
Dissertation

SPIRAL/DMP:

A Generator for Optimized
Parallel Signal Transforms

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Christoph W. Überhuber
E101 – Institut für Analysis und Scientific Computing

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Andreas Bonelli

Matrikelnummer 9926348

Margaretenstrasse 5/27

A-1040 Wien

Wien, am 5. September 2006

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Die diskrete Fourier-Transformation (DFT) stellt eines der bedeutendsten ma-
thematischen Werkzeuge in den Naturwissenschaften und der Technik dar. Sie
ist aus einem überaus breiten Spektrum von Anwendungen, wie z.B. der Lösung
partieller Differentialgleichungen der Physik, nicht wegzudenken. Andere Anwen-
dungsgebiete findet man z.B. in der Geophysik, in den verschiedensten Formen
der digitalen Signalverarbeitung, wie etwa der digitalen Bildverarbeitung, oder
nicht zuletzt bei der Proteinfaltung in der Molekularbiologie.

Lange wurde vermutet, dass die Komplexität der DFT bei O(N2) läge. 1965
veröffentlichten Cooley und Tukey [11] einen Algorithmus, der als die schnelle
Fourier-Transformation (fast Fourier transform, FFT) bekannt wurde. Dieser
Algorithmus vermindert die Komplexität der DFT von O(N2) auf O(N log N).

Die Leistung von Algorithmen für einen Prozessor wird im Allgemeinen an der
Anzahl der vom Prozessor ausgeführten Arbeitsschritte pro Zeiteinheit gemessen.
Bei Programmen für parallele Rechnerarchitekturen geht auch die Zeit, die für
den Datenaustausch zwischen den Prozessoren benötigt wird, maßgeblich in die
Leistungsbewertung ein. Dabei hängt das Verhältnis zwischen der Rechen- und
der Kommunikations-Leistung sehr stark vom verwendeten Computersystem ab.

Die vorliegende Arbeit stellt Spiral/dmp vor, ein Software-System zum automa-
tischen Generieren und Optimieren von Algorithmen und Codes für die effiziente
Ausführung der DFT auf Parallelrechnern. Spiral/dmp wurde als Erweiterung
des Programm-Generierungs- und Optimierungs-Systems Spiral implementiert.
Basis dieses Systems ist die Darstellung von DFT-Algorithmen in der problem-
spezifischen Sprache Spl. Spiral wurde mit Hilfe eines Markierungs- und Formel-
Manipulations-Systems erweitert, um parallele Algorithmen darstellen, herleiten
und optimieren zu können.

Spiral/dmp hat die besondere Eigenschaft, skalierende DFT-Algorithmen gener-
ieren zu können, die in der Lage sind, eine automatische Datenumverteilung auf
die optimale Anzahl an Prozessoren durchzuführen, um den Kommunikations-
aufwand so weit wie möglich zu senken. Eine Besonderheit des neu entwickel-
ten Verfahrens liegt darin, dass die Umverteilung der Daten während der, für
die Berechnung der DFT unvermeidlichen Kommunikation durchgeführt wird,
und dadurch keine zusätzlichen Kommunikationsschritte notwendig sind. Spirals
Suchmechanismus findet heraus, welche der möglichen Algorithmen und deren Im-
plementierungen auf einer gegebenen Plattform die besten Leistungswerte erzie-
len. Auf diese Weise wird plattformoptimierter DFT-Code automatisch erzeugt.
Experimente mit den von Spiral/dmp generierten Mpi-Programmen ergaben
mit den skalierenden DFT-Algorithmen eine Leistungssteigerung von bis zu 30%.

Abstract

The discrete Fourier transform (DFT) is one of the principal algorithmic tools
in the field of scientific computing. DFT methods can be used to solve various
problems in science and engineering. For example, the DFT is an essential tool
in digital signal processing. Moreover, DFT methods are heavily used for the
numerical solution of partial differential in mathematical physics, like the ones
arising in computational fluid dynamics. Other applications of DFT methods
occur in geophysical research, vibration analysis, speech recognition and synthesis,
protein folding etc.

The order of complexity of the DFT was long thought to be O(N2), as the DFT
requires the evaluation of a special matrix-vector product. In 1965 Cooley and
Tukey [11] published an algorithm, the fast Fourier transform (FFT), which re-
duced the DFT’s computational complexity to O(N log N). Since then numerous
studies have been published on how to implement the FFT on advanced computer
systems efficiently.

The performance of numerical algorithms for single processors is usually char-
acterized by the number of processor cycles per time unit, measured during its
execution. The performance of parallel programs is influenced by an additional
factor, i.e., the time needed for data communication. The major difficulty in
developing efficient code for parallel systems is the machine dependent ratio of
processor and network performance.

This work introduces Spiral/dmp, a formal framework for automatically gener-
ating performance optimized implementations of the DFT for distributed memory
computers. Spiral/dmp is an extension of the program generation and optimiza-
tion system Spiral. DFT algorithms are represented as mathematical formulas in
Spiral’s internal language Spl. Using a tagging mechanism and formula rewrit-
ing, Spiral has been extended to automatically generate parallelized formulas.

Spiral/dmp has been used to generate rescaling DFT algorithms, which re-
distribute the data in intermediate steps to the optimal number of processors to
reduce communication overhead. It is a novel feature of the methods implemented
in Spiral/dmp that redistribution steps are merged with communication steps
to avoid additional communication overhead. Among the multitude of possible
algorithm variants, Spiral’s search mechanism determines the fastest one for a
given platform, hence effectively generates hardware adapted code without human
intervention.

Experiments with DFT Mpi programs generated by Spiral/dmp demonstrate
that the new methods enable performance gains of up to 30%.

Acknowledgments

First of all, I would like to thank my advisor Christoph Ueberhuber for his guid-
ance, his comments on drafts of this work, and for giving me the chance to gain
experience with high-performance computing equipment that is usually not ac-
cessible to students.

Many thanks also go to Juergen Lorenz, Stefan Kral, and Franz Franchetti. Most
of my knowledge about supercomputing probably origins in conversiations we had
at the Institute for Analysis and Scientific Computing.

I am most grateful to my friend Melanie Schuster for her encouragement in bad
times, for sharing the good times with me and for her love throughout the years.

The greatest thanks go to my parents. Their encouragement, advice, and support
throughout the years have made it possible for me to get this far.

Andreas Bonelli

Contents

1 Introduction . 1

1.1 High Performance Computing 5

1.2 Parallel Computing . 9

1.3 Problems in High Performance Computing 16

1.4 Code Generation for Numerical Software 18

1.5 SPIRAL/DMP and its Novelties 21

1.6 Synopsis . 24

2 The Kronecker Product . 25

2.1 Notation . 26

2.2 Kronecker Products . 29

2.3 Algebraic Properties of Kronecker Products 29

2.4 Kronecker Products and Parallel Programming 31

3 Permutations . 34

3.1 Stride Permutations . 34

3.2 Stride Permutations and Parallelism 37

3.3 Extended Stride Permutations 42

3.4 Digit Permutations . 43

4 The Fast Fourier Transform (FFT) 46

4.1 The Fourier Transform . 46

4.2 The Discrete Fourier Transform 47

4.3 The Fast Fourier Transform . 53

4.4 Cooley-Tukey Radix-2 Factorization 56

4.5 General CT Factorizations – Radix-p Kernels 57

4.6 DIT and the DIF Decomposition 59

4.7 Multidimensional Fast Fourier Transforms 60

4.8 Parallel Fast Fourier Transforms 62

4.9 Non-FFT Signal Transforms . 65

4.10 Parallel FFT Software . 71

5 SPIRAL/DMP . 73

5.1 Introducing SPIRAL . 73

5.2 Parallel SPL . 77

5.3 Σ-SPL . 89

5.4 Code Generation . 106

5.5 Runtime Environment . 114

5.6 Rescaling . 115

6 Numerical Experiments . 120

6.1 Benchmarking Environment . 120

6.2 Experimental Results of SPIRAL/DMP 121

7 Outlook . 127

7.1 Communication Implementation Progress 127

7.2 Communication Structure Advancements 129

7.3 Usability Improvements . 130

A SPIRAL/DMP Source Codes . 132

A.1 SPL Tags . 135

A.2 SPL Non-Terminals . 136

A.3 SPL Rewrite Rules . 140

A.4 SPL Terminals/Σ-SPL Objects 151

A.5 SPL Terminal to Σ-Spl Transformation Rules 156

A.6 Σ-Spl Optimization Rules . 157

A.7 Σ-Spl Complex to Real Transformation Rules 158

A.8 iCode Objects and C Unparser 159

A.9 Σ-Spl to iCode Transformation Rules 164

A.10 iCode Unparser to C-Code . 167

B Miscellaneous Source Codes . 169

References . 183

Curriculum Vitae . 189

Chapter 1

Introduction

Throughout history merchants, engineers, and scientists have been unsatisfied
with the possibilities, performance, and error rate of mental arithmetic. Therefore,
devices to support calculations have been developed since about 5,000 years.

The first known arithmetic computation machine was the Chinese suanpan. It
consisted of a flat stone covered with sand. Lines were drawn into the sand and
pebbles used as representation of decimal numbers in a combination of base-2 and
base-5 system. Later versions use beads on wires, attached to a wooden frame.
It was adapted and improved by other cultures including the Babylonians, the
Japanese, the Roman, and the Russians. Today, Japanese pupils still learn to use
the soroban in elementary school.

Since the fourteenth century, calculation machines of this kind are referred to
as abacus1. These devices allow addition, subtraction, multiplication, division,
square root, and cube root operations. Today, abaci are still used, especially as
calculation aid for Asian shopkeepers and visually impaired.

Asian shopkeepers still use the abacus today. It is also used to teach mathematics
to blind children in situations where a sighted person would use pencil and paper.

In 1623, Wilhelm Schickard developed the first mechanical calculation device,
called the calculating clock. It was used, among others, by Johannes Kepler. Ma-
chines by Blaise Pascal and Gottfried Wilhelm von Leibniz followed. Based on
Leibniz’ work, Charles Xavier Thomas created the first mass-produced mechani-
cal calculator in 1820. The Thomas Arithmometer could add, subtract, multiply,
and divide. Mechanical calculators, like the base-ten addiator, the comptometer,
the Monroe, the Curta and the Addo-X were used until the 1970s. Leibniz also
introduced the binary numeral system as it is still used today.

In 1801, Joseph-Marie Jacquard developed a loom controlled by punched cards.
The pattern woven by the loom could be changed by changing the cards. This
was the first appearance of a programmable machine. In 1833, Charles Babbage
created the analytical engine which was the first mechanical multi-purpose calcu-
lation device. It utilized a steam engine as power supply.

The U. S.Census Bureau made first use of punched cards and a sorting machine,
designed by Herman Hollerith, for the census in 1890. Hollerith’s company eventu-
ally became the core of IBM. Until the 1950s, IBM continued developing punched

1Latin, originating from abakos, the Greek genitive form of abax (“calculating-table”).

CHAPTER 1. INTRODUCTION 2

card machines to a powerful tool in business data processing. Until the 1970s,
computers have used punched cards as input for their calculations.

Beginning in the 1900s, the mechanical calculation devices were redesigned to use
electric motors rather than steam or human power.

Before World War II, analog computers were the state-of-the-art. Among many
experiments made at that time, the most notable one is probably the water inte-
grator built in the Soviet Union in 1936. It consisted of a room full with pumps
and interconnected pipes. The water level in the pipes represented the stored
numbers. The early digital computers were flexible, but could not solve complex
problems. Analog computers, on the other hand, were specialized to solve one
complex problem, trading off flexibility.

With the development of electric circuits, relays, and vacuum tubes, the era of
modern digital computing started in the 1940s. Famous prototypes of digital
computers are Konrad Zuse’s Z3, Thomas Harold Flowers’ Colossus, Howard
Aiken’s Harvard Mark I built in cooperation with IBM, George Stibitz’ Model K
at Bell Labs, and ENIAC (Electronic Numerical Integrator and Computer) is the
last famous representative of machines attempting to use the decimal system for
calculations developed by the U.S.Army.

During World War II, a lot of German codes, among others the infamous Enigma
system, were successfully broken with the aid of Colossus at the British intel-
ligence center in Bletchley Park. The most famous mathematician working at
this institution was Alan Mathison Turing, whose work was groundbreaking for
modern algorithm and computing science. He devised the Turing Machine, a the-
oretical device to formalize the notion of algorithm execution.

After recognizing the limitations of ENIAC, John von Neumann wrote a widely-
circulated report describing the EDVAC (Electronic Discrete Variable Automatic
Computer) design, in which the programs and working data are both stored in
a single, unified store. This idea, which became known as the “von Neumann
architecture”, serves as the basis for the development of the first really flexible
general-purpose digital computers and is still used today.

The early von Neumann machines Manchester Mark I, developed at the Uni-
versity of Manchester 1948, EDSAC (Electronic Delay Storage Automatic Cal-
culator), developed at the University of Cambridge, and EDVAC are the direct
predecessors of modern computers.

The invention of the transistor in 1947 resulted in a decrease in size and power
consumption compared to the vacuum tube era and allowed the mass production
of computers. Printed circuits, and especially integrated circuits, allowed further
miniaturization and cheaper production. Thus, computers became a bulk prod-
uct in the 1970s and 1980s. The first computer, dedicated to personal use, which
was a commercial success was MITS’ Altair 8800 in 1974. Alarmed by the suc-
cess of home computers, the market leader in mainframe computers and electric

CHAPTER 1. INTRODUCTION 3

typewriters, IBM, introduced the IBM 5150 Personal Computer, which was the
progenitor for IBM-PC compatible hardware platform and today’s PCs, in 1981.

Since the positioning of computers as a mass product, the ever increasing sales
allow the continuous development of new, faster computers at an amazing pace.

In 1965, Gordon Moore, co-founder of Intel, made a prophetic statement [42]:

The complexity for minimum component costs has increased at a rate
of roughly a factor of two per year . . .Certainly over the short term
this rate can be expected to continue, if not to increase. Over the longer
term, the rate of increase is a bit more uncertain, although there is
no reason to believe it will not remain nearly constant for at least 10
years. That means by 1975, the number of components per integrated
circuit for minimum cost will be 65,000. I believe that such a large
circuit can be built on a single wafer.

In 1975, Moore adjusted his statement and projected a doubling only every two
years. Assuming that complexity is reflected by the number of transistors, this
statement still holds true today. Figure 1.1 shows the complexity of Intel proces-
sors released since the 1970s and Moore’s law.

103

104

105

106

107

108

109

1010

1970 1975 1980 1985 1990 1995 2000 2005

Transistors
Transistors max

Moore’s Law

Figure 1.1: Complexity of general-purpose Intel processors. Intel’s complexity data can be
found in Table 1.1.

CHAPTER 1. INTRODUCTION 4

Date Processor Transistors
1971/11/15 4004 2,300
1972/04/01 8008 3,500
1974/04/01 8080 6,000
1976/03/01 8085 6,500
1978/06/08 8086 29,000
1982/02/01 80286 134,000
1985/10/17 80386DX 275,000
1989/04/10 80486DX 1,200,000
1993/03/22 Pentium/1 3,100,000
1994/03/07 Pentium/2 3,200,000
1995/03/01 Pentium/3 3,300,000
1995/11/01 Pentium Pro/1 22,000,000
1997/08/18 Pentium Pro/3 36,500,000
2000/11/20 Pentium 4 “Willamette” 42,000,000
2002/01/07 Pentium 4 “Northwood” 55,000,000
2002/07/08 Itanium 2 “Madison” 220,000,000
2004/12/01 Itanium 2 “Madison” 9M 500,000,000
2006/05/15 Itanium 2 “Montecito” 1,720,000,000

Table 1.1: Intel’s complexity records displayed in Figure 1.1.

Schmidhuber’s law [54] states that the time between radical breakthroughs in
computer science decreases exponentially. He states that every new one will come
about twice as fast as the last one. His timeline up to today is:

1623 Wilhelm Schickard’s first mechanical calculator.

∼ 200 years later

1833 Charles Babbage’s first programmable calculation device.

∼ 100 years later

1930s – 1940s Kurt Gödel’s and Alan Turing’s work on algorithms, and Konrad
Zuse’s first working programmable computer.

∼ 50 years later

1990 World-Wide Web (WWW) created by Tim Berners-Lee at CERN.

Following this rule, the next breakthrough is due in 2015. This is the expected
date, when the fastest computers will match human brains in terms of raw com-
puting power according to Moore’s law. Schmidhuber further speculates that, by
this time, universal learning algorithms and optimal, incremental search in al-
gorithm space will be realized. Schmidhuber’s law would culminate around 2040

CHAPTER 1. INTRODUCTION 5

in an Omega point, a term introduced by Pierre Teilhard de Chardin [12, 58].
This Omega point can also be associated with John von Neumann’s technological
singularity, a term in future studies, which represents a point past which models
of the future cease to give reliable answers. This is possibly the case after the
eventual development of strong artificial intelligence (strong AI), i. e., a form of
AI which can truly reason and solve problems.

However, all these prediction models may be futile, if the current technology
progress is, in fact, the early part of a logistic growth rather than an exponential
one. The future will tell.

1.1 High Performance Computing

Since the first programmable computers it is an issue to optimize the efficiency
of programs to make best use of the hardware provided. As this section will point
out, this applies today more than ever before.

The performance of computing hardware is exponentially increasing for decades.
The measure for a computer’s performance in scientific computing are floating-
point operations per second (flop/s). Intel’s processors are capable of performing
floating-point operations since the 80486DX in 1989. Since the 8086 in the late
1970s Intel was offering coprocessors which provided floating-point functionality.
If the hardware did not support floating-point arithmetic at all, the software had
had to implement these operations as several fix-point operations, which had a
dramatic impact on performance.

Up to the 1990s speed-ups were mainly achieved by raitaskssing the processors’
clock speeds. If a processor’s clock speed is increased by a certain factor, every
program will automatically speed up by the same factor for free because the issued
instructions remain the same, but simply the execution speed is risen. However, by
this time the processor developers started to address other performance limiting
issues by implementing special features.

Memory speed does not increase at the same pace as processor speed, thus, in
the late 1980s, the gap between memory and processor speed started to emerge.
It became increasingly harder to provide the processing unit with enough data to
keep it busy. This was the reason why caches were introduced in the late 1980s.
The processor does not access data from main memory directly, but from cache.
Before the processor can perform an operation, the data elements, along with
the operation itself, have to be loaded into the cache. This is transparent to the
program, however the order of the statements in the program have a great effect
on the efficiency of the caching mechanism. The first caches were separate chips
on the mainboard. Later, they were integrated onto the processor core to allow
faster access. Nowadays, there are up to three levels of cache totaling up to 40MB
capacity.

CHAPTER 1. INTRODUCTION 6

The 80486DX was only able to execute one floating-point operation every eighth
cycle. The reason of this is that one floating-point operation consists of multi-
ple steps requiring one cycle each. In 1993, the Pentium processor introduced
instruction pipelining. This feature made it possible to issue an operation every
cycle by overlapping the different steps of adjacent operations. However, some
requirements had to be met to achieve this speedup. Foremost, consecutive oper-
ations may not operate on the same data [37]. The Pentium II introduced out of
order execution, which allowed the processor to automatically reorder a sequence
of statements to meet this goal.

The Pentium III “Katmai” introduced Single Instruction Multiple Data (SIMD)
operations called Streaming SIMD Extensions (SSE). SSE allowed the execution
of four floating-point operations per cycle, two additions and two multiplications.
However, in practice it is almost impossible to achieve this performance as it
would require the program to (i) contain exactly the same amount of additions
and multiplications and (ii) issue vector additions and multiplications alternat-
ingly to the processor. Thus, two programs which implement the same algorithm,
and therefore, execute the same number of floating-point additions and multipli-
cations, can differ in runtime by a remarkable factor, which depends only on the
execution order of the statements.

By the year 2000, the curve of clock speeds in Figure 1.2 started flattening.
The reason for this is that the manufacturing technology hits physical obstacles.
Despite the constant miniaturization process and decreasing processor core volt-
ages, the processors require a lot of energy. This energy is reemitted as heat. The
Pentium 4 “Prescott” processors generate more than 100 Watt waste heat on a
surface of a size of a thumbnail. This is comparable to, or above, the output of a
heating coil.

As the customers’ demand for faster processors cannot be satisfied by raising
the clock frequency anymore, other measures have to be taken to continue the
increase in computing power. One of the remedies was the development of multi-
core processors. Intel’s first mainstream dualcore processor was the Pentium 4D
“Smithfield” which debuted in May 2005.

A dualcore processor represents two physically separated processor cores on one
chip. Even though its clock rate does not match high-end single-core processors,
its performance is superior to them, because it is capable of executing the dou-
ble amount of operations per cycle. Other examples for multicore processors are
AMD’s Athlon 64 X2 dualcore series and IBM’s Cell processor, which utilizes even
nine processor cores on one chip. It is forseeable that this trend will continue in
the near future and the number of cores on a chip will be steadily increased.

As with every performance increasing measure, except increasing the clock rate,
the additional performance does not come for free. Usually there are data depen-
dencies between the operations of one program, so the operating system cannot

CHAPTER 1. INTRODUCTION 7

simply spread them over two processor cores. A program has to be separated to
two parts, or threads, to make use of the two cores. Furthermore, the Pentium
4D, has two separate caches for the two cores, which has the effect that, if one
processor changes data, the other processor does not take immediate notice of
that. The data has to be rewritten to main memory and fetched by the other
processor, to avoid inconsistencies.

Figure 1.2 shows the progression of the peak performance and clock rates of
Intel’s mainstream processors since 1970. Up to 2003, the clock rate, which in-
creases at exponential speed, is the main factor of performance gains. In fact
many sources applied Moore’s law to the clock-speed increase in the 1990s. How-
ever, this progress stopped in early 2003. Extrapolating Moore’s law beyond this
point would imply that there should be 10GHz processors available today, which
is, by far, out of reach. Instead, the latest increases in performance have been
achieved by introducing multicore processors in 2005.

103

104

105

106

107

108

109

1970 1975 1980 1985 1990 1995 2000 2005

Clock Speed [Hz]
max
avg

Performance [flop/s]
max
avg

Figure 1.2: Clock speed and floating-point performance of Intel processors. The data under-
lying this diagram can be found in Table 1.2.

The annoying effect of this evolution is that the factor, which provided appli-
cations with free performance increases throughout the last decades, has disap-
peared, as Herb Sutter pointed out [56].

Multicore processors represent one more step in the ladder of specific performance

CHAPTER 1. INTRODUCTION 8

Date Processor Integration Clock flops/cycle
[nm] [MHz]

1989/04/10 80486DX/25 1000 25 1/8
1990/05/07 80486DX 1000 33 1/8
1991/06/24 80486DX 800 50 1/8
1992/08/10 80486DX2 800 66 1/8
1993/03/22 Pentium 800 66 1
1994/03/07 Pentium Rev. I 600 100 1
1995/03/01 Pentium Rev. II 350 120 1
1995/06/01 Pentium Rev. II 350 133 1
1995/11/01 Pentium Pro 600 155 1
1996/01/04 Pentium Rev. II 350 166 1
1996/06/10 Pentium Rev. II 350 200 1
1997/05/07 Pentium II “Klamath” 350 300 1
1998/01/26 Pentium II “Deschutes” 250 333 1
1998/04/15 Pentium II “Deschutes” 250 400 1
1998/08/24 Pentium II “Deschutes” 250 450 1
1999/02/26 Pentium III “Katmai” 250 500 4
1999/05/16 Pentium III “Katmai” 250 550 4
1999/08/02 Pentium III “Katmai” 250 600 4
1999/10/25 Pentium III “Coppermine” 180 700 4
1999/12/20 Pentium III “Coppermine” 180 800 4
2000/03/08 Pentium III “Coppermine” Rev. I 180 1000 4
2000/11/20 Pentium 4 “Willamette” 180 1500 4
2001/04/23 Pentium 4 “Willamette” 180 1700 4
2001/07/02 Pentium 4 “Willamette” 180 1800 4
2001/08/26 Pentium 4 “Willamette” 180 2000 4
2002/01/07 Pentium 4 “Northwood” 130 2200 4
2002/04/02 Pentium 4 “Northwood” 130 2400 4
2002/05/06 Pentium 4 “Northwood” B 130 2530 4
2002/08/25 Pentium 4 “Northwood” B 130 2800 4
2002/11/14 Pentium 4 “Northwood” B 130 3066 4
2003/05/21 Pentium 4 “Northwood” C 130 3200 4
2004/02/01 Pentium 4 “Northwood” C 130 3400 4
2004/06/21 Pentium 4 “Prescott” 560 90 3600 4
2004/11/12 Pentium 4 “Prescott” 570J 90 3800 4
2005/01/01 Pentium 4 Xeon MP 7040 “Paxville” 90 3000 8
2005/05/01 Pentium 4 EE “Smithfield” 90 3200 8
2006/01/05 Core Duo Yonah T2600 65 2160 16

Table 1.2: Intel’s performance records (see Figure 1.2).

CHAPTER 1. INTRODUCTION 9

improvement features, which have been introduced since the 1990s; one more
factor, which has to be taken into account by the application developer. For
instance, if a conventional scalar program is run on a dualcore processor, it will
reach only 50% of the processor’s peak performance in the optimal case, because
it cannot make use of the second core.

In today’s multitasking operating systems, this does not seem to be a serious
obstacle, as in usual desktop operation multiple applications are running at the
same time and can, thus, be worked on in parallel. However, with an increasing
number of cores being part of one processor that situation may change in the
future. Especially in the case of scientific computing already two cores are a
serious issue, as a single numerical program usually utilizes the processor to an
extent of nearly 100% of CPU time.

1.2 Parallel Computing

Despite the steady increase in computing power, there are always scientific prob-
lems which exceed the storage space or performance one computer system can
provide. To overcome this limitation, multiple computers are connected with some
kind of network to work on one large problem parallelly.

Parallel computing is the execution of the same, or different, tasks on multiple de-
vices in parallel for the solution of one superior problem. Depending on the type of
parallelization the problem needs to be divided into more or less autonomous sub-
problems to perform parallelization effectively. Parallelism in modern computing
appears in various flavors:

Vector Instructions

Multicore Processors

Multiprocessor Boards (Shared Memory Parallelism)

Distributed Memory Parallel Computing

Grid Computing

This list ranges from tightly coupled SIMD instructions that perform two or
four operations simultaneously to loosely connected grids consisting of separate
computers interconnected by some kind of network. These types of parallelization
are not exclusive. One program may even utilize all of those, which are present
on a given computer system.

The first three instances of parallel computing have already been covered in the
last section. These are on-chip or on-board features to improve the performance
of one computer without raising its clock rate.

CHAPTER 1. INTRODUCTION 10

Usually parallelism comes with various kinds of requirements. Vectorization re-
quires the operands to be aligned and subsequently ordered in memory. A program
running on multicore processors has to address the problem of incoherent caches,
i. e., if two processors load the same data element and one processor changes it, the
other processor is not given notice of that change. In case of multiprocessor boards
every processor is assigned a certain part of the whole system’s memory, thus,
memory coherence is an issue. Distributed computer systems and computational
grids consist of multiple computers interconnected by a network. Synchronizing
data over a network is very costly, so it is an issue for the performance of the
overall program to minimize the time needed for communication.

All forms of parallelism inevitably generate some kind of overhead compared
to sequential calculation, because there is a need to synchronize the devices in
some way. Therefore, doubling the number of parallelized devices hardly ever
results in a doubling of the performance. In rare cases experiments can show even
super linear speedup. This phenomenon is usually due to cache-effects—the whole
problem did not fit into cache, but the reduced one does. However, such cases
are bound to problem sizes of a certain, usually very small, range, and can be
disregarded in general.

This section deals with issues arising in distributed memory parallelization. Grid
computing is similar to DMP computing, but DMP computing requires homoge-
neous nodes, whereas grids, in general, consist of heterogeneous sets of computers.

If a certain problem cannot be solved on a single computer, there might be two
reasons: (i) The problem does not fit into the computer’s memory or (ii) solving
the problem takes too long.

The fastest supercomputers manufactured by well known players in industry make
use of state-of-the-art computing hardware and use high performance intercon-
nection networks specially developed for parallel computers. As communication
is often a bottleneck in parallel computing, a considerable part of the total cost
of such a computer system is caused by an expensive network infrastructure.

The best parallel computer systems have a flagship function for the companies
which develop them. The publicity and image gain of having “the fastest computer
on the world” is invaluable for companies like IBM, Cray, or NEC. Twice a year
a list of the 500 best performing computer systems2 worldwide is published by
Jack Dongarra et al. This list orders the computer systems by their performance
for the Linpack benchmark [13].

On the other side there are Computer clusters which represent a relatively easy
and cheap method to obtain more computing power. Such a cluster is assem-
bled by off-the-shelf desktop computers. Usually the nodes are interconnected
with cheap 10/100/1000 GBit Ethernet network adapters. The downside of the

2http://www.top500.org/

CHAPTER 1. INTRODUCTION 11

cheap infrastructure is the limited performance. Table 1.3 shows the performance
parameters of Ethernet network adapters compared to specialized high perfor-
mance networks. Nevertheless, the cost-benefit ratio, and the large community,
and thus independence from a certain hardware manufacturer or vendor, makes
them a popular alternative to more expensive solutions. The current top 500 list3

contains 364 high-performance clusters (73%), with the best one ranked 5th.
Computer clusters have been initially developed by Donald Becker and Thomas
Sterling at NASA in 1994.

Using commodity processors in computer clusters does not necessarily have a
negative impact on performance. Nowadays server processors are very similar
to desktop processors. They mainly differ in cache size and power consumption.
However, the various types of network interconnection hardware differ signifi-
cantly in both latency and bandwith (Table 1.3). The impact of these numbers
on the overall performance of a scientific program highly depends on the design
and the structure of the program.

Network Latency Bandwidth
[10−6s] [109bit/s]

Ethernet 175 0.01
Fast Ethernet 175 0.1
Gigabit Ethernet 175 1
Myrinet 6 3.9
SCI (Scali) 5 – 6 5.3
IBM Colony SP Switch 2 2.4
Quadrics 2 7.2
Infiniband 2 10 – 30

Table 1.3: Communication Network Parameters.

There are applications, which are well suited for parallel execution, and thus, are
relatively insensitive with respect to network performance. For instance, parame-
ter studies, where all processes operate on the same data set, the master process
tells the children which parameters to test, and receives a short answer after the
completion of the task, are perfectly suited for parallel execution. The network
performance will not have a huge impact on such programs, as long as they are
well designed and implemented.

A contrary example is the fast Fourier transform (FFT), which this work is deal-
ing with. As each output data point is dependent on every input data point,
the computation of the FFT requires a reasonable amount of network commu-
nication, and thus heavily depends on the network’s performance. Experiments

327th top 500 list, June 2006

CHAPTER 1. INTRODUCTION 12

have shown that an FFT can spend up to, and above, 70% of its execution time
communicating data if it is run on a slow network [1].

As mentioned before, computer clusters and supercomputers also differ in energy
consumption. Current supercomputers often use processors which rely on embed-
ded, low voltage, computing. The best example are IBM’s Blue Gene systems.
BlueGene/L is the number one of the current top 500 list4. It consists of 131,072
PowerPC 440 embedded processors running at 700 MHz. Compared with current
desktop computers this is a rather low clock rate, but the high degree of paral-
lelization and the specialized architecture result in an unmatched performance in
the Linpack benchmark. Such a degree of parallelization would not be possible
with standard desktop processors. Running the same number of desktop proces-
sors would result in an energy consumption and heat output of 10 Megawatt.

Regardless of the type of processors used, such a degree of parallelization raises
another problem. Unlike processors in a desktop computer, which are powered
approximately 2 to 10 hours a day, the processors in a supercomputer are in
constant use. This decreases the average life span of a processor integrated into a
server. Assuming an expected life span of about three years, on the long term 120
processors would break every day or every twelve minutes one of the processors
breaks. This only regards processors but, of course, other pieces of hardware can
break too. The conclusion is that most probably something is broken at any given
time. Furthermore it has to be expected that if a user runs a large, long running
job, it is probable that some hardware utilized by this job will break during the
execution time of this job. Practical observations with IBM’s BlueGene/L system
show that the mean time between failure is much better than this pessimistic
scenario. Still, fault-tolerance in parallel computation has become an important
issue recently [17].

As noted above there are various providers for interconnection networks. Each
company develops its own libraries to access the network adapter’s functionality.
Using such vendor libraries for communication results in extreme incompatibility.
Therefore, the Message Passing Interface (MPI) communication protocol has been
created in 1994. Today MPI is the de-facto standard for network communication
among the processes of parallel programs. MPI provides functions on different
abstraction layers, reaching from explicit send-receive statements between two
processes to high-level collective communication calls, e. g., representing matrix
transposition. Vendors usually provide their own MPI libraries, specially adapted
to their hardware, which implement the standardized interface. A program using
MPI can be adapted to a certain computer system by simply linking it with the
MPI implementation of the network infrastructure vendor. Moreover, there are
open source MPI libraries, which are compatible to a wide range of network types

427th top 500 list, June 2006

CHAPTER 1. INTRODUCTION 13

like MPICH5 or LAM-MPI6.

Parallel computer systems require software that organizes job execution and hard-
ware allocation, i. e., a batch system. When somebody wants to use the parallel
computer he has to create a job. This job’s definition has to include information
like the number of processors and/or nodes required, the maximum execution
time, the location and parameters of the executable, as well as the location of the
output files. If there are not enough free resources to meet the job’s requirements
the job is queued. As soon as it is possible to run the job the batch system assigns
certain nodes and starts the job. If the maximum execution time is exceeded,
the job is deleted. Some batch systems also allow the user to work in interactive
parallel shells. When an interactive parallel shell is created and the requested
resources are available, the user can manually start jobs on the assigned nodes
from the command line.

Resources are exclusively assigned to one job. Thus, a job can be sure that there is
no other process matching for its CPU time. However, depending on the network
topology, there may still be bottlenecks in the communication network deterio-
rating the job’s performance.

1.2.1 Network Topologies

There are basically two categories of network topologies in high-performance com-
puting: (i) static direct interconnection networks and (ii) dynamically switched
networks. In direct interconnection networks one connection always connects two
computers pairwise. Illustrations of the various network types are presented in
Figure 1.3 for direct interconnection networks. Graph theoretical properties of
these topologies are listed in Table 1.4.

Nodes Connections Max. Route Avg. Route
Ring p p p − 1 p/2
Star p p − 1 2 2(p − 1)/p
nD Mesh p = kn nk(kn−1 − 1) n(k − 1) O(n)
nD Torus p = kn nkn nk/2 nk/4
nD Hypercube p = 2n n2n−1 n n/2
Fully Connected p p(p − 1)/2 1 1

Table 1.4: Graph theoretical characteristics of direct interconnection networks.

Ring. In a ring based network all computers are connected in a circle, thus,
every node is connected to two other nodes. Usually data packets can only

5http://www-unix.mcs.anl.gov/mpi/mpich/
6http://www.lam-mpi.org/

CHAPTER 1. INTRODUCTION 14

be sent into one direction, however, it is possible to enhance this topology
to a double ring which allows sending into both directions. This network
type is very error prone because one broken node stops any communication
through it.

Star. In a star topology a central node is connected to all other nodes. The
maximum route length is very short, however, the whole network’s bandwith
is limited to the throughput capacity of the central node. A broken central
nodes renders the whole network inoperable.

Mesh. A Mesh network requires more connections than the above mentioned.
Every connection is bidirectional. Thus, this network topology is less error
prone than the above mentioned. Multiple pairwise communication steps
can be performed simultaneously without interfering each other.

Torus. The torus topology represents a multidimensional ring topology. It is
very popular in high performance computing. With slightly more connec-
tions than a mesh it reduces the maximum and average route lengths by a
factor of two, and allows even more simultaneous communication steps.

Hypercube. Especially in higher dimensions, a hypercube topology requires
substantial amounts of network hardware. The number of nodes of an nD
hypercube is always 2n. In practice only computers with a small number of
nodes, or small portions of larger machines, are connected as a hypercube.

Fully Connected. Fully connecting a parallel computer means that each node
is connected with every other node. This topology is rarely found in practice.

Contrary to direct interconnection networks, in switch based networks, any com-
pute node is connected to a switch. Such switches have multiple ports and when a
package arrives, the switch parses it for its destination and sends it to the correct
output port, which can be connected to another switch or the target computer.
Figure 1.4 shows two representations of switch based networks.

Tree. Classic switch based networks are arranged according to a simple tree. A
certain number of compute nodes are connected to one switch. This group
is called frame. Multiple frame’s switches are connected to each other by
a master switch. Typically frames and master switches are multiply con-
nected to provide a higher bandwith. Parameters like the height of the
tree, the number of layers, and frame sizes, can be adjusted to the desired
performance.

Fat Tree. Unlike in a simple tree, in this case every frame switch has an equal
number of uplink and downlink ports. Thus, fat trees require more master
switches than simple trees. As the bandwith limiting factor is the line’s

CHAPTER 1. INTRODUCTION 15

(a) Ring (b) Star (c) Fully

(d) 2D Mesh

#

"

!

�

�

�

�

�

�

�

�

�� ��

" !

� �

� �

� �

� �

��

��

(e) 2D Torus

(f) 4D Hypercube

Figure 1.3: Direct Interconnection Network Topologies.

bandwith and not the switches’ throughput, congestion is theoretically not
possible in a fat tree. This kind of network can maintain service at limited
bandwith even if all but one master switches are offline.

Supercomputers often use more than one network. Often a maintenance network is
installed in addition to the high-performance network. Therefore, administrative
tasks do not interfer with the parallel jobs. Furthermore, it is possible to install
multiple high-performance networks. The reason for this is, that point-to-point
and collective operations prefer different topologies.

CHAPTER 1. INTRODUCTION 16

· · · · · · · · ·· · ·

· · ·
n n n

Master Switch

Frame Switches

(a) Tree

· · · · · · · · · · · ·· · ·
p Processors p Processors p Processors p Processors

n Frame Switches

n/2 Master Switches

· · ·

· · ·
2p/n2p/n2p/n 2p/n 2p/n2p/n2p/n 2p/n

(b) Fat Tree

Figure 1.4: Switch Based Network Topologies.

For instance, IBM’s Blue Gene/L supercomputer, which consists of 131,072 pro-
cessors on 65,536 nodes, has five different networks. The main network is a
64 × 32 × 32 3D Torus which ensures fast point-to-point message passing be-
tween the compute nodes. Besides that, an adaptive tree network is installed for
certain collective operations. Three more auxiliary networks are dedicated to I/O
and maintenance operations.

Supercomputers, in general, do not utilize wireless interconnects, as their band-
width and latency properties are not suitable for high-performance computing.

1.3 Problems in High Performance Computing

The utilized algorithm is not the only performance impacting factor nowadays.
The way it is implemented, and optimized to the certain processor architecture’s
characteristics, is very important too. It is even possible that algorithms, which
are mathematically suboptimal, yield the best performance because e. g., the num-
ber of additions and multiplications is better balanced for utilization of SSE ex-
tensions. Furthermore, due to the memory-processor bottleneck, the order of the
statements has a reasonable effect to the performance too.

Figure 1.5 shows a histogram of all 15,778 algorithms Spiral can generate for a

CHAPTER 1. INTRODUCTION 17

DCT
(IV)
16 . All of these algorithms are fast algorithms and have approximately the

same number of arithmetic operations. The number of additions varies by 8%,
the number of multiplications by 16%. However, the runtime differs by a factor
of two because compilers can handle certain sequences of operations better than
others.

 0

 100

 200

 300

 400

 500

 500 600 700 800 900

Figure 1.5: Histogram of the runtimes (in nanoseconds) of all 15,778 algorithms for a DCT
(IV)
16 ,

implemented in straight-line code on a Pentium 4, 1.8 GHz, running Linux. [52]

Performance increasing features built into processors nowadays, raise the com-
puter’s theoretical peak performance, but not necessarily the observed (mea-
sured) performance of a certain program. Without adaptations to the source
code a general purpose compiler can hardly make use of them. The reason for
this phenomenon is that most tuning potential is not obvious, but based on do-
main specific characteristics of the implemented algorithm. Therefore, creating
software which utilizes the provided architecture’s features and achieves a satis-
factory performance, requires highly skilled developers. Thus, implementing high
performance numerical software does not only require good knowledge about pro-
gramming and the domain’s algorithms. It also requires the developer to know
about the features of the target architecture and how to use them. Even with this
knowledge, optimizing a programm is still a tough task and involves a lot of trial
and error.

Code running very fast on one particular processor may perform sub-optimal
on another one and vice versa. Different vendor’s processors may even require
the use of different instruction sets. If a developer has created a program that
performs well on one particular processor, he has achieved that for this processor
architecture only. If the program is to be ported to another architecture the
whole creation process has to be redone, or at least some retuning effort is needed.

CHAPTER 1. INTRODUCTION 18

Table 1.2 shows that the exponentially increasing performance in the last decades
had the side effect that the processor architectures’ life cycles constantly became
shorter.

 0

 10

 20

 30

 40

 50

 1970 1975 1980 1985 1990 1995 2000 2005

Figure 1.6: Approximate number of different Intel processors released per year.

Taking into account all the facts mentioned above, the economic efficiency of
manually tuning programs to achieve high performance is questionable, at least.
Due to the rapid development in processor technology, the vendor companies tend
to provide high performance libraries (like Intel’s MKL) for certain problems,
which promise a promotional effect, while ignoring less important ones.

1.4 Code Generation for Numerical Software

Current general purpose compilers are not able to generate code competitive with
hand-tuned code in efficiency. To overcome this shortcoming, automatic program
generation, optimization, and platform adaptation has been introduced [44]. Im-
portant examples include Fftw [28, 29], Atlas [65], and Spiral [51].

The effort to implement fast programs is steadily increasing together with the
introduction of processor features, which have to be utilized to achieve maximum
performance. At the same time processor architectures’ life-cycles are becoming
shorter. This leads to an escalating requirement of human resources to produce
platform optimized software in time. Thus, on the long term, manual implemen-
tation and tuning of high performance software is economically unbearable. The
only way to counter this development is to generate these programs with reusable
code generators, which can be continually adapted to cover programming tech-
niques for new platforms.

In general, a code generator shall produce code which yields optimal performance
for a certain problem in it’s domain. Often code generators use divide and con-
quer dynamic programming mechanisms. The original problem is broken down to
smaller ones, which are easier to optimize. The generator knows several alternative

CHAPTER 1. INTRODUCTION 19

methods to implement these building blocks. Because of today’s computer archi-
tectures’ complexity, the runtime of a source code segment on a certain computer
is not exactly predictable. Thus, generators usually rely on runtime measurements
to find out which alternative performs best. Up to a certain extent, model based
optimization can support this process, but measuring runtimes is unavoidable to
produce reliable results. Once, the best code for the certain problem’s building
blocks is found, the generator works back up, utilizing the solutions for the sub-
problems found before, and again, searching over alternative ways to implement
their combination.

To be able to generate fast code, the code generator has to dispose of code pieces
which actually are performant on the target architecture. For this purpose, At-
las uses manually implemented and tuned code segments. Fftw also includes
hard-coded codelets, but they have been automatically generated with genFFT

[26] before. Spiral dynamically generates the building blocks itself upon the
generation of the whole problem. All of these software products produce highly
satisfactory results and are competitive with vendor-supplied highly platform op-
timized libraries.

Even though automatic generation would also allow more flexibility, current code
generators have as restrictive interfaces to the surrounding application as static
libraries. The application has to meet certain requirements to allow a straightfor-
ward utilization of the code generator. As described later, this is one of the issues
adressed by the work presented in this paper.

1.4.1 Code Generation for Parallel Systems

While on single-processor machines highly satisfactory efficiency is achieved [20],
the current situation on parallel computers—in particular on distributed memory
machines—is far from being optimal.

The addition of network communication to the issues of scalar performance opti-
mization adds an additional layer to the, already complex, issues of optimization.
Futhermore, communication performance is very hard to predict and can fluctu-
ate. As the measured program will not be the only one running on the parallel
system, the current network traffic of other applications can result in a drastic de-
crease of the communication performance. Especially tree networks (see Fig. 1.4a)
are very vulnerable to such congestions, as many nodes share the frame’s uplink
connections. The network traffic of other applications is not predictable and can
change randomly. Therefore, network congestion is usually accepted as a non
influenceable fact, which can cause reasonable fluctuations of the application’s
performance.

When a user launches a parallel program, he will usually not utilize the whole
parallel computer but rather a portion of it. These nodes, assigned by the batch

CHAPTER 1. INTRODUCTION 20

system, form a sub-topology of the whole system’s one. Furthermore, on computers
with multiple processors per node, the user often cannot steer how many proces-
sors should be used per node. These issues can also cause runtime oscillations, but
in theory they are known at the beginning of code execution. In practice, however,
there is no standardized way to gather this information across platforms.

Due to the low demand, high performance network interconnection hardware is
very expensive, so computer clusters often show the tendency to provide high com-
putation performance while containing relatively poor networks. Some algorithms
can be adapted to this fact by trading off communication and computation effort.
It is even possible to decrease the granularity of the computation, i. e., to reduce
the number of processors involved in computation, which results in a decrease
of the communication volume, while the number of operations per processor is
increased.

If an algorithm does not allow an implementation which guarantees the same
workload to be carried out on every processor the balancing of the workload
between the processes is critical to make maximum profit of the parallel system. If
the workload even depends on the input data, e. g., iterative algorithms which are
executed until the result meets a certain precision, dynamic load balancing may
be of use. However, it must be kept in mind that the communication caused by
the load balancing system itself may cause a significant communication overhead
too.

State-of-the-Art in Code Generation for Parallel Systems.

The following projects have in common that they deal with generating optimized
message passing parallel code for given target systems. The respective domains
range from general problems in linear algebra and signal transformation to more
specific computations, for example, in quantum chemistry. The parallelization
methods dealt with vary from classic loop transformation to formula manipulation
on a mathematical level.

A compiler framework generating MPI code for arbitrarily tiled for-loop nests by
performing various loop transformations to gain inherent coarse-grained paral-
lelism is presented in [32].

The publications [50, 61, 62] describe the generation of collective communication
MPI code by automatically searching for the best algorithm on a given system.
Another approach for empirically generating efficient all-to-all communication
routines for Ethernet switched clusters is introduced in [18, 19].

ScaLapack [4] is a portable library of high performance linear algebra routines
for distributed memory systems following the message passing model. Built upon
Lapack, it is highly scalable on parallel architectures using arbitrary processor
numbers. ScaLapack requires the user to define the processor configuration and
to distribute the matrix data himself.

CHAPTER 1. INTRODUCTION 21

[2] presents a parallel code generator for a class of computational problems in
quantum chemistry. The input described by tensor contractions is manipulated
using algebraic transformations reducing the operation count. Data partitioning
and memory usage optimization is performed for a specified number of processors
on a given target system by using dynamic programming search.

[40] describes the extension of a sequential self-adapting package for the Walsh-
Hadamard transform (WHT) to generate MPI code. Different WHT matrix fac-
torizations provided in Kronecker notation exhibit different data distributions
and communication patterns. Searching the space of WHT formulas leads to the
best performing factorization on a given platform.

Fftw [28] is a self-adapting FFT library for one or higher dimensional real and
complex data of arbitrary input size. Typically, Fftw produces code that runs
faster than other publicly available FFT codes and compares well to vendor li-
braries. MPI support, i. e., MPI-Fftw, is available in Fftw 2.1.5 only but not in
the more recent version 3.1 [29]. A comprehensive instruction to Fftw is given
in Section 4.10.

1.5 SPIRAL/DMP and its Novelties

Linear digital signal processing (DSP) transforms such as the ubiquitous fast
Fourier transform (FFT) are very important tools in computational science and
engineering. Typically, FFTs are used as subroutines in compute intensive appli-
cations.

Requirements. Application programmers would require black-box FFT routines
that (i) can easily be plugged into existing applications with as little additional
hand coding as possible and (ii) return their computational results as fast as pos-
sible. Unfortunately, today’s high performance FFT libraries, such as the state of
the art library Fftw, are not able to meet these user requests due to performance
reasons [15, 35], which will be explained in the following.

Distributed memory parallel FFTs require remote data access operations, im-
posing costly network communication between successive computational stages.
Practical experiments [1] show that substantial portions of a parallel FFT’s run-
time are spent on network communication.

Performance Aspects. To achieve a satisfactory performance, FFT libraries
like Fftw normally prescribe specific input and output data distributions (usu-
ally slab decompositions) while application programmers often prefer other types
of data layout. The resulting necessity of transforming data having different dis-
tributions back and forth leaves the user with a demanding task. Even worse, the
additional runtime needed for user-implemented data redistributions reduces the

CHAPTER 1. INTRODUCTION 22

overall performance and may outweigh the benefit of a high performance FFT
library in many cases.

Additionally, Fftw tries to optimize the number of processors really used for a
scaled FFT computation, thus reacting on the tradeoff between communication
and computation. However, the number of processors used for a certain transform
is not static, but can vary every time the plan is recreated. Thus, programs to
be run on a large variety of machines require an adaptive redistribution routine,
which has to be hand coded and called prior and posterior to calling the FFT
routine as it is not possible to know in advance how many processors Fftw will
require to calculate on.

The data reorganization steps prior and posterior to any parallel Fftw call con-
stitute two additional communication steps, which cannot be taken into account
in Fftw’s runtime optimization. If these steps are not implemented optimally a
significant deterioration may occur. Thus, even if the FFT’s runtime is optimized,
the overall runtime on a parallel system may be far from being optimal.

These issues are not discussed and evaluated in the benchmarks of any FFT
routine, despite the fact that they may have a huge impact on the application’s
overall performance.

As compatibility and performance seem to be competing issues, application devel-
opers often shy from using high performance FFT libraries. They rather decide to
create their own tailor-made FFT routines to exactly fit the application’s general
framework [16].

SPIRAL. The signal processing library Spiral [51], follows a comprehensive
approach to code generation. Contrary to other software systems aiming at that
purpose, Spiral includes multiple layers of rewriting and optimization ranging
from formula rewriting down to loop unrolling and optimization of integer ex-
pressions used as array indices.

Spiral’s rewriting system represents a powerful instrument for formula manip-
ulation on a mathematical level. By utilizing this tool it is possible to expose
parallelism in signal transform formulas to prepare them for parallelized imple-
mentation and execution. Furthermore, Spiral contains various types of opti-
mization, like vectorization [21] or fused multiply-add utilization [64], which are
helpful in the automatic generation of efficient parallel code. An overview of Spi-
ral’s architecture and features will be given in Section 5.1.

SPIRAL/DMP. The newly developed Spiral/dmp, an exension to Spiral,
provides a framework for automatically generating distributed memory parallel
code that calculates single and multi-dimensional signal transforms.

The development goal of Spiral/dmp was to provide an automatic generator for
high-performance parallel code, while maintaining flexibility and usability on both
the generation level and the application level. Using Spiral/dmp in the context

CHAPTER 1. INTRODUCTION 23

of larger applications does not require any additional hand coding to be done by
the application developer.

Input to Spiral/dmp is a descriptive definition of the desired signal transform.
In case the application, in which the transform shall be embedded, uses a data
layout other than slab distribution, the user may pass a mathematical definition
of this individual distribution to Spiral/dmp, where a transform customized to
this particular application is generated.

Like Fftw, Spiral/dmp automatically optimizes the number of processors ac-
tually used for the calculation in relation to communication speed, but any down-
scaling to be done in this context is totally transparent to the surrounding ap-
plication. Spiral/dmp does not require the application developer to manually
implement code that carries out any kind of data redistribution. Moreover, Spi-
ral/dmp itself does not carry out any redistribution outside the scaled FFT, as
illustrated in Fig. 1.7. Crossed blocks represent communication steps, uncrossed
ones computation. Ascending and descending trapezoidal blocks symbolize the
rescaling steps. The small blocks are rescaled blocks. The execution order is from
left to right.

(a) FFT without scaling

(b) Fftw rescaling

(c) Spiral/dmp rescaling

Figure 1.7: Plain and rescaled execution of a transform which requires three communication
steps, e. g., one-dimensional FFT’s. Crossed blocks represent communication steps, uncrossed
ones computation. Ascending and descending trapezoidal blocks symbolize the rescaling steps.
The small blocks are rescaled blocks. The execution order is from left to right.

Data rescaling is done by Spiral/dmp in the first and the last communication
step, needed for the transform’s implementation anyway. Compared to Fftw’s
downscaling approach this kind of rescaling saves two communication steps. More-
over, the computational parts outside the outermost communication steps profit
from the increased granularity. Larger, composite, signal transforms with multiple

CHAPTER 1. INTRODUCTION 24

communication steps, like FFT based convolutions, make particular profit from
this kind of optimization.

The output of Spiral/dmp’s generation process is one function that calculates
the requested signal transform. This function is automatically customized to the
user’s data layout and optimized to the given hardware and its communication
features. Just calling this function is all an application developer has to do for
integrating this transform into his application.

As all the code needed to carry out any specific transform is generated by Spi-
ral/dmp, it is possible to measure and optimize the runtime of parallel FFTs as
a whole. Thus, any optimization is only applied, if it really yields profit for the
surrounding application.

1.6 Synopsis

Chapter 2 summarizes the mathematical framework required to express the new
results presented in this thesis. The main focus is on expressing numerical algo-
rithms by way of matrix factorizations. Furthermore, specific properties of matrix
operations, needed in automatic parallelization, are introduced.

Chapter 3 describes properties of certain classes of permutations, which are im-
portant for the representation and optimization of network communication. Es-
pecially stride permutations are important in this context.

Chapter 4 introduces the fast Fourier transform (FFT) algorithms as products of
sparse matrices and derives possibilities to compute them in parallel systems.

Chapter 5 gives and overview over Spiral’s architecture and features and in-
troduces the newly developed Spiral/dmp. A comprehensive insight is provided
into the objects and rules necessary to break down a DSP transform to paralleliz-
able factors and to generate optimized parallel code within Spiral/dmp.

Chapter 6 shows the results of performance measurements of Spiral/dmp.

Chapter 7 outlines ongoing work and potential for future improvements as well
as enhancements of Spiral/dmp.

Chapter 2

The Kronecker Product

In this chapter, Kronecker products and their algebraic properties are introduced
from a point of view well suited to algorithmic and programming needs. It will
be shown that mathematical formulas, involving Kronecker product operations,
are easily translated into various programming constructs and how they can be
implemented on vector and parallel machines.

The Kronecker product formalism has a long and well established history in
mathematics and physics but until recently, it has gone virtually unnoticed by
computer scientists.

This is changing because of the strong connection between certain Kronecker
product constructs and advanced computer architectures. Properties of Kronecker
algebra provide powerful mechanisms to express (signal processing) algorithms as
compositions of factors representing equivalent stages of computation in a hard-
ware transformation environment representing hardware functional primitives
(Johnson et al. [39]). By this identification, Kronecker products have emerged
as a powerful tool for designing algorithms for parallel computer systems.

By algebraically manipulating Kronecker product formulas, different programs
that achieve the same computation, but have different data flow and performance
characteristics, can be obtained.

Algorithms may be expressed as distinct organizations of computational kernels,
which therefore stand for suitable, high-level implementations of various hardware
structures. On the basis of this high-level approach, it yields a simplification in
processing to select and reorganize this basic building blocks for changing hard-
ware architectural demands. Different algorithms correspond to different sparse
matrix factorizations.

In this work the Kronecker product formalism, also known as direct or tensor
product, offers a unifying basis for the description of FFT algorithms. The math-
ematical description of parallelism and data distribution makes it possible to
conceptualize parallel programs, manipulate them using linear algebra identities
and thus better map them onto our target parallel architectures.

VanLoan [63] uses this technique for a state of the art presentation of FFT algo-
rithms in his remarkable book “Computational Frameworks for the Fast Fourier
Transform”. In the twenty-five years between the publications of Pease [48] and
VanLoan [63], only a few authors used this powerful technique: Temperton [57]

CHAPTER 2. THE KRONECKER PRODUCT 26

and Johnson et al. [39] for FFT implementations on classic vector computers
and Norton and Silberger [45] on parallel computers with MIMD architecture.
Recently, Gupta [34], Pitsianis [49], and Püschel et al. [53] used the Kronecker
product formalism to synthesize FFT programs.

As a consequence, the Kronecker product approach to FFT algorithm design
antiquates more conventional techniques like signal flow graphs, where no well
defined methodology for modifying FFT algorithms is available. They rely on
the spatial symmetry of a graph representation of FFT algorithms, whereas the
Kronecker product exploits matrix algebra.

2.1 Notation

The notational conventions introduced in this section are used throughout the
following text.

2.1.1 Vector and Matrix Notation

In this text, vectors appear as lowercase letters x, y, z, . . . while matrices appear as
capital letters A, B, C, For the purpose of a unified notation with the signal
processing literature, row and column indices of vectors and matrices start from
zero unless otherwise stated. The vector space of complex n-vectors is denoted
by Cn.

Example 2.1 (Vector Notation) A 2-dimensional complex vector x ∈ C2 is expressed as

x =

(
x0

x1

)
, x0, x1 ∈ C.

Complex m-by-n matrices are denoted by Cm×n.

Example 2.2 (Matrix Notation) A 2-by-3 complex matrix A ∈ C2×3 is expressed as

A =

(
a00 a01 a02

a10 a11 a12

)
, a00, . . . , a12 ∈ C.

Note that rows and columns are indexed from zero.

2.1.2 Submatrix Specification

Submatrices of A ∈ Cm×n are denoted by A(u, v), where u and v are called index
vectors with the purpose to specify the rows and columns of A used to construct
the respective submatrix.

CHAPTER 2. THE KRONECKER PRODUCT 27

Index vectors are specified using the colon notation:

u = k : j ↔ u = (k, k + 1, . . . , j), k ≤ j.

Example 2.3 (Submatrix Notation) A(2 : 4, 3 : 7) ∈ C3×5 is a 3-by-5 submatrix of A ∈
Cm×n (m ≥ 4, n ≥ 7) defined by the rows 2, 3 and 4 and the columns 3, 4, . . . , 7 of A.

There are special notational conventions when all rows or columns are extracted
from their parent matrix. In particular, if A ∈ Cm×n, then

A(u, :) ⇔ A(u, 0 : n − 1)
A(:, v) ⇔ A(0 : m − 1, v).

Vectors with non-unit increment are specified by the notation

u = k : j : i ⇔ u = (k, k + i, . . . , j),

where i ∈ Z\{0} denotes the increment.

2.1.3 Column and Row Partitioning

Let A ∈ Cm×n and a:,j ∈ Cm designate the jth column and ak,: ∈ Cn the kth row
of A, then

A = (a:,0 | a:,0 | · · · | a:,n−1)

is a column partitioning, and

A =

a0,:

a1,:
...

am−1,:

is a row partitioning.

2.1.4 Direct Vector Sum

Definition 2.1 (Direct Vector Sum) Let yN = (x1, . . . , xn−1) be a vector of
length N = nm and

x0 = (u0, . . . , um−1), . . . , xi = (umi, . . . , um(i+1)−1), . . . , xn−1 = (umn, . . . , u(mn)−1)

are subvectors partitioned of yn, then the direct sum of vectors is defined by

yN =
n−1⊕

i=0

xi = x0 ⊕ x1 ⊕ . . . ⊕ xn−1 = (u0, . . . , u(nm)−1)
⊤ ∈ CN .

CHAPTER 2. THE KRONECKER PRODUCT 28

2.1.5 Direct Matrix Sum

Definition 2.2 (Direct Matrix Sum) For matrices of any dimension, e. g.,
A0, A2, . . . , A3, the direct sum is defined as the block diagonal matrix

n−1∑

i=1

Ai = A0 ⊕ A1 ⊕ . . . ⊕ An−1 =

A0 0 . . . 0
0 A1 . . . 0
...

...
. . .

...
0 0 . . . An−1

.

2.1.6 Elementwise Multiplication

If x, y ∈ Cn, then x ∗ y ∈ Cn is defined elementwise by

(x ∗ y)i := xiyi, i = 0 : n − 1.

More generally, if A, B ∈ Cm×n, then the product C = A ∗ B ∈ Cm×n is defined
element wise by

ckj := akjbkj, k = 0 : m − 1, j = 0 : n − 1.

The result of the elementwise multiplication is also known as Schur or Hadamard
product.

2.1.7 Storage Conventions in Fortran and C

There are two different approaches to arrange a data vector into a matrix.

Let N = n1n2

1. The data vector x ∈ CN is arranged into a matrix xn1×n2 ∈ Cn1×n2 in
column major order (Fortran storage convention), i. e.,

[xn1×n2]k,j := xk+jn1 with k = 0 : n1 − 1, j = 0 : n2 − 1 (2.1)

2. The data vector x ∈ CN is arranged into a matrix xn2×n1 ∈ Cn2×n1 in row
major order (C storage convention), i. e.,

[xn2×n1]k,j := xj+kn1 with j = 0 : n1 − 1, k = 0 : n2 − 1 (2.2)

(2.2) corresponds to the transposed (2.1) storage convention, i. e.,

xn2×n1 := x⊤
n1×n2

.

CHAPTER 2. THE KRONECKER PRODUCT 29

2.2 Kronecker Products

The block structures arising in factorizations of the DFT matrix are highly regular
and to describe and manipulate them, a special notation is used.

Definition 2.3 (Kronecker Product) The Kronecker product (direct product
or tensor product) of the matrices A ∈ Cm1×n1 and B ∈ Cm2×n2 is the block
structured matrix

A ⊗ B :=

a0,0B . . . a0,n1−1B

...
. . .

...
am1−1,0B . . . am1−1,n1−1B

 ∈ Cm1m2×n1n2 .

2.3 Algebraic Properties of Kronecker Products

Kronecker products have the following algebraic properties (Horn, Johnson [38]).

Property 2.1 (Associativity) If A, B, C are arbitrary matrices, then

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

Thus, the expression A ⊗ B ⊗ C is unambiguous.

Property 2.2 (Transposition) If A, B are arbitrary matrices, then

(A ⊗ B)⊤ = A⊤ ⊗ B⊤.

Property 2.3 (Inversion) If A, B are arbitrary matrices, then

(A ⊗ B)−1 = A−1 ⊗ B−1.

Property 2.4 (Mixed-Product Property) If A, B, C, D are arbitrary ma-
trices for which the products AC and BD are defined, then

(A ⊗ B) (C ⊗ D) = A C ⊗ B D.

Special cases of this property occur when A = C = I or B = D = I.

The mixed-product property can be generalized in two different ways (for matrices
of appropriate size):

(A1 ⊗ A2 ⊗ · · · ⊗ Ak)(B1 ⊗ B2 ⊗ · · · ⊗ Bk) = A1B1 ⊗ A2B2 · · · ⊗ AkBk,

and

(A1 ⊗ B1)(A2 ⊗ B2) · · · (Ak ⊗ Bk) = (A1A2 · · ·Ak) ⊗ (B1B2 · · ·Bk).

The Kronecker product can be distributed with respect to multiplication with an
identity matrix.

CHAPTER 2. THE KRONECKER PRODUCT 30

Property 2.5 (Distributivity) If A is an arbitrary matrix, then

Ip ⊗ (Iq ⊗ A) = Ipq ⊗ A.

A consequence of this property is the following decomposition.

2.3.1 The Kronecker Product Decomposition

Corollary 2.1 (Decomposition) If A ∈ Cm1×n1 and B ∈ Cm2×n2, then

A ⊗ B = AIn1 ⊗ Im2B = (A ⊗ Im2)(In1 ⊗ B),

A ⊗ B = Im1A ⊗ BIn2 = (Im1 ⊗ B)(A ⊗ In2).

According to this, a Kronecker product A ⊗ B can be multiplied with an input
vector x by executing in two stages. One performing a vector and another per-
forming a parallel operation. As will be seen shortly, each of these factors estab-
lishes equivalence between Kronecker product compositions and computational
structures.

Stride permutations, which are very common in use with Kronecker products,
can transform a parallel into a vector factor and vice versa when they are used
to regroup data of the multiplied input operand.

2.3.2 The Kronecker Vector-Matrix Product

The multiplication of a vector by a matrix consiting of the Kronecker product of
two submatrices, one of them being an identity, can alternatively be executed by
a matrix-product of two dense matrices, describe in

Property 2.6 (Column Multiply) If A ∈ Cr×r and x ∈ Cn with n = rc, then

y = (Ic ⊗ A)x ⇔ yr×c = Axr×c.

and

Property 2.7 (Row Multiply) If A ∈ Cc×c and x ∈ Cn with n = rc, then

y = (A ⊗ Ir)x ⇔ yr×c = xr×cA
⊤.

CHAPTER 2. THE KRONECKER PRODUCT 31

2.4 Kronecker Products and

Parallel Programming

A connection between Kronecker products and computer architecture can be
established by associating special types of Kronecker products with particular
types of processor and / or memory organization.

2.4.1 Kronecker Parallel Factors

In ⊗ B is the direct sum (Definition 2.2) of n block diagonal copies of B and
therefore called Kronecker parallel factor. If the vector x is distributed block-wise
to n processors, a matrix-vector multiplication can be done in parallel without
any inter-processor communication, which yields optimal results on parallel ar-
chitectures.

Let Bk ∈ Ck×k and Il ∈ Cl×l be the identity matrix. Then

(Il ⊗ Bk)x =

Bk

Bk

. . .

Bk

x(0 : k − 1)
x(k : 2k − 1)

...
x((l − 1)k : kl − 1)

.

Expressions of the form Il ⊗ Bk are called parallel stages because they can be
implemented efficiently as distributed, independent workloads on parallel archi-
tectures.

Example 2.4 (Parallel Stages) Let B2 ∈ C2×2 and let I3 ∈ C3×3 be the identity matrix.
Then

y := (I3 ⊗ B2)x

is given by

y0

y1

y2

y3

y4

y5

:=

b0,0 b0,1

b1,0 b1,1

b0,0 b0,1

b1,0 b1,1

b0,0 b0,1

b1,0 b1,1

x0

x1

x2

x3

x4

x5

.

This matrix-vector product can be realized by splitting the input vector x ∈ C6 into 3 subvectors
of length 2 and performing the respective matrix-vector products

B2x(2j : 2(j + 1) − 1), j = 0, 1, 2

in parallel on 3 processors Pj . Each processor Pj has to compute:

P0 :

(
y0

y1

)(
b0,0 b0,1

b1,0 b1,1

)(
x0

x1

)
,

CHAPTER 2. THE KRONECKER PRODUCT 32

P1 :

(
y0

y1

)(
b0,0 b0,1

b1,0 b1,1

)(
x0

x1

)
,

P2 :

(
y0

y1

)(
b0,0 b0,1

b1,0 b1,1

)(
x0

x1

)
.

The operation y := (Il ⊗Bk)x can be implemented either sequentially (as a loop)
or as a parallel operation (Johnson et al. [39]).

Algorithm 2.1 (y := (Il ⊗ Bk)x)

do i = 0 : l − 1
y(ik : (i + 1)k − 1) := Bkx(ik : (i + 1)k − 1)

end do

2.4.2 Kronecker Vector Factors

A ⊗ In is called a Kronecker vector factor because it can be used to represent a
vector operation on vectors of length n. Vector x is distributed on n processors for
vector computation, and therefore a cyclic distribution of x is required without
requiring either replication or communication of data.

Let Ak ∈ Ck×k and let Il ∈ Cl×l be the identity matrix. Then

(Ak ⊗ Il)x =

a0,0Il . . . a0,k−1Il

...
. . .

...
ak−1,0Il . . . ak−1,k−1Il

x(0 : l − 1)
x(l : 2l − 1)

...
x((k − 1)l : kl − 1)

=

a0,0(0 : l − 1) + . . . + a0,k−1x((k − 1)l : kl − 1)

...
ak−1,0(0 : l − 1) + . . . + ak−1,k−1x((k − 1)l : kl − 1)

 .

Since these operations may be performed by a vector processor, expressions of
the form Ak ⊗ Il are called vector stages.

Example 2.5 (Vector Stage) Let A2 ∈ C2×2 and let I3 ∈ C3×3 be the identity matrix. Then

y := (A2 ⊗ I3)x

is given by

y0

y1

y2

y3

y4

y5

:=

a0,0 a0,1

a0,0 a0,1

a0,0 a0,1

a1,0 a1,1

a1,0 a1,1

a1,0 a1,1

x0

x1

x2

x3

x4

x5

.

CHAPTER 2. THE KRONECKER PRODUCT 33

This matrix-vector product can be computed by splitting the input vector x ∈ C6 into 2
subvectors of length 3 and performing single scalar multiplications with these subvectors:

y0

y1

y2

 := a0,0

x0

x1

x2

+ a0,1

x3

x4

x5

 ,

y3

y4

y5

 := a1,0

x0

x1

x2

+ a1,1

x3

x4

x5

 .

Chapter 3

Permutations

3.1 Stride Permutations

Stride permutations are frequently used tools in Kronecker product representa-
tions of FFT algorithms because of their ability to commute1 a Kronecker product
factor. A stride permutation Lmn

n is an mn × nm permutation matrix.

Definition 3.1 (Stride Permutation) For a vector x ∈ Cmn the stride per-
mutation Lmn

n is defined by

Lmn
n x :=

x(0 : (m − 1)n : n)
x(1 : (m − 1)n + 1 : n)

...
x(n − 1 : mn − 1 : n)

,

Lmn
n x = j → x(j · n mod mn − 1), for j = 0, . . . , mn − 2; mn − 1 → mn − 1.

The permutation operator Lmn
n sorts the components of x according to their index

modulo n. Thus, starting from the first element, elements with indices equal to
0modn come first and then starting from the second element, elements of x with
indices equal to 1modn and so on.

The notation Lmn
n indicates that the elements of a vector of length mn are loaded

into m segments each at stride n. This operation is also called an n-way perfect
shuffle permutation.

3.1.1 Even-Odd Sort Permutations

The permutation y := Ln
2 x (n even) is called an even-odd sort permutation,

because it groups the even-indexed and odd-indexed components together.

1Convert a parallel factor into a vector factor and vice versa.

CHAPTER 3. PERMUTATIONS 35

Example: For x ∈ C8, y := L8
2 x is given by

L8
2 x =

1
. . 1
. . . . 1 . . .
. 1 .
. 1
. . . 1
. 1 . .
. 1

x0

x1

x2

x3

x4

x5

x6

x7

=

x0

x2

x4

x6

x1

x3

x5

x7

with the zeroes represented as dots.

If x ∈ Cn, then the even-odd sort permutation y := Ln
2 x (y ∈ Cn) can be

implemented as

Algorithm 3.1 (y := Ln

2
x)

n∗ := n/2
do i = 0 :n∗ − 1

y(i) := x(2i)
y(i + n∗) := x(2i + 1)

end do

3.1.2 Perfect Shuffle Permutations

The permutation y := Ln
n/2 x (n even) is called a perfect shuffle permutation, since

its action on a deck of cards would be the shuffling of two equal piles of cards so
that the cards are interleaved one from each pile. Because of its importance, the
perfect shuffle permutation Ln

n/2 is denoted in short by Πn.

Example: For x ∈ C8, y := L8
4 x = Π8x is given by

Π8x =

1
. . . . 1 . . .
. 1
. 1 . .
. . 1
. 1 .
. . . 1
. 1

x0

x1

x2

x3

x4

x5

x6

x7

=

x0

x4

x1

x5

x2

x6

x3

x7

with the zeroes represented as dots.

For x ∈ Cn the perfect shuffle permutation y := Πnx (y ∈ Cn) can be imple-
mented as

Algorithm 3.2 (y := Πnx)

n∗ := n/2

CHAPTER 3. PERMUTATIONS 36

do i = 0 :n∗ − 1
y(2i) := x(i)
y(2i + 1) := x(n∗ + i)

end do

3.1.3 Algebraic Properties of Stride Permutations

Stride permutations have the following algebraic properties for arbitrary positive
integers.

Property 3.1 (Identity)
Lm

1 = Lm
m = Im

Property 3.2 (Inversion/Transposition)

(Lmn
n)−1 = (Lmn

n)⊤ = Lnm
m

Example:

(L2i

2)−1 = L2i

2i−1 = Π2i

Property 3.3 (Multiplication)

Lpmn
m Lpmn

n = Lpmn
n Lpmn

m = Lpmn
mn

One central reason why it is practical to use stride permutations in combina-
tion with Kronecker products is that Kronecker products are not commutative.
However, the following holds.

Property 3.4 (Commutation) If A ∈ Cm×m, and B ∈ Cn×n, then

Lmn
n (A ⊗ B) = (B ⊗ A) Lmn

n .

Using property (3.2) leads to

A ⊗ B = Lnm
m (B ⊗ A) Lmn

n .

A stride permutation matrix partitions the computations and communications
by changing the data flows and can therefore be used to define the required data
distribution for a parallel operation, or the communication pattern needed to
transform parallel block structure into cyclic vector structure and vice versa. The
inverse permutation matrix finally reorders data to initial distribution.

Frequently used properties which can be traced back to those stated before are
the following.

CHAPTER 3. PERMUTATIONS 37

Property 3.5 If A ∈ Cm×m, and B ∈ Cn×n, then

A ⊗ B = Lnm
m (In ⊗A) Lmn

n (Im ⊗B).

Property 3.6 If N = rst, then

LN
st = Lrst

s Lrst
t = Lrst

t Lrst
s .

Property 3.7 If N = rst, then

Lrst
t = (Lrt

t ⊗ Is)(Ir ⊗Lst
t).

Lemma 3.1 If N = rs2t, then

Lrs2t
rs = (Lrst

rs ⊗ Is)(Irt ⊗Ls2

s)(It ⊗Lrs
r ⊗ Is).

3.2 Stride Permutations and Parallelism

In parallel programming stride permutations do not only represent local permu-
tations, but also global communication among the involved processors. As global
communication requires other kinds of implementation than local permutations
do, it is necessary to separate these two parts.

Definition 3.2 (Communication Factor) A communication factor for com-
municating elements of a vector of length n on p processors has the form

C ⊗ Ib (3.1)

where pmb = n and the communication pattern C satisfies

C =
[
ci,j

]
0≤i,j<pm

, ci,j ∈ {0, 1} ,

∀i : ∃|j : cij = 1, ∀j : ∃|i : cij = 1,

∀j ∈
{
⌊ i

m
⌋m, . . . , (⌊ i

m
⌋ + 1)m − 1

}
\ {i} : cij = 0.

The product (3.1) represents the communication of m blocks of size b per processor
with communication pattern C.

The definition of a communication factor requires each of the p × m data blocks
to be either communicated over the network or to stay in its original memory lo-
cation. This excludes local permutations which are handled in Kronecker parallel
stages as introduced in Section 2.4.1.

CHAPTER 3. PERMUTATIONS 38

Example 3.1 (Communication Pattern Restrictions) The following matrix illustrates
the restrictions of a communication pattern with p = m = 4 and b = 1.

· 0 0 0 · · · · · · · · · · · ·
0 · 0 0 · · · · · · · · · · · ·
0 0 · 0 · · · · · · · · · · · ·
0 0 0 · · · · · · · · · · · · ·
· · · · · 0 0 0 · · · · · · · ·
· · · · 0 · 0 0 · · · · · · · ·
· · · · 0 0 · 0 · · · · · · · ·
· · · · 0 0 0 · · · · · · · · ·
· · · · · · · · · 0 0 0 · · · ·
· · · · · · · · 0 · 0 0 · · · ·
· · · · · · · · 0 0 · 0 · · · ·
· · · · · · · · 0 0 0 · · · · ·
· · · · · · · · · · · · · 0 0 0
· · · · · · · · · · · · 0 · 0 0
· · · · · · · · · · · · 0 0 · 0
· · · · · · · · · · · · 0 0 0 ·

Each row and each column may only contain one element 1 to maintain the permutation. The
zeros in the diagonal blocks would are mandatory. An element 1 on one of these positions would
represent a local permutation which is prohibited.

3.2.1 All-to-All Communication

The stride permutation Lp2

p is a special pattern for communication among p pro-
cessors.

A communication factor of the form Lp2

p ⊗ Ib communicates one data block of
size b from each processor to every other processor. One such data block also
remains locally on each processor. These non-communicated data blocks do not
only remain on the same processors, but also in the same memory locations, as
the corresponding matrix entries are on the main diagonal. Therefore Lp2

p satisfies
the restrictions of a communication pattern according to Definition 3.2.

Because

Lp2

p Lp2

p = Lp2

p2 = Ip2

it follows that Lp2

p is a self-inverse permutation and has a maximum cycle length
of two. This means that it only consists of pairwise exchanges of data blocks
and fixpoints. These properties make the stride permutation Lp2

p a very attractive
communication pattern as it can be split into pairwise communication steps for
implementation.

CHAPTER 3. PERMUTATIONS 39

Example 3.2 (All-to-All Communication Matrices) Lp2

p all-to-all communication matri-
ces among 2, 3, and 4 processors:

L4
2 =

1 · · ·
· · 1 ·
· 1 · ·
· · · 1

 L9
3 =

1 · · · · · · · ·
· · · 1 · · · · ·
· · · · · · 1 · ·
· 1 · · · · · · ·
· · · · 1 · · · ·
· · · · · · · 1 ·
· · 1 · · · · · ·
· · · · · 1 · · ·
· · · · · · · · 1

L16
4 =

1 · · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· · · · · · · · 1 · · · · · · ·
· · · · · · · · · · · · 1 · · ·
· 1 · · · · · · · · · · · · · ·
· · · · · 1 · · · · · · · · · ·
· · · · · · · · · 1 · · · · · ·
· · · · · · · · · · · · · 1 · ·
· · 1 · · · · · · · · · · · · ·
· · · · · · 1 · · · · · · · · ·
· · · · · · · · · · 1 · · · · ·
· · · · · · · · · · · · · · 1 ·
· · · 1 · · · · · · · · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · · 1

The following example shows that Lp2

p effectively transposes a distributed matrix
stored as an array. The bold ones correspond to the data blocks which remain
locally on the same processor in the same memory location.

Example 3.3 (L9
3

Applied to a Data Vector) L9
3 applied to a vector A, which represents

a 3 × 3 matrix.

A =

a1

a2

a3

a4

a5

a6

a7

a8

a9

=̂

a1 a2 a3

a4 a5 a6

a7 a8 a9

 =⇒ L9
3 ·A =

a1

a4

a7

a2

a5

a8

a3

a6

a9

=̂

a1 a4 a7

a2 a5 a8

a3 a6 a9

Parallel matrix transposition [8] is often required in parallel algorithms. Thus,
the message passing library Mpi [47] provides the function MPI Alltoall which
performs a parallel matrix transposition and saves the application programmer

CHAPTER 3. PERMUTATIONS 40

to care about details of the implementation. However, the pairwise direct total
exchange algorithm, introduced in the following section, shows a relatively easy
way of implementing the parallel matrix transposition split into steps of pairwise
communication.

The following lemma provides formulas to split a general stride permutation Lmn
n

into explicit matrix transpositions and local permutation steps.

Lemma 3.2 If p|m and p|n, then

Lmn
m =

(
Ip ⊗L

mn/p
m/p

)(
Lp2

p ⊗ Imn/p2

)(
Ip ⊗Ln

p ⊗ Im/p

)

m = p =⇒ Lnp
p =

(
Lp2

p ⊗ In/p

)(
Ip ⊗Ln

p

)

n = p =⇒ Lmp
m =

(
Ip ⊗Lm

m/p

)(
Lp2

p ⊗ Im/p

)
.

3.2.2 Pairwise Direct Total Exchange

The all-to-all personalized communication or simply direct total exchange algo-
rithm allows to perform a parallel matrix transposition with optimal usage of the
communication channels, disregarding network congestion issues. It is a direct
algorithm, meaning each data packet is sent directly from source to destination
without intermediate buffering. Requiring p − 1 steps, where p is the number of
processors, in step i = 1, 2, . . . , p − 1, each node exchanges data with the node
determined by taking the bitwise exclusive-or of its number and i. Therefore this
algorithm has the property that the entire communication pattern is decomposed
into a sequence of pairwise exchanges.

Algorithm 3.3 (Direct Total Exchange Algorithm) At step i the proces-
sor j − 1 exchanges data with the processor number XOR(j − 1, step).

do istep = 1 : p − 1
do jproc = 0 : p

idest = XOR(jproc, istep)
end do

end do

XOR denotes the logical exclusive OR operator applied to the binary representation of integer

values.

The diagonal blocks in Step 0 do not need to be globally transposed because each
block still holds its prior position after transposition.

CHAPTER 3. PERMUTATIONS 41

Proc 0 Proc 1 Proc 2 Proc 3 Proc 4 Proc 5 Proc 6 Proc 7

Step 1 1 0 3 2 5 4 7 6
Step 2 2 3 0 1 6 7 4 5
Step 3 3 2 1 0 7 6 5 4
Step 4 4 5 6 7 0 1 2 3
Step 5 5 4 7 6 1 0 3 2
Step 6 6 7 4 5 2 3 0 1
Step 7 0 6 5 4 3 2 1 0

Table 3.1: Send table of a direct exchange matrix transposition of size 8 × 8.

Step 0 Step 1 Step 2

Step 3 Step 4 Step 5

Step 6 Step 7

Figure 3.1: Direct exchange matrix transposition of size 8 × 8.

CHAPTER 3. PERMUTATIONS 42

3.3 Extended Stride Permutations

The original definition of stride permutations as given in Definition 3.1 is some-
what limiting. Especially the set of stride permutations is not closed with respect
to multiplication operations. Therefore the definition of stride permutations will
be extended as follows.

Definition 3.3 (Stride Permutation) For b ∈ Unit(INa−1) The stride permu-
tation’s generating function ℓa

b(j) and the stride permutation matrix La
b are defined

by

ℓa
b(j) :=

{
jb mod a − 1, for j = 0, . . . , a − 2

a − 1 for j = a − 1

La
b :=

[
e

ℓa
b
(0)

a , e
ℓa
b
(1)

a , . . . , e
ℓa
b
(a−1)

a

]T

with ei
j being the i-th unitvector of length j.

Because of

Lmn
n = La

b ⇒ b|a ⇒ b ∤ a − 1 ⇒ b ∈ Unit(INa−1).

this is an extension of Definition 3.1.

Property 3.8 (Cosets of Stride Permutations)

La
b = La

c ⇔ b ≡ c mod a − 1

The former multiplication property (Property 3.3) can now be easily redefined to
the following more elegant property.

Property 3.9 (Multiplication of Extended Stride Permutations)

La
b La

c = La
bc = La

bc mod a−1 .

With this redefinition, e. g., both the products L6
2 L6

2 and L6
3 L6

3 can be described
as the stride permutation L6

4, which was not possible using Definition 3.1.

L6
2 L6

2 = L6
4

L6
3 L6

3 = L6
9 = L6

4

L6
4 =

1 · · · · ·
· · · · 1 ·
· · · 1 · ·
· · 1 · · ·
· 1 · · · ·
· · · · · 1

The set of extended stride permutations of a certain size {La
b |b ∈ Unit(a− 1)} is

isomorphic to the unit-group of INa−1 and thus (La
· , ·) is closed and a group.

CHAPTER 3. PERMUTATIONS 43

3.4 Digit Permutations

Stride permutations only cover a very limited class of permutations. Products of
tensor products of stride permutations and unit matrices (e. g., (Ik ⊗Ll

m) Lkl
n) are

no stride permutations any more. As such products arise during the decomposition
of signal transform algorithms, it is necessary to find a way to handle these
constructs in a satisfying way.

Stride permutations of size 2n can be interpreted as permutations of the n digits
of the binary representation of the index. For instance, L8

2 corresponds to the
permutation (1 2 3) applied on the index’ three digits.

L8
2 [0, 1, 2, 3, 4, 5, 6, 7]T = [0, 2, 4, 6, 1, 3, 5, 7]T

digits permuted
index x1 x2 x3 x2 x3 x1 result

0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 2
2 0 1 0 1 0 0 4
3 0 1 1 1 1 0 6
4 1 0 0 0 0 1 1
5 1 0 1 0 1 1 3
6 1 1 0 1 0 1 5
7 1 1 1 1 1 1 7

Digit permutations expand the domain of stride permutations by replacing the
binary representation with some arbitrary—not necessarily prime—factorization
of the index domain. If n is the length of the vector to be permuted, a repre-
sentation n1, n2, . . . , nk of n is chosen. n1 is the most significant digit, nk the
least significant one. This allows to uniquely represent every number in the in-
dex domain i ∈ {0, 1, . . . , n− 1} by digits (in1

1 , in2
2 , . . . , ink

k) where the superscript
numbers indicate the domain of the digits.

This convention allows to handle a significantly larger class of permutations than
by using simple stride permutations.

Definition 3.4 (Digit Permutation) With n, n1, . . . , nk, i, and in1
1 , . . . , ink

k as
defined above, and p being a permutation on {0, 1, . . . , k − 1}, the digit permu-

tation’s generating function d
(n1,n2,...,nk)
p (i) and matrix D(n1,n2,...,nk)

p can be defined
by

d(n1,n2,...,nk)
p (in) = d(n1,n2,...,nk)

p ((in1
1 , in2

2 , . . . , ink

k))

:= (i
np(1)

p(1) , i
np(2)

p(2) , . . . , i
np(k)

p(k))

D(n1,n2,...,nk)
p in :=

[
ed

(n1,n2,...,nk)
p (0)

n , ed
(n1,n2,...,nk)
p (1)

n , . . . , ed
(n1,n2,...,nk)
p (n−1)

n

]T
.

CHAPTER 3. PERMUTATIONS 44

Example 3.4 (Digit Permutation) The digit permutation D
(2,3,2)
(2 3) operates on a vector of

length 12. The indices i ∈ {0, 1, . . . 11} are converted to the representation (i21, i
3
2, i

2
3). The

permutation p = (2 3) is applied to this representation’s digits and finally the indices are
transformed back to the scalar representation.

D
(2,3,2)
(2 3) x = D

(2,3,2)
(2 3) ((x2

1, x
3
2, x

2
3) = (x2

1, x
2
3, x

3
2)

digits permuted
index i21 i32 i23 i21 i23 i32 result

0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 3
2 0 1 0 0 0 1 1
3 0 1 1 0 1 1 4
4 0 2 0 0 0 2 2
5 0 2 1 0 1 2 5
6 1 0 0 1 0 0 6
7 1 0 1 1 1 0 9
8 1 1 0 1 0 1 7
9 1 1 1 1 1 1 10
10 1 2 0 1 0 2 8
11 1 2 1 1 1 2 11

Thus the permutation matrix of the digit permutation D
(2,3,2)
(2 3) is given by

1 · · · · · · · · · · ·
· · · 1 · · · · · · · ·
· 1 · · · · · · · · · ·
· · · · 1 · · · · · · ·
· · 1 · · · · · · · · ·
· · · · · 1 · · · · · ·
· · · · · · 1 · · · · ·
· · · · · · · · · 1 · ·
· · · · · · · 1 · · · ·
· · · · · · · · · · 1 ·
· · · · · · · · 1 · · ·
· · · · · · · · · · · 1

︸ ︷︷ ︸
D

(2,3,2)

(2 3)

0
1
2
3
4
5
6
7
8
9
10
11

=

0
3
1
4
2
5
6
9
7
10
8
11

.

Stride permutations are a specific subset of digit permutations, namely those,
whose permutation is a transposition of adjacent digits.

Property 3.10

Lmn
m = D

(m,n)
(1 2)

Ia ⊗Lmn
m = D

(a,m,n)
(2 3)

Lmn
m ⊗ Ib = D

(m,n,b)
(1 2)

Ia ⊗Lmn
m ⊗ Ib = D

(a,m,n,b)
(2 3)

CHAPTER 3. PERMUTATIONS 45

This property allows to identify D
(2,3,2)
(2 3) in Example 3.4 as I2 ⊗L6

3 which becomes
apparent observing the permutation matrix:

D
(2,3,2)
(2 3) =

1 · · · · · · · · · · ·
· · · 1 · · · · · · · ·
· 1 · · · · · · · · · ·
· · · · 1 · · · · · · ·
· · 1 · · · · · · · · ·
· · · · · 1 · · · · · ·
· · · · · · 1 · · · · ·
· · · · · · · · · 1 · ·
· · · · · · · 1 · · · ·
· · · · · · · · · · 1 ·
· · · · · · · · 1 · · ·
· · · · · · · · · · · 1

= I2 ⊗L6
3 .

In general, digit permutations cannot be obtained by simply composing permu-
tations. This is only possible if the resulting factorization of the first permutation
is equivalent to the initial factorization of the second one.

Property 3.11 (Composition of Digit Permutations)

D
P (n1,n2,...,nk)
Q D

(n1,n2,...,nk)
P = D

(n1,n2,...,nk)
Q◦P

The inverse of a digit permutation is the digit permutation with the inverse
permutation applied to the permuted factorization.

Property 3.12 (Inverse Digit Permutation)

(
D

(n1,n2,...,nk)
P

)−1

= D
P (n1,n2,...,nk)

P−1 =
(
D

(n1,n2,...,nk)
P

)T

Chapter 4

The Fast Fourier Transform (FFT)

4.1 The Fourier Transform

The Fourier transform (FT) essentially decomposes a waveform, signal or function
into sinusoids of different frequency whose sum reproduces the original function.

The Fourier transform F of a function f is defined as

F (ω) :=

∞∫

−∞

f(t)e2πiωtdt, (4.1)

provided the integral exists as a Cauchy principal value1 for any ω ∈ R. This trans-
form maps the function f(t), a signal taken as a function of time, into a complex
valued function F (ω) which represents the signal as a function of frequency.

The inverse operation to (4.1) is

f(t) =

∞∫

−∞

F (ω)e−2πiωt dω, (4.2)

i. e., the inverse Fourier transform. Using (4.2) signals can be (re-)transformed
from the frequency domain into the time domain.

The representation of a signal as a function of time is also said to be a rep-
resentation in the time domain; the representation of a signal as a function of
frequency is said to be a representation in the frequency domain. Both repre-
sentations portray the same signal. Often the representation in the time domain
appears “more natural” (in particular when the signal is taken or measured in
this form), whereas the representation in the frequency domain is more suitable
for filtering purposes and for any kind of manipulation of the spectrum.

Continuous functions f do not appear often in technical applications, instead
individual observations (samples) of such functions at certain time points occur.
In the following it is assumed that the sampling of f is carried out at equidistant
time points whose distance is the sampling interval ∆. The quantity 1/∆ is the
sampling rate; it gives the number of discrete values of f per time unit.

1The Cauchy principal value of
∫∞

−∞
x(t) dt is defined as limA→∞

∫ A

−A
x(t) dt.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 47

original function Fourier transform

real and even real and even
real and odd imaginary and odd

imaginary and even imaginary and even
complex and even complex and even
complex and odd complex and odd

real and asymmetric complex and asymmetric
imaginary and asymmetric complex and asymmetric

real even plus imaginary odd real
real odd plus imaginary even imaginary

even even
odd odd

Table 4.1: Symmetry properties of the Fourier transform.

Definition 4.1 (Nyquist Frequency) For any sampling interval ∆,

ωc :=
1

2∆

denotes the Nyquist frequency.

The importance of this quantity is made clear in the following section.

4.2 The Discrete Fourier Transform

The following considerations deal with the Fourier transform of discrete (sam-
pled) data sequences. Assuming that there are N data points, where, for sake of
simplicity, it is presupposed that N is even (although all considerations remain
valid when N is odd):

fk := f(tk), tk := (k0N + k)∆, k = 0, 1, . . . , N−1 .

The form k0N has been chosen because of notational simplifications.

For a piecewise continuous functions f with
∞∫

−∞

|f(t)| dt < ∞,

the Fourier transform F always exists. In this case the infinite integral (4.1) can
be approximated by a finite sum (for a suitable selection of N , ∆ and k0) using
numerical integration:

F (f) =

∞∫

−∞

f(t)e2πiωtdt ≈
N−1∑

k=0

fke
2πiωtk∆.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 48

Moreover, f can be interpolated, according to Theorem 4.1, using a continuous
function g with

lim
t→±∞

g(t) = 0

and
G(ω) = 0 for ω 6∈ (−ωc, ωc)

at the points tk, i. e.

f(tk) = g(tk), k = 0, 1, . . . , N−1.

The Fourier transform F of f , however, is now represented approximately by
estimates of its function values at the points

ωn :=
n

N∆
, n = −N

2
, −N

2
+1, . . . ,

N

2
−1 :

F (ωn) ≈ ∆

N−1∑

k=0

fke
2πi n

N∆
(k0N+k)∆ = ∆

N−1∑

k=0

fke
2πikn/N . (4.3)

Using this formula, N discrete function values fk lead to N discrete frequencies ωn.
Thus, instead of determining the Fourier transform F (ω) in the range [−ωc, ωc],
F (ω) is only determined for the discrete frequencies

ωn :=
n

N∆
, n = −N

2
, −N

2
+1, . . . ,

N

2
−1.

The formula (4.3) is the discrete Fourier transform (DFT), and in this work will
always be denoted Fn (which leaves out the factor ∆):

Fn :=

N−1∑

k=0

fke
2πikn/N . (4.4)

This transform is periodic in n with the period N , i. e., FN+n = Fn is valid for
any n ∈ Z.

The connection between the continuous Fourier transform F of the function f
and the discrete Fourier transform Fn of the data fk, obtained by sampling f
with a sampling interval ∆ is represented as follows:

F (ωn) ≈ ∆Fn. (4.5)

In (4.5) n = 0 corresponds to the frequency ω = 0; positive frequencies 0 < ω < ωc

correspond to 1 ≤ n ≤ N/2−1; and negative frequencies −ωc < ω < 0 correspond
to N/2 + 1 ≤ n ≤ N−1. For n = N/2, n corresponds both to the frequencies ωc

and −ωc.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 49

The inverse discrete Fourier transform (inverse DFT), which can be derived from
(4.2) analogously to (4.3), is given by:

fk =
1

N

N−1∑

n=0

Fne
−2πikn/N . (4.6)

The only differences between (4.6) and (4.4) are the negative sign of the exponent
and the division by N . Therefore, for the calculation of the discrete Fourier trans-
form and its inverse, the same routines can be used to a large extent.

For a sinusoidal wave the Nyquist frequency ωc is the highest frequency that is
still reconstructable at a fixed length of the sampling interval ∆ because, on the
one hand, the argument of the expression of the form sin(2πω0t) with a frequency
ω0 ≤ 1/(2∆) can move 2 quadrants, at the most, from one sampling to the next
on the unit circle; and if, on the other hand, for the given sampling points, there
exists a sinusoidal wave with a frequency larger than 1/(2∆), then there must
always be one sinusoidal wave with a frequency smaller than 1/(2∆), since

sin

[
2π

(
1

2∆
+ ε

)
(t0 + k∆)

]

= − sin

[
2π

(
1

2∆
− ε

)(
t0

ε∆ − 1
2

+ (t0 + k∆)

)]

for all t0, ǫ ∈ R and k ∈ Z. Thus, at least two sample points per period are
required in order to reconstruct a sine wave correctly.

Another restriction on the sampling of a function with the frequency ω appears
if Nω/2ωc is not an integer. Then, in the discrete spectrum none of the discrete
frequencies ωn = 2ωcn/N appears. The frequency in the discrete spectrum which
is next to the original frequency ω is clearly the largest; however, all other fre-
quencies also appear more or less strongly in the spectrum. This phenomenon is
called leakage.

Theorem 4.1 (Shannon’s Sampling Theorem) Let f denote a function with∫∞

−∞
|f(t)|2 dt < ∞, i. e., a signal with finite energy which is sampled at the rate

1/∆. If f is band limited in its continuous frequency spectrum by the Nyquist
frequency ωc = 1/(2∆), i. e., if the Fourier transform F satisfies F (ω) = 0 for
any ω with |ω| ≥ ωc, then the function f can be recovered exactly from its sample
values using the interpolation function

g(t) =
sin(2πωct)

2πωct
. (4.7)

Thus, f may be expressed as

f(t) =

∞∑

n=−∞

fng(t− n∆), (4.8)

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 50

where fn := f(n∆) are the samples of f .

If the function f is not band-limited, then in the Fourier transform of f all
components of the frequency spectrum that lie outside of the range [−ωc, ωc] are
moved into this frequency range. This spectral overlap is called aliasing . In this
case the function cannot be completely reconstructed using its sample values.

Thus, the length ∆ of the sampling interval has to be selected so that the critical
frequency ωc is higher than all frequencies appearing in the spectrum of the data.
Whether this condition applies to certain data can be seen from the frequency
spectrum F (ω) of the data decreasing to zero, when the frequency ω tends to
ωc. If this is not the case, then a remedial precaution can be taken by shortening
the sampling interval or by restricting the signal in its frequency spectrum (for
instance, by using low-pass filtering) before sampling.

Another approach to understanding the DFT is to consider the transform as a
simple change of coordinates. The column vectors of the transformation matrix
are orthogonal and represent different frequency components. When multiplying
the system matrix with the inverse matrix, the components of the solution vector
indicate, how these column vectors compose the input.

When analyzing real-world data in form of a signal, this signal is represented
(exactly or approximately) by a finite sequence of numbers. Computers are then
used to calculate transformations of those signals. This is done by applying the
discrete Fourier transform (DFT).

The following matrix notation is used to increase readability and to understand
the FFT idea better. It will lead finally to the powerful Kronecker notation.
Furthermore, the variables t and ω are replaced by indexing the vectors (arrays)
x and y.

The DFT vector

y = (y0, . . . , yN−1)
⊤ ∈ CN

of the data vector

x = (x0, . . . , xN−1)
⊤ ∈ CN

is defined by

yk :=
N−1∑

j=0

ωkj
N xj, k = 0 : N − 1, (4.9)

where

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 51

ωN := cos(2π/N) − i sin(2π/N) = e−2πi/N , i =
√
−1.

The powers of ωN are called twiddle-factors.

4.2.1 The Twiddle Factors

In matrix-vector terms, the DFT can be written as the matrix-vector product

y = FNx.

The evaluation of a matrix-vector product needs O(n2) floating-point operations,
resulting in quadratically increasing calculation times.

The elements of the matrix FN ∈ CN×N are given by

[FN]k,j := ωkj
N = e−2πikj/N , k, j = 0 : N − 1,

where N is the number of samples.

The powers of ωN are called twiddle-factors (Gentleman and Sande [31]).

Example 4.1 (DFT matrices) The DFT matrices F1, F2, F3, F4 and F5 are given by

F1 = (1), F2 =

(
1 1
1 −1

)
, F3 =

1 1 1
1 ω3 ω2

3

1 ω2
3 ω3

 ,

F4 =

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 , F5 =

1 1 1 1 1
1 ω5 ω2

5 ω3
5 ω4

5

1 ω2
5 ω4

5 ω5
5 ω3

5

1 ω3
5 ω5

5 ω4
5 ω2

5

1 ω4
5 ω3

5 ω2
5 ω5

.

Example 4.2 (DFT Matrix in ω Notation) The F8 DFT matrix in ω notation

F8 =

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

,

where ω := ω8 = e−2πi/8.

For a graphic representation, the twiddle factors are mapped onto the unit circle.
By Fig. 4.1 it can be seen that:

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 52

Figure 4.1: Twiddle factors of 8 bit sample sequence represented as vectors in the unit circle.

1. The twiddle factors are periodic round the unit circle.

2. The vectors are symmetric.

3. The vectors are equally spaced around the circle with spacing ∆ω.

Property 4.1 (Periodicity) The twiddle factors map onto the unit circle and
are periodic.

ωk = k
Ω

N
; k = 0, 1, . . . , N − 1. (4.10)

In equation (4.10) Ω is the sampling frequency 2π and N is the number of samples.
The frequencies have been normalized over the unit circle, i. e., the sampling
frequency is assumed to be 2π and it takes 2π radians to go round the unit circle:
(i) Once round reaches the sampling frequency, (ii) twice round reproduces the
results from first time round (in range 0 to 2π).

Property 4.2 (Spacing) The vectors are equally spaced around the unit circle
with spacing

∆ω =
2π

N
=

Ω

N
.

∆ω is also called the frequency resolution of the DFT outputs, the spacing of
each sample in the frequency domain.

Property 4.3 (Symmetry) The twiddle factors are inversely symmetric about
the unit circle origin.

Example 4.3 Taken from Fig. 4.1:

ω1
8 = −ω5

8 , ω2
8 = −ω6

8, . . .

According to this observation, the first half, 0 to π, of the twiddle factors contains
all the necessary information as the second half is the inverse of the first half.2

Therefore only N/2 twiddle factors need to be computed.

2Up to half of the sampling frequency, or equivalently, up to half of the Nyquist frequency.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 53

4.3 The Fast Fourier Transform

The DFT is one of the most important tools in modern engineering. Therefore
the algorithm was continuously optimized over the years. The key improvement,
which reduced computation time and costs dramatically, was to exploit the in-
trinsic symmetry of the DFT matrix. The breakthrough algorithm of Cooley-
Tukey enabled a reduction of the number of operations to be carried out to
const×N log N—the constant varying between 3 and 5 depending on the specific
variant of the algorithm used.

N N2 N log2 N DFT (sec) FFT (sec) Speed-up

4 1.60 × 101 8.00 × 100 1.60 × 10−8 8.00 × 10−9 2
16 2.56 × 102 6.40 × 101 2.56 × 10−7 6.40 × 10−8 4
64 4.10 × 103 3.84 × 102 4.07 × 10−6 3.84 × 10−7 11

256 6.55 × 104 2.05 × 103 6.55 × 10−5 2.05 × 10−6 32
1,024 1.05 × 106 1.02 × 104 1.05 × 10−3 1.02 × 10−5 102
4,096 1.68 × 107 4.92 × 104 1.68 × 10−2 4.92 × 10−5 341

16,384 2.68 × 108 2.29 × 105 2.68 × 10−1 2.29 × 10−4 1,170
65,536 4.29 × 109 1.05 × 106 4.30 × 100 1.05 × 10−3 4,096

262,144 6.87 × 1010 4.72 × 106 6.87 × 101 4.72 × 10−3 14,564
1,048,576 1.10 × 1012 2.10 × 107 1.10 × 103 2.10 × 10−2 52,429
4,194,304 1.76 × 1013 9.23 × 107 1.76 × 104 9.23 × 10−2 190,650

Table 4.2: Theoretical execution times of the “classical” DFT and the FFT on a 1 GHz
processor running at peak performance.

In applications where the DFT has to be performed many times (for example, in
meteorology) and in applications where large transformation lengths are needed
(especially in seismic applications) the speed-up achieved by using an FFT algo-
rithm is invaluable.3

The key idea behind the Cooley-Tukey algorithm is to use the divide and conquer
paradigm. This idea can be explained by means of the 8 × 8 DFT matrix

3For the vector length N = 222 = 4, 194, 304 the execution time can be reduced from 5
hours to 100 milliseconds ! Note, however, that there are factors which influence ideal execution
times. These factors will be subject of a more detailed discussion in later chapters of this work.
For instance, the operations of an FFT algorithm are complex multiplications and additions,
requiring a larger number of real floating-point instructions. Then, there are dependencies
between the instructions, which may inhibit the completion of one operation at every cycle.
Finally, there is overhead caused by the function calls and there are memory latencies due to
cache misses, which may increase ideal execution times substantially.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 54

F8 =

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

,

where ω := ω8 = e−2πi/8.

Any matrix FN , N even, can be rearranged by the perfect shuffle permutation ΠN

which groups the even-indexed columns first and then the odd-indexed columns
second:

FNΠN = (FN(:, 0 : N − 2 : 2)|FN(:, 1 : N − 1 : 2)).

Rearranging the columns of F8 in this manner

F8Π8 =

1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 ω ω3 ω5 ω7

1 ω4 1 ω4 ω2 ω6 ω2 ω6

1 ω6 ω4 ω2 ω3 ω ω7 ω5

1 1 1 1 ω4 ω4 ω4 ω4

1 ω2 ω4 ω6 ω5 ω7 ω ω3

1 ω4 1 ω4 ω6 ω2 ω6 ω2

1 ω6 ω4 ω2 ω7 ω5 ω3 ω

establishes a connection between F8 and F4. Using the fact that ω2
8 = ω4 is a 4th

root of unity, and therefore

1 1 1 1
1 ω2

8 ω4
8 ω6

8

1 ω4
8 1 ω4

8

1 ω6
8 ω4

8 ω2
8

 =

1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 1 ω2

4

1 ω3
4 ω2

4 ω4

 =

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 = F4.

This leads to the partitioning

F8Π8 =

(
F4 Ω4F4

F4 ω4
8Ω4F4

)
,

where Ω4 = diag(1, ω8, ω
2
8, ω

3
8). Given the fact that ω4

8 = −1, the factorization

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 55

F8Π8 =

(
I4 I4
I4 − I4

)(
I4

Ω4

)(
F4

F4

)

is obtained. Thus,

F8Π8(I2 ⊗Π4) =

(
I4 I4
I4 − I4

)(
I4

Ω4

)(
F4Π4

F4Π4

)
.

Now, both of the smaller transforms can be split up again into two transforms
of half the original size, namely 4. This kind of recursive splitting can be per-
formed log2 N times. Each of these steps involves the whole input vector, on
which O(N) operations are performed. Therefore the total arithmetic complexity
is O(N log2 N).

(
F4Π4

F4Π4

)
=

=

I2 I2
I2 − I2

I2 I2
I2 − I2

I2
Ω2

I2
Ω2

F2

F2

F2

F2

 ,

where Ω2 = diag(1, ω4). Thus, a complete factorization of F8 is obtained.

This matrix representation points out, that the Cooley-Tukey idea can be pro-
grammed easily using a recursive approach, which in pseudo-code, would have
the following form (if the permutation of the input vector is already done):

Algorithm 4.1 (Recursive FFT)

if length of input vector equals 1 then return
u := fft of upper part of input
l := fft of lower part of input
l := l×weight vector
overwrite upper part of output with u + l
overwrite lower part of output with u − l
return output

Unfortunately, such recursive algorithms have some unfavorable characteristics.
For example, each recursive call needs additional memory. Therefore recursive
FFT algorithms have to be implemented carefully for real applications. Anyhow,
they are important tools to understand the Cooley-Tukey concept.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 56

4.4 Cooley-Tukey Radix-2 Factorization

Using
ΩN/2 := diag(1, ωN , . . . , ω

N/2−1
N), N even,

the four symmetry conditions (k, j = 0 : N/2)

[FNΠN]k,j = ω
k(2j)
N = ωkj

N/2 = [FN/2]k,j

[FNΠN]k+N/2,j = ω
(k+N/2)(2j)
N = ω

(k+N/2)j
N/2 = [FN/2]k,j

[FNΠN]k,j+N/2 = ω
k(2j+1)
N = ωk

Nωkj
N/2 = [ΩN/2FN/2]k,j

[FNΠN]k+N/2,j+N/2 = ω
(k+N/2)(2j+1)
N = −ω

k(2j+1)
N = [−ΩN/2FN/2]k,j

imply the radix-2 splitting

FNΠN =

(
FN/2 ΩN/2FN/2

FN/2 −ΩN/2FN/2

)
. (4.11)

These relations can be easily established with simple computations due to the
fact that ω2

N = ωN/2 and ω
N/2
N = −1.

The term radix-2 splitting indicates that the relation (4.11) establishes a connec-
tion between the full-sized DFT matrix FN and the half-sized DFT matrix FN/2.
Recursive application of this splitting process is the heart of all radix-2 FFT
algorithms. More generally, if p divides N , it is possible to relate FN to FN/p.

Thus, FN can be factorized as

FN =

(
IN/2 IN/2

IN/2 − IN/2

)(
IN/2

ΩN/2

)(
FN/2

FN/2

)
LN

2 .

This factorization can be expressed in terms of Kronecker products.

Theorem 4.2 (Cooley-Tukey Radix-2 Splitting) For N ≥ 2, N even

FN = (F2 ⊗ IN/2)TN(I2 ⊗FN/2) LN
2 ,

TN = (IN/2 ⊕ΩN/2),

where ⊕ denotes the direct matrix sum operator.

Example 4.4 (FFT Factorization) The 4-point FFT F4 is factorized into its product of 4
sparse matrices:

F4 = (F2 ⊗ I2)T
4
2 (I2 ⊗F2) L4

2

=

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 i

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 57

Using this formulation, the Cooley-Tukey theorem can be interpreted as a rewrite
rule. It says that the Fourier transform matrix can be replaced by the product of
four matrices. The FFT is derived by recursively applying this rewrite rule.

Example 4.5 (Applying the Cooley-Tukey Theorem) The 8-point FFT F8 is obtained
by applying the Cooley-Tukey theorem to F8 and then applying the Cooley-Tukey theorem to
F4:

F8 = (F2 ⊗ I4)T
8
4 (I2 ⊗F4) L8

2

= (F2 ⊗ I4)T
8
4 (I2 ⊗((F2 ⊗ I2)T

4
2 (I2 ⊗F2) L4

2)) L8
2 .

4.5 General CT Factorizations – Radix-p Kernels

The splitting idea of Theorem 4.2 is not restricted to dividing N = 22 and N = 24,
it can be used for all N = N1 × N2.

Theorem 4.3 (Fundamental Radix-p Factorization) (Johnson et al. [39])
For N = pk ≥ 2

FN = (Fp ⊗ Ik)T
pk
k (Ip ⊗Fk) Lpk

p ,

with
T pk

k = diag(Ik, Ωp,k, . . . , Ω
p−1
p,k),

where
Ωp,k := diag(1, ωN , . . . , ωk−1

N).

The mathematical opportunity to split the DFT matrix into four factor matrices
illustrates that also the DFT’s execution can be divided into four subproblems:

1. a stride permutation,

2. p DFTs of length q,

3. the multiplication by twiddle-factors, and finally

4. q DFTs of length p.

Hence this factorization can be performed by applying two sets of smaller DFTs
and two further operations, a stride permutation and a scaling by twiddle-factors,
that are computationally less expensive. It is a remarkable intrinsic phenomenon
that the DFT can essentially be reduced to a set of identical, just smaller prob-
lems.

To decompose the DFT matrices in the split representation, repeated application
of the splitting theorem may be employed, obtaining a further factorization of

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 58

the DFT matrix and, hence, superseding the execution of a transform to even
smaller DFTs, as will be presented now.

For N = pn, repeated application of Theorem 4.3 leads to the following factor-
ization of the DFT matrix Fpn.

Theorem 4.4 (Fundamental Single-Radix Factorization)

Fpn =
[n∏

i=1

(Ipi−1 ⊗Fp ⊗ Ipn−i)(Ipi−1 ⊗T pn−i+1

pn−i)
]
Rpn (4.12)

This factorization makes it possible to split a pn-point DFT into n DFTs of size p.
The number p is called the radix of the FFT algorithm. The permutation matrix
Rpn is the index reversal matrix responsible for the permutation of the input data
sequence (see VanLoan [63]).

By using (2.4), i. e., the mixed-product property of the Kronecker product, the
expression

(Ipi−1 ⊗Fp ⊗ Ipn−i)(Ipi−1 ⊗T pn−i+1

pn−i)

can be written as

Ipi−1 ⊗((Fp ⊗ Ipn−i)diag(Ipn−i, Ωp,pn−i, . . . , Ωp−1
p,pn−i)).

The matrix

Bp,pn−i+1 := (Fp ⊗ Ipn−i)diag(Ipn−i, Ωp,pn−i, . . . , Ωp−1
p,pn−i)

is said to be a radix-p butterfly matrix .

Using this matrix, (4.12) becomes

Fpn =
[n∏

i=1

(Ipi−1 ⊗Bp,pn−i+1)
]
Rpn. (4.13)

If x ∈ CN and N = pn, the FFT computation x := Fpnx can be implemented as

Algorithm 4.2 (Radix-p FFT)

x := Rpnx
do i = 1 :n

L := pi

r := N/L
do k = 0 : r − 1

x(kL : (k + 1)L − 1) := Bp,Lx(kL : (k + 1)L − 1)
end do

end do

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 59

The computationally most intensive part of any radix-p FFT algorithm is

x := Bp,Lx,

i. e., the butterfly update which occurs in the innermost loop. Thus, the arithmetic
complexity of any radix-p FFT algorithm depends primarily on the design and
implementation of the butterfly kernel.

4.6 DIT and the DIF Decomposition

The abbreviations DIT and DIF stand for decimation-in-time and decimation-
in-frequency. They denote two distinct ways of splitting DFT matrices. Thus,
different factorizations are obtained leading to different classes of algorithms.

A signal can be viewed from two different standpoints: (i) The frequency domain,
and (ii) the time domain.

Decimation is the process of breaking down something into its constituent parts.

4.6.1 Decimation-In-Time (DIT) Splitting

The DIT splitting is essentially the fundamental splitting of Theorem 4.3, the one
derived by Cooley and Tukey. The fact that a time sampled data vector is first
divided into parts to which, secondly, FFTs of appropriate lengths are applied
gave rise to this method’s name.

4.6.2 Decimation-In-Frequency (DIF) Splitting

The DIF splitting was described independently by Gentleman and Sande [31] and
by Cooley and Stockham [9]. As long as FFTs were written in sum notation, it
was only possible to state that DIT and DIF splitting involves similar operations
in a different order. In Kronecker product notation, however, their relation is
obvious: The DIF splitting corresponds to the transposed DIT splitting. Since
the DFT matrix is symmetric, transposition leaves the result unchanged whereas
its factorization is altered in its sequence of appliance.

According to Properties 3.3 (multiplication) and 3.4 (commutation), transposi-
tion of Theorem 4.3 results in

Theorem 4.5 (Fundamental DIF Radix-p Splitting) For N = pk ≥ 2

FN = Lpk
k (Ip ⊗Fk)T

pk
k (Fp ⊗ Ik),

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 60

with T pk
k defined as in Theorem 4.3.

In this case, first the DFT of length k, the multiplication by the twiddle-factors
and then the DFT of length p are employed and finally the provisional result
is stride permuted and stored to the output vector. The output vector’s index,
sometimes called the “frequency” which may be involved decisively in the last
stride permutation and save operation, coined the name for this decomposition
methodology.

In the same way as with the DIT factorization, Theorem 4.5 can be applied
recursively to obtain the following factorization of the DFT matrix Fpn.

Theorem 4.6 (Single-Radix DIF Factorization)

Fpn = Rpn

[n∏

j=1

(Ipn−j ⊗T pj

pj−1)(Ipn−j ⊗Fp ⊗ Ipj−1)
]

(4.14)

Finally, another link between the DIT and the DIF splitting can be established.
The radix-p DIT splitting of length N = pk is assumed

FN = (Fp ⊗ Ik)T
N
k (Ip ⊗Fk) LN

p .

Applying Property 3.4 (commutation) to both of the terms with Kronecker prod-
ucts leads to

FN = LN
p (Ik ⊗Fp) LN

k TN
k LN

p (Fk ⊗ Ip) LN
k LN

p .

Using Properties 3.4 and 3.3 this can be written as

FN = LN
p (Ik ⊗Fp)T

N
p (Fk ⊗ Ip),

which is equal to the radix-k DIF splitting. Hence, by this relation, a general
structural resemblance between the radix-r DIT splitting and the radix-N/r DIF
splitting is indicated.

This directly leads to the next considerations, because it is also possible to apply
Property 3.4 (commutation) to only one of the terms with Kronecker products,
which leads to completely new types of recursive algorithmic steps, namely 4-
and 6-step decomposition (Franchetti, Lorenz, Ueberhuber [24]).

4.7 Multidimensional Fast Fourier Transforms

One-dimensional DFTs operate on one-dimensional datasets. Multidimensional
DFTs extend this domain to multidimensional arrays. Such arrays will be denoted

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 61

fk1,...,kd
, i = 1, . . . , d : ki = 0, . . . , Ni − 1.

Throughout this section d denotes the number of dimensions of the data-array to
be transformed and N = N1N2 · · ·Nd denotes the total number of data points.
The multidimensional DFT of such an array is defined by

Fn1,...,nd
: =

N1−1∑

i1=0

N2−1∑

i2=0

· · ·
Nd−1∑

id=0

ωn1i1+n2i2+···+ndid
N1N2···Nd

fi1,i2,...,id

=
N1−1∑

i1=0

N2−1∑

i2=0

· · ·
Nd−1∑

id=0

ωn1i1
N1

ωn2i2
N2

· · ·ωndid
Nd

fi1,i2,...,id

=

N1−1∑

i1=0

ωn1i1
N1

N2−1∑

i2=0

ωn2i2
N2

· · ·
Nd−1∑

id=0

ωndid
Nd

fi1,i2,...,id. (4.15)

(4.15) shows that the multidimensional DFT consists of scalar DFTs calculated
along each of the d dimensions of the data array. This representation can be split
into iterative steps calculating each component’s one-dimensional DFTs.

F [1]
n1,...,nd

=

N1−1∑

k=0

ωn1i1
N1

fk,i2,...,id, i = 2 . . . d : ni = 0, . . . , Ni − 1 (4.16)

F [2]
n1,...,nd

=

N2−1∑

k=0

ωn2i2
N2

F
[1]
i1,k,...,id

, i = 1, 3 . . . d : ni = 0, . . . , Ni − 1 (4.17)

...

F [d]
n1,...,nd

=

Nd−1∑

k=0

ωndid
Nd

F
[d−1]
i1,i2,...,k, i = 1 . . . d − 1 : ni = 0, . . . , Ni − 1 (4.18)

Fn1,...,nd
= F [d]

n1,...,nd
.

The two common ways for a computer program to store multidimensional arrays
in its memory are (i) row-major order (used in C and most other programming
languages), and (ii) column-major order (used in Fortran). This work will focus on
the row-major order storage convention. The index-transformation rules between
a multidimensional array f and the matching one-dimensional array f ′ are

fi1,i2,...,id = f ′
i1N2···Nd+i2N3···Nd+···+id−1Nd+id

⇒ f ′
i = f⌊i/(N2N3···Nd)⌋mod(N1),⌊i/(N3N4···Nd)⌋mod(N2),...,⌊i/Nd⌋mod(Nd−1),i mod(Nd).

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 62

According to these rules the index-transformation function s is defined as follows

s(i1, i2, . . . , id) := i1N2 · · ·Nd + i2N3 · · ·Nd + · · · + id−1Nd + id. (4.19)

This implies the following distances for two adjacent elements

s(i1, . . . , im−1, k + 1, im+1, . . . , id) − s(i1, . . . , im−1, k, im+1, . . . , id) =

= Nm+1Nm+2 · · ·Nd

and especially

s(k + 1, i2, . . . id) − s(k, i2, . . . id) = N2N3 · · ·Nd, k = 0 . . .N1 − 2

s(i1, . . . id−1, k + 1) − s(i1, . . . id−1, k) = 1, k = 0 . . .Nd − 2.

Examining formulas (4.16) to (4.18) under the aspect that a scalar array is to
be transformed shows that effectively (4.16) are N/N1 scalar DFTs of length N1

with stride N/N1, (4.17) are N1 blocks of N/N2 scalar DFTs of length N2 with
stride N/(N1 · N2), and (4.18) are N/Nd blocks of N/Nd scalar DFTs of length
Nd with stride 1.

Such formulas can be easier dealt with by using the Kronecker product notation
introduced in Chapter 2. Accordingly, (4.16) to (4.18) translate to

(Fn1 ⊗ In2 ⊗ · · · ⊗ Ind
)(In1 ⊗Fn2 ⊗ · · · ⊗ Ind

) · · · (In1 ⊗ In2 ⊗ · · · ⊗ Fnd
).

Applying Property 2.4, i. e., the mixed product property, finally yields the follow-
ing compact representation of multidimensional DFTs.

Property 4.4 (Multidimensional Fast Fourier Transform)

Fn1,...,nd
= Fn1 ⊗ Fn2 ⊗ · · · ⊗ Fnd

(4.20)

4.8 Parallel Fast Fourier Transforms

When FFTs are to be computed on huge datasets it might turn out that one single
processor is not able to do this calculation fast enough, or the available memory
is not capable of storing the whole dataset. In such cases the computation has
to be parallelized, i. e., multiple processors are sharing the work. The difficulty
arising in parallel computation is that each processor is only able to access its
own memory. If data from other processors’ storage is required, it has to be sent
over some network. Depending on the network’s latency and bandwith this causes
a delay during which no computation is possible.

In this section a very simple data distribution over the processors will be as-
sumed. The most intuitive way to distribute a dataset over p processors is the
slab decomposition.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 63

Definition 4.2 (Slab Decomposition) The data vector D = [d0, . . . , dn−1] of
length n is distributed over p processors P0, . . . , Pp−1 such that processor i holds
the data

Pi ∋ [di(n/p), . . . , d(i+1)(n/p)−1].

This means that the data vector D is uniformly divided in p parts and processor
Pi holds the i-th of these parts. Therefore it is required that p divides n.

0

1

p-1

0

1

p-1

0

1

p-1

Figure 4.2: Slab decomposed one-, two-, and three-dimensional data arrays on p processors.

The challenge when dealing with parallel FFTs is to rewrite the formulas so that
they are compatible with parallel computation. Therefore the FFT has to be split
into Kronecker parallel computation stages (Section 2.4.1)

Ip ⊗A,

and communication stages (Section 3.2)

C ⊗ Ib .

When parallelizing one-dimensional FFTs, parallel twiddle-factor matrices arise.
It is neither possible nor required to express them as parallel computation stages.
As the implementation of such an element-wise multiplication is trivial it suffices
at this point to define a symbol for the parallel twiddle-factor matrix as follows.

Definition 4.3 (Parallel Twiddle-Factor Matrix) A parallel twiddle-factor
matrix Tmn

m,p represents the serial twiddle-factor matrix T mn
m spread over p proces-

sors.

4.8.1 Breaking Down Parallel FFTs

This section illustrates how an FFT can be broken down into parallel computation
parts and communication parts. This process can be carried out automatically
by teaching a formula manipulation program the required rules.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 64

Example 4.6 (Parallel 3D FFT Breakdown) A 3D FFT Fn1,n2,n3 transformation starts
with the parallel FFT formula introduced in Property 4.4. The FFT is to be parallelized on p
processors. It is required that p|n1 and p|n2n3.

Fn1,n2,n3 = (Fn1 ⊗ Fn2 ⊗ Fn3) =

= (Fn1 ⊗ In2 ⊗ In3)(In1 ⊗Fn2 ⊗ In3)(In1 ⊗ In2 ⊗Fn3) =

= (Fn1 ⊗ In2n3)

(Ip ⊗ In1/p ⊗Fn2 ⊗ In3) (4.21)

(Ip ⊗ In1n2/p ⊗Fn3).

The last expression shows that the last two factors are already parallel factors while the first
factor (Fn1 ⊗ In2n3) has yet to be transformed. Applying Property 3.4 to this first term yields

(Fn1 ⊗ In2 ⊗ In3) = Fn1 ⊗ Ip ⊗ In2n3/p =

=
(
Lpn1

n1
(Ip ⊗Fn1) Lpn1

p

)
⊗ In2n3/p =

= (Lpn1
n1

⊗ In2n3/p)(Ip ⊗Fn1 ⊗ In2n3/p)(L
pn1
p ⊗ In2n3/p).

Thus (4.21) can be further expanded to

(4.21) = (Lpn1
n1

⊗ In2n3/p)

(Ip ⊗Fn1 ⊗ In2n3/p)

(Lpn1
p ⊗ In2n3/p) (4.22)

(Ip ⊗ In1/p ⊗Fn2 ⊗ In3)

(Ip ⊗ In1n2/p ⊗Fn3).

At this stage all computation factors are parallelized. The only work left is splitting the stride
permutations Lpn1

n1
and Lpn1

p to local permutation and global communication steps. The two
special cases of Lemma 3.2 result in

(Lpn1
n1

⊗ In2n3/p) =
(
(Ip ⊗Ln1

n1/p)(L
p2

p ⊗ In1/p)
)
⊗ (In2n3/p) =

= (Ip ⊗Ln1

n1/p ⊗ In2n3/p)(L
p2

p ⊗ In1n2n3/p2)

and

(Lpn1
p ⊗ In2n3/p) =

(
(Lp2

p ⊗ In1/p)(Ip ⊗Ln1
p)
)
⊗ (In2n3/p) =

= (Lp2

p ⊗ In1n2n3/p2)(Ip ⊗Ln1
p ⊗ In2n3/p).

Thus (4.22) be rewritten to the fully parallelized formula

(4.22) = (Ip ⊗Ln1

n1/p ⊗ In2n3/p)(L
p
2

p ⊗ In1n2n3/p2)(Ip ⊗Fn1 ⊗ In2n3/p)(L
p
2

p ⊗ In1n2n3/p2)

(Ip ⊗Ln1
p ⊗ In2n3/p)(Ip ⊗ In1/p ⊗Fn2 ⊗ In3)(Ip ⊗ In1n2/p ⊗Fn3).

This formula includes parallel computation blocks and the two emphasized paral-
lel matrix transpositions. When read in the order of execution—bottom to top—
the first step is to compute the scalar FFTs along the third and second component,
then the matrix is transposed to compute FFTs along the third, beforehand dis-
tributed, dimension. Finally, the matrix is to be transposed back to re-obtain the
original data layout.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 65

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X−direction FFT Y−direction FFT Z−direction FFT

Transpose Transpose

Original Data
Distribution

Figure 4.3: Data distribution during the three steps.

As illustrated in Fig. 4.3 this procedure exactly represents the row-column al-
gorithm for three-dimensional FFTs [14]. The requirements p|n1 and p|n2n3 are
necessary to generate this algorithm because it must be possible to divide the data
array into slabs along at least two different dimensions—once for the original data
layout and once during the transformed computation stage.

Example 4.7 (Parallel 1D FFT Breakdown) The 1D FFT Fn1n2 is to be parallelized us-
ing the Cooley-Tukey radix-p factorization introduced in Theorem 4.3. Therefore it is required
that p|n1 and p|n2.

Fn1n2 = (Fn1 ⊗ In2)T
n1n2
n2,p (In1 ⊗Fn2) Ln1n2

n1
=

= (Lpn1
n1

⊗ In2/p)(Ip ⊗Fn1 ⊗ In2/p)(L
pn1
p ⊗ In2/p)

T n1n2
n2,p (Ip ⊗ In1/p ⊗Fn2) Ln1n2

n1
=

= (Ip ⊗Ln1

n1/p ⊗ In2/p)(L
p
2

p ⊗ In1n2/p2)(Ip ⊗Fn1 ⊗ In2/p)

(Lp
2

p ⊗ In1n2/p2)(Ip ⊗Ln1
p ⊗ In2/p)T

n1n2
n2,p (Ip ⊗ In1/p ⊗Fn2) ·

(Ip ⊗L
n1n2/p
n1/p)(Lp

2

p ⊗ In1n2/p2)(Ip ⊗Ln2
p ⊗ In1/p)

This algorithm requires three parallel matrix transpositions. It is not possible to
perform a single distributed one-dimensional FFT with one radix-p step with less
than three global transposes.

4.9 Non-FFT Signal Transforms

Even though the FFT is the most important linear signal transform there is are
many other similar algorithms of great practical importance.

These algorithms can partially be handled with generic rules, like the ones shown
above, but require additional rules to describe the transforms in Kronecker prod-
uct notation. Some signal transforms, which will be dealt with in the scope of
this work, will be introduced in the following sections.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 66

4.9.1 Arbitrary Data Layouts – Conjugated FFTs

Parallel FFT algorithms require a relatively large amount of communication com-
pared to the amount of computation. To calculate a parallel multidimensional
FFT effectively, it is mandatory that all data points of—at least—one dimension
are resident on the memory of one processor.

However, most FFTs are just computational stages used in large applications.
These applications have different demands on the data layout. For instance, the
fast multipole method (FMM) prefers a volumetric decomposition because of its
demands to locality [33]. The developer of a general FFT routine cannot know
which data distribution is suitable for the remaining parts of some application.

Most of today’s FFT libraries force the data to be distributed in slabs, as this
is beneficial for the FFT computation. An exception is the volumetric FFT [16],
which requires a volumetric distribution, as it is adapted to certain applications
that provide the data in this layout. For an application developer, who wants to
include an FFT into his program, it would be optimal if the FFT would adapt to
the application’s data layout and yield optimal performance.

Figure 4.4: Three-dimensional data array in rod- and volumetric decomposition.

In case the user’s application stores the data in a layout that is not compatible
to the FFT library of his choice, the application developer has to manually redis-
tribute the data to a distribution supported by the given FFT routine. Coding
such a redistribution manually is not trivial and it is even less trivial to implement
it effectively.

Due to the conflicting issues of compatibility and performance, application devel-
opers often shy from using high performance FFT libraries. They rather decide to
create their own tailor-made FFT routines to exactly fit the application’s general
framework.

This custom entails another problem—namely the FFT routine might be well
optimized, but the manual data reordering steps may have a negative impact on

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 67

the overall application’s run time. This overhead is indirectly caused by the FFT
but does not show up in any of the FFT library benchmarks. Furthermore, as the
reordering code is not part of the FFT library, its run time cannot be included
in the FFT optimization process.

The first step towards a solution of this problem is to formally define arbitrary
data distributions.

Definition 4.4 (Data Distribution) The data vector D = [d0, . . . , dn−1] of
length n is distributed according to decomposition A if the permutation A sat-
isfies

D = ADS

where DS is a data vector of length n distributed in slabs (Definition 4.2).

Example 4.8 (Arbitrary Data Distribution) The data vector D represents a 4×4 matrix
M distributed to 4 processors along every dimension.

D =

a0

a1

a4

a5

a2

a3

a6

a7

a8

a9

a12

a13

a10

a11

a14

a15

=̂

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

 DS =

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

=̂

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

=⇒ D =

1 · · · · · · · · · · · · · · ·
· 1 · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· · · · · 1 · · · · · · · · · ·
· · 1 · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · · ·
· · · · · · 1 · · · · · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · · · · · 1 · · · · · · ·
· · · · · · · · · 1 · · · · · ·
· · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · 1 · ·
· · · · · · · · · · 1 · · · · ·
· · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · 1 ·
· · · · · · · · · · · · · · · 1

· DS = (I2 ⊗L4
2 ⊗ I2)DS

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 68

To provide black-box FFT routines for arbitrary data distributions it is necessary
to inform the FFT generator about the application’s data layout that defines the
data distribution before and after the FFT computation. These data distributions
have no restrictive influence on the methods that are used to calculate the FFT.

The following definitions show how a conjugated FFT can be interpreted as an
FFT of a vector having arbitrary data distribution A.

Definition 4.5 (Conjugated FFT) The FFTn1,...,nd
conjugated with the per-

mutation P ∈ {0, 1}(n1···nd)×(n1···nd) is defined by

FFT P
n1,...,nd

:= P · FFTn1,...,nd
· P−1

Definition 4.6 (FFT on Arbitrarilly Distributed Data Arrays) A
FFTn1,...,nd

to the data-array D, which is stored according to distribution A, can
be calculated by using the conjugated FFT

FFTA
n1,...,nd

.

These definitions show that formally the data array is redistributed to slab-
decomposition, then the FFT is computed, and finally the data array is trans-
formed back to the original data layout. This exactly represents the steps which
would be executed if an application developer would implement the data reorder-
ing steps, prior and posterior to the FFT.

Even without any further optimization this method has two advantages over the
manual redistribution of the data-array:

• As the code for the data reordering steps is generated together with the
FFT code, its run time can be included in performance measurements and
thus can be included in performance optimization.

• No additional hand-coding is required for using the FFT routine.

This method provides the opportunity to optimize both the FFT and the data
redistribution together. This often results in a significant performance increase as
some of the data redistribution steps may turn out to be redundant.

Example 4.9 (Conjugated FFT) This example deals with an FFT4,4,4 to be applied to a
data vector which is distributed over 4 processors with distribution L16

4 . This represents a slab
decomposition along the second dimension.

FFT
L16
4 ⊗ I4

4,4,4 = (L16
4 ⊗ I4)FFT4,4,4(L

16
4 ⊗ I4)

= (L16
4 ⊗ I4)(L16

4 ⊗ I4)(I4 ⊗F4 ⊗ I4)(L
16
4 ⊗ I4)

(I4 ⊗Fn2 ⊗ I4)(I4 ⊗ I4 ⊗Fn3)(L
16
4 ⊗ I4) = (4.23)

= (I4 ⊗F4 ⊗ I4)(L
16
4 ⊗ I4)(I4 ⊗Fn2 ⊗ I4)(I4 ⊗ I4 ⊗Fn3)(L

16
4 ⊗ I4). (4.24)

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 69

Formula (4.23) is a correct, yet unoptimized, algorithm. It is comparable with
calculations that would be carried out if the application developer reorganized
the data to slab distribution manually before and after calling an FFT routine.
There are two back-to-back parallel matrix transpositions executed after the last
communication step. One of them would be implemented by the application de-
veloper, one by the FFT generator. As these are self-inverse they are redundant
and can both be removed, resulting in Formula (4.24). This very simple opti-
mization saves two parallel matrix transpositions i. e., 50% of the communication
effort, but it can only be applied if the FFT generator knows about the data
redistribution and is enabled to handle it.

4.9.2 FFT Based Convolution

Let g and h be functions of time whose Fourier transforms are G and H :

g(t) = F−1
ν [G(ν)] (t) =

∫ ∞

−∞

G(ν)e2πiνtdν,

h(t) = F−1
ν [H(ν)] (t) =

∫ ∞

−∞

H(ν)e2πiνtdν.

The convolution g ∗ h of g and h is defined by

g ∗ h :=

∫ ∞

−∞

h(t′)g(t − t′)dt′.

By using the functions’ Fourier transforms this expression can be transformed as
follows:

g ∗ h =

∫ ∞

−∞

h(t′)

[∫ ∞

−∞

G(ν)e2πiν(t−t′)

]
dt′

=

∫ ∞

−∞

G(ν)

[∫ ∞

−∞

h(t′)e−2πiνt′dt′
]

e2πiνtdν

=

∫ ∞

−∞

G(ν)H(ν)e2πiνtdν

= F−1
ν [G(ν)H(ν)] (t).

Applying the Fourier transform to each side leads to the convolution theorem.

Definition 4.7 (Convolution Theorem) With F denoting the Fourier trans-
form the convolution of two functions g and h can be expressed as

F [g ∗ h] = F [g]F [h].

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 70

Alternative forms are

F [gh] = F [g] ∗ F [h]

F−1 (F [g]F [h]) = g ∗ h

F−1 (F [g] ∗ F [h]) = gh.

Definition 4.8 (Discrete Cyclic Convolution) Consider two vectors g and
h of size n. The discrete cyclic convolution g ∗ h is the following vector c of size
n:

ck :=
n−1∑

i=0

gk−imod(n)hi mod(n), 0 ≤ k < n.

A naive algorithm for the cyclic convolution requires O(n2) operations. By apply-
ing a discrete variant of the convolution theorem the complexity can be lowered
to O(n log n).

Property 4.5 (Discrete Convolution Theorem) Let g and h be vectors of
size n, g ∗ h the cyclic convolution of g and h, and Fn the n-point DFT matrix
then

g ∗ h = F−1
n diag

(
Fng

)
Fnh

or F−1
n (Fng ⋄ Fnh)

with the pointwise vector multiplication

· ⋄ · : Kn × Kn −→ Kn

a ⋄ b 7→ [a0b0, a1b1, . . . , an−1bn−1].

Proof: Tolimimieri, An, Lu [59].

The distributed computation of FFT based convolutions requires a significant
amount of communication. As a one-dimensional FFT requires three communi-
cation steps, a straightforward implementation includes nine all-to-all communi-
cation steps.

Note, the vector does not have to be stored in its correct order to allow the
pointwise multiplication. Thus, the last transposition of the forward FFTs and
the first transposition of the reverse FFT are not needed, which reduces the
overall communication effort by 1/3 (compare Example 4.7). This—very simple—
optimization is not possible if the convolution is coded manually and uses an FFT
library that does not allow to skip initial and/or final transposition steps.

The FFT based convolution shows that it is often not feasible to assemble an
algorithm from—even well optimized—solutions for subproblems, because some
optimization potential may exceed their scope. A more reasonable approach is to
attempt to generate, and optimize, computational problems as a whole.

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 71

4.10 Parallel FFT Software

As the fast Fourier transform is one of the most important algorithms in science
and engineering, there are numerous software libraries providing implementations
of this algorithm. The best known open source library for distributed FFTs is
Fftw which reliably provides cross platform high-performance code.

4.10.1 FFTW

Fftw4 is the acronym for “Fastest Fourier Transform in the West”. It has been
developed by Matteo Frigo and Steven Johnson [28, 29] at the Massachusetts
Institute of Technology (MIT).

Fftw 2.1.5 is the latest version supporting MPI based parallel transforms while
Fftw 3.1 is the most recent version implementing scalar transforms.

Fftw is an open source C subroutine library, thus portable to practically any
platform. Fftw computes the discrete Fourier transform (DFT) in one or several
dimensions, with both real and complex data of arbitrary size on an arbitrary
number of processors.

Even though Fftw is an open source software it outperforms most other FFT
programs. On some machines it performs even better than vendor optimized FFT
programs as serial benchmarks on the Fftw homepage5 show.

Fftw takes advantage of run time compilation, a special technique of compiling
parts or whole programs to native code before executing. This new paradigm in
software development tries to gain performance optimization while maintaining
portable code. Fftw is able to automatically adapt its computations to a specific
hardware by applying its special kind of self-configuring style. The inner compu-
tation loop of Fftw, which accounts for about 95% of the sequential code, is
generated automatically by a special-purpose compiler that takes the underlying
computer architecture into account and thereby increases execution performance.

To do so, Fftw carries out a sequence of execution time measurements with its
executable components, called codelets, on the target system. The best assem-
bled configuration of such codelets is used on the specific hardware environment.
This code generation process ensures that Fftw performs well on every machine
without modification.

Thus before an FFT can be calculated using Fftw a planner function must be
executed. This function decides which codelets to use in later calls of a certain
problem size on the current system. This information ist stored in a plan, i. e.,

4http://www.fftw.org/
5http://www.fftw.org/speed/

CHAPTER 4. THE FAST FOURIER TRANSFORM (FFT) 72

a special data structure. Plans can be stored on disk for reuse in future compu-
tations. Such a (disk) file is called wisdom. It also contains information about
the smaller problem sizes Fftw had to work on to generate the computations of
a larger FFT. Thus, for instance, if a plan for a scalar one-dimensional FFT of
size 8 has been created the generated wisdom-file also contains the best plans for
FFTs of lengths 2 and 4.

Fftw is more adaptable than most other FFT libraries. For instance, it can be
forced to skip initial and final permutations, which may be necessary to compute
an FFT, and thus, leaving the vector in a scrambled order. This is useful for
optimizing the communication effort for distributed composite transforms, e. g.,
the FFT based convolution (Section 4.9.2).

Chapter 5

SPIRAL/DMP

Spiral/dmp is an extension to Spiral which generates optimized code for dis-
tributed memory parallel signal transforms. This chapter provides an in-depth
documentation to its features. The source codes belonging to the objects and
rules introduced in this chapter are included in Appendix A. The first section
gives a basic overview of Spiral’s architecture.

5.1 Introducing SPIRAL

Spiral [53, 43] is a program generator for optimized linear signal transforms
such as the DFT and many others. It uses a formal framework to efficiently
generate alternative algorithms for a given transform and to translate them into
code. Then, Spiral uses search and learning techniques to find the best tuned
implementation for a certain platform, among this set of alternatives. Spiral’s
internal structure is shown in Figure 5.1. As input, the user provides a descriptive
definition of the desired signal transform, e. g., “DFT256”, the output is platform
optimized source code.

Formula Generation. Figure 5.1 shows that Spiral relies on a feedback loop
to find the algorithm and implementation which suites a given environment best.
Therefore, it requires a repository of breakdown rules to break high-level descrip-
tions of algorithms down to formulas, which roughly represent a certain imple-
mentation. This representation of signal transform algorithms is called Signal
Processing Language (Spl).

DFTkm → (DFTk ⊗ Im) Tkm
m (Ik ⊗DFTm) Lkm

k (5.1)

Breakdown rules are derived from mathematical formulas. For instance the
Cooley-Tukey FFT formula, introduced in Theorem 4.3, leads to Rule 5.1. Spi-
ral’s formula generation engine recursively applies breakdown rules to generate
one out of many possible Spl formulas.

If the resulting formula shall meet certain requirements, this information has to
be provided to the Spl compiler by tagging the expression. For instance, a DFT256

CHAPTER 5. SPIRAL/DMP 74

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
e

a
rc

h
/L

e
a

rn
in

g

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

(SPL Compiler)

Evaluation

Level

Figure 5.1: Spiral’s architecture.

tagged for 4-way vectorization is denoted as

DFT256︸ ︷︷ ︸
vec(4, *)

.

This tagging system steers the application of rules during code generation process
and ensures that the output formulas meet the user’s requirements.

Loop Optimization. Spl formulas contain computational blocks which are to
be implemented as loops. Loop implementation contains a lot of tuning potential
to improve data locality, but Spl does not provide a formalism to steer such
optimizations. Therefore, Spl formulas are translated to Σ-Spl.

(Ik ⊗DFTm) Lkm
k →

(
k−1∑

j=0

S(j)m⊗ım DFTk G(j)m⊗ım

)
perm

(
ℓkm
k

)
(5.2)

→
k−1∑

j=0

(
S(j)m⊗ım DFTk Gℓkm

k
◦((j)m⊗ım)

)
(5.3)

Rule 5.2 shows how the second factor of Rule 5.1 would be translated to Σ-Spl.
In this representation loops resulting from tensor products are displayed as sums.
perm

(
ℓkm
k

)
symbolizes the loop performing the stride permutation ℓkm

k on the
data vector.

This formalism allows to express and apply loop optimizations, especially loop
merging, on a rule based, symbolic, level. Rule 5.3, for instance, merges the two

CHAPTER 5. SPIRAL/DMP 75

loops by fusing the permutation ℓkm
k into the addressing of the DFT calculation.

Except loop merging, Σ-Spl also allows index optimizations to simplify the array
indexing expressions. A detailed introduction to Σ-Spl is given in [22].

Code Generation. The Σ-Spl compiler translates Σ-Spl to programming lan-
guage independent intermediate-code (iCode). A parameter passed to the com-
piler controls the unrolling depth. Further optimizations on code level include
array scalarization, constant folding, and copy propagation. Further details about
Spiral’s code generation are given in [66] and [51].

Formula (5.3) denotes transform in complex arithmetic. As the output shall be
real code, the expression has to be mapped to real arithmetic. This mapping is
denoted by the the application of the bar operator (·) and doubles the size of the
transform.

k−1∑

j=0

(
S(j)m⊗ım DFTk Gℓkm

k
◦((j)m⊗ım)

)

=

k−1∑

j=0

(
S(j)m⊗ım DFTk Gℓkm

k
◦((j)m⊗ım)

)

=

k−1∑

j=0

(
S((j)m⊗ım)⊗ı2

DFTk G(ℓkm
k

◦((j)m⊗ım))⊗ı2

)
(5.4)

Compiling (5.4) with parameters k = m = 4 and an unrolling blocksize of 8 yields
the iCode in Table 5.1.

Finally the iCode is unparsed to platform independent C source code. Note that
simple optimizations like precomputing repeatedly used expressions are left to
the C compiler.

Optimization Loop. Because of the reasons mentioned in Chapter 1, strictly
deterministic optimization is not possible on today’s computing hardware. Thus,
Spiral performs a heuristic search over the Spl formula space, to optimize to
a given target architecture [55]. Therefore run times of code parts are measured
and fed into a feedback loop. This feedback loop controls the breakdown rule ap-
plication in the formula generation process. The feedback loop’s search strategies
include dynamic programming and evolutionary search.

CHAPTER 5. SPIRAL/DMP 76

loop(i43, [0 .. 3],

decl([s108, s107, s105, s109, s110, s111, s112, s106],

chain(

assign(s105, nth(X, mul(2, i43))),

assign(s106, nth(X, add(8, mul(2, i43)))),

assign(s107, nth(X, add(9, mul(2, i43)))),

assign(s108, nth(X, add(mul(2, i43), 1))),

assign(s109, nth(X, add(16, mul(2, i43)))),

assign(s110, nth(X, add(17, mul(2, i43)))),

assign(s111, nth(X, add(24, mul(2, i43)))),

assign(s112, nth(X, add(25, mul(2, i43)))),

assign(nth(Y, mul(8, i43)), add(s105, s106, s109, s111)),

assign(nth(Y, add(mul(8, i43), 1)), add(s108, s107, s110, s112)),

assign(nth(Y, add(mul(8, i43), 2)), add(sub(sub(s105, s107), s109), s112)),

assign(nth(Y, add(mul(8, i43), 3)), sub(sub(add(s108, s106), s110), s111)),

assign(nth(Y, add(mul(8, i43), 4)), sub(add(sub(s105, s106), s109), s111)),

assign(nth(Y, add(mul(8, i43), 5)), sub(add(sub(s108, s107), s110), s112)),

assign(nth(Y, add(mul(8, i43), 6)), sub(sub(add(s105, s107), s109), s112)),

assign(nth(Y, add(mul(8, i43), 7)), add(sub(sub(s108, s106), s110), s111))

)

)

)

Table 5.1: iCode for (I4 ⊗DFT4) L16
4 .

extern void sub (double *, double *);

void sub(double *Y, double *X) {

{int i43; for(i43 = 0; i43 <= 3; i43++)

{ double s108, s107, s105, s109, s110, s111, s112, s106;

{

s105 = X[2*i43];

s106 = X[(8 + 2*i43)];

s107 = X[(9 + 2*i43)];

s108 = X[(2*i43 + 1)];

s109 = X[(16 + 2*i43)];

s110 = X[(17 + 2*i43)];

s111 = X[(24 + 2*i43)];

s112 = X[(25 + 2*i43)];

Y[8*i43] = (s105 + s106 + s109 + s111);

Y[(8*i43 + 1)] = (s108 + s107 + s110 + s112);

Y[(8*i43 + 2)] = (((s105 - s107) - s109) + s112);

Y[(8*i43 + 3)] = (((s108 + s106) - s110) - s111);

Y[(8*i43 + 4)] = (((s105 - s106) + s109) - s111);

Y[(8*i43 + 5)] = (((s108 - s107) + s110) - s112);

Y[(8*i43 + 6)] = (((s105 + s107) - s109) - s112);

Y[(8*i43 + 7)] = (((s108 - s106) - s110) + s111);

}

}

}}

Table 5.2: C-code corresponding to the iCode in Table 5.1.

CHAPTER 5. SPIRAL/DMP 77

5.2 Parallel SPL

The process of generating a parallel Spl formula for a certain transform is similar
to generating a scalar one with the restrictions introduced in Section 4.8, but it
is required to steer the application of the rewrite rules such that the output
only consists of Kronecker parallel factors and communication steps. Therefore,
a tag is defined which contains the information that the tagged formula shall be
parallelized and how many processors are involved in the distributed computation.

Definition 5.1 (Parallel Tags)

Parallelization to p processors, regardless of the type of parallelization, e. g.,
shared memory parallelism (SMP) or distributed memory parallelism (DMP), is
denoted as

APar(p) := par(p, *).

Spiral/dmp Code A.1

Distributed memory parallelization to p processors is denoted as

AParDistr(p) := par(p, dmp).

Spiral/dmp Code A.2

Definition 5.2 (Application of Parallel Tags) A matrix A tagged for dis-
tributed memory parallelization to p processors is denoted as

TPar(A,AParDistr(p)) := A︸︷︷︸
par(p, dmp)

Spiral/dmp Code A.4

Utilizing this tag a multidimensional distributed memory parallel DFT can be
written as

MDDFT(n1, . . . , nd)︸ ︷︷ ︸
par(p, dmp)

.

which corresponds to the following Spiral object

TPar(MDDFT([n1,...,nd]),AParDistr(p)).

To shorten formulas and rules in the remainder of this chapter, DFT matrices
will be denoted as Fn, and multidimensional DFT matrices as Fn1,...,nd

.

The rules introduced in this section allow the breakdown of parallel Spl trans-
forms (non-terminals) into Spl terminals that represent the output of this stage.

CHAPTER 5. SPIRAL/DMP 78

5.2.1 Parallel Computation Blocks

The first step to parallelization is to split the multidimensional DFT matrix into
a product of matrices according to Property 4.4. This creates the tensor products
in the formula, which are required to rewrite it to parallel factors in a later stage.

Rule 5.1 (MDDFT Split) k = 1, . . . , d − 1 :

Fn1,...,nd︸ ︷︷ ︸
par(*, *)

−→ (Fn1,...,nk
⊗ Ink+1···nd

)
︸ ︷︷ ︸

par(*, *)

(In1···nk
⊗Fnk+1,...,nd

)
︸ ︷︷ ︸

par(*, *)

Spiral/dmp Code A.15 (MDDFT tSPL RowCol)

Rule 5.1 splits Fn1,...,nd
into two factors of tensor products of DFT matrices and

identity matrices. A one-dimensional DFT is rewritten in a similar way utilizing
the Cooley-Tukey radix-p factorization introduced in Theorem 4.3, but in this
case the procedure is slightly more complex due to the occurence of a parallel
twiddle-factor matrix.

Rule 5.2 (DFT Split)

Fn︸︷︷︸
par(*, *)

= Fn1n2︸ ︷︷ ︸
par(*, *)

−→ (Fn1 ⊗ In2)︸ ︷︷ ︸
par(*, *)

T n
n2︸︷︷︸

par(*, *)

(In1 ⊗Fn2)︸ ︷︷ ︸
par(*, *)

Ln1n2
n1︸ ︷︷ ︸

par(*, *)

Spiral/dmp Code A.16 (DFT tSPL CT)

Rules 5.1 and 5.2 are rules which define the Spl representation of a certain
transform. These rules are not specifically implemented for distributed memory
parallel transforms. Spiral executes the same rules for shared memory parallel,
vectorized, or straightforward scalar transforms. The additional information is
passed on to the children in the tags. Such rules are called tSpl rules.

The tSpl rules split the initial transform into tensor products of matrices. In
general the tensor products arising in these formulas have to be further broken
down by using the non-terminal objects TTensor and TTensorI.

Definition 5.3 (Tensor)

Tensor(A,B,[pv]) := A ⊗ B︸ ︷︷ ︸
pv

Spiral/dmp Code A.7 (TTensor)

Tensor products with identity matrices recieve a special treatment, as the final
representation of all computational factors has to meet the pattern Ip ⊗ A.

CHAPTER 5. SPIRAL/DMP 79

Definition 5.4 (Tensor I) A ∈ Cn1×n2

The third and fourth parameters to TTensorI can both be either APar or AVec.
Thus, there are four possible definitions for this object having two interpretations,
depending on whether the inner tensor product is interpreted as I ⊗ A or A ⊗ I.

TTensorI(A,n,APar,APar,pv) := In ⊗ A︸ ︷︷ ︸
pv

= Lnn1
n (A ⊗ In) Lnn2

n2︸ ︷︷ ︸
pv

TTensorI(A,n,AVec,AVec,pv) := Lnn1
n (In ⊗ A) Lnn2

n2︸ ︷︷ ︸
pv

= A ⊗ In︸ ︷︷ ︸
pv

TTensorI(A,n,APar,AVec,pv) := (In ⊗ A) Lnn2
n︸ ︷︷ ︸

pv

= Lnn1
n (A ⊗ In)︸ ︷︷ ︸

pv

TTensorI(A,n,AVec,APar,pv) := Lnn1
n (In ⊗ A)︸ ︷︷ ︸

pv

= (A ⊗ In) Lnn2
n2︸ ︷︷ ︸

pv

Spiral/dmp Code A.8 (TTensorI)

The parameters APar and AVec of TTensorI specify whether the rows or the
columns are to be shuffled by L∗

n or not. For the further breakdown-process it is
advantageous not to explicitely create these permutations, but to store them in
form of tags.

The following rule splits one general tensor product into two tensor products with
identity matrices according to Corollary 2.1.

Rule 5.3 (Tensor Split)

A ⊗ B︸ ︷︷ ︸
par(*, *)

−→ A ⊗ I︸ ︷︷ ︸
par(*, *)

I ⊗ B︸ ︷︷ ︸
par(*, *)

Spiral/dmp Code A.19 (AxI IxB)

or

A ⊗ B︸ ︷︷ ︸
par(*, *)

−→ I ⊗ B︸ ︷︷ ︸
par(*, *)

A ⊗ I︸ ︷︷ ︸
par(*, *)

Spiral/dmp Code A.20 (IxB AxI)

The application of this rule leads to a state where all computational factors are
encapsulated in TTensorI objects. However, not all of them are of the desired
pattern Ip ⊗A. Thus, the following rewrite rule is required to transform all com-
putational factors to parallelizable computation stages.

CHAPTER 5. SPIRAL/DMP 80

Rule 5.4 (Tensor Rewrite) p|n, A ∈ Cn1×n2

1. TTensorI(A,n,APar,APar,AParDistr(p))

In ⊗ A︸ ︷︷ ︸
par(p, dmp)

−→ Ip ⊗ (In/p ⊗ A)
︸ ︷︷ ︸

par(p, dmp)

Spiral/dmp Code A.21 (IxA parDMP)

2. TTensorI(A,n,AVec,AVec,AParDistr(p))

A ⊗ In︸ ︷︷ ︸
par(p, dmp)

−→ (Ln1p
n1

⊗In/p)︸ ︷︷ ︸
par(p, dmp)

(
Ip ⊗ (A ⊗ In/p)

)
︸ ︷︷ ︸

par(p, dmp)

(Ln2p
p ⊗In/p)︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.22 (AxI parDMP)

3. TTensorI(A,n,APar,AVec,AParDistr(p))

(In ⊗ A) Lnn2
n︸ ︷︷ ︸

par(p, dmp)

−→
(
Ip ⊗

(
In/p ⊗ A

))
︸ ︷︷ ︸

par(p, dmp)

Lnn2
n︸︷︷︸

par(p, dmp)

Spiral/dmp Code A.23 (AxIpv parDMP)

4. TTensorI(A,n,AVec,APar,AParDistr(p))

(A ⊗ In) Lnn2
n2︸ ︷︷ ︸

par(p, dmp)

−→
(
Ln1p

n1
⊗In/p

)
︸ ︷︷ ︸

par(p, dmp)

(
Ip ⊗

(
(A ⊗ In/p)L

nn2/p
n2

))
︸ ︷︷ ︸

par(p, dmp)

Spiral/dmp Code A.24 (AxIvp parDMP)

When a tensor product has reached the state of a parallel computation block it
is transformed into a DMPTensor object. This is an Spl terminal and, thus, is of
no interest for the Spl rewriting system any more.

Definition 5.5 (DMP Tensor)

DMPTensor(p, A, AParDistr) := Ip ⊗A︸ ︷︷ ︸
par(p, dmp)

(5.5)

Spiral/dmp Code A.51 (DMPTensor)

CHAPTER 5. SPIRAL/DMP 81

Distributed twiddle-factor matrices, as introduced in Definition 4.3, cannot be
avoided for parallel one-dimensional FFTs. It is not possible to express such
matrices as Kronecker parallel factors because they have different values on every
processor. At the Spl level it is sufficient to define a transformation object for
distributed diagonal matcies.

Definition 5.6 (Distributed Diagonal Matrix) If D is a diagonal matrix
then the distributed diagonal matrix representing D is defined by

TDiag(D, AParDistr (p)) := D︸︷︷︸
par(p, dmp)

Spiral/dmp Code A.12 (TDiag)

These rules enable Spiral to express all computation blocks as Kronecker parallel
factors. When a factor has been transformed to Ip ⊗ A the par-tag is dropped,
i. e., it is not passed on to the embedded matrix A. So A is not tagged as parallel
anymore and Spiral can tap its full potential of scalar code generation and
optimization. These scalar code parts are executed on all processors involved in
the parallel computation.

The multiplication of factors in Spl correlates to a composition of the functions
represented by the factors. Parallel compositions require a different handling than
scalar ones in the Σ-Spl optimization and code generation steps. Therefore, the
terminal object DMPCompose is required.

Definition 5.7 (DMP Compose)

DMPCompose([p, A1, ...,An]) := A1 · · ·An︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.44 (DMPCompose)

The object’s initialization function has been tweaked such that it accepts all kind
of lists and nested lists, which contain Spl objects and integer numbers. After the
list is flattened the first integer number arising in the flattened list is interpreted
as p, and all other integers are dropped. The remaining Spl objects are composed.
This makes the coding of some Σ-Spl rules easier.

5.2.2 Stride Permutations

During the process of forcing computation blocks to a pattern compatible with
distributed memory parallel processing additional stride permutation matrices
are produced (Rules 5.1, 5.2, 5.4).

CHAPTER 5. SPIRAL/DMP 82

Often, when stride permutations arise, they appear in factors like Lmn
m ⊗ Ir, Il ⊗

Lmn
m , or even Il⊗Lmn

m ⊗Ir. It is feasible to treat such blocks of stride permutations
and identity matrices as a whole. These blocks represent a class of permutations
that extend the definition of stride permutation.

Definition 5.8 (Stride Permutation Block) n|m

TL(m, n, l, r, pv) := Il ⊗Lm
n ⊗ Ir︸ ︷︷ ︸

pv

This includes the special cases

TL(m, n, 1, r, pv) := Lm
n ⊗ Ir︸ ︷︷ ︸

pv

TL(m, n, l, 1, pv) := Il ⊗Lm
n︸ ︷︷ ︸

pv

TL(m, n, 1, 1, pv) := Lm
n︸︷︷︸

pv

Spiral/dmp Code A.9 (TL)

As derived in Section 3.2 stride permutations cannot be implemented in a straight-
forward manner. They rather have to be split to global communication and local
permutation parts. The desirable patterns Ip ⊗P , and Lp2

p ⊗ Ib are both instances
of the class of permutations introduced in Definition 5.8. As P itself can be a
tensor product of stride permutations and identity matrices too, suitable targets
of the rewrite process are

Ip ⊗(Il ⊗Lm
n ⊗ Ir)︸ ︷︷ ︸

par(p,dmp)

= TL(m,n,p*l,r,AParDistr(p))

Lp2

p ⊗ Ib︸ ︷︷ ︸
par(p,dmp)

= TL(p^2,p,1,b,AParDistr(p)).

To obtain separations yielding these results Lemma 3.2 can be used. The rewrite
rules resulting from these properties are defined in the following.

CHAPTER 5. SPIRAL/DMP 83

Rule 5.5 (Stride Split) This rewrite rule handles expressions of the kind
Lm

n ⊗ Ir︸ ︷︷ ︸
par(p, dmp)

with p|n, and p|(m/n).

1. General rule for splitting a tensor product to parallelizable factors.

Lm
n ⊗ Ir︸ ︷︷ ︸

par(p, dmp)

−→ (Ip ⊗ L
m/p
n/p ⊗ Ir)

︸ ︷︷ ︸
par(p, dmp)

(Lp2

p ⊗ Imr/p2)
︸ ︷︷ ︸

par(p, dmp)

(Ip ⊗ Lm/n
p ⊗ Inr/p)︸ ︷︷ ︸

par(p, dmp)

(5.6)

Spiral/dmp Code A.34 (IxLxI DMP LCL)

2. If n = p the right term of the result would degenerate to Ilmr so (5.6) can
be simplified to

Lm
p ⊗ Ir︸ ︷︷ ︸

par(p, dmp)

−→ (Lp2

p ⊗ Imr/p2)
︸ ︷︷ ︸

par(p, dmp)

(Ip ⊗ Lm/p
p ⊗ Ir)︸ ︷︷ ︸

par(p, dmp)

(5.7)

Spiral/dmp Code A.35 (IxLxI DMP CL)

3. If m/n = p the left term of the result would degenerate to Ilmr so (5.6) can
be simplified to

Lnp
n ⊗ Ir︸ ︷︷ ︸

par(p, dmp)

−→ (Ip ⊗ Ln
n/p ⊗ Ir)︸ ︷︷ ︸

par(p, dmp)

(Lp2

p ⊗ Inr/p)︸ ︷︷ ︸
par(p, dmp)

(5.8)

Spiral/dmp Code A.36 (IxLxI DMP LC)

Theoretically the special cases of Rule 5.5 would not be necessary. Anyway, with-
out implementing the special rules (5.7) and (5.8) additional identity matrices,
which result in no arithmetical operation, would be generated as computation
factors. This is not feasible and would impact the performance of the code gen-
eration process.

Rule 5.6 (Special Stride Rules) These rewrite rules are required to maintain
consistency and allow the further breakdown of scalar formulas.

1. If p = 1 the expression represents a local permutation and the par-tag is
dropped.

Il ⊗Lm
n ⊗ Ir︸ ︷︷ ︸

par(1, dmp)

−→ Il ⊗Lm
n ⊗ Ir

Spiral/dmp Code A.32 (IxLxI nopar)

CHAPTER 5. SPIRAL/DMP 84

2. If n = 1 or n = m the central stride permutation Lm
n degenerates to Im.

Il ⊗Lm
1 ⊗ Ir︸ ︷︷ ︸

par(p, dmp)

−→ Ilmr︸︷︷︸
par(p, dmp)

Il ⊗Lm
m ⊗ Ir︸ ︷︷ ︸

par(p, dmp)

−→ Ilmr︸︷︷︸
par(p, dmp)

Spiral/dmp Code A.33 (IxLxI trivial)

3. If p|l the whole expression represents a tensor product of local permutations
and becomes a computational block.

Il ⊗ Lm
n ⊗ Ir︸ ︷︷ ︸

par(p, dmp)

−→ Ip ⊗ (Il/p ⊗ Lm
n ⊗ Ir)︸ ︷︷ ︸

par(p, dmp)

Spiral/dmp Code A.37 (IxLxI DMP L)

5.2.3 Communication Patterns

Rules 5.5 and 5.6 are sufficient to split all tensor products, which arise during
the break-down process of parallel one- and multidimensional FFTs, to global
communication and local permutation steps. All matrices, which represent inter
processor communication, are exactly of the form Lp2

p ⊗ Ib. The advantages of
such a pattern have been discussed in Section 3.2.1.

Definition 5.9 (Global Matrix Transposition) TDMPGlobalTranspose, an
Spl non-terminal represents a communication stage representing a global matrix
transposition as introduced in Section 3.2.1.

TDMPGlobalTranspose(n, AParDistr (p)) := Lp2

p ⊗ In︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.11 (TDMPGloablTranspose)

In fact all global transposes generated in Rule 5.5 do not result in stride per-
mutations (TL) but are generated as TDMPGlobalTranspose objects right away.
Global transposes have advantages but are very restrictive too.

CHAPTER 5. SPIRAL/DMP 85

Definition 5.10 (Arbitrary Communication Stage) The TComm Spl non-
terminal represents a communication stage with an arbitrary communication pat-
tern according to Definition 3.2.

TComm(p, n, w jk, pi, piinv, r jk, j, k, AParDistr (p))

:= commp	
n

(
wjk

1→N , πmp	, rjk
1→N

)
︸ ︷︷ ︸

par(p, dmp)

Spiral/dmp Code A.10 (TComm)

The exact semantics of the parameters to commp	
n and TComm will be dealt with

later in Definition 5.15 because they represent Σ-Spl functions. The basic idea
is to split the permutation matrix P into a matrix C ′ without fixpoints and a
matrix containing only the fixpoints F . After this splitting the empty rows and
columns of C ′ are collapsed by multiplication with non-square matrices W and
R = W T :

P = F + C ′ = F + WCW T = F + WCR.

The functions wjk
1→N and rjk

1→N generate the matrices W and R. The permuta-
tion πmp	 represents the communication matrix C without fixpoints. In case the
communication shall be performed in place, i. e., the input and output arrays are
the same, the copy-operations implied by the fixpoint matrix F can be skipped.

This approach simplifies the code generation, as each line of the permutation
matrix πmp	 represents the sending of a data packet of size n from one processor
to another and no further checks for fixpoints or local permutations are required
at later stages of the code generation process.

CHAPTER 5. SPIRAL/DMP 86

Example 5.1 (TComm) This example illustrates the decomposition of the communication
step L4

2 ⊗ I2︸ ︷︷ ︸
par(2, dmp)

.

1 · · · · · · ·
· 1 · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · · · 1 ·
· · · · · · · 1

︸ ︷︷ ︸
L4

2 ⊗ I2︸ ︷︷ ︸
par(2, dmp)

=

1 · · ·
· · 1 ·
· 1 · ·
· · · 1

︸ ︷︷ ︸
P=L4

2

⊗
[

1 ·
· 1

]

︸ ︷︷ ︸
I2

︸ ︷︷ ︸
par(2, dmp)

=

=

1 · · ·
· · · ·
· · · ·
· · · 1

︸ ︷︷ ︸
F

+

· · · ·
· · 1 ·
· 1 · ·
· · · ·

︸ ︷︷ ︸
C′

⊗
[

1 ·
· 1

]

︸ ︷︷ ︸
I2

︸ ︷︷ ︸
par(2, dmp)

=

=

1 · · ·
· · · ·
· · · ·
· · · 1

︸ ︷︷ ︸
F

+

· ·
1 ·
· 1
· ·

︸ ︷︷ ︸
W

·
[

· 1
1 ·

]

︸ ︷︷ ︸
C

·
[

· 1 · ·
· · 1 ·

]

︸ ︷︷ ︸
R=W T

⊗
[

1 ·
· 1

]

︸ ︷︷ ︸
I2

︸ ︷︷ ︸
par(2, dmp)

This factorization leads to the following communication pattern among two processors

C ⊗ I2︸ ︷︷ ︸
par(2, dmp)

=

[
· 1
1 ·

]
⊗
[

1 ·
· 1

]
=

· · 1 ·
· · · 1
1 · · ·
· 1 · ·

 .

Thus, one data packet of size 2 is sent from processor 0 to processor 1 and vice versa. The
information about exact locations of the sent and received packages is contained in the matrices
R and W .

The terminals DMPGlobalTranspose (Code A.46)and DMPComm (Code A.45) are
the terminals for communication kernels. The rules TComm Base (Code A.42) and
TDMPGlobalTranspose Base (Code A.30) create the terminal from the respective
transforms.

The reason for going this way, rather than immediately creating the terminal, is
that there is the special rule TDMPGlobalTranspose2TComm (Code A.31) which
creates a TComm object from TDMPGlobalTranspose.

CHAPTER 5. SPIRAL/DMP 87

Rule 5.7 (Global Transpose to Comm)

Lp2

p ⊗ In︸ ︷︷ ︸
par(p,mpi)

−→ commp	
n

(
ζp
jk ⊗ ın, γp ◦ ℓp2

p ◦ γ′
p, ζp

jk ⊗ ın

)

with γ′
p : Ip(p−1) → Ip2; i 7→ i + 1 +⌊ i

p⌋
γp : Ip2 → Ip(p−1); i 7→ i − 1 −⌊ i

p+1⌋
ζN
jk : I1 → IN ; i 7→

{
k if k < j

k + 1 else

Spiral/dmp Code A.31 (TDMPGlobalTranspose2TComm)

ℓp2

p is the generating function of Lp2

p .

The semantics of Rule 5.6 is to split the communication pattern as demonstrated
in Example 5.1. γ′

p and γp drop the fixpoints out of the communication matrix.

The p fixpoints of Lp2

p are located in every p+1-th row. ζN
jk is required to address

the correct vector elements after the permutation matrix has been reduced.

The communication implementation can be selected by globally switching be-
tween TDMPGlobalTranspose Base and TDMPGlobalTranspose2TComm. If both
rules are left switched on the optimizing system will test both possibilities and
chose the faster one.

5.2.4 Summary

The rules introduced in this chapter allow the automatic breakdown of transforms
from a descriptive definition to a fast parallel algorithm in Kronecker product
notation.

The application of the parallel rules implemented in Spiral/dmp together with
Spiral’s own rules for scalar code leads to a ruletree. The following example
shows a ruletree for MDDFT8,4︸ ︷︷ ︸

par(2, dmp)

.

C
H

A
P

T
E

R
5.

S
P

IR
A

L
/D

M
P

88

Example 5.2 (Ruletree) Random Spiral ruletree for TPar(DFT([8,4]),AParDistr(2)).

TPar(MDDFT([8, 4], 1, [], false), AParDistr(2)) {TPar_setpv}

‘--MDDFT([8, 4], 1, [AParDistr(2)], false) {MDDFT_tSPL_RowCol}

‘--TTensor(MDDFT([8], 1, [], false), MDDFT([4], 1, [], false), [AParDistr(2)]) {IxB_AxI}

‘--TCompose([TTensorI(MDDFT([4], 1, [], false), 8, APar, APar, []), TTensorI(MDDFT([8], 1, [], false), 4, AVec, AVec, [])], [AParDistr(2)]) {TCompose_DMP_Base}

|--TTensorI(MDDFT([4], 1, [], false), 8, APar, APar, [AParDistr(2)]) {IxA_parDMP}

| ‘--TTensorI(MDDFT([4], 1, [], false), 4, APar, APar, []) {IxA_base}

| ‘--MDDFT([4], 1, [], false) {MDDFT_Base}

| ‘--DFT(4, 1) {DFT_tSPL_CT}

| ‘--TCompose([TTensorI(DFT(2, 1), 2, AVec, AVec, []), TDiag(T(4, 2, 1), []), TTensorI(DFT(2, 1), 2, APar, AVec, [])], []) {TCompose_base}

| |--TTensorI(DFT(2, 1), 2, AVec, AVec, []) {AxI_base}

| | ‘--DFT(2, 1) {DFT_Base}

| |--TDiag(T(4, 2, 1), []) {TDiag_base}

| ‘--TTensorI(DFT(2, 1), 2, APar, AVec, []) {IxA_L_base}

| ‘--DFT(2, 1) {DFT_Base}

‘--TTensorI(MDDFT([8], 1, [], false), 4, AVec, AVec, [AParDistr(2)]) {AxI_parDMP}

|--TL(16, 8, 1, 2, [AParDistr(2)]) {IxLxI_DMP_LC}

| |--TL(8, 4, 2, 2, [AParDistr(2)]) {IxLxI_DMP_L}

| | ‘--TTensorI(TL(8, 4, 1, 2, []), 2, APar, APar, [AParDistr(2)]) {IxA_parDMP}

| | ‘--TL(8, 4, 1, 2, []) {L_base}

| ‘--TDMPGlobalTranspose(8, AParDistr(2)) {TDMPGlobalTranspose_Base}

|--TTensorI(TTensorI(MDDFT([8], 1, [], false), 2, AVec, AVec, []), 2, APar, APar, [AParDistr(2)]) {IxA_parDMP}

| ‘--TTensorI(MDDFT([8], 1, [], false), 2, AVec, AVec, []) {AxI_base}

| ‘--MDDFT([8], 1, [], false) {MDDFT_Base}

| ‘--DFT(8, 1) {DFT_tSPL_CT}

| ‘--TCompose([TTensorI(DFT(4, 1), 2, AVec, AVec, []), TDiag(T(8, 2, 1), []), TTensorI(DFT(2, 1), 4, APar, AVec,

[])], []) {TCompose_base}

| |--TTensorI(DFT(4, 1), 2, AVec, AVec, []) {AxI_base}

| | ‘--DFT(4, 1) {DFT_tSPL_CT}

| | ‘--TCompose([TTensorI(DFT(2, 1), 2, AVec, AVec, []), TDiag(T(4, 2, 1), []),

TTensorI(DFT(2, 1), 2, APar, AVec, [])], []) {TCompose_base}

| | |--TTensorI(DFT(2, 1), 2, AVec, AVec, []) {AxI_base}

| | | ‘--DFT(2, 1) {DFT_Base}

| | |--TDiag(T(4, 2, 1), []) {TDiag_base}

| | ‘--TTensorI(DFT(2, 1), 2, APar, AVec, []) {IxA_L_base}

| | ‘--DFT(2, 1) {DFT_Base}

| |--TDiag(T(8, 2, 1), []) {TDiag_base}

| ‘--TTensorI(DFT(2, 1), 4, APar, AVec, []) {IxA_L_base}

| ‘--DFT(2, 1) {DFT_Base}

‘--TL(16, 2, 1, 2, [AParDistr(2)]) {IxLxI_DMP_CL}

|--TDMPGlobalTranspose(8, AParDistr(2)) {TDMPGlobalTranspose_Base}

‘--TL(8, 2, 2, 2, [AParDistr(2)]) {IxLxI_DMP_L}

‘--TTensorI(TL(8, 2, 1, 2, []), 2, APar, APar, [AParDistr(2)]) {IxA_parDMP}

‘--TL(8, 2, 1, 2, []) {L_base}

CHAPTER 5. SPIRAL/DMP 89

Such a ruletree exactly displays the sources and targets of each step of the
breakdown process. Example 5.3 demonstrates the application of the command
SPLRuleTree which translates the ruletree to easier readable Spl objects.

Example 5.3 (SPL Ruletree) SPL formula of the ruletree created in Example 5.2.

spiral> SPLRuleTree(r);

DMPTensor(Tensor(

I(4),

Tensor(F(2), I(2)) *

T(4, 2, 1) *

Tensor(I(2), F(2)) *

L(4, 2)

), 2, AParDistr(2)) *DMP*

DMPTensor(Tensor(L(8, 4), I(2)), 2, AParDistr(2)) *DMP*

DMPGlobalTranspose(AParDistr(2), 8) *DMP*

DMPTensor(Tensor(

Tensor(

Tensor(F(2), I(2)) *

T(4, 2, 1) *

Tensor(I(2), F(2)) *

L(4, 2),

I(2)

) *

T(8, 2, 1) *

Tensor(I(4), F(2)) *

L(8, 4),

I(2)

), 2, AParDistr(2)) *DMP*

DMPGlobalTranspose(AParDistr(2), 8) *DMP*

DMPTensor(Tensor(L(8, 2), I(2)), 2, AParDistr(2))

This algorithm is equivalent to the following expression in Kronecker product notation

(
I2 ⊗

(
I4 ⊗

(
(F2 ⊗ I2)T4

2(I2 ⊗F2) L4
2

)))
︸ ︷︷ ︸

par(2, dmp)

(
I2 ⊗

(
L8

4 ⊗ I2
))

︸ ︷︷ ︸
par(2, dmp)

(
L4

2 ⊗ I8
)

︸ ︷︷ ︸
par(2, dmp)

(
I2 ⊗

((((
(F2 ⊗ I2)T4

2(I2 ⊗F2) L4
2

)
⊗ I2

)
T8

2(I4 ⊗F2) L8
4

)
⊗ I2

))
︸ ︷︷ ︸

par(2, dmp)
(
L4

2 ⊗ I8
)

︸ ︷︷ ︸
par(2, dmp)

(
I2 ⊗

(
L8

2 ⊗ I2
))

︸ ︷︷ ︸
par(2, dmp)

.

5.3 Σ-SPL

After a transform has been broken down to an algorithm in Spl notation it has
to be converted to Σ-Spl to optimize its loop structure. A parallel computation
part has similar semantics as a scalar loop. The only differences are that (i) the
iterations are not executed sequentially but parallelly and (ii) each iteration can
only access certain parts of the data, i. e., the data which resides in the memory
of the processor represented by that loop iteration. The transformation semantics
from Spl to Σ-Spl are coded in the Spl terminals’ .sums() functions.

CHAPTER 5. SPIRAL/DMP 90

Σ-Spl (Franchetti et al. [22]) is briefly introduced in Section 5.1. The rules defined
in the following will be displayed in both pseudo-code, which simplifies the reading
of the rules in Appendix A, and Σ-Spl notation.

5.3.1 Conversion of SPL to Σ-SPL

The key-object for parallel computation blocks in Spiral/dmp is the parallel
iterative sum. All parallel computation blocks are represented as iterative sums
in Σ-Spl.

Definition 5.11 (DMP Iterative Sum)

DMPISum(var, domain, expr, AParDistr(p)) :=
domain−1∑

var=0

expr

︸ ︷︷ ︸
par(domain, dmp)

(5.9)

Spiral/dmp Code A.49 (DMPISum)

Passing the par tag to DMPISum seems redundant as the sum’s domain has to be
equal to the number of processors. However, certain optimizations may require
more complex tags. The optimizations introduced in Section 5.6 are an example
where the par tag contains more information than just the number of processes.

DMPTensor.sums() converts the Spl tensor product to an iterative sum in Σ-Spl,
a Spl formulas usually contain tensor products rather than direct sums.

Rule 5.8 (Tensor to Iterative Sum) A ∈ Cm×m :

DMPTensor(A,n,pv) −→ DMPISum(i,n,

DMPScat(i,p,fId(Rows(A))) *

A.sums() *

DMPGath(i,p,fId(Rows(A))),pv)

Ip ⊗A︸ ︷︷ ︸
par(p, dmp)

=

p−1⊕

i=0

A

︸ ︷︷ ︸
par(p, dmp)

−→
p−1∑

i=0

S(i)p⊗ım A G(i)p⊗ım

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.55 (DMPTensor.sums())

The parallel gather and scatter routines that occur in DMPTensor.sums() are
adapted versions of the scalar Gath and Scat objects. Parallel gather and scatter
functions must match the pattern (i)p ⊗ fn→n. So they have been defined such
that they do not accept the whole gather or scatter function as parameter, but
only p, i, and fn→n.

CHAPTER 5. SPIRAL/DMP 91

Definition 5.12 (Parallel Scatter) The parallel scatter function DMPScat

symbolically writes a processor’s part of the data array into the global data vector.

DMPScat(i, p, f) := S(i)p⊗fn→n

︸ ︷︷ ︸
par(p, dmp)

=

(
p−1[]

i=0

(
n[]

j=0

eN
((i)p⊗fn→n(j))

))T

=
p−1[]

i=0

(
n[]

j=0

(
eN
((i)p⊗fn→n(j))

)T
)

Spiral/dmp Code A.48 (DMPScat)

Definition 5.13 (Parallel Gather) The parallel gather function DMPGath se-
lects a certain processor’s part of the global data vector.

DMPGath(i, p, f) := G(i)p⊗fn→n

︸ ︷︷ ︸
par(p, dmp)

= ST
(i)p⊗fn→n

︸ ︷︷ ︸
par(p, dmp)

=
p−1[]

i=0

(
n[]

j=0

eN
((i)p⊗fn→n(j))

)

Spiral/dmp Code A.47 (DMPGath)

One parallel iterative sum’s iteration represents one processor’s workload. The
parallel gather and scatter functions are required to maintain the mathematical
correctness of the expression represented by the iterative sum. In practice they
do not require any code to be generated as long as fn→n = fIdn, which is always
true for the expressions treated in this chapter. So it is sufficient to generate code
for the iterative sum’s computational kernel A as the following example shows.

Example 5.4 (Iterative Sum) This example will analyze I4 ⊗F2︸ ︷︷ ︸
par(4, dmp)

:

I4 ⊗F2︸ ︷︷ ︸
par(4, dmp)

−→
3⊕

i=0

F2

︸ ︷︷ ︸
par(4, dmp)

−→ S(i)4⊗ı2 F2 G(i)4⊗ı2︸ ︷︷ ︸
par(4, dmp)

CHAPTER 5. SPIRAL/DMP 92

The original expression is tagged for parallelization to four processors with two data points
resident on every processor. The resulting Σ-Spl formula symbolizes gathering each processor’s
local data points, executing F2 on them, and storing them back into the global data array.

i = 0 :

2

6

6

6

6

6

6

6

6

6

4

1 ·
· 1
· ·
· ·
· ·
· ·
· ·
· ·

3

7

7

7

7

7

7

7

7

7

5

·

»

1 1
−1 1

–

·

»

1 · · · · · · ·
· 1 · · · · · ·

–

=

2

6

6

6

6

6

6

6

6

6

4

1 1 · · · · · ·
−1 1 · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

3

7

7

7

7

7

7

7

7

7

5

= A0

...
...

i = 3 :

2

6

6

6

6

6

6

6

6

6

4

· ·
· ·
· ·
· ·
· ·
· ·
1 ·
· 1

3

7

7

7

7

7

7

7

7

7

5

·

»

1 1
−1 1

–

·

»

· · · · · · 1 ·
· · · · · · · 1

–

=

2

6

6

6

6

6

6

6

6

6

4

· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · 1 1
· · · · · · −1 1

3

7

7

7

7

7

7

7

7

7

5

= A3

This illustrates that, omitting the gather and scatter steps, each iteration’s kernel represents
one processor’s job, namely computing F2. Anyways, including these steps has the effect that
the iterative sum as a whole represents the operation on the global data vector.

=⇒
3∑

i=0

Ai =

1 1 · · · · · ·
−1 1 · · · · · ·
· · 1 1 · · · ·
· · −1 1 · · · ·
· · · · 1 1 · ·
· · · · −1 1 · ·
· · · · · · 1 1
· · · · · · −1 1

= I4 ⊗F2

The direct sum’s requirement that, on a certain position, only one matrix may
contain a non-zero element naturally fits to parallel programming, as every data
point is only stored on one processor. It is not possible that two processor’s kernels
operate on one element at the same time.

The Spl terminals for diagonal matrices and communication steps (Diag,
DMPComm, and DMPGlobalTranspose serve as Σ-Spl objects right away. There-
fore, the .sums() routines of these objects (Code A.53 and A.54) just return the
objects themselves. Communication and parallel computation blocks are com-
posed by DMPCompose. DMPCompose is both an Spl terminal and a Σ-Spl object
too, but upon the calling of DMPCompose.sums() (Code A.52) its chidren are
recursively converted to Σ-Spl too.

This enables Spiral/dmp to convert any given FFT’s Spl formula to Σ-Spl.
Example 5.5 shows the Σ-Spl representation of the ruletree from Example 5.2.

CHAPTER 5. SPIRAL/DMP 93

Example 5.5 (Σ-Spl) Σ-Spl representation of the ruletree created in Exam-
ple 5.2.

DMPISum(i12, 2,

DMPScat(([i12]_2 X I16)) *

ISum(i13, 4,

Scat(([i13]_4 X I4)) *

ISum(i16, 2,

Scat((I2 X [i16]_2)) *

Blk([[1, 1], [1, -1]]) *

Gath((I2 X [i16]_2))

) *

Diag(T(4, 2, 1)) *

ISum(i17, 2,

Scat(([i17]_2 X I2)) *

Blk([[1, 1], [1, -1]]) *

Gath(([i17]_2 X I2))

) *

Prm(L(4, 2)) *

Gath(([i13]_4 X I4))

) *

DMPGath(([i12]_2 X I16))

) *DMP*

DMPISum(i19, 2,

DMPScat(([i19]_2 X I16)) *

Prm((L(8, 4) X I2)) *

DMPGath(([i19]_2 X I16))

) *DMP*

DMPGlobalTranspose(8, AParDistr(2)) *DMP*

DMPISum(i20, 2,

DMPScat(([i20]_2 X I16)) *

ISum(i22, 2,

Scat((I8 X [i22]_2)) *

ISum(i24, 2,

Scat((I4 X [i24]_2)) *

ISum(i26, 2,

Scat((I2 X [i26]_2)) *

Blk([[1, 1], [1, -1]]) *

Gath((I2 X [i26]_2))

) *

Diag(T(4, 2, 1)) *

ISum(i27, 2,

Scat(([i27]_2 X I2)) *

Blk([[1, 1], [1, -1]]) *

Gath(([i27]_2 X I2))

) *

Prm(L(4, 2)) *

Gath((I4 X [i24]_2))

) *

Diag(T(8, 2, 1)) *

ISum(i29, 4,

Scat(([i29]_4 X I2)) *

Blk([[1, 1], [1, -1]]) *

Gath(([i29]_4 X I2))

) *

Prm(L(8, 4)) *

Gath((I8 X [i22]_2))

) *

DMPGath(([i20]_2 X I16))

) *DMP*

DMPGlobalTranspose(8, AParDistr(2)) *DMP*

DMPISum(i31, 2,

DMPScat(([i31]_2 X I16)) *

Prm((L(8, 2) X I2)) *

DMPGath(([i31]_2 X I16))

)

CHAPTER 5. SPIRAL/DMP 94

5.3.2 Communication in Σ-SPL

The parameters to the Spl comm structure (Definition 5.10) are rather complex
because they contain a lot of information. This information was not immediately
necessary at the Spl rewriting level but is advantageous in Σ-Spl and, especially,
at the code generation level. In fact the parameters represent Σ-Spl functions
which will be discussed in this section.

First of all the new operator inplace, which is required to handle communication
in Σ-Spl, is defined.

Definition 5.14 (Inplace Operator) Am×n =
[
ai,j

]
0≤i<m,0≤j<n

Am×n
︸ ︷︷ ︸
inplace

:=
[
a′

i,j

]
0≤i<m,0≤j<n

with a′
i,j =

1 if i = j and ai,j = 0 ∀ 0 ≤ j < n

0 if i 6= j and ai,j = 0 ∀ 0 ≤ j < n

ai,j else

The inplace operator sets empty rows’ main diagonal elements to 1. This formally
represents an elementwise matrix addition A + B with B containing the added
elements. This is necessary, because communication patterns shall only contain
communicated elements, but no fixpoints.

Example 5.6 (Inplace)

· · · · · · · ·
· · · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · · · · ·
· · · · · · · ·

︸ ︷︷ ︸
inplace

=

1 · · · · · · ·
· 1 · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · · · 1 ·
· · · · · · · 1

=

=

· · · · · · · ·
· · · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · · · · ·
· · · · · · · ·

+

1 · · · · · · ·
· 1 · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · 1 ·
· · · · · · · 1

In case that communication is inplace, i. e., the source array and the target array
are the same, the communication step does not have to take care about these

CHAPTER 5. SPIRAL/DMP 95

elements. If the communication is out-of-place, the communiction’s fixpoints have
to be locally copied from the source to the destination.

This allows to define the Σ-Spl representation of comm as follows.

Definition 5.15 (Blockwise Communication)

commp	
n

(
wjk

1→N , πmp	, rjk
1→N

)

:=

p−1⊕

j=0

S
[]m−1

k=0

(
wjk

1→N⊗ın

) perm
(
πmp	 ⊗ ın

) p−1⊕

j=0

G
[]m−1

k=0

(
rjk

1→N⊗ın

)

︸ ︷︷ ︸
inplace, par(p,mpi)

The central permutation represents the communication pattern. The gather and
scatter matrices select which elements should be communicated and where they
should be placed at their destination. They also filter out fixpoints. Formally
the iterative sum’s matrix representation would contain zeros in the rows and
columns which contain the fixpoints. These are re-added by the inplace operator.

The comm object representing a global matrix transposition in Spl has been
introduced in Rule 5.7. Definition 5.15 leads to the following Σ-Spl representation
for this special communication pattern.

Rule 5.9 (Global Matrix Transposition)

commp	
n

(
ζp
jk, γp ◦ ℓp2

p ◦ γ′
p, ζp

jk

)

−→
p−1⊕

j=0

S
[]m−1

k=0

(
ζp

jk
⊗ın

) perm
((

γp ◦ ℓp2

p ◦ γ′
p

)
⊗ ın

) p−1⊕

j=0

G
[]m−1

k=0

(
ζp

jk
⊗ın

)

︸ ︷︷ ︸
inplace, par(p, mpi)

with γ′
p : Ip(p−1) → Ip2; i 7→ i + 1 +⌊ i

p⌋
γp : Ip2 → Ip(p−1); i 7→ i − 1 −⌊ i

p+1⌋
ζN
jk : I1 → IN ; i 7→

{
k if k < j

k + 1 else

5.3.3 Σ-SPL Optimization

The root object in Example 5.5 is DMPCompose. DMPCompose is not displayed as
a function, but as the operator *DMP* between its components to make it distin-
guishable from the scalar composition *. What is not apparent in this example
is that there is not one parallel composition containing all communication and
computation objects, but multiple levels of nested compositions. This is a result
of converting the structure of the ruletree. Before any meaningful optimization
can be applied the Σ-Spl structure has to be flattened by repeated application
of the following rule.

CHAPTER 5. SPIRAL/DMP 96

Rule 5.10 (Flatten DMP Compose) Repeated application of this rule flat-
tens nested parallel compositions.

DMPCompose([p,A,...,B,DMPCompose([p,X,...Y]),C,...,D)

−→ DMPCompose([p,A,...,B,X,...Y,C,...,D])

A · · ·B (X · · ·Y)︸ ︷︷ ︸
par(p, dmp)

C · · ·D

︸ ︷︷ ︸
par(p, dmp)

−→ (A · · ·BX · · ·Y C · · ·D)︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.57 (DMPComposeAssoc)

After application of this rule the Σ-Spl formula only contains one parallel com-
position which contains iterative sums, communication steps, and multiplications
with diagonal matrices.

Example 5.7 (Diagonal Matrices Outside Iterative Sums)

DMPISum(i12, 2,

DMPScat(([i12]_2 X I16)) *

...

DMPGath(([i12]_2 X I16))

) *DMP*

Diag(T(32,4,1)) *DMP*

DMPISum(i19, 2,

DMPScat(([i19]_2 X I16)) *

...

DMPGath(([i19]_2 X I16))

) ...

In its final state, the Σ-Spl formula may only contain communication parts and
iterative sums, so Rule 5.11 pulls diagonal matrices into the iterative sums.

Rule 5.11 (Pull Diagonal Matrices into Iterative Sums) This rule pulls
diagonal matrices which are direct children of a parallel composition into adjacent
parallel iterative sums.

DMPCompose([p,..,DMPISum(var,domain,expr1),Diag(expr2)..)

−→ DMPCompose([p,..,DMPISum(var,domain,expr1 * Diag(expr2)),..)

CHAPTER 5. SPIRAL/DMP 97

(
p−1∑

i=0

S(i)p⊗ın · · ·G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

diag
(
fn→C

)
︸ ︷︷ ︸

par(p, dmp)

−→
(

p−1∑

i=0

S(i)p⊗ın · · ·G(i)p⊗ın diag
(
fn→C

)
)

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.58 (DiagDMPISumLeft)

DMPCompose([p,..,Diag(expr1),DMPISum(var,domain,expr2),..)

−→ DMPCompose([p,..,DMPISum(var,domain,Diag(expr1) * expr2),..)

diag
(
fn→C

)
︸ ︷︷ ︸

par(p, dmp)

(
p−1∑

i=0

S(i)p⊗ın · · ·G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

−→
(

p−1∑

i=0

diag
(
fn→C

)
S(i)p⊗ın · · ·G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.59 (DiagDMPISumRight)

Example 5.8 (Diagonal Matrices Outside Iterative Sums) Example 5.7 after applica-
tion of Rule 5.11.

DMPISum(i12, 2, DMPISum(i12, 2,

DMPScat(([i12] 2 X I16)) * DMPScat(([i12] 2 X I16))

... ...

DMPGath(([i12] 2 X I16)) DMPGath(([i12] 2 X I16))

Diag(T(32,4,1))) *DMP*

) *DMP* DMPISum(i19, 2,

DMPISum(i19, 2, or Diag(T(32,4,1))

DMPScat(([i19] 2 X I16)) * DMPScat(([i19] 2 X I16)) *

... ...

DMPGath(([i19] 2 X I16)) DMPGath(([i19] 2 X I16))

) ...) ...

After a diagonal matrix has been pulled into the iterative sum the sum’s body
does not show the correct structure. The frst and last matrices inside the sum
have to be gather and scatter matrices which address the correct part of the data

CHAPTER 5. SPIRAL/DMP 98

vector for a certain iteraion. Therefore, two rules are required which pull diagonal
matrices into the gather-scatter block.

Commuting a diagonal matrix with a scatter, or gather, matrix essentially splits it
into p smaller parts. This requires an extension of the diagonal matrix’ generating
function. It has to be tweaked such that it selects the correct values for each
iteration.

Rule 5.12 (Commute Diagonal Matrices with Scatter/Gather) These
rules reestablish gather and scatter matrices as the first and last factors of
parallel iterative sums.

Compose(..,DMPGath(var,domain,expr1),Diag(expr2))

−→ Compose(..,Diag(expr2*expr1),DMPGath(var,domain,expr1))

p−1∑

i=0

(
· · ·G(i)p⊗ın diag

(
fn→C

))

︸ ︷︷ ︸
par(p, dmp)

−→
p−1∑

i=0

(
· · ·diag

(
fn→C ◦

(
(i)p ⊗ ın/p

))
G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.60 (CommuteDMPGathDiag)

Compose(Diag(expr1),DMPGath(var,domain,expr2),..)

−→ DMPGath(var,domain,expr2),Compose(Diag(expr1*expr2),..)

p−1∑

i=0

(
diag

(
fn→C

)
S(i)p⊗ın · · ·

)

︸ ︷︷ ︸
par(p, dmp)

−→
p−1∑

i=0

(
S(i)p⊗ın diag

(
fn→C ◦

(
(i)p ⊗ ın/p

))
· · ·
)

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.61 (CommuteDiagDMPScat)

At this point all diagonal matrices have been pulled into parallel computation
steps and the outmost DMPCompose only contains communication steps and iter-
ative sums.

Example 5.9 (Adjacent Iterative Sums)

DMPISum(i12, 2,

DMPScat(([i12]_2 X I16)) *

...

DMPGath(([i12]_2 X I16))

) *DMP*

DMPISum(i19, 2,

DMPScat(([i19]_2 X I16)) *

...

DMPGath(([i19]_2 X I16))

) ...

CHAPTER 5. SPIRAL/DMP 99

Two adjacent parallel kronecker products in the Spl formula result in such back-
to-back iterative sums in Σ-Spl. All scalar code is encapsuled in such iterative
sums. As scalar code optimization cannot optimize across multiple DMPISum ob-
jects it is preferrable to work towards a structure without multiple adjacent it-
erative sums. Iterative sums should only by surrounded by communication parts
but not by other iterative sums.

Rule 5.13 (Merge Iterative Sums) This rule merges two adjacent parallel it-
erative sums.

DMPCompose([p,...,DMPISum(v1,d1,expr1),DMPISum(v2, d2, expr2),...)

−→ DMPCompose([p,...,DMPISum(var, domain, expr1 * expr2),...)

(
p−1∑

i=0

S(i)p⊗ın A G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

(
p−1∑

i=0

S(i)p⊗ın B G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

−→
p−1∑

i=0

S(i)p⊗ın A G(i)p⊗ın S(i)p⊗ın B G(i)p⊗ın

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.62 (MergeDMPISums)

In fact this rule is slightly more complex than shown here. If sum1 and sum2, with
the index variables v1 and v2, are merged, sum2 is dropped and its children are
appended to sum1. However, as sum2 is dropped, v2 is not initialized anymore.
So the former children of sum2 need all occuring v2 variables replaced by v1

recursively.

Example 5.10 demonstrates the effect of this rule on the code-piece in Exam-
ple 5.9. Repeated application of this rule leads a Σ-Spl formula with alternating
iterative sums and communication parts.

Example 5.10 (Adjacent Gather and Scatter Functions) Example 5.9 after application
of Rule 5.13.

DMPISum(i51, 2,

DMPScat(([i51]_2 X I16)) *

...

DMPGath(([i51]_2 X I16)) *

DMPScat(([i51]_2 X I16)) *

...

DMPGath(([i51]_2 X I16))

) ...

CHAPTER 5. SPIRAL/DMP 100

Rule 5.13 resulted in such DMPGath*DMPScat constructs. Gather and scatter ma-
trices with the same generating function are transposed to each other. Their
structure further implies that they are pseudo-inverse.

Gfm→n = (Sfm→n)T

=⇒ Gfm→n Sfm→n = Im

Thus, the adjacent DMPGath and DMPScat inside the composition in DMPISum have
no effect and can be cancelled.

Rule 5.14 (Clear Composed Gather Scatter)

Compose([..,A,DMPGath(v,dom,expr),DMPScat(var,dom,expr),B,..)

−→ Compose([..,A,B,..)

(
p−1∑

i=0

· · ·A G(i)p⊗ın S(i)p⊗ın B · · ·
)

︸ ︷︷ ︸
par(p, dmp)

−→
(

p−1∑

i=0

· · ·AB · · ·
)

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.63 (ComposeDMPGathDMPScat)

Σ-Spl optimization for the parts of the formula representing parallel parts of
the algorithm goes together with scalar optimization. All rules are applied until
no rule can be applied any more. Example 5.11 shows the Σ-Spl formula from
Example 5.5 after the optimization process.

Example 5.11 (Σ-Spl) The formula from Example 5.5 after the application of
Σ-Spl optimization rules.

DMPISum(i12, 2,

DMPScat(([i12]_2 X I16)) *

ISum(i13, 4,

ISum(i16, 2,

Scat(([i13]_4 X I2 X [i16]_2)) *

Blk([[1, 1], [1, -1]]) *

Gath((I2 X [i16]_2))

) *

ISum(i17, 2,

Scat(([i17]_2 X I2)) *

Diag((FData(D4) o ([i17]_2 X I2))) *

Blk([[1, 1], [1, -1]]) *

Gath((I2 X [i13]_4 X [i17]_2))

)

) *

DMPGath(([i19]_2 X I16))

) *DMP*

DMPGlobalTranspose(8, AParDistr(2)) *DMP*

DMPISum(i20, 2,

DMPScat(([i20]_2 X I16)) *

ISum(i22, 2,

CHAPTER 5. SPIRAL/DMP 101

ISum(i24, 2,

ISum(i26, 2,

Scat((I2 X [i26]_2 X [i24]_2 X [i22]_2)) *

Blk([[1, 1], [1, -1]]) *

Gath((I2 X [i26]_2))

) *

ISum(i27, 2,

Scat(([i27]_2 X I2)) *

Diag((FData(D5) o ([i27]_2 X I2))) *

Blk([[1, 1], [1, -1]]) *

Gath((I2 X [i27]_2 X [i24]_2))

)

) *

ISum(i29, 4,

Scat(([i29]_4 X I2)) *

Diag((FData(D6) o ([i29]_4 X I2))) *

Blk([[1, 1], [1, -1]]) *

Gath((I2 X [i29]_4 X [i22]_2))

)

) *

DMPGath(([i20]_2 X I16))

) *DMP*

DMPGlobalTranspose(8, AParDistr(2)) *DMP*

DMPISum(i31, 2,

DMPScat(([i31]_2 X I16)) *

Prm((L(8, 2) X I2)) *

DMPGath(([i31]_2 X I16))

)

5.3.4 Complex-to-Real Transformation

Example 5.11 still represents complex operations. As the output of the code gen-
eration process is C-code, which does not provide complex operations, the formula
has to be transformed to operate on a vector of the double length containing the
real, and imaginary, parts of the original vector as real numbers.

x0

x1

x2
...

xn−1

−→

x0,re

x0,im

x1,re

x1,im

x2,re

x2,im
...

xn−1,re

xn−1,im

This transformation requires an adaption of the formula representing the algo-
rithm. The most significant changes have to be applied at the scalar code parts,
where the actual computation takes place. Spiral already provides this function-
ality, as this is necessary for scalar code generation as well.

CHAPTER 5. SPIRAL/DMP 102

To perform the complex-to-real transformation the whole formula is embedded
into an RC function and then the ruleset, which passes this function down through
the formula, is called. Again, all rules are applied until no one can be applied any
more. During this process the RC tag percolates through the whole formula-tree
and initiates changes where required or is passed on to the objects’ children.

Spiral/dmp’s task in complex-to-real transformation mainly narrows down to
inflating communication, permutation, and iterative sums by a factor of two and
to pass the RC-call down to the scalar code parts. Thus, the transformation rules
are relatively simple.

As mentioned before, the outmost object of a parallel Σ-Spl formula is the parallel
composition. As DMPCompose does not store the size of its child matrices it is
sufficient to pass the RC tag down.

Rule 5.15 (Parallel Compositions C→R)

RC(DMPCompose([p,A1,...,Ak]))

−→ DMPCompose([p,RC(A1),...,RC(Ak)])

RC(A1A2 · · ·Ak)︸ ︷︷ ︸
par(p, dmp)

−→ RC(A1) RC(A2) · · ·RC(Ak))︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.64 (RCDMPCompose)

At this stage the parallel composition can only contain iterative sums and com-
munication parts. Also the iterative sum does nothing but passing the tag on to
its child which is a scalar composition.

Rule 5.16 (Parallel Iterative Sums C→R)

RC(DMPISum(var,domain,expr)) −→ DMPISum(var,domain,RC(expr)))

RC

(
p−1∑

i=0

S(i)p⊗ın A G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

−→
p−1∑

i=0

RC
(
S(i)p⊗ın A G(i)p⊗ın

)

︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.65 (RCDMPISum)

CHAPTER 5. SPIRAL/DMP 103

The complex-to-real transformation of a scalar composition is handled by Spiral
itself, but it, again, does not do anything but passing the tag down to its children.

Thus, the RC-tag reaches the parallel gather and scatter functions DMPGath and
DMPScat. This is the first spot where a small adaption is required. As the real
data vector has the double length of the original one, but is still spread over the
same number of processors, the gather and scatter matrices have to be infalted
by a factor of two. This is achieved by appending ⊗ı2 to the matrices’ generating
functions.

Rule 5.17 (Parallel Gather and Scatter Matrices C→R)

1. DMPGath

RC(DMPGath(var,domain,expr))

−→ DMPGath(var,domain,fTensor(expr, fId(2)))

RC(G(i)p⊗fn→N)︸ ︷︷ ︸
par(p, dmp)

−→ G(i)p⊗fn→N⊗ı2︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.66 (RCDMPGath)

2. DMPScat

RC(DMPScat(var,domain,expr1))

−→ DMPScat(var,domain,fTensor(expr, fId(2)))

RC(S(i)p⊗fn→N)︸ ︷︷ ︸
par(p, dmp)

−→ S(i)p⊗fn→N⊗ı2︸ ︷︷ ︸
par(p, dmp)

Spiral/dmp Code A.67 (RCDMPScat)

The other factors inside the iterative sum are scalar code parts which can now
handle the transformation themselves.

The parallel composition also passed the RC-tag to the communication objects.
As communication represents (non-local) permutations it is sufficient to double
its size too. As mentioned in Section 5.3.2 the central permutation matrix rep-
resenting the communication pattern should remain as small as possible to keep
the number of communication steps low.

Thus, the inflation of the whole matrix represented by the comm object is achieved
by doubling the size of the communicated blocks.

CHAPTER 5. SPIRAL/DMP 104

As shown in Definition 5.15 the gather and scatter matrices rjk
1→N and wjk

1→N

only represent the selection of the block to communicate. The size of the block
itself is indicated by the ⊗ın attached to the gather and scatter functions. So it
sufficient to set the block size to 2n and leave the gather and scatter functions
untouched.

Rule 5.18 (General Communication Steps C→R)

RC(DMPComm(p,n,w jk,pi,piinv,r jk))

−→ RC(DMPComm(p,2*n,w jk,pi,piinv,r jk))

RC
(
commp	

n

(
wjk

1→N , πmp	, rjk
1→N

))
︸ ︷︷ ︸

par(p, dmp)

−→ commp	

2n

(
wjk

1→N , πmp	, rjk
1→N

)
︸ ︷︷ ︸

par(p, dmp)

=

p−1⊕

j=0

S
[]m−1

k=0

(
wjk

1→N⊗ı2n

) perm
(
πmp	 ⊗ ı2n

) p−1⊕

j=0

G
[]m−1

k=0

(
rjk

1→N⊗ı2n

)

︸ ︷︷ ︸
inplace, par(p,mpi)

Spiral/dmp Code A.68 (RCDMPComm)

The complex-to-real rule for DMPGlobalTranspose is very similar to DMPComm,
with the difference that most of the parameters drop out because the permutation
is constant.

Rule 5.19 (Parallel Matrix Transpositions C→R)

RC(DMPGlobalTranspose(n,pv)) −→ RC(DMPGlobalTranspose(2*n,pv))

commp	
n

(
ζp
jk, γp ◦ ℓp2

p ◦ γ′
p, ζp

jk

)
−→ commp	

2n

(
ζp
jk, γp ◦ ℓp2

p ◦ γ′
p, ζp

jk

)

=

p−1⊕

j=0

S
[]m−1

k=0

(
ζp

jk
⊗ı2n

) perm
((

γp ◦ ℓp2

p ◦ γ′
p

)
⊗ ı2n

) p−1⊕

j=0

G
[]m−1

k=0

(
ζp

jk
⊗ı2n

)

︸ ︷︷ ︸
inplace, par(p,mpi)

with γ′
p : Ip(p−1) → Ip2; i 7→ i + 1 +⌊ i

p⌋
γp : Ip2 → Ip(p−1); i 7→ i − 1 −⌊ i

p+1⌋
ζN
jk : I1 → IN ; i 7→

{
k if k < j

k + 1 else

Spiral/dmp Code A.69 (RCDMPGlobalTranspose)

CHAPTER 5. SPIRAL/DMP 105

5.3.5 Summary

After the complex-to-real transformation is finished, and thus, the Σ-Spl formula
does not contain RC-tags anymore, the optimization rules from Section 5.3.3 are
run again. This is done because it is possible that new optimization potential has
arisen during the transformation.

As an example the final, optimized, complex-to-real transformed Σ-Spl formula
of Example 5.11 is displayed in Example 5.12

Example 5.12 (Σ-Spl) The formula from Example 5.11 after complex-to-real
transformation and Σ-Spl optimization.

DMPISum(i12, 2,

DMPScat(([i12]_2 X I32)) *

ISum(i13, 4,

ISum(i16, 2,

Scat(([i13]_4 X I2 X [i16]_2 X I2)) *

Blk([[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, -1, 0], [0, 1, 0, -1]]) *

Gath((I2 X [i16]_2 X I2))

) *

ISum(i17, 2,

Scat(([i17]_2 X I4)) *

RCDiag((FData(D4) o ([i17]_2 X I2))) *

Blk([[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, -1, 0], [0, 1, 0, -1]]) *

Gath((I2 X [i13]_4 X [i17]_2 X I2))

)

) *

DMPGath(([i12]_2 X I32))

) *DMP*

DMPGlobalTranspose(16, AParDistr(2)) *DMP*

DMPISum(i20, 2,

DMPScat(([i20]_2 X I32)) *

ISum(i22, 2,

ISum(i24, 2,

ISum(i26, 2,

Scat((I2 X [i26]_2 X [i24]_2 X [i22]_2 X I2)) *

Blk([[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, -1, 0], [0, 1, 0, -1]]) *

Gath((I2 X [i26]_2 X I2))

) *

ISum(i27, 2,

Scat(([i27]_2 X I4)) *

RCDiag((FData(D5) o ([i27]_2 X I2))) *

Blk([[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, -1, 0], [0, 1, 0, -1]]) *

Gath((I2 X [i27]_2 X [i24]_2 X I2))

)

) *

ISum(i29, 4,

Scat(([i29]_4 X I4)) *

RCDiag((FData(D6) o ([i29]_4 X I2))) *

Blk([[1, 0, 1, 0], [0, 1, 0, 1], [1, 0, -1, 0], [0, 1, 0, -1]]) *

Gath((I2 X [i29]_4 X [i22]_2 X I2))

)

) *

DMPGath(([i20]_2 X I32))

) *DMP*

DMPGlobalTranspose(16, AParDistr(2)) *DMP*

DMPISum(i31, 2,

DMPScat(([i31]_2 X I32)) *

Prm(((L(8, 2) X I2) X I2)) *

DMPGath(([i31]_2 X I32))

)

CHAPTER 5. SPIRAL/DMP 106

5.4 Code Generation

The Σ-Spl formula in Example 5.12 displays a structure similar to a computer
program’s source code. The scalar iterative sums represent loops. The gather and
scatter matrices describe which elements of the data array are addressed in a
certain iteration. The multiplication with a diagonal matrix is implemented by
an elementwise multiplication with an array containing the matrix’ values. The
functionality of converting a scalar Σ-Spl formula to iCode is provided by Spiral
through the Function

CodeSums(bksize, sums).

Similar to the conversion from Spl terminals to Σ-Spl this function calls the
.code() function of the Σ-Spl formula’s root object. Each object is responsible
to trigger this conversion for its child objects. The parameter bksize determines
the level of scalar loop unrolling.

A general introduction to iCode in Spiral is given in [51]. The following sec-
tion will introduce Spiral/dmp’s extensions to code generation for computation
parts. Section 5.4.2 will cover code generation of communication steps.

5.4.1 Parallel Computation

ICode covers the operations, and methods, available in a structured programming
language, but displays them in a function-like way. Therefore, it is programming
language independent, but can easilly be mapped to, e. g., Fortran or C source
code. Furthermore, it is easier to formulate and apply optimization rules on iCode
than on C-code. Example 5.13 shows a line of C-code with its representation in
iCode.

Example 5.13 (Scalar iCode) The iCode object

assign(nth(T,i),add(nth(T,sub(i,1)),nth(T,sub(i,2))))

would be unparsed to the following line in C-code.

T[i] = T[i-1] + T[i-2];

The most important iCode objects available in scalar Spiral are listed in Ta-
ble 5.4.1, together with its translations to C-code.

The top-level Σ-Spl object is the parallel composition. DMPCompose translates to
a chain of its children’s codes. As a the mathematical formula symbolizes a right
to left application of matrices, but the code is generally executed left to right,
the composed elements have to be reversed.

CHAPTER 5. SPIRAL/DMP 107

Expressions
iCode C-code

nth(x,i) x[i]

add(x,y) x + y

sub(x,y) x - y

mul(x,y) x * y

div(x,y) x / y

imod(x,y) x % y

Commands
iCode C-code

assign(x,y) x = y;

loop(i, [j .. k], expr)

for(i=j;i<=k;i++) {
expr

}
chain(expr1,expr2,...) expr1 expr2 ...

Declarations
iCode C-code

decl([var1,var2,...],expr)
declare var1, var2, . . . ;
expr

Table 5.3: Spiral iCode objects and their translation into C-code.

Rule 5.20 (Code Generation for Parallel Compositions)

DMPCompose([p,A1,A2,...,Ak]).code()

−→ chain (

Ak.code(),

...

A2.code(),

A1.code()

)

Spiral/dmp Code A.75 (DMPCompose.code())

As explained in Section 5.3 the Σ-Spl rules lead to a state where parallel com-
positions only contain communication steps and parallel iterative sums DMPISum.

CHAPTER 5. SPIRAL/DMP 108

Thus, the only child objects representing parallel computation are of the type
DMPISum.

To generate code for a parallel computation part the distributed iterative sum,
together with its gather and scatter matrices must handle the code generation
of its body such that the code addresses the correct parts of the data vector. As
discussed in Section 5.3 a parallel loop is very similar to a scalar loop, with the
difference that each processor executes one iteration of the loop.

serial loop parallel loop

for(i=0;i<=3;i++) { i=mpirank; {
do something; −→ do something;

} }

Spiral/dmp defines the iCode-object representing a parallel loop as follows.

Definition 5.16 (Parallel Loop) mpirank is a variable containing the current
processor’s rank, set upon the initialization phase of the program.

iCode C-code

dmploop(loopvar, range, cmd, pv) :=

{
loopvar = mpirank;

{
cmd

}
}

Spiral/dmp Code A.70 (dmploop)

dmploop exactly represents the semantics of the DMPISum Σ-Spl object. So the
rule for generating a parallel code segment in iCode is very simple.

Rule 5.21 (Code Generation for Iterative Sums)

DMPISum(var,domain,expr).code(y,x)

→ dmploop(var,domain,expr.code(y,x))

Spiral/dmp Code A.74 (DMPISum.code())

the x and y parameters to the .code() functions define the input, and output,
variables for the operation. If they are both the same inplace code is generated,
and therefore, the function .ipcode() is called.

CHAPTER 5. SPIRAL/DMP 109

Only a scalar composition Compose can be the child of a parallel iterative sum.
The composition contains the matrices representing the operations to be executed.
The rules in Section 5.3.3 assured that the first and last of the composed elements
inside a parallel iterative sum are always DMPGath and DMPScat. As explained
before, they do not require any code to be generated, so the Compose.code()

function was altered to ignore DMPGath and DMPScat objects and only generate
code for the remaining objects.

Rule 5.22 (Code Generation for Scalar Compositions)

Compose([DMPScat(...),A1,A2,...,Ak,DMPGath(...)]).code()

−→ chain (

Ak.code(),

...

A2.code(),

A1.code()

)

Spiral/dmp Code A.75 (DMPCompose.code())

These rules, together with Spiral’s code generation functionality, are sufficient
to generate mpi parallel code for transforms which do not require communication.

Example 5.14 (Code Generation for Parallel Computation) This
example shows iCode generated for the transform I4 ⊗F (4)︸ ︷︷ ︸

par(4, dmp)

.

dmploop(i10, [0 .. 3],

decl([t30, t29, t31, t28, t32, t27, t26, t25],

chain(

assign(t25, add(nth(X, 0), nth(X, 4))),

assign(t26, add(nth(X, 2), nth(X, 6))),

assign(t27, add(nth(X, 1), nth(X, 5))),

assign(t28, add(nth(X, 3), nth(X, 7))),

assign(t29, sub(nth(X, 0), nth(X, 4))),

assign(t30, sub(nth(X, 3), nth(X, 7))),

assign(t31, sub(nth(X, 1), nth(X, 5))),

assign(t32, sub(nth(X, 2), nth(X, 6))),

assign(nth(Y, 0), add(t25, t26)),

assign(nth(Y, 1), add(t27, t28)),

assign(nth(Y, 4), sub(t25, t26)),

assign(nth(Y, 5), sub(t27, t28)),

assign(nth(Y, 2), sub(t29, t30)),

assign(nth(Y, 3), add(t31, t32)),

assign(nth(Y, 6), add(t29, t30)),

assign(nth(Y, 7), sub(t31, t32))

)

)

)

CHAPTER 5. SPIRAL/DMP 110

The corresponding C-program computes this transform with the input array x
and stores the output to y. The source code includes the function init sub
which, in this case, only sets the mpirank and mpisize variables for later use in
the computation. The initialization function has to be called prior to the actual
calculation.

/* [32, 32] */

#include <mpi.h>

int mpirank, mpisize;

void init_sub ();

void sub(double *Y, double *X) {

{ /* dmploop */

int i10 = mpirank;

double t30, t29, t31, t28, t32, t27, t26, t25;

t25 = (X[0] + X[4]);

t26 = (X[2] + X[6]);

t27 = (X[1] + X[5]);

t28 = (X[3] + X[7]);

t29 = (X[0] - X[4]);

t30 = (X[3] - X[7]);

t31 = (X[1] - X[5]);

t32 = (X[2] - X[6]);

Y[0] = (t25 + t26);

Y[1] = (t27 + t28);

Y[4] = (t25 - t26);

Y[5] = (t27 - t28);

Y[2] = (t29 - t30);

Y[3] = (t31 + t32);

Y[6] = (t29 + t30);

Y[7] = (t31 - t32);

}

}

void init_sub() {

MPI_Comm_size(MPI_COMM_WORLD, &mpisize);

MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

}

5.4.2 Communication

The code generation for communication parts is distinct from generating par-
allel computation parts. For the latter one Spiral’s own code generation was
utilized, but steered to address the correct parts of the data array. As Spiral
offered no support for Mpi communication yet, the communication steps have to
implemented from scratch by Spiral/dmp.

Code generation for the general communication object DMPComm will be intro-
duced first. According to Definition 5.15 the Σ-Spl representation of a general
communication kernel

DMPComm(p, n, w jk, pi, piinv, r jk, j, k, AParDistr(p))

CHAPTER 5. SPIRAL/DMP 111

is

commp	
n

(
wjk

1→N , πmp	, rjk
1→N

)
=

=

p−1⊕

j=0

S
[]m−1

k=0

(
wjk

1→N⊗ın

) perm
(
πmp	 ⊗ ın

) p−1⊕

j=0

G
[]m−1

k=0

(
rjk

1→N⊗ın

)

︸ ︷︷ ︸
inplace, par(p,mpi)

.

The implementation of the DMPComm object can be outlined as follows

1. Gather communicated elements from x to t1 according to rjk
1→N .

2. Communicate elements from t1 to t2 according to πmp	.

3. Scatter communicated elements from t2 to x according to wjk
1→N .

4. Copy all elements from x to y.

This procedure reflects a communication approach as illustrated in Example 5.1.
The gather-step copies the data elements which have to be communicated to a
temporary array. The reduced data vector t1 allows the direct application of the
communication pattern πmp	. The code for this communication is generated by
dmpcomm. The resulting data is stored to t2. After the communication the scatter-
step restores the communicated data from t2 to x. Finally the whole array x is
copied to the output vector y.

After the communication the fixpoints are still resident in x. This is the reason
why, after the communication, the data is copied to x before writing to the output
vector y. If the data would immediately be copied to the output vector, the
fixpoints would be missing. Inplace communication can be generated by skipping
the final copy-step. As there are no restrictions for the communication pattern
this approach to code generation for communication is very versatile.

Rule 5.23 (Code Generation for General Communication)

DMPComm(p,n,w jk,pi,piinv,r jk, j, k, AParDistr (p)) −→

chain(

decl([t1,t2],

DMPIterDirectSum(self.j,self.j.range,

IterVStack(self.k,self.k.range,Gath(self.r_jk))).sums().code(t1,x)

dmpcomm(t2, t1, p, n, pi, piinv)

DMPIterDirectSum(self.j,self.j.range,

IterHStack(self.k,self.k.range,Scat(self.w_jk))).sums().code(x,t2)),

dmploop(dmploopix, p, loop(i,Rows(self)/p, assign(nth(y,i),nth(x,i)))))

Spiral/dmp Code A.77 (DMPComm.code())

CHAPTER 5. SPIRAL/DMP 112

The core of the DMPComm.code function is the dmpcomm code object. This object,
and it’s C-unparser, are presented in Code A.71. The parameters to dmpcomm are
the output, and input, arrays loc1 and loc2, the number of processes p, the
blocksize n, the permutation pattern pi, and the inverse communication pattern
piinv.

The code generated by dmpcomm creates non-blocking send and recieve state-
ments1 which exactly represent the reduced communication matrix πmp	 ⊗ ın.
Non-blocking communication has been chosen for the general communication im-
plementation because this way the generator does not have to care about the
order, in which the send and recieve statements are issued.

Upon code generation the communication pattern is evaluated to the lists pi and
piinv. At runtime these lists are parsed to perform the communication. This way
no complicated permutation evaluations are required in the final program.

Example 5.15 (dmpcomm) This example displays the code generated for L16
4 ⊗ I32 on 4

processors.

dmpcomm(Y, X, 4, 32, [L(16,4)], [L(16,4)]) −→

{

MPI_Request reqs[2][3];

int mpii;

static commpat pi[4][3] = {{{1, 0}, {2, 0}, {3, 0}}, {{0, 0}, {2, 1}, {3, 1}},

{{0, 1}, {1, 1}, {3, 2}}, {{0, 2}, {1, 2}, {2, 2}}};

static commpat piinv[4][3] = {{{1, 0}, {2, 0}, {3, 0}}, {{0, 0}, {2, 1}, {3, 1}},

{{0, 1}, {1, 1}, {3, 2}}, {{0, 2}, {1, 2}, {2, 2}}};

for(mpii=0;mpii<3;mpii++){

MPI_Isend(X+32*mpii,

32,

MPI_DOUBLE,

piinv[mpirank][mpii].proc,

piinv[mpirank][mpii].offset,

MPI_COMM_WORLD,

reqs[0]+mpii);

MPI_Irecv(Y+32*mpii,

32,

MPI_DOUBLE,

pi[mpirank][mpii].proc,

mpii,

MPI_COMM_WORLD,

reqs[1]+mpii);

}

MPI_Waitall(3, reqs[0], MPI_STATUSES_IGNORE);

MPI_Waitall(3, reqs[1], MPI_STATUSES_IGNORE);

}

Because of its flexibility this implementation lacks performance in some ways.
Especially the fact that two temporary arrays are required and that data elements
are locally copied up to three times make this implementation sub-optimal.

As introduced in Section 3.2.1 there are better communication methods for cer-
tain cases, especially the global matrix transposition. In Section 5.2.3 the DFT’s

1MPI Isend and MPI Irecv.

CHAPTER 5. SPIRAL/DMP 113

decompostion has been steered to generate communication steps which actually
represent matrix transpositions. Thus, much more streamlined code can be gen-
erated for DMPGlobalTranspose.

Rule 5.24 (Code Generation for the Global Matrix Transposition)

1. DMPGlobalTranspose(n,pv).ipcode(x) (inplace code generation) −→

dmpglobaltranspose(x,x,pv,n)

2. DMPGlobalTranspose(n,pv).code(y,x) −→

chain(

dmpglobaltranspose(x,x,pv,n),

loop(i,Rows(self)/p,assign(nth(y,i),nth(x,i)))

)

Spiral/dmp Code A.78 (DMPGlobalTranspose.code())

DMPGlobalTranspose.ipcode() simply generates one iCode object
dmpglobaltranspose. In the case of out-of-place code generation the re-
sulting array is copied to the output array after the transposition.

dmpglobaltranspose implements the pairwise direct total exchange algorithm as
introduced in Section 3.2.2. The declaration of dmpglobaltranspose, together
with its C-unparser, are listed in Code A.72.

Example 5.16 (dmpglobaltranspose) This example displays the code generated for
L16

4 ⊗ I64 on 4 processors.

dmpglobaltranspose(X, X, AParDistr(4), 32) −→

{

int mpii;

MPI_Status stat;

for(mpii=1;mpii<4;mpii++){

MPI_Sendrecv_replace(X+64*(mpii^mpirank),

64,

MPI_DOUBLE,

mpii^mpirank,

0,

mpii^mpirank,

0,

MPI_COMM_WORLD,

&stat);

}

}

These rules, finally, allow the generation of parallel C/Mpi code for parallel DFTs.
Code B.1 shows the iCode for the Σ-Spl formula in Example 5.12, Code B.2 the
unparsed C-code.

CHAPTER 5. SPIRAL/DMP 114

5.5 Runtime Environment

Spiral relies on runtime measurements to figure out which algorithms and which
of their implementations perform well. However, launching a parallel program is a
very sophisticated task. A job has to be submitted to the batch system. When the
requested resources are free the batch system launches the job on some nodes.
The job can be started immediately, a few minutes or hours later, or even a
few days or weeks later. Depending on the batch system the user has more or
less control over the node assignment, i. e., which processors are chosen on which
nodes. These issues would make the process of measuring parallel runtime lengthy
and unreliable.

A workaround for these problems is using interactive jobs. Upon the start of an
interactive job, the batch system figures out whether the requested resources are
available or not. If they are not available the program immediately terminates
with a corresponding error message. If the resources are available a new shell is
opened on one of the nodes assigned by the batch system. At this point, the nodes
assigned to the user are exclusively reserved and parallel programs can be started
on these nodes manually.

One advantage of this method is that the node configuration can be inspected,
and the user can decide whether it fits his needs or not. Furthermore it is assured
that jobs will run immediately, because the resources are already reserved.

Spiral/dmp has to be started within the framework of such an interactive job.
The environment variable $JOBID is expected to hold the job id of the cur-
rent shell’s Mpi job. The job ids are required to identify multiple instances
of Spiral/dmp running simultaneously. Each instance creates the directory
$HOME/tmp-spiral/$JOBID to store its working data. This is done because some
intermediate data, e. g., the executables for the runtime measurement process,
have to be accessible on all nodes as not the whole file system tree but only spe-
cific directories are shared among the nodes. Usually /home is one of them. The
temporary directory /tmp, which is used by Spiral to store intermediate files,
is never shared between the nodes to limit network traffic. Furthermore, as two
instance of Spiral/dmp must have different job ids, their temporary directories
are seperated, so it is impossible that they overwrite each other’s data.

Spiral/dmp can be launched at any node of the parallel computer. If Spi-
ral/dmp has to measure a certain piece of code, the respective compilation
takes place on the node the main program is running on. As the binary is stored
in a location that is shared among all network nodes, it is possible to issue the
measurements with a simple command like

mpirun -np [numofprocs] -hostfile [hostfile] [binary] [binaryopts] > [outfile].

CHAPTER 5. SPIRAL/DMP 115

The hostfile is a text file containing one hostname per line. The number of hosts
has to match or exceed the Mpi jobsize. Usually batch systems create such a file
upon the initialization of the interactive shell to provide the user with information
about which nodes have been reserved for him. Before launching Spiral/dmp
this file has to be copied to $HOME/$JOBID/machines.

The file spiral/spiral.conf contains the definition of variables containing the
information about the exact statements necessary to launch jobs on the given
system. An example of the Spiral/dmp section of this file is given in Table 5.4.

...

[GROUP c.mpi]

matrix_lib = $spiral_dir/timer/src/mpi_compute_matrix.o

compiler = mpicc

linker = mpicc

compiler_invocation = %cmd -I$spiral_dir %flags -c %target_src -o %obj

[PROFILE c.mpi.mpich]

compiler_flags = -O3 -fomit-frame-pointer -malign-double -fstrict-aliasing

test_invocation = /usr/local/ibgd/mpi/osu/gcc/mvapich-0.9.5/bin/mpirun_rsh \

-rsh -np %numofprocs_mpi -hostfile $tmp_dir/machines %exe %flags

...

Table 5.4: spiral/spiral.conf example

A transform’s generated source code only contains the subroutine representing
the transform, and its initialization function. This file has to be linked with a
pre-generated stub library that provides generally used functions like timing and
storage allocations.

The normal, scalar, stub library had to be altered to meet the requirements
of MPI parallel computation. Explaining these changes in detail would lead
too far, but especially compute matrix.c and time.c had to be modified to
mpi compute matrix.c and mpi time.c (Code B.3 and B.4). Thus, Spiral/dmp
is able to create a stub library for parallel execution, which supports distributed
matrices and provides reliable parallel timing routines.

5.6 Rescaling

Performance optimization of FFTs often requires down-scaling, i. e., computations
are to be carried out on a smaller number of processors than the user provided.
Normally, this requires two additional data redistribution steps, one prior and
one posterior of the FFT calculation. In the following, a method to generate
FFT code which implements re-scaling without the requirement of additional
communication is presented.

CHAPTER 5. SPIRAL/DMP 116

(a) FFT without scaling

(b) Fftw rescaling

(c) Spiral/dmp rescaling

Figure 5.2: Plain and rescaled execution of a transform which requires three communication
steps, e. g., a one-dimensional FFT. Crossed blocks represent communication steps, uncrossed
ones computation. Ascending and descending trapezoidal blocks symbolize the rescaling steps.
The small blocks are rescaled blocks. The execution order is from left to right.

Advantages of Self-scaling. The data is not redistributed explicitly before
and after the FFT calculation but intertwined with the FFT’s communication
steps, i. e., additional communication overhead is avoided.

Down-scaling is performed within the first occurring communication step, while
up-scaling is performed within the last communication step. Hence, all encap-
sulated communication steps profit from the reduced communication effort as
illustrated in Figure 5.2.

Computational parts of the FFT to be carried out prior and/or posterior of the
first and last communication step are performed on the maximum number of
available processors and thus benefit from the larger granularity of the respective
computational blocks.

Formula Manipulation Rules for Re-scaling. First of all a formal indicator
is needed, which tags a formula or subexpression to be a re-scaling operation.

For this purpose the par(∗, ∗) tag from Definition 5.1 is extended. Down-scaling
from p to q parallel instances is denoted by par(q ւ p, ∗) and the corresponding
up-scaling by par(p տ q, ∗) whereby q < p. par(p տ q ւ p, ∗) indicates that
both down- and up-scaling still have to be applied to the tagged expression.

The rewriting rules in Table 5.5 are used to automatically derive a self re-scaling
algorithm. Table 5.6 illustrates how these rules may be used to yield a self scaling
one-dimensional parallel FFT formula. The numbers indicate which manipulation
rules have been applied to the formula.

CHAPTER 5. SPIRAL/DMP 117

A︸︷︷︸
par(p, *)

B︸︷︷︸
par(p, *)

→ AB︸︷︷︸
par(p, *)

(5.10)

A︸︷︷︸
par(p, *)

→ A︸︷︷︸
par(pտqւp,*)

∀q : q|p (5.11)

DFTmn︸ ︷︷ ︸
par(pտqւp,*)

→ (DFTm ⊗ In)︸ ︷︷ ︸
par(pտq, *)

Tmn
n (Im ⊗DFTn)︸ ︷︷ ︸

par(q, *)

Lmn
m︸︷︷︸

par(qւp, *)

(5.12)

(Am ⊗ In)︸ ︷︷ ︸
par(pտq,*)

→ Lmn
m︸︷︷︸

par(pտq, *)

(In ⊗Am)Lmn
n︸ ︷︷ ︸

par(q, *)

(5.13)

(Am ⊗ In)︸ ︷︷ ︸
par(qւp,*)

→ Lmn
m (In ⊗Am)︸ ︷︷ ︸

par(q, *)

Lmn
n︸︷︷︸

par(qւp, *)

(5.14)

Lmn
m︸︷︷︸

par(p, *)

→
(
Ip ⊗L

mn/p
m/p

)(
Lp2

p ⊗ Imn/p2

)(
Ip ⊗Ln

p ⊗ Im/p

)
︸ ︷︷ ︸

par(p, *)

(5.15)

Lmn
m︸︷︷︸

par(qւp,*)

→
(
Iq ⊗ Ip/q ⊗L

mn/p
m/p

)
︸ ︷︷ ︸

par(q, *)

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(qւp, *)

(
Ip ⊗Ln

p ⊗ Im/p

)
︸ ︷︷ ︸

par(p, *)

(5.16)

Lmn
m︸︷︷︸

par(pտq,*)

→
(
Ip ⊗L

mn/p
m/p

)
︸ ︷︷ ︸

par(p, *)

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(pտq, *)

(
Iq ⊗ Ip/q ⊗Ln

p ⊗ Im/p

)
︸ ︷︷ ︸

par(q, *)

(5.17)

Table 5.5: Parallel Rescaling Rules.

Estimation of the Communication Effort. The communication parts of the
formula in Table 5.6 are

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(pտq, *)

(
Lq2

q ⊗ Imn/q2

)
︸ ︷︷ ︸

par(q, *)

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(qւp, *)

opposed to the usual implementation

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(p, *)

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(p, *)

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(p, *)

.

A straightforward implementation of Lp2

p ⊗ In requires the communication of
np(p − 1) data elements. With the same communication effort, a rescaling re-
distribution can be performed, which reduces the cost of additional all-to-all
communication parts. These require only np(q − 1) data elements to be com-
municated, i. e., a reduction by (q − 1)/(p − 1) is achieved.

Even, down-scaling to just one processor is possible, if enough main memory is
available to store the whole global data vector D locally. In this case, all commu-
nication parts except the first and the last ones are eliminated.

CHAPTER 5. SPIRAL/DMP 118

DFTmn︸ ︷︷ ︸
par(p, *)

(5.11)−→ DFTmn︸ ︷︷ ︸
par(pտqւp, *)

(5.12)−→ (DFTm ⊗ In)︸ ︷︷ ︸
par(pտq, *)

Tmn
n (Im ⊗DFTn)︸ ︷︷ ︸

par(q, *)

Lmn
m︸︷︷︸

par(qւp, *)

(5.10)
(5.13)−→ Lmn

m︸︷︷︸
par(pտq, *)

(In ⊗DFTm)Lmn
n Tmn

n (Im ⊗DFTn)︸ ︷︷ ︸
par(q, *)

Lmn
m︸︷︷︸

par(qւp, *)

(5.10)
(5.15)
(5.16)
(5.17)−→

(
Ip ⊗L

mn/p
m/p

)

︸ ︷︷ ︸
par(p, *)

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(pտq, *)

(
Iq ⊗ Ip/q ⊗Ln

p ⊗ Im/p

)
(In ⊗DFTm)

︸ ︷︷ ︸
par(q, *)

(
Iq ⊗L

mn/q
m/q

)(
Lq2

q ⊗ Imn/q2

)(
Iq ⊗Ln

q ⊗ Im/q

)
Tmn

n (Im ⊗DFTn)
︸ ︷︷ ︸

par(q, *)

(
Iq ⊗ Ip/q ⊗L

mn/p
m/p

)

︸ ︷︷ ︸
par(q, *)

(
Lp2

p ⊗ Imn/p2

)
︸ ︷︷ ︸

par(qւp, *)

(
Ip ⊗Ln

p ⊗ Im/p

)
︸ ︷︷ ︸

par(p, *)

Table 5.6: Self-scaling One-dimensional Parallel FFT Formula.

This down-scaling approach means a tradeoff between communication and com-
putation effort. Whether it makes sense to apply this optimization depends on
the transform which is to be calculated and the ratio of scalar and network per-
formance. Note that down-scaling is only applied if it yields a speedup for the
whole FFT application.

Redistribution Data Layout. After choosing a number of processes to rescale
to, there is still to decide which q of the p processors to use for calculation.

For example, assume a distributed memory parallel system with 2 processors per
node. A given program is initially started on four processors p0, p1, p2, p3 where
p0 and p1 are located on one node, p2 and p3 on another one. The data block di

locally resides in processor pi’s memory (i. e., pi[di] ∀i = 0 . . . 3). [d0, d1, d2, d3]
represents the global data vector D.

For this particular setting, two obvious possibilities for rescaling would be ei-
ther (i) (p0[d0, d1], p2[d2, d3]) or (ii) (p0[d0, d1], p1[d2, d3]). One advantage of redis-
tribution layout (i) is that only shared memory communication is required for
the rescaling process. Thus, any communication taking place in-between the two
rescaling steps consists of pure inter-node communication. Additionally, there is
one processor free per node which usually increases scalar performance.

By contrast, in case (ii) both processes are merged to one node. This requires

CHAPTER 5. SPIRAL/DMP 119

more inter-node communication during the redistribution, with the benefit of any
further communication being intra-node. Option (ii) also requires more data to
be transferred during redistribution because only one data block d0 remains on
it’s original process. In case (i) d0 and d2 remain local.

The optimum choice of the redistribution data layout mainly depends on the
relation between network, and shared memory performance.

Chapter 6

Numerical Experiments

Numerical experiments were carried out to demonstrate the applicability and
the performance benefits of the newly developed parallelization and down-scaling
methods.

Section 6.1 introduces the Phoenix cluster, which served as testbed for the bench-
marks presented in this chapter. Section 6.2 first presents a run time analysis
of Spiral/dmp’s plain non-rescaled code, and then illustrates the effect of the
down-scaling methods.

6.1 Benchmarking Environment

Experiments were carried out on the Phoenix Cluster1, located at the Vienna
University of Technology. It consists of 65 Sun V20z compute nodes. Each node
is equipped with two AMD Opteron 250 processors running at 2.4 GHz and 4
GByte memory. The high speed cluster interconnect is a 10 Gb/s InfiniBand.

The nodes are interconnected with nine switches. Each of these switches has 24
ports. There are three master-switches and six frame-switches. 12 nodes form a
frame and are connected to one frame-switch with one line each. The remaining
12 lines of one frame-switch are used as uplink to the master-switches. One frame-
switch is connected to each of the three master-switches with four lines. Thus, the
interconnect topology is a fat tree, as introduced in Section 1.2.1. Unlike a simple
tree, every frame-switch has an equal number of uplink and downlink ports. As
the bandwidth’s limiting factor is the line’s bandwidth and not the switches’
throughput, congestion is theoretically not possible in this network topology.

The compilation and parallel runtime environment on this computer are the Gnu
C compiler 3.4.4, the mvapich 0.9.5 MPI library and the Sun N1 Grid Engine
(S1GE) 6.0u4. In general all codes have been compiled with the -O3 option.

Performance data are given in pseudo-Mflop/s, i. e., 5N log N/T , or pseudo-
Gflop/s, for the investigated complex-to-complex FFTs. This unit of measurement
is a scaled inverse of the run time T (in µs) and thus preserves run time relations
and gives a realistic indication of the absolute floating-point performance [28].

1http://www.zserv.tuwien.ac.at/phoenix/

CHAPTER 6. NUMERICAL EXPERIMENTS 121

6.2 Experimental Results of SPIRAL/DMP

This section shows the results of run time experiments of one-dimensional double
precision FFT codes generated by Spiral/dmp and Fftw-2.1.5. In general,
three communication steps are necessary to compute a parallel one-dimensional
FFT, while multi-dimensional ones only require two. Therefore, multi-dimensional
FFTs are no suitable target for the rescaling optimizations introduced in this
work, because there is no embedded communication step which would benefit
from the optimization.

The results presented in this chapter show runtimes of the given FFT programs
including code parts needed to use the FFT subroutines in a specific application.
As Fftw supplies a routine that tells the user at runtime, which data distribution
it expects, additional code is required. This additional routine is to provide to
each process the size of the local data vector and the specific part of the global
data vector it represents. Data has to be copied from the application’s workspace
to Fftw’s one. If Fftw decides to calculate on fewer processors than the user
provided, the necessary data redistribution is performed during this step. After
the FFT calculation, the data is restored into the application’s data array.

This is the approach suggested in the Fftw 2.1.5 manual [27]. Accordingly the
necessary redistributions are included in Fftw’s runtime diagrams.

SPIRAL/DMP’s Performance without Rescaling. Fig. 6.2 shows the
speed-up of Spiral/dmp, without any rescaling optimizations, compared to
Fftw. Plots showing the performance behavior in Gflop/s are enclosed in Fig. 6.3.

In general, it is not efficient to calculate smaller problemsizes in parallel because
most of the time is lost in communication latencies. Thus, both program’s FFTs
require a reasonable problemsize to become efficient (compare Fig. 6.3).

Spiral/dmp generates one specific routine for every vector length. In contrast,
Fftw’s executor causes a significant overhead especially for small problem sizes,
i. e., short runtimes. This is the reason why Spiral/dmp is significantly faster
than Fftw for smaller problem sizes. As soon as the execution times are larger
and thus, Fftw’s overhead becomes less significant, but Spiral/dmp still per-
forms bettern than Fftw in every test case.

Down-Scaling Effect. Fig. 6.1 compares the floating point performance of Spi-
ral/dmp and Fftw for one-dimensional FFTs of three specific test-cases. The
diagrams (i) to (iii), each for one single FFT size, are comparing the FFT’s per-
formance of Spiral/dmp’s calculation on 16 processors with all different scaling
possibilities down to 1. Fftw is using 16 processors in any case.

Diagrams (i) and (ii) show that Spiral/dmp’s internal down-scaling from 16
to 8 CPUs increases the overall performance of the FFT. Both plots show a

CHAPTER 6. NUMERICAL EXPERIMENTS 122

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1 2 4 8 16

M
fl

op
/s

SPIRAL
FFTW

(i) n = 212

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 1 2 4 8 16

M
fl

op
/s

SPIRAL
FFTW

(ii) n = 215

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16

M
fl

op
/s

SPIRAL
FFTW

(iii) n = 218

Figure 6.1: Speed-up of Rescaling. Floating-point performance (Gflop/s) of Spiral/dmp
compared to Fftw 2.1.5 carrying out one-dimensional FFTs. The three diagrams, each for one
particular FFT size, illustrate the down-scaling effect starting with 16 processors down to 1
processor.

significant speed-up when down-scaling to 8 processors. In contrast, plot (iii)
illustrates that down-scaling is not advantageous for larger problem sizes as the
performance maximum is achieved using 16 CPUs and decreases for less.

Fig. 6.4 shows the performance gain of Spiral/dmp’s down-scaling FFT routines
compared to normal FFTs without any rescaling, as shown in Fig. 6.2. Again,
results are shown relative to Fftw’s performance. Diagrams showing the floating
point performance of these test-cases are enclosed in Fig. 6.5.

As already seen in Fig. 6.1, especially smaller problem sizes profit from Spi-
ral/dmp’s down-scaling. Using a slower interconnection network, e. g., Gigabit
Ethernet, than the state of the art network used in these experiments would bring
the down-scaling benefits to larger problem sizes. Composite signal transforms like
the FFT based convolution, introduced in Section 4.9.2, with a more sophisticated
data flow and a larger number of communication steps allows Spiral/dmp to
exploit more tuning potential than naive implementations.

The performance improvement due to down-scaling for certain problem sizes de-
pends on the relation of network and calculation performance and the commu-
nication volume necessary for the computation. Note that there are also other
benefits of down-scaling such as reduced energy consumption and economic ef-
ficiency. Besides performance gain there might also be economic reasons to use
down-scaling.

CHAPTER 6. NUMERICAL EXPERIMENTS 123

 0

 1

 2

 3

 6 8 10 12 14 16 18 20 22 24

Sp
ee

d-
up

ld n

SPIRAL
FFTW

(i) 4 processors

 0

 1

 2

 3

 6 8 10 12 14 16 18 20 22 24

Sp
ee

d-
up

ld n

SPIRAL
FFTW

(ii) 8 processors

 0

 1

 2

 6 8 10 12 14 16 18 20 22 24

Sp
ee

d-
up

ld n

SPIRAL
FFTW

(iii) 16 processors

Figure 6.2: Speed-up of SPIRAL/DMP. Performance of Spiral/dmp computing 1D
FFTs, with downscaling disabled, compared to Fftw on 4, 8, and 16 processors.

CHAPTER 6. NUMERICAL EXPERIMENTS 124

 0

 1

 2

 6 8 10 12 14 16 18 20 22 24

G
fl

op
/s

ld n

SPIRAL
FFTW

(i) 4 processors

 0

 1

 2

 6 8 10 12 14 16 18 20 22 24

G
fl

op
/s

ld n

SPIRAL
FFTW

(ii) 8 processors

 0

 1

 2

 3

 6 8 10 12 14 16 18 20 22 24

G
fl

op
/s

ld n

SPIRAL
FFTW

(iii) 16 processors

Figure 6.3: Performance of Non-rescaled SPIRAL/DMP. Floating-point performance
(Gflop/s) of Spiral/dmp computing 1D FFTs, with downscaling disabled, compared to Fftw
on 4, 8, and 16 processors.

CHAPTER 6. NUMERICAL EXPERIMENTS 125

 0

 1

 2

 3

 6 8 10 12 14 16 18 20 22 24

Sp
ee

d-
up

ld n

SPIRAL
FFTW

SPIRAL

(i) 4 processors

 0

 1

 2

 3

 4

 6 8 10 12 14 16 18 20 22 24

Sp
ee

d-
up

ld n

SPIRAL
FFTW

SPIRAL

(ii) 8 processors

 0

 1

 2

 6 8 10 12 14 16 18 20 22 24

Sp
ee

d-
up

ld n

SPIRAL
FFTW

SPIRAL

(iii) 16 processors

Figure 6.4: Speed-up of Down-scaling. (i) Spiral/dmp calculating on 4, 8, and 16 CPUs
without down-scaling and (ii) rescaled Spiral/dmp calculating on the half number of CPUs
(for certain FFT sizes) compared to Fftw.

CHAPTER 6. NUMERICAL EXPERIMENTS 126

 0

 1

 2

 6 8 10 12 14 16 18 20 22 24

G
fl

op
/s

ld n

SPIRAL
FFTW

Non-rescaledSPIRAL

(i) 4 processors

 0

 1

 2

 6 8 10 12 14 16 18 20 22 24

G
fl

op
/s

ld n

SPIRAL
FFTW

Non-rescaledSPIRAL

(ii) 8 processors

 0

 1

 2

 3

 6 8 10 12 14 16 18 20 22 24

G
fl

op
/s

ld n

SPIRAL
FFTW

Non-rescaledSPIRAL

(iii) 16 processors

Figure 6.5: Performance of Down-scaling. Floating-point performance (Gflop/s) of (i) Spi-
ral/dmp calculating on 4, 8, and 16 CPUs without down-scaling and (ii) rescaled Spiral/dmp
calculating on the half number of CPUs (for certain FFT sizes) compared to Fftw.

Chapter 7

Outlook

This section outlines ongoing work and potential for future improvements as well
as enhancements of Spiral/dmp.

As described in Chapter 1, optimizing a scalar program’s performance on a certain
platform is a very complex task. Distributed memory parallelism adds one more
level of complexity. So, even though signal transforms in general, and the FFT
in particular, are well researched topics in modern science, there is still a lot of
optimization potential.

Spiral provides a toolbox which allows a faster, more structured, implementa-
tion of certain optimizations, and offers the possibility to combine them with
already existing ones. Especially the optimization of parallel code benefits a lot
of Spiral’s approach, because there is a well defined interface between the par-
allel communication parts and scalar code. This allows the developer to focus on
communication issues while using the existing scalar code optimization features
nearly without any additional effort.

In addition to its core functionality, i. e., generating basic distributed memory
parallel code, Spiral/dmp constitutes an expandable framework and provides a
base where further optimizations can be built upon.

Future enhancements to Spiral/dmp could be added with respect to (i) com-
munication implementation, (ii) communication structure, and (iii) usability.

7.1 Communication Implementation Progress

The communication performance of a given program does not only depend on
the scheduling of communication steps but also on the communication library
it is using. Distributed memory parallel programs mostly use Mpi, the current
de-facto standard, for implementing communication.

Testing Different MPI Communication Routines. The Mpi standard de-
fines multiple interfaces to implement both point-to-point and collective commu-
nication. It is common knowledge that collective communication should be su-
perior to analogous point-to-point implementations where applicable. However,
experiments [1, 6] have shown that not even this standard paradigm can be as-
sumed to be valid without verification. Without the evaluation of different im-

CHAPTER 7. OUTLOOK 128

plementations’ performance the validity of this assumption is not easy to predict
on different parallel computers.

In a real application’s complex environment the Mpi standard’s various commu-
nication subroutines may perform totally different than in synthetic benchmarks.
For instance, some implementation’s MPI Alltoall may be severely blocked if
one of the processes lags behind, while non-blocking functions like the MPI Isend

MPI Irecv pair automatically lead to a better balanced communication. Due to
this observation it is not clear a priori which function should be used for imple-
menting the communication of a certain program on a given platform.

Currently the communication parts in Spiral/dmp use the non-blocking point-
to-point communication pair

MPI Isend MPI Irecv

and the blocking point-to-point exchange

MPI Sendrecv replace.

It would be possible not only to choose between those two different types of com-
munication, but to test a larger number of different Mpi routines and to choose
among them. For instance, using MPI Alltoall might increase the communica-
tion performance on some platforms.

Vendor Libraries. Distributed memory parallel programs do not necessarily
have to use Mpi. Every vendor of network interconnection hardware provides its
own proprietary interface to control communication operations. As those libraries
are not standardized at all, and often not even well documented, they are not
easy to use.

However, if the Mpi installation on a given computer system does not match
the expected performance it is feasible to skip the Mpi layer and to use the ven-
dor’s communication library instead. This may yield a substantial communication
speedup, but also requires a substantial amount of work to be done according to
the reasons mentioned above.

One-Sided Communication. Common Mpi implementations are normally
not capable of maintaining a reasonable scalar performance if data is communi-
cated over the network concurrently. The reason for this phenomenon is that the
network communication program has to determine every received data packet’s
target address. This usually requires supplementary computations on the CPU
and interrupts the current calculation. Accordingly, parallel algorithms are usu-
ally separated into dedicated computation and communication phases.

CHAPTER 7. OUTLOOK 129

Thus, even if peak network performance is reached during the communication
phase, the network is left idle during the computation phase. One way to maintain
scalar computations during communication is to use one-sided communication.

The difference between the usual point-to-point communication and one-sided
communication is, that a one-sided communication library adds information
about the target memory address to the package data. Thus, the receiving node’s
network controller is able to store the packet’s data directly into the memory
without requiring the CPU, and thus without interrupting the current computa-
tion.

One-sided communication is implemented in Gasnet [5], a language-independent,
low-level networking layer that provides network-independent, high-performance
communication primitives. Currently Gasnet is used by the Partitioned Global
Address Space (Pgas) languages Unified Parallel C (UPC) [10], Titanium [36],
and Co-Array Fortran [46].

Utilizing one-sided communication in Spiral/dmp would require a new rewriting
ruleset. Currently Spiral/dmp is separating the transform into communication
and computation steps. The order in which each computation step’s results are
calculated doesn’t matter, as they will not be touched until the next phase. One-
sided communication removes the necessity of explicit communication steps, but
now the order of calculation does matter. It is critical to finish consecutive blocks
of output data as soon as possible to be able to send them over the network and
make best use of overlapping computation and communication [3].

7.2 Communication Structure Advancements

Formulas containing complex permutations are an obstacle for Spiral/dmp at
the moment. The rules introduced in Section 3.1 and Section 3.2 are appropriate
devices for breaking down permutations to one communication step embedded
between two local permutations, provided an FFT is to be calculated on a data
array that is distributed in slabs or rods.

However, these rules may not yield satisfactory results (i) for permutations aris-
ing in other signal transforms than FFTs, (ii) if the data array’s initial or final
distribution is more complex (e. g., volumetric), or (iii) other data distributions
than the trivial ones mentioned before are better suited for the embedded com-
putation parts. The introduction of extended stride permutations (Section 3.3),
and especially the utilization of digit permutations (Section 3.4) are first steps
towards a more comprehensive permutation treatment.

CHAPTER 7. OUTLOOK 130

7.3 Usability Improvements

Spiral/dmp currently measures run times of code-parts to create a foundation
for deciding which algorithm and which of its implementations leads to the best
performance. This is the reason for the complex and uncomfortable task to set
up Spiral/dmp on a given parallel computer. There are three possibilities to
remove this difficulty and thus to increase the benefit of using Spiral/dmp.

Remove Runtime Measurements for Communication Parts. The
code generation engine itself does not require any adaptation to the paral-
lel computer, the code should be optimized for, when generating Mpi code.
Such an adaptation is only needed to actually run parallel code during the
optimization process. If the runtime measurements of parallel parts would
be skipped and replaced by an educated guess, each scalar Spiral instal-
lation which includes the Spiral/dmp package would be able to generate
parallel code without any additional setup. This could, at least, be a fall-
back alternative whenever Spiral/dmp finds out that it is not properly set
up for parallel runtime measurement.

Model-Based Optimization. This alternative improves the first one by
an estimation which algorithm and implementation will perform best on the
designated target system. Therefore the user would have to provide empiri-
cally obtained data about the target machine’s communication performance
(e. g., latency, bandwith, and communication-computation performance ra-
tio).

The best way to obtain these data would be to provide a small Mpi test
program, which the user has to compile and run on the target machine.
This program could do all necessary measurements and store the gathered
data in a file, which has to be provided to Spiral/dmp in some way.

Web-Interface. The Spiral team currently aims to provide Spiral’s
functionality to the user community via web interfaces (e. g., the Spiral
DFT IP generator1). Combined with a data gathering tool as explained in
the last paragraph, such a web interface would provide a perfect environ-
ment to provide users with a very comfortable way to access the services of
Spiral/dmp.

Of course the last alternative would be the most professional and effective one.
Usually parallel libraries are not trivial to set up and are quite error-prone

1http://spiral.net/hardware/dftgen.html

CHAPTER 7. OUTLOOK 131

when it comes to non-standard distributed memory environments. Providing Spi-
ral/dmp’s services through a web interface would provide high-performance C-
Mpi-code, which can be easily applied in parallel applications, requiring only an
insignificant manual effort.

Appendix A

SPIRAL/DMP Source Codes

SPL Tags

A.1 APar . 135

A.2 AParDistr . 135

A.3 AParDMPRescale . 136

SPL Non-Terminals

A.4 TPar . 136

A.5 MDDFT . 136

A.6 DFT . 137

A.7 TTensor . 138

A.8 TTensorI . 138

A.9 TL . 138

A.10 TComm . 139

A.11 TDMPGlobalTranspose . 139

A.12 TDiag . 139

SPL Rewrite Rules for TPar

A.13 TPar setpv . 140

A.14 TPar genRescale . 140

SPL Rewrite Rules for MDDFT

A.15 MDDFT tSPL RowCol . 140

SPL Rewrite Rules for DFT

A.16 DFT tSPL CT . 141

A.17 DFT tSPL CT DMPRescale . 141

A.18 DFT tSPL CT DMPRescale One . 141

SPL Rewrite Rules for TTensor

A.19 AxI IxB . 142

APPENDIX A. SPIRAL/DMP SOURCE CODES 133

A.20 IxB AxI . 142

SPL Rewrite Rules for TTensorI

A.21 IxA parDMP . 142

A.22 AxI parDMP . 143

A.23 AxIpv parDMP . 143

A.24 AxIvp parDMP . 143

A.25 AxIvp parDMP rescale . 144

A.26 AxIpv parDMP rescale . 144

A.27 AxI parDMP rescaleBoth . 145

A.28 AxI parDMP rescaleDown unpulled 145

A.29 AxI parDMP rescaleUp . 146

SPL Rewrite Rules for TDMPGlobalTranspose

A.30 TDMPGlobalTranspose Base . 146

A.31 TDMPGlobalTranspose2TComm . 147

SPL Rewrite Rules for TL

A.32 IxLxI nopar . 147

A.33 IxLxI trivial . 147

A.34 IxLxI DMP LCL . 147

A.35 IxLxI DMP CL . 148

A.36 IxLxI DMP LC . 148

A.37 IxLxI DMP L . 149

A.38 IxLxI DMP LCL rescale . 149

A.39 IxLxI DMP CL rescale . 150

A.40 IxLxI DMP LC rescale . 150

SPL Rewrite Rules for TCompose

A.41 TCompose DMP Base . 150

SPL Rewrite Rules for TComm

A.42 TComm Base . 151

SPL Rewrite Rules for TDiag

A.43 TDiag DMP . 151

APPENDIX A. SPIRAL/DMP SOURCE CODES 134

SPL Terminals/Σ-SPL Objects

A.44 DMPCompose . 151

A.45 DMPComm . 152

A.46 DMPGlobalTranspose . 153

A.47 DMPGath . 154

A.48 DMPScat . 155

A.49 DMPISum . 155

A.50 DMPIterDirectSum . 156

A.51 DMPTensor . 156

SPL Terminal to Σ-Spl Transformation Rules

A.52 DMPCompose.sums . 156

A.53 DMPComm.sums . 157

A.54 DMPGlobalTranspose.sums . 157

A.55 DMPTensor.sums . 157

A.56 DMPIterDirectSum.sums . 157

Σ-Spl Optimization Rules

A.57 DMPComposeAssoc . 157

A.58 DiagDMPISumLeft . 157

A.59 DiagDMPISumRight . 158

A.60 CommuteDMPGathDiag . 158

A.61 CommuteDiagDMPScat . 158

A.62 MergeDMPISums . 158

A.63 ComposeDMPGathDMPScat . 158

Σ-Spl Complex to Real Transformation Rules

A.64 RCDMPCompose . 158

A.65 RCDMPISum . 158

A.66 RCDMPGath . 159

A.67 RCDMPScat . 159

A.68 RCDMPComm . 159

A.69 RCDMPGlobalTranspose . 159

iCode Objects and C Unparser

APPENDIX A. SPIRAL/DMP SOURCE CODES 135

A.70 dmploop . 159

A.71 dmpcomm . 160

A.72 dmpglobaltranspose . 161

A.73 dmpglobaltranspose rescale . 162

Σ-Spl to iCode Transformation Rules

A.74 DMPISum.code . 164

A.75 DMPCompose.code . 164

A.76 Compose.code . 165

A.77 DMPComm.code . 166

A.78 DMPGlobalTranspose.code . 166

iCode Unparser to C-Code

A.79 DMPUnparser.header . 167

A.80 DMPUnparser.footer . 167

A.1 SPL Tags

Code A.1 (APar) Corresponding to Definition 5.1.

Class(ABase, rec(

isPV:=false,

isVec := false,

isPar := false,

isReg := false,

isMem := false,

isMemL := false,

isMemR := false,

isSMP := false,

isDMP := false,

isFreq := false,

isStream := false,

isDMPRescale := false,

DMPAllowRescale := false,

p_all := 0,

p:=0,

v:=0,

bs:=0

));

Class(A_PV, ABase, rec(isPV:=true));

Class(APar, A_PV, rec(isPar:=true));

Code A.2 (AParDistr) Corresponding to Definition 5.1.

APPENDIX A. SPIRAL/DMP SOURCE CODES 136

Class(AParDistr, APar, rec(

__call__ := (self, p) >> WithBases(self, rec(p:=p)),

print := (self) >> Print(self.name, "(", self.p, ")"),

isDMP := true,

DMPAllowRescale := true,

operations := Inherit(PrintOps, rec(\= := (self, other) >>

ObjId(other) = ObjId(self) and

self.p = other.p))

));

Code A.3 (AParDMPRescale)

Class(AParDMPRescale, APar, rec(

__call__ := (self, p, q, method) >> WithBases(self,

rec(p:=p, p_high:=p, p_low:=q, method:=method)),

print := (self) >> Cond(self.isDMPRescaleUp or self.isDMPRescaleDown,

Print(self.name, "(", self.p_low,

Cond(self.isDMPRescaleDown,"<",""),"-(", self.method,")-",

Cond(self.isDMPRescaleUp,">",""),self.p_high,")"),

Print(self.name, "(", self.p, " (", self.method,"))")),

procs_in := (self) >> Cond(self.isDMPRescaleUp, self.p_low, self.p),

procs_out := (self) >> Cond(self.isDMPRescaleDown, self.p_low, self.p),

implements_rescale := (self) >> self.isDMPRescaleUp or self.isDMPRescaleDown,

method:=0,

p_high:=0,

p_low:=0,

isDMPRescale := true,

isDMP := true,

isDMPRescaleUp := true,

isDMPRescaleDown := true,

operations := Inherit(PrintOps,

rec(\= := (self, other) >>

ObjId(other) = ObjId(self) and

self.p = other.p and

self.p_high = other.p_high and

self.p_low = other.p_low and

self.method = other.method))

))

A.2 SPL Non-Terminals

Code A.4 (TPar) Corresponding to Definition 5.2.

Class(TPar, NonTerminal, rec(

abbrevs := [(nt,pv) -> Checked(IsNonTerminal(nt) and pv.isPV, [nt, pv])],

dims := self >> self.params[1].dims(),

terminate := self >> self.params[1].terminate(),

transpose := self >> TPar(self.params[1].transpose(), self.params[2]),

isReal := self >> self.params[1].isReal(),

isDMP := self >> Length(self.params[2]) > 0 and

IsRec(self.params[2]) and

IsBound(self.params[2].isDMP) and

self.params[2].isDMP,

doNotMeasure := true

))

Code A.5 (MDDFT)

APPENDIX A. SPIRAL/DMP SOURCE CODES 137

Class(MDDFT, NonTerminal, rec(

abbrevs := [

P -> Checked(IsList(P), ForAll(P,IsPosInt), Product(P) > 1,

[RemoveOnes(P), 1, [], false]),

(P,k) -> Checked(IsList(P), ForAll(P,IsPosInt), IsInt(k), Product(P) > 1,

Gcd(Product(P), k)=1,

[RemoveOnes(P), k mod Product(P), [], false]),

(P,k,pv) -> Checked(IsList(P), ForAll(P,IsPosInt), IsInt(k), Product(P) > 1,

Gcd(Product(P), k)=1, IsList(pv),

[RemoveOnes(P), k mod Product(P), pv, false]),

(P,k,pv,rc) -> Checked(IsList(P), ForAll(P,IsPosInt), IsInt(k), Product(P) > 1,

Gcd(Product(P), k)=1, IsList(pv),

[RemoveOnes(P), k mod Product(P), pv, rc])

],

dims := self >> let(n := Product(self.params[1]), When(self.isReal(), 2*[n,n], [n, n])),

terminate := self >> let(t:=Tensor(List(self.params[1],

i -> DFT(i, self.params[2]).terminate())),

When(self.isReal(), MatAMat(RC(t).toAMat()), t)

),

transpose := self >> Copy(self),

isReal := self >> self.params[4],

setAB := meth(self, ab)

self.a := ab[1];

self.b := ab[2];

return self;

end,

setpv := meth(self, pv)

local s;

s:= Copy(self);

s.params[3] := pv;

return s;

end

));

Code A.6 (DFT)

Class(DFT, NonTerminal, rec(

abbrevs := [(n) -> Checked(IsInt(n), n > 0,

[n, 1, [], false]),

(n,k) -> Checked(IsInt(n), n > 0, IsInt(k), Gcd(n,k) = 1,

[n, k mod n, [], false]),

(n,k,pv) -> Checked(IsInt(n), n > 0, IsInt(k), Gcd(n,k) = 1, IsList(pv),

[n, k mod n, pv, false]),

(n,k,pv, rc) -> Checked(IsInt(n), n > 0, IsInt(k), Gcd(n,k) = 1, IsList(pv),

[n, k mod n, pv, rc])

],

dims := self >> When(self.isReal(),

2* [self.params[1], self.params[1]],

[self.params[1], self.params[1]]),

terminate := self >> let(N := self.params[1], K := self.params[2],

t := List([0..N-1], r -> List([0..N-1], c -> E(4*N)^(K*self.omega4pow(r,c)))),

When(self.isReal(), MatAMat(RC(Mat(t)).toAMat()), Mat(t))),

isReal := self >> self.params[4],

SmallRandom := () -> Random([2..16]),

LargeRandom := () -> 2 ^ Random([6..15]),

setpv := meth(self, pv)

local s;

s:= Copy(self);

s.params[3] := pv;

APPENDIX A. SPIRAL/DMP SOURCE CODES 138

return s;

end,

print := meth(self, indent, indentStep)

local lparams, mparams;

if not IsBound(self.params) then Print(self.name); return; fi;

Print(self.name, "(");

if IsList(self.params) then

lparams := Filtered(self.params, i->not (IsList(i) and i=[]));

mparams := Filtered(lparams, i->not (IsBool(i) and not i));

DoForAllButLast(mparams, x -> Print(x, ", "));

Print(Last(mparams));

else

Print(self.params);

fi;

Print(")", When(self.transposed, ".transpose()", ""));

end,

))

Code A.7 (TTensor) Corresponding to Definition 5.3.

Class(TTensor, NonTerminal, rec(

abbrevs := [(A, B) -> Checked(IsNonTerminal(A) and IsNonTerminal(B), [A,B,[]]),

(A,B,pv) -> Checked(IsNonTerminal(A) and IsNonTerminal(B), [A,B,pv])],

dims := self >> let(a:=self.params[1].dims(), b:=self.params[2].dims(),[a[1]*b[1],a[2]*b[2]]),

terminate := self >> Tensor(self.params[1], self.params[2]),

transpose := self >>

TTensor(self.params[1].transpose(), self.params[2].transpose(), self.params[3]),

isReal := self >> self.params[1].isReal() and self.params[2].isReal(),

setpv := (self, pv) >> TTensor(self.params[1], self.params[2], pv)

))

Code A.8 (TTensorI) Corresponding to Definition 5.4.

Class(TTensorI, NonTerminal, rec(

abbrevs := [(nt, s, l, r) -> Checked(

IsNonTerminal(nt)and IsPosInt(s) and l.isPV and r.isPV, [nt, s, l, r, []]),

(nt, s, l, r, pv) -> Checked(

IsNonTerminal(nt)and IsPosInt(s) and l.isPV and r.isPV, [nt, s, l, r, pv])],

dims := self >> self.params[1].dims()*self.params[2],

terminate := self >>

let(A:= self.params[1], n:= self.params[2], l:=self.params[3], r:=self.params[4],

Cond(l.isPar and r.isPar, Tensor(I(n), A.terminate()),

l.isVec and r.isVec, Tensor(A.terminate(), I(n)),

l.isPar and r.isVec, Tensor(I(n), A.terminate()) * L(A.dims()[2]*n, n),

l.isVec and r.isPar, let(m:=A.dims()[2], Tensor(A.terminate(), I(n)) * L(m*n, m))

)),

transpose := self >>

TTensorI(self.params[1].transpose(), self.params[2],

self.params[4], self.params[3], self.params[5]),

isReal := self >> self.params[1].isReal(),

setpv := (self, pv) >>

TTensorI(self.params[1], self.params[2], self.params[3],

self.params[4], Flat(pv)),

doNotMeasure := true

))

Code A.9 (TL)

APPENDIX A. SPIRAL/DMP SOURCE CODES 139

Class(TL, NonTerminal, rec(

abbrevs := [(size, stride) -> Checked(ForAll([size, stride], IsPosInt),

[size, stride, 1, 1, []]),

(size, stride, left, right) -> Checked(ForAll([size, stride, left, right], IsPosInt),

[size, stride, left, right, []]),

(size, stride, left, right, pv) -> Checked(ForAll([size, stride, left, right], IsPosInt),

[size, stride, left, right, pv])],

dims := self >> Replicate(2, self.params[1]*self.params[3]*self.params[4]),

terminate := self >> Tensor(I(self.params[3]), L(self.params[1], self.params[2]), I(self.params[4])),

transpose := self >> TL(self.params[1], self.params[1]/self.params[2],

self.params[3], self.params[4], self.params[5]),

isReal := self >> true,

setpv := (self, pv) >> TL(self.params[1], self.params[2], self.params[3], self.params[4], Flat(pv))

));

Code A.10 (TComm) Corresponding to Definition 5.10.

Class(TComm, NonTerminal, rec(

abbrevs := [

(p, n, w_jk, pi, piinv, r_jk, j, k, pv) -> CheckedD(IsInt(p), IsInt(n), p > 1, n > 0,

[p, n, w_jk, pi, piinv, r_jk, j, k, pv])

],

dims := self >> [

self.params[3].N * self.params[1],

self.params[6].N * self.params[1]],

terminate := self >> Comm(self.params[1],self.params[2],self.params[3],

self.params[4],self.params[5],self.params[6], self.params[7],self.params[8],self.params[9]).toAMat(),

isReal := False,

SmallRandom := () -> Let(m=>Random([2..8]), n=>Random([2..8]), [m*n,m]),

LargeRandom := () -> Let(m=>2^Random([2..8]), n=>2^Random([2..7]), [m*n,m]),

setpv := (self, pv) >> TComm(

self.params[1],

self.params[2],

self.params[3],

self.params[4],

self.params[5],

self.params[6],

self.params[7],

self.params[8],

pv)

))

Code A.11 (TDMPGlobalTranspose) Corresponding to Definition 5.9.

Class(TDMPGlobalTranspose, NonTerminal, rec(

abbrevs := [

(n , pv) -> CheckedD(IsInt(n) , pv[1].isDMP, [n , pv[1]])],

dims := self >> [self.params[2].p^2 * self.params[1] ,

self.params[2].p^2 * self.params[1]],

terminate := self >> Tensor(L(self.params[2].p^2,self.params[2].p) , I(self.params[1])),

transpose := self >> Copy(self),

isReal := False,

SmallRandom := () -> Let(m=>Random([2..8]), n=>Random([2..8]), [m*n,m]),

LargeRandom := () -> Let(m=>2^Random([2..8]), n=>2^Random([2..7]), [m*n,m]),

doNotMeasure := true

))

Code A.12 (TDiag) Corresponding to Definition 5.6.

APPENDIX A. SPIRAL/DMP SOURCE CODES 140

Class(TDiag, NonTerminal, rec(

abbrevs := [(D) -> [D,[]],

(D,pv) -> [D,pv]],

dims := self >> self.params[1].dims(),

terminate := self >> self.params[1].terminate(),

transpose := self >> TDiag(self.params[1].transpose(), self.params[2]),

isReal := self >> self.params[1].isReal(),

setpv := (self, pv) >> TDiag(self.params[1], pv),

doNotMeasure := true

));

A.3 SPL Rewrite Rules

A.3.1 SPL Rewrite Rules for TPar

Code A.13 (TPar setpv)

TPar_setpv := rec(

switch := true,

info := "TPar(nt, pv) -> nt.setpv(pv)",

forTransposition := false,

isApplicable := P -> Length(P[2]) > 0 and P[2].isDMP,

allChildren := P -> [[P[1].setpv([P[2]])]],

rule := (P, C) -> C[1]

)

Code A.14 (TPar genRescale)

TPar_genRescale := rec(

switch := false,

info := "TPar(nt, pv) -> nt.setpv(pv)",

forTransposition := false,

isApplicable := P -> Length(P[2]) > 0 and P[2].isDMP and not P[2].isDMPRescale,

allChildren := P ->

List(Flat(List([1],method->List(DropLast(DivisorsInt(P[2].p),1),p_low->

[P[1].setpv([AParDMPRescale(P[2].p,p_low,method)])]))),ch->[ch]),

rule := (P, C) -> C[1]

)

A.3.2 SPL Rewrite Rules for MDDFT

Code A.15 (MDDFT tSPL RowCol) Corresponding to Rule 5.1.

MDDFT_tSPL_RowCol := rec(

info := "tSPL MDDFT_n -> MDDFT_n/d, MDDFT_d",

isApplicable := P -> Length(P[1]) > 1,

allChildren := P -> let(

dims := P[1],

len := Length(dims),

List([1..len-1],

i -> [TTensor(MDDFT(dims{[1..i]}, P[2]), MDDFT(dims{[i+1..len]}, P[2]), P[3])])),

rule := (P,C) -> C[1],

switch := false

)

APPENDIX A. SPIRAL/DMP SOURCE CODES 141

A.3.3 SPL Rewrite Rules for DFT

Code A.16 (DFT tSPL CT) Corresponding to Rule 5.2.

DFT_tSPL_CT := rec(

info := "tSPL DFT(mn,k) -> DFT(m, k%m), DFT(n, k%n)",

maxSize := false,

isApplicable := (self,P) >> P[1] > 2 and

(self.maxSize=false or P[1] <= self.maxSize) and not IsPrime(P[1]) and

not (

Length(P[3])>0 and P[3][1].isDMP and P[3][1].isDMPRescale and

(P[3][1].isDMPRescaleDown or P[3][1].isDMPRescaleUp))),

allChildren := P -> Map2(DivisorPairs(P[1]),

(m,n) -> [TCompose([TTensorI(DFT(m, P[2] mod m), n, AVec, AVec),

TDiag(T(m*n, n, P[2])),

TTensorI(DFT(n, P[2] mod n), m, APar, AVec)], P[3])]),

rule := (P,C,nt) -> C[1],

switch := false

)

Code A.17 (DFT tSPL CT DMPRescale)

DFT_tSPL_CT_DMPRescale := rec(

info := "tSPL DFT(mn,k) -> DFT(m, k%m), DFT(n, k%n)",

maxSize := false,

forTransposition := false,

isApplicable := (self,P) >> (

P[1] > 2 and

(self.maxSize=false or P[1] <= self.maxSize) and

not IsPrime(P[1]) and

Length(P[3])>0 and

P[3][1].isDMP and

P[3][1].isDMPRescale and

(P[3][1].isDMPRescaleUp or P[3][1].isDMPRescaleDown)) and

P[3][1].p_low >1,

allChildren := P -> Map2(DivisorPairs(P[1]),

(m,n) -> [

TTensorI(DFT(m, P[2] mod m), n, AVec, AVec).setpv(

[WithBases(P[3][1],rec(isDMPRescaleDown := false))]),

TDiag(T(m*n, n, P[2])).setpv(

[WithBases(P[3][1],rec(p:=P[3][1].p_low, isDMPRescaleDown:=false, isDMPRescaleUp:=false))]),

TTensorI(DFT(n, P[2] mod n), m, APar, AVec).setpv(

[WithBases(P[3][1],rec(isDMPRescaleUp := false))])

]),

rule := (P,C,nt) -> DMPCompose(P[3][1].p,C),

switch := true

)

Code A.18 (DFT tSPL CT DMPRescale One)

DFT_tSPL_CT_DMPRescale_One := rec(

info := "tSPL DFT(mn,k) -> DFT(m, k%m), DFT(n, k%n)",

maxSize := false,

forTransposition := false,

isApplicable := (self,P) >> (

P[1] > 2 and

(self.maxSize=false or P[1] <= self.maxSize) and

not IsPrime(P[1]) and

Length(P[3])>0 and

P[3][1].isDMP and

APPENDIX A. SPIRAL/DMP SOURCE CODES 142

P[3][1].isDMPRescale and

(P[3][1].isDMPRescaleUp or P[3][1].isDMPRescaleDown)) and

P[3][1].p_low = 1,

allChildren := P -> Map2(DivisorPairs(P[1]),

(m,n) -> [

TTensorI(DFT(m, P[2] mod m), n, AVec, AVec).setpv(

[WithBases(P[3][1],rec(isDMPRescaleDown := false))]),

TDiag(T(m*n, n, P[2])).setpv(

[WithBases(P[3][1],rec(p:=P[3][1].p_low, isDMPRescaleDown:=false, isDMPRescaleUp:=false))]),

TTensorI(DFT(n, P[2] mod n), m, APar, AVec).setpv(

[WithBases(P[3][1],rec(isDMPRescaleUp := false))])

]),

rule := (P,C,nt) -> DMPCompose(P[3][1].p,C),

switch := true

)

A.3.4 SPL Rewrite Rules for TTensor

Code A.19 (AxI IxB) Corresponding to Rule 5.3.

AxI_IxB := rec(

info := "(A x B) -> (A x I)(I x B)",

forTransposition := false,

isApplicable := P -> true,

allChildren := P -> [[TCompose([

TTensorI(P[1], P[2].dims()[1], AVec, AVec),

TTensorI(P[2], P[1].dims()[2], APar, APar)], P[3])]],

rule := (P, C) -> C[1]

)

Code A.20 (IxB AxI) Corresponding to Rule 5.3.

IxB_AxI := rec(

info := "(A x B) -> (I x B)(A x I)",

forTransposition := false,

isApplicable := P -> true,

allChildren := P -> [[TCompose([

TTensorI(P[2], P[1].dims()[1], APar, APar),

TTensorI(P[1], P[2].dims()[2], AVec, AVec)], P[3])]],

rule := (P, C) -> C[1]

)

A.3.5 SPL Rewrite Rules for TTensorI

Code A.21 (IxA parDMP) Corresponding to Rule 5.4.

IxA_parDMP := rec(

info := "I_n x A -> I_p x (I_n/p x A)",

forTransposition := false,

isApplicable := P ->

Length(P[5]) > 0 and

ForAll([P[3], P[4], P[5][1]], i-> i.isPar) and

IsInt(P[2]/P[5][1].p) and P[5][1].isDMP and

not (P[5][1].isDMPRescale and

(P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown)),

APPENDIX A. SPIRAL/DMP SOURCE CODES 143

allChildren := P -> let(r:=P[2] / P[5][1].p, [[

When(r=1,

P[1],

TTensorI(P[1], r, APar, APar))]]),

rule := (P, C) -> DMPTensor(C[1] , P[5][1].p , P[5][1])

)

Code A.22 (AxI parDMP) Corresponding to Rule 5.4.

AxI_parDMP := rec(

info := "A_rxs x I_n -> L^rn_rn/p (I_p x (I_n/p x (A_rxs x I_n/p))) L^sn_p",

forTransposition := false,

isApplicable := P ->

P[3].isVec and P[4].isVec and Length(P[5]) > 0 and P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and P[5][1].isDMP and

not (

P[5][1].isDMPRescale and

(P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown)),

allChildren := P -> let(n := P[2], pv := P[5], p := P[5][1].p,

A := P[1],a := P[1].dims(),l := P[2]/P[5][1].p, [[

TL(n*a[1]/l,a[2],1,l).setpv(pv),

TTensorI(TTensorI(A, l, AVec, AVec),p,APar,APar).setpv(pv),

TL(n*a[2]/l,p,1,l).setpv(pv)]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

Code A.23 (AxIpv parDMP) Corresponding to Rule 5.4.

AxIpv_parDMP := rec(

forTransposition := false,

isApplicable := P ->

P[3].isPar and

P[4].isVec and

Length(P[5]) > 0 and

P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and

P[5][1].isDMP and

not (P[5][1].isDMPRescale and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown)),

allChildren := P -> let(

n := P[2],

pv := P[5],

p := P[5][1].p,

A := P[1],

a := P[1].dims(),

l := P[2]/P[5][1].p,

[[

TTensorI(TTensorI(A, l, APar, AVec),p,APar,APar).setpv(pv),

TL(p*a[2],p,1,l).setpv(pv)]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

Code A.24 (AxIvp parDMP) Corresponding to Rule 5.4.

AxIvp_parDMP := rec(

forTransposition := false,

isApplicable := P ->

P[3].isVec and

P[4].isPar and

Length(P[5]) > 0 and

APPENDIX A. SPIRAL/DMP SOURCE CODES 144

P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and

P[5][1].isDMP and

not (P[5][1].isDMPRescale and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown)),

allChildren := P -> let(

n := P[2],

pv := P[5],

p := P[5][1].p,

A := P[1],

a := P[1].dims(),

l := P[2]/P[5][1].p, [[

TL(a[1]*p,a[1],1,l).setpv(pv),

TTensorI(TTensorI(A, l, AVec, APar),p,APar,APar).setpv(pv)]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

Code A.25 (AxIvp parDMP rescale)

AxIvp_parDMP_rescale := rec(

forTransposition := false,

isApplicable := P ->

P[3].isVec and

P[4].isPar and

Length(P[5]) > 0 and

P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and

P[5][1].isDMP and

P[5][1].isDMPRescale and

(P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown) and

(not(P[5][1].isDMPRescaleUp and P[5][1].isDMPRescaleDown)),

allChildren := P -> let(

n := P[2],

pv := P[5][1],

p := P[5][1].p,

A := P[1],

a := P[1].dims(),

l := P[2]/P[5][1].p,

[[

TL(a[1]*p,a[1],1,l).setpv([Copy(pv)]),

TTensorI(TTensorI(A, l, AVec, APar),p,APar,APar).setpv([

Cond(pv.isDMPRescaleDown ,

WithBases(pv,rec(isDMPRescaleDown:=false)),

WithBases(pv,rec(isDMPRescaleUp :=false, p:=pv.p_low)))])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p,C)

)

Code A.26 (AxIpv parDMP rescale)

AxIpv_parDMP_rescale := rec(

forTransposition := false,

isApplicable := P ->

P[3].isPar and

P[4].isVec and

Length(P[5]) > 0 and

P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and

P[5][1].isDMP and

P[5][1].isDMPRescale and

(P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown) and

(not(P[5][1].isDMPRescaleUp and P[5][1].isDMPRescaleDown)),

allChildren := P -> let(

APPENDIX A. SPIRAL/DMP SOURCE CODES 145

n := P[2],

pv := P[5][1],

p := P[5][1].p,

A := P[1],

a := P[1].dims(),

l := P[2]/P[5][1].p,

[[

TTensorI(TTensorI(A, l, APar, AVec),p,APar,APar).setpv([

Cond(pv.isDMPRescaleDown,

WithBases(pv, rec(isDMPRescaleDown := false, p:=pv.p_low)),

WithBases(pv, rec(isDMPRescaleUp := false)))

]),

TL(p*a[2],p,1,l).setpv([Copy(pv)])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p,C)

)

Code A.27 (AxI parDMP rescaleBoth)

AxI_parDMP_rescaleBoth := rec(

info := "A_rxs x I_n -> L^rn_rn/p (I_p x (I_n/p x (A_rxs x I_n/p))) L^sn_p",

forTransposition := false,

isApplicable := P ->

P[3].isVec and

P[4].isVec and

Length(P[5]) > 0 and

P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and

P[5][1].isDMP and

P[5][1].isDMPRescale and

(P[5][1].isDMPRescaleUp and P[5][1].isDMPRescaleDown),

allChildren := P -> let(

n := P[2],

pv := P[5][1],

p := P[5][1].p,

A := P[1],

a := P[1].dims(),

l := P[2]/P[5][1].p,

[[

TL(n*a[1]/l,a[2],1,l).setpv(

[WithBases(pv, rec(isDMPRescaleDown:=false))]),

TTensorI(TTensorI(A, l, AVec, AVec),p,APar,APar).setpv(

[WithBases(pv, rec(isDMPRescaleDown:=false,

isDMPRescaleUp:=false, p:=pv.p_low))]),

TL(n*a[2]/l,p,1,l).setpv(

[WithBases(pv, rec(isDMPRescaleUp:=false))])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p,C)

)

Code A.28 (AxI parDMP rescaleDown unpulled)

AxI_parDMP_rescaleDown_unpulled := rec(

info := "A_rxs x I_n -> L^rn_rn/p (I_p x (I_n/p x (A_rxs x I_n/p))) L^sn_p",

forTransposition := false,

isApplicable := P ->

P[3].isVec and

P[4].isVec and

Length(P[5]) > 0 and

P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and

P[5][1].isDMP and

APPENDIX A. SPIRAL/DMP SOURCE CODES 146

P[5][1].isDMPRescale and

P[5][1].isDMPRescaleUp = false and

P[5][1].isDMPRescaleDown,

allChildren := P -> let(

n := P[2],

pv := P[5][1],

p := P[5][1].p,

A := P[1],

a := P[1].dims(),

l := P[2]/P[5][1].p,

[[

TL(n*a[1]/l,a[2],1,l).setpv(

[WithBases(pv, rec(isDMPRescaleDown:=false, p:=pv.p_low))]),

TTensorI(TTensorI(A, l, AVec, AVec),p,APar,APar).setpv(

[WithBases(pv, rec(isDMPRescaleDown:=false, p:=pv.p_low))]),

TL(n*a[2]/l,p,1,l).setpv(

[Copy(pv)])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p,C)

)

Code A.29 (AxI parDMP rescaleUp)

AxI_parDMP_rescaleUp := rec(

info := "A_rxs x I_n -> L^rn_rn/p (I_p x (I_n/p x (A_rxs x I_n/p))) L^sn_p",

forTransposition := false,

isApplicable := P ->

P[3].isVec and

P[4].isVec and

Length(P[5]) > 0 and

P[5][1].isPar and

IsInt(P[2]/P[5][1].p) and

P[5][1].isDMP and

P[5][1].isDMPRescale and

P[5][1].isDMPRescaleUp and

P[5][1].isDMPRescaleDown = false,

allChildren := P -> let(

n := P[2],

pv := P[5][1],

p := P[5][1].p,

A := P[1],

a := P[1].dims(),

l := P[2]/P[5][1].p, [[

TL(n*a[1]/l,a[2],1,l).setpv(

[Copy(pv)]),

TTensorI(TTensorI(A, l, AVec, AVec),p,APar,APar).setpv(

[WithBases(pv, rec(isDMPRescaleUp:=false, p:=pv.p_low))]),

TL(n*a[2]/l,p,1,l).setpv(

[WithBases(pv, rec(isDMPRescaleUp:=false, p:=pv.p_low))])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p,C)

)

A.3.6 SPL Rewrite Rules for TDMPGlobalTranspose

Code A.30 (TDMPGlobalTranspose Base)

TDMPGlobalTranspose_Base := rec(

switch := true,

info := "TDMPGlobalTranspose(n,pv) -> DMPGlobalTranspose(n,pv))",

APPENDIX A. SPIRAL/DMP SOURCE CODES 147

forTransposition := false,

isApplicable := P -> true,

allChildren := P -> [[]],

rule := (P, C) -> DMPGlobalTranspose(P[1] , P[2])

)

Code A.31 (TDMPGlobalTranspose2TComm) Corresponding to Code A.31.

TDMPGlobalTranspose2TComm := rec(

switch := false,

info := "TDMPGlobalTranspose(n,pv) -> TComm(...))",

forTransposition := false,

isApplicable := P -> Length(P[2])>0,

allChildren := P ->

Let(p => P[2].p, n => P[1], pv => P[2], j => Ind(P[2].p), k => Ind(P[2].p - 1),

[[TComm(p,n,fTensor(fZeta(p,j,k),fId(n)),

fCompose(fGamma(p),L(p^2,p),fGammaPrime(p)),

fCompose(fGamma(p),L(p^2,p),fGammaPrime(p)),

fTensor(fZeta(p,j,k),fId(n)),j,k).setpv(pv)]]),

rule := (P, C) -> C[1]

)

A.3.7 SPL Rewrite Rules for TL

Code A.32 (IxLxI nopar) Corresponding to Rule 5.6.

IxLxI_nopar := rec (

switch := true,

info := "L^{mn}_1, L^{mn}_{mn} -> I_mn",

forTransposition := false,

isApplicable := P -> Length(P[5]) > 0 and P[5][1].isDMP and P[5][1].p = 1,

allChildren := P -> [[TL(P[1],P[2],P[3],P[4])]],

rule := (P, C) -> C[1]

)

Code A.33 (IxLxI trivial) Corresponding to Rule 5.6.

IxLxI_trivial := rec (

switch := true,

info := "L^{mn}_1, L^{mn}_{mn} -> I_mn",

forTransposition := false,

isApplicable := P -> P[2]=1 or P[2]=P[1],

allChildren := P -> [[]],

rule := (P, C) -> I(P[1]*P[3]*P[4])

)

Code A.34 (IxLxI DMP LCL) Corresponding to Rule 5.5.

IxLxI_DMP_LCL := rec (

switch := true,

forTransposition := false,

isApplicable := P ->

true

and Length(P[5]) > 0

and P[5][1].isDMP

APPENDIX A. SPIRAL/DMP SOURCE CODES 148

and P[3] = 1

and (P[5][1].p > 1)

and (not P[1]/P[2] = P[5][1].p)

and (not P[2] = P[5][1].p)

and IsInt(P[1]/P[2])

and IsInt(P[2]/P[5][1].p)

and IsInt((P[1]/P[2])/P[5][1].p)

and not (P[5][1].isDMPRescale and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown))

,

allChildren := P ->

Let(mn => P[1], m => P[2], r => P[4], n=> P[1]/P[2], pv => P[5], p => P[5][1].p ,

[[

TL(mn/p,m/p,p,r).setpv(pv),

TDMPGlobalTranspose(r*mn/p^2, pv),

TL(n,p,p,r*m/p).setpv(pv)

]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

Code A.35 (IxLxI DMP CL) Corresponding to Rule 5.5.

IxLxI_DMP_CL := rec(

switch := true,

forTransposition := false,

isApplicable := P ->

true

and Length(P[5]) > 0

and P[5][1].isDMP

and P[3] = 1

and (P[5][1].p > 1)

and IsInt(P[1]/P[2])

and IsInt((P[1]/P[2])/P[5][1].p)

and P[2] = P[5][1].p

and not (P[5][1].isDMPRescale and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown))

,

allChildren := P -> Let(p => P[2], pv=>P[5], r => P[4], n => P[1]/P[2],

[[

TDMPGlobalTranspose(r*n/p, pv),

TL(n,p,p,r).setpv(pv)

]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

Code A.36 (IxLxI DMP LC) Corresponding to Rule 5.5.

IxLxI_DMP_LC := rec(

switch := true,

forTransposition := false,

isApplicable := P ->

true

and Length(P[5]) > 0

and P[5][1].isDMP

and P[3] = 1

and (P[5][1].p > 1)

and P[1]/P[2] = P[5][1].p

and IsInt(P[2]/P[5][1].p)

and not (P[5][1].isDMPRescale and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown))

,

allChildren := P -> Let(p => P[5][1].p, r => P[4], m => P[2], pv=>P[5],

[[

TL(m,m/p,P[5][1].p,r).setpv(Copy(pv)),

APPENDIX A. SPIRAL/DMP SOURCE CODES 149

TDMPGlobalTranspose(r*m/p, Copy(pv))

]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

Code A.37 (IxLxI DMP L) Corresponding to Rule 5.6.

IxLxI_DMP_L := rec(

forTransposition := false,

isApplicable := P ->

true

and Length(P[5]) > 0

and P[5][1].isDMP

and P[5][1].p > 1

and P[3] > 1

and IsInt(P[3]/P[5][1].p)

and not (P[5][1].isDMPRescale and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown))

,

allChildren := P -> Let(p => P[5][1].p,

m => P[2], pv => P[5], j => Ind(P[5][1].p), k => Ind(P[5][1].p-1),

[[

TTensorI(

TL(P[1],P[2],P[3]/P[5][1].p,P[4]), P[5][1].p,APar,APar).setpv(Copy(pv))

]]),

rule := (P, C) -> C[1],

switch := true

)

Code A.38 (IxLxI DMP LCL rescale)

IxLxI_DMP_LCL_rescale := rec (

switch := true,

forTransposition := false,

isApplicable := P ->

true

and Length(P[5]) > 0

and P[5][1].isDMP

and P[3] = 1

and (P[5][1].p > 1)

and (not P[1]/P[2] = P[5][1].p)

and (not P[2] = P[5][1].p)

and IsInt(P[1]/P[2])

and IsInt(P[2]/P[5][1].p)

and IsInt((P[1]/P[2])/P[5][1].p)

and (

P[5][1].isDMPRescale

and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown)

and not (P[5][1].isDMPRescaleUp and P[5][1].isDMPRescaleDown)),

allChildren := P ->

Let(mn => P[1], m => P[2], r => P[4], n=> P[1]/P[2], pv => P[5][1], p => P[5][1].p ,

[[

TL(mn/p,m/p,p,r).setpv(

[Cond(pv.isDMPRescaleDown,

WithBases(pv, rec(isDMPRescaleDown:=false, p:=pv.p_low)),

WithBases(pv, rec(isDMPRescaleUp:=false)))]),

TDMPGlobalTranspose(r*mn/p^2, [pv]),

TL(n,p,p,r*m/p).setpv(

[Cond(pv.isDMPRescaleDown,

WithBases(pv, rec(isDMPRescaleDown:=false)),

WithBases(pv, rec(isDMPRescaleUp:=false, p:=pv.p_low)))])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

APPENDIX A. SPIRAL/DMP SOURCE CODES 150

Code A.39 (IxLxI DMP CL rescale)

IxLxI_DMP_CL_rescale := rec(

switch := true,

forTransposition := false,

isApplicable := P ->

true

and Length(P[5]) > 0

and P[5][1].isDMP

and P[3] = 1

and (P[5][1].p > 1)

and IsInt(P[1]/P[2])

and IsInt((P[1]/P[2])/P[5][1].p)

and P[2] = P[5][1].p

and (

P[5][1].isDMPRescale

and (P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown)

and not (P[5][1].isDMPRescaleUp and P[5][1].isDMPRescaleDown)),

allChildren := P -> Let(p => P[2], pv=>P[5][1], r => P[4], n => P[1]/P[2],

[[

TDMPGlobalTranspose(r*n/p, [Copy(pv)]),

TL(n,p,p,r).setpv (

[Cond(pv.isDMPRescaleDown,

WithBases(pv,rec(isDMPRescaleDown:=false)),

WithBases(pv,rec(isDMPRescaleUp:=false, p:=pv.p_low)))])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p , C)

)

Code A.40 (IxLxI DMP LC rescale)

IxLxI_DMP_LC_rescale := rec(

switch := true,

forTransposition := false,

isApplicable := P ->

true

and Length(P[5]) > 0

and P[5][1].isDMP

and P[3] = 1

and (P[5][1].p > 1)

and P[1]/P[2] = P[5][1].p

and IsInt(P[2]/P[5][1].p)

and (P[5][1].isDMPRescale and

(P[5][1].isDMPRescaleUp or P[5][1].isDMPRescaleDown) and

not (P[5][1].isDMPRescaleUp and P[5][1].isDMPRescaleDown)),

allChildren := P -> Let(p => P[5][1].p, r => P[4], m => P[2], pv=>P[5][1],

[[

TL(m,m/p,P[5][1].p,r).setpv(

[Cond(pv.isDMPRescaleDown,

WithBases(pv,rec(isDMPRescaleDown:=false, p:=pv.p_low)),

WithBases(pv,rec(isDMPRescaleUp:=false)))]),

TDMPGlobalTranspose(r*m/p, [Copy(pv)])

]]),

rule := (P, C) -> DMPCompose(P[5][1].p, C)

)

A.3.8 SPL Rewrite Rules for TCompose

Code A.41 (TCompose DMP Base)

APPENDIX A. SPIRAL/DMP SOURCE CODES 151

TCompose_DMP_Base := rec(

info := "TCompose DMP",

forTransposition := false,

isApplicable := P -> Length(P[2]) > 0 and P[2][1].isDMP and

not (P[2][1].isDMPRescale and (P[2][1].implements_rescale())),

allChildren := P -> [List(P[1], i->i.setpv(P[2]))],

rule := (P, C) -> DMPCompose(P[2][1].p,C)

)

A.3.9 SPL Rewrite Rules for TComm

Code A.42 (TComm Base)

TComm_Base := rec(

switch := true,

info := "",

forTransposition := false,

isApplicable := P -> true,

allChildren := P -> [[]],

rule := (P,C) -> DMPComm(P[1],P[2],P[3],P[4],P[5],P[6],P[7],P[8])

)

A.3.10 SPL Rewrite Rules for TDiag

Code A.43 (TDiag DMP)

TDiag_DMP := rec(

info := "TDiag DMP",

forTransposition := false,

isApplicable := P -> Length(P[2]) > 0 and P[2][1].isDMP,

rule := (P, C) -> P[1]

)

A.4 SPL Terminals/Σ-SPL Objects

Code A.44 (DMPCompose)

Declare(DMPCompose);

Class(DMPCompose, BaseOperation, rec(

#---

_spl_name := "DMPCompose",

#---

abbrevs := [arg -> [arg]],

#---

isDMP := self >> true,

#---

checkDims := children -> DoForAll([1..Length(children)-1], i ->

When(not Cols(children[i])=Rows(children[i+1]),

Error("Dimensions of children do not match (i=",i,",",i+1,")"), 0)),

#---

new := meth(self, L)

local dim,factors,procs,pars;

Constraint(IsList(L) and L<>[]);

APPENDIX A. SPIRAL/DMP SOURCE CODES 152

pars := Flat(L);

factors := Filtered(pars,x -> IsSPL(x));

procs := Flat(Filtered(pars,x -> IsInt(x)))[1];

dim := Rows(factors[1]);

self.checkDims(factors);

factors := Filtered(factors, x -> not IsIdentitySPL(x));

if Length(factors) = 1 then return factors[1]; fi;

if factors = [] then # all factors are identities

return formgen.I(dim);

else

return SPL(WithBases(self,

rec(_children := factors,

p := procs,

dimensions := [factors[1].dimensions[1],

factors[Length(factors)].dimensions[2]])));

fi;

end,

#---

dims := self >> Let(c => self._children, [Rows(c[1]), Cols(Last(c))]),

#---

isPermutation := self >> ForAll(self._children, IsPermutationSPL),

#---

toAMat := meth(self)

return Product(List(self._children, AMatSPL));

end,

#---

transpose := self >> # we use inherit to copy all fields of self

Inherit(self, rec(

_children := Reversed(List(self._children, TransposedSPL)),

dimensions := Reversed(self.dimensions))),

#---

print := meth(self, indent, indentStep)

local s, newline;

s := self.children();

if Length(s) = 2 and ((IsBound(s[1]._sym) and IsBound(s[2]._mat))

or (IsBound(s[2]._sym) and IsBound(s[1]._mat)))

or ForAll(s, x->IsBound(x._sym))

then newline := Ignore;

else newline := self._newline; fi;

DoForAllButLast(s, c->Chain(SPLOps.Print(c, indent, indentStep),

Print(" *DMP* "), newline(indent)));

Last(s).print(indent, indentStep);

end,

#---

arithmeticCost := (self, costMul, costAddMul) >>

Sum(List(self.children(), x -> x.arithmeticCost(costMul, costAddMul)))

))

Code A.45 (DMPComm)

DMPComm := WithBases(BaseContainer, rec(

name := "DMPComm",

#---

isDMP := self >> true,

#---

new := meth(self, p, n, w_jk, pi, piinv, r_jk, j, k)

return SPL(WithBases(self,

rec(_children := [],

p := p, # processors

n := n, # packet size

w_jk := w_jk, #

pi := pi, # communication perm

piinv := piinv, # communication perm

r_jk := r_jk, #

APPENDIX A. SPIRAL/DMP SOURCE CODES 153

j := j,

k := k,

dimensions := [w_jk.range() * p , r_jk.range() * p]

)));

end,

#---

dims := self >> self.dimensions,

#---

area := self >> self.dimensions[1] * self.dimensions[2],

#---

isPermutation := False,

#---

toAMat := meth(self)

local i, exp, m, p, sf, gf, s, g, perm;

p := self.p;

g:= IterDirectSum(self.j,self.j.range,IterVStack(self.k,self.k.range,Gath(self.r_jk)));

s:= IterDirectSum(self.j,self.j.range,IterHStack(self.k,self.k.range,Scat(self.w_jk)));

perm := Prm(fTensor(self.pi,fId(self.n)));

exp := MatSPL(s*perm*g);

for i in [1..Length(exp)] do

if ForAll(exp[i], k->k=0) then

exp[i][i]:=1;

fi;

od;

return AMatMat(exp);

end,

#---

equals := meth(self, other)

return

IsSPL(other)

and ObjId(other) = ObjId(self)

and other.scalar = self.scalar

and IsIdenticalSPL(other._children[1], self._children[1]);

end,

#---

print := meth(self, indent, indentStep)

self._print(indent, indentStep, self.name,

[self.p,", ",self.n,", ",self.w_jk,", ",self.pi,,", ",self.r_jk],"");

end,

#---

export := meth(self, indent, indentStep)

Print("unsupported ", self._spl_name);

end,

#---

arithmeticCost := (a,b,c) >> 0,

#---

isReal := meth(self) return true; end

))

Code A.46 (DMPGlobalTranspose)

DMPGlobalTranspose := WithBases(BaseContainer, rec(

name := "DMPGlobalTranspose",

#---

isDMP := self >> true,

#---

new := (self, n, pv) >> SPL(WithBases(self,rec(

_children:=[],

pv:=pv,

p:=pv.p,

n:=n,

dimensions:=[n*(pv.p)^2 , n*(pv.p)^2]))),

#---

dims := self >> self.dimensions,

APPENDIX A. SPIRAL/DMP SOURCE CODES 154

#---

area := self >> self.dimensions[1] * self.dimensions[2],

#---

isPermutation := False,

#---

toAMat := self >> Gath(fTensor(L(self.p^2,self.p),fId(self.n))).toAMat(),

#---

equals := meth(self, other)

return

IsSPL(other)

and ObjId(other) = ObjId(self)

and other.scalar = self.scalar

and IsIdenticalSPL(other._children[1], self._children[1]);

end,

#---

print := meth(self, indent, indentStep)

self._print(indent, indentStep, self.name,

[self.pv ,", ",self.n],"");

end,

#---

export := meth(self, indent, indentStep)

Print("unsupported ", self._spl_name);

end,

#---

arithmeticCost := (a,b,c) >> 0,

#---

isReal := meth(self) return true; end

))

Code A.47 (DMPGath)

Declare(DMPScat);

Class(DMPGath, BaseMat, SumsBase, rec(

isDMP := self >> true,

#---

rChildren := self >> [self.func],

#---

rSetChild := rSetChildFields("func"),

#---

new := meth(self, pvar,pdomain,pexpr)

local pfunc;

pfunc := fTensor(fBase(pdomain,pvar),pexpr);

return SPL(WithBases(self,rec(

dimensions := [pfunc.domain(), pfunc.range()],

var := pvar,

expr := pexpr,

domain := pdomain,

func := FF(pfunc))));

end,

#---

sums := self >> self,

#---

area := self >> self.func.domain(),

#---

isReal := self >> true,

#---

transpose := self >> DMPScat(self.var,self.domain.self.expr),

#---

print := (self,i,is) >> Print(self.name, "(" , self.func, ")"),

#---

toAMat := meth(self)

local n,N,lfunc;

n := self.dimensions[1];

N := self.dimensions[2];

APPENDIX A. SPIRAL/DMP SOURCE CODES 155

lfunc := self.func.lambda();

return AMatMat(List([0..n-1], row -> BasisVec(N, lfunc.at(row).ev())));

end

))

Code A.48 (DMPScat)

Class(DMPScat, BaseMat, SumsBase, rec(

isDMP := self >> true,

#---

rChildren := self >> [self.func],

#---

rSetChild := rSetChildFields("func"),

#---

new := meth(self, pvar,pdomain,pexpr)

local pfunc;

pfunc := fTensor(fBase(pdomain,pvar),pexpr);

return SPL(WithBases(self,rec(

dimensions := [pfunc.range(), pfunc.domain()],

var := pvar,

expr := pexpr,

domain := pdomain,

func := FF(pfunc))));

end,

#---

func := self >> FF(fTensor(fBase(self.domain,self.var),self.expr)),

#---

sums := self >> self,

#---

area := self >> self.func.domain(),

#---

isReal := self >> true,

#---

transpose := self >> DMPGath(self.var,self.domain,self.expr),

#---

print := (self,i,is) >> Print(self.name, "(", self.func, ")"),

#---

toAMat := meth(self)

local n,N,lfunc;

n := self.dimensions[1];

N := self.dimensions[2];

lfunc := self.func.lambda();

return TransposedAMat(AMatMat(List([0..N-1], row -> BasisVec(n, lfunc.at(row).ev()))));

end

))

Code A.49 (DMPISum) Corresponding to Definition 5.11.

Class(DMPISum, ISum, rec(

new := meth(self, var, domain, expr, pv)

Constraint(IsSPL(expr));

Constraint(not IsList(domain));

return SPL(WithBases(self,

rec(expr := expr,

var := var,

domain := domain,

p := domain,

pv := pv,

dimensions := Dimensions(expr))));

end,

#---

isDMP := self >> true,

APPENDIX A. SPIRAL/DMP SOURCE CODES 156

#---

setVar := meth(self, newvar)

local oldvar, replace;

oldvar := self.var;

replace := function (c)

if IsBound(c.var) and c.var.id = oldvar.id then

c.var := newvar;

fi;

return Copy(c).mutateChildren(replace);

end;

return Copy(self).mutateChildren(replace);

end,

#---

unroll := meth(self)

return SUM(List([0..self.domain-1], index_value ->

SubstBottomUp(

Copy(self.expr),

@(1).target(var).cond(e->e.id=self.var.id),

e -> V(index_value))));

end

))

Code A.50 (DMPIterDirectSum)

Class(DMPIterDirectSum, IterDirectSum, rec(

isDMP:=self>>true

))

Code A.51 (DMPTensor)

Class(DMPTensor, Tensor, rec(

new := (self, L) >> SPL(WithBases(self, rec(type := "tensor",

_children := [

I(L[2]),

L[1]],

dimensions := L[1].dimensions * L[2],

p := L[2],

ptype := L[3],

pv:=L[3]))),

#---

print := (self,i,is) >> Print(self.name, "(", self.child(2), ", ", self.p, ", ", self.ptype, ")"),

#---

isDMP := self >> true,

#---

isPermutation := False

))

A.5 SPL Terminal to Σ-Spl Transformation

Rules

Code A.52 (DMPCompose.sums)

DMPCompose.sums := self >> Cond(

self.isPermutation(),

Prm(Rows(self),

ApplyFunc(fCompose, List(Reversed(self.children()), (c) -> SumsSPL(c).direct)),

ApplyFunc(fCompose, List(self.children(), (c) -> SumsSPL(c).inverse))),

DMPCompose(self.p,Map(self.children(), (c) -> SumsSPL(c))

)

);

APPENDIX A. SPIRAL/DMP SOURCE CODES 157

Code A.53 (DMPComm.sums)

DMPComm.sums := self >> self;

Code A.54 (DMPGlobalTranspose.sums)

DMPGlobalTranspose.sums := self >> self;

Code A.55 (DMPTensor.sums) Corresponding to Rule 5.8.

DMPTensor.sums :=self >> Let(

A => self.child(2),

p => self.p,

i => Ind(self.p),

DMPISum(i, i.range,

DMPScat(i,p,fId(Rows(A))) *

SumsSPL(A) *

DMPGath(i,p,fId(Rows(A)))

,self.pv)

);

Code A.56 (DMPIterDirectSum.sums)

DMPIterDirectSum.sums := self >> let(

bkcols := Cols(self.child(1)),

bkrows := Rows(self.child(1)),

nblocks := self.domain,

cols := Cols(self),

rows := Rows(self),

DMPISum(self.var, self.domain,

Compose(

DMPScat(self.var,nblocks,fId(bkrows)),

SumsSPL(self.expr),

DMPGath(self.var,nblocks,fId(bkcols)))

,self.pv)

);

A.6 Σ-Spl Optimization Rules

Code A.57 (DMPComposeAssoc) Corresponding to Rule 5.10.

DMPComposeAssoc := ARule(DMPCompose, [@(1,DMPCompose)],

e -> [@(1).val.p, @(1).val.children()])

Code A.58 (DiagDMPISumLeft) Corresponding to Rule 5.11.

DiagDMPISumLeft := ARule(DMPCompose,

[@(1, DMPISum, canReorder) , @(2, Diag)],

e -> [e.p, DMPISum(@1.val.var,

@1.val.domain,

@1.val.expr * @2.val,

@1.val.pv).attrs(@(1).val)])

APPENDIX A. SPIRAL/DMP SOURCE CODES 158

Code A.59 (DiagDMPISumRight) Corresponding to Rule 5.11.

DiagDMPISumRight := ARule(DMPCompose,

[@(1, Diag), @(2,[DMPISum] , canReorder)],

e -> [e.p, DMPISum(@2.val.var,

@2.val.domain,

@1.val * @2.val.expr,

@2.val.pv).attrs(@(2).val)])

Code A.60 (CommuteDMPGathDiag) Corresponding to Rule 5.12.

CommuteDMPGathDiag := ARule(Compose,

[@(1, DMPGath), @(2, Diag)],

e -> [Diag(fCompose(@2.val.element, @1.val.func)).attrs(@(2).val), @1.val])

Code A.61 (CommuteDiagDMPScat) Corresponding to Rule 5.12.

CommuteDiagDMPScat := ARule(Compose,

[@(1, Diag), @(2, DMPScat)], # <-1 <-2 o

e -> [@2.val, Diag(fCompose(@1.val.element, @2.val.func)).attrs(@(1).val)])

Code A.62 (MergeDMPISums) Corresponding to Rule 5.13.

MergeDMPISums := ARule(DMPCompose, [@(1, [DMPISum]), @(2, [DMPISum])],

e -> [e.p, DMPISum(@(1).val.var , @(1).val.domain ,

Compose(

@(1).val.children() ,

@(2).val.setVar(@(1).val.var).children()), @(1).val.pv)])

Code A.63 (ComposeDMPGathDMPScat) Corresponding to Rule 5.14.

ComposeDMPGathDMPScat := ARule(Compose,

[@(1, DMPGath), @(2, DMPScat).cond(

x -> IsEqualObj(@(1).val.expr , x.expr) and @(1).val.var = x.var)],

e -> []

)

A.7 Σ-Spl Complex to Real Transformation

Rules

Code A.64 (RCDMPCompose) Corresponding to Rule 5.15.

RCDMPCompose := Rule([RC, @(1, DMPCompose)],

e -> DMPCompose(@(1).val.p, List(@(1).val.children(), RC)))

Code A.65 (RCDMPISum) Corresponding to Rule 5.16.

APPENDIX A. SPIRAL/DMP SOURCE CODES 159

RCDMPISum := Rule([RC, @(1, DMPISum)],

e -> DMPISum(@(1).val.var, @(1).val.domain, RC(@(1).val.child(1)), @(1).val.pv))

Code A.66 (RCDMPGath) Corresponding to Rule 5.17.

RCDMPGath := Rule([RC, @(1, DMPGath)],

e -> DMPGath(@(1).val.var,@(1).val.domain, fTensor(@(1).val.expr, fId(2))))

Code A.67 (RCDMPScat) Corresponding to Rule 5.17.

RCDMPScat := Rule([RC, @(1, DMPScat)],

e -> DMPScat(@(1).val.var,@(1).val.domain,fTensor(@(1).val.expr, fId(2))))

Code A.68 (RCDMPComm) Corresponding to Rule 5.18.

RCDMPComm := Rule([RC, @(1, DMPComm)],

e -> DMPComm(@(1).val.p,

@(1).val.n*2,

fTensor(@(1).val.w_jk, fId(2)),

@(1).val.pi,

@(1).val.piinv,

fTensor(@(1).val.r_jk, fId(2)),

@(1).val.j,

@(1).val.k))

Code A.69 (RCDMPGlobalTranspose) Corresponding to Rule 5.19.

RCDMPGlobalTranspose := Rule([RC, @(1, DMPGlobalTranspose)],

e -> DMPGlobalTranspose(@(1).val.n*2 , @(1).val.pv))

A.8 iCode Objects and C Unparser

For the benefit of a better overview the unparser functions are appended di-
rectly to each object’s definition. Acutally, they are rather member methods of
the DMPUnparser class. The functions for printing the header and footer of a
C-program are listed in Appendix A.10. Apart from that the class is inherits
everything from CUnparser.

Code A.70 (dmploop) Corresponding to Definition 5.16.

Class(dmploop, Command, rec(

__call__ := meth(self, loopvar, range, cmd, pv)

local result;

Constraint(IsVar(loopvar));

Constraint(IsCommand(cmd));

range := toRange(range);

if range = 0 then

return skip();

else

APPENDIX A. SPIRAL/DMP SOURCE CODES 160

loopvar.setRange(range);

range := listRange(range);

result := WithBases(self,

rec(operations := CmdOps, cmd := cmd,

var := loopvar, range := range, pv:=pv));

loopvar.isLoopIndex := true;

return result;

fi;

end,

rChildren := decl.rChildren,

rSetChild := decl.rSetChild,

print := (self, i, is) >> Chain(

Print(self.name, "(", self.var, ", ", self.range, ",\n", Blanks(i+is)),

self.cmd.print(i+is, is),

Print("\n", Blanks(i), ")")),

free := meth(self)

local c;

c := self.cmd.free();

SubtractSet(c, Set([self.var]));

return c;

end,

isDMP := self >> true,

doUnroll := false,

unroll := self >> Copy(self)

))

Unparser

dmploop := meth(self, o, i, is)

local v, lo, hi;

Constraint(IsRange(o.range));

v := o.var; lo := o.range[1]; hi := Last(o.range);

Print(Blanks(i),"{ /* dmploop */\n");

Print(Blanks(i+is),"int ", v, " = mpirank;\n");

if o.pv.isDMPRescale and o.pv.p <> o.pv.p_high then

Print(Blanks(i+is),"if (!(",v,"%",o.pv.p_high/o.pv.p_low,")) {\n");

self(o.cmd, i+2*is, is);

Print(Blanks(i+is),"}\n");

else

self(o.cmd, i+is, is);

fi;

Print(Blanks(i), "}\n");

end,

Code A.71 (dmpcomm)

Class(dmpcomm, Command, rec(

__call__ := (self, loc1, loc2, p, n, pi, piinv) >> WithBases(self,

rec(operations := CmdOps,

loc1 := toAssignTarget(loc1),

loc2 := toAssignTarget(loc2),

p := p,

n := n,

pi := pi,

piinv := piinv)),

rChildren := self >> [], #[self.loc1, self.loc2],

free := self >> [],

APPENDIX A. SPIRAL/DMP SOURCE CODES 161

print := (self,i,is) >> Print(self.name,

"(", self.loc1,", ",self.loc2,", ",self.p,", ",self.n,", ",self.pi,")"),

doUnroll := false,

isDMP := self >> true

))

Unparser

dmpcomm := meth(self, o, i, is)

local pilist, piinvlist, m, alpha, mypi, mypiinv, listunparser;

m := o.pi.N / o.p;

mypi := (j) -> fCompose(o.pi,fTensor(fBase(o.p,j),fId(m)));

mypiinv := (j) -> fCompose(o.piinv,fTensor(fBase(o.p,j),fId(m)));

alpha := (i) -> [Int(i/m), Mod(i,m)];

pilist := List([0..o.p-1],

i-> List([0..m-1],

block-> alpha(mypi(i).lambda().at(block).ev())

)

);

piinvlist := List([0..o.p-1],

i-> List([0..m-1],

block-> alpha(mypiinv(i).lambda().at(block).ev())

)

);

listunparser := function (lst)

local i;

if not IsList(lst) then Print(lst); return; fi;

Print("{");

listunparser(lst[1]);

for i in [2 .. Length(lst)] do Print(", ", listunparser(lst[i])); od;

Print("}");

end;

Print("\n/*============ GLOBAL COMM below ============*/\n");

Print(Blanks(i), "{\n", Blanks(is-1));

Print(Blanks(i+is),

"MPI_Request reqs[2][", m ,"];\n");

Print(Blanks(i+is), "int mpii;\n");

Print(Blanks(i+is),

"static commpat pi[",o.p,"][",m,"] = ",listunparser(pilist),";\n");

Print(Blanks(i+is),

"static commpat piinv[",o.p,"][",m,"] = ",listunparser(piinvlist),";\n");

Print(Blanks(i+is),"for(mpii=0;mpii<",m,";mpii++){\n");

Print(Blanks(i+2*is),

"MPI_Isend(",o.loc2.cprint(),"+",o.n,"*mpii,",o.n,

",MPI_DOUBLE,piinv[mpirank][mpii].proc,piinv[mpirank]",

"[mpii].offset,MPI_COMM_WORLD,reqs[0]+mpii);\n");

Print(Blanks(i+2*is),"MPI_Irecv(",o.loc1.cprint(),"+",o.n,

"*mpii,",o.n,",MPI_DOUBLE,pi[mpirank][mpii].proc,mpii,",

"MPI_COMM_WORLD,reqs[1]+mpii);\n");

Print(Blanks(i+is),"}\n");

Print(Blanks(i+is),"MPI_Waitall(",m,",reqs[0],MPI_STATUSES_IGNORE);\n");

Print(Blanks(i+is),"MPI_Waitall(",m,",reqs[1],MPI_STATUSES_IGNORE);\n");

Print(Blanks(i), "}\n");

Print("\n/*============ GLOBAL COMM above ============*/\n");

end,

Code A.72 (dmpglobaltranspose)

Class(dmpglobaltranspose, Command, rec(

APPENDIX A. SPIRAL/DMP SOURCE CODES 162

__call__ := (self, loc1 , loc2 , pv , n) >> WithBases(self,

rec(operations := CmdOps,

loc1 := toAssignTarget(loc1),

loc2 := toAssignTarget(loc2),

pv:= pv,

p := pv.p,

n := n)),

rChildren := self >> [self.loc1, self.loc2],

rSetChild := rSetChildFields("loc1", "loc2"),

print := (self,i,is) >> Print(self.name,

"(",self.loc1,", ",self.loc2,", ",self.pv,", ",self.n,")"),

isDMP := self >> true

))

Unparser

dmpglobaltranspose := meth(self,o,i,is)

Print("\n/*============ GLOBAL COMM below ============*/\n");

if o.pv.isDMPRescale then

Print(Blanks(i),"if (!(mpirank%",o.pv.p_high/o.pv.p_low,")) {\n");

Print(Blanks(i+is), "int scalefac = ",o.pv.p_high/o.pv.p_low,";\n");

Print(Blanks(i+is), "int myrank = mpirank/",o.pv.p_high/o.pv.p_low,";\n");

Print(Blanks(i+is), "int mpii;\n");

Print(Blanks(i+is), "MPI_Status stat;\n");

Print(Blanks(i+is),"for(mpii=1;mpii<",o.p,";mpii++){\n");

Print(Blanks(i+2*is),"MPI_Sendrecv_replace(",o.loc1.cprint(),"+",o.n,

"*(mpii^myrank),",o.n,",MPI_DOUBLE,(mpii^myrank)*scalefac",

",0 /*sendtag*/,(mpii^myrank)*scalefac,0 /*recvtag*/,",

"MPI_COMM_WORLD,&stat);\n");

Print(Blanks(i+is),"}\n");

Print(Blanks(i), "}", Blanks(is-1));

else

Print(Blanks(i), "{\n");

Print(Blanks(i+is), "int mpii;\n");

Print(Blanks(i+is), "MPI_Status stat;\n");

Print(Blanks(i+is),"for(mpii=1;mpii<",o.p,";mpii++){\n");

Print(Blanks(i+2*is),"MPI_Sendrecv_replace(",o.loc1.cprint(),"+",o.n,

"*(mpii^mpirank),",o.n,",MPI_DOUBLE,mpii^mpirank,0 ",

"/*sendtag*/,mpii^mpirank,0 /*recvtag*/,MPI_COMM_WORLD,&stat);\n");

Print(Blanks(i+is),"}\n");

Print(Blanks(i), "}", Blanks(is-1));

fi;

Print("\n/*============ GLOBAL COMM above ============*/\n");

end,

Code A.73 (dmpglobaltranspose rescale)

Class(dmpglobaltranspose_rescale, Command, rec(

__call__ := (self, loc1 , loc2 , pv , n) >> WithBases(self,

rec(operations := CmdOps,

loc1 := toAssignTarget(loc1),

loc2 := toAssignTarget(loc2),

pv := pv,

n := n)),

rChildren := self >> [self.loc1, self.loc2],

rSetChild := rSetChildFields("loc1", "loc2"),

print := (self,i,is) >> Print(self.name,

"(",self.loc1,", ",self.loc2,", ",self.pv,", ",self.n,")"),

isDMP := self >> true

))

Unparser

APPENDIX A. SPIRAL/DMP SOURCE CODES 163

dmpglobaltranspose_rescale := meth(self,o,i,is)

local listunparser, scalefac,p,q, sendblks,

recvblks, bpp_in, bpp_out,adr_in,adr_out,blockdest,list;

p:=o.pv.p_high;

q:=o.pv.p_low;

scalefac:= p/q;

bpp_in := Cond(o.pv.isDMPRescaleDown,p,(p^2)/q);

bpp_out := Cond(o.pv.isDMPRescaleDown,(p^2)/q,p);

adr_in := (i) -> [Int(i/bpp_in) *

Cond(o.pv.isDMPRescaleUp,scalefac,1) , Mod(i,bpp_in)];

adr_out := (i) -> [Int(i/bpp_out) *

Cond(o.pv.isDMPRescaleDown,scalefac,1) , Mod(i,bpp_out)];

blockdest := (i) -> p*Mod(i,p) + Int(i/p);

list:=List([0..(p^2)-1],i-> [adr_in(i),adr_out(blockdest(i))]);

listunparser := function (lst)

local i;

if not IsList(lst) then Print(lst); return; fi;

Print("{");

listunparser(lst[1]);

for i in [2 .. Length(lst)] do Print(", ", listunparser(lst[i])); od;

Print("}");

end;

if o.pv.isDMPRescaleDown then

Print("\n/*============ GLOBAL COMM below --- DOWNSCALE ",

o.loc2.cprint(), "-->", o.loc1.cprint() ," ============*/\n");

Print(Blanks(i), "{\n");

Print(Blanks(i+is), "MPI_Request req_send[",p,"];\n");

Print(Blanks(i+is), "MPI_Request req_recv[",scalefac*(p-1),"];\n");

else

Print("\n/*============ GLOBAL COMM below --- UPSCALE ",

o.loc2.cprint(), "-->", o.loc1.cprint() ," ============*/\n");

Print(Blanks(i), "{\n");

Print(Blanks(i+is), "MPI_Request req_send[",scalefac*(p-1),"];\n");

Print(Blanks(i+is), "MPI_Request req_recv[",p,"];\n");

fi;

Print(Blanks(i+is), "int sendctr=0, recvctr=0, i, j;\n");

Print(Blanks(i+is), "int pi[",p^2,"][2][2] = ",listunparser(list),";\n");

Print(Blanks(i+is), "/* issue mpi comm */\n");

Print(Blanks(i+is), "for(i=0;i<",p^2,";i++) {\n");

Print(Blanks(i+is+is), "if(pi[i][0][0]==mpirank && ",

"pi[i][0][0]!=pi[i][1][0]) {\n");

Print(Blanks(i+is+is+is), "MPI_Isend(",o.loc2.cprint(),"+",o.n,

"*pi[i][0][1],",o.n,

",MPI_DOUBLE,pi[i][1][0],pi[i][0][0]*mpisize+pi[i][0][1],",

"MPI_COMM_WORLD,&(req_send[sendctr++]));\n");

Print(Blanks(i+is+is), "}\n");

Print(Blanks(i+is+is), "if(pi[i][1][0]==mpirank && ",

"pi[i][0][0]!=pi[i][1][0]) {\n");

Print(Blanks(i+is+is+is), "MPI_Irecv(",o.loc1.cprint(),"+",o.n,

"*pi[i][1][1],",o.n,

",MPI_DOUBLE,pi[i][0][0],pi[i][0][0]*mpisize+pi[i][0][1],",

"MPI_COMM_WORLD,&(req_recv[recvctr++]));\n");

Print(Blanks(i+is+is), "}\n");

Print(Blanks(i+is), "}\n");

Print(Blanks(i+is), "/* issue local perms */\n");

Print(Blanks(i+is), "for(i=0;(!(mpirank%",scalefac,")) && i<",

APPENDIX A. SPIRAL/DMP SOURCE CODES 164

p^2,";i++) \n");

Print(Blanks(i+is+is), "if(pi[i][0][0]==mpirank && ",

"pi[i][0][0]==pi[i][1][0]) \n");

Print(Blanks(i+is+is+is), "for(j=0;j<",o.n,";j++)\n");

Print(Blanks(i+is+is+is+is), o.loc1.cprint(),"[j+",o.n,"*pi[i][1][1]]=",

o.loc2.cprint(),"[j+",o.n,"*pi[i][0][1]];\n");

Print(Blanks(i+is), "/* wait for mpi comm */\n");

Print(Blanks(i+is), "if(recvctr>0) {\n");

Print(Blanks(i+is+is), "MPI_Waitall(recvctr, req_recv,

MPI_STATUSES_IGNORE);\n");

Print(Blanks(i+is), "}\n");

Print(Blanks(i), "}\n");

if o.pv.isDMPRescaleDown then

Print("/*============ GLOBAL COMM above --- DOWNSCALE ",

o.loc2.cprint(), "-->", o.loc1.cprint() ," ============*/\n");

else

Print("/*============ GLOBAL COMM above --- UPSCALE ",

o.loc2.cprint(), "-->", o.loc1.cprint() ," ============*/\n");

fi;

end,

A.9 Σ-Spl to iCode Transformation Rules

Code A.74 (DMPISum.code) Corresponding to Rule 5.21.

DMPISum.code := meth(self, y, x)

local ret;

ret := dmploop(self.var, self.domain, _CodeSums(self.child(1), y, x), self.pv);

return ret;

end;

DMPISum.ipcode := meth(self, x)

local ret;

ret := self.code(x, x);

return ret;

end;

Code A.75 (DMPCompose.code) Corresponding to Rule 5.20.

DMPCompose.code := meth(self,y,x)

local ch, numch, vecs, allow, i, ret, ret2;

ch := Filtered(self.children(), i-> not i.name in ["DMPGath","DMPScat"]);

numch := Length(ch);

vecs := [y];

allow := (x<>y);

for i in [1..numch-1] do

if ObjId(ch[i])=DMPGlobalTranspose and

(

(not ch[i].pv.isDMPRescale) or

(not ch[i].pv.implements_rescale())

) then

global transpose without rescaling -> inplace

vecs[i+1] := vecs[i];

else

if ObjId(ch[i])=DMPGlobalTranspose and ch[i].pv.implements_rescale() then

global transpose with rescaleing

if ch[i].pv.isDMPRescaleUp then

APPENDIX A. SPIRAL/DMP SOURCE CODES 165

vecs[i+1] := TempVec(TArray(TempArrayType(y, x), Cols(ch[i])/ch[i].pv.p_low));

else

vecs[i+1] := TempVec(TArray(TempArrayType(y, x), Cols(ch[i])/ch[i].p));

fi;

else

standard parallel block

vecs[i+1] := TempVec(TArray(TempArrayType(y, x), Cols(ch[i])/ch[i].p));

fi;

fi;

od;

vecs[numch+1] := x;

for i in Reversed([1..numch]) do

if allow and ObjId(ch[i])=Inplace then

vecs[i] := vecs[i+1];

fi;

od;

if vecs[1] = vecs[numch+1] then # everything was inplace

vecs[1] := y;

fi;

if vecs[1] = vecs[numch+1] then # everything was inplace

vecs[numch+1] := x;

fi;

vecs := Reversed(vecs);

ch := Reversed(ch);

ret := chain(

List([1..numch],

i -> When(vecs[i+1]=vecs[i],

compiler._IPCodeSums(ch[i], vecs[i]),

_CodeSums(ch[i], vecs[i+1], vecs[i])

)));

ret.isDMP := self >> true;

ret.noopt := true;

return decl(Difference(vecs{[2..Length(vecs)-1]}, [x,y]),ret);

end;

Code A.76 (Compose.code) Corresponding to Rule 5.22. This function is part
of original Spiral. It has been modified for Spiral/dmp to ignore DMPGath and
DMPScat child objects.

Compose.code := meth(self,y,x)

local ch, numch, vecs, allow, i;

#VIENNA filtering DMPGath, DMPScat out here because they do not generate code

ch := self.children();

ch := Filtered(self.children(), i-> not i.name in ["DMPGath","DMPScat"]);

numch := Length(ch);

vecs := [y];

allow := (x<>y);

for i in [1..numch-1] do

if allow and ObjId(ch[i])=Inplace then vecs[i+1] := vecs[i];

else vecs[i+1] := TempVec(TArray(TempArrayType(y, x), Cols(ch[i])));

fi;

od;

vecs[numch+1] := x;

for i in Reversed([1..numch]) do

if allow and ObjId(ch[i])=Inplace then vecs[i] := vecs[i+1];

fi;

od;

APPENDIX A. SPIRAL/DMP SOURCE CODES 166

Code A.77 (DMPComm.code) Corresponding to Rule 5.23.

DMPComm.code:= meth(self, y, x)

local m, p, n, pi, piinv, scat, gath, prm, t1, t2, c, i, dmploopix, ret;

p := self.p;

m := self.pi.N / p;

n := self.n;

pi := self.pi;

piinv := self.piinv;

gath:= FTDA(DMPIterDirectSum(self.j,self.j.range,IterVStack(self.k,self.k.range,Gath(self.r_jk))).sums());

scat:= FTDA(DMPIterDirectSum(self.j,self.j.range,IterHStack(self.k,self.k.range,Scat(self.w_jk))).sums());

t1 := TempVec(TArray(Global.GetArrayType(y, x), m * n));

t2 := TempVec(TArray(Global.GetArrayType(y, x), m * n));

t1.t.mp := rec(procs := p, size := m * n * p);

t2.t.mp := rec(procs := p, size := m * n * p);

c := chain(

gath.code(t1,x),

dmpcomm(t2, t1, p, n, pi, piinv) ,

scat.code(x, t2));

c.isDMP := self >> true;

c := decl([t1,t2],c);

i := Ind();

dmploopix := Ind();

ret := chain(c,

dmploop(dmploopix, p,

loop(i,Rows(self)/p,

assign(nth(y,i),nth(x,i))

)

)

);

ret.isDMP := self >> true;

ret.noopt := true;

return ret;

end;

Code A.78 (DMPGlobalTranspose.code)

DMPGlobalTranspose.code:= meth(self, y, x)

local p,pv, n, i, ret;

pv := self.pv;

p := pv.p;

n := self.n;

i := Ind();

if not (pv.isDMPRescale and pv.implements_rescale()) then

standard global transpose code

if y=x then

ret := dmpglobaltranspose(x,x,pv,n);

else

ret := chain(

dmpglobaltranspose(x,x,pv,n),

loop(i,Rows(self)/p,assign(nth(y,i),nth(x,i))));

fi;

else

Note: CUnparser for dmpglobaltranspose_rescale should to everything

includig local copying

ret := dmpglobaltranspose_rescale(y, x, pv, n);

fi;

ret.isDMP := self >> true;

APPENDIX A. SPIRAL/DMP SOURCE CODES 167

return ret;

end;

DMPGlobalTranspose.ipcode := (self, x) >> self.code(x, x);

A.10 iCode Unparser to C-Code

Code A.79 (DMPUnparser.header)

header := meth(self, subname, o)

local loopvars, precomputed_data;

Print(self.copyright);

DoForAll(self.includes, inc -> Print("#include ", inc, "\n"));

if IsBound(o.dimensions) then Print("/* ", o.dimensions, " */\n"); fi;

Print("#include <mpi.h>\n");

if IsBound(o.runtime_data) then

Print(self.omega_decl);

DoForAll(o.runtime_data, x->

Print(self.arrayDataModifier, " ", self.declare(x.t, x, 0, 4), ";\n"));

Print("\n");

fi;

Print("#ifndef COMPLEX_T\n");

Print(" typedef struct { double r,i; } complex_t;\n");

Print(" #define COMPLEX_T\n");

Print("#endif\n");

Print("\n");

Print("typedef struct {int proc, offset;} commpat;\n");

Print("int mpirank, mpisize;\n");

Print("\n");

precomputed_data := List(Collect(o, data), x->[x.var, x.value]);

DoForAll(precomputed_data, d -> self.genData(d[1], d[2]));

Print("void init_",subname," ();\n");

Print("void ", subname, "(", TDouble.ctype, " *Y, ", TDouble.ctype, " *X) {\n");

loopvars := List(Collect(o, @(1).cond(IsLoop)), x->x.var);

loopvars := Set(loopvars);

if loopvars <> [] then Print(Blanks(4), "int ", PrintCS(loopvars), ";\n"); fi;

end,

Code A.80 (DMPUnparser.footer)

footer := meth(self, subname, o)

local init,loopvars;

Print("}\n");

Print("\n");

Print("void init_", subname, "() {\n");

Print(" MPI_Comm_size(MPI_COMM_WORLD, &mpisize);\n");

Print(" MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);\n");

if IsBound(o.runtime_init) then # unparse initialization code

loopvars := Union(List(o.runtime_init, cc -> List(Collect(cc, @(1).cond(IsLoop)), x->x.var)));

if loopvars <> [] then

Print(Blanks(4), "int ", PrintCS(loopvars), ";\n"); fi;

for init in o.runtime_init do

self(SReduce(init), 4, 4);

APPENDIX A. SPIRAL/DMP SOURCE CODES 168

od;

fi;

Print("}\n");

end

Appendix B

Miscellaneous Source Codes

Code B.1 (iCode) The Σ-Spl formula from Example 5.12 converted to iCode.

decl([T1, T2],

chain(

dmploop(i62, [0 .. 1],

chain(

assign(nth(T2, 0), nth(X, 0)),

assign(nth(T2, 1), nth(X, 1)),

assign(nth(T2, 2), nth(X, 2)),

assign(nth(T2, 3), nth(X, 3)),

assign(nth(T2, 4), nth(X, 8)),

assign(nth(T2, 5), nth(X, 9)),

assign(nth(T2, 6), nth(X, 10)),

assign(nth(T2, 7), nth(X, 11)),

assign(nth(T2, 8), nth(X, 16)),

assign(nth(T2, 9), nth(X, 17)),

assign(nth(T2, 10), nth(X, 18)),

assign(nth(T2, 11), nth(X, 19)),

assign(nth(T2, 12), nth(X, 24)),

assign(nth(T2, 13), nth(X, 25)),

assign(nth(T2, 14), nth(X, 26)),

assign(nth(T2, 15), nth(X, 27)),

assign(nth(T2, 16), nth(X, 4)),

assign(nth(T2, 17), nth(X, 5)),

assign(nth(T2, 18), nth(X, 6)),

assign(nth(T2, 19), nth(X, 7)),

assign(nth(T2, 20), nth(X, 12)),

assign(nth(T2, 21), nth(X, 13)),

assign(nth(T2, 22), nth(X, 14)),

assign(nth(T2, 23), nth(X, 15)),

assign(nth(T2, 24), nth(X, 20)),

assign(nth(T2, 25), nth(X, 21)),

assign(nth(T2, 26), nth(X, 22)),

assign(nth(T2, 27), nth(X, 23)),

assign(nth(T2, 28), nth(X, 28)),

assign(nth(T2, 29), nth(X, 29)),

assign(nth(T2, 30), nth(X, 30)),

assign(nth(T2, 31), nth(X, 31))

)

),

dmpglobaltranspose(T2, T2, AParDistr(2), 16),

dmploop(i51, [0 .. 1],

chain(

decl([t140, t158, t136, t135, t134, t133, t139, t129, t130, t131, t132, t137, t138,

a19, t156, s66, a18, a17, s69, s68, t142, t141, s67, a20, s73, t157, a21,

t117, s72, t118, t119, t120, t121, t122, t123, t124, t125, t126, t127, t128,

t162, t161, a24, s71, t160, t169, t159, t170, t155, t154, t153, t152, t151,

t150, t149, t148, t147, t146, t145, t171, t172, t144, t143, t164, t163, t165,

a23, a22, t168, s70, t167, t166],

chain(

assign(t117, add(nth(T2, 0), nth(T2, 16))),

assign(t118, add(nth(T2, 8), nth(T2, 24))),

assign(t119, add(t117, t118)),

APPENDIX B. MISCELLANEOUS SOURCE CODES 170

assign(t120, sub(t117, t118)),

assign(t121, add(nth(T2, 1), nth(T2, 17))),

assign(t122, add(nth(T2, 9), nth(T2, 25))),

assign(t123, sub(t121, t122)),

assign(t124, add(t121, t122)),

assign(t125, sub(nth(T2, 0), nth(T2, 16))),

assign(t126, sub(nth(T2, 9), nth(T2, 25))),

assign(t127, sub(t125, t126)),

assign(t128, add(t125, t126)),

assign(t129, sub(nth(T2, 1), nth(T2, 17))),

assign(t130, sub(nth(T2, 8), nth(T2, 24))),

assign(t131, add(t129, t130)),

assign(t132, sub(t129, t130)),

assign(t133, add(nth(T2, 4), nth(T2, 20))),

assign(t134, add(nth(T2, 12), nth(T2, 28))),

assign(t135, add(t133, t134)),

assign(t136, sub(t133, t134)),

assign(t137, add(nth(T2, 5), nth(T2, 21))),

assign(t138, add(nth(T2, 13), nth(T2, 29))),

assign(t139, sub(t137, t138)),

assign(t140, add(t137, t138)),

assign(a17, mul(0.70710678118654746, sub(nth(T2, 4), nth(T2, 20)))),

assign(a18, mul(0.70710678118654746, sub(nth(T2, 5), nth(T2, 21)))),

assign(s66, sub(a17, a18)),

assign(a19, mul(0.70710678118654746, sub(nth(T2, 13), nth(T2, 29)))),

assign(a20, mul(0.70710678118654746, sub(nth(T2, 12), nth(T2, 28)))),

assign(s67, add(a20, a19)),

assign(t141, add(s66, s67)),

assign(t142, sub(s66, s67)),

assign(s68, add(a17, a18)),

assign(s69, sub(a20, a19)),

assign(nth(T1, 0), add(t119, t135)),

assign(nth(T1, 1), add(t124, t140)),

assign(nth(T1, 16), sub(t119, t135)),

assign(nth(T1, 17), sub(t124, t140)),

assign(nth(T1, 8), sub(t120, t139)),

assign(nth(T1, 9), add(t123, t136)),

assign(nth(T1, 24), add(t120, t139)),

assign(nth(T1, 25), sub(t123, t136)),

assign(t143, add(s68, s69)),

assign(t144, sub(s68, s69)),

assign(nth(T1, 4), add(t127, t142)),

assign(nth(T1, 20), sub(t127, t142)),

assign(nth(T1, 5), add(t131, t143)),

assign(nth(T1, 21), sub(t131, t143)),

assign(nth(T1, 13), add(t132, t141)),

assign(nth(T1, 29), sub(t132, t141)),

assign(nth(T1, 12), sub(t128, t144)),

assign(nth(T1, 28), add(t128, t144)),

assign(t145, add(nth(T2, 2), nth(T2, 18))),

assign(t146, add(nth(T2, 10), nth(T2, 26))),

assign(t147, add(t145, t146)),

assign(t148, sub(t145, t146)),

assign(t149, add(nth(T2, 3), nth(T2, 19))),

assign(t150, add(nth(T2, 11), nth(T2, 27))),

assign(t151, add(t149, t150)),

assign(t152, sub(t149, t150)),

assign(t153, sub(nth(T2, 2), nth(T2, 18))),

assign(t154, sub(nth(T2, 11), nth(T2, 27))),

assign(t155, add(t153, t154)),

assign(t156, sub(t153, t154)),

assign(t157, sub(nth(T2, 3), nth(T2, 19))),

assign(t158, sub(nth(T2, 10), nth(T2, 26))),

assign(t159, sub(t157, t158)),

assign(t160, add(t157, t158)),

APPENDIX B. MISCELLANEOUS SOURCE CODES 171

assign(t161, add(nth(T2, 6), nth(T2, 22))),

assign(t162, add(nth(T2, 14), nth(T2, 30))),

assign(t163, add(t161, t162)),

assign(t164, sub(t161, t162)),

assign(t165, add(nth(T2, 7), nth(T2, 23))),

assign(t166, add(nth(T2, 15), nth(T2, 31))),

assign(t167, sub(t165, t166)),

assign(t168, add(t165, t166)),

assign(a21, mul(0.70710678118654746, sub(nth(T2, 6), nth(T2, 22)))),

assign(a22, mul(0.70710678118654746, sub(nth(T2, 7), nth(T2, 23)))),

assign(s70, sub(a21, a22)),

assign(a23, mul(0.70710678118654746, sub(nth(T2, 15), nth(T2, 31)))),

assign(a24, mul(0.70710678118654746, sub(nth(T2, 14), nth(T2, 30)))),

assign(s71, add(a24, a23)),

assign(t169, sub(s70, s71)),

assign(t170, add(s70, s71)),

assign(s72, add(a21, a22)),

assign(s73, sub(a24, a23)),

assign(nth(T1, 2), add(t147, t163)),

assign(nth(T1, 3), add(t151, t168)),

assign(nth(T1, 18), sub(t147, t163)),

assign(nth(T1, 19), sub(t151, t168)),

assign(nth(T1, 10), sub(t148, t167)),

assign(nth(T1, 11), add(t152, t164)),

assign(nth(T1, 26), add(t148, t167)),

assign(nth(T1, 27), sub(t152, t164)),

assign(t171, add(s72, s73)),

assign(t172, sub(s72, s73)),

assign(nth(T1, 6), add(t156, t169)),

assign(nth(T1, 22), sub(t156, t169)),

assign(nth(T1, 7), add(t160, t171)),

assign(nth(T1, 23), sub(t160, t171)),

assign(nth(T1, 15), add(t159, t170)),

assign(nth(T1, 31), sub(t159, t170)),

assign(nth(T1, 14), sub(t155, t172)),

assign(nth(T1, 30), add(t155, t172))

)

)

)

),

dmpglobaltranspose(T1, T1, AParDistr(2), 16),

dmploop(i43, [0 .. 1],

chain(

decl([t266, t267, t268, t252, t251, t254, t241, t243, t242, t253, t249, t265,

t246, t240, t255, t239, t256, t238, t257, t237, t258, t259, t260, t261,

t262, t263, t264, t245, t250, t244, t247, t248],

chain(

assign(t237, add(nth(T1, 0), nth(T1, 16))),

assign(t238, add(nth(T1, 2), nth(T1, 18))),

assign(t239, add(nth(T1, 1), nth(T1, 17))),

assign(t240, add(nth(T1, 3), nth(T1, 19))),

assign(t241, sub(nth(T1, 0), nth(T1, 16))),

assign(t242, sub(nth(T1, 3), nth(T1, 19))),

assign(t243, sub(nth(T1, 1), nth(T1, 17))),

assign(t244, sub(nth(T1, 2), nth(T1, 18))),

assign(nth(Y, 0), add(t237, t238)),

assign(nth(Y, 1), add(t239, t240)),

assign(nth(Y, 4), sub(t237, t238)),

assign(nth(Y, 5), sub(t239, t240)),

assign(nth(Y, 2), sub(t241, t242)),

assign(nth(Y, 3), add(t243, t244)),

assign(nth(Y, 6), add(t241, t242)),

assign(nth(Y, 7), sub(t243, t244)),

assign(t245, add(nth(T1, 4), nth(T1, 20))),

assign(t246, add(nth(T1, 6), nth(T1, 22))),

APPENDIX B. MISCELLANEOUS SOURCE CODES 172

assign(t247, add(nth(T1, 5), nth(T1, 21))),

assign(t248, add(nth(T1, 7), nth(T1, 23))),

assign(t249, sub(nth(T1, 4), nth(T1, 20))),

assign(t250, sub(nth(T1, 7), nth(T1, 23))),

assign(t251, sub(nth(T1, 5), nth(T1, 21))),

assign(t252, sub(nth(T1, 6), nth(T1, 22))),

assign(nth(Y, 8), add(t245, t246)),

assign(nth(Y, 9), add(t247, t248)),

assign(nth(Y, 12), sub(t245, t246)),

assign(nth(Y, 13), sub(t247, t248)),

assign(nth(Y, 10), sub(t249, t250)),

assign(nth(Y, 11), add(t251, t252)),

assign(nth(Y, 14), add(t249, t250)),

assign(nth(Y, 15), sub(t251, t252)),

assign(t253, add(nth(T1, 8), nth(T1, 24))),

assign(t254, add(nth(T1, 10), nth(T1, 26))),

assign(t255, add(nth(T1, 9), nth(T1, 25))),

assign(t256, add(nth(T1, 11), nth(T1, 27))),

assign(t257, sub(nth(T1, 8), nth(T1, 24))),

assign(t258, sub(nth(T1, 11), nth(T1, 27))),

assign(t259, sub(nth(T1, 9), nth(T1, 25))),

assign(t260, sub(nth(T1, 10), nth(T1, 26))),

assign(nth(Y, 16), add(t253, t254)),

assign(nth(Y, 17), add(t255, t256)),

assign(nth(Y, 20), sub(t253, t254)),

assign(nth(Y, 21), sub(t255, t256)),

assign(nth(Y, 18), sub(t257, t258)),

assign(nth(Y, 19), add(t259, t260)),

assign(nth(Y, 22), add(t257, t258)),

assign(nth(Y, 23), sub(t259, t260)),

assign(t261, add(nth(T1, 12), nth(T1, 28))),

assign(t262, add(nth(T1, 14), nth(T1, 30))),

assign(t263, add(nth(T1, 13), nth(T1, 29))),

assign(t264, add(nth(T1, 15), nth(T1, 31))),

assign(t265, sub(nth(T1, 12), nth(T1, 28))),

assign(t266, sub(nth(T1, 15), nth(T1, 31))),

assign(t267, sub(nth(T1, 13), nth(T1, 29))),

assign(t268, sub(nth(T1, 14), nth(T1, 30))),

assign(nth(Y, 24), add(t261, t262)),

assign(nth(Y, 25), add(t263, t264)),

assign(nth(Y, 28), sub(t261, t262)),

assign(nth(Y, 29), sub(t263, t264)),

assign(nth(Y, 26), sub(t265, t266)),

assign(nth(Y, 27), add(t267, t268)),

assign(nth(Y, 30), add(t265, t266)),

assign(nth(Y, 31), sub(t267, t268))

)

)

)

)

)

)

Code B.2 (C-code) The iCode from Code B.1 unparsed to C-code.

/* [64, 64] */

#include <mpi.h>

typedef struct {int proc, offset;} commpat;

int mpirank, mpisize;

void init_sub ();

void sub(double *Y, double *X) {

APPENDIX B. MISCELLANEOUS SOURCE CODES 173

static double T1[32];

static double T2[32];

{ /* dmploop */

int i62 = mpirank;

T2[0] = X[0];

T2[1] = X[1];

T2[2] = X[2];

T2[3] = X[3];

T2[4] = X[8];

T2[5] = X[9];

T2[6] = X[10];

T2[7] = X[11];

T2[8] = X[16];

T2[9] = X[17];

T2[10] = X[18];

T2[11] = X[19];

T2[12] = X[24];

T2[13] = X[25];

T2[14] = X[26];

T2[15] = X[27];

T2[16] = X[4];

T2[17] = X[5];

T2[18] = X[6];

T2[19] = X[7];

T2[20] = X[12];

T2[21] = X[13];

T2[22] = X[14];

T2[23] = X[15];

T2[24] = X[20];

T2[25] = X[21];

T2[26] = X[22];

T2[27] = X[23];

T2[28] = X[28];

T2[29] = X[29];

T2[30] = X[30];

T2[31] = X[31];

}

/*============ GLOBAL COMM below ============*/

{

int mpii;

MPI_Status stat;

for(mpii=1;mpii<2;mpii++){

MPI_Sendrecv_replace(T2+16*(mpii^mpirank),16,MPI_DOUBLE,mpii^mpirank,0 /*sendtag*/,

mpii^mpirank,0 /*recvtag*/,MPI_COMM_WORLD,&stat);

}

}

/*============ GLOBAL COMM above ============*/

{ /* dmploop */

int i51 = mpirank;

double t140, t158, t136, t135, t134, t133, t139, t129, t130, t131, t132, t137, t138, a19,

t156, s66, a18, a17, s69, s68, t142, t141, s67, a20, s73, t157, a21, t117, s72,

t118, t119, t120, t121, t122, t123, t124, t125, t126, t127, t128, t162, t161,

a24, s71, t160, t169, t159, t170, t155, t154, t153, t152, t151, t150, t149, t148,

t147, t146, t145, t171, t172, t144, t143, t164, t163, t165, a23, a22, t168, s70,

t167, t166;

t117 = (T2[0] + T2[16]);

t118 = (T2[8] + T2[24]);

t119 = (t117 + t118);

t120 = (t117 - t118);

t121 = (T2[1] + T2[17]);

t122 = (T2[9] + T2[25]);

t123 = (t121 - t122);

t124 = (t121 + t122);

t125 = (T2[0] - T2[16]);

APPENDIX B. MISCELLANEOUS SOURCE CODES 174

t126 = (T2[9] - T2[25]);

t127 = (t125 - t126);

t128 = (t125 + t126);

t129 = (T2[1] - T2[17]);

t130 = (T2[8] - T2[24]);

t131 = (t129 + t130);

t132 = (t129 - t130);

t133 = (T2[4] + T2[20]);

t134 = (T2[12] + T2[28]);

t135 = (t133 + t134);

t136 = (t133 - t134);

t137 = (T2[5] + T2[21]);

t138 = (T2[13] + T2[29]);

t139 = (t137 - t138);

t140 = (t137 + t138);

a17 = 0.70710678118654746*(T2[4] - T2[20]);

a18 = 0.70710678118654746*(T2[5] - T2[21]);

s66 = (a17 - a18);

a19 = 0.70710678118654746*(T2[13] - T2[29]);

a20 = 0.70710678118654746*(T2[12] - T2[28]);

s67 = (a20 + a19);

t141 = (s66 + s67);

t142 = (s66 - s67);

s68 = (a17 + a18);

s69 = (a20 - a19);

T1[0] = (t119 + t135);

T1[1] = (t124 + t140);

T1[16] = (t119 - t135);

T1[17] = (t124 - t140);

T1[8] = (t120 - t139);

T1[9] = (t123 + t136);

T1[24] = (t120 + t139);

T1[25] = (t123 - t136);

t143 = (s68 + s69);

t144 = (s68 - s69);

T1[4] = (t127 + t142);

T1[20] = (t127 - t142);

T1[5] = (t131 + t143);

T1[21] = (t131 - t143);

T1[13] = (t132 + t141);

T1[29] = (t132 - t141);

T1[12] = (t128 - t144);

T1[28] = (t128 + t144);

t145 = (T2[2] + T2[18]);

t146 = (T2[10] + T2[26]);

t147 = (t145 + t146);

t148 = (t145 - t146);

t149 = (T2[3] + T2[19]);

t150 = (T2[11] + T2[27]);

t151 = (t149 + t150);

t152 = (t149 - t150);

t153 = (T2[2] - T2[18]);

t154 = (T2[11] - T2[27]);

t155 = (t153 + t154);

t156 = (t153 - t154);

t157 = (T2[3] - T2[19]);

t158 = (T2[10] - T2[26]);

t159 = (t157 - t158);

t160 = (t157 + t158);

t161 = (T2[6] + T2[22]);

t162 = (T2[14] + T2[30]);

t163 = (t161 + t162);

t164 = (t161 - t162);

t165 = (T2[7] + T2[23]);

t166 = (T2[15] + T2[31]);

APPENDIX B. MISCELLANEOUS SOURCE CODES 175

t167 = (t165 - t166);

t168 = (t165 + t166);

a21 = 0.70710678118654746*(T2[6] - T2[22]);

a22 = 0.70710678118654746*(T2[7] - T2[23]);

s70 = (a21 - a22);

a23 = 0.70710678118654746*(T2[15] - T2[31]);

a24 = 0.70710678118654746*(T2[14] - T2[30]);

s71 = (a24 + a23);

t169 = (s70 - s71);

t170 = (s70 + s71);

s72 = (a21 + a22);

s73 = (a24 - a23);

T1[2] = (t147 + t163);

T1[3] = (t151 + t168);

T1[18] = (t147 - t163);

T1[19] = (t151 - t168);

T1[10] = (t148 - t167);

T1[11] = (t152 + t164);

T1[26] = (t148 + t167);

T1[27] = (t152 - t164);

t171 = (s72 + s73);

t172 = (s72 - s73);

T1[6] = (t156 + t169);

T1[22] = (t156 - t169);

T1[7] = (t160 + t171);

T1[23] = (t160 - t171);

T1[15] = (t159 + t170);

T1[31] = (t159 - t170);

T1[14] = (t155 - t172);

T1[30] = (t155 + t172);

}

/*============ GLOBAL COMM below ============*/

{

int mpii;

MPI_Status stat;

for(mpii=1;mpii<2;mpii++){

MPI_Sendrecv_replace(T1+16*(mpii^mpirank),16,MPI_DOUBLE,mpii^mpirank,0 /*sendtag*/,

mpii^mpirank,0 /*recvtag*/,MPI_COMM_WORLD,&stat);

}

}

/*============ GLOBAL COMM above ============*/

{ /* dmploop */

int i43 = mpirank;

double t266, t267, t268, t252, t251, t254, t241, t243, t242, t253, t249, t265, t246,

t240, t255, t239, t256, t238, t257, t237, t258, t259, t260, t261, t262, t263,

t264, t245, t250, t244, t247, t248;

t237 = (T1[0] + T1[16]);

t238 = (T1[2] + T1[18]);

t239 = (T1[1] + T1[17]);

t240 = (T1[3] + T1[19]);

t241 = (T1[0] - T1[16]);

t242 = (T1[3] - T1[19]);

t243 = (T1[1] - T1[17]);

t244 = (T1[2] - T1[18]);

Y[0] = (t237 + t238);

Y[1] = (t239 + t240);

Y[4] = (t237 - t238);

Y[5] = (t239 - t240);

Y[2] = (t241 - t242);

Y[3] = (t243 + t244);

Y[6] = (t241 + t242);

Y[7] = (t243 - t244);

t245 = (T1[4] + T1[20]);

t246 = (T1[6] + T1[22]);

APPENDIX B. MISCELLANEOUS SOURCE CODES 176

t247 = (T1[5] + T1[21]);

t248 = (T1[7] + T1[23]);

t249 = (T1[4] - T1[20]);

t250 = (T1[7] - T1[23]);

t251 = (T1[5] - T1[21]);

t252 = (T1[6] - T1[22]);

Y[8] = (t245 + t246);

Y[9] = (t247 + t248);

Y[12] = (t245 - t246);

Y[13] = (t247 - t248);

Y[10] = (t249 - t250);

Y[11] = (t251 + t252);

Y[14] = (t249 + t250);

Y[15] = (t251 - t252);

t253 = (T1[8] + T1[24]);

t254 = (T1[10] + T1[26]);

t255 = (T1[9] + T1[25]);

t256 = (T1[11] + T1[27]);

t257 = (T1[8] - T1[24]);

t258 = (T1[11] - T1[27]);

t259 = (T1[9] - T1[25]);

t260 = (T1[10] - T1[26]);

Y[16] = (t253 + t254);

Y[17] = (t255 + t256);

Y[20] = (t253 - t254);

Y[21] = (t255 - t256);

Y[18] = (t257 - t258);

Y[19] = (t259 + t260);

Y[22] = (t257 + t258);

Y[23] = (t259 - t260);

t261 = (T1[12] + T1[28]);

t262 = (T1[14] + T1[30]);

t263 = (T1[13] + T1[29]);

t264 = (T1[15] + T1[31]);

t265 = (T1[12] - T1[28]);

t266 = (T1[15] - T1[31]);

t267 = (T1[13] - T1[29]);

t268 = (T1[14] - T1[30]);

Y[24] = (t261 + t262);

Y[25] = (t263 + t264);

Y[28] = (t261 - t262);

Y[29] = (t263 - t264);

Y[26] = (t265 - t266);

Y[27] = (t267 + t268);

Y[30] = (t265 + t266);

Y[31] = (t267 - t268);

}

}

void init_sub() {

MPI_Comm_size(MPI_COMM_WORLD, &mpisize);

MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

}

Code B.3 (mpi compute matrix.c) Spiral’s compute matrix.c can deter-
mine the matrix a generated program corresponds to. Therefore it executes the
respective function on the unit vectors of appropriate length. This allows fully
automatic verification of generated code. However, some modifications were nec-
essary to make this feature compliant with distributed data vectors.

/***

* SPL Matrix *

APPENDIX B. MISCELLANEOUS SOURCE CODES 177

* *

* Computes matrix that corresponds to SPL generated routine *

***/

#include <limits.h>

#include <time.h>

#include <stdio.h>

#include <assert.h>

#include <sys_conf/sys_conf.h>

#include <sys_conf/systemops.h>

#include <sys_conf/conf.h>

#include <sys_conf/vector.h>

#include <sys_conf/opt_macros.h>

#include <sys_conf/xmalloc.h>

#include <sys_conf/io.h> /* sys_fatal() */

#include <sys_conf/spl_prog.h> /* spl_stub_t */

#include <sys_conf/vector_def.h> /* data_type */

#include <mpi.h>

int cm_mpirank;

int cm_mpisize;

int cm_mpimaster;

extern spl_stub_t * get_stub0();

void (*Analyzed_function) (void *y, void *x);

vector_t * Input;

vector_t ** Outputs;

struct compute_matrix_config_t {

int gap_output;

int transpose;

int inplace;

config_profile_t * profile;

} MatrixConfig;

void init_options() {

MatrixConfig.gap_output = 0;

MatrixConfig.transpose = 0;

MatrixConfig.inplace = 0;

}

void parse_options(int argc, char **argv) {

init_options();

SHIFT();

while(argc > 0 && HAS_MINUS(argv[0])) {

if (OPT("-v")) sys_set_verbose(1);

else if (OPT("-g")) MatrixConfig.gap_output = 1;

else if (OPT("-t")) MatrixConfig.transpose = 1;

else if (OPT("-h") || OPT("--help")) sys_fatal(EXIT_CMDLINE, usage());

else if (OPT("-inplace")) MatrixConfig.inplace = 1;

else if (OPT("-fp")) {

char *fp;

GET_ARG(fp);

sys_setenv("spiral_fp", fp, 1);

}

else if (OPT("-zb")) {

char *zb;

GET_ARG(zb);

sys_setenv("spiral_zb", zb, 1);

}

else sys_fatal(EXIT_CMDLINE, "illegal option ’%s’\n", argv[0]);

SHIFT();

}

if(argc > 0) /* garbage at the end remains */

APPENDIX B. MISCELLANEOUS SOURCE CODES 178

sys_fatal(EXIT_CMDLINE, usage());

if (get_stub0()->dim_cols == DIM_UNKNOWN || get_stub0()->dim_rows == DIM_UNKNOWN)

sys_fatal(EXIT_CMDLINE, "compute_matrix: dimension is not fully specified\n");

}

void initialize(int argc, char **argv) {

sys_set_progname(argv[0]);

config_init(argv[0], "SPIRAL_", DEFAULT_CONFIG_FILE);

srand(time(0));

Analyzed_function = get_stub0()->func;

parse_options(argc,argv);

MatrixConfig.profile = config_find_profile(get_stub0()->profile_name);

assert(MatrixConfig.profile != 0);

config_set_default_profile(MatrixConfig.profile);

if(MatrixConfig.transpose) {

Outputs = xmalloc(sizeof(vector_t*) * 1);

Outputs[0] = vector_create_zero(get_stub0()->data_type, get_stub0()->dim_rows);

}

else {

int i;

Outputs = xmalloc(sizeof(vector_t*) * get_stub0()->dim_cols);

for(i=0; i < get_stub0()->dim_cols; i++)

Outputs[i] = vector_create_zero(get_stub0()->data_type, get_stub0()->dim_rows);

}

Input = vector_create_zero(get_stub0()->data_type, get_stub0()->dim_cols);

get_stub0()->init_func();

}

void finalize() {

if(MatrixConfig.transpose)

vector_destroy(Outputs[0]);

else {

int i;

for(i=0; i < get_stub0()->dim_cols; i++)

vector_destroy(Outputs[i]);

}

vector_destroy(Input);

xfree(Outputs);

}

void compute_matrix() {

int i, j;

int x,y;

MPI_Status stat;

if(MatrixConfig.transpose) {

if(MatrixConfig.gap_output) printf("[");

for(x = 0; x < get_stub0()->dim_cols; x++) {

vector_basis(Input, x);

Analyzed_function (Outputs[x]->data, Input->data);

vector_copy(Outputs[x], Input);

if(!cm_mpirank) {

if(MatrixConfig.gap_output) {

if(x!=0) printf(",\n [");

else printf("[");

}

else

printf("col=%i | ", x);

for(y = 0; y < get_stub0()->dim_rows; y++) {

if(MatrixConfig.gap_output) {

APPENDIX B. MISCELLANEOUS SOURCE CODES 179

if(y!=0) printf(", ");

get_stub0()->data_type->fprint_gap(stdout, NTH(Outputs[x], y));

}

else {

get_stub0()->data_type->fprint(stdout, NTH(Outputs[x], y));

printf("\t");

}

}

if(MatrixConfig.gap_output) printf("]");

else printf("\n");

}

}

if(MatrixConfig.gap_output) if(!cm_mpirank) printf("\n];\n");

}

else {

for(x = 0; x < get_stub0()->dim_cols; x++) {

vector_basis(Input, x);

Analyzed_function (Outputs[x]->data,

&(((double*)Input->data)[cm_mpirank * (get_stub0()->dim_cols / cm_mpisize)]));

MPI_Gather(Outputs[x]->data,

(get_stub0()->dim_cols)/cm_mpisize,

MPI_DOUBLE,

Outputs[x]->data,

(get_stub0()->dim_cols)/cm_mpisize,

MPI_DOUBLE,

0,

MPI_COMM_WORLD);

// if (MatrixConfig.inplace)

// vector_copy(Outputs[x], Input);

}

if(!cm_mpirank) {

if(MatrixConfig.gap_output) printf("[");

for(y = 0; y < get_stub0()->dim_rows; y++) {

if(MatrixConfig.gap_output) {

if(y!=0) printf(",\n [");

else printf("[");

}

else

printf("row=%i | ", y);

for(x = 0; x < get_stub0()->dim_cols; x++) {

if(MatrixConfig.gap_output) {

if(x!=0) printf(", ");

get_stub0()->data_type->fprint_gap(stdout, NTH(Outputs[x], y));

}

else {

get_stub0()->data_type->fprint(stdout, NTH(Outputs[x], y));

printf("\t");

}

}

if(MatrixConfig.gap_output) printf("]");

else printf("\n");

}

if(MatrixConfig.gap_output) printf("\n];\n");

}

}

}

APPENDIX B. MISCELLANEOUS SOURCE CODES 180

int main(int argc, char** argv) {

MPI_Init(&argc , &argv);

MPI_Comm_size(MPI_COMM_WORLD , &cm_mpisize);

MPI_Comm_rank(MPI_COMM_WORLD , &cm_mpirank);

initialize(argc,argv);

compute_matrix();

finalize();

MPI_Finalize();

return EXIT_SUCCESS;

}

Code B.4 (mpi time.c) Spiral’s time.c measures run times of generated
functions. mpi time.c is the tweaked, parallel, version of this file to provide reli-
able run time measurement for Mpi parallel code.

/***

* SPL Timer *

* time.c *

* *

* This is a standard timing driver, taken from SPL compiler *

***/

#include <limits.h>

#include <time.h>

#include <stdio.h>

#include <assert.h>

#include <sys_conf/sys_conf.h>

#include <sys_conf/systemops.h>

#include <sys_conf/vector.h>

#include <sys_conf/conf.h>

#include <sys_conf/opt_macros.h>

#include <sys_conf/io.h> /* sys_fatal() */

#include <sys_conf/spl_prog.h> /* spl_stub_t */

#include <sys_conf/vector_def.h> /* data_type */

#ifdef WIN32

#include <xmmintrin.h>

#endif

#include <mpi.h>

extern spl_stub_t * get_stub0();

void (*Timed_function) (void *y, void *x);

vector_t * Input;

vector_t * Output;

struct timer_config_t {

int gap_output;

config_profile_t * profile;

} TimerConfig;

char* usage() {

return "Usage: test [-v] [-g]\n";

}

void init_options() {

TimerConfig.gap_output = 0;

}

void parse_options(int argc, char **argv) {

init_options();

APPENDIX B. MISCELLANEOUS SOURCE CODES 181

SHIFT();

while(argc > 0 && HAS_MINUS(argv[0])) {

/* common for all timers */

if (OPT("-v")) sys_set_verbose(1);

else if (OPT("-g")) TimerConfig.gap_output = 1;

else if (OPT("-h") || OPT("--help")) sys_fatal(EXIT_CMDLINE, usage());

else if (OPT("-fp")) {

char *fp;

GET_ARG(fp);

sys_setenv("spiral_fp", fp, 1);

}

else if (OPT("-zb")) {

char *zb;

GET_ARG(zb);

sys_setenv("spiral_zb", zb, 1);

}

else sys_fatal(EXIT_CMDLINE, "illegal option ’%s’\n", argv[0]);

SHIFT();

}

if(argc > 0) /* garbage at the end remains */

sys_fatal(EXIT_CMDLINE, usage());

if (get_stub0()->dim_cols==DIM_UNKNOWN || get_stub0()->dim_rows==DIM_UNKNOWN)

sys_fatal(EXIT_CMDLINE, "timer: dimension is not fully specified\n");

}

void initialize(int argc, char **argv) {

int mpisize;

MPI_Comm_size(MPI_COMM_WORLD, &mpisize);

sys_set_progname(argv[0]);

config_init(argv[0], "SPIRAL_", DEFAULT_CONFIG_FILE);

srand(time(0));

TimerConfig.profile = config_find_profile(get_stub0()->profile_name);

assert(TimerConfig.profile != 0);

config_set_default_profile(TimerConfig.profile);

Timed_function = get_stub0()->func;

parse_options(argc,argv);

Output = vector_create_random(get_stub0()->data_type, (get_stub0()->dim_rows)/mpisize);

Input = vector_create_random(get_stub0()->data_type, (get_stub0()->dim_cols)/mpisize);

get_stub0()->init_func();

}

void finalize() {

vector_destroy(Output);

vector_destroy(Input);

}

double dtime();

void perform_timing() {

int i, nloop;

double t;

int mpirank;

MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

Timed_function(Output->data, Input->data);

nloop=1;

t=0.0;

MPI_Barrier(MPI_COMM_WORLD);

while (t < 1.0) {

nloop = nloop*2;

dtime();

for (i=0; i<nloop; i++)

APPENDIX B. MISCELLANEOUS SOURCE CODES 182

Timed_function (Output->data, Input->data);

MPI_Barrier(MPI_COMM_WORLD);

t = dtime();

}

if (!mpirank)

if (TimerConfig.gap_output == 0)

printf("%10.4e\n", t/nloop);

else {

double result = t/nloop;

double_record->fprint_gap(stdout, &result);

printf(";\n");

}

}

#if HAVE_GETTIMEOFDAY

#include <sys/time.h>

double dtime() {

static int first=1;

static struct timeval t0, t1;

struct timeval diff;

if (first) {

gettimeofday(&t0, 0);

first = 0;

return 0;

}

gettimeofday(&t1, 0);

diff.tv_sec = t1.tv_sec - t0.tv_sec;

diff.tv_usec = t1.tv_usec - t0.tv_usec;

while (diff.tv_usec < 0) {

diff.tv_usec += 1000000L;

diff.tv_sec -= 1;

}

t0=t1;

return (double)diff.tv_sec+(double)diff.tv_usec*1e-6;

}

#else

#include <time.h>

double dtime() {

static int first=1;

static clock_t t0, t1;

clock_t diff;

if (first) {

t0 = clock();

first = 0;

return 0;

}

t1 = clock();

diff = t1-t0;

t0 = t1;

return (double)diff/(double)CLOCKS_PER_SEC;

}

#endif

int main(int argc, char** argv) {

MPI_Init(&argc,&argv);

initialize(argc,argv);

perform_timing();

finalize();

MPI_Finalize();

return EXIT_SUCCESS;

}

References

[1] A. Adelmann, A. Bonelli, W. P. Petersen, and C. W. Ueberhuber, Com-
munication Efficiency of Parallel 3D FFTs, Proceedings of 6th International
Conference on High Performance Computing in Computational Sciences Vec-
Par 2004, vol. III, 2004, pp. 901–907.

[2] Gerald Baumgartner et al., Synthesis of High-Performance Parallel Programs
for a Class of Ab Initio Quantum Chemistry Models, in [44] (2005), 276–292.

[3] C. Bell, D. Bonachea, R. Nishtala, and K.Yelick, Optimizing Bandwidth Lim-
ited Problems Using One-Sided Communication and Overlap, Parallel and
Distributed Processing Symposium, 2006 (IPDPS’06), April 2006, pp. 10–
19.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley, ScaLapack Users’ Guide, SIAM, Philadelphia, PA,
1997.

[5] Dan Bonachea, GASNet Specification, v1.1, Tech. Report UCB/CSD-02-
1207, U.C.Berkeley, October 2002.

[6] Andreas Bonelli, Communication Efficiency of Parallel 3D FFTs, Master’s
thesis, Institute of Analysis and Scientific Computing, Vienna University of
Technology, November 2004.

[7] Andreas Bonelli, Franz Franchetti, Juergen Lorenz, Markus Püschel, and
Christoph W. Ueberhuber, Automatic Performance Optimization of DSP
Transforms on Distributed Memory Computers, The 2006 International Sym-
posium on Parallel and Distributed Processing and Applications (ISPA’06),
2006.

[8] Jaeyoung Choi, Jack Dongarra, and David W. Walker, Parallel Matrix Trans-
pose Algorithms on Distributed Memory Concurrent Computers, Parallel
Computing 21 (1995), no. 9, 1387–1405.

[9] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W.
Lang, G.-C. Maling, D. E. Nelson, C. E. Rader, and P. D. Welch, What is
the fast fourier transform?, IEEE Trans. Audio Electroacoustics (1967).

[10] UPC Consortium, UPC Language Specifications, v1.2, Tech. Report LBNL-
59208, Lawrence Berkeley National Lab, 2005, http://upc.lbl.gov/.

REFERENCES 184

[11] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of
complex fourier series, Math. Comp. 19 (1965), 297–301.

[12] Pierre Teilhard de Chardin, The future of man, 1950.

[13] Jack J. Dongarra, P. Luszczek, and A. Petitet, The LINPACK benchmark:
Past, present, and future, Concurrency and Computation: Practice and Ex-
perience 15 (2003), 803–820.

[14] Alan Edelman, Optimal matrix transposition of bit reversal on hyper-
cubes: All-to-all personalized communication, J. Parallel Distrib. Comput.
11 (1991), no. 4, 328–331.

[15] Maria Eleftheriou, Blake Fitch, Aleksandr Rayshubskiy, T.J. Christopher
Ward, and Robert Germain, Performance Measurements of the 3D FFT on
the BlueGene/L Supercomputer, Proceedings of the International Euro-Par
Conference (2005), 795–803.

[16] , Scalable Framework for 3D FFTs on the Blue Gene/L Supercom-
puter: Implementation and Early Performance Measurements, IBM Journal
of Research and Development 49 (2005), no. 2/3, 457–464.

[17] Graham E. Fagg, Thara Angskun, George Bosilca, Jelena Pjesivac-Grbovic,
and Jack J. Dongarra, Scalable fault tolerant MPI: Extending the recovery
algorithm, Recent Advances in Parallel Virtual Machine and Messaging Pass-
ing Interface Users’ Group Meeting Euro PVMMPI 2005, Lecture Notes in
Computer Science, vol. 3666, Springer Heidelberg, 2005, pp. 67–75.

[18] Ahmad Faraj and Xin Yuan, An Empirical Approach for Efficient All-to-All
Personalized Communication on Ethernet Switched Clusters, Proceedings of
the International Conference on Parallel Processing (ICPP), 2005, pp. 321–
328.

[19] , Automatic Generation and Tuning of MPI Collective Communica-
tion Routines, Proceedings of the 19th Annual International Conference on
Supercomputing (ICS), 2005, pp. 393–402.

[20] F. Franchetti, S. Kral, J. Lorenz, and C.W. Ueberhuber, Efficient Utilization
of SIMD Extensions, in [44] (2005), 409–425.

[21] F. Franchetti and M. Püschel, Short vector code generation for the discrete
fourier transform, Proceedings of the 17th International Parallel and Dis-
tributed Processing Symposium (IPDPS’03) (Los Alamitos, USA), Comp.
Society Press, 2003.

REFERENCES 185

[22] F. Franchetti, Y. Voronenko, and M. Püschel, Formal Loop Merging for Sig-
nal Transforms, Proc. Programming Language Design and Implementation
(PLDI), 2005, pp. 315–326.

[23] Franz Franchetti, Andreas Bonelli, Ekapol Chuangsuwanich, Yu-Chiang J.
Lee, Jürgen Lorenz, Thomas Peter, Hau Shen, Marek Telegarsky, Yevgen
Voronenko, Markus Püschel, J. M. F. Moura, and Christoph W. Ueberuber,
Parallelism in Spiral, Workshop on Programming Models for Ubiquitous Par-
allelism, Seattle, WA, USA, 2006.

[24] Franz Franchetti, Juergen Lorenz, and Christoph W. Ueberhuber, Latency
hiding parallel FFTs, Tech. report, Institute for Applied and Numerical Anal-
ysis, Vienna University of Technology, 2002.

[25] Donald Fraser, Array permutation by index-digit permutation, J. ACM 23
(1976), no. 2, 298–309.

[26] M. Frigo, A fast fourier transform compiler, Proceedings of the PLDI 1999,
vol. 3, 1999, p. 1381.

[27] Matteo Frigo, Fftw, Release 2.1.5—Documentation and User Manual, 2003.

[28] Matteo Frigo and Steven G. Johnson, Fftw: An Adaptive Software Architec-
ture for the FFT, Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal
Processing, vol. 3, IEEE, 1998, pp. 1381–1384.

[29] , The Design and Implementation of Fftw3, in [44] (2005), 216–231.

[30] Aca Gačić, Automatic Implementation and Platform Adaptation of Discrete
Filtering and Wavelet Algorithms, Ph.D. thesis, Carnegie Mellon University,
December 2004.

[31] W. M. Gentleman and G. Sande, Fast fourier transforms – for fun and profit,
Proceedings of the Fall Joint Computer Conference (Reston, VA.), AFIPS,
1966, pp. 563–578.

[32] G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris, Automatic Parallel
Code Generation for Tiled Nested Loops, Proceedings of the ACM Sympo-
sium on Applied Computing (SAC), ACM Press, 2004, pp. 1412–1419.

[33] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Jour-
nal of Computational Physics 73 (1987), 325–348.

[34] S. K. S. Gupta, Z. Li, and J. H. Reif, Synthesizing efficient out-of-core pro-
grams for block recursive algorithms using block-cyclic data distributions,
Technical Report TR-96-04, Dept. of Computer Science, Duke University,
Durham, USA, 1996.

REFERENCES 186

[35] F. Gygi, E. Draeger, B. R. de Supinski, R. K. Yates, F. Franchetti, S. Kral,
J. Lorenz, C. W. Ueberhuber, J. Gunnels, and J. Sexton, Large-Scale First-
Principles Molecular Dynamics Simulations on the BlueGene/L Platform
using the Qbox Code, Proceedings of Supercomputing 2005. Gordon Bell
Prize finalist, 2005.

[36] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Li-
blit, G. Pike, J. Su, and K. Yelick, Titanium Language Refer-
ence Manual, Tech. Report UCB/EECS-2005-15, U.C. Berkeley, 2005,
http://titanium.cs.berkeley.edu/.

[37] Helmut Hlavacs and Christoph W. Ueberhuber, Frontiers in simulation,
2002.

[38] R. A. Horn and C. R. Johnson, Topics in matrix analysis, Cambridge Uni-
versity Press, Cambridge, 1991.

[39] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, A Methodology
for Designing, Modifying, and Implementing Fourier Transform Algorithms
on Various Architectures, Circuits Systems Signal Process 9 (1990), 449–500.

[40] Jeremy Johnson and Kang Chen, A Self-Adapting Distributed Memory Pack-
age for Fast Signal Transforms, Proc. International Parallel and Distributed
Processing Symposium (IPDPS) (2004), 44a.

[41] S. D. Kaushik, S. Sharma, C.-H. Huang, J. R. Johnson, R. W. Johnson, and
P. Sadayappan, An Algebraic Theory for Modeling Multistage Interconnec-
tion Networks, International Conference on Parallel and Distributed Systems
(ICPADS), National Tsing Hua University, Hsinchu, Taiwan, Republic of
China, 1992.

[42] Gordon E. Moore, Cramming more components onto integrated circuits, Elec-
tronics Magazine (19 April 1965).

[43] J. M. F. Moura, J. Johnson, R. W. Johnson, D. Padua, V. Prasanna,
M. Püschel, and M. M. Veloso, Spiral: Portable library of optimized sig-
nal processing algorithms, 1998, http://www.ece.cmu.edu/ spiral.

[44] José M. F. Moura, Markus Püschel, David Padua, and Jack Dongarra, Spe-
cial Issue on Program Generation, Optimization, and Platform Adaptation,
Proceedings of the IEEE 93(2) (2005).

[45] A. Norton and A. J. Silberger, Parallelization and performance analysis of
the cooley-tukey fft algorithm for shared-memory architectures, IEEE Trans.
Comput. 36 (1987), 581–591.

REFERENCES 187

[46] Robert W. Numrich and John Reid, Co-Array Fortran for Paral-
lel Programming, SIGPLAN Fortran Forum 17 (1998), no. 2, 1–31,
http://www.co-array.org/.

[47] P. Pacheco, Parallel programming with MPI, Morgan Kaufmann Publishers,
San Francisco, 1997.

[48] M. C. Pease, An adaptation of the fast fourier transform for parallel process-
ing, Journal of the ACM 15 (1968), 252–264.

[49] Nikos P. Pitsianis, The Kronecker Product in Optimization and Fast Trans-
form Generation, Ph.D. thesis, Department of Computer Science, Cornell
University, 1997.

[50] J Pjesivac-Grbovic, T Angskun, G Bosilca, G E Fagg, E Gabriel, and J. Don-
garra, Performance Analysis of MPI Collective Operations, 19th Interna-
tional Parallel and Distributed Processing, IEEE Computer Society Press,
2005.

[51] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson,
and N. Rizzolo, Spiral: Code Generation for DSP Transforms, in [44] 93
(2005), no. 2, 232–275.

[52] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, Spiral: A Generator for Platform-Adapted
Libraries of Signal Processing Algorithms, Int’l Journal of High Performance
Computing Applications 18 (2004), no. 1, 21–45.

[53] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gačić, Yev-
gen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo, Spiral:
Code Generation for DSP Transforms, Proceedings of the IEEE, special is-
sue on Program Generation, Optimization, and Adaptation 93 (2005), no. 2,
232–275.

[54] Jürgen Schmidhuber, The new AI: General & sound & relevant for physics,
Tech. Report IDSIA-04-03, Version 2.0, November 2003.

[55] B. Singer and M. Veloso, Stochastic Search for Signal Processing Algorithm
Optimization, Proceedings of the Supercomputing 2001, 2001.

[56] Herb Sutter, The free lunch is over: A fundamental turn to-
ward concurrency in software, Dr. Dobb’s Journal (2005),
http://www.gotw.ca/publications/concurrency-ddj.htm.

REFERENCES 188

[57] C. Temperton, Fast mixed-radix real fourier transforms, J. Comput. Phys.
52 (1983), 340–350.

[58] Frank J. Tipler, Cosmological limits on computation, International Journal
of Theoretical Physics 25 (1986), 617–661.

[59] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transforms
and Convolution, 2nd ed., Springer, 1997.

[60] , Mathematics of Multidimensional Fourier Transform Algorithms,
2nd ed., Springer, 1997.

[61] Sathish S. Vadhiyar, Graham E. Fagg, and Jack Dongarra, Automatically
Tuned Collective Communications, Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (CDROM) (Washington, DC, USA), IEEE Com-
puter Society, 2000, pp. 46–46.

[62] , Performance Modeling for Self Adapting Collective Communications
for MPI, LACSI Symposium 2001, Santa Fe, NM, 2001.

[63] C. Van Loan, Computational frameworks for the Fast Fourier Transform,
Frontiers in Applied Mathematics, vol. 10, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1992.

[64] Yevgen Voronenko and Markus Püschel, Automatic generation of implemen-
tations for DSP transforms on fused multiply-add architectures, International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2004.

[65] R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical opti-
mizations of software and the atlas project, Parallel Comput. 27 (2001),
3–35.

[66] J. Xiong, J. Johnson, R. Johnson, and D. Padua, SPL: A Language and
Compiler for DSP Algorithms, Proceedings of the PLDI 2001, 2001, pp. 298–
308.

CURRICULUM VITAE

Name: Andreas Bonelli

Title: Dipl.-Ing.

Date and Place of Birth: January 27th 1978, Vienna, Austria

Nationality: Austria

Home Address: Margaretenstrasse 5/27, A-1040 Vienna, Austria

Affiliation

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstrasse 8-10/101, A-1040 Vienna
Phone: +43 1 58801 10164
Fax: +43 1 58801 10196
E-mail: andreas.bonelli@gmail.com

Education

1998 High School Diploma (Matura)
1998 – 1999 Military Service
1999 – 2004 Studies in Technical Mathematics

at the Vienna University of Technology
2004 Dipl.-Ing. (Technical Mathematics)

at the Vienna University of Technology
2004 – 2006 Ph.D. studies

Employment

1997 – 2003 Several Internships at Siemens PSE Vienna
2004 – Research Assistant at the Institute for

Analysis and Scientific Computing (TU Wien),
funded by the SFB Aurora

Project Experience

2004 – Participation in the SFB Aurora

