
MASTER THESIS

An Extensible Interface Subsystem For
A Novel Time-Triggered

System-on-a-Chip Architecture

fulfilled at the institute of

Computer Engineering, Real-Time Systems Group

of the

Vienna University of Technology

under the guidiance of

O. Univ.-Prof. Dr. phil Hermann Kopetz

and

Univ.Ass. Dipl.-Ing. Christian El Salloum

by

Bakk. techn. Roman Seiger

Overbeckgasse 37

A-1130 Wien

Vienna, August 2007 .

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

An Extensible Interface Subsystem For
A Novel Time-Triggered

System-on-a-Chip Architecture

The Time-Triggered System-on-a-Chip (TTSoC) architecture provides
a predictable integrated execution environment for the component-based
design of many types of embedded applications. It was inspired by the
experience gained in previous related research efforts, like the DECOS
project, which focused on the integration of mixed-criticality application
subsystems. The TTSoC architecture provides a predictable time-triggered
Network-on-a-Chip (NoC) to maintain strict encapsulation of the different
cores and to support safety-critical real-time applications. The encapsula-
tion mechanisms facilitate to manage the rising complexity of today’s and
future embedded systems by allowing a larger system to be broken down
into smaller subsystems that can be designed independently. The NoC es-
tablishes a message-based, a priori scheduled communication between dif-
ferent cores. This thesis focuses on the design and implementation of the
NoC interface. In addition, possible extensions used to improve the func-
tional range of the TTSoC, Middleware Plug-Ins, are introduced. To show
the advantages of this concept, a Direct Memory Access (DMA) Plug-In
and, to support application systems requiring Triple Modular Redundancy,
a Voter Plug-In are described.

i

ii

Contents

1 Introduction 1

2 Background 5
2.1 Time-Triggered Communication 5
2.2 Integrated vs. Federated Architecture 11
2.3 DECOS . 13

3 Time-Triggered System-on-a-Chip 15
3.1 Requirements . 15
3.2 Overview . 17
3.3 Concepts . 19

3.3.1 Time . 19
3.3.2 Messages . 20
3.3.3 Pulsed Data Streams . 22
3.3.4 Ports . 24

3.4 Operation . 25
3.4.1 Configuration . 26

3.5 Components . 28
3.5.1 Trusted Interface Subsystem 28

3.5.1.1 MAC Layer . 29
3.5.1.2 LLC Layer . 29

3.5.2 CNI Layer . 30
3.5.2.1 CNI Layer Extensions 30

3.5.3 Interconnect . 31
3.5.4 Resource Management Authority 31
3.5.5 Trusted Network Authority 33

4 LLC and CNI Layer 35
4.1 Overview . 35
4.2 Interfaces . 36

4.2.1 MAC Interface . 37
4.2.2 Host Interface . 39

4.2.2.1 Physical Host Interface 39
4.2.2.2 Logical Host Interface 41

4.3 Implementation . 53
4.3.1 LLC Layer . 53

iii

4.3.1.1 Address Logic 54
4.3.1.2 Configuration Memory 60
4.3.1.3 Watchdog Service 62
4.3.1.4 Error Status Register 63

4.3.2 CNI Layer . 64
4.3.2.1 Communication Network Interface 65
4.3.2.2 Host Address Decoder 67
4.3.2.3 Interrupt Service 67

5 CNI Layer Extensions 69
5.1 Hardware Middleware Bricks . 69
5.2 Middleware Plug-Ins . 73

5.2.1 Direct Memory Access Plug-In 76
5.2.1.1 Implementation 76
5.2.1.2 Direct Memory Access Plug-In Register File . . 81

5.2.2 Voter Plug-In . 83
5.2.2.1 Implementation 87
5.2.2.2 Voter Plug-In Register File 93

5.2.3 Other Plug-Ins . 95

6 Conclusion 97

A Open Core Protocol 99
A.1 OCP Signals . 99
A.2 OCP Operation . 101

B Avalon Adapter 103
B.1 Avalon Memory-Mapped Interface 103
B.2 Avalon Slave Adapter . 103
B.3 Avalon Master Adapter . 105

C Powerlink Bus Adapter 107
C.1 PowerLink Connection Bus . 107
C.2 Implementation . 107

Bibliography 111

iv

List of Figures

2.1 TTP/C Cluster with TTP/A Transducer Cluster 6
2.2 Sparse Time Base . 7
2.3 State Information vs. Event Information 8
2.4 The DECOS Integrated System Architecture 14

3.1 Overview of the TTSoC architecture 18
3.2 TTSoC Architecture Time Format 19
3.3 NoC Message . 21
3.4 NoC Pulsed Data Streams . 23
3.5 TTSoC Operation . 26
3.6 TTSoC Message Configuration Procedure 27
3.7 Trusted Interface Subsystem (TISS) Overview 28
3.8 Different Interconnect Topologies 32

4.1 Overview of the LLC and CNI Layers 36
4.2 Medium Access Control (MAC) Interface Receive Timing 38
4.3 MAC Interface Send Timing . 39
4.4 Port Address . 42
4.5 State Port . 43
4.6 Input State Port Port Flags . 44
4.7 Output State Port Port Flags 44
4.8 Input Streaming Port Port Flags 45
4.9 Output Streaming Port Port Flags 45
4.10 Event Port Port Flags . 46
4.11 Event Port . 47
4.12 Register Addressing . 48
4.13 LLC Layer and CNI Layer Register File 49
4.14 Interrupt Status Register . 50
4.15 Port Configuration Data . 52
4.16 Port Configuration Addressing 53
4.17 MAC Layer Configuration Address Space 53
4.18 Control and Data Flow inside of the LLC Layer 54
4.19 Address Logic Finite State Machine 55
4.20 Operation of the Configuration Memory 62
4.21 Error Status Flags . 63

v

4.22 Control and Data Flow inside the CNI Layer 64
4.23 Data Word Width Reduction in the Communication Network

Interface (CNI) . 65

5.1 Stacking of Hardware Middleware Bricks 71
5.2 CNI fitted with a Plug-In . 74
5.3 CNI fitted with a Direct Memory Access (DMA) Plug-In 77
5.4 DMA Plug-In Finite State Machine 79
5.5 DMA Plug-In Register File . 81
5.6 Triple Modular Redundancy (TMR) System with Voter 84
5.7 Comparison: Hardware Middleware Brick Voter / Voter Plug-In 85
5.8 Voter Plug-In Fragment Comparison 87
5.9 Voter Plug-In Overview . 89
5.10 Voter Plug-In Register . 93
5.11 Voter Plug-In Voting Rounds 94
5.12 Voter Plug-In Result Port Port Flags 95

vi

List of Tables

3.1 Time Format Comparison: TT Ethernet vs. TTSoC 20

4.1 Open Core Protocol (OCP) Signals used by the CNI Layer . . . 40
4.2 Port Memory Usage . 48
4.3 Fragment Address Calculation 57
4.4 Output Event Port Behavior . 58
4.5 Input Event Port Behavior . 59

5.1 DMA Plug-In Memory Usage 78
5.2 Voter Plug-In Memory Usage 88
5.3 Pointer Exchange due to Voting Results 90
5.4 Voting Results . 94

A.1 OCP Master Commands . 100
A.2 OCP Slave Response Encoding 101

B.1 Avalon Slave Adapter Signals 104
B.2 Avalon Master Adapter Signals 105

vii

viii

1 Introduction

Over the last years, an increasing amount of embedded computer systems were
designed and integrated into consumer products, especially in the automo-
tive industry. In a competitive economic environment where time-to-market
issues and product originality are the driving factors for development, embed-
ded computer systems, which, among other advantages, offer the possibility to
improve a car’s performance envelope while optimizing its fuel efficiency and
to introduce additional comfort functions, could achieve a sustained, extraor-
dinary success. This trend, supported by the semiconductor industry which
made a vast progress in developing smaller, more powerful, and more energy
efficient systems, is continuing or even increasing, although not all of its effects
are beneficial. Among the problems attached to the inflationary replacement
of mechanical or hydraulic systems by embedded computer systems are rising
development and electronic hardware costs, dependability requirements, and
Intellectual Property (IP) protection [OPHS06, p. 84], to point out only some
of them.

With these challenges in mind, the Dependable Embedded Components and
Systems (DECOS) project [Dep] focuses on the development of an integrated,
distributed architecture capable of managing arising complexity issues as well as
economical difficulties. One aspect of the DECOS architecture is to brake down
the whole application system into so called Distributed Application Subsystems
(DASs). Each DAS consists of a number of jobs and is responsible for providing
a meaningful part of the overall service of the application system. This and
other concepts behind the DECOS architecture and a number of experiences
gained during the DECOS design process were reviewed carefully, leading to
the decision to further improve the DECOS architecture. The intended goal
was to develop a System-on-a-Chip (SoC) capable of housing jobs of different
Distributed Application Subsystems with different criticality levels on the same
microchip while preserving strong encapsulation of the single DASs.

By adapting the well established Time-Triggered Architecture (TTA) [KB03]
the design led to the Time-Triggered System-on-a-Chip (TTSoC) architecture,
an SoC housing multiple potentially heterogenous cores. Predictable commu-
nication among the single cores of the TTSoC is provided by a determinis-
tic time-triggered Network-on-a-Chip (NoC). A chip-wide global time service
which can be synchronized to external time references (e. g., the Global Posi-

1

1 Introduction

tioning System (GPS) time) allows to temporally coordinate the action of mul-
tiple cores. Among other additional services, strict encapsulation of the cores
to prevent any unintended interference is one of the major goals of the Time-
Triggered System-on-a-Chip architecture. As a guard for the time-triggered
NoC, the Trusted Interface Subsystem (TISS) is introduced. The TISSs pro-
tect the NoC from cores violating their temporal specification and furthermore
provide a small and stable set of generic services which are required by the
different cores. These generic services can be customized by adding Middle-
ware Plug-Ins taylored to the required application domain (e. g., fault tolerance,
security, etc.).

Dynamic resource management (i. e., allocation of computational and com-
munication resources at runtime) in the TTSoC architecture is carried out by
a Resource Management Authority (RMA) and a Trusted Network Authority
(TNA) as a two-stage process. While the RMA dynamically builds and adapts
the resource allocation, the certified TNA checks this allocation for conflicts
and ensures that safety-critical functions are always provided with sufficient
resources.

Since every core in the TTSoC architecture hosts only a single job of a
DAS and unintended interference between DASs is prevented by the TTSoC
architecture, each DAS can be designed independently from the other DASs,
limiting the cognitive complexity of the design process and simplifying the final
integration of the Distributed Application Subsystems.

By introducing gateways, multiple TTSoCs can be combined to form a clus-
ter in a higher-level communication system (e. g., Time-Triggered Ethernet
[Ste06]), therefore a Distributed Application Subsystem can be spread among
different (physically separated) TTSoCs.

To make use of the communication service of the Network-on-a-Chip and the
various other services the TTSoC architecture provides, a standardized host
processor interface is required. To adapt to the changing demands of different
applications, the interface subsystem of the TTSoC architecture has to provide
possibilities to extend it with additional, customized hardware components
providing domain specific higher-level services. This thesis describes the
concept and the implementation of such an extendible interface subsystem for
the Time-Triggered System-on-a-Chip architecture.

The thesis is structured as follows: Chapter 2 points out some of the back-
ground issues that led to and/or influenced the development of the Time-
Triggered System-on-a-Chip architecture, which is described in chapter 3. Be-
ing the main subject of this thesis, the interfaces (sections 4.2 and 4.2.2.2)
as well as the implementation (section 4.3) of the LLC and CNI Layers are

2

1 Introduction

discussed in chapter 4. To enlarge the functional range of the TTSoC archi-
tecture, the CNI Layer was designed to be extendable. Chapter 5 deals with
the different kinds of CNI Layer extensions. Chapter 6 offers a conclusion of
the thesis, and gives some suggestions for future developments concerning the
Time-Triggered System-on-a-Chip architecture. Appendices A, B, and C con-
clude this thesis with detailed information on the Open Core Protocol (OCP),
an Avalon Adapter, and a Powerlink Bus Adapter, respectively.

3

1 Introduction

4

2 Background

2.1 Time-Triggered Communication

An embedded system has to be aware of the progression of time if its services
should be of any use in the real world. Any results presented by an embedded
system have to be valid not only in the value domain, but also have to be “on
time”. Otherwise, no use can be made of the results, even if correct, since the
time in the real world advanced and the achieved results became irrelevant.

To avoid such situations, embedded systems can be designed with sufficient
processing power to guarantee completion of their tasks before reaching the
deadline at which the produced results would become outdated. Very detailed
analysis of the system’s timely behavior (reaction time, worst case execution
time (WCET), etc.) and the time constraints arising from the application
environment (i. e., the deadlines that have to be met) become necessary to
ensure dependable real-time behavior.

The efforts to guarantee timeliness rise significantly when dealing with larger
distributed embedded systems. Communications between components of a dis-
tributed system and the possibility of unpredictable behavior due to indeter-
ministic arbitration or scheduling algorithms, along with possible inherent in-
determinsim of the application itself make matters worse.

A more promising approach to cope with the increasing effort in designing
and evaluating real-time application sytems is not only to design embedded
systems that are aware of real-time, but to make the notion of time an integral
part of a dependable distributed embedded system architecture.

The Time-Triggered Architecture (TTA) [KB03] provides a solution to the
increasing complexity of large real-time embedded systems by decomposing
such a system into nearly autonomous nodes and clusters and introducing a
fault-tolerant global time base used for interface specification, error detection,
communication protocols, and to guarantee the timeliness of real-time appli-
cations. Research on the TTA started at the Technical University of Berlin in
1979 and continued at the Vienna University of Technology since 1982. The
TTA has been further developed ever since, including implementation of several

5

2.1 Time-Triggered Communication 2 Background

prototype and even commercially used systems. To ensure further development
and marketing of the time-triggered technology, a spinoff company of the Vi-
enna University of Technology, the TTTech Computertechnik AG [TTTb] was
founded in 1998.

Two time-triggered communication services are described by the TTA, the
TTP/C [TTTa] and the TTP/A [EEE+01] protocol. The TTP/C protocol
is a fault-tolerant time-triggered communication protocol connecting several
distributed nodes of a system to form a cluster and providing fault-tolerant
clock synchronization between the nodes, a membership service to monitor the
systems “health-state”, and message transport with known delay and bounded
jitter. The TTP/A protocol is a time-triggered fieldbus protocol which is used
to connect low-cost smart transducers forming a transducer cluster to a so
called master node. This master node can act as a gateway to a communication
system on a higher level, like a TTP/C cluster (figure 2.1).

Figure 2.1: TTP/C Cluster with TTP/A Transducer Cluster

Some concepts of the Time-Triggered Architecture model which largely influ-
enced the development of the Time-Triggered System-on-a-Chip architecture
are described in more detail in the following paragraphs.

Time

The key concept of the TTA is the use of (physical) real-time as an integral
part of the system.

Any happening occurring at a specific time instant, either in the real world
(e. g., turning on a switch) or inside the system (e. g., reception of a message), is
called an event. A distribiuted real-time system has to be capable of temporally
ordering these events, even if they happen at different nodes which can be
distributed over multiple SoCs. To accomplish this task, a system-wide (global)
time base, synchronized among all nodes, is needed. By using the same global

6

2 Background 2.1 Time-Triggered Communication

time in each node, every event can be timestamped and a temporal order of
events can be maintained throughout the system.

The difficulties in using a global time base in distributed nodes are the im-
possibility to perfectly synchronize distributed clocks and the denseness of real-
time, i. e., no matter how small the clock granularity is, an event can still occur
in between two clock ticks and, as a consequence, can be timestamped differ-
ently by two different nodes. Since clocks with an infinetely small granularity
are physically impossible, the TTA introduces a sparse time base [Kop04b, p.
55].

Time is divided into an infinite sequence of activity and silence intervals in
the sparse-time model, in which the duration of the activity interval has to be
larger than the precision of the clock synchronization. Figure 2.2 depicts the
concept of a sparse time base.

Figure 2.2: Sparse Time Base

Any events that happen in the same activity interval (at different nodes) are
considered simultaneous by the system, events occurring in different activity
intervals can definitely be temporally ordered. All events triggered by the
system itself (e. g., sending of a message) are restricted to the activity intervals,
while events happening during a silence interval outside of the sphere of control
of the nodes have to be aligned to the sparse time base by using an agreement
protocol.

State Information vs. Event Information

Embedded systems interact with their environment by observing its properties
and reacting to them. These observations are done by a variety of different
kinds of sensors (e. g., switches, temperature sensors, etc.) which examine the
current state of the environment. The examination results can be stored or

7

2.1 Time-Triggered Communication 2 Background

transmitted inside the system by means of event or state information, enclosed
in state or event messages, respectively.

An event is a change of the state of an entity at a specific time instant,
therefore event information consists of the name of the observed entity, the
time of the event, and the difference between the state before and after the
event.

Since the current state of an entity is determined by the initial state and all
state changes that occurred since then, all events have to be recorded by an
application to ensure a consistent view of its environment. This implies the
need for messages containing event information to be sent and received exactly
once. Any lost or repeated event message leads to a wrong internal image
of the actual state of the observed entity, hence a communication protocol
supporting and ensuring exactly-once semantics is required.

Figure 2.3: State Information vs. Event Information

State information consists of the name of the observed entity, the time of the
observation, and the state of the entity at observation time. The initial state of
the observed entity and/or previous state changes leading to the current state
are inherently enclosed in this information. As a consequence, state messages
are idempotent and require at-least-once semantics. Repeated state messages
do not corrupt the internal image of the observed entity, but lost state messages
may lead to an internal image which is not up-to-date due to missed state

8

2 Background 2.1 Time-Triggered Communication

changes. The difficulty arising with state messages is to determine the optimal
update interval of the state information. An update interval which is too long
may lead to missed state changes of the observed entity (e. g., a temperature
spike at a sensor in between two state messages may not be recognized by
a controlling component), whereas a too short update interval may produce
unnecessary traffic on the communication system.

Time-Triggered vs. Event-Triggered Communication

Regardless of the type of information contained in a message, the transmission
of the message can be triggered by either reaching a specific time instant or
by the occurrence of an (external) event.

Time-triggered communication is characterized by a schedule which de-
termines the transmission times of certain messages, usually organized in time
periods and phase offsets. These periods and phases can be calculated a priori
and remain constant during the whole system operation time, or the schedule
can be changed regularly to adapt to different communication requirements
throughout the system operation time. By nature, a time-triggered commu-
nication system transports state messages in regular intervals, no matter if a
state change at the observed entity has occurred.

The advantage of the time-triggered approach is that any message sent over
the communication system can be identified solely by its send time instant.
Neither a sender nor a receiver identification is required to be enclosed in the
message since the time of the send instant inherently identifies the message.
The active schedule, which is common knowledge at the sending and the des-
ignated receiving core(s), is examined with respect to the current time and
subsequently triggers a send or receiving operation. Furthermore, a missing
message due to an erroneous core which missed a scheduled send slot can easily
be detected by a diagnostic entity or by the other cores, simply by not receiv-
ing any message. Corrective actions can be commenced immediately to protect
the whole system from failing (e. g., restart or disabling of the erroneous core,
activation of backup cores, entering a system-wide fail-safe state, etc.).

The difficulty of a time-triggered communication system is to establish
a synchronized distributed global time base among all cores with sufficient
precission. With respect to dependable distributed embedded systems, the re-
quired clock synchronization has to be fault-tolerant to ensure communication,
and thus (possibly reduced) system operation, despite the presence of arbitrary
(i. e., Byzantine) faults. Another necessity for dependable operation is to
restrict core accesses to the communication medium to their designated sending

9

2.1 Time-Triggered Communication 2 Background

intervals. A core trying to send a message outside of its sending interval will
most likely corrupt the data sent by another core, or even mask out core failures
by preventing detection of a missing message. The TTA introduces guardians
(bus guardians attached to each core in case of a bus topology or guardians
located in the center of a star topology network) to protect the system from
arbitrary core failures (e. g., “babbling idiot” failures). These guardians ensure
fail-silent behavior of all cores by restricting the communication medium ac-
cess to the respective sending intervals and blocking any other sending attempt.

Event-triggered communication does not follow a designated schedule.
The sending of an event message is triggered by the occurrence of the associated
event. Such events can have an external source (e. g., a user pressing a button, a
temperature value exceeding a threshold) or can be triggered by the embedded
system itself (e. g., completion of a calculation).

Since an event-triggered communication system only starts the transmission
of a message if an event (a state change) occurred, traffic on the network
can be significantly reduced as long as the frequency of occurring events is
sufficiently low, in contrast to a time-triggered communication system, which
transmits messages regardless of any state change. This allows not only for a
more efficient use of the available network bandwidth, but also helps to save
power, which is a crucial requirement of embedded systems.

On the downside of event-triggered communication systems is the need to
enclose sender and/or receiver identification information in every message, in-
creasing the bandwidth usage. In addition, the gain in available bandwidth
can be limited by the peak-load of the network (worst-case scenario, usually
reached if all cores try to send simultaneously). If the communication system
is designed with enough spare bandwidth to handle the rare-event peak-load
scenario without violating any system deadlines, the spare bandwidth is useless
and wasted most of the operational time of the system (assuming the peak-load
scenario is rare under normal operating conditions). By designing the commu-
nication system to make a more efficient use of the available bandwidth under
normal conditions while abandoning the ability to fulfill all deadlines under
higher load, communication integrity can not be guaranteed under peak-load
scenarios. This is a design decision which has to be taken according to the
intended use of the embedded system (e. g., safety-critical, i. e., (partially) op-
erational under all circumstances, or accepting possible system breakdowns due
to high load).

The lack of a priori knowledge of send instants prevents the communication
system from detecting a failed core by monitoring missing messages. A
fail-silent core shows the same behavior when failed as a working core when
no events occur at its observed entity. Even worse, cores with an arbitrary

10

2 Background 2.2 Integrated vs. Federated Architecture

failure mode may block the communication system by uninterrupted sending
of messages (“babbling idiot” behavior). As a consequence, the application has
to perform failure detection inside the cores by means of restricting network
access and/or some kind of fail-silent failure detection (e. g., regular lifesign
(“heartbeat”) messages), if dependability is to be achieved.

2.2 Integrated vs. Federated Architecture

A distributed application can be classified with respect to the overall system
architecture. Although most real systems are hybrid systems, the two extremes,
integrated and federated architectures, are briefly discussed in this section.

A federated architecture is characterized in that every major function of
an embedded system is allocated to a dedicated hardware unit. [Kop04a, p.
160] This results in a vast number of independent hardware subsystems, each
performing a certain, specialised function, with minimal or even no interac-
tion between the different subsystems. Every single subsystem is treated as a
“stand-alone” system, therefore any maintenance or upgrade actions, although
less complex, have to be performed separately for every system. In spite of
these and other deficiencies, several advantages of federated architecures can
be identified, the major ones are described in [OPHS06, p. 84-85] and briefly
listed below.

Fault containment A hardware fault in a core or a disturbance of the com-
munication medium of a federated architecture only affects a single ap-
plication subsystem, the other application subsystems are not concerned,
whereas a hardware fault occurring in a core or communication medium
of an integrated architecture may influence multiple different application
subsystems.

Error containment Error distribution among different subsystems is prevented
(or at least reduced) by the nature of federated architectures, since inter-
action between different subsystems is limited.

Independent development The independence of the different subsystems al-
lows for their independent development, therefore the subsystems can be
manufactured by different vendors or design teams and easily combined
to form the whole application system.

Complexity control With no need to adapt a subsystem to operate using the
same resources as another subsystem, as inevitable in an integrated ar-
chitecture, a federated architecture helps to keep the overall system com-
plexity low. Any side effects or dependencies between the different sub-

11

2.2 Integrated vs. Federated Architecture 2 Background

systems, which significantly increase the cognitive complexity of a system,
are prevented.

We call an architecture integrated if a single core can support a number of
partitions that can host different functions and a physical wire can host many
different virtual encapsulated communication channels of known temporal char-
acteristics. [Kop04a, p. 160] In an integrated architecture, different functions,
located in their own, separated subsystems in a federated architecture, are
merged into a single system, sharing common resources. Some advantages of
integrated architectures are concisely listed below, taken from [OPHS06, p. 85].

Hardware cost reduction Sharing resources between different application sub-
system can significantly reduce the number of required hardware units
(e. g., processors, sensors, communication media, etc.), resulting in re-
duced overall system hardware cost.

Dependability improvements due to reductions of wiring and connectors
Since a large amount of electrical failures in embedded systems is due
to connector or wiring problems, dependability can be improved by an
integrated system, which shares communication media and therefore
uses less physical wires in contrast to a federated system.

Fault-tolerance In integrated as well as in federated architectures, fault tol-
erance is achieved by using replicated hardware. The benefit of an inte-
grated architecture is that these replicated resources are available among
the different subsystems, while every subsystem in a federated architec-
ture has to provide its own replicated hardware. Failure of a subsystem in
a federated architecture may occur in spite of the presence of a sufficient
number of free overall system resources able to tolerate the occurred fault,
since a subsystem cannot access the spare resources of other subsystems.

Improved coordination of application subsystems Tight coupling of differ-
ent subsystems, which is needed by a growing number of complex em-
bedded application systems, is supported by integrated architectures, the
coordination of inter-subsystem communication is simplified in contrast
to federated architectures.

Both, integrated and federated architectures, offer advantages for future
embedded application systems. The ideal future embedded application sys-
tem would combine the complexity management advantages of the federated
approach, but would also realize the functional integration and hardware effi-
ciency benefits of an integrated system. [Ham03, p. 32] To achieve this goal,
logical separation and strong encapsulation of different Distributed Application
Subsystems (DASs) in an integrated system has to be provided by the under-
lying system architecture. Although parts of different Distributed Application

12

2 Background 2.3 DECOS

Subsystems may share the same resources, e. g., the same microchip, the same
physical communication medium, etc., the system architecture has to prevent
any side effects or unwanted dependencies between the different DASs and
has to support the possibility of an independent development of the different
Distributed Application Subsystems.

2.3 DECOS

The Dependable Embedded Components and Systems (DECOS) project [Dep]
is part of the Sixth Framework Programme (FP6) for Research, Technological
Development and Demonstration (RTD) of the European Community, which
started in 2002. DECOS methodically targets, investigates, and develops ap-
proaches to significantly alleviate . . . the identified five key obstacles . . . to the
deployment of advanced electronic functions in embedded systems. [CS04, p. 1]
Those key obstacles are (taken from [CS04, p. 1]):

• Electronic Hardware Cost

• Diagnosis and Maintenance

• Dependability

• Development Cost

• Intellectual Property (IP) Protection

The DECOS project intends to provide an integrated distributed architec-
ture, consisting of pre-validated hardware components, which allows to execute
certified or custom software modules while providing strict encapsulation of
different subsystems to ensure their independent development, seamless inte-
gration, and operation without any unwanted side effects.

The DECOS architecture offers a framework for the development of
distributed embedded real-time systems integrating multiple Distributed Ap-
plication Subsystems (DASs) with different levels of criticality and different
requirements concerning the underlying platform. It is based on a time-
triggered core architecture and a set of high-level services that support the
execution of newly developed and legacy applications across standardized
technology-invariant interfaces. [POT+05, p. 3]

In an ebedded system using the DECOS architecture, the overall applica-
tion system functionality is divided into Distributed Application Subsystems
(DASs), each of which should provide a meaningful part of the service of the
overall system (e. g., a brake-by-wire DAS could be responsible for all matters
concerning the brake service of a car). Each DAS can be further devided into

13

2.3 DECOS 2 Background

jobs. A job is the basic unit of work that employs the communication system for
exchanging information with other jobs, thus working towards a collective goal.
[POT+05, p. 4] Figure 2.4 displays a schematic of the DECOS architecture.

Figure 2.4: The DECOS Integrated System Architecture [POT+05, p. 4]

A prototype implementation of a DECOS cluster was built at the Tech-
nische Universität Wien, Institut für Technische Informatik, and described in
[OPHS06, sect. 5].

During the course of the DECOS project, the demand for a System-on-a-
Chip (SoC) fulfilling the requirements of the DECOS architecture, namely strict
encapsulation of DASs and a dependable, deterministic communication system,
arose. As a consequence, the development of the Time-Triggered System-on-a-
Chip (TTSoC) architecture (chapter 3) was initiated.

14

3 Time-Triggered
System-on-a-Chip

3.1 Requirements

In contrast to other System-on-a-Chip (SoC) development efforts aiming at
improvement of overall system performance by designing more sophisticated,
close-coupled processor cores with strong mutual dependencies, like the Cell
Processor [PAB+06], the development of the TTSoC architecture described
herein was focused on the overall architecture of the SoC and the used on-
chip communication system, namely the Network-on-a-Chip (NoC). The over-
all goal of the TTSoC project was to design an SoC architecture which pro-
vides strict encapsulation of all host processors and dependable and predictable
communication among them to support safety-critical Distributed Application
Subsystems (DASs).

As a result, the TTSoC architecture allows the use of arbitrary application
specific host processors, as long as a proper interface to the NoC can be
established.

The main requirements of the Network-on-a-Chip, identified during the de-
velopment of the Time-Triggered System-on-a-Chip architecture, are briefly
described in the following list.

Dependability In order for a safety-critical DAS to function within the given
parameters, the underlying communication network has to fulfill the same
or even higher dependability demands. The core components of the
TTSoC architecture are designed to be certified to the highest criticality
level required by a given application.

Encapsulation A single TTSoC may not run safety-critical applications on all
of its cores, but a mixture of safety-critical and standard applications,
e. g., parts of a brake-by-wire DAS and a multimedia DAS. To prevent
disturbance of the critical DASs caused by faulty or mischievous cores,
the NoC has to ensure strict encapsulation of all DASs. Any communica-
tion between different DASs has to be regulated, blocking of the commu-
nication medium, corruption of communication data, message spoofing,

15

3.1 Requirements 3 Time-Triggered System-on-a-Chip

or similar illegitimate actions by any core have to be suppressed. Even
an arbitrary (i. e., Byzantine) failure of a non safety-critical host is not
allowed to hamper the service of the other cores of the TTSoC.

Controlled Complexity Large distributed embedded systems can become
fairly complex, which makes them hard to design and maintain. By en-
capsulating the application subsystems, the TTSoC architecture allows
a system designer to focus on a specific subsystem without the need to
know all aspects of the overall system architecture. Every host processor
connects to the communication system through a standardized interface,
the exact location inside the network (i. e., on which core the software is
running) is of no concern during the design process of the host software.
Even a migration to another core after finishing the application design or
during the system’s operational life due to maintenance issues is possible
in a well designed application system.

This location-independent behavior is not restricted to a single TTSoC,
a cluster of multiple TTSoCs, connected through gateways, can be built
to allow a physical separation of different jobs in a DAS. Being able
to migrate a job to another core without the need to adapt the host
software allows for every DAS to be designed for its own, knowledge of
other DASs sharing the same TTSoC or TTSoC cluster is not necessary
at design time.

Real-Time Many distributed embedded systems require real-time behavior.
To support such systems, the TTSoC architecture has to provide a dis-
tributed global real-time service.

Replica Determinism In highly dependable systems, such as drive-by-wire sys-
tems, the use of Triple Modular Redundancy (TMR) is very common. For
an efficient use of TMR, an application has to show replica deterministic
behavior [Pol94]. As a consequence, all components of the implemented
NoC have to be replica deterministic too.

Resource Efficiency The use of on-chip resources has to be limited for an
embedded system to be competitive on the market. The two crucial
resources of an embedded SoC are chip area and power. While the chip
area used by the SoC is determined by the design of all of the implemented
SoC components and remains constant during the system’s life cycle,
power consumption can be regulated “on-line” during operation.

The TTSoC architecture design aims at reducing the used chip area by
building all components as compact as possible. Power is considered a dy-
namic resource, the TTSoC architecture is intended to manage the avail-
able on-chip power by disabling the power supply of cores not needed at
the moment, reducing a host processor’s internal clock frequency, and/or

16

3 Time-Triggered System-on-a-Chip 3.2 Overview

setting low power consumption host modes in low-duty situations. Be-
sides saving power on mobile, battery supplied embedded systems (e. g.,
in a car), the intention is to secure an uninterrupted power supply for
cores running safety-critical applications.

Reusability Any distributed communication system should provide a uniform
interface to the attached host processors to simplify access to all commu-
nication functions. The NoC fulfills these requirement by introducing a
standardized Host Interface providing independence of application soft-
ware from the communication network. Additional supporting functions
(e. g., interrupt, global real-time, and watchdog services) are provided to
enhance the functional range of the NoC.

Extendability To bridge the gap between resource efficiency and usability, the
TTSoC architecture is designed to be extended by adding additional,
special purpose functions. Such functions widen the functional range of
specific cores according to application demands, with the disadvantage of
increased resource usage.

Diagnosis & Maintainability Embedded systems are, by nature, built into
larger technical systems (e. g., cars), which impose various difficulties
concerning maintenance. Hence, the possibility to easily diagnose fail-
ures and to “repair” a system by simply exchanging a failed component
like a whole TTSoC with a new one, is a crucial requirement.

Bandwidth The NoC has to provide enough communication bandwidth to al-
low unhindered operation of all attached cores. Since the required band-
width is highly application dependent, no minimum bandwidth is speci-
fied. Although intentions are to maximize the available bandwidth, the
speed of the NoC (e. g., on-chip clock frequency) is not a driving design
factor, the other design requirements are prioritized.

3.2 Overview

The Time-Triggered System-on-a-Chip (TTSoC) architecture is developed to
house multiple different cores, each consisting of a host processors with periph-
eral devices (i. e., local I/O controllers like Controller Area Network (CAN) con-
trollers), a Communication Network Interface (CNI) Layer, and a Trusted In-
terface Subsystem (TISS) on the same microchip and to connect them through
a dependable, time-triggered communication system, the Network-on-a-Chip
(NoC). The hosts have no other possibility to influence one another but the
NoC, guaranteeing encapsulation of different DASs. The TTSoC architecture
is designed for safety critical applications, thus some components of the NoC

17

3.2 Overview 3 Time-Triggered System-on-a-Chip

are part of a “trusted region” within the TTSoC architecture. These compo-
nents have to be certified to the highest criticality level required by any core
of a TTSoC, because failures of those core components would cause failures of
the entire TTSoC.

The design of the TTSoC architecture and of its components was motivated
by [OPHS06] and some early specifications and concepts were introduced in
[Obe06] and [KHO+06], some of which are used in the implementation described
in this thesis.

Figure 3.1 shows an overview of the Time-Triggered System-on-a-Chip ar-
chitecture.

Figure 3.1: Overview of the TTSoC architecture

A host processor reads and writes all communication data as well as addi-
tional status and configuration data, by means of a memory mapped inter-
face provided by the attached Communication Network Interface (CNI) Layer.
Since the NoC is a shared resource, a Trusted Interface Subsystem (TISS) is
used to connect the CNI Layer to the underlying NoC Interconnect to protect
the communication medium from a host violating its temporal specification.
A single TISS consists of the Medium Access Control (MAC) Layer, respon-
sible for protecting the communication medium and initiating data transfers
according to the communication schedule, and the Logical Link Control (LLC)
Layer, which handles all host related communication issues (e. g., presenting
the communication data in a convenient way, synchronization, etc.). A host
and its attached CNI Layer and TISS is called a core of the TTSoC.

Two special cores which are part of the NoC can be identified: The Trusted
Network Authority (TNA) and the Resource Management Authority (RMA).

18

3 Time-Triggered System-on-a-Chip 3.3 Concepts

The RMA, a standard core, manages the available resources of the TTSoC,
especially by building a conflict-free communication schedule, while the TNA,
as part of the trusted region of the TTSoC, acts as kind of a guard for the
NoC. The TNA core uses a special host processor to verify the communication
schedule and the resource allocation plan submitted by the RMA and imple-
ments an additional configuration planning (CP) interface to forward the valid
configuration to all other TISSs.

The host processors can be standard commercial microprocessors, dedicated
Intellectual Property (IP) modules, gateways to other communication networks
like Time-Triggered Ethernet [SK06] or TTP/C [TTTa], or any custom built
hardware module.

The following sections describe some of the crucial concepts associated with
the TTSoC architecture development (section 3.3), the general operation of the
TTSoC (section 3.4), and the components that form the NoC (section 3.5).

3.3 Concepts

3.3.1 Time

The TTSoC architecture provides a synchronized global real-time service for all
cores connected to the NoC. The global real-time is not only used to establish
the time-triggered communication but can also be accessed by the cores to sup-
port real-time operation of installed application software (e. g., job scheduling,
etc.).

The time format used by the TTSoC architecture is derived from the Time-
Triggered Ethernet time format [Ste06, p. 50] and closely related to the Global
Positioning System (GPS) time format. The binary TTSoC architecture time
format is 8 bytes (64 bit) wide and is based on the physical second. It inherits
the epoch of the GPS (January 6, 1980 at 00:00), unless no external synchro-
nization is possible. In that case, the epoch starts with the system startup
instant.

Figure 3.2: TTSoC Architecture Time Format

19

3.3 Concepts 3 Time-Triggered System-on-a-Chip

The 8 bytes of the TTSoC architecture time format (figure 3.2) can be split-
ted into two four byte segments: the higher 32 bit represent the elapsed number
of seconds since the start of the epoch while the lower 32 bit denote the frac-
tions of a second in negative powers of two (i. e., 0.5s, 0.25s, 0.125s, etc.). Thus
a time horizon of 232 seconds (i. e., approximately 136 years) and a granularity
of 2−32 seconds (i. e., approximately 0.2 ns) is established, providing the pos-
sibility to uniquely represent every time instant since January 6, 1980 with a
precision of under a nanosecond. The small granularity became necessary be-
cause a granularity of 2−24 seconds (i. e., approximately 60 ns), as introduced
by the Time-Triggered Ethernet time format, would restrict the time-triggered
Network-on-a-Chip to an on-chip clock frequency of about 16 MHz. Instead of
widening the time format to more than 8 bytes, it was decided to reduce the
time horizon to support the needed granularity. Table 3.1 compares the Time-
Triggered Ethernet and the TTSoC architecture time format with respect to
their main characteristics.

TT Ethernet TTSoC
Overall Size 8 bytes
≥/< 1 second 5/3 bytes 4/4 bytes

Epoch January 6, 1980, 00:00 / system startup
Horizon approx. 30 000 years approx. 136 years

Granularity approx. 60 ns approx. 0.2 ns

Table 3.1: Time Format Comparison: TT Ethernet vs. TTSoC

Due to implementation hardware restrictions1, the lowest six bits of the
TTSoC architecture time format are set to zero throughout the TTSoC imple-
mentation described in this thesis, reducing the resource effort for the internal
time representation from 64 to 58 bits. External time representation (i. e., the
global real-time accessible by the hosts) is not affected. A detailed description
of the implemented time format can be found in [Eng07].

3.3.2 Messages

Communication among the cores in the time-triggered NoC is organized in
periodic messages. The messages consist of a constant number of fragments
which transport 128 bit data each (figure 3.3).2 The message size ranges from

1The granularity of the TTSoC architecture time format of 0.2 ns would require an on-chip
clock frequency of at least 5 GHz to be accurate.

2Unless mentioned otherwise, a “fragment”, as used in this document, refers to a 128 bit
wide part of a message.

20

3 Time-Triggered System-on-a-Chip 3.3 Concepts

0 (1 fragment) to 255 (256 fragments) and is set by the TNA taking the host
requests (see section 3.5.5) into account. Message transport is performed
by means of periodic Pulsed Data Streams (3.3.3) scheduled by the TNA.
Sources and sinks of messages are represented by ports (section 3.3.4) at the
sending core and the receiving core(s), the transmission is initiated by the
MAC Layer according to the schedule.

Figure 3.3: NoC Message

Three types of messages are supported by the NoC:

State Messages are the intended main communication form of the TTSoC
architecture. State Messages contain state information, therefore they
are suited best for transportation over a time-triggered network. Because
of the at-least-once semantics required by state information, the state
information at the receiving core can be updated in place without forcing
the receiving core to consume the previous message in advance. A state
message is transmitted periodically regardless of any change of the con-
tained state information. An update of this information by the sending
core’s host is automatically transmitted to the receiving core at the next
scheduled message period and can be used by the receiving core’s host
with a maximum (worst-case) delay of one message period duration3.

Event Messages are sent after the occurrence of an event. Since the NoC in-
corporates a time-triggered communication service, these messages have
to be scheduled like any other message to reserve the needed amount of
bandwidth. Actual sending of event messages can be suppressed until
an event occurred, but queues are needed at the sending and receiving
event message ports to ensure the required exactly-once sematics. This
mechanism helps to save power since no sending and receiving operations
have to be performed until there is actual data to be transmitted, and
guarantees delivery of event information even under peak-load scenarios,
as long as the periods of the event messages in the predefined message

3Disregarding the constant sending and receiving operation latencies for every fragment.

21

3.3 Concepts 3 Time-Triggered System-on-a-Chip

schedule are shorter than the minimum time interval between the associ-
ated events. A higher event occurrence frequency can be tolerated for a
short amount of time, as long as the sender and receiver queues are large
enough to store all generated event messages until they can be transmit-
ted over the NoC or consumed by the receiving host. In addition, a longer
event occurrence pause is required from time to time to allow the NoC
to empty the send queue again.

Streaming Messages are used to transport streaming data (e. g., an audio
stream). In contrast to state or event messages, streaming messages are
not used to describe the state or the change of state of an entity, but to
transport big amounts of information (i. e., a serialized data stream) in a
convenient way. Because of the nature of streaming data which requires
a constant feed of input by the sender and immediate processing at the
receiver, the communicating hosts are forced to update (sender) or read
(receiver) the associated Streaming Port before / after the transmission
of every single fragment, respectively.

Due to the bus topology of the core interconnection used by the TTSoC
implementation described in this document, all messages are broadcasted to all
cores. Point-to-point or multicast communication is incorporated transparently
by the different medium access schedules of the cores, which allow only the
designated receiving cores to read data from the bus while a certain message is
presented by a sending core. Future implementations may support true point-
to-point communication by using a switched network or other forms of core
interconnection. See sections 3.5.3 and 6 for details on the current TTSoC
interconnection and possible future improvements.

3.3.3 Pulsed Data Streams

The concept of pulsed data streams was proposed in [Kop06]. The basic re-
quirements for pulsed data streams are an a priori known set of communication
participants, a synchronized global notion of time, and a cyclic communication
schedule. A pulsed data stream is a cyclic data stream that transports data
uni-directionally in pulses from one sender to n a priori identified receivers at
a specified phase of the cycle for a specified duration. [Kop06, p. 4].

In the TTSoC architecture, the cyclic communication schedule is established
by the TNA among the cores of the NoC. All messages distributed over the
NoC are periodic and the cores are aware of a common global real-time, hence
the pulsed data stream concept can easily be applied.

Furthermore, since all TTSoC architecture messages consist of fragments, the
NoC implements a special pulsed data stream version. In addition to its sender

22

3 Time-Triggered System-on-a-Chip 3.3 Concepts

and receiver identification, each message can be described by its period (i. e.,
the cycle duration), the message pulse start instant (i. e., the phase offset), and
the message pulse duration. To prevent blocking of the communication medium
caused by long messages, each message pulse is subdivided into single fragment
pulses. The fragment pulses are characterized by the fragment period and the
fragment pulse start instant inside a message pulse, the fragment pulse duration
is constant due to the constant transmission delay of the fixed length fragments.
Figure 3.4 shows the pulsed data streams used for message transmission in the
NoC.

Figure 3.4: NoC Pulsed Data Streams

The advantage of this implementation is that the fragments of different mes-
sages (with possibly different periods) can be interleaved on the communication
medium. Otherwise two messages, one message with a long pulse duration and
another message with a message period shorter than the first message’s pulse
duration could not be scheduled, either the long message would never gain pos-
session of the communication medium or the short-period message would miss
its reception deadlines.

The message schedule provided by the TNA aims to fulfill all message re-
quests without violating any message periods or deadlines. If no valid sched-
ule can be found, non safety-critical messages are declined to ensure proper
transmission of the safety-critical data among a priori specified high-reliability
DASs.

23

3.3 Concepts 3 Time-Triggered System-on-a-Chip

3.3.4 Ports

The NoC ports form the end points (one source and one or more sinks) of
the communication line between different cores. They were designed to store
variable size messages (fragment granularity) ready to be sent at the next
message period (output ports), or previously received messages waiting to be
processed by a host processor (input ports).

Every port can be identified locally (inside a core) by its unique PortID which
is set and associated with a specific message by the TNA. Every message needs
a single output port in its sending core (the source of the message) and one
input port at every receiving core (the sink(s)).

Three input and output port types matching the three message types de-
scribed in section 3.3.2 are featured by the TTSoC architecture.4 All port
types provide a different kind of synchronization mechanism to prevent data
corruption due to simultaneous read and/or write accesses. Further details of
the implemented port types can be found in section 4.2.2.2.1.

State Ports store a whole state message. While input State Ports use an
adapted form of the non-blocking write (NBW) protocol [KR93] to ensure
proper reception of all state messages, output State Ports are designed
to store a second instance of the state message to be sent in a so called
“shadow register”. Using this mechanism, the host software is allowed to
write the next state message to the “shadow register” while transmission
of the current state message, stored in the “standard register”, is still in
progress, or vice versa.5

Event Ports provide variable length queues to store a sequence of complete
event messages. Input and output Event Ports use the same synchro-
nization mechanism, namely two counters which hold the current read
and write positions in the event message queue. The host acts as the
writer (output) or the reader (input) of a certain Event Port, the TISS
performs the respective other role. Receiving or sending an event message
and simultaneously writing or reading another one to or from the same
Event Port is possible at all times, on condition that the queue is not full
or empty, respectively.

4The NoC has no possibility to determine if the message type matches the configured port
types of the associated input and output ports. Unless an application is intentionally
designed to handle a certain type of messages by using a port of a different type (e. g.,
a diagnostic entity logging all kinds of message transfers by means of input Streaming
Ports), it is strongly recommended to align the port types in the port configuration with
the message schedule to prevent system errors due to misinterpreted data.

5The “standard” and “shadow registers” are no actual registers but consecutive memory
areas in the CNI memory.

24

3 Time-Triggered System-on-a-Chip 3.4 Operation

Streaming Ports do not store whole messages but only a single fragment of a
streaming message. To maintain a continuous data stream between two
cores, the sending host has to update the fragment data before every frag-
ment send instant and the receiving host has to fetch this data before the
next fragment arrives over the NoC, otherwise a fragment is sent more
frequently than once (sender) or a fragment is overwritten by the follow-
ing one (receiver). Streaming Port access synchronization is performed
with the same mechanisms that State Ports use, synchronization of the
data stream (e. g., start, stop, pause, etc.) has to be maintained by the
application itself (e. g., by using additional event messages).

3.4 Operation

Sending and receiving of messages in the TTSoC architecture is triggered by
the progression of time. Every message is associated with a time period and
a phase offset at which transmission of this message has to start. Since a
message consists of fragments, every message is additionally characterized by a
fragment period and a fragment phase offset. These periods and phase offsets
are stored in the message schedule of every TISS, allowing the MAC Layer to
determine the exact send or receive instant for every fragment.

Figure 3.5 shows the transmission of a message from one core to another, the
following paragraphs describe this operation in detail.

The MAC Layer requests the data to be sent from the LLC Layer prior to
the calculated send instant by driving the PortID and the fragment number of
the fragment to be sent on the appropriate lines (a).

The LLC Layer calculates the address of the requested fragment in the CNI
memory using the port configuration data written by the host and the current
state of the port synchronization information (b). After that, it fetches the
fragment from the port stored in the CNI Layer and forwards the data to the
MAC Layer (c).

The MAC Layer sends the fragment over the network precisely at the send
instant determined by the message schedule (d).

At the receiving core, the message schedule noted the same time instant as
receive instant, so the receiving core’s MAC Layer stores the fragment data
presented on the network and forwards it to the local LLC Layer together with
the local PortID and the fragment number (e).

The LLC Layer calculates the local CNI memory address based on the infor-
mation obtained from the port configuration memory and the synchronization

25

3.4 Operation 3 Time-Triggered System-on-a-Chip

Figure 3.5: TTSoC Operation

flags (f) and finally stores the fragment in the port in the CNI Layer (g).

After completing the reception or sending of a whole message, a “New Mes-
sage” or “Ready” interrupt can be generated to inform the host that the receiv-
ing port contains valid data or the sending port is ready for the next message
to be written by the host, respectively (h).

3.4.1 Configuration

The message schedule is generated by the RMA according to message requests
sent by the hosts, and verified and distributed to the TISSs by the TNA. A
reduced message set can be scheduled due to short resources, a failure, or after
system startup.

The layout of the message request mechanism is application specific, but the

26

3 Time-Triggered System-on-a-Chip 3.4 Operation

intended standard configuration operation between the RMA, TNA, and the
TISSs is shown in figure 3.6 and described below.

Figure 3.6: TTSoC Message Configuration Procedure

After system startup, an a priori defined, fixed message schedule is active,
allowing the cores to request their needed messages by sending message request
messages to the RMA (a). Depending on the application requirements, addi-
tional diagnostic messages and/or messages used by services that have to start
operation immediately after startup can be scheduled too.

The RMA tries to build a feasible message schedule including all requested
messages (b) and transfers its solutions to the TNA (c).

The TNA verifies the validity of the received message schedule (d) and, if it
is confirmed, sends the according core-local message schedules in combination
with a common reconfiguration time period and phase offset to the TISSs (e).
When the next reconfiguration time instant is reached, all cores switch to the
new configuration simultaneously and normal network operation commences.

Reconfiguration of the TTSoC is a periodic process. If no new messages
(and no termination of active messages) are requested by the cores, the
previous configuration is kept. A change of the current message schedule can
become necessary due to changed application service requirements (e. g., a
user requested an additional service by turning a switch) or a core failure that
has to be compensated. A change of the message schedule is possible at every
periodic reconfiguration instant.

For safety-critical applications, it can be useful to define a fixed backup
message schedule during the system design process and store it in the TNA to

27

3.5 Components 3 Time-Triggered System-on-a-Chip

be activated in case of a possible RMA failure. Although all flexibility gained
by the dynamic resource allocation process is lost in such a case, essential
safety critical services can be kept active until a fail-safe state is reached or
the occurred failure can be corrected by maintenance, by starting a backup
system, or by other means.

The described configuration mechanism can be used to allocate system re-
sources other than communication medium access in future TTSoC implemen-
tations, the current TNA implementation supports only message scheduling.

3.5 Components

3.5.1 Trusted Interface Subsystem

The Trusted Interface Subsystem (TISS) (figure 3.7) consists of two parts: the
Medium Access Control (MAC) Layer (section 3.5.1.1) and the Logical Link
Control (LLC) Layer (section 3.5.1.2).

Figure 3.7: Trusted Interface Subsystem (TISS) Overview

The purpose of the TISS is to send and receive messages to or from other
cores according to the schedule determined by the TNA and fetch or store these

28

3 Time-Triggered System-on-a-Chip 3.5 Components

messages from/to the CNI Layer. Since the TISS is responsible for communi-
cation medium access and provides the different types of ports and their syn-
chronization mechanisms, the TISS is part of the trusted region of the TTSoC
architecture. Therefore it is intended to be certified to the highest criticality
level of any host within the TTSoC.

3.5.1.1 MAC Layer

The MAC Layer, described in [Eng07], is responsible to protect the commu-
nication medium from undesired disturbance. It stores the message schedule
determined by the TNA and uses it not only to restrict medium access, but to
initiate sending and receiving operations performed by the LLC Layer.

The communication schedule is transfered directly from the TNA to the
MAC Layer through the TISS configuration planning (CP) interface, the con-
figuration data needed by the LLC Layer is forwarded upon reconfiguration.
In addition, the MAC Layer keeps the global real-time accurate, which is con-
tinuously transferred to the LLC Layer through the MAC interface.

Although the host is able to read the MAC Layer configuration, there is no
possibility of a host write access to the MAC Layer, hence any disturbance of
the time-triggered communication by an erroneous host is avoided. Even the
LLC Layer cannot influence the operation of the MAC Layer, thus the whole
core is in the sphere of control of the MAC Layer, concerning communication
medium access.

3.5.1.2 LLC Layer

The LLC Layer allows a host processor to access the communication service
presented by the NoC in a convenient way. While the MAC Layer regulates
reception of single fragments at specific time instants and signals these events
to the LLC Layer, the LLC Layer is responsible to assemble these fragments
to form messages of configurable length, to store these messages in the des-
ignated ports of certain types, and to provide the necessary synchronization
mechanisms to allow a consistent data transfer to the host. Transmission of
fragments is handled similar: Before the occurrence of a send time instant, the
MAC Layer requests the fragment to be sent from the LLC Layer which fetches
it from the memory location determined by the port identification, fragment
position, port configuration (base address, type), and current port synchroniza-
tion status (e. g., queue positions).

To maintain this highly flexible (concerning port size, port type, queue
length, etc.) behavior, the provided ports can be configured by the host ac-
cording to the application requirements.

29

3.5 Components 3 Time-Triggered System-on-a-Chip

Apart from the communication service, the LLC Layer houses two additional
trusted services: a watchdog service and an error status register to detect and
monitor possible core failures.

The LLC Layer and the CNI Layer (section 3.5.2) were both implemented in
the course of this thesis, chapter 4 offers a closer view on their operation and
implementation.

3.5.2 CNI Layer

Memory space to store all port data and the related synchronization data is
provided by the Communication Network Interface (CNI) Layer. It therefore
acts as a temporal firewall [KO02] for the NoC. The CNI Layer works closely
with the LLC Layer, concerning especially the timeliness of read and write
accesses to the CNI memory.

The standard CNI Layer implements a memory-mapped host interface to
allow the host software to access the port data memory, the port configuration
memory, the MAC Layer configuration memory, possible CNI Layer extensions,
and the LLC Layer and CNI Layer register files. Furthermore, an interrupt
service is located in the CNI Layer, keeping track of any interrupt triggered by
the TISS, the CNI Layer, or any Middleware Plug-In.

The CNI Layer was designed to allow easy modification to suit application
needs, either by adding CNI Layer extensions (described in the following
paragraph) or by replacing the whole standard CNI Layer with a host-specific
implementation, therefore the CNI Layer is located outside of the trusted
region of the TTSoC architecture. Certification of the CNI Layer is though
possible, if required by the application due to a host or a CNI Layer extension
of high criticality.

The CNI Layer is the subject of chapter 4, together with the LLC Layer.

3.5.2.1 CNI Layer Extensions

During the development of the TTSoC architecture, possibilities to further
improve the functional range of the NoC were evaluated. To keep possible
certification procedures simple and to support the independent development of
additional functions, it was decided to enhance the CNI Layer using optional
CNI Layer extensions. Different kinds of CNI Layer extensions were discussed,
some of which were implemented later.

Chapter 5 deals with the possible forms of CNI Layer extensions.

30

3 Time-Triggered System-on-a-Chip 3.5 Components

3.5.3 Interconnect

The Network-on-a-Chip Interconnect has to perform three main tasks, all of
which are critical for TTSoC operation:

• Distribution of periodic and sporadic messages between the cores of the
NoC

• Maintaining a consistent time base among the NoC cores

• Transporting the message schedule and additional configuration parame-
ters from the TNA to the TISS configuration planning interfaces

To guarantee operation in a safety-critical environment, the NoC Intercon-
nect has to be certified to the highest criticality level demanded by the respec-
tive application.

The message distribution service can be implemented using different network
architecures, e. g., bus, star, mesh, or switched topology (figure 3.8). In addi-
tion, the Interconnect can be replicated to increase transmission bandwidth or
network safety by using a second communication channel.

The chip-wide global real-time is accessible by all the TISSs in the NoC and
has to be kept consistent among all cores without jitter and with minimal clock
skew.

The configuration planning Interconnect can be slow, compared to the
message distribution service, since configuration intervals are relatively large,
compared to fragment sending periods. The need for the additional configu-
ration planning Interconnect arises due to the requirement to guarantee that
only the TNA can write the TISS message schedule and low-level configuration
information (i. e., host mode, watchdog period).

The current TTSoC implementation uses a 128 bit wide bus network for
message transportation, a simple memory interface for configuration planning
purposes and a centralized time distribution system. Details can be found in
[Eng07].

3.5.4 Resource Management Authority

The Resource Management Authority (RMA), although part of the TTSoC
architecture, is implemented as a dedicated standard core. Since performing
dynamic management of all available TTSoC resources (e. g., communication,
computational, power resources) is a fairly complex task and can be highly
application specific, the RMA is not assumed to be free of design faults and
therefore is not certified.

31

3.5 Components 3 Time-Triggered System-on-a-Chip

Figure 3.8: Different Interconnect Topologies

The RMA receives message (and/or resource) requests from the cores
of the NoC, containing, among other things, the requested message length
and message period. It tries to fulfill all message requests by composing a
conflict-free schedule for fragment sending and receiving time slots across
the NoC. In addition, host mode configurations for all cores have to be
evaluated according to the current needs of the application and the available
computational resources. The RMA tries to prepare a feasible message
schedule and resource allocation plan in a predefined amount of time and
transfers these plans to the TNA by means of the standard communication
service. In the TNA the message schedule and the resource allocation plan
are verified and, if necessary, altered to guarantee unhampered safety-critical
operation.

By introducing this two-stage configuration mechanism (the RMA builds a
provisional NoC configuration, the TNA verifies this configuration according to
safety-critical requirements), the application system designers gain the freedom
to implement arbitrary scheduling algorithms best suited for a specific appli-

32

3 Time-Triggered System-on-a-Chip 3.5 Components

cation while the TTSoC architecture ensures validity and dependability of the
determined configuration under all circumstances.

3.5.5 Trusted Network Authority

The Trusted Network Authority (TNA) is responsible for verifying and dis-
tributing a valid message schedule and resource allocation plan for the whole
TTSoC. Therefore, the TNA protects all safety-critical resources of the TTSoC.
The complexity of the TNA is kept as low as possible to avoid design and op-
erational faults and to ease certification, the TNA is considered to be part of
the trusted region of the TTSoC architecture.

After receiving the proposed message schedule and resource allocation plan
from the RMA, the TNA verifies them. Should the message schedule or the
resource allocation plan be invalid, for instance due to an erroneous RMA or
a change in the availability of certain resources, the TNA alters the plan to
ensure that certain application specific safety-critical DASs are able to main-
tain their operation while non-critical application services can be deteriorated.
During the application system design process, designers should ensure that this
situation is a rare event, only caused by core failures or due to rare peak-load
scenarios.

Similar to network medium access, other resources can be scheduled by the
RMA and protected by the TNA in future implementations.6 Examples are
computational resources (e. g., host processor time for a specific job, memory
consumption), controlled by setting an appropriate host mode, or power con-
sumption of the cores. By controlling allocation of these resources and the
communication medium, the TNA gains the ability to ensure uninterrupted
and correct operation of safety critical DASs in spite of failures or unforseen
overload scenarios.

The verified message schedule and host mode configurations are distributed
to the TISSs via the configuration planning Interconnect. Every single TISS
receives only its own relevant part of the message schedule and its specific host
mode and watchdog period configuration.

6The current TTSoC implementation is focused on protection of the communication
medium, power control or complex host mode settings are considered but not imple-
mented by now.

33

3.5 Components 3 Time-Triggered System-on-a-Chip

34

4 LLC and CNI Layer

4.1 Overview

As part of the Trusted Interface Subsystem (TISS), the purpose of the Logical
Link Control (LLC) Layer is to function as the link between the Medium Ac-
cess Control (MAC) Layer and the Communication Network Interface (CNI)
Layer. The CNI Layer is directly connected to the host processor and stores
the messages transmitted via the NoC.

The following ports, corresponding to the messages described in section 3.3.2,
are provided:

State Ports of variable size (fragment size granularity) which hold a whole
pulsed data stream

Event Ports of variable size (fragment size granularity) which hold a whole
pulsed data stream and provide a queue of variable length

Streaming Ports which hold a single fragment of a pulsed data stream

In addition, the LLC and CNI Layers perform some configuration and
administrative functions, e. g., interrupts, status registers, etc. Both, the LLC
Layer and the CNI Layer work together to make the whole variety of NoC
services accessible by the host, therefore they are described together in this
chapter.

Different components are needed to fulfill these tasks. An overview of the
LLC and CNI Layers is depicted in figure 4.1, which shows these components.

The following sections describe the various interfaces used by the LLC and
CNI Layers (section 4.2) and the implementation details of the LLC Layer and
CNI Layer hardware (section 4.3). Finally, section 4.2.2.2 deals with the details
of the memory mapped host interface which is used by the host to access all
functions of the NoC.

To extend the functional range of the CNI Layer, so-called Plug-Ins can be
added to the CNI (4.3.2.1). These Plug-Ins are subject of chapter 5.

35

4.2 Interfaces 4 LLC and CNI Layer

Figure 4.1: Overview of the LLC and CNI Layers

4.2 Interfaces

Two interfaces are implemented by the LLC and CNI Layers, both of them
are described in the following sections: A Medium Access Control (MAC)

36

4 LLC and CNI Layer 4.2 Interfaces

Interface to the MAC Layer and a Host Interface which provides access to
all functions relevant to the host on a memory-mapped basis. In addition, some
internal interfaces are used.

The internal interfaces are based on the Open Core Protocol (appendix A),
therefore they are represented by a master and a slave instance. The data
flow is controlled by the master in any case, whereas sideband signals (e. g.,
interrupts) may be used in both directions.

The purpose of these interfaces is to connect the LLC Layer, the CNI and
the Host Address Decoder in a way that allows for an easy replacement of one
of these parts, e. g., the exchange of the standard CNI with a CNI fitted with
a Middleware Plug-In.

Most of the internal interfaces share the data word width with the host (32
bit), only the interface between the LLC Layer and the CNI uses the fragment
size (128 bit) as data width.

4.2.1 MAC Interface

The Medium Access Control (MAC) interface is able to transfer one fragment
as a whole in conjunction with the data needed to identify this fragment as
a specific fragment in a specific port. In addition, some sideband signals are
implemented, including configuration and time signals.

The following signals are used (input and output as seen by the LLC Layer):

PortID: input; identifies the port the data fragment belongs to (7 bit)

Fragment Position: input; identifies the position of the fragment in the pulsed
data stream (8 bit)

Fragment Time: input; receiving time of the fragment (used for timestamp-
ing) (58 bit)

Receive Data: data input (128 bit)

Receive: input; signals the validity of the input data (1 bit)

Send Slot: input; used by the MAC Layer to request a specific fragment for
transmission from the LLC Layer prior to reaching the send time of the
fragment. When receiving this signal, the LLC Layer loads the fragment
from the CNI memory and presents it on the Send Data lines while setting
the Send signal. (1 bit)

Send Data: data output (128 bit)

Send: output; signals the validity of the output data (1 bit)

Time: input; provides the global real-time (58 bit)

37

4.2 Interfaces 4 LLC and CNI Layer

MAC Layer Configuration Data: input; MAC Layer Configuration data read
by the host (32 bit)

MAC Layer Configuration Address: output; used to address the MAC Layer
Configuration memory which contains the local message schedule (9 bit)

Host Mode: input; host mode set by the TNA (1 bit)

Watchdog Period: input; the configured watchdog period (5 bit)

Reconfiguration Interrupt: input; signals the switching of MAC Layer con-
figurations (Hostmode and Watchdog Period signals are considered valid
while set) (1 bit)

All signals are sampled at the rising edge of the system clock.

Receiving A Fragment

Figure 4.2: MAC Interface Receive Timing

The reception of a fragment starts with the MAC Layer asserting the Receive
signal while the PortID, Fragment Position, Fragment Time and Receive Data
signals are valid. The LLC Layer latches the data and the Address Logic starts
a receive operation as described in section 4.3.1.1. After completion of the
whole receive operation, which needs seven clock cycles (see figure 4.2), the
LLC Layer is ready to receive or send the next fragment.

38

4 LLC and CNI Layer 4.2 Interfaces

Sending A Fragment

Transmission of a fragment is initiated by the MAC Layer by setting Send Slot
along with PortID and Fragment Position. After latching this data, the Ad-
dress Logic of the LLC Layer fetches the requested fragment from memory (see
section 4.3.1.1) and drives the Send Data lines and the Send signal when fin-
ished. The whole sending procedure needs seven clock cycles to be performed
(see figure 4.3).

Figure 4.3: MAC Interface Send Timing

4.2.2 Host Interface

The Host Interface is explained by splitting this section into a physical and
a logical description. While signal connections and timings are part of the
physical Host Interface, the logical Host Interface describes addressing issues
and the semantics of read or written data.

4.2.2.1 Physical Host Interface

The physical Host Interface is implemented as a 32 bit data word width Open
Core Protocol (OCP) slave with 15 address lines. Since all addresses are in-

39

4.2 Interfaces 4 LLC and CNI Layer

terpreted as word addresses, 215 = 32768 32 bit words can be accessed, corre-
sponding to an address space of 128 kilobytes. In addition, a single interrupt
request (IRQ) line, supplementary flags to identify six different IRQs, and a
host reset request line are provided.

The Open Core Protocol is described in detail in appendix A, table 4.1
summarizes the used OCP signals.

Name Signal Width Note

OCP Clock clk 1 bit clock signal
Master Address MAddr 15 bit word addresses
Master Command MCmd 3 bit only “Idle”, “Read”

and “Write” are sup-
ported

Master Data MData 32 bit
Master Byte Enable MByteEn 4 bit byte write enable

signals
Slave Command Accept SCmdAccept 1 bit
Slave Data SData 32 bit
Slave Response SResp 2 bit “Request Failed” is

not used
Slave Error SError 1 bit issued on read or

write errors
Slave Interrupt SInterrupt 1 bit interrupt request

line
Slave Flags SFlag 6 bit IRQ selector
Slave Reset SReset n 1 bit low-active

Table 4.1: OCP Signals used by the CNI Layer

Although the implemented Host Interface uses data handshake signals like
Slave Command Accept (SCmdAccept) and Slave Response (SResp), the CNI
Layer maintains a fixed read and write timing: On a “Read” command, the
CNI Layer presents the requested data on the SData lines with a latency of
one clock cycle, while a “Write” command takes immediate effect.

Interrupt Requests The CNI Layer sends an interrupt request (IRQ) to the
host whenever an interrupt is generated by the MAC Layer (Reconfiguration
Interrupt) or a component of the LLC Layer or the CNI Layer (i. e., the
according bit in the interrupt status register (figure 4.14) is set) and the
interrupt is not masked out (i. e., the according bit in the interrupt mask
register is set too). The IRQ remains active until the host services the

40

4 LLC and CNI Layer 4.2 Interfaces

interrupt and acknowledges it by either writing to the according bit in the
interrupt status register (clearing only the current interrupt request) or the
interrupt mask register (masking out all future interrupt requests).

Because of the interrupt request implementation being highly host specific
(concerning mainly the number of possible IRQs), the CNI Layer implements
one interrupt request line and six IRQ selector lines by using the OCP SFlag
signal. While the main IRQ line (SInterrupt) is asserted on any interrupt, the
six IRQ selector lines are activated only on specific interrupts, corresponding
to the first six bits in the interrupt status register.

A host which allows only one IRQ per slave may only use the SInterrupt
signal (as implemented by the Avalon Adapter, see appendix B), while a host
supporting multiple interrupt sources per slave can take advantage of the SFlag
signal to trigger different Interrupt Service Routines (ISRs), according to the
occurred interrupt (as used by the Powerlink Bus Adapter, appendix C). In
any case, the host processor can differentiate IRQs by examining the interrupt
status register (section 4.2.2.2.3).

Reset Request The CNI Layer uses the SReset n line to request the host to
enter a reset state. This can become necessary after a host failure caused by a
transient fault, or on startup of the whole Time-Triggered System-on-a-Chip.

Therefore, the host reset request is triggered by the watchdog service on a
missed lifesign update as well as by issuing a chip-wide reset. According to
the OCP specification, the reset request line is held active for at least 16 clock
cycles.

4.2.2.2 Logical Host Interface

The main purpose of the LLC and CNI Layers is to provide safe real time com-
munication services to the hosts. Furthermore, additional services are presented
by the LLC Layer (e. g., a watchdog service), the CNI Layer (e. g., interrupt
services), and the Plug-Ins (e. g., voting, DMA, etc.). All of these commu-
nication and additional services are accessed by the host through a memory
mapped interface, the Logical Host Interface.

All memory locations used for communication, configuration and status in-
formation are subdivided into four main categories, described further in the
sections below:

Ports are used for communication. Different types of input and output ports
are provided, which use different synchronisation and signaling mecha-
nisms. Port access is described in section 4.2.2.2.1.

41

4.2 Interfaces 4 LLC and CNI Layer

Register File The register file informs the host about the current status of the
LLC and CNI Layers (and the TTSoC in general) and is used to configure
its additional services. See section 4.2.2.2.3 for details.

Port Configuration Ports are locally (at a specific core of the TTSoC) identi-
fied by their port identification number (PortID). The TNA defines send
and receive parameters for every port, as well as its size and direction.
All other parameters (type, address, etc.) have to be configured by the
host itself, explained in section 4.2.2.2.4.

MAC Layer Configuration The MAC Layer Configuration memory stores the
temporal configuration for every port and can be read by the host through
the memory mapped interface (section 4.2.2.2.5).

The memory mapped interface uses 15 bit word addresses to access these
locations and incorporates a 32 bit data word size.

4.2.2.2.1 Ports

All ports are stored in the CNI memory and accessed by the host through 32
bit words with consecutive 11 bit word addresses. This memory not only houses
the input and output communication data, but also timestamps and some
synchronization information (the port flags (PF)). This additional information
may differ according to the direction, type, and the configuration of the port,
but this data is located at the base address of the port (and the consecutive
addresses in case of timestamps) in any case.

To simplify synchronization mechanisms, three bits of the 15 bit word address
act as additional high active byte write enable flags, attached to the lower
three bytes of a data word. Furthermore, the most significant address bit
has to be set to 1 to distinguish between a port access and a register/port
configuration/MAC Layer Configuration read or write operation. Figure 4.4
shows the layout of a port address.

Figure 4.4: Port Address

42

4 LLC and CNI Layer 4.2 Interfaces

State Ports

Figure 4.5 shows a state port of length N (fragments). The timestamp is
only implemented for input state ports while the shadow fragments are only
used by output state ports.

Figure 4.5: State Port

Input State Ports Input state ports use a 4 bit sequencer and a low-active
empty flag for synchronization (shown in figure 4.6), both exclusively written
by the Address Logic. An empty flag with value 0 signals an empty port, the
memory contents are invalid.

The sequencer is used to avoid the reading of incomplete messages by the
host. The Address Logic increments the sequencer at the beginning and after
a complete port update (all fragments). Before any read attempt, the host has
to check the sequencer for an odd value, which means an update is in progress,
rendering the current port data invalid. In case of an even sequencer value, the
host has to recheck the sequencer after the reading operation, to ensure that
no update has taken place (and invalidated the read data) in the meantime.

Every input state port can be configured to store a timestamp on reception
of the last fragment. This timestamp is located in the upper 64 bits of the 128

43

4.2 Interfaces 4 LLC and CNI Layer

bit data word at the port base address, and is valid the same time as the port
data.

Figure 4.6: Input State Port Port Flags

Output State Ports To prevent the sending of invalid messages, output state
ports use a “shadow register” and two flags, a “valid” flag written by the host,
and a “using” flag written by the Address Logic. Figure 4.7 shows the location
of these flags.

Figure 4.7: Output State Port Port Flags

The “using” flag indicates which register is used for transmission by the LLC
Layer (0 . . . standard, 1 . . . shadow). It is set to the “valid” flag value at the
beginning of the sending of a whole port.

When sending a message, the host writes the message to the register not
indicated by the two flags, i. e., the host is only allowed to update a register if
both flags point to the other register. After updating the register, the host sets
the valid flag accordingly. The next time the LLC Layer starts the transmission
of the port, it sets the “using” flag and the host is allowed to update the other
register.

To set/reset the “valid” flag without unintentionally changing the “using”
flag, the byte write enable bits in the address have to be set to “010”.

Streaming Ports

Streaming ports store only one fragment of a port at any time. The number
of the last received or transmitted fragment is stored with the portflags, as seen
in figures 4.8 and 4.9, respectively.

44

4 LLC and CNI Layer 4.2 Interfaces

Figure 4.8: Input Streaming Port Port Flags

Figure 4.9: Output Streaming Port Port Flags

In all other concerns, streaming ports are treated like state ports with length
0. They use the same mechanisms for synchronization and timestamps. See
section 4.2.2.2.1 for details.

Event Ports

Event Ports provide queues to allow reception or sending of multiple event
messages, without the need for immediate host processing.

These event port queues are implemented as ringbuffers with configurable
length (a maximum of 16 queue positions can be maintained, see section
4.2.2.2.4 for port configuration details). The port data is stored successively in
the different queue positions after the port flags (or the input port timestamps,
if enabled). See figure 4.11 for details.

Event ports use the same synchronization mechanisms for input and output
ports, except for timestamps, which are only used on input ports (if enabled),
and written exclusively by the Address Logic. Either the host (in case of an
output port) or the Address Logic (input port) functions as the writer, the
other one is called the reader.

The port flags of an event port (figure 4.10) store the current read and write
positions in the queue as well as the Position Changed Flag (PCF), which

45

4.2 Interfaces 4 LLC and CNI Layer

indicates if the reader or the writer was the last one to change the queue
positions.

The Internal Flags (IFs) are used by the Address Logic for queue overflow
and queue empty checking (bit 15 if the Address Logic is acting as reader, bit
7 if the Address Logic is the writer), and should be ignored by the host.

Figure 4.10: Event Port Port Flags

A read or write operation is started by reading the port flags. Two different
situations are possible:

- If the read and write positions are different, the port data can be read
from/written to the location indicated by the according position. After
the operation is complete (all fragments have been read/written), the
according position is incremented (modulo queue length), the PCF is set
to 0 in case of a read operation or 1 in case of a write operation, and both
are stored in the port flags. The host has to set the byte write enable bits
to “101” to write the write position or “110” to write the read position.1

- If both positions are equal, the queue is either full or empty. These two
conditions can be distinguished by the Position Changed Flag (PCF). A
PCF value of 0 means the last operation was done by the reader, so the
queue is empty and no read operation is permitted, but a write operation
can occur. If the last operation was done by the writer (PCF equals 1),
the queue is full. No writes are allowed, whereas a read operation may
take place.

An input event port is able to store timestamps, one for every queue position.
The first timestamp (attached to queue position 0) is stored in the upper 64
bits of the 128 bit data word at the port base address. All other timestamps
are located in the succeeding data words, two timestamps per 128 bit word

1The reader is not allowed to change the write position (and vice versa). This would lead
to uncontrolled behavior and invalidation of the port data.

46

4 LLC and CNI Layer 4.2 Interfaces

Figure 4.11: Event Port (Queue Length 2, Timestamps Enabled)

(i. e., the data word with the address PORT BASE ADDRESS + 1 houses
the timestamp for queue position 1 in the lower 64 bits and the timestamp for
queue position 2 in the higher 64 bits, etc.).

Figure 4.11 shows an input event port with queue length 2 and enabled
timestamps.

4.2.2.2.2 Port Memory Usage

Every port uses a different amount of memory, depending on its configu-
ration (size (N), type, timestamps (TS) and queue length (QL)). Table 4.2
summarizes the calculation of port memory usage.

47

4.2 Interfaces 4 LLC and CNI Layer

Output

Streaming 3
State 2 ∗ (N + 1) + 1
Event (N + 1) ∗ (QL + 1) + 1

Input (without TS) Input (with TS)

Streaming 2 2
State N + 2 N + 2
Event (N + 1) ∗ (QL + 1) + 1 (N + 1) ∗ (QL + 1) + dQL/2e+ 1

Table 4.2: Port Memory Usage (128 Bit Fragments)

4.2.2.2.3 Register File

The register file provides status information about the NoC and is used to
configure some additional services. To access the register file, the three most
significant bits of the word address are set to a value of “000”. Bits 4 to 7
indicate the Plug-In address, so every Plug-In can implement its own register
file (the LLC Layer and CNI Layer register file is accessed by Plug-In address 0
(“0000”)). The lowest four bits address a specific register in the LLC and CNI
Layers or a Plug-In register file. Register addressing is shown in figure 4.12.

Figure 4.12: Register Addressing

LLC Layer and CNI Layer Registers

The LLC Layer and CNI Layer register file is depicted in figure 4.13. All reg-
isters are 32 bit wide and considered as read/write accessible unless mentioned
otherwise. The following paragraphs describe them in detail.

Global Real-Time The first two (read only) registers store the 64 bit wide
global real-time. Whenever the lower 32 bits of the time are read by the
host (register address “0000”), the upper 32 bits of the time (register address
“0001”) are stored and frozen to ensure consistency.

48

4 LLC and CNI Layer 4.2 Interfaces

Figure 4.13: LLC Layer and CNI Layer Register File

Error Status, Host Mode, Communication Status & Watchdog Period
The (read only) register at address 2 (“0010”) stores the watchdog period (a
value of “11111” indicates a disabled watchdog), the Host Mode set by the
TNA and the current communication status (1 . . . communication enabled),
as well as the LLC Layer and CNI Layer error status (as described in section
4.3.1.4).

Watchdog Lifesign This write only register (register address 3 (“0011”)) has
to be updated regularly by the host with a value of 0x55555555 according to
the watchdog period. Failure to do so results in a reset of the host and the LLC
and CNI Layers (except the Error Status Register and the Watchdog Service).

Interrupt Status All interrupts triggered by the TISS and the CNI Layer are
recorded and stored in this register (register address 4 (“0100”)). The interrupt
status register is shown in detail in figure 4.14. Every interrupt is represented
by its own bit in the register, a value of 1 indicates a pending interrupt. Writing

49

4.2 Interfaces 4 LLC and CNI Layer

1 to a specific position immediately clears the according interrupt (no matter
if it was set or not).

Figure 4.14: Interrupt Status Register

The port interrupt status address bits are set together with the port inter-
rupt bit. They indicate the appropriate port interrupt status register for the
activated port interrupt (i. e., PT0 . . . port interrupt status register 0, etc.) and
have to be cleared explicitely (by writing 1), but do not trigger any interrupt
requests.

Port Interrupt Status (0-3) Every port can generate a new message (input
ports) or a ready (output ports) interrupt (see section 4.3.1.1 for details). In
addition to activating a general port interrupt, any occurrence of these inter-
rupts is stored on a one-bit-per-port basis (i. e., bit 1 of word 0: port 1, bit 2
of word 0: port 2, . . . bit 31 of word 3: port 127). The port interrupt status
address bits indicate the matching word for the activated port interrupt. The
port interrupt status bits are cleared by writing 1 to them after clearing the
port interrupt bit in the interrupt status register.

Interrupt Mask This register is used to mask out specific interrupts not
needed by the host. The layout matches the interrupt status register shown in
figure 4.14. A set bit allows the according interrupt request, a cleared one masks
it out. This only affects the IRQs sent to the host, the triggered interrupts are
recorded in the interrupt status register in any case.

Timer Interrupt Time & Timer Interrupt Mask The timer interrupt service
of the CNI Layer (described in section 4.3.2.3) is configured through these four
registers.

To avoid wrong interrupts while configuring the timer interrupt service, the
timer interrupt is disabled when the mask register (lower & higher word) or the

50

4 LLC and CNI Layer 4.2 Interfaces

lower word of the time register is written and (re-)enabled after the complete
higher word2 of the time register is written.

Plug-In Registers The various Plug-In register files are accessed by setting
the address bits 4 to 7 to the corresponding Plug-In address. The specific
Plug-In register files are described in detail in chapter 5.

4.2.2.2.4 Port Configuration

A port is locally identified by its seven bit wide PortID. The TNA defines
the size and the send/receive parameters for every port, while the following
parameters have to be defined by the host:

Direction: Defines the direction of a port (1 bit) (0 . . . input port;
1 . . . output port)

Size: Port size in fragments (8 bit)

Type: Port type (2 bit) (“00” . . . not configured; “01” . . . Streaming Port; “10”
. . . State Port; “11” . . . Event Port)

Timestamp Enable: Enables timestamps for an input port (1 bit)
(1 . . . timestamps enabled)

Interrupt Enable: Enables the port interrupt (new message/ready interrupt)
(1 bit) (1 . . . interrupt enabled)

Queue Length: Defines the queue length of an event port (4 bit)

Base Address: Specifies the base address of a port (9 bit). Since the CNI
memory is organized in 128 bit words, this address is two bits shorter
than the address used by the host to read port data (using 32 bit words).
To avoid overlapping of ports, port base addresses have to be calculated
carefully, taking the memory usage of all preceding ports (in CNI memory,
not in the configuration) into account (see section 4.2.2.2.2).

The LLC Layer implements two configuration memories, an “active” and
a “shadow” configuration memory. The “active” configuration is used by
the LLC Layer to maintain operation while the “shadow” memory can be
written arbitrarily by the host. A specific bit (the Configuration Complete
Flag (CCF)) in the configuration data triggers the switching of the two

2The timer interrupt is enabled after writing byte 0 of this 32 bit word, therefore the byte
write enable lines have to be set accordingly.

51

4.2 Interfaces 4 LLC and CNI Layer

configurations, immediately canceling any send/receive operation in progress.3

When switching to a new configuration, the host is responsible to clear the
port flags of all ports in the new configuration to prevent the LLC Layer from
sending or receiving invalid data over the NoC.

Two additional flags allow the host to suppress communication as long as
the clearing operation is in progress: a Communication Disable Flag (CDF)
and a Communication Enable Flag (CEF). Whenever the CDF is set to 1, no
sending or receiving of fragments takes place until communication is enabled
again by setting the CEF to 1. The current communication status is stored in
a register and can be examined by the host at any time.

The layout of the configuration data for a single port as described above is
depicted in figure 4.15.

Figure 4.15: Port Configuration Data

Port Configuration Addressing A port configuration write access is charac-
terized by the three most significant bits of the address set to a value of “001”
and the PortID of the port to be configured in the least significant seven bits,
as shown in figure 4.16. Read accesses to the configuration address space are
ignored.

An exception is port number 0, which is reserved for diagnostic purposes.
All configuration data written to this PortID is ignored, only the flags (CCF,
CDF, and CEF) are recognized.

3It is recommended to set the CCF by writing to PortID 0 after the complete configuration
is written, to prevent configuration data loss caused by setting the byte enable lines in the
wrong order, which may lead to a configuration switch before the last port configuration
data is written completely.

52

4 LLC and CNI Layer 4.3 Implementation

Figure 4.16: Port Configuration Addressing

4.2.2.2.5 MAC Layer Configuration

The host has to be able to read the MAC Layer Configuration data stored
in the MAC Layer of the TISS. Therefore, a special address space is reserved
for MAC Layer Configuration access, depicted in figure 4.17.

Figure 4.17: MAC Layer Configuration Address Space

The three most significant bits must have a value of “010” to identify a MAC
Layer Configuration access. The MAC Layer Configuration address itself is 9
bit wide, the result of a read access is a 32 bit data word. Write attempts to
the MAC Layer Configuration address space are ignored.

See [Eng07] for a detailed description of the MAC Layer.

4.3 Implementation

The LLC and CNI Layers consist of several components, each of which has to
fulfill specific tasks to provide the whole variety of services of the Network-on-
a-Chip (NoC) to the host. These components and their tasks are explained in
detail in the following sections.

4.3.1 LLC Layer

The LLC Layer is considered to be static, in contrast to the CNI Layer,
which may be changed to support a different host, or house different Plug-Ins.
Some of the most elementary functions of the NoC are located in the LLC
Layer, e. g., providing port synchronization mechanics, or the possibility to
configure the way incoming pulsed data streams are interpreted. In addition,
some functions to ensure the correct operation of the whole Time-Triggered

53

4.3 Implementation 4 LLC and CNI Layer

System-on-a-Chip are part of the LLC Layer. For instance, the watchdog
service, the host mode register, and an error status register are used to record,
report, and react to faulty behavior of the host attached to the CNI Layer.

Figure 4.18 shows control and data flow between the components of the LLC
Layer.

Figure 4.18: Control and Data Flow inside of the LLC Layer

Besides connecting these components, the LLC Layer stores the Host Mode
set by the TNA and is responsible to route “Write” and “Read” commands
issued via the local Configuration Interface to the addressed component.

4.3.1.1 Address Logic

The main purpose of the Address Logic is to store incomming fragments at
their designated memory address as well as loading fragments requested for
transmission from memory. In addition, the Address Logic maintains the
necessary synchronization information for every single port, which is stored
together with the port data in the CNI memory. Section 4.2.2.2.1 explains the
operation of the synchronization mechanisms in detail.

54

4 LLC and CNI Layer 4.3 Implementation

The Address Logic is implemented as a Finite State Machine (FSM), depicted
in figure 4.19. Every received or requested fragment is processed by cycling
through the states as indicated by the arrows in the diagram. Depending on
the type of the port the fragment belongs to, different actions are taken in each
state until the store or load operation is completed and the port synchronization
information is updated accordingly.

Figure 4.19: Address Logic Finite State Machine

This cycle is interrupted only if an error is detected (queue overflow, CNI
memory error, or port configuration error), the host validates a new port con-
figuration, or the chip-wide reset signal is asserted. In any of these cases, the
current transfer operation is aborted immediately and the Address Logic enters
the ready state.

Some remarks concerning the operation of the Address Logic have to be
mentioned:

• Any send or receive request, with the exception of a send request to the
diagnostic port, is ignored by the Address Logic while the communication
is disabled by the host (communication status . . . 0, see section 4.2.2.2.4).
As a reaction, a communication error is triggered to indicate the failed
communication attempt by the MAC Layer.

• A send request to port 0, the designated diagnostic port (see section
4.3.1.4 for details), is answered by providing the contents of the error
status register in the least significant bits of the send data and clearing

55

4.3 Implementation 4 LLC and CNI Layer

the error status register immediately afterwards, regardless of the current
communication status.

• The Address Logic expects the CNI to confirm a “Write” command imme-
diately (in the same clock cycle) by setting SCmdAccept and to respond
to a “Read” command with a latency of one clock cycle by driving the
“Data Valid” signal on the SResp lines. A “Write” command not ac-
cepted immediately leads to an abortion of the currently active fragment
transfer, as well as a “Response Error” signal on the SResp lines in case
of a “Read” transfer does, both indicated by triggering a memory error.
Since the “Read” command response time is not measured by the Ad-
dress Logic, the CNI is responsible to react within the given latency to
prevent a disturbance of the Medium Access Control Interface timing.

• The correct fragment addresses in the CNI memory are calculated after
reading the port flags using the formulas listed in table 4.3.

The following paragraphs describe the states of the Address Logic FSM and
the different actions taken according to the port type of the currently transfered
fragment. In any case, the transfer is completed after seven clock cylces to meet
the Medium Access Control Interface timing requirements.

Ready State The Address Logic waits for a Receive or a Send Slot signal
from the MAC Layer to start a new fragment transfer. On reception of one of
these signals, the PortID and Fragment Position signals, as well as the Frag-
ment Time and the Receive Data signals in case of a fragment reception, are
stored and a transition to the Read Configuration State is initiated. If the com-
munication was disabled by the host, a receive transfer is aborted immediately,
resulting in a communication error.

Read Configuration State If the communication was disabled by the host,
the active transfer is aborted, a communication error is triggered, and the
Ready State is entered again. Otherwise, before advancing to the Read Port
Status State, the configuration data of the port indicated by the PortID is read
and stored.

A send request to the diagnostic port is answered in any case while the
Address Logic is in this state, followed by an error-free transition to the Ready
State.

Read Port Status State The port flags, located at the port base address,
are read from the CNI memory in this state. Afterwards, either Read State 1

56

4 LLC and CNI Layer 4.3 Implementation

Output Port

Streaming BASE ADDR + UF + 1
State BASE ADDR + (PS + 1) ∗ UF + FP + 1
Event BASE ADDR + (PS + 1) ∗RP + FP + 1

Input Port (without Timestamps)

Streaming BASE ADDR + 1
State BASE ADDR + FP + 1
Event BASE ADDR + (PS + 1) ∗WP + FP + 1

Input Port (with Timestamps)

Streaming BASE ADDR + 1
State BASE ADDR + FP + 1
Event BASE ADDR + (PS + 1) ∗WP + TSO + FP + 1

Abbreviations

BASE ADDR port base address 0 - 512
UF “using” flag 0/1
PS port size (fragments) 0 - 255
FP fragment position 0 - 255
RP read position 0 - 15
WP write position 0 - 15
TSO time stamp offset b(QL + 1)/2c
QL queue length 0 - 15

Table 4.3: Fragment Address Calculation

(output port, send transfer) or Write State 1 (input port, receive transfer) is
entered.

The following states perform different actions according to the port type
addressed by the transfer.

Read State 1

Streaming Port: The “using” flag, set to the value of the “valid” flag, and
the fragment position are written to the CNI memory. In addition, if
enabled, a ready interrupt is triggered.

State Port: When processing the first fragment of a pulsed data stream, the
“using” flag is set to the value of the “valid” flag and written to the CNI

57

4.3 Implementation 4 LLC and CNI Layer

memory and a ready interrupt is triggered if enabled. No action is taken
on other fragments.

Event Port: Six possible port states, indicated by the port flags, have to be
considered at this point. Table 4.4 summarizes these states and the ac-
tions taken as a consequence.

Queue Status IF First Frag. Last Frag. Action

not empty 0 X no continue
not empty 0 X yes write read position &

PCF, continue
empty X yes no set IF, abort
empty X yes yes abort4

X 1 no no abort
X 1 no yes clear IF, abort

Table 4.4: Output Event Port Behavior (X . . . don’t care)

The Queue Status is determined by comparing the read and write po-
sitions. If both positions are equal, signaling a full or an empty queue,
the PCF is checked. A PCF value of 0 indicates that the last operation
performed on the queue was a read operation by the Address Logic, so
the queue is empty.

Since the Queue Status is calculated on every fragment request, a
change of the queue contents (e. g., the host writing a new message
and adjusting the write position) could lead to a change of the Queue
Status before a whole pulsed data stream is processed completely.
To prevent the Address Logic from sending corrupted data in such a
case, an Internal Flag (IF), stored with the port flags, preserves the
Queue Status calculated on the first fragment of a pulsed data stream
until it is completed. No port data is transmitted while this flag is active.

When processing the last fragment of a pulsed data stream, the new read
position is actually written before the fragment is read to gain an extra
clock cycle for address calculation. The last fragment is still valid at the
next clock cycle, since the host has to read the updated port flags before
overwriting the port data, which takes at least one clock cycle.

The aborted Event Port transfers due to an empty queue, as shown in table
4.4, force the FSM into the Ready State, while the regular next state is Read
State 2, regardless of the processed port type.

4Port Size is 0 (one fragment), so no Internal Flag is needed.

58

4 LLC and CNI Layer 4.3 Implementation

Read State 2 The requested fragment is read from the CNI memory, which
takes two clock cycles, and transferred to the MAC Layer. An Event Port can
trigger a ready interrupt in this state, depending on the port configuration.

Since a sending operation is completed after performing these actions, the
Address Logic FSM enters the Ready State again, awaiting the next send or
receive request.

Write State 1

Streaming Port: The sequencer is incremented by 1 (to an odd value) and
stored in the CNI memory together with the requested fragment position.

State Port: On the first fragment of a pulsed data stream, the sequencer is
incremented by 1 (to an odd value) and stored in the CNI memory. Since
the sequencer still contains an odd value, no action is taken when pro-
cessing other fragments.

Event Port: As in Read State 1, six possible port states can be distinguished
in this state, listed in table 4.5.

Queue Status IF First Frag. Last Frag. Action

not full 0 X no continue
not full 0 X yes write timestamp (if

enabled), continue
full X yes no set IF, signal over-

flow error & interrupt,
abort

full X yes yes signal overflow error &
interrupt, abort5

X 1 no no abort
X 1 no yes clear IF, abort

Table 4.5: Input Event Port Behavior (X . . . don’t care)

The Queue Status is determined by comparing the read and write po-
sition of the queue and examining the Position Changed Flag (PCF).
Equal read and write positions and a PCF of value 1 (last operation was
a write operation performed by the Address Logic) indicate a full queue.

To prevent port data corruption, an Internal Flag (IF) is set if the
target queue is full when processing the first fragment of a pulsed data
stream, similar to Read State 1. No fragment data is stored if this flag is

5Port Size is 0 (one fragment), so no Internal Flag is needed

59

4.3 Implementation 4 LLC and CNI Layer

set. In addition, an overflow error and an overflow interrupt are triggered
to inform the host and an optional external diagnostic entity about the
data loss. The Internal Flag is cleared upon completion of processing the
last fragment of the pulsed data stream.

Since the timestamp represents the event of receiving the fragment by
the MAC Layer, it can be written before the fragment data is stored in
the CNI memory.

The next state in the Address Logic FSM is Write State 2, unless the oper-
ation is aborted due to a full Event Port queue.

Write State 2 After the fragment data is written to the appropriate address,
Write State 3 is entered.

Write State 3

Streaming Port: The sequencer is incremented again (to an even value) and
stored in the CNI memory together with the fragment position and the
fragment timestamp. If enabled, a new message interrupt is generated.

State Port: If processing the last fragment of the pulsed data stream, the
same procedures as if processing a Streaming Port are performed, except
writing the fragment position. Otherwise, no action is taken.

Event Port: The updated write position and the PCF is written to the CNI
memory if processing the last fragment of the pulsed data stream. In
addition, a new message interrupt is triggered if enabled. No action is
taken if processing any other fragment.

Write State 3 is completed by a transition to Ready State.

4.3.1.2 Configuration Memory

Configuration of the TISS is a two-stage process. The message schedule is
configured by the TNA and stored in the MAC Layer. Furthermore, the TNA
configures the host mode, stored in the LLC Layer, and the watchdog period
used by the Watchdog Service (4.3.1.3). All other configuration data is set by
the host.

The Port Configuration Memory is written by the host and stores the port
configuration data (i. e., port base address, queue length (event ports only),
port interrupt enable, timestamp enable (input ports only), port type, port size
(in fragments), port direction (input/output)) and the current communication
status (communication enabled/disabled).

60

4 LLC and CNI Layer 4.3 Implementation

Since the Configuration Memory has to provide valid port configuration
data to the Address Logic at every fragment send or receive event, which
are not necessarily synchronized with the host operation, the Configuration
Memory uses two logical memories: An “active” memory, which keeps a
valid configuration and can be read by the Address Logic at any time, and
a “shadow” memory written by the host to build a new configuration. By
setting the Configuration Complete Flag (CCF), the host declares the new
configuration valid, and the two memories are swapped. Port configuration
details are explained in section 4.2.2.2.4.

To preserve on-chip resources (e. g., die area, power consumption), the two
logic memories are implemented by using a single Simple Dual-Port Memory
twice the size of one complete port configuration. This Simple Dual-Port Mem-
ory provides one read port (for the Address Logic) and one write port (for the
host), which can be accessed concurrently.

The distinction of the “active” and the “shadow” logical memory is managed
by the Most Significant Bit (MSB) of the memory address. The value of this
bit, pointing to the “active” half of the memory, is stored in a register and
toggled by the host by setting the Configuration Complete Flag.

The 26 bit configuration data of a single port is addressed by its seven bit
PortID, providing a maximum of 127 active ports and the diagnostic port
with PortID 0. As a consequence, the Configuration Memory uses a 256x26
bit memory with 8 bit addresses (1 bit “active”/“shadow”, 7 bit PortID) to
maintain all port configuration issues, depicted in figure 4.20.

The drawback of this solution is the inability of the host to read any config-
uration data, once stored. Therefore, the host has to keep a mirror image of
the port configuration data in its main memory if this information is needed
after completing the port configuration process.

Since most applications will not need this information anyway, this solution
was chosen in favour of a much more complex implementation consisting of
two Dual-Port Memories, a set of multiplexers, and a write protection logic to
prevent the host from accidentially overwriting an active configuration.

The communication status, stored in a register, is set to “enabled” after
startup and can be changed by the host by setting the Communication Disable
Flag (CDF) while writing port configuration data. When disabled, communi-
cation can be re-enabled by setting the Communication Enable Flag (CEF).
Clearing both flags simultaneously leaves the communication status unchanged,
while setting both flags simultaneously disables communication.

61

4.3 Implementation 4 LLC and CNI Layer

Figure 4.20: Operation of the Configuration Memory

4.3.1.3 Watchdog Service

The Watchdog Service is used to detect a crashed host processor. Since all
other services of the LLC and CNI Layers do not require the host to respond
(i. e., all LLC Layer operations continue despite of a failed host), the Watchdog
Service is the only possibility of the NoC to identify a crash or omission failure
[Lap92, p. 17] of the host.

The Watchdog Service requests the host to update a 32 bit register (the life-
sign register) with a value of 0x55555555 on a periodic basis. Failure to do
so will result in an immediate reset of the host and the LLC and CNI Lay-
ers (except the Error Status Register and the Watchdog Service), to overcome
transient faults. In addition, the Watchdog Miss error flag in the Error Status
Register is set in such a case.

The time period, in which the lifesign register has to be updated at least

62

4 LLC and CNI Layer 4.3 Implementation

once (called the Watchdog Period), is configured by the TNA. On every Re-
configuration Interrupt assigned by the MAC Layer, the new Watchdog Period
is stored in a register and validated at the next period start.

If not needed, the Watchdog Service can be disabled entirely by the TNA by
setting the Watchdog Period to 31 (“11111”).

4.3.1.4 Error Status Register

Every error detected by the LLC and CNI Layers is stored in the Error Status
Register to inform the host and an optional diagnostic entity about it, so that
corrective actions can be taken. All error flags are set on occurrence of the
error and cleared by the Address Logic every time they are read through the
diagnostic port (PortID 0) and a diagnostic message is sent. The host can read
the error flags at any time, but it has no possibility to clear the Error Status
Register.

The following error status flags are implemented (as shown in figure 4.21):

Figure 4.21: Error Status Flags

Repeated Error (Rep): an error occurred more than once.

Overflow Error (Ovf): an event port overflow occurred.

Memory Error (ME): the CNI memory did not react according to specifica-
tion.

Configuration Error (Cfg): a port addressed by the MAC Layer was not con-
figured correctly.

Communication Error (CE): the MAC Layer initiated a communication at-
tempt while communication was disabled.

Watchdog Miss (WD): the host failed to update the watchdog lifesign ac-
cording to specification.

Plug-In Error (PI): a Plug-In error occurred (see chapter 5 for details).

63

4.3 Implementation 4 LLC and CNI Layer

4.3.2 CNI Layer

The CNI Layer consists of the Communication Network Interface (CNI), re-
sponsible for storing all port data, and the Host Address Decoder, which pro-
vides an interface to the host processor and houses an Interrupt Service. The
CNI Layer may be adapted to the requirements of different applications by
exchanging the standard CNI (4.3.2.1) with an extended CNI fitted with one
or more Plug-Ins, as described in chapter 5.

The control and data flow between the components of the CNI Layer is
depicted in figure 4.22.

Figure 4.22: Control and Data Flow inside the CNI Layer

64

4 LLC and CNI Layer 4.3 Implementation

4.3.2.1 Communication Network Interface

The Communication Network Interface (CNI) stores all incoming port data
written by the Address Logic, all outgoing port data written by the host, and
the respective port flags in the CNI memory. By supporting the informa-
tion pull paradigm for input data on the host side and the information push
paradigm for output data on the Address Logic side [DeL99], it acts as a tem-
poral firewall [KO02] for the Network-on-a-Chip.

Furthermore, the CNI has to interface the different port data widths used by
the Address Logic (fragment width, 128 bit) and the host interface (32 bit).

The following paragraphs describe the implementation of the standard CNI,
other CNI implementations may differ due to additional Plug-Ins and/or
optimized hardware resource usage (data word width, memory size, etc.).

To match the Address Logic timing requirements, the CNI memory features a
128 bit data word width, so write or read accesses by the Address Logic can be
serviced in one or two clock cycles, respectively. As a consequence, host write
accesses are handled by duplicating the write data three times and assigning the
appropriate byte write enable lines. In case of a host read access, a multiplexer
is used to select the requested 32 bit word from the 128 bit memory output,
determined by the two lowest bits of the host address. Figure 4.23 provides a
schematic overview of these operations.

Figure 4.23: Data Word Width Reduction in the CNI

The CNI memory itself is implemeted by means of a 512x128 bit Dual-Port
Memory to eliminate all concurrency problems arising from possible simulta-
neous host and Address Logic accesses.

The size of this memory was determined with respect to two requirements:

65

4.3 Implementation 4 LLC and CNI Layer

1. A core of the NoC should be able to perform at least one incoming and
one outgoing Time-Triggered Ethernet [Ste06] state message.

Such a message is 1500 byte (= 12000 bit) long, that equals 93.75, or,
rounded up, 94 TTSoC fragments. Therefore, an appropriate input state
port uses 94 fragments for the port data and one extra fragment for the
port flags. An output state port needs twice the memory for the port
data (one “standard” and one “shadow” register) and one fragment for
the port flags too.

Hence, the total memory usage to receive and send a Real-Time Ethernet
state message is (94 + 1) + (2 ∗ 94 + 1) = 284 fragments, which is the
minimum memory size for this implementation.

2. The implementation of the TTSoC should be resource efficient, with re-
spect to the limited on-chip resources of the used Field-Programmable
Gate Array (FPGA), like logic elements (LEs) and memory.

The used FPGA, an Altera Cyclone II [Alt07b], combines standard M4K
memory blocks, which provide 4096 memory bits each and support a
data width of up to 32 bit,6 to provide any custom memory size and data
width.

As a consequence, when using this particular FPGA, memory resource
usage can be calculated in M4K blocks instead of used memory bits.

To build a 284x128 bit Dual-Port Memory, as requested by the first re-
quirement, 16 M4K blocks are needed. Since a 512x128 bit Dual-Port
Memory requires the same amount of M4K blocks while providing ap-
proximately 44% more storage capacity, a memory size of 512 fragments
was chosen for this implementation.

The implemented memory is equipped with byte write enable signals, which
are used by the CNI for data width reduction and to simplify the port flag
synchronization mechanisms.

The CNI Layer provides two sets of byte write enables to the host: The
standard byte write enable lines, which are driven by the host hardware to
perform a selective byte write, and three extra byte write enable bits in the port
address, set by the host software. Although the hardware byte write enable lines
would be sufficient for normal host access operations, it can be a fairly complex
task to write host software which is able to set them accordingly, i. e., machine
code instructions or special source code constructs may be necessary, depending
on the used host processor. Certain byte write enable settings are needed for
port synchronization operations (i. e., setting or clearing the “valid” flag of a

6Or 4608 memory bits each and up to 36 bit data width including parity bits.

66

4 LLC and CNI Layer 4.3 Implementation

State or Streaming Port without changing the “using” flag, writing the Position
Changed Flag (PCF) and the read or write position of an Event Port without
changing the other one), therefore the CNI Layer offers the possibility to control
byte write enables by means of three extra bits of the port address which
can be set by the host software with reasonable programming effort. Since
only the lower three bytes of a 32 bit host word can contain synchronization
information, only three byte write enable bits are needed, the highest byte
can only be masked out by means of the hardware byte write enable lines.
Different hardware and software byte write enable signals concerning the same
byte result in not writing this particular byte.

The Address Logic in the LLC Layer uses five byte write enable lines.
The lowest three of them correspond to the lowest three bytes of the written
fragment, similar to the software driven extra byte write enable bits provided
to the host. The fourth byte write enable line controls the writing of bytes
7 down to 3 (bits 63 down to 24), while the highest 8 bytes (64 bits) of the
fragment are affected by the fifth byte write enable line. These two byte write
enable lines are used when writing timestamps.

The Plug-In (PI) Configuration Interface is not used by the standard CNI,
hence it ignores any host read or write accesses concerning this interface.

4.3.2.2 Host Address Decoder

The Host Address Decoder is responsible for distribution of all host accesses to
the addressed component or internal interface of the CNI Layer, i. e., the Data
Interface, the Plug-In Configuration Interface, the Configuration Interface and
the Interrupt Service. Furthermore, it houses the global real-time register and
manages all OCP Host Interface functions, as mentioned in section 4.2.2.

Global Real-Time Register When the lower 32 bits of the global real-time
register, which are directly connected to the chip-wide global real-time are
read, the higher 32 bits are stored in a register to ensure consistent access of
the real-time for the host.

4.3.2.3 Interrupt Service

Besides providing an Interrupt Status and an Interrupt Mask Register, as
described in section 4.2.2.2.3, the Interrupt Service incorporates a timer in-
terrupt. A timer interrupt is triggered every time the following equation is true:

67

4.3 Implementation 4 LLC and CNI Layer

(Timer Interrupt Time) == (Timer Interrupt Mask) & (Global Real-Time)

This mechanism allows for periodic timer interrupts as well as interrupts at
a specific point in time.

All possible interrupt events may lead to an interrupt request (IRQ). Section
4.2.2.1 explains this mechanism in detail.

68

5 CNI Layer Extensions

The LLC Layer of the TISS and the CNI Layer provide the necessary basic
functions to allow a host to communicate over the NoC. When designing the
LLC and CNI Layers, we decided that only a minimum of additional features
should be integrated in the LLC and CNI Layers since the TTSoC architecture
should provide a generic architecture for a variety of different applications. In
addition to simplifying a possible certification process, this approach benefits
smaller applications, which do not need any other functions than simple event
or state message communication and thus can take advantage of a compact
design, regarding die area and power consumption.

By reducing the LLC and CNI Layers to their essential role, more complex
applications are forced to implement supplementary functions by means of host
software, which consumes processing power.

To bridge this gap we made the decision that it should be possible to improve
the CNI Layer with custom hardware functions to support a wider range of
application requirements.

During the design process, two possibilities to extend the functional range of
the LLC and CNI Layers were identified:

- Hardware Middleware Bricks, located between the CNI Layer and
the host (section 5.1), and

- Middleware Plug-Ins, implemented directly in the CNI (section 5.2).

5.1 Hardware Middleware Bricks

The concept of Hardware Middleware Bricks was strongly motivated by the
possibility to easily compose different supplementary components, by physically
“stacking” them to gain the requested functions.

Middleware, in the original meaning of the word, is low-level software located
logically between an application program and the underlying hardware. Its pur-
pose is to extend the capabilities of the hardware and/or provide a standardized
application programming interface (API). Some examples of middleware are

69

5.1 Hardware Middleware Bricks 5 CNI Layer Extensions

communication protocol stacks, data security functions, or human interface
device (HID) APIs.

Since hardware modules can be more efficient than software modules con-
cerning processing time, chip area, and power consumption,1 realizing some
middleware functions as hardware modules can benefit an application signifi-
cantly.

The first approach was to simply replace the middleware software with hard-
ware modules located in the data path between the host processor and the CNI
Layer. These modules, called Hardware Middleware Bricks, are not part of the
CNI Layer, but connect to the Host Interface of the CNI Layer. On the host
side, they incorporate their own host interface, similar to the CNI Layer Host
Interface, but with an extended functional range. Figure 5.1 shows a schematic
overview of this layout.

The advantage of the Hardware Middleware Bricks approach is, that this
concept allows an arbitrary number of Hardware Middleware Bricks to be
stacked between the CNI Layer and the host. Furthermore, since the Hardware
Middleware Bricks can be designed independently from the LLC and CNI
Layers, an already compiled NoC can be easily equipped with additional
functions, without changing the original design. Even a physical separation
of the NoC, the individual Hardware Middleware Bricks, and the host can be
accomplished, by locating each part on its own microchip.

One of the disadvantages of this solution is the change of the temporal prop-
erties of the Host Interface imposed by every single Hardware Middleware Brick.
Three sources of latency and jitter can be identified in a Hardware Middleware
Brick:

Signal Delay is the time an electrical impulse needs to travel the distance
between a source, like a host output pin, and a sink, like the data memory
in the CNI. Since every wire and logic element adds to the signal delay, a
Hardware Middleware Brick inherently prolongs the time a signal between
the host and the CNI Layer needs to become valid. This may reduce the
maximum clock frequency of the whole TTSoC or raise the need for extra
clock cycles (waitstates) to wait for certain data to become valid.

Data Modifications are all actions a Hardware Middleware Brick performs on
data transferred from the host to the CNI Layer or vice versa, to fulfill its

1Chip area and power consumption of software modules can be calculated by taking the
extra processing power of a host processor needed by the additional software module
into account. Providing this extra processing power without deteriorating the other
host services can lead to an increase of the host processor’s chip area and/or power
consumption.

70

5 CNI Layer Extensions 5.1 Hardware Middleware Bricks

Figure 5.1: Stacking of Hardware Middleware Bricks

purpose. Examples of such operations would be port data encryption and
decryption, done by a security middleware. Every such action slows down

71

5.1 Hardware Middleware Bricks 5 CNI Layer Extensions

the data transfer, by introducing additional logic elements in the data
path, each of which adds to the accumulated signal delay. Furthermore,
sequential logic may be needed to perform certain actions, causing a
latency of some clock cycles, or, even worse, jitter may be introduced
by a data-dependent behavior2 of the operation to be performed.

Concurrency is introduced by Hardware Middleware Bricks which transfer
data over the CNI Layer Host Interface by themselves, independently
from any host access. An example would be a Hardware Voter, which
reads the data of three ports from the CNI memory to compare them.
Such a data transfer is initialized by the Hardware Voter itself as soon as
all three ports are received completely. The concurrency problem arises
if the host and the Hardware Middleware Brick try to access the CNI
Layer simultaneously. Since the CNI Layer Host Interface only supports
one read or write operation at a time, either the host or the Hardware
Middleware Brick has to be delayed until the first transaction is com-
pleted. This access arbitration, besides consuming on-chip resources,
leads to latency and/or jitter and has to be performed very carefully. Any
deadlock [Sta01, p. 204] (e. g., a misbehaving host program, constantly
reading from (i. e., blocking) the CNI memory while waiting for a Hard-
ware Middleware Brick to write the requested data) or livelock situations
[Sta01, p. 211] (e. g., a host and a Hardware Middleware Brick alter-
nately reading and overwriting the same CNI memory location, waiting
for a response) and deadline misses (e. g., watchdog lifesign, communica-
tion schedule) have to be avoided, which makes such an arbiter a fairly
complex component.

Although the latency imposed by the Hardware Middleware Bricks and, up
to a certain level, the jitter can be compensated by the host software, the
host software has to be aware of the Hardware Middleware Bricks attached
between the host and the CNI Layer, even if they are currently not in use. As
a consequence, it is not possible to migrate host software between different cores
of the TTSoC without changing it, or, at least, reevaluating its execution time
and timely behavior in general. Furthermore, replica determinism cannot be
guaranteed between cores equipped with different Hardware Middleware Bricks,
cores using the same Hardware Middleware Bricks with different startup states,
or cores fitted with Hardware Middleware Bricks using any indeterministic
access arbitration.

To make matters worse, every additional Hardware Middleware Brick added
to a specific core increases the problems mentioned above. In a core equipped

2Some operations may consume a varying amount of time, depending on the data they are
performed on.

72

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

with n Hardware Middleware Bricks, n+1 instances (host, n Hardware Middle-
ware Bricks) may try to access the CNI Layer concurrently. In addition, signal
delay is significantly increased by multiple succeeding Hardware Middleware
Bricks, while the latency and/or jitter caused by data modifications can be
held nearly constant, as long as different Hardware Middleware Bricks modify
different data words.

Considering these drawbacks of Hardware Middleware Bricks and the effort
needed to overcome them, an implementation in the scope of this thesis was not
eligible. Further development was suspended in favour for Middleware Plug-Ins
(section 5.2).

Still, a future implementation of Hardware Middleware Bricks is possible.
Some examples for functions which may be implemented as Hardware Middle-
ware Bricks are listed below.

Encryption/Decryption A security middleware can encrypt port data writ-
ten to a specific port and decrypt port data read from a specific port,
respectively.

Independent Functions Functions providing a service not directly related to
the operation of the Network-on-a-Chip can also be designed as Hardware
Middleware Bricks. In this way, these functions could take advantage of
the services provided by the NoC and the LLC and CNI Layers, e. g.,
the global real-time register, without disturbing normal host operation.
An example of such a function would be a Hardware Middleware Brick
providing additional timer interrupts.

Adapter In general, any kind of adapter between the OCP Host Interface of
the CNI Layer and a host using another peripheral interface than the
Open Core Protocol could be seen as some sort of Hardware Middleware
Brick.

5.2 Middleware Plug-Ins

Middleware Plug-Ins are hardware modules extending the functional range of
the LLC and CNI Layers. In contrast to Hardware Middleware Bricks, Plug-Ins
are an integral part of the CNI Layer.

To add additional functions to a core of the Network-on-a-Chip, the standard
CNI can be replaced by a CNI fitted with a Plug-In. These Plug-In-equipped
CNIs can be customized completely to fulfill the intended purpose, even a CNI
memory is not necessarily required. The only requirement for any CNI is to
correspond to all logical and temporal constraints introduced by the three in-
ternal CNI interfaces, the 32 bit Host Data Interface, the Plug-In Configuration

73

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

Interface, and the 128 bit interface to the LLC Layer, as documented in section
4.3.2.1.

Although completely customized CNIs without a CNI memory can be de-
signed, it is recommended to preserve a minimum of the standard functionality
(i. e., at least a small CNI memory, capable of storing standard Streaming,
State, or Event ports without interacting with the fitted Plug-In) since not all
host software can interact with such specialized CNI Layers, making any future
upgrades or host software changes difficult or even impossible. Therefore, only
CNIs equipped with a CNI memory and an additional Plug-In, as seen in figure
5.2, are discussed in this document.

Figure 5.2: CNI fitted with a Plug-In

As part of a custom CNI, a Plug-In can be implemented between the host

74

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

and the CNI memory, between the LLC Layer and the CNI memory, or
wrapped around the CNI memory. Even a Plug-In mounted parallel to the
CNI memory, or multiple Plug-Ins in a single CNI (parallel to or succeeding
one another) are possible.

By interfacing directly with the Address Logic in the LLC Layer, a Plug-
In is constantly aware of incoming messages, since any received fragments are
directly written to the Plug-In. On the other hand, fragments requested for
transmission by the Address Logic are provided by the Plug-In instantly. There-
fore, any data a Plug-In processes is as current as possible, as well as the data
sent to other cores.

This implementation allows for a timely and predictable Plug-In behavior
without interfering the operation of other components of the LLC and CNI
Layers, in contrast to Hardware Middleware Bricks, which need an external
source of information about received or sent messages (e. g., interrupts, timers),
and have to read (or write) the port data over the CNI Layer Host Interface
before (or after) performing any operations.

Another advantage of this solution is that Plug-Ins do not consume any re-
sources concurrently with the host processor. When designed properly, a Plug-
In does not affect the normal LLC Layer or CNI Layer operation at all. Most
important, aside from minor changes in signal delay caused by the necessary
routing functions of a custom CNI, no additional latency or jitter is introduced
to the LLC and CNI Layers by a Plug-In.

Since the routing functions in a custom CNI, needed to distribute port
data between the CNI memory and an attached Plug-In, can be designed
to operate within the same latency boundaries as the memory access func-
tions of a standard CNI, replica determinism between a core fitted with
a Plug-In and a core using an unmodified CNI Layer can be maintained.
In addition, by designing a Plug-In in a way that allows it to be disabled
completely, a CNI Layer equipped with a Plug-In can be used by all kinds
of host software originally intended to run on a core without a Plug-In,
without any change. It is not necessary for the software to be aware of any
installed Plug-Ins, as long as the standard CNI memory range is still accessible.

Custom CNIs equipped with one or multiple Plug-Ins can be designed a
priori, with known temporal properties and resource consumption (die area,
power, etc). As a consequence, a CNI Layer can be built by simply inserting
a pre-designed CNI module housing a Plug-In which provides the requested
functions.

Although recompiling (parts of) the system in case of a Plug-In-change is

75

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

inevitable, it is possible to fit a system with additional Plug-Ins not necessarily
requested at compile time, by using Plug-Ins which can be disabled completely
by the host software. Despite of requiring additional on-chip resources, this
approach is promising, since no hardware upgrade becomes necessary in case of
a change in host software. Using this technique, performant systems requiring
limited maintenance effort can be provided with reasonable expenses.

The following sections describe some Plug-In examples. A Voter Plug-In
(section 5.2.2) and a Direct Memory Access (DMA) Plug-In (5.2.1) were im-
plemented in the scope of this thesis to demonstrate the concept of extending
the LLC and CNI Layers with Middleware Plug-Ins.

5.2.1 Direct Memory Access Plug-In

The purpose of the Direct Memory Access (DMA) Plug-In is to transfer data
fragments directly to or from the host main memory (or another appropriate
host peripheral device) to a Streaming Port when received or requested for
sending, respectively. These operations are performed without interrupting
the normal host operation.

When set to input mode, the DMA Plug-In, once initialized, stores data
received on the selected port directly to an a priori configured address in the
host memory space. On output mode, after reading the first data fragment
from the configured address in the host main memory, the DMA Plug-In reads
the next data fragment as soon as the previous data fragment has been sent
over the NoC, until the whole port is transmitted.

To gain access to the host main memory (or any other appropriate peripheral
device), the DMA Plug-In implements a second OCP Host Interface, designed
as an OCP master (see appendix A). The DMA Plug-In issues “Write” com-
mands over this interface to store received port data, as well as “Read” com-
mands to load requested data for transmission. No memory access arbitration
or address checking operations are performed with respect to the variety of
different host processors that can be used for the Time-Triggered System-on-
a-Chip. In fact, not all host processors may be able to take advantage of the
DMA Plug-In since not all host processors allow a peripheral communication
device like the NoC to directly access their main memory.

5.2.1.1 Implementation

This implementation of a DMA Plug-In was tested using the Altera NIOS
II [Alt07c] as host processor and the Avalon Master Adapter (appendix B.3)

76

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

to translate the DMA “Read” and “Write” commands to regular Avalon
Memory-Mapped interface accesses.

Figure 5.3: CNI fitted with a Direct Memory Access (DMA) Plug-In

The DMA Plug-In is integrated into a custom CNI, fitted with the required
extra DMA OCP master interface, parallel to a standard size 512x128 bit CNI
memory (figure 5.3). This implementation allows the host software to use the
full range of port data memory, like on a CNI Layer with a standard CNI, if the
DMA Plug-In is disabled. If enabled, the DMA Plug-In occupies the highest
four fragments of the port data memory (fragment addresses 508 to 511) for
its operation. The host is still able to read data from these addresses, but this
data has to be considered invalid while the DMA Plug-In is enabled.

The Streaming Port to be used for DMA transfers has to be configured to
use PORT BASE ADDRESS 508. Table 5.1 summarizes the memory usage
of the DMA Plug-In CNI.

By configuring a Streaming Port to use PORT BASE ADDRESS 508,
the host software allows the DMA Plug-In to read from or write to this
particular Streaming Port. A different configuration of the port used by the

77

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

Memory Address Usage

DMA Plug-In disabled
0-511 normal port data

DMA Plug-In enabled
0-507 normal port data
508 DMA port port flags
509 fragment data register
510 input: reserved

output: fragment data shadow register
511 reserved

Table 5.1: DMA Plug-In Memory Usage (Fragment Addresses)

DMA Plug-In (e. g., wrong PORT BASE ADDRESS, wrong port type,
etc.) will most likely lead to an access violation (e. g., writing to a reserved
address) by the Address Logic, resulting in a Configuration Error indicated
by the appropriate flag in the DMA Plug-In register file and a Plug-In Error
recorded by the Error Status Register of the LLC Layer.

The DMA OCP master interface is implemented as a 32 bit data width inter-
face using 32 bit wide byte addresses and no sideband signals, like interrupts.

The DMA Plug-In awaits the OCP slave on the host side to accept a “Write”
command by setting the SCmdAccept signal. If a write operation is delayed too
long by the host (e. g., due to memory access arbitration), the DMA Plug-In
may not be able to store a whole fragment (128 bit, so four 32 bit write accesses
are needed) before the next fragment is received by the Address Logic. This
situation forces the DMA Plug-In to disable itself and to signal a DMA Busy
Error. The received data is lost in that case.

When issueing a “Read” command, the OCP slave has to provide the
requested data on the SData lines along with an OCP SResp signal set to
“Data Valid” similar to a “Write” command. Again, failure to do so, or a
“Response Error” or “Request Failed” signal on the SResp lines leads to a
shutdown of the DMA Plug-In and a Host Memory Error or DMA Busy Error
signal, respectively. Unless this problem is taken care of by the host before
the next send slot for a fragment of the DMA port is due, the Address Logic
reads the next fragment of the DMA port from the CNI memory instead of
the DMA Plug-In, rendering the sent data invalid.

A Finite State Machine (FSM) with 12 states is used to perform all data
transfer functions of the DMA Plug-In. The states of this FSM, shown in

78

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

figure 5.4, are explained in detail in the paragraphs below.

Figure 5.4: DMA Plug-In Finite State Machine

Disabled State The DMA Plug-In performs no action while in this state.
Once enabled by the host, it stores the start address configured by the host in
a current address register and transitions to either Input or Output Idle State,
depending on the configured port direction.

Input Idle State The DMA Plug-In waits for the next fragment of the Stream-
ing Port to be received. When the DMA Plug-In was just enabled or the last
fragment stored was the last fragment of the port, the DMA Plug-In waits for
the first fragment of the Streaming Port, determined by the Fragment Position
written to the port flags by the Address Logic. This is done to prevent port
data corruption in the host main memory caused by enabling the DMA Plug-In
before the pulsed data stream belonging to the DMA port is completed, or by
losing a fragment due to errors of the sending core or the NoC. Not synchro-
nizing to the first fragment of a pulsed data stream in such situations could
result in disarranged fragments. It would not be possible to determine the start

79

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

and the end of a pulsed data stream later, rendering any received port data,
present and future, useless.

After receiving and storing the next fragment to a register, Input Word State
0 is enterend.

Input Word State 0-3 The four Input Word States are entered one after the
other. In every Input Word State, the next 4 bytes (32 bit) of the received
fragment are stored to the current main memory address, which is incremented
by 4 afterwards.

In Input Word State 3, after writing the last word of the current fragment,
the size of the port is checked to determine if the fragment just written was
the last fragment of the pulsed data stream. If the pulsed data stream is
completed, the DMA Plug-In can trigger an interrupt (if enabled) and enters
either the Disabled State or the Input Idle State, depending on the Repeat
Flag set by the host. The current address register is reset to the start address
and the Complete Flag in the first DMA Plug-In register is set to indicate the
successful completion of the DMA transfer.

If there is still port data to be received, the Input Idle State is entered and
the DMA Plug-In waits for the next fragment of the pulsed data stream.

Output Idle State The Output Idle State waits for the “using” and “valid”
flags of the Streaming Port port flags to be equal before starting a fragment
fetch process. This condition indicates that the Address Logic has commenced
sending of the current fragment stored in either the “standard” or in the
“shadow register”, so the other register is free to be filled with the next frag-
ment from memory. Output Word State 3 inverts the “valid” flag after fetching
the next complete fragment to force the FSM to wait for transmission again.
See section 4.2.2.2.1 for Streaming Port synchronization details.

Once enabled, the DMA Plug-In immediately starts to fetch the first frag-
ment at the start address in the host main memory, to be ready for the first
send request of the Address Logic. Still, the actual sending of the first fragment
is prolonged until the beginning of a pulsed data stream to prevent disarranged
port data on the NoC, similar to the mechanism used in the Input Idle State.

The next state of the DMA Plug-In FSM is Output Word State 0.

Output Word State 0-3 While in these states, the DMA Plug-In reads the
next fragment to transfer word by word from the host main memory. The
current address is increased by 4 after every word read.

80

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

In Output Word State 3, the “valid” flag of the Streaming Port port flags is
inverted to signal that a complete fragment is ready for transfer. If it is the last
fragment of the pulsed data stream, Output Finished State is entered, otherwise
the FSM transitions back to Output Idle State to wait for the Address Logic
to transfer the fragment and the opportunity to fetch the next fragment.

Output Finished State This state is needed to stall the DMA Plug-In until
the last fragment of a pulsed data stream is actually sent by the Address
Logic. Once done, the Complete Flag is set, an interrupt is triggered if
enabled, and the current address is reset to the start address. Depending on
the Repeat Flag, the DMA Plug-In is either disabled or the FSM enters Out-
put Idle State to wait for and perform the next round of the pulsed data stream.

All states mentioned above return to Disabled State immediately, aborting
any operation in progress, if the host disables the DMA Plug-In.

5.2.1.2 Direct Memory Access Plug-In Register File

The DMA Plug-In provides two 32 bit configuration and status registers (figure
5.5), located at register addresses 0 (“0000”) and 1 (“0001”) of Plug-In address
2 (“0010”).

Figure 5.5: DMA Plug-In Register File

The following configuration and status flags are implemented:

Direct Memory Access Register 0

Enable Flag This flag is used by the host to enable or disable the DMA Plug-
In. Once set, every change of the configuration registers by the host is
prohibited by the DMA Plug-In, with the exception of clearing the Error
Status Flags. Therefore, care has to be taken if the byte write enable
lines of the CNI Layer are used. The host has to ensure that all relevant
configuration data is already written before the Enable Flag is set.

81

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

The DMA Plug-In disables itself by clearing the Enable Flag if a DMA
transfer is completed and the Repeat Flag is not set, or if any error occurs.

Direction Flag The DMA Plug-In can be set to input mode (0) or output
mode (1) using this flag.

Interrupt Enable Flag After completing a DMA transfer by storing or sending
the last fragment of a pulsed data stream, an interrupt can be triggered if
enabled by this flag. The host can determine the current interrupt status
by examining the Plug-In Interrupt flag in the Interrupt Status Register
of the CNI Layer (section 4.2.2.2.3).

Repeat Flag The host can set this flag to force the DMA Plug-In to start a
new DMA transfer as soon as the previous transfer is completed, using
the same settings (start address, port size, etc.) as before.

Complete Flag The read-only Complete Flag is set after a whole pulsed data
stream has been transferred by the DMA Plug-In, and cleared at the
beginning of a DMA transfer, i. e., when the DMA Plug-In FSM is in
Input or Output Idle State.

Error Status Flags These flags are set on DMA Plug-In errors. They can be
cleared at any time, even if the DMA Plug-In is enabled, by writing 1

to them. Every time one of these flags is set due to an error, the Plug-
In Error Status Flag in the LLC Layer Error Status Register (section
4.3.1.4) is set too.

Host Memory Error Flag Set if the host main memory reacts to a
“Read” command of the DMA OCP master interface with a “Re-
sponse Error” or “Request Failed” signal on the SResp lines.

Busy Error Flag This flag is set if the Address Logic tries to write or
receive a fragment while storing or loading of the previous fragment
to or from host main memory is still in progress (i. e., the DMA
Plug-In is busy).

Configuration Error Flag If the Address Logic tries to access one of the
addresses occupied by the DMA Plug-In in a not intended way (e. g.,
writing to a reserved address) due to erroneous port configuration,
this flag is set.

Port Size The port size in fragments has to be configured by the host before en-
abling the DMA Plug-In. Since the DMA Plug-In counts the transferred
fragments and stops once the port size configured herein is reached, the
port size stored in this register has to match the port size set in the Port
Configuration Memory (section 4.2.2.2.4) to prevent data corruption.

82

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

Direct Memory Access Register 1 This register is used for the 32 bit start
address for every DMA transfer. This byte address is incremented by 4 after
every 32 bit word transfer by the DMA Plug-In, until the whole pulsed data
stream is completely transmitted or received.

The DMA Plug-In is restricted to operate on consecutive byte addresses
in the host main memory, an address wrap-around, static addresses, or non-
consecutive address regions are not supported. The host software is responsible
for providing the send data or the memory space for data to be received in an
appropriate form, to prevent the DMA Plug-In from sending invalid data or
overwriting restricted memory regions.

5.2.2 Voter Plug-In

To detect and tolerate single-core failures in a dependable system, Triple
Modular Redundancy (TMR) can be implemented. When using Triple
Modular Redundancy, a core is replicated and a voter is used to perform a
majority vote over the results of the replicated cores. Thus, the intended
service can be provided even in case of a failure of one of the replicated cores.
Such a voter was implemented in the scope of this thesis in the form of the
CNI Layer Voter Plug-In introduced in this section.

A voter round, seen at TMR system level, is performed in four stages (figure
5.6):

1. The three replicated cores receive their input data.

2. The cores perform the desired operation on the input data.

3. The operation results of all three cores are transmitted to the voter.

4. The voter compares the results and determines the correct result along
with the current status of the three replicated cores, to allow possible fault
correction operations (e. g., core reset, maintenance notification, etc.).

The Voter Plug-In takes advantage of the time-triggered nature of the TTSoC
architecture, which allows the voter to determine exact time instances at which
the input data from the three replicated cores should be valid and equal. There-
fore, Voter Plug-In operation is organized in time slices, starting with the first
state data sent by one of the replicated cores and lasting until the correct result
is provided by the voter. Such a time slice is called a voting round. Since
voting is performed only on state data, a Voter Plug-In voting round consists of
receiving three State Ports of equal length from the three replicated cores, de-
termining the correct voting result, and forwarding this result and the current
State Port status (valid data/corrupted data) to the attached host.

83

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

Figure 5.6: Triple Modular Redundancy (TMR) System with Voter

The following paragraphs are focused on the voter itself, replication of cores,
scheduling issues, or the constraints the host software in the replicated cores
has to fulfill are not discussed in this document.

Different possibilities to improve the NoC with a hardware voter were dis-
cussed during the design phase of the TTSoC project. A voter implemented as
a Hardware Middleware Brick, performing all voting operations outside of the
CNI Layer, introduces some serious drawbacks which have to be considered:

Resource Usage Since the voter has to wait for all three ports to be received
completely, some sort of signal is needed to inform the voter of this con-
dition. This signal can be an interrupt triggered upon completion of the
last of the three ports or the voter itself may implement a timer service
to wait for a calculated time instant after complete reception. In any
case, additional resources (e. g., timer service) are needed or existing re-
sources (e. g., port interrupts) are occupied by a Hardware Middleware
Brick voter.

Bandwidth Consumption A Hardware Middleware Brick voter has to load
the port data of all three ports, one data word after the other, from CNI
memory over the CNI Layer Host Interface once reception of all three
ports is complete, thus increasing the amount of data transported over
the CNI Layer Host Interface and reducing the bandwidth available for
other accesses.

Voting Delay Before the host processor can access the valid port data, the
actual voting has to be performed, introducing a significant delay. After

84

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

receiving and loading the port data of all three ports, the voter subse-
quently compares the data to verify equality of the ports. Finally, if at
least two ports were equal, the valid port data and the port status are
stored in internal memory (further increasing the delay) or the CNI mem-
ory (increasing the delay and the bandwidth consumption) to be read by
the host.

Scheduling A Hardware Middleware Brick voter seriously complicates message
scheduling by requesting the three ports to be transmitted in order (to
determine the complete reception of all three ports) and with a consid-
erable delay between the completion of the last port and the start of the
first port (to perform the actual voting and the storing operation).

Hardware Middleware Brick Voter operation is shown in figure 5.7 (left side).

Figure 5.7: Comparison: Hardware Middleware Brick Voter / Voter Plug-In

By taking advantage of the Middleware Plug-In concept, which allows a
Plug-In to immediately process received data without the need of any addi-
tional memory read operation, the Voter Plug-In introduced herein eliminates
any additional CNI Layer Host Interface bandwidth usage and reduces the
latency generated by the voting process to a minimum (right side of figure 5.7).

The Voter Plug-In replaces half of the CNI memory by its own, internal
memory of the same size. When the Voter Plug-In is disabled, this memory

85

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

can be accessed by the Address Logic and the host like normal CNI memory.
As a consequence, the custom CNI equipped with a Voter Plug-In behaves the
same way as a standard CNI whenever the Voter Plug-In is disabled. Hence,
the host software is not needed to be aware of the Voter Plug-In if not using it.

If enabled, the internal voter memory is reserved for the three ports to be
compared and the result port, which presents the valid data to the host. Each
of these ports is accessed through a pointer and occupies a quarter of the
available memory. The Voter Plug-In performs any comparing and storing
operations on every single fragment as soon as it is received. Voting operations
are not delayed until complete reception of the three ports.

Three counters, one for every port, are maintained by the Voter Plug-In.
Once a fragment is received by the Address Logic and stored to one of the
three port memory regions, the Voter Plug-In increases the counter belonging
to that port.

If the counter of the just received port is lower than the counter of one of
the other ports, the just received fragment is compared to the fragment at the
same fragment position of the other port, which already contains valid port
data, and a status register is set if the two compared fragments are not equal.

If the counter of the just received port is higher than the counter of one of
the other ports, the fragment of the other port at the fragment position in
question was not received by now. No comparison is performed with that port.

Figure 5.8 shows this mechanism.

Once all ports are completely received, i. e., after the last fragment of the
voting round has been received, indicated by all three counters equaling the
port size, all three ports have been compared fragment by fragment and the
status register can be used to identify a possible erroneous port. The host has
access to a copy of this status register, as well as to the valid port data, which
is located in the result port. To provide the data to the host, the Voter Plug-In
does not perform any copy operations, it just exchanges the result port pointer
with one of the pointers to a valid port.

Before a new voting round starts, the Voter Plug-In resets all three counters
to zero and clears the internal status register. If the port pointers were
changed during the previous round, the port data is stored in different physical
memorys in the next round, but still accessed through the same memory
addresses by the LLC Layer and the host.

By using this technique, the Voter Plug-In is able to provide valid port data
after a very short latency (< 10 clock cycles after receiving the last fragment of

86

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

Figure 5.8: Voter Plug-In Fragment Comparison

the voting round) and to keep this data stable until the next voting operation
is completed successfully. After an unsuccessful voting attempt (i. e., all three
ports are different), indicated by the status register, the result port pointer is
not altered, leaving the contents of the result port unchanged.

In contrast to a standard software or Hardware Middleware Brick voter,
the Voter Plug-In operates without knowing the sequence of the ports to be
transmitted in every voting round, since round completion is not determined by
waiting for reception of the last fragment of the last port of the round, but by
counting the received fragments of all ports. Therefore, “mixing” the fragments
of different ports by transmitting them in interlaced pulsed data streams (i. e.,
fragment 0 of port A, fragment 1 of port A, fragment 0 of port B, fragment 2
of port A, . . .) is permitted. Even a change of the schedule can be tolerated
without reconfiguration or interruption of the Voter Plug-In, as long as voting
rounds remain separated (i. e., one voting round is completed before the next
voting round starts), and the internal fragment order of every port is preserved
(i. e., fragment position 0, 1, . . . , N). No further scheduling constraints are
required.

5.2.2.1 Implementation

The Voter Plug-In is integrated into a custom CNI and provides memory space
for four limited size ports, if enabled. The three ports to be voted upon are
called ports A, B & C, the fourth port, used to present the valid data to the host,

87

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

is called result port. This fourth port is set up automatically when enabling
the Voter Plug-In, no port configuration or port flags clearing is necessary. To
perform the voting operations, the A, B & C ports have to be configured as
input State Ports with specific base addresses, their port flags are cleared by the
Voter Plug-In when enabled. Wrong base addresses or other ports configured
to use the Voter Plug-In address space will lead to unpredictable behavior of
the Voter Plug-In, resulting in errors and/or corrupted or lost port data. If the
Voter Plug-In is disabled, the internal Voter Plug-In memory can be used like
standard CNI memory, without any further restrictions. Table 5.2 summarizes
the memory space of the implemented custom CNI for the Voter Plug-In.

Memory Address Usage

Voter Plug-In disabled
0-511 normal port data

Voter Plug-In enabled
0-255 normal port data
256 port A base address

257-319 port A data
320 port B base address

321-383 port B data
384 port C base address

385-447 port C data
448 result port base address

449-511 result port data

Table 5.2: Voter Plug-In Memory Usage (Fragment Addresses)

The port size of the ports to be compared is limited to 63 fragments to
preserve on-chip resources. Even if the three ports are smaller, their base
addresses and memory consumption remain constant. This drawback is
necessary to allow the Voter Plug-In to store every port in its own physical
memory and, as a consequence, read a fragment at a specific fragment position
from all ports concurrently. Comparison of a just received fragment with the
fragments at the same fragment positions in the other ports can be performed
simultaneously in this way.

The Voter Plug-In, as depicted in figure 5.9, can be divided into three com-
ponents, which are discussed in detail in the following paragraphs: The Voter
Plug-In Main Entity, the Voter Plug-In Memory, and the Voter Plug-In Com-
parator.

88

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

Figure 5.9: Voter Plug-In Overview

Voter Plug-In Main Entity The Voter Plug-In Main Entity connects the
other two components of the Voter Plug-In, houses the configuration & status
register, stores and alters the result port port flags (section 5.2.2.2), and is
responsible for keeping the different memory pointers for the four ports.

Once a voting round is finished, the Voter Plug-In Main Entity resets the
Comparator, and the memory pointers are exchanged to provide the new port
data in the result port. Since no copy operations take place, the data of one
of the input ports is invalidated during this process. The decision which input
port is exchanged and invalidated is taken depending on the voting results, as
shown in table 5.3.

89

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

Status Pointer Exchange Invalid
A = B = C port B ↔ result port port B
A = B 6= C port B ↔ result port ports B & C
A 6= B = C port B ↔ result port ports A & B
A = C 6= B port A ↔ result port ports A & B
A 6= B 6= C no exchange ports A, B & C; result port

may be outdated

Table 5.3: Pointer Exchange due to Voting Results

Voter Plug-In Memory All port data is stored in the Voter Plug-In Memory
component. It houses four 256x32 bit Dual-Port Memories, which equals half
of the standard CNI memory size. This memory setting was chosen to meet
the following three requirements:

1. The integrated Voter Plug-In memory should be able to act as a standard
port data memory while the voter is disabled, to preserve on-chip memory
resources. Furthermore, a host software not aware of the Voter Plug-In
should be able to use the CNI memory without any restrictions.

2. The Voter Plug-In implementation should be resource efficient, the size
of the used on-chip memory has to be a tradeoff between usable port size
(for the voting) and additionally required memory blocks.

3. The Voter Plug-In requires a separate physical memory for every port to
function correctly, i. e., four independently accessible Dual-Port Memories
are needed (ports A, B & C and the result port).

To maintain a feasible resource usage, the maximum voteable port size had
to be reduced to approximately a quarter of the standard maximum port size
of 256 fragments. A voter allowing ports of length 256 to be voted would need
memory space for 4 ∗ 256 = 1024 fragments (or 131072 bits), in addition to at
least a small standard CNI port data memory for other ports. By reducing the
supported port size to 63 fragments (+1 fragment for the port flags), the Voter
Plug-In requires 4 ∗ 64 = 256 fragments (or 32768 bits) of on-chip memory,
exactly half of the standard CNI memory size.

An Altera Cyclone II FPGA was used during the implementation, which
provides M4K memory blocks to assemble any custom memory size (see
[Alt07b] and section 4.3.2.1). Since any Dual-Port Memory which is able
to store 256 or less 128 bit words requires 8 M4K memory blocks, a word
width of 32 bits was choosen, while the total amount of 64 fragments
per port was kept, resulting in a 256x32 bit Dual-Port Memory using 2
M4K memory blocks for every port. In this way, 4 ∗ 2 = 8 M4K memory

90

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

blocks are required for the Voter Plug-In and 8 M4K memory blocks are
used by the 256x128 bit CNI port data Dual-Port Memory, resulting in a
total of 16 M4K memory blocks, the same amount as used by the standard CNI.

When the Voter Plug-In is disabled, the four 32 bit wide memories are ac-
cessed parallel to allow the Address Logic to write and read 128 bit fragments in
the same amount of time a standard CNI memory operation would take. Every
32 bit memory stores a quarter of a fragment at the same address, emulating
the standard 128 bit word width memory.

While not operating, the Voter Plug-In handles host accesses exactly the
same way a standard CNI memory does.

No read operations are performed by the Address Logic once the Voter Plug-
In is enabled, since the voter operates only on input State Ports. Any fragment
written by the Address Logic is kept in a register and stored to the appropriate
port memory, determined by the fragment address, in four consecutive clock
cycles. The Address Logic needs seven clock cycles to finish a receive operation,
therefore the Voter Plug-In completes serializing the received data before the
next fragment can be received.

At the beginning and when finishing a State Port receive operation, the
Address Logic updates the port flags. This is done while the Voter Plug-In is
still busy serializing and storing the actual fragment data, so all three empty
flags and sequencers (one set for every one of the three input ports) are stored in
registers instead of the memories, allowing port flag read or update operations
without interrupting the voting process.

While storing the received port data to the appropriate port memory, the
32 bit words at the same positions in the other two ports are loaded, and all
three 32 bit words are transferred to the Comparator component to perform the
actual voting. In addition, the Voter Plug-In Memory component determines
the beginning of a port (fragment 0) by monitoring the write addresses and
signals this event to the Comparator for synchronization purposes.

The host can read all stored data, the three input ports, the result port, and
their portflags, at any time while the Voter Plug-In is enabled, but host write
accesses are ignored.

Voter Plug-In Comparator The Voter Plug-In Comparator component per-
forms the actual port data comparison. It maintains three word counters, one
for every input State Port, to keep track of the already received amount of data
of every port, three status flags to store the relationships between the ports

91

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

(equal/not equal), and three finished flags to detect the completion of a voting
round.

Whenever a 32 bit word of port data is stored to the Voter Plug-In memory,
the counter of the port it belongs to is compared to the other two counters, to
determine if a status flag update is due. If the counter value of the just written
port is smaller than one of the others, the written port data is compared to
the already stored data of this other port (or to the data of both other ports,
if the counter value is smaller than both other counter values). Otherwise, no
comparison or status update takes place, since the data word of the other port
(or ports) at the position to be compared was not received by now. The word
counter belonging to the just received port is incremented afterwards in any
case.

After a comparison, the appropriate port relationship status flag is updated
according to the comparison result. These port relationship status flags are all
set to “equal” on every Comparator restart, i. e., at the beginning of a voting
round. Once a flag is set to “not equal” due to different port data, it cannot
be reverted to “equal” before a Comparator restart is performed, even if the
port data received later is equal again.

The value configured in the port size register (see section 5.2.2.2) defines
the size of all three input ports, therefore completion of a port can be detected
by examining the three word counters. If all three ports are finished, the
communication round is completed, which is signaled to the other components
of the Voter Plug-In, and the port relationship status flags can be considered
valid. The Voter Plug-In Main Entity uses these port relationship status flags
to update the port status flags and the different memory pointers, and finally
initiates a Comparator restart to await the next voting round.

Aside from comparing the port data, the Comparator has to monitor two
other possible cases of communication errors:

• Port data could be lost during the transmission, due to an erroneous send-
ing core or because the sending core failed completely. This would make
it impossible to detect the end of a voting round, since the counter of the
port which the lost data belongs to could never reach the configured port
size. The Comparator detects such a situation by monitoring the port
start signal issued by the Voter Plug-In Memory component on the recep-
tion of fragment 0 of a port, and checks if the word counter value of the
belonging port is zero. No Comparator restart has taken place if the word
counter holds any other value than zero on reception of the first fragment
of a port, therefore port data was lost in the previous voting round. As a
consequence, the Comparator immediately restarts itself, clears all coun-
ters, adjusts the port relationship status flags to consider the incomplete

92

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

port, signals the end of the previous voting round to the Voter Plug-In
Main Entity, and starts processing of the new communication round.

• The Address Logic can receive a fragment belonging to a port already
finished in the current voting round. This error is most likely due to a
faulty port size configuration, and is signaled to the host by setting the
error flag in the Voter Plug-In configuration & status register and the
Plug-In error flag in the LLC Layer Error Status Register.

5.2.2.2 Voter Plug-In Register File

The Voter Plug-In uses a single 32 bit register for voter configuration, port
status information, and an error flag. It can be read or written by the host
software at Plug-In address 1 (“0001”), register address 0 (“0000”). The Voter
Plug-In register is shown in figure 5.10, the implemented flags are described
below.

Figure 5.10: Voter Plug-In Register

Enable Flag The host enables the Voter Plug-In by setting this flag. When
enabled, the Voter Plug-In prohibits any changes of the configuration
flags, with the exceptions of clearing the error flag and disabling the Voter
Plug-In. Therefore, the byte write enable lines of the CNI Layer Host
Interface have to be set in the correct order to prevent a configuration
data loss. When the Voter Plug-In is disabled, the port status flags and
the error flag are not valid and should be ignored by the host. The
interrupt enable flag and the port size configuration have no effects on a
disabled Voter Plug-In.

The host software is responsible to enable the Voter Plug-In only in be-
tween voting rounds. Although the Voter Plug-In is able to synchronize
itself to the start of a voting round by monitoring the completion of all
three ports, it has no possibility to allocate the port data to the corre-
sponding rounds. The Voter Plug-In declares the start of a voting round
if all three ports are completed before one of them starts again (recep-
tion of fragment 0). Therefore, if the Voter Plug-In is enabled during a
voting round after one or two ports are already completed, it may try

93

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

(and succeed) to synchronize itself to a wrong round start inside of an
actual voting round, with the result of comparing port data from different
voting rounds (figure 5.11).

Figure 5.11: Voter Plug-In Voting Rounds

Interrupt Enable Flag By setting this flag, the Voter Plug-In is enabled to
trigger a Plug-In interrupt in the Interrupt Status Register (section
4.2.2.2.3) whenever a communication round is completed, regardless of
the results of the voting.

Port Status Flags These flags signal the status of the three input ports after a
completed voting round. They are valid until the next round is finished.
A set flag indicates that the corresponding port received valid data. Since
a port is considered valid if its data is equal to another port, at least two
of the three flags are set in this case. Table 5.4 lists all possible voting
results.

PSF Explanation
000 all three ports contain different data
011 ports A & B are equal, port C is different
110 ports B & C are equal, port A is different
101 ports A & C are equal, port B is different
111 all three ports are equal

Table 5.4: Voting Results (PSF . . . Port Status Flags)

Error Flag This flag is set if a fragment belonging to an already finished port
is received before the next communication round started. This situation

94

5 CNI Layer Extensions 5.2 Middleware Plug-Ins

occurs if the port size was not configured correctly by the host.3 The
error flag register can be cleared by the host by writing 1 to it, even
while the Voter Plug-In is enabled.

Port Size The host has to configure the correct size of the A, B, and C ports
in this register,4 to allow the Voter Plug-In to detect the completion of
a received pulsed data stream. Since the port size of the three ports is
restricted to 63 fragments, this port size register is only six bit wide (a
port size of 64 fragments (“111111”) is prohibited).

In addition to the status register, the Voter Plug-In provides the port status
and error information in the result port port flags to simplify host access.
Behavior and meaning of the flags in the result port port flags, shown in figure
5.12, are the same as described above. The empty flag is 0 (port empty) only
before completing the first successful (i. e., at least two ports are equal) voting
round voting. The sequencer is even at all times, since the result port data
is validated by switching the appropriate memory pointer simultaneously to
increasing the sequencer.

Figure 5.12: Voter Plug-In Result Port Port Flags

5.2.3 Other Plug-Ins

A wide range of functions improving the LLC and CNI Layers can be designed
as Plug-In. Some possible future extensions are listed below.

Security/Safety Plug-Ins Various security and data safety functions can be
implemented transparently to the host by means of a Plug-In. These
functions range from simple message counters to preventing unauthorized
communication. Other useful mechanisms would include data encryption

3Under some circumstances, loosing the first fragment of a voting round immediately after
loosing a fragment in the previous voting round could lead to the same situation, even
if the port size was configured correctly. Since there is no possibility to detect such an
unlikely case, the Voter Plug-In does not distinguish between those two faults.

4The result port is automatically configured to the same size.

95

5.2 Middleware Plug-Ins 5 CNI Layer Extensions

and decryption, checksum generation, parity bits, Cyclic Redundancy
Checks (CRCs), port data feasability control (e. g., range checks, tempo-
ral validity), etc.

Timer Interrupt Plug-In Additional or other kinds of timer interrupts may
be needed by certain applications. By integrating them into a Plug-In,
in contrast to a Hardware Middleware Brick, the timer interrupt service
gains the possibility to constantly access the current global real-time.
No register reading is required, therefore missing a time instant (while
performing the read operation) is prohibited. Furthermore, the Interrupt
Service of the CNI Layer can be used to trigger the generated interrupt
requests (IRQs), improving the usability by rendering further hardware
changes (e. g., additional IRQ lines) obsolete.

I/O Plug-In When equipped with an external interface, a Plug-In may read
sensor data or control an actuator without interfering (or being interfered
by) the host. Control data can be received from another host or a Plug-In
in another core, as well as the sensor data can be distributed over the
NoC to another core immediately. Such a Plug-In could keep its own
host informed by means of status registers, or receive control information
through configuration registers.

CNI Memory Even the standard CNI memory can be categorized as a Plug-
In. Since the CNI memory is mandatory, it is not considered as a Plug-
In throughout this document, but a different version of the port data
memory can definitely be seen as a Plug-In. Possible modifications would
include a bigger (or smaller) memory, different types of memory, external
(i. e., off-chip) memory, etc.

96

6 Conclusion

By implementing the time-triggered concept for communication over the
Network-on-a-Chip, the Time-Triggered System-on-a-Chip architecture main-
tains strict encapsulation of different cores. The rising complexity inherent to
today’s distributed embedded systems can be controlled using this encapsu-
lation, by means of allowing the application system to be broken down into
different Distributed Application Subsystems which can be designed indepen-
dently. No side effects or mutual dependencies between different DASs are
caused by integrating them into the overall system.

While the TNA and the TISSs are, among other tasks, responsible to protect
the NoC from unrestricted access (i. e., temporal faults), thus guaranteeing
encapsulation, the extendible host interface is capable of providing all functions
necessary for a host processor to communicate over the time-triggered Network-
on-a-Chip. The extendible host interface not only fulfills this basic requirement
in a resource efficient way, but also maintains a replica deterministic behavior
while achieving a reasonable data throughput. Support for diagnosis is provided
as well as a real-time service, which, in conjunction with other supporting
functions and a well defined host interface, improve the (re-)usability of the
whole TTSoC architecture. In case an application demands other additional
functions to be performed by the NoC hardware, interface extensions can be
implemented.

To guarantee sufficient extendability of the TTSoC architecture with reason-
able resource usage and design effort, the possibility to add custom Middle-
ware Plug-Ins was introduced. These Plug-Ins benefit from direct access to the
port data they operate on, without the need to adapt host access procedures or
installed host application software. A DMA Plug-In, intended for multimedia
applications with high data transfer requirements, and a Voter Plug-In, dedi-
cated to support Triple Modular Redundancy with minimal voting latency, are
used to demonstrate the capabilities of the Middleware Plug-In approach.

Taking the characteristics of all components forming the TTSoC architecture
and the way they are integrated and interact with each other into account, one
can determine that the Time-Triggered System-on-a-Chip architecture is able
to meet its requirements and proves to be a valuable asset concerning future
distributed embedded application systems.

97

6 Conclusion

The Trusted Interface Subsystem and the Middleware Plug-Ins, as well as
the whole Time-Triggered System-on-a-Chip architecture will undergo future
improvements and changes. Possible future developments are outlined below.
They are meant as an impulse for future design considerations.

• Various new Middleware Plug-Ins can be designed to further improve the
usability of the TTSoC architecture.

• A great number of different host processors could be used with the TTSoC
architecture. Additional adapters for different, host-specific peripheral
interfaces could be implemented to allow them to communicate using the
Open Core Protocol.

• Different types of interconnect topologies of the NoC could be adapted
for different application requirements (large bandwidth, power efficiency,
preserving on-chip resources, etc.).

98

A Open Core Protocol

The Open Core Protocol (OCP) is administered by the OCP International
Partnership (OCP-IP) Association [OCP] and defines a master-slave interface
designed for on-chip peer-to-peer communication between IP-cores, buses, etc.
A large variety of signals and operational modes are available with OCP, al-
though only those which are needed by the SoC design have to be implemented.

The possibility to easily adapt the OCP interfaces to match the requirements
of the implemented SoC, along with a broad acceptance of the Open Core
Protocol among various device manufacturers and IP-core developers, were the
driving arguments to use the Open Core Protocol for the CNI Layer Host
Interfaces of the TTSoC architecture. Some of the capabilities of the Open
Core Protocol, which influenced the decision for the OCP Host Interface are
listed below (taken from [Inc04, p. 1]).

• Small set of mandatory signals, with a wide range of optional signals

• Synchronous, unidirectional signaling allows simplified implementation,
integration and timing analysis

• Configurable address and data word width

• Structured method for inclusion of sideband signals: high-level flow con-
trol, interrupts, power control, device configuration registers, test modes,
etc.

This chapter focuses on the OCP signals and operational modes used by
the CNI Layer Host Interface, the complete OCP specification can be found in
[OCP05].

A.1 OCP Signals

Only two OCP signals, the OCP clock (clk) and the master command (MCmd)
signals are mandatory for every OCP implementation, all other signals can be
chosen to meet the specific requirements. The following signals are used by
the OCP Host Interface of the CNI Layer, implemented as an OCP slave. A
preceding “M” in the signal name identifies a master-to-slave signal, while a
preceding “S” stands for a slave-to-master signal.

99

A.1 OCP Signals A Open Core Protocol

Dataflow Signals

Basic Signals

OCP Clock (clk): The on-chip clock signal is used as OCP clock, all dataflow
signals are sampled at the rising edge of this clock signal.

Master Address (MAddr): 15 bit address, specifies the memory location to
read from or write to.

Master Command (MCmd): 3 bit command signal, specifies the OCP mas-
ter command (“Read”, “Write”, etc.). Table A.1 lists all possible OCP
commands. Only the commands marked with ∗ are supported by the
implemented OCP Host Interface, all other commands are ignored by the
CNI Layer.

MCmd[2:0] Function

0 0 0 Idle ∗

0 0 1 Write ∗

0 1 0 Read ∗

0 1 1 ReadEx
1 0 0 ReadLinked
1 0 1 WriteNonPost
1 1 0 WriteConditional
1 1 1 Broadcast

Table A.1: OCP Master Commands

Master Data (MData): 32 bit write data

Slave Command Accept (SCmdAccept): 1 bit slave command accept, set by
the slave (the CNI Layer) on accepting the issued OCP Master Command
(“Read” or “Write”).

Slave Data (SData): 32 bit read data

Slave Response (SResp): 2 bit slave response, set by the slave (the CNI
Layer) when presenting the read data (SData) after performing a “Read”
command to indicate the validity of the data. Note that only a “Read”
command triggers a response, “Write” commands are not confirmed by
the CNI Layer. Table A.2 lists all possible OCP responses.

Simple Extensions

Master Byte Enable (MByteEn): 4 bit byte write enable signal, indicates
which bytes of the 32 bit write data (MData) are to be written.

100

A Open Core Protocol A.2 OCP Operation

SResp[1:0] Response Mnemonic

0 0 No response NULL
0 1 Data valid / accept DVA
1 0 Request failed FAIL
1 1 Response error ERR

Table A.2: OCP Slave Response Encoding

Sideband Signals

These sideband signals are independent from any data transfer, the CNI
Layer can assert them at any time.

Slave Error (SError): This signal is asserted by the slave (the CNI Layer)
whenever a read or write error occurs (e. g., wrong register write, unsup-
ported OCP command, etc.).

Slave Interrupt (SInterrupt): An interrupt request (IRQ) is sent to the OCP
master using this signal. The SFlag signal is used to indicate the interrupt
source simultaneously.

Slave Flags (SFlag): 6 bit interrupt information, used to determine the source
of an IRQ.

Slave Reset (SReset n): This low-active reset signal forces the OCP master
(e. g., the host processor) to enter a defined powerup state. According to
the OCP specification, the OCP slave (the CNI Layer) holds this signal
active for at least 16 OCP clock cycles to ensure a proper reset.

A.2 OCP Operation

Although the Open Core Protocol supports a large variety of operational
modes, the CNI Layer OCP Host interface supports “Read” and “Write” com-
mands only, no broadcasts, bursts, threading, etc. are available. This decision
was made mainly for simplicity reasons. Every additional, sophisticated form
of communication would afford additional logic elements, wiring, memory, etc.,
increasing the complexity of the CNI Layer, and, as a consequence, the whole
TTSoC. With simple read and write commands all required functions can be
performed with reasonable effort. Any higher level communication protocols
(e. g., bursts) have to be implemented by the host software.

A simple OCP read or write data transfer starts with a request phase
initiated by the OCP master. The OCP master switches the MCmd signal from

101

A.2 OCP Operation A Open Core Protocol

“Idle” to “Read” or “Write” and, at the same time, presents the target address
of the transfer on the MAddr lines. In case of a “Write” command, valid data
is presented on the MData signal simultaneously. The OCP slave captures the
values from the MData and/or MAddr signals and starts the internal read or
write operation, according to the asserted OCP Master Command. The Slave
Command Accept (SCmdAccept) signal is set to inform the OCP master that
the OCP slave accepted the command and that the request phase has ended.
As a consequence, the MCmd signal is set to “Idle” again.

A write transfer ends after the request phase, while a read transfer continues
with its response phase. Once the OCP slave has prepared the requested
data (e. g., loaded it from internal memory), the Slave Response (SResp) signal
is set to “Data Valid”, indicating valid data on the SData signal. The OCP
master stores this data, and the response phase is completed.

The CNI Layer OCP Host interface uses the SError signal, together with
the “Response Error” signal on the SResp lines in case of a read transfer, to
inform the OCP master about the occurrence of an error.

Further OCP signal and operation details are explained in the Open Core
Protocol specification ([OCP05]).

102

B Avalon Adapter

An Altera NIOS II Processor [Alt07c] was used to test some components of
the NoC implementation. Since the CNI Layer Host Interface was designed as
an OCP Slave interface, but the NIOS II processor uses the so called “system
interconnect fabric” and “Avalon Memory-Mapped interfaces” to connect any
peripherals, an OCP-to-Avalon adapter was needed. Its implementation is
described in this appendix.

B.1 Avalon Memory-Mapped Interface

The Altera Avalon Memory-Mapped interface, as specified in [Alt07a], is used
by the Altera system-on-a-programmable-chip (SOPC) Builder of the Quartus
II software to connect predefined components (e. g., the NIOS II processor)
and/or custom components using a graphical user interface. It defines master-
and slave-type interfaces which can be connected in arbitrary way. The sys-
tem interconnect fabric takes care of all administrative tasks arising from cus-
tomization, e. g., access arbitration, address mapping, chip select assignment,
data width reduction/expansion, etc.

The Avalon Memory-Mapped interface defines a variety of signals and their
behavior and different supported transfer types (e. g., read, write, burst, etc.).
Not all signals and transfer types have to be implemented by a peripheral, only
clk, waitrequest, and address are mandatory for an Avalon master interface.
Any used signal is also available in its inverted form, highlighted by adding n
to the signal name.

In the following sections only those signals and transfer types actually used by
this implementation are described, any further details of the Avalon Memory-
Mapped Interface can be looked up in [Alt07a].

B.2 Avalon Slave Adapter

The purpose of the Avalon Slave Adapter is to allow an easy integration of the
NoC into systems designed using the Altera SOPC Builder. It implements an

103

B.2 Avalon Slave Adapter B Avalon Adapter

Avalon Memory-Mapped slave-type interface, an OCP Master interface tailored
to match the OCP Host Interface of the CNI Layer, and the necessary glue logic
to translate the requests and responses and some sideband signals between these
two interfaces.

Since intended for testing purposes only, the Avalon Slave Adapter provides
only simple read/write functionality and a minimal IRQ support. The prop-
agation of OCP interface error signals and the differentiation of the TTSoC
IRQs were neglected, resulting in a single IRQ line for all possible IRQs and
the read/write error detection delegated to the system interconnect fabric and
the host processor. Read and write timing was fixed using the SOPC Builder,
no Avalon response signals (e. g., readdatavalid) were used.

The host reset initiated by the LLC Layer watchdog service is routed
directly to the resetrequest n signal of the (probably) connected NIOS II
processor via the OCP SReset n signal outside the Avalon Slave Adapter.
This is done to prevent an automatic reset of all systems in the core connected
to the system interconnect fabric in case of a watchdog miss. The necessity to
reset the whole core is application dependent, therefore only the host processor
is reset, other peripherals, like off-chip communication systems, are allowed
to continue operation unless the host processor itself propagates the reset signal.

The signals used by the Avalon Slave Adapter and their mapping to the OCP
signals are summarized in table B.1.

Avalon Signal Width Note ↔ OCP Signal Width

address 15 bit directly connected → MAddr 15 bit
readdata 32 bit directly connected ← SData 32 bit
writedata 32 bit directly connected → MData 32 bit
read 1 bit start read/write → MCmd 3 bit
write 1 bit operation, OCP

command is se-
lected accordingly
(MCmd=“Idle” oth-
erwise)

byteenable 4 bit directly connected → MByteEn 4 bit
irq n 1 bit inverted ← SInterrupt 1 bit

used to set MCmd ← SResp 2 bit
back to “Idle” after
successful transaction

← SError 1 bit

Table B.1: Avalon Slave Adapter Signals

104

B Avalon Adapter B.3 Avalon Master Adapter

B.3 Avalon Master Adapter

Similar to the Avalon Slave Adapter, the Avalon Master Adapter allows inte-
gration of the DMA Middleware Plug-In into an SOPC Builder system. Both
operate in parallel, the Avalon Master Adapter is used exclusively by the DMA
Plug-In to store or load data to or from the host’s main memory. Any memory
and/or access arbitration inside the host processor system is carried out by the
system interconnect fabric.

An OCP Slave interface and an Avalon Memory-Mapped master-type
interface are incorporated by the Avalon Master Adapter, both support only
the minimal functionality to transfer single data words. No error detection is
performed and no sideband signals are used.

Table B.2 lists the implemented signals and their relationships.

Avalon Signal Width Note ↔ OCP Signal Width

waitrequest 1 bit used by the system
interconnect fabric to
delay a transaction,
stalls SResp and/or
SCmdAccept

address 32 bit directly connected ← MAddr 32 bit
readdata 32 bit directly connected → SData 32 bit
writedata 32 bit directly connected ← MData 32 bit
read 1 bit start read/write ← MCmd 3 bit
write 1 bit operation, triggered

according to OCP
command
set if read/write is ac-
cepted by the system
interconnect fabric

→ SCmdAccept 1 bit

set to “Data Valid” if
readdata is valid

→ SResp 2 bit

Table B.2: Avalon Master Adapter Signals

105

B.3 Avalon Master Adapter B Avalon Adapter

106

C Powerlink Bus Adapter

During the development of the Time-Triggered System-on-a-Chip architecture,
a test environment will be created, consisting of an FPGA device (housing
the Network-on-a-Chip, the TNA, the TISSs and the CNI Layers of all cores)
which is connected to external host processors. These processors are located
on TTP Powerlink CPU modules (e. g., as described in [TTT02] and [TTT05])
and connected to the FPGA through the PowerLink Connection Bus version 1
(PLCB1), specified in [TTT01].

For this test implementation of the TTSoC an adapter between the Power-
Link Connection Bus (PLCB1) and the OCP Host interface is needed, which
is the subject of this appendix.

C.1 PowerLink Connection Bus

The PowerLink Connection Bus (PLCB1) is a space saving stacked-PCB
[Printed Circuit Board] micro controller solution for TTP/C, well suited for
Motorola PowerPC controllers like the MPC555. [TTT01, p. 4] The PLCB1
specification defines mechanical properties of PLCB1 conformant Printed Cir-
cuit Boards as well as the electrical issues of the board connectors.

A complete list of all PLCB1 signals is available in [TTT01], the Pow-
erlink Bus Adapter uses only a subset of the following MPC555-bus sig-
nals that are available through the Powerlink bus: D31-D0, A31-A8, CS2-
CS3, OE, RD/WR, WE/BE0-WE/BE3, TS, TA, TEA, BDIP , RESET ,
EPEEBUS, RCFB, BR, BG, BB, IRQ0-IRQ4, IRQOUT , CLK. A de-
scription of the Motorola MPC555 CPU and the MPC555-bus signals and op-
eration can be found in [Mot00]. Other processor boards can be adapted to
use these signals of the PLCB1 bus.

C.2 Implementation

The following PLCB1 bus signals are used by the Powerlink Bus Adapter.
Input or output lines, as stated in the description, only concern the Powerlink

107

C.2 Implementation C Powerlink Bus Adapter

Bus Adapter, in general, all PLCB1 bus lines are bi-directional.1

Data Bus (D31-D0): 32 inout data lines to transport a single 32-bit double
word. These data lines are also driven by other components and therefore
have to be tri-stated if not in use to prevent interferences. They are con-
nected to the MData or SData signals depending on the type of transfer
and the OE signal.

Address Bus (A31-A8): 24 address input lines. For the CNI Layer Host inter-
face address space only 15 address lines are required, directly connected
to the MAddr signal.

Chip Select (CSx): This low-active signal is used to distinguish between ac-
cesses to other external devices and the CNI Layer. Furthermore, the
start and the end of a transfer is determined by this signal. Either one
of the two available chip select lines can be connected to the Powerlink
Bus Adapter. (input)

Output Enable (OE): Asynchronous low-active output enable. Has to be as-
serted to allow the Powerlink Bus Adapter to lay data on the PLCB1
bus. (input)

Read/Write (RD/WR): Determines the type of a host access, read (high) or
write (low). The MCmd signal is set accordingly. (input)

Write Enable/Byte Enable (WE/BE0-WE/BE3): These low-active input
signals are used as byte write enable signals, therefore they are inverted
and connected to the MByteEn signal.

Transfer Acknowledge (TA): Informs the host processor about the comple-
tion of a transfer. Once a transfer is initiated, the Powerlink Bus Adapter
sets this signal to 1 to stall the host. After completion of the transfer,
i. e., after the data is written in case of a write access or the data is loaded
and ready to be stored by the host in case of a read access, this signal
is pulled to 0 and held low until the chip select (CSx) is de-asserted.
Otherwise, this output signal is tri-stated.

Reset (RESET): This low-active signal can be used to reset the host pro-
cessor. It is asserted on a Powerlink Bus Adapter reset, initiated by the
chip-wide reset signal or the OCP Slave Reset (SReset n) signal. (output)

Interrupt Request (IRQ0-IRQ4): One or more of these low-active interrupt
request (IRQ) lines are triggered by an OCP SInterrupt signal. The SFlag
signal is used to determine the interrupt source and set the IRQ0-IRQ4
lines accordingly.

1Exceptions: IRQ0-IRQ4, RESET : output; CLK, IRQOUT : input

108

C Powerlink Bus Adapter C.2 Implementation

Transfer Start, Transfer Error Acknowledge, Burst Data In Progress
(TS, TEA, BDIP): These signals are not in use, but have to be
tri-stated for compatibility reasons.

Clock (CLK): Host processor clock input. The host processor clock can be
used to time the PLCB1 bus operation, allowing all PLCB1 bus signals
(except OE) to be sampled at the rising edge of this clock signal. Note
that CLK may or may not be connected to the MPC555’s [or another pro-
cessor’s] internal clock on the CPU module - this depends on a hardware
option. [TTT01, p. 8]

The first TTSoC test beds dedicated for use with the Powerlink Bus
Adapter did not feature an MPC555-bus clock signal. As a consequence,
the Powerlink Bus Adapter was designed to operate independently from
the PLCB1 bus clock, all signals were sampled using the on-chip clock
signal. Although this implementation proofed to work correctly even if
the TTSoC and the PLCB1 bus run with different clock frequencies, a
second version using the MPC555-bus clock signal was built to be used
in future test environments.

109

C.2 Implementation C Powerlink Bus Adapter

110

Bibliography

[Alt07a] Altera, 101 Innovation Drive, San Jose, CA 95134. Avalon
Memory-Mapped Interface Specification, 3.3 edition, May 2007.
www.altera.com.

[Alt07b] Altera, 101 Innovation Drive, San Jose, CA 95134. Cyclone II Device
Handbook, Volume 1, 3.2 edition, 2007. CII5V1.

[Alt07c] Altera, 101 Innovation Drive, San Jose, CA 95134. Nios II Processor
Reference Handbook, 7.0 edition, March 2007. NII5V1.

[CS04] Dependable Embedded COmponents and Systems. DECOS.
www.decos.at/VideosAndPictures/DECOS fs1.pdf, September 2004.

[DeL99] R. DeLine. A catalog of techniques for resolving packaging mismatch.
In SSR ’99: Proceedings of the 1999 symposium on Software reusabil-
ity, pages 44–53, 1999.

[Dep] Dependable Embedded Components and Systems. www.decos.at.

[EEE+01] S. Eberle, C. Ebner, W. Elmenreich, G. Färber, P. Göhner,
W. Haidinger, M. Holzmann, R. Huber, R. Schlatterbeck, H. Kopetz,
and A. Stothert. Specification of the TTP/A protocol. Research Re-
port 61/2001, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2001.

[Eng07] G.A. Engleder. Time-Triggered Network-on-a-Chip. Master’s thesis,
Computer Engineering, Real-Time Systems Group, Vienna Univer-
sity of Technology, 2007.

[Ham03] R. Hammett. Flight-critical distributed systems: Design considera-
tions. Aerospace and Electronic Systems Magazine, IEEE, 18(6):30–
36, June 2003. Charles Stark Draper Lab. Inc., Cambridge, MA,
USA.

[Inc04] OCP-IP Association Inc. Open Core Protocol (OCP) datasheet.
www.ocpip.org/socket/datasheets/OCP 2.2 Datasheet.pdf, 2004.

[KB03] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceed-
ings of the IEEE, 91(1):112 – 126, January 2003.

111

Bibliography Bibliography

[KHO+06] H. Kopetz, B. Huber, R. Obermaisser, C. Salloum, and M. Schoe-
berl. Design of System-on-a-Chip Component. Vienna University of
Technology, Austria, October 2006.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability. IEE’s Com-
puting & Control Engineering Journal, 2002.

[Kop04a] H. Kopetz. An integrated architecture for dependable embedded
systems. Proceedings of the 23rd IEEE International Symposium on
Reliable Distributed Systems, 2004., pages 160–161, October 2004.

[Kop04b] H. Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer, 2004.

[Kop06] H. Kopetz. Pulsed data streams. Research Report 14/2006, Technis-
che Universität Wien, Institut für Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, February 2006.

[KR93] H. Kopetz and J. Reisinger. NBW: A non-blocking write protocol for
task communication in real-time systems. January 1993.

[Lap92] J.C. Laprie, editor. Dependability: Basic Concepts and Terminol-
ogy, volume 5 of Dependable Computing and Fault-Tolerant Systems.
Springer Verlag, 1992.

[Mot00] Motorola. MPC555 / MPC556 User’s Manual, October 2000.

[Obe06] R. Obermaisser. DECOS System-on-a-Chip Component - Specifica-
tion. Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 0.2w edition, Jan-
uary 2006. Task 2.2.4.

[OCP] OCP International Partnership, 3855 SW 153rd Drive, Beaverton,
Oregon 97006 USA. www.ocpip.org.

[OCP05] OCP International Partnership Association, Inc., 3855 SW 153rd
Drive, Beaverton, Oregon 97006 USA. Open Core Protocol Speci-
fication 2.1, 1.0 edition, 2005.

[OPHS06] R. Obermaisser, P. Peti, B. Huber, and C. El Salloum. DECOS:
An Integrated Time-Triggered Architecture. e&i journal (journal of
the Austrian professional institution for electrical and information
engineering), 3, March 2006.

[PAB+06] D.C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry,
D. Cox, P. Harvey, P.M. Harvey, H.P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille,
S. Posluszny, M. Riley, D.L. Stasiak, M. Suzuoki, O. Takahashi,
J. Warnock, S. Weitzel, D. Wendel, and K. Yazawa. Overview of
the architecture, circuit design, and physical implementation of a

112

Bibliography Bibliography

first-generation cell processor. Solid-State Circuits, IEEE Journal of,
41(1):179–196, January 2006.

[Pol94] S. Poledna. Replica determinism in fault-tolerant real-time systems.
PhD thesis, Technische Universität Wien, 1994.

[POT+05] P. Peti, R. Obermaisser, F. Tagliabo, A. Marino, and S. Cerchio.
An integrated architecture for future car generations. Object-Oriented
Real-Time Distributed Computing, 2005. ISORC 2005. Eighth IEEE
International Symposium on, pages 2–13, May 2005. Vienna Univer-
sity of Technology, Austria.

[SK06] K. Steinhammer and H. Kopetz. Time-Triggered Ethernet. Junior
Scientist Conference (JSC 2006), Vienna, Austria, April 2006.

[Sta01] W. Stallings. Operating Systems. Prentice-Hall International, Inc.,
fourth edition, 2001.

[Ste06] K. Steinhammer. Design of an FPGA-Based Time-Triggered Ether-
net System. PhD thesis, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria,
2006.

[TTTa] TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vi-
enna, Austria. TTP/C Specification. Available at www.tttech.com.

[TTTb] TTTech Computertechnik AG, Schönbrunner Strasse 7, A-1040 Vi-
enna, Austria. www.tttech.com.

[TTT01] TTTech, Schönbrunner Straße 7, A-1040 Vienna, Austria. PLCB1
bus specification, 1.0.00 edition, July 2001. Specification for TTTechs
PLCB1 bus.

[TTT02] TTTech, Schönbrunner Straße 7, A-1040 Vienna, Austria.
TTPPowerlink CPU module, 3.0.02 edition, October 2002. A MPC555
CPU board for the TTP Powerlink PLCB1 bus.

[TTT05] TTTech Computertechnik AG, Schönbrunner Straße 7, A-1040 Vi-
enna, Austria. TTPPowerlink CPU TC1796, 0.2.00 edition, October
2005. A CPU Board with the Infineon TC1796 TriCore CPU for the
TTP Powerlink PLCB1 bus.

113

