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Abstract

The quantum geometric phase is a fascinating demonstrationhow geometry affects standard
quantum mechanics already on the level of Hilbert space structure. A prominent classical
analogue is Foucault’s pendulum proving besides the rotation of the earth also that it is not
flat. After twenty-four hours the plane of oscillation does not return to its initial direction,
a typical geometric effect of the curvature of Earth. In quantum mechanics a similar effect
causes a phase difference between initial and final state of asystem depending only on the
evolution path traced out by the state vector in its state space. If it is not flat, as for instance
a sphere for the neutron spin state, a geometric phase factorshows up. This thesis deals with
the geometric phase in several ways. First, based on the geometric phase for mixed states,
I will present two definitions of off-diagonal geometric phases for mixed states, which pro-
vide topological information about state space also if the usual mixed state geometric phase
is undefined. The second part contains the description of a neutron interferometry experi-
ment, where a geometric phase arising from the path degree offreedom in an interferometer
is demonstrated. A double-loop perfect-crystal neutron interferometer is used in order to
measure the phase induced in one loop relative to a referencebeam. For particular absorp-
tion and phase shifter parameters this relative phase is purely geometric. Finally, according
to several theoretical investigations the geometric phaseseems to be a good candidate to
achieve quantum gates with high reliability. In the third part, a possible experimental test of
this feature using ultra-cold neutrons subjected to fluctuating magnetic fields is discussed.
Numerical studies provide insight in the feasibility of such an experiment and demonstrate
the prospective difficulties.





Kurzfassung

Die geometrische Phase zeigt, wie schon die Vorhersagen derStandard-Quantenmechanik
von der Geometrie des zugrundeliegenden Hilbertraumes beeinflusst werden. Ein an-
schauliches und bekanntes Beispiel aus der klassischen Physik ist das Foucaultsche Pendel.
Dieses diente in der Mitte des 19. Jahrhunderts als Beweis der Rotation der Erde, und neben-
her noch als Demonstration ihrer Kugelgestalt. Die Schwingungsebene rotiert aus der Sicht
des fix auf der Erde stehenden Beobachters, kehrt aber im Allgemeinen nicht nach 24 Stun-
den zu seiner Ausgangslage zurück. Dieser Effekt beruht aufder Krümmung der Erdober-
fläche. In der Quantenmechanik tritt ein analoger Effekt auf: Es kommt zu einer zusätzlichen
Phasendifferenz zwischen dem Anfangs- und Endzustand eines quantenmechanischen Sys-
tems, wenn der Zustandsraum eine Krümmung aufweist. Weiters hängt diese Phase - im
Gegensatz zur dynamischen Phase - nur vom Pfad ab und nicht von der benötigten Zeit
oder der Energie des Zustandes. Ein typisches Beispiel ist der Spin-Zustand eines Neutrons,
dessen Zustandsraum als Kugeloberfläche dargestellt werden kann, und eine Manipulation
des Spins führt daher zu einer geometrischen Phase. Die vorliegende Dissertation behandelt
einige Aspekte dieser geometrischen Phase. Zum einen werden sogenannte nicht-diagonale
geometrische Phasen für gemischte Zustände definiert, welche Information über die Topolo-
gie des Zustandsraumes bietet, falls die gewöhnliche geometrische Phase nicht wohldefiniert
ist. Im zweiten Teil taucht die geometrische Phase im Kontext der Neutroneninterferometrie
auf. Ein Interferometer mit zwei Kreisen wird verwendet, umdie in einem Kreis gener-
ierte Phase relative zu einem Referenzstrahl zu messen. DerZustand in diesem Kreis kann
durch geeignete Wahl eines Absorbers und eines Phasenschiebers so verändert werden, dass
schlussendlich nur eine geometrische Phase gemessen wird.Diese folgt wiederum aus der
Geometrie des sphärischen Zustandsraumes. Schließlich wird die Frage des Einflusses von
äußeren Störungen auf die geometrische Phase aufgegriffen. Einige theoretische Überlegun-
gen kommen zum Schluß, dass diese gut geeignet sei um quantenmechanische Schaltungen
zu realisieren. Dieses Verhalten könnte mit ultrakalten Neutronen getestet werden. Nu-
merische Simulationen in Hinblick auf ein zukünftiges Experiment werden präsentiert.
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Preface

Foucault’s pendulum experiment is an important and remarkable demonstration that the
Earth is rotating beneath our feet from the mid-nineteenth century (and also a intriguing
book by Umberto Eco [Eco88]). Moreover, not only the rotation, but also that fact the Earth
is a sphere and not a disc is established. Placing the pendulum on a flat rotating earth instead,
one would expect that it lasts 24 hours that the plane of oscillation returns to its original po-
sition. However, this is not the case, depending on the circle of latitude the pendulum lags
behind the rotation and after twenty-four hours there will be an angle difference, aholonomy,
with respect to its original oscillation plane accounting for the curved geometry of the earth.
The underlying geometry of an experiment has an influence on the measured results. The
possible oscillation states of the pendulum have to reflect the curvature, an evolution from
one state to another gives rise to an observable holonomy. Moreover, the angle difference is
the same irrespective of how fast the rotation is - a pendulumplaced on Neptune exhibits the
same angle difference although one Neptune day is only about16 hours.

What is the connection to the geometric phase and in the following to neutron interferom-
etry? Well, what can be learnt from the pendulum is that the subjacent state space must not
be neglected. The same is valid in quantum mechanics, where the states of a quantum system
are “living” in a complex vector space, theHilbert space, and it is the phase of a state that
mirrors the geometry of the system’s Hilbert space. Probably the most famous effect based
on the topology of the state space is the Aharonov-Bohm effect [AB59], where the transport
of a charged particle around, but not through, a magnetic field region affects the phase of
the state, although there is no interaction. Earlier, Pancharatnam [Pan56] investigated the
phase change of light when changing its polarisation by use of filters. The phase change is
based on the spherical shape of the polarisation state space. The catalyst for a vast number
of investigations in the geometry of state space was finally aseminal paper by Berry [Ber84]
in 1984 demonstrating that the adiabatic and cyclic transport of a quantum mechanical sys-
tem involves a phase contribution to the final state that is neither dependent on the evolution
time from the initial to the final state nor on the energies involved. A simple example is the
spin of a neutron subjected to a magnetic field which slowly changes its direction. The spin
follows the motion of the field. If the initial spin is parallel to the magnetic field and the
evolution is cyclic the final state has picked up a phase factor. The accumulated phase along
the path of the state can be separated into one term which depends on the energy-splitting
associated with the magnitude of the magnetic field, the dynamical phase, and a second term
that depends on the geometry of the Hilbert space representing the spin degree of freedom.
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Fortunately, in this simple case the state space is equivalent to a sphere and analogous to
Foucault’s pendulum the geometric phase difference is due to the curvature of the sphere and
proportional to the area enclosed by the path of the spin state.

In Chapter 1 the notion of Berry’s phase factor along with some extensions to more gen-
eral evolutions will be discussed. For example, the restriction to adiabatic motion has been
released soon after [AA87], followed by the extension to non-cyclic paths [SB88]. That the
notion of the geometric phase is not connected to any dynamics at all becomes explicit in a
kinematic theory [MS93] relating the geometric phase to geodesic lines connecting quantum
states.

In view of realistic models of Nature an entirely pure state description of quantum sys-
tems seems inappropriate. Quantum systems interacting with the environment tend to dissi-
pate energy, exchange phase information and are found finally in mixed states. Therefore, a
definition of a general geometric phase for mixed state and non-unitary evolutions is expedi-
ent. In Chapter 2 the notion of mixed states is introduced andtwo possible ways towards a
geometric phase associated to the paths of mixed state are presented - first, an operationally
intuitive definition via interference of states [SPE+00] and secondly, a mathematically ap-
pealing approach by representing mixed states as pure statevectors in a larger Hilbert space
[Uhl86].

The question arises whether the geometric phase can be measured for all possible paths.
Do particular evolutions exist where nothing can be said about the subjacent geometry? For
pure states such a situation is encountered if initial and final state are orthogonal [MP00] and
one has to resort to the off-diagonal geometric phase. This concept is generalised to mixed
states for the interferometric definition of the mixed stategeometric phase [FS03b, FS03a,
SF03] as well as for purification alternative [FS05] in Chapter 3.

The canonical example of a geometric phase is definitely the spin-1/2 particle like a neu-
tron in a magnetic field. In Chapter 4, it is shown that not onlythe neutrons’ spin can be used
to play with geometric phases, but also the two possible waysthrough an interferometer
give rise to a non-trivial spatial state space of the neutronand, consequently, to a geomet-
ric phase connected to the spatial degree of freedom. An experiment on a cyclic evolution
[HZR96] provided first evidence of the spatial geometric phase. For the recent experiment
[FHLR05b, FHLR05a] the theory has been refined to fully explain non-cyclic paths in order
to refute the criticism on the previous [Wag99]. The paths onthe Bloch sphere, the belonging
state space, have been devised in order to obtain analytic results purely from geometric con-
siderations. These are compared with the measured data and are found to be fully coherent,
so that one can disprove any critical voices with a clear conscience.

Finally, the attention is turned back again to the geometricphase in connection with open
quantum systems in Chapter 5. It is widely believed that the power of the geometric phase
lies in its robustness with respect to environmental influences and a multitude of studies sup-
port or refute such claims. However, to the best of my knowledge no experiments on this
issue have been performed yet. I will focus particularly on the effects of perturbations in
the magnetic field driving adiabatically the spin of a neutron. The perturbations induce a
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statistical spread of the geometric phase, the boundary of the surface area enclosed by the
perturbed path looks frayed. Most interestingly, for long evolution times the uncertainty in
the geometric phase tends to zero. Besides numerical studies in order to estimate a set of
feasible parameters for a subsequent experimental realisation, details of a possible measure-
ment scheme involving ultra-cold neutrons are presented. Such neutrons are slow enough
to trap them in an appropriate storage vessel and when applying magnetic fields their spin
polarisation can be manipulated.

As for the notation a list of symbols used for parameters and variables can be found in
the Appendix E.
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Chapter 1

Geometric Phase - Introduction

In this section an overview on thegeometric phasebusiness in general is given. First, we
consider a mathematical analogue from spherical geometry to catch a glimpse on the im-
portance of a curved state space, then we move on to Berry’s seminal paper [Ber84] about
a quantum phase“accompanying adiabatic changes” of a system. This is - as itturned out
later - only a special case of more general concepts. Simon [Sim83] immediately realised
the link between Berry’s phase factor and geometry in terms of fibre bundle (gauge) theory,
viz. that Berry’s phase is a holonomy invariant associated with a particular connection in a
line bundle over the parameter space. Wilczek and Zee considered non-abelian holonomy
invariants for Hamiltonians with degenerate eigenvalue spectrum, still for cyclic adiabatic
processes. Aharonov and Anandan [AA87] relaxed the condition of adiabaticity and Samuel
and Bhandari [SB88] formulated the geometric phase for evenmore general non-cyclic evo-
lutions bringing in Pancharatnam’s ideas from the 1950’s [Pan56]. Without resorting to any
particular dynamics of the system Mukunda and Simon [MS93] formulated the geometric
phase in a quantum kinematic picture. To give a conceptual overview a sketch of some of
these papers is presented in the following and at the end someexperiments on the geometric
phase are mentioned.

1.1 Mathematical analogue

Let us first consider an example of elementary geometry analogous to thegeometric phaseto
clarify what we are talking about. Take a sphere and mount a vector onto some point on the
sphere pointing in an arbitrary direction and transport this vector along a geodesic line to the
equator, then along the equator and back on a geodesic to the original point (see Figure 1.1).
During this transport the vector has to stay tangential to the (curved) surface all the time,
it must not change its magnitude and the angle between the vector and the (geodesic) path
must not change, so that there is no rotation about the instantaneous normal to the surface.
This transport is called aparallel transport. After completing the closed path (i. e. the loop)
we notice that the vector has changed its direction comparedto the initial one by an angle
ϕ although we thoroughly paid attention to keep it parallel. Thus, we obtained a so called
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BERRY’S PHASE AND GENERALISATIONS

'

'

Ω

Figure 1.1: Parallel transport of a vector on a sphere

holonomydistinguishing the vector before and after the transport only due to the curvature
of the sphere. This angleϕ equals the solid angleΩ enclosed by the loop,Ω = 2π ϕ

2π = ϕ,
where 2π is the solid angle of a half-sphere and by multiplication with ϕ

2π we get the portion
surrounded by the loop.

This concept can be generalised to any surface using a properdefinition of the parallel
transport. By dealing with such a surface (mostly referred to as amanifoldto ensure that it
is smooth and one can define differentiable coordinate patches [Ber96, CBDMDB77]) with
intrinsic curvature we get a holonomy after a transport of a vector around a loop. If the
surface is flat the vector points in the same direction after aclosed path.

Another illustrative example is a path on a cone. A cone can beformed by taking a
piece of paper shaped like a sector of a circle and joining thepaper at its edges. During
this process the paper is neither stretched nor compressed and, consequently, the cone has
no intrinsic curvature except at its vertex (which can be smoothed out so that the curvature
is finite everywhere). Therefore, a vector transported along a path not enclosing the vertex
acquires no holonomy, there is no difference to a parallel transport on a flat surface. But
a vector~V parallel-transported around a closed curve to~V ′ enclosing the vertex undergoes
a rotation (Figure 1.2). This is in fact the geometry responsible for the Aharonov-Bohm
effect,“the curvature at the vertex can be regarded as analogous to the magnetic field within
the cylinder in the Aharonov-Bohm experiment [AB59], whilethe zero intrinsic curvature
everywhere else corresponds to the vanishing of the magnetic field outside the cylinder.”
[Ana92]

1.2 Berry’s phase and generalisations

In 1984 Berry published a paper entitled“Quantal phase factors accompanying adiabatic
changes”[Ber84] describing the geometric phase factor acquired by (slowly) transporting a

2
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a

A A'

B B'

0

C
V V' a

A A'

B

0

C

V V'

Figure 1.2: Parallel transport on a cone

quantum system governed by the HamiltonianH(~R) round a circuit by varying its parameters
~R. This phase is non-integrable, because it depends directlyon the path connecting the
endpoints of the evolution.

1.2.1 Derivation of Berry’s phase

The parameters~R of the HamiltonianH(~R) should change slowly in time so that the adia-
batic theorem holds [Mes62]. Then the system will remain in an eigenstate ofH(~R(t)) at any
timet, if the system is initially in an eigenstate ofH. If the evolution is cyclic (~R(0) = ~R(T))
the Hamiltonian takes on its original form at the final timeT and the system returns to its
initial state. The state has been transported around a loopC : t ∈ [0,T] 7→ |ψ(t)〉 in pa-
rameter space with|ψ(t)〉 denoting the instantaneous state of the system, which is equiv-
alent to the eigenstate|n(~R(t))〉 of the instantaneous Hamiltonian (Figure 1.3) defined by
H(~R(t))|n(~R(t))〉= En(t)|n(~R(t))〉. En(t) denotes the energy of then-th eigenstate.

~ ~B(0)=B(T) |n(0)〉=|n(T)〉

~B(t)
|n(t)〉

Ω

Figure 1.3: The curveC traced out on the sphere (S2) encloses the solid angleΩ which is
proportional to the geometric phase. The parameter spaceS2 of the magnetic field coincides
with the state space of a spin-1/2 particle, if the magnitudeof the magnetic field is kept fixed.

In detail, the evolution of the system’s state vector|ψ(t)〉 is given by the Schrödinger

3
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equation

H(~R(t))|ψ(t)〉= ih̄
d
dt
|ψ(t)〉. (1.2.1)

Let the initial state|ψ(0)〉 = |n(~R(0))〉 be an eigenstate ofH(~R) at timet = 0. Assuming
adiabatic evolution the solution of this equation at timet reads

|ψ(t)〉= eiΦ(t)|n(~R(t))〉, (1.2.2)

To determineΦ(t) we insert (1.2.2) into equation (1.2.1), obtaining

−ih̄
(

iΦ̇(t)eiΦ(t)|n(~R(t))〉+eiΦ(t)|ṅ(~R(t))〉
)

= eiΦ(t)En(~R(t))|n(~R(t))〉, (1.2.3)

where a dot denotes the time derivative. Multiplying〈n(~R(t))|e−iΦ(t) from the left yields

− h̄Φ̇(t)+ ih̄〈n(~R(t))|ṅ(~R(t))〉= En(~R(t))

⇒ Φ̇(t) = −1
h̄

En(~R(t))+ i〈n(~R(t))|ṅ(~R(t))〉.
(1.2.4)

This equation has to be integrated fromt = 0 to the final timet = T (settingΦ(0) = 0),

Φ(T) = −1
h̄

∫ T

0
En(~R(t))dt+ i

∫ T

0
〈n(~R(t))| d

dt
|n(~R(t))〉dt.

We see that the last term does not depend explicitly on the time parameter and the chain rule
can be applied,

〈n(~R(t))| d
dt
|n(~R(t))〉=

d~R(t)
dt

· 〈n(~R)|~∇~R|n(~R)〉,

to find

Φ(T) = −1
h̄

∫ T

0
En(~R(t))dt+ i

∮

C

d~R· 〈n(~R)|~∇~R|n(~R)〉 (1.2.5)

for a closed pathC in the parameter space with the choice|n(~R(T))〉 = |n(~R(0))〉. The first
term corresponds to the usual expression of the phase accumulated by a system in a state
with energyE(t) for a timeT, thedynamical phase

φd ≡−1
h̄

∫ T

0
En(~R(t))dt. (1.2.6)

Thegeometric phaseis defined by the additional second term

φg(C) ≡ i
∮

d~R· 〈n(~R)|~∇~R|n(~R)〉, (1.2.7)

an integral in parameter space independent of the rate at which the loopC is traversed and
independent of the energy. Thatφg is reparametrisation invariant (independent of the rate of
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traversal) can be seen by substitutingt 7→ τ(t) anddt 7→ dτ
dt dτ,

φg = i
∫ t2

t1
〈n(~R(t))| d

dt
|n(~R(t))〉dt = i

∫ τ(t2)

τ(t1)
〈n(~R(τ))|dτ

dt
d
dτ

|n(~R(τ))〉 dt
dτ

dτ

= i
∫ τ(t2)

τ(t1)
〈n(~R(τ))| d

dτ
|n(~R(τ))〉dτ = φg (1.2.8)

for equal initial and final timeτ(t1) = t1 andτ(t2) = t2.

Normalisation guarantees thatφg(C) is purely imaginary: From〈n(s)|n(s)〉 = 1
(while simplifying the notation by skipping the~R dependence of|n〉) it follows that
d
ds

(
〈n(s)|n(s)〉

)
= 0 and consequently

〈ṅ(s)|n(s)〉= −〈n(s)|ṅ(s)〉 = −
(
〈ṅ(s)|n(s)〉

)∗
.

Hence,
Re〈n(s)|ṅ(s)〉= 0 (1.2.9)

andφg = i
∮
C〈n(s)|ṅ(s)〉 is purely imaginary.

It is also gauge invariant, i. e. by choosing a different phase of the eigenvectors|n(t)〉
φg does not change. If this would be the case, this quantity would not be physical since the
choice of the phase of the eigenvectors is arbitrary for eachinstant of time. To proof this
proposition we have a look at the geometric phase after the gauge transformation|n(t)〉 7→
|n′(t)〉= eiα(t)|n(t)〉 :

φ ′
g = i

∫
dt〈n′(t)|ṅ′(t)〉= i

∫
dt〈n(t)|e−iα(t) d

dt

(
eiα(t)|n(t)〉

)

= i
∫

dt
(
〈n(t)|ṅ(t)〉+ iα̇(t)

)
= φg−

∫ T

0
α̇(t)dt. (1.2.10)

When choosing single valued eigenvalue bases the initial and final eigenstates can differ
only by a phase of integer multiples of 2π , |n′(0)〉= ein2π |n′(T)〉 (and same for the unprimed
eigenstates|n(t)〉). Therefore,α(T)−α(0) =

∫ T
0 α̇(t)dt = 2nπ andφ ′

g = φg modulo 2π .

Transformation to a surface integral For simpler evaluation ofφg the circuit integral can
be transformed into a surface integral over the surface in parameter space whose boundary
is C. This can easily be done in a 3-dimensional parameter space usingStokes’ theorem, for
higher dimensions the theory of differential forms [Nak03]has to be applied by transforming
(1.2.7) into the integral of a 2-form over the surfaceF bounded byC (C = ∂F ). In three
dimensions we get by using vector calculus and decomposing|~∇n〉 into the basis states|m〉

φg(C) = i
∫

F

d~S·~∇×〈n|~∇n〉 = i
∫

F

d~S· 〈~∇n|× |~∇n〉

= i
∫

F

d~S· ∑
m6=n

〈~∇n|m〉×〈m|~∇n〉, (1.2.11)
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whereasd~Sdenotes the area element in parameter space and the restriction n 6= m in the sum
is justified, because〈n|~∇n〉 is purely imaginary. Therefore the product〈~∇n|n〉× 〈n|~∇n〉 is
purely real and must therefore vanish since it would contribute to a real part in the geometric
phase which we have already excluded above. To calculate theother elements in the sum we
use

~∇(H|n〉) = (~∇H)|n〉+H|~∇n〉 =
(
~∇En

)
|n〉+En|~∇n〉

〈m|~∇H|n〉 = En〈m|~∇n〉−〈m|H|~∇n〉 = (En−Em)〈m|~∇n〉

which finally yields
〈m|~∇n〉 = 〈m|~∇H|n〉/(En−Em). (1.2.12)

Thus, we have calculatedBerry’s phaseφg as

φg = −
∫

F

d~S·~Vn(~R), (1.2.13)

with

~Vn(~R) = Im ∑
m6=n

〈n(~R)|~∇H(~R)|m(~R)〉×〈m(~R)|~∇H(~R)|n(~R)〉
(Em(~R)−En(~R))2

. (1.2.14)

Example - Neutron in a magnetic field

To illustrate this idea, we consider a neutron with spin angular momentumS= h̄
2 in a mag-

netic field~B with magnitudeB≡ |~B|. A spin-1/2 state is commonly represented by a complex
vector in a two dimensional Hilbert space. The basis states are commonly denoted by either
{| ↑〉, | ↓〉}, {|z+〉, |z−〉} or {|0〉, |1〉} as eigenvectors of the Pauli matrixσz to the eigenval-
ues+1 and−1. In the following either one of these notations will be usedalternatively. The
Pauli spin matrices{σx,σy,σz} along with the identity constitute a complete set of gener-
ators of the unitary groupU(2), i. e. each unitary operator acting on the spin states can be
decomposed in terms of these basis operators. They satisfy the identities

σiσ j = δi j + iεi jkσk (1.2.15)

σiσ j +σ jσi = 2δi j (1.2.16)

and have the matrix representation

σx =

(
0 1
1 0

)
, σy =

(
0 i
i 0

)
, andσz =

(
1 0
0 −1

)
. (1.2.17)

An arbitrary spin state can be parametrised in terms of the polar and azimuthal angleθ and
φ , respectively,

|ψ〉 = cos
θ
2
| ↑〉+sin

θ
2
| ↓〉 =

(
cosθ

2
eiφ sinθ

2

)
, (1.2.18)

6
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which is already normalised. This parametrisation suggests the visualisation of a spin state
on a 2-sphere known asBloch sphereor Poincaŕe sphere1 (Figure 1.4).

'

µ

|z+〉〈z+|

|x+〉〈x+|

|ψ〉〈ψ|

|y+〉〈y+|

|z-〉〈z-|

S~

Figure 1.4: Bloch-sphere representation of a spin-1/2 state |ψ〉 = cosθ/2|z+〉 +
eiφ sinθ/2|z−〉 by the polar angleθ and the azimuthal angleφ .

The polarisation vector~S can be obtained by calculating the expectation values of the
Pauli matrices

~S=




Tr[σx|ψ〉〈ψ|]
Tr[σy|ψ〉〈ψ|]
Tr[σz|ψ〉〈ψ|]


=




sinθ cosφ
sinθ sinφ

cosθ


 (1.2.19)

The Hamiltonian of the magnetic field is given by

Hmag(t) = −~µn ·~B(t), (1.2.20)

where~µn = µn~σ denotes the magnetic moment of the neutronµn = −9.66×10−27J/T.

In the simplest case,Hmag is static and for further convenience let the direction of the
magnetic field determine the quantisation axis,

Hmag= −µnBσz. (1.2.21)

A neutron initially in the eigenstate|ψ(0)〉 = |z+〉 evolves according to the Schrödinger
equation and we find the state at a later time

|ψ(t)〉= e−i Ht
h̄ |ψ(0)〉. (1.2.22)

1‘Poincaŕe sphere’ is usually used for the representation of light polarisation, but since the representation is
same for both these expressions can be used alternatively.
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Utilising the Euler identityeiA = cosA+ i sinA for the exponential we get

e−i Ht
h̄ = ei µnBzσz

h̄ t = cos
(ωLt

2
σz
)
+ i sin

(ωLt
2

σz
)
, (1.2.23)

where we have defined theLarmor frequency

ωL ≡ 2µnB
h̄

(1.2.24)

The propertyσ2
z = 1l makes life particularly simple since the series expansion of the cosine

contains only even powers of theσz and the sinus only odd powers, so that we end up with

e−i Ht
h̄ = cos

(ωLt
2

)
+ iσzsin

(ωLt
2

)
=

(
ei ωLt

2 0

0 e−i ωLt
2

)
. (1.2.25)

and the final state
|ψ(T)〉 = ei ωLT

2 |z+〉. (1.2.26)

The phase factorei ωLt
2 is just the dynamical phase proportional to the Zeeman energy

splitting ∆E = h̄ωL and the timet. Since the Hamiltonian did not vary in time there is no
geometric phase (d/dt|n(t)〉= 0).

In contrast, for a slow change of the Hamilton operator (adiabatic evolution) the neutron
spin direction will be pinned to the direction of the magnetic field~B(t) at any time and will
acquire in addition a geometric (Berry) phaseφg independent of the Larmor frequencyωL

and time. Let us parametrise the direction of the field by the spherical coordinatesθ andφ ,

~B(t) = B~n(t), ~n(t) =




cosφ(t)sinθ(t)
sinφ(t)sinθ(t)

cosθ(t)


 .

The eigenvectors to the HamiltonianH = −µnB~n(t) ·~σ are given by

|ψ↑(θ ,φ)〉 =

(
cosθ (t)

2

eiφ(t) sinθ (t)
2

)
and |ψ↓(θ ,φ)〉 =

(
sinθ (t)

2

−eiφ cosθ (t)
2

)
. (1.2.27)

To find for instance the geometric phaseφ↑
g associated to the spin-up state we have to calcu-

late the terms in Eq. (1.2.7),

〈ψ↑|
∂

∂ θ
|ψ↑〉 = 0,

〈ψ↑|
∂

∂ φ
|ψ↑〉 =

i
2
(1−cosθ(t)).

For the sake of simplicity we choose constantθ , i. e. an evolution along a circle of latitude
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and obtain Berry’s phase by integrating

φ↑
g = i

∫ 2π

0

i
2
(1−cosθ(t))dφ = −π(1−cosθ).

We notice thatφg is proportional to the solid angleΩ enclosed by the path,φ↑
g = −Ω/2. For

example, ifθ = π/2, a walk along the equatorial line,φ↑
g = −π and the encompassed solid

angle as seen from the degeneracy point~B = 0 is half of the sphereΩ = 2π . Such a rotation
of ~B produces a sign change (φg = π) of the fermionic wave function, which is equivalent to
the sign change of spinors undergoing aSU(2) rotation.

The crucial point is that the magnetic field has a singularityat B = 0 which is encircled
by the path of the state. This gives rise to a non-trivial topology of the parameter space and
enables the appearance of a geometric phase.

1.2.2 Non-adiabatic evolution

Aharonov and Anandan [AA87] generalised the Berry’s phase by considering not only adia-
batic but any cyclic evolution of a quantum system. Startingfrom the Schrödinger equation

H(t)|ψ(t)〉= ih̄
d
dt
|ψ(t)〉 (1.2.28)

the normalised initial state|ψ(0)〉 ∈ N0 evolves to the final state|ψ(T)〉 ∈ N0 such that

|ψ(T)〉 = eiΦ|ψ(0)〉, Φ real. (1.2.29)

N0 stands for the set of normalised non-zero states inH, N0 = {|ψ〉 ∈ H | 〈ψ|ψ〉 = 1}. The
point is that the system does in this general setting not stayin an eigenstate of the Hamil-
tonian and the geometric phase cannot be associated to the parameter space of the Hamilton
operator’s parameters. The focus is shifted towards state space that does not coincide any-
more with parameter space as in the adiabatic case.

In order to obtain a notion of the geometric phase theray spaceor projective Hilbert
spacehas to be introduced. It is a general property of quantum mechanical states that these
are only defined modulo aU(1) phase factor without physical relevance. All states that
differ merely by a phase factor give rise to the same physics.One might argue then that the
discussion about the geometric phase is immaterial from this point of view, but a relative
phase difference between two states in superposition,|Ψ〉 = |ψ〉+eiΦ|ψ ′〉 gives a different
state. It is only a global phase which can be neglected, i. e.|Ψ〉 and ineiβ |Ψ〉 are equivalent.
The projective Hilbert space comprises all states inN0 where the states differing only by
a phase factor are identified. This is denoted byP = N0/ ∼, where∼ is an equivalence
relation. The projection map

π : N0 →P (1.2.30)

maps all vectors inN0 to the projective Hilbert spaceP. An equivalence class of states in

9



BERRY’S PHASE AND GENERALISATIONS

ray space is denoted by
Pψ ≡ |ψ〉〈ψ|, (1.2.31)

which is equally well a projection operator to the equivalence class represented by|ψ〉. A
pathC traced out by|ψ(t)〉 satisfying (1.2.29) is therefore projected to a closed curve C̃ in
P, as|ψ(0)〉 and |ψ(T)〉 represent the same point inP, Pψ(T) = eiΦ|ψ(0)〉〈ψ(0)|e−iΦ =

|ψ(0)〉〈ψ(0)|= Pψ(0) . For a geometrical interpretation see Figure (1.5).

P

C

eiÁg

C=π(C)

|ψ(T)〉|ψ(T)〉

N
0

|ψ(0)〉

Figure 1.5: Projective Hilbert space (ray space) ofN0. The rays denote states differing only
by a U(1) phase factor.

We now have the freedom to add additional phases at any point along the curve without
changing the curve in projective Hilbert space. If we define astate|φ(t)〉 ∈ N0 such that

|φ(t)〉= e−i f (t)|ψ(t)〉 and f (T)− f (0) = Φ, (1.2.32)

it follows from equation (1.2.29) that|φ(T)〉 = |φ(0)〉 and from (1.2.28) that

d f
dt

= −1
h̄
〈ψ(t)|H|ψ(t)〉+ i〈φ(t)| d

dt
|φ(t)〉. (1.2.33)

Having Figure (1.5) in mind, we can look at the curve traced out by |φ(t)〉 as another Hilbert
space representative of the curveC̃ ∈ P, thus the “shadows” of the curves traced out by
|ψ(t)〉 and|φ(t)〉 are the same. Indeed, we have the choice among many differentcurves in
N0 projecting to the same curvẽC ∈ P under the map defined in (1.2.30). The special choice
(1.2.32) for f (t) has the advantage that the final phase differenceΦ is split into a dynamical
and a geometrical part. Integration of Eq. (1.2.33) in the intervalt ∈ [0,T] results in

f (T)− f (0) = −1
h̄

∫ T

0
〈ψ(t)|H|ψ(t)〉dt+ i

∫ T

0
〈φ(t)| d

dt
|φ(t)〉dt = Φ, (1.2.34)

where the dynamical part is given by the first term−1
h̄

∫ T
0 dt〈ψ(t)|H|ψ(t)〉and the geometric
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phaseφg stems from the second term in (1.2.34) and can be defined as

φg ≡ Φ+
1
h̄

∫ T

0
〈ψ(t)|H|ψ(t)〉dt = i

∫ T

0
〈φ(t)| d

dt
|φ(t)〉dt. (1.2.35)

As there are many curvesC j in H projecting to the samẽC ∈ P that are generated by
different HamiltoniansH j and because we can find the same|φ(t)〉 for eachH j by an appro-
priate choice off (t), the phase factoreiφg is independent ofH for a given closed curvẽC ∈P.
φg is furthermore independent of the choice of the parametert (reparametrisation invariance)
and is uniquely defined up to 2πn, n integer. In fact, consider two curvesC′,C′′ ∈ N0 with
the same imagẽC ∈ P traced out by the corresponding state vectors|ψ ′(t)〉, |ψ ′′(t)〉 ∈N0 re-
lated via|ψ ′′(t)〉 = e−iα(t)|ψ ′(t)〉 with α(T)−α(0) = 2πn. They share the same geometric
phase factoreiφg due to

φg = i
∫ T

0
〈ψ ′′(t)| d

dt
|ψ ′′(t)〉dt = i

∫ T

0

(
−iα̇(t)+ 〈ψ ′(t)| d

dt
|ψ ′(t)〉

)

= 2πn+ i
∫ T

0
〈ψ ′(t)| d

dt
|ψ ′(t)〉dt. (1.2.36)

Hence all curves inN0 that project to the same (closed) curve inP have the same geometric
phase modulo 2π . Consequently,φg is only dependent upon the geometry of the curveC̃∈P.
The geometric phase is a property of ray space only.

1.2.3 Non-cyclic and non-adiabatic evolution

Until now, the curves in the projective Hilbert spaceP have still to be closed in order find
a well-defined relative phase between initial and final state, Φ ≡ arg〈ψ(T)|ψ(0)〉. For the
further generalisation to open curves inP it is necessary to find a way to compare the phases
between two non-equivalent states, states that do not live on the same ray when referring to
Figure 1.5. Samuel and Bhandari [SB88] based their investigations on the work of Pancharat-
nam [Pan56, Sjö02] on the interference of polarised light and generalisedBerry’s phaseto a
non-cyclic and even non-unitary evolution of a quantum system.

Pancharatnam’s phase difference

Take two (normalised) state vectors|A〉 and|B〉 (either polarisation states of light as consid-
ered by Pancharatnam or state vectors representing a quantum system) and let them interfere.
Then it is quite natural to ask about their relative phase. If

|A〉 = eiΦ|B〉, (1.2.37)

thus if |A〉 and|B〉 describe the same quantum/polarisation state, this phase is obviouslyΦ.

But what to do if|A〉 6= eiΦ|B〉? In this case we can nevertheless set up an interferometry
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experiment [WRFI98] to measure the intensity of the interference between|A〉 and|B〉

I = |eiχ |A〉+ |B〉|2 = 2+2|〈A|B〉|cos(χ −arg〈A|B〉), (1.2.38)

where a U(1) phase shift is imposed on|A〉. If |A〉 is orthogonal to|B〉 (|A〉 ⊥ |B〉 if |〈A|B〉|=
0) we do not get any information about the phase arg〈A|B〉, but if they are not orthogonal we
can measure the intensity and regard the two state vectors as“in-phase” when the intensity
is at maximum. The Pancharatnam relative phaseΦ is defined asΦ ≡ arg〈A|B〉 and it is
well-defined (for nonorthogonal states) even if (1.2.37) isnot satisfied. Two states are called
in-phase if〈A|B〉 is real and positive which is known asPancharatnam’s connection.

It is remarkable thatΦ is non-transitive: if|A〉 is in phase with|B〉, and|B〉 is in phase
with a third state|C〉, then|C〉 need not to be in phase with|A〉, but to|A′〉 = eiΦ|A〉:

|A〉/ |B〉/ |C〉/ |A′〉 6 |A〉, (1.2.39)

where/ denotes the “in-phase” relation.

The phaseΦ depends again on the subjacent geometry of state space. Pancharatnam
deduced this result already in 1956 [Pan56] by considering the relative phase of two “in
phase” polarisation states|A〉 and |C〉 of light both being projected onto a third state|B〉.
Their relative phase becomes then

arg[〈A|B〉〈B|B〉〈B|C〉] = arg[〈A|B〉〈B|C〉〈C|A〉]≡ ∆(A,B,C), (1.2.40)

where arg〈A|C〉 = 0 has been used.∆(A,B,C) is independent of the choice of Hilbert space
representatives (invariant under transformations like|A〉→ eiα |A〉) and is therefore a property
of the projective Hilbert space. For 2-level systems (spin-1/2 particles)|A〉, |B〉, and|C〉 can
be visualised as points on the Bloch sphere. Calculating∆(A,B,C) results then in

∆(A,B,C) = −∆(A,C,B) = −1
2

ΩABC, (1.2.41)

with ΩABC as the solid angle enclosed by the spherical triangleABC(Figure 1.6).∆(A,B,C)

is intimately related to the geometric phase since it reflects also the properties of the state
space without paying attention to any particular dynamics.These considerations are also
subject of the kinematic definition of the geometric phase byMukunda and Simon [MS93],
where the quantity∆(A,B,C) appears as aBargmann invariant[Bar64].

Parallel-transport law In Section 1.2.2 we have encountered special paths in Hilbert
space for which the dynamical phase vanishes and the remaining phase difference is purely
geometric. The condition was that the integral

∫ T
0 〈ψ(t)|H|ψ(t)〉 vanishes which leads natu-

rally to theparallel transportcondition, viz. that the integrand〈ψ(t)|H|ψ(t)〉 has to vanish

12
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|A〉〈A|

|B〉〈B|

|C〉〈C|

ΩABC

Figure 1.6: Spherical triangle on the Bloch sphere. If two states that arein phaseare pro-
jected to a third one their phase difference depends on the enclosed solid angleΩABC.

for all t. From the Schrödinger equation we obtain

〈ψ(t)| d
dt
|ψ(t)〉 = 0, (1.2.42)

which denotes the in-phase relation between two adjacent states.

The other way round one can explicitly construct a state vector with zero dynamical
phase corresponding to choosing a curveC in Hilbert space for which the dynamical phase
vanishes, a so calledhorizontal lift (or parallel lift) of the curveC̃ ∈ P. Such a state is
|ϕ(t)〉 ∈ N0 associated to the original state vector|ψ(t)〉 ∈ N0 by

|ϕ(t)〉= exp[
i
h̄

∫ t

0
h(t ′)dt′]|ψ(t)〉, (1.2.43)

where
h(t) = Re〈ψ(t)|H(t)|ψ(t)〉〈ψ(t)|ψ(t)〉−1. (1.2.44)

With this specific choice ofh(t), the dynamical phase factor is removed from|ψ(t)〉 and only
a geometric phase can be left.

From the evolution of|ϕ(t)〉 we get back the parallel transport condition: The time evo-
lution of |ψ(t)〉 is given by the Schrödinger equation (1.2.28) and replacing|ψ〉 with |ϕ〉 we
find the time evolution for|ϕ(t)〉,

ih̄
d
dt
|ϕ(t)〉= [H(t)−h(t)]|ϕ(t)〉. (1.2.45)

13
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Multiplying with 〈ϕ(t)| from the left and using the definition ofh(t) (Eq. 1.2.44) we obtain

ih̄〈ϕ(t)| d
dt
|ϕ(t)〉 = 〈ϕ(t)|H(t)|ϕ(t)〉−〈ϕ(t)|h(t)|ϕ(t)〉

= 〈ψ(t)|H(t)|ψ(t)〉−Re〈ψ(t)|H(t)|ψ(t)〉
= Im〈ψ(t)|H(t)|ψ(t)〉. (1.2.46)

Theparallel-transport conditionis therefore given by

Im〈ϕ(t)| d
dt
|ϕ(t)〉= 0, (1.2.47)

which is also valid for non-HermitianH. For HermitianH (unitary evolutions) we obtain the
more familiar expression

〈ϕ(t)| d
dt
|ϕ(t)〉= 0, (1.2.48)

which follows from the fact that〈ϕ(t)| d
dt |ϕ(t)〉 is already purely imaginary due to normali-

sation.

Alternative approach to the parallel transport law The parallel transport condition
(1.2.48) can be more intuitively derived in the following way: Consider a curvẽC in the
projective Hilbert spaceP (see Section 1.2.2) parametrised bys,

C̃ : s∈ [s1,s2] 7→ |ϕ(s)〉〈ϕ(s)|, (1.2.49)

of a state|ϕ(s)〉 on the associated ray inN0. |ϕ(s)〉 varies smoothly above the curvẽC and is
therefore a Hilbert space representative ofC̃. Natural conditions for a parallel transport are
now that the length of|ϕ〉 is preserved, i. e.〈ϕ(s)|ϕ(s)〉= const., and furthermore that|ϕ(s)〉
and an infinitesimally displaced|ϕ(s+ ds)〉 have the same phase, i. e.〈ϕ(s)|ϕ(s+ ds)〉 is
real and positive - see Figure (1.7). From a series expandingof 〈ϕ(s)|ϕ(s+ds)〉 we find

〈ϕ(s)|ϕ(s+ds)〉= 〈ϕ(s)|ϕ(s)〉+ 〈ϕ(s)| d
ds

|ϕ(s)〉ds+O(ds2), (1.2.50)

which is real in first order ofds if

Im〈ϕ(s)| d
ds

|ϕ(s)〉 = 0. (1.2.51)

Evidently this is equivalent to the Pancharatnam connection for infinitesimally close states.

Cyclic evolution Now we can derive the cyclic geometric phase within this formalism. As
pointed out above any open curve in Hilbert space traced out by |ϕ(s)〉, s∈ [s1,s2] can be
projected toP and if |ϕ(s2)〉 = eiα |ϕ(s1)〉, α ∈R the curve inP is closed (see Figure 1.5).
For the curve inN0 we can write the tangent vector as|u(s)〉= d

ds|ϕ(s)〉 and define a quantity

14
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|ϕ(s)〉|ϕ(s)〉

|ϕ(s+¢s)〉N
0

P

e
iÁ e

iÁ

¢s

C
∼

Figure 1.7: Parallel transport law: Two infinitesimally close states are called parallel if they
are in-phase, i. e. if arg〈φ(s)|φ(s+∆s)〉= 0.

As by
As = Im〈ϕ(s)|u(s)〉. (1.2.52)

Going back one step and look at the path traced out by the original state|ψ(s)〉 we notice
that if |ψ(s)〉 is a cyclic solution of the Schrödinger equation, the projection of this curve
to P is closed. But we are not interested in the dynamical part of the phase factor acquired
during the evolution, thus we have to ask for the curvec : s 7→ |ϕ(s)〉 defined by equation
(1.2.45) which is a horizontal lift of the curve traced out by|ψ(s)〉. c is determined by the
parallel-transport condition (1.2.51), which implies that As = 0 (from (1.2.52)) along the
curve. Note that in the language of fibre bundlesAs is interpreted as a connection one-form
which defines horizontal lift [Ber96]. Consider now the integral

φg =

∮
Asds (1.2.53)

along the curvec in N0 closed by the vertical curve joining|ϕ(s2)〉 and|ϕ(s1)〉. As vanishes
along the curve|ϕ(s)〉, consequently only this vertical line contributes to this loop integral
andφg is therefore given by the phase difference arg〈ϕ(s1)|ϕ(s2)〉.

Due to the gauge invariance of the integral (1.2.53) this canbe regarded as an integral
in projective Hilbert spaceP. We can useStokes’ theoremand express (1.2.53) as a surface
integral inP,

φg =

∫

S
dAs, (1.2.54)

where S is the surface inP bounded by the closed curveC(s) anddAs is a two-form (dAs

denotes the exterior derivative ofAs, which is equivalent to the curl ofAs in 3 dimensions).
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Non-cyclic evolution Until now the above was only a new formalism yielding an already
known result. Therefore, let us consider now a non-cyclic (but still unitary) evolution of the
quantum system. The state vector may not return to the initial ray, thus the curvẽC in P
is not necessarily closed and we need a method to compare the phase at two different rays.
Pancharatnam’s connection discussed earlier is the appropriate tool for this!

The most important fact derived by Samuel and Bhandari [SB88] is that one can express
thePancharatnam phase differenceβ = arg〈ϕ1|ϕ2〉 (|ϕ1〉, |ϕ2〉 ∈ N0, |ϕ1〉 6⊥ |ϕ2〉) as a line
integral ofAs along a geodesic. In fact, they proved that, by choosing a geodesic curveG
with respect to the Fubini-Study metric connecting|ϕ1〉 and |ϕ2〉, the phase difference is
given by

β = arg〈ϕ1|ϕ2〉 =
∫

G

Asds. (1.2.55)

The phaseφg of a state vector|ϕ(s)〉 achieved by evolving froms= 0 to s= T can conse-
quently be expressed as

φg =

∮

G+c
Asds=

∫

c
Asds+

∫

G

Asds=

∫

G
Asds, (1.2.56)

wherec denotes the horizontal curve. Integration alongG yields the Pancharatnam phase
difference, the integral alongc vanishes due to the parallel transport and we end up with the
same expression as in the cyclic case (1.2.53).φg =

∮
Asds can again be expressed as the

surface integral (1.2.54) over a 2-form in the projective Hilbert space (Figure 1.8) where the
geodesic connection from the initial to the final point closes the boundary of the surface.

P

C

eiÁg

C=π(C)
∼

geodesic

N
0

|ψ(T)〉

|ψ(0)〉

Figure 1.8: Geodesic closure to obtain loop inP. For a non-cyclic path the curvẽC is closed
by a geodesic.
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1.2.4 Kinematic Approach

A theory of the geometric phase based entirely on kinematic ideas has been presented by
Mukunda and Simon [MS93]. In their approach the geometric phase is decoupled from any
(Hamiltonian) dynamics of the quantum system, but it is treated as a property of curves
connecting state vectors. As before, the state vectors|ψ〉 are elements of the setN0 of
normalised vectors which is a subset of the set of nonzero vectorsN of the Hilbert spaceH,
i. e.N0 ⊂N ⊂H.

In searching for interesting invariants under the U(1) gauge transformation

|ψ〉 7→ |ψ ′〉 = eiα |ψ〉 ∈ N0,

one immediately recognises the importance of the modulus ofthe inner product of two vec-
tors,

|〈ψ ′
1|ψ ′

2〉| = |〈ψ1|ψ2〉| = U(1)×U(1)-invariant (1.2.57)

with independent transformations

|ψ ′
1〉 = eiα1|ψ1〉, |ψ ′

2〉 = eiα2|ψ2〉.

Extending this scheme to even more vectors, naturallyBargmann-invariants[Bar64] of the
form

〈ψ1|ψ2〉〈ψ2|ψ3〉 . . .〈ψn|ψ1〉 = U(1)×U(1) . . .U(1)︸ ︷︷ ︸
n−times

(1.2.58)

come into play. The modulus of the inner product (1.2.57) is asimple case of this kind of
invariants:

tprob(ψ1,ψ2) ≡ |〈ψ1|ψ2〉|2 = 〈ψ1|ψ2〉〈ψ2|ψ1〉
denotes thetransition probabilitybetween two states|ψ1〉 and |ψ2〉. In the following we
will first consider a smooth curve and find its geometric invariant (geometric phase) and then
derive the same quantity in terms of Bargmann invariants by dividing the curve into small
segments.

Invariant of a smooth curve A smooth curveC0 ⊂N0 is given by the map

C0 : s∈ [s1,s2] 7→ |ψ(s)〉 ∈ N0, s1, s2 ∈R. (1.2.59)

From the constant norm of the states|ψ(s)〉 along the curveC0 we can deduce that the quan-
tity 〈ψ(s)|ψ̇(s)〉 is purely imaginary (c. f. Eq. 1.2.9), where the dot stands for the derivative
d/ds. Moreover〈ψ(s)|ψ̇(s)〉 is evidently invariant under aglobalgauge transformation

|ψ(s)〉 7→ |ψ̃〉(s) = eiα |ψ(s)〉, α ∈R. (1.2.60)
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Under thelocal gauge transformation

C0 7→ C′0 : |ψ(s)〉 7→ |ψ̃〉(s) = eia(s)|ψ(s)〉, (1.2.61)

determined by the smooth real functiona(s), it transforms like

〈ψ(s)| d
ds

|ψ̇(s)〉 7→ 〈ψ ′(s)| d
ds

|ψ ′(s)〉 = 〈ψ(s)|ψ̇(s)〉+ ȧ(s). (1.2.62)

For the definition of a geometric phase we have to find a functional of the curveC0 that is
invariant under the local gauge transformation (1.2.61), i. e. which is the same for differentC0

andC′0. This local gauge transformation corresponds to the choiceof a different Hamiltonian
projecting to the same curve inP.

Such a functional is given by

φg[C0] ≡ arg〈ψ(s1)|ψ(s2)〉− Im
∫ s2

s1

ds〈ψ(s)|ψ̇(s)〉. (1.2.63)

Replacing|ψ(s)〉 by |ψ ′(s)〉 yields the same expression which can be verified easily by
inserting Eq. (1.2.62) into Eq. (1.2.63). Consequently,φg = φ ′

g and therefore gauge invariant.

It is also reparametrisation invariant by the same argumentas in Eq. (1.2.8) since
|ψ(s1)〉 = |ψ ′(s′1)〉 and|ψ(s2)〉 = |ψ ′(s′2)〉.

The U(1) gauge invariance means that the quantityφg is independent of the particular
phase factors at each points and consequently it is a property of ray spaceP. As already
discussed previously (Figure 1.8) the gauge transformation can be used to project the curve
C0 onto the curvẽC0 in P. The functionalφg[C̃0] defines the geometric phase associated with
the smooth curvẽC0. The argument̃C0 stresses that the geometric phase is a property of the
projective Hilbert space. If, instead ofC0, C̃0 is initially given one may choose any liftC0

which projects tõC0 (π(C0) = C̃0) and calculateφg for the most convenient one.

Note, thatφg[C̃] is undefined for orthogonal initial and final states|ψ(s1)〉 and|ψ(s2)〉,
since the transition probability tprob(ψ(s1),ψ(s2)) = |〈ψ1|ψ2〉|2 vanishes and therefore the
argument arg〈ψ(s1)|ψ(s2)〉 is undefined.

Naturally, the two terms on the right hand side of Eq. (1.2.63) can be interpreted as the
total phase

Φ[C0] = arg〈ψ(s1)|ψ(s2)〉 (1.2.64)

and the dynamical phase

φd[C0] ≡ Im
∫ s2

s1

ds〈ψ(s)|ψ̇(s)〉. (1.2.65)

These phases depend on the curveC0 in Hilbert space, it is only their differenceφg that
depends only on the curvẽC0 in ray space.

There are several possibilities to choose a lift to make one or the other term vanish. On
the one hand side a curveC0 can be found such that the total phaseΦ vanishes,|ψ(s1)〉 and
|ψ(s2)〉 are then said to be “in-phase” andφg =−φd. On the other hand the dynamical phase

18



1. GEOMETRIC PHASE - INTRODUCTION

can be made to vanish by the requirement that the dynamical phaseφd vanishes along the
curve, in other words, to choose a so calledhorizontal lift which fulfils the parallel transport
condition,

C horizontal↔ Im〈ψ(s)|ψ̇(s)〉 = 0 ↔ 〈ψ(s)|ψ̇(s)〉 = 0 → φd = 0. (1.2.66)

Bargmann invariants It is not difficult to derive the geometric phase functional (1.2.63)
in terms of Bargmann invariants as introduced in Eq. (1.2.58). For this purpose the arbi-
trary pathC0 : s∈ [s1,s2] 7→ |ψ(s)〉 is divided intoN pieces such that in the limitN → ∞
the original path is recovered. Instead of a continuous paths we get a ordered set of states
C0 = {|ψ1〉, |ψ2〉, . . . , |ψN〉} ∈ N0, where|ψ1〉 = |ψ(s1)〉 and|ψN〉 = |ψ(s2)〉. To make all
dynamical phase contributions vanish the parallel transport condition (1.2.48) has to hold for
each pair of adjacent states. The discrete version of this condition is to link adjacent states
by ahorizontal geodesicthat is defined as the horizontal liftg of a geodesic̃G in ray space
[MS93] (Figure 1.9). In other words, we have to re-gauge each|ψi〉 7→ |ψ ′

i 〉 = eiαi |ψi〉 such

P

N
0

eiÁg

|ψ1〉

|ψ2〉

|ψN〉

|ψ
3
〉

|ψ
4
〉

∼
∼

∼

∼

G12

G23

G
34

∼

G
4N

GN1

g12

g23 g
34

g
4N

gN1

Figure 1.9: Discrete path where adjacent states|ψr〉 and|ψr+1〉 are connected by geodesics
gr,r+1.

that all states in the re-gauged setC′
0 = {|ψ ′

1〉, |ψ ′
2〉, . . . , |ψ ′

N〉} are linked by a horizontal geo-
desic. The geometric phase of a curve is given by the difference of the total phase and the
dynamical phase,

φg[C̃0] = Φ[C0]−φd[C0] = arg〈ψ1|ψN〉−
N−1

∑
r=1

φd[gr,r+1]

using Eq. (1.2.63). Using (1.2.63) once more for the sum on the right hand side we find

N−1

∑
r=1

φd[gr,r+1] =
N−1

∑
r=1

{
Φ[gr,r+1]−φg[G̃r,r+1]

}
=

N−1

∑
r=1

arg〈ψr |ψr+1〉,
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where the last equality follows from the fact that the geometric phase vanishes along a geo-
desicG, φg[G] = 0. Altogether the geometric phase reads

φg[C̃0] = arg〈ψ1|ψN〉−
N−1

∑
r=1

arg〈ψr |ψr+1〉 = −arg〈ψ1|ψ2〉〈ψ2|ψ3〉 . . .〈ψN−1|ψN〉〈ψN|ψ1〉,
(1.2.67)

the argument of a Bargmann invariant associated with the discrete pathC0. For the special
construction where we have chosen|ψr〉 and|ψr+1〉 to be “in-phase” (arg〈ψr |ψr+1〉 = 0) by
choosing a horizontal geodesic

φg = −arg〈ψN|ψ1〉
. In general, the dynamical phase along a lifted geodesic inN0 does not vanish, it is the
horizontal property that disposes of the dynamical contributions.

Limit of infinitesimally close states In the limit N → ∞ the form (1.2.63) is recovered.
φg[C̃0] is given by

φg[C̃0] = lim
N→∞

{−arg〈ψ1|ψ2〉〈ψ2|ψ3〉 . . .〈ψN−1|ψN〉〈ψN|ψ1〉}

= arg〈ψ(s1)|ψ(s2)〉− lim
N→∞

arg
N

∏
r=1

〈ψ(σr)|ψ(σr+1)〉

where we have the following subdivision of the curveC̃0 in mind:

1 2 3 r r +1 N−1 N∆s ∆s

s1 = σ1 σ2 σ3 σr σr+1 σN−1 σN = s2

.

Expanding|ψ(σr+1)〉 = |ψ(σr +∆s)〉 yields

φg[C̃0] ≈ arg〈ψ(s1)|ψ(s2)〉− lim
N→∞

arg
N

∏
r=1

〈ψ(σr)|ψ(σr)+∆sψ̇(σr)〉,

= arg〈ψ(s1)|ψ(s2)〉− lim
N→∞

arg
N

∏
r=1

(1+∆s〈ψ(σr)|ψ̇(σr)〉

≈ arg〈ψ(s1)|ψ(s2)〉− lim
N→∞

argexp
( N

∑
r=1

∆s〈ψ(σr)|ψ̇(σr)〉
)
.

Finally, the sum can be converted into an integral in the limit N → ∞ and we obtain

φg[C̃0] = arg〈ψ(s1)|ψ(s2)〉−argexp
(∫ s2

s1

ds〈ψ(σr)|ψ̇(σr)〉
)
. (1.2.68)

In summary, the kinematic approach derives the geometric phase for any set of states whether
they belong to a continuous path or not. The latter describesfor instance measurement
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processes, whereas the former is connected to systems obeying Schrödinger equation dy-
namics.

Non-unitary evolution

The kinematic approach is easily extensible to non-unitaryevolutions by admitting also non-
normalised state vectors|ψ〉 ∈ N 6∈ N0. Consider the smooth curve

C : s 7→ ψ(s) ∈N , s∈ [s1,s2] ⊂R. (1.2.69)

In the unitary case we have due to the conservation of the normthat 〈ψ(s)|ψ̇(s)〉 is purely
imaginary, whereas in the non-unitary case this quantity can be real as well. As usual we
will consider a projectioñC0 of the curveC onto ray spaceP = N0/U(1), but now the curve
C̃ need not comprise only normalised states.

The use of the ray space suggests the use of unnormalised purestate density operators
ρ(s) = |ψ(s)〉〈ψ(s)| so that the curvẽC is determined by

C̃ : s 7→ ρ(s), s∈ [s1,s2] ⊂R. (1.2.70)

The (pure state) density operator has to fulfil the followingconditions:

ρ(s)† = ρ(s) (hermitian) (1.2.71)

ρ(s) ≥ 0 (positive) (1.2.72)

ρ(s)2 = ρ(s)Trρ(s) (modified projection operator condition). (1.2.73)

The last condition follows fromρ2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ|Tr(|ψ〉〈ψ| = ρ Trρ .

In the case of constant norm the definition of the geometric phase relies on the search for
a quantity invariant under localU(1) transformations, i. e. for transformations of the curve
C0 7→ C̃0 : |ψ̃0(s)〉 = eiα(s)|ψ0(s)〉, where|ψ0〉 ∈ N0 andα(s) ∈ R. Only the phase of the
state is modified. Such a quantity is then a property only of the path itself in ray space. Here
in contrast the relevant transformation is given by

C 7→ C̃ : |ψ̃(s)〉 = a(s)|ψ(s)〉 (1.2.74)

with a complex-valued functiona(s) ∈ C.

According to [MS93] the natural generalisation to the former definition (1.2.63) is given
by the complex quantity

X ≡ 〈ψ(s1)|ψ(s2)〉
〈ψ(s2)|ψ(s2)〉

exp

(
−
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉

)
. (1.2.75)
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X transforms under the scale transformation in Eq. (1.2.74) as

X̃ =
〈ψ̃(s1)|ψ̃(s2)〉
〈ψ̃(s2)|ψ̃(s2)〉

exp

(
−
∫ s2

s1

ds
〈ψ̃(s)| ˙̃ψ(s)〉
〈ψ̃(s)|ψ̃(s)〉

)

=
a∗(s1)a(s2)〈ψ(s1)|ψ(s2)〉
a∗(s2)a(s2)〈ψ(s2)|ψ(s2)〉

exp

(
−
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉

)
exp

(
−
∫ s2

s1

ds
a∗(s)ȧ(s)
a∗(s)a(s)

)

=
a∗(s1)a(s2)〈ψ(s1)|ψ(s2)〉
a∗(s2)a(s2)〈ψ(s2)|ψ(s2)〉

exp

(
−
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉

)
exp

(
−
∫ a(s2)

a(s1)

da(s)
a(s)

)

=
a∗(s1)a(s2)〈ψ(s1)|ψ(s2)〉
a∗(s2)a(s2)〈ψ(s2)|ψ(s2)〉

exp

(
−
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉

)
exp(− lna(s2)+ lna(s1))

=
a∗(s1)a(s2)〈ψ(s1)|ψ(s2)〉
a∗(s2)a(s2)〈ψ(s2)|ψ(s2)〉

exp

(
−
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉

)
a(s1)

a(s2)

=
|a(s1)|2〈ψ(s1)|ψ(s2)〉
|a(s2)|2〈ψ(s2)|ψ(s2)〉

exp

(
−
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉

)

= X if a(s1) = a(s2) = 1. (1.2.76)

Since this is a complex quantity we can separate the real and the imaginary part to obtain

N0

N

P

g

f

Figure 1.10: Map of the curve fromN , the state space comprising all vectors, toN0 the
space of normalised vectors and finally into ray spaceP.

two real invariants:

ImX = arg〈ψ(s1)|ψ(s2)〉− Im
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉 (1.2.77)

ReX =
|〈ψ(s1)|ψ(s2)〉|

|a(s2)|2〈ψ(s2)|ψ(s2)〉
exp

(
Re
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉

)
. (1.2.78)

For normalised vectors|ψ(s)〉 ∈ N0 we obtain the trivial invariant ReX = 1.
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The definition of the geometric phase for non-unitary evolution follows from the imagi-
nary part,

φg[C̃0] = ImX = Φ[C]−φd[C] (1.2.79)

Φ[C] = total phase ofC = arg〈ψ(s1)|ψ(s2)〉 (1.2.80)

φd[C] = dynamical phase ofC = Im
∫ s2

s1

ds
〈ψ(s)|ψ̇(s)〉
〈ψ(s)|ψ(s)〉. (1.2.81)

Under the scaling|ψ(s)〉 7→ r(s)|ψ(s)〉 bothΦ[C] andφd[C] are separately invariant for real
and positiver(s). Consequently,φg[C̃0] is also invariant under a scale transformation. By
an appropriate choice ofr(s) the curveC in N can be projected toC0 in N0. Afterwards
theU(1) gauge invariance can be used to projectC0 to the curveC̃0 in ray spaceP so that
the geometric phase is determined again by the projected curve inP as in the unitary case.
“As an example, for two-level systems, whether the evolution is unitary or not, the geometric
phase can always be analysed on the Poincaré-Bloch sphereS2.” [MS93, p. 259].

1.3 Experiments on the geometric phases

The huge amount of experiments on the geometric phase makes it hardly possible to keep
track of all of them - a thorough listing would go beyond the scope of this thesis. For
this reason I will just mention a few tests of the geometric phase with the main focus on
experiments involving neutrons.

The first experimental verification with explicit mention ofBerry’s phase is due to Tomita
and Chiao [TC86] using an helically wound optical fibre to examine the polarisation change
of linearly polarised light extending a similar experimentby Ross [Ros84] to non-uniformly
wound fibres. The entrance and exit direction of the fibre are equal such that the path in
momentum space is closed. The rotation of the plane of polarisation is attributed to Berry’s
phase proportional to the solid angle enclosed in momentum space. Note, however, that this
setup is somewhat different to Berry’s phase since it is not the polarisation vector itself that
is transported around a closed loop by variation of some parameters of the Hamiltonian, but
the state in momentum space is changed, which can be understood fully classically [Hal87,
Ber87] and resembles the example given in Section 1.1.

In neutron science, Bitter and Dubbers [BD87] were the first who used the spin degree
of freedom of neutrons to demonstrate the geometric phase. Polarised neutrons are sent
through an helically wound Helmholtz-like coil (c.f. Section 5, Figure 5.10) such that their
spin polarisation vector is adiabatically rotated following the rotation of the magnetic field
in the neutron’s reference frame. Additional to the dynamical phase due to the Larmor
precession they observed Berry’s phase as a constant offsetin the total phase which increases
when the field strength is increased. Soon afterwards storedultra cold neutrons served as
probes for Berry’s phase factor [RKGL88]. In this setup - which will be discussed and
adapted in Section 5 and in the Appendix D to test the stability of the geometric phase -
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neutrons are stored in an appropriate vessel. Three perpendicular pairs of Helmholtz coils
are arranged around the vessel to produce a magnetic field in an arbitrary direction and
enables an adiabatic rotation of the neutrons’ spin.

Neutron interferometry has been used first by Allmanet al. [AKW +97] to spot the effects
of the geometric phase. In their experiment the evolution was not adiabatic anymore and con-
stitutes already a realisation of the more general non-adiabatic geometric phase. Static coils
have been inserted in the interferometer beam paths to implementπ spin-flip operations in
both arms, whereas the two flipper axes enclose a non-zero opening angle∆β . The geomet-
ric phase is a function only of∆β since a change in the opening angle changes the path from
the initial to the flipped state (c.f. Figure 5.9).

Further examples of neutron experiments on topological effects can be found in Refs.
[WB90, WRFI98, Bha99, WBR+00, HZR96, HLB+01, HLB+02].

A demonstration of Berry’s phase, although highly unwanted, is the experiment on the
electric dipole moment of neutrons [HBG+99, BDG+06]. The electric dipole moment if it
exists should result in a different phase whether it is alignor anti-aligned with the magnetic
field, but since neutrons are moving freely in the magnetic field region they experience tem-
poral magnetic field variations in their moving reference frame. Consequently, their spin
traces out some path which in turn gives rise to geometric phase contributions [PHS+04].

A recent experiment in NMR considers the possible application of the geometric phase
for quantum computation [JVEC00]. Using two weakly coupledspins of a heteronuclear
system a conditional Berry phase is applied to one of the spins, i. e. the phase shift of one
system depends on the state of the of the other system, which is a imperatively necessary for
the implementation of a universal set of quantum gates [NC00].

1.4 Facts to remember

In conclusion, the evolution of a state of a quantum system isaccompanied in general by a
change of the phase of the system. In particular, for an adiabatic and cyclic evolution the
initial state is equal to the final state up to a phase factor. This phase factor can be separated
into a dynamical and a geometric part, where the former comprises all the dependence on the
dynamics like the evolution time and the energy of the system. The latter is only dependent
on the geometry of the state space in which the evolution takes place. The curvature of the
subjacent state space determines the geometric phase. Thisbehaviour is not restricted to an
adiabatic process, but can be generalised to all kinds of processes, where the focus is then
shifted to the path in state space rather than in parameter space as for Berry’s phase. This
can also be regarded as a distinction between Berry’s adiabatic phase and the more general
geometric phase.

The geometric phase is a property of projective Hilbert space which is constructed by
taking all states differing only by a phase factor as equivalent. The purpose in doing so is
that in quantum mechanics a global phase factor does not havephysical relevance, it is only
relative phases that can be measured. That the geometric phase belongs to this projective
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Hilbert space expresses the fact that physically it must notmatter whether the instantaneous
states along the evolution path are multiplied by an additional phase factor, that is, gauge
transformed. It is a gauge invariant quantity, otherwise itwould not be measurable. There
exists then a specificparallel path in Hilbert space for which the dynamical phase vanishes.
Along such a path two neighbouring states arein-phase, their relative phase difference van-
ishes.

Reparametrisation invariance is another important feature of the geometric phase. Since
we are claiming that it is a property only of the path in the projective Hilbert space, or - by
Stokes’s theorem - proportional to the surface area enclosed by the path, a change of the rate
of traversal must be immaterial.

To obtain the enclosed surface area also for an open curve a prescription is needed which
curve has to be employed to connect the final with the initial state. This turns out to be a
geodesic, i. e. the shortest possible path, which is always defined as long as the states are not
orthogonal to each other. In the latter case there is no unique shortest path and, consequently,
no unique geometric phase. This observation will bother us in the following chapters, where
anoff-diagonal geometric phaseis discussed that discloses information on the geometry also
in such situations.

As an outlook to the last chapter, note, that it is believed that the geometric phase is
widely insusceptible to disturbances because of its independence of the dynamics.
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Chapter 2

Geometric Phase For Mixed States

Is the geometric phase concept only applicable to pure states? What happens if the system is
not prepared in a particular pure state but in a mixture of pure states? In the following, mixed
states are introduced and it will be demonstrated that the notion of the geometric phase can
be extended to include mixed states as well.

2.1 Mixed states

Suppose that we have maximal knowledge of the state of our quantum system, a complete
set of quantum numbers is known. An example of such a situation is a neutron beam with
definite momentum and spin polarisation. The representation is then usually by a state - ket,

|Ψ〉 = |k〉⊗ |s〉, (2.1.1)

constructed as a tensor product of the different state spaces, |k〉 for the momentum space and
|s〉 for the internal spin space. For each other degree of freedomanother Hilbert space has to
be added, for example to describe the internal quark structure, but such additional degrees of
freedom will not be considered in the following.

|k〉 is an eigenvector to the momentum operator ˆp = h̄k̂, k̂|k〉 = k|k〉, and|s〉 is an eigen-
vector to some linear combination of Pauli matrices~n ·~σ |s〉 = |s〉. ~n is a unit vector inR3

and~σ = (σx,σy,σz)
T denotes the vector of the usual Pauli matrices. The state as it stands

comprises just a single wave vectork, it represents a plane monochromatic wave and one
might question the physical relevance of such an idealised description. A real beam always
has a - whatever small but - non-zero momentum spread and alsoa wave-length distribution.
To a certain degree one can save the day by introducing a superposition of momenta,

|k〉 7→
∫

a(k)|k〉dk,
∫

|a(k)|2dk= 1, (2.1.2)

for example to be able to localise the neutron somewhere in space in contrast to the odd
property of a plane wave that it is spread over the whole spaceat the same time. What we get
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is a superposition state with well defined phase relations between the different constituting
partial waves, acoherent superposition.

Such states are usually not an adequate description of an experiment since adverse condi-
tions are always against coherent superpositions -dephasingor - more generallydecoherence
- destroys the phase relation among the partial waves. It is only if the system is completely
separated from its environment (closed system) that superpositions can be kept for an arbitrar-
ily long time. In reality, it is only the degree of decoherence that the experimenter can affect
by elaborate techniques, but not its presence. In the recentpast the quest for the quantum
computer has put forth numerous ideas and techniques how to fight decoherence. For exam-
ple, the possibility to store ions for as long as 20 seconds [HSKH+05] in a superposition state
has been demonstrated in Innsbruck, or, it has become feasible to send entangled photons as
long as 600 meters through the atmosphere as shown in Zeilinger’s group [UJA+04]. But
sooner or later, decoherence takes over and what is called apure stateis turned into amixed
state. Since the experimenter cannot keep track of all the environmental interactions, the full
information about the state is lost. Such states deserve another notation than pure state, they
are represented bydensity operators(or density matrices) instead of state vectors in Hilbert
space. The simplest density operator is a pure state projection operator ,|ψ〉 7→ |ψ〉〈ψ| ≡ Pψ
that has the defining projector propertyPψ = P2

ψ . It is an element of the projective Hilbert
space as we have already learnt in Section 1.2.2. A linear combination ofPψ ’s denotes a
mixed state and can be regarded as mixing several pure stateswith different weights,

ρ = ∑
k

pk|ψk〉〈ψk|, ∑
k

pk = 1, (2.1.3)

where|ψk〉 are arbitrary vectors in Hilbert space and need not constitute a set of basis vectors.

ρ = ∑ p(v)|ψ(v)〉〈ψ(v)|dv,
∫

p(v)dv= 1, (2.1.4)

denotes the continuous version. The sum over all possible states of the system must be unity
by the laws of probability. Unlike the pure superposition state in (2.1.2), for instance, the
phase relation between the constituting|ψi〉〈ψi | is not maintained, it is anincoherentsum
andρ 6= ρ2.

A proper density matrixρ has to be Hermitian and positive, otherwise the interpretation
as a (incoherent) sum of pure states (2.1.3) which occur witha specific probability fails. In
addition normalisation is maintained by demanding the trace of ρ to be unity. In summary,

ρ = ρ† (2.1.5)

ρ > 0 (2.1.6)

Trρ = 1. (2.1.7)

Example of a mixed state Let us continue with the neutron beam example. The concept
of mixed states is best illustrated by the spin part of the wave function (2.1.1), since the
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finite dimensionality of the spin space allows for a more elegant approach than the in prin-
ciple1 infinite dimension of momentum space. Suppose that you want to measure the spin
polarisation of a beam prepared in the|s〉-state and you find an apparatus that perfectly en-
ables you to measure the polarisation along the~n-axis. Since the state|s〉 is an eigenstate to
the polarisation measurement operators=~ns ·~σ a definite measurement direction~ns can be
found, such that all neutrons are in the positive eigenstate. If the apparatus can discriminate
between positive and negative polarised neutrons, all neutrons will be in the positive and no
single one in the negative channel. In practice, such a situation will not be encountered since
it would require a perfectly polarised neutron beam by either a perfectly polarised source or
a perfect selection mechanism. As example, take a Stern-Gerlach apparatus [GS22] oriented
in direction~ns, which spatially separates the neutrons according to theirpolarisation due to
a magnetic field gradient. Dismissing one of these separatedbeams, the state|s〉 can be pre-
pared. Unfortunately, it is for instance not possible to have a constant magnetic field gradient
all over the beam cross section and the experimenter is left with the maybe dissatisfying sit-
uation of either improving the accuracy of the field gradientor inserting smaller and smaller
apertures. In the former it is (at least in the beginning) a time and money issue to improve
the homogeneity of the field over the beam cross section and keeping at the same time the
cross section, i. e. the intensity, constant. In the latter,one gains better polarisation but loses
drastically intensity. One has to find a trade-off somewherein between, but things won’t get
perfect, the resulting state will be amixtureof neutrons passing the apparatus at different
places and therefore having slightly different spin directions in the end.

The density matrix consists of the differently polarised spin states

ρ = p1| ↑〉〈↑ |+ p2| ↓〉〈↓ |, (2.1.8)

with p1 + p2 = 1. The eigenvaluesp1 and p2 denote the probability to detect either a| ↑〉
or | ↓〉 polarised neutron, respectively. In the following it will be sometimes convenient to
parametrise the state by thedegree of polarisation r,

ρ =
1+ r

2
| ↑〉〈↑ |+ 1− r

2
| ↓〉〈↓ |. (2.1.9)

r = 0 denotes a totally mixed state with eigenvalues 1/2. For a pure state,|r| = 1 and we
either have a beam polarised in| ↑〉 or | ↓〉 direction. The further evolution ofρ can then
be either unitary so that the degree of polarisation does notchange, or non-unitary yielding
finally a totally mixed state.

Coupling to the environment Theoretically, decoherence is explained by the coupling of
the system to its environment and this interaction generates a superposition state between
system and environment. Forgetting subsequently the further evolution of the environment
and focusing only on the system itself a transformation fromthe formerly pure to a mixed

1Compactifying the state space by introducing periodic boundary conditions cures this “defect”. The basis
is then again finite and calculations are simpler, but still the two dimensions of spin are easier to deal with.
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state is noticed. In the language of quantum mechanics, the initial state|Ψ〉 = |ψ〉⊗ |α〉 is
a product state of the system (|ψ〉) and the environment (|α〉), each of them being pure2. It
is an element of theextended Hilbert spaceHE = HS⊗HA. The advantage of including
the environment into the theoretical description of the system is that one can always find a
unitary operator describing the evolution of the system plus environment (e. g. [NC00, p.
357 ff.]),

|Ψ〉 7→ |Ψt〉 = UE|Ψ〉. (2.1.10)

TheUE can in general not be factorised, i. e. written as a tensor productUE = US⊗UA with
US acting only on the system andUA only on the environment. Only if the coupling between
system and environment vanishes we haveUE =US⊗UA and the system stays in a pure state.
Consequently, in general,|Ψt〉 cannot be factorised either.

“Forgetting” what happened to the environment amounts to “tracing out the environment”
in the quantum mechanical calculus and is denoted by thepartial traceTrA,

TrA
[
|ψ1〉〈ψ2|⊗ |α1〉〈α2|

]
≡ |ψ1〉〈ψ2|Tr[|α1〉〈α2|], (2.1.11)

where Tr denotes the usual trace operation. This definition is made complete by demanding
the linearity of TrA in its arguments.

Given a pure state in the total Hilbert space that has evolvedfrom the initial state accord-
ing to the unitary evolution Eq. 2.1.10,

|Ψt〉 = ∑
i j

ci j |ψi〉⊗ |α j〉 (2.1.12)

the partial trace operation tells us what happens to the state of the system if the environment
is neglected,

TrA
[
|Ψt〉〈Ψt |] = TrA

[
∑
i j ,kl

ci j c
∗
kl |ψi〉〈ψk|⊗ |α j〉〈αl |

]

= ∑
ik

|ψi〉〈ψk|Tr
[
∑
jl

ci j c
∗
kl |α j〉〈αl |

]
= ∑

i jk

|ψi〉〈ψk|ci j c
∗
k j = ρ, (2.1.13)

where it has been assumed that the basis vectors of the ancilla3 (environmental) Hilbert space
|αi〉 are orthonormal.

PΨ, the pure state in the total Hilbert spaceHE, or, more precisely of the operator algebra

2Whether the environment is in a pure state or not is rather a technical question. Literally, it is inconsistent
to speak of environment and denote its state as a pure state since this implies that we know everything about
it and this is in opposition to the terminus “environment”. For a model environment, however, a pure state
approximation will do.

3“Ancilla” and “environment” will be used on equal footing, since it is not necessary to distinguish between
an ancilla system that is usually a second particle of the same kind and an environment with lots of other
particles.
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of the extended Hilbert spaceO(HE) [Haa96], is mapped onto a stateρ ∈O(HS),

TrE : O(HE) 7→ O(HS).

ρ is in general a density operator denoting a mixed state (ρ 6= ρ2). The transition from a pure
to a mixed state represents the loss of information when forgetting about the environmental
degrees of freedom.

The partial trace can be most easily explained on the exampleof a fully entangled state,
|Ψ〉= 1/

√
2(|0〉S⊗|0〉A+ |1〉S⊗|1〉A) ∈HE, where both the system and the ancilla are two-

dimensional with basis states{|0〉, |1〉}, also called aBell-stateafter John S. Bell and his
paper [Bel64] on the Einstein-Podolsky-Rosen paradox [EPR35]. In density matrix notation
the same state reads

|Ψ〉〈Ψ| =1
2
(|0〉〈0|⊗ |0〉〈0|+ |1〉〈1|⊗ |1〉〈1|

+ |1〉〈0|⊗ |1〉〈0|+ |0〉〈1|⊗ |0〉〈1| ∈ O(HE) (2.1.14)

and performing the partial trace over the environmental degrees of freedom means that we
keep only terms with diagonal elements|0〉⊗〈0| or |1〉⊗〈1| in the ancilla. We are left with
a totally mixed state of the system,

ρ = TrA
[
|Ψ〉〈Ψ|

]
=

dimHA

∑
i

A〈i|Ψ〉〈Ψ|i〉A =
1
2
(|0〉〈0|+ |1〉〈1|)∈ O(HS), (2.1.15)

hence, the nametotally entangled state. It can be regarded as if the system is in the state|0〉
with probability one half and with same probability in the state|1〉.

Non-unitary evolution More generally, suppose the system is initially in the state|Ψ〉 =

|ψ1〉⊗|α1〉, or, in density matrix notation,PΨ(0) = |Ψ〉〈Ψ|= |ψ1〉〈ψ1|⊗|α1〉〈α1|. The time
evolution is determined by the unitary operatorUE, and therefore

PΨ(t) ≡ |Ψt〉〈Ψt | = UE|Ψ〉〈Ψ|U†
E. (2.1.16)

Taking the partial trace we find

ρt = TrAPΨ(t) = TrA
[
UE|Ψ〉〈Ψ|U†

E

]
= TrA

[(
UE|ψ1〉⊗ |α1〉

)(
〈ψ1|⊗〈α1|UE

]

= ∑
µ
〈αµ |UE|α1〉ρ〈α1|U†

E|αµ〉

≡ ∑
µ

MµρM†
µ , (2.1.17)

which is called theoperator sum representation[Pre98] orKraus representation[Kra83].
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ρt is in general a mixed state,

ρt = ∑
µ

Mµ |ψ1〉〈ψ1|M†
µ 6= ρ2

t .

The operatorsMµ satisfy the relation∑µ MµM†
µ = 1, which follows from the unitarity ofUE.

But given a specific evolution of the system the choice of theMµ ’s is not unique. One can
choose another bases in the ancilla Hilbert space{|α ′

µ〉} that is unitarily connected to the
|αµ〉, |α ′

µ〉 = V|αµ〉, resulting in different

M′
µ = 〈α ′

µ |UE|α ′
µ〉 = 〈αµ |V†UEV|αmu〉 6= 〈αµ |U |αmu〉 = Mµ .

2.2 Geometric Phase for Mixed States

A geometric phase for mixed states has to fulfil the same criteria as its pure state analogue.
That is, it has to be gauge invariant such that it is not possible to dispose of it by a different
choice of phases of the eigenstates. Furthermore, it must bereparametrisation invariant in
order to be independent of the rate at which the system is transported. It must be a property of
the path in the state of density matrices only. It is not difficult to imagine that things get more
complicated in the mixed state case. Indeed, we will notice that there are several possibilities
to define a mixed state geometric phase that are in general incompatible. Furthermore, the
fact that mixed states have to be represented by matrices instead of vectors leads to non-
abelian, matrix-valued “phase factors”.

I will draw a demarcation line, albeit artificial, between two different kinds of geomet-
ric phases and its connection to mixed states: As indicated in the previous section, when
mentioning mixed states one is automatically lead to questions about decoherence and the
stability of quantum systems under influence of perturbations from the environment. Much
importance is attributed to this issue, especially, when itcomes to quantum information tech-
nology and it is augured that the geometric phase may be more robust compared to e. g. the
dynamical phase. Constructing a quantum gate, say, a phase transformation, one can choose
a unitary operator that yields a particular output state such that the input state is parallel
transported and the transformation is then called ageometric quantum gate. Perturbations
in the gate parameters bring about slightly perturbed pathsand, consequently, different out-
put states dependent on the actual perturbation. The ensemble of output states has to be
described by a mixed state and one is tempted to talk already about a mixed state geometric
phase. However, the measured mixed state phase at the end is in general not a purely geo-
metric phase. It is dependent on the dynamics of the perturbations and may not fulfil some
kind of parallel transport condition, hence, it is rather vague to term the resulting quantity a
geometric phase.

In contrast, in this section I will discuss “genuine” definitions of a mixed state geomet-
ric phase in terms of parallel transports in the space of density operators. The role of the
geometric phase in decoherence will be postponed to Chapter5.
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As in the pure state case, the geometric phase is associated to the path of a state in its
subjacent state space. The prescription how the state has toevolve in order to produce only
a geometric phase is given by theparallel transport law(Eq. 1.2.48). The generalisation
of this parallel transport law to the mixed state case is however not unique. On the one
hand side one can demand the parallel transport of the eigenstates of the mixed state. This
approach is particularly suited for the unitary evolution of an initially non-degenerate mixed
state in an interferometer [SPE+00]. It has has been generalised later to degenerate mixed
states [STB+03] and finally to non-unitary evolutions by a kinematic approach by Tong
et al. [TSKO04]. Besides, Ericssonet al. [ESB+03] – and independently Peixotoet al.
[dFdTPN03] – proposed the extension of the to non-unitary evolutions by introducing an
ancilla Hilbert space and replacing the unitary evolution by a Kraus map [Kra83]4.

On the other hand side, the possibility to represent a mixed state as a vector in a higher
dimensional Hilbert space suggests the definition of a geometric phase via such apurifica-
tion. A rigorous treatise of this approach has been put forward byUhlmann [Uhl86, Uhl95]
and it works for both for unitary and non-unitary processes [TS03]. Another approach taken
by Chaturvedi et al. [CEM+04] uses methods from differential geometry to obtain a mixed
state geometric phase.

We notice, that there is still a large diversity in possible definition of a mixed state geo-
metric phase, however, with respect to off-diagonal generalisations to be presented later I
will mainly focus on the interferometric approach by Sjöqvist [SPE+00] and Uhlmann’s
definition [Uhl86].

2.3 Interferometric mixed state geometric phase

In Section 1 the pure state geometric phase has been defined asthe phase difference between
an initial state|ψi〉 and a final state|ψ f 〉 = U‖|ψi〉 for a parallel transporting unitary map
U‖. An obvious way to test such a phase difference is by means of interferometry, where the
system in one arm is manipulated by the unitary operation denoted byU i and leads to the
intensity

I ∝ 1+ |〈ψi|U i|ψi〉|cos(η +arg〈ψi |U i|ψi〉).
A natural extension to mixed states is to replace the pure input state|ψ〉 by a mixed input
stateρ0, for example a neutron beam with a portionp1 of spin-up polarised anddp2 spin-
down polarised neutrons, and look once more at the phase shift of the interference pattern
(Figure 2.1).

The input stateρ0 = ∑k pk|ψk〉〈ψk| describes the internal state of the incident particle,
e. g. the spin state of the neutron; or the polarisation stateof a light beam. The internal
Hilbert spaceHS is spanned by the vectors|ψk〉, k = 1,2, . . . , dimHS. ApplyingU i – which
acts only onHS like for example a magnetic field interacting with the neutrons’ spin – in one
path and a phase shift operatorUPS(χ) = eiη in the other path the intensityIρ = Tr[POρout]

4Their approaches have the disadvantage that the Kraus representation of a particular map is not unique.
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Figure 2.1: Mach-Zehnder Interferometer with mixed input stateρ0.

of the output state can be calculated. The output state is

ρout = POUBUMUPS(χ)U iUBρ0U
†
BU i†U†

PS(χ)U†
MU†

BPO, (2.3.1)

whereUB represents a beam splitter,UM is a mirror andPO is the projection to the output
beam, taken to be|O〉. Consequently, the output intensityIρ is given by

Iρ ∝ 1+ |Tr(U iρ0)|cos[η −argTr[U iρ0]]. (2.3.2)

One arrives at this equation either by calculating explicitly the density operator in (2.3.1)
or, more intuitively, by summing up all the contributions ofthe different orthogonal state
incoherently,

I = ∑
k

Ik ∝ ∑
k

pk(1+ |〈ψk|U i|ψk〉|cos(η −arg〈ψk|U i|ψk〉). (2.3.3)

(2.3.2) and (2.3.3) are equivalent which can be seen by usingthe harmonic addition theorem
[Wei].

The definition of the mixed state geometric phaseφρ must obviously be associated to
the additional shift argTr[U iρ0] of the intensity pattern. Indeed, for parallel transporting
unitaritiesU i = U‖, the geometric phase for mixed states is defined by [SPE+00]

φρ ≡ argTr[U‖ρ0] = arg

(

∑
k

pkνke
iβk

)
, (2.3.4)

whereνk = |〈ψk|U‖|ψk〉| is the visibility factor andβk = arg〈ψk|U‖|ψk〉 the phase con-
tribution of a single basis state|ψk〉. φρ reduces to the Pancharatnam phase difference
arg〈ψ0|U |ψ0〉 for a pure input stateρ0 = |ψ0〉〈ψ0|.

What is the parallel transport condition in the mixed state case? U‖ has to fulfil the
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parallel transport conditions

〈ψ j |U‖†(t)U̇‖(t)|ψ j〉 = 0, 1 < j < dimρ, (2.3.5)

where the dot denotes the derivative with respect to the continuous parameters of U =

U(s). This means that each eigenstate must be parallel transported, which in turn guarantees
vanishing dynamical phase

φd = −1
h̄

∫ s2

s1

dsTr[ρ(s)H(s)] = −i
∫ s2

s1

dsTr[ρ(s)U†(s)U̇(s)].

Then, the mixed state geometric phaseφρ does not depend on the dynamics but merely
on the geometry of the (open) unitary path in the space of density operators traced out by
ρ(s) = U‖(s)ρ0U‖†(s), s∈ [s1,s2].

Experimental tests of this concept has been carried out using nuclear magnetic resonance
[DZS+03, GK06], photons [EAB+05] and neutrons [KSH+05].

2.3.1 Parallel transport

Equation (2.3.5) denotes the parallel transport conditionimposed on the basis states of the
Hilbert space on which the density operatorρ0 is defined. In contrast to the pure state case
the parallel transport involves the complete set of orthonormal basis vectors. It requires that
the phase difference between two adjacent basis states vanishes. To see the connection to
the pure state parallel transport condition (Eq. 1.2.48) let us formulate the parallel transport
condition in terms of the instantaneous basis|ψk(s)〉=U(s)|ψk〉, whereU(s) is a continuous
one-parameter family{U(s),s∈ [s1,s2]|U(s1) = 1l} of unitarities. U(s) maps any initial
complete orthonormal basis{|ψk〉} of a Hilbert spaceH of dimensionN to a continuous set
of complete orthonormal bases{|ψk(s)〉} of the sameH. Inserting|ψk〉 = U−1(s)|ψk(s)〉 =

|ψk(0)〉 into Eq. (2.3.5) leads to

〈ψk(s)|
(

d
ds

U(s)

)
U†(s)|ψk(s)〉= 0. (2.3.6)

The unitary evolution operatorU(s) stems from the according (time-dependent) Schrödinger
equation and has to fulfil

iU̇(s) = H(s)U(s), (2.3.7)

which entails

〈ψk(s)|H(s)|ψk(s)〉 = ih̄〈ψk(s)|
d
ds

|ψk(s)〉 = 0, ∀k. (2.3.8)

The local accumulation of phase along the unitary path has tovanish for each instantaneous
basis state|ψk(s)〉 in accordance with the pure state parallel transport condition (1.2.48). Any
parallel transporting unitarity is denoted byU‖ in the following. Moreover, an instantaneous
non-degenerate density operator whose eigenvectors coincide with the basis{|ψk(s)〉} is said
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to be parallel transported byU‖ if Eq. (2.3.8) is satisfied.

2.3.2 Gauge invariance

With the condition (2.3.5) the parallel transporting unitarity U‖ is completely specified and
the resulting phase shift in the interference pattern (2.3.2) is purely geometric. However, if
U(s) does not fulfil the parallel transport condition additionaldynamical phase contributions
are accumulated and argTr[U(s)ρ0] is not purely geometric anymore. To construct a gauge
invariant quantity for a general unitary evolution , note, that such a unitary can be multiplied
by an element

gN(s) =
N

∑
n=1

eiθn(s)|ψn〉〈ψn| ∈U(1)×U(1)× . . .U(1)︸ ︷︷ ︸
N

(2.3.9)

from the right. Such a transformation leaves the path of the density matrix invariant
[STB+03],

ρ(s) = U(s)gN(s)ρ0g†
N(s)U(s) = U(s)ρ0U

†(s), (2.3.10)

sinceρ0 is diagonal in the bases{|ψn〉}. Theθn’s are real time-dependent parameters such
thatθn(0) = 0. The unitary

Ũ(s) = U(s)gN(s) = U(s)
N

∑
n=1

eiθn(s)|ψn〉〈ψn| (2.3.11)

can be used to satisfy the parallel transport condition by choosing theθn’s appropriately.
InsertingŨ(s) into Eq. (2.3.5) we obtain the condition

θn(s) = θ‖
n(s) = i

∫ s2

s1

〈ψn|U†(s′)U̇(s′)|ψn〉ds′ (2.3.12)

and

U‖(s) = U(s)
N

∑
n=1

ei
∫ s2
s1 〈ψn|U†(s′)U̇(s′)|ψn〉ds′ |ψn〉〈ψn|. (2.3.13)

The total geometric phaseφρ with the parallel transporting unitaryU‖(s) is

φρ = argTr
[
ρ0U

‖(s)
]
= arg

{
∑
n

pn〈ψn|U(s)|ψn〉eiθn(s)
}

(2.3.14)

which is a gauge invariant property of the path of the densityoperator forθn = θ‖
n . Explicitly,

the mixed state geometric phase is

φg ≡ arg
{

∑
n

[
pn〈ψn|U(s)|ψn〉e−

1
h̄

∫ s
0 ds′〈ψ|U(s′)†U̇(s′)|ψ〉]} (2.3.15)

as proposed by Singhet al. [STB+03] and constitutes the extension of Eq. (2.3.5) to arbitrary
unitarities.
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2.3.3 Degenerate density matrices

For degenerate systems one has to pay attention that in the degenerate subspace the unitary
U can be multiplied with an element of the unitary groupU(K), K being the dimension of
the degenerate subspace, without changing the path ofρ . Indeed, if the eigenvaluespk, k =

1, . . . ,K are degenerate andpi , i = K + 1, . . . ,N are non-degenerate, one can multiply the
unitary evolution operatorU with an additional (unitary) matrix

V(s) =




α(s)
eiβK+1(s)

. . .

eiβN(s)


 . (2.3.16)

V(s) belongs to the product groupU(K)×U(1)×U(1)× . . .U(1) and does not affect the
evolution ofρ(s),

ρ(s) = U(s)ρ0U(s)† = U(s)V(s)ρ0V(s)†U(s)†.

This has to be reflected in the parallel transport condition and in the definition of a func-
tional similar to (2.3.15). To completely determine a parallel transportingU the parallel
transport condition (2.3.5) has to be generalised to

〈ψi |U‖†(s)
d
ds

U‖|ψ j〉 = 0, i, j = 1,2, . . .K, (2.3.17)

〈ψk|U‖†(s)
d
ds

U‖|ψk〉 = 0, k = K +1, . . . ,N. (2.3.18)

Similar to the non-degenerate case the gauge invariant geometric phase is defined by

φg ≡ argTr
[
ρ0U(s)F[U,s2−s1]

]
. (2.3.19)

The functionalF[U,∆s] (∆s≡ s2− s1) can be written in Block diagonal form,F [U,∆s] =

FHK ⊕FHK+1 ⊕FHK+1 ⊕ . . .FHN , where

FHm = 〈ψi |Pexp
(
− 1

h̄

∫ s2

s1

dsU(s)†U̇(s)|ψ j〉, i, j = 1,2, . . . ,dimHm (2.3.20)

if dimHm 6= 1 and

FHm = exp
{
− 1

h̄

∫ s2

s1

ds〈ψi|U(s)†U̇(s)|ψ j〉
}

(2.3.21)

otherwise [STB+03]. This functional defines the geometric phase even for degenerate mixed
states.

37



UHLMANN HOLONOMIES

2.3.4 Non-unitary evolution

The generalisation to non-unitary evolution has been addressed in Refs. [ESB+03,
dFdTPN03] in terms of Kraus operators, but it may yield different values of geometric phase
when using different Kraus representations. Tonget al. [TSKO04] resolved this ambiguity
by defining a geometric phase based on the path

C : s∈ [s1,s2] 7→ ρ(s) =
N

∑
k=1

pk(s)|ψk(s)〉〈ψk(s)|. (2.3.22)

The non-unitary nature of the evolution is expressed by the time-dependent eigenvaluespk(s)
of the mixed stateρ(s). In brief, the geometric phase is found by taking the purification of
ρ(s),

|Ψ(s)〉 =
N

∑
k=1

√
pk(s)|ψk(s)〉⊗ |ak〉

to the pure state|Ψ(s)〉 ∈ HS⊗HA in the extended Hilbert space. The phase difference of
the initial and final purification defines the geometric phase(for V‖ parallel transporting the
basis states)

arg〈Ψ(s1)|Ψ(s2)〉 = arg

(
N

∑
k=1

√
pk(s1)pk(s2)〈ψk(s1)|V‖(s2)|ψk(s1)〉

)
.

2.4 Uhlmann Holonomies

Uhlmann’s approach is somewhat different to Sjöqvist’s definition of a mixed state geometric
phase in that in some way physical intuition is replaced by mathematical rigour. Uhlmann’s
approach is slightly more general, because its basic definition does not distinguish between
unitary and non-unitary evolution, as opposed to the original interferometric definition in
Eq. (2.3.4), but its operational meaning is not as straightforward. The main difference is that
Uhlmann defines not only a geometric phase factor, but non-abelian holonomy invariants
represented by matrices instead of complex numbers. In brief, Uhlmann [Uhl76, Uhl86,
Uhl93] proposed a phase holonomy for paths of density operators utilising a purification
scheme of mixed into pure states obtained via a certain parallelity condition. The idea is to
purify each quantum state, either pure or mixed, to a pure state in an extended Hilbert space.
This purification can be represented by an (Hilbert-Schmidt) operator in the extended space
and is called anamplitude. To each path of density operators a corresponding path of the
amplitudes can be constructed which projects down to the original path. The exceptional
choice of a path of amplitudes by imposing the parallel transport condition leads to a unique
path in the extended Hilbert space which is a property only ofthe path of the states and
serves to define aholonomy invariant.
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2.4.1 Construction of amplitudes

Let us try to construct these amplitudes that represents thestates as operators in a higher
dimensional Hilbert space starting from pure states and consequently generalising these to
mixed states.

The elements of projective Hilbert space (P) have the form of projection operators.Pψ ≡
|ψ〉〈ψ| ∈ P represents all stateseiα |ψ〉 ∈ H with real α. Or, the other way round,W =

eiα0|ψ〉 is a possibleamplitudeof the state operatorPψ since a multiplication ofW and its
daggered versionW† leads back to the state operator,

WW† = eiα0|ψ〉〈ψ|e−iα0 = |ψ〉〈ψ|.

By relaxing the condition thatPψ is a projection operator satisfyingP2 = P the state space is
extended to mixed states. These are nothing else than linearcombinations ofP′s,

ρ = ∑
i

aiPψi (2.4.1)

with ai ∈ R and∑i ai = 1. We can immediately see thatρ2 6= ρ and that the amplitudeW of
ρ is not simply a sum of kets multiplied by an arbitrary phase factor. The latter can easily be
verified by trying the converse and making the ansatzW′′′ = ∑i bi |ψi〉, bi ∈ C, and multiply
with its adjointW′′′† = ∑ j b

∗
j 〈ψ j |,

W′′′W′′′† = ∑
i, j

bib
∗
j |ψi〉〈ψ j | = ∑

i
|bi|2|ψi〉〈ψi |+ ∑

i 6= j

bib
∗
j |ψi〉〈ψ j |. (2.4.2)

If the off-diagonal terms vanished this quantity would resemble the original mixed stateρ .
But the off-diagonal terms|ψi〉〈ψ j | vanish in general only if all but onebi vanish and this
is true only for pure states. In this case the choice ofb1 =

√
a1eiα0 yields the pure state

ρ = a1Pψ1. So, this ansatz works only for pure states and their purifications.
To remedy this defect we can choose another form of the amplitude,

W′′ = ∑
i

ai|ψi〉⊗〈φi|. (2.4.3)

We have simply added another other Hilbert spaceHA of same dimensionality as the systems
Hilbert spaceHS, theancillaHilbert space, with an orthonormal set of basis vectors〈φ j |. The
amplitudeW′′ is therefore an operator acting on the extended Hilbert spaceHE = HS⊗HA.
This procedure is calledpurification, and it can be shown that every stateρ ∈ Ω(H) has
an extension to an operator acting onHE which is pure if the dimension ofHA is at least
the same as dimHS. This is the mathematical expression for the fact that an open system
where the environmental interactions cannot be neglected is embedded into a larger system
comprising also the environment. The subtle difference to the usual purification is that here
the density operators are purified again by a operator valuedquantity instead of a pure state
vector, but these descriptions are equivalent as shown in [Uhl91b].
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The result justifies this slight complication in (2.4.3): Forming the quantityW′′W′′† we
obtain

W′′W′′† = ∑
i, j

aia
∗
j (|ψi〉⊗〈φi|)

(
〈ψ j |⊗ |φ j〉

)

= ∑
i, j

aia
∗
j |ψi〉〈ψ j |⊗〈φi|φ j〉︸ ︷︷ ︸

δi j

= ∑
i
|ai|2|ψi〉〈ψi|. (2.4.4)

The only remaining flaw is the square modulus of the coefficients, which can be corrected
by taking the square root of theai to get an amplitude ofρ ,

W′ = ∑
i

√
ai|ψi〉⊗〈φi |. (2.4.5)

Extracting the square root is admissible since theai have to be real according to the require-
ments on a mixed state (Eq. 2.1.5). Furthermore, a multiplication by a unitary matrix is
admissible since it does not alter the stateρ ,

WW† = W VV†
︸︷︷︸

1

W†.

The unitaryV reflects the additionalgaugedegree of freedom similar to the total phase factor
eiα0 from the pure state example. The general form of an amplitudeis consequently

W = ∑
i

√
ai|ψi〉⊗〈φi|V, (2.4.6)

with V denoting a unitary operator. In fact,V is a partial isometry [RS80] defined on the
subspace spanned by the〈φi | in the ancilla Hilbert space, but we will assumeV to be unitary
unless otherwise noted since we take only density matrices of full rank into account at the
moment.

2.4.2 Parallelity of states

Until now we have just defined an operator purifying the stateof a quantum system. In
previous discussions we have learnt that some kind of parallel transport condition is crucial
to obtain a notion for an holonomy invariant like the geometric phase. The freedom which is
left in the amplitude is the unitaryV. It can be used to define a parallel transport condition
for the amplitudes by clarifying the question howV has to be chosen for two neighbouring
statesρ1 andρ2 and their belonging amplitudesW1 andW2.

The parallel transport condition in Section 1.2.3, Eq. (1.2.48) already demonstrated a
possible way in that neighbouring states|ψ1〉 and|ψ2〉 are required to bein-phase, i. e. their
scalar product〈ψ1|ψ2〉 shall be purely real. For the amplitudesW a similar condition can be
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stated which relies on the transition probability of mixed states. Since we have already seen
that any mixed state can be represented by a pure state in a larger system the first guess is
to define the transition probability tprob(ρ1,ρ2) = |〈φ1|φ2〉|2, where the|φi〉 are purifications
of the ωi . In terms of amplitudes this translates to

(
Tr[W†

1W2])
2. This number, however,

depends on the choice of the purificationW1 andW2, since

Tr[W̃†
1W̃2] ≡ Tr[(W1V1)

†W2V2] = Tr[W†
1W2V2V

†
1 ] 6= Tr[W†

1 W2].

Uhlmann defines the transition probability by the supremum over all possible purifications
[Uhl76] W̃1, W̃2 of ρ1, ρ2,

tprob(ρ1,ρ2) ≡ suptprob(W̃1,W̃2) (2.4.7)

A parallel purification is then given by the pair of amplitudesW1 andW2 which purify ρ1

andρ2 and for which the supremum in Eq. (2.4.7) is attained.

An explicit expression is obtained by writing thepolar decompositionof the amplitudes,
Wi =

√ρiUi. In fact, any (non-singular) operatorA can be decomposed uniquely into a Her-
mitian |A| and a unitaryU factor,A = |A|U . This extends the common polar decomposition
of a complex numberr = |r|eiargr to operator valued quantities. The modulus|A| is defined
by |A| =

√
AA† [RS80], and the square root operation is defined by taking thesquare roots

of the eigenvalues,
√

A = (∑i ai |αi〉〈αi|)1/2 = ∑i
√

ai |αi〉〈αi|, in the diagonal basis. This is
unambiguous sinceAA† is real and positive5 possessing real and positive eigenvalues. Using
the polar decomposition the transition probability is

tprob(W1,W2) =
(

Tr
[√

ρ1
√

ρ2U2U
†
1

])2
=
(

Tr
[
|√ρ1

√
ρ2|UU2U

†
1

])2
, (2.4.8)

where the polar decomposition
√ρ1

√ρ2 = |√ρ1
√ρ2|U has been used. Now the product of

unitary operators is again unitary and can therefore not exceed the value of one in operator
norm. Consequently, the supremum is reached if

tprob(ρ1,ρ2) =
(

Tr |√ρ1
√

ρ2|
)2

=
(

Tr(
√

ρ2ρ1
√

ρ2)
1/2)2

. (2.4.9)

Demanding that two adjacent states are in-phase, translates to the requirement that the
product of unitary operators in (2.4.8) is the identity operator. In terms of the amplitudes
this is equivalent (for a proof see [Uhl76]) to require that for two amplitudesW1 andW2 the
productW†

1 W2 is Hermitian and positive,

W†
1W2 = W†

2W1 ≥ 0. (2.4.10)

5AA† is Hermitian due to(AA†)† = AA† and positive due to〈ψ |AA†|ψ〉 = 〈A†ψ |A†ψ〉 = ‖|Aψ〉‖2 ≥ 0.
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Example of two parallel amplitudes Given two statesρ1 and ρ2, what are the corre-
sponding parallel amplitudes?ρ1 is purified by the amplitudeW1 = ρ1/2

1
6, where we have

setU1 = 1 without loss of generality. The initial unitary is irrelevant for the question of par-
allelity. Forρ2 the requirement ofUU2U

†
1 = 1 from Eq. (2.4.8) and the choiceU1 = 1 leads

toU = U†
2 and eventually

U2 = ρ1/2
2 ρ1/2

1 (
√

ρ2ρ1
√

ρ2)
−1/2

due toρ1/2
2 ρ1/2

1 = |√ρ1
√ρ2|U . Consequently, the parallel amplitude isW2 =

√ρ2U2 =

ρ−1/2
1 (

√ρ2ρ1
√ρ2)

1/2 where the unitarity ofU2 (U−1
2 = U†

2 →U2 = (U†
2)−1) has been used.

2.4.3 Parallel transport

With the help of the instructions how to build parallel amplitudes for two given states also a
parallel transport from one state to another along a given path can be constructed. Let

C : s∈ [0,1] 7→ ρs (2.4.11)

be a path of density operators. Alift of C is a path

Ĉ : s∈ [0,1] 7→Ws (2.4.12)

such thatρs = WsW†
s with amplitudeWs = ρ1/2

s Vs for eachs. The unitary “phase” factors
Vs serve to define a parallel transport via the pathĈ in extended Hilbert space. Taken each
amplitude for itself the choice ofVs is arbitrary since the projection mapWiW

†
i is invariant

under a change of theVi . The lifted pathĈ is not unique, by a local gauge transformation
another path

Ĉ′ : s 7→WsYs, 0≤ s≤ 1, Ys unitary,

is obtained that is also a valid lift ofC. Invoking the parallel transport condition (2.4.10) in
its infinitesimal version,

W†
s dWs = dW†

s Ws, (2.4.13)

the unitaryVs is determined by the adjacent amplitudeWs−ds for eachs.

The task is to find a quantity that is an invariant property of the pathC in projective
Hilbert space. Such a quantity is realised by the so calledBargmann invariant(c. f. Refs.
[Bar64, MS93] and Section 1.2.4) defined via a sequence of scalar products.

∆n(ψ1,ψ2, . . . ,ψn) ≡ 〈ψ1|ψ2〉〈ψ2|ψ3〉 . . .〈ψn|ψ1〉 (2.4.14)

denotes then-vertex Bargmann invariant which is a property of the path inray space since it

6Note the slight abuse of notation sinceW1 = ∑k
√

ak|ψk〉⊗ 〈φk| is a map from the ancilla Hilbert space to

the system Hilbert space in contrast toρ1/2
1 = ∑k

√
ak|ψk〉〈ψk| which acts only in the system’s space.
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is invariant under an individual U(1) gauge transformationof each constituent state|ψi〉 7→
|ψ ′

i 〉 = eiαi |ψi〉. Consider now a subdivisions ofC into m+ 1 fractions by discretising the
parameters, 1> s1 > s2 > .. . > sn > 0. To each point there is a specific stateρsi along with
its amplitudeWsi . Similar to then-vertex Bargmann invariant the product of the amplitudes
can be formed,

ξ = (W1,Ws1)(Ws1,Ws2) . . .(Wsn,W0) (2.4.15)

with the definition of the scalar product of Hilbert Schmidt operators,

(W1,W2) ≡ Tr
[
W†

1W2
]
. (2.4.16)

The gauge transformationξ 7→ ξ̃ byWj 7→WjYj yields a different path, while for a unique
lift of the original pathC the parallelity condition (2.4.10) or equivalently|(Wi+1,Wi)| =

Tr(ρ1/2
i ρi+1ρ1/2

i )1/2 from (2.4.9) has to be imposed on each scalar product. This isin turn
equivalent to find a gauge whereξ is maximal. The remaining arbitrariness is in a re-gauging
Wi 7→ ε jUWi by a numberε j of modulus one and a global unitaryU . A gauge invariant
quantity can then be formed by multiplication of a factor(W0,W1) to ξ ,

ξ 7→ ξ (W0,W1) = (W1,Ws1)(Ws1,Ws2) . . .(Wsn,W0)(W0,W1).

Refining the subdivisions one obtains a gauge invariant linear form,

lim
n→∞

ξ (W0,W1). (2.4.17)

In this limit all of the scalar products are real due to the parallel transport condition in its
infinitesimal version(W,dW) = (dW,W) and, furthermore, all of them have to attain their
maximum to give maximalξ which is unity (for infinitesimally close states). The remaining
term defines theUhlmann phase

νC ≡ arg(W0,W1) = argTrW†
0 W1 = argTrρ1/2

0 ρ1/2
1 V1V

†
0 . (2.4.18)

The quantityV1V
†
0 generalises the geometric phase difference of pure states.The former

belongs to the group ofU(n) matrices wheren is the rank of the density matrix whereas the
latter is merely a unimodular number element ofU(1).

In terms of the amplitudes theholonomy invariantis a matrix valued quantity that just
depends on the path of the density matrix,

XC ≡W1W
†
0 . (2.4.19)

and from which the phaseνC = argTrXC can be deduced.
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Berry’s phase factor

For a path of pure statesρs = |ψs〉〈ψs|, Ws is given byWs = |ψs〉⊗〈a|eiαs ∈H⊗H∗, where
a can be any element of the dual Hilbert spaceH∗ and does not have to be path dependent.
The Hilbert Schmidt scalar product between two adjacent purifications

Tr
[
W†

s
d
ds

Ws
]

= Tr
[
e−iαs|a〉〈ψs|

d
ds

(
|ψs〉〈a|eiαs

)]

= 〈ψs|
d
ds

|ψs〉+ i
dαs

ds
(2.4.20)

From the normalisation of|ψs〉 it follows that〈ψs| d
ds|ψs〉 is purely imaginary. However, the

parallel transport condition states that the trace has to bereal and we therefore obtain that
dαs/ds= i〈ψs| d

ds|dψs〉. The phaseα1 of the amplitude of the final state is determined by the
integral

α1 = i
∫
〈ψs|

d
ds

|ψs〉ds−α0 (2.4.21)

and yields (withα0 = 0) the holonomy invariant

XC = W1W
†
0 = |ψ0〉〈ψ1|ei

∫ 〈ψs| d
ds|ψs〉ds. (2.4.22)

The argument of its traceν = argTr
[
W1W

†
0

]
= i
∫ 〈ψs| d

ds|ψs〉ds is equal to Pancharatnam’s
relative phase factor.

2.4.4 Hamiltonian motion

In order to discuss the “all-time highlight”, a spin-1/2 particle in a magnetic field using
Uhlmann’s formalism an evolution governed by Schrödinger’s equation will be examined in
the following [Uhl93]. The time evolution of the density operator is given by theLiouville-
von Neumannequations with the (in general time-dependent) Hamiltonian

ih̄ρ̇ = [H(t),ρ]. (2.4.23)

As an evolution equation of the lifted path we can write

ih̄Ẇ = H(t)W−WH̃(t) (2.4.24)

which can be considered as a kind of Schroedinger equation

ih̄Ẇ = Hext(t)W with Hext(t) = (LH −RH̃), (2.4.25)

whereLHW ≡ HW and RH̃W ≡ WH̃. The strange form of the Hamiltonian acting once
from the left and once from the right is due to the use of the dual Hilbert space for the
representation of the amplitudes inHext =H⊗H∗, i. e. the Hamiltonian is split into a tensor
productH = H ⊗ H̃, whereH acts as usual on|ψ〉 ∈ H, butH̃ on 〈φ | ∈ H∗.
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The discussion is simplified by taking a time-independent HamiltonianH(t) = H, where
the formal solution readsρt = U(t)ρ0U†(t) with U(t) = e−

i
h̄tH and the corresponding solu-

tion for W(t) reads [Uhl91a]

W(t) = U(t)ρ1/2
0 V(t) with V(t) = e

i
h̄tH̃ . (2.4.26)

The gauge invariant quantity of the curvet 7→WtW
†
0 that depends only onρt can be written

as
U(t)ρ1/2

0 V(t)ρ1/2
0 .

The parallelity of the liftWt demands the hermiticity ofW† dW
dt ,

V†ρ1/2
0

[
− i

h̄
H

]
ρ1/2

0 V +V†ρ0

[
i
h̄

H̃

]
V =

[
− i

h̄
H̃

]
V†ρ1/2

0 V +V†ρ1/2
0

[
i
h̄

H

]
ρ1/2

0 V

which simplifies to
2ρ1/2

0 Hρ1/2
0 = ρ0H̃ + H̃ρ0. (2.4.27)

If ρ0 is non-degenerate, i. e. all of its eigenvalues are non-zero, this equation defines̃H. For
degenerateρ0 one may require

〈ψ|H̃|ψ〉 = 0 if ρ0|ψ〉 = 0. (2.4.28)

Explicitly, we find for aρ0 = ∑mλm|ψm〉〈ψm| given in terms of eigenvalues and -vectors

H̃ = ∑
m,n

2
√

λmλn

λm+λn
〈ψm|H|ψn〉|ψm〉〈ψn|. (2.4.29)

Neutron in magnetic field If the neutron’s spin is initially perpendicular to the stationary
magnetic field pointing, e. g., in the positivey-direction, the state is denoted byρ0 = |z+〉〈z+
| as the eigenstate of the Pauli spin matrixσz and the Hamiltonian is given byH = − h̄ωy

2 σy

(ωy = 2µnB/h̄). The evolution operator

U(t) = exp

[
− i

h̄
tH

]
=

(
cosωyt

2 sinωyt
2

−sinωyt
2 cosωyt

2

)

is parallel transporting the initial state and we expectV = exp[itH̃/h̄] = 1. Indeed we can
calculateH̃ via (2.4.29) and see that all components are vanishing. ThereforeV = 1.

The holonomy invariantW(t)†W(0) = U(t)ρ1/2
0 V(t)ρ1/2

0 is given by U(t)|z+〉〈z+

|1l|z+〉〈z+ | and the geometric phase can be calculated by looking at the argument of the
trace of this expression, i. e.

γ = argTr[U(t)|z+〉〈z+ |1l|z+〉〈z+ |] = arg〈z+ |U(t)|z+〉,
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which is 0 orπ in this case as expected.

Suppose we have a non-parallel transporting HamiltonianH = − h̄ωn
2 ~n ·~σ , where~n =

(sinθ ,0,cosθ)T is some unit vector lying in thex-z plane. From (2.4.29) we conclude that
the off-diagonal elements of̃H vanish since onlyλ1 6= 0. From (2.4.28) we find̃H22 = 0.

The only element left is̃H11 = h̄ωn
2 cosθ and therefore,

V = exp

[
i
h̄

tH̃

]
= ei ωnt

2 cosθ |z+〉〈z+ |.

The geometric phase follows as above from the functional (2.4.18)

γ ≡ νC(1) = argTr[U(t)|z+〉〈z+ |V|z+〉〈z+ |] =
ωnt
2

cosθ +arg[cos
ωnt
2

− i cosθ sin
ωnt
2

]

=
ωnt
2

cosθ −arctan[tan
ωnt
2

cosθ ] (2.4.30)

and – lo and behold – we end up with the usual expression for thegeometric phase which
equals minus half of the solid angle,γ = −Ω/2, enclosed by the path traced out by the pure
state.

Mixed states Things get more interesting if we take a mixed instead of a pure state.
A step further is to look at the Uhlmann holonomy for a non-unitary evolution as it has
been carefully worked out by Tidström and Sjöqvist [TS03] with reference to Hübner
[Hüb93]. Here, however, we stick to a simple unitary examplewhen the initially mixed
stateρ0 = 1+r

2 |z+〉〈z+ |+ 1+r
2 |z−〉〈z− | evolves toρt = U(t)ρ0U†(t). ForU(t) we make

the same choice as above, viz., a magnetic field in some direction~n = (sinθ ,0,cosθ)T with
Hamiltonian

H = − h̄ωn

2
~n·~σ = − h̄ωn

2

(
cosθ sinθ
sinθ −cosθ

)
.

According to Eq. (2.4.29),̃H is

H̃ = 〈z+ |H|z+〉|z+〉〈z+ |+ 〈z−|H|z−〉|z−〉〈z−|
+
√

1− r2(〈z+ |H|z−〉|z+〉〈z−|+ 〈z−|H|z+〉|z−〉〈z+ |)

= − h̄ωn

2

{
cosθ

(
|z+〉〈z+ |− |z−〉〈z−|

)

+
√

1− r2
(

sinθ |z+〉〈z−|+sinθ |z−〉〈z+ |
)}

. (2.4.31)

In terms of Pauli matrices

H̃ =
h̄ωn

2

{√
1− r2sinθσx +cosθσz

}
. (2.4.32)
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Introducing the unit vector~n′ = (
√

1− r2sinθ ,0,cosθ)T/α, α = (
√

1− r2sin2 θ) we find

V = e
i
h̄H̃t = e

i
h̄

αωnt
2 ~n′·~σ = 1lcos

αωnt
2

+ i~n′ ·~σ sin
αωnt

2
.

The holonomy invariantX = U(t)ρ1/2
0 V(t)ρ1/2

0 can then be calculated explicitly although
yielding a rather lengthy expression [ESB+03]. Here we just note that Uhlmann’s phase
argX has a different structure thanφρ , the interferometric mixed state geometric phase, due
to the appearance ofV(t). Due to the different parallel transport conditions the geometric
phases from Sjöqvist and from Uhlmann are in general different, for non-degenerateρ0 it is
only in the case whereV(t) = 1l that argTrX reduces toφρ = argTr

[
U(t)ρ0

]
. Its argument

is then equal to the interferometric mixed state geometric phase. However,V(t) is only the
identity if H = 0 which implies thatH must be zero, if allλm’s are non-vanishing and we
have neither an evolution in the ancilla nor in the system.
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Chapter 3

Off-diagonal Geometric Phases

Now that we have discussed different manifestations and extensions ofBerry’s or rather
Pancharatnam’sphase (Section 1) for pure states in different kinds of evolutions (adiabatic,
non-adiabatic, noncyclic, non-unitary, . . . ) and also geometric phase definitions for mixed
states (Section 2) it appears on the agenda to look at their nodal points. These are points
where the relative phase between two states - either pure or mixed - is not well defined. A
first account on this subject has been given by Bhandari in [Bha91, Bha97] for pure states
and by the same author also for the interferometric mixed state geometric phaseφρ (Section
2.3) [Bha02]. Generally speaking, if initial and final stateare orthogonal to each other no
relative phase can be defined. Naturally, this lead to the idea of anoff-diagonal geometric
phaseby Manini and Pistolesi [MP00] and for non-adiabatic evolutions by Mukundaet al.
[MACS01] which is well-defined for orthogonal states. Instead, it is undefined for a cyclic
evolution, if initial and final state only differ by a phase factor. The synthesis of the latter
and the mixed state geometric phase leads to a universal notion comprising the pure state
diagonal and off-diagonal as well as the mixed state geometric phase as limiting cases. We
distinguish between a version based on the Sjöqvist’s interferometric approach presented in
Section 3.2 and an extension of Uhlmann’s definition (Section 3.3).

3.1 Pure state off-diagonal geometric phase

As it has been pointed out in the discussion of Pancharatnam’s phase difference between two
state vectors arg〈ψ|φ〉, this quantity is undefined for|ψ〉 ⊥ |φ〉 (Figure 3.1). For example,
a curve is traced out in parameter space by the initial state|ψ j(s1)〉 under the influence
of the adiabatically changing HamiltonianH(s) which has (non-degenerate) eigenvectors
|ψ j(s)〉, j = 1, . . . ,dimH at all values of the parameters∈ [s1,s2]. In the particular case where
the jth eigenstate|ψ j(s1)〉 evolves adiabatically to another eigenstate ofH(s1), |ψ j(s1)〉 →
|ψ j(s2)〉 = eiα |ψk(s1)〉 ( j 6= k), the scalar product〈ψ j(s1)|ψ j(s2)〉 vanishes,

〈ψ j(s1)|ψ j(s2)〉 = eiα〈ψ j(s1)|ψk(s1)〉 = 0, (3.1.1)
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?

Pi

P
f�� 
 ⊥ Pi

θ=π

Figure 3.1: For orthogonal states the geometric phase is undefined since the initial state
Pi = |ψi〉〈ψi| is orthogonal to the final statePf = |ψ f 〉〈ψ f |. Their scalar product〈ψ f |ψi〉
vanishes.

if the eigenstates ofH(s1) are mutually orthogonal (which is true for HermitianH). The only
phase information left is in the cross scalar product〈ψ j(s1)|ψk(s2)〉 ( j 6= k).

Assuming a unitary operatorU‖ parallel-transportingall |ψk(s1)〉 to |ψk(s2)〉 =

U‖|ψk(s1)〉 along the pathsC j : s 7→ |ψ j(s)〉 in Hilbert space the phase factors of the off-
diagonal elements ofU‖ are given by

σ jk ≡ M(U jk) = M[〈ψ j(s1)|U |ψk(s1)〉] = M[〈ψ j(s1)|ψk(s2)〉], (3.1.2)

with M(z) ≡ z
|z| . Theσ jk’s are well-defined phase factors whenever|ψk(s2)〉 = eiα |ψ j(s1)〉

(α real), thus, ifU‖ acting on an eigenstate ofH produces an orthogonal eigenstate multiplied
by a phase factor.

Unfortunately, theσ jk’s are not invariant under aU(1) gauge transformation like

|ψ j(s)〉 → eiφ j(s)|ψ j(s)〉. (3.1.3)

They transform like
σ jk → σ jk exp i[φk(s1)−φ j(s1)], (3.1.4)

hence,σ jk is arbitrary, i. e. non-measurable. An invariant quantity consisting ofσ jk’s can be
found by combining two of them:

γ jk ≡ σ jkσk j. (3.1.5)

γ jk is determined by the trajectoriesC j andCk of |ψ j〉 and|ψk〉, respectively. Furthermore it
is invariant under the gauge transformation (3.1.3) and consequently measurable.

Geometric interpretation For γ jk a nice geometric visualisation can be constructed as
depicted in Figure 3.2: As already pointed out above the geometric phase difference can
be build up of the phase difference acquired by the parallel evolution of a state|ψ(s1)〉 to
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Figure 3.2: Geometric interpretation of the off-diagonal geometric phaseγ jk.

|ψ(s2)〉 and the phase factor achieved by transporting the final state|ψ(s2)〉 back to the initial
state|ψ(s1)〉 on a geodesic line. Consider now two states| j(s)〉 and|k(s)〉 evolving alongC j

andCk (in the projective Hilbert spaceP) from s1 to s2. Three possibilities to achieve closed
loops consisting of theC’s and geodesic pathsG emerge:

(i) C j +G j j ,

(ii) Ck +Gkk,

(iii) C j +G jk +Ck +Gk j.

(i) and (ii) give the usual geometric phase factorsφ j
g andφk

g respectively, the third loop (iii)
corresponds to the off-diagonal geometric phaseγ jk. Having this picture in mindγ jk can like
before be computed as a surface integral of a two-form, whereas the surface is bounded by
the loop (iii).

This approach also explains, why in a two-level system the off-diagonal geometric phase
has to beπ for all U ∈ U(2) parallel-transporting| j(s1)〉 to | j(s2)〉; a result that has been
experimentally verified in neutron interferometry [HLB+01, HLB+02]. Representing these
states as points on the Bloch sphere, the loop consisting ofC j +G jk + Ck +Gk j encloses a
half-sphere for every unitary rotation. This is obvious forthe simple case of a single rotation
about any axis perpendicular to thezaxis (assuming that the initial Bloch vector points in the
positive z-direction) (Figure 3.3(a)): Independent of therotational angle the loop is closed
to the orthogonal state, i. e. to the “south”-pole of the sphere, and because the orthogonal
vector evolves exactly in the opposite way the loop enclosesa half-sphere, thus the solid
angleΩ = 2π and the phase isγ↑↓ = 1

22π = π . But the same results holds for any path
parallel transporting| j(s1)〉 to | j(s2)〉 and |k(s1)〉 to |k(s2)〉 by the same reasoning (Figure
3.3(b)): the states| j(s)〉 and|k(s)〉 behave exactly contrarily, the solid angle enclosed by the
sum of the paths (C j +G jk + Ck +Gk j) does not change and consequently the off-diagonal
geometric phase is always equal toπ .

Generalisation Instead of taking only the evolution of two orthogonal eigenstates of a
HamiltonianH into consideration the same concept can be generalised ton orthonormal
eigenstates|ψ j(s)〉 of a HamiltonianH. Any cyclic product ofσ ’s is then gauge invariant

51



OFF-DIAGONAL GEOMETRIC PHASE FOR MIXED STATES

Ω
 =

 2
π

Cj

C
k

G
kj

Gjk

|j(s)〉

|j(s

)〉

|k(s

)〉

|k(s)〉

Ω
 =

 2
π

C
j

Ck

Gkj

G
jk

|j(s

)〉

|j(s

)〉

|k(s

)〉

|k(s

)〉

Figure 3.3: Bloch sphere picture of the off-diagonal geometric phaseγ jk for a qubit. γ jk is
alwaysπ since the evolution of the| j(s)〉 state is always mimicked by the|k(s)〉 state and
vice versa so that the enclosed surface area is always same.

under the transformation (3.1.2). The definition (3.1.3) can be extended by defining

γ(l)
j1 j2 j3... j l

≡ σ j1 j2σ j2 j3 . . .σ j l−1 j l σ j l j1. (3.1.6)

For l = 1 this reduces to the diagonal geometric phase factorφ j
g, for l = 2 we get the quantity

γ jk (3.1.5) describing the off-diagonal geometric phase. Forl > 2 more complex off-diagonal
phase relations between eigenstates can be described.

3.2 Off-diagonal Geometric Phase for Mixed States - Inter-
ferometric approach

What about the mixed state geometric phase? Is it always welldefined or are there simi-
lar situations as in the pure state case and is it possible to take an alternative quantity for
such nodal points to learn something about the subjacent state space. As Bhandari already
noted there are situations where in an interference experiment the contrast between the two
sub-beams vanishes also if the input state is mixed [Bha02] and it is explained in the fol-
lowing how to construct and also how to measure an off-diagonal version of the mixed state
geometric phase that is well-defined at these nodal points [FS03b, FS03a, SF03].

3.2.1 Orthogonality

For pure states the Hilbert space scalar product,〈ψ|φ〉, is used to define orthogonality. Van-
ishing scalar product denotes orthogonal states, for example, two non-overlapping Gaussian
states or two anti-parallel spin states are orthogonal. In the mixed state case there is no well-
established notion of orthogonality. It is not clear per se what is the equivalent to the scalar
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product between pure state vector.

Trace distance In a first guess one could take thetrace distance[NC00] between two
density matrices as a measure for orthogonality. It is defined by

dT(ρψ ,ρφ ) ≡ Tr |ρψ −ρφ |, |X| ≡
√

X†X (3.2.1)

which defines a metric on the space of quantum states with 0≤ dT ≤ 2 [GLN05]1. The
maximum distance ofdmax

T (ρψ ,ρφ ) = 2 is, however, only reached for orthogonal pure states,
since Tr[ρψ ,ρφ ] = 0 must hold2. Explicitly, positivity implies that given a certain stateA it
is in general not possible to find a stateB which is at maximal distance (Tr[AB] = 0):

Tr[AB] = Tr[(∑
i

αi|ai〉〈ai|)(∑
jk

β jk|a j〉〈ak|)] = ∑
i

αiβii > 0,

unless the diagonal entriesβii of the matrixB vanish. But this is impossible ifB denotes a
valid density matrix with Tr[B] 6= 0. Only if A has not full rankB can be chosen such that
Tr[AB] = 0. B must “live” in a different subspace of state space and must not be of full rank
either.

Hilbert-Schmidt distance Another choice could be theHilbert-Schmidt distance, which
is defined slightly different, viz.

dHS(ρ,ρ⊥) ≡
√

Tr[(ρ −ρ⊥)2] =
√

2−2Tr[ρψρφ ], (3.2.2)

where the last equality follows from the normalisation of the ρ ’s. Furthermore, from the
positivity of theρ ’s it follows thatdHS(ρψ ,ρφ ) is always less or equal than 2, whereas the
maximum is reached again just for orthogonal pure states dueto the same reasons as above.

Bures distance A third option is theBures distance[Bur69] being a worst case measure
of distinguishability betweenρ andρ ′ [Joz94]. The distance between two states is in this
metric defined by

dB[ρψ ,ρφ ] = 2

√
1−Tr

√√
ρψρφ

√
ρψ . (3.2.3)

The Bures distance is according to Uhlmann [Uhl76] connected to thetransition probability
between mixed states. In the previous chapter we have already derived (c. f. Equation 2.4.9)
that the Hilbert- Schmidt-norm in the space of purificationsof density operators induces a
norm on the space of density operators itself which is connected to the Bures distance above.

1The factor 1/2 is skipped in our definition to fit to the subsequent distance measures.
2From |ρψ −ρφ | = (ρ†

ψρψ + ρ†
φρφ −ρ†

ψρφ −ρ†
φρψ)1/2 and noting thatρψ andρφ are positive we observe

that the last two terms must vanish to achieve a maximum.
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Interferometric orthogonality All of them have in common that for general density ma-
trices the maximum distancedmax= 2 is not reached. In order to define an orthogonal state
ρ⊥ for a givenρ we have to be content with aρ⊥ that maximises any of these distance.
We will see later on that this is possible for the qubit case (two-dimensional Hilbert space),
however, in higher dimensions this becomes a tedious task and a simpler definition of or-
thogonality is highly wanted. In the spirit of Pancharatnamthe interference between two
states provides the clue to a possible solution: Let us first recall the interferometric setup
where two unitarily connected pure states,|ψ〉 and|ϕ〉 = U |ψ〉, are brought to interference.
Assuming further, that|ψ〉 is exposed to the variableU(1) shift eiη , the resulting interference
pattern is determined by the intensity

I ∝
∣∣∣eiη |ψ〉+ |ϕ〉

∣∣∣
2
= 2+2

∣∣〈ψ|ϕ〉
∣∣cos

[
η −arg〈ψ|ϕ〉

]
, (3.2.4)

which oscillates as a function ofη. The key point here is to note thatψ andϕ are orthogonal
if and only if I is independent ofη so that the interference oscillations disappear. This feature
translates naturally to the mixed state case. Consider a pair of isospectral non-degenerate
density operators

ρψ = ∑
k

λk|ψk〉〈ψk| and ρϕ = ∑
k

λk|ϕk〉〈ϕk|, (3.2.5)

where each|ϕk〉 = U |ψk〉 for some unitarityU . The physical assumption we make is that
each pair of state vectors|ψk〉 and|ϕk〉 are coherent, i. e. able to interfere with each other,
while there is no interference between different|ψk〉 and|ϕ j〉 ( j 6= k). Each such orthonormal
pure state component of the density operator contributes tothe interference according to
Eq. (3.2.4). Thus, the total intensity profile becomes [SPE+00]

I ∝ ∑
k

λk

∣∣∣eiη |ψk〉+ |ϕk〉
∣∣∣
2
= 2+2∑

k

λk
∣∣〈ψk|ϕk〉

∣∣cos
[
η −arg〈ψk|ϕk〉

]
, (3.2.6)

where we have used that the eigenvaluesλk sum up to unity. Following the above pure
state case, we say thatρψ andρϕ are orthogonal if and only ifI is independent ofη for
all eigenstates{|ψk〉} and{|ϕk〉} of ρψ andρϕ , respectively. It follows thatρψ andρϕ are
orthogonal if and only if〈ψk|ϕk〉 = 0, ∀k.

N-dimensional orthogonality For anN dimensional Hilbert spaceH, we may generate
a set ofN mutually orthogonal density operators as follows. Assumeρ1 = ∑k λk|ψk〉〈ψk|
is non-degenerate and introduce a unitary operatorUg such that|ψn〉 =

(
Ug
)n−1|ψ1〉, n =

1, . . . ,N. Thus, we may write

Ug = |ψ1〉〈ψN|+ |ψN〉〈ψN−1|+ . . . |ψ2〉〈ψ1| (3.2.7)

and it follows that
ρn =

(
Ug
)n−1ρ1

(
U†

g

)n−1
, n = 1, . . . ,N (3.2.8)

is a set of mutually orthogonal density operators.
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Explicitly, this entails that

ρ1 = λ1|ψ1〉〈ψ1|+λ2|ψ2〉〈ψ2|+ . . .+λN|ψN〉〈ψN|,
ρ2 = λ1|ψ2〉〈ψ2|+λ2|ψ3〉〈ψ3|+ . . .+λN|ψ1〉〈ψ1|,

. . . ,

ρN = λ1|ψN〉〈ψN|+λ2|ψ1〉〈ψ1|+ . . .+λN|ψN−1〉〈ψN−1|. (3.2.9)

Notice here, that different sets of mutually orthogonal mixed states may be generated by
permuting theψn’s in Ug. For clarification take a three-level system specified by

ρ = λ0|0〉〈0|+λ1|1〉〈1|+λ2|2〉〈2|.

Application of (3.2.7) yields

ρ⊥ = λ0|1〉〈1|+λ1|2〉〈2|+λ2|0〉〈0|

or
ρ⊥ = λ0|2〉〈2|+λ1|0〉〈0|+λ2|1〉〈1|.

2-dimensional example In the qubit case it is an easy task to find the set of orthogonal
density matrices, viz. for

ρ =
2

∑
k=1

λk|ϕk〉〈ϕk| =
(

λ1 0
0 λ2

)

the orthogonal counterpart is

ρ⊥ =

(
λ2 0
0 λ1

)
.

Furthermore, it is also not difficult to calculate the orthogonal stateρ⊥ by maximising the
distance. Indeed, for the Hilbert-Schmidt distance in Eq. (3.2.2) one finds that Tr[ρρ⊥] must
be a minimum. We demand thatρ andρ⊥ are unitarily connected,ρ⊥ =UρU†. The general
form of U ∈U(2) is

U(θ ,α,β ,γ) = eiγ
(

cosθ
2 − i sin θ

2 cosα −i sin θ
2 sinαe−iβ

−i sin θ
2 sinαeiβ cosθ

2 + i sin θ
2 cosα

)
. (3.2.10)

The calculation of the trace of the productρρ⊥ = ρUρU† yields

Tr[ρρ⊥] =
1
2
(λ 2

1 +λ 2
2)
(
1+cosθ +cos2α sin2 θ

2

)
+2λ1λ2sin2 α sin2 θ

2
(3.2.11)
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which is minimal forα = (2n+1)π/2 andθ = (2n+1)π , n integer. A unitaryUg generating
an orthogonal state is therefore,

Ug =

(
0 1
1 0

)
, (3.2.12)

whereβ andγ are chosen such that the components ofUg are real. ApplyingUg to ρ corre-
sponds to an exchange of the eigenvalues like in the interferometric approach.

Using Bures distance we find the same orthogonal stateρ⊥, the maxima of both distances
are equal:

dHS(ρ,ρ⊥) max ↔ dB(ρ,ρ⊥) max.

due to the fact that we can rewrite the transition probability in the Bures distance (3.2.3)

Tr
[(√

ρρ⊥√ρ︸ ︷︷ ︸
A

)1/2
]

to Tr[
√

A] = Tr[V
√

AV†] = Tr[
√

VAV†] for unitaryV. The last equality

follows from
(VXV†)2 = VXV†VXV† = VX2V† = VAV†

when taking the square root. The square root is defined byX =
√

A if and only if X2 = A.
By a particular choice ofV, VAV† ≡ D is diagonal and for a diagonal matrix the square
root is found simply by taking the square root of the eigenvalues,

√
D =

√
∑k δk|dk〉〈dk| =

∑k

√
δk|dk〉〈dk|. But then Tr[

√
D] =

√
δ1 +

√
δ2, which is minimal ifδ1 +δ2 is minimal,

Tr[
√

D] min. ↔ Tr[D] min.

SinceD = VAV†, finding a minimum of Tr[D] amounts to finding a minimum of Tr[A] =

Tr[
√ρρ⊥√ρ] = Tr[ρ⊥ρ] by definition and using the cyclic property of the trace. In

conclusion, we have explicitly shown that a minimum of Tr[ρ⊥ρ] is also a minimum of

Tr
[(√ρρ⊥√ρ

)1/2
]
, so that states orthogonal with respect to the Hilbert-Schmidt norm are

also orthogonal in the Bures norm.

This result can be nicely visualised on the Bloch sphere. A mixed qubit state is para-
metrised byρ = 1

2(1l+~r ·~σ), where the norm of the vector~r, r = ‖~r‖ indicates the degree of
mixedness.r = 0 denotes a totally mixed state,

ρ(r = 0) =

(
1/2 0
0 1/2

)
,

whereas forr = 1 the state is pure. We can always rotate the coordinate system so that~r
points in thez-direction thusr = rz and we get

ρ =
1+ r

2
|0〉〈0|+ 1− r

2
|1〉〈1|,

i. e. the eigenvalues ofρ areλ0 = (1+ r)/2 andλ1 = (1− r)/2. The orthogonal density
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matrix is given by

ρ⊥ =
1
2

(
1l+~r⊥ ·~σ

)
=

1− r
2

|0〉〈0|+ 1+ r
2

|1〉〈1|.

The polarisation vectors are related as~r = −~r⊥ (Figure 3.4). For a pure state (r = ±1)

%⊥

%

r

-r

j1ih1j

j0ih0j

Figure 3.4: In the qubit case the orthogonal state can be visualised on the Bloch sphere. The
polarisation vectors~r and~r⊥ point in opposite direction

equation (3.2.11) reduces to the Hilbert space scalar product Tr[ρρ⊥] = |〈0|1〉|2, which
vanishes as|0〉 ⊥ |1〉. For an arbitrarily mixed state (r 6= 1) equation (3.2.11) yields
Tr[ρρ⊥] = (1− r2)/2 for orthonormalised basis states|0〉, |1〉. It is easy to see that these
states can be associated with Bloch vectors pointing in the opposite direction.

3.2.2 Consistency and normalisation

The final step towards a definition of an off-diagonal mixed state geometric phase is to de-
termine how to construct a quantity comprising mutually orthogonal density operators that is
gauge invariant and reduces to the Manini-Pistolesi off-diagonal geometric phase in the limit
of pure states.

We first notice that the Manini-Pistolesi expression [MP00]may be written in terms of
pure state projectorsPjk = |ψ jk〉〈ψ jk| as

γ(l)
Pj1Pj2...Pjl

≡ M
[
Tr
(
U‖Pj1U

‖Pj2 . . .U‖Pj l

)]
, (3.2.13)

whereM[z] = z/|z| for any complex numberz. Each of these projectors is now replaced by the
functionF (l)(ρ jk), where, for reason of permutation symmetry of the indexesj1, j2, . . . , j l ,
the form of the functionF(l) may only depend onl . To assure consistency with Ref. [MP00]

57



OFF-DIAGONAL GEOMETRIC PHASE FOR MIXED STATES

we further require thatF (l)(ρ jk)→Pjk in the pure state limit. We take the simplest nontrivial

choice fulfilling this requirement, which isF(l)(ρ jk) = ρ p/q
jk

, p= p(l) andq= q(l) integers3.

Notice thatρ p/q
jk

is well-defined sinceρ jk ≥ 0.

Next, from
(
Pk
)l

= Pk, we obtain the normalisation condition

Tr
(
U†

gPkU
†
gP(k+1) modN . . .U†

gP(k+l) modN

)
=

Tr
((

U†
g

)l
Pk
)

= δlN , ∀k∈ [1,N], (3.2.14)

where we have usedU†
g defined in Eq. (3.2.7),P(k+n) modN =

(
Ug
)n−1

Pk
(
U†

g

)n−1 and
(
U†

g

)N
= 1.

This normalisation structure shall be preserved also in themixed state case: After the
replacementPjk → ρ p/q

jk
, we similarly have

Tr
(
U†

g ρ p/q
k U†

g ρ p/q
(k+1) modN . . .U†

g ρ p/q
(k+l) modN

)
=

Tr
((

U†
g

)l ρ l p/q
k

)
= δlN Tr

(
ρ l p/q

k

)
, ∀k∈ [1,N], (3.2.15)

where we have used that
(
UgρU†

g

)p/q
= Ugρ p/qU†

g . Thus, onlyp(N) = 1 andq(N) = N
assures the desired kind of normalisation in the mixed statecase. Sincep andq are functions
of l only, it follows that p = 1 andq = l . This choice may also be understood from the
following simple convergence arguments in theN → ∞ case.ρ l p/q typically involves factors
of the formλ l p/q, 0≤ λ ≤ 1. If l p/q < 1 (l p/q > 1) then the trace diverges (goes to zero)
whenl → ∞. Thus, only forl p/q = 1 theN → ∞ limit is finite and well-defined.

Note, however, that we are only interested in a phase factor the norm of the trace does
not play a fundamental role and we could also skip the normalisation condition.F(l)(ρ jk) is
then simply the density matrix itself,F(l)(ρ jk) = ρ jk.

3.2.3 Off-diagonal mixed state geometric phase

As a consequence of the preceding results the off-diagonal mixed state phase for an ordered
set ofl ≤ N mutually orthogonal non-degenerate density operatorsρ jk, k = 1, . . . , l , parallel
transported byU‖ is given by

γ(l)
ρ j1ρ j2...ρ jl

≡ M
[
Tr
(
U‖ l

√ρ j1U
‖ l
√ρ j2 . . .U‖ l

√ρ j l

)]
. (3.2.16)

3Nothing prevents us to consider more complicatedF (l)’s. For example, one may add a functionG(l)(ρ)
to ρ p/q provided it converges for anyρ andG(l)(P) = 0 for any projectorP. Although considerations of such
alternative definitions may have some mathematical interest, from a physical point of view, this is the most
natural, as it turns out to be reducible to the mixed state phase of Ref. [SPE+00] for l = 1 (see Eq. (3.2.17))
and it can be realised experimentally, at least forl ≤ 2 (see Section 3.2.8).
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This is manifestly gauge invariant and independent of cyclic permutations of the indexes
j1, j2, . . . , j l . The diagonal mixed state geometric phase factor

γ(1)
ρ j1

= M
[
Tr
(
U‖ρ j1

)]
(3.2.17)

may be seen as a natural consequence of this general framework if we put l = 1. It can be
assigned an operational meaning in terms of a purification lift that can be experimentally
tested using a two-arm Franson-type interferometer. In Section 3.2.8 we propose experimen-
tal realisations of the first (l = 1) and second order (l = 2) phases, the latter being defined by

γ(2)
ρ j1ρ j2

= M
[
Tr
(
U‖√ρ j1U

‖√ρ j2

)]
. (3.2.18)

For ρ ’s characterising pure states (λi = 1, λ j 6=1 = 0) we automatically fall back to the
pure state off-diagonal geometric phase definition in (3.1.5). Furthermore, it is gauge invari-
ant under theU(1) transformation of the basis vectors|ϕk〉,

|ϕk〉 → |ϕ ′
k〉 = eiαk|ϕk〉, (3.2.19)

The nodal point structure, i. e. the distribution of points in parameter space where the
diagonal mixed state geometric phase vanishes, will be discussed for the most important
qubit case. In this case it can be shown explicitly that the nodal points of the diagonal and
the off-diagonal phase do not coincide (Section 3.2.6).

3.2.4 Computation of off-diagonal mixed state phases

In the qubit caseN = 2, consider the unitarity

U‖ = U‖
11|ψ1〉〈ψ1|+U‖

12|ψ1〉〈ψ2|+U‖
21|ψ2〉〈ψ1|+U‖

22|ψ2〉〈ψ2| (3.2.20)

that parallel transports some orthonormal basis{|ψ1〉, |ψ2〉}. The matrix elements ofU‖

fulfil U‖
11 = (U‖

22)
∗ = νe−iΩ/2 andU‖

12U
‖
21 = −detU‖ +U‖

11U
‖
22 = −1+ν2 asU‖ ∈ SU(2).

Here,ν =
∣∣〈ψ1|U‖|ψ1〉

∣∣ is the pure state visibility andΩ is the solid angle enclosed by the
path traced out by the basis vectors{|ψ1〉, |ψ2〉} and the shortest geodesic connecting its end
points on the Bloch sphere.

Now, U‖ in Eq. (3.2.20) parallel transports the mutually orthogonal density operators
ρ1 = λ1|ψ1〉〈ψ1|+λ2|ψ2〉〈ψ2| andρ2 = λ1|ψ2〉〈ψ2|+λ2|ψ1〉〈ψ1|, for which we obtain

Tr
(
U‖ρ1

)
= Tr

(
U‖ρ2

)∗
= ν

(
λ1e−iΩ/2 +λ2eiΩ/2), (3.2.21)

Tr
(
U‖√ρ1U

‖√ρ2
)

= −1+ν2 +2ν2
√

λ1λ2cosΩ = −1+ν2 +ν2
√
FB[ρ1,ρ2]cosΩ,

where we have used the Bures fidelityFB[ρ1,ρ2] =
[
Tr
√√ρ1ρ2

√ρ1
]2

= 4λ1λ2. Notice
thatFB[ρ1,ρ2] = 0 for pure states andFB[ρ1,ρ2] = 1 in the maximally mixed state case.

In the non-degenerate mixed state caseλ1 6= λ2, thel = 1 phases are indeterminate only
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for ν = 0, for which thel = 2 phase is well-defined since Tr
(
U‖√ρ1U‖√ρ2

)
= −1. In the

degenerate caseλ1 = λ2, the density operatorsρ1 andρ2 become identical and spherically
symmetric, so that no specific basis is singled out by the parallel transport condition and the
mixed state geometric phase factorsγ(1)

ρ andγ(2)

ρρ⊥ become undefined. Still, there is a unique
notion of relative phase in this case with additional nodal points, as discussed in [Bha02].
For a genericU = e−iδ~n·~σ , ~n denoting a unit vector, we obtain forl = 1 nodal points at
Tr
(
Uρ1

)
= Tr

(
Uρ1

)
= cosδ = 0 at whichδ we have Tr

(
U
√ρ1U

√ρ2
)

= cos2δ = −1.
This shows that thel = 1 andl = 2 phases never become indeterminate simultaneously and
thus provide a complete phase characterisation of the qubitcase.
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Figure 3.5: Nodal surfaces of the off-diagonal mixed state geometric phase for a qubit with
the solid angleΩ in steradians. For Bures fidelityFB =

[
Tr
√√ρ1ρ2

√ρ1
]2

> 0 (mixed

states), there are nodes also for paths with pure state visibility ν =
∣∣〈ψ1|U‖|ψ1〉

∣∣2 6= 1 at
various solid angles.

The off-diagonal mixed state geometric phase in the qubit case has a nontrivial nodal
structure that arises due to the nonvanishing Bures fidelity. This can be seen by putting the
left-hand side of Eq. (3.2.22) to zero and solving forν2 yielding

ν2 =
(
1+
√
FB[ρ1,ρ2]cosΩ

)−1
, (3.2.22)

which has solutions atν < 1 for FB[ρ1,ρ2]cosΩ > 0. Thus, the off-diagonal mixed state
geometric phase factor may change sign across the nodal surfaces in the parameter space
(FB[ρ1,ρ2],ν,Ω) defined by the solutions of Eq. (3.2.22), as shown in Figure 3.5. Thus,
the corresponding off-diagonal mixed state geometric phase can take both values 0 andπ,
contrary to the corresponding pure state phase, which can only be π .

This discussion can be generalised to arbitrary Hilbert space dimensionsN. In [FS03a] a
method is introduced that allows for the computation of mixed state geometric phases to any
orderl ≤ N for unitarities under which the parallel transported eigenbasis{|ψ1〉, . . . , |ψN〉}
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of the mutually orthogonalρ ’s is divided into two parts: one part where each basis vector
undergoes cyclic evolution and one part where all basis vectors are permuted among each
other.

3.2.5 Projection phase

Since the definition of the off-diagonal geometric mixed state phase claims to be reducible to
the pure state off-diagonal geometric phase, the question arises if there is a connection to the
experimental verification of the latter performed by Hasegawa et al. [HLB+01, HLB+02].
This has to be answered in the negative, since in this experiment the evolution of the orthog-
onal state is implemented as a projection operator, which isby definition equivalent to a pure
state. The resulting intensity is given by

I ∝ ReTr[UρU†P]+ |Tr[UρUP]|cos(argTr[UρUP]+η) , (3.2.23)

whereP represents the projection operator to a specific spin state and η is an additional
phase shift.

The shift in the interference pattern given by the additional phase factor

γρP ≡ M
[
Tr
(
UρUP

)]
, M[z] =

z
|z| , (3.2.24)

could be used as a definition of the off-diagonal geometric mixed state phase, if the unitarity
U describing the evolution inside the interferometer is parallel transporting the eigenvectors
of the non-degenerateρ . Parallel transport is for example fulfilled in the Hasegawaet al.
experiment if the incident spinor is polarised in a plane perpendicular to the direction of the
magnetic field.

In the two dimensional case relevant for the Hasegawaet al. experiment with input
ρ = λ1|ψ1〉〈ψ1|+λ2|ψ2〉〈ψ2|, λ1 > λ2, we can write Eq. (3.2.24) as

Tr[UρUP] = λ1(−1+ν2)+λ2ν2e−2iα . (3.2.25)

Here,U ∈ SU(2) with the diagonal matrix elementsU11 = U∗
22 = νeiα is not necessarily

fulfilling the parallel transport condition with respect to{|ψ1〉, |ψ2〉}. In the pure state limit
λ1 = 1, λ2 = 0 the off-diagonal phase is alwaysπ since Tr[UρUP]λ1=1 =−1+ν2 is real and
negative, irrespective of whetherU parallel transports|ψ1〉, |ψ2〉 or not. For a mixed input
stateρ the λ2-term does not vanish and we obtain additional geometric and/or dynamical
phase contributions. These can be considered to originate in the subjacent geometry only if
U is a parallel transporting unitarity, but not for arbitraryU .

To show the consistency with the experiment performed by Hasegawaet al. we calculate
the phaseφρP = argTr[UρUP]. In the left panel of Figure 3.6 we showφρP for a mixed input
state withλ1 = 0.87,λ2 = 0.13, in accordance with the experimental degree of polarisation
in [HLB+01, HLB+02], and the spin polarisation angleθ = π/6 relative to the magnetic
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field in the upper arm of the interferometer (see Figure 2 of Ref. [HLB +02]). The calcu-
lated curve matches with the experimental and theoretical results presented in Figure 5(d) of
Ref. [HLB+02]. Note that in this caseU is not parallel transporting the incident spinor.

Another interesting fact is that due to the impurity of the input state we expect phase
jumps for θ = π/2 for δ = 2arccos

√
λ1 and δ = 2π − 2arccos

√
λ1, see right panel of

Figure 3.6, whereδ is the precession angle of the incident spinor about the direction of the
magnetic field. Here, we have a parallel transportingU = U‖, thus these jumps have their
origin in the subjacent geometry of state space.
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Figure 3.6: The projection off-diagonal mixed state geometric phase argTr[UρUP] in radians
modulus 2π for the Hasegawa setup withλ1 = 0.87,λ2 = 0.13 andθ = π/6 or θ = π/2,
respectively .δ is the precession angle in radians of the incident spinor about the direction
of the magnetic field.

The projection off-diagonal geometric phase factorγρP is invariant under phase transfor-
mations of the eigenvectors ofρ , it reduces to the correspondingl = 2 phase factorγi j in
the pure state limit, and it has the advantage that it can be observed in single particle ex-
periments. The drawbacks are that it is less symmetric than that in Eq. (3.2.18), one cannot
easily state a generalisation like in Eq. (3.2.16), and viceversa it cannot be regarded as an
off-diagonal generalisation of the mixed state geometric phase in Ref. [SPE+00] asρ and
P are not unitarily connected. These features suggest that the mixed state geometric phase
factor in Eq. (3.2.18) is to be prefered overγρP.

3.2.6 Explicit calculations for a simple path

In this section I present an explicit example of a parallel transported mixed stateρ0 in contrast
to the more general discussion in the previous Section 3.2.4.

The initial mixed stateρ0 is given by

ρ0 =
1
2

(
1+ r 0

0 1− r

)
(3.2.26)

in the orthonormal eigenbasis|0〉, |1〉 of ρ0 and r denotes the degree of polarisation. The
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orthogonal state under the definition (3.2.11) is then

ρ⊥
0 =

1
2

(
1− r 0

0 1+ r

)
. (3.2.27)

To gain information about the geometric phase we have to choose a unitary operatorU such
that it fulfils the parallel transport condition. For the sake of simplicity we choose an evolu-
tion that comprises two subsequent rotations, first by an arbitrary angleβ about they-axis,
and second, by an angleγ about an axis~n such that the state vector is again parallel trans-
ported.

The 2nd the rotation axis~n has to be chosen orthogonal to the Bloch vector after the first
rotation(sinβ ,0,cosβ )T , whereβ is the angle to thez-axis, to guarantee a parallel transport.
The orthogonal plane through the origin is spanned by the twovectors

~a =




0
1
0



 and ~b =




−cosβ

0
sinβ



 ,

which is evident from Figure (3.7). The rotational axis is now singled out by the choice of

z

x

y b

b

z

x

y
a

b

p/2-b
n

f

g

g

Figure 3.7: Rotation of mixed states

the coefficients of the linear sum of these vectors and can be specified by a single parameter
φ :

~n = cosφ~a+sinφ~b =




−sinφ cosβ
cosφ

sinφ sinβ


 . (3.2.28)
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A rotation around the axis~n by an angleγ on the Bloch sphere is given by

U~n(φ ,γ) = e−i γ
2~n·~σ (3.2.29)

= 1lcos
γ
2
− i sin

γ
2∑

k

nkσk

= 1lcos
γ
2
− i sin

γ
2

(
sinφ sinβ −sinφ cosβ − i cosφ

−sinφ cosβ + i cosφ −sinφ sinβ

)
.

The total rotation can now be written as

U(φ ,γ ,β ) = U~n(φ ,γ)Uy(β ) =
(

cos( γ
2)− isin( γ

2)sinφ sinβ isin( γ
2) [sinφ cosβ + icosφ ]

isin( γ
2) [sinφ cosβ − icosφ ] cos( γ

2)+ isin( γ
2)sinφ sinβ

)(
cos(β

2 ) −sin(β
2 )

sin(β
2 ) cos(β

2 )

)
. (3.2.30)

UsingU(γ,φ ,β ) guarantees parallel transport throughout the whole evolution, so that one
can be sure to get a geometric phase factor without any dynamical contribution.

Nodal structure of the diagonal geometric phase of mixed statesφρ

First we look at the nodal structure of the diagonal phase formixed statesφρ ≡ argTr[Uρ0].
The phase information is lost when|Tr[Uρ0]| vanishes. Explicit calculation using (3.2.30)
yields

|Tr[Uρ0]| = |
(

cos
β
2

cos
γ
2
−cosφ sin

β
2

sin
γ
2

)
+ ir sin

β
2

sin
γ
2

sinφ | =

=

√
(

cos
β
2

cos
γ
2
−cosφ sin

β
2

sin
γ
2

)2
+ r2sin2 β

2
sin2 γ

2
sin2 φ . (3.2.31)

Mixed and pure statesr 6= 0 For mixed states withr 6= 0 the expression (3.2.31) vanishes
whenever

(β + γ) = (2n+1)π, φ = 2n′π ∨ (3.2.32a)

(β − γ) = (2n+1)π, φ = (2n′+1)π, (3.2.32b)

for n,n′ = 0,1,2, . . . (see Figure 3.8(a)). In both cases, (3.2.32a) and (3.2.32b), these condi-
tions for a nodal point can be regarded as a rotation of the original Bloch vector to the Bloch
vector pointing in the opposite direction, or forr = 1 - thus for pure states - as the rotation to
the orthogonal pure state. The difference is only the choiceof the 2nd rotational axis between
the positivey-axis in (3.2.32a) and the negativey-axis in (3.2.32b).

Totally mixed state r = 0 [Bha02, ASP+01] For a totally mixed state (3.2.31) vanishes
for numerous combinations ofβ -γ-φ values comprising the values in (3.2.32), but also for
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(a) Nodal points in parameter space

r

z

x

y

(b) Bloch vector representation

Figure 3.8: Nodal structure of|Tr[Uρ0]|, r 6= 0

combinations when the single remaining term in (3.2.31) vanishes,

cos(
β
2

)cos(
γ
2
)−cosφ sin(

β
2

)sin(
γ
2
) = 0,

which produces a richer nodal structure than forr 6= 0. The nodal points of|Tr[Uρ0]| are
shown in Figure (3.9).

Figure 3.9: Nodal structure of|Tr[Uρ0]|, r = 0. The holes in the plot are only numerical
artifacts.

Nodal structure of the off-diagonal geometric phase for mixed statesφρρ⊥

Let us investigate now the behaviour of the off-diagonal geometric phase for mixed

statesφρρ⊥ ≡ argTr[U
√ρ0U

√
ρ⊥

0 ]. This quantity becomes undefined if the modulus of

Tr[U
√ρ0U

√
ρ⊥

0 ] vanishes. Explicit calculation using the unitary transformation (3.2.30)
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results in the expression

Tr[U
√

ρ0U
√

ρ⊥
0 ] =

1
2

(
−1+cosβ cosγ −cosφ sinβ sinγ +

√
1− r2×

×
[
cos2φ(1+cosβ cosγ)+sin2φ(cosβ +cosγ)−cosφ sinβ sinγ

])
. (3.2.33)

Pure states For r = 1, the right hand side of Eq. (3.2.33) is negative for all values ofφ ,
β and γ, because the term comprising

√
1− r2 vanishes and the other terms can only be

smaller or equal to zero. Thus, no sign change happens -φρρ⊥ is equal toπ for every unitary
evolution - in correspondence to the off-diagonal phase forpure states discussed in [MP00].

In detail, we get nodal points of|Tr[U
√ρ0U

√
ρ⊥

0 ]| for the following scenarios (see Figure
3.10(c)):

φ = (2n+1)π, β − γ = 2nπ, (3.2.34a)

φ = 2nπ, β + γ = 2nπ, (3.2.34b)

φ arbitrary, β = γ = nπ. (3.2.34c)

All three cases represent a rotation of the initial (pure) state back to itself.

Mixed states For r 6= 1 (3.2.33) is not a purely negative function anymore - we get sign
changes for different choices ofr - see Figures (3.10(a)) and (3.10(b)). In these plots the

nodal points of|Tr[U
√ρ0U

√
ρ⊥

0 ]| are shown and it is remarkable that contrary to the pure
state case the surface indicates also a sign change of this expression. For this reasonφρρ⊥ =

argTr[U
√ρ0U

√
ρ⊥

0 ] can take the values 0 orπ .

(a) r = 0 (b) r = 0.5 (c) r = 1

Figure 3.10: Nodal structure of|Tr(U
√ρ0U

√
ρ⊥

0 )|
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Comparison of the diagonal and the off-diagonal geometric phase

Now we only have to check that the nodal points of the diagonal(φρ ) and the off-diagonal
geometric phases (φρρ⊥) do not coincide, otherwise we would have failed to construct an
expression carrying information about the subjacent geometry, when the diagonal geometric
phase is undefined in the mixed state case. Comparing the nodal structures ofφρ andφρρ⊥

we can see that both expressions vanish at distinct points inthe parameter space forr = 0
(Figure 3.11(a)). Forr 6= 0 the nodal structure ofφρ is independent ofr and by comparing
Figure 3.8(a) with the Figures 3.10(b)-3.10(c) it is obvious that the nodal points ofφρ and
γρρ⊥ do not coincide (see Figure 3.11(b)).

(a) r = 0 (b) r = 0.5

Figure 3.11: Comparison of nodal points betweenγρρ⊥ andφρ

3.2.7 Kinematic approach to off-diagonal geometric phases

Similar to the extension of the diagonal geometric phaseφρ to general not parallel trans-
porting unitarities the same procedure can be applied to theoff-diagonal geometric phase.
Essentially by subtracting the dynamical phase from the contribution of each eigenstate to
the total phase (c. f. Eq. 2.3.15) a gauge invariant quantityis obtained. For the off-diagonal
mixed state geometric phase in the non-degenerate case, theparallel transport conditions are
still given by Eq. (2.3.5) andU‖(t) by Eq. (2.3.13). SubstitutingU‖(t) into Eq. (3.2.16), we
obtain the kinematic expression for the off-diagonal geometric phase factors for mixed states
with the evolution operatorU(s) (s∈ [0,T]) as

γ(l)
ρ j1...ρ jl

= M

[
N

∑
i1,...,i l=1

l
√

λi1− j1+1 . . .λiN− jN+1〈ψi1|U(T)|ψi2〉〈ψi2|U(T)|ψi3〉 . . .〈ψiN|U(T)|ψi1〉
]

×exp

(
−
∫ T

0

l

∑
a=1

〈ψia|U†(s)U̇(s)|ψia〉ds

)
, (3.2.35)
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whereλ−p = λN−p, p = 0, . . . ,N− 1. One may verify that the phase factorsγ(l)
ρ j1...ρ jl

are
gauge invariant in that they are independent of the choice ofU(s) as long as they transportρ
along the same path.

For degenerate mixed states one has to account for the different parallel transport condi-
tions (Eq. 2.3.17), but the scheme works similar to the formalism for the diagonal geometric
phase for degenerate mixed states. There is only a subtle complicacy in that the functional
FHm (2.3.20) guaranteeing the gauge invariance is not the same for the different orthogonal
states, if their degeneracy structure changes. That means,when the permutation of the basis-
vectors exchanges the basis of different degenerate subspaces theFHm’s are different for each
orthogonal state. For a more detailed examination the reader is referred to [TSF+05] where
we also stated an example for further clarification.

3.2.8 Experimental verification

When we consider possible experimental realisations of theoff-diagonal mixed state phases
we immediately encounter a problem: how do we experimentally implement thel -th root
of density operators? Fortunately, this may be resolved in the l = 2 case in the sense of
purification, i.e., by adding an ancilla system in a certain way. Here, we propose a physical
scenario for the qubit case in terms of polarisation-entangled two-photon interferometry.

We first show how to realise thel = 1 and l = 2 phases via purification. For anN
dimensional Hilbert spaceH, consider the non-degenerate density operator

ρ1 =
N

∑
k=1

λk|ψk〉〈ψk|. (3.2.36)

A purification of thisρ1 is any pure state|Ψ1〉 obtained by adding an ancilla systema to the
considered systemssuch thatρ1 = Tra |Ψ1〉〈Ψ1|. Thus, we may write

|Ψ1〉 =
N

∑
k=1

√
λk|ψk〉⊗ |ϕk〉, (3.2.37)

where{|ϕk〉} is an orthonormal set of vectors in the ancilla Hilbert spaceHa. Consequently,
any orthogonal density operatorρn =

(
Ug
)n−1ρ1

(
U†

g

)n−1
has a purification of the form

|Ψn〉 =
(
Ug
)n−1⊗Ũa|Ψ1〉 (3.2.38)

for any unitarityŨa acting onHa. In the following, we assume dimHa = N and put|ϕk〉 =

|ψk〉.
LetUs⊗Ua|Ψ1〉 andVs⊗Va|Ψ1〉 be two Hilbert space representatives of a pair of purifica-

tions ofUsρ1U†
s andVsρ1V†

s . The coincidence interference pattern obtained in superposition
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is determined by the interference profile

I ∝
∣∣∣Us⊗Ua|Ψ1〉+Vs⊗Va|Ψ1〉

∣∣∣
2
= 2+2Re

[
Tr
(
U†

sVs⊗U†
aVa|Ψ1〉〈Ψ1|

)]
. (3.2.39)

By choosingUs = eiη(Ug
) j1−1

, Vs =U‖(Ug
) j1−1

, andUa =Va = I , we obtain thel = 1 phase

factorsγ(1)
ρ j1

= φρ by variation of theU(1) phaseη since

M
[
Tr
(
U†

sVs⊗U†
aVa|Ψ1〉〈Ψ1|

)]
= e−iηM

[
Tr
((

U†
g

) j1−1
U‖(Ug

) j1−1⊗ I |Ψ1〉〈Ψ1|
)]

= e−iηM
[
Tr
(
U‖ρ j1

)]
, (3.2.40)

where we have used that Tra
[(

Ug
) j1−1|Ψ1〉〈Ψ1|

(
U†

g

) j1−1]
= ρ j1. Similarly, thel = 2 phase

factorsγ(2)
ρ j1ρ j2

are obtained by lettingUs = eiη(Ug
) j2−1

, Vs = U‖(Ug
) j1−1

, Ua =
(
Ug
) j2−1

,

andVa =
(
U‖)T(

Ug
) j1−1

, T being transpose with respect to the ancilla basis{|ψk〉}, since

M
[
Tr
(
U†

sVs⊗U†
aVa|Ψ1〉〈Ψ1|

)]
= e−iηM

[
Tr
((

U†
g

) j2−1
U‖(Ug

) j1−1

⊗
(
U†

g

) j2−1(
U‖)T(Ug

) j1−1|Ψ1〉〈Ψ1|
)]

= e−iηM
[
Tr
(
U‖√ρ j1U

‖√ρ j2

)]
, (3.2.41)

where the last equality may be obtained by explicit use of|Ψ1〉 in Eq. (3.2.37) with|ϕk〉 =

|ψk〉, ∀k.

Let us discuss a physical purification scenario for thel = 1 andl = 2 phases in the qubit
case. Consider the two-photon Franson-type [Fra89] setup in Figure 3.12. A source that
in the horizontal-vertical(h− v) basis produces polarisation-entangled photon states of the
form

|Ψ1〉 =

√
1
2
(1+ r)|h〉⊗ |h〉+

√
1
2
(1− r)|v〉⊗ |v〉 (3.2.42)

has been demonstrated in Ref. [KWW+99]. Considered as subsystems both photons are in
a mixed linear polarisation stateρ1 with polarisation degreer. The desired superposition
of Us⊗Ua|Ψ1〉 andVs⊗Va|Ψ1〉 is obtained by requiring a sufficiently short coincidence
window so that detection occurs only when the photons took both either the shorter path or
the longer path [HS00]. A purification of the orthogonal density operatorρ2 = Ugρ1U†

g may
be achieved by flipping the polarisations of the photons, yielding

|Ψ2〉 = Ug⊗Ug|Ψ1〉 =

√
1
2
(1+ r)|v〉⊗ |v〉+

√
1
2
(1− r)|h〉⊗ |h〉. (3.2.43)

To demonstrate thel = 1 andl = 2 geometric phases in this scenario, it is sufficient to
consider unitarities that rotate linear polarization states along great circles an angleβ on the
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����
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Figure 3.12: Franson setup for polarisation-entangled photon pairs. In the longer arms, the
system and ancilla photons are exposed to the polarisation affecting unitaritiesUs andUa,
respectively, and similarlyVs andVa in the shorter arms.

Poincaré sphere, see Figure 3.13. This amounts to

U(β ,θ) = exp

(
−i

β
2

[
cosθ

(
|h〉〈v|+ |v〉〈h|

)
+sinθ

(
− i|h〉〈v|+ i|v〉〈h|

)])
, (3.2.44)

which fulfils the parallel transport condition (2.3.8) withrespect to theh−v basis. In prac-
tice, U(β ,θ) may be implemented by appropriateλ−plates, the thickness and orientation
of which correspond to the parametersβ andθ , respectively. For example,Ug = U(π,π/2)

acts on the linear polarisation states as a polarisation flipand thus connectsρ1 andρ2. It
is achieved by aλ/2 plate with half axis making an angle 45◦ to the vertical (v) direction.
Furthermore,θ = 0 andβ = π/2, corresponding to aλ/4 plate oriented along the vertical
direction, takesh andv into the right (R) and left (L) circular polarisation states, respectively.

The phase factorsγ(1)
ρn = φρn, n = 1,2, are obtained from the coincidence intensity by

settingUs = eiη(Ug
)n−1

, Vs = U(β ,θ)
(
Ug
)n−1

, andUa = Va = I . Explicit calculation for
U(β ,θ) in Eq. (3.2.44) yields Tr

(
ρ1U(β ,θ)

)
= Tr

(
ρ2U(β ,θ)

)
= cos(β/2), which entails

thatγ(1)
ρ1 andγ(1)

ρ2 are real-valued and changes sign atβ = (2 j +1)π , j integer, corresponding
to a sequence of phase jumps ofπ . Furthermore, the choiceUs = eiηUg, Vs = U(β ,θ), Ua =

Ug, andVa = UT(β ,θ) = U(β ,−θ), yieldsγ(2)
ρ1ρ2 and we may compute the expected output

as Tr
(√ρ1U(β ,θ)

√ρ2U(β ,θ)
)

=
√

1− r2cos2
(
β/2

)
− sin2(β/2

)
, which is independent

of θ and can be positive and negative forr 6= 1 depending uponβ . γ(2)
ρ1ρ2 changes sign at

β = 2π j +2arctan4
√

1− r2. Note that 0≤ arctan4
√

1− r2 ≤ π/4, modulusπ , which assures
that thel = 1 andl = 2 phases never become indeterminate for the sameβ value, and thus
provide a complete experimental phase characterisation ofthe qubit case in the sense of
purification.

Off-diagonal geometric phase measurement with a neutron interferometer Why is it
not possible to use a neutron interferometer to test the off-diagonal mixed state geomet-
ric phase? For the pure state case this was possible since in order to measureσ jkσk j =

M[〈ψ j |U |ψk〉〈ψk|U |ψ j〉] the projection operator|ψk〉〈ψk| between the two unitaritiesU can
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µ

β

|h〉〈h|

|v〉〈v|

|R〉〈R|

|L〉〈L|

Figure 3.13: Effect of the unitarityU(β ,θ) on the Poincaré sphere. The horizontal polarisa-
tion state|h〉 at the north pole is taken into a new polarisation state at spherical polar angles
(β ,θ).

be implemented by a spin projection measurement. In the mixed state case this does not
work since it leads to an asymmetric definition of the off-diagonal mixed geometric phase
(Eq. 3.2.24). Instead of a projective measurement one couldalso think of using a more gener-
alised measurement, a positive operator-valued measurement (POVM) [NC00]. But for this
one usually needs an ancilla Hilbert space. Generally speaking, a POVM behaves analogous
to the purification of a mixed state by means of an extra Hilbert space, or like the possibility
to represent any non-unitary operation as a unitary transformation in an extended Hilbert
space. A normal projective (von Neumann-type) measurementin the extended Hilbert space
yields a POVM in the system’s Hilbert space. But for neutronsthere is no other degree of
freedom than spin for the construction of an extended Hilbert space.

Unfortunately, a scheme similar to the Franson-type interferometer introduced above
does not work either, although the topology of the interferometer could possibly be mimicked
by building a three-loop interferometer as further extension to the two-loop interferometer
utilised in Chapter 4. But, there are no entangled neutrons available. The interference of
neutrons is a single-particle effect, each of them interacts with itself, and even if there is a
slight probability to find two neutrons in a small time-window, they are totally uncorrelated.
So, it seems that for neutrons there is only the projective mixed state geometric phase at
hand, which has been measured in [HLB+02].
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3.3 Off-diagonal holonomies following Uhlmann’s defini-
tion

The Uhlmann holonomy defined in Section 2.4 is a further candidate to spot its nodal points
and attempt to find an off-diagonal extension. It is given by the expression (c. f. Eq. 2.4.19)

XC = W1W
†
0

and the task is now to find points where this expression becomes undefined. In particular,
we say that a point is a nodal point whenever the functionalνC = TrXC from Eq. (2.4.18)
vanishes. Furthermore, a comparison with previous definitions of off-diagonal geometric
phases for pure and mixed states is carried out and, finally, examples are given to show the
relevance of this extension.

3.3.1 Nodal points of Uhlmann holonomies

In the pure state limit,νC has nodal points (i. e., is undefined) for orthogonal initialand final
states. In general, letH1⊕H2⊕ . . .⊕Hn be an orthogonal sum decomposition of the Hilbert
spaceH of the system, wheren≤ dimH with equality for the pure state case. Then, if the
initial stateρ(0) with support inHk (ρ(0) ∈ O(Hk)) evolves to the stateρ(T) with support
in Hl (l 6= k), νC is undefined since the trace vanishes. If this happensρ(0) andρ(T) are
said to be orthogonal.

3.3.2 Definition of off-diagonal quantum holonomies

Like in the previous sections (and [MP00, FS03b, FS03a]) we wish to obtain geometric infor-
mation about the path even in the special case of orthogonal initial and final states. Suppose
we have a set of initial density operatorsρk(0), k= 1, . . . ,n, each of which with support in the
corresponding Hilbert spaceHk. Then, we can define theoff-diagonal quantum holonomy
invariantsas [FS05]

X (l)
j1... j l

[C j1 . . .C j l ] ≡ Wj1(T)W†
j1
(0)Wj2(T)W†

j2
(0) . . .Wj l (T)W†

j l
(0)

= X (1)
j1

[C j1]X
(1)
j2

[C j2] . . .X
(1)
j l

[C j l ], (3.3.1)

wherel = 1, . . . ,n. Evidently,X (1)
jk

[C jk], k = 1, . . . ,n is the Uhlmann holonomy invariant for
the path of a single density matrix,C jk : t ∈ [0,τ] → ρ jk(t) ,and eachX jk[C jk] comprises a
relative phase factor̃Vjk depending only on the pathC jk.

X ≡ X (l)
j1... j l

[C j1 . . .C j l ] can be decomposed either asX = (XX †)1/2UR (right polar de-

composition) or asX = UL(X †X )1/2 (left polar decomposition), where the left (right) sup-
port of the partial isometry4 UR (UL) is required to be equal to the right (left) support of

4Here, the polar decomposition comprises a partial isometryinstead of a unitary operator since the density
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the positive Hermitian part of the left (right) polar decomposition ofX . The holonomies
UL or UR defined via the left or right polar decomposition, respectively, are Uhlmann ana-
logues to the off-diagonal geometric phase factors defined in Ref. [MP00] for pure states and
Refs. [FS03b, FS03a] for mixed states.

Orthogonal supports of the positive Hermitian parts of the left and right polar decompo-
sition is a sufficient condition for a nodal point of the generalised functional

ν(l)
C j1...C jl

≡ argTr
[
Wj1(T)W†

j1
(0)Wj2(T)W†

j2
(0) . . .Wj l (T)W†

j l
(0)
]
. (3.3.2)

This can be seen by noting at first that the left and right support of the operatorX is given
by the support ofXX † andX †X , respectively, and in addition that the trace ofX vanishes
for non-overlapping left and right support. SinceXX † andX †X appear in the positive
Hermitian parts of the polar decomposition the nodal pointsof ν(l)

C j1...C jl
are necessary for

orthogonal left and right supports ofX .
Let us have a detailed look at the right and left support ofX . The left support is given by

XX † = ρ1/2
j1

(T)Ṽj1(T)ρ1/2
j1

(0)ρ1/2
j2

(T)Ṽj2(T) . . .ρ1/2
j l

(T)Ṽj l (T)

×ρ j l (0)Ṽ†
j l
(T) . . .ρ1/2

j1
(0)Ṽ†

j1
(T)ρ1/2

j1
(T) (3.3.3)

and the right support

X †X = ρ1/2
j l

(0)Ṽ†
j l
(T)ρ1/2

j l
(T) . . .ρ1/2

j1
(0)Ṽ†

j1
(T)

×ρ j1(T)Ṽj1(T)ρ j1(0)ρ1/2
j2

(T)Ṽj2(T) . . .ρ1/2
j l

(T)Ṽj l ρ
1/2
j l

(0). (3.3.4)

These are apparently only orthogonal in the case thatρ j1(T) and ρ j l (0) have orthogonal
support and this in turn can be avoided by a proper choice of initial states. These choices
of the ρ jk(0), k = 1, . . . , l are evidently not unique, one can take any stateρ j l ∈ O(H j l )

for a givenρ j1 with the minimal requirement thatρ jk(T) has overlapping support at least
with ρ jk−1(0) where the indicesk have to be considered modulon. This is equivalent to
non-vanishing transition probability fromρ jk(T) to ρ jk−1(0) [Uhl76].

To assure that the off-diagonal quantum holonomy invariantsX (l)
j1... j l

[C j1 . . .C j l ] fulfil all

necessary criteria, we note that theX (l)
j1... j l

[C j1 . . .C j l ]’s are only dependent upon the paths
C jk by the same reasoning as for thel = 1 case. In fact, the final amplitudeWjk(t) of each
initial stateρ jk(0) is determined by the parallel transport condition in Eq. (2.4.13) up to a

t-independent partial isometryS. This latter global gauge leavesX (l)
j1... j l

[C j1 . . .C j l ] invariant
even for distinct choicesS= Sjk for the different constituent initial states.

Unitary evolution We now rewrite the parallel transport mechanism in the particular
case of mixed states undergoing unitary evolution. The standard purification of a mixed
stateρ(0) = ∑λ j |ψ j〉〈ψ j | with ∑ j λ j = 1 and |ψ j〉 being a basis diagonalisingρ(0) is

matrix may not have support in the total Hilbert space but only in a subspace.
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W(0) = ∑ j

√
λ j |ψ j〉〈φ j |, i. e.,H is extended by an ancilla Hilbert spaceH′ = H∗, where

the 〈φ j | ∈ H∗ form a basis in the ancilla part. Subjected to the unitary evolution ρ(0) 7→
ρ(t) = U(t)ρ(0)U†(t), t ∈ [0,T], the path of the purificationst 7→W(t) has to fulfil the par-
allelity condition (2.4.13). This latter path can be described by applying a partial isometry
B(t) ∈O(H′) resulting in

W(t) = U(t)ρ1/2(0)B(t), (3.3.5)

whereB(t) =U†(t)V(t) andU(t) are related via the parallel transport condition Eq. (2.4.13).
Inserting (3.3.5) into (2.4.13) we get the parallel transport condition

2ρ1/2(0)U†(t)U̇(t)ρ1/2(0) = B(t)Ḃ†(t)ρ(0)−ρ(0)Ḃ(t)B†(t), (3.3.6)

where the dot denotes the derivative with respect to the parametert. If ρ(0) is pure,ρ(0) =

|ψ j〉〈φ j |, Eq. (3.3.6) simplifies to

〈ψ j |U†(t)U̇(t)|ψ j〉 = 〈φ j |B†(t)Ḃ(t)|φ j〉. (3.3.7)

To verify that Eq. (3.3.1) is consistent with known results we consider the pure unitary
case from Section 3.1. Having a set of initial pure states|ψk〉, k = 1, . . . ,n, the defining
quantity from Eq. (3.3.1) can be written as

Wj1(T)W†
j1
(0)Wj2(T)W†

j2
(0) . . .Wj l (T)W†

j l
(0)

= U(T)|ψ j1〉〈φ j1|B(T)|φ j1〉〈ψ j1|U(T)|ψ j2〉〈φ j2|B(T)|φ j2〉
×〈ψ j2| . . .〈ψ jm−1|U(T)|ψ j l 〉〈φ j l |B(T)|φ j l 〉〈ψ j l |, (3.3.8)

where we have used the purified states|ψk〉〈φk|. If U(t) = U‖(t) is already parallel trans-
porting the basis states, i. e.,〈ψ j |U‖†(t)U̇‖(t)|ψ j〉= 0, B(t) may be chosen to be the identity
and Eq. (3.3.8) simplifies to

Wj1(T)W†
j1
(0)Wj2(T)W†

j2
(0) . . .Wj l (T)W†

j l
(0)

= U‖(T)|ψ j1〉〈ψ j1|U‖(T)|ψ j2〉〈ψ j2| . . .〈ψ jm−1|U‖(T)|ψ j l 〉〈ψ j l |. (3.3.9)

It is straightforward to write down the off-diagonal phase factors corresponding to this quan-
tity usingν(l)

C j1...C jl
to see the equivalence to the pure state off-diagonal geometric phase.

What is even more noteworthy is the naturally arising generalisation of the latter to non-
parallel transporting unitaritiesU(t). A proper choice ofB(t) according to Eq. (3.3.7) yields
a parallel lift and therefore a well-defined invariant of thepathsCi of the amplitudesWi ’s.
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3.3.3 Comparison with the interferometric off-diagonal geometric
phase

The interferometric off-diagonal geometric phase for mixed phase in its simplest form is
given by (recall Section 3.2)

γ(l)
ρ j1ρ j2...ρ jl

≡ M
[
Tr
(
U(T) l

√ρ j1U(T) l
√ρ j2 . . .U(T) l

√ρ j l

)]
(3.3.10)

with M[z]≡ z/|z| for any complex numberz, theρ jk’s only differing by permutations of their
eigenstates, andU(t), t ∈ [0,T], fulfilling parallel transport for each common eigenstate of
the ρ jk’s. For l = 1 this reduces to the geometric mixed state phase in [SPE+00] that has
in general been shown to be distinct from the trace of thel = 1 holonomy factor [ESB+03].
The question is therefore, how the previously defined off-diagonal geometric phase definition
for mixed statesγ(l)

ρ j1ρ j2...ρ jl
relates to the off-diagonal generalisation of the Uhlmann phase

factor. Using the same scheme as above to compensate dynamical effects in the system by
an appropriate choice of unitary operatorB(t) ∈ O(H′), we get

W†
j1
(0)Wj2(T)W†

j2
(0) . . .Wj l (T)W†

j l
(0)Wj1(T)

= ρ1/2
j1

(0)U(T)ρ1/2
j2

(0)B(T)ρ1/2
j2

(0) . . .U(T)ρ1/2
j l

(0)B(T)

×ρ1/2
j l

(0)U(T)ρ1/2
j1

(0)B(T), (3.3.11)

where theρ jk’s are those of Eq. (3.3.10).

In a first guess one could think to obtain a similar form likeγ(l)
ρ j1ρ j2...ρ jl

with a unitar-
ity U(t) parallel transporting all eigenstates of theρ jk’s, so that theB(t) can be chosen
to be time independent. But this procedure fails since the parallel transport condition be-
hind theγ(l)

ρ j1ρ j2...ρ jl
’s is much weaker than the parallel transport condition in Eq. (3.3.6). In

the former parallel transport is required for the state vectors |ψk〉 diagonalising the initial
ρ = ∑k λk|ψk〉〈ψk|, i. e.,〈ψk|U†(t)U̇(t)|ψk〉 = 0, whereas in the latter case puttingB(t) con-
stant amounts to vanishing matrix elements ofU†(t)U̇(t) in the support ofρ(0). This means
that the left hand side of Eq. (3.3.6) can only vanish for unitaritiesU(t) that leave all the

ρ jk’s appearing inX (l)
j1... j l

[C j1 . . .C j l ] unaffected or, in other words that Eq. (3.3.6) is trivially
fulfilled for no evolution at all. However, the two approaches are on equal footing in the limit
of pure states.

3.3.4 Examples

As our first example, let us consider the qubit (two-level) case for whichH = H1⊕H2,
dimH1 = dimH2 = 1, is the only form of orthogonal sum decomposition of Hilbert space.
Let ρ1(0) = |0〉〈0| andρ2(0) = |1〉〈1| have support inH1 andH2, respectively, and consider
the pathsC1,C2 : t ∈ [0,T] → ρ1(t),ρ2(t) in state space. AssumẽV1(t),Ṽ2(t) are solutions of
the parallel transport equation Eq. (2.4.13), computed forexample according to the prescrip-
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tion given by Hübner [Hüb93]. Thel = 1 holonomy invariants read

X (1)
1 [C1] = ρ1/2

1 (T)Ṽ1(T)|0〉〈0|,
X (1)

2 [C2] = ρ1/2
2 (T)Ṽ2(T)|1〉〈1| (3.3.12)

with resulting left and right positive parts

X (1)
1

(
X (1)

1

)†
= ρ1/2

1 (T)Ṽ1(T)|0〉〈0|Ṽ†
1 (T)ρ1/2

1 (T),
(
X (1)

1

)†
X (1)

1 = |0〉〈0|〈0|Ṽ†
1 (T)ρ1(T)Ṽ1(T)|0〉,

X (1)
2

(
X (1)

2

)†
= ρ1/2

2 (T)Ṽ2(T)|1〉〈1|Ṽ†
2 (T)ρ1/2

2 (T),
(
X (1)

2

)†
X (1)

2 = |1〉〈1|〈1|Ṽ†
2 (T)ρ2(T)Ṽ2(T)|1〉. (3.3.13)

The essential point here is that these equations display nodal points ifρ1(T) ∈ O(H2) and
ρ2(T) ∈ O(H1), which is equivalent to say thatρ1(T) = |1〉〈1| andρ2(T) = |0〉〈0|. For this
case we obtain thel = 2 holonomy invariant with its right and left positive parts as

X (2)
12 [C1C2] = X (1)

1 [C1]X (1)
2 [C2] = |1〉〈1|〈1|Ṽ1(T)|0〉〈0|Ṽ2(T)|1〉,

X (2)
12

(
X (2)

12

)†
=

(
X (2)

12

)†
X (2)

12 = |1〉〈1|
∣∣∣〈1|Ṽ1(T)|0〉〈0|Ṽ2(T)|1〉

∣∣∣
2
. (3.3.14)

Clearly,X (2)
12 [C1C2] is well-defined unless〈1|Ṽ1(T)|0〉〈0|Ṽ2(T)|1〉 vanishes. If the pathsC1 :

|0〉〈0| → |1〉〈1| andC2 : |1〉〈1| → |0〉〈0| are unitary, then we may choose the corresponding
U(t) to be parallel transporting and putB1,2(t) =U†(t)Ṽ1,2(t) = 1. Thus,̃V1,2(T)≡U(T) are

purely off-diagonal and thus
∣∣∣〈1|Ṽ1(T)|0〉〈0|Ṽ2(T)|1〉

∣∣∣
2
= 1. In the non-unitary case, there

might exist exceptional paths for which at least one ofṼ1,2(T) is diagonal makingX (2)
12 [C1C2]

to vanish. In the worst case, one may envisage situations where bothṼ1(T) andṼ2(T) are
diagonal so that none of the holonomies is defined.

For higher dimensional Hilbert spaces, we may envisage evolutions of generally non-
pure states that both start and end in orthogonal subspaces.Taking dimH = 3 an initial pure
state can evolve to a mixed state or vice versa. For a mixed state with rank two the states
may have support in different subspaces. Because of the change in the rank both cases are
only possible for non-unitary evolutions in general.

However, for the sake of simplicity, we will increase the dimensionality of the Hilbert
space under consideration to four. In a four dimensional Hilbert space we may encounter
evolutions, where the rank of the density matrix representing the stateρ1 does not change,
and nonetheless the supports of the initial and the final state are non-overlapping.

Suppose that the Hilbert spaceH can be decomposed asH = H1⊕H2 with dimH1 =

dimH2 = 2. The initial stateρ1(0) has support exclusively inH1 evolving to a stateρ1(T) in
H2. For this scenario, we may for instance consider the unitarity U(t) causing the transport

76



3. OFF-DIAGONAL GEOMETRIC PHASES

t 7→W1(t)=U(t)W1(0)B1(t)= ρ1/2
1 (t)Ṽ1(t) with the amplitudeW1(0)= ρ1/2

1 (0)∈O(H1) of
the initial state.U(t) andB1(t) = U†(t)Ṽ1(t) are related via the parallel transport condition
Eq. (3.3.6). If the final amplitudeW1(T) = U(T)W1(0)B1(T) has support exclusively in

H2, clearly the functionalν(1)
C1

= argTr[W1(T)W†
1 (0)] is undefined since the left and right

support of the holonomy invariantX (1)
1 [C1], denoted as l-suppX (1)

1 [C1] and r-suppX (1)
1 [C1],

respectively, are orthogonal:

l-suppX (1)
1 = suppX (1)

1

(
X (1)

1

)†
= suppρ1/2

1 (T)Ṽ1ρ1(0)Ṽ†
1 ρ1/2

1 (T) = H2

r-suppX (1)
1 = supp

(
X (1)

1

)†X (1)
1 = suppρ1/2

1 (0)Ṽ†
1 ρ1(T)Ṽ1ρ1/2

1 (0) = H1.

However, the generalisedl = 2 holonomy invariantX (2)
12 [C1C2] can be used to construct a

holonomy invariant of the given evolution by utilisingW2(t) as the amplitude of another
stateρ2(t) which has support inH2 at t = 0, i. e. suppρ2(0) =H2, and suppρ2(T) =H1 for
the final state. In particular, we have

X (2)
12 [C1C2] = W1(T)W†

1 (0)W2(T)W†
2 (0)

= ρ1/2
1 (T)Ṽ1ρ1/2

1 (0)ρ1/2
2 (T)Ṽ2ρ1/2

2 (0). (3.3.15)

The right and left support ofX (2)
12 [C1C2] are overlapping and therefore the holonomy invariant

X (2)
12 [C1C2] is well-defined in the nodal points ofX (1)

i [Ci ] for the statesρi , i = 1,2.
Notwithstanding the conceptual allure of Uhlmann’s holonomy invariants and the con-

sequent off-diagonal holonomies it is doubtful whether a physical implementation of the
latter by some kind of experiment is possible. An experimentto test the diagonal Uhlmann
holonomy is proposed in [EPS+03] where the explicit control over the ancilla Hilbert space
is essential to ensure the parallel transport of the state. The ancilla Hilbert space remains no
longer a theoretical concept, but is also manifest in the experiment. Even in this proposal it
is only the complex valued functionalν(1)

C
(Eq. 3.3.2) that is measured instead of the matrix

valued holonomy invariantX (1) and it remains an open question how to measure the latter.

3.3.5 Spin Flip Operation on a Mixture of Bell States

One explicit example of an evolution that leads to orthogonal initial and final mixed states is
a spin plus phase flip operation applied to a mixture of Bell states. For the initial state

ρ1(0) =
1

1+ ε
(
|Ψ−〉〈Ψ−|+ ε|Ψ+〉〈Ψ+|

)
, ε ≥ 0, (3.3.16)

we obtain by spin- and phase-flipping the first qubit, i.e.,Usf : (|0〉, |1〉) 7→ (|1〉,−|0〉) or
Usf = |Φ+〉〈Ψ−|+ |Ψ+〉〈Φ−|− |Ψ−〉〈Φ+|− |Φ−〉〈Ψ+|, the final state

ρ1(τ) =
1

1+ ε
(
|Φ+〉〈Φ+|+ ε|Φ−〉〈Φ−|

)
, (3.3.17)
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where we have denoted the Bell states by|Ψ±〉 = 2−1/2(|01〉 ± |10〉) and |Φ±〉 =

2−1/2(|00〉 ± |11〉). A simple implementation of such an operation is given by the
time-independent HamiltonianHs = σy ⊗ 12 so that the pathC1 : t ∈ [0,T] 7→ ρ1(t) =

Us(t)ρ1(0)U†
s (t) with Us(t) = e−itHs is traced out in state space. InsertingUs(t) into Eq.

(3.3.6) yields a vanishing left-hand side, so that we can chooseBs1(t) = 11⊗12 to fulfil the

parallel transport condition. ForT = π/2 we obtain the amplitudeW1(T) =Us(T)ρ1/2
1 (0) =

Usfρ
1/2
1 (0) and thel = 1 holonomy invariant reads

X (1)
1 [C1] = W1(T)W†

1 (0) = Usfρ1(0)

=
1

1+ ε
(
|Φ+〉〈Ψ−|− ε|Φ−〉〈Ψ+|

)
, (3.3.18)

which has nonoverlapping right and left support and is therefore undefined. In particular, the
trace functionalν(1)

C
= argTr[Usfρ1(0)], which in this special case is equal to the diagonal

geometric phase for mixed states (Eq. 2.3.4), vanishes. Thel = 2 off-diagonal holonomy
invariant can be formed by choosing the reference stateρ2(0) = ρ1(T), which evolves to
ρ2(T) = ρ1(0) along the pathC2 : t 7→ ρ2(t) = Us(t)ρ2(0)U†

s (t). Again, we can setBs2(t) =

11⊗12 and obtainX (1)
2 [C2] = W2(T)W†

2 (0) = Usfρ2(0), which also has nonoverlapping left
and right support. These considerations result in

X (2)
12 [C1C2] = W1(T)W†

1 (0)W2(T)W†
2 (0) = Usfρ1(0)Usfρ2(0)

= − 1
(1+ ε)2

[
|Φ+〉〈Φ+|+ |Φ−〉〈Φ−|

]
, (3.3.19)

the left and right support of which are overlapping andX (2)
12 is therefore well-defined

at this particular nodal point ofX (1)
i [Ci ]. The HamiltonianHs above is not a unique

choice for a spin-flip implementation, this task can also be performed, e.g., by the time-
dependent HamiltonianHr(t) = [uzσz+uxy(σxcosωt +σysinωt)]⊗12 similar to the Hamil-
tonian for a resonance spin-flipper (on the first particle). The unitary time evolution oper-
ator corresponding toHr(t) can be written asUr(t) = UrotUeff = e−iωtσz/2e−itHeff ⊗12 with
Heff = (uz + ω/2)σz + uxyσx. By the particular choice of the parametersuz = −u/2 and
ω = −2uxy = −2uz, one can verify that fort = π

ω we have the implemented the same spin-
flipping unitary as in the static case, i.e.,Ur(π/ω) = Us(π/2) = Usf. InsertingUr on the
left-hand side of Eq. (3.3.6) we obtain

Br1(t) = cosγ(t)
[
|Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|

]

−i sinγ(t)
[
|Ψ+〉〈Ψ−|+ |Ψ−〉〈Ψ+|

]
,

γ(t) =

√
εωt

1+ ε
. (3.3.20)
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This gives us thel = 1 holonomy invariant for the path̃C1 : t ∈ [0,T] 7→ ρ1(t) =

Ur(t)ρ1(0)U†
r (t) as

X (1)
1 [C̃1] = W1(T)W†

1 (0) = Usfρ
1/2
1 (0)Br1(T)ρ1/2

1 (0)

=
1

1+ ε

[
cosγ(T)

(
|Φ+〉〈Ψ−|− ε|Φ−〉〈Ψ+|

)

+i
√

ε sinγ(T)
(
−|Φ+〉〈Ψ+|+ |Φ−〉〈Ψ−|

)]
, (3.3.21)

which has nonoverlapping left and right supports and is therefore undefined. Similarly, by
again takingρ2(0) = ρ1(T) from Eq. (3.3.17), thel = 1 holonomy invariant associated with
the pathC̃2 : t ∈ [0,T] 7→ ρ2(t) = Ur(t)ρ2(0)U†

r (t) becomes

X (1)
2 [C̃2] = W2(T)W†

2 (0) = Usfρ
1/2
2 (0)Br2(T)ρ1/2

2 (0)

=
1

1+ ε

[
cosγ(T)

(
ε|Ψ+〉〈Φ−|− |Ψ−〉〈Φ+|

)

+i
√

ε sinγ(T)
(
|Ψ−〉〈Φ−|− |Ψ+〉〈Φ+|

)]
(3.3.22)

with nonoverlapping left and right support.
We may use Eqs. (3.3.21) and (3.3.22) to obtain thel = 2 holonomy invariant

X (2)
12 [C̃1C̃2] = W1(T)W†

1 (0)W2(T)W†
2 (0)

= Usfρ
1/2
1 (0)Br1(T)ρ1/2

1 (0)Usfρ
1/2
2 (0)Br2(T)ρ1/2

2 (0)

=
1

(1+ ε)2

[
−
(

cos2γ(T)+ ε sin2 γ(T)
)(
|Φ+〉〈Φ+|+ ε|Φ−〉〈Φ−|

)

+i
√

ε(1− ε)sinγ(T)cosγ(T)
(
|Φ+〉〈Φ−|− |Φ−〉〈Φ+|

)]
, (3.3.23)

which has overlapping right and left support and is therefore well-defined at this particular
nodal point ofX (1)

i [C̃i ]. The difference betweenX (2)
12 [C1C2] from the HamiltonianHs and

X (2)
12 [C̃1C̃2] from Hr(t) reflects the path dependence of the off-diagonal holonomy.

3.4 Conclusions

Recent investigations in geometric phases in quantum systems have led to cases where the
standard definitions breaks down. In this chapter the concept of the off-diagonal geometric
phase by Manini and Pistolesi has been taken up and applied tothe mixed state case. For
the evolution of density matrices, there are points in parameter space for which the standard
mixed state geometric phaseφρ cannot be defined in the usual way since the initial and final
state are orthogonal to each other leading to a break down of the contrast in the interfero-
metric approach. If this happens there remain still off-diagonal geometric phases of higher
order which are probably well-defined and which are independent of the particular dynamics.
Besides a general discussion on possible values also a simple example of a trajectory on the
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Bloch-sphere for a two-level system is presented which visualises the complementarity be-
tween the diagonal and the off-diagonal geometric phase. Inthe qubit case the off-diagonal
mixed state phase can be fully qualified both from the theoretical and from the experimental
point of view. But it has to be mentioned that the measurementseems to require control and
measurement of one or more ancilla systems although the off-diagonal mixed state phases
are properties of the system alone, since the constituting set of density operators pertains
solely to the system. Explicitly, a Franson interferometersetup for the qubit case has been
presented illustrating the nontrivial sign change property of the off-diagonal phase connected
to the mixed state case. The apparent need for control over anancilla system seems to sug-
gest that the proposed concept of off-diagonal mixed state geometric phase is a nonlocal
and/or contextual property of the unitary evolution of a quantum system.

Furthermore, basically motivated by possible nodal pointsoccurring in Uhlmann’s con-
cept of relative phase for some particular paths of mixed quantum states we have extended
the original notion to off-diagonal quantum holonomy invariants. Utilizing these generalised
quantities the problem of undefined relative Uhlmann phase for initial and final state with
orthogonal supports can be overcome in line with the introduction of off-diagonal geometric
phases for pure states. The definition of the holonomy invariants is equivalent to the Manini-
Pistolesi approach in the pure state limit, moreover it provides us with a natural extension
of the latter to nonparallel-transporting unitary evolutions. Besides other examples, we have
explicitly demonstrated by means of the evolution of a Bell state mixture the necessity to
resort to off-diagonal quantum holonomies to obtain information about the geometry of state
space.

When comparing these holonomy invariants with the former off-diagonal mixed state
geometric phasesγρρ⊥ we have detected a general discrepancy for these two approaches
related to a fundamental difference in the treatment of parallel transport of quantum states.
In general, the interferometric off-diagonal geometric phase and the Uhlmann holonomies
are incompatible as long as we are not dealing with pure states. Both of them, however,
allow for a further characterisation of the geometry of the state space of density operators in
case of undefined mixed state geometric phase.
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Chapter 4

Spatial Geometric Phase - A Neutron
Interferometry Experiment

The geometric phase manifests itself not only in the spin degrees of freedom of a neutron. It
is a property of the underlying Hilbert space no matter whichparticular physical property is
represented. Hence, we expect to find a geometric phase not only connected to the internal
spin angular momentum of a particle but also to its kinematics in ordinary space-time. In
one of the earlier experiments on the geometric phase Tomitaand Chiao [TC86] investigated
the change of the plane of polarisation of linearly polarised light after transmission along a
mono-mode optical fibre wound helically around a cylinder. In this experiment the geometric
phase arises due to the (parallel) transport of the polarisation vector along a path in momen-
tum space similar to the situation encountered in the classical example in the introductory
Section 1.1.

To examine a quantum geometric phase originating from the shape of momentum space
itself independent of internal degrees of freedom like spinfor neutrons or the polarisation for
light we use a interferometric setup with totally unpolarised incident neutrons [RW00]. The
possible states are restricted to a two-dimensional subspace of the total continuous momen-
tum space. A neutron with a specific momentum incident onto a (perfect) beam splitter has
only the possibility of being either transmitted or reflected, the subjacent two-dimensional
Hilbert space is spanned by the two possible paths in the interferometer. The neutron is after
the beam splitter in a superposition state of these alternatives and the evolution of the state
can be manipulated by phase shifters and absorbers. Due to this evolution the state obtains a
phase and by carefully eliminating the dynamical phase the resulting phase is purely geomet-
ric, i. e. it is independent of the particular neutron’s momentum (wavelength). One proposal
to verify the spatial geometric phase is discussed by Sjöqvist [Sjö01] using polarised neu-
trons and reversing the rôles of the magnetic field and the spatial degrees of freedom.

An experiment by Hasegawaet al. [HZR96] follows another approach to verify the spe-
cial case of acyclicspatial geometric phase, where a phase shift of an integer multiple of 2π
is exerted between the transmitted and the reflected path. The interpretation of this experi-
ment, viz. to ascribe a geometric phase to this particular state evolution, has however met
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severe criticism [Wag99]. A more detailed examination is necessary to settle this conflict.
In the following the extension tonon-cyclicevolutions proves advantageous to manifest the
correctness of the interpretation of the previous experiment by means of an explicit calcula-
tion of the non-cyclic geometric phase in terms of paths on the Bloch-sphere. The theoretical
treatment, which comprises the cyclic geometric phase as a special case, is then confirmed
by an experiment [FHLR05b, FHLR05a].

4.1 Neutron Interferometry

Neutron interferometry is now a well established techniquefor measurements of various
quantum mechanical effects. It resembles closely a Mach-Zehnder widely used in light op-
tics, but the huge difference is that massive particles are brought to interference. The first
interference fringes have been sighted in 1974 by Rauch, Treimer and Bonse [RTB74]and
the wave-like nature of neutrons – as proposed byde Broglie– could therewith be shown.

A neutron interferometer consists of a single silicon perfect-crystal (Figure 4.1) cut in
such a way that the incoming neutrons are split by Bragg diffraction at the net planes of the
first plate and finally recombined at the last plate.

Figure 4.1: (Skew-symmetric) single crystal neutron interferometer.

Many beautiful experiments on the fundamentals of quantum mechanics have been con-
ducted since: Besides showing the existence of coherent neutron matter waves [RTB74],
one year later the verification of the 4π-spinor symmetry followed [RZB+75]. The influ-
ence of gravitation of the earth on the wavefunction [COW75]or the spin superposition law
that the superposition of two coherent beams with (orthogonal) spin polarisation results in a
polarised beam again [SBRK82, BRS83] are further examples.Recently, a test of Bell’s in-
equalities [Bel64, FS04b, FS04a] has been performed using the spatial degree of freedom in
the interferometer to generate a “bi-partite” Bell-State [HLB+03]. Worth mentioning is also
the experiment on a confinement induced phase shift [RLBL02]where the neutrons experi-
ence a wall potential when going through narrow channels. Due to energy conservation their
longitudinal momentum decreases which in turn gives rise toa phase shift. The geometric
phase associated to the spin evolution has been tested by useof a neutron interferometer
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where static spin flippers are put in both arms [WRS+97]. For a more thorough review of
fundamental neutron optics experiments the reader is referred to [RW00, Rau04].

In our case the interferometer features a double-loop geometry [ZBLR02]. This particu-
lar shape enables us to measure the spatial geometric phase associated with the evolution of
neutrons in the second loop giving rise to a phase shift relative to the reference beam from
the first loop. The same instrument has been used, e. g., for first attempts in reconstructing
the neutron state [BRS03]. Like for all other types of neutron interferometers the mono-
lithic property is crucial since the individual beam-splitting plates have to be arranged with
a precision comparable to the lattice parameter. The basic principle is relatively simple: Be-
fore falling onto the skew-symmetric interferometer, the incident neutron beam is collimated
and monochromatised by the 220-Bragg reflection of a Si perfect crystal monochromator
placed in the thermal neutron guide. In our case the wavelength has been tuned to give a
mean value ofλ = 2.715 Å. The interferometer is then aligned such that the net planes of
the interferometer plates are parallel to the net planes of the monochromator (non-dispersive
arrangement). The surface of the plates is perpendicular tothe reflecting net planes which is
called Laue-geometry. The incident beam is split into a transmitted and a reflectedbeam, if
the interferometer is aligned with the monochromator, and these beams have a well-defined
phase relation to each other - otherwise there would be no interference. In terms of state
vectors the situation can be described by

|Ψi〉 7→ t|Ψt〉+ r|Ψr〉, (4.1.1)

where|Ψi〉 denotes the incident beam,|Ψt〉 and|Ψr〉 the transmitted and the reflected beam,
respectively. The complex factorst andr (|t|2+ |r|2 = 1 for a non-absorptive beam splitter)
describe the ratio of transmission (t) and reflection (r) and the phase relation between the
outgoing beam. In the following we will assume a 50:50 beam-splitter (t = r = 1/

√
2) with

zero phase difference. This can be justified a posteriori since in an interferometer all beam
paths exhibit the same number of reflections and transmissions and, furthermore, the intrinsic
phase shift of the beam splitting slabs remains immaterial since it is constant throughout
the measurement process. Unfortunately, this last assumption is merely wishful thinking,
temperature gradients and other environmental influences causes a sometimes non-negligible
phase drift as can be noticed in the final interference fringes.

Putting now several beam splitting plates together such that the partial waves are finally
recombined behind the interferometer and adding an additional slab that produces an ad-
justable phase shift the relative phase difference betweenthe beams taking different paths in
the apparatus can be monitored (see Figure 4.2).

Since the number of reflections and transmissions is same forboth beams the ampli-
tude of the beams is of equal magnitude in the forward (O) detector. The state leaving the
interferometer at the beam splitter BS4 is given by

|ψO〉 = a(|ψI〉+ei∆χ |ψII 〉), (4.1.2)
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PS
(∆χ)

BS1

BS4

BS3

|ψt〉

|ψ
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Figure 4.2: (Skew-symmetric) neutron interferometer where the incident beam|ψ〉 is split
at the first beam splitter BS1 and recombined at BS4 into a transmitted (|ψt〉) and a reflected
beam (|ψr〉). The phase shifter PS induces a relative phase difference between the two beam
paths which give rise to interference fringes detector (DO) in the forward direction.

wherea∈ C denotes the amplitude of the outgoing wave and comprises also a global phase
factor. This global phase factor is immaterial at first, because it does not show up in the
interference fringes of the intensity

I = 〈ψO|ψO〉 = 2|a|2(1+cos∆χ). (4.1.3)

Later on this phase will be of crucial importance for the measurement of the spatial geomet-
ric phase. By adding another loop to the interferometer we can measure the phase of the
coefficienta and it will be associated to the geometric phase arising fromthe evolution of
the wave in a single interferometer loop.

Equation (4.1.3) is valid only if the states|ψI 〉 and|ψII 〉 are fully overlapping and coher-
ent, i. e.〈ψI |ψII 〉 = 1, otherwise an additional visibility (or contrast) factorν ≡ |〈ψI |ψII 〉| ∈
[0,1] appears that reduces the amplitude of the interference fringes (Figure 4.3). Adding
additionally a sample into one beam path producing a phase shift of Φ the intensity finally
reads

I ∝ 1+ν cos(∆χ +Φ). (4.1.4)

Neutrons with spin

Neutrons are fermions with spin 1/2. Consequently the statevector comprises in addition a
factor for the spin degrees of freedom, usually written in terms of basis states of the Pauli
spin matrices (σx,σy,σz) discussed in Section 1.2.1. The spin state is represented as a vector
element of a complex two dimensional Hilbert space and the transformation from one state
to another is state is via a two dimensional unitary matrix element ofU(2). Evidently, the
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∆χ

I

Φ

ν

I ∝ 1+ν cos(∆χ +Φ)
I = 1+cos∆ξ

Figure 4.3: Interference fringes due to rotation of the phase shifter. A shift of the interference
fringes is caused by an additional phase differenceΦ between the two interferometer paths.
Partial overlap of the states leads to a reduction of the contrastν.

interference pattern is sensitive to changes of the spin state provided that these are different
for the different interferometer paths. In terms of equations, the initial state is given by

|ψ0〉 = |ψx〉⊗ |ψs〉, (4.1.5)

where|ψx〉 denotes the initial translatorial and|ψs〉 the initial spin part. The beam splitter
acts on the first factor and produces the state

|ψ0〉 BS17→ |ψ1〉 = 1/
√

2(|ψt〉+ |ψr〉)⊗|ψs〉. (4.1.6)

If we switch on some magnetic field (B) in the transmitted beampath, say, the spin part will
change and we get the state

|ψ1〉 B7→ |ψ2〉 = 1/
√

2(|ψt〉⊗UB|ψs〉+ |ψr〉⊗ |ψs〉), (4.1.7)

whereUB denotes the interaction between spin and magnetic field. This is called anen-
tangled state[Sch35, Sch36] since it cannot be written in product form. Such states have
formed in recent years the germ of a vast new branch of physics, Quantum Information, with
the sublime aim to build once a quantum computer. Here, we note this just in passing and
head on to calculate the interference fringes. Like before we add a phase shifter and obtain

|ψ2〉 PS7→ |ψ3〉 = 1/
√

2(|ψt〉⊗UB|ψs〉+ei∆χ |ψr〉⊗ |ψs〉). (4.1.8)

The recombination of the beams by means of beam-splitters BS2, BS3 and BS4 modifies
only the spatial state:

|ψ3〉 BS7→ |ψ4〉 = 1/2(|ψtrr 〉− |ψtrt 〉)⊗UB|ψs〉+ei∆χ(|ψrrt 〉+ |ψrrr 〉)⊗|ψs〉, (4.1.9)
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where each beam splitter adds a subscript to the state indicating a transmission (t) or a reflec-
tion (r). We are just interest in the intensity in the O detector and can therefore skip the parts
which are travelling towards the H detector (|ψtrt 〉 and|ψrrr 〉). Consequently, the intensity
in the O-detector is given by

I ∝ ||ψtrr 〉⊗UB|ψs〉+ei∆χ |ψrrt 〉⊗ |ψs〉|2

= 2+2|〈ψtrr |ψrrt 〉||〈ψs|U†
B|ψs〉|cos(∆χ +Φx +Φs) (4.1.10)

when usingΦx ≡ arg〈ψtrr |ψrrt 〉 andΦs ≡ arg〈ψs|U†
B|ψs〉. We notice that the interference

fringes are reduced by thevisibility factor

ν = νxνs≡ |〈ψtrr |ψrrt 〉||〈ψs|U†
B|ψs〉| (4.1.11)

comprising a translatorial (νx) and a spin component (νs). The former describes the overlap
of the states in phase space, whereas the latter depends onlyon the spin part. However,
for the present setup the spin part of the wave function can beneglected since there is no
magnetic field interaction involved and〈ψs|U†

B|ψs〉 = 1. Hence, the spin part of the wave
function will be omitted.

4.1.1 Phase Shifter

As phase shifters we use parallel-sided aluminium slabs of different thicknesses which
have a high transmission rate for neutrons. The phase shiftχ = NAlbcλde f f depends on
the wavelengthλ = 2.715× 10−10m, the coherent scattering length of aluminiumbcAl =

3.449(5)×10−15m, the particle density of aluminiumNAl = 6.0264×1028 atoms per cubic
meter and the effective thicknessde f f.

Calculation of the phase shift

Let us revise the principles of refraction of a (matter) waveat an aluminium slab which
acts dominantly as a phase shifter for neutrons with negligible absorptive losses. The time-
independent Schrödinger equation is the starting point:

(
− h̄2

2m
∆+V(~r)

)
ψ(~r = Eψ(~r), (4.1.12)

where the potentialV(~r) is given by the sum over all nucleonic scattering centres sitting at
~r i,

V(~r) =
2πh̄2bcAl

mn
∑
i

δ (~r −~r i). (4.1.13)

mn is the mass of the neutron. The solution of this equation is issue ofdynamical diffraction
theoryand is thoroughly discussed in [RP76a, RP76b]. A transformation of the Schrödinger

86
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equation into its momentum representation yields

(
− h̄2k2

2mn
+V(~k)

)
ψ(~k) = Eψ(~k), (4.1.14)

whereV(~k) is the Fourier transform ofV(~r). We take only the~k = 0 contribution,

VF ≡V(0) =
2πh̄2bcAl

mn
NAl. (4.1.15)

This is called theEinstrahlnäherung[RP76a, p.7] where it is assumed that the neutron-
nucleus interaction is small and that consequently the difference between the wave vector
within the crystal and the vacuum wave vector is negligible.Other terms have to be kept
to calculate diffraction effects of periodic structures, but such effects do not bother us at the
moment. The Schrödinger equation can now be solved in the interior of the phase shifter.
The incident wave has a momentum~k of magnitudek ≡ ‖~k‖ and the wave-vector in the
interior is denoted~K with magnitudeK ≡ ‖~K‖ (c. f. Figure 4.4).

z= 0

~ns

~k ~k′

~K

γ

bc < 0

Figure 4.4: Refraction at at the surface

The Schrödinger equation in momentum space in the interior region reads

(
− h̄2K2

2m
+VF

)
ψ(~K) = Eψ(~K),

− h̄2K2

2m
ψ(~K) = (E−VF)ψ(~K),

K2 =
2m

h̄2

[
E−VF ] =

2mE

h̄2

(
1−VF

E

)
. (4.1.16)

The reflected beam~k′ can safely be neglected if the optical potentialVF is small compared
to the kinetic energy of the incident neutron. Thermal neutrons with wavelength around 2 Å
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possess kinetic energy of about 0.02 eV which is orders of magnitude larger than typical
values ofVF typically in the nano-electronvolts regime (e. g. for aluminiumVF ≈ 50 neV).
The situation changes drastically for ultra-cold neutronswith energies in the same order of
magnitude (e. g.≈ 130 neV for a neutron velocity of 5 m/s). In such situations the reflected
beam cannot be omitted, but it becomes dominant. By virtue oftheir low energy ultra-cold
neutrons can be stored in bottles made of appropriate materials with highVF , for example
beryllium withVF = 250 neV. This technique is of potential use for measuring decoherence
phenomena as will be discussed later in Section 5.

For the moment we stick to thermal neutrons. When the reflected beam is neglected we
have energy conservation and the Schrödinger equation for the free neutron with momentum
~k provides a value for the kinetic energyE = h̄2k2/(2m).

K2 = k2[1−VF/E] (4.1.17)

follows from Eq. (4.1.16). Using againVF/E << 1 we can extract the root in Eq. (4.1.17)
and approximate the right hand side to first order inVF/E to obtain

K ≈ k

(
1− VF

2E

)
. (4.1.18)

Recalling Eq. (4.1.15) we can write

VF/(2E) =
2πh̄2bcNAl

m
2m

2h̄2k2
= 2πbcNAl/k2 = λ 2NAlbc

2π
(4.1.19)

and obtain the refractive index

n≡ K
k
≈ 1−V(0)

2E
= 1−λ 2NAlbc

2π
. (4.1.20)

Note, that for most materials used as phase-shifters (e. g. aluminium or silicon)VF > 0
since the coherent scattering lengthbc > 0 leads to a refractive index slightly smaller than one
(n < 1). Due to the additional potential energy the kinetic energy is lowered, ’the neutron
passes the potential more slowly’. An exceptions is for example titanium with a negative
scattering lengthbc which can therefore be used to compensate the phase shift called phase
echo[CKW+91].

The direction of the beam~K is obtained by requiring the continuity of the tangential
component~k‖ = ~K‖, defined by the vanishing scalar product with the surface normal~ns·~k‖ =

0. Accordingly, we find with (4.1.17

K2 = K2
⊥ +K2

‖ = K2
⊥ +k2

‖ = k2
(

1−VF

E

)

= k2
‖ +k2

⊥−k2V(0)

E
(4.1.21)
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and it follows for the perpendicular componentK⊥ that

K⊥ =

√
k2
⊥−k2VF

E
≈ k⊥

(
1− 1

2
k2

k2
⊥

VF

E

)

= k⊥

(
1− 1

2
1

cos2 γ
VF

E

)
. (4.1.22)

Usingk⊥ =~k ·~ns = kcosα we can finally write

~K =~k− k
cosα

VF

2E
~ns. (4.1.23)

Now it is easy to calculate the phase shiftX induced by a phase shifter of thicknessd.
The phase shift at a point~r relative to the origin is given by~k ·~r. A comparison of the phase
difference between the refracted wave~K and the incident wave~k at the surface characterised
by~ns ·~r = d yields

X ≡ (~k−~K) ·~r =
k

cosα
VF

2E
d = λ 2NAlbcAlkd

2π cosα
= NAlbcAlλ d/cosα︸ ︷︷ ︸

de f f

. (4.1.24)

It turns out useful to write the phase shift of the wave-packet as the wave vector~k times a
spatial displacement~∆,

X =~∆ ·~k (4.1.25)

with
~∆ = (1−n)d~ns = λ 2NAlbc

2π
d~ns

SinceX is wavelength-dependent the phase shifter induces dephasing if the incident has non-
vanishing momentum spread. This leads to the concept ofcoherencewhich will be discussed
in Section 4.8.1.

4.1.2 Induced phase shift

The adjustable parameter is the effective thicknessde f f = d/cosα in the forward direction
of the beam which is proportional to the inverse cosine of theenclosed angleα according to
Eq. (4.1.24). It can be changed by a rotation of the phase shifter

The phase shifter is aligned at an angle ofα0 = 45◦ and the rotation is about±2◦ so that
the inverse cosine can be approximated by a Taylor expansionup to first order atα0 = π/4,

1
cos(α0+ξ )

=
1

cosα0
+

sinα0

cos2α0
ξ +O(ξ 2) ≈

√
2(1+ξ ). (4.1.26)
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d2,e f f

d1,e f f

d1

d2

α0−ξ

α0+ξ

Figure 4.5: Beam incident on a phase shifting slab.

Consequently, the phase shift

X =
√

2dNAlbcAlλ (1+ξ ) (4.1.27)

comprises a constant termχ0 ≡
√

2DNAlbcAlλ and a variable termχ ≡
√

2DNAlbcAlλξ , i. e.

X = χ0+ χ. (4.1.28)

The superposition of the transmitted and reflected beam|ψ〉 ∝ |ψ1〉+ |ψ2〉 after a beam-
splitter is changed by a phase shifter covering both beams (Figure 4.5) to|ψ〉 7→ eiX1|ψ1〉+

eiX2|ψ2〉 = eiX1

(
|ψ1〉+ei(X2−X1)|ψ2〉

)
. The global factoreiX1 can be neglected as usual and

the rotation angleξ determines the variable relative phase difference betweenthe two beams
∆X ≡ X2−X1,

∆X ≡ X2−X1

=
√

2NAlbcAlλ
[
d2(1+ξ )−d1(1−ξ )

]

=
√

2NAlbcAlλ
[
(d2−d1)+ξ (d2+d1)

]

≡ ∆χ0 +∆χ(ξ ) (4.1.29)

where the subscripts denote the different beams. The rotation direction has been chosen
counter-clockwise so that increasingξ yields an increase (decrease) of the phase shiftχ2

(χ1) andd2 (d1) denotes the thickness of the plate in the transmitted (reflected) beam.

4.1.3 Absorber

The process of absorption can be described by the imaginary part of thecoherent scattering
length bc which defines thetotal attenuation cross sectionσt = 4π

k Imbc [Sea89, p.45].σt

is the average number of incident neutrons that are scattered or absorbed per unit time per
unit incident flux. The complex phase shiftβ = β ′+ iβ ′′ of a neutron wave going through a
material slab,|ψ0〉 7→ eiβ |ψa〉, consists therefore of a term including the coherent scattering
lengthβ ′ = X = Nbcλde f f and a term proportional to the total attenuation cross section σt ,
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β ′′ = Nσtde f f/2 [RW00, p. 67].

The incident wave function obtains an exponential damping factor due to the absorption
and the scattering,

|ψa〉 = e−iXe−σtNDe f f/2|ψ0〉
or in terms of the intensity the beam is attenuated accordingto

I = 〈ψa|ψa〉 = I0e−σtNDe f f .

In the following the exponential absorption term will be denoted by thetransmission coeffi-
cient T≡ e−σtNDe f f and consequently

|ψa〉 = e−iX
√

T|ψ0〉.

For aluminiumσt is negligible, 1 mm aluminium absorbs about 1% of the incident neu-
trons. On the other hand gadolinium has a large absorption cross section and by mixing with
deuterium (almost no absorption) the absorption rate can betuned to the desired value by
changing the concentration. Such a solution has been prepared in a quartz-cuvette and put
into one of the beams.

An interesting issue has been discussed by Summhammer [RS84]: The absorption
process in the form mentioned above involves unpredictableprobabilities whether the neu-
tron is absorbed or not. It is not possible to predict for a single neutron if it will be absorbed
or not, quantum mechanics just tells us the probability in the form of the amplitude of the
state vector. This situation changes drastically if one replaces the static absorptive mater-
ial by a time-dependent chopper so that it becomes possible to dismiss a certain fraction of
neutrons “manually”. The knowledge of the time of transmission or absorption results in
a different behaviour of the interference fringes, viz. thecontrast is either proportional to
the square root of the transmission probability for the former setup, or linearly dependent
thereupon in the latter case.

The difference should also be seen in the geometric phase. The results presented here
are for the static case, whereas for the latter we would have to weight the geometric phase
contributions stemming either from total absorption or a total transmission.

4.2 Description of the setup

Being confident that the short introduction to the vast field of neutron interferometry will do,
we can proceed to the measurement of the spatial geometric phase that shows up due to the
neutron’s motion through the interferometer loop:

As noticed by Feynman [FVH57] the description of any two-level quantum system is
equivalent to the description of a spin-1/2 particle. Exploiting this equivalence there is in
principle no difference between manipulations in the spin space of neutrons with the orthog-
onal basis{| ↑〉, | ↓〉} as eigenstates of the Pauli matrixσz representing a neutron in spin up
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or spin down state, respectively, and momentum space with{|k〉, |k′〉} as orthogonal basis
vectors. The latter corresponds to two directions of the neutron beam in an interferome-
ter. In both cases one can assign a geometric phase to the particular evolution of the initial
state. An even more appropriate description for the interferometric case for the forthcom-
ing discussion is in terms of “which-way” basis states{|p〉, |p⊥〉}, namely, if the neutron
is found in the upper beam path after a beam-splitting plate it is said to be in the state|p〉,
or in the state|p⊥〉, if found in the lower beam path. The operators measuring thepath of
the neutrons are denoted byPp ≡ |p〉〈p| andPp⊥ ≡ |p⊥〉〈p⊥|, respectively. The complemen-
tary operator which corresponds to measuring the interference instead of the path is denoted
by Pq ≡ |q〉〈q|= (1+ |p〉〈p⊥|+ |p⊥〉〈p|)/2 (andPq⊥ = 1−Pq = |q⊥〉〈q⊥|) with eigenvector

|q〉= 1/
√

2(|p〉+ |p⊥〉) (|q⊥〉= 1/
√

2(|p〉−|p⊥〉) as a superposition of the path eigenstates.

PS2
(∆χ)PS1

(η)
A(T)

BS3

BS6

BS5

DO

BS2 BS4

BS1





Figure 4.6: Double-loop interferometer used for the measurement of the spatial geometric
phase.

For testing the spatial geometric phase we use a double-loopinterferometer (c. f. Figure
4.6), where the incident unpolarised neutron beam|ψ〉 is split up into a diffracted reference
beam|ψ0

r 〉 and a transmitted beam|ψt〉 by means of the first beam splitting plate BS1. The
double-loop geometry is needed to have a well-defined phase reference at our disposal in or-
der to measure the phase of the state evolution in the second loop. In fact, recalling equation
(4.1.3) a global phase factorΦ of the evolution|ψ〉 7→ t|ψ1〉+ r|ψ2〉 7→ eiΦ |ψ〉 cannot be
measured in a single loop interferometer, it is only the phase difference between|ψ1〉 and
|ψ2〉 that is measurable. One has to resort to an additional reference beam with respect to
which the phase difference can be measured. Hence, the double loop geometry is essential.

The reflected beam at the first beam splitter BS1,|ψ0
r 〉, is used as a reference with ad-

justable phaseη relative to|ψ0
t 〉 from the phase shifter PS1. The latter beam is defined to be

in the state|ψ0
t 〉 ≡ |p〉 before falling onto the beam splitter BS3, since it is clearly localised as

seen from the second loop. Behind BS3 there are two possible orthogonal paths|p〉 and|p⊥〉
spanning a two-dimensional Hilbert space.|p〉 denotes the state of the transmitted beam and
|p⊥〉 the state of the reflected beam, respectively. Having a 50:50beam splitter|ψ0

t 〉 is trans-
formed into a superposition of the basis vectors|p〉 and|p⊥〉: |ψ0

t 〉 7→ |q〉≡ (|p〉+ |p⊥〉)/
√

2.
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The beam|ψ0
t 〉 is subjected to further evolution in the second loop of the interferometer

by use of beam-splitters (BS4 and BS5), an absorber (A) with transmission coefficientT
and the phase shifter (PS2) generating a phase shift ofeiχ1 on the upper andeiχ2 on the
lower beam path, respectively, yielding the final state|ψ f 〉 = U |ψ0

t 〉. The unitary matrix
U = U(T,χ1,χ2) comprises all the manipulations in the second loop:

|ψ0
t 〉

BS−→ 1√
2
(|p⊥〉+ |p〉) A−→ 1√

2
(|p⊥〉+

√
T|p〉)

PS2−−→ 1√
2
(eiχ1|p⊥〉+

√
Teiχ2|p〉) ≡U |ψ0

t 〉 = |ψ f 〉. (4.2.1)

The geometric phase is usually extracted from the argument of the complex valued scalar
product between the initial and the final state arg〈ψ0

t |ψ f 〉 (when removing dynamical contri-
butions as will be discussed later). This is where the reference beam comes into play:|ψ0

r 〉
is not subjected to any further evolution, but is stationaryapart from adding a phase factor
eiη by use of the phase-shifter PS11, |ψ0

r 〉 7→ |ψre f〉 = eiη |ψ0
r 〉. |ψre f〉 propagates towards

the beam-splitter BS2 from the upper path, thus, we can assert it to be in the stateeiη |p〉. By
varyingη one can measure the shift of the interference fringes reflecting the phase difference
between|ψre f〉 and|ψ f 〉.

The two beams|ψ f 〉 and |ψre f〉 are recombined at the beam-splitter BS2 and finally
detected at the detector DO in the forward beam. This step can be described by the application
of the projection operator|q〉〈q|= 1/2(|p〉+ |p⊥〉)(〈p|+ 〈p′|) to |ψ f 〉 as well as to|ψre f〉:

|ψ ′
f 〉 = |q〉〈q|ψ f 〉 = K(eiχ1 +

√
Teiχ2)|q〉

|ψ ′
re f 〉 = |q〉〈q|ψre f〉 = K|q〉, (4.2.2)

whereK is some scaling constant.
The intensityI measured in the detectorDO is proportional to the absolute square of the

superposition|ψ ′
f 〉+eiη |ψ ′

re f〉:

I ∝
∣∣(eiη +eiχ1 +

√
Teiχ2)|q〉

∣∣2 = 〈ψ ′
re f |ψ ′

re f〉+ 〈ψ ′
f |ψ ′

f 〉+
+2|〈ψ ′

re f |ψ ′
f 〉|cos

(
η −arg〈ψ ′

re f |ψ ′
f 〉
)
. (4.2.3)

We notice a phase shift of the interference pattern by arg〈ψ ′
re f |ψ ′

f 〉. This phase shifts corre-
sponds to the Pancharatnam connection [Pan56] between the state|ψ ′

f 〉 and the state|ψ ′
re f〉

from which we can extract the geometric phase. Explicitly weobtain

Φ = arg〈ψ ′
re f |ψ ′

f 〉

=
χ1+ χ2

2
−arctan

[
tan

(
∆χ
2

)(
1−

√
T

1+
√

T

)]
, (4.2.4)

1In fact, a phase shift ofη/2 is – as usual – imposed on the reflected and−η/2 on the transmitted beam
yielding a phase difference ofη and a neglected overall phase.
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where∆χ ≡ χ2−χ1.

Note, that in the considerations above we have omitted both the phase shifts of the empty
interferometer (without phase shifters and absorber) and the constant phase shift for parallel
phase shifters∆χ0 as defined in Eq. (4.1.29).

The geometric phase is defined as [MS93]

φg ≡ arg〈ψ ′
re f |ψ ′

f 〉−φd, (4.2.5)

whereφd denotes the dynamical part and we have to remove first the dynamical phase before
we can claim that the quantity to be measured is purely geometric.

4.3 Dynamical contribution

According to the theory presented in Section 1.2.3 the dynamical phase can be made to
vanish by imposing a parallel transport condition on the evolution, namely, that adjacent
states are in phase,〈ψ(ξ )|ψ(ξ +δ )〉 ∈ R. To this end we denote the state in the second loop
with its explicit dependence on the rotation angleξ of the phase shifter PS2:

|ψ(ξ )〉 = eiχ1(ξ )|p⊥〉+
√

Teiχ2(ξ )|p〉, (4.3.1)

whereχ1(ξ ) = −Cd1ξ andχ2 = Cd2ξ with C =
√

2NAlbcAlλ according to (4.1.27). The
constant phase shiftχ0 is omitted. A rotation of PS2 by the angleδ changes the state to

|ψ(ξ +δ )〉 = e−iCd1(ξ+δ )|p⊥〉+
√

TeiCd2(ξ+δ )|p〉. (4.3.2)

From the imaginary part of the scalar product between two infinitesimally close states

〈ψ(ξ )|ψ(ξ +δ )〉 = (e−iCd1δ +TeiCd2δ ) (4.3.3)

we obtain the parallel transport condition

−sin(Cd1δ )+T sin(Cd2δ ) = 0 (4.3.4)

or
d1 = Td2 for smallδ . (4.3.5)

If the parallel transport condition is not fulfilled the integral of all the infinitesimal contribu-
tions, divided by the norm of the state, defines the dynamicalphase,

φd ≡
∫ ξ/2

−ξ/2

C(−d1+Td2)s
〈ψ(s)|ψ(s)〉 ds=

√
2NAlbcAlλ

(Td2−d1)ξ
1+T

=
χ1 +Tχ2

1+T
. (4.3.6)

The division by the norm is due to the definition of the geometric phase for non-unitary state
vectors in Section 1.2.4.
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Up to now we have assumed that there is only absorption in the lower beam bath. In view
of the experimental realisation the in reality non-zero absorption coefficient of the pathp⊥

can immediately be taken into account by multiplyingd1 with a transmission coefficientT1.
With the (obvious) replacementT 7→ T2 we obtain

φd =
T1χ1+T2χ2

T1+T2
. (4.3.7)

The dynamical phase part stemming from the phase shifter PS2is given by a weighted sum
of the phase shiftsχ1 andχ2 with the weights depending on the transmission coefficientT1

andT2, respectively.

It is now an easy task to adapt the experimental setup such that the dynamical phase
vanishes. By selecting a phase shifter with unequal thickness in the beam paths the ratio can
be adjusted to meet the requirement

d1T1 = d2T2 or
d1

d2
=

T2

T1
.

4.4 Paths on Bloch-sphere - A geometrical interpretation

The shift of the interference pattern in Eq. (4.2.3) with a properly adjusted ratio ofT1/T2 to
avoid dynamical contributions should be equal to the (oriented) surface area enclosed by the
paths of the state vectors on the Bloch sphere, or, equivalently, to the solid angle traced out
by the state vectors as seem from the origin of the sphere.

The two dimensional Hilbert space is here spanned by the orthogonal paths|p〉 and|p⊥〉
instead of the spin eigenstates| ↑〉 and| ↓〉 as in Figure 1.4. The north and south pole of the
sphere are identified with states with well-defined path, i. e. an eigenstate of the observables
|p⊥〉〈p⊥| and |p〉〈p|, respectively. All equally weighted superposition of patheigenstates
are located on the equatorial line. An excess of|p⊥〉 contributions, i. e. if the neutron is
more likely to take the upper path, displaces the state into the upper hemisphere and the
lower hemisphere is populated with neutrons taking the lower path (Figure 4.7(a)). Note,
that the particular point on the equator which denotes the state after the beam-splitter BS3
is arbitrary due to the arbitrary choice of the phases of the basis vectors. The absorber
changes the weights of the superposed basis states. In particular, for the extremal values of
T parameterised by the angleθ with T = tan2 θ/2 we end up either again with an equally
weighted superposition for no absorption (T = 1 or θ = π/2) or the state is situated at the
north pole for total absorption (T = 0 orθ = 0), since in the latter scenario we know that the
particle has taken the upper path when detecting a neutron inDO. ForT ∈ (0,1) the state is
encoded as a point on the geodesic from the north pole to the equatorial line.

The phase shifter PS2 generates a relative phase shift between the superposing states of
∆χ = χ2−χ1:

(|p⊥〉+
√

T|p〉) 7→ (|p⊥〉+ei∆χ√T|p〉). (4.4.1)
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This can be depicted as an evolution along a circle of latitude on the Bloch sphere with
periodicity 2π .

The recombination at BS2 followed by the detection of the forward beam in DO is rep-
resented as a projection to the starting point on the equatorial line, i. e. we have to close the
curve associated with the evolution of the state by a geodesic to the point|q〉〈q| on the sphere
as discussed for non-cyclic paths in Section 1.2.3. As for the reference state|ψr〉 we note
that the phase shift ofη has no impact on the position of the state on the Bloch sphere,it
stays at the north pole. Due to the recombination at BS2 and the detection this state is also
projected to|q〉〈q| contributing to the forward beam incident to the detector DO.

The paths are depicted in Figure 4.7 in detail for cyclic (a) as well as non-cyclic evolution
(b). For a relative phase difference greater thanπ/2 we have to take the direction of the loops
into account. In 4.7(b) the first loop is transversed clockwise, whereas the second loop is
transversed counter-clockwise yielding a positive or negative contribution to the geometric
phase, respectively. We expect that this sign is reflected inthe measured phase shift as well,
i. e. there should be a change of the behaviour at the point∆χ = π/2.

|q〉〈q|

2π

θ

|p〉〈p|

|p⊥〉〈p⊥|

(a) Cyclic evolution

|q〉〈q|

∆χ

θ

|p〉〈p|

|p⊥〉〈p⊥|

(b) Non-cyclic evolution

Figure 4.7: Paths on the Bloch-sphere corresponding to the evolution of the state in the
split-beam experiment.

4.4.1 Calculation of the surface integrals

From what has been said before about the geometric phase we know that it is proportional
to the surface area enclosed by the path traced out by the state in state space. In our case
this surface area can be calculated easily since the state space (or better the ray space) is
isomorphic to the two-dimensional sphereS2. To obtain the areaF enclosed by the curveC
(F = ∂C) we just have to calculate the integral

Ω =

∫

F

dΩ =

∫

F

sinθdθdφ , (4.4.2)
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where we denote the polar angle byθ ∈ [0,π] and the azimuthal angle byφ ∈ [0,2π]. To
evaluate the integral (4.4.2) we have to parameteriseC. We can immediately identify three
different regions and writeC = C1 +C2 +C3 (Figure 4.8). The first part connects the point
p1 on the equator (whose azimuthal angle can be chosen arbitrarily and can therefore be set
to zero since it just amounts to another equivalent choice ofbasis vectors) to some pointp2

on the meridian to the north pole of the sphere and is defined byconstantφ (C1 : φ const.).
p2 and p3 lie then on the same circle of latitude (C2 : θ const.). The curveC3 betweenp3

andp1 is more involved since it is a geodesic, i. e. the shortest possible path, between these
points. In the Appendix B (Eq. B.25) an explicit formula for this curve is given. We only
have to adapt this equation to the initial values of the curveC3, p1 = (θ1,φ1) = (π/2,0) and
the pointp3 = (θ3,φ3). Inserting these points into Eq. (B.25) we get

π
2

= arctan(A−1) → A = 0 (4.4.3)

θ3 = arctan

(
1

Bsinφ3

)
→ cotθ3

sinφ3
= B (4.4.4)

and consequently

θ(φ) = arctan
[sinφ3

sinφ
tanθ3

]
. (4.4.5)

The surface area can be calculated via the integral

Ω =

∫ φ3

0
dφ
∫ θ3

θ (φ)
dθ sinθ . (4.4.6)

In general a great circle intersects a circle of latitude twice. This means that the geodesic
θ(φ) given in Eq. (B.25) forms either the lower bound or the upper bound in the integration
overφ and we would suspect the necessity to divide the integrationinto two regions,θ(φ) <

θ3 andθ(φ) > θ3 to add the absolute values of both surface areas. However, the quantity of
interest in our case is the oriented surface area and therefore the sign change inherent to the
different regions reflects exactly the different orientation of the surface areas.

Integrating first overθ in Eq. (4.4.6) and settingξ3 ≡ sinφ3 tanθ3 we get

Ω =

∫ φ3

0
dφ
(
−cosθ

)θ3
arctan(ξ3/sinφ)

=
∫ φ3

0
dφ
{
−cosθ3+cosarctan(ξ3/sinφ)

}

=

∫ φ3

0
dφ
{
−cosθ3+

(
1+(ξ3/sinφ)2)− 1

2
}

(4.4.7)

The last integration overφ can be performed numerically. Forφ3 > π one has to keep in
mind that the geodesic curveθ(φ) from Eq. (4.4.5) does not represent the correct boundary
of the enclosed surface for values ofφ < π . In this region it is rather the circle of latitude at
θ3 that limits the integration. The easiest way to take this fact into account is to calculate the
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Figure 4.8: Integration path to calculate the solid angle enclosed by the path of the state
vector on the Bloch sphere.

same integral as in the regionφ3 < π and add the surface of the spherical cap limited byθ3

towards the equator that is given by

∫ 2π

0
dφ
∫ θ3

0
dθ sinθ = 2π(1−cosθ3), (4.4.8)

Finally, we obtain the graph shown in Figure 4.9, where we notice as expected the increase of
the solid angleΩ up to the pointφ = π/2 followed by a decrease up toφ = 3π/2. This nicely
reveals the dependence of the geometric phase on the orientation of the path, i. e. whether
the surface area is enclosed clockwise or anti-clockwise.
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Figure 4.9: Solid angle of the path shown in Figure 4.7 forθ = π/4.

The same behaviour we also expect from the spatial geometricphase measured with the
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double-loop interferometer. The values derived here only by geometric means will turn out
to be equal to the values obtained by calculating the interference pattern of the three beams.
This manifests the purely geometric character of the measured phase.

Non-unitary evolution The question is definitely justified, whether the use of an attenuator
in our setup and therefore the transition from properly normalised to non-normalised states
spoils the geometric visualisation of the state path on the Bloch sphere. However, recalling
the discussion in Section 1.2.4, the path of non-unit vectors can be mapped onto a path in
N0, the space of normalised states, and finally again to the projective Hilbert spaceP which
is in our case the Bloch-sphere. In conclusion, the geometric phase is determined by the path
on the unit Bloch sphere even for non-unitary evolutions.

4.5 Measurement procedure

The common technique to measure a phase shift in neutron interferometry is to record the
interference fringes due to the relative phase imposed by the rotation of a phase shifter in
the beam path first for the empty interferometer. After insertion of the sample (or turning
on the magnetic field or quite generally changing the quantity to be measured) again the
interference fringes are measured and a phase shift shows upas a shift in the pattern (Figure
4.3).

As for the double-loop setup we have two phase-shifters at our disposal both producing
interference fringes if rotated. The geometric phase to be measured is adjusted in the second
loop by tuning the transmission coefficient of the absorber and the phase difference between
the beams|p〉 and|p⊥〉. Consequently, by rotating the phase shifter PS1 in the firstloop an
interference pattern is recorded for a particular geometric phase. A change in the second loop
results in a shifted interference pattern and possibly alsowith another value for the contrast.
It is mainly the phase that is of further interest for the current experiment. In Figure 4.10 the
interference pattern produced by a rotation of PS1 is shown whereas the different oscillations
are for different positions of the phase shifter in the second loop PS2.

In fact the measurement procedure was not to rotate PS1 for each position of PS2, but
the other way round. To prevent massive errors due to unpredictable phase drifts in the
interferometer one step of PS1 (η) is followed by a rotation of PS2 for slightly more than
one period. This approach guarantees that relatively slow intrinsic phase drifts do not affect
the measurement of the phaseΦ between second loop and reference beam. Such phase drifts
are mainly caused by temperature gradients [May03], but also vibrations and stray magnetic
fields can influence the phase stability of the interferometer.

4.6 Experimental results

In the experiment we have used four different settings of thethicknesses of the aluminium
slabs of PS2. We have chosen one 4.1 mm thick slab in the transmitted beam (|p〉) resulting
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Figure 4.10: Interference pattern produced by a rotation ofPS1. The shift indicated by the
arrows is the phase shiftφ caused by the different positions of PS2.

in the phase shiftχ2 and in the reflected beam (|p⊥〉) plates 0.5 mm, 1 mm, 2 mm and 4.1 mm
in thickness giving the phase shiftχ1. The relative phase difference∆χ is proportional to
these ratios. For all setups the phase shifter in the first loop is rotated to give a relative phase
difference of approximately two periods and in the second loop slightly more than one period
has been measured by the rotation of PS2.

4.6.1 Thickness ratiod1/d2 ≈ 1/8

First we have chosen a phase shifting slab of 0.5 mm thickness in path|p⊥〉 to obtain a ratio
of d1/d2 = 0.5/4.1 ≈ 0.122 between the thicknesses of PS2. In order to have vanishing
dynamical phase contributions (Equation 4.3.6) the absorber in path|p〉 has to be chosen
to reduce the neutron intensity toI = 0.5/4.1I0 (I0 is the non attenuated flux in the lower
path). This is achieved by using a gadolinium solution with appropriate concentration. The
transmission coefficientsT1 andT2 for beam|p⊥〉 and|p〉, respectively, has been measured
to

T1 = 0.985±0.004 and T2 = 0.118±0.005. (4.6.1)

T1 comprises the contribution from 0.5 mm aluminium oriented in an angle of 45◦ with
respect to the forward direction of the beam and the contribution from a 5 mm silicon slab
compensating the transversal shift of the beam due to the refraction at the phase shifter (c. f.
Section 4.8). Hence, the transmission ratio isT1/T2 = 0.120±0.005.
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Fitting the data

In the general discussion we have found an expression for thephase shift of the second loop
with respect to the reference beam|ψr〉 (Eq. 4.2.4),

φ =
χ1 + χ2

2
−arctan

[
tan

(
χ2−χ1

2

)(
1−

√
T

1+
√

T

)]
.

This equation is valid only for the abstract perfect theory,but it can be tailored to our needs
by introducing a few more parameters. First the small, but non-vanishing absorption due to
the aluminium slabs in the beam path|p⊥〉 is taken into account by insertion of a transmission
coefficientT1 for this beam as well. Furthermore, as will be demonstrated in Section 4.8.1
at length, the phase shift has a bothersome side effect in that for a divergent poly-chromatic
beam the interference fringes vanish for large phase shifts. The partial waves from each
beam do not overlap anymore. This unfortunately also affects the relative phase between the
reference beam|ψre f〉 and the two sub-beams|p〉 and|p⊥〉. In short, this can be shown by
considering the wavefunction at the interferometer output,

|Ψ f 〉 ∝ (A0eiη +A1eiχ1 +A2eiχ2)|O〉, (4.6.2)

where the real coefficientsAi denote any norm reducing influences. For the intensityI =

〈Ψ f |Ψ f 〉 we get

I = ∑A2
i +2A1A2cos(χ2−χ1)

+2A0A1cos(η −χ1)+2A0A2cos(η −χ2)

∝
1

2A0
∑A2

i +
A1A2

A0
cos(χ2−χ1)

+A1cos(η −χ1)+A2cos(η −χ2) (4.6.3)

For fixedχ1 andχ2 (fixed position of PS2) the intensity consists only of a linear superposition
of two oscillations with the same argumentη,

I = C+A1cos(η −χ1)+A2cos(η −χ2) (4.6.4)

and can be simplified to

I = C+ν cos(η +Φ), (4.6.5)

ν = (A2
1+A2

2+2A1A2cos(χ2−χ1))
1/2 (4.6.6)

Φ = arctan
[ sinχ1 +A2/A1sinχ2

cosχ1 +A2/A1cosχ2

]
. (4.6.7)

From the last equation it becomes apparent that the amplitudes of the superposition of the
cosine functions influence the phase of the resulting sinusoidal interference fringes. Not fully
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overlapping sub-beams gives a contribution to the measuredphase shift, except at points
where the arctan- term vanishes. In fact,Φ is equivalent to the expression for the phase
difference in Eq. (4.2.4). From the latter we can read off that at the points∆χ = nπ , n integer,
tan(∆χ/2) = 0 and thereforeΦ is independent of theA coefficients. Here, the overlap of the
sub-beams is immaterial. This result can be appreciated in the graphs of the experimental
data below (Figures 4.11, 4.13, 4.15 and 4.17): The measureddata curve is flattened with
respect to the theoretical predicted curve which is a consequence of the merely partial overlap
of the different subbeams except at the points where∆χ is an integer multiple ofπ . FromΦ
in (4.6.7) it becomes evident that an additional fit parameter C = A1/A2 is necessary taking
all contrast reducing influences into account. The fit function reads then

F(ξ ;C) =
χ1(ξ )+ χ2(ξ )

2
−arctan

[
tan

∆χ(ξ )

2

√
T1−C

√
T2√

T1+C
√

T2

]
. (4.6.8)

But this is still not the whole truth, since we have to includepossible dynamical phase
contributions as well. It is in the dynamical phase’s nature(c. f. Eq. 4.3.6) that it depends
linearly on the rotation angleξ and for this reason we simply include a linear term in the fit
function,

F(ξ ;C,D) =
χ1(ξ )+ χ2(ξ )

2
−arctan

[
tan

∆χ(ξ )

2

√
T1−C

√
T2√

T1+C
√

T2

]
+Dξ . (4.6.9)

Figure 4.11 shows finally the measured phase shifts fitted with the functionF(ξ ;C,D).
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Figure 4.11: Measured phase shift of the intensity pattern by an induced phase shift of∆χ
due to rotation of PS2.

The fit results in values ofC = 0.57±0.02 andD = −0.6±0.6. The contributions to
the dynamical phase reflected in non-zeroD-coefficient are mainly due to a deviation in the
precised1/d2 thickness ratio and in a misalignment of the phase shifter PS2. This issue will
be discussed below.

Cyclic evolution The foregoing theory predicts that the geometric phase at∆χ = nπ is
not affected by the disturbances subsumed in the fit parameter C since at these points the
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tangent in (4.6.9) vanishes. The distance between the curvefitted to the measured data and
the theoretical curve in Figure 4.11 should be zero for thesevalues. This provides us with a
further check of the theory. We already see that the differences between the measured values
and the theoretical results are minimal at these points, however, in order to quantify such a
statement we have to embark on another strategy for fitting the data, because the fit function
in Eq. (4.6.9) automatically gives us the correct value for the geometric phase at∆χ = nπ:
As already indicated at these points tan∆χ/2= 0 and only the sum(χ1(ξ )+χ2(ξ ))/2 along
with the term referring to the dynamical phase termDξ is left.

Explicitly, the dynamical phase can be rewritten as

φd =
T1χ1+T2χ2

T1+T2
=

χ1 + χ2 tan2 θ
2

1+ tan2 θ
2

= χ1cos2
θ
2

+ χ2sin2 θ
2

=
χ1 + χ2

2
− ∆χ

2
cosθ ,

(4.6.10)
where we have usedT = tan2θ/2. Subtracting this term from the fit function in (4.6.9) and
bearing in mind that the arctan term is either 0 orπ for a half rotation (∆χ = π) or a full
rotation (∆χ = 2π), respectively, we find

F =

{ π
2 cosθ ∆χ = π
π(cosθ −1) ∆χ = 2π.

(4.6.11)

There is by definition ofF no free parameter left to take the measurement results into ac-
count, the transmission coefficients determines the fit functionF completely at these points.
So, by design of the fit function at these points when subtracting the dynamcical phaseDξ
we obtain exactly the theoretical result for the geometric phase, which is not what we want.
We would rather like to have a more objective approach to the geometric phase also for
∆χ = nπ .

Trigonometric fit To find a remedy we proceed by fitting the data values with a sum of
trigonometric functions plus a linear term

F ′(ξ ) = A+Bξ +
N

∑
j=0

{Cj cos( jωd1/d2
ξ )+D j sin( jωd1/d2

ξ )}. (4.6.12)

Eq. (4.1.29) provides the oscillation periodωd1/d2
=

√
2NAlbcAlλ (d1 + d2), in particular,

ω0.5/4 = 367.1rad/s. The maximal value ofN is given by the number of data points in that
the number of fit parameters must not exceed the number of datapoints. Here we have 19
points, henceN < 9. The exact number forN can be found by looking at thereducedχ-
squarevalue [Leo94] of the fit that is given by the sum over the weighted squared residuals

χ2
r =

1
ν

n

∑
i=1

(
xi −µi

σi

)2

, (4.6.13)

103



EXPERIMENTAL RESULTS

wherexi is the ith measured value,µi is the value predicted by the fit function,σi denotes
the variance andν the degrees of freedom of the fit (ν = number of data points - number of
parameters).

If χ2
r ≈ 1, we can be satisfied with the fit function. Indeed, we take thefit with N as

small as possible andχ2
r close to one in order to avoid over-fitting. A reduced chi-square

valueχr = 1.47 is found forN = 1 andν = 15. The probability to obtain a larger chi-square
χ2 ≡ νχ2

r than the chi-square from the fitS, P(χ2 ≥ S), serves also an indicator for the
goodness of the fit. For acceptance it should be greater than 5%. Here,P(χ2 ≥ S) = 10%.
Figure 4.12 shows this trigonometric fit along with the measured data.
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Figure 4.12: Trigonometric fit withN = 1.

At the point∆χ = 2π the measured value from the trigonometric fit isΦ = −0.689±
0.015rad. The dynamical phase contribution is determined by the fit parameterD in
F(ξ ;C,D) from Eq. (4.6.9)2,

φd(2π) =
D2π

NAlbcAlλ
√

2(d1+d2)
= −0.01±0.01rad, (4.6.14)

where we have assumed that the wavelength spread∆λ/λ ≈ 1% and the error in the thick-
nesses∆di ≈ 0.05 mm. The resulting geometric phase is

φg ≡ Φ−φd = −0.68±0.02rad (4.6.15)

which is in good agreement with the theoretical valueφ th
g = −0.671 rad.

Causes of spurious dynamical phase contributions

In the derivation of the geometric phase from the measured values we have omitted a discus-
sion on the origin of the dynamical phase contributions.

2Note, thatφd cannot be determined fromB of the trigonometric fitF ′(ξ ), since for this fit we did not make
any assumption on the separation of the dynamical and the geometric phase.
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Ratio mismatch First, there is a small contribution from the mismatch of theratiosd1/d2

andT2/T1. For the present setup we have foundT2/T1 ≈ 0.120 andd1/d2 ≈ 0.122 which
adds a dynamical phase component of

φd(∆χ) =
(−d1T1+d2T2)

T1 +T2

∆χ
(d1+d2)

≈−0.002∆χ. (4.6.16)

At ∆χ = 2π we have already accumulated a dynamical phase ofφd ≈−0.011 which explains
the deviations found above.

Parallel position Secondly, a misalignment of the phase shifter PS2 can give also rise to
a dynamical phase. If the phase shifter is not inserted precisely parallel the ratio of the
mean effective thicknesses changes as well. Recalling the discussion in Section 4.1.2, the
phase shift of the neutron wave isXi = NAlbcAlλdi/cosα with di,e f f = d/cosα the effective
thickness. For smallα the series expansion of the inverse cosine (cos−1(α ± ξ )|α0=π/4 =√

2(1± ξ )) determines the effective thicknessde f f = d
√

2 relating the rotation aboutξ to
the phase shiftχ = NAlbcAlλde f fξ . But for an expansion aboutα0 = π/4±δ , corresponding
to a slight misalignmentδ we obtain

Xi = NAlbcAlλdi

√
2
(
1±ξ ±δ +3δξ +O(δ )2 +O(ξ )2) (4.6.17)

for smallδ and smallξ . Note, that terms proportional toξ 2 are not included although they
are of the same order as the terms proportional toξ δ since we just want to estimate the order
of magnitude of the error contributions. The terms of orderδ 2 contribute only to a constant
offset for varyingξ and are therefore also not included. The variable phase shift is then

χi = NAlbcAlλ d
√

2(3δ ±1)︸ ︷︷ ︸
d′e f f

ξ . (4.6.18)

The effective thickness has changed by an amount(3δ ±1) leading to a modified phase shift
ratio

d1

d2
7→ d′

1

d′
2

=
d1

d2

3δ −1
3δ +1

.

Recalling the parallel transport condition from Eq. (4.3.5) we notice that a misalignment of
the initial position contributes to the dynamical phase andinevitably spoils the ideal parallel
transport even for properly adapted thickness vs. transmission ratios.

Why does this effect usually not bother in standard neutron interferometry? To answer
this question let us consider again a phase-shifter with plates of different thickness. The
relative phase shift is according to the above

∆χ = χ2−χ1 =
√

2NAlbcAlλ (d2ξ (3δ +1)−d1ξ (3δ −1)

=
√

2NAlbcAlλ ((d2+d1)+3(d2−d1)δ )ξ . (4.6.19)
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From the last expression one immediately realises that the term proportional toδ vanishes
for d2 = d1 which is usually the case. This term becomes only important for differently
thick slabs in the different beam paths. For the present setup the misalignmentδ causes an
additional dynamical phase contribution of

φd(∆χ) =
(d1(1−3δ )T1+d2(1+3δ )T2)

T1+T2

∆χ
(d1(1−3δ )+d2(1+3δ ))

(4.6.20)

when replacingd j with d′
j = d j((−1) j + 3δ ) in Eq. (4.6.16). For an otherwise perfectly

adjusted setup (d1/d2 = T2/T1 → φd = 0) the additional contribution to the dynamical phase
from a misaligned phase shifter amounts to

φd(∆χ) =
6d2T2δ

(T1+T2)(d1+d2 +3δ (d2−d1)
. (4.6.21)

For exampleδ = 1◦ gives rise toφd(∆χ) = −0.096∆χ in the 4.1/0.5 setting, i. e. for a
2π rotation≈ −0.05 rad. It becomes evident that the parallel adjustment has even more in-
fluence on the dynamical phase as the errors in the adjustmentof the phase shifter thickness.

4.6.2 Thickness ratiod1/d2 ≈ 1/4

In the next experiment we have chosen a ratio of 1 mm vs. 4.1 mm between the aluminium
slabs of the phase shifter PS2. The transmission rate of the absorber in the beam denoted by
|p〉 has again been adjusted to reflect the same ratio between the intensities in|p〉 and|p⊥〉,

T1 = 0.984±0.010 and T2 = 0.240±0.011, (4.6.22)

whereT1 comprises the absorption of 1 mm aluminium at an angle of 45◦ relative to the
forward direction plus the 5 mm silicon plate inserted to compensate for the beam deflection
(Section 4.8). Altogether, this yields a transmission ratio of T2/T1 = 0.244±0.011 which is
in good agreement with the ratio of the thicknessesd1/d2 = 1/4.1 = 0.244 aimed for.

A fit of the data using the function in Eq. (4.6.9) shows again the good qualitative
agreement with the theoretical prediction (Figure 4.13). The fit parameters have values of
C = 0.463±0.015 andD = 8.51±0.75 and the deviations from the theoretical curve can be
explained in the same manner as above (Section 4.6.1).

Again, we fit the data with a sum of trigonometric functions (4.6.12) to obtain the geo-
metric phaseφg at∆χ = 2π with an oscillation periodω1/4 = 407.0rad/s. Here,N = 2 yields
the best fit withSr = 0.35 shown in Figure 4.14. The confidence levelP(χ2 ≥ S) = 96.7%.

Let us here as well identify the cyclic spatial geometric phase at∆χ = nπ : There is no
deviation from these points stemming from the partial overlaps of the sub-beams, but there is
a contribution from the dynamical phase coming mainly from the misalignment of the phase
shifter. At the point∆χ = 2π we obtain a measured value ofΦ = −1.10±0.013 rad. From
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Figure 4.13: Measured phase shift of the intensity pattern by an induced phase shift of∆χ
due to rotation of PS2 with thickness 1 mm and 4.1 mm, respectively. The fit parameters for
the fitted (solid) curve areC = 0.463±0.015 andD = 8.51±0.75. The dotted curve shows
the theoretical curve disregarding the effects of different contrast values, i. e. forC = 1.
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Figure 4.14: Trigonometric fit withN = 2.

the fit parameterD we can estimate the contribution of the dynamical phase,

φd(2π) =
D2π

NAlbcAlλ
√

2(d1+d2)
= 0.131±0.012 rad (4.6.23)

and therefore the geometric phase reads

φg ≡ Φ−φd = −1.230±0.018 rad (4.6.24)

This is to be compared with a theoretical value ofφ th
g = −1.232 rad.

4.6.3 Thickness ratiod1/d2 ≈ 1/2

For the setting of 2 mm vs. 4.1 mm phase shifting slabs at PS2 we have obtained the fol-
lowing results: The transmission coefficients have been determined toT1 = 0.97±0.004 and
T2 = 0.45± 0.017 yielding a transmission ratio ofT2/T1 = 0.47± 0.017 which has to be
compared with the ratio of the thickness of the phase shifting slabsd1/d2 = 2/4.1≈ 0.488.
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The measured phase shifts are shown in Figure 4.15 where the fit parameters for the fit func-
tions areC = 0.68±0.025 andD = 14.3±2.5, i. e. there is a quite large dynamical phase
contribution.
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Figure 4.15: Measured phase shift of the intensity pattern by an induced phase shift of∆χ
due to rotation of PS2 with thickness 2 mm and 4.1 mm, respectively. The fit parameters for
the fitted (solid) curve areC = 0.68±0.025 andD = 14.3±2.5.

From a trigonometric fit withω2/4 = 486.8 rad/s,N = 3 andSr = 37.6 we obtain the
valueΦ = −1.876±0.07 rad at 2π (Figure 4.6.3). Note thatSr is extraordinarily large and
also the confidence level is very lowP(χ2 ≥ S) = 8×10−6. The fit to the measured data
or even the measured data is questionable. The malfunction of the fit procedure may result
from very large intrinsic phase shifts during the measurement process that is already visible
in the fits of the interference patterns. They look quite distorted (Figure 4.16(b)) - the reason
might be large temperature drifts. Nevertheless we will present the data.
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(a) Trigonometric fit withN = 3.
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Figure 4.16: Due to parasitic influences the measured valuesare not that great for this setup.

The dynamical phase at the point 2π can be estimated from the fit parameterD to φd =

0.18±0.03 rad and the geometric phase evaluates therefore to

φg = Φ−φd = −2.06±0.08 rad. (4.6.25)

Despite of the bad data this is quite close to the theoreticalvalue ofφ th
g = 2.006 rad.
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4.6.4 Thickness ratiod1/d2 = 1

Finally, we want to discuss the simple situation with no absorber attached and therefore
equally thick phase shifting slabs of PS2. The transmissioncoefficients in both beam paths
|p〉 and |p⊥〉 are determined only by the absorption cross section of the 4.1 mm thick alu-
minium slabs,T1 = T2 = 0.96±0.001, and is moreover irrelevant since they are same in both
beams.

For the fit function shown in Figure 4.17 together with the collected experimental data the
parameters areC = 0.925±0.022 andD = 0.0±4.2. Note, that there is one point in between
the step-like function with a very large error-bar. This is due to the vanishing contrast in this
case and can be interpreted also geometrically: At this point the initial and the final state on
the equatorial line are exactly opposite and therefore there is no unique geodesic connecting
these two points. The geometric phase is therefore undefinedat this point.
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Figure 4.17: Measured phase shift of the intensity pattern by an induced phase shift of∆χ
due to rotation of PS2 with thickness 4.1 mm and 4.1 mm, respectively. The fit parameters
for the fitted (solid) curve areC = 0.925±0.022 andD = −0.0±4.2.

To obtain an estimate of the measured value at∆χ = 2π we forbear from applying a
trigonometric fit to the measured values. We fit the left part of the data points that are close
to zero separately from the right part (close to−π) with the constant functionsDl(ξ ) = Al

andDr(ξ ) = Ar . The relative phase difference is then just the differenceΦ = Ar −Al . The
parameters turn out to

Al = −0.077±0.016 rad and Ar = −3.11±0.006 rad

resulting inΦ = −3.04±0.02 rad.
The dynamical contribution is estimated asφd(2π) = 0.±0.04 rad for∆χ = 2π and the

geometric phase is therefore

φg = Φ−φd = −3.04±0.05 rad. (4.6.26)

Clearly, for this setup we expect a geometric phase ofπ since the evolution is along the
equator and therefore half of the enclosed solid angle isπ . The deviation from the theoret-
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ical value is here not due to dynamical contributions, sincewe have already argued that the
misalignment is immaterial for phase shifting slabs of equal thickness. The source of the
discrepancy must be ascribed to the linear fitting procedure, because it does not take into
account the phase shift due to the different contrast valuesin the different loops of the beams
subsumed in the fit parameterC. Although there is no deflection of the beams due to differ-
ently thick phase shifters, there are still interferometerintrinsic imperfections that reduce the
contrast and lead toC 6= 1.

4.6.5 Cyclic geometric phase

In Figure 4.18 the measured geometric phasesφg are plotted over the solid angleΩ enclosed
by the path on the Bloch sphere. We notice that in comparison to the cyclic spatial geometric
phase recorded in the antecedent experiment in [HZR96] the deviation from the theoretical
curve is smaller. This is because we have corrected for the dynamical phase, whereas in the
other experiment additional dynamical contributions are still included in the plotted phase.
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Figure 4.18: Measured geometric phaseφg values over the solid angleΩ. The theoretical
value ofφg is indicated by the solid line.

The values of the measuredφg along with the theoretical predictions and the transmission
ratio is presented in Table 4.1.

φm
g [rad] φ th

g [rad] T2/T1 d1/d2 φd [rad]

−0.68±0.02 −0.671 0.120±0.005 0.5/4.1= 0.122 −0.01±0.01

−1.23±0.02 −1.232 0.244± 0.011 1/4.1 = 0.244 0.13±0.01
−2.06±0.08 −2.006 0.47± 0.017 2/4.1 = 0.488 0.18±0.03
−3.04±0.04 −π 1 1 0.0±0.04

Table 4.1: Measured cyclic spatial geometric phase valuesφm
g along with the theoretical

predictionsφ th
g for the various transmission and thickness ratios.
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4.7 Wagh’s critical comments

In measuring the non-cyclic spatial geometric phase the qualitative and also - when taking
systematic effects into account - quantitative agreement between theory and experiment has
been verified and the way is paved to turn back to the critical comments by Wagh [Wag99]
on the antecedent experiment on the cyclic spatial geometric phase. In his comment Wagh
put forward some arguments against a geometrical interpretation of the experiment. He ar-
gues that the observed phase is only due toU(1) evolutions, i. e. it is a scalar phase shift
and therefore cannot be of geometric origin. A comparison with a measurement of the geo-
metric phase using the neutron’s spin serves him as indicator that the observed phase is only
dynamical. His argument relies on the orthogonality of the spin eigenstates states, where the
scalar product〈↑ | ↓〉 vanishes. This is in contrast to the superposition of the different beams
after the last beam splitter BS6, which are admittedly in thesame momentum eigenstate, and
he concludes that placing the states|p〉 and |p⊥〉 “at opposite poles on the two-sphere ray
space amounts to a conceptual error”. To dismiss such criticism it is essential to stress that
|p〉 and|p⊥〉 are definitely not in the same state, it is not until their recombination and their
recombination with the reference beam|ψre f〉 that they differ only in phase. It is immater-
ial whether the final superposed partial beams are in the samestate, the geometric phase is
imprinted in the global phase obtained from the evolution inthe second loop.

That the “density operator remains stationary in ray space throughout the evolution” can
be refuted by the same argument: It is evident that the beams in the second interferometer
loop do not overlap and are therefore orthogonal to each other. Therefore, in the simplest
description we have at least a two dimensional Hilbert space. A phase shifter in the second
loop generates different states in this two dimensional space and the density operator does
definitely not remain stationary. Otherwise, we would not see a change in the contrast as
shown in Figure 4.19.
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Figure 4.19: Contrastν = |〈ψ ′
re f |ψ ′

f 〉| for different values of the phase difference∆χ for the
d1/d2 = 1 setup.

The results presented endorse this interpretation by explicitly showing that the geometric
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phase is observed with “an appropriately reduced interference contrast due to the noncyclic-
ity” as asked for by Wagh. Therefore, I believe that this experiment provides a proper test of
the spatial geometric phase.

4.8 Systematic deviations due to partial overlap

The last point to settle is the origin of the flattening of the experimental curves in Figures
4.11, 4.13, 4.15 and 4.17, which we attributed above to the not 100% overlap of the sub-
beams.

If phase shifters are put into the beam paths in the interferometer a reduction of the con-
trast will in general be recognised also if these phase shifters are perfectly transmissive. In
analogy to geometrical optics this effect can be depicted asa spatial translation of the beam
in the same way as a light ray is deflected at the boundary between two media with differ-
ent refractive index. The unaffected and the translated beam are just partially overlapping.
In the argument leading to the correct fitting parameter in Section 4.6.1 we have already
encountered an additional phase shift due to the imperfect overlap of the three sub-beams
which finally distorts the curve of the geometric phase. Usually this effect is compensated
by placing the phase shifting slab such that it covers both beam paths. Then, each of the
beams is shifted approximately by the same amount and just the small difference in the ef-
fective thickness due to a slight tilt causes the relative phase shift. However, in our case the
phase shifter PS2 is of unequal thickness and therefore the beams are not fully overlapping
anymore.

4.8.1 Coherence properties

In neutron interferometry single neutrons are counted after making their way through the
interferometer. The outgoing beams at the two output ports (O- and H- beam) are in a super-
position of having taking either one or the other path. Interference fringes are induced by a
phase shifter described above which shifts the wavefunction in one path byχ (Eq. 4.1.24).
Theorder of the interferenceis determined by the number of interference maxima passing by
when increasingχ continuously starting from zero. The relative phase between the contri-
bution from either path sweeps the intensity between the O- and H- beam. For a plane wave
with a single wave vector~k0 the amount of the phase shiftχ is immaterial, the interference
pattern will be visible for any interference order, yet, in reality the beam contains a multi-
tude of wavelengths and each partial wave obtains now a different phase factor. In turn, the
contributions from different monochromatic waves with slightly different wavelength lead to
different periodicities. The resulting interference pattern is the sum over all such contribu-
tions and with increasing phase shift their addition will lead to a less and less well-defined
interference pattern because the maxima will get more and more out of step. The vanishing
of the interference pattern defines thecoherence lengthof the beam. In fact, the phase shift
X produced by a typical phase shifting slab can be denoted by the scalar productX =~∆ ·~k
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with ~∆ = (∆x,∆y,∆z)
T as the spatial displacement vector (Eq. 4.1.25) and serves to distin-

guish between the coherence lengths in different directions. Qualitatively,∆c
x is the amount

of displacement of the wave in directionx (and equally fory andz) for which the interference
pattern vanishes. Thecoherence volume[Gla63, RWK+96, RW00, Pet87] is defined as the
product of these coherence lengths,vc = ∆c

x∆c
y∆c

z. Specific to neutron interferometry are the
large differences in the coherence lengths due to the restrictions on the wavelength distrib-
ution imposed by the Bragg-diffraction at the perfect crystal silicon plates in one direction
(∆y � ∆x,∆z, wherey is perpendicular to the reflecting lattice planes of the interferometer).

As an expedient example we consider an incident Gaussian wave packet

|ψ〉 =
∫

d~k f(~k)|~k〉.

The momentum distribution functionf (~k) can be written as a product of the individual dis-
tribution function,f (~k) = f (kx,ky,kz) = f (kx) f (ky) f (kz) with

f (ki) = e
−
[

ki−k̄i
2(δki)

]2

(2π(δki)
2)−1/4.

k̄i denotes the mean momentum andδki the momentum spread in the corresponding direc-
tion. The superposition of the wave-packet|ψ〉 with a phase shifted copy of itself

|ψ∆〉 =

∫
d~k f(~k)ei~∆·~k|~k〉

enables the measurement of the autocorrelation function. The superposition|ψ〉+ |ψ∆〉 cor-
responds to the output of a neutron interferometer with a phase shift~∆ ·~k in one of the beams.
We assume that the spatial displacement~∆ does not depend explicitly on the momentumk
which is justified if the momentum spreadδk is small so that the difference in the refractive
index can be neglected. The superposition leads to the intensity

I = ||ψ〉+ |ψ∆〉|2

= 〈ψ|ψ〉+ 〈ψ∆|ψ∆〉+2|〈ψ|ψ∆〉|cosarg〈ψ|ψ∆〉. (4.8.1)

Due to the normalisation the first two terms are both unity. The cross product〈ψ|ψ∆〉 can be
calculated to

〈ψ|ψ∆〉 = (2π(δki))
−1/2∏

i

∫∫
dkidk′ie

−
[

(ki−k̄i )
2(δki)

]2

e
−
[

(k′i−k̄i )
2(δki)

]2

ei∆ik′i 〈ki |k′i〉︸ ︷︷ ︸
δki ,k

′
i

= (2π(δki))
−1/2∏

i

∫
dkie

− (ki−k̄i )
2

2(δki)
2 ei∆iki

= ∏
i

ei∆i k̄i e−
(∆iδki )

2

2 , (4.8.2)
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and inserting this expression into Eq. (4.8.1) we obtain

I = 2

(
1+e−

∑i (∆iδki )
2

2 cos(∑
i

k̄i∆i)

)
, (4.8.3)

i. e. the interference oscillations are damped by an exponential term depending on the wave-
length spreadδk.

Looking at the contribution of a single direction a phase shift of

∆c
i =

√
2/δki (4.8.4)

causes a reduction of the amplitude of the oscillations by a factor 1/e. Equation (4.8.4)
serves as a possible definition for the coherence length∆c

i . Other definitions differing by
some constant factors can be found as well, for example a definition of the coherence length
via the Heisenberg uncertainty relation by Rauch and Werner[RW00],

∆H
i δki = 1/2. (4.8.5)

In this case the coherence function decays to a value ofe−1/8 for a displacement of the
wave-packet by∆H

i .

4.8.2 Correlation Function approach

For the sake of completeness I want to mention that the classical approach above is somewhat
outdated today since it does not describe effects on the quantum level. Photonic and elec-
tronic anti-bunchingare typical effects which cannot be formulated in this classical frame-
work. The first experiment on bunching effects has been performed by Hanbury-Brown and
Twiss [BT57, BT58]. They looked at the intensity correlations of two detectors and found
out that photons are more likely to arrive bunched in pairs rather than separately due to their
bosonic nature. The coincidence rate of clicks in the detectors is the interesting quantity in
such experiments, where only events are taken into account when a particle is found in one
detector andτ seconds later another one in the other detector. Varyingτ leads to the so-
called second-order correlation functionG(2)(~r1, t;~r2, t + τ) as defined by Glauber [Gla63].
This function is different for different types of particles, or more generally for different types
of quantum states. For fermions one expects to find a different behaviour as for bosons since
the Pauli exclusion principletells that two fermions are not allowed to bunch, but rather
to repel each other. For electrons this anti-bunching has been already verified [KRH02]
and recently Iannuzziet al. claim to have measured the corresponding effect for neutrons
[IOS+06]. Photons though being bosons can also be found anti-bunched under special cir-
cumstances [KDM77] and it is in particular this phenomenon that can only be described
by quantum electrodynamics, whereas the photon bunching can be described classically in
terms of the fluctuations of a classical field [Pur56]. It was finally Glauber who presented a
quantum theory of coherence [Gla63] which accounts for the quantum effects of light by use
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of field operators instead of complex valued intensity functions.
Since the neutron density is usually rather low the neutron beam consists in the mean of

just one neutron at a time and the fermionic nature of neutrons ininterferometry experiments
can safely be neglected for almost all cases. Therefore, theneutron beam can also be thought
of a quantum field and its coherence properties described in the quantum optical framework
[RW00, RWK+96].

I will not go into further detail since the results are equivalent to what we have obtained
in Section 4.8.1, since we do not pay attention to particularquantum features of the beam.
However, it is important to note the close analogy between neutron and general quantum
optics, i. e. between matter and photon waves.

4.8.3 Coherence volume in a neutron interferometer

In neutron interferometry the coherence lengths∆C
i in different directions (Eq. 4.8.4) differ

by some orders of magnitude. This property is due to the Braggreflexion at the perfect crystal
monochromator and the crystal structure of the interferometer itself. The beam incident on
the first interferometer plate which has same coherence length in x andy direction (if the
effect of the monochromator is neglected) is depicted in Figure 4.20. The Bragg condition

~G ~ey~ex

α
~kx

~ky

∆C
y

∆C
x

∆C
y

∆C
x

∆C
y

∆C
x

Figure 4.20: Perfect crystal silicon plate of the neutron interferometer.~G denotes the recipro-
cal lattice vector perpendicular to the lattice planes. Theincident beam has equal coherence
length in all spatial directions (neglecting the monochromator), whereas the reflected beam
shows a larger coherence length in the direction~G.

~k′−~k = ~G, (4.8.6)

relates the incident beam~k to the reflected beam~k′ via the reciprocal lattice vector~G pointing
in the~ey direction. The distribution ofky is restricted to a narrow interval much smaller than
the distribution ofkx (andkz) where the Laue diffraction does not have any influence and
therefore the reflected beam exhibits a larger coherence length∆C

y .
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4.8.4 Three Beam superposition

Let us continue with the double-loop interferometer where three beams are interfering. We
can calculate the reduction of the visibility leading to an additional phase shift by adapting
Eq. (4.8.1) to the three beam situation:

I =
∣∣∣|ψH̃−

〉+ |ψH̃++X̃1
〉+ |ψH̃++X̃2

〉
∣∣∣
2

= 〈ψH̃−
|ψH̃−

〉+ 〈ψH̃++X̃1
|ψH̃++X̃1

〉+ 〈ψH̃++X̃2
|ψH̃++X̃2

〉
+2|〈ψH̃−

|ψH̃++X̃1
〉|cosarg〈ψH̃−

|ψH̃++X̃1
〉

+2|〈ψH̃−
|ψH̃++X̃2

〉|cosarg〈ψH̃−
|ψH̃++X̃2

〉
+2|〈ψH̃++X̃2

|ψH̃++X̃1
〉|cosarg〈ψH̃++X̃2

|ψH̃++X̃1
〉. (4.8.7)

The tilde in the subscript denotes the spatial displacements of the wave-packets ,̃X1,2 =

2πX1,2/λ̄ (and similarly forH̃, η̃ andχ̃) with the mean wavelength̄λ . H̃± = η̃0± η̃/2 de-
notes the spatial shift (4.1.25) of the wave-packet imposedby PS1 comprising the constant
term plus the variable positive or negative term (Eq. 4.1.28) for the reflected and the trans-
mitted beam, respectively. The choice of the sign corresponds to an anti-clockwise rotation.
X̃1,2 = χ̃0

1,2 + χ̃1,2 are the spatial displacements induced by PS2. Inserting Eq.(4.8.2) into
Eq. (4.8.7) we obtain

I3 = 3+2
[
e−

(η̃+X̃1)2(δk)2

2 cos(η +X1)+e−
(η̃+X̃2)2(δk)2

2 cos(η +X2)

+e−
(X̃1−X̃2)2(δk)2

2 cos(X1−X2)
]
. (4.8.8)

For the moment we skip the transmission coefficients
√

T1 and
√

T2 for the beams|ψH̃++X̃1
〉

and|ψH̃++X̃2
〉 to simplify the notation. Since the phase-shifter is aligned perpendicular to the

reflecting net planes (dispersive direction) it is thelongitudinal coherence length(∆C
x ) that

is of importance in our case. It is typically about 200 Å, muchsmaller than thetransversal
coherence length(∆C

y ≈ 10µm) [RWK+96].

The amplitudes of the cosine oscillations are damped exponentially and also to a different
degree. The first two terms describing the oscillations between the reference beam and the
two beams from the second loop are reduced proportional to the squared thicknessesd2

1 and
d2

2, whereas the last term depends on the squared difference(d1−d2)
2 of the thicknesses.

The necessity to introduce an additional compensating phase shifter in the beam with the
thinner phase shifting slab becomes now more comprehensible.

The quantity of interest is basically the change in the interference pattern when rotating
the phase shifter PS2, i. e. for changingX̃1 andX̃2. However, these oscillations are damped
by the exponential terme−(X̃2−X̃1)

2(δk)2/2. For large differences iñX2 andX̃1 there won’t be
any oscillations left so we have to insert a compensating phase shiftS̃behind BS4 as shown
in Figure 4.21. This silicon phase shifting slab (COMP) is 5 mm in thickness and is tilted by
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an angle between 30◦ and 60◦ from the beam forward direction, depending on the various
phase shifting plates. Also without the explicit calculation one could already guess from
Figure 4.21 that to compensate the phase shift of the thick plate of PS2 one has to place a
phase shifter of approximately the same thickness in both other beam paths in order to induce
roughly the same displacement of the wave packets in all beams.

PS2
(∆χ)PS1

(η)
A(T)

BS3

BS6

BS5

DO

BS2 BS4

BS1





Figure 4.21: Double-loop interferometer setup with an additional silicon phase shifter
COMP placed behind BS4 to compensate for the differences in the overall phase shifts ex-
ceeding the transversal coherence length.

The intensity pattern in Eq. (4.8.8) is altered accordingly,

IS
3 = 3+2

[
e−

(η̃+X̃1)2(δk)2

2 cos(η +X1)+e−
(η̃+X̃2−S̃)2(δk)2

2 cos(η +X2−S)

+e−
(X̃1−X̃2+S̃)2(δk)2

2 cos(X1−X2+S)
]
. (4.8.9)

If S is approximately equal the difference of the constant phaseshifts of PS2 (S≈ χ0
2 − χ0

1)
we obtain

IS
3 ≈ 3+2

[
e−

(X̃1δk)2

2 cos(η −χ1)+e−
(X̃1δk)2

2 cos(η + χ2−χ0
1)+cos∆χ

]
. (4.8.10)

Here we have omitted the contributionsη andχ1,2 to the exponential terms since these are
the terms originating in the rotation of the phase shifters and therefore rather small (η,χ1,2�
χ0

1,2,η
0). This equation demonstrates, that a suitable compensatorenables us to reduce the

loss of contrast. Only the thinner phase shifter in the|p⊥〉 beam affects now the coherence
of the partial beams.

What effects are to be expected for the phase shift between the state in the second loop
and the reference beam? For fixed∆χ Eq. (4.8.10) has the same structure as Eq. (4.6.4) with
the identification

A1 = A2 = e−
(X̃1δk)2

2 . (4.8.11)

From Eq. (4.6.7) we notice that there should not be any additional phase changes for
ideally adapted compensator. Nevertheless, the experimental results show deviations since
the compensator does not work perfectly. Moreover, there are still intrinsic phase differences
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across the beam cross section in the two loops, for example due to inhomogeneities in the
beam splitting plates, which cannot be compensated for.

Experimental consequences

Just for a qualitative estimate let us insert some numbers into the equations above. The
intensity pattern including again the transmission coefficients T1 and T2 and omitting the
constant termχ0

1 reads finally

I3 = 1+T1+T2+2
[√

T1e−
(η̃+X̃1)2(δk)2

2 cos(η −χ1) (4.8.12)

+
√

T2e−
(η̃+X̃2)2(δk)2

2 cos(η −χ2)+
√

T1T2e−
(X̃1−X̃2)2(δk)2

2 cos∆χ
]

without compensating phase shifter COMP. With compensatorthe intensity is given by

IS
3 ≈ 1+T1+T2+2

[√
T1e−

(X̃1δk)2

2 cos(η −χ1) (4.8.13)

+
√

T2e−
(X̃1δk)2

2 cos(η −χ2)+
√

T1T2cos∆χ
]
.

In Figure 4.22 the coherence functione−
(X̃(d)δk)2

2 with X̃(d) = bcAlNAl
λ 2

2π d for varying thick-
nessd is shown. The curve is in good approximation also valid for the silicon phase shifter
since the productbcSiNSi ≈ bcAlNAl.
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Figure 4.22: The exponential damping factore−
(X̃(d)δk)2

2 is plotted over the thickness of an
aluminium phase shifter.

The amplitude of the cosine oscillations is damped by a factor 1/2 approximately for a
slab 5 mm in thickness, where we have assumed that the wavelength spread∆λ/λ ≈ 1% for
λ = 2.715×10−10. So one might argue that there should be still contrast left if we insert
one of the phase shifters with thicknessd2 = 0.5, 1, 2 or 4.1 mm. However, we must not
neglect the transmission coefficientT2 which diminishes the contrast in any case. For the
experiments with a small transmission coefficientT2 < 1 and consequentlỹX1− X̃2 > 0 the
compensator has to be utilised in order to obtain the contributions from all the cosine terms.
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In the case where PS2 comprises equally thick slabs in both beams there is no need for the
compensator. Although the exponential damping of the first two cosine terms in Eq. (4.8.12)
is largest for this setup sinced1 = d2 = 4.1 mm, the transmission coefficientsT1 = T2 ≈ 1.

4.9 Dephasing effects

Apart from the phase drift due to the finite coherence lengthsand the consequent spatial dis-
placement of the wave-packets another main contribution comes from dephasing processes.
For instance, the surface roughness of the interferometer plates causes a modification of the
phase relation between the different beam paths depending on the impinging point. In the
particular case of the double-loop interferometer the relative phases between the reference
beam and the beams in state|p〉 and|p⊥〉 exhibits a position dependence.

Putting this position dependence into the phases of the state |ψt〉 in the second interfer-
ometer loop right after BS3 we get (neglecting normalisation factors)

|ψt(~x)〉 = eiα1(x)|p⊥〉+eiα2(x)|p〉, (4.9.1)

whereα1,2(~x) denote the randomly distributed phases across the beam cross-section.~x is a
vector to a point in the beam cross-section. At the end, the contributions to the intensity from
each point have to be added incoherently. Each of these states generates an intensity pattern

Ix ∝
∣∣∣eiη +

√
T1eiχ1eiα1(~x) +

√
T2eiχ2eiα2(~x)

∣∣∣
2

according to Eq. (4.2.3).η is independent of~x as all relevant information is contained already
in theα1,2(~x). A remaining global phase factor is immaterial.

The phase shiftsχ1 andχ2 are not taken to be dependent on the position, because these
deviations are also already incorporated into the additional phasesα1 andα2, respectively.
One might argue that this is not admissible since variationsin χ1,2 yield a position dependent
evolution of the state that must be reflected in the mapŨ : |ψt〉 7→ |ψ ′

f 〉 transporting the state

in the second loop, i. e.̃U 7→ Ũ(~x). However, on a closer look we have defined in Eq. (4.1.28)
χ1,2 to comprise only the terms proportional to the rotation angle ξ and not the constant
offsetsχ0

1,2. Consequently,̃U is also to a good approximation only a function ofξ and not
of~x. The change in the spatial phase distribution when rotatingthe phase shifter PS2 can be
neglected with a clear conscience.

The total output intensity has to be understood as an incoherently weighted average of
the pure state interference profiles,

I =

∫
pα(~x)Ixd

2x.

pα(~x) = pα1(~x)pα2(~x) is the product of the (independent) distributions of the phase in path
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|p⊥〉 or |p〉, respectively, with zero mean3. According to Equation (4.2.2),

Ix = 〈ψ ′
re f |ψ ′

re f 〉+ 〈ψ ′
f (~x)|ψ ′

f (~x)〉+2
∣∣〈ψ ′

re f |ψ ′
f (~x)〉

∣∣
︸ ︷︷ ︸

νx

cos
(
η −arg〈ψ ′

re f |ψ ′
f (~x)〉︸ ︷︷ ︸

Φx

)
.

Averaging over the phase distributions leads to

I ∝ A+2
∫

d2xpα (~x)νxcos(η −Φx) = A+2ν̄ cos(η −Φ) (4.9.2)

with the identifications

ν̄ =

∣∣∣∣
∫

d2xpα(~x)νxe
iΦx

∣∣∣∣ , (4.9.3)

Φ = arg

(∫
d2xpα (~x)νxe

iΦx

)
(4.9.4)

and whereA denotes the terms independent ofα1,2. InsertingνxeiΦx = 〈ψ ′
re f |ψ ′

f (~x)〉 =

〈ψ ′
re f |Ũ |ψt(~x)〉 we obtain

Φ = arg
∫

d2xpα (~x)〈ψ ′
re f |Ũ |ψt(~x)〉 (4.9.5)

The integration over the phase distribution across the beamcross-section can be executed
and yields

∫
d2xpα(~x)|ψt(~x)〉 =

∫
d2xpα (~x)

(
eiα1(~x)|p⊥〉+eiα2(~x)|p〉

)

= e−Γ1|p⊥〉+e−Γ2|p〉, (4.9.6)

if the α1,2 are – for the sake of simplicity – taken to be Gaussian distributed with zero mean
andσ2

α variance, henceΓ1,2 = −σ2
α1,2

/2. By renaming the basis vectors,|p1〉 ≡ |p⊥〉 and
|p2〉 ≡ |p〉, Eq. (4.9.5) can be rewritten as

Φ = arg〈ψ ′
re f |Ũ ∑

k

e−Γk|pk〉 = arg

[(

∑
l

〈pl |
)

Ũ ∑
k

e−Γk|pk〉
]

= arg

[

∑
l ,k

〈pl |Ũe−Γk|pk〉
]

= argTrŨ

[

∑
l ,k

e−Γk|pk〉〈pl |
]

.

(4.9.7)

Recalling Eq. (4.2.1) for the unitary evolution operator̃U =
√

T1eiχ1|p1〉〈p1| +

3Actually, an average phase offset can be put into the definition of the basis states|p⊥〉 and|p〉.
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4. SPATIAL GEOMETRIC PHASE

√
T2eiχ2|p2〉〈p2|, yields

Φ = arg(
√

T1eiχ1e−Γ1 +
√

T2eiχ2e−Γ2). (4.9.8)

The phase distribution has the same effects as the spatial displacement discussed above. Both
produce an exponential term to the individual beam contributions. The significant difference
between the discussion on the spatial displacement above and and the present discussion is
the use of either of a coherent superposition (pure state) for the former, or an incoherent
superposition (mixed state) for the latter. The visibilityvanishes in any case, but the spatial
displacement does not derogate the pure state nature. That the partial waves of the beams
are still perfectly coherent is demonstrated by looking at the still existent interference fringes
in the momentum spectrum - “[...] interference in phase space has to be considered rather
than the simple wavefunction overlap criterion [...].” [RW00, p. 141]. In contrast, dephas-
ing reduces the visibility more generally and it is not feasible to compensate this effect.
In our stationary experiment, however, we cannot distinguish between these fundamentally
different effects, since just neutrons with the same wavelength interfere, cross correlations
between different partial waves of a pure state get washed out when averaging over the mea-
surement time [Gab56]. Therefore, two quite distinct causes give rise to the same observed
effect, a shift in the measured phase, hence, both are subsumed into the single fit coefficient
C for the fits shown in Figures 4.11, 4.13, 4.15 and 4.17.

Mixed state geometric phase Can this additional phase shift be associated with the
Sjöqvist’s mixed state geometric phase

φρ = argTr[Uρ0] = arg∑
k

pk〈ψk|U |ψk〉, for ρ0 = ∑
k

pk〈ψk||ψk〉 (4.9.9)

as defined in [SPE+00]?

At least there is a similarity, but certainly not an equivalence. This similarity can be
observed by comparing Eq. (4.9.9) with (4.9.7) which are structurally equal. The term

∑l ,ke−Γk|pk〉〈pl | in the latter can even be thought of a (not normalised) density matrix since
it is positive and Hermitian, however, the physical meaningremains unclear. The decisive
difference to the mixed state geometric phase is the final comparison with the reference state
|ψ ′

re f〉 rather than a proper copy of the initial state. Sjöqvistet al. defined the mixed state
geometric phase by assuming an interferometer with a mixed input state and an evolution of
the internal degrees of freedom, whereas here the mixednessstems from the path degrees of
freedom. In the former the Hilbert space of the system comprises a spatial as well as a spin
partH = Hspatial⊗Hspin, but in the latter the spin part plays no role at all. It is onlythe
dimension ofHspatial that is enlarged to dimHspatial = 3 due to the double-loop geometry in
contrast to the tensor product structure of the former with dimH = 2×2 = 4. It is therefore
not surprising that the comparison fails and that we find onlya formal equivalence.
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4.10 Conclusions

In summary, we have shown that one can ascribe a geometric phase not only to spin evo-
lutions of neutrons, but also to evolutions in the path degrees of freedom of neutrons in an
interferometric setup. This equivalence is evident from the description of both cases via state
vectors in a two dimensional Hilbert space. However, there have been arguments contra the
experimental verification in [HZR96] which we believe can besettled in favour of a geomet-
ric phase appearing in the setup described above. The twofold calculations of the geometric
either in terms of a shift in the interference fringes or via surface integrals in an abstract state
space allows for a geometric interpretation of the obtainedphase shift.

The main difficulty that came up during the experiment was theloss of contrast when
using differently thick phase shifting plates for PS2. The rather small coherence length im-
peded the measurement of the relative phase differences. The different spatial displacements
of the different beams together with the attenuator in one beam suppressed the interference
oscillations and asked for a further compensating phase shifter. Furthermore, due to the same
reasons we have found out that the precise parallel alignment of the phase shifter PS2 in the
second loop is important in order to keep dynamical phase contributions minimal. It is only
for the exact parallel position that the demanded relationd1/d2 = T2/T1 is satisfied and de-
viations will lead to a dynamical phase. Mainly the setups with d1 = 1 mm and 2 mm suffer
from this requirement.

This systematic deviations have been taken into account in the data fits leading to a good
agreement of the measured phase with the theoretical prediction for the spatial geometric
phase. The flattening of the curve fitted to the measured data compared to the theoretical
predictions is on the one hand side the result of the spatial displacement of the poly-chromatic
incident wave which cannot be compensated perfectly. On theother hand side there are also
contributions from dephasing due to a non-uniform phase distribution across the area on the
beam-splitting plates illuminated by the neutron beam.

Apart from the unpleasant discrepancies between theoretical and experimental results the
flattened curve might also be useful in future since it forms astable “platform”: Around the
points∆χ = π/4 and 3π/4 a change of the rotation angleξ does not have much effect on
the phase difference and as we have seen the form of this platform can easily be changed by
willingly modifying the visibility, for instance by addingphase shifters to spatially displace
the wave-packet.
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Chapter 5

Geometric phase and adiabatic
fluctuations

What happens to the geometric phase, if the evolution of the state gets perturbed by some
outer influences? This question has already been addressed in Chapter 2. There, two ap-
proaches to define a mixed state geometric phase have been introduced that are valid for
unitary as well as non-unitary evolutions. With different kinds of parallel transport laws a
geometric phase or, generally speaking, matrix-valued holonomy invariants have been de-
fined that are properties of the path of the density matrices in their respective state spaces
only.

In the following, we will turn our attention towards more realistic systems to study the
influence of external influences on the geometric phase. Thisis motivated in that in all
realistic situations the system under investigation is – however weak – coupled to the en-
vironment. This approach is distinct from the former, more “holistic in nature” [KCS04],
in that it uses pure state geometric phases and employ eithera quantum trajectory analysis
[CFGSV03, NSM02] or solve a Master equation [GW88, GF89, KCS04] to get insight into
the behaviour of the geometric phase influenced by some perturbations.

The big “hype” about the geometric phase for open systems hasbeen ignited by in-
vestigations in geometric phase gates as basic blocks for the future (or futuristic) quantum
computer [NC00]. The main aim of investigations in both decoherence and geometric phases
at present seems to be their amalgamation to form robust quantum gates. Zanardi and Rasetti
suggested that the Wilczek-Zee non-abelian holonomies [WZ84] could be of potential use to
implementholonomic quantum computation[ZR99]. A conditional Berry (adiabatic) phase
gate has been issue of an NMR-experiment conducted by Joneset al. [JVEC00] and Duanet
al. [DCZ01] proposed a scheme for the implementation of a set of universal geometric quan-
tum gates for the manipulation of trapped ions. Falciet al. [FFP+00] suggested a method to
use a superconducting nanocircuit to design gates for quantum computation, and Ekertet al.
[EEH+00] showed how to implement a conditional geometric phase between two spins.

Intuitively, the geometric phase might be a good candidate for the implementation of
quantum gates resilient against environmental influences,since it is not dependent on dy-
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namical quantities, but is based purely on geometry. This for itself clearly does not ensure
its pertinence, but for particular quantum operations and particular noise sources this feature
could be of interest. In the recent past numerous analyticaland numerical studies have been
conducted with predictions sometimes promising, sometimes not.

To name a few, Carolloet al. [CFGSV03] conclude that the geometric phase for a spin-
1/2 particle is stable under dephasing, i. e. when the phase of the spin states makes some
jumps during an otherwise smooth evolution, but not for general decoherence processes.
The same authors investigated also the influence of a quantuminstead of a classical field
[CFGSV04] reasoning that in the adiabatic case the geometric phase is more stable than in a
non-adiabatic setup. Zhu and Zanardi [ZZ05] compared dynamical and geometric quantum
gates and found out that geometric gates are more robust. On the other hand side, similar
quantum gates have been investigated by Naziret al. [NSM02] numerically. They, in con-
trast, conclude that using an (adiabatic) geometric quantum gate instead of a dynamical one
does not bring any advantages since in order to ensure adiabaticity the operation time of
the former is much longer and noise has more time to take effect. Also Blais and Tremblay
[BT03] pointed out that the cyclic, but non-adiabatic geometric phase is not more robust than
a purely dynamical quantum gate for noise in the control parameters. However, both of the
latter do not strictly separate dynamical from geometric phase contributions to decoherence
and their conclusions are only valid if one is not able to compensate the dynamical phase
along with its variations due to the noise. Sarandy and Lidar[SL06], in contrast, derived that
the adiabatic geometric is stable both for dephasing and spontaneous emission processes and
noted that there is a distinct time-scale for which the geometric phase remains stable.

Eventually, De Chiara and Palma [CP03] calculated the adiabatic geometric phase along
with its variance of a spin-1/2 particle subjected to fluctuating magnetic fields for weak noise
fluctuations (first-order approximation). Such a situationis ideally suited for an experimen-
tal demonstration of the robustness of Berry’s (adiabatic)phase with neutrons and we will
discuss this example in more detail. Although it is not decoherence in the strict sense in
that the quantum system couples to a classical magnetic fieldand not to a quantum envi-
ronment (modelled preferably as a bath of quantum harmonic oscillators), it is of particular
interest for practical implementations using neutrons andmagnetic fields. They conclude
with the promising result that for long evolution times the fluctuations in the magnetic field
(the environment) do not show up as fluctuation of the geometric phase, under the restriction
that everything is sufficiently adiabatic. Whitneyet al. [WMSG05] extend these results by
considering higher-order terms giving rise to a shift of thegeometric phase. This behaviour
also appears in numerical simulations on the basis of the De Chiara-Palma setup as will be
pointed out below.

In summary, the geometric phase seems to be robust for certain configurations, preferably
for adiabatic evolutions. However, up to now there is no experimental evidence. To find a
remedy I present in the following considerations to a possible experimental setup that can
be used to test the predictions in [CP03]. First, the theory behind is set forth and specific
calculations on the spin-evolution of neutrons are presented. Second, numerical simulations
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5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

are shown giving a hint of the feasibility of such an experiment. The planned experiment is
finally discussed in Appendix D.

5.1 Spin-1/2 in a fluctuating magnetic field

A spin-1/2 particle, say, a neutron is subjected to a stochastically fluctuating magnetic field.
The changes in the magnetic field are slow so that one can use the adiabatic approximation.
If the particle is in an eigenstate of the Hamiltonian initially it will stay in an instantaneous
eigenstate for all times - the transition probability to another state is sufficiently close to zero.
It has been calculated that the geometric phase is more stable than its dynamical counterpart
since its variance tends to zero proportional to the inverseevolution time while the variance
of the latter increases linearly in time. However, it has to be mentioned that the assumption
of adiabaticity all along the evolution also comprises the noise fluctuations. The calculations
are not valid for arbitrary non-adiabatic noise, but just for noise with a small bandwidth
compared to the Zeeman splitting of the energy levels in the magnetic field.

Let us assume, the spin-1/2 particle is initially polarisedalong the direction of a magnetic
field ~B(0) = (0,0,B3)

T pointing inz-direction. The magnetic field changes adiabatically so
that the spin of the particle stays latched toB over the total evolution time and obtains a
phase relative to the initial state. This phase can be measured by means of interference of the
initial and the final state. The geometric part of this phase is not dependent on the strength
of the magnetic field, but only on the path in parameter space.So far nothing new. Let
us assume an additional noisy component of the magnetic field, ~B(t) = ~B0(t)+~K(t). ~K(t)
fluctuates around zero leading to instantaneous modifications of the magnetic field direction
and - recalling that we only allow adiabatic changes - the polarisation vector as well. In the
following we will assume that the deviations from zero mean are Gaussian distributed.

This noise field clearly contributes to the phase observed, but the geometric and dynam-
ical part are affected differently: While the variance of the dynamical part grows linearly
with the time spent in the magnetic field, the variance of the geometric part vanishes. The
experimental problem is to separate the two parts. For the ideal situation without noise con-
tributions there are several methods available, for example spin-echo or choosing a particular
Hamiltonian such that the dynamical phase vanishes. But forthe noisy case neither of these
approaches work out since the Hamiltonian can neither be chosen such that the dynamical
phase vanishes nor does a spin-echo approach guarantee the cancellation of all dynamical
terms in the Hamiltonian if the noise is not same for both the first evolution and its “echo”.

For aproof-of-principleexperiment we can nevertheless resort to the spin-echo principle,
if artificial noise fluctuations are generated, recorded and applied to the echo as well, so that
we have the really exactly the same evolution twice. The dynamical phase and its contribu-
tions to decoherence should vanish and the remaining dephasing is only due to the geometric
phase.
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5.1.1 Theoretical considerations

B0(t)
⇀

K(t)
⇀

y x

z

Figure 5.1: Magnetic field vector tracing out a path in parameter space. In the adiabatic
domain the polarisation vector of the neutron stays latchedto the magnetic field direction
throughout the whole evolution.

The Hamiltonian of the magnetic field is given by

H(t) = −~µ ·~B(t), (5.1.1)

where~B(t) = B(t)~n(t) with magnitudeB(t) ≡ |~B(t)| and the unit vector is parametrised by
~n(t) = (sinϑ(t)cosϕ(t),sinϑ(t)sinϕ(t),cosϑ(t))T . ~µ = µn~σ is as usual the magnetic mo-
mentµn times the vector of Pauli matrices (see also Section 1.2.1).If ~B(t) is varied adi-
abatically the spin state follows the instantaneous energyeigenstates of the magnetic field
pointing in direction~n(t).

To fulfil the adiabaticity condition (c. f. Appendix C) the Zeeman energy splitting of the
neutron in the magnetic field which determines theLarmor frequencyωL = 2µ|B|/h̄) has to
be much larger than the typical rate of change of~B(t). The instantaneous eigenvectors are
given by

| ↑n (t)〉 = cos
ϑ(t)

2
| ↑〉+eiϕ(t) sin

ϑ(t)
2

| ↓〉 (5.1.2)

| ↓n (t)〉 = sin
ϑ(t)

2
| ↑〉−eiϕ(t) cos

ϑ(t)
2

| ↓〉.

Note, that the choice of the phases is different compared to the studies in [CP03]. There, the
eigenstates are multiplied by a factore−iϕ(t)/2 with the decisive disadvantage that this choice
of eigenvectors is not single-valued and therefore not particularly suited for a discussion of
Berry’s phase. Changing the azimuthal angle of the magneticfield ϕ0 by 2π , the eigenstates
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should be equal, whereas the eigenstates chosen in [CP03] change sign. As Berry noted
[Ber84], “any choice of phases can be made, provided that| ↑n (t)〉 is single valuedin a
parameter domain that includes the circuit C.”.

As discussed in Section 1.2 for a cyclic time evolution
(
~B(T) = ~B(0)

)
the state after the

evolution can be written as
| ↑n (T)〉 = eiφdeiφg| ↑n (0)〉 (5.1.3)

with the dynamical partφd = µ
h̄

∫ T
0 B(t)dt. The Berry phase can be expressed in terms of the

Berry connectionφg =
∮
~A↑d~λ with ~A↑ = i〈↑n |∇λ | ↑n〉.~λ =~λ (t) = (ϑ(t),ϕ(t)) is the set of

control parameters. The components of~A↑ are easily calculated,

A↑
ϕ = i〈↑n |∂/∂ϕ| ↑n〉 = −1

2
(1−cosϑ(t)) (5.1.4)

A↓
ϕ = i〈↓n |∂/∂ϕ| ↓n〉 = −1

2
(1+cosϑ(t)) (5.1.5)

A↑
ϑ = −A↓

ϑ = i〈↑n |∂/∂ϑ | ↑n〉 = 0. (5.1.6)

Consequently, Berry’s phaseφg without noise contributions is given by

φ↑
g =

∫ 2π

0
A↑

ϕdϕ = −π(1−cosϑ0) = −φ↓
g (5.1.7)

for constantϑ(t) = ϑ0 and varying azimuthal angleϕ(t) ∈ [0,2π] (c. f. Figure 5.1). φ↑
g

indicates the geometric phase accumulated by the spin-up state andφ↓
g for the spin-down

state. It is only dependent on the path traced out by the statein state space or, equivalently,
by the magnetic field vector in parameter space in the adiabatic case.

Now we turn our attention to a fluctuating magnetic field~B(t) = ~B0(t)+ ~K(t) (dashed
line in Figure 5.1) with Hamiltonian

H(t) = −µn~B·~σ = −µn[~B0(t)+~K(t)] ·~σ. (5.1.8)

The components of the fluctuating field~K are random processes (c. f. Appendix A) with
zero average and small amplitude. To assure adiabaticity throughout the operation time also
the fluctuations must not violate the adiabaticity assumption in the same way as the rate of
change ofB0(t) itself. Both the connection~A and the path are changed. Letϑ0, ϕ0 be the
spherical coordinates denoting the direction of the unperturbed field~B0 andϑ andϕ stand
for the directions of the perturbed magnetic field~B. A series expansion of the gauge potential
~A about the polar angleϑ0 yields

A↑
ϕ(ϑ) ' A↑

ϕ(ϑ0)+
∂A↑

ϕ

∂ϑ
δϑ
∣∣∣
ϑ0

=
1
2

((cosϑ0−1)−sinϑ0δϑ) . (5.1.9)

For the corrections to the path we note that there is no componentAϑ , thus we can restrict
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our attention to theϕ component of the line elementd~λ :

dλϕ = ϕ̇dt =
dϕ(t)

dt
dt =

d(ϕ0+δϕ)

dt
dt = (ϕ̇0+δϕ̇)dt. (5.1.10)

Here ϕ̇0 = 2π/T ≡ ωr is the angular velocity of the unperturbed field~B0, while δϕ̇ is
the first order correction due to~K. The noise-influenced Berry phasẽφg (omitting in the
following the subscript↑ to simplify the notation) can now be expressed as

φ̃g =
∫ T

0
[Aϕ(ϑ0)+δAϕ ](ϕ̇0+δϕ̇)dt

' φg+
2π
T

∫ T

0
δAϕdt+Aϕ(ϑ0)

∫ T

0
δϕ̇dt

= φg−
π
T

∫ T

0
sinϑ0δϑdt+Aϕ(ϑ0)δϕ(T) (5.1.11)

with φg denoting the mean geometric phase (Eq. 5.1.7). We have assumed that there is no
initial deviation, δϕ(0) = 0, and we have neglected the second-order contributions from
δAϕδϕ̇ . The last termAϕ(ϑ0)δφ(T) vanishes for a magnetic field returning exactly to its
initial position. In general this is not the case and one has to use the definition of Samuel and
Bhandari [SB88] of the non-cyclic geometric phase. However, it is not difficult to verify that
this contribution is of second-order inδφ(T)1 and we neglect this term as well. Finally, we
obtain

φ̃g = φg−
π
T

∫ T

0
sinϑ0δϑdt. (5.1.12)

A Taylor series expansion yields

cos(ϑ0+δϑ) ' cosϑ0−sinϑ0δϑ =
B0,3

B0
+

K3

B0
− B0,3

B3
0

~B0 ·~K, (5.1.13)

where the last part follows from expanding

B3

B
=

B0,3 +K3

|~B0+ ~K|
=

B0,3+K3√
B2

0+K2−2~B0 ·~K

for small~K. B3, B0,3 andK3 denote thez-components of the respective field components.
Therefore,

−sinϑ0δϑ =
K3

B0
− B0,3

B3
0

~B0 ·~K.

1The enclosed surface area determines the geometric phase. If the path does not return to its initial point
but rather ends within anε-vicinity off this point the error in the geometric phase is of the order of the area of
the disk with radiusε, i. e. the error in the geometric phase is of second-order inδφ(T).
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Inserting Eq. (5.1.13) into (5.1.12) we find

φ̃g = φg+
π
T

∫ T

0

[K3

B0
− B0,3

B3
0

~B0 ·~K
]
dt (5.1.14)

and we can calculate the probability distribution ofφg once that forKi is known. Higher
order terms are neglected here although these become important for stronger noise. They
induce a change of the mean geometric phase as shown in Section 5.6.3.

Assuming, that the componentsKi(t) are the trajectories of an Ornstein-Uhlenbeck
process (Gaussian, stationary and Markovian - c. f. Appendix A), the distribution ofφ̃g is
found out to be Gaussian with mean valueφg. Its varianceσ2

φg
is given by

σ2
φg

= 2P2
12

(π cosϑ0sinϑ0

TωL

)2[(e−Γ12T −1)(Γ2
12−ω2

r )

(Γ2
12+ω2

r )2
+

Γ12T

Γ2
12+ω2

]
(5.1.15)

+2P2
3

(π sin2 ϑ0

TωL

)2[Γ3T −1+e−Γ3T

Γ2
3

]
,

which can be derived by use of (A.4.3) for thez-component and by combining (A.4.6) and
(A.4.7) for thex andy-component.

Γ12 denote the bandwidths of the Lorentzian noise spectrum (Γ = 1/τ is the inverse of
the relaxation time) inx− andy-direction andΓ3 the bandwidth of the noise inz-direction.
In order to compare the different energy and time scales involved, all magnetic fields will
be given by their according Larmor frequency. That is,ωL = 2µnB0/h̄ denotes the rotating
magnetic guide-field, andP2

12 (P2
3 ) is the mean power of the noise processK12 (K3) in radians

per second (Eq. A.1.10). In the following we will often use the signal-to-noise ratio which
we define as

sr ≡
∣∣∣
ωL

P3

∣∣∣, (5.1.16)

the ratio between the strength of the guide fieldB0 and the mean power of the stochastic
process.

For large enoughT (T >> 1/Γ) we can approximate the variance ofφg by

σ2
φg

= 2P2
12

(π cosϑ0sinϑ0

ωL

)2 1
Γ12T

+2P2
3

(π sin2ϑ0

ωL

)2 1
Γ3T

(5.1.17)

and recognise that it tends to zero for(ΓT)−1 → 0. A typical plot of the varianceσ2
φg

is
shown in Figure 5.2.

The geometric phase does not contribute to dephasing if the evolution timeT is long
enough which leads to the rather paradoxical situation thatthe (geometric) phase difference
between final and initial state is more and more exact the longer the spin-1/2 particle is
exposed to the noise. Also, we can observe from Figure 5.2 that the contribution of the
geometric phase to the dephasing is in general rather small.For a perturbation strength one
order of magnitude smaller than the guide-field strength thevariance is in the order of 0.1
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Figure 5.2: Typical plot of the varianceσ2
φg

for a magnetic guide-field with Larmor frequency

ωL = 104 rad/s (≈ 0.5 Gauss) and an average noise power ofP3 = 103 rad/s corresponding
to a signal-to-noise ratio ofsr = 10. The noise bandwidth isΓ = 50 rad/s and the field rotates
in the equatorial plane (ϑ0 = π/2).

radians yielding a relative error of≈ 0.1/2π = 1%.

5.1.2 Region of applicability of the first-order approximation

It is important to know for what parameter ranges the curve plotted in Figure 5.2 is valid.
What fluctuations are allowed such that the adiabaticity assumption is not violated? If the
adiabatic condition is not fulfilled the spin state will not follow the direction of the magnetic
field and the results derived above have to be modified. On the other hand side, for a strong
noise coupling the first-order approximation and consequently the conclusion that the mean
geometric phase is not affected by the noise are clearly invalid as will be exemplified in the
numerical simulations later on.

Time scales There are different time scales involved in this problem,τL = 2π
ωL

is associated

to the (mean) Larmor frequency (ωL = 2µnB0/h̄) of the magnetic guide-field,τr = 2π
ωr

is the
time needed for the execution of one cycle, andτn = 1/Γ is the relaxation time of the noise
associated to the bandwidth of the involved noise frequencies. We definitively demand that

τr ,τn � τL (5.1.18)

to ensure adiabaticity. Furthermore, the fluctuating field should have time enough to make
many uncorrelated oscillations during the cyclic evolution (τn � τr ) so that we end up with

τL � τn � τr , (5.1.19)

or (with ωn = 2πΓ),
ωL � ωn � ωr (5.1.20)
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in terms of the angular frequencies.

Low-frequency behaviour For the sake of completeness we can state the behaviour for
low frequency noise (τr � τn) where the noise fluctuations do not oscillate during the evo-
lution. In each run of the experiment the noise is approximately constant and varies only for
the different runs. In this case Eq. (5.1.15) is

σ2
φg

= 4P2
12

(π cosϑ0sinϑ0

ωL

)2 Γ12T
(2π)2 ++2P2

3

(π sin2 ϑ0

ωL

)2[1
2
− Γ3T

6

]
. (5.1.21)

to first order inΓT. The leading term isP2
3 (π sin2 ϑ0/B)2 is independent ofωn andωr and

the variance overT is approximately constant in this range (Figure 5.3) but tends to zero for
small fluctuations (smallϑ0).
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Figure 5.3: For much shorter evolution times as in Figure 5.2, but same parameters in all
other respectsσφg (P3 = 103 rad/s,ωL = 104 rad/s,ωn = 50rad/s,ϑ0 = π/2) the variance
σ2

φg
is approximately constant.

How much less than the Larmor frequency? What is left to clarify is the meaning of the
statement ‘much less than the Larmor frequency’(‘�’). As a rule of thumb there should be
approximately one order of magnitude difference. In Figures 5.4 (a)-(d) the polar angleϑB of
the magnetic field~B is plotted along with the angleθψ of the instantaneous state of the spin-
1/2 particle parametrised by|ψ(t)〉= cos(θψ/2)| ↑〉+eiφ sin(θψ/2)| ↓〉. The signal-to-noise
ratio is fixed (sr = 1.5×103) and the noise is inz-direction (Γ1,2 = 0). The noise frequency
bandwidth is varied fromωn = 102 rad/s (a) toωn = 104 rad/s (d). We notice that the state
does not follow the magnetic field anymore for higher frequencies. The wiggles inθψ are
due to the Larmor frequency of the guide field with approximately 104/(2π)≈ 1.6 kHz. For
stronger noise (sr ≈ 4.5×102) the deviations are even more striking (c. f. Figure 5.5).

5.1.3 Dynamical Contribution

As shown above, the fluctuations do not influence the geometric phase in the long run, but
there is still the dynamical phase left which contributes significantly to the variance of the
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(c) ωn = 5×103 rad/s
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(d) ωn = 104 rad/s

Figure 5.4: The polar angle of the magnetic fieldϑB is plotted along with the polar angle
of the stateθψ . For higher noise frequencies the state does not follow the field adiabatically
anymore.
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Figure 5.5: The polar angle of the magnetic fieldϑB is plotted along with the polar angle of
the stateθψ . For stronger noise the deviations from the adiabatic behaviour can clearly be
seen above frequencies of 1/10 of the Larmor frequency of theguide field.

132



5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

relative phase difference between final and initial state.
The dynamical phase difference is given by the integral overthe magnetic field strength

φ̃d = i
µ
h̄

∫ T

0
B(t)dt = i

µ
h̄

∫ T

0
|~B0(t)+~K(t)|dt ≈ φd + i

µ
h̄

∫ T

0

~B0(t) ·~K(t)
B0

dt, (5.1.22)

where we have neglected contributions proportional toK/B0 and used the fact that the system
is in an eigenstate of the Hamiltonian at all times, i. e.

∫
〈ψ(t)|~µ ·~B(t)|ψ(t)〉dt = µ

∫
B(t)〈ψ(t)|~σ ·~n|ψ(t)〉︸ ︷︷ ︸

1

dt.

From Eq. (A.4.3) the integral (5.1.22) can be calculated to find the variance of̃φd,

σ2
φd

= 2P2
12

(µ sinϑ0

ωL

)2[(e−Γ12T −1)(Γ2
12−ω2

r )

(Γ2
12+ω2

r )2
+

Γ12T

Γ2
12+ω2

r

]

+2P2
3

(µ cosϑ0

ωL

)2[Γ3T −1+e−Γ3T

Γ2
3

]
, (5.1.23)

which is similar toσ2
φg

with the decisive difference that it grows linearly inT for largeT.

In passing we note that the varianceσ2
α of the total phaseα = φd +φg is not the sum of the

variancesσ2
φd

+σ2
φg

since these are not independent random variables, but is given by

σ2
α = 2

P2
12

ω2
L

(π cosϑ0sinϑ0

T
+ωL sinϑ0

)2[(e−Γ12T −1)(Γ2
12−ω2

r )

(Γ2
12+ω2

r )2
+

Γ12T

Γ2
12+ω2

r

]

+2
P2

3

ω2
L

(π sin2ϑ0

T
+ωL cosϑ0

)2[Γ3T −1+e−Γ3T

Γ2
3

]
. (5.1.24)

The origin of this equation is simply the calculation of the variance of the sum of the O. U.
processes in Eq. (5.1.14) and (5.1.22). The sum of the coefficients of the single components
from the dynamical and the geometric phase part is squared, which is different to a sum of
squares as one would obtain by simply addingσ2

φg
andσ2

φd
.

5.1.4 Explanation in terms of domains of integration

The key to the understanding of the different behaviour of the dynamical and the geometric
phase lies in the fact that the domains of integration are different in both cases. As for the
dynamical phase it is given by the integral of the instantaneous energyE(t) over time and
therefore its variance grows linear in time as well similar to the uncertainty in the position
of the pollen grain in a suspension in classical Brownian motion [Bro66]. The integration
domain doubles if the evolution time is doubled (Figure 5.6).

For the geometric phase the domain of integration is not time, but the path in parameter
space, parametrised for example by the azimuthal angleϕ ∈ [0,2π]. Making the evolu-
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Figure 5.6: Domain of integration doubles if the evolution time is doubled for the dynamical
phase. The varianceσ2

d grows linearly in time and is doubled as well.

tion timeT for one cycle longer means that the involved frequencies relative to the angular
frequency of the rotating magnetic fieldωr are higher, but the integration domain is still
ϕ ∈ [0,2π]. The fluctuations have more time to make uncorrelated oscillations (Figure 5.7).

2Π
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Figure 5.7: Domain of integration is the same independent ofthe evolution timeT. Relative
to the the rotation frequencyωr = 2π/T the noise frequencies are higher for largerT and the
varianceσ2

g tends to vanish.

5.2 Removing the dynamical phase

To measure the geometric phase we definitely need some mechanisms to cancel dynamical
phase contributions. There are a few alternatives, namely

(i) to choose a Hamiltonian such that the dynamical phase vanishes which amounts to a
parallel transport of the state vector (local compensation),

(ii) to transport the state along a geodesic, for example by projection measurements,

(iii) to compensate the dynamical phase afterwards by an appropriately chosen Hamil-
tonian (global compensation),

(iv) to choose a system (atom) where two states have same energy and therefore same
dynamical properties but different other quantum numbers [Sch06],

(v) to use an interferometer where the evolution is such thatthe dynamical phase is equal
in both beam paths, but the geometric phase is not,
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(vi) or to make use of a spin-echo method where the transport is executed twice but with
opposite magnetic fields (or with flipped spin). Due to the opposite magnetic field the
dynamical phase cancels and due to the same rotation direction the geometric phase
doubles. This works only in the adiabatic case, otherwise both phase contributions
vanish.

In the ideal case without fluctuations all of these methods yield the wanted results, how-
ever, if we add noise to the evolution the first three methods are not feasible since the de-
viations from the ideal path give rise to non-negligible dynamical phase contributions. The
distorted path is not a geodesic or a parallel lift anymore, nor is the exact Hamiltonian known
to compensate for it afterwards. Hence, a separation of decoherence into a geometric and a
dynamic part is not possible. As for option (iv) there is no way to do this with neutrons since
they only have a spin degree of freedom.

As for the interferometer option (v) the arrangement of the coils producing the magnetic
field in the different paths induces a geometric phase as shown in [AKW+97]. Same noise
in both coils gives rise to equal dynamical phases in both beams and the relative phase
difference is then purely geometric. This issue will be addressed below in further details
below (Sec.5.4.1). In the case of the spin echo the noise is also applied twice, but rather
sequentially than at the same time. Choosing a specific adiabatic evolution [BDHH04] both
the dynamical phase and the noise contributions from the dynamical phase are cancelled and
the geometric phase remains. Clearly, one might argue that per definitionem the noise is the
uncontrollable part in the course of the experiment and in order to apply the noise twice it
has to be recorded and is therefore controllable in principle, acontradictio in adiecto. If
we can record the noise we can equally well suppress it beforehand and do not have any
problems in any case. However, in order to show the theoretically predicted property of
vanishing variance for long exposure times to the noise we can safely neglect this objection
in a proof-of-principle experiment. But we have to keep in mind that this does not resolve
the problem of how to implement a unitary operation based purely on the geometric phase.

5.3 Spin Echo

In the adiabatic domain the dynamical phase can be removed via a spin-echo approach,
namely, that the neutron is exposed to the same magnetic fieldtwice, once in the positive
eigenstate and the next time in a negative eigenstate. This can either be achieved by spin-
flipping the neutron after the first magnetic field or by reversing the direction of the second
magnetic field. It follows immediately that the dynamical phase cancels [BDHH04] which is
the cornerstone of all our further considerations. It vanishes since it depends on the integral
over the energy and this energy has opposite sign for the two magnetic fields. In contrast,
the geometric phase depends only on the path and its orientation. If the path including its
orientation is same in both cycles the geometric phase doubles.

For the spin echo setup we have to continue the calculations from above to include also
the variance accumulated in the second round. Since just themagnetic field is flipped we can
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Figure 5.8: Spin-Echo Setup: The dynamical phase vanishes,since the spin is first in the
positive and then in the negative eigenstate of the magneticfield Hamiltonian. Due to the
equally oriented curve traced out, the geometric phase is accumulated.

already guess beforehand that the variance after the secondcycle is twice the variance after
the first one. But to be on the safe side, we start calculating the variance explicitly.

The magnetic field is flipped into the opposite direction now and the geometric phase for
this cycle is given by

φ II
g =

∫ 2T

T
~A↓(ϑ ′)d~λ . (5.3.1)

The principal direction of the magnetic field is given byϑ ′
0 = ϑ +π , i. e. ~B is pointing in the

opposite direction. Furthermore, the spin is now aligned anti-parallel to the magnetic field
so that we need the connection~A↓. The components are given by

A↓
ϑ = 0 and A↓

ϕ(ϑ) = −1
2
(1+cosϑ) (5.3.2)

For small perturbations in the magnetic field we can make a series expansion aroundϑ0,

A↓
ϕ(ϑ0±δϑ) = A↓

ϕ(ϑ0)±
∂A↓

ϕ

∂ϑ
δϑ

︸ ︷︷ ︸
δA↓

±

∣∣∣
ϑ0

= −1
2

((1+cosϑ0)∓sinϑ0δϑ) . (5.3.3)

The± denotes the possibility to add the noise either in the opposite or in the same direction
as in the first run. Explicitly we find for the down-spin component of the connection

δA↓
ϕ,± = ±1

2
sinϑ0δϑ = −δA↑

ϕ,±. (5.3.4)
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The total geometric phasẽφg = φ̃ I
g + φ̃ II

g is then

φ̃g =
∫ T

0
[A↑

ϕ,+(ϑ0)+δA↑
ϕ,+(ϑ0)](ϕ̇0+δϕ̇)dt

+
∫ 2T

T
[A↓

ϕ,±(ϑ ′
0)+δA↑

ϕ,±(ϑ ′
0)](ϕ̇0+δϕ̇)dt

=
∫ T

0
A↑

ϕ,+(ϑ0)ϕ̇0dt+
∫ T

0
δA↑

ϕ,+(ϑ0)ϕ̇0dt+
∫ T

0
A↑

ϕ,+(ϑ0)δϕ̇dt

+

∫ 2T

T
A↓

ϕ,±(ϑ ′
0)ϕ̇0dt+

∫ 2T

T
δA↓

ϕ,±(ϑ ′
0)ϕ̇0dt+

∫ 2T

T
A↓

ϕ,±(ϑ ′
0)δϕ̇dt+O(δ 2).

and withϕ̇0 = 2π/T

φ̃g ≈ 2π
T

[∫ T

0
A↑

ϕ,+(ϑ0)dt+
∫ T

0
δA↑

ϕ,+(ϑ0)dt
]
+A↑

ϕ,+(ϑ0)(δϕ(T)−δϕ(0))+

+
2π
T

[∫ 2T

T
A↓

ϕ,±(ϑ ′
0)dt+

∫ 2T

T
δA↓

ϕ,±(ϑ ′
0)dt

]
+A↓

ϕ,±(ϑ ′
0)(δϕ(2T)−δϕ(T)).

From the relationA↓
ϕ,±(ϑ ′

0) = A↑
ϕ,±(ϑ0), sinceϑ ′ = ϑ +π , and Eq. (5.3.4) we get

φ̃g = 2φg+
2π
T

[∫ T

0
δA↑

ϕ,+(ϑ0)dt+
∫ 2T

T
δA↑

ϕ,±(ϑ0)dt
]

+δϕ(T)
[
A↑

ϕ,+(ϑ0)−A↑
ϕ,±(ϑ0)

]
+δϕ(2T)A↑

ϕ,±(ϑ0), (5.3.5)

where we have inserted the expressionφg = 2π
T

∫
A↑

ϕ,+(ϑ0)dt for the unperturbed Berry’s
phase. We have also assumed that initially there is no noise perturbation (δϕ(0) = 0). Ne-
glecting the terms proportional to the deviation from the final stateδϕ we can analyse the
second term on the right hand side,

2π
T

[∫ T

0
δA↑

ϕ,+(ϑ0)dt+
∫ 2T

T
δA↑

ϕ,±(ϑ0)dt
]

= 2
2π
T

∫ T

0
δA↑

ϕ,+(ϑ0)dt

= −2π
T

∫ T

0
sinϑ0δϑdt. (5.3.6)

Comparing this result with Eq. (5.1.12) we find as already presumed initially that the variance
of the geometric for two cycles is twice the variance after one run.

A detailed description of the “spin gymnastics” follows below in Section 5.5, where a
possible measurement scheme is described to measure the variance of the geometric phase.
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5.4 Possible Experimental setups

5.4.1 Interferometric setup

Can we use standard neutron interferometric techniques to measure the geometric phase fluc-
tuations? Generally speaking, yes, and in contrast to the time sequential spin echo scheme it
is conceptually better suited, but there are numerous technical problems. The separation of
geometric and dynamical phase is rather a simple issue in an interferometer. Doing the same
operation in both arms, e. g. using the same magnetic field, won’t result in a shift of the inter-
ference pattern. And this works even in the case of fluctuating magnetic fields, an apparent
dephasing due to an interaction with a stochastic magnetic field can be totally compensated
by applying the same field with the same noise in the other path. This has been tested for
slow fluctuations in [BRS03] as shown in Figure 5.3, and – fromthe theoretical point of view
– the step towards faster fluctuations should not change the situation significantly. How can a
possible evolution look like such that the dynamics are samein both paths, but with different
geometry in order to obtain the same global dynamical phase but different geometric phase.
For example, a rotation of the magnetic field with same strength but with opposite rotation
sense yields a purely geometric phase difference between the beams. Another example is an
orange-slice shaped path as depicted in Figure 5.9. Such an evolution has been implemented

'

µ

C

|"〉〈"|

|#〉〈#|

Ω

Figure 5.9: Orange-slice shaped path of the neutron spin with additive noise. The angle
difference of the magnetic field in the two paths determines the opening angle of the paths
from up to down spin and consequently the geometric phase.

by Allman et al. [AKW +97] in a neutron interferometer experiment. But in this casethe
magnetic field is static and the spin evolution is non-adiabatic - the neutron spin precess
about the magnetic field direction. As a consequence, the formalism described above has
to be altered, but this should not do any harm to the results about the robustness since the
geometric picture is same. The spin traces out a path with more or less wiggles and encloses
a particular surface area that is more or less smeared out.

The technical problems start, however, by trying to generate the fluctuations. These have
to be faster than the transit time of neutrons through the coils producing the magnetic field.
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Thermal neutrons have a typical velocity of approximately 2000 ms−1. A rotation about 2π
corresponds then to about 105−106 rad/s for an assumed coil length of≈ 1−10 cm. Such
frequencies in the 10-100 kHz range are not easily achievable due to the self-inductance
of the coils. An oscillating circuit has to be tuned to meet the frequency demands which
restricts in turn the frequency bandwidth to a region aroundthe resonance. Besides that,
thermal radiation of a coil producing such a field will definitely lead to a loss of contrast, the
produced heat disturbs heavily the visibility since the inter-atomic distances of the perfect
silicon crystal change and one has to cool the coils.

If one is able to overcome these problems and one wants to implement an adiabatic
evolution it is tempting to use one of the coils shown in Figure 5.10, a cylinder surrounded
by helically wound wire, as used by Bitter and Dubbers [BD87]. In its moving frame of
reference the neutrons feels a rotating magnetic field and the spin will follow adiabatically
as long as the coil is long enough and the magnetic field is highenough. However, too
long coils do not fit into the interferometer and strong magnetic fields produce lots of heat.
One could also use radio-frequency spin flippers [BRS83] where the spins are flipped at
resonance. The phase between the oscillations of the two spin flipping coils corresponds
to the opening angle of the orange slice in Figure 5.9 resulting in a geometric phase. The
problems mentioned above remain roughly the same and additionally the calculation of the
behaviour of the polarisation vector when noise is added is more involved.

Common to all the different coil geometries is also that the transit time and therefore
the time dependence of the geometric phase variance cannot be simply changed. Due to the
Bragg condition the available range of wavelengths is rather narrow and cannot be changed
easily. Unfortunately, to see the predicted behaviour depicted in Figure 5.2 the transit time
should be changed. A possible workaround would be to vary thenoise frequencies such
that its original dependence onT is hidden in the change of the frequencies. However, this
slightly misses the point of the intended experiment.

Summa summarum, the neutron interferometer does not seem the appropriate tool from
the technical point of view. However, conceptually it is better suited than the concepts based
on spin echo since when the coils are fed from the same source the current fluctuations will
induce equal dynamical phase fluctuations in both beams. Note, that perfect control over the
noise is not necessary in this case since it is automaticallythe same noise in both paths, if
the current supply is the same. The reduction of the visibility can then only be of geometric
origin and should improve with increasing evolution time, viz. longer wavelengths or higher
noise frequencies.

5.4.2 Polarimetric setup

The difficulties with temperature and tunable evolution times leads automatically to the idea
to switch over to a polarimeter setup as used for example in [HB99, WBR+00, KSH+05].
To get rid of dynamical phase contributions the idea ofneutron spin echo[Mez72] can be
adopted. Polarimetry measures - nomen est omen - the resulting polarisation of neutrons
incident in a specific spin state after having carried out some evolution. In contrast to the
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interferometric setup there are two coils in series such that a neutron passes through both of
them. In brief, the advantages are that the heat produced by the coils does not disturb the
contrast, the dimensioning is not a crucial point and there is more freedom in choosing the
wavelength of the neutrons since one is not restricted to match a Bragg condition as in the
interferometric case. One can use neutrons with larger wavelength, hence smaller velocity,
to increase the time available for one rotation.

Helical wounded coils

The first option are two helically twisted Helmholtz coil pairs arranged in series (Figure
5.10). Spin polarised neutrons enter the first coil and feel arotating magnetic field due to the
twist of the coils. A full 2π rotation is executed in the first as well as in the second coil,but
in the second coil the magnetic field points in the opposite direction by reversing the polarity
of the coil current. As a consequence the dynamical phase vanishes and only the geometric
contribution is left. The helix is additionally encircled by a coil producing a magnetic field in
beam direction in order to achieve an evolution path not constrained to the equatorial plane.
An advantage of this setup is that it is wavelength independent as long as the field can be
made high enough to ensure adiabaticity.

Figure 5.10: Helically twisted Helmholtz coil pairs in a spin-echo arrangement.

A few numbers will help us to estimate the results: Suppose the helix generates a field
of 20 Gauss (ωL ≈ 4×105 rad/s) in the centre along the beam axis and the unit is about
20 cm in length. Thermal neutrons will traverse this distance in 0.1 milliseconds and the
angular rotation frequency is thenωr ≈ 6×104 rad/s. Recalling Eq. (5.1.20) we find that
these parameters are fine, if the noise bandwidth is made to fitin betweenωr andωL. Also,
one is not restricted to thermal neutrons, one could also useslower ones and get lower rota-
tion frequencies. That helps a lot since the self-inductance could prohibit the excitation of
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high-frequency fields and when employing cold (slow) neutrons the rotation frequencyωr is
automatically reduced.

A major problem is the needed homogeneous magnetic field fieldin the longitudinal
as well as in the transversal direction. The geometry makes it hard to calculate the rather
involved shape of the magnetic field in the interior, not to mention at the boundaries.

Cross-coil setup

Another option is to use the type of coils described in [WB90]. Here two perpendicular
coil pairs in Helmholtz-like geometry are placed around thebeam. The magnetic field is also
perpendicular to the forward direction of the beam and by feeding (phase-delayed) sinusoidal
signals into the coils the resulting field is rotating with the frequency of the signal.

For a spin echo setup two such cross-coil devices have to be placed in sequence (Figure
5.11). The rotation frequency is adjusted such that a neutron polarised in positivez-direction,
say, will be spin-flipped into a polarisation in the negativez-axis in the first coil and back to
the positivez-direction in the second coil. The neutron spin will trace out an orange-slice
path on the Bloch-sphere as shown in Figure 5.9. The off-axisangle towards the forward
direction corresponds to the opening angle of the slice. If the axes of the cross coils are
aligned with the beam the opening angle is either 0◦ or 180◦ (depending on the phase-delay
between the two cross-coils) and yields a trivial geometricphase of 0 orπ , which cannot be
distinguished in a polarimetric measurement (c. f. Section5.5). Only after arranging the
coils inclined to each other a non-trivial geometric phase will show up.

Figure 5.11: Polarimetric spin-echo setup with a coil arrangement in Helmholtz-like geom-
etry. A sinusoidal signal fed into the perpendicular coil pair leads to a rotating magnetic
field.

The problem are as above homogeneous magnetic field, boundary effects, etc. The latter
might become a bigger problem since one cannot define a precise entrance time, and there-
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fore not an exact initial phase. In addition, a time-of-flight measurement method has to be
adopted to correlate the arrival time to the oscillating period and this setup is not that flexible
in choosing a particular wavelength since the phase betweenthese coils has to be adapted
accordingly.

Finally, there is this already mentioned conceptual difficulty whether it is allowed to
speak of noise even though it is artificially generated. For the moment, let us put aside this
question under the working hypothesis that the artificiality of the noise does not derogate
the results on the stability of the geometric phase, and moveon to a similar scheme utilising
stored neutrons.

5.4.3 Ultra cold neutrons

Although the problems in the polarimetric setup do not seem to be insuperable, instead of
utilising a neutron beam there is also the possibility to usepolarised ultra cold neutrons
(UCNs) that can be stored in an appropriate storage vessel and then manipulated by sur-
rounding magnetic fields. One gains flexibility in the choiceof the magnetic fields, virtually
any evolution can be implemented.

The storage is possible due to the very low speed of such neutrons, approximately
< 7 m/s corresponding to an energy of less than 250 neV. For a successful storage the wall
potential (Fermi potential) has to be larger than typical kinematic energies of the neutrons.
E. g., the Fermi potential of quartz is 91neV [vdGPS+99] and therefore neutrons slower than
≈ 4.2ms−1 can be stored. Regardless of the Fermi potential the maximumtime for the spin
“gymnastics” is given by the lifetime of the neutrons of 886 seconds [Gro04], but for our pur-
poses this is much larger than the typical evolution time. The neutron trap is surrounded by
three pairs of coils in Helmholtz geometry. With the help of these fields the intrinsic neutron
spin can be manipulated as wished and the resulting effects can be analysed by measuring
the polarisation when emptying the storage vessel. The genuine Berry phase without noise
fluctuations has already been measured with such a setup by Richardsonet al. [RKGL88] at
the ultra-cold neutron beam-line at the Institute Laue Langevin, Grenoble.

A typical Helmholtz-coil arrangement is shown in Figure 5.4.3. One pair of circular
and two pairs or square shaped coils are used, whereas both geometries provide a fairly
homogeneous field at their centre (Appendix D.1.6).

In the centre of the coil system a cylindrically shaped storage vessel made of polymer
(POM) (Figure 5.13) is placed.

Incoming neutrons are polarised by virtue of totally magnetised foils (Appendix D.1.4)
which are used both for preparation and later for analyzation of the polarisation. If the density
of neutrons in the storage vessel is in equilibrium with the density in the neutron guide the
container is closed. To produce a geometric phaseφg a slowly rotating magnetic field is
then applied so that the spin vector of the neutrons can follow its rotation. After executing
a full spin-echo cycle the final polarisation is measured with the magnetised foils in front of
the detector. In the presence of adiabatic fluctuations the spin of eachstored neutron will
follow the field direction and all will end up in the same state- no dephasing has happened.
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rectangular Helmholtz coil

storage box

circular Helmholtz coil

Mu-metal shield

shutter

neutron guide

Figure 5.12: Experimental setup with one circular and two Helmholtz coil pairs perpendicu-
lar to each other surrounding the storage vessel mounted above a shutter.

Figure 5.13: Vessel made of POM coated with Fomblin.

However, for different runs of the experiment the final polarisation will be different and the
average over many runs gives us information about the mean geometric phase (̄φg) and its
variance (σ2

g ). The conclusion drawn above are valid, viz. for slow evolutions the variance
σ2

g tends to zero and consequently the exponential damping of the polarisation becomes
negligible. In other words, the absolute error ofφ̄g in each run vanishes.

The advantages of the UCN setup are that the storage time can be chosen more or less
arbitrarily as long as it is less than the neutron life-time,we do not have to rely on wavelength
selection. Furthermore, arbitrary paths can be implemented due to the freedom given by the
3D-coil arrangement compared to the polarimetric or interferometric experiments where one
is rather restricted in the choice of evolution paths.

Unfortunately, all that glitters is not gold. There are alsosevere disadvantages. For exam-
ple, the magnetic field has to be highly homogeneous inside the storage box which demands
for relatively large coils and small storage box. Unwanted magnetic field variations occur
also due to the back and forth movements of the neutrons sincethe field is not 100% homo-
geneous inside the storage volume. From the neutron’s frameof reference this amounts to
time-dependent fluctuations which cannot be cancelled withthe aid of a spin-echo procedure
and if the magnetic field is strong the – unwanted – phase variations from these fluctuations
are big . The use of weaker magnetic field might cure this defect, but, on the other hand
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side, weak fields makes the experiment vulnerable to environmental non-artificial magnetic
field fluctuations. These have to be shielded - for instance bymeans of mu-metal. Further-
more, the self-inductance of the coils prevents us to use high frequencies for the noise and
the rotation sequence. A more detailed description along with an analysis of these potential
pitfalls and difficulties of the UCN setup is discussed in Appendix D. It turns out that one
can probably find a suitable set of parameters to get it going.

5.5 Spin gymnastics

In view of the potential experiment, what exactly could the spin evolution look like? In
brief, the neutron spin vector points first in the positivez direction. Then, the direction of
the magnetic field is changed adiabatically such that the spin vector follows its direction.
After a full circle back to the initial direction the spin polarisation is again in the positivez
direction, but with an additional phase factor. This phase factor comprises both dynamical
and geometric contributions. The dynamical part can be cancelled by spin-echo: The field is
reversed to point in the opposite direction, fast enough to induce a non-adiabatic transition.
A further evolution cycle in the same direction doubles the geometric phase since the surface
area enclosed by the path on the Bloch sphere doubles, whereas the dynamical part cancels,
because the neutron spin is in the eigenstate with negative sign during the second cycle
gathering exactly the dynamical phase with reversed sign. The final state has therefore a
phase difference relative to the initial state which is purely geometric.

Where is the noise part? To test the predictions of the theoryalso the noise influence on
the dynamical part has to vanish. If there are independent fluctuations in the first and in the
second cycle the dynamical phase will cancel only in the mean, but its variance will double.
However, since the quantity to be measured is in fact the variance of the total phase one can
not conclude from such a measurement to the variance of the geometric phase, there are still
contributions of dynamical origin. The noise must therefore be equal in both cycles which
guarantees vanishing uncertainty in the dynamical phase and what is left is just contributions
from the geometric phase.

Extensive description

(i) By use of magnetised foils a ultra cold neutron beam is prepared in the state|Ψt1〉 =

|z+〉, i. e. it is polarised in the positivez-direction. The magnetic field points initially in
the same direction,~Bt1 = (0,0,Bz)

T (Figure 5.14). Its strength is arbitrary, but should
be strong enough to prevent dephasing due to environmental influences, e. g.Bz≈ 1G.

(ii) In the second step the magnetic field direction is suddenly switched to an axis per-
pendicular to the former polarisation direction (Figure 5.15). This operation has
to be fast enough in order to keep the polarisation of the neutron spins,|Ψt1〉 7→
|Ψt2〉 = 1√

2
(|x+〉+ |x−〉) where |x+〉 and |x−〉 denote the eigenstates of the field
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Figure 5.14: Initial spin state|Ψt1〉 = |z+〉.

~Bt2 = (Bx,0,0T). Fast enough means that the time interval for the field flip∆t12 is
shorter than the Larmor frequency of the neutron spin in the field ~Bt1. Quantitatively,
the Larmor frequency isωL ≈ 1.8×104 rad/s (1 Gauss) corresponding to a frequency
of f = ωL/2π ≈ 3kHz and therefore∆t12 ≈ 10−5s. To meet these demands the rise
time of the Helmholtz coils must not be neglected, but according to the test performed
on a Helmholtz coil setup problems do not arise until frequencies of about 5-10 kHz
(Section D.2.5).

Figure 5.15: Sudden switch of the magnetic field to a direction perpendicular to the original
one.

(iii) Now comes the rotation part (Figure 5.16). The direction of the magnetic field is
varied slowly (up to an angular frequency of aboutωr ≈ 103 − 104 rad/s) to stay
in the adiabatic domain. The state after the rotation is given by |Ψt2〉 7→ |Ψt3〉 =
1√
2

(
|x+〉+ei2φ |x−〉

)
whereφ = φd + φg comprises a dynamical (φd) as well as a

geometric part (φg). In the simplest case the rotation is in thex-z plane with no
y-component,~Bt2(t) = (Bxcos(ωr(t − t2)),0,Bxsin(ωr(t − t2)))T . The solid angleΩ
subtended after a full cycle is thenΩ = 2π and consequently the geometric phase is
π . This by itself does not cause troubles, but unfortunately both eigenstates|x+〉 and
|x−〉 obtain the same phase with opposite sign such that the phase difference is twice
the accumulated phase and having the spin-echo setup in mind, the final phase differ-
ence is given by∆ = 4φg which amounts to a trivial phase difference forφ = nπ/2, n
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integer. Although the main focus lies on the variance , a non-trivial mean geometric
phase is a more striking outcome. Adding a magnetic field pointing in they-direction,
e. g.~Bt2(t) = (Bxcos(ωr(t − t2)),By,Bxsin(ωr(t − t2)))T , yieldsφg 6= nπ/2.

During the evolution artificial fluctuations of the magneticfield both in amplitude and
in direction will be added. The average power of the noise should be less than|B| and
the bandwidth of the fluctuationsωn less than the Larmor frequency corresponding to
|B| (ωn << ωL). The special shape of the noise is discussed in Section 5.6.2.

Figure 5.16: Adiabatic cyclic change of the magnetic field direction results in a relative phase
difference of the constituting states|x+〉 and|x−〉, respectively.

(iv) It follows a sudden change of the magnetic field direction into its oppositeB 7→ −B
(Figure 5.17). Before, maybe the amplitude of the fieldBt3 has to be reduced in order to
accomplish a sudden flip taking the finite rise time of the coils and the power supplies
into account, e. g.B∆t34 ≈ 0.1−1G 7→ B̃∆t34 = −B∆t34 and finally~Bt4 = (−Br ,0,0)T .
The state thereafter is|Ψt3〉 7→ |Ψt4〉 = 1√

2

(
|x−〉+ei2φ |x+〉

)
where the basis states

have changed place.

Figure 5.17: Non-adiabatic flip of the magnetic field direction.

(v) The implementation of the spin-echo scheme necessitates a further rotation of the
magnetic field in the same sense with the same rotation speed and the same fluc-
tuations (Figure 5.18),~B = (−Bxcos(ωr(t − t4)),−By,−Bxsin(ωr(t − t4)))T , ωr =

2π
t5−t4

= 2π
t3−t2

. If these criteria can be satisfied the spin of the neutron is in the state

146



5. GEOMETRIC PHASE AND ADIABATIC FLUCTUATIONS

|Ψt5〉 = 1√
2

(
|x−〉+ei4φg|x+〉

)
. Note, that the phase difference is now only given by

the geometric partφg due to the cancellation effect. The neutron spin has spent aslong
in the positive eigenstate as in the negative eigenstate andsince also the fluctuations
have been the same there is actually no reason to expect any difference between the
initial state|Ψt2〉 cycles and the state|Ψt5〉. The phase difference is a geometric effect.
But why does is not vanish?

The point is, that the geometric phase is the same for both rotations. In the present
scenario the magnetic field changes in between the two rotation sequences, but neither
the state is changed nor the sense of rotation. Before, we have already clarified that
the energy does not play a role for the value of the geometric phase and therefore it
is immaterial if the state is in the positive or negative eigenstate of the magnetic field.
Consequently, the geometric phase doubles. In detail, the state after the first rotation
is

|Ψt4〉 =
1√
2
(eiφ |x+〉+e−iφ |x−〉) (5.5.1)

and maps to

|Ψ′
t4〉 =

1√
2
(eiφ |x−〉+e−iφ |x+〉) (5.5.2)

after the field flip due to the swap of the basis states. After the second rotation each of
the basis states accumulates a phaseφ̃ ,

|Ψt5〉 =
1√
2
(e−iφ̃ eiφ |x−〉+eiφ̃ e−iφ |x+〉). (5.5.3)

φ and φ̃ comprise a dynamical as well as a geometric part, but in contrast toφ =

φd +φg, there is an additional minus sign iñφ = φd −φg reflecting the constant sense
of direction. Consequently,(φ̃ −φ) = −2φg and the final state is equivalent to

|Ψt5〉 =
1√
2
(|x−〉+e2i(φ̃−φ)|x+〉) =

1√
2
(|x−〉+e4iφg|x+〉). (5.5.4)

Figure 5.18: Second cycle of the spin-echo scheme where the magnetic field is reversed but
not the sense of the rotation.
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(vi) Evidently the final state is different from the originalone and this difference manifests
itself in a different polarisation. An additional “pulse” with a small magnetic field in
x-direction~Bt6 = (Bξ ,0,0)T is applied to rotate the spin forξ = 2µNBξ t/h̄ about the
x-axis. The meaning of this operation will be clear in a moment. |Ψt5〉 is transformed
to the state

|Ψt6〉 = ei ξ
2 σx|Ψt5〉

=
1√
2
(ei ξ

2 |x−〉+e−i ξ
2 e4iφg|x+〉)

=̂
1√
2
(|x−〉+ei(4φg−ξ )|x+〉).

(vii) Switching back to initial guide field inz-direction changes the basis of the state (Figure
5.19),

|Ψt6〉 7→ |Ψt7〉 =

=
1

2
√

2

(
(|z+〉− |z−〉)+ei(4φg−ξ )(|z+〉+ |z−〉)

)

=
1

2
√

2

(
(1+ei(4φg−ξ ))|z+〉− (1−ei(4φg−ξ ))|z−〉

)

=
1

2
√

2

(
ei(2φg− ξ

2 )
[
(e−i(2φg− ξ

2 ) +ei(2φg− ξ
2 ))|z+〉

−(e−i(2φg− ξ
2 )−ei(2φg− ξ

2 ))|z−〉
])

=̂
1√
2

(
cos(2φg−

ξ
2
)|z+〉+ i sin(2φg−

ξ
2
)|z−〉

)
.

It can immediately be seen that for vanishing geometric phase and vanishingξ -pulse
the original polarisation is retained. If not, the polarisation vector lies somewhere in
thez−y plane depending onφg and onξ .

Figure 5.19: Switching the magnetic field back to the initialdirection.

(viii) In the last step the bottle is emptied and the final degree of polarisation along thez-axis
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represented by the Pauli matrixσz is measured.

P = 〈Ψt6|σz|Ψt6〉

= cos2(
ξ
2
−2φg)−sin2(

ξ
2
−2φg)

= cos(ξ −4φg).

Now the relevance of the extraξ pulse becomes more obvious. To determine the value
of φg precisely, a sinusoidal pattern is generated by variation of ξ and compared to the
case whereφg = 0 like for interferometric measurements.

Noise contributions

But where is the contribution of the noise in the final result?In course of the derivation of
Equation (5.5.5) we have tacitly ignored the fluctuations ofthe magnetic field which should
manifest itself in the degree of polarisation. In course of the experiment all the stored,
manipulated and finally detected neutrons have had the same history when neglecting envi-
ronmental influences and therefore will show the same phaseφg. Without artificial noise it
is precisely half of the solid angle enclosed by the unperturbed path. Turning on the noise
source leads to a different geometric phaseφg for each run of the experiment (but not for
each neutron since all neutrons experience the same noise within unavoidable experimental
shortcomings). Averaging over many realisations we measure a mean degree of polarisation

〈P〉 = 〈cos(ξ −4φg)〉, (5.5.5)

with a mean square deviation or varianceσ2
P = 〈P2〉−〈P〉2. The varianceσ2

P depends on the
variance of the geometric phaseφg. For a Gaussian distributedφg with meanφ̄g and variance
σ2

g we can calculate the average degree of polarisation

〈P(φg)〉 =
∫

P(φ) fφg(φ)dφ

=
1√

2πσ2
g

∫ ∞

−∞
cos(ξ −4φ)e

− (φ−φ̄g)2

2σ2
g dφ (5.5.6)

with the probability density function of the geometric phase fφg = 1√
2πσ2

g
e−(φ−φ̄g)/(2σ2

g ).

Using the integral relation

∫ ∞

−∞
cos(A+bx)e−a2(x−x0)

2
dx=

√
π

a
cos(A+bx0)e

− b2

4a2 (5.5.7)

we obtain
〈P〉 = e−8σ2

g cos(ξ −4φ̄g). (5.5.8)
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An exponential damping factor
ν ≡ e−8σ2

g

due to the additional noise shows up. Intuitively one would guess that fluctuations distort-
ing the ideal path yield vanishing mean polarisation,〈P〉 = 0, i. e. a total loss of contrast,
provided that the fluctuations are strong enough and the neutron spends a sufficiently long
time in the fluctuating magnetic field. But we have already discussed that in the case of the
geometric phase, however, this is just valid with respect tothe noise strength but not to the
time: a slow evolution preserves the original degree of polarisation. For large variancesσ2

g

the average degree of polarisation vanishes (ν = 0 → 〈Pz〉 = 0), however, for slow evolu-
tions the varianceσ2

g tends to zero and consequently the exponential damping (ν → 1) of the
polarisation becomes negligible.

Thus, the variance of the geometric phase is seen as a reduction of the visibility and is
recovered for longer evolution times as depicted in Figure 5.20 for several noise amplitudes.
Note, that it is not possible to improve the visibility compared to its initial value. For in-
stance, an unpolarised beam with vanishing visibility cannot be polarised just by executing
some cyclic evolution, but the degree of polarisation does not change during the evolution
cycle.

0
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0.6
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0 1 2 3 4
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Figure 5.20: Visibility factorν = e−8σ2
g at ωL = 104 rad/s,ωn = 50 rad/s,ϑ = π/2. The

signal-to-noise ratiosr = ωL/σ3 is set to 2×101/2 (green), 101/2 (black) and 101 (red line).

5.5.1 Time Sequence

To gain a better understanding of the time scales for the explanation given above the currents
of the different coil pairs are shown in Figure 5.21. The sinusoidal changes in thex-direction
and the additional noise fluctuation inz-direction can be observed.

5.6 Numerical Simulations

The numerical simulation consists of two parts. On the one hand side the evolution of the spin
state has to be simulated by solving the time-dependent Schrödinger equation numerically
for the time-dependent Hamiltonian. On the other hand side artificial noise that alters the
original Hamiltonian must be generated by a specific numerical algorithm.
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Figure 5.21: Time sequence for the different coil pairs for one experimental run.
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Why is a numerical simulation needed? The considerations above have certain deficien-
cies when trying to construct an experiment. First of all, itis just a first order approximation
which we expect to break down for strong noise influences (Figures 5.4 and 5.5). Further-
more, the adiabaticity condition has to be met for all participating frequencies, i.e. the band-
width of the artificial noise contributions, the rotation frequency, and also the changes of the
magnetic field as seen from the inertial frame of the neutronsdue to the inhomogeneities in
the storage box have to bee smaller than the Larmor frequencyfor all times. The transition to
strong noise and to non-adiabatic regions is not included inthe theory and have to be tested
by means of numerical simulations since the exact solution of the problem does not seem to
be feasible. Of course not all effects (like all environmental influences) can be simulated,
but at least the spin-trajectories of one particle subjected to a rotating noisy magnetic field
can be found. Averaging over many realisations sheds light on the average geometric phase
for a particular configuration and on the variance of the geometric phase as well and we can
conclude on the possible parameter settings for a future “real” experiment (Appendix D).

5.6.1 Evolution algorithm for the spin state

Generally speaking, we would have to solve the time-dependent Schrödinger equation

i
∂
∂ t

ψ(~x, t) = Hψ(~x, t), (5.6.1)

whereψ(~x, t) ∈ Hx⊗Hs is a tensor product state with a spatial part represented inHx and
a spin angular momentum part element ofHs. For the situation discussed above we can
safely neglect the spatial part due to the differences in theenergy scales of up to a factor 1010

(thermal neutrons) between the Zeeman energy splitting of the spin levels (for magnetic
fields in the Gauss region ) and the kinetic energy of neutrons. Even for ultra-cold neutrons a
factor 105 is left so that there is de facto no influence of the magnetic fields on the trajectories
of the neutrons. The solution of Eq. (5.6.1) simplifies then considerably also with respect to
the finite dimension of Hilbert space.ψ(t) is then a two dimensional normalised complex
vector representing the spin state of the neutron.

Implicit Crank-Nicholson scheme The numerical solution of stochastic differential equa-
tions usually requires slightly different methods than deterministic differential equation
[KP95]. Examples can be found for instance in the book by Breuer and Petruccione [BP02,
p. 370] where an improvedEuler scheme(or Heun Method) is used as a particular instance
of a predictor - correctormethod. However, for our purposes a standard solution method
is appropriated since the fluctuations are sufficiently slow. The entire evolution is treated
fully deterministic for each realisation and the stochastic nature enters when averaging over
different noise realisations.

In order to approximate Schrödinger’s equation byfinite difference quotients
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(e. g. [Hea02]) a formal solution is exploited numerically,

ψ(t) = e−
i
h̄Htψ(0). (5.6.2)

An explicit scheme would be the approximation of the above byψ(tn+1) = (1− iH∆t)ψ(tn),
i. e. to calculate the wave functionψ at timetn+1 directly from the wave functionψ(tn) one
time step before. But this is unstable, meaning that the solution depends on the choice of the
time increment∆t. A method to solve Schrödinger’s equation numerically moreelegant is
provided by theCrank-Nicholson schemewhich relies on theCayley formof the exponential
operatore−

i
h̄Ht [GSS67]. In detail the Cayley transformV of an Hermitian operatorA is

defined by [AG93]
A = i(1+V)(1−V)−1 (5.6.3)

whereV is unitary. The latter property allows for a norm-preserving finite difference equa-
tion approximating (5.6.2). Explicitly, the exponential operator can be written as

e−iHτ =
1− i

2Hτ
1+ i

2Hτ
(5.6.4)

This approximation is accurate to second-order in time and suggests an evolution of the form

(1+
i
2

H∆t)ψ(tn+1) = (1− i
2

H∆t)ψ(tn). (5.6.5)

The Hamilton operator itself is evaluated at the intermediate timetn+∆t/2.

The disadvantage of the Crank-Nicholson scheme is its implicit character, i. e. a linear
system of a equations has to be solved for each time-step. On the other hand, the advantage
of this scheme is that it is unitary and stable, in other words, the norm of the wavefunction is
unchanged in each time step and roundoff and discretisationerrors are bounded from above.

For the Hamiltonian we insert the expression from Eq. (5.1.8), which is cyclic in the
parameterφ , the azimuthal angle of the magnetic field. According to the given angular
frequency of the rotationωr = 2π/T the state vector is iterated2π

ωr ∆t times. If all the adiabatic
constraints are satisfied by the specific choice of the parameters the polarisation of the final
state should be equal to the polarisation of the initial state, but there is a difference of the
relative phase. Before discussing the obtained results we have to discuss the modelling of
the artificial noise.

5.6.2 Noise model

As for the numerical simulation of the noise fluctuations we resort to a Fourier series rep-
resentation (Eq. A.5.1) to model the Ornstein-Uhlenbeck noise process with given power
spectrum. The power spectrum is given by a Lorentzian curve with bandwidth proportional
to the inverse of the relaxation time,ωn = 2π/τn. The sum in Eq. (A.5.1) has to be terminated
at some point where all significantly contributing frequencies are included, e. g.ωmax

n = 7ωn.
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Division of the frequency

Still, we have to bother about the discretisation of the frequency rangeω ∈ [0,7ωn] into small
increments∆ω. The frequency interval∆ω in the Fourier representation of the noise process
in Eq. (A.5.1),

X(t) =
K

∑
k=1

[
Akcosωkt +Bk sinωkt

]
, ωk = k∆ω, (5.6.6)

sets a natural limit to the total timeT of the process without repetitions. The lowest angular
frequencyωmin = ∆ω determines the period

T̃ = 2π/∆ω (5.6.7)

of subsequent repetitions of the time seriesX(t). As a consequence, the number of terms
K = ωmax

n /∆ω has to be chosen such that∆ω is small enough in order to avoid repetitions
of the noise pattern during the evolution time (T̃ > T). The periodicity of the noise pattern
can be seen in the correlation functionC(t) (Eq. A.1.8) shown in Figure 5.22. Here, spikes
appear at integer multiples of the periodT̃.
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Figure 5.22: Using too low a division of the frequency range[0,K∆ω] in the Fourier rep-
resentation of the noise processX(t) leads to repetitions of the same process. The cor-
relation function for a process with diffusion constantc = 1/7× 10−2, relaxation time
τn = 2π/ωn = 14π ×10−2 s, K = 100 and, therefore,∆ω = ωmax

n /K = 7ωn/K = 1. The
period isT̃ = 2π and 20 realisations each for 20 seconds have been performed.

Does this have an influence on the results for the variance of the geometric phase? We test
the influence with the following parameters:ωL = 104 rad/s,T = 1 second (ωr = 2π rad/s),
ωn = 50 rad/s,c= 1×108 rad/s (P= 103 rad/s) and a polar angle ofϑ = π/2, i. e. a rotation
along the equatorial line. The time increments are∆t = 2×10−5 s. The critical value for a
total angular frequency range of 7/τ is at

K =
ωmax

n

∆ω
=

ωmax
n T̃
2π

=
7ωn

2π
≈ 55.
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Hence, we start atK = 10 and watch the behaviour of the variance for increasingK by
computing 100 realisations for each value. If we run the simulation with differentK for the
same frequency bandwidth we can see (Figure 5.23) that the variance seems to be stable after
a certain frequency division higher thanK = 55.
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Figure 5.23: Variance for differentK when constructing the stochastic process for the noise.

Noise envelope function

Since we want the spin to end up in the same state as the initialstate we have to model an
adiabatic switch on and off of the noise field. If the transition to the static, non-fluctuating
field is adiabatic the spin will point in the direction of the initial state at the end and only the
phase carries the memory of the foregoing evolution.

We choose a smeared out rectangular envelope function for this purpose (Figure 5.24).
Its mathematical form is given by

e(t) =
1

1+e−c(t−d)
− 1

1+e−c(t−(T−d))
, (5.6.8)

whereT is the total evolution time,d is the position wheree(t) = 0.5 andc is responsible for
the smoothing of the edges of the function. More precisely, taking a value ofe−c(t−d)

∣∣
t=0 ≈

−10−4 as criterion that the function has approached unity reasonably well, we find

cd = − ln10−4 → c =
4ln10

d
. (5.6.9)

The value ofd depends on the Larmor frequencyωL of the magnetic guide field, so we set
d = 5×2π/ωL to guarantee adiabaticity.

Size of time increments

Similar precautions have to be taken by choosing the size of the time increments∆t in the
simulations. The sampling theorem tells us that for a perfect reconstruction of a continu-
ous signal the sampling frequency has to be at least twice thebandwidth of its frequency
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Figure 5.24: Envelope functione(t) for c = 90 andd = 0.05 for T = 1.

bandwidth. The other way round with a given sampling frequency the maximum frequency
that can be generated without side-effects (aliasing) is half of the sampling. This critical
frequency is also calledNyquist’s frequency. In our case the highest frequency involved
is the Larmor frequency determined by the magnetic guide field, ωL = 2µB/h̄ and is typi-
cally of the order 10−4 rad/s corresponding to a frequency ofνL ≈ 1.7 kHz. The largest time
increment∆tmax is determined by∆tmax = 1/2νL ≈ 3× 10−4 s. We choose a constant∆t
throughout the simulations since a adaptive time incrementmakes sense only if the driving
Hamiltonian shows changes of different time scales in different domains. Here, however,ωL

is constant throughout the evolution.

To test the dependency on the size of the time increments we conducted the follow-
ing experiments: For a given Larmor frequencyωL = 104 rad/s, given noise bandwidth
ωn = 100 rad/s and powerP3 =

√
5×105/2 rad/s we measured the variance as a function

of the angular frequencyωr by changing time increments. From the Figures 5.25 one re-
alises that the simulated phase and its variance do not depend significantly on the time steps
chosen up to the largest time increment∆tmax= 3×10−4 s.
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(a) Geometric phaseφg
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(b) Root Mean square deviationσg

Figure 5.25: Geometric phase and its variance for differentsizes of the time-increments
∆t ∈ [2×10−5,3×10−4]. The dotted line indicates the theoretical value.
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Choice of the mean geometric phase

In order to see the influences of the noise fluctuations on the variance of the geometric phase
best we want to maximiseσ2

φg
in Equation (5.1.15) with respect to the polar angleϑ . We

notice that the variance scales with the geometric factors sin2 ϑ and sinϑ cosϑ , respec-
tively. Clearly, the first term is maximal atϑ = π/4, whereas the second term is maximal
at ϑ = π/2. The noise fluctuations in the components in the equatorialplane have maximal
effect if the magnetic field is inclined by 45◦, and the fluctuations along the z-direction per-
turb the geometric phase maximal for a field circulating in the equatorial plane. The latter
property becomes clear by considering the other extreme where both noise fluctuations and
magnetic field are both pointing in thez-direction (B0 = B3 andP= P3). Then the fluctuations
change only the dynamical phase but not the path, whereas forperpendicular fluctuations the
modification of the path is maximal. Without loss of generality we will consider only noise
either in z-direction or along the instantaneous magnetic field direction. Although for the
noise in z-directionϑ = π/2 would be optimal to examine the fluctuations, the mean geo-
metric phase is in this case justπ and cannot be deduced from polarimetric data (Eq. 5.5.5).
In conclusion, we select a polar angle close toπ , for instanceϑ = 9π/20 for the following
simulations.

5.6.3 Numerical results for different parameter settings

The main purpose of doing numerical simulations is to check the range of applicability of the
expression (5.1.15) for the variance of the geometric phase. Although we can derive some
rough estimations of the allowed parameter ranges, the limits of adiabaticity have to be ex-
amined more carefully via computer numerics since we do not have an analytical expression
valid for all cases.

Fluctuating magnetic field strength

In Figure 5.26 the geometric phase and its standard deviation is depicted for weak noise in
the instantaneousdirection of the magnetic field, that is, only the strength ofthe magnetic
field changes. In the ideal case the geometric phase must not be disturbed at all since all
contributions are due to the dynamical phase since the path does not change. This simulation
provides a test for the quality of the simulations, since theoretically only in the non-adiabatic
region non-vanishing variance is allowed. Here,ωL = 104 rad/s, sr = ωL/P = 200 and
ωn = 100 rad/s. Only for times smaller than the inverse noise frequency range 2π/ωn ≈ 0.06
s we can observe deviations indicating that the noise does not have time make many uncor-
related fluctuations anymore.

Noise fluctuations in fixed direction

In the second scenario we choose noise added only to thez-component of the magnetic field.
In contrast to the former where the noise was along the instantaneous axis and did not perturb
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Figure 5.26: Noise along the instantaneous magnetic field direction does not disturb the
geometric phase. Here the noise is two orders of magnitude smaller than the magnetic field
(signal-to-noise ratiosr = 200)

the path of the state, we expect now a deviation of the path andtherefore a contribution to
the standard deviation of the geometric phase due to this kind of noise.

Varying noise strength (ωn = 50 rad/s) Clearly, the variance of the geometric phase de-
pends on the amplitude of the noise fluctuations, but for longevolution time T the variance
vanishes in either case. It is interesting that even for strong noise inz-direction (signal-
to-noise ratiosr ≈ 1) the variance vanishes, but the evolution time must be quite long. In
Figures (5.27) the theoretical predicted standard deviation of the geometric phase along with
the results from numerical simulations are shown for different amplitudes of the noise (at
ωL = 104 rad/s,ωn = 50 rad/s,∆t = 10−4 s andϑ = 9π/20 rad). In the right figure the ex-
ponential damping factor (visibility)ν = e−8σ2

g of the polarisation (5.5.8) is shown from
which we can estimate whether any difference will be noticedin a real experiment. In the
last figure (c) the average geometric phase is depicted.

The theoretical predictions are different to the numericalresults for fast cycles which
can be explained by bearing in mind that under such circumstances the noise does not have
enough time to make uncorrelated fluctuations, hence the noise process is not an O.U process
anymore and the analytical expression in Eq. (5.1.15) does not have to be valid. A second
property is that the numerical results are further away fromthe analytical curve for strong
noise which is also no surprise due to the use of a first-order approximation. For weak noise
and long times the computed values are in agreement with theory.

In order to get a feeling for the allowed noise strength the root-mean-squareσg is plotted
for increasing noise powerP3 for a fixed cycle lengthT in Figure 5.28. According to the
findings in Section 5.1.2 on the domain of validity of the adiabatic approximation, deviations
from the theoretical curve start atsr ≈ 10.

Broader noise bandwidth (ωn = 250rad/s) Let us have a look at other noise frequencies.
Setting the bandwidthωn = 250 rad/s we notice that the theoretical curve is approximately
met already at a cycle timeT ≈ 0.1 s compared toT ≈ 0.5 s above (c. f. Figure 5.29). The
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Figure 5.27: Variation of the noise amplitudeP3. The (a) standard deviation, the (b) expected
visibility and (c) the mean geometric phase are shown forsr = c102 ≈ 35,sr = c103/2 ≈ 11,
sr = c101 ≈ 3.5 andsr = c101/2 ≈ 1.1 (c = 1/

√
8). The noise bandwidth is kept fixed at

ωn = 50 rad/s,ωL = 104 rad/s andϑ0 = 9π/20.
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Figure 5.28: Root-mean-square of the geometric phaseσφg for varying mean noise powerP3

atT = 1.57 s (ωr = 4 rad/s),ωn = 50 rad/s. The guide-field is atωL = 104 rad/s and accord-
ingly we notice deviations from the adiabatic approximation if P3 is about one order below
ωL (sr < 10).
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noise has more time to fluctuate during one cycle and the area enclosed by the path on the
Bloch sphere is better approximated. The decrease of the variance compared to the former
setting withωn = 50 rad/s is due to the weaker noise.
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Figure 5.29: Variation of the noise amplitudeP3 for a noise bandwidthωn = 250 rad/s. The
(a) standard deviation, the (b) expected visibility and (c)the geometric phase are shown for
sr = c102 ≈ 72,sr = c103/2 ≈ 25,sr = c101 ≈ 8 andsr = c101/2 ≈ 2.5 (c = 1/

√
8/5).

Even broader bandwidth (ωn = 500rad/s) For ωn = 500 rad/s we obtain similar figures
(5.30). For the whole range ofT the agreement with the theoretical values is very good.
Looking at the visibility plot we notice, that for the setup with sr = 103/2/2

√
2 ≈ 11, i. e.

one order in magnitude difference between the Larmor frequency of the guide-field and the
noise strength, it should be possible to observe the increase in visibility (= average degree of
polarisation) also in an experiment for cycles with duration between about 0.1 - 10 seconds.

Modification of the mean geometric phase

If one looks at the mean geometric phase in the simulations shown above, there is definitely
one issue left to clarify. According to the first order deviation of De Chiara and Palma
the mean geometric phase should not be affected by the noise fluctuations. However, this
is valid only in the weak coupling limit for low noise amplitudes, for stronger noise one
can immediately see that the mean geometric phase does not coincide with the noise-free
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Figure 5.30: For a noise bandwidth ofωn = 500 rad/s the noise amplitudeP3 is varied. The
(a) standard deviation, the (b) expected visibility and (c)the geometric phase are shown for
sr = c105/2 ≈ 112,sr = c102 ≈ 35,sr = c103/2 ≈ 11 andsr = c10≈ 3.5 (c = 1/

√
8).

geometric phase. In Figures 5.31 the mean geometric phase and its standard deviation are
plotted for different settings ofϑ ∈ [0,π] with large noise amplitude (signal-to-noise ratio
sr = 2.5 for ωL = 104 rad/s andP3 = 4×103 rad/s). The difference between the zero-noise
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Figure 5.31: Difference between zero-noise and strong noise mean geometric phaseφg (a)
and its root-mean-square valueσg (b) for strong noise for different polar anglesϑ .

and the strong noise mean geometric phase follows evidentlya sinusoidal law, a fit of the
data yieldsδφg(ϑ) = 0.47sin(2ϑ).

Can this deviations be explained by geometrical considerations? Since the geometric
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phase depends only on the solid angle enclosed by the path of the polarisation vector on the
Bloch sphere these deviations must result from average net changes in the solid angle due to
the fluctuations. The calculation of the geometric boils down to the calculation of a surface
integral and we will recognise that the curvature of the surface is the reason why the average
φg is modified.

Map onto a sphere As an illustration, take for example a rectangle on a plane and modify
the upper boundary by adding or subtracting rectangular areas (Figure 5.32). If the amount of
added space is equal to the subtracted one, the area won’t change. However, if the rectangle
is mapped onto a sphere the appended and the removed areas arenot of same magnitude
anymore, unless the upper boundary coincides with the equator.

0 x1

f(x)
f(φ)

0 φ1

Figure 5.32: Non area-preserving map of the noise fluctuations fromR2 to theS2.

The geometric phase is determined by the area enclosed by thepath on the sphere along
the line of latitude specified byϑ0, φg = π(1−cosϑ0). Adding noise fluctuationsδz in the
z direction modifiesϑ to ϑ0+δϑ (φ), whereδϑ (φ) depends on the instantaneous azimuthal
angleφ on the path. A calculation of the resulting geometric phase with noiseφ̃g requires to
solve the integral

φ̃g =

∫ 2π

0
dφ
∫ ϑ (φ)

0
dϑ sinϑ . (5.6.10)

Performing theϑ integration yields

φ̃g =

∫ 2π

0
dφ(1−cosϑ(φ)). (5.6.11)

For noise fluctuations inz-direction,ϑ(φ) describes a stochastic process which is a func-
tional of the stochastic processZt = Z0+δZ(t), of the noise of the magnetic field in Cartesian
coordinates. To solve this integral the statistical properties ofZt have to be translated to the
statical properties of the polar angleϑ(φ) in spherical coordinates. This, however, is rather
involved and I will stick to a simpler procedure in order to obtain at least qualitative results,
whether our conjecture holds that the deviation from the noise-free geometric phase is an
artifact of geometry itself.

The distribution functionpϑ (φ) of ϑ at a specific azimuthal angleφ can already provide
insight into the behaviour of the mean geometric phase. Withthe help of the distribution
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function pϑ (φ) the mean valueϑ can be calculated. If it does not coincide with the noise-
free polar angleϑ0 also the geometric phase as the integral over allφ values will be shifted.
It is not difficult to find the distribution functionpϑ of ϑ . ϑ is determined by

ϑ = arccos
Z
B

= arccos
Z√

B2
r +Z2

=





π −arccos 1√
1+(Br/Z)2

= π +arctanBr
Z for Z ≤ 0

arccos 1√
1+(Br/Z)2

= arctanBr
Z for Z ≥ 0

, (5.6.12)

whereZ denotes the magnetic field component inz-direction andBr = (B2
x + B2

y)
1/2 the

magnetic field in the equatorial plane. In other words, we canwrite down the mapf that
transforms theZ component of the magnetic field to the polar angleϑ :

f :

{
Z ∈ (−∞,0) 7→ ϑ = π +arctanBr

Z ∈ (π,π/2)

Z ∈ (0,∞) 7→ ϑ = arctanBr
Z ∈ (π/2,0)

(5.6.13)

The distribution functionpϑ can be written in terms of the distributionpZ of Z by

pϑ = pZ( f−1(ϑ))

∣∣∣∣
d f−1(ϑ)

dϑ

∣∣∣∣ (5.6.14)

which follows from the substitution rule of calculus. The inverse of the mapf is

Z = h−1(ϑ) =
Br

tanϑ
(5.6.15)

and its derivative
d

dϑ
h−1(ϑ) = − Br

sin2ϑ
(5.6.16)

Plugging this into (5.6.14) yields

pϑ (ϑ) =
Br

sin2 ϑ
pZ

(
Br

tanϑ

)
. (5.6.17)

If we assume an Ornstein-Uhlenbeck random process (Appendix A.3), Z is Gaussian distrib-
uted with mean valueZ0,

pZ(z) =
1√

2πσ2
e−

(z−Z0)2

2σ2 . (5.6.18)

This leads finally to the distribution function ofϑ :

pϑ (ϑ) =
1√

2πσ2

Br

sin2 ϑ
exp
[
−

B2
r

(
1

tanϑ − 1
tanϑ0

)2

2σ2

]
. (5.6.19)

pϑ is not Gaussian anymore and it is therefore not surprising that the meanϑ =
∫

pϑ (t)tdt
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is not necessarily the same as the noise-less azimuthal angle ϑ0 since the distribution is not
symmetric aroundϑ0. Only aroundπ/2, an evolution along the equator, the(sinθ)−2 factor
is symmetric and thereforeϑ0 = ϑ . Generally speaking, if (at least) quadratic contributions
are included the mean value is shifted. In Figure 5.33(a) thedifferenceϑ −ϑ0 is shown for
different anglesϑ0 denoting the unperturbed polar angleϑ0 = arctanB0/Z0. This is quali-
tatively in good agreement to the data from numerical simulations plotted alongside (Figure
5.33(b)). The negative offset forϑ > π/2 and the positive offset forϑ < π/2 corresponds to
an evolution path below or above the equatorial line, respectively. Forϑ0 = π/2 the fluctua-
tions average out as predicted since the distribution is symmetric at this point. Unfortunately,
there is still a mismatch to the numerical data which probably stems from the particular fea-
tures of the noise process itself. Here, we have only taken the instantaneous distribution of
the fluctuations into account, but not that the magnetic fieldis actually a random process.
The correlations at different times have been totally neglected.
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(a) Theory without taking the noise process prop-
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Figure 5.33: The differenceϑ −ϑ0 between the mean valueϑ of the polar angleϑ and the
zero noise meanϑ0.

Nevertheless, this is a beautiful demonstration of the geometric nature of the geometric
phase. In the previous derivation only geometry has played arole without any reference to
quantum mechanical states and their phases. A future issue is to obtain a better analytical
approximation to the numerical data. Also, it has to be clarified how this relates to the studies
of Whitney et al. [WMSG05] who have calculated a non-vanishing shift of the geometric
phase from fluctuating fields.

5.6.4 More spin flips

In the end, I want to shortly comment on the possibility to getrid of the dynamical phase
if one does not know anything about the noise fluctuations. Inthe current scheme the dy-
namical phase is removed by changing the polarity of the magnetic field and apply thesame
noise twice. This is good enough for a computer simulation and for a proof-of-principle
experiment, however, if one is eager to benefit from the robustness of the geometric phase in
a real life experiment or even in a real life appliance the noise cannot be copied. Otherwise,
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one could compensate all influences anyway without need of the geometric phase. How to
solve this problem is still an open issue. Maybe arefocusing schemecould put things right
[Ved05]: By performing not just one reversal of the magneticfield one can make many of
them in the hope that the variance of the dynamical phase vanishes in the limit of many
(but not infinitely many) flips. As in the spin-echo the geometric phase is not affected by
reversing the magnetic field.

With the simulation program at hand this can be implemented and the results are shown
in Figure 5.34. There is definitely an improvement in the standard deviation of the final phase
difference, although an lower bound of the variance seems tobe reached for large numbers
of flips.
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Figure 5.34: Mean and root-mean-square value of the phase difference after one rotation for
an increasing number of flips of the magnetic field.

5.7 Conclusions

There is hope that the geometric phase is more stable than thedynamical phase, meaning
that for certain perturbative influences from the environment the error (or uncertainty) in
the accumulated phase is smaller in comparison. Theory indicates that this is the case for
an adiabatic evolution of a neutron in a magnetic field with some not too fast perturbations
such that the adiabatic approximation is still valid. However, an experiment is needed that
can show the validity of this approximative result and afterdiscussing other alternatives we
ended up with a proposal of an experiment with stored ultra-cold neutrons. In order to get
rid of the dynamical noise influences a spin-echo scheme can be used, with the drawback
that the noisy fluctuations have to be artificially constructed. Otherwise, there is no chance
to get rid of dynamical contributions. After two similar excursions of the spins there is
only the geometric phase left which is spread about some meanvalue due to the different
stochastic noise contributions in each experimental run. It is predicted that the mean value
stays constant and, furthermore, that the variance tends tozero, if the evolution time is long
enough.
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In view of a potential experimental realisation it is not trivial to adjust the different pa-
rameters to make a verification of this feature feasible. Most problematic are the different
restrictions on the involved frequency ranges in order to stay in the adiabatic domain and
we have to resort to numerical simulations helping us to estimated and explore the suitable
parameter range for an experiment. The theoretical predictions, i. e. the claimed stability
of the geometric phase could been verified numerically for various parameter settings and it
seems likely that such an experiment is possible so that the stability of the geometric phase
can be tested also experimentally.

A subtle issue showing up in the simulations remains to be clarified: For stronger noise
perturbations the mean geometric phase is not a constant anylonger since the noise process
assumed to have zero mean is mapped onto the spherical parameter space (which is equal to
state space in the adiabatic case). This map from a flat to a curved manifold yields a noise
process which is not centred anymore and a mean geometric phase that is not identical to the
noiseless one anymore.

In the Appendix D further details on the planned setup are presented.
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Chapter 6

Conclusions and Outlook

The geometric phase in quantum mechanics is the main issue inthis thesis. In particular,
three manifestations have been explored, off-diagonal geometric phases for general mixed
states, a non-cyclic spatial geometric phase in a double-loop neutron interferometer exper-
iment and a noisy geometric phase emerging from the spin evolution of a neutron. These
different topics demanded for different methods. The off-diagonal mixed state geometric
phase has been studied theoretically, there has been an experiment on the spatial geometric
phase at the neutron reactor at the Institute Laue Langevin,Grenoble, and the connection of
noise perturbations and the geometric phase has been investigated by means of numerical
simulations.

As for the former, a definition of an off-diagonal geometric phase has been found which
generalises the mixed state geometric phase concept of the interferometric type as well as
the Uhlmann holonomies. The geometric phase, in general, gives a hint on the topological
structure of the subjacent Hilbert space, but there are nodal points, i. e. points in state space
where it is undefined, and nothing can be said about the underlying geometry. To have a
measurable expression at hand that also works in such situations, off-diagonal extensions
are needed. They share the property of reducing on the one hand side to the pure state off-
diagonal geometric phase and on the other hand side including also their diagonal analogue
as a special case. Furthermore, they are, as is right and proper for a geometric phase, gauge
and reparametrisation invariant. In other words, they are aproperty only of paths of mixed
states, while dynamical quantities like energy and time areimmaterial. Clearly, one can also
find physical examples where such phases come in useful. Two coupled Mach-Zehnder-
interferometers with an entangled photon pair as input state can be used to measure the
interferometric off-diagonal geometric phase for mixed states.

Next, it has been substantiated that a geometric phase can beascribed to the paths of
neutrons through an interferometer. A previous experimentdemonstrated the cyclic case,
but there was harsh criticism denying the correct measurement of a geometric phase. With
the present experiment it has become clear that the measuredshift in the interference fringes
can be ascribed to a geometric phase of the non-cyclic case. First, the paths in state space,
that is, on the Bloch-sphere, have been devised and the enclosed solid angle proportional to
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the geometric phase has been calculated. Secondly, one can easily calculate the expected
phase shift in a neutron interferometer without falling back onto any kind of geometric argu-
ment by merely superposing all the possible beam paths. It turns out that these descriptions
are equivalent resulting in the same phase shift whenever one imposes a parallel transport
condition on the transport of the neutron state, i. e. for vanishing dynamical phase. Fi-
nally, these prediction have been verified experimentally using neutrons travelling through
a double-loop perfect-crystal interferometer. The results are coherent with theory to a high
degree. Qualitatively, the data plots show the same behaviour as expected, for example, that
the sign of the enclosed surface area matters, which dependson the orientation of the sur-
rounding path. Or, if the endpoint of the evolution is opposite to the starting point on the
Bloch-sphere one cannot ascribe a certain path since there are infinitely many alternatives
to connect these points via a geodesic. This manifests itself in vanishing interference con-
trast and therefore undefined phase. However, quantitatively, one must admit that there are
discrepancies between theory and experiment. The intrinsically different contrasts of the
interferometer loops and differently sized phase shiftingslabs give rise to additional phase
contributions. These systematic effects have been explored in order to quantify the devia-
tions from theory. Altogether, the results substantiate the geometric nature of the measured
phase shift.

In the third part, the canonical example of Berry’s phase (adiabatic geometric phase),
namely a spin-1/2 particle subjected to an adiabatically varying magnetic fields is reviewed
for stochastically fluctuating magnetic fields. Recently, it has been shown theoretically
[CP03] that the geometric phase stays robust for long evolution times in a classically fluc-
tuating magnetic field, the spread in the measured phase is then only caused by dynamical
contributions. The basic idea was to verify this behaviour also experimentally and neutrons
seemed to be particularly suited. We have discussed that a neutron interferometry experi-
ment is conceptually best suited, but unfortunately there are sound counter-arguments, like
the difficulties in implementing appropriate magnetic fields in an interferometer by coils
which produce heat that destroys the contrast. Or, the frequency range for the noise is band-
limited by the inductance of the coils and high-frequenciesneeded for rather fast thermal
neutrons are not implementable. The final idea is to use polarised ultra-cold neutrons that
can be stored in a box due to their low kinetic energy and by wrapping Helmholtz coils
around, their spin can be manipulated. Numerical studies have been made in order to find
suitable parameters for the guide-field strength, the evolution speed, the noise strength and
the noise bandwidth that can be used to demonstrate the stability of the geometric phase ex-
perimentally. These simulations are crucial for spotting the demarcation line to non-adiabatic
behaviour. This, in turn, is important since the parametershave to be chosen quite close to
the non-adiabaticity regime in order to be able to observe measurable modification of the
geometric phase variance also in an experiment. It turns outthat there is a set of parameters
suited for an experiment. Furthermore, it turns out that thefirst order approximation of the
theory may not be sufficient. At least for stronger noise contributions, an unpredicted devi-
ation of the mean geometric phase is visible as well. This cannicely be visualised again by
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means of the spherical shape of state space. A noise process although having zero mean that
is mapped onto a sphere yields a shift in the mean geometric phase.

At the end, a detailed description of the ultra-cold neutronexperiment is presented in the
Appendix D along with some difficulties one has to face when building a real-life experi-
ment. For example, inhomogeneities and external fluctuations of the magnetic field cannot
be neglected. To have negligible external influences a strong guide field is needed, but this in
turn gives larger phase differences among the different trapped neutrons with different paths
in the slightly inhomogeneous magnetic field. The plan is to overcome this and suchlike
problems and measure the stability of the geometric phase atsoonest. The first experiments
are scheduled for the end of the year 2006 and will hopefully be along the lines of the theo-
retical and numerical predictions.
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Appendix A

About Noise

Stochastic processes appear at every turn, financial markets, the spreading of diseases, the
travelling of dollar banknotes [BHG06], etc. are nowadays modelled using random processes
or noise processes. Such descriptions go back to the well known example of theBrownian
motionof a grain particle suspended in fluid [Bro66]. Since we touchhere this huge field only
peripherally I will just give a short sketch of the basic principles without raising the claim of
mathematical rigour. The latter can be found for example in [Öks03, Bil95]. A collection of
seminal papers of stochastic processes relevant in physicscan be found in [Wax54]. In the
following short introduction we will adopt the presentation in [Réf04].

A.1 Definition of a stochastic process

The notion of a stochastic process is based onrandom variableswhich are variables that are
determined by a random experiment. A simultaneous measurement of, say, the temperature
with different apparati does not yield one precise value, but a distribution of values used to
determine the average value that we accept then as the current temperature. This distribu-
tion makes up a random variable. A (temporal) sequence of random variables constitutes a
stochastic process, i. e. if one thermometer is called many times in succession the sequence
of values is a singlerealisationof a random process. Taking the whole ensemble of ther-
mometers at each time step we can determine the instantaneous distribution of values and
characterise the stochastic process itself, instead of merely one realisation ortrajectory.

More abstractly, a random variableX is a map from some abstract sample spaceΩ into
the real numbers,X : Ω 7→ R. For the sake of simplicity, let us stick to a discrete valued
example like throwing a die. The sample space is given by the six faces of the die,Ω =

{�,��,���,����,�����,������}. When performing an experiment, i. e. throwing the die we assume that
one face shows up. The result of an experiment is called aneventλ ∈ Ω. Apparently the
simplest example of a random variable is to count the number of dots,Xd

�= 1,Xd�
�= 2, . . ..

Another example is the random variableXp
odd = 0, Xp

even= 1 if just the parity is of interest
for the experimenter.

Each time the die is thrown we get a realisation ofX denoted byx = X(λ ) with x ∈
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DEFINITION OF A STOCHASTIC PROCESS

{1,2,3,4,5,6} for the first example andx∈ {0,1} for the second. So for each throw (each
measurement) we get the outcomexi , i. e. the random variableX takes on the valuexi .

Now, to each eventλi out of the sample spaceΩ we can assign a probabilitypi = P(λi)

that λi is realised in the experiment. It is not difficult to guess that for the die example
pi = 1/6, if the die is sufficiently “healthy”. In the second examplethe sample spaceΩ is
partitioned into the subsets{��,����,������} and{�,���,�����}. The probability for an event belonging
to one of these subsets ispi = 1/2.

A stochastic process is then a family of random variablesXλ (t) wheret usually denotes
the time parameter. The dependence ont reflects the possible changes of the stochastic
properties ofXλ (t) in time. In a formal definition a stochastic process is definedas a map

X : Ω×R 7→ R.

Xλ (t) associates with eacht ∈ R andλ ∈ Ω a real numberxt = Xλ (t), one can think of it
as a function in two variables: Givent, the possible values ofXλ (t) are calledstatesof the
process att. Keeping all the eventsλ = λ ′ fixed and varyingt, Xλ ′(t) is a deterministic
function, sot 7→ Xλ ′(t), is called arealisationor trajectoryor sample pathof the stochastic
process. In other words, we look at one possible process by choosing a particular outcome
of the experiment at each time as depicted in Figure A.1. Themeanof a random variable
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Figure A.1: Three different realisations of the random process “Throwing a die”

Xλ (t1) is denoted by

µX(t) ≡ 〈Xλ (t)〉= ∑xi pi(t) or µX(t) ≡
∫

x fX(x, t)dx, (A.1.1)

where fX(x, t) is the probability distribution ofXλ (t) andxi are the possible outcomes, if
Xλ (t) is a discrete map as in the dice example. For continuous random variablesXλ (t) the
sum is converted into an integral over all possible values ofx. Similarly, other moments are
defined (〈Xr

λ 〉 ≡ ∑xr
i pi), especially the second moment is needed to define the variance

σ2
X(t) ≡ 〈(Xλ (t)−µX(t))2〉 =

∫
(x(t)−µX(t))2 fX(x, t)dx. (A.1.2)

Examining two random variableX andY correlations between them can be grasped by
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A. ABOUT NOISE

calculating thecovariancefunction

GXY(t1, t2) ≡ 〈(Xλ (t1)−µX(t1))(Yλ (t2)−µY(t2))〉 = 〈Xλ (t1)Yλ (t2)〉+ µX(t1)µY(t2).
(A.1.3)

It is common to use thecorrelation coefficientρXY(t1, t2) = GXY(t1, t2)/σX(t1)σY(t2) taking
values between−1 and+1. It is equal to 1 if two random variables are perfectly correlated
and 0 if they are independent. For a stochastic process the correlation function between the
noise process at different timest1 and t2 is of particular importance. Qualitatively, it tells
us something about the memory loss, since if the random variablesXλ (t1) andXλ (t2) are
correlated after a finite time∆t = t2− t1 6= 0, it means that the process att2 knows something
about its past at timet1. If there is no correlation what has happened in the past is immaterial
for the present status. The vanishing of correlations determines a specific time scale, the
relaxation time.

A process is calledstationary, if the meanµX(t) is independent oft and if the covariance
function depends only on the time difference∆t. For such a process the covariance simplifies
to

GXX(t1, t2) = GXX(∆t) = 〈Xλ (0)Xλ (∆t)〉+ µ2
X. (A.1.4)

For a stochastic processXλ (t) we can define also the time average for fixedXλ ,

Xλ (t) = lim
T1→−∞
T2→∞

[
1

T2−T1

∫ T2

T1

Xλ (t)dt

]
, (A.1.5)

where the limits are taken to ensure that the time average does not depend on the integration
limits. Similarly, the(auto)correlation functionis defined by the time average

CX(∆t) ≡ Xλ (t)Xλ(t +∆t) = lim
T1→−∞
T2→∞

[
1

T2−T1

∫ T2

T1

Xλ (t)Xλ(t +∆t)dt

]
, (A.1.6)

If CX(∆t) does not depend onλ it is calledergodic, the time averaging removes the depen-
dence onλ , i. e. on the particular trajectory over which the time average is taken. For a
stationary and ergodic process the time average is equal to the average at fixed timet (en-
semble average),CX(∆t) = GXX(∆t)〈Xλ(t)Xλ(t +∆t)〉, a property widely used in statistical
physics [Réf04].

As for the discussion about coherence in Section 4.8.1 note,that the correlation functions
used there are analogous to the definition ofGXX in Eq. (A.1.3). In classical optics the
electrical field of lightEλ (~r, t) is considered as a (complex) random variable. The covariance
function

G(~r1, t1;~r2, t2) = 〈E∗
λ (~r1, t1)Eλ (~r2, t2)〉−〈E∗

λ (~r1, t1)〉〈Eλ (~r2, t2)〉
is used to define the coherence properties of the beam. The same formalism can be adopted
to neutron optics [RWK+96, RW00].

The importance of the autocorrelation function is based on theWiener-Khinchinetheorem
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DEFINITION OF A STOCHASTIC PROCESS

that relates it to thepower spectral densityfunction via a Fourier transform,

SX(ν) =
∫ ∞

−∞
CX(τ)e−i2πντdτ (A.1.7)

for a stationary stochastic processXλ (t). Vice versa, the autocorrelation functionCX(t) can
be found via the inverse Fourier transformation ,

CX(t) =

∫ ∞

−∞
SX(ν)ei2πνtdν. (A.1.8)

The instantaneous power of the fluctuations is defined by the

P2
X(t) = 〈Xλ (t)Xλ(t)〉

which is in the stationary case independent of timet and thus equal to themean power P2X.
It can be associated to the covarianceGXX(t) = 〈Xλ (0)Xλ (t)〉 by

P2
X = GXX(0). (A.1.9)

From the Wiener-Khinchine theorem the mean power can be expressed in terms of the power
spectral density

P2
X =

∫ ∞

−∞
SX(ν)dν, (A.1.10)

in other words,SX(ν) gives the portion of the mean power in the frequency range[ν,ν +dν].

White noise Take aGaussian white noise processas an example: This process comprises
all possible frequencies (and is therefore strictly speaking just a theoretical construct that
cannot be realised in reality) with a uniform power distribution over all frequencies. It is
defined to have zero mean,µW N(t) = 0, at all timest andXλ (t) is Gaussian distributed. Its
correlation function is proportional to the delta function, CWN

X (τ) ∝ P2
Xδ (τ). It follows that

its power spectral density is constant,SX(ν) = P2
X according to (A.1.7).
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Figure A.2: White noise process

The white noise process is a typical instance of aMarkovian processwhich is basically
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a process with no memory. The value at timet depends only on the value at timet −∆t
(∆t. . . time increment) but not on the total history. The correlation function in Figure A.2(b)
shows theδ -peak at zero time difference.

A.2 Langevin equation

In physics differential equations are essential to describe the dynamical behaviour of a sys-
tem. The most prominent example is the equation of motion that determines the acceleration
~a = ~̇v of a particle of massm, m~̇v = −b~v+~η(t), where~η(t) describes the a conservative
force acting on the particle andb theviscousforce proportional to the velocity~v.

Consider now a particle surrounded by many other particles that are much smaller. Due
to the collision with these smaller particles the big particle experiences a series of stochastic
changes of its velocity. This has been examined already by the botanist Brown [Bro66] and is
nowadays known asBrownian motion. He looked at grain pollens under the microscope and
found them moving around without apparent cause. To accountfor this in a mathematical
formula the stochastic changes of the velocity can be subsumed in the force vector~η which
comprises a deterministic term~ηdet and the stochastic fluctuations~ηstoch. We end up with
theLangevinequation,

m
d~v
dt

= −b~v+~ηstoch(t) (A.2.1)

by assuming vanishing deterministic forces (e. g. gravitation).
Such examinations may not sound that spectacular and one is urged to say: “But it was

clear beforehand that the grain pollen will be kicked and therefore it will move around.” But
atomic theory was not well established until the end of the nineteenth century, it was not
clear at all that there exists an atom per se without being only a convenient picture in mind.
“Haben’s eins gesehen?” (“Have you seen one?”) is the striking quote attributed to Ernst
Mach in discussions on the existence of atoms. It was none less than Albert Einstein who
established with his theory on diffusion the atomistic view[Ein05].

Another form of writing down theLangevinequation is [Gil95]

X(t +dt) = X(t)+A(X(t),t)dt+D1/2(X(t), t)N(0,1)(dt)1/2, (A.2.2)

where the velocity~v and the viscositybhave been replaced by a general random variableX(t)
and thedrift function A(X(t), t), respectively. The stochastic driving forceη(t) is split into
the diffusion function D1/2(X(t), t) > 0 and the reduced Gaussian random variableN(0,1)

with zero mean and unit variance. The occurrence of the strange looking square root of the
differentialdt can be justified if we have a look a the mean square displacement of a Brown-
ian particle. If we takeX(t) as the vertical displacement of a particle suspended in a fluid its
mean value will be zero,〈X(t)〉= 0 neglecting the influence of gravity. Furthermore, the ob-
servable mean square displacement is proportional to the time [Ein05, Per98],〈X2(t)〉= a2t
and the root mean square deviation is therefore proportional to the square root of the timet,
∆X(t) =

√
〈X2(t)〉= a

√
t.
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A.3 Ornstein-Uhlenbeck process

We consider as one of the simplest stochastic processes the Ornstein-Uhlenbeck (O. U.)
process which describe the velocity of a particle in Brownian motion [UO30] and can also
be used to model Johnson (thermal) noise in electrical circuits [Gil00]. In contrast to the
white noise process it does not have a flat, but a Lorentzian power spectrum and is therefore
calledcoloured noisein general, orBrown noisein particular.

SettingA(X, t) = − 1
τn

X andD(X, t) = c with the relaxation timeτn and thediffusion
constant cin the Langevin equation (A.2.2) defines the Ornstein Uhlenbeck process.

X(t +dt) = X(t)− 1
τn

X(t)dt+c1/2N(0,1)(dt)1/2, (A.3.1)

From Eq. (A.2.1) we easily see that the O. U. process is aMarkov processsince the
knowledge ofX(t) is sufficient to calculate its valueX(t + dt) at an infinitesimal timedt
later. It is also a Gaussian process (allX(t) are Gaussian random variables) with mean
〈X(t)〉 = x0e−(t−t0)/τn for the initial condition〈X(t)〉 = x0. The variance at timet can be
calculated to

σ2
X(t) = 〈X2(t)〉−〈X(t)〉2 =

cτn

2
(1−e2(t−t0)/τn) (A.3.2)

and its covariance

GXX(t1, t2) = 〈X(t1)X(t2)〉 =
cτn

2
e−(t2−t1)/τn

(
1−e−2(t1−t0)/τn

)
(t0 ≤ t1 ≤ t2) (A.3.3)

sinceµX = 0. The characteristics of the process are subsumed in the random variable

X(t) = N(x0e−(t−t0)/τn,
cτn

2
(1−e−2(t−t0)/τn)) (A.3.4)

and in the limitt0 →−∞,

X(t) = N(0,
cτn

2
). (A.3.5)

The nomenclature forτn as therelaxation timeis now justified since it characterises the
time scale over which the mean and variance ofX(t) relax to their asymptotic values 0 and
cτn/2, respectively. In its relaxed form the O.U. process is alsostationary, the probability
density function ofX(t) does not change anymore in time. For the relaxed form the correla-
tion function is given by

COU(t ′) =
cτn

2
e−t ′/τn. (A.3.6)

This implies (Eq. A.1.7) that the noise has a Lorentzian power spectrum

S(ω) =
1

2π

∫ ∞

−∞
C(t ′)e−iωt ′dt′ =

2cτ2
n

1+(τnω)2 . (A.3.7)

The integral over all frequenciesν = ω/(2π),
∫

dνS(ν) = 1
2π
∫

dωS(ω) gives the mean

176



A. ABOUT NOISE

power
P2

OU = cτn/2.

The bandwidthωn of the power spectrum is given byωn = 2π/τn.

ωn = 2π/τn

S(ω)

ω

Figure A.3: Lorentzian shape of the spectral distributionS(ω) of the O.U.-process

A.4 Integral of an O.U. process

Since Brownian motion describes the velocity of a particle in a suspension the integral of this
process results in the particle position and is therefore not unattractive to calculate. Indeed,
one can also find for the position an analytic expressions forits mean and variance. The
mean value of the random variable

Y(t) = Y(0)+

∫ t

t0
X(t ′)dt′ (A.4.1)

is given by
µY = 〈Y(t)〉= 0 (A.4.2)

since〈Y(t)〉= Y(0)+ 〈∫ t
t0

X(t ′)dt′〉 = Y(0)+
∫ t
t0
〈X(t ′)〉dt′ = Y(0) = 0 when exchanging the

time and the ensemble average (Fubini’s theorem), assuming that the initial positionY(0) is
zero and taking the relaxed form ofX(t) (t0 →−∞). Its variance is given by [Doo42]

σ2
Y(t) = cτ3

n

[
e−

t
τn −1+

t
τn

]
,

or

σ2
Y(t) = 2τ2

nP2
OU

[
e−

t
τn −1+

t
τn

]
(A.4.3)

in terms of the mean powerP2
OU = cτn/2.

It is instructive to explicitly derive the formula for the varianceσ2
Y(t) in Equation A.4.3.

Inserting (A.4.1) intoσ2
Y(t) = 〈Y2(t)〉 and using (A.3.3) in its relaxed form (GXX(t1, t2) =
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cτn
2 e−(t2−t1)/τn) it follows that

〈Y2(t)〉 =

∫ T

0

∫ T

0
〈X(t ′)X(t ′′)〉dt′dt′′

=
cτn

2

∫ T

0

∫ T

0
e−|t ′′−t ′|/τndt′dt′′. (A.4.4)

This can be simplified to

〈Y2(t)〉= 2
cτn

2

∫ T

0

(∫ t ′′

0
e−(t ′−t ′′)/τndt′

)
dt′′

= cτn

∫ T

0
et ′′/τn

∫ t ′′

0
e−t ′/τndt′dt′′

= cτ3
n

(
e

T
τn −1+

T
τn

)
(A.4.5)

as in Eq. (A.4.3).

In Section 5.1.1 a slightly modified form has to be calculated, namely the integral of an
O. U. processX(t) times a cosine,

∫ T
0 cosωtX(t). Similarly to the above the integral

2
(cτn

2

)2∫ T

0
cosωt ′′et ′′/τn

∫ t ′′

0
cosωt ′e−t ′/τndt′dt′′

which is already a more tedious task. At the final timeT = 2π/ω a simple form can be
obtained,

σ2
Y c= 2P2

Xτ2
n

(
e−T/τn −1

((1/τn)2+ω2)
2 +

T/τn

(1/τn)2+ω2

)
. (A.4.6)

Similarly, for
∫ T

0 sinωtX(t) the variance can be calculated to

σ2
Y s= 2P2

Xτ2
n

(
ω2
(
e−T/τn −1

)

((1/τn)2+ω2)
2 +

T/τn

(1/τn)2+ω2

)
. (A.4.7)

A.5 Generation of an O. U.-process by its spectral repre-
sentation

An approximation to the O. U.-process is obtained by decomposing it into a Fourier sum of
trigonometric functions with random amplitudes and/or phases [Ric44a, Ric44b],

X(t) =
K

∑
k=1

[
Akcosωkt +Bk sinωkt

]
. (A.5.1)
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The coefficients are independent zero-mean random variables which are taken to be Gaussian
and their variances are determined by the spectral density function of the process,

σ2
Ak

= σ2
Bk

= S( fk)∆ f , (A.5.2)

with the relationsfk = ωk/(2π) and fk = k∆ f . The spectral representation of the noise
process in Eq. (A.5.1) can be used for different kind of noisecharacterised by their spectral
density. Thus, the O. U. process is obtained by choosingS( fk) according to Equation (A.3.7).
The properties of the random variablesAk andBk determine these characteristics and in the
limit of K tending to infinity the approximation to the desired noise process is exact.

An alternative representation makes use of random phasesφn uniformly distributed in the
interval[0,2π],

X(t) =
K

∑
k=1

Ckcos(ωkt −φk) (A.5.3)

with fixed amplitudeCk =
√

S(ωk)∆ω/π (or Ck =
√

2S( fk)∆ f ). This is the form we have
used for the numerical simulations since it is “cheaper” in the way that just one uniform dis-
tributed random variable has to be generated instead of two normal distributed ones. Sample
trajectory of an O. U. process generated in such a way are shown in Figure A.4(a). The cor-
relation function shows the exponential characteristicsCX(∆t) = P2

OUe−∆t/τn of the memory
of the process (Figure A.4(b).
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Figure A.4: Sample Ornstein-Uhlenbeck process with parametersc = 2, τn = 1 and there-
fore P2

OU = 1/2. The red solid line shows the fitted correlation functionCX(∆t) with the fit
parameterscf = 2.02±0.006 andτ f = 0.98±0.003 in accordance to the input parameters
values.

A.6 Example: Current noise in an electric circuits

A resistance at nonzero temperature in an electric circuit produces current noise (Johnson
noise) that can be described by an O. U. process [Gil00]. For example, in an electric circuit
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comprising a resistance R and self-inductance L – for example, a Helmholtz coil arrangement
as described in Appendix D – one can estimate the Lorentzian shaped power spectrum at a
temperatureT. The equation describing this circuit is

dIJ(t)
dt

= − IJ(t)
L/R

+
1
L

VJ(t), (A.6.1)

whereIJ(t) is the fluctuating electrical current and the randomly fluctuating voltageVJ(t).
The connection to the O. U. process is established byτn = L/RandVJ(t) = Lc1/2Γ(t), where
Γ(t) denotes Gaussian white noise with zero mean and 1/dt variance1. Furthermore, it can
be shown [Gil00] that

c =
2kBTR

L2

with the Boltzmann constantkB = 1.3806×10−23J/K. The frequency spectrum has a band-
width of Γ = 1/τn = R/L and the mean square current is〈I2

J 〉 = cτn/2 = kBT/L. At room
temperature and forL = 10−5, the value found for the Helmholtz coils used for the UCN
storage experiment below (Appendix D) a mean noise current of 20 nA is found.

1To see the equivalence with Eq. (A.2.2) writedIJ(t) = IJ(t +dt)− IJ(t) and useα + βN(m,σ2) = N(α +
βm,β 2σ2) for the normal random variableN(m,σ2) with meanmand varianceσ2.
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Appendix B

Calculation of a geodesic on a sphere

For the following derivation of a geodesic we refer to Ref. [Nak03] or any other book on
(differential) geometry will probably do as well. The metric on theS2 embedded inR3 is
induced by the Riemann metric defined onR3 given by [Nak03, p. 245]

gp = gµν(p)dxµ ⊗dxν , (B.1)

where in our Euclidean geometrygµν = δµν andµ,ν = 1,2,3, i. e.

gp = dx1⊗dx1 +dx2⊗dx2 +dx3⊗dx3. (B.2)

Using the transformation property of the dual basisdxµ = ∂xµ

∂yν dyν we can write

gp = dxµ ⊗dxµ

=
∂xµ

∂yσ dyσ ⊗ ∂xµ

∂yρ dyρ (B.3)

=
∂xµ

∂yσ
∂xµ

∂yρ dyσ ⊗dyρ (B.4)

In general [Nak03, p. 246] let M be anm-dimensional sub-manifold of ann-dimensional
Riemannian manifoldN with the metricgN. If f : M 7→ N is the embedding which induces
the sub-manifold structure ofM, the pullback mapf ∗ induces the natural metricgM = f ∗gN

onM. The components ofgM are given by

gMµν(x) = gNαβ ( f (x))
∂ f α

∂xµ
∂ f β

∂xν (B.5)

where f α denote the coordinatesf (x).
In particular the metric of the unit sphere embedded inR3 is provided by the coordi-

nate transformationf from (θ ,φ), the polar coordinates ofS2 to the coordinates(x,y,z) in
Euclidean space. It is defined by

f : (θ ,φ) 7→ (sinθ cosφ ,sinθ sinφ ,cosθ), (B.6)
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from which we obtain the induced metric

gµνdxµ ⊗dxν = δαβ
∂ f α

∂xµ
∂ f β

∂xν dxµ ⊗dxν =
∂ f α

∂xµ
∂ f α

∂xν dxµ ⊗dxν .

Evaluating∂ f α

∂xµ
∂ f α

∂yν to

∂ f α

∂x1

∂ f α

∂x1 =
∂ f α

∂θ
∂ f α

∂θ
= cos2 φ cos2θ +sin2 φ cos2θ +sin2 θ = 1, (B.7)

∂ f α

∂x2

∂ f α

∂x2 =
∂ f α

∂φ
∂ f α

∂φ
= sin2φ sin2θ +cos2φ sin2θ = sin2θ , (B.8)

∂ f α

∂x1

∂ f α

∂x2 =
∂ f α

∂θ
∂ f α

∂φ
= 0, (B.9)

∂ f α

∂x2

∂ f α

∂x1 =
∂ f α

∂φ
∂ f α

∂θ
= 0, (B.10)

(B.11)

finally yields
gS2i j dxi ⊗dxj = dθ ⊗dθ +sin2θdφ ⊗dφ . (B.12)

Now we want to derive the geodesic connecting two pointsq = (θ0,φ0) ∈ S2 and p =

(θ1,φ1) ∈ S2. The geodesic is per definition the straightest possible curve between these two
points which can be derived by minimising the lengthI(C) along a curveC : s 7→~x(s) on the
sphere,

I(C) =
∫

C

ds=
∫

C

√
ds2 =

∫

C

√
gi j dxi ⊗dxj =

∫

C

√
gi j

dxi

ds
dxj

ds
ds (B.13)

parametrised by the distances. The minimisation ofI(C) leads to the Euler-Lagrange equa-
tion

d
ds

( ∂L
∂x′i

)
− ∂L

∂xi = 0 (B.14)

with x′ = dx/ds andL =
√

gi j dx′idx′ j . Note thatL ≡ 1 from
∫
C ds=

∫
C Lds and therefore

dL/ds= 0 along the curve. In order to circumvent difficulties arising from the square root
solving Eq. (B.14) can be shown to be equivalent to solving the Euler-Lagrange equations
for the functionF = L2/2 = gi j x′ix′ j .

Doing so we obtain

d
ds

(gk jx
′ j)− 1

2
∂gi j

∂xk x′ix′ j (B.15)

=
∂gk j

∂xi x′ jx′i +gk j
d2x j

ds2 − 1
2

∂gi j

∂xk x′ix′ j (B.16)

= gk j
d2x j

ds2 +
1
2

(∂gk j

∂xi +
∂gki

∂x j −
∂g ji

∂xk

)dxj

ds
dxi

ds
= 0 (B.17)
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B. CALCULATION OF A GEODESIC ON A SPHERE

Multiplying the last line byglk we obtain the geodesic equation

d2xk

ds2 +Γl
i j

dxi

ds
dxj

ds
= 0 (B.18)

by use of theChristoffel symbols

Γl
ji ≡

1
2

glk(∂gk j

∂xi +
∂gki

∂x j −
∂gi j

∂xk

)
.

In our particular exampleF = 1
2θ ′2 +sin2 θφ ′2 and the Euler-Lagrange equations are

d2θ
ds2 −sinθ cosθ

(dφ
ds

)2
= 0 (B.19)

d2φ
ds2 +2cotθ

dφ
ds

dθ
ds

= 0. (B.20)

which define the Christoffel symbolsΓθ
φφ = −sinθ cosθ andΓφ

φθ = Γφ
θφ = cotθ . To finally

obtain the geodesic curveCg : s 7→ (θ(φ),φ) we insert

dθ
ds

=
dθ
dφ

dφ
ds

,
d2θ
ds2 =

d2θ
dφ2

( dφ
ds2

)
+

dθ
dφ

d2φ
ds2

into the first equation of (B.19) and get

d2θ
dφ2

(dφ
ds

)2
+

dθ
dφ

d2φ
ds2 −sinθ cosθ

(dφ
ds

)2
= 0. (B.21)

Plugging the second equation of (B.19) into Eq. (B.21) results in

d2θ
dφ2 −2cotθ

(dθ
dφ
)2−sinθ cosθ = 0. (B.22)

Defining a functionf (θ) ≡ cotθ by explicit calculations one finds that

d2 f
dφ2 + f = 0 (B.23)

is sufficient for Equation B.22 to hold. The general solutionis f (θ) = cotθ = Acosφ +

Bsinφ or
Asinθ cosφ +Bsinθ sinφ −cosθ = 0, (B.24)

the equation of a great circle which lies in a plane whose normal vector is(A,B,−1). A and
B have to be determined by the initial conditions.θ(φ) is therefore

θ(φ) = arctan
[
(Acosφ +Bsinφ)−1]. (B.25)
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Appendix C

Adiabatic Theorem

The adiabatic theorem says that if the system is initially inan eigenstate of a time-dependent
Hamiltonian it will stay in an eigenstate at each instant of time under the condition that
the Hamilton operator is changing slowly enough. Can we alsoquantify this condition?
Following Messiah [Mes62] let us assume a system initially in the state|ψ(0)〉 which is
also an eigenstate of the Hamiltonian,|ψ(0)〉 = |n0〉 with H(t)|nt〉 = En(t)|nt〉. For all t =

0 we therefore have a complete set of basis states|nt〉 belonging to the respective energy
eigenvaluesEn(t), which are taken to be non-degenerate. We also assume that the Hilbert
space spanned by the basis vectors is compact, hence, the number of basis states is finite.
The time evolution is given by the Schrödinger equation

H(t)|ψ(t)〉= ih̄
∂
∂ t

|ψ(t)〉.

At any time the state|ψ(t)〉 can be written as a superposition of the|nt〉,

|ψ(t)〉= ∑
n

cn(t)e
− i

h̄

∫ t
0 E(t ′)dt′|nt〉 (C.1)

by absorbing the time dependency into the coefficientscn(t) ∈ C. Inserting (C.1) into the
Schrödinger equation we obtain

∑
n

cn(t)H(t)e−
i
h̄

∫ t
0 En(t ′)dt′|nt〉 =ih̄∑

m

[
ċm(t)e−

i
h̄

∫ t
0 Em(t ′)dt′ |mt〉

+cm(t)(− i
h̄
)Em(t)|mt〉+cm(t)e−

i
h̄

∫ t
0 Em(t ′)dt′|ṁt〉

]
.

Multiplying this equation from the right with the instantaneous eigenvector〈lt| we obtain

e−
i
h̄

∫ t
0 El (t

′)dt′cl(t)El(t)

= ih̄ċl (t)e
− i

h̄

∫ t
0 El (t ′)dt′ +cl (t)El(t)e

− i
h̄

∫ t
0 El (t ′)dt′ + ih̄∑

m
cm(t)e−i

∫ t
0 Em(t ′)dt′〈lt |ṁt〉
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C. ADIABATIC THEOREM

from which
ċl (t) = −∑

m
cm(t)e−i

∫ t
0[Em(t ′)−En(t ′)]dt′〈lt|ṁt〉 (C.2)

follows. We have assumed thatH(t) is Hermitian so that its eigenvectors are orthogonal
(〈mt |nt〉 = δmn).

The expression〈lt |ṁt〉 can be found from the time derivative of the eigenvector equation,

d
dt

·
∣∣∣ H(t)|mt〉 = Em(t)|mt〉

〈lt | ·
∣∣∣ Ḣ(t)|mt〉+H(t)|ṁt〉 = Ėm(t)|mt〉+Em(t)|ṁt〉, l 6= m

〈lt |Ḣ|mt〉+El(t)〈lt|ṁt〉 = Em(t)

〈lt|ṁt〉 =
〈lt |Ḣ|mt〉

Em(t)−El(t)
. (C.3)

Inserting Eq. (C.3) into (C.2) we finally obtain

ċl (t) = −〈lt |l̇t〉+∑
m

cm(t)e−i
∫ t
0[Em(t ′)−En(t ′)]dt′ 〈lt |Ḣ|mt〉

Em(t)−El(t)
. (C.4)

The state will remain in an eigenstate of the instantaneous Hamiltonian if the eigenstates do
not mix, i. e. if the matrix element

∣∣∣
〈lt |Ḣ|mt〉

Em(t)−El(t)

∣∣∣� 1. (C.5)

The rate of change of the Hamiltonian must be smaller than theenergy splitting in order to
stay in the adiabatic region. In terms of a spin-1/2 particlesubjected to a magnetic field the
Larmor frequencyωL corresponding to the Zeeman energy level splittingE↑−E↓ must be
smaller than the rotation frequency of the magnetic field. Numerically, it is shown in Section
5.1.2 that they should differ by approximately one order of magnitude.
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Appendix D

Stability of the geometric phase - UCN
measurement in details

A possible test of the robustness of the geometric phase under the influence of classical
fluctuations can be designed using ultra cold neutrons. In brief, polarised UCNs have to
be stored in the storage volume for a certain time interval and appropriate magnetic fields
are applied to manipulate their spin degree of freedom. After the controlled spin evolution
the resulting polarisation is measured by both counting neutrons with spin up and neutrons
with spin down and the ratio of the count rates provides the polarisation. The apparatus
is constructed in such a way that both the preparation and theanalyzation is accomplished
by use of a totally magnetised foil which transmits neutronswith parallel spin polarisation
and reflects anti-parallel polarised ones. To get this goinga switch has to be attached to the
neutron guide. The complete setup is shown in Figure D.

In detail, the measurement scheme is as follows:

(i) First the shutter is open and the switch directs neutronsfrom the source to the storage
volume.

(ii) The magnetised foil blocks neutrons with spin aligned anti-parallel to the applied guide
field surrounding the neutron guide between the polarisation foil and the storage box.

(iii) The hereby polarised neutrons go straight into the storage volume and if density equi-
librium is established the shutter of the box is closed. The RF spin flipper is not
operating.

(iv) The evolution cycle is started as described in Section 5.5. Meanwhile the switch is
toggled to prevent “fresh” neutrons entering the apparatusand to connect the storage
vessel to the detector.

(v) After finishing the spin gymnastics the shutter is opened, but here we have to pay
attention that all neutrons lingering in the area between the switch and the shutter have
already hit the detector.
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Figure D.1: Complete setup for the UCN measurement of Berry’s phase stability. Neutrons
coming from the turbine are directed into a storage volume enclosed by Helmholtz coils and
released after some spin evolution in order to hit the detector.

(vi) Before arriving at the detector all neutrons have to surmount the magnetised foil once
again with the effect that in the first place only neutrons with spin pointing again in the
initial direction can pass.

(vii) To measure also neutrons with opposite spin the resonance spin flipper attached to the
apparatus is switched on after a specific time delay so that only neutrons with opposite
spin can pass through the magnetised foils.

(viii) After the detection the shutter is opened, the switchis toggled again, and the next run
can be started.

D.1 Description of the components

The basic apparatus consists of the neutron guide, a shutter, a beam switch, a polarisation
foil, a storage vessel attached directly to the (second) shutter all surrounded by three pairs of
mutually orthogonal Helmholtz coils. The latter parts (storage vessel, shutter and coils) have
to be placed inside a magnetically shielding chamber, for example a mu-metal box.

D.1.1 Neutron guides

We do not make any special demands on the neutron guides, except that in the region between
the polarisation foil and the storage bottle non-magnetic material should be used in order to
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preserve the spin polarisation. PVC tubes coated with a thincopper layer in the interior will
be used.

D.1.2 Shutter

There are no particular requirements neither on the switch nor on the first shutter redirecting
neutrons either from the source to the storage bottle or fromthe bottle to the detector.

As for the second shutter it is of highest priority to avoid any kind of magnetic stray
fields either by using magnetic materials or electro-mechanical mechanisms. Tests have
shown that already a few millimetre thick aluminium plate reduces the higher frequencies of
the magnetic field considerably. Thus, it is unfortunately not enough to build a shutter using
only non-magnetic metal like aluminium, but the shutter must be made of insulating material
as well to prevent spurious absorption effects due to induced eddy currents. At present the
plans are to build a shutter made of some kind of polymer (POM -Polyoxymethylen) which
is rigid enough to sustain mechanical stress (Figure D.3).

Figure D.2: Picture of a non-magnetic shutter that cannot beused to seal the storage vessel
since for fluctuating magnetic fields eddy currents shield and distort them. The fingers belong
to Dr. Plonka.

D.1.3 Switch

The switch is nothing special, just a piece of neutron guide that can be toggled between two
possible positions to redirect the beam.

D.1.4 Polarisation foil

The UCNs are to be prepared in a spin-polarised state by transmission through a totally
magnetised foil. As already pointed out by Bloch [Blo36] theindex of refraction of the
magnetised foil is different for different spin polarisations due to the interaction between
the magnetic field~B and the neutron magnetic moment~µ . The optical potential (4.1.15) is
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D. DETAILS OF UCN MEASUREMENT

Figure D.3: A new shutter has to be design that lacks metallicmaterials as far as possible in
order to avoid stray magnetic fields.

modified by a magnetic term−~µ ·~B and therefore neutrons are either reflected or transmitted
for large enoughB. With this method a degree of polarisation close to 100% can be achieved.

D.1.5 Storage volume

In the centre of the coil system a cylindrically shaped storage vessel out of the polymer POM
(Figure D.4) is placed. Its inner surface is coated with Fomblin oil [MAB +89] which totally
reflects UCNs of energies below its Fermi potential (106.5 neV corresponding to a maximum
velocity of 4.55ms−1 and loss probability 2−3×10−5/bounce at 20◦ C). Furthermore, by
using this non conductive material the problem of induced eddy currents can be tackled.
The effective storage volume is 100 mm in height and 120 mm in diameter corresponding to
≈ 1.1 litre. The wall thickness is 15 mm.

The storage volume must be sufficiently small to fit into the homogeneous region of the
magnetic field (c. f. Section D.2.1). Compared to the bottle used in the EDM experiment
[BDG+06] our volume is rather small. They reported a UCN count rateof 15.000 counts per
charge for storage volume of 21 litres. By comparison we can expect maximally around 700
counts per charge which may not be ideal.

D.1.6 Helmholtz coils

Finally, the Helmholtz coils constitute the central part ofthe apparatus. Three perpendicular
pairs of coils in Helmholtz geometry (c. f. for instance in [Gre98]) are placed such that
the storage vessel sits in their centre. In order to achieve amaximally homogeneous field,
the distance between the coils has to be equal to the radius for circular coils. For square
shaped coils the ratio of the distance of the coils to their side length has been determined
numerically torH ≈ 1.84. In order to achieve a magnetic field as homogeneous as possible
two square shaped coils are combined with an innermost circular coil. In Figure D.1.6 this
construction is shown. The dimensions have to be chosen in such a way that the coils fit
inside the Mu-metal shielding which is 950 mm in diameter andat the same time maximise
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Figure D.4: Vessel made of POM coated with Fomblin.

rectangular Helmholtz coil

storage box

circular Helmholtz coil

Mu-metal shield

shutter

neutron guide

Figure D.5: Apparatus with two square shaped and a circular Helmholtz coil pairs surround-
ing the storage vessel mounted above a shutter.

the homogeneous region in the centre. The material used for the coil frame is aluminium. To
reduce eddy currents each coil frame has a insulating insertand the joints between the coil
frames are also insulated.

Circular coil

The outer diameter of the circular coil is 634 mm corresponding to a standard 28′′ bicycle
rim (Mavic A119). The cross section of the wire duct is about 8mm×20 mm≈ 160 mm2

(Figure D.6). Wire of 0.9 mm in diameter is used forN = 100 windings.

Figure D.6: Profile of the Mavic A119 rim.
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D. DETAILS OF UCN MEASUREMENT

Square shape

The (outer) side lengths for the rectangular coils are 660 mmand 620 mm. In the setup
depicted in Figure D.1.6 the innermost and the middle coil isperpendicular to the axis of
the cylindrical storage vessel. The third (largest) coil isparallel to the axis of the cylindrical
storage box. The material of the coil frame is aluminium. Onehas to cut the profiles to avoid
the formation of eddy-currents that could disturb the measurements. The cross section of the
wire duct is 20×20 mm2 (Figure D.7) and as in for the circular coils 100 windings of wire
0.9 mm in diameter are attached.

20mm

2mm 2mm

20mm

Figure D.7: Coil cross section and dimensions of the wire duct.

Heat issues For the following calculations we are always using an average diameter (or
side lengths for the square shaped coils) since the changes in the different layers of the coils
are negligible compared to the dimension of the coil. For thecircular coil we need 2πr×N =

198m meters wire (r = 315 mm,N = 100). For a rectangular coil we need 4a×N meters
wire, for the largest coil≈ 260 m (a = 650 mm,N = 100) and for the intermediate coil≈ 244
m (a = 610 mm). For a resistance of≈ 27.9 Ω/km we can calculate the power consumption
according toP = I2R. For a coil current of 2A it is about 50W, so altogether≈ 150 W
(Figure D.8). This could be a problem if the whole setup is placed inside a vacuum chamber
as originally planed, but otherwise this should be fine. Also, for an intended magnetic field
of one Gauss we just need circa 0.35 A (Figure D.9) resulting in pretty low power of< 5 W
which is definitely acceptable.

Field homogeneity Even more interesting is a discussion about the achievable field in the
centre of the coil arrangement along with the theoretical homogeneity of the field. In Figure
D.9 the calculated magnetic fields in the centre of the different Helmholtz coils is shown.
To avoid excessive numerical integrations the particular geometry of the wire duct has been
neglected, that is, a single infinitesimally (and nonphysically) thin wire models the square
shaped actual current distribution. We will see later that the deviations from the real setup is
negligible (Figure D.13). Calculations of the magnetic field of a Helmholtz coils 315 mm in
radius show that about 100 windings will be enough to producea magnetic field of≈ 5 Gauss
at a current of 2 A. With 100 windings around the inner coil radius a current of≈ 0.35 A
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Figure D.8: Power consumption of a Helmholtz coil pair with 100 windings and a 0.9 mm
wire diameter.
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Figure D.9: Magnetic Field at the centre of a square Helmholtz coil with 100 windings.
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D. DETAILS OF UCN MEASUREMENT

yields approximately a magnetic field of 1 Gauss in the centreof the coil arrangement. The
current values for one Gauss for the other coils can be found in Table D.1. In Figure D.11 a

coil current [A]
circ. (315 mm) 0.35
rect. (610 mm) 0.38
rect. (650 mm) 0.40

Table D.1: Currents of the Helmholtz coils to generate 1 G at the centre.

cut in thex-z-plane (Figure D.10) shows thez-component of the field for the different coils.
The box in the middle indicates the storage volume of 120 mm inlength and 100 mm in
height. The contour lines indicate deviations of 0.1 % of themagnetic field at the coil centre,
thus, the field seems to be fairly homogeneous – at least theoretically. In Figure D.12 the

x y

z

Figure D.10: Choice of coordinates for a Helmholtz coil pair.
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(a) Circular coil (r=315 mm)
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(b) Rectangular coil (a=610 mm)
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(c) Rectangular coil (a=650 mm)

Figure D.11: Cut in thex-z-plane. The contours indicate a magnetic field deviation of 0.1 %
of the magnetic field at the centre of the Helmholtz coil pairs.

storage cylinder (red) is shown along with the contours indicating 0.1% deviation of the z-
component of the magnetic field at the centre of the setup. Theyellow surface indicates the
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field of the generated by the circular Helmholtz coil pair (r=315 mm) and the green surface
the±0.1% contour of the the smaller square Helmholtz coil pair having a side length of
610 mm. If one can build perfectly aligned coils the field should be fairly homogeneous
around the centre. For a discussion whether the degree of homogeneity is sufficient for our
purposes the reader is referred to Section D.2.1.
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Figure D.12: Deviations from the maximal magnetic field at the centre of a circular
Helmholtz coil with radius 315 mm and a square shaped Helmholtz coil (a=610 mm). Inside
the storage vessel (red) the field is homogeneous up to deviations smaller than 0.2%. The
green surfaces denote the±0.1% contour of the rectangular and the yellow surface the field
of the circular coil.

What we did not clarify yet is the error we introduce by neglecting the finite dimensions
of the wire duct. The deviation from a more realistic calculation is shown in Figure D.13.
The plot is for a coil with 315 mm radius and the wire duct is assumed to have a cross section
of 16× 18 mm comprising 100 windings at a current of 2 A. The relativedeviations are of
order 10−4, one order of magnitude less than the inhomogeneities in themagnetic field, and
can therefore be safely neglected.

D.1.7 Mu-metal shielding chamber

Additional to the inhomogeneities in the magnetic fields, any influences of environmental
fields will result in unwanted depolarisation effects as well. To minimise these disturbing
effects the whole setup is to be placed in a magnetically shielding chamber. A cylindrical
box made of Mu-metal, a soft magnetic alloy, 950 mm in diameter will be utilised to provide
sufficient shielding - c. f. Section D.2.2.

D.1.8 Detector

A standard detector will do.
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Figure D.13: Deviation induced by approximating the geometry of the wire by an infinites-
imally thin one. The absolute ratio of the real magnetic field(with finitely thick wire duct)
over the ideal B-field (with an infinitesimally thin wire) is plotted (1−|Breal

z /Bideal
z |)

.

D.1.9 Control units

For the control of the experiment one controllable power supply is needed for each of the
coils. The expected frequencies involved are up to 1-5 kHz resulting in a required rise time of
the electrical circuits in the 10 kHz region. The signal of the noise fluctuations is modelled
on a personal computer in order to easily simulate differenttypes of noise. The standard
audio output of the PC will be sufficient as the noise frequencies used will be small enough
and therefore not distorted by the low sampling rate of such adevice. The noise signal
superposed with the unperturbed coil currents is then fed into the amplifier.

Furthermore, a static power supply for the guide field is needed and another one for the
polarisation foil, if one does not use a permanent magnet andattach a resonant spin flipper
to flip the spin instead of the analyzation direction. In thiscase a high-frequency amplifier
and signal generator is needed.

D.2 Unavoidable influences

What we have neglected so far are unavoidable decoherence effects by stray magnetic fields,
inhomogeneities, improper reconstruction of the noise, non-zero switching times of the mag-
netic fields, a.s.o. These effects will modify the polarisation regardless of whether there is
a rotation or not. The final answer, whether these problems can be overcome have to be
answered by experiments, however, theoretical estimates will provide first insights.

D.2.1 Inhomogeneities of the magnetic field of the coils

One of the main problems is as already indicated the inhomogeneous magnetic field. Let
us assume that the magnitude of the field is about 1 Gauss whichcorresponds to a Larmor
frequencyωL of about 2× 104 rad/s, and therefore an additional phaseωLt. This means
that the spin of a neutron spending one second in this field rotatesωL/2π ≈ 3000 times.
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To measure the geometric phase the averaged phase of the ensemble of stored neutrons is
observable. By allowing for inhomogeneities of the field in the storage volume of 0.1 % we
induce fluctuations of the phase of individual neutrons, say, of the same order of magnitude.
But this is already a phase difference larger than 2π and the phase difference we wanted to
measure will be totally smeared out. Note, that this is the noise that we cannot circumvent.
This is not the noise we intend to apply at will but an intrinsic source of error. A more
optimistic way of thinking is to assume that the majority of neutrons will stay in a more
homogeneous region at the centre than in the regions of inhomogeneity near to the surface
of the vessel.

Induced frequency of inhomogeneities

What about the frequency of this kind of noise as seen from theneutron’s frame of reference.
The mean free path length isΛ = 4∗Volume/Sur f ace≈ 80mm [MAB+89], so that we
expect approx. 4.55ms−1/Λ ∗ s≈ 56 bounces per second. This means that for one second
storage in the bottle the neutron will traverse the storage volume about 50 times and therefore
the frequency of this noise is of the order of 50 Hz, in the samefrequency domain as the
artificial noise, but much weaker. The adiabaticity condition is still fulfilled.

Flight of a neutron through the vessel

The deviation in the accumulated dynamical phase is the integral over the magnetic potential
experienced during this flight. I have tried to estimate the variance to be expected if a neutron
travels through inhomogeneous magnetic fields. A simple model is to simulate not a cylinder,
but a cuboid shaped neutron storage container and implementperiodic boundary conditions,
B(xi +L) = B(xi) for the functionB(x) describing the magnetic field at the pointx. L is the
side length of the cuboid. For the simulation we chooseL = 50 mm corresponding roughly
to the size of the projected vessel. The magnetic field shall be≈ 1 Gauss in the middle of the
coil. The magnetic field along possible neutron trajectories is show in Figures D.14, on the
left for neutrons having only velocity components in thex−y plane and on the right for an
additionalz-component, where the calculated magnetic field distribution as shown in Figures
D.11 has been used.

The integration along a pathC,
∫
C B(x)d~s yields the total magnetic field the neu-

tron has experienced and therefore the total phase shift isωLt = h̄−1∫
C µB(x)d~s =

h̄−1∫ µB(x(t))|ds/dt|dt. We assume now a slightly collimated beam, i. e.vx > vy,vz and
generate trajectories with random velocity components, for example uniform distributed ran-
dom variables taken out of the interval

vx ∈ [0,1], vy ∈ [0,0.2], vz∈ [0,0.2].

The velocity is afterwards normalised to the typical velocity of 4.4 m/s. From the ensemble
of generated stochastic trajectories the mean and the variance can be calculated.
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Figure D.14: Magnetic field along neutron trajectory (a) restricted to thex− y plane (~v =
(3.1,3.1,0)T) and with a small velocity component in thez-direction (~v= (3.08,3.08,0.6)T).
The modulus of the velocity|~v| = 4.4 m/s.
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Figure D.15: Varianceσ2
inh of the accumulated phase of neutrons (solid line) propagating

through the storage vessel with inhomogeneous magnetic field distribution. 2000 realisations
have been computed for a mean field of 1 Gauss. On the right axisthe visibility reduction
νinh = e−σ2

inh/4 is plotted (dotted line).

What is the influence on the visibility of such fluctuations. An additional random phase
shift has to be added to the average polarisation (c. f. Eq. 5.5.8) to obtain

〈P〉 = e−8σ2
g cos(ξ −4φ̄g+φinh). (D.2.1)

We assume for convenience thatφinh is Gaussian distributed with zero mean and variance
σ2

inh. The latter can be read off from Figures D.15. Accordingly, we find the second average
according to Eq. (5.5.7)

〈〈P〉〉 = e−8σ2
g cos(ξ −4φ̄g)e

−σ2
inh
4 (D.2.2)

and notice, that the influence is much weaker due to the factor1/4. Maybe this can save the
experiment. However, it depends on the time spent in the box and may cause additional com-
plications for longer cycle times. In the experiment one hasto pay attention to this additional
time-dependent contribution since it antagonises the expected increase of the visibility.
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D.2.2 Fluctuating stray magnetic fields

One might argue that the effect of spurious inhomogeneitiescan be dimished by using weaker
magnetic fields. However, another problem in connection with magnetic fields are stray
fields of the environment which are disturbing the measurements more seriously the weaker
the magnetic guide field is. In the section above we have reasoned that the magnetic field has
to be fairly homogeneous up to Milligauss deviations. But can we provide a shielding that
guarantees that there are not even larger unwanted influences from other sources?

In passing we note also that there is a subtle difference between the inhomogeneities
of the artificial magnetic field and the magnetic fluctuationsof the environment in that the
former affect individual neutrons depending on their path through the box. In contrast the
external fluctuations act on the ensemble of stored neutronsas a whole. It is an interesting
question whether this makes a difference in the decoherencebehaviour.

Magnetic Shielding

In order to maintain the homogeneous magnetic field the magnetic shielding should be large
enough to keep the influences from the exterior as low as possible, i. e. in our case at least
less than 0.1% of the coil fields which corresponds to less than 0.1 Milligauss. Mu-metal1

shielding should be sufficient to fulfil these requirements.Mu-metal is a nickel-iron alloy
with high magnetic permeability,µr = µ/µ0 ≈ 105 relative to the vacuum permeabilityµ0.
To calculate the effect of an external field inside a shielding we use the equations

SA ≈ (1+4NellST)

1+ 1
2

D
L

and (D.2.3)

ST =
µrd
D

(D.2.4)

for the axial and the transverse shielding factorS= Be/Bi [PKS00] of a cylindrically shaped
magnetic shield.Be andBi denote the external and the resultant internal magnetic field, d
the wall thickness,D the diameter andL the axial length of the shielding cylinder.Nell is the
demagnetising factor of an equivalent ellipsoid [Osb45].

The expected fluctuations in the magnetic field are about±0.5Gaussas was measured in
the course of examining the properties of a Helmholtz coil. Hopefully these are less in the
vicinity of the PF2, the ultra-cold-neutrons beam line at the ILL in Grenoble, France, since
for a 1 mm thick Mu-metal sheet the transverse attenuation factor is ST = 125 (µr = 105,
D = 800 mm) and the axial attenuation factor isSA approximately same since the length-to-
diameter-ratioL/D is close to 1 in our case [PKS00]. The external fluctuations are therefore
damped to≈ 0.005G for a closed cylinder. Simulations show that a cylinder without the base
caps has an attenuation factor of aboutST = 10. To see if this is sufficient for our purposes
we have to measure the magnetic field fluctuations at the UCN beam-line itself.

1see e. g. http://en.wikipedia.org/wiki/Mu-metal
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D.2.3 Vessel too small

Besides reducing the flux, hence increasing the measurementtime, the small size of the
storage volume influences also the loss-rate and in turn again the count rate. The loss rate
α can be estimated [MAB+89] from the UCN reflection-loss probability ofr = 2− 3×
10−5/bounce at the Fomblin surface (Section D.1.5), the mean freepath lengthλ ≈ 80 mm
(Section D.2.1), the neutron’s velocity (v≈ 4.5ms−1) and the storage times< 10 seconds,

α ≈ rvs/λ ≈ 1×10−3, (D.2.5)

which is rather small for the short storage times assessed for the experiment. The major
obstacle, however, remains probably the size itself in thatthe number of particles in each run
is rather low.

D.2.4 Insufficient rise & fall time of the electrical components

The typical rise and fall time of the amplifiers to be used in this experiment2 is about
20−30µs (10%− 90%) equivalent to≈ 30−50 kHz. Non-adiabatic switching has to be
considerably faster than the maximal frequency present, which is the Larmor frequencyωL

of about 3 kHz for 1 Gauss. If stronger magnetic fields are usedthere is also the possibility
to reduce the magnetic field in strength just before the sudden change to guarantee a non-
adiabatic transition. Moreover, the timing of the signal sequence in Section 5.5.1 has to be
precise enough to assure no unpredictable phase accumulations, if the evolution is slightly
longer or shorter from one run to another. The argument is thesame as before, the Larmor
frequency is the benchmark and the precision has to be on a time scale much lower than
2π/ωL ≈ 0.3 ms.

D.2.5 Inductance of Helmholtz coil could spoil high frequency noise

Another problem might be that the coils act as a low-pass filter for the noise current due to
their inductanceL. To estimate the influence from this source an already existing Helmholtz
coil pair similar to the projected coils (530 mm inner and 567mm outer diameter, 100
windings, wire 1 mm in diameter) has been tested. The cross section of the wire duct is
17× 12 mm2 and its specific electrical resistance is 7.9Ω.

From the equation
U(t) = U0e−tR/L (D.2.6)

the inductanceL can be derived by applying for example a periodic rectangular pulse and
read off the exponential term at the falling edge (c. f. Figure D.16).

The fit yields the exponential functionf (t) = −3.5+6.5e−2.6×105t . Inserting the resis-
tivity R= 7.9Ω along with the damping coefficient−2.6×105 into Eq. (D.2.6) we get for

2KEPCO BOP 20-5M - http://www.kepco.com/bopdyn.htm
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Figure D.16: A periodic rectangular signal is fed into the coils. The non-vanishing induc-
tance of the coil distorts the shape of the rectangle.

the inductanceL ≈ 3×10−5H. From the complex resistivity

|Z| = |R+ iωL| =
√

R2+(ωL)2

(neglecting the capacity of the circuit) we find that at frequencies whereωL ≈ 1 the resis-
tivity due to the self-inductance becomes non-negligible,i. e. for ω ≈ 3.3× 104 rad/s or
ν = ω/2π ≈ 5 kHz.

The maximal frequency we can apply is therefore about 5 kHz. As for the noise this is
not alarming , we just want to use up to 1 kHz. However, the non-adiabatic reversal of the
magnetic field is more critical. The problems can be circumvented by ramping down the
magnetic guide field before flipping.

D.3 How to measure?

In the measurement scheme unavoidable decoherence processes have to be taken into ac-
count. Therefore, we have to quantify the dephasing both dueto the field inhomogeneities
(Section D.2.1) and due to the external fluctuations (Section D.2.2). The sinusoidal oscil-
lations of the average polarisation〈P〉 (Eq. 5.5.5) as a function of the additional phaseξ
reveal the influence of these factors. A more disperse polarisation manifests itself in a lower
contrast.

(i) First of all, stored neutrons are merely exposed to a static magnetic guide field. The
polarisation changes sinusoidally as a function of storagetimeT and linearly with the
strength of the magnetic fieldB. Both inhomogeneous field distribution and exter-
nal fluctuations derogate the visibility for increasingT, but increasingB affects the
visibility only via the inhomogeneous field distribution.

How can we separate the inhomogeneity influence from the external fluctuation influence?

(ii) For constantT the field strengthB can be varied. The amount of dephasing due to
inhomogeneities depends linearly onB, so for B = 0 there should be no dephasing
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D. DETAILS OF UCN MEASUREMENT

under ideal circumstances. However, the external fluctuations are present nevertheless,
hence the limit of the contrast valuesB→ 0 provides evidence of this kind of dephasing
mechanism.

To find the effective unavoidable decoherence contributionto the contrast reduction the spin-
echo scheme has to be implemented.

(iii) Reversing the polarisation of the magnetic field strength exactly at half storage time
(T/2) the dynamical phase is cancelled (spin-echo). For a static magnetic field there
should be no phase shift in the interference pattern, but only a reduction of contrast.
The hereby found contrast value is the maximal contrast attainable (Figure D.17(a))

ξ

〈P〉

(a) The contrast (signal-to-noise ratio) is re-
duced by unavoidable noise fields and non-
uniformity of the magnetic field.

ξ

〈P〉

(b) The oscillations are shifted as a function
of the geometric phase.

Figure D.17: Average degree of polarisation.

By virtue of these preliminary measurements one must striveto to find a compromise be-
tween a strong magnetic guide field to mask the external fluctuations and a weak field to
avoid decoherence due to the non-uniform magnetic field. This is the main aim of the pre-
liminary measurements scheduled in autumn 2006 at the ILL. If we succeed to spot a suitable
set of parameters, the changeover to a rotating magnetic field can be attempted.

(iv) The magnetic field is now rotated according to the time sequence described in Section
5.5, but still without artificial noise. By adjusting the off-axis angleθ with the coil pair
surrounding they-axis the opening angle of the cone traced out by the magneticfield
vector and consequently the expected geometric phase is set. The interference pattern
is shifted, but the contrast stays constant (Figure D.17(b)).

(v) Finally, artificial noise is added to test the predictions of theory [CP03] and numerical
simulations (Section 5.6).
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Appendix E

Notation

mn neutron mass (1.67492716(13)×10−27kg)

µn neutron magnetic moment (−9.6623×10−27JT−1)

σx, σy, σz Pauli matrices

Φ total phaseΦ ≡ arg〈ψ f |ψi〉

φg,γ pure state geometric phase

φd pure state dynamical phase

φ̃ noisy phase

γi j ... off-diagonal geometric phase

φρ mixed state geometric phase

γρiρ j ... off-diagonal mixed state geometric phase

ν visibility, contrast

η usually used for the phaseshift responsible for interference fringes

n refraction index (n = n′+ in′′)

λ wavelength

~k wavevector with magnitudek = |~k| = 2π/λ

Xi total phaseshift in thei-th beam in the second interferometer loop

X̃i spatial displacement,̃Xi = Xi/k̄

k̄ mean momentum

χ0
i phaseshift at parallel position (45◦)
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E. NOTATION

χi phaseshift due to rotation(χi = Xi −χ0
i )

∆χ relative phase shift∆χ = χ2−χ1

∆c
n coherence lenght in directionn

d thickness of phaseshifter

de f f effective thickness

dλ λ -thickness

bc coherent scattering length

Nal particle density (of aluminium)

H complex Hilbert space

P projective Hilbert space (Ray space)

N set of nonzero vectors in Hilbert spaceH

N0 set of unit vector inN (N0 ⊂N ⊂H)

Pψ ray space representative of|ψ〉 ∈ H, projection operator

HS system Hilbert space

HA ancilla (environmental) Hilbert space

HE extended Hilbert space (HE = HS⊗HA)

O(H) operator algebra of Hilbert spaceH

N dimension of Hilbert space, dimH = N

C curve in Hilbert space

C0 curve of unit vectors in Hilbert space

C̃ curve in projective Hilbert space

Ĉ curve in extended Hilbert space

c parallel lifted curve

G geodesic path in Hilbert space

U(K) unitary group of dimensionK

TrA partial trace over the envionment
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T total evolution time

ωL angular Larmor frequency

ωr angular frequency of the magnetic field rotation

ωn angular frequency bandwidth of noise

Γ j frequency bandwidth of noise (in directionj) (ωn = 2πΓ)

µX mean of the random variableX

σ2
X variance of the random variableX

〈Y〉 ensemble average of the random variableY

Y time average ofY

GYZ covariance of the random variablesY andZ

CX(t) autocorrelation function of the stochastic processX

SX(ν) power spectral density of the stochastic processX (ν. . . frequency)

P2
X mean power of the stochastic processX

sr signal-to-noise ratioωL/PX
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