factors ri can be used to improve

the approximation.

Proof: For I given by (4.50), h can be written as

h =
P−1∑

p=0

ηp
(
e(0)
p ⊗ · · · ⊗ e(N−1)

p

)
,

where e
(i)
p = [e2πjfp,iM0,i , . . . , e2πjfp,i(M0,i+Mi−1)]T . Further, since W is given by (4.49),

the results of Section 3.4 can be used and V can be written as

V = V0 ⋄ · · · ⋄ VN−1,

where ⋄ denotes the column-wise Kronecker product (Khatri-Rao product). Every

matrix Vi contains the one-dimensional DPS vectors vd(Wi, Ii) in its columns.

Using the identity

(A0 ⋄ · · · ⋄ AN−1)(b0 ⊗ · · · ⊗ bN−1) = A0b0 ⊗ · · · ⊗ AN−1bN−1,
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the basis coefficients α can be calculated by

α = VHh

=
P−1∑

p=0

ηp

(

VH
0 ⋄ · · · ⋄ VH

N−1

)(

e(0)
p ⊗ · · · ⊗ e(N−1)

p

)

=
P−1∑

p=0

ηp

(

VH
0 e(0)

p
︸ ︷︷ ︸

=:γ
(0)
p

⊗ · · · ⊗ VH
N−1e

(N−1)
p

︸ ︷︷ ︸

=:γ
(N−1)
p

)

.

�

The theorem allows to use the methods of Section 4.2.2 to calculate the basis co-

efficients of the multidimensional DPS subspace representation approximately with

low complexity. The resolution factors ri, i = 0, . . . , N − 1 have to be chosen,

such that the bias of the subspace representation is small compared to the machine

precision Emax of the underlying simulation hardware. A necessary, but not a suf-

ficient condition for this, is to use the methods of Section 4.2.3 for each dimension

independently, i. e., to choose ri = 2Wmax,i/Emax. However, it has to be verified

numerically that the multidimensional DPS subspace representation achieves the

required numerical accuracy.

4.3.2 Complexity and Memory Requirements

In this subsection we evaluate the complexity and memory requirements of the N -

dimensional SoCE algorithm and the N -dimensional approximate DPS subspace

representation, given by Theorem 4.3.1. These results are a generalization to

the results of Section 4.2.4. We assume that the one-dimensional DPS sequences

v(di)(Wi, Ii), i = 0, . . . , N − 1 have been precalculated. Further we assume that

D = D0 · · ·DN−1, where Di = max di is the maximum number of one-dimensional

DPS vectors in dimension i needed to construct the N -dimensional vectors up to

the dimension D.

Denote the number of operations that are needed to evaluate h (4.63) and h̃
D

(4.52) by Ch and C
h̃
D respectively. For the SoCE algorithm,

Ch = |I|P (CE + CM). (4.54)

For the approximate DPS subspace representation with dimension D, firstly the

N -dimensional DPS basis vectors need to be calculated from the one-dimensional

DPS vectors (cf. Equation 4.51), requiring

CV = (N − 1)|I|DCM. (4.55)
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Secondly, the approximate basis coefficients α̃ have to be evaluated according to

(4.53), requiring

Cα̃ =
(N−1∑

i=0

|Di|(CE + CM + MA) +NDCM
)

P. (4.56)

In total, for the evaluation of the approximate subspace representation (4.52),

C
h̃
D = |I|D(CM + MA) + CV + Cα̃ (4.57)

operations are required.

Asymptotically for P → ∞, the N -dimensional DPS subspace representation

reduces the number of arithmetic operations compared to the SoCE algorithm by

Ch

Ch̃

→ |I|(CE + CM)
∑N−1

i=0 Di(CE + CM) +NDCM
. (4.58)

The memory requirements of the DPS subspace representation are determined by

the size of the index set I, the number of DPS vectors Di, and the resolution factors

ri. If the DPS sequences are stored with 16 bit precision,

Memh̃ =
N−1∑

i=0

2ri|Ii|Di byte (4.59)

are needed.

4.4 Doubly-selective MIMO Channels

In this section, the multidimensional DPS subspace representation is applied to the

simulation of time-variant, frequency-selective geometry-based MIMO channels. For

simplicity we assume uniform linear arrays (ULA) with omnidirectional antennas.

Thus, the double-directional transfer function (2.33) simplifies to

h(t, f, x, y) =
P−1∑

p=0

ηpe
2πjωpte−2πjτpfe2πj/λ sin(ϕp)xe−2πj/λ sin(ψp)y, (4.60)

where t denotes time, f denotes frequency, x the position of the transmit antenna on

the ULA, y the position of the receive antenna on the ULA, and λ the wavelength.

Each MPC p is characterized by its complex weight ηp, which embodies the gain βp
and the phase shift φp, time delay τp, Doppler shift ωp, AoD ϕp, and AoA ψp.

58



4 Subspace Representation of Geometry-Based Channel Models

4.4.1 Observations

In this subsection we show that the sampled time-variant wideband MIMO chan-

nel transfer function is band-limited in time, frequency, and space. Denote by

FS the width of a frequency bin and by DS the distance between antennas.

The sampled channel can be described as a four-dimensional sequence hm,q,r,s =

h(mTS, qFS, rDS, sDS), where m denotes discrete time, q denotes discrete frequency,

s denotes the index of the transmit antenna, and r denotes the index of the receive

antenna. Further, let νp = ωpTS denote the normalized Doppler shift, θp = τpFS the

normalized delay, ζp = sin(ϕp)DS/λ and ξp = sin(ψp)DS/λ the normalized angles of

departure and arrival, respectively. If all these indices are collected in the vectors

m = [m, q, s, r]T and (4.61)

f p = [νp,−θp, ζp,−ξp]T , (4.62)

hm can be written as

hm =
P−1∑

p=0

ηpe
j2π〈fp,m〉. (4.63)

Before the multidimensional DPS subspace representation can be applied, the index-

limiting region and the bandlimiting region of (4.63) need to be identified.

Index-Limitation. We assume that for hardware implementation, hm is calculated

block-wise for M samples in time, Q bins in frequency, NTx transmit antennas, and

NRx receive antennas. Accordingly the index set is defined by

I = {0, . . . ,M−1}×{−⌊Q/2⌋, . . . , ⌊Q/2⌋−1}×{0, . . . , NTx−1}×{0, . . . , NRx−1}.
(4.64)

Band-Limitation. The band-limitation of hm is defined by the following physical

parameters of the channel.

1. The maximum normalized Doppler shift of the channel νDmax defines the band-

limitation in the time domain. It is determined by the maximum speed of the

user vmax, the carrier frequency ωC , the speed of light c, and the sampling rate

1/TS, i. e.,

νDmax =
vmaxωC

c
TS. (4.65)

2. The maximum normalized delay of the scenario θmax defines the band-

limitation in the frequency domain. It is determined by the maximum delay

τmax and the sample rate 1/FS in frequency

θmax = τmaxFS. (4.66)
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3. The minimum and maximum normalized AoA, ξmin and ξmax define the band-

limitation in the spatial domain at the receiver. They are given by the min-

imum and maximum AoA, ψmin and ψmax, the spatial sampling distance DS

and the wavelength λ:

ξmin = sin(ψmin)DS/λ, ξmax = sin(ψmax)DS/λ. (4.67)

The band-limitation at the transmitter is given similarly by the normalized

minimum and maximum normalized AoD, ζmin and ζmax.

In summary it can be seen that hm is bandlimited to

W = [−νDmax, νDmax] × [0, θmax] × [ζmin, ζmax] × [ξmin, ξmax]. (4.68)

Therefore, the multidimensional DPS subspace representation given in Definition

4.3.1 may be applied to h, which is the vector obtained by index-limiting the se-

quence (4.63) to the index set I (4.64),

h̃
D

= Vα̃. (4.69)

Further, the band-limiting region W (4.68) and the index set I (4.64) fulfill the

perquisites of Theorem 4.3.1 with

W0,0 = 0, Wmax,0 = νDmax, M0,0 = 0, M0 = M,

W0,1 =
θmax

2
, Wmax,1 =

θmax

2
, M0,1 = −

⌊
Q

2

⌋

, M1 = Q,

W0,2 =
ζmax + ζmin

2
, Wmax,2 =

ζmax − ζmin

2
, M0,2 = 0, M2 = NTx,

W0,3 =
ξmax + ξmin

2
, Wmax,3 =

ξmax − ξmin

2
, M0,3 = 0, M3 = NRx.

Thus, the the basis coefficients of the multidimensional DPS subspace representation

can be calculated with low complexity.

4.4.2 Hybrid DPS Subspace Representation

In addition to the multidimensional DPS subspace representation, we also propose a

hybrid DPS subspace representation, that applies a DPS subspace representation in

time and frequency domains, and computes the complex exponentials in the spatial

domain directly. Therefore the four-dimensional channel transfer function hm (4.63)

is split into NTxNRx two-dimensional transfer functions hr,s
m′ describing the transfer

function between transmit antenna r and receiver antenna s.

hr,s
m′ := hm′,r,s =

P−1∑

p=0

ηpe
−j2πξprej2πζps

︸ ︷︷ ︸

ηr,sp

ej2π〈f
′

p,m
′〉 for m′ ∈ I ′,f ′

p ∈ W ′, (4.70)
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where the bandlimit region W ′ and the index set I ′ are given by

I ′ = {M0, . . . ,M0 +M − 1} × {−⌊Q/2⌋, . . . , ⌊Q/2⌋ − 1}, (4.71)

W ′ = [−νDmax, νDmax] × [0, θmax]. (4.72)

Then, a the two-dimensional DPS subspace representation can be applied to each

hr,s = [hr,sM0,−Q/2
, hr,sM0,−Q/2+1, . . . , h

r,s
M0+M−1,Q/2]

T

independently, resulting in

h̃
r,s,D

= Vα̃r,s.

4.4.3 DPS Subspace Representation in the Time-Delay Domain

Since most channel simulators filter the signals in the time-delay domain rather than

in the time-frequency domain, we need to transform the subspace representation of

hr,s by a partial inverse discrete Fourier transform (DFT).

Define the index set

J = {0, . . . ,M − 1} × {0, . . . , N − 1},

where N is the number of delay bins and for simplicity, it can be assumed that

N = Q. Denote by Hr,s the vector of elements of the time-variant impulse response

Hr,s
m,n indexed lexicographically,

Hr,s = [Hr,s
0,0, H

r,s
0,1, . . . , H

r,s
M−1,N−1]

T .

Assuming that the channel is band-limited, Hr,s is related to hr,s by

Hr,s = (IM ⊗ F−1
N )hr,s,

where F−1
N be the inverse DFT matrix of size N . A subspace representation of Hr,s

can be obtained by defining the basis vectors in the time-delay domain as

U = (IM ⊗ F−1
Q )V. (4.73)

Then the approximate DPS subspace representation of Hr,s is given by

H̃
r,s,D

= Uα̃r,s. (4.74)
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Parameter Value

Width of frequency bin FS 15 kHz

Number of frequency bins Q 256

Maximum delay τmax 3.7 µs

Maximum norm. delay θmax ≈ 1/18

Table 4.2: Simulation parameters for the frequency domain.

4.4.4 Numerical Examples

Section 4.2 demonstrated that an application of the approximate DPS subspace

representation to the time-domain of wireless channels may save more than an order

of magnitude in complexity. In this subsection, the multidimensional approximate

DPS subspace representation is applied to an example of a time-variant frequency-

selective channel as well as an example of a time-variant frequency-selective MIMO

channel. A comparison of the arithmetic complexity is given. We assume a 14-

bit fixed-point hardware architecture, i. e., a maximum allowable square error of

E2
max = (2−13)2 ≈ 1.5 · 10−8.

4.4.4.1 Time and Frequency Domain

Table 4.2 contains the simulation parameters of the numerical experiments in the

frequency domain. The remaining parameters are chosen according to Table 4.1. We

assume a typical urban environment with a maximum delay spread of τmax = 3.7µs

given by the ITU Pedestrian B channel model [73].

Using conjecture (4.33), the estimated values of the resolution factors are r0 =

2νDmax/Emax ≈ 2 and r1 = θmax/Emax ≈ 512 (rounded to the next power of two).

The square bias

bias2

h̃
D = E

{
1

MQ
‖h̃D − hD‖2

}

(4.75)

of the two-dimensional exact and the approximate DPS subspace representation is

plotted in Fig. 4.4 against the subspace dimension D. It can be seen that bias2

h̃
D ≈

E2
max at a subspace dimension of approximately D = 80. The maximum number of

one-dimensional DPS vectors is D0 = 4 and D1 = 23.

4.4.4.2 Time, Frequency, and Spatial Domain

Table 4.3 contains the simulation parameters of the numerical experiments in the

spatial domain. The remaining parameters are chosen according to Tables 4.1 and

4.2. We assume uniform linear arrays at the transmitter and the receiver with
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Figure 4.4: bias2

ĥ
D (denoted by “bias”) and bias2

h̃
D (denoted by “bias apx”) for the

subspace representation in the time and frequency domain with νDmax =

4.82 ·10−5, M = 2560, θmax = 0.056 and Q = 256. The resolution factors

are fixed to r0 = 1 and r1 = 512. The thin horizontal line denotes the

numerical accuracy of a fixed-point 14-bit processor.

Parameter Value

Spacing between antennas DS λ/2 m

Number of Tx antennas NTx 8

Number of Rx antennas NRx 8

AoD interval [ϕmin, ϕmax] [−5◦, 5◦]

AoA interval [ψmin, ψmax] [−5◦, 5◦]

Normalized AoD bandwidth ζmax − ζmin 0.087

Normalized AoA bandwidth ξmax − ξmin 0.087

Table 4.3: Simulation parameters for the numerical experiments in the spatial do-

mains.
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Tx Rx

Φ
Ψ

Figure 4.5: Scenario of a mobile radio channel with one cluster of scatterers. The

AoD and the AoA are limited within the intervals Φ = [ϕmin, ϕmax] and

Ψ = [ψmin, ψmax] respectively.

spacing DS = λ/2 and NTx = NRx = 8 antennas each. Further we assume, that

there is only one cluster of scatterers in the scenario, which is not in the vicinity of

the transmitter or receiver (see Fig. 4.5) and we assume no line of sight. The AoA

and AoD are assumed to be limited by [ψmin, ψmax] = [ϕmin, ϕmax] = [−5◦, 5◦], which

has been observed in measurements [36].

A four-dimensional DPS subspace representation is applied to the channel (4.63)

with I and W defined in Equations (4.64) and (4.68). Following the same procedure

as above the estimated values for the resolution factors and the max. number of one-

dimensional DPS sequences in the spatial domains are r2 = ζmax − ζmin/Emax ≈ 512,

r3 = ξmax − ξmin/Emax ≈ 512 (rounded to the next power of 2), and D2 = D3 = 5.

4.5 Results and Discussion

A complexity comparison of the SoCE algorithm and the approximate DPS sub-

space representation for one, two, and four dimensions is given in Fig. 4.6. It was

evaluated using Equations (4.54) and (4.57). Also shown is the complexity of the

four-dimensional hybrid DPS subspace representation.

It can be seen that for time-variant flat-fading channels, the one-dimensional DPS

subspace representation requires fewer arithmetic operations for P > 2 MPCs. The

more number of MPCs are used, the more complexity is saved. Asymptotically, the

number of arithmetic operations is reduced by Ch/Ch̃ → 465.

For time-variant frequency selective channels, the two-dimensional DPS subspace

representation requires fewer arithmetic operations for P > 30 MPCs. However, as

noted in Section 2.6.2, channel models for systems with the given parameters require

P = 400 paths or more. For such a scenario, the DPS subspace representation

also saves two orders of magnitude in complexity. Asymptotically, the number of

arithmetic operations is reduced by a factor of Ch/Ch̃ → 6.8 × 103 (cf. Equation

(4.58)). The memory requirements are Memh̃ = 5.83 Mbyte (cf. Equation (4.59)).
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Figure 4.6: Complexity in terms of number of arithmetic operations vs. the num-

ber of MPCs P . We show results for the SoCE algorithm (denoted by

“SoCE”) and the approximate DPS subspace representation (denoted by

“DPSS”) for one, two, and four dimensions. Also shown is the complex-

ity of the four-dimensional hybrid DPS subspace representation (denoted

by “Hybrid”).

For time-variant, frequency selective MIMO channels, the four-dimensional DPS

subspace representation requires fewer arithmetic operations for P > 2×103 MPCs.

Since MIMO channels require the simulation of up to 104 MPCs (cf. Section

2.6.2), complexity savings are still possible. The asymptotic complexity savings

are Ch/Ch̃ → 1.9 × 104. However, in the region P < 2 × 103 MPCs, the four-

dimensional DPS subspace representation requires more complex operations than

the corresponding SoCE algorithm. Thus, even though we choose a “best case” sce-

nario with only one cluster, a small angular spread and a low numerical accuracy,

there is hardly any additional complexity reduction if the DPS subspace represen-

tation is applied in the spatial domain.

The hybrid DPS subspace representation on the other hand exploits the savings of

the DPS subspace representation in the time and frequency domain only. From Fig.

4.6 it can be seen that it has fewer arithmetic operations than the four-dimensional

DPS subspace representation and the four-dimensional SoCE algorithm for 60 <

P < 2 × 103 MPCs. Thus the hybrid method is preferable for channel simulations

in this region. Further, this method also allows for an efficient parallelization on

hardware channel simulation, which is the topic of the next chapter.
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MIMO Channel Simulation

5.1 Introduction

The design and optimization of modern radio communication systems requires re-

alistic models of the radio propagation channel. The COST 259 GSCM [34, 54] is

a very general MIMO channel model that can be used to simulate a wide range of

scenarios. The COST 259 GSCM distinguishes macrocells (outdoor urban), micro-

cells (outdoor city) and picocells (indoor). For the test of mobile radio hardware

devices, real-time implementations of such channel models are needed. The ARC

SmartSim channel simulator is a real-time hardware MIMO channel simulator that

implements the COST 259 GSCM [7]. As noted in Section 2.6.2, for realistic sim-

ulation results, a large number of MPCs must be evaluated and summed up in the

baseband processing unit of the simulator. On the other hand, the number of MPCs

that can be simulated, is limited by the available processing power.

In Chapter 4, it was shown that the overall computational complexity of geometry-

based channel models can be reduced by several orders of magnitude by applying a

hybrid DPS subspace representation to the time- and space-variant transfer function

of the channel. By adjusting the dimension of the subspace, it is possible to trade

complexity for accuracy. Furthermore, the subspace representation is independent

of the number of paths and the projection can be calculated efficiently in O(1)

operations directly from the path parameters given by the model.

In this chapter, it is shown how the subspace based method can be incorporated

in a GSCM and implemented on the ARC SmartSim channel simulator. It is shown

that this implementation is equivalent to the implementation described in [7]. The

complexity of the proposed method is however smaller for a wide range of scenarios.

This chapter is organized as follows. In Section 5.2, the ARC SmartSim channel

simulator and its signal model are described. Section 5.3 describes the COST 259

GSCM in more detail. The implementation of the DPS subspace representation

on the ARC SmartSim is treated in Section 5.4. Complexity comparisons and the

memory requirements of the methods are given in Section 5.5. A summary is given

in Section 5.6.
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Figure 5.1: The baseband processing unit of the ARC SmartSim channel simulator.

5.2 The ARC SmartSim Channel Simulator

The hardware of the ARC SmartSim channel simulator is a modular architecture

comprised of a baseband signal processing unit, an analog frontend and a radio fre-

quency (RF) frontend. The baseband signal processing unit is a parallel architecture

of DSP boards, which are described in Section 5.2.1. The analog and RF boards are

described in Section 5.2.2.

5.2.1 The Baseband Processing Unit

The DSP boards basically consist of a Texas Instruments (TI) C6416 DSP and a

Xilinx Virtex 2 FPGA. Fig. 5.2 depicts a block diagram of the board. The DSP has a

fixed-point architecture with 16 bit precision. The FPGA provides digital baseband

interfaces for input and output signals, as well as for communication over the internal

backplane. The baseband signals are implemented by means of LVDS (Low Voltage

Differential Signalling) and using standard “Channel Link” connectors. A maximum

sample rate of 40MSPS is supported and the dynamic range is 16 bit for inputs and

32 bit for outputs. A Motorola Coldfire microprocessor is used for configuration of

the board and communication with a PC. A more detailed description of the board

is given in [5, 14,15].

The MIMO channel simulation method is depicted in Fig. 5.3 for a MIMO channel

with NTx = 2 transmit antennas and NRx = 4 receive antennas. The input signals

xs(t), s = 0, . . . , NTx − 1, are fed into the first NTx boards and then distributed to

the other boards. Each DSP board computes the channel impulse response Hr,s(t, τ)

based on the COST259 GSCM for one pair of transmit and receive antennas (r, s)
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Figure 5.2: Block diagram of the DSP-board.

and its time-variant convolution with the input signal

yr,s(t) =

∫

Hr,s(t, τ)xs(t− τ)dτ. (5.1)

Thus, in a NTx × NRx MIMO scenario, NTxNRx DSP-boards are needed. After

the time-variant convolution, the results of NTx adjacent boards are summed up,

resulting in

yr(t) =

NTx−1∑

s=0

yr,s(t). (5.2)

5.2.2 Analog and RF Units

Each DSP-board can optionally be equipped with an analog frontend providing

in- and outputs at an intermediate frequency (IF) of 140 MHz with a maximum

bandwidth of 40 MHz and a dynamic range of 14 bit input and 16 bit output

respectively. The board comprises a digitizer, which is built by two TI ADS5500,

a digital to analog (D/A) converter plus a Xilinx XC2VP30 FPGA, which handles

I/O interfacing, digital mixing, and controlling of the board.

The RF frontends are separated from the rest of the system and reside in an own

rack identical to the rack of the platform to reduce influences on the system. Both

the transmitter and the receiver are implemented on a separate board. The current

version of the RF receiver is designed for WiMAX signals with a center frequency

of 2.58 GHz and a bandwidth of 20 MHz. Extensions complying WLAN and UMTS

standards are planned for the next version [65].
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Figure 5.3: MIMO 2 → 4 scenario and the corresponding configuration of develop-

ment platform.

5.3 The COST 259 Geometry-based Stochastic

Channel Model

The principle of the COST 259 GSCM is shown in Fig. 5.4 [34, 54]. A base station

(BS) and a mobile station (MS), each having several antennas, are placed within

the simulation area and a velocity vector is assigned to the MS. According to the

simulated scenario, clusters of scatterers are placed in simulation area. For example,

Fig. 5.4 shows a microcell scenario with a cluster of scatterers near the BS, another

one around the MS, and one far cluster. The positions of the scatterers in the clusters

are calculated according the cluster’s angular delay power spectrum (ADPS) at the

beginning of a simulation run and are assumed to be stationary within one simulation

run [78].

Assuming specular reflection at the scatterers, raytracing is used to compute the

MPCs of the channel. Transmitted signals can be scattered once (dashed lines) or

twice (dotted lines); cf. Fig. 5.4. The solid line denotes the line of sight path. The

parameters of the MPCs can be regarded as constant for displacements of the MS

within a range of a few wavelengths (except for the phase). Such a range is called

local area [78].

For every MPC in the local area u, the gain β′
p[u], the phase shift φp[u], the delay

τp[u], the AoD ϕp[u] and the AoA ψp[u] of every MPC P are calculated. Within a
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Figure 5.4: Geometrical model for signal propagation.

local area u, the space-variant impulse response is then given by

H(τ,x,y;u) =
P−1∑

p=0

β′
p[u]e

2πjφp[u]δ(τ − τp[u])e
2πj/λ〈ζ′

p[u],x〉e−2πj/λ〈ξ′

p[u],y〉, (5.3)

where ζ ′
p[u] and ξ′

p[u] are the normalized vectors pointing in the direction of depar-

ture and direction of arrival respectively (compare Section 2.5.3).

Without loss of generality, we assume that the MS acts as the receiver and the BS

as the transmitter. Denote by x0, . . . ,xNTx−1 and y0, . . . ,yNRx−1, the positions of

the transmit and receive antennas within the local area u and assign a constant speed

vector v to the MS. Further denote by GTx(ϕ) and GRx(ψ) the antenna patterns of

the transmitter and receiver respectively. Then, the time-variant impulse response

between transmit antenna s and receive antenna r can be written as

Hr,s(t, τ ;u) =
P−1∑

p=0

βp[u]e
2πjφr,sp [u]δ(τ − τp[u])e

−2πjωp[u]t, (5.4)

where βp[u] = β′
p[u]GTx(ϕp)GRx(ψp) is the attenuation including antenna gains,

φr,sp [u] = e2πj/λ〈ζ
′

p[u],xs〉e−2πj/λ〈ξ′

p[u],yr〉 (5.5)

is the phase shift of path p between transmit antenna s and receive antenna r, and

ωp[u] =
〈ξ′

p[u],v〉
λ

(5.6)
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is the Doppler shift of path p.

Assuming ideal bandlimiting filters at the transmitter and the receiver with band-

width B, the time-variant impulse response can be sampled with rate 1/TS,

Hr,s
m,n[u] =

P−1∑

p=0

βp[u]e
j2πφr,sp [u] sinc(nTS − τp[u])e

j2πνp[u]m, (5.7)

where sinc(x) = sin(2πxB)
πx

and νp[u] = ωp[u]TS is the normalized Doppler shift. The

sampled time-variant transfer function is obtained by transforming (5.7) into the

frequency domain.

hr,sm,q[u] =
P−1∑

p=0

βp[u]e
j2πφr,sp [u]e−2πjθp[u]qej2πνp[u]m, (5.8)

where θp = τp/TS is the normalized delay.

5.4 Real-time Implementation Aspects

In this Section, the DPS subspace representation is applied to the COST 259 GSCM.

We also propose an implementation on the ARC SmartSim channel simulator.

The channel simulation is carried out in parallel—one DSP board for every pair

(r, s) of Tx and Rx antennas. This is also depicted in Fig. 5.3 [5, 6]. Only at the

beginning of each simulation run, the global parameters of the scenario are initialized

and distributed to the DSP boards.

The real-time channel simulation is then divided into three main parts, namely

the propagation module, the DPS subspace module, and the convolution module

(see Fig. 5.5). The propagation module calculates the parameters of all MPCs of

the channel. The DPS subspace module takes those parameters and calculates the

subspace coefficients. Both modules are implemented on the DSP. The convolution

module is implemented in the FPGA. It takes the input samples and convolves them

with the calculated impulse response.

5.4.1 Propagation Module

The computation of the parameters of the MPCs is divided in a large scale and a

small scale update to fulfill the real-time constraints.

The large scale update updates the positions of the scatterers according to the

stochastic properties of the channel model and thus simulates long term fading.

Since these values are varying significantly only after a MS movement of approx. ten

wave lengths they are refreshed every 10 ms (corresponding to a carrier frequency of
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Figure 5.5: Implementation of the GSCM with the DPS subspace projection.
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2 GHz and a maximum speed of 500 km/h). In the large scale update, the different

attenuation values like the shadow fading, the attenuation of the scatterers and the

rice factor are calculated and are linearly interpolated in between. The path lengths

of the MPCs are calculated twice in this 10 ms update interval and are piecewise

quadratically interpolated in between. For a detailed view on the calculations of

these parameters see [34,54,56].

The large scale update is further divided into small scale updates of length T =

0.5 ms, which corresponds to approx. half a wavelength if the MS is moving at

maximum speed of 500 km/h. Within a small scale update, the MS stays within

a local area. Thus, with slight abuse of notation, we will identify the local area u

with the small scale update u. In the small scale update, the attenuation βp[u], the

phase φr,sp [u], the AoD ϕp[u], the AoA ψp[u], the delay τp[u], and the Doppler shift

νp[u] of all MPCs p = 0, . . . , P − 1 are calculated.

5.4.2 DPS Subspace Module

The DPS subspace module is part of the small scale update. Let M = T/TS be

the number of samples within a small scale update. Further choose Q > N =

NC + 2NF + 1, where NC = ⌊τmax/TS⌋ is maximum delay of the channel in samples

and NF is the group delay of the transmit and receive filters in samples.

In a small scale update hr,sm,q[u] needs to be calculated on the index set

I ′u = {Mu, . . . ,Mu+M − 1}
︸ ︷︷ ︸

=:I0,u

×{−⌊Q/2⌋, . . . , ⌊Q/2⌋ − 1}
︸ ︷︷ ︸

=:I1

. (5.9)

Since hr,sm,n[u] is bandlimited by

W ′ = [−νDmax, νDmax]
︸ ︷︷ ︸

=:W0

× [0, θmax]
︸ ︷︷ ︸

=:W1

, (5.10)

where νDmax = ‖v‖TS
λ

is the maximum normalized Doppler bandwidth and θmax =

τmax/TS is the maximum normalized delay in the channel, the two-dimensional DPS

subspace representation given in Definition 4.2.3 can be applied.

Denote by hr,s[u] the vector of elements of hr,sm,n[u] index-limited to I ′u and whose

elements are sorted lexicographically,

hr,s[u] = [hr,sMu,0[u], h
r,s
Mu+1,0[u], . . . , h

r,s
Mu+M−1,N−1[u]]

T . (5.11)

The DPS subspace module now takes the complex attenuation

ηr,sp [u] = βp[u]e
j2πφr,sp [u],
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the normalized Doppler shift νp[u], and the normalized delay θp[u] and computes

the basis coefficients α̃r,s[u] of the DPS subspace representation according to

α̃r,s[u] =
P−1∑

p=0

ηr,sp [u](γ̃(0)
p ⊗ γ̃(1)

p ), (5.12)

where γ̃
(0)
p,d = γ̃d(νp[u],W0, I0,u) and γ̃

(1)
p,d = γ̃d(θp[u],W1, I1) are defined in equation

(4.25). For ease of notation, the resolution factors r0 and r1 are not included. How-

ever, the DPS sequences must be available in the DSP in their maximum resolution.

The DPS subspace representation now writes

h̃
D,r,s

[u] = V(W, I)α̃r,s[u], (5.13)

where

V(W, I) = [v(0)(W, I), . . . ,v(D−1)(W, I)] (5.14)

is the matrix containing the two-dimensional DPS vectors.

5.4.3 Convolutional Module

The convolution module resides in the FPGA and has the task of computing the

time-variant impulse response of the channel and convolve it with the input signal.

Therefore, the DPS subspace representation (5.13) needs to be transformed from

the time-frequency domain back into the time-delay domain.

The approximate DPS subspace representation of

Hr,s = [Hr,s
0,0, H

r,s
0,1, . . . , H

r,s
M−1,N−1]

T .

is given by

H̃
D,r,s

[u] = U(W, I)α̃r,s[u], (5.15)

where the matrix U(W, I) has been defined in Section 4.4.3 and can be precalculated

and stored in the memory of the FPGA. Compared to the DPS subspace module,

in the convolution module the DPS vectors only need to be stored in low resolution.

Finally, the sampled input signal xsm = xs(mTS) is convolved with the impulse

response H̃r,s
m,n[u]

yr,sm =
N−1∑

n=0

H̃r,s
m,n[u]x

s
m−n. (5.16)

After the convolution, the results of NTx adjacent boards are summed up, resulting

in

yrm =

NTx−1∑

s=0

yr,sm . (5.17)
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Figure 5.6: Convolution with the History RAM

Equation (5.16) can be implemented using a tapped delay line (TDL) depicted

in Fig. 2.6. This implementation is different to the one used in [7], where the

input signal is highly oversampled with oversampling factor OT and written to a

“History RAM” (see Fig. 5.6). From there, for each path, the correctly delayed input

samples are multiplied with their complex attenuation βm,p = βp(mTS)e
2πjφr,sp (mTS)

and added up to yield one output sample. Assuming that the oversampling filter has

an ideal rectangular spectrum with bandwidth B, it can be shown that the proposed

implementation is equivalent to the History RAM implementation.

5.5 Complexity Comparison and Memory

Requirements

In this section, the complexities and the memory requirements of three different

implementations for the channel simulation are reported. The first two implemen-

tations use a tapped delay line, where the tap weights are either generated using

DPS sequences (5.15) or where the tap weights are calculated using (5.7). They are

compared to the implementation using the History RAM [7]. Further, the memory

requirements of the new method are given.

The implementation is divided between the DSP and the FPGA of the DSP board.

The complexity and memory requirements of the DPS subspace projection, which

resides in the DSP, was already studied in Chapter 4. In this section, only the

complexity of the part of the DPS subspace representation that is implemented in

the FPGA is considered.

5.5.1 Complexity Comparison

The complexity is measured using number of complex multiplications (CM) and

number of evaluations of a complex exponential (CE). We count the number of

operations for a single time step m of length TS.
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Parameter Value

Carrier frequency ωC 2 × 109 Hz

Bandwidth B 3.84 × 106 Hz

Sample rate 1/TS 15.36 × 106 Hz

Update interval T 0.5 × 10−3 sec

Blocklength M = T/TS 7680 samples

Delay bins Q 256 bins

Filter group delay NF 5

OSF History RAM OT 8

Table 5.1: Simulation parameters for the numerical experiments.

The complexity of the History RAM (HR) implementation is

CHR = (OT (2NF + 1))CM + P (CM + CE), (5.18)

where the first term accounts for the oversampling filter with oversampling factor

OT and the second term accounts for the number of paths in the HR.

The complexity of the TDL implementation, where the tap weights are calculated

using (5.7) is

CTDL = N CM + P (CM + CE), (5.19)

where the first term accounts for the implementation of the tapped delay line (5.16)

and the second term accounts for calculating the time-variant impulse response (5.7).

The complexity of the TDL implementation, where the tap weights are calculated

using DPS sequences (5.15) is

CDPSS = N CM +DCM, (5.20)

where the first term accounts for the implementation of the tapped delay line (5.16)

and and the second term accounts for calculating the time-variant impulse response

(5.15).

For the complexity comparison, the parameters of Table 5.1 are used. The maxi-

mum normalized Doppler shift is fixed to νDmax = 1.2044× 10−5, which corresponds

to a user velocity of 100 km/h. In Fig. 5.7, the minimum complexity regions of

the different implementations are plotted in dependence of the delay of the channel

in samples NC and the number of paths P . The subspace dimension D has been

calculated using (4.34).

It can be seen that the tapped delay line implementation performs best for small

delay spreads and small number of paths. If the delay spread is large, but the

number of paths is small, i. e., the impulse response of the channel is sparse, then the
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Figure 5.7: Minimum complexity regions of the implementation of the convolution

in dependence of the number of paths P and maximum delay of the

channel NC (in samples).

implementation using the History RAM is favorable. In all other cases, i. e., when

the number of paths is large, then the implementation using the DPS sequences

should be preferred.

5.5.2 Memory Requirements

The special choice of the bandlimit region (5.10) and the time-concentration regions

(5.9) as Cartesian products enables efficient storage of the two-dimensional DPS

sequences, because they can be calculated as a Kronecker product of one-dimensional

sequences. Therefore, to store U, onlyMD0+QD1 elements need to be stored, where

D0 and D1 are the maximum number of one-dimensional DPS vectors needed to

construct the two-dimensional vectors. D0 and D1 can be calculated using equation

(4.34). The results are summarized in Table 5.2 using the parameters of Table

5.1. For comparison, the History RAM implementation of [7] needs only 8 kByte of

memory.

77



5 Low-Complexity Geometry-based MIMO Channel Simulation

νDmax(×10−4)

NC 0.1204 0.2409 0.3613 0.4818 0.6022

64 95 99 103 107 110

128 159 163 167 171 174

192 223 227 231 235 238

256 287 291 295 299 302

320 351 355 359 363 366

384 415 419 423 427 430

Table 5.2: Memory requirements for the two-dimensional DPS sequences in kByte

in dependence of the maximum normalized Doppler shift νDmax and max-

imum number of delay taps NC . Every complex sample is allocated 32

bits.

5.6 Summary

We have presented a low-complexity implementation of the COST 259 GSCM, which

is especially suited for real-time channel simulation. The method allows to simulate

scenarios with a very high number of propagation paths. Compared to other im-

plementations the newly proposed has less complexity for most scenarios. On the

other hand, the memory requirements are higher.
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We have introduced a low-complexity algorithm for the computer simulation of

geometry-based MIMO channel models. This algorithm exploits the low-dimensional

subspace spanned by multidimensional DPS sequences. By adjusting the dimension

of the subspace, it is possible to trade computational complexity for accuracy. Thus

the algorithm is ideally suited for fixed-point hardware architectures with limited

precision.

We demonstrated that the complexity reduction depends mainly on the normal-

ized bandwidth of the underlying fading process in time, frequency and space. If

the bandwidth is very small compared to the sampling rate, the essential subspace

dimension of the process is small and the complexity can be reduced substantially.

In the time domain, the maximum Doppler bandwidth of the fading process is much

smaller than the system sampling rate. Compared with the SoCE algorithm, our

new algorithm reduces the complexity by more than one order of magnitude on

14-bit hardware.

The bandwidth of a frequency-selective fading process is given by the maximum

delay in the channel, which is a factor of five to ten smaller than the sampling rate

in frequency. Therefore, the DPS subspace representation also reduces the computa-

tional complexity when applied in the frequency domain. To achieve a satisfactory

numerical accuracy, the resolution factor in the approximation of the basis coef-

ficients needs to be large, resulting in high memory requirements. On the other

hand, it was shown that the number of memory access operations is small. Since

this figure has more influence on the run-time of the algorithm, the approximate

DPS subspace representation is preferable over the SoCE algorithm for a frequency-

selective fading-process.

The bandwidth of the fading process in the spatial domain is determined by the

angular spread of the channel, which is almost as large as the spatial sampling rate

for most scenarios in wireless communications. Therefore applying the DPS subspace

representation in the spatial domain does not achieve any additional complexity

reduction for the scenarios of interest.

As a consequence, a hybrid implementation has been proposed, which applies the

DPS subspace representation both in the time and frequency domain and evaluates

the spatial fading process directly. This method also enables a natural parallelization

of the algorithm, which allows an implementation on the ARC SmartSim channel
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simulator. The newly proposed implementation is especially favorable for scenarios

with a high number of propagation paths.
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7.1 Introduction

The performance of wireless communication systems is inherently limited by the

wireless communication channel. The understanding of the mobile radio channel

and the underlying electromagnetic wave propagation, as well as realistic channel

models are therefore of utmost importance for the design of wireless communication

systems [30].

In the first part of this thesis the wireless communication channel for time-variant,

frequency-selective, multiple-input multiple-output (MIMO) system was studied. In

this part of this thesis receiver architectures for state-of-the-art wireless communica-

tion systems are developed and their performance is investigated using (i) a software

simulation approach and (ii) a rapid prototyping approach. Special emphasis is put

on low-complexity receiver designs and robustness of the algorithm against interfer-

ence.

The wireless communications systems design starts in general with an algorithm

design stage, followed by extensive software simulations (in, e. g., Matlab) of the

proposed algorithms. However, many effects cannot be taken into account in the

software simulation that can occur on the final hardware, such as fixed-point issues

and real-time constraints. Rapid prototyping enables early elimination of fundamen-

tal errors made during the first design stages of wireless systems, drastically cutting

costs and time-to-market [96]. With the ARC SmartSim development platform,

rapid prototyping of such algorithms, on a hardware likely to be found in the final

product is possible. Moreover, the ARC SmartSim development platform also pro-

vides a real-time hardware channel simulator allowing unlimited and reproducible

evaluation of the prototype.

This part of the thesis is organized as follows. The rest of this chapter gives an

introduction to the Universal Mobile Telecommunications Standard (UMTS) with

special emphasis on the High Speed Downlink Packet Access (HSDPA) and the

Global System for Mobile Communications (GSM).

In Chapter 8, different receiver architectures for UMTS-HSDPA are described.

To asses the throughput performance of these receivers, we have developed a Mat-

lab simulation environment specifically tailored to HSDPA. A conventional rake
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IEEE802.11a GSM UMTS-FDD

Frequency range 5.5G Hz 900, 1800, 1900 MHz 2 GHz

Channel bandwidth 20 MHz 200 kHz 5 MHz

Access mode FDMA/TDMA FDMA/TDMA Direct sequence (DS)
CDMA

Duplex mode Half duplex FDD FDD

Users per carrier fre-
quency

- 8 -

Modulation OFDM with subcarrier
modulation BPSK/QP-
SK/ 16QAM/64QAM

GMSK QPSK

Error correction code Convolutional CRC, convolutional CRC, convolutional,
turbo

Bit (chip) rate 6/9/12/18/24/ 36/48/54
Mbps

270.833 kbps 3.840 Mchip/s

Number of bits
(chips)/burst (slot)

52 modulated symbols
per OFDM symbol

156.25 2560

Frame duration Packets of several 100 µs 4.615 ms 10 ms

Number of bursts
(slots)/frame

Variable 8 15

Burst (slot) duration 1 OFDM symbol of 3.3µs
+ 0.8 µs guard time

0.577 ms 0.667 ms

Maximum cell radius Some 10 m 36 km (10 km) Few km

Spreading sequences - - User specific OVSF
codes, call specific
scrambling

Spreading factor 1023 or 10230 - 2k (k = 2, 3, . . . , 8), 512
for downlink only

Bit (chip) pulseshap-
ing

- Gauss (BT = 0.3) Root-raised cosine, filter
roll-off factor 0.22

Net datarate Up to 25 Mbps 13 kbps 8 kbps to 2 Mbps

Evolutionary con-
cepts

IEEE802.11n GPRS, HSCSD, EDGE HSDPA

Comparable systems HiperLAN/2 IS-136, PDC UMTS-TDD, Cdma2000

Table 7.1: Parameters of selected air interfaces [58].

receiver, a rake receiver with interference cancelation and a receiver employing an

linear minimum mean square error (LMMSE) equalizer are investigated. Last but

not least, a low-complexity implementation of the LMMSE equalizer using Krylov

subspace methods is derived.

In Chapter 9, a receiver for GSM employing multiple antennas is developed and

its implementation on the ARC SmartSim development platform is described. The

smart antenna algorithm requires the solution of an eigenvalue problem in real-time.

The main contribution of this chapter is the numerical solution of this eigenvalue

problem on a fixed-point processor. Bit error rate (BER) results obtained with the

ARC SmartSim channel emulator are given.

Finally, Chapter 10 gives a summary and conclusions of part two of the thesis.
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7.2 The UMTS-HSDPA Standard

The first release (Release 99) of the Universal Mobile Telecommunication Systems

(UMTS) standard was published in 1999 by the 3rd Generation Partnership Project

(3GPP) [20, 73, 75–77]. UMTS is a mobile communication standard of the 3rd

generation offering multimedia services like video telephony, enhanced data services,

etc.

The UMTS air interface uses wideband code division multiple access (WCDMA)

with a bandwidth of 3.84 MHz. There is a standard for time divison duplex (TDD)

and frequency division duplex (FDD), which are quite different in some aspects.

In this thesis, we will only focus on the downlink of the FDD standard. WCDMA

allows a frequency reuse factor of r = 1, i. e., every cell can use the same frequency

band [55]. The most important parameters of the UMTS air interface can be seen

in Table 7.1.

UMTS features moderately data rates up to 384 kbps for packet data services.

Efficient, fast, and flexible assignment of radio resources to packet users is highly

desirable from both a user’s and an operator’s viewpoint. UMTS Release 5 addresses

future packet services over links with fluctuating link quality via its High Speed

Downlink Packet Access (HSDPA) sub-system [74–77].

HSDPA introduces three physical channels into UMTS Release 5 (see Fig. 7.1).

The High Speed Physical Downlink Shared Channel (hs-pdsch) is the data channel

which is shared by all HSDPA users of a single cell in the time and code domain. The

hs-pdsch consists of up to 15 subchannels corresponding to 15 Walsh-Hadamard

channelization codes with Spreading Factor (SF) 16. The Transmission Time In-

terval (TTI) is 2 ms, which is called a subframe. A fast scheduler which resides

in the basestation (Node-B) is responsible for selecting packets to be transmitted

in each subframe. Up to four High Speed Shared Control Channels (hs-scch) in-

form the selected users on the used Modulation and Coding Scheme (MCS), the

current Hybrid Automatic Repeat Request (HARQ) process, and the Redundancy

and Constellation Version (RV) of the retransmission.

An uplink signalling channel, the so-called High Speed Dedicated Physical Con-

trol Channel (hs-dpcch), is assigned to each HSDPA user. The hs-dpcch carries

Acknowledgement messages (ACKs), respectively Negative Acknowledgement mes-

sages (NACKs), as well as the Channel Quality Indicator (CQI). The ACK/NACK

and the CQI are transmitted no later than 7.5 slots after the corresponding subframe

was transmitted.

Three closely coupled procedures govern the performance of the HSDPA, namely:

Adaptive Modulation and Coding (AMC), fast Hybrid Automatic Repeat reQuest

(HARQ), and fast packet scheduling.
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Figure 7.1: HSDPA channels and frame structure.

7.2.1 Adaptive Modulation and Coding

Instead of compensating the varying downlink radio conditions on the hs-pdsch by

means of fast power control at a fixed data rate, the data rate is adjusted depending

on measured channel quality in each subframe [84]. The data rate adjustment is

achieved by puncturing and repetition (“rate matching”) of the rate 1/3 turbo-

coded data stream and by selecting either QPSK modulation or 16QAM.

7.2.2 Fast HARQ

In HSDPA, it is foreseen that the user equipment (UE) stores the data from pre-

vious transmissions to enable joint decoding of retransmissions with incremental

redundancy (IR). The IR versions are generated by rate matching and constella-

tion rearrangement in case of 16QAM. The UE needs internal memory to store the

original data packet which is combined with the retransmitted packet [51]. This

technique increases the probability of successful decoding for retransmissions sig-

nificantly. Retransmissions are requested until the data are correctly decoded or a

maximum number of attempts is exceeded [47].

7.2.3 Fast Scheduling

A key component of HSDPA is the packet scheduler, which is located in the Node-

B. For each TTI the scheduling algorithm controls the allocation of channelization

codes on the hs-pdsch to the users. The scheduling policy itself is not standardized

in UMTS. Various trade-offs between simplicity, total throughput, and user fairness

can be implemented.
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7.3 The GSM Standard

The first standard for the Global System for Mobile Communications (GSM) was

published in 1990. It was the first standard for fully digital mobile networks (2nd

generation networks). With over 2 billion subscribers worldwide (November 2006)

it is the most successful mobile communication standard worldwide. The most

important parameters of the GSM air interface are given in Table 7.1.

GSM is a cellular system using a mixture of time division multiplexing (TDMA)

and frequency division multiplexing (FDMA). Uplink and downlink operate in dif-

ferent frequency bands (frequency division duplex - FDD). Each frequency band is

divided into several channels of 200 kHz bandwidth. In order to reduce the inter-

ference in the system, neighboring cells cannot use the same channels. Therefore, a

frequency reuse factor r > 1 is necessary.

GSM uses Gaussian minimum shift keying (GMSK) to modulate the data. The

frame structure of GSM is depicted in Fig. 7.2. One frame is 4.615 ms long and

consists of eight bursts. One burst is 577µs long, where 546.5µs contain data

and the rest comprises the guard interval. There exist different kind of bursts

(synchronization bursts, frequency correction bursts, etc.). The most common one

is the normal burst, which is also shown in Fig. 7.2. The normal burst consists of

148 bits, where 114 bits are used for data, 26 bits for training (midamble). The rest

are predefined signalling bits.

The bits of the midamble are predefined training sequence codes (TSCs) and can

be used for channel estimation at the receiver. There exist eight different TSCs in

the GSM standard [43] that could be used to distinguish different users. However,

in current GSM systems, the same TSC is used for all users in the same cell.
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Architectures for UMTS-HSDPA

8.1 Introduction

In third generation wireless communication systems, enhanced data rates are re-

quired to enable multimedia services like video telephony and web browsing. In

UMTS this is achieved by using WCDMA with a bandwidth of 3.84 MHz. For

certain channels, however, the performance of this system is severely limited by

multiple access interference (MAI). This is especially true for the HSDPA subsys-

tem of UMTS.

MAI arises in WCDMA systems from different sources. The first source of MAI

stems from the fact that the orthogonal variable spreading factor (OVSF) codes used

to distinguish the different channels in UMTS are not orthogonal to time-shifted ver-

sions of themselves. Therefore in a frequency selective channel the different channel

cannot be separated without error. Further interference is generated by the synchro-

nization channel (sch). Since the sch must be detected before all other channels it

is neither spreaded nor scrambled. Thus it is not orthogonal to the other channels

and creates additional interference. Last but not least, interference is also generated

from neighboring cells due to the frequency reuse factor of r = 1 and the fact that

the scrambling sequences of different cells are not 100 % orthogonal.

In this chapter, several receiver architectures that try to alleviate MAI are inves-

tigated. The signal model is defined in Section 8.2. In Section 8.3 the basic rake

receiver for UMTS HSDPA is explained and enhancements using interference cance-

lation are presented. In Section 8.4, a linear minimum mean square error (LMMSE)

equalizer is used instead of a rake receiver. Section 8.5 introduces an iterative algo-

rithm based on Krylov subspace projections, approximating the LMMSE equalizer

with negligible loss of performance for the receiver. Section 8.6 describes the sim-

ulation environment developed for UMTS HSDPA. Sections 8.7 and 8.8 present

throughput simulation results for the rake and the LMMSE receiver. Finally con-

clusions are given in Section 8.9.

Most of this work has been presented in [1–4].
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Figure 8.1: Coding chain for hs-pdsch [75].

8.2 Signal Model

Our signal model for UMTS HSDPA consists of the high speed physical downlink

shared channel (hs-pdsch), the primary common pilot channel (p-cpich), the pri-

mary synchronization channel (p-sch) and the primary common control physical

channel (p-ccpch).

The coding chain for the hs-pdsch is depicted in Fig. 8.1. Data is taken form the

packed scheduler, coded and segmented into K hs-pdschs. The transport block

size determines the rate matching parameters in the HARQ block and thus the

effective coding rate. For a detailed description of the coding chain see [55,75]. The

coded bits b
(i)
k are mapped onto the data symbols d

(i)
l by either QPSK or 16QAM

modulation. There are M = 480 symbols in a subframe per data channel i.

The primary common pilot channel p-cpich consists of 30 predefined symbols pl
to enable channel estimation at the receiver. The data d

(i)
l symbols, the pilot symbols

pl, and the symbols ql of the primary common control physical channel p-ccpch are

spreaded by Walsh-Hadamard sequences c
(i,SF)
m , which are also called OVSF codes.

The spreading factor of the pilot channel as well as the primary common control

physical channel is SFp = SFq = 256 and the one of the data channel SFd = 16. The

p-ccpch is time shared with the synchronization channel sch. The sch is neither

spreaded nor scrambled. It consists of 256 chips sm taken from a Golay-sequence.

The remaining 2304 chips per slot are used by the p-ccpch.

88



8 Throughput Maximizing Receiver Architectures for UMTS-HSDPA

S

Ed

Eq

Es

P-SCH

S

Scrambling
sequence

c
(1,16)

c
(0,256)

Ep

P-CPICH

P-CCPCH

HS-PDSCH#1

…

c
(1,256)

Figure 8.2: Combining of downlink physical channels [77].

After spreading and scrambling, the transmit signal is expressed as (see Fig. 8.2):

tm = am mod 38400 ×
{√

Ed

K∑

i=1

c
(i,SFd)
m mod SFd

d
(i)
⌊m/SFd⌋

+
√

Eq c
(0,SFq)
m mod SFq

q⌊m/SFq⌋

+
√

Ep c
(1,SFp)
m mod SFp

p⌊m/SFp⌋ + OCNS
}

+
√

Es sm. (8.1)

The sequence an denotes the scrambling code that is uniquely assigned to a particular

base station. It is a Gold-sequence that is terminated after 38400 chips. The five

terms in (8.1) make up the N HSDPA data channels, the primary common control

physical channel, the pilot signal, the parts that resemble the orthogonal channel

noise simulator (OCNS), and the synchronization signal. The OCNS accounts for

other transport channels active in the cell. The weighting factors
√
Ed,

√
Eq,

√
Ep,

and
√
Es are calculated from the relative power ratios of the channels to the total

transmit power spectral density (i. e., Ec/Ior), whereas Ior = 1.

The transmit symbol stream tm is then oversampled and filtered using a root-

raised cosine (RRC) filter with roll-off factor α = 0.22. At the receiver, a second

root-raised cosine filter is applied as a matched filter and downsampling is performed.

The equivalent downsampled baseband received signal is given by

rm =
N−1∑

n=0

Hm,ntm−n + vm, (8.2)

where tm−n is the transmitted signal delayed with n samples, Hm,n are the downsam-

pled and filtered channel coefficients of the time-variant frequency selective channel,

N denotes the delay spread in samples and vm is i.i.d. zero-mean additive white

Gaussian noise with variance σ2
v . The channel is normalized to unit gain

E
{
N−1∑

n=0

|Hm,n|2
}

= 1. (8.3)
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8.3 Rake Receiver with Interference Cancelation

A receiver for UMTS HSDPA consists of two parts. The receiver front end comprises

a matched filter, downsampling and descrambling (correlation). The second part of

the receiver is responsible for the despreading, demodulation and decoding of the

received signal. It basically has to invert the channel coding chain from Fig. 8.1.

Due to the wideband nature of the radio propagation channel in a WCDMA

system, the signal energy may arrive at the receiver across different time instants.

These echoes create interference at the receiver and thus degrade its performance.

On the other hand, by using multiple, time-shifted correlation receivers, those echoes

can be identified and combined. This kind of receiver is called a rake receiver. Each

finger of the rake is allocated to those delay positions on which significant energy

arrives. For each rake finger, channel estimation is performed, so that the signals

from the different rake fingers can be combined coherently [55].

However, the rake receiver is not able to eliminate all the interference caused by

the multipath propagation of the channel. Therefore, in this section we propose

to use an additional Interference Cancelation (IC) unit. Fig. 8.3 shows a block

diagram of the proposed receiver. The receiver further employs an IR buffer for

combining of (previously erroneous) retransmissions. Not shown in the figure is the

RRC chip-matched filter and downsampling.

Channel
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HS-PDSCH

Channelization

Sequences

Despread

and Demap

HS-PDSCHs

Interference

Cancellation

MRC

Combining

RAKE finger #1
2

N

Cell

Scrambling

Sequence

Descramble
Combining of

Retransmissions

and Decoding

Incremental

Redundancy

Buffer

Figure 8.3: Rake receiver with sch/p-cpich cancelation.

Channel estimation is carried out with the help of the p-cpich by means of a

symbol-level least squares estimator. The channel is assumed to be constant within

one subframe. In case of a frequency selective channel, the channel coefficients are

estimated for each delay separately. The delays are assumed to be known at the

receiver, although a path-searcher can easily be implemented.
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The IC unit respreads the known p-sch and p-cpich chip streams with the esti-

mated channel impulse response and subtracts them from the received chip stream.

The delayed and descrambled signals from the rake fingers are combined using Max-

imum Ratio Combing (MRC).

The UE then despreads and demodulates its assigned hs-pdsch channels using

the channelization sequences and modulation index signalled in the hs-scch. The

demodulator returns log-likelihood ratios (LLRs) of the bits. The LLR of a bipolar

bit b is defined as ln
(
p(b=+1)
p(b=−1)

)

, where p(·) denotes probability and ln(·) is the natural

logarithm.

The LLR values are sent through an inverse rate matching block, which sets

punctured bits to 0 and combines (i. e., adds up) repeated bits with bits previously

stored in the IR buffer. The result is stored again in the IR buffer and sent to

the Turbo decoder. The Turbo decoder uses the max-log-MAP algorithm [27, 110],

where after every iteration a cyclic redundancy check (CRC) is performed. If the

CRC succeeds or if a maximum of 8 iterations has been reached, the algorithm is

terminated. Thus, computational power can be saved.

8.4 LMMSE Equalizer

A rake receiver and interference cancelation are not the only means to improve the

performance of an UMTS HSDPA receiver. In this section, a receiver architecture

using a chip-rate linear minimum mean square error (LMMSE) equalizer is pre-

sented. The LMMSE criterion can be mathematically formulated as minimizing the

cost-function

J(f) = E
{∣

∣fHrm − tm−n

∣
∣
2
}

, (8.4)

where f = [f0, . . . , fNE−1]
T is the vector of the NE equalizer coefficients, tm−n

is a by n samples delayed version of the transmitted chip stream and rm =

[rm, . . . , rm−NE+1]
T is a column vector of the last NE received (chip-spaced) samples.

If the channel is assumed to be constant within one subframe, i. e., Hm,n = Hn

for m ∈ Tsubframe, a solution minimizing (8.4) can be found in [99]

f = σ2
s

(
σ2
s HHH + σ2

vI
)−1

Hen, (8.5)

where σ2
s/σ

2
v is the signal to noise ratio (SNR), I stands for the identity matrix, and

en is a unit vector with a one a the n-th position. H is the channel matrix with

Toeplitz structure and size NE × (N +NE − 1), denoting the convolution with the

91



8 Throughput Maximizing Receiver Architectures for UMTS-HSDPA

channel impulse response

H =






H0 · · · HN−1 0
. . . . . . . . .

0 H0 · · · HN−1




 (8.6)

The matrix H has to be found through channel estimation, which is again performed

with a symbol-level least squares estimator.

The receiver structure is shown in Fig. 8.4. Like the rake receiver in the previous

subsection, the LMMSE receiver also performs demodulation and decoding using an

IR buffer.
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Figure 8.4: HSDPA receiver with LMMSE equalizer and IR buffer.

Complexity. The LMMSE equalizer requires the computation of the NE × NE

matrix

A = σ2
s HHH + σ2

vI. (8.7)

Given the Toeplitz structure of H, this corresponds to about N(N + 1)/2 CM.

Further, we have to solve the system of linear equations Af = b, where b = Heτ .

It can be seen that A has also Toeplitz structure, and therefore the solution can

be obtained using 2.25N2
E + 7.25NE CM [63]. This leads to a total computational

complexity

CLMMSE ≈ 0.5N(N + 1) +NE(1.25NE + 7.25) CM. (8.8)

8.5 LMMSE Equalizer based on Krylov Subspace

Methods

It was seen in the last section that the solution of the system of linear equations

requires most complexity in the calculation of the LMMSE filter coefficients. In this

section we describe the Krylov subspace methods [97] to solve the system of linear

equations in the LMMSE equalizer. The Krylov subspace method is an iterative
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algorithm. Controlling the number of iterations, it is possible to trade accuracy for

efficiency.

We consider the linear system Ax = b, where A is a known invertible matrix of

size Q×Q and b a known vector of length Q. Krylov subspace based algorithms [97]

iteratively compute an approximation of x starting from an initial guess x0 and using

projections on Krylov subspaces. We describe in this section the special case when

A is hermitian.

8.5.1 Krylov Subspace Projection Method

The Cayley-Hamilton theorem states that there is a minimum polynomial R of

degree R ≤ Q such that R(A) = 0 and IQ,A, . . . ,A
R−1 are linearly independent,

which we can rewrite as A−1 =
∑R

r=1 arA
r−1. The coefficients a1, · · · , aR ∈ C are

defined by R. Our aim is to approximate A−1 as a linear combination of the first s

terms, where s≪ R

A−1 ≈
s∑

r=1

arA
r−1 . (8.9)

We consider an initial guess x0 for x and define the initial error r0 = x − x0 and

b̃ = b − Ax0 = Ar0. Thus x = x0 + A−1b̃ and using (8.9) we write

x ≈ x0 +
s∑

r=1

arA
r−1b̃ = xs . (8.10)

xs is the approximation of x at the step s and ys = xs − x0 is the residual vector.

We also define the error at step s by rs = x−xs = r0 − ys. Note that if s = R the

approximation (8.10) becomes an equality and rs = 0 and ys = r0.

The residual vector ys is computed as element of the Krylov subspace of A and b̃

with dimension s defined by Ks=span
{

b̃,Ab̃, . . . ,As−1b̃
}

. The error rs is assumed

to be uncorrelated to Ks. In other words, x0 is projected onto Ks such that Ars⊥Ks.

8.5.2 The Krylov Subspace Based Algorithm

We write ys as element of Ks as ys=Vszs, where zs ∈ C
s and Vs = [v1, . . . ,vs] is an

orthonormal basis of Ks. Vs is iteratively obtained by applying the Gram-Schmidt

orthonormalization to the basis Bs = [Vs−1,A
s−1b̃]. The condition Ars ⊥ Ks

becomes

VH
s Ars = 0 ⇔ VH

s b̃ = VH
s AVszs . (8.11)

Furthermore, the vectors vi for i ∈ {1, . . . , s} are such that Avi ∈ Ki+1. Thus

vHl Avi = 0 if l > i + 1 and Ts=VH
s AVs is an upper Hessenberg matrix. A being
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symmetric, Ts is consequently tridiagonal symmetric. We denote its elements on

the main diagonal as αi ∈ R and on the secondary diagonals as βi ∈ (0; +∞). We

also know that b̃ = ‖b̃‖v1.

Inserting these results into (8.11), we obtain zs = T−1
s ‖b̃‖e1, where e1 =

[1, 0, . . . , 0]T has length s. We see that zs is proportional to c
(s)
first, first column

of T−1
s . To compute c

(s)
first, we apply the matrix inversion lemma for partitioned

matrices [79] to the iterative relation

Ts =

[
Ts−1 βsẽs−1

βsẽ
T
s−1 αs

]

,

where ẽs−1 = [0, . . . , 0, 1]T has length s− 1. This gives the following set of iterative

equations

c
(s)
first =

[

c
(s−1)
first

0

]

+ γ−1
s c

(s−1)
last,1

∗
[

β2
sc

(s−1)
last

−βs

]

c
(s)
last = γ−1

s

[

−βsc(s−1)
last

1

]

,

(8.12)

where c
(s)
last is the last column of T−1

s , and γs = αs−β2
sc

(s−1)
last,s−1 is a scalar. Finally, we

obtain our approximation at step s with x ≈ xs = x0 + ‖b̃‖Vsc
(s)
first. The final step

S is referred as the number of iterations in the algorithm or as the dimension of the

Krylov subspace where we project x0. The corresponding algorithm is summarized

in Table 8.1.

8.5.3 Complexity Comparison

Using the Krylov based algorithm, two matrix-vector products in H(HHvs) + σ2vs
(N(N + NE) CM) and two inner products to compute α and β (2NE CM) are

required at every step s. The total computational complexity after S iterations is

then

CKrylov ≈ S(NEN + 2NE +N2)CM. (8.13)

Furthermore, using the Krylov subspace method allows storage savings: instead of

storing A, only vs for s ∈ {1, . . . , S} is stored.

The computational complexity as well as the equalizer performance increase with

NE, thus a tradeoff needs to be found. A reasonable choice is NE ≈ 3N [50], where

the delay spread N is given by the channel model used.
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1 input A, b, x0, S

2 b̃ = b − Ax0

3 v1 = b̃/‖b̃‖
4 u=Av1

5 α=vH1 u

6 cfirst =clast =1/α

7 w=u − αv1

8 for s = 2, . . . , S

9 β = ‖w‖
10 vs=w/β

11 u=Avs
12 α=vHs u

13 γ=α−β2clast,s−1

14 cfirst, clast using eq. (8.12)

15 w=u−αvs−βvs−1

16 end

17 VS=[v1, . . . ,vS]

18 output xS=‖b̃‖VScfirst + x0

Table 8.1: Krylov subspace based algorithm for a Hermitean matrix.

8.5.4 Choice of Parameters

The error rS resulting from the Krylov subspace method is bounded by [59]

‖rS‖A ≤ 2‖r0‖A
(√

kA − 1√
kA + 1

)S

,

where kA > 1 is the condition number of A (ratio of largest and smallest eigenvalues).

Convergence is thus assured, but the convergence speed depends strongly on the

matrix A and on the initial guess x0. It is necessary to appropriately choose the

parameters S and x0.

If no information on f is available at the receiver, we choose x0 = [0, . . . , 0]T .

However, the LMMSE equalizer (8.5) depends only on the channel estimate H.

When H is varying slowly, the equalizers from one subframe to another are assumed

to be strongly correlated. Thus a more suitable choice for initial guess is x
(sub+1)
0 =

f (sub), where (sub) denotes the subframe index. We consider these two approaches,

called Standard and Adaptive Krylov respectively.
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Figure 8.5: HSDPA simulator architecture with three ringbuffers (RB).

8.6 Simulator Description

The HSDPA link-level baseband simulator is implemented in the Matlab language.

The simulator consists of the Node-B transmit side, the downlink channel model,

the HSDPA receiver, and three ringbuffers (RB), as illustrated in Fig. 8.5. The

simulator is modular such that the transmitter, channel, and receiver can easily be

changed by other implementations.

For each subframe the HSDPA transmitter generates the hs-pdschs for the sched-

uled users, the p-sch, the p-ccpch and the p-cpich according to [75]. In our cur-

rent implementation the Paging Indicator Channel (pich), the Dedicated Physical

Channel (dpch) and the hs-scchs are not transmitted. The power allocated to the

active interfering channels is re-assigned to the OCNS transmission, as suggested

in [74]. The OCNS is described in further detail below. The hs-scchs are signalled

error-free to the receiver, see Fig. 8.5.

Data streams for the hs-pdschs are generated randomly. The packet size is either

defined by the signalled CQI and the UE capability class or by the testcases given

in [73]. The information bits for each user are encoded according to [75]. The

coding chain includes CRC attachment, channel coding (Turbo Coding), HARQ

functionality, and interleaving.

All channels except for the sch are modulated, spreaded by orthogonal Walsh-

Hadamard sequences and subsequently scrambled by the cell-specific Gold sequence.

All channels are then weighted and added to a single chip stream according to [77].
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The weighting factors are calculated from the relative power ratios of the channels

to the total transmit power spectral density (Ec/Ior). To achieve a total transmit

power spectral density of Ior = 1 (0 dB), further channels are generated by the

OCNS and are added to the chip stream [73]. Those channels have a fixed spreading

factor of SF = 128 and are used to simulate the users or control signals on the other

orthogonal channels of a downlink.

We assume a frequency selective, time-variant channel model where each tap of the

impulse response has a Jakes Doppler spectrum with a maximum Doppler frequency

given by the UE speed. The channel is implemented as a time-variant finite impulse

response filter with sample spaced taps using the Matlab filter function. We use

an oversampling factor of two and RRC pulse shaping filters at the transmitter and

receiver. The sample spaced filter coefficients are generated from the International

Telecommunications Union (ITU) channel models [73] by a sinc interpolation.

For correct implementation of the filtering operation induced by the downlink

channel model, at least two consecutive subframes are generated at the HSDPA

transmitter and buffered in RB1 (see Fig. 8.5). This approach is required for mod-

elling the interference caused by the RRC filter at the transmitter, the delay spread

of the channel, and the chip-matched filter at the receiver. After matched filtering

the subframe is buffered in RB2 before it is read out by the receiver. The receiver

processes the subframe including the spill-overs to adjacent subframes. In parallel,

the code blocks of each subframe can be stored in RB3 for calculating the BER from

the simulations if this is wanted.

For throughput simulations only the information bits excluding CRC bits of ac-

knowledged data blocks (CRC does not fail) are summed up.

8.7 Rake Numerical Experiments

Throughput simulations for an HSDPA receiver with “UE Capability 6” [72] were

carried out for QPSK and 16QAM. At the transmitter, the fixed reference channel

H-Set 3, as defined in [73] is generated (see Table 8.2).

The relative power ratios of the simulated physical channels to the total transmit

power spectral density (Ec/Ior) are given in Table 8.3 and are set in compliance to

the HSDPA test cases [73]. The Ec/Ior of the hs-pdsch is varied.

No pathloss is assumed (Îor = Ior) and the interference from other cells as well

as the noise is modeled as additive white Gaussian noise (AWGN) with variance

σ2 = Ioc. We have used Îor/Ioc ∈ {10, 15} dB for QPSK and for 16QAM simulations.

Throughput simulations are carried out for two propagation channels with various

cancelation modes.
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Parameter Value

Modulation QPSK 16QAM

Nominal Avg. Inf. Bit Rate [kbps] 1601 2332

Inter-TTI Distance 1 1

No. of HARQ Processes 6 6

Coding Rate 0.67 0.61

No. of Physical Channel Codes 5 4

Table 8.2: Fixed Reference Channel H-Set 3.

Parameter Value

UE capability class 6

Combining soft

RV coding sequence
{0, 2, 5, 6} for QPSK

{6, 2, 1, 5} for 16QAM

p-cpich Ec/Ior −10 dB

sch Ec/Ior −12 dB

p-ccpch Ec/Ior −12 dB

OCNS on

Îor/Ioc {10, 15}dB

Delay estimation perfect

Channel coefficient estimation least squares

Turbo decoding max-log-MAP - 8 iterations

Table 8.3: HSDPA simulation parameters.

8.7.1 AWGN Channel

We assume an AWGN channel with zero-mean and variance σ2
v . The simulation is

performed with and without cancelation of the sch channel. The cancelation of any

other channel is obsolete due to the orthogonality of the spreading codes. Results

for the AWGN channel are shown in Fig. 8.6 for QPSK and in Fig. 8.7 for 16QAM.

8.7.2 Frequency Selective Rayleigh Fading Channel

For simulations with a frequency selective Rayleigh fading channel, the ITU

Pedestrian-B channel model is used [73]. This channel model defines a power delay

profile with 6 paths at specified delays. The mobile speed is 3 km/h ≈ 0.83 m/s.

For collecting the entire received energy, the number of rake fingers is set to the

number of propagation paths. The simulation setup was the same as in the AWGN

case and various IC modes have been tested, namely no IC, IC of the sch, IC of

the p-cpich and IC of sch and p-cpich. The results are shown in Fig. 8.8 for
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with and without IC of sch.

99



8 Throughput Maximizing Receiver Architectures for UMTS-HSDPA

−14 −12 −10 −8 −6 −4 −2
0

5

10

15
x 10

5

HSPDSCH−E
c
/I

or
 [dB]

th
ro

ug
hp

ut
 [b

ps
]

H−Set 3, QPSK, Î
or

/I
oc

=10, no IC

H−Set 3, QPSK, Î
or

/I
oc

=10, IC of SCH

H−Set 3, QPSK, Î
or

/I
oc

=10, IC of CPICH

H−Set 3, QPSK, Î
or

/I
oc

=10, IC of SCH and CPICH

Figure 8.8: QPSK throughput results for ITU Pedestrian-B channel for Îor/Ioc =
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QPSK and in Fig. 8.9 for 16QAM, respectively. Throughput results for simulations

with Îor/Ioc = 15 dB are not shown here because they are very similar to the case

of Îor/Ioc = 10 dB except for a horizontal shift.

8.7.3 Discussion of Results

The rake receiver front-end of a future HSDPA receiver suffers from a significant

error floor due to interference from other channels. Especially the sch causes high

interference, because it is neither spreaded nor scrambled and thus not orthogonal

to the other codes.

The AWGN simulations for QPSK and 16QAM show that cancelation of the sch

increases the throughput on the hs-pdsch. This increase is most significant at the

transition from the power level, where one transmission is sufficient for successful

decoding and that power level, where a retransmission is needed. For example, for

the QPSK reference channel at a Îor/Ioc = 15 dB this takes place at an Ec/Ior of

−16 dB.

The achieved throughput for 16QAM on AWGN is very close to the results for

the “3.6 Mbps” channel in [80]. If IC is used then a performance gain of 1 dB is

observed.

In the case of a frequency selective channel, interference also stems from multipath

propagation and the fact that time-shifted versions of channelization codes are not

orthogonal anymore. This interference, however, is not only caused by signalling

channels like sch and cpich since canceling of those channels does not increase

the performance significantly. More performance gain can be achieved by a receiver

structure which cancels all interfering channels as proposed in [67]. It is also worth

noting that in case of a frequency selective channel, the 16QAM reference channel

has less throughput than the QPSK reference channel. This confirms the fact that

16QAM was not intended for usage in channels with large delay spread.

8.8 LMMSE Numerical Experiments

The setup for the LMMSE numerical experiments is the same as for the rake numer-

ical experiments described in the previous section. The only additional parameter

is the equalizer length NE, which was set to NE = 48.

Throughput simulations are carried out for the frequency-selective Rayleigh fading

channels ITU Pedestrian A (PA3), B (PB3) and Vehicular A (VA30 and VA120) [73].

The UE speed is 3 km/h, 30 km/h and 120 km/h for PB3/PA3, VA30 and VA120

respectively. The parameters are summarized in Table 8.4.

Figs. 8.10 and 8.11 show the throughput for the frequency selective channels PA3
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Relative Delay [ns] Relative Mean Power [dB]

ITU Pedestrian A, Speed 3 km/h (PA3)

0 0

110 -9.7

190 -19.2

410 -22.8

ITU Pedestrian B, Speed 3 km/h (PB3)

0 0

200 -0.9

800 -4.9

1200 -8.0

2300 -7.8

3700 -23.9

ITU vehicular A, Speed 30 km/h, 120 km/h (VA30, VA120)

0 0

310 -1.0

710 -9.0

1090 -10.0

1730 -15.0

2510 -20.0

Table 8.4: ITU channel models for UMTS [73]

and PB3 and for VA30 and VA120 respectively. The symbols in Figs. 8.10, 8.11

and 8.12 at -3 dB and -6 dB show the minimum requirements given by the UMTS

standard [73]. We compare the throughput for the exact LMMSE equalizer, and

the Standard and Adaptive Krylov equalizers with varying subspace dimension. For

a slow varying channel (PA3 and PB3), the Adaptive equalizer converges faster to

the LMMSE performance than the Standard one. While increasing the UE speed,

the Standard equalizer performance gets closer to the Adaptive one (VA30) until it

outperforms it (VA120). These results show that, when the channel changes slowly,

the LMMSE equalizer will show small variations and thus time coherence from one

subframe to another can be exploited. However, when the UE is moving fast, no

such information is beneficial. For the investigated channels, a Krylov subspace

dimension S ≤ 3 is sufficient to attain the LMMSE throughput.

A comparison between the computational complexities of the exact LMMSE equal-

izer and the Krylov based LMMSE equalizer is shown in Fig. 8.13 for NE = 48 and

N = 15 (Vehicular A channels in our simulations). The approximate number of

CM is shown versus the Krylov subspace dimension (or iteration number) S. It

can be seen that the computational complexity is reduced by about a half order of

magnitude.

In Fig. 8.12 we show for comparison the throughput obtained using a Least Mean
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Square (LMS) equalizer as implemented in [50]. The interference caused by the

OCNS degrades the performance of the LMS equalizer, which then performs a lot

worse than an LMMSE equalizer.

8.9 Conclusions

In this chapter several receiver structures for UMTS HSDPA have been proposed.

Throughput simulations were carried out using a specifically developed simulation

environment for HSDPA in UMTS Release 5 and beyond.

Throughput simulations for the rake receiver using an AWGN channel indicate

that the interference generated by the sch is not negligible. Canceling the sch

interference at the mobile side leads to an improvement of approx. 1 dB. Therefore,

it is worthwhile to implement IC for the sch in future mobile receivers for HSDPA.

The throughput results for the rake receiver using the Pedestrian-B channel show

little sensitivity to the sch and cpich interference. We conclude that the sch and

cpich are not the primary source of interference in frequency selective channels

when a rake receiver is used.

Therefore an LMMSE equalizer for UMTS HSDPA was introduced. The LMMSE

equalizer corrects for the distortion brought about by the channel and (partly) re-

stores orthogonality. Simulation results indicate that the LMMSE equalizer shows

superior throughput than a conventional rake receiver. The gain in Ec/Ior is approx.

1.6 dB for QPSK and 2 dB for 16QAM.

However, this increase in throughput comes at the cost of more complexity since

for the LMMSE a NE × NE matrix inverse has to be computed every subframe.

Therefore, a low-cost approximation of an LMMSE equalizer for HSDPA using the

Krylov subspace method has been introduced. This equalizer was tested with fre-

quency selective fading channels (ITU-PA3, PB3, VA30, VA120) and turned out to

perform as well as the exact LMMSE equalizer, while the computational complex-

ity and the storage requirements of the algorithm are strongly reduced. Exploiting

the temporal coherence of the channel in two consecutive subframes allows further

computational complexity reduction.
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Architectures for GSM

9.1 Introduction

Despite the advances in 3rd generation mobile communication systems like UMTS,

the GSM standard is still the most popular. Therefore there is a wide interest in

increasing system capacity in current GSM networks.

This can be done, for example by using a small frequency reuse factor. This

way the number of users in a cell and thus the system capacity can be increased.

However, a tight frequency reuse introduces co-channel interference from neighboring

cells. To combat co-channel interference, smart antennas and multi-user detection

can be used [24,45,64,89].

The major problem with such space-time algorithms is their high computational

complexity. In this chapter, a smart antenna receiver algorithm for the GSM mobile

standard is presented. The algorithm was originally published in [70]. The algorithm

has further been optimized and implemented on the ARC SmartSim development

platform [7].

The chapter is organized as follows. The signal model is presented in Section 9.2.

In Section 9.3, the smart antenna algorithm is shortly reviewed. It is followed by the

matched filter and Viterbi decoder described in Section 9.4. In Section 9.5 the most

important issues of the implementation are discussed. Section 9.6 presents results

from simulations with the ARC SmartSim development platform. Conclusions are

drawn in Section 9.7.

9.2 Signal Model

Consider a GSM SIMO system in the uplink with one transmit antenna and NRx

receive antennas. In such a scenario, we can exploit the array gain as well as the

diversity gain at the receiver to achieve a higher signal to noise ratio (SNR).

GSM uses Gaussian minimum shift keying (GMSK) to modulate the data. GMSK

is a continuous phase modulation (CPM) with Gaussian pulses. This modulation in-

troduces intersymbol interference (ISI) of several symbols. According to [22,66], the
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sampled baseband representation of a GMSK modulated signal at the r-th receive

antenna can be approximated by a linear representation

x′m,r =
N−1∑

n=0

H ′
n,rs

′
m−n + u′m,r, (9.1)

where s′m = jmsm and sm ∈ {−1, 1} are the bipolar bits to be transmitted, H ′
n,r is

the effective sampled time-invariant impulse response of the r-th channel of length

N , and u′m,r is the noise-plus-interference process of the r-th channel. H ′
n,r includes

the linear approximation of the GMSK signal and the distortion of the channel.

The NRx complex valued equations in (9.1) can be transformed into 2NRx real-

valued equations by performing a “derotation”, i. e., a multiplication by j−m:

xm,r =
N−1∑

n=0

Hn,rsm−n + um,r, (9.2)

where we have defined for r = 0, . . . , NRx − 1

xm,2r = ℜ{j−mx′m,r} xm,2r+1 = ℑ{j−mx′m,r},
Hn,2r = ℜ{j−nH ′

n,r} Hn,2r+1 = ℑ{j−nH ′
n,r},

um,2r = ℜ{j−mu′m,r} um,2r+1 = ℑ{j−mu′m,r}.
Taking samples m = N − 1, . . . ,M − 1, where M is the blocklength, (9.2) can be

written in matrix notation

X = SH + U, (9.3)

where the elements of the matrices X, H, and U are given by

Xm,r = xm,r, m = N − 1, . . . ,M − 1,

Hn,r = Hn,r, n = 0, . . . , N − 1,

Um,r = um,r, r = 0, . . . , 2NRx − 1,

and

S =













sN−1 sN−2 · · · s0

sN sN−1 · · · s1
...

...
. . .

...

s2N−2 s2N−3 · · · sN−1
...

...
...

...

sM−1 sM−2 · · · sM−N













∈ C
M−N+1×N .

After reception, the 2NRx signals are combined using the complex weight vector

ω ∈ C
2NRx

r = Xω = Sh + u, (9.4)

where h = Hω is the impulse response after the combiner and u = Uω.
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9.3 The Matched Desired Impulse Response

Algorithm

The MDIR (Matched Desired Impulse Response) algorithm [64] consists of a block

for joint channel and weight estimation, a narrowband combiner and a Viterbi de-

coder (see Fig. 9.1). Although suboptimal, the MDIR with narrowband combiner

results in a good compromise between reduction in complexity and performance.

The algorithm uses the midamble part of one GSM burst and the minimum mean

squared error (MMSE) criterion to jointly optimize the spatial weighting coefficients

w together with the desired impulse response h of the equivalent channel after com-

bining.

Figure 9.1: MDIR receiver with narrowband combining for NRx antennas. The dero-

tation at the receiver frontend is not shown. The MDIR architecture

operates on 2NRx equivalent real-valued input channels [70].

From equation (9.4) it can be seen that the cost function that needs to be mini-

mized can be written as

ε2 = ε2(w,h) = ‖Xw − Dh‖2, (9.5)

where, X is the derotated, real-valued observation matrix of the midamble portion

of the received data, and D is the Toeplitz matrix containing the bipolar {−1, 1}
symbols of the GSM training sequence code,
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D =













dN−1 dN−2 · · · d0

dN dN−1 · · · d1
...

...
. . .

...

d2N−2 d2N−3 · · · dN−1
...

...
...

...

dM−1 dM−2 · · · dM−N













Note that the optimization of (9.5) over all w,h is aimed at keeping the multipath

content of the signal low so it can be used by the Viterbi decoder. A constraint has

to be imposed in order to avoid the trivial solution. It is chosen to constrain the

desired energy at the output of the spatial combiner [64]:

E = ‖DĜw‖2 = wT ĜTDTDĜw, (9.6)

where Ĝ contains the least-squares estimates of the 2NRx parallel diversity channel

impulse responses

Ĝ = (DTD)−1DTX. (9.7)

Introducing a Lagrangian multiplier λ, we arrive at the following cost function of

the unconstrained optimization problem

f(w,h, λ) = ε2(w,h) − λ(wT ĜTDTDĜw − E). (9.8)

The solution for h is given by

h = Ĝw. (9.9)

Assuming that the training sequence and the noise-plus-interference are uncorrelated

processes, the solution for ω is given by the generalized eigenvector associated to

the minimum generalized eigenvalue of [70]

R̂w = λĜTDTDĜw, (9.10)

where

R̂ = (X − DĜ)H(X − DĜ) ≈ XTX − ĜTDTDĜ (9.11)

is the noise-plus-interference covariance matrix.

The output of the combiner is then feed to a matched filter and a scalar Viterbi

decoder [22], which eliminates the ISI and detects the data.
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9.4 Matched Filter and Viterbi Decoder

9.4.1 Matched Filter

After having calculated the weight vector ω and the impulse response of the com-

bined signal h, the received signal xm = [xm,0, . . . , xm,NRx−1]
T writes

rm = ωHxm =
N−1∑

n=0

hnsm−n + vm. (9.12)

A whitening matched filter is applied to increase the SNR and to reduce the

number of states in the Viterbi decoder [22]. The whitening filter coefficients are

given by h∗−n. The resulting signal writes

r′m =
L−1∑

n=0

ηnsm−n + v′m, (9.13)

where ηm =
∑

n hmh
∗
n−m is the overall impulse response of length L seen by the

Viterbi decoder.

9.4.2 Viterbi Decoder

The goal of the decoder is to estimate the transmitted symbols sm from the received

sequence r′m. This can be formulated as a maximum likelihood estimation problem.

Let s and r′ denote the vector of input and output symbols respectively. Further

denote by P (s|r′) the probability that s was sent when r′ was received. The the

task of the maximum likelihood estimator is to find

ŝ = argmaxP (s|r′). (9.14)

The problem (9.14) can be solved using the Viterbi algorithm [48,112,113]. Every

channel of the form (9.13) of length L can be interpreted as a discrete-time finite-

state Markov process with 2L states. A Markov process can be represented as a state

diagram, where the nodes are the states and the edges represent transitions from

one state to another. In the case of our channel (9.13), the states are all possible

sequences of symbols sk of length L, S = (sL, sL−1, . . . , s0).

The state diagram is now written in the form of a trellis diagram, where each node

corresponds to a state at a specific time and each branch represents a transition to

some new state at the next time instance (see Fig. 9.2). Every possible sequence of

states corresponds to a unique path in the trellis.

Let S(m) be any state at the m-th successive node level. We shall remove the

subscripts until necessary. To construct the Viterbi algorithm, we first use the fact
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Figure 9.2: State diagram of a four state Markov process and corresponding trellis

diagram.

that the transitions between states S(m − 1) → S(m) in the trellis are mutually

independent. For any given path from the origin m = 1 to an arbitrary node

(m = M) and the states S(0), S(1), . . . , S(M), we define the path metric by

Λ =
M∑

m=1

|r′m − y(S(m))|2. (9.15)

where

y(S(m)) =
L−1∑

n=0

ηnsm−n. (9.16)

In order to maximize the likelihood function P (s|r′) (9.14), (9.15) needs to be

minimized. To do so it is sufficient to minimize the sum over the first M − 1 terms

for each state S(M − 1) at the (M − 1)th node level and then minimize the sum of

this and the M -th term over all states S(M). The Viterbi algorithm can thus be

summarized as follows.

Algorithm 9.4.1 (Viterbi Algorithm).

for m = 1 to M do

for all states Si(m) do

Calculate the branch metrics

Λ(Sj(m− 1), Si(m)) = |r′m − y(Si(m))|2

for all states Sj(m− 1) leading to Si(m)

Calculate the state metrics

Σ(Si(m)) = min
Sj(k−1)

{Σ(Si(m− 1)) + Λ(Sj(m− 1), Si(m))}

111



9 Smart Antenna Receiver Architectures for GSM

and store the path Sj(m − 1) → Si(m) that achieves this minimum as the

survivor path

Due to the head and tail bit of a GSM burst, the initial and the final state are

predefined. Therefore, at the last node level M only one branch trough the trellis

will survive. This path then gives the most likely transmitted sent sequence.

9.5 Real-Time Implementation Aspects

The MDIR receiver with narrowband combiner, matched filter and Viterbi decoder

(see Fig. 9.1) has been fully implemented on the DSP board of the ARC SmartSim

development platform [7]. This section describes some of the implementation details

that need to be taken care of on a fixed-point hardware.

The most crucial point of the MDIR algorithm is solving the eigenvalue problem

(9.10). Since the calculation of R̂ can lead to numerical problems (its entries can

be very small), (9.10) was slightly modified to

XHXw = λ̃ĜTDTDĜw. (9.17)

This modification leaves the eigenvectors and the order of the eigenvalues unchanged.

For a given midamble, the pseudoinverse (DTD)−1D of the midamble matrix D

needed for the calculation of Ĝ can be precalculated. Care needs to be taken that

no overflow occurs in the calculation of the matrices in (9.17). It was found out that

a scaling of the matrix X by

α ≈ 1

‖X‖F
(9.18)

rounded to the next power of two, avoids overflows.

The matrix XHX is positive definite and symmetric, hence all eigenvalues are

positive and real. Since only the eigenvector with the minimum eigenvalue is needed,

i. e., the eigenvalue closest to zero, the inverse power method [38] with shift zero is

the most attractive method to solve the generalized eigenvalue problem (9.17). The

algorithm can be summarized as follows

Algorithm 9.5.1. Given a positive definite matrix A, a general matrix B,

and an initial vector v(0), the following algorithm computes the generalized

eigenvector associated with the minimum generalized eigenvalue of λAx =

Bx.

for k = 0, 1, . . . do

Solve Aw = Bv(k−1) for w

v(k) = w
‖w‖
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Figure 9.3: The baseband development platform in practice

For the solution of linear systems of equations in Algorithm 9.5.1 a Schur-Cholesky

factorization of the matrix A can be used.

A = LLH , (9.19)

where L is a nonsingular lower tridiagonal matrix with positive diagonal entries.

Then step one of Algorithm 9.5.1 can be solved efficiently using backsubstitution.

A good trade-off between precision and complexity was achieved by carrying out

the Cholesky factorization in 32-bit precision, while doing the iteration of the inverse

power method in 16-bit precision. It was found out that the algorithm converges

sufficiently after three iterations.

For the Viterbi decoder described in Section 9.4 an implementation using L =

24 = 16 states was used [107].

9.6 Simulation and Results

The performance of the smart antenna receiver was evaluated using the real-time

ARC SmartSim development platform in the digital baseband domain. The param-

eters of the COST 259 GSCM (cf. Section 5.3) are chosen according to the macro-

cellular general typical urban (GTU) environment [34]. The simulations were carried

out with a uniform linear antenna array with 4 antennas and a spacing of λ/2 which

corresponds to aprrox. 0.15 m at a carrier frequency of 1.845 GHz. The simulation

parameters are summarized in Table 9.1 and the simulation setup is shown in Fig.

9.3. The four leftmost boards are used for the simulation of the SIMO channel and

the board second to right is used as a receiver. The other boards are idle. Clearly

visible are the four “ChannelLink” LVDS baseband cables.

We have carried out three different simulations which are presented in the fol-

lowing subsections. The first one compares the receiver performance measured in

113



9 Smart Antenna Receiver Architectures for GSM

Parameter Value

Channel Model COST 259 GTU

Cell size 1000m

No. of Base Stations 1

No. of BS antennas 1

No. of mobile stations 1

No. of MS antennas 4

MS antenna pattern

Linear array

omnidirectional antennas

λ/2 spacing
Carrier frequency 1.845 GHz

Symbol Rate 275 kHz

Table 9.1: GSM simulation parameters

uncoded BER to the path loss of the received signal. The second and the third

compare the receiver performance when varying the number of antennas and the

signal to noise ratio.

9.6.1 BER vs. Pathloss

In this simulation the attenuation of the received signal was compared to the BER

of the receiver. Therefore the MS was set to move at 1 m/s on the x-axis of the cell

starting at a distance of 200 m going to 1000 m. The BS power was set to 40 dBm

and the noise level was set at a constant level of -100 dBm. In the lower part of Fig.

9.4 the received power is displayed, whereas in the top part of Fig. 9.4 the BER

of the receiver using the MDIR algorithm with 2 antennas is displayed. It can be

verified that when the receive power falls below the -100 dBm level, the BER of the

receiver goes up. In cases with enough receive power left, the algorithm performs

well.

9.6.2 Comparison of BER for Different SNRs

In this simulation run the MS was set to circle around the BS at distance of 500 m

with a speed of 17.45 m/s, so that it needs exactly 3 min for one round. The simu-

lation was carried out with various signal to noise ratios.

In Fig. 9.5 the BER of the smart antenna receiver using the MDIR algorithm

with two antennas is plotted over the time. The different lines correspond to sim-

ulation runs with different SNRs. It can be seen that the SNR affects the receiver

performance as expected.
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Figure 9.4: Top: BER of the receiver using the MDIR algorithm with 2 antennas;

Bottom: Received power at the MS and noise level (red dotted line).
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Figure 9.5: Comparison of BER for the MDIR algorithm for different SNRs.
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Figure 9.6: Comparison of BER for the MDIR algorithm for different number of

antennas.

9.6.3 Comparison of BER for Different No. of Antennas

In the last simulation the receiver performance was investigated using different num-

ber of antennas. The simulation parameters were the same as above, except that the

SNR was fixed to 15 dB. It can be seen in Fig. 9.6 that the second antenna increases

the performance by a factor of approx. 6, the third antenna by a factor of 7 and

the fourth one by a factor of almost 8. It can be seen that the variance of the BER

decreases with an increasing number of antennas.

9.7 Conclusions

A smart antenna receiver for the GSM mobile standard was presented and imple-

mented on the receiver unit of the ARC SmartSim development platform. The

calculation of the receiver weights requires the solution of a generalized eigenvalue

problem. A numerically stable, iterative algorithm was presented, which is able to

solve the problem with sufficient accuracy in only three iterations.

Real-time simulations were carried out using the ARC SmartSim Channel Emula-

tor in the digital baseband domain. The results show that (i) the channel emulator

is working correctly in real-time and provides realistic results, and that (ii) using

smart antennas in a GSM receiver provides superior performance to the single an-

tenna case.
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The second part of the thesis presented different receiver architectures for the state-

of-the-art wireless communication systems UMTS-HSDPA and GSM. Special em-

phasis was put on low-complexity receiver design and robustness of the algorithms

against interference.

Interference limits the throughput of the High Speed Downlink Packet Access

(HSDPA) sub-system of UMTS. It was shown that a linear minimum mean square

error (LMMSE) equalizer at the receiver achieves higher throughput than a con-

ventional rake receiver, at the cost of higher complexity. Therefore, an iterative

algorithm based on Krylov subspace projections was introduced that approximates

the LMMSE equalizer with negligible loss of performance. Computational complex-

ity as well as storage requirements are strongly reduced.

The capacity of wireless communication systems is also limited by the channel

and the interference created by other users. For GSM, a smart antenna receiver was

presented that enables to cancel interference and maximize the SNR at the receiver

by using a joint space-time optimization. The receiver was implemented on the

receiver unit of the ARC SmartSim development platform. A numerically stable,

iterative algorithm was presented that solves the generalized eigenvalue problem

with sufficient accuracy in only three iterations.

The development of the receiver architectures for UMTS and GSM exemplify

two different design stages in the wireless communication system design. While

the UMTS receiver was completely implemented and evaluated in Matlab, the

GSM receiver was implemented on a DSP board and evaluated in real time using a

channel simulator. The first approach has the advantage that ideas can quickly be

implemented in a high level language using a broad range of toolboxes.

However, many effects cannot be taken into account in the software simulation,

which occur on the final hardware, such as fixed-point issues and real-time con-

straints. The development of the GSM receiver showed that such issues are not

trivial to deal with and should be taken into consideration as early as possible in

the design stage. On the other hand, debugging and verification of hardware imple-

mentations can be quite cumbersome.

Rapid prototyping tries to combine these two approaches and to exploit the bene-

fits of each of them. One key element in rapid prototyping is to have only one code,

also called “golden code” [96]. This code can either be mapped onto the simulation
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environment like Matlab or Simulink, or onto the prototype hardware.

This approach has, for example, been taken in [31] and [12]. There the “Golden

Code” is written in GenericC, which is C language enriched with predefined

keywords for interfacing. A set of tools maps GenericC algorithms into either

Simulink S-functions for simulation purposes, into code to run on a TI C64 pro-

cessor [12] or into C code that can be mapped via automatic tools into VHDL and

subsequently into FPGAs [31]. This approach assists rapid prototyping and code

co-verification massively. Another advantage is that wordlength effects can be in-

vestigated easily by only changing the types of the variables used in the GenericC

files.
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A List of Abbreviations

Abbreviation Description

ACF Autocorrelation Function

ADPS Angular Delay Power Spectrum

AMC Adaptive Modulation and Coding

AoA Azimuth of Arrival

AoD Azimuth of Departure

ARC Austrian Research Centers

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

BS Base Station

CDMA Code Division Multiple Access

CE Complex Exponential

CM Complex Multiplication

COST European Co-operation in the Field of Scientific and

Technical Research

CPM Continuous Phase Modulation

CQI Channel Quality Indicator

CRC Cyclic Redundancy Check

dB deci-Bel

DFT Discrete Fourier Transform

DPS Discrete Prolate Spheroidal

DSP Digital Signal Processing

DTFT Discrete Time Fourier Transform

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GMSK Gaussian Minimum Shift Keying

GCM Geometry-based Channel Model
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GSCM Geometry-based Stochastic Channel Model

GSM Global System for Mobile Communications

GTU General Typical Urban

HARQ Hybrid Automatic Repeat Request

HSDPA High Speed Downlink Packet Access

IC Interference Cancelation

IF Intermediate Frequency

IIR Infinite Impulse Response

IR Incremental Redundancy

ISI Intersymbol Interference

ITU International Telecommunications Union

LLR Log-likelihood Ratio

LMMSE Linear Minimum Mean Square Error

LMS Least Mean Square

LOS Line of Sight

LVDS Low Voltage Differential Signalling

MA Memory Access

MAI Multiple Access Interference

MCS Modulation and Coding Scheme

MDIR Matched Desired Impulse Response

MIMO Multiple-Input Multiple-Output

MIPS Mega Instructions per Second

MISO Multiple-Input Single-Output

MMSE Minimum Mean Square Error

MPC Multipath component

MRC Maximum Ratio Combining

MS Mobile Station

MSPS Mega Samples per Second

OCNS Orthogonal Code Noise Simulator

OVSF Orthogonal Variable Spreading Factor

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RB Ringbuffer

RF Radio Frequency

RRC Root-Raised Cosine

RV Redundancy Version

Rx Receiver

SF Spreading Factor
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SIMO Single-Input Multiple-Output

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SoCE Sum of Complex Exponentials

SoS Sum of Sinusoids

TDD Time Division Duplex

TDMA Time Division Multiple Access

TSC Training Sequence Code

TTI Transmission Time Interval

Tx Transmitter

UE User Equipment

UMTS Universal Mobile Telecommunications System

US Uncorrelated Scattering

UWB Ultra Wide Band

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuit

WCDMA Wideband Code Division Multiple Access

WLAN Wireless Local Area Network

WSS Wide Sense Stationary
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Symbol Description

Z,R,C set of integers, real and complex numbers

f(t) function of a continuous variable f : R → R

fm function of a discrete variable/sequence f : Z → R

fm vector-valued function of a discrete variable/sequence

f : Z → R
M

fm N -dimensional sequence f : Z
N → R

Lp(X) {f : X → R, |f |p Lebesque-integrable}
a column vector

ai ith element of a

A matrix

Ak,l k, lth element of A

AP×Q upper left part of A with dimension P ×Q

AT transpose of A

AH conjugate transpose of A

diag(a) diagonal matrix with entries ai
IQ Q×Q identity matrix

FQ Q×Q unitary Fourier matrix

1Q Q× 1 column vector with all ones

0Q Q× 1 column vector with all zeros

a∗ complex conjugate of a

⌊a⌋ largest integer, lower or equal than a ∈ R

⌈a⌉ smallest integer, greater or equal than a ∈ R

|a| absolute value of a

ℜa,ℑa real imaginary part of a complex variable a

〈a, b〉 Scalar product of vectors a and b

‖a‖ ℓ2 norm of vector a

‖a‖A A norm of vector a (=
√

aHAa)

‖A‖F Frobenius norm of matrix A

vec(A) stacks all columns of matrix A in a single vector

j
√
−1

δkl 1 for k = l, 0 otherwise
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|X| number of elements in X, if X is a discrete index set

area of X, if X is a continuous region

× Cartesian product

⊗ Kronecker product

⋄ Khatri-Rao product (columnwise Kronecker product)

⊙ Hadamard product (element-wise product)

⋆ matrix convolution

∗ convolution

E{X} expectation of a random variable X
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Symbol Definition

t, f,x,y Time, frequency, antenna location at transmitter, and

antenna location at receiver

h(t, f,x,y) Time- and space-variant channel transfer function

ω, τ, ϕ, ψ Doppler frequency, delay time, azimuth of departure,

azimuth of arrival

H(ω, τ, ϕ, ψ) Doppler-delay double-directional channel spreading

function

GTx(ϕ), GRx(ψ) Complex far-field antenna pattern at the Tx/Rx

rTx(τ), rRx(τ) Impulse response of the transmit/receive filter

Rh(∆t,∆f,∆x,∆y) Autocorrelation function of a WSS channel

Sh(ω, τ, ϕ, ψ) Power spectrum of a WSS channel

TS, FS, DS Duration of a sample, width of a frequency bin, and

spacing between antennas

m,n, q, s, r Discrete time index, delay time index, frequency index,

antenna index at transmitter, antenna index at receiver

hm,q,r,s Sampled channel transfer function

Hm,n,r,s Sampled channel impulse response

M,N,Q Number of samples in time, delay time, and frequency

NTx, NRx Number of transmit antennas and receive antennas

NC Delay spread of the channel in samples

NF Group delay of the Tx and Rx filters in samples

NE Number of equalizer coefficients

R Correlation matrix

h Vector of index-limited transfer function

P Number of MPCs

βp Real path weight of the p-th MPC

φp Phase rotation of the p-th MPC

ηp Complex path weight of the p-th MPC

ωp, νp Doppler shift and normalized Doppler shift of the p-th

MPC
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ωDmax, νDmax Maximum Doppler shift, maximum normalized Doppler

shift

τp, θp Delay and normalized delay of the p-th MPC

τmax, θmax Maximum delay, maximum normalized delay

ϕp, ζp AoD and normalized AoD of the p-th MPC

ϕmax, ϕmin Maximum and minimum AoD

ζmax, ζmin Maximum and minimum normalized AoD

ψp, ξp AoA and normalized AoA of the p-th MPC

ψmax, ψmin Maximum and minimum AoD

ξmax, ξmin Maximum and minimum normalized AoD

ωC , c Carrier frequency, speed of light

vmax Maximum velocity of user

W Band-limiting region

I Index set

v
(d)
m (W, I) d-th one-dimensional DPS sequence

v
(d)
m (W, I) d-th multidimensional DPS sequence

v(d)(W, I) One-dimensional or multidimensional DPS vector

λd(W, I) Eigenvalue of d-th DPS sequence

D,D′ Subspace dimension and essential subspace dimension

αd, α̃d d-th basis coefficient and approximate basis coefficient

of DPS subspace representation of h

γp,d, γ̃p,d d-th basis coefficient and approximate basis coefficient

of DPS subspace representation of the p-th MPC

Ud(ν), Ũd(ν) DPS wave function and approximate DPS wave function

E2
max Maximum squared accuracy of hardware
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[121] T. Zemen and C. F. Mecklenbräuker, “Time-variant channel estimation using

discrete prolate spheroidal sequences,” IEEE Transactions on Signal Process-

ing, vol. 53, no. 9, pp. 3597–3607, September 2005.

[122] X. Zhao, J. Kivinen, P. Vainikainen, and K. Skog, “Characterization of

Doppler spectra for mobile communications at 5.3 GHz,” IEEE Transactions

on Vehicular Technology, vol. 52, no. 1, pp. 14–23, January 2003.

[123] Y. R. Zheng and C. Xiao, “Simulation models with correct statistical prop-

erties for Rayleigh fading channels,” IEEE Transactions on Communications,

vol. 51, no. 6, pp. 920–928, June 2003.

137



Curriculum Vitae

Florian Kaltenberger was born in Vienna, Austria in 1978.

He received his Diploma degree (Dipl.-Ing.) in Technical

Mathematics (with distinction) from the Vienna Univer-

sity of Technology in 2002. During the summer of 2001 he

held an internship position with British Telecom, BT Ex-

act Technologies in Ipswich, UK, where he was working on

mobile video conferencing applications. After his studies he

started as a research and teaching assistant at the Vienna

University of Technology, Institute for Analysis and Scien-

tific Computing, working on distributed signal processing

algorithms. In 2003 he joined the wireless communications

group at the Austrian Research Centers GmbH, where he is

currently working on the development of low-complexity smart antenna and MIMO

algorithms as well as on the ARC SmartSim real-time hardware channel simulator.

His research interests include signal processing for wireless communication, MIMO

communication systems, receiver design and implementation, MIMO channel mod-

eling and simulation, and hardware implementation issues. He is member of the

International Association for the Exchange of Students for Technical Experience

(IAESTE) and the Institute of Electrical and Electronics Engineers (IEEE).

138


