
Unterschrift des Betreuers

MASTERARBEIT

On Debugging of Propositional
Answer-Set Programs

Ausgeführt am

Institut für Informationssysteme
Abteilung für Wissensbasierte Systeme

der

Technischen Universität Wien
unter der Anleitung von

Ao.Univ.Prof. Mag.rer.nat. Dr.techn. Hans Tompits
sowie der begleitenden Betreuung von

Univ.Ass. Dipl.-Ing. Dr.techn. Stefan Woltran
durch

Jörg Pührer, Bakk.techn.

Gentzgasse. 14/2/3, 1180 Wien

20. Dezember 2007
Unterschrift des Studenten

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 





Deutsche Zusammenfassung

Diese Masterarbeit beschäftigt sich mit Debugging in der Antwortmengen-Programmierung
(engl., ”answer-set programming - ASP“), einem Paradigma logischer Programmierung, das
sich aufgrund seiner deklarativen Semantik in den letzten Jahren erhöhter Beliebtheit in der
wissenschaftlichen Gemeinschaft erfreut. Ein wesentlicher Grund, warum sich ASP jedoch bis-
her nicht in größerem Maße als Problemlösungstechnik etablieren konnte, ist die mangelnde
Verfügbarkeit von Programmier-Werkzeugen, welche die Arbeit mit ASP unterstützen. Insbe-
sondere ist die Suche nach Fehlern in Antwortmengen-Programmen ein noch wenig erforschtes
Gebiet, das höchste Aufmerksamkeit verdient.

Diese Arbeit führt zwei neue Techniken ein, die sich der Fehlersuche in Antwortmengen-
Programmen widmen und sich dabei selbst der Antwortmengenprogrammierung bedienen.
Eine der neuen Methoden basiert auf ASP-Meta-Programmierung, die andere auf einer soge-
nannten Tagging-Technik. Neben der Beschreibung der neuen Ansätze wird ein Überblick auf
bestehende Publikationen zur Fehlersuche in Antwortmengenprogrammen gegeben.

Die Methode basierend auf Meta-Programmierung stellt den Hauptbeitrag dieser Arbeit
dar. Sie beruht auf einer Transformation des potentiell fehlerhaften Programms Π in die
Sprache eines Meta-Programms DM(Π). Die Kodierung erlaubt es, DM(Π) dazu heranzu-
ziehen sämtliche Informationen über das ursprüngliche Programm Π zu extrahieren. Jede
Antwortmenge des Meta-Programms trifft dabei Aussagen über das Verhalten von Π unter
einer Interpretation I, die nicht zu den Antwortmengen von Π gehört. Umgekehrt existiert für
jedes solche I eine entsprechende Antwortmenge des Meta-Programms. Der Kernansatz liegt
nun darin, Gründe auszumachen, warum I nicht Antwortmenge von Π ist. Diese Information
findet sich in den Antwortmengen des Meta-Programms, wobei zwischen vier verschiedenen
Ursachen unterschieden wird:

• der Rumpf einer Regel ist erfüllt, aber kein Element des entsprechenden Regelkopfes;

• ein Atom ist in I enthalten, ohne Element des Kopfes einer anwendbaren Regeln zu
sein;

• ein Integrity Constraint wird durch I verletzt; oder

• die Wahrheit eines Atoms aus I begründet sich nur durch sich selbst.

Die Methode erlaubt es komplexe Debugging-Abfragen durch Antwortmengenprogramme zu
formulieren. Insbesondere kann die Menge an Informationen, die eine fehlerhafte Situation
beschreiben, mithilfe gängiger ASP-Optimierungsverfahren auf relevante Anteile reduziert
werden.

Bei der zweiten neuen Debugging-Methode handelt es sich um die Adaptierung einer
Technik, die der Überführung von geordneten logischen Programmen in gewöhnliche logische

i



Programme dient. Durch die Einführung spezieller Atome, genannt tags, ist es möglich die
Anwendbarkeit einzelner Regeln zu kontrollieren und verschiedene Eigenschaften über das
fehlerhafte Programm aus den Antwortmengen einer Transformation des Programms abzule-
sen.

Ein Hauptmerkmal beider neuen Debuggingstrategien ist ihre Unabhängigkeit vom Al-
gorithmus zur Berechnung der Antwortmengen. In dem nicht, wie in anderen Sparten der
logischen Programmierung, dem Lösungsalgorithmus für die Fehlersuche gefolgt wird (vgl.
Tracing in PROLOG), kann die deklarative Sicht auf Antwortmengen-Programme auch beim
Debuggen beibehalten werden.

Im Rahmen dieser Arbeit wurde ein Prototyp einer Software zum Debuggen von Ant-
wortmengenprogrammen implementiert. Dieses Werkzeug, genannt spock, unterstützt die
Transformationen, die für die neu eingeführten Ansätze zur Fehlersuche in Antwortmengen-
programmen benötigt werden.

Im Folgenden wird ein Überblick über die einzelnen Kapitel der vorliegenden Masterarbeit
gegeben:

Kapitel 1 gibt eine Einführung in die Prinzipien von ASP und in die allgemeinen Grundla-
gen der Fehlersuche in der Programmierung. Es widmet sich zunächst dem historischen sowie
allgemeinen Kontext in dem Antwortmengenprogrammierung zu sehen ist. Nach einem Über-
blick über Debugging in verschiedenen Programmierparadigmen wird auf die grundsätzliche
Problematik der Fehlersuche in Antwortmengenprogrammen eingegangen.

Im darauffolgenden Kapitel wird der formale Rahmen der Antwortmengenprogrammie-
rung eingeführt; neben Programm-Syntax und Antwortmengen-Semantik werden wichtige
Eigenschaften von Programmen und weitere Konventionen beschrieben, welche die theore-
tische Grundlage für die darauffolgenden Kapitel dieser Arbeit liefern.

In Kapitel 3 wird eine neue Debugging-Methode für Antwortmengenprogramme beschrie-
ben. Zu einem fehlerhaften Programm, Π, wird durch eine einfache Transformation ein zu-
gehöriges Meta-Programm DM(Π) generiert, das Rückschlüsse auf die Fehlerursachen liefert.
Die Architektur des Meta-Programms wird schrittweise eingeführt, wobei begleitend wichtige
Eigenschaften seiner Teilprogramme gezeigt werden. Abschließend wird auf die Formulierung
verschiedener Debugging-Abfragen sowie auf den Einsatz von Optimierungstechniken einge-
gangen.

Eine weitere neue Technik zur Fehlersuche in Antwortmengenprogrammen wird in Ka-
pitel 4 eingeführt. Sie beruht auf einer Transformation des fehlerhaften Programms, bei der
tags, spezielle Kontroll- und Analyseatome, eingeführt werden. Neben der Beschreibung dieses
Verfahrens wird auch auf die Unterschiede zum Ansatz von Kapitel 3 eingegangen.

Kapitel 5 behandelt das Software-Werkzeug spock, das sich als Prototyp zur Unter-
stützung der Fehlersuche in Antwortmengenprogrammen versteht. Neben allgemeinen Infor-
mationen zur Implementierung und deren Anwendung finden sich Beispiele zur Durchführung
von Programm-Transformationen für die Fehlersuche.

Einen Überblick über kürzlich veröffentlichte Beiträge zu Debugging in der Antwortmen-
genprogrammierung liefert Kapitel 6. Es werden drei verschiedene Ansätze vorgestellt, disku-
tiert und gegenübergestellt.

Das letzte Kapitel dieser Arbeit bietet eine Zusammenfassung der behandelten Themen
und gibt einen Ausblick auf mögliche künftige Forschungsansätze zum Thema Debugging in
der Antwortmengenprogrammierung.

Teile dieser Arbeit wurden in Tagungsbänden internationaler Konferenzen und Workshops
publiziert. Das Debugging-Verfahren in Kapitel 4 wurde auf der LPNMR’07 [5], der 9th In-

ii



ternational Conference on Logic Programming and Nonmonotonic Reasoning in Tempe, AZ,
USA, präsentiert. Das Debugging-Tool spock wurde auf den Workshops SEA’07 [6], dem
1st Workshop for Software Engineering for Answer-Set Programming in Tempe, AZ, USA,
sowie dem WLP’07 [29], dem 21st Workshop on (Constraint) Logic Programming in Würz-
burg, Deutschland, vorgestellt. Diese Arbeit wurde durch Mittel des Fonds zur Förderung der
wissenschaftlichen Forschung (FWF) unter Projekt Nr. P18019 unterstützt.

iii



Preface

This thesis deals with debugging in answer-set programming (ASP), a logic-programming
paradigm which became popular in the scientific community for its fully declarative semantics.
A major reason why ASP has not found widespread popularity as problem-solving technique
yet is a lack of suitable tools for program development. In particular, debugging in ASP is
an important field which has not been very well studied so far.

This work introduces two new techniques for finding errors in answer-set programs; one
is based on ASP-meta-programming, the other relies on a tagging technique. Besides the
description of the new approaches, an overview of existing publications concerning debugging
of answer-set programs is given.

The method using meta-programming constitutes the main contribution of this work. It is
based on a transformation of an erroneous program, Π, into the language of a meta-program
DM(Π). The encoding allows for extracting exhaustive information about the original pro-
gram Π. Each answer set of the meta-program describes the behaviour of Π under an in-
terpretation I which is not an answer set of Π. Conversely, for each interpretation I of the
original program not belonging to the answer sets of Π, there is a corresponding answer set
of the meta-program. The key strategy of our approach is to point out reasons why I is not
an answer set of Π. This information can be found in the answer sets of the meta-program,
where we distinguish between four kinds of reason:

• the body of a rule is satisfied, although no element of the respective rule head is;

• an atom a is contained in I, although a is not in the head of any applicable rule;

• an integrity constraint is violated under I; or

• the truth of an atom in I is caused by itself.

The method allows to use answer-set programs in order to formulate complex debugging
queries. In particular, the huge amount of information describing an erroneous situation can
be reduced to parts relevant to the developer by using standard ASP-optimisation techniques.

The second new debugging method is adopted from a tagging technique for transforming
ordered logic programs into standard ones. By introducing dedicated atoms, called tags,
the applicability of individual rules can be controlled and several properties of the erroneous
program can be read off the answer sets of a transformation of the program.

A significant feature of both new debugging strategies is their independence of the under-
lying algorithm for computing answer sets. The declarative view of answer-set programs can
be maintained even when debugging, in contrast to other areas of logic programming, where
errors are usually found by following the solving algorithm (cf. tracing in PROLOG).

iv



We also developed a prototype of a debugging support tool for answer-set programs.
The software, named spock, performs the program translations needed for the introduced
debugging approaches.

The structure of this thesis is as follows:
Chapter 1 gives an introduction to the principles of ASP and the basics of error detection in

programming. At first a short synopsis about the historical and general context of answer-set
programming is given. After an overview about debugging in several programming paradigms,
the peculiarities of debugging in ASP will be discussed.

The formal background of ASP is introduced in Chapter 2; besides syntax and semantics of
answer-set programs, important properties of programs and further conventions are described,
providing the theoretical basis for the following chapters.

The next chapter deals with a novel approach to debugging answer-set programs. From
an erroneous program, Π, a simple transformation generates a corresponding meta-program
DM(Π), from which we can draw conclusions about the origin of the occurring errors. The
meta-program is introduced step-by-step, and important properties about its subprograms
will be shown along with this process. Finally, we will discuss the formulation of various
debugging queries and the usage of optimisation techniques.

Another new approach to finding errors in answer-set programs is presented in Chapter 4.
It relies on a transformation of the erroneous program which introduces tags. These are
special control and analysis atoms. Besides the description of the new method, the differences
between the two new techniques will be discussed.

In Chapter 5, the software tool spock is presented, which is a prototype for supporting
error detection in answer-set programs. In addition to general information about implemen-
tation and usage of spock, example applications of program translations for debugging are
presented.

An overview of recently published contributions to debugging in ASP is given in the next
chapter. Three different approaches will be presented, discussed and compared.

Chapter 7 closes this work, providing a summary of the topics addressed and delivering
an outlook on further research into debugging in answer-set programming.

Parts of the work have been published in the proceedings of international conferences and
workshops. The debugging method, discussed in Chapter 4, was presented at the 9th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07) [5], in
Tempe, AZ, USA. The debugging tool spock was demonstrated at the 1st Workshop for Soft-
ware Engineering for Answer-Set Programming (SEA’07) [6], in Tempe, AZ, USA, and at the
21st Workshop on (Constraint) Logic Programming (WLP’07) [29], in Würzburg, Germany.
This thesis was supported by the Austrian Science Fund (FWF) under project P18019.

v





Acknowledgements

I want to thank my supervisor Hans Tompits for his continuing support and advice, and for
teaching me the art of writing scientific publications. I have learned a lot about style and
presenting theoretical results. Furthermore, he spent a lot of time on our discussions about
this work. Moreover, I am very grateful to him for giving me the possibility to visit the
9th International Conference on Logic Programming and Nonmonotonic Reasoning 2007 in
Tempe, AZ, USA, the Workshop on (Constraint) Logic Programming in Würzburg, Germany,
and the Department of Knowledge Processing and Information Systems at the University of
Potsdam, Germany.

I highly appreciated the help of Stefan Woltran, who gave me lots of practical advice and
hints for literature. In the early phase of writing my thesis, he was my primary source of
advice and helped me to develop the meta-debugging framework which constitutes the main
contribution of this work.

Furthermore, I would like to give special thanks to Veronika Peterseil for proofreading
select parts of the work, Matthias Schlögel for his technical support, and to Elfriede Nemoda
for her administrative work. I wish her all the best for her retirement.

The most important supporters have been my parents, Luise and Josef Pührer, who made
me enjoy a good education and encouraged me to pursue my goals. Due to them, my life has
always been free of existential worries, allowing me to concentrate on my studies (fulltime),
which I clearly recognise as a privilege, unfortunately not granted to many others.

The Austrian Science Fund (FWF) covered my travel costs and student grants I have been
given under project P18019, Formal Methods for Optimizing Nonmonotonic Logic Programs.

vii



Contents

1 Introduction 1
1.1 Definition of Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Debugging in Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Errors and Debugging in Answer-Set Programming . . . . . . . . . . . . . . . 3
1.4 Declarative Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Alternative Characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Dependency Graph and Loops . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Support and External Support . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Completion and Loop Formulas . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Stratified Normal Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Further Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Meta-Programming Approach 16
3.1 Basic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Meta-Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Meta-Programs and Meta-Answer-Sets . . . . . . . . . . . . . . . . . . 19
3.3.2 Meta-Program for Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Potential-Use Relation and Module Prerequisites . . . . . . . . . . . . 21
3.3.4 Standalone Subprograms and Specialised Meta-Answer-Sets . . . . . . 24
3.3.5 Transformation to the Meta-Level . . . . . . . . . . . . . . . . . . . . 28
3.3.6 Auxiliary Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.7 Guessing an Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.8 Rule Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.9 Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.10 Guessing Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.11 Detecting Violated Constraints . . . . . . . . . . . . . . . . . . . . . . 40
3.3.12 Detecting Unsupported Atoms . . . . . . . . . . . . . . . . . . . . . . 41
3.3.13 Detecting Unsatisfied Rules . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.14 Detecting Externally Unsupported Loops . . . . . . . . . . . . . . . . 44
3.3.15 All Together Now! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.16 Filtering Out Non-Error-Indicating Meta-Answer-Sets . . . . . . . . . 52

viii



3.4 Search-Space Restriction and Examples . . . . . . . . . . . . . . . . . . . . . 56

4 Tagging Approach to Debugging 60
4.1 Splitting Cause from Consequence . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Extrapolation of Non-Existing Answer Sets . . . . . . . . . . . . . . . . . . . 63

5 Implementation 70
5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 System Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 System Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 Answer-Set Computation for Labelled Programs . . . . . . . . . . . . . . . . 73
5.5 Meta-Program Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Tagging Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Other Approaches 79
6.1 Justifications for Answer-Set Programs . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Query Algorithms for Debugging ASP . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Why is a set of literals satisfied by a specific answer set? . . . . . . . . 83
6.2.2 Why is a set of literals not satisfied by any answer set? . . . . . . . . 84

6.3 Debugging Inconsistent Answer-Set Programs . . . . . . . . . . . . . . . . . . 85
6.3.1 Odd-Loop Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.2 Finding Inconsistency-Causing Constraints . . . . . . . . . . . . . . . 86

7 Conclusion 88

Appendix: Selected Argument Options of spock 90

Bibliography 92

Index 98

ix





Chapter 1

Introduction

Logic programming emerged in the 1960s and 1970s, following the idea of representing knowl-
edge in terms of logic and using mechanical deduction for problem solving. Based on Robin-
son’s resolution rule [57] and work on automated theorem proving, Colmerauer and Kowalski
developed the foundations of the programming language PROLOG (PROgramming in LOGic)
in 1971 [38]. In the beginning, knowledge was expressed solely by Horn clauses which are
disjunctions of literals, including mostly one positive literal. Rules of this kind allow fast
and simple inferencing through resolution. Soon, the concept of the closed-world assumption
in databases [54] was adopted to PROLOG, and the related negation-as-failure operator not
was introduced to handle negative information. The idea is that a negated atom not a is
considered to be true whenever a cannot be deduced. Due to this interpretation of negation,
reasoning with PROLOG is nonmonotonic, e.g., adding a fact a to a knowledge-base falsifies
not a and therefore a rule b← not a is not ensuring the truth of b any more.

A major novelty of the logic-programming paradigm was to have a declarative view on
computer programs. Instead of stating how a problem should be solved, the problem is
described by means of logical implications, leaving the imperative deduction process to the
PROLOG interpreter. Kowalski expressed the relation of declarative and imperative aspects of
a computation by the symbolic pseudo-formula A(lgorithm) = L(ogic) + C (ontrol) [37]. In
PROLOG the C -part is fixed, therefore the problem solving behaviour A is solely dependent on
PROLOG programs, representing the L-part.

However, there are shortcomings in the declarativity of PROLOG, causing that programs
can be seen as guiding instructions for the solving algorithm, rather than as pure problem
descriptions. Essential deficits are the following:

• in PROLOG the order of literals in the body of a rule matters, as the interpreter processes
them from left to right;

• in the same way, the position of a rule in a PROLOG program influences the obtained
results;

• a program may cause infinite loops of the interpretation algorithm; and

• the PROLOG language includes the extra-logical cut operator .

From a theoretical point of view, the major difficulty in agreeing on a better semantics for
logic programs is the handling of negation. Indeed, this is a non-trivial task, as the existence

1



CHAPTER 1. INTRODUCTION

of a unique least model, which is a key feature in Horn logic programming, is not guaranteed
for programs involving negation.

Several semantics for logic programs have been proposed, aiming at overcoming the lack
of declarativity in PROLOG and providing semantical clarity, also for negation. Many of these
proposals were based on the desire to have a single intended model for every program. Apt,
Blair, and Walker [3] introduced the perfect-model semantics which assigns a unique perfect
model to logic programs with negation, satisfying the syntactic restriction of stratification.
Another solution is given by the well-founded semantics by Van Gelder, Ross, and Schlipf [30].
Here, every program can be assigned a single intended model which is 3-valued, allowing the
truth value of an atom to be undefined.

Other approaches abandon the demand for a canonical model and define collections of
models as intended ones, e.g., supported models, introduced by Clark [12]. In 1988, Gelfond
and Lifschitz [32] presented the stable-model semantics, also-called answer-set semantics, for
normal logic programs following the ideas of default logic [55]. Three years later they extended
it to disjunctive logic programs [33]. The intended models are referred to as stable models
or answer sets. Generally, a program may have multiple or even no answer set. Based on
this semantics, answer-set programming (ASP) emerged in the late 1990s as a new logic-
programming paradigm [48, 46, 42], providing a fully declarative view on logic programs. In
ASP, typically, a problem is described by a logic program such that the answer sets of the
program correspond to the solutions of the problem. This is a major shift of perspective, as
in classical logic programming, reasoning is performed by query answering rather than model
generation. Nowadays, the answer-set semantics is the most popular declarative semantics
for logic programs with nonmonotonic negation.

Answer sets are computed by answer-set solvers, such as DLV [23, 19, 40], SMODELS [48, 62],
or CMODELS [41]. The latter two, like many other solvers, require prior external grounding of
the input programs, which can be performed by the grounding frontend LPARSE [65, 66].

Answer-set programming has been successfully applied to many areas including plan-
ning [21, 16, 50], diagnosis [18, 31], product configuration [63], bounded model checking [35],
agent systems [49, 9, 8, 4], and the Semantic Web [24, 60, 11].

1.1 Definition of Debugging

A definition of debugging is given in the ANSI/IEEE Standard Glossary of Software Engi-
neering Terminology [2]:

“Debugging is the process of locating, analyzing, and correcting suspected faults.”

Furthermore, a fault is defined as

“accidental condition that causes a program to fail its required function”.

Thus, software debugging deals with finding and eliminating errors (“bugs”) in computer
programs. The nature of these errors is manifold and reaches from simple misspellings to
conceptual programming errors. Software tools supporting debugging are referred to as de-
buggers.

According to a general belief, the first computer bug was a moth which caused a failure
of the famous Mark-II computer in 1945. However, the term had been used even earlier for
errors in technical devices [10].

2



1.2. DEBUGGING IN LOGIC PROGRAMMING

1.2 Debugging in Logic Programming

The most prominent example for established debugging techniques in logic programming is
tracing in PROLOG, enabling developers to control the evolution of the proof-search tree. Like
traditional debugging techniques used in imperative programming, tracing relies on tracking
the underlying steps in the execution of a program. The technique is based on the “Byrd
Box Model of Execution” [13]. In this model, every goal predicate is represented by a box
with four ports named call, exit, redo, and fail. A debugger reports call to the user
when the attempt to recursively derivate a goal has started, and exit when the call has
been successful, i.e., every subgoal has been derived. If a subgoal cannot be proved and the
interpreter has to backtrack, redo will be reported. Finally, if every attempt to derive a
predicate has not succeeded, the debugger outputs fail. The idea is that by following the
control flow represented by these messages, the user recognises how the erroneous results
emerge. As the search for a query might be very long, breakpoints or spypoints can be set,
in order to skip large parts of the execution and start tracing exhaustively when a preselected
line of code or a preselected predicate is to be evaluated.

1.3 Errors and Debugging in Answer-Set Programming

In order to illustrate the nature of errors in ASP, we will consider a classification scheme
for errors, tailored to suit classical imperative programming languages. Herein, bugs are
distinguished by the level of specification in which they occur in the program [1, 68]:

• lexical and syntactic errors: the program contains strings or sentences not occurring in
the programming language;

• semantic errors: the program meets the syntactical requirements of the language but
the assembly of its components does not make sense;

• conceptual errors: the program is correct but it does not serve the intended purpose.

Lexical and syntactic errors include misspellings of keywords, identifiers or operators, un-
balanced parenthesis in arithmetic expressions. Examples for semantic errors are “division
by zero”, “infinite loops” and “index-out-of-bound errors”. They are typically recognised
in the first place when the program is executed. Therefore, these types of errors are also
referred to as runtime errors. Conceptual errors are often first recognised when the program
is systematically tested or already in application [59].

Now, we will view errors in ASP with regard to these categories of error. Brain and
De Vos [7] pointed out that, due to the simple structure of ASP languages, the scope for lexical
and syntactic errors is rather small. Notwithstanding, identifiers for predicates, variables, or
terms can be mistaken or be spoiled by typos. This may sometimes cause hard trackable
errors, as ASP languages usually do not enforce prior declaration of identifiers. Introducing
a type system and respective checks would be straightforward and could help to avoid such
bugs.

Furthermore, semantic errors do not exist in ASP, as every syntactically correct program
has a well-defined semantics. Due to the declarativity of answer-set programs, we mainly
deal with conceptual errors: mismatches between the actual and the intended semantics of a
program. In terms of ASP, we encounter this phenomenon whenever the computed answer

3



CHAPTER 1. INTRODUCTION

sets do not match our expectations. In order to clarify what we mean by an error in ASP, we
call a program having the intended semantics correct, whereas a program having a semantics
not intended by the programmer is incorrect. At this abstract level, finding an error means
to identify reasons for the incorrectness of a program in terms of properties of the program.

For more concrete characterisations of errors in ASP, we need to decide which general
debugging question should be addressed. As we deal with discrepancies between an intended
and an actual set of answer sets, one typical question is why an interpretation is an answer
set, despite not being supposed to be one, or more general, why specific atoms are contained
in an answer set, although they are not supposed to be. In such a scenario, errors can be, e.g.,
applicable rules deriving these atoms, other atoms making these rules applicable, or missing
rules responsible for pruning the considered answer set. The related problem, why atoms are
not contained in a specific answer set, is a special case of the question why a specific set of
literals is not satisfied by any answer set of the incorrect program. Here, we can identify errors
such as unsatisfied rules, unsupported atoms, violated integrity constraints, and positive or
odd negative loops of dependency between atoms. Basically, different characterisations of the
answer-set semantics allow different answers to the question why an interpretation is not an
answer set.

So far, no established methodology for debugging answer-set programs has evolved. How-
ever, there have been some initial proposals concerning the issue [5, 7, 26, 67, 51]. A main
distinguishing feature of possible debugging methods for ASP is whether the programmer
needs to know the actual algorithm for computing answer sets for debugging. When applying
techniques similar to tracing to ASP, such knowledge would be a basic requirement. This is
problematic for several reasons. First of all, there is no canonical algorithm for answer-set
computation. Some answer-set solvers implement a backtracking strategy [23, 48], typically
equipped with advanced heuristics for faster computation; other systems transform the given
program into another problem such as propositional satisfiability checking [41, 44] or solving
of quantified boolean formulas [17]. Apart from the diverseness of computation strategies, the
intermediate data obtainable during answer-set solving might be quite remote from the syntax
and structure of the original program. This is especially the case in problem-transformation
approaches. Finally, fixing a computation algorithm would impose an imperative view on
answer-set programs, depriving the elegance of declarativity of the ASP paradigm.

1.4 Declarative Debugging

The concept of declarative debugging was originally introduced as algorithmic debugging by
Shapiro [61] in 1982. The basic idea is that the debugging system detects errors guided by
information about intended properties of the program. This information has to be supplied by
an oracle, typically the programmer. Thus, the user has to supply declarative knowledge about
the intended semantics of a program, but can prescind from the computational behaviour of
the system.

Declarative debugging was initially used for debugging PROLOG programs, but has been
proposed as a general approach towards debugging and also been applied to other paradigms,
such as functional [47] and imperative programming [28]. Declarative debuggers usually
traverse a tree representing a failed computation, called proof tree or execution tree, depending
on the programming paradigm. When passing a vertice, the user is asked whether a specific
part of the computation has been correct. If it was, the subtree below a correct vertice is

4



1.4. DECLARATIVE DEBUGGING

skipped in the traversal.
In Chapter 3 we will introduce a debugging technique for answer-set programs which

follows the spirit of declarative debugging, as errors are detected by user knowledge of the
expected results. However, in our approach, the programmer is not asked questions about
the correctness of computed results, but specifies the intended results by means of ASP.

5



Chapter 2

Preliminaries

In this chapter we will introduce syntax, semantics, and important properties of answer-set
programs. Although this thesis deals with debugging of propositional answer-set programs,
we will introduce a language for the more general approach of non-ground programming. This
is done because some of the discussed debugging techniques utilise non-ground programs.
Furthermore, we will need special language constructs implemented in the answer-set solvers
DLV and SMODELS.

2.1 Syntax

Logic programs are built from an alphabet which comprises identifiers for the objects we want
to reason about and their properties of interest.

Definition 2.1 An alphabet for logic programs is a triple A = 〈P,V, C〉, where P is a non-
empty set of predicates symbols, V is a set of variables, and C is a non-empty set, called the
domain, whose elements are referred to as constants. It is assumed that each p ∈ P has an
associated arity α(p) ≥ 0. The elements of the set T = C ∪ V are called terms. 2

By convention, variables are denoted by symbol strings starting with capital letters, constants
by strings starting with numbers or lower case letters, and predicate symbols by strings
starting with a letter. The arity of predicate symbol p can be indicated by appending a slash
followed by the arity: p/α(p).

For convenience, we will sometimes use the so-called anonymous-variable notation, de-
noted by the underscore “ ”. Each occurrence of the anonymous variable stands for a new
variable which is not used anywhere else in the considered context.

Example 2.2 Here are a few examples for predicate symbols, variables, and constants, re-
spectively:

• special ,VerySpecial , strange2me, interesting property ;

• X,August15th,Bird , A 1,Why not using long variable Names;

• x, 0815, tweety , constANT , this Is 2 Nice. ♦

Predicate symbols of arity n are used to express properties of tuples of n terms. A predicate
symbol attached to such an n-tuple is an atom. In answer-set programming, the matter of
reasoning is the question which combinations of atoms form answer sets of a program.

6



2.1. SYNTAX

Definition 2.3 Let A = 〈P,V, C〉 be an alphabet for logic programs. An atom (over A) is
an expression of form p(t1, . . . , tn), where p ∈ P is a predicate symbol with arity α(p) = n
and ti ∈ T , for 1 ≤ i ≤ n. We also say that p(t1, . . . , tn) is an atom over predicate p. A
literal (over A) is either an atom over A or an expression of form not a, where a is an atom
over a and not is called default negation. Moreover, we say that a literal not a is a negated
atom. 2

An atom p(t1, . . . , tn) is ground iff each argument ti, 1 ≤ i ≤ n, is a constant from C, otherwise
p(t1, . . . , tn) is non-ground . Furthermore, a literal not a is ground iff atom a is ground, non-
ground otherwise.

We define the set of all ground atoms over a set of predicates with arguments from a set
of constant as follows:

Definition 2.4 Let A = 〈P,V, C〉 be an alphabet for logic programs. Then, the set of all
ground atoms over predicates P ⊆ P with arguments from D ⊆ C is given by

GP,D = {p(c1, . . . , cα(p)) | p ∈ P and c1, . . . , cα(p) ∈ D}.

Moreover, the set of all ground atoms over A is given by At(A) = GP,C . 2

Example 2.5 Assume an alphabet A = 〈P,V, C〉 with C = N, X, Y ∈ V, and consider the
sets D = {1, 2} and P = {odd/1, equal/2}. Then,

• odd(1), odd(9), equal(1, 2), equal(2, 2) are ground atoms,

• odd(1),not odd(9),not equal(1, 2) are ground literals,

• odd(X), equal(X, X), equal(X, Y ), equal(5, X) are non-ground atoms,

• odd(X),not equal(X, X),not equal(X, Y ) are non-ground literals, and

• GP,D = {odd(1), odd(2), equal(1, 1), equal(1, 2), equal(2, 1), equal(2, 2)} is the set of all
ground atoms over predicates P with arguments from D. ♦

Definition 2.6 A (disjunctive) rule, r, (over A) is a pair 〈H,B〉, where H is a set of atoms
over A and B is a set of literals over A such that H ∪ B 6= ∅. We will denote a rule of form
〈{h1, . . . , hk}, {b1, . . . , bn,not bn+1, . . . ,not bm}〉 by

h1 ∨ · · · ∨ hk← b1, . . . , bn,not bn+1, . . . ,not bm . (1)

2

For a rule r of form (1), we introduce the following notation:

• head(r) = {h1, . . . , hk} is the head of r,

• body(r) = {b1, . . . , bn,not bn+1, . . . ,not bm} is the body of r,

• body+(r) = {b1, . . . , bn} is the positive body of r, and

• body−(r) = {bn+1, . . . , bm} is the negative body of r.

7



CHAPTER 2. PRELIMINARIES

Example 2.7 Consider an alphabet A = 〈P,V, C〉 with C = N, {odd/1, even/1, sum/3} ⊆ P,
{X, Y, Z} ⊆ V, and the following rules over A:

r1 = even(X)← not odd(X) ,

r2 = even(Z)← odd(X), odd(Y ), sum(X, Y, Z) .

Then, rule r1 says that a number which is not odd is even, and rule r2 states that the sum of
two odd numbers is an even number. ♦

In the following, we will introduce syntactic classification properties which rules may enjoy.

Definition 2.8 A rule of form (1) is called non-disjunctive iff k ≤ 1, and normal iff k = 1.
A rule r is positive iff body−(r) = ∅, and a fact iff body(r) = ∅. Furthermore, r is an integrity
constraint (or simply a constraint) iff head(r) = ∅. Finally, a rule r is ground iff every atom
a ∈ (head(r) ∪ body+(r) ∪ body−(r)) is ground. 2

In order to restrict the range of variables occurring in the head of a rule, we introduce the
safety condition for rules. Considering only safe rules is reasonable, in order to avoid general
statements about all objects of the domain, which might be troublesome when changing the
domain.

Definition 2.9 A rule r is safe iff each variable occurring in head(r) ∪ body−(r) also occurs
in body+(r). 2

Example 2.10 Assume an alphabet A = 〈P,V, C〉 with C = N, {odd/1, even/1, sum/3,
lessOrEqual/2} ⊆ P, {X, Y } ⊆ V, and the rules:

r1 = lessOrEqual(1, X) ∨ lessOrEqual(X, 1)← ,

r2 = ← odd(X), even(X) ,

r3 = even(Y )← sum(X, X, Y ) .

Then, r1 is an unsafe fact, r2 is a safe positive integrity constraint, and r3 is a safe normal
positive rule. ♦

Given the notion of safe rules, programs are defined in the following way:

Definition 2.11 A (disjunctive) logic program over A is a set of safe rules. 2

The properties of being non-disjunctive, normal, positive, or ground can be extended straight-
forwardly from rules to programs.

Definition 2.12 A program is called non-disjunctive (respectively, normal, positive, ground)
iff every rule in it is non-disjunctive (respectively, normal, positive, ground). 2

While ground programs involve constants as arguments of atoms, propositional programs do
not comprise any terms.

Definition 2.13 A program Π is propositional iff each predicate in Π has arity 0. 2

8



2.1. SYNTAX

By convention, we assume that, given an alphabet A, every ground atom a ∈ At(A) is viewed
as a predicate symbol of arity 0. This way we can treat ground programs like propositional
programs and vice versa.

Usually, the alphabet of an answer-set program Π is not given explicitly, but implicitly,
determined by the constants and predicates occurring in Π. They determine the Herbrand
base of Π which is the set of all atoms constructed from the predicates in Π, having constants
occurring in Π as arguments.

Definition 2.14 Let Π be a program, P the set of predicate symbols occurring in Π, and
C the set of constants occurring in Π. The Herbrand universe, HU (Π), of Π is defined as
follows:

HU (Π) =
{

C, if C 6= ∅;
{c}, otherwise,with c ∈ C arbitrary.

The Herbrand base, HB(Π), of Π is the set of all ground atoms over predicates P with
arguments from HU (Π):

HB(Π) = GP,HU (Π). 2

Since the answer-set semantics for non-ground programs will be defined in terms of the
semantics for ground programs, we need the notation of the grounding of a program, trans-
forming non-ground programs into ground ones.

By a substitution we understand a partial function θ : V → V ∪ C, where V is a set of
variables and C is a set of constants. We say that a substitution θ is a grounding if, for all
v ∈ V, it holds that θ(v) ∈ C. Furthermore, given a rule r, by rθ we denote the rule resulting
from r by replacing each v ∈ V in r by θ(v).

Definition 2.15 Let r be a rule and C a set of constants, then Gr(r, C) = {rθ | θ : V → C},
where V is the set of variables occurring in r. Furthermore, for a program Π, we have
Gr(Π, C) =

⋃
r∈Π Gr(r, C). Finally, the grounding (or ground instantiation), Gr(Π), of Π is

given by

Gr(Π) = Gr(Π,HU (Π)). 2

Observe that for every ground or propositional program Π, it holds that Gr(Π) = Π.

Example 2.16 Consider program Π for finding paths in a directed graph:

Π = { path(X, Y )← edge(X, Y ) ,

path(X, Y )← path(X, Z), edge(Z, Y ) ,

edge(a, b)← ,

edge(b, a)← ,

edge(b, c)← }.

Then, the Herbrand universe HU (Π) of Π consists of the three constants occurring in the
atoms of Π, i.e., HU (Π) = {a, b, c}. Furthermore, the resulting grounding Gr(Π) of Π con-

9



CHAPTER 2. PRELIMINARIES

tains, e.g.:
path(a, a)← edge(a, a) ,

path(a, b)← edge(a, b) ,

path(b, a)← edge(b, a) ,

path(b, c)← path(b, a), edge(a, c) ,

path(b, a)← path(b, b), edge(b, a) ,

path(c, c)← path(c, c), edge(c, c) ,

edge(a, b)← ,

edge(b, a)← ,

edge(b, c)← . ♦

2.2 Semantics

In this section, we describe the answer-sets semantics for disjunctive logic programs [33] which
extends the stable-model semantics for normal logic programs [32].

Definition 2.17 Let A be an alphabet for logic programs. An interpretation is a set I ⊆
At(A) of ground atoms. An interpretation I satisfies an atom a over A iff a ∈ I, and the
negated atom not a iff a /∈ I. Alternatively, we say that a literal is true under I if it is
satisfied by I. Otherwise, it is false under I. We write I |= l to express that literal l is true
under I. Moreover, we say that I satisfies a set S of ground literals over A (symbolically
I |= S) if every l ∈ S is satisfied by I. Whenever I |= body(r), for a ground rule r over A, we
say that r is applicable under I, and blocked under I otherwise. Furthermore, r is satisfied by
I (symbolically I |= r) if r is blocked under I or an atom in head(r) belongs to I, otherwise r
is unsatisfied by I, or violated under I. I satisfies a ground program Π over A (symbolically
I |= Π) if every rule in Π is satisfied by I. If I |= Π, we call I a model of Π. 2

We will sometimes consider an arbitrary interpretation with respect to a given program. For
this purpose we need the notion of an interpretation for a program.

Definition 2.18 Let Π be a disjunctive program and I ⊆ HB(Π) a set of ground atoms.
Then, I is an interpretation for Π. 2

Identifying answer sets of a program Π includes a two-step transformation. The first step
is computing the ground instantiation of Π. From that, we build the reduct of the program
with respect to a candidate interpretation I which is a program not involving default negation.

Definition 2.19 The reduct of ground program Π with respect to a set I of ground atoms
is the positive program ΠI , defined as follows:

ΠI = { head(r)← body+(r) | r ∈ Π and I ∩ body−(r) = ∅}. 2

Definition 2.20 An interpretation I is an answer set of a program Π iff I is a minimal model
of Gr(Π)I .

10



2.2. SEMANTICS

The set of all answer sets of program Π is denoted by AS (Π). Whenever AS (Π) = ∅, we
say that Π is inconsistent , otherwise Π is consistent . Furthermore, by

GEN(Π, I) = {r | r ∈ Π and I |= body(r)},

we denote the set of generating rules of Π under interpretation I. 2

Note that for every answer set A of program Π, it holds that A ⊆ HB(Π).
For illustration, consider the following program:

ΠT = { flies← bird ,not penguin ,

bird← penguin ,

bird← chicken ,

chicken ∨ penguin← }.

This program has two answer sets, {bird , chicken,flies} and {bird , penguin}.
There are also programs without any answer sets. Consider the following encoding ΠE of

the Epimenides paradox:

ΠE = { liesEpimenides← allCretansLie ,

allCretansLie← not liesEpimenides }.

Clearly, no interpretation can satisfy both rules, hence AS (ΠE) = ∅.
In other cases, the empty set is itself an answer set:

Π∅ = { b← a ,

c ∨ d← b ,

e← a,not b }.

For this program, we have AS (Π∅) = {∅}. Note that whenever ∅ is an answer set, it is the
only one, because of the minimality criterion for answer sets.

The following two propositions follow immediately from the definition of answer sets.

Proposition 2.21 Let Π be a ground program and

f = h1 ∨ · · · ∨ hk←

a fact in Π. Then, for all A ∈ AS (Π), it holds that A ∩ head(f) 6= ∅.

Informally, a constraint specifies a set of literals which cannot be satisfied simultaneously.

Proposition 2.22 Let Π be a ground program and

c = ← b1, . . . , bn,not bn+1, . . . ,not bm ,

a constraint in Π. Then, for all A ∈ AS (Π), it cannot hold that c is violated under A.

Throughout this work, we will sometimes need the set of all integrity constraints in a
program.

Definition 2.23 Given program Π, C(Π) denotes the set of integrity constraints in Π:

C(Π) = {c | c ∈ Π and head(c) = ∅}. 2

11



CHAPTER 2. PRELIMINARIES

2.3 Alternative Characterisations

In 2004, Lin and Zhao introduced loop formulas which allow for computing the answer sets
of a program by means of SAT solvers [44]. Based on their results, Lee developed a model-
theoretic characterisation of answer sets [39]. We will exploit both approaches for debugging.
Therefore, we will need the notion of the dependency graph of a program Π which is a graph
expressing the interrelations between the atoms occurring in Π.

2.3.1 Dependency Graph and Loops

In the following we will introduce we will introduce basic concepts of graph theory as found
in standard literature [34].

Definition 2.24 A directed graph G is an ordered pair G = 〈V,E〉 such that V is a set of
vertices and E ⊆ V × V is a set of ordered pairs of vertices from V , called edges. We will
assume that V and E are finite. A subgraph G′ = 〈V ′, E′〉 of G is a directed graph such that
V ′ ⊆ V and E′ ⊆ E.

A directed labelled graph G is an ordered triple G = 〈V,E, L〉 such that V is a set of
vertices, L is a set of labels, and E ⊆ V × V × L is a set of ordered triples 〈v1, v2, l〉, called
labels, where v1 and v2 are vertices from V and l is a label from L. Again we will assume
that V,E and L are finite. 2

Definition 2.25 A path Ψ in a directed graph G = 〈V,E〉 from v1 ∈ V to vi ∈ V is a
non-empty sequence Ψ = v1, v2, . . . , vi−1, vi of vertices v1, v2, . . . , vi−1, vi ∈ V such that i ∈ N
and for 1 ≤ j < i, ej = 〈vj , vj+1〉 ∈ E. We call i the length of the path. 2

Definition 2.26 We call a directed graph G = 〈V,E〉 strongly connected if, for every pair
of vertices 〈v1, v2〉 in V , there is a path from v1 to v2 and a path from v2 to v1 in G. A
strongly connected component of a directed graph is a maximal subgraph of the graph which
is strongly connected. 2

The following definitions and results are adopted from Lee’s paper [39], except for the
notion of unsupported atoms and Proposition 2.31.

Definition 2.27 The dependency graph of a ground program Π is a directed labelled graph
G = 〈V,E, L〉, where V = HB(Π) and L = {+,−} such that, for all a, b ∈ V , 〈a, b, +〉 ∈ E
iff there is a rule r ∈ Π such that a ∈ head(r) and b ∈ body+(r), and 〈a, b,−〉 ∈ E iff there is
a rule r ∈ Π such that a ∈ head(r) and b ∈ body−(r). Furthermore, the positive dependency
graph is the directed graph G+ = 〈V,E+, L〉, where E+ = {〈v1, v2〉 | 〈v1, v2,+〉 ∈ E}, and the
negative dependency graph of Π is the directed graph G− = 〈V,E−, L〉, where E− = {〈v1, v2〉 |
〈v1, v2,−〉 ∈ E}. 2

Based on this definition, we may identify the loops of a program. These are sets of atoms
which mutually depend on each other.

Definition 2.28 Let Π be a ground program. A non-empty set A of atoms is called a loop
of Π if, for every pair 〈a1, a2〉 of atoms in A, there exists a path from a1 to a2 in the positive
dependency graph of Π such that all vertices in this path belong to A.

A loop Γ of Π is trivial if Γ consists of a single atom a such that the positive dependency
graph of Π does not contain an edge from a to itself. A loop which is not trivial is called
non-trivial . Furthermore, a program Π is absolutely tight iff every loop of Π is trivial. 2

12



2.3. ALTERNATIVE CHARACTERISATIONS

Note that, for every atom a that occurs in Π, the singleton set {a} is a loop, according to
Definition 2.28. The following proposition follows immediately from Definitions 2.26 and 2.28.
It relates the notion of a loop to strongly connected components in the positive dependency
graph:

Proposition 2.29 Γ is a loop of ground program Π iff Γ is a non-empty subset of the set of
all vertices within a strongly connected component of the positive dependency graph of Π.

2.3.2 Support and External Support

We will also need the following concepts for Lee’s characterisation of the answer-set semantics.
We define the notion of support in the sense of Inoue and Sakama [36].

Definition 2.30 A set J of ground atoms is supported by ground program Π with respect to a
set I of ground atoms if, for each atom a ∈ J , there is a rule r in Π such that J∩head(r) = {a}
and I |= body(r). A set I of ground atoms is supported by Π if I is supported by Π with
respect to I. Given a set I of ground atoms, a ∈ I is unsupported by Π with respect to I if
there is no rule r ∈ Π such that both, I ∩ head(r) = {a}, and I |= body(r). 2

Note that, for every set I of ground atoms such that I is not supported by a ground program
Π, there is some a ∈ I such that a is unsupported by Π with respect to I.

Proposition 2.31 Let Π be a ground non-disjunctive program and I a set of ground atoms.
I is supported by Π if for every a ∈ I, {a} is supported by Π with respect to I.

Proof. Assume for every a ∈ I, {a} is supported by Π with respect to I. Then, for each
atom a ∈ I, there is a rule r in Π such that {a} ∩ head(r) = {a} and I |= body(r). Since
every rule in Π has at most one element in its head, we have for each atom a ∈ I that there
is a rule r in Π such that head(r) = {a} and I |= body(r), and thus I ∩ head(r) = {a} and
I |= body(r). Therefore, I is supported by Π.

Definition 2.32 A set J of ground atoms is externally supported by ground program Π with
respect to a set I of atoms if there is a rule in Π such that head(r) ∩ J 6= ∅, I |= body(r),
body+(r) ∩ J = ∅, and I ∩ (head(r) \ J) = ∅. Otherwise, J is called externally unsupported
by Π with respect to I. 2

The following characterisation of answer sets constitutes the main theorem of Lee:

Theorem 2.33 ([39]) For any ground disjunctive program Π and any set I of atoms, I is an
answer set for Π iff I satisfies Π, and every loop Γ of Π, where Γ ⊆ I, is externally supported
by Π with respect to I.

For the class of absolutely tight programs, a further characterisation of answer sets is as
follows, also due to Lee:

Theorem 2.34 ([39]) For any absolutely tight ground program Π and any set I of atoms, I
is an answer set for Π iff I satisfies Π and I is supported by Π.

13



CHAPTER 2. PRELIMINARIES

2.3.3 Completion and Loop Formulas

We will also need the related characterisation of answer sets by Lin and Zhao [44] for propo-
sitional normal logic programs which uses propositional logic. Answer sets are the models of
the completion of the program in the sense of Clark [12] and the loop formulas of the program.

We need the following notions to map the body of a rule to a logic formula:

Definition 2.35 Let r be a rule in a propositional normal program such that head(r) = {a}.
Then,

• HF (r) = a and

• BF (r) =
( ∧

b∈body+(r) b
)
∧

( ∧
c∈body−(r) ¬c

)
. 2

Definition 2.36 Let A be an alphabet for logic programs and Π a propositional normal
logic program over A. The completion of program Π is the set of propositional formulas
PF (Π) ∪ CF (Π,A), where

PF (Π) =
{
BF (r)→ HF (r) | r ∈ Π

}
and

CF (Π,A) =
{
a→

∨
r∈Π,head(r)={a} BF (r) | a ∈ At(A)

}
.

The set of loop formulas associated with a non-trivial loop Γ is

LF (Π,Γ) = ¬
(∨

r∈R(Π,Γ) BF (r)
)
→

∧
a∈Γ¬a ,

where R(Π,Γ) = {r ∈ Π | head(r) ⊆ Γ and body+(r) ∩ Γ = ∅}. 2

We denote the set of all non-trivial loops in Π by loopNT (Π). The set of all loop formulas
of Π is LF (Π) = {LF (Π,Γ) | Γ ∈ loopNT (Π)}. We can now formulate Lin-Zhao theorem as
follows:

Theorem 2.37 ([44]) Let A be an alphabet for logic programs and Π be a propositional
normal logic program over A. A set I ⊆ At(A) of atoms is an answer set of Π iff I is a model
of all formulas in PF (Π) ∪ CF (Π,A) ∪ LF (Π).

2.4 Stratified Normal Programs

Another sort of programs, showing properties exploited in our work, is given by the class of
stratified programs. Note that we will only consider normal programs in this context.

Definition 2.38 Let Π be a normal program. We call Π stratified iff there is an assign-
ment s(·) of integers to the atoms in HB(Π) such that, for each rule r ∈ Gr(Π), the following
holds: if a is the atom in the head of r and b (respectively, not b) occurs in r, then s(a) ≥ s(b)
(respectively, s(a) > s(b)). 2

Proposition 2.39 ([32]) Let Π be a normal program such that Π is stratified. Then, Π has
a unique answer set.

14



2.5. FURTHER CONVENTIONS

2.5 Further Conventions

For simplicity, we will utilise a disequality predicate which is a built-in in many solvers.
Intuitively, for variables X and Y , X 6= Y is true exactly when X and Y are substituted by
different constants. Furthermore, we use a comparison predicate, ≤ which is also supported by
many solvers. For variables X and Y , X ≤ Y is true exactly when X and Y are substituted
by constants a and b such that 〈a, b〉 is a member of an implicit strict total order on the
considered domain.

Also for convenience, we do not distinguish between a set A of atoms and the set {a ←|
a ∈ A} of facts.

Moreover, we allow nested expressions of form not not a, where a is some atom, in the
body of rules. Implicitly, not not a is replaced by not a?, where a? is a globally new atom
which is generally filtered out of computed answer sets, and an auxiliary rule a? ← not a is
added to the considered program. We also take advantage of (singular) choice rules [62] of
form {a} ← body(r) which are an abbreviation for a← body(r),not not a.

Weak constraints [40], as implemented in DLV, are another special kind of rules, used in
this thesis. They are of the form

:∼ body(r) [Weight : Level ], (2)

where Weight and Level are positive integers. The rule expresses that answer sets are preferred
which do not satisfy body(r). Let I be a set of atoms and r a weak constraint of form (2),
then r is violated under I iff I |= body(r). The values of Weight and Level are used to specify
priorities such that weak constraints are considered more important than all weak constraints
of a lower level and those of the same level, having a lower weight. Formally, this weighting
mechanism can be described by an objective function OBΠ(A) for ground program Π with
weak constraints WC (Π), and answer set A of Π \ WC (Π) as follows, using an auxiliary
function fΠ which maps leveled weights to weights without levels:

fΠ(1) = 1,

fΠ(n) = fΠ(n− 1) ∗ |WC (Π)| ∗ wΠ
max + 1, n > 1,

OBΠ(A) =
∑lΠmax

i=1 (fΠ(i) ∗
∑

r∈NΠ
i (A) weight(r)),

where wΠ
max and lΠmax denote the maximum weight and maximum level over the weak con-

straints in Π, respectively; NΠ
i (A) denotes the set of weak constraints in level i that are

violated under A, and weight(r) denotes the weight of weak constraint r.
A set of atoms A is called an optimal answer set of Π if A is an answer set of Π \WC (Π)

and OBΠ(A) is minimal over all the answer sets of Π \WC (Π). The optimal answer sets of
a non-ground program are given by the optimal answer sets of its grounding.

15



Chapter 3

Meta-Programming Approach

The following approach towards debugging of logic programs under the answer-set semantics
is inspired by the idea of algorithmic debugging, using expected and actual outcomes of a
program’s evaluation for locating the source of emerging bugs. The debugging method can be
applied to propositional disjunctive programs and is itself based on answer-set programming.

3.1 Basic Method

The central debugging question addressed here is, why interpretations of the considered pro-
gram to debug, Π, are not answer sets of Π. We distinguish between four types of errors, for
explaining why a particular interpretation I for Π, expected to be an answer set of Π, is not
an answer set:

1. Unsatisfied rules: If a rule r ∈ Π is unsatisfied by I, the logical implication represented
by r is violated, and thus I is no classical model of Π.

2. Not externally supported loops: If a loop Γ of Π, where Γ ⊆ I, is not externally supported
by Π with respect to I, the truth of the atoms in Γ is self-caused only such that the
minimality criterion for answer sets is not met by I.

3. Violated integrity constraints: If the body of a constraint c ∈ Π is satisfied by I, I
cannot be an answer set of Π. Note that this is just a special case of a rule unsatisfied
by I.

4. Unsupported atoms: If an atom a ∈ I is not supported by Π with respect to I, there
is no applicable rule in Π for deriving a exclusively. Note that errors of this kind are
special cases of not externally supported loops, as {a} is a trivial loop Γ of Π which is
not externally supported by Π with respect to I.

This selection of error-types is redundant in the sense that for deciding whether an interpre-
tation is an answer set, it suffices to detect unsatisfied rules and not externally supported
loops of Π, as shown by Lee [39]. However, by allowing more types of errors, we get a more
differentiated insight in the context of program Π under interpretation I. From a developer’s
point of view, integrity constraints play a rather different role than other rules, as they are
used to restrict results, rather than to generate them. Therefore, we find it useful to handle
their violations separately. Moreover, by this differentiation, our debugging technique allows

16



3.1. BASIC METHOD

for restricting the search for errors to interpretations for Π which are not violating any in-
tegrity constraint. Also from the programmer’s perspective, unsupported atoms may seem to
be more palpable reasons for errors than not externally supported loops of Π. Furthermore,
these two types of error are usually corrected in a different way, since correcting an externally
unsupported loop involves the identification of multiple rules of Π involved in the loop, which
is not necessary when coping with unsupported atoms.

In this approach, debugging is done by ASP-meta-interpretation. The considered propo-
sitional disjunctive program to debug, Π, is translated into a non-disjunctive non-ground
meta-program, DM(Π). The debugging results can be read off the answer sets of DM(Π).

Each answer set of DM(Π) gives reasons why a particular interpretation I of Π is not an
answer set of Π, and for every interpretation for Π which is not an answer set of Π, there is at
least one such answer set of DM(Π), containing so-called error-indicating atoms. A rule r ∈ Π,
unsatisfied by interpretation I, is detected by the occurrence of an atom unsatisfied(lr) in an
answer set of DM(Π), associated to I. Furthermore, unsupported(la) indicates an unsupported
atom a, violated(lc) a violated integrity constraint c, and selfCaused(la) an atom a in a not
externally supported loop.

As stated, there can be more than one answer set of DM(Π) associated to a single inter-
pretation I for Π. This is because the detection of not externally supported loops is done
by considering one loop Γ of Π at most in every answer set of the meta-program and testing
the atoms in Γ for external support. Note that for every interpretation for Π which is not an
answer set of Π there is an answer set of the meta-program not considering any loop.

As an example, consider program Πex , consisting of the rules

r1 = night ∨ day← ,
r2 = bright← candlelight ,
r3 = ← night , bright ,not torch on ,
r4 = candlelight← .

Πex has only the answer set{candlelight , day , bright}, however, the programmer expects also
I = {candlelight ,night , bright} to be an answer set of Πex .

The answer sets of meta-program DM(Πex ), projected to the predicates int/1, violated/1,
unsatisfied/1, unsupported/1, and selfCaused/1, include the following set:

S = {int(lbright), int(lcandlelight), int(lnight), violated(lr3), unsatisfied(lr3)}.

The atoms over the predicate int/1 describe the considered interpretation I. From the occur-
rence of violated(lr3) in S, we know that r3 is an integrity constraint, violated under I. Since
a violated constraint is a special case of an unsatisfied rule, we also have unsatisfied(lr3) ∈ S.

In this example, the question is why a specific interpretation I, which the programmer
intends to be an answer set, is not an answer set of the considered program. We can restrict
the answer sets of DM(Πex ) to those which are associated to I, by joining DM(Πex ) with
constraints on the predicate int/1 specifying the considered interpretations:

← not int(candlelight), ← not int(night), ← not int(bright),
← int(day), ← int(torch on).

The addressed debugging problem can also be broadened from asking why a single inter-
pretation is no answer set of program Π, to the question why a specified class of interpre-
tations for Π do not contain answer sets of Π. This class can be defined by programs using

17



CHAPTER 3. META-PROGRAMMING APPROACH

the meta-atoms of DM(Π). Here, we may combine various criteria for choosing between the
considered interpretations, e.g. we can select all interpretations in which specific atoms are
(not) contained, specific rules are (not) applicable, and specific errors occur. Note, however,
that the resulting answer sets of the meta-program refer to the specified interpretations for
Π individually, not to the class as a whole. Subsection 3.4 will deal with similar and more
advanced restrictions of the search-space.

Generally, ASP-meta-programming is a powerful approach to analysing programs which
has been used previously in various contexts [25, 20, 45]. The meta-program DM(Π) can
easily extended to address several sorts of debugging requests, e.g., subprograms of DM(Π)
can also be used to investigate the context of actual answer sets of Π.

3.2 Overall Architecture

Before presenting the technical details of this approach, it is helpful to provide a short overview
of the architecture of the meta-program DM(Π) for Π.

The program DM(Π) can be partitioned into several modules πχ, where

χ ∈ {in(Π ), aux , int , ap, dpcy , loop, ic, supp, sat , ext ,noAS},

each of which serving a different purpose. The way they are designed allows us to introduce
the overall program step by step, using the properties of potential usage [22] between the
modules.

In the following, we will shortly describe the intuitive meanings of the individual mod-
ules πχ of DM(Π):

• πin(Π ) provides an encoding of the original program Π to debug. It consists of facts,
stating for each rule r ∈ Π which atoms in A occur in the head, the positive body, and
the negative body of r, respectively. πin(Π ) can be seen as the input part of DM(Π)
and is used by all other modules for reasoning about Π.

• πaux is a set of auxiliary meta-rules, identifying all rules and atoms of Π.

• πint guesses an interpretation I for Π. Thus, other modules may identify properties of
Π under I.

• πap checks for each rule of Π whether it is applicable or blocked under interpretation I
which was guessed by module πint .

• πdpcy derives the positive dependency graph of Π and detects its strongly connected
components.

• πloop guesses a loop Γ within a strongly connected component of the positive dependency
graph of Π.

• πic detects integrity constraints of Π which are violated under interpretation I.

• πsupp detects atoms in interpretation I which are unsupported by Π with respect to I.

• πsat detects rules of Π for which the respective bodies are not satisfied by interpreta-
tion I.

18



3.3. META-PROGRAM

• πext checks whether loop Γ, guessed by module πloop , is externally supported by Π with
respect to interpretation I.

• πnoAS is used to filter out all meta-answer-sets where no error was detected.

The individual modules can be joined to subprograms Dχ(Π) of DM(Π), χ ∈ {in(Π ),
aux , int , ap, dpcy , loop, ic, supp, sat , ext ,noAS}, according to an auxiliary relation �D , speci-
fying which modules require which other modules to achieve meaningful results. E.g., guessing
an interpretation I for Π is needed for detecting violated constraints of Π under I, thus module
πint is a prerequisite of module πic , i.e., πint�D πic holds.

The intuitive meaning of a subprogram Dχ(Π) of DM(Π) is the same as described above
for πχ. However, Dχ(Π) can be used as stand-alone program, while the individual modules
are just program fragments which require further input in order to provide useful debugging
information.

We will introduce the notion of meta-answer-sets for Π which refers to specific supersets
of the answer sets of subprograms Dχ(Π). According to which modules are a subset of Dχ(Π),
meta-answer-sets provide different features, like, e.g., checking of rule applicability, detection
of loops, or detection of unsatisfied rules. The answer sets of the overall program DM(Π)
incorporate all these features.

In the course of introducing DM(Π) step by step, we will prove various properties of the
respective subprograms which are built on each other.

3.3 Meta-Program

3.3.1 Meta-Programs and Meta-Answer-Sets

For reasoning about a program Π over A within another answer-set program, an adequate
alphabet is needed for expressing Π on the meta-level. The following definition introduces
such an alphabet, AM(A), depending on the original alphabet A for Π, and specifies the class
of programs which we use for debugging.

Definition 3.1 Let A = 〈P,V, C〉 be an alphabet for propositional disjunctive logic programs
and L the set of all rules over A. Then, a meta-program (over A) is a non-ground non-
disjunctive program over AM(A), where AM(A) = 〈PM,VM, CM〉,

PM= { head/2, bodyP/2, bodyN /2, atom/1, rule/1, int/1, int/1, ap/1, bl/1, dpcy/2,

strCon/2, loop/1, loop/1, violated/1, hasHead/1, otherHeadInI /2, oHOfApRinI /1,
unsupported/1, anyHeadInI /1, unsatisfied/1, extSupp/0, anyBInLoop/2,
hInINotLoop/1, selfCaused/1,noAnswerSet/0},

VM is a set of variables, and CM is a set of constants such that there is a bijection l : L∪C →
CM. We will denote the value l(x) also by lx. 2

Intuitively the elements of CM represent labels for the rules and atoms over A. Therefore, the
atoms and rules of programs over A are the objects of reasoning in meta-programs over A.
The informal meanings of the predicate symbols in PM is given in Table 3.1.

We will call an answer set of a meta-program a meta-answer-set :

19



CHAPTER 3. META-PROGRAMMING APPROACH

Predicate Argument(s) Intended meaning
head/2 lr, la Atom a is in the head of rule r.
bodyP/2 lr, la Atom a is in the positive body of rule r.
bodyN /2 lr, la Atom a is in the negative body of rule r.
atom/1 la a is an atom in program Π to debug.
rule/1 lr r is a rule in Π.
int/1 la a is element of considered interpretation I.
int/1 la a is not element of considered interpretation I.
ap/1 lr Rule r is applicable under I.
bl/1 lr Rule r is blocked under I.
dpcy/2 la1 , la2 Atom a1 positively depends on atom a2.
strCon/2 la1 , la2 Atoms a1, a2 are members of the same strongly connected

component within the positive dependency graph of Π.
loop/1 la Atom a is a member of the considered loop Γ of Π.
loop/1 la Atom a is not a member of the considered loop Γ of Π.
violated/1 lr Rule r is a violated integrity constraint.
hasHead/1 lr The head of rule r is not empty.
otherHeadInI /2 lr, la There is some b, b 6= a such that a, b ∈ head(r) ∩ I for

rule r.
oHOfApRinI /1 la There is an applicable rule r for which a is the only atom

such that a ∈ head(r) ∩ I.
unsupported/1 la Atom a is unsupported by Π with respect to the consid-

ered interpretation I.
anyHeadInI /1 lr There is an atom which is in the head of rule r and in I.
unsatisfied/1 lr The body of rule r is satisfied but there is no atom which

is in the head of r and in I.
extSupp/0 Considered loop Γ is externally supported.
anyBInLoop/2 lr, la There is an atom in the body of rule r which is in the

same loop as atom a.
hInINotLoop/1 lr There is some atom a which is not in the considered loop

such that a ∈ head(r) ∩ I.
selfCaused/1 lr, la Atom a is in the considered interpretation I but in a loop

which is not externally supported.
noAnswerSet/0 Considered interpretation I is no answer set of Π.

Table 3.1: Predicates of AM(A) and their meanings

20



3.3. META-PROGRAM

Definition 3.2 Let A be an alphabet for propositional disjunctive logic programs, and ΠM
a meta-program over AM(A). We call every set AM ∈ AS (ΠM) a meta-answer-set (over A).
Furthermore, we will refer to atoms over AM(A) as meta-atoms (over A). 2

In what follows, we will characterise specialised classes of meta-answer-sets, providing in-
formation about a program Π over A to debug. To this end, we introduce the notion of a
Meta-Program for Π in the next subsection.

3.3.2 Meta-Program for Π

Definition 3.3 Given a propositional disjunctive logic program Π over alphabetA, the meta-
program for Π is a meta-program DM(Π) over A for Π such that

DM(Π) = πin(Π ) ∪ πaux ∪ πint ∪ πdpcy ∪ πap ∪ πloop ∪ πic ∪ πsupp ∪ πsat ∪ πext ∪ πnoAS ,

where each πχ denotes a submodule of DM(Π) which will be defined and discussed in the
subsequent subsections. 2

We will sometimes use the set MOD(Π) of module names which is given by

MOD(Π) = {in(Π ), aux , int , ap, dpcy , loop, ic, supp, sat , ext ,noAS}.

The complete program can be found in Figure 3.1. For convenience, we call the meta-
program for Π, DM(Π), simply the meta-program, whenever Π is known from the context or
irrelevant.

3.3.3 Potential-Use Relation and Module Prerequisites

The meta-program is composed in a modular fashion which allows us to introduce it step
by step, by consecutively joining its modules πχ. Therefore, we make use of the notion of
potential usage of programs [22] which is closely related to splitting sets [43].

Definition 3.4 Let Π1 and Π2 be disjunctive programs. We say that Π2 potentially uses Π1

(denoted Π2 � Π1) iff each atom that occurs in some head of Π2 does not occur in Π1. 2

Later on, we will need the following proposition:

Proposition 3.5 Let Π1, Π2 and Π3 be disjunctive programs. Then,

1. (Π2 ∪Π3) � Π1 iff Π2 � Π1 and Π3 � Π1, and

2. Π3 � (Π1 ∪Π2) iff Π3 � Π1 and Π3 � Π2.

Proof. Part 1: (⇒) Assume that (Π2 ∪ Π3) � Π1 holds. Then, by Definition 3.4, no atom
in the head of any rule in Π2 ∪ Π3 occurs in Π1. Therefore, no atom in the head of any rule
in Π2 occurs in Π1 and no atom in the head of any rule in Π3 occurs in Π1. Thus, again by
Definition 3.4, it holds that Π2 � Π1 and Π3 � Π1.

(⇐) Assume that Π2 � Π1 and Π3 � Π1 holds. Then, by Definition 3.4, no atom in the
head of any rule in Π2 occurs in Π1 and no atom in the head of any rule in Π3 occurs in
Π1. Therefore, no atom in the head of any rule in Π2 ∪ Π3 occurs in Π1. Thus, again by
Definition 3.4, it holds that (Π2 ∪Π3) � Π1.

21



CHAPTER 3. META-PROGRAMMING APPROACH

{head(lr, la)←| a ∈ head(r) and r ∈ Π} ∪
{bodyP(lr, la)←| a ∈ body+(r) and r ∈ Π} ∪
{bodyN (lr, la)←| a ∈ body−(r) and r ∈ Π} ∪
{atom(A)← head( , A) ,
atom(A)← bodyP( , A) ,
atom(A)← bodyN ( , A) ,
rule(R)← head(R, ) ,
rule(R)← bodyP(R, ) ,
rule(R)← bodyN (R, ) ,
int(A)← atom(A),not int(A) ,
int(A)← atom(A),not int(A) ,
ap(R)← not bl(R), rule(R) ,
bl(R)← bodyN (R,A), int(A) ,
bl(R)← bodyP(R,A),not int(A) ,
dpcy(A,A)← atom(A) ,
dpcy(A1, A2)← head(R,A1), bodyP(R,A2) ,
dpcy(A1, A2)← dpcy(A1, A3), dpcy(A3, A2) ,
strCon(A1, A2)← dpcy(A1, A2), dpcy(A2, A1) ,

loop(A)← not loop(A), atom(A) ,

loop(A)← not loop(A), atom(A) ,

← loop(A1), loop(A2),not strCon(A1, A2) ,
violated(R)← ap(R),not hasHead(R) ,
hasHead(R)← head(R, ) ,
otherHeadInI (R,A)← head(R,A), head(R,A2), int(A), int(A2), A 6= A2 ,
oHOfApRinI (A)← ap(R), int(A), head(R,A),not otherHeadInI (R,A) ,
unsupported(A)← int(A),not oHOfApRinI (A) ,
anyHeadInI (R)← head(R,A), int(A) ,
unsatisfied(R)← ap(R),not anyHeadInI (R) ,
extSupp← head(R,A), ap(R), loop(A),not anyBInLoop(R),not hInINotLoop(R) ,
anyBInLoop(R)← bodyP(R,A), loop(A) ,
hInINotLoop(R)← head(R,A), int(A),not loop(A) ,
loopNotInI ← loop(A),not int(A) ,
selfCaused(A)← loop(A),not loopNotInI ,not extSupp ,
noAnswerSet← unsatisfied( ) ,
noAnswerSet← selfCaused( ) ,
← not noAnswerSet }

Figure 3.1: Meta-program DM(Π)

22



3.3. META-PROGRAM

πin(Π )

πaux

πdpcyπint

πloopπap

πic πsat πsupp πext

πnoAS

Figure 3.2: Partial potential use relation in DM(Π)

Part 2: (⇒) Assume that Π3 � (Π1 ∪Π2) holds. Then, by Definition 3.4, no atom in the
head of any rule in Π3 occurs in Π1 ∪ Π2. Therefore, no atom in the head of any rule in
Π3 occurs in either Π1 nor in Π2. Thus, again by Definition 3.4, it holds that Π3 � Π1 and
Π3 � Π2.

(⇐) Assume that Π3 � Π1 and Π3 � Π2 hold. Then, by Definition 3.4, no atom in the
head of any rule in Π3 occurs in either Π1 nor in Π2. Therefore, no atom in the head of any
rule in Π3 occurs in Π1 ∪Π2. Thus, again by Definition 3.4, it holds that Π3 � (Π1 ∪Π2).

Whenever a program Π2 potentially uses another program Π1, the answer sets of the
joined program, Π1∪Π2, can be computed from Π2 and the answer sets of Π1 in the following
way:

Proposition 3.6 ([22, 43]) Let Π = Π1 ∪ Π2 be a disjunctive program such that Π2 � Π1.
Then, it holds that

AS (Π) =
⋃

A∈AS(Π1)

(AS (A ∪Π2)).

We will exploit Proposition 3.6 and potential usage between modules of DM(Π) to gradually
built up DM(Π). Figure 3.2 illustrates the potential use relation between the modules (an
arrow from πχ to πϕ indicates πχ � πϕ). Note that only edges of interest are plotted here.

Informally speaking, each module πχ (except for πin(Π )) requires the output of other
modules in order to give reasonable results, as outlined in Section 3.2. These dependencies
are captured by the transitive prerequisites relation, �D , which is a subrelation of �.

23



CHAPTER 3. META-PROGRAMMING APPROACH

πin(Π )

πaux

πdpcyπint

πloopπap

πic πsat πsupp πext

πnoAS

Figure 3.3: Prerequisite relation �D between modules in DM(Π)

Definition 3.7 The prerequisite relation, �D , is given by

B = { (πaux , πin(Π )), (πint , πaux ), (πdpcy , πaux ), (πap , πint), (πloop , πdpcy),
(πic , πap), (πsupp , πap), (πsat , πap), (πext , πap), (πext , πloop),
(πnoAS , πic), (πnoAS , πsupp), (πnoAS , πsat), (πnoAS , πext)},

�D = B+,

where B+ is the transitive closure of B. If πχ�D πϕ holds, for χ, ϕ ∈ MOD(Π), then πϕ is a
prerequisite for πχ. 2

A better overview of this relation is provided in Figure 3.3 (again, an arrow from πχ to πϕ

indicates πχ�D πϕ). Intuitively, πχ�D πϕ expresses that the atoms derived by module πϕ are
semantically needed as input for module πχ.

3.3.4 Standalone Subprograms and Specialised Meta-Answer-Sets

Given the formalisation of module prerequisites, we can define subprograms Dχ(Π) of DM(Π),
consisting of modules such that all dependencies are fulfilled.

Definition 3.8 Dχ(Π) is the union of module πχ and all of its prerequisites:

Dχ(Π) = πχ ∪
⋃

πχ�D πϕ

πϕ,

where χ ∈MOD(Π). 2

24



3.3. META-PROGRAM

For example:
Dsat(Π) = πsat ∪ πap ∪ πint ∪ πaux ∪ πin(Π ),

Dloop(Π) = πloop ∪ πdpcy ∪ πaux ∪ πin(Π ), and

DnoAS (Π) =DM(Π).

Based on the programs Dχ(Π), we define corresponding categories of meta-answer-sets:

Definition 3.9 Let Π be a propositional disjunctive program over alphabet A. We say that
a set AM of atoms over AM(A) is a meta-answer-set for Π with respect to χ, or a χ-MAS for
Π, iff AM ∈ AS (Dχ(Π)∪D′), where D′ is a program over AM(A) such that D′ �Dχ(Π) and
χ ∈MOD(Π).

A set AM of atoms over AM(A) is called a meta-answer-set for Π iff AM is a χ-MAS
for Π, for some χ ∈MOD(Π). 2

Proposition 3.10 Let Π be a propositional disjunctive program over alphabet A, AM a set
of atoms over AM(A), and χ ∈ MOD(Π). If AM is a χ-MAS for Π, then AM is also a
ϕ-MAS for Π, for all ϕ ∈MOD(Π) such that πχ�D πϕ.

Proof. Consider some χ, ϕ ∈ MOD(Π) such that πχ�D πϕ, and assume that AM is a
χ-MAS for Π. By Definition 3.9, it holds that

AM ∈ AS (Dχ(Π) ∪ D′),

where D′ is a program over AM(A) such that D′ �Dχ(Π). By Definition 3.8, we have that

Dχ(Π) = πχ ∪
⋃

πχ�D πς

πς .

Since πχ�D πϕ, and by the transitivity of �D , we can rewrite the last statement as follows:

Dχ(Π) = πχ ∪ (
⋃

πχ�D πς �D πϕ

πς) ∪ πϕ ∪
⋃

πϕ�D πζ

πζ .

Again, by Definition 3.8, we get

Dχ(Π) = πχ ∪ (
⋃

πχ�D πς �D πϕ

πς) ∪ Dϕ(Π).

Therefore, we can rewrite D′ �Dχ(Π) as

D′ � πχ ∪ (
⋃

πχ�D πς �D πϕ

πς) ∪ Dϕ(Π).

From Proposition 3.5, we can derive that D′ �Dϕ(Π).
Now let us define

D′′ = πχ ∪
⋃

πχ�D πς �D πϕ

πς .

Hence,
Dχ(Π) = D′′ ∪ Dϕ(Π).

25



CHAPTER 3. META-PROGRAMMING APPROACH

D′′ is a union πα1 ∪ πα2 ∪ · · · ∪ παn of modules such that παi �D πϕ, for 1 ≤ i ≤ n, and

Dϕ(Π) = πϕ ∪
⋃

πϕ�D πζ

πζ

is a union πβ1 ∪ πβ2 ∪ · · · ∪ πβm of modules such that πβj = πϕ or πϕ�D πβj , for 1 ≤ j ≤ m.
By transitivity of �D , we have for 1 ≤ i ≤ n, 1 ≤ j ≤ m, that παi �D πβj , and since �D is a
subrelation of �, also παi � πβj holds. By repeated application of Proposition 3.5.2, we get
that παi �Dϕ(Π), for 1 ≤ i ≤ n. From that, by repeated application of Proposition 3.5.1, we
get that D′′ �Dϕ(Π).

Now, in view of the above, the condition

AM ∈ AS (Dχ(Π) ∪ D′)

can be written as
AM ∈ AS (Dϕ(Π) ∪ D′ ∪ D′′).

Furthermore, from D′ � Dϕ(Π) and D′′ � Dϕ(Π), we get by Proposition 3.5 that for D′′′ =
D′ ∪ D′′ it holds that D′′′ �Dϕ(Π). Thus, we have

AM ∈ AS (Dϕ(Π) ∪ D′′′)

for some D′′′ �Dϕ(Π). Therefore, by Definition 3.9, AM is a ϕ-MAS for Π.

We need the following two lemmas for showing several properties of meta-answer-sets:

Lemma 3.11 Let Π be a propositional disjunctive program over alphabet A, AM a set of
atoms over AM(A), χ ∈MOD(Π), ϕ ∈MOD(Π), and Hπχ the set of atoms which occur in
the head of a rule in Gr(Dχ(Π)), being a ground instance of a rule in πχ. If AM is both a
χ-MAS and a ϕ-MAS for Π such that πχ�D πϕ, it holds that AM \Hπχ is a ϕ-MAS for Π.

Proof. Assume AM is both a χ-MAS and a ϕ-MAS for Π such that πχ�D πϕ. Then, by
Definition 3.9 it holds that AM ∈ AS (Dχ(Π)∪D′) such that D′�Dχ(Π). Therefore, we have
AM ∈ AS ((Dχ(Π) \ πχ) ∪ πχ ∪ D′). As (πχ ∪ D′) � (Dχ(Π) \ πχ), we get by Proposition 3.6
that

AM ∈
⋃

A′∈AS(Dχ(Π)\πχ)

AS (A′ ∪ πχ ∪ D′).

Therefore, for some A′ ∈ AS (Dχ(Π) \ πχ), it holds that AM ∈ AS (A′ ∪ πχ ∪ D′). As A′ is a
set of facts in A′ ∪ πχ ∪ D′, every answer set of A′ ∪ πχ ∪ D′ contains all atoms in A′. Thus,
we have that

AM = A′ ∪ Fπχ ∪ FD′ ,

where Fπχ ⊆ Hπχ and FD′ is a set of atoms such that every atom in FD′ occurs in the head
of a ground instance of some rule in D′. Note that since D′ � Dχ(Π) holds, FD′ does not
contain any atom from Gr(Dχ(Π)), and thus FD′ does not contain any ground instances of
atoms from A′ and Fπχ . It holds that

AM \Hπχ = A′ ∪ FD′ ,

and therefore also
AM \Hπχ ∈ AS (A′ ∪ FD′).

26



3.3. META-PROGRAM

As A′ ∈ AS (Dχ(Π) \ πχ), it holds that

AM \Hπχ ∈
⋃

A′∈AS(Dχ(Π)\πχ)

AS (A′ ∪ FD′).

As FD′ � (Dχ(Π) \ πχ), we get by Proposition 3.6 that

AM \Hπχ ∈ AS ((Dχ(Π) \ πχ) ∪ FD′).

From πχ�D πϕ we know that Dχ(Π) \ πχ = Dϕ(Π) ∪M , where M is a union of modules such
that M �Dϕ(Π). It holds that

AM \Hπχ ∈ AS (Dϕ(Π) ∪M ∪ FD′).

As (M ∪ FD′) �Dϕ(Π), by Definition 3.9, AM \Hπχ is a ϕ-MAS for Π.

Lemma 3.12 Let Π be a propositional disjunctive program over alphabet A, AM a set of
atoms over AM(A), χ ∈ MOD(Π), and Hπχ the set of atoms which occur in the head of a
rule in Gr(Dχ(Π)), being a ground instance of a rule in πχ. If AM is a χ-MAS for Π, then
it holds that AM ∈ AS ((AM \Hπχ) ∪ πχ).

Proof. Assume AM is a χ-MAS for Π. Then, by Definition 3.9 it holds that AM ∈
AS (Dχ(Π) ∪ D′) such that D′ �Dχ(Π). Thus, by Proposition 3.6, we get that

AM ∈
⋃

A′∈AS(Dχ(Π))

AS (A′ ∪ D′).

Therefore, for some A′ ∈ AS (Dχ(Π)), it holds that AM ∈ AS (A′ ∪D′). As A′ is a set of facts
in A′ ∪ D′, every answer set of A′ ∪ D′ contains all atoms in A′. Thus, we have that

AM = A′ ∪ F ,

where F is a set of atoms such that every atom in F occurs in the head of a ground instance
of some rule in D′. Note that since D′ � Dχ(Π) holds, F does not contain any atom from
Gr(Dχ(Π)), and thus F does not contain any ground instances of atoms from πχ.

As (AM \Hπχ) ∪ πχ is an absolutely tight program, for showing that AM ∈ AS ((AM \
Hπχ)∪πχ), by Theorem 2.34 it suffices to show that AM satisfies Gr((AM\Hπχ)∪πχ) and AM
is supported by Gr((AM \Hπχ)∪πχ). Clearly, AM satisfies every fact in AM \Hπχ . Consider
a rule rM in Gr((AM \Hπχ)∪ πχ), being a ground instance of some rule in πχ. Assume that
rM is applicable under AM. Then, it holds that rM is also applicable under A′. As rM is a
rule in Gr(Dχ(Π)) and A′ is an answer set of Dχ(Π), it holds that head(rM)∩A′ 6= ∅. Hence,
we have that head(rM) ∩AM 6= ∅, and therefore AM satisfies rM.

As for every a ∈ AM \ Hπχ , a ← is a fact in Gr((AM \ Hπχ) ∪ πχ), {a} is supported
by Gr((AM \ Hπχ) ∪ πχ) with respect to AM. Consider an arbitrary atom a ∈ AM ∩Hπχ .
Then, it holds that a ∈ A′. Since A′ is an answer set of Dχ(Π), {a} must be supported by
Dχ(Π) with respect to A′. Moreover, since a ∈ Hπχ , a rule from Dχ(Π) supporting {a} must
be a ground instance of a rule in πχ, as πχ � (Dχ(Π) \ πχ). Hence, there must be a ground
instance rM of a rule in πχ such that head(rM) ∩ A′ = {a} and rM is applicable under A′.
Then, since AM = A′ ∪ F and F does not contain any ground instances of atoms from πχ,

27



CHAPTER 3. META-PROGRAMMING APPROACH

also head(rM) ∩ AM = {a}. Furthermore, rM is also a rule in Gr((AM \Hπχ) ∪ πχ), being
applicable under AM. Thus, {a} is supported by Gr((AM \Hπχ) ∪ πχ) with respect to AM.

As for every atom a ∈ AM, {a} is supported by Gr((AM \ Hπχ) ∪ πχ) with respect to
AM, by Proposition 2.31, AM is supported by Gr((AM \Hπχ) ∪ πχ).

Hence, AM is an answer set of ((AM \Hπχ) \Hπχ) ∪ πχ.

In the following subsections, we will describe the modules of the meta-program in detail.

3.3.5 Transformation to the Meta-Level

The input for the debugging system is an encoding πin(Π ) of a program Π to debug.

Definition 3.13 Let Π be a propositional disjunctive logic program. Then, the program
πin(Π ) is given by the following set of rules:

{head(lr, la)← | a ∈ head(r) and r ∈ Π} ∪
{bodyP(lr, la)← | a ∈ body+(r) and r ∈ Π} ∪
{bodyN (lr, la)← | a ∈ body−(r) and r ∈ Π}. 2

Having Π encoded this way, we can reason about its properties at the meta-level.

Example 3.14 Consider the following program:

Πex = { r1 = a ∨ b← c,not d,

r2 = c← d,

r3 = d ∨ e← }.

The encoding πin(Πex ) for Πex is then as follows:

πin(Πex ) = { head(lr1 , la)← ,

head(lr1 , lb)← ,

bodyP(lr1 , lc)← ,

bodyN (lr1 , ld)← ,

head(lr2 , lc)← ,

bodyP(lr2 , ld)← ,

head(lr3 , lc)← ,

head(lr3 , le)← }. ♦

The following two results are obvious.

Proposition 3.15 For every propositional program Π, it holds that

AS (πin(Π )) = {{a | a← ∈ πin(Π )}}.

28



3.3. META-PROGRAM

Proposition 3.16 Let AM be the unique in(Π )-MAS for a propositional disjunctive pro-
gram Π. Then, it holds that

head(lr, la) ∈ AM iff a ∈ head(r),

bodyP(lr, la) ∈ AM iff a ∈ body+(r), and

bodyN (lr, la)∈ AM iff a ∈ body−(r).

For the program Πex from Example 3.14 we have that

AS (πin(Πex )) = {{ head(lr1 , la), head(lr1 , lb), bodyP(lr1 , lc), bodyN (lr1 , ld),

head(lr2 , lc), bodyP(lr2 , ld),

head(lr3 , lc), head(lr3 , le)}}.

3.3.6 Auxiliary Rules

Subprogram πaux consists of auxiliary meta-rules which are used to identify all rules and
atoms occurring in Π:

Definition 3.17 Module πaux consists of the following rules:

atom(A)← head( , A) , (3)

atom(A)← bodyP( , A) , (4)

atom(A)← bodyN ( , A) , (5)

rule(R)← head(R, ) , (6)

rule(R)← bodyP(R, ) , (7)

rule(R)← bodyN (R, ) . (8)

2

Since Daux (Π) is normal and stratified, we know by Proposition 2.39 that it has a unique
answer set Aaux Informally speaking, Aaux extends the unique answer set of Din(Π) by meta-
atoms indicating which rules and atoms are contained in Π.

Proposition 3.18 Let AM be an aux-MAS for a propositional disjunctive program Π. Then,
it holds that

atom(la)∈ AM iff a ∈ HB(Π) and

rule(lr) ∈ AM iff r ∈ Π.

Proof. Part 1: (⇒) Assume that atom(la) ∈ AM holds. Therefore, there must be an applica-
ble rule in Gr(Daux (Π)) such that atom(la) is in the head of this rule. Only ground instances
of rules (3), (4), and (5) can satisfy this property. Thus, for some lr, either head(lr, la) ∈ AM,
bodyP(lr, la) ∈ AM, or bodyN (lr, la) ∈ AM. From that, we know by Proposition 3.16 that a
is an atom in the head, in the positive, or in the negative body of some rule r ∈ Π, and hence
a ∈ HB(Π).

(⇐) Assume that a ∈ HB(Π) holds. Therefore, a must be in the head, in the positive,
or in the negative body of some rule r ∈ Π. From that, we know by Proposition 3.16 that
either head(lr, la) ∈ AM, bodyP(lr, la) ∈ AM, or bodyN (lr, la) ∈ AM. Thus, there must be

29



CHAPTER 3. META-PROGRAMMING APPROACH

an applicable ground instance of one of the rules (3), (4), and (5) in Gr(Daux (Π)) such that
atom(la) is in the head of this rule. Therefore, we have that atom(la) ∈ AM.

Part 2: (⇒) Assume that rule(lr) ∈ AM holds. Therefore, there must be an applicable
rule in Gr(Daux (Π)) such that rule(lr) is in the head of this rule. Only ground instances of
rules (6), (7), and (8) can satisfy this property. Thus, for some la, either head(lr, la) ∈ AM,
bodyP(lr, la) ∈ AM, or bodyN (lr, la) ∈ AM. From that, we know by Proposition 3.16 that a
is an atom in the head or in the body of rule r ∈ Π, and hence r ∈ Π.

(⇐) Assume rule r ∈ Π. By definition of a rule, there must be an atom a in either the
head, in the positive or in the negative body of r. From that, we know by Proposition 3.16
that either head(lr, la) ∈ AM, bodyP(lr, la) ∈ AM, or bodyN (lr, la) ∈ AM. Thus, there must
be an applicable ground instance of one of the rules (6), (7), and (8) in Gr(Daux (Π)) such
that rule(lr) is in the head of this rule. Therefore, we have that rule(lr) ∈ AM.

3.3.7 Guessing an Interpretation

The purpose of module πint , described next, is guessing an interpretation I for the program Π
to debug. This is done because each answer set of meta-program DM(Π) is used to investigate
the outcome of Π, under a particular interpretation.

Definition 3.19 Let Π be a propositional disjunctive program. Then, πint consists of the
following two rules:

int(A)← atom(A),not int(A) , (9)

int(A)← atom(A),not int(A) . (10)

2

Intuitively, these two rules partition the atoms occurring in Π into two categories such that
they either belong to an interpretation or not.

For associating meta-answer-sets with interpretations for Π, we introduce the notion of
meta-answer-sets guessing an interpretation:

Definition 3.20 Let AM be a meta-answer-set for a propositional disjunctive program Π
such that AM is an int-MAS for Π. We say that AM guesses interpretation I precisely when
I is an interpretation for Π and, for all a ∈ HB(Π), int(la) ∈ Aint iff a ∈ I. 2

Proposition 3.21 Let I be an interpretation for a propositional disjunctive program Π.
Then, there is an Aint ∈ AS (Dint(Π)) such that, for all a ∈ HB(Π), int(la) ∈ Aint iff
a ∈ I.

Proof. Since I is an interpretation for Π, we have a ∈ HB(Π) for all a ∈ I, we know
by Proposition 3.18 that atom(la) ∈ Aaux , where Aaux is the unique answer set of Daux (Π).
From that and πint � Daux (Π), by Proposition 3.6, we can conclude that AS (Dint(Π)) =
AS (Daux (Π) ∪ πint) = AS (Aaux ∪ πint).

Consider Aint = Aaux ∪{int(la) | a ∈ I}∪{int(la) | a ∈ HB(Π) \ I}. Note that Aint meets
the condition that int(la) ∈ Aint iff a ∈ I. We show that Aint ∈ AS (Aaux ∪ πint).

First, note that Gr(Aaux ∪ πint) is an absolutely tight program, since the atoms of the
facts in Aaux have no outgoing edges in the positive dependency graph G of Gr(Aaux ∪ πint),
and the ground instances of the rules in πint only have edges to atoms in Aaux in G.

30



3.3. META-PROGRAM

In order to show that Aint ∈ AS (Aaux ∪ πint), since Gr(Aaux ∪ πint) is an absolutely tight
program, by Theorem 2.34 it suffices to verify that Aint satisfies Gr(Aaux ∪ πint) and Aint is
supported by Gr(Aaux ∪ πint).

Since Aaux ⊆ Aint , all ground instances of rules from Aaux are satisfied by Aint . We will
now consider the remaining rules in Gr(Aaux ∪ πint), namely the ground instances of the
rules (9) and (10).

Consider the rule
rM = int(la)← atom(la),not int(la) ,

being a ground instance of rule (9). Assume that Aint |= body(rM). We have that atom(la) ∈
Aint and int(la) /∈ Aint . From atom(la) ∈ Aint and since Aint is an aux -MAS for Π, by
Proposition 3.18, we get that a ∈ HB(Π). From that and int(la) /∈ Aint , we know by
definition of Aint that a ∈ I. Hence, also by definition of Aint , we have that int(la) ∈ Aint .
We showed that each ground instance of rule (9) is satisfied by Aint .

Now consider
rM = int(la)← atom(la),not int(la) ,

being a ground instance of rule (10). Assume that Aint |= body(rM). We have that atom(la) ∈
Aint and int(la) /∈ Aint . From atom(la) ∈ Aint and since Aint is an aux -MAS for Π, by
Proposition 3.18, we get that a ∈ HB(Π). From int(la) /∈ Aint , we know by definition of Aint

that a /∈ I. Therefore, also by definition of Aint , we have that int(la) ∈ Aint . We showed that
each ground instance of rule (9) is satisfied by Aint . We have that Aint satisfies Gr(Aaux∪πint)
and will now show that Aint is supported by Gr(Aaux ∪ πint). Since Gr(Aaux ∪ πint) is non-
disjunctive, by Proposition 2.31 it is sufficient to show that for every aM ∈ Aint , {aM} is
supported by Gr(Aaux ∪ πint) with respect to Aint .

For all atoms aM ∈ Aint , we have either aM ∈ Aaux , aM ∈ {int(la) | a ∈ I} or aM ∈
{int(la) | a ∈ HB(Π) \ I}. In case aM ∈ Aaux , {aM} is supported by Gr(Aaux ∪ πint) with
respect to Aint , because aM ← is a fact in Aaux ∪ πint .

If aM = int(la), for some a ∈ I, consider the rule

rM = int(la)← atom(la),not int(la) ,

being a ground instance of rule (9). Since a ∈ I, we have that a ∈ HB(Π), and since Aint

is an aux -MAS for Π, by Proposition 3.18, we get that atom(la) ∈ Aint . From a ∈ I we can
conclude by definition of Aint that int(la) /∈ Aint . Hence, Aint |= body(rM), and therefore,
for all aM ∈ {int(la) | a ∈ I}, {aM} is supported by Gr(Aaux ∪ πint) with respect to Aint .

Finally, if aM = int(la), for some a ∈ HB(Π) \ I, consider the rule

rM = int(la)← atom(la),not int(la) ,

being a ground instance of rule (10). Since a ∈ HB(Π) \ I and Aint is an aux -MAS for Π, by
Proposition 3.18, we get that atom(la) ∈ Aint . From a /∈ I we can conclude by definition of
Aint that int(la) /∈ Aint . Hence, Aint |= body(rM), and therefore, for all aM ∈ {int(la) | a ∈
HB(Π) \ I}, {aM} is supported by Gr(Aaux ∪ πint) with respect to Aint .

We showed that Aint is supported by Gr(Aaux ∪πint). Since Aint satisfies Gr(Aaux ∪πint),
Aint is supported by Gr(Aaux ∪ πint), and Gr(Aaux ∪ πint) is an absolutely tight program,
by Theorem 2.34, we have that Aint ∈ AS (Gr(Aaux ∪ πint)), and therefore also Aint ∈
AS (Dint(Π)) holds.

The next two corollaries follow immediately from Proposition 3.21 and Definition 3.20:

31



CHAPTER 3. META-PROGRAMMING APPROACH

Corollary 3.22 Let I be an interpretation for a propositional disjunctive program Π. Then,
there is an Aint ∈ AS (Dint(Π)) such that Aint is an int-MAS for Π guessing I.

Corollary 3.23 Let Π be a propositional disjunctive program and Aint an int-MAS for Π.
Then, there is an interpretation I for Π such that Aint guesses I.

3.3.8 Rule Applicability

The purpose of module πap is extending an int-MAS for Π guessing interpretation I with
meta-atoms stating which rules of Π are applicable or blocked under I.

Definition 3.24 Module πint consists of the following rules:

ap(R)← not bl(R), rule(R) , (11)

bl(R)← bodyN (R,A), int(A) , (12)

bl(R)← bodyP(R,A),not int(A) . (13)

2

Lemma 3.25 Let AM be an int-MAS for a propositional disjunctive program Π guessing
interpretation I such that πap �AM. Then, AM ∪πap has a unique answer set Aap such that
ap(lr) ∈ Aap (respectively bl(lr) ∈ Aap) iff r is an applicable (respectively blocked) rule in Π
under I.

Proof. Since Gr(AM ∪πap) is normal and stratified program, we know by Proposition 2.39
that Gr(AM ∪ πap) has a single answer set, and hence also AM ∪ πap has a single answer set.

Consider the set Aap = AM ∪ {ap(lr) | r ∈ GEN(Π, I)} ∪ {bl(lr) | r ∈ Π \ GEN(Π, I)}.
Note that since AM is an int-MAS for Π guessing I, and (Aap \ AM) � AM, also Aap is an
int-MAS for Π guessing I. From the definition of Aap , we get the property that ap(lr) ∈ Aap

(respectively bl(lr) ∈ Aap) holds iff r is applicable (respectively blocked) in Π under I.
The remaining task is showing that Aap is the answer set of AM∪πap . Since Gr(AM∪πap)

is absolutely tight, by Theorem 2.34, it suffices to show that Aap satisfies Gr(AM ∪ πap) and
Aap is supported by Gr(AM ∪ πap).

Since AM ⊆ Aap , the facts of AM are satisfied by Aap . The remaining rules of Gr(AM ∪
πap) are the ground instances of the rules (11), (12), and (13).

First, consider a rule

rM = ap(lr)← not bl(lr), rule(lr) ,

being a ground instance of rule (11). Assume that Aap |= body(rM) but also ap(lr) /∈ Aap hold.
Thus, bl(lr) /∈ Aap and rule(lr) ∈ Aap . Since Aap is an aux -MAS for Π, by Proposition 3.18,
r is a rule of Π. By definition of Aap and since bl(lr) /∈ Aap , we get that r ∈ GEN(Π, I).
Therefore, by definition of Aap , we have ap(lr) ∈ Aap which contradicts the assumption that
ap(lr) /∈ Aap . Thus, ground instances of rule (11) are satisfied by Aap .

Now, consider a rule

rM = bl(lr)← bodyN (lr, la), int(la) ,

being a ground instance of rule (12). Assume that Aap |= body(rM) but also bl(lr) /∈ Aap

hold. Thus, bodyN (lr, la), int(la) ∈ Aap . Since Aap is an int-MAS for Π guessing I, we know

32



3.3. META-PROGRAM

that a ∈ I, and by Proposition 3.18, r is a rule of Π. Furthermore, a ∈ body−(Π). Rule r
cannot be applicable under I since a ∈ body−(Π) but a ∈ I. Thus, we have r ∈ Π \ GEN(Π, I).
Therefore, by definition of Aap , we have bl(lr) ∈ Aap which contradicts the assumption that
bl(lr) /∈ Aap . Thus, ground instances of rule (12) are satisfied by Aap .

Finally, consider a rule

rM = bl(lr)← bodyP(lr, la),not int(la) ,

being a ground instance of rule (13). Assume that Aap |= body(rM) but also bl(lr) /∈ Aap hold.
Thus, bodyP(lr, la) ∈ Aap and int(la) /∈ Aap . Since Aap is an int-MAS for Π guessing I, we
know that a /∈ I, and by Proposition 3.18, r is a rule of Π. Furthermore, a ∈ body+(Π). Rule r
cannot be applicable under I since a ∈ body+(Π) but a /∈ I. Thus, we have r ∈ Π \ GEN(Π, I).
Therefore, by definition of Aap , we have bl(lr) ∈ Aap which contradicts the assumption that
bl(lr) /∈ Aap . Thus, ground instances of rule (13) are satisfied by Aap . Therefore, we have
shown that Aap satisfies Gr(AM ∪ πap).

We now show that Aap is supported by Gr(AM ∪ πap). Since Gr(AM ∪ πap) is non-
disjunctive, by Proposition 2.31 it is sufficient to show that for every aM ∈ Aap , {aM} is
supported by Gr(AM ∪ πap) with respect to Aap .

Clearly, for all atoms aM ∈ Aap , we have either aM ∈ AM, aM ∈ {ap(lr) | r ∈ GEN(Π, I)},
or aM ∈ {bl(lr) | r ∈ Π \ GEN(Π, I)}. In case aM ∈ AM, {aM} is trivially supported by
AM ∪ πap with respect to Aap , because aM is a fact in AM ∪ πap .

Assume thataM ∈ {ap(lr) | r ∈ GEN(Π, I)} holds. Then, it holds that aM = ap(lr),
where r is a rule of Π, applicable under I. Thus, by definition of Aap , bl(lr) /∈ Aap , and since
Aap is an aux -MAS for Π, by Proposition 3.18, we have that rule(lr) ∈ Aap . Now, for rule

rM = ap(lr)← not bl(lr), rule(lr) ,

being a ground instance of rule (11), we have that rM ∈ Gr(AM ∪ πap), head(rM) = {aM}
and Aap |= body(rM). Thus, {aM} is supported by Gr(AM ∪ πap) with respect to Aap .

Now, assume that aM ∈ {bl(lr) | r ∈ Π \ GEN(Π, I)}. Then, it holds that aM = bl(lr),
where r is a rule of Π, blocked under I. Thus, there must be some a ∈ body(r) such that
either a ∈ body−(r) but a ∈ I or a ∈ body+(r) but a /∈ I. Consider the first case, a ∈ body−(r)
but a ∈ I. Since Aap is an int-MAS for Π guessing I, we know that int(la) ∈ Aap and, by
Proposition 3.18, we have bodyN (lr, la) ∈ Aap . Therefore, for rule

rM = bl(lr)← bodyN (lr, la), int(la) ,

being a ground instance of rule (12), we have that rM ∈ Gr(AM ∪ πap), {aM} = head(rM),
and Aap |= body(rM). Thus, {aM} is supported by AM ∪ πap with respect to Aap .

It remains to consider the second case, a ∈ body+(r) but a /∈ I. Since Aap is an int-MAS
for Π guessing I, we know that int(la) /∈ Aap and, by Proposition 3.18, we have bodyP(lr, la) ∈
Aap . Therefore, for rule

rM = bl(lr)← bodyP(lr, la),not int(la) ,

being a ground instance of rule (12), we have that rM ∈ Gr(AM ∪ πap), {aM} = head(rM),
and Aap |= body(rM). Thus, {aM} is again supported by Gr(AM ∪πap) with respect to Aap .

Summarising, for all atoms aM ∈ Aap , {aM} is supported by AM ∪ πap with respect to
Aap , and therefore Aap is supported by Gr(AM ∪ πap).

33



CHAPTER 3. META-PROGRAMMING APPROACH

Proposition 3.26 Let Aap be an ap-MAS for a propositional disjunctive program Π guess-
ing interpretation I. Then, ap(lr) ∈ Aap (respectively bl(lr) ∈ Aap) iff r is an applicable
(respectively blocked) rule in Π under I.

Proof. Let Hπap be the set of atoms which occur in the head of a rule in Gr(Dap(Π)), being
a ground instance of a rule in πap . By Lemma 3.12, it holds that Aap ∈ AS ((Aap \Hπap )∪πap).
Furthermore, by Proposition 3.10, Aap is an int-MAS for Π. As Aap is an ap-MAS, an int-
MAS for Π, and πap�D πint , by Lemma 3.11, we have that Aap \ Hπap is an int-MAS for
Π. Note that Aap \ Hπap guesses I. From that, the fact that πap � (Aap \ Hπap ), and since
Aap ∈ AS ((Aap \Hπap ) ∪ πap), we conclude by Lemma 3.25 that ap(lr) ∈ Aap (respectively
bl(lr) ∈ Aap) iff r is an applicable (respectively blocked) rule in Π under I.

3.3.9 Dependency Graph

Module πdpcy detects paths within the positive dependency graph of program Π. This is
needed for reasoning about loops and their external support.

Definition 3.27 Module πdpcy consists of the following rules:

dpcy(A,A)← atom(A) , (14)

dpcy(A1, A2)← head(R,A1), bodyP(R,A2) , (15)

dpcy(A1, A2)← dpcy(A1, A3), dpcy(A3, A2) , (16)

strCon(A1, A2)← dpcy(A1, A2), dpcy(A2, A1) . (17)
2

Lemma 3.28 Let AM be an aux-MAS for a propositional disjunctive program Π such that
πdpcy � AM. Then, AM ∪ πdpcy has a unique answer set, Adpcy . Moreover, it holds that
dpcy(la, lb) ∈ Adpcy iff there is a path from a to b in the positive dependency graph of Π.

Proof. That AM∪πdpcy has a unique answer set, Adpcy , follows from Proposition 2.39 since
AM ∪ πdpcy is normal and stratified. It remains to show that dpcy(la, lb) ∈ Adpcy iff there is
a path from a to b in the positive dependency graph of Π. Let G be the positive dependency
graph of Π.

(⇒) Let ∆ be the set of all meta-atoms dpcy(lx, ly) ∈ Adpcy such that there is no path
from x to y in G. We will show that ∆ = ∅. To this end, consider A∆ = Adpcy \ ∆.
Since Gr(AM∪πdpcy) is a positive program, it coincides with its reduct Gr(AM ∪ πdpcy)Adpcy .
Furthermore, since Adpcy is an answer set of Gr(AM ∪ πdpcy) and A∆ is a subset of Adpcy , by
showing that A∆ satisfies Gr(AM ∪ πdpcy), from the minimality of answer sets, we get that
A∆ = Adpcy , and hence ∆ = ∅. It remains to show that A∆ satisfies Gr(AM ∪ πdpcy).

Consider the facts in AM. Since πdpcy � AM, there is no meta-atom dpcy(lx, ly) in AM.
Therefore, A∆ satisfies AM. The remaining rules of Gr(AM∪πdpcy) are the ground instances
of the rules (14), (15), (16) and (17).

First consider some rule

rM = dpcy(la, la)← atom(la) ,

being a ground instance of rule (14), and assume that A∆ |= body(rM). Since A∆ ⊆ Adpcy ,
also Adpcy |= body(rM), and thus dpcy(la, la) ∈ Adpcy . Since A∆ is an aux -MAS for Π, by

34



3.3. META-PROGRAM

Proposition 3.18, we have a ∈ HB(Π), and thus there is a path from a to a in G. Therefore,
since dpcy(la, la) ∈ Adpcy , we also have dpcy(la, la) ∈ A∆. Consequently, ground instances of
rule (14) are satisfied by A∆.

Now consider some rule

rM = dpcy(la, lb)← head(lr, la), bodyP(lr, lb) ,

being a ground instance of rule (15), and assume that A∆ |= body(rM). Since A∆ ⊆ Adpcy ,
also Adpcy |= body(rM) and thus dpcy(la, lb) ∈ Adpcy . Since A∆ is an aux -MAS for Π, by
Proposition 3.18, we have a ∈ head(r), b ∈ body+(r) for rule r ∈ Π, and thus there is a
path from a to b in G. Therefore, since dpcy(la, lb) ∈ Adpcy , we also have dpcy(la, lb) ∈ A∆.
Consequently, ground instances of rule (15) are satisfied by A∆.

Consider rule
rM = dpcy(la, lb)← dpcy(la, lc), dpcy(lc, lb) ,

being a ground instance of rule (16), and assume that A∆ |= body(rM). Since A∆ ⊆ Adpcy ,
also Adpcy |= body(rM), and thus dpcy(la, lb) ∈ Adpcy . From dpcy(la, lc), dpcy(lc, lb) ∈ A∆

we know that there are paths from a to c and from c to b in G and thus we can conclude
that there is also a path from a to b. Therefore, since dpcy(la, lb) ∈ Adpcy , we also have
dpcy(la, lb) ∈ A∆. Consequently, ground instances of rule (16) are satisfied by A∆.

Finally, consider some rule

rM = strCon(la, lb)← dpcy(la, lb), dpcy(lb, la) ,

being a ground instance of rule (17), and assume that A∆ |= body(rM). Since A∆ ⊆ Adpcy ,
also Adpcy |= body(rM), and thus strCon(la, lb) ∈ Adpcy . Since strCon(la, lb) /∈ ∆, it is also
contained in A∆. Therefore, ground instances of rule (17) are satisfied by A∆.

Consequently, A∆ satisfies the reduct Gr(AM ∪ πdpcy)Adpcy . This completes the proof that
A∆ satisfies Gr(AM ∪ πdpcy).

(⇐) The proof that a path from atom a to atom an in G implies that dpcy(la, lan) ∈ Adpcy ,
is done by induction on the length of the path.

Base case: Let Ψ = a be an arbitrary path of length 0 in G. Then, a ∈ HB(Π) is an atom
in Π. Since Adpcy is an aux -MAS for Π, by Proposition 3.18, we have that atom(la) ∈ Adpcy .
Consider rule

rM = dpcy(la, la)← atom(la) ,

being a ground instance of rule (14). We have that Adpcy |= body(rM). Since Adpcy must
satisfy rM, Adpcy must contain the head of rM. Therefore, for each path within G of length
0 from atom a to itself we have that dpcy(la, la) ∈ Adpcy .

Induction hypothesis: Assume for some arbitrary but fixed n > 0 that if there is a path
from an atom a0 to another atom an of length n in G, then dpcy(la0 , lan) ∈ Adpcy .

Step case: Consider a path Ψ = a0, a1, . . . , an, an+1 of length n+1 in G. Since a0, a1, . . . , an

is a path of length n in G, we conclude by induction hypothesis that dpcy(la0 , lan) ∈ Adpcy .
By definition of a path, as an and an+1 are two neighbouring elements in Ψ, 〈an, an+1〉 is an
edge in G. Then, by definition of the positive dependency graph, there is some rule r ∈ Π
such that an ∈ head(r) and an+1 ∈ body(r). Thus, since Adpcy is an aux -MAS for Π, by
Proposition 3.18, head(lr, lan), bodyP(lr, lan+1) ∈ Adpcy . Consequently, for meta-rule

rM = dpcy(lan , lan+1)← head(lr, lan) , bodyP(lr, lan+1)

35



CHAPTER 3. META-PROGRAMMING APPROACH

of Gr(AM∪πdpcy), we have that Adpcy |= body(rM). Since Adpcy must satisfy rM, Adpcy must
contain the head of rM. Therefore, dpcy(lan , lan+1) ∈ Adpcy .

Now consider meta-rule

rM = dpcy(la0 , lan+1)← dpcy(la0 , lan), dpcy(lan , lan+1)

of Gr(AM ∪ πdpcy). As dpcy(l0, lan) ∈ Adpcy and dpcy(lan , lan+1) ∈ Adpcy , we have that
Adpcy |= body(rM). Since Adpcy must satisfy rM, it must contain the head of rM. Therefore,
dpcy(la0 , lan+1) ∈ Adpcy holds.

Proposition 3.29 Let Adpcy be a dpcy-MAS for a propositional disjunctive program Π.
Then, it holds that dpcy(la, lb) ∈ Adpcy iff there is a path from a to b in the positive de-
pendency graph of Π.

Proof. Let Hπdpcy
be the set of atoms which occur in the head of a rule in Gr(Ddpcy(Π)),

being a ground instance of a rule in πdpcy . By Lemma 3.12, it holds that Adpcy ∈ AS ((Adpcy \
Hπdpcy

)∪πdpcy). Furthermore, by Proposition 3.10, Adpcy is an aux -MAS for Π. As Adpcy is a
dpcy-MAS, an aux -MAS for Π, and πdpcy�D πaux , by Lemma 3.11, we have that Adpcy \Hπdpcy

is an aux -MAS for Π. From that, the fact that πdpcy � (Adpcy \ Hπdpcy
), and since Adpcy ∈

AS ((Adpcy \Hπdpcy
)∪ πdpcy), we conclude by Lemma 3.28 that dpcy(la, lb) ∈ Adpcy iff there is

a path from a to b in the positive dependency graph of Π.

Lemma 3.30 Let AM be an aux-MAS for a propositional disjunctive program Π such that
πdpcy � AM and Adpcy the single answer set of AM ∪ πdpcy . Then, we have strCon(la, lb) ∈
Adpcy iff a and b are vertices of the same strongly connected component in the positive depen-
dency graph of Π.

Proof. Let G be the positive dependency graph of Π.
(⇒) Assume that strCon(la, lb) ∈ Adpcy holds. There is only one rule rM ∈ Gr(AM∪πdpcy)

which may support {strCon(la, lb)}, namely

rM = strCon(la, lb)← dpcy(la, lb), dpcy(lb, la) .

Since we assumed strCon(la, lb) ∈ Adpcy , it must hold that Adpcy |= body(rM) and therefore
dpcy(la, lb), dpcy(lb, la) ∈ Adpcy . By Lemma 3.28, there are paths from a to b and from b to a
in G. That means a and b are vertices of the same strongly connected component within G.

(⇐) Now we show that if a and b are vertices of the same strongly connected component
within G then strCon(la, lb) ∈ Adpcy . Assume a and b are vertices of the same strongly
connected component within G. Then, there are paths from a to b and from b to a in
G. By Lemma 3.28, we have that dpcy(la, lb), dpcy(lb, la) ∈ Adpcy . Therefore, it holds that
Adpcy |= body(rM) for rule

rM = strCon(la, lb)← dpcy(la, lb), dpcy(lb, la) ,

being a ground instance of rule (17) in Gr(AM ∪ πdpcy). Since Adpcy is an answer set
of Gr(AM ∪ πdpcy), we have that rM must be satisfied by Adpcy . Hence, it holds that
strCon(la, lb) ∈ Adpcy .

36



3.3. META-PROGRAM

Proposition 3.31 Let Adpcy be a dpcy-MAS for a propositional disjunctive program Π.
Then, it holds that strCon(la, lb) ∈ Adpcy iff a and b are vertices of the same strongly connected
component in the positive dependency graph of Π.

Proof. Let Hπdpcy
be the set of atoms which occur in the head of a rule in Gr(Ddpcy(Π)),

being a ground instance of a rule in πdpcy . By Lemma 3.12, it holds that Adpcy ∈ AS ((Adpcy \
Hπdpcy

)∪πdpcy). Furthermore, by Proposition 3.10, Adpcy is an aux -MAS for Π. As Adpcy is a
dpcy-MAS, an aux -MAS for Π, and πdpcy�D πaux , by Lemma 3.11, we have that Adpcy \Hπdpcy

is an aux -MAS for Π. From that, the fact that πdpcy � (Adpcy \ Hπdpcy
), and since Adpcy ∈

AS ((Adpcy \Hπdpcy
)∪πdpcy), we conclude by Lemma 3.30 that strCon(la, lb) ∈ Adpcy iff a and

b are vertices of the same strongly connected component in the positive dependency graph
of Π.

3.3.10 Guessing Loops

Module πloop guesses loops within the strongly connected components in the positive depen-
dency graph of program Π. Later we check whether these loops are externally supported by
Π with respect to some interpretation I, by using module πext .

Since nontrivial loops of a program Π may intersect or be subsets of each other, we cannot
detect all of them within a single meta-answer-set without introducing involved enumeration
strategies. Thus, we allow multiple meta-answer-sets, each of which is used to inspect at most
one loop of Π.

Definition 3.32 Module πloop consists of the following rules:

loop(A)← not loop(A), atom(A) , (18)

loop(A)← not loop(A), atom(A) , (19)

← loop(A1), loop(A2),not strCon(A1, A2) . (20)

2

Lemma 3.33 Let AM be a dpcy-MAS for a propositional disjunctive program Π such that
πloop � AM and Aloop ∈ AS (AM ∪ πloop). If loop(la) ∈ Aloop, then Γ = {x | loop(lx) ∈ Aloop}
is a loop of Π.

Proof. Let G be the positive dependency graph of Π. Assume that loop(la) ∈ Aloop and
consider the set

Γ = {x | loop(lx) ∈ Aloop}.
At first, we will show that Γ ⊆ HB(Π). Take an arbitrary x ∈ Γ. Thus, we have loop(lx) ∈
Aloop . There is only one rule rM in Gr(AM ∪ πloop) which may support {loop(lx)}, namely

rM = loop(lx)← not loop(lx), atom(lx) .

It must hold that Aloop |= body(rM) and hence atom(lx) ∈ Aloop . Since Aloop is an aux -MAS
for Π, we know by Proposition 3.18 that x ∈ HB(Π). Therefore, we have Γ ⊆ HB(Π).

Now we will show that each c ∈ Γ belongs to the same strongly connected component of
G. Take two arbitrary x, y ∈ Γ. Thus, we have loop(lx), loop(ly) ∈ Aloop . Now consider the
following constraint cM in Gr(AM ∪ πloop):

cM = ← loop(lx), loop(ly),not strCon(lx, ly) .

37



CHAPTER 3. META-PROGRAMMING APPROACH

Since Aloop ∈ AS (Gr(AM ∪ πloop)), it cannot hold that Aloop |= body(cM). We already know
that loop(lx), loop(ly) ∈ Aloop and hence strCon(lx, ly) ∈ Aloop . Since Aloop is a dpcy-MAS, we
know by Proposition 3.31 that x and y are vertices of the same strongly connected component
within G.

From the assumption that loop(la) ∈ Aloop , we know that a ∈ Γ. Hence, Γ is a non-
empty subset of the set of all vertices within a strongly connected component of G. By
Proposition 2.29, we have that Γ is a loop of Π.

Proposition 3.34 Let AM be a loop-MAS for a propositional disjunctive program Π. If
loop(la) ∈ Aloop, then Γ = {x | loop(lx) ∈ Aloop} is a loop of Π.

Proof. Let Hπloop
be the set of atoms which occur in the head of a rule in Gr(Dloop(Π)),

being a ground instance of a rule in πloop . By Lemma 3.12, it holds that Aloop ∈ AS ((Aloop \
Hπloop

) ∪ πloop). Furthermore, by Proposition 3.10, Aloop is a dpcy-MAS for Π. As Aloop is
a loop-MAS, an dpcy-MAS for Π, and πloop�D πdpcy , by Lemma 3.11, we have that Aloop \
Hπloop

is a dpcy-MAS for Π. From that, the fact that πloop � (Aloop \ Hπloop
), and since

Aloop ∈ AS ((Aloop \Hπloop
)∪πloop), we conclude by Lemma 3.33 that if loop(la) ∈ Aloop , then

Γ = {x | loop(lx) ∈ Aloop} is a loop of Π.

For associating meta-answer-sets with individual loops for Π, we introduce the notion of
meta-answer-sets guessing loops:

Definition 3.35 Let AM be a meta-answer-set for a propositional disjunctive program Π
such that AM is a loop-MAS for Π. We say that AM guesses loop Γ iff Γ = {x | loop(lx) ∈ AM}
and Γ 6= ∅. 2

Proposition 3.36 Let Γ be a loop of Π and AM a dpcy-MAS for Π such that πloop � AM.
Then, there is some Aloop ∈ AS (AM ∪ πloop) such that loop(la) ∈ Aloop iff a ∈ Γ.

Proof. Let G be the positive dependency graph of Π.
Consider the set

Aloop = AM ∪ {loop(la) | a ∈ Γ} ∪ {loop(la) | a ∈ HB(Π) \ Γ}.

We have that loop(la) ∈ Aloop iff a, b ∈ Γ. We will show that Aloop ∈ AS (AM ∪ πloop).
Note that Gr(AM ∪ πloop) is an absolutely tight program, since the atoms of the facts in

AM have no outgoing edges in G, and the ground instances of rules (18), (19), and (20) only
have edges to atoms in AM in G.

In order to show that Aloop ∈ AS (AM∪πloop), since Gr(AM∪πloop) is an absolutely tight
program, by Theorem 2.34, it suffices to verify that Aloop satisfies Gr(AM ∪ πloop) and Aloop

is supported by Gr(AM ∪ πloop).
We first show that Aloop satisfies Gr(AM ∪ πloop). Since AM ⊆ Aloop , the facts of AM

are satisfied by Aloop . The remaining rules of Gr(AM ∪ πloop) are ground instances of the
rules (18), (19), and (20).

First, consider some rule

rM = loop(la)← not loop(la), atom(la) ,

being a ground instance of rule (18). Assume that Aloop |= body(rM) but also loop(la) /∈ Aloop

hold. Thus, loop(la) /∈ Aloop and atom(la) ∈ Aloop . From that, by definition of Aloop , we have

38



3.3. META-PROGRAM

that atom(la) ∈ AM. Since AM is an aux -MAS for Π, by Proposition 3.18, we have that
a ∈ HB(Π). Since Γ ⊆ HB(Π), it must hold that either a ∈ Γ or a ∈ HB(Π) \ Γ. However,
then, by definition of Aloop , we get that either loop(la) ∈ Aloop or loop(la) ∈ Aloop , both
contradictions to our assumptions. Thus, ground instances of rule (18) are satisfied by Aloop .

Now consider some rule

rM = loop(la)← not loop(la), atom(la) ,

being a ground instance of rule (19). Assume that Aloop |= body(rM) but also loop(la) /∈ Aloop

hold. Thus, loop(la) /∈ Aloop and atom(la) ∈ Aloop . From that, by definition of Aloop , we have
that atom(la) ∈ AM. Since AM is an aux -MAS for Π, by Proposition 3.18, we have that
a ∈ HB(Π). Since Γ ⊆ HB(Π), it must hold that either a ∈ Γ or a ∈ HB(Π) \ Γ. However,
then, by definition of Aloop , we get that either loop(la) ∈ Aloop or loop(la) ∈ Aloop , both
contradictions to our assumptions. Thus, ground instances of rule (19) are satisfied by Aloop .

Finally, consider rule

cM = ← loop(la), loop(lb),not strCon(la, lb) ,

being a ground instance of rule (20). Assume that Aloop |= body(rM) holds. Thus, it holds that
loop(la), loop(lb) ∈ Aloop and strCon(la, lb) /∈ Aloop . By choice of Aloop , we have that a, b ∈ Γ
and thus a and b belong to the same strongly connected component of G. Since AM ⊆ Aloop ,
from strCon(la, lb) /∈ Aloop , we also have strCon(la, lb) /∈ AM. Therefore, since AM is a dpcy-
MAS for Π, we get by Proposition 3.31 that a and b are not vertices of the same strongly
connected component within G, which causes a contradiction to previous results. Therefore,
the assumption that Aloop |= body(rM) does not hold, and hence ground instances of rule (20)
are satisfied by Aloop . This concludes the proof that Aloop |= Gr(AM ∪ πloop).

We now show that Aloop is supported by Gr(AM ∪ πloop). Since Gr(AM ∪ πloop) is non-
disjunctive, by Proposition 2.31 it is sufficient to show that for every aM ∈ Aloop , {aM} is
supported by Gr(AM ∪ πloop) with respect to Aloop . Clearly, for all atoms aM ∈ Aloop , we
have either aM ∈ AM, aM ∈ {loop(la) | a ∈ Γ}, or aM ∈ {loop(la) | a ∈ HB(Π) \ Γ}. In case
aM ∈ AM, {aM} is supported by Gr(AM ∪ πloop) with respect to Aloop , because aM ← is a
fact in Gr(AM ∪ πloop).

If aM ∈ {loop(la) | a ∈ Γ}, consider the rule

rM = loop(la)← not loop(la), atom(la)

in Gr(AM ∪ πloop), being a ground instances of rule (18), where aM = loop(la). From
loop(la) ∈ Aloop , we know by definition of Aloop that a ∈ Γ. Therefore, we have that a ∈
HB(Π), and since AM is an aux -MAS for Π, by Proposition 3.18, we get that atom(la) ∈
AM. Since AM ⊆ Aloop , it holds that atom(la) ∈ Aloop . From a ∈ Γ, we know that
a /∈ HB(Π) \ Γ, and hence we can conclude by definition of Aloop that loop(la) /∈ Aloop .
Hence, Aloop |= body(rM), and therefore, for all aM ∈ {loop(la) | a ∈ Γ}, {aM} is supported
by Gr(AM ∪ πloop).

If aM ∈ {loop(la) | a ∈ HB(Π) \ Γ}, consider the rule

rM = loop(la)← not loop(la), atom(la)

in Gr(AM∪πloop), being a ground instance of rule (19), where aM = loop(la). From loop(la) ∈
Aloop , we know by definition of Aloop that a ∈ HB(Π) \ Γ. Therefore, we have a ∈ HB(Π),

39



CHAPTER 3. META-PROGRAMMING APPROACH

and since AM is an aux -MAS for Π, by Proposition 3.18, we get that atom(la) ∈ AM. Since
AM ⊆ Aloop , it holds that atom(la) ∈ Aloop . From a /∈ Γ we can conclude by definition of
Aloop that loop(la) /∈ Aloop . Hence, Aloop |= body(rM), and therefore, for all aM ∈ {loop(la) |
a ∈ HB(Π) \ Γ}, {aM} is supported by AM ∪ πloop .

We showed that Aloop is supported by Gr(AM∪πloop). Since Aloop satisfies Gr(AM∪πloop),
Aloop is supported by Gr(AM ∪ πloop), and Gr(AM ∪ πloop) is an absolutely tight program,
by Theorem 2.34, we have that Aloop ∈ AS (AM ∪ πloop).

3.3.11 Detecting Violated Constraints

Module πic is used to identify violated constraints in program Π under interpretation I.

Definition 3.37 Module πic consists of the following rules:

violated(R)← ap(R),not hasHead(R) , (21)

hasHead(R)← head(R, ). (22)

2

Lemma 3.38 Let AM be an ap-MAS for a propositional disjunctive program Π guessing
interpretation I such that πic � AM. Then, AM ∪ πic has a single answer set Aic, and
violated(lr) ∈ Aic iff r is a constraint in Π which is violated under I.

Proof. Since AM∪πic is normal and stratified, we know by Proposition 2.39 that AM∪πic

has a unique answer set Aic .
(⇒) Assume that violated(lr) ∈ Aic holds. There is only rule

rM = violated(lr)← ap(lr),not hasHead(lr) .

in Gr(AM ∪ πic), which may support {violated(lr)}. It must hold that Aic |= body(rM),
hence ap(lr) ∈ Aic , and hasHead(lr) /∈ Aic . Since Aic is an an ap-MAS for Π guessing I,
from Proposition 3.26, we know that r is an applicable rule in Π. It remains to show that r
is a constraint. Towards a contradiction, assume that r is not a constraint, i.e., head(r) 6= ∅.
Now, consider atom a ∈ HB(Π) such that a ∈ head(r). From Proposition 3.18, we know that
head(lr, la) ∈ Aic . Thus, it holds that Aic |= body(rM) for rule

rM = hasHead(lr)← head(lr, la)

in Gr(AM ∪ πic), being a ground instance of rule (22). It must hold that hasHead(lr) ∈ Aic ,
however we have already shown that hasHead(lr) /∈ Aic . The assumption that r is not a
constraint was false, hence r is a constraint in Π, violated under I.

(⇐) Assume r is a constraint in Π, violated under I. Now we show that hasHead(lr) /∈ Aic .
Towards a contradiction, assume that hasHead(lr) ∈ Aic . Only some rule

rM = hasHead(lr)← head(lr, la) .

in Gr(AM ∪ πic), being a ground instance of rule (22), which may support {hasHead(lr)}.
Under the current assumptions it must hold that Aic |= body(rM) and therefore head(lr, la) ∈
Aic for some head(lr, la) ∈ HB(AM ∪ πic). Since Aic is an an aux -MAS for Π, we get by

40



3.3. META-PROGRAM

Proposition 3.18 that a ∈ head(r). However this is impossible since r is a constraint, hence
the assumption that hasHead(lr) ∈ Aic was false. We have hasHead(lr) /∈ Aic .

We know that r is applicable in Π under I because r is violated in Π under I. Since Aic

is an an ap-MAS for Π guessing I, from Proposition 3.26, we know that ap(lr) ∈ Aic . We
showed that Aic |= body(rM) for rule

rM = violated(lr)← ap(lr),not hasHead(lr)

in Gr(AM ∪ πic), being a ground instance of rule (21), and hence violated(lr) ∈ Aic holds.

Proposition 3.39 Let Aic be an ic-MAS for a propositional disjunctive program Π guessing
interpretation I. Then, violated(lr) ∈ Aic holds iff r is a constraint in Π which is violated
under I.

Proof. Let Hπic be the set of atoms which occur in the head of a rule in Gr(Dic(Π)), being
a ground instance of a rule in πic . By Lemma 3.12, it holds that Aic ∈ AS ((Aic \Hπic )∪πic).
Furthermore, by Proposition 3.10, Aic is an ap-MAS for Π. As Aic is an ic-MAS, an ap-
MAS for Π, and πic�D πap , by Lemma 3.11, we have that Aic \ Hπic is an ap-MAS for
Π. Note that Aic \ Hπic guesses I. From that, the fact that πic � (Aic \ Hπic ), and since
Aic ∈ AS ((Aic \Hπic ) ∪ πic), we conclude by Lemma 3.38 that violated(lr) ∈ Aic holds iff r
is a constraint in Π which is violated under I.

3.3.12 Detecting Unsupported Atoms

Module πsupp is used to identify atoms which are unsupported by program Π with respect to
interpretation I.

Definition 3.40 Module πsupp consists of the following rules:

otherHeadInI (R,A)← head(R,A), head(R,A2), int(A), int(A2), A 6= A2 , (23)

oHOfApRinI (A)← ap(R), int(A), head(R,A),not otherHeadInI (R,A) , (24)

unsupported(A)← int(A),not oHOfApRinI (A) . (25)

2

Lemma 3.41 Let AM be an ap-MAS for a propositional disjunctive program Π guessing
interpretation I such that πsupp �AM. Then, AM∪πsupp has a unique answer set Asupp, and
unsupported(la) ∈ Asupp iff a ∈ I and a is unsupported by Π with respect to I.

Proof. Since AM ∪ πsupp is normal and stratified, we know by Proposition 2.39 that AM ∪
πsupp has a unique answer set, Asupp . It remains to show that unsupported(la) ∈ Asupp iff
a ∈ I and a is unsupported by Π with respect to I.

(⇒) Assume that unsupported(la) ∈ Asupp holds. Thus, there must be a rule in Gr(AM ∪
πsupp) being applicable under Asupp such that unsupported(la) is in the head of this rule. Only
rule

rM = unsupported(la)← int(la),not oHOfApRinI (la) ,

41



CHAPTER 3. META-PROGRAMMING APPROACH

being a ground instance of rule (25), can have this property. Since Asupp |= body(rM), we have
int(la) ∈ Asupp and oHOfApRinI (la) /∈ Asupp . Since Asupp guesses I, from int(la) ∈ Asupp we
know that a ∈ I, and hence also a ∈ HB(Π).

We will show that a is unsupported by Π with respect to I. Towards a contradiction,
assume that a is not unsupported by Π with respect to I. Then, there is a rule r ∈ Π such
that both, I ∩ head(r) = {a}, and I |= body(r). Note that, since I ∩ head(r) = {a}, we
have a ∈ head(r). Since r is applicable under I and Asupp is an ap-MAS for Π guessing I,
by Proposition 3.26, it holds that ap(lr) ∈ Asupp . Moreover, as a ∈ head(r) and Asupp is an
aux -MAS for Π, by Proposition 3.18, it holds that head(lr, la) ∈ Asupp . Consider rule

rM = oHOfApRinI (la)← ap(lr), int(la), head(lr, la),not otherHeadInI (lr, la)

in Gr(AM ∪ πsupp), which is a ground instance of rule (24). Since we already derived
oHOfApRinI (la) /∈ Asupp , we know that Asupp does not satisfy the body of rM. In or-
der for that, as we have already shown ap(lr) ∈ Asupp , int(la) ∈ Asupp , and head(lr, la) ∈
Asupp , it must hold that also otherHeadInI (lr, la) ∈ Asupp . Thus, there must be a rule in
Gr(AM ∪πsupp) being applicable under Asupp such that otherHeadInI (lr, la) is in the head of
this rule. Only ground instances of rule (23) can have this property. Consider such a rule

rM = otherHeadInI (lr, la)← head(lr, la), head(lr, lb), int(la), int(lb), la 6= lb .

Since Asupp |= body(rM), we have that head(lr, la), head(lr, lb), int(lb) ∈ Asupp and la 6= lb.
Since Asupp is an int-MAS for Π guessing I, we have by Proposition 3.21 that b ∈ I, and
by Proposition 3.18, since Asupp is an aux -MAS for Π guessing I, we have b ∈ head(r). We
conclude that b ∈ I ∩ head(r). From uniqueness of the labels in meta-alphabet AM(A) and
la 6= lb, we know that a and b are different atoms in HB(Π). Hence, we have a contradiction
to I ∩ head(r) = {a}. Thus, the assumption that a is not unsupported by Π with respect to
I has been incorrect.

(⇐) Assume a ∈ I and a is unsupported by Π with respect to I. By Definition 2.30, there
is no rule r ∈ Π such that both, I ∩ head(r) = {a}, and I |= body(r). From a ∈ I and since
Asupp is an int-MAS for Π guessing I, we have by Proposition 3.21 that int(la) ∈ Asupp .

As a first step, we will show that oHOfApRinI (la) /∈ Asupp . Towards a contradiction,
assume that oHOfApRinI (la) ∈ Asupp . Thus, there must be a rule in Gr(AM ∪ πsupp) being
applicable under Asupp such that oHOfApRinI (la) is in the head of this rule. Only ground
instances of rule (24) can satisfy this condition. Consider such a rule,

rM = oHOfApRinI (la)← ap(lr), int(la), head(lr, la),not otherHeadInI (lr, la) .

From Asupp |= body(rM), we get ap(lr), head(lr, la) ∈ Asupp , and otherHeadInI (lr, la) /∈ Asupp .
Since Asupp is an ap-MAS for Π guessing I, we have by Proposition 3.26 that r is an applicable
rule in Π under I. Moreover, since Asupp is an aux -MAS for Π guessing I, we have a ∈ head(r).
From that, we know that a ∈ I ∩head(r). As it is necessary, that not both, I ∩head(r) = {a}
and I |= body(r), hold, since I |= body(r) holds, and a ∈ I ∩ head(r), there must be another
atom b ∈ I ∩ head(r). Consider rule

rM = otherHeadInI (lr, la)← head(lr, la), head(lr, lb), int(la), int(lb), la 6= lb

in Gr(AM ∪ πsupp), being a ground instance of rule (23). Since b ∈ I and Asupp is an int-
MAS for Π guessing I, we have by Proposition 3.21 that int(lb) ∈ Asupp . Moreover, since

42



3.3. META-PROGRAM

b ∈ head(r) and Asupp is an aux -MAS for Π guessing I, we have by Proposition 3.18 that
head(lr, lb) ∈ Asupp . Since we already showed that head(lr, la), head(lr, lb), int(la), int(lb) ∈
Asupp , and by uniqueness of the labels la and lb, we have that Asupp |= body(rM). Therefore,
we have that otherHeadInI (lr, la) ∈ Asupp , which is a contradiction to our previous result,
that otherHeadInI (lr, la) /∈ Asupp . The assumption that oHOfApRinI (la) ∈ Asupp has been
incorrect, hence oHOfApRinI (la) /∈ Asupp .

Now, consider rule

rM = unsupported(la)← int(la),not oHOfApRinI (la)

in Gr(AM ∪ πsupp), being a ground instance of rule (25). Since we have int(la) ∈ Asupp

and oHOfApRinI (la) /∈ Asupp , it holds that Asupp |= body(rM). Thus, unsupported(la) is
contained in Asupp .

Proposition 3.42 Let Asupp be a supp-MAS for a propositional disjunctive program Π guess-
ing interpretation I. Then, unsupported(la) ∈ Asupp holds iff a ∈ I and a is unsupported by
Π with respect to I.

Proof. Let Hπsupp be the set of atoms which occur in the head of a rule in Gr(Dsupp(Π)),
being a ground instance of a rule in πsupp . By Lemma 3.12, it holds that Asupp ∈ AS ((Asupp \
Hπsupp ) ∪ πsupp). Furthermore, by Proposition 3.10, Asupp is an ap-MAS for Π. As Asupp is a
supp-MAS, an ap-MAS for Π, and πsupp�D πap , by Lemma 3.11, we have that Asupp \Hπsupp

is an ap-MAS for Π. Note that Asupp \ Hπsupp guesses I. From that, the fact that πsupp �

(Asupp \Hπsupp ), and since Asupp ∈ AS ((Asupp \Hπsupp ) ∪ πsupp), we conclude by Lemma 3.41
that unsupported(la) ∈ Asupp holds iff a ∈ I and a is unsupported by Π with respect to I.

3.3.13 Detecting Unsatisfied Rules

Module πsat is used to identify rules in program Π which are not satisfied by interpretation I.

Definition 3.43 Module πsat consists of the following rules:

anyHeadInI (R)← head(R,A), int(A) , (26)

unsatisfied(R)← ap(R),not anyHeadInI (R) (27)
2

Lemma 3.44 Let AM be an ap-MAS for a propositional disjunctive program Π guessing
interpretation I such that πsat � AM. Then, AM ∪ πsat has a single answer set Asat , and
unsatisfied(lr) ∈ Asat holds iff we have that r ∈ Π, I |= body(r) but head(r) ∩ I = ∅.

Proof. Since AM∪πsat is normal and stratified, we know by Proposition 2.39 that AM∪πsat

has a unique answer set Asat .
(⇒) Assume that unsatisfied(lr) ∈ Asat . There is only rule

rM = unsatisfied(lr)← ap(lr),not anyHeadInI (lr)

in Gr(AM∪πsat), being a ground instance of rule (27), which may support {unsatisfied(lr)}. It
must hold that Asat |= body(rM) and hence we have ap(lr) ∈ Asat and anyHeadInI (lr) /∈ Asat .

43



CHAPTER 3. META-PROGRAMMING APPROACH

Since Asat is an ap-MAS for program Π guessing interpretation I, from ap(lr) ∈ Asat , by
Proposition 3.26, rule r ∈ Π is applicable under I and hence I |= body(r).

It remains to show that head(r) ∩ I = ∅. Assume that head(r) ∩ I 6= ∅ holds. Hence
there is an atom a ∈ HB(Π) such that a ∈ I and a ∈ head(r). Since Asat is an aux -MAS
for program Π guessing interpretation I, int(la) ∈ Asat , and by Proposition 3.18, we have
head(lr, la) ∈ Asat . Therefore, we have Asat |= body(rM) for rule

rM = anyHeadInI (lr)← head(lr, la), int(la)

in Gr(AM ∪ πsat), being a ground instance of rule (26). The body of rM is satisfied by Asat ,
thus it must hold that anyHeadInI (lr) ∈ Asat , however we already derived anyHeadInI (lr) ∈
Asat . Therefore, the assumption that head(r) ∩ I 6= ∅ was false.

(⇐) Assume that r ∈ Π, I |= body(r), and head(r) ∩ I = ∅. We now show that
anyHeadInI (lr) /∈ Asat . Towards a contradiction, assume that anyHeadInI (lr) ∈ Asat . Only
some rule

rM = anyHeadInI (lr)← head(lr, la), int(la) .

in Gr(AM ∪ πsat), being a ground instance of rule (26), may support {anyHeadInI (lr)}.
Since anyHeadInI (lr) ∈ Asat , it must hold that head(lr, la) ∈ Asat and int(la) ∈ Asat for some
head(lr, la), int(la) ∈ HB(AM ∪ πsat). Since Asat is an aux -MAS for program Π guessing
interpretation I, we have a ∈ I, and by Proposition 3.18, we have a ∈ head(r). Thus, we get
a ∈ head(r) ∩ I, which is a contradiction to head(r) ∩ I = ∅. Thus, anyHeadInI (lr) /∈ Asat .

From I |= body(r) we know that rule r is applicable in Π under I. Since Asat is an ap-MAS
for program Π guessing interpretation I, by Proposition 3.26, we know that ap(lr) ∈ Asat .

We showed that Asat |= body(rM) for rule

rM = unsatisfied(lr)← ap(lr),not anyHeadInI (lr) .

in Gr(AM ∪ πsat). Thus, it must hold that unsatisfied(lr) ∈ Asat .

Proposition 3.45 Let Asat be a sat-MAS for a propositional disjunctive program Π guessing
interpretation I. Then, unsatisfied(lr) ∈ Asat holds iff we have that r ∈ Π, I |= body(r) but
head(r) ∩ I = ∅.

Proof. Let Hπsat be the set of atoms which occur in the head of a rule in Gr(Dsat(Π)), being a
ground instance of a rule in πsat . By Lemma 3.12, it holds that Asat ∈ AS ((Asat \Hπsat )∪πsat).
Furthermore, by Proposition 3.10, Asat is an ap-MAS for Π. As Asat is a sat-MAS, an ap-
MAS for Π, and πsat�D πap , by Lemma 3.11, we have that Asat \Hπsat is an ap-MAS for Π.
Note that Asat \ Hπsat guesses I. From that, the fact that πsat � (Asat \ Hπsat ), and since
Asat ∈ AS ((Asat \Hπsat )∪πsat), we conclude by Lemma 3.44 that unsatisfied(lr) ∈ Asat holds
iff we have that r ∈ Π, I |= body(r) but head(r) ∩ I = ∅.

3.3.14 Detecting Externally Unsupported Loops

Module πext is used to identify loops which are not externally supported by program Π with
respect to interpretation I.

44



3.3. META-PROGRAM

Definition 3.46 Module πsupp consists of the following rules:

extSupp← head(R,A), ap(R), loop(A),not anyBInLoop(R),not hInINotLoop(R) , (28)

anyBInLoop(R)← bodyP(R,A), loop(A) , (29)

hInINotLoop(R)← head(R,A), int(A),not loop(A) , (30)

loopNotInI ← loop(A),not int(A) , (31)

selfCaused(A)← loop(A),not loopNotInI ,not extSupp . (32)

2

Lemma 3.47 Let AM be an ap-MAS and a loop-MAS for a propositional disjunctive program
Π guessing interpretation I, and πext � AM. Then, AM ∪ πext has a unique answer set Aext .
If AM guesses no loop of Π, then there is no atom over predicate selfCaused/1 in Aext .
Otherwise, if AM guesses loop Γ of Π, then for all a ∈ Γ, selfCaused(a) ∈ Aext iff Γ ⊆ I and
Γ is not externally supported by Π with respect to I.

Proof. Since AM∪πext is normal and stratified, we know by Proposition 2.39 that AM∪πext

has a unique answer set.
Assume no loop of Π is guessed by AM. Then, also no loop of Π is guessed by Aext ,

and therefore by Definition 3.35, there is no atom over predicate loop/1 in Aext . Towards a
contradiction, assume there is an atom selfCaused(la) in Aext . There is only rule

rM = selfCaused(la)← loop(la),not loopNotInI ,not extSupp

in AM∪πext , being a ground instance of rule (32), which may support {selfCaused(la)}. Since
there is no atom over predicate loop/1 in Aext , we have loop(la) /∈ Aext , and thus rM is not
applicable under Aext . The assumption that selfCaused(la) in Aext was false, and hence there
is no atom with predicate selfCaused/1 in Aext .

Now, suppose Γ is a loop of Π and AM guesses Γ. Consider the set Aext :

Aext = AM ∪
{extSupp | Γ is externally supported by Π with respect to I} ∪
{anyBInLoop(lr) | r ∈ Π and Γ ∩ body+(r) 6= ∅} ∪
{hInINotLoop(lr) | r ∈ Π and (head(r) ∩ I) \ Γ 6= ∅} ∪
{loopNotInI | Γ * I} ∪
{selfCaused(la) | a ∈ Γ and Γ ⊆ I and Γ is not externally

supported by Π with respect to I}.

Note that we have that for all a ∈ Γ, selfCaused(a) ∈ Aext iff Γ ⊆ I and Γ is not externally
supported by Π with respect to I. Now we will prove that Aext is the unique answer set of
AM ∪ πext .

Note that AM ∪ πext is an absolutely tight program, since the atoms of the facts in AM
have no outgoing edges in the positive dependency graph GM of AM ∪ πext , and the rules in
AM∪πext , being ground instances of rules (28), (29), (30), (31) and (32) from πext , only have
edges to atoms in AM within GM.

45



CHAPTER 3. META-PROGRAMMING APPROACH

In order to show that Aext ∈ AS (AM ∪ πext), since AM ∪ πext is an absolutely tight
program, by Theorem 2.34, it suffices to verify that Aext satisfies Gr(AM ∪ πext) and Aext is
supported by Gr(AM ∪ πext).

We now show that Aext satisfies Gr(AM ∪ πext). Since AM ⊆ Aext the facts of AM are
satisfied by Aext . The remaining rules of Gr(AM ∪ πext) are the ground instances of rules
(28), (29), (30), (31) and (32) from πext .

Consider an arbitrary ground instance rM ∈ Gr(AM ∪ πext) of rule (28):

rM = extSupp← head(lr, la), ap(lr), loop(la),not anyBInLoop(lr),not hInINotLoop(lr) .

Towards a contradiction, assume that Aext |= body(rM) but also extSupp /∈ Aext hold. From
this we get that head(lr, la) ∈ Aext , ap(lr) ∈ Aext , loop(la) ∈ Aext , anyBInLoop(lr) /∈ Aext , and
hInINotLoop(lr) /∈ Aext . By definition of Aext , we have that head(lr, la) ∈ AM, ap(lr) ∈ AM,
and loop(la) ∈ AM. Since AM is an ap-MAS for Π, by Proposition 3.18, we have that r ∈ Π,
a ∈ HB(Π), and a ∈ head(r). From Proposition 3.26 we know, that r is an applicable rule in
Π under I, hence I |= body(r). Since AM guesses Γ and loop(la) ∈ AM it holds that a ∈ Γ.
Since anyBInLoop(lr) /∈ Aext and r ∈ Π, we get by definition of Aext that Γ ∩ body+(r) = ∅.
Since hInINotLoop(lr) /∈ Aext and r ∈ Π, we get by definition of Aext that (head(r)∩I)\Γ 6= ∅.

Summarising, we have that there is a rule r ∈ Π such that head(r) ∩ Γ 6= ∅, I |= body(r),
body+(r) ∩ Γ = ∅, and I ∩ (head(r) \ Γ) = ∅. From that we get by definition of external
support that Γ is externally supported by Π with respect to I. Thus, by definition of Aext ,
it holds that extSupp ∈ Aext which is a contradiction to the assumption that extSupp /∈ Aext .
Therefore, ground instances of rule (28) are satisfied by Aext .

Consider an arbitrary ground instance rM ∈ Gr(AM ∪ πext) of rule (29):

rM = anyBInLoop(lr)← bodyP(lr, la), loop(la) .

Towards a contradiction, assume that Aext |= body(rM) but also anyBInLoop(lr) /∈ Aext hold.
Thus, bodyP(lr, la), loop(la) ∈ Aext . By definition of Aext , we have that bodyP(lr, la), loop(la) ∈
AM. Since AM is an aux -MAS for Π, by Proposition 3.18, we have that r ∈ Π, a ∈ HB(Π),
and a ∈ body+(r). Since AM guesses Γ and loop(la) ∈ AM it holds that a ∈ Γ. There-
fore, we have that r ∈ Π and Γ ∩ body+(r) 6= ∅. Then, by definition of Aext we get that
anyBInLoop(lr) ∈ Aext , which is a contradiction to the assumption that anyBInLoop(lr) /∈
Aext . Thus, ground instances of rule (29) are satisfied by Aext .

Consider an arbitrary ground instance rM ∈ Gr(AM ∪ πext) of rule (30):

rM = hInINotLoop(lr)← head(lr, la), int(la),not loop(la) .

Towards a contradiction, assume that Aext |= body(rM) but also hInINotLoop(lr) /∈ Aext hold.
Thus, head(lr, la), int(la) ∈ Aext and loop(la) /∈ Aext . Therefore, by definition of Aext , we have
that head(lr, la), int(la) ∈ AM and loop(la) /∈ AM. Since AM is an aux -MAS for Π guessing I,
we get a ∈ I and by Proposition 3.18, we have that r ∈ Π, a ∈ HB(Π) and a ∈ head(r). Since
AM guesses Γ, we know from loop(la) /∈ Aext that a /∈ Γ. Therefore, we have that r ∈ Π and
(head(r) ∩ I) \ Γ 6= ∅. Then, by definition of Aext we get that hInINotLoop(lr) ∈ Aext , which
is a contradiction to the assumption that hInINotLoop(lr) /∈ Aext . Thus, ground instances of
rule (30) are satisfied by Aext .

Consider an arbitrary ground instance rM ∈ Gr(AM ∪ πext) of rule (31):

rM = loopNotInI ← loop(la),not int(la) .

46



3.3. META-PROGRAM

Towards a contradiction, assume that Aext |= body(rM) but also loopNotInI /∈ Aext hold.
Thus, loop(la) ∈ Aext and int(la) /∈ Aext . Therefore, by definition of Aext , we have that
loop(la) ∈ AM and int(la) /∈ AM. Since AM guesses I and Γ, we get a ∈ Γ and a /∈ I.
Therefore, we have that Γ * I. Then, by definition of Aext we get that loopNotInI ∈ Aext ,
which is a contradiction to the assumption that loopNotInI /∈ Aext . Thus, ground instances
of rule (31) are satisfied by Aext .

Consider an arbitrary ground instance rM ∈ Gr(AM ∪ πext) of rule (32):

rM = selfCaused(la)← loop(la),not loopNotInI ,not extSupp .

Towards a contradiction, assume that Aext |= body(rM) but also selfCaused(la) /∈ Aext hold.
Thus, it follows that loop(la) ∈ Aext , loopNotInI /∈ Aext , and extSupp /∈ Aext . Therefore, by
definition of Aext , we have that loop(la) ∈ AM. Since AM guesses Γ, we get that (i) a ∈ Γ.
By definition of Aext , since loopNotInI ∈ Aext , we get that (ii) Γ ⊆ I. Also by definition of
Aext , since extSupp /∈ Aext we know that (iii) Γ is not externally supported by Π with respect
to I. From (i), (ii), and (iii), we know by definition of Aext , that selfCaused(la) ∈ Aext , which
is a contradiction to the assumption that selfCaused(la) /∈ Aext . Therefore, ground instances
of rule (32) are satisfied by Aext .

We proved that Aext |= Gr(AM ∪ πext), now we will show that Aext is supported by
Gr(AM ∪ πext). For all atoms aM ∈ Aext , we have either

aM ∈ AM,

aM ∈ {extSupp | Γ is externally supported by Π with respect to I},

aM ∈ {anyBInLoop(lr) | r ∈ Π and Γ ∩ body+(r) 6= ∅},

aM ∈ {hInINotLoop(lr) | r ∈ Π and (head(r) ∩ I) \ Γ 6= ∅},

aM ∈ {loopNotInI | Γ * I}, or

aM ∈ {selfCaused(la) | a ∈ Γ and Γ ⊆ I and Γ is not externally
supported by Π with respect to I}.

In case aM ∈ AM, {aM} is supported by Gr(AM∪πext), because aM ← is a fact in Gr(AM∪
πext).

Consider the case where aM ∈ {extSupp | Γ is externally supported by Π with respect
to I}. Since then extSupp ∈ Aext , we have by definition of Aext that Γ is externally supported
by Π with respect to I. By definition of external support there is a rule r ∈ Π such that
head(r) ∩ Γ 6= ∅, I |= body(r), body+(r) ∩ Γ = ∅, and I ∩ (head(r) \ Γ) = ∅. Take
atom a ∈ HB(Π) such that a ∈ head(r) ∩ Γ. Since AM is an ap-MAS for Π guessing I, by
Proposition 3.18, we have that head(lr, la) ∈ AM. From I |= body(r), we know that r is an
applicable rule in Π under I, hence by Proposition 3.26, we get ap(lr) ∈ AM. Furthermore,
since AM guesses Γ, from a ∈ Γ, we get loop(la) ∈ AM. Since AM ⊆ Aext , it also holds that
head(lr, la) ∈ Aext , ap(lr) ∈ Aext , and loop(la) ∈ Aext . From body+(r) ∩ Γ = ∅, we know
by definition of Aext that anyBInLoop(lr) /∈ Aext . From I ∩ (head(r) \ Γ) = ∅, we know by
definition of Aext that hInINotLoop(lr) /∈ Aext .

We showed that for rule

rM = extSupp← head(lr, la), ap(lr), loop(la),not anyBInLoop(lr),not hInINotLoop(lr)

47



CHAPTER 3. META-PROGRAMMING APPROACH

in Gr(AM ∪ πext), being a ground instance of rule (28), it holds that Aext |= body(rM).
Therefore, for all aM ∈ {extSupp | Γ is externally supported by Π with respect to I}, {aM}
is supported by Gr(AM ∪ πext).

Consider the case where aM ∈ {anyBInLoop(lr) | r ∈ Π and Γ ∩ body+(r) 6= ∅}. From
anyBInLoop(lr) ∈ Aext , we know by definition of Aext that for rule r ∈ Π, Γ ∩ body+(r) 6= ∅.
Take atom a ∈ HB(Π) such that a ∈ Γ ∩ body+(r). Since AM is an aux -MAS for Π, by
Proposition 3.18, we have that bodyP(lr, la) ∈ AM. Furthermore, since AM guesses Γ, from
a ∈ Γ, we get loop(la) ∈ AM. Since AM ⊆ Aext , it also holds that bodyP(lr, la) ∈ Aext and
loop(la) ∈ Aext . We showed that for rule

rM = anyBInLoop(lr)← bodyP(lr, la), loop(la)

in Gr(AM ∪ πext), being a ground instance of rule (29), it holds that Aext |= body(rM).
Therefore, for all aM ∈ {anyBInLoop(lr) | r ∈ Π and Γ ∩ body+(r) 6= ∅}, {aM} is supported
by Gr(AM ∪ πext).

Consider the case where aM ∈ {hInINotLoop(lr) | r ∈ Π and (head(r)∩ I) \Γ 6= ∅}. From
hInINotLoop(lr) ∈ Aext , we know by definition of Aext that for rule r ∈ Π, (head(r)∩I)\Γ 6= ∅.
Take atom a ∈ HB(Π) such that a ∈ (head(r)∩I)\Γ. Since AM is an aux -MAS for Π guessing
I and a ∈ I, we get int(la) ∈ Aext and by Proposition 3.18, we have that head(lr, la) ∈ AM.
Furthermore, since AM guesses Γ, from a /∈ Γ, we get loop(la) /∈ AM. Since AM ⊆ Aext , it also
holds that head(lr, la), int(la) ∈ Aext . Furthermore, by definition of Aext and loop(la) /∈ AM,
we also have loop(la) /∈ Aext . We showed that for rule

rM = hInINotLoop(lr)← head(lr, la), int(la),not loop(la)

in Gr(AM ∪ πext), being a ground instance of rule (30), it holds that Aext |= body(rM).
Therefore, for all aM ∈ {hInINotLoop(lr) | r ∈ Π and (head(r) ∩ I) \ Γ 6= ∅}, {aM} is
supported by Gr(AM ∪ πext).

Consider the case where aM ∈ {loopNotInI | Γ * I}. Since then loopNotInI ∈ Aext , we
have by definition of Aext that Γ * I. Thus, there must be some atom a ∈ HB(Π) such
that a ∈ Γ but a /∈ I. Since AM guesses Γ, from a ∈ Γ, it holds that loop(la) ∈ AM. Since
AM ⊆ Aext , it also holds that loop(la) ∈ Aext . Since AM guesses I, from a /∈ I we conclude
that int(la) /∈ AM. Hence, by definition of Aext , we also have int(la) /∈ Aext .

We showed that for rule

rM = loopNotInI ← loop(la),not int(la)

in Gr(AM ∪ πext), being a ground instance of rule (31), it holds that Aext |= body(rM).
Therefore, for all aM ∈ {loopNotInI | Γ * I}, {aM} is supported by Gr(AM ∪ πext).

Consider the case where aM ∈ {selfCaused(la) | a ∈ Γ and Γ ⊆ I and Γ ⊆ I and Γ is not
externally supported by Π with respect to I}. Since then selfCaused(la) ∈ Aext , we have by
definition of Aext that for atom a ∈ HB(Π), a ∈ Γ, Γ ⊆ I and Γ is not externally supported by
Π with respect to I. Thus, by definition of Aext , we have extSupp /∈ Aext . Also by definition
of Aext , we know from Γ ⊆ I that loopNotInI /∈ Aext . Since AM guesses Γ, from a ∈ Γ, it
holds that loop(la) ∈ AM. Since AM ⊆ Aext , it also holds that int(la), loop(la) ∈ Aext . We
showed that for rule

rM = selfCaused(la)← loop(la),not loopNotInI ,not extSupp

48



3.3. META-PROGRAM

in Gr(AM ∪ πext), being a ground instance of rule (32), it holds that Aext |= body(rM).
Therefore, for all aM ∈ {selfCaused(la) | a ∈ Γ and Γ ⊆ I and Γ ⊆ I and Γ is not externally
supported by Π with respect to I}, {aM} is supported by Gr(AM ∪ πext).

We showed that Aext is supported by Gr(AM ∪ πext). Since Aext satisfies Gr(AM ∪ πext),
Aext is supported by Gr(AM ∪ πext) and Gr(AM ∪ πext) is an absolutely tight program by
Theorem 2.34, we have that Aext ∈ AS (AM ∪ πext).

Proposition 3.48 Let Aext be an ext-MAS for a propositional disjunctive program Π guess-
ing interpretation I. If AM guesses no loop of Π, then there is no atom over predicate
selfCaused/1 in Aext . Otherwise, if AM guesses loop Γ of Π, then for all a ∈ Γ, selfCaused(a) ∈
Aext iff Γ ⊆ I and Γ is not externally supported by Π with respect to I.

Proof. Let Hπext be the set of atoms which occur in the head of a rule in Gr(Dext(Π)), being a
ground instance of a rule in πext . By Lemma 3.12, it holds that Aext ∈ AS ((Aext \Hπext )∪πext).
Furthermore, by Proposition 3.10, Aext is an ap-MAS for Π, and a loop-MAS for Π. As Aext

is an ext-MAS, an ap-MAS for Π, and πext�D πap , by Lemma 3.11, we have that Aext \Hπext

is an ap-MAS for Π. Moreover, as Aext is an ext-MAS, a loop-MAS for Π, and πext�D πloop ,
by Lemma 3.11, we have that Aext \Hπext is a loop-MAS for Π. Note that Aext \Hπext guesses
I. From that, the fact that πext � (Aext \Hπext ), and since Aext ∈ AS ((Aext \Hπext ) ∪ πext),
we conclude by Lemma 3.47 that if AM guesses no loop of Π, then there is no atom over
predicate selfCaused/1 in Aext . Otherwise, if AM guesses loop Γ of Π, then for all a ∈ Γ,
selfCaused(a) ∈ Aext iff Γ ⊆ I and Γ is not externally supported by Π with respect to I.

3.3.15 All Together Now!

So far the discussed modules allow us to find different reasons why a particular interpretation I
is no answer set of the program Π to debug. Now we will investigate the set of meta-answer-
sets of the union

Derr (Π) = πin(Π ) ∪ πaux ∪ πint ∪ πap ∪ πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πsat ∪ πext

of these modules.

Proposition 3.49 Let Π be a propositional disjunctive logic program. Every set Aerr ∈
AS (Derr (Π)) is an ic-MAS, a supp-MAS, a sat-MAS, and an ext-MAS for Π.

Proof. Program Derr (Π) can be written as follows:

Derr (Π) = Dic(Π) ∪ πdpcy ∪ πloop ∪ πsupp ∪ πsat ∪ πext .

It holds that πdpcy ∪ πloop ∪ πsupp ∪ πsat ∪ πext �Dsupp(Π). Therefore, by Definition 3.9, every
set Aerr ∈ AS (Derr (Π)) is an ic-MAS for Π.

Program Derr (Π) can written as follows:

Derr (Π) = Dsupp(Π) ∪ πdpcy ∪ πloop ∪ πic ∪ πsat ∪ πext .

It holds that πdpcy ∪ πloop ∪ πic ∪ πsat ∪ πext � Dsupp(Π). Therefore, by Definition 3.9, every
set Aerr ∈ AS (Derr (Π)) is a supp-MAS for Π.

49



CHAPTER 3. META-PROGRAMMING APPROACH

Program Derr (Π) can be written as follows:

Derr (Π) = Dsat(Π) ∪ πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πext .

It holds that πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πext � Dsat(Π). Therefore, by Definition 3.9, every
set Aerr ∈ AS (Derr (Π)) is a sat-MAS for Π.

Program Derr (Π) can be written as follows:

Derr (Π) = Dext(Π) ∪ πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πsat .

It holds that πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πsat �Dsupp(Π). Therefore, by Definition 3.9, every
set Aerr ∈ AS (Derr (Π)) is an ext-MAS for Π.

Proposition 3.50 For every interpretation I for a propositional disjunctive program Π and
every loop Γ of Π, there is an AM ∈ AS (Derr (Π)) such that AM is an ic-MAS, a supp-MAS,
a sat-MAS, and an ext-MAS for Π guessing I and Γ.

Proof. By Proposition 3.49 we know that every set Aerr ∈ AS (Derr (Π)) is an ic-MAS, a
supp-MAS, a sat-MAS, and an ext-MAS. We now show that for every interpretation I for Π
and every loop Γ of Π there is a set Aerr ∈ AS (Derr (Π)) such that Aerr guesses I and Γ.

Program Derr (Π) can be written as follows:

Derr (Π) = Dint(Π) ∪ πap ∪ πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πsat ∪ πext .

By Proposition 3.6 for potential usage, since πap∪πdpcy∪πloop∪πic∪πsupp∪πsat∪πext�Dint(Π),
we can express the set of answer sets AS (Derr (Π)) as follows:

AS (Derr (Π)) =
⋃

Aint∈AS(Dint (Π))

AS (Aint ∪ πap ∪ πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πsat ∪ πext).

From Corollary 3.22, we know that for every interpretation I, there is an int-MAS for Π
guessing I in AS (Dint(Π)). Let I be an arbitrary interpretation for Π and Aint ∈ AS (Dint(Π))
an int-MAS for Π guessing I. Note that we have for set of answer sets Sint = AS (Aint ∪
πap ∪ πdpcy ∪ πloop ∪ πic ∪ πsupp ∪ πsat ∪ πext), that Sint ⊆ AS (Derr (Π)). Furthermore, we
have for every Aerr ∈ Sint, that Aint ⊆ Aerr , because Aint is a set of facts. Thus, since
πap ∪πdpcy ∪πloop ∪πic ∪πsupp ∪πsat ∪πext does not involve any atom over the int/1-predicate,
we know that no additional atom over the int/1-predicate can be contained in Aerr . Therefore,
Aerr guesses I.

Since (πic ∪ πsupp ∪ πsat ∪ πext) � (Aint ∪ πap ∪ πdpcy ∪ πloop), by Proposition 3.6, we can
rewrite Sint as follows:

Sint =
⋃

AM∈AS(Aint∪πap∪πdpcy∪πloop)

AS (AM ∪ πic ∪ πsupp ∪ πsat ∪ πext). (33)

Since πloop �Aint ∪πap∪πdpcy , we can rewrite AS (Aint ∪πap∪πdpcy ∪πloop) by Proposition 3.6
as follows:

AS (Aint ∪ πap ∪ πdpcy ∪ πloop) =
⋃

AM∈AS(Aint∪πap∪πdpcy )

AS (AM ∪ πloop). (34)

50



3.3. META-PROGRAM

Since πdpcy � Aint ∪ πap , we can rewrite AS (Aint ∪ πap ∪ πdpcy) by Proposition 3.6 as follows:

AS (Aint ∪ πap ∪ πdpcy) =
⋃

AM∈AS(Aint∪πap)

AS (AM ∪ πdpcy). (35)

By Lemma 3.25, since Aint is an int-MAS for Π guessing I, and πap � Aint , we have that
Aint ∪πap has a unique answer set Aap which is an ap-MAS for Π guessing I. We can rewrite
equation (35) as follows:

AS (Aint ∪ πap ∪ πdpcy) = AS (Aap ∪ πdpcy).

By Lemma 3.28, since Aap is an aux -MAS for Π and πdpcy � Aap , we have that Aap ∪ πdpcy

has a unique answer set Adpcy , which is a dpcy-MAS for Π. Therefore, we have that

AS (Aint ∪ πap ∪ πdpcy) = {Adpcy}.

We can rewrite equation (34) as follows:

AS (Aint ∪ πap ∪ πdpcy ∪ πloop) = AS (Adpcy ∪ πloop).

By Proposition 3.36, since Adpcy is a dpcy-MAS for Π and πloop � Adpcy , we have that there
is an Aloop ∈ AS (Adpcy ∪ πloop) such that Aloop is a loop-MAS for Π guessing Γ.

Remember equation (33):

Sint =
⋃

AM∈AS(Aint∪πap∪πdpcy∪πloop)

AS (AM ∪ πic ∪ πsupp ∪ πsat ∪ πext).

We can deduce that for

Sloop = AS (Aloop ∪ πic ∪ πsupp ∪ πsat ∪ πext),

we have Sloop ⊆ Sint. Therefore, every Aerr ∈ Sloop is an int-MAS for Π guessing I. Further-
more, since Sint ⊆ AS (Derr (Π)), we have Sloop ⊆ AS (Derr (Π)).

Finally, it remains to show that there is a set Aerr ∈ Sloop such that Aerr is a loop-MAS
for Π guessing Γ. Take an arbitrary answer set Aerr ∈ Sloop. Since Aloop is a subprogram
of Aloop ∪ πic ∪ πsupp ∪ πsat ∪ πext consisting of facts only, we have Aloop ⊆ Aerr . Since
πic ∪πsupp ∪πsat ∪πext does not involve any atom over the loop/1-predicate, we know that no
additional atom over the loop/1-predicate can be contained in Aerr . Thus, since Aloop is a loop-
MAS for Π guessing Γ, we also have loop(la) ∈ Aerr iff loop(a) ∈ Γ. From Aerr ∈ AS (Derr (Π)),
we know that Aerr is a supp-MAS for Π, hence Aerr is also a loop-MAS for Π. Therefore, by
Definition 3.35, we have that Aerr guesses Γ.

We showed that Aerr ∈ AS (Derr (Π)) is a supp-MAS, a sat-MAS, an ic-MAS, and an
ext-MAS for Π guessing I and Γ.

Corollary 3.51 For a propositional disjunctive program Π and an interpretation I for Π,
Derr (Π) has one or more answer sets AM such that AM is a meta-answer-set for Π guessing I.
Moreover, for every such AM it holds that

• unsupported(la) ∈ AM iff for atom a ∈ I, a is unsupported by Π with respect to I,

51



CHAPTER 3. META-PROGRAMMING APPROACH

• unsatisfied(lr) ∈ AM iff for rule r ∈ Π, I |= body(r) but head(r) ∩ I = ∅, and

• violated(lr) ∈ AM iff r is a constraint in Π, violated under I.

Corollary 3.52 For a propositional disjunctive program Π, an interpretation I for Π, and a
non-empty set Γ ∈ HB(Π) of atoms, it holds that Γ is a loop of Π such that Γ is subset of I
and Γ is not externally supported by Π with respect to I iff Derr (Π) has one or more answer
sets AM, where AM is a meta-answer-set for Π guessing I such that selfCaused(la) ∈ AM
exactly when a ∈ Γ.

3.3.16 Filtering Out Non-Error-Indicating Meta-Answer-Sets

Module πnoAS is used to filter out meta-answer-sets which do not explain why the consid-
ered interpretation I is no answer set for program Π, regardless whether I really is (not)
an answer set for Π. This is done because the absence of any atom over of the error-
indicating predicates (violated/1, unsupported/1, unsatisfied/1, selfCaused/1) in a meta-
answer-set AM ∈ AS (Derr (Π)) for Π guessing I does not necessarily mean that I is no answer
set for Π. More precisely since not all loops of Π are guessed within a single meta-answer-set,
there may be a loop Γ of Π not detected by AM, which is not externally supported by Π with
respect to I. By filtering out all meta-answer-sets including error-indicating-predicates, we
get the nice property that for all interpretations I for Π there are noAS -MAS for Π guessing
I in AS (DM(Π)) iff I is not an answer set of Π.

Module πnoAS consists of the following rules:

noAnswerSet← unsatisfied( ) , (36)

noAnswerSet← selfCaused( ) , (37)

← not noAnswerSet . (38)

Lemma 3.53 Let Π be a propositional disjunctive program. A set AM is an answer set of
DM(Π) iff AM = Aerr ∪{noAnswerSet} for an answer set Aerr of Derr (Π) which contains at
least one atom over one of the predicates unsatisfied/1 or selfCaused/1.

Proof. (⇒) Let AM be an answer set of DM(Π). Since DM(Π) = Derr (Π) ∪ πnoAS and
πnoAS �Derr (Π) we have by Proposition 3.6 that the following statement holds:

AS (DM(Π)) =
⋃

Aerr∈AS(Derr (Π))

AS (Aerr ∪ πnoAS ).

Therefore, there is some Aerr ∈ AS (Derr (Π)) such that AM ∈ AS (Aerr ∪ πnoAS ).
Consider the following constraint cM in πnoAS :

cM = ← not noAnswerSet .

Since cM is satisfied by AM, it must hold that noAnswerSet ∈ AM. Only ground instances of
rules (36) and (37) could possibly support {noAnswerSet}. Therefore, there must be a rule rM
in Gr(Aerr ∪ πnoAS ), being a ground instance of rule (36) or (37) such that AM |= body(rM).

Assume there is a rule

rM = noAnswerSet← unsatisfied(lr)

52



3.3. META-PROGRAM

in Gr(Aerr ∪ πnoAS ), being a ground instance of rule (36) such that AM |= body(rM). Then,
it must hold that unsatisfied(lr) ∈ AM. Since unsatisfied(lr) is not contained in any ground
instance of a rule in πnoAS , we have unsatisfied(lr) ∈ Aerr .

Assume there is a rule

rM = noAnswerSet← selfCaused(la)

in Gr(Aerr ∪ πnoAS ), being a ground instance of rule (37) such that AM |= body(rM). Then,
it must hold that selfCaused(la) ∈ AM. Since noAnswerSet is not contained in any ground
instance of a rule in πnoAS , we have selfCaused(la) ∈ Aerr . Therefore, there is either an atom
unsatisfied(lr) or an atom selfCaused(la) in Aerr .

(⇐) Let Aerr be an answer set of Derr (Π) containing at least one atom over one of the
predicates unsatisfied/1 or selfCaused/1. Consider the set

AM = Aerr ∪ {noAnswerSet}.

We have already shown the following equality:

AS (DM(Π)) =
⋃

Aerr∈AS(Derr (Π))

AS (Aerr ∪ πnoAS ).

From that, and since Aerr ∈ AS (Derr (Π)), for showing that AM ∈ AS (DM(Π)), it suffices to
show that AM ∈ AS (Aerr ∪ πnoAS ). Note that Aerr ∪ πnoAS is an absolutely tight program,
since the atoms of the facts in Aerr have no outgoing edges in the positive dependency graph
G of Gr(Aerr ∪ πnoAS ), and the ground instances of rules (36), (37) , and (38) from πnoAS ,
only have edges to atoms in Aerr within G. In order to show that AM ∈ AS (Aerr ∪ πnoAS ),
since Gr(Aerr ∪ πnoAS ) is an absolutely tight program, by Theorem 2.34, it suffices to verify
that AM satisfies Gr(Aerr ∪πnoAS ) and AM is supported by Gr(Aerr ∪πnoAS ). Since Aerr ⊆
AM, all rules from Aerr are satisfied by AM. We will now consider the remaining rules in
Gr(Aerr ∪ πnoAS ), the ground instances of rules (36), (37), and (38).

For arbitrary rule rM, being a ground instance of rule (36) or rule (37), we have that
noAnswerSet ∈ head(rM). Since in any case noAnswerSet ∈ AM by definition of AM,
ground instances of rules (36) and (37) are satisfied by AM.

Consider the constraint

cM = ← not noAnswerSet

in Gr(Aerr ∪ πnoAS ). Since in any case noAnswerSet ∈ AM by definition of AM, it cannot
hold that AM |= body(cM). Therefore, cM cannot be violated under AM. Thus, AM satisfies
Gr(Aerr ∪ πnoAS ).

Now we show that Aint is supported by Gr(Aaux ∪πint). For all atoms aM ∈ AM, we have
either aM ∈ Aerr or aM = noAnswerSet . In case aM ∈ Aerr , {aM} is trivially supported by
Gr(Aerr ∪ πnoAS ) because aM is a fact in Gr(Aerr ∪ πnoAS ).

Finally, we show that {noAnswerSet} is supported by Gr(Aerr ∪ πnoAS ) with respect
to AM.

Remember that we have either some r ∈ Π such that unsatisfied(lr) ∈ Aerr or some
a ∈ HB(Π) such that selfCaused(la) ∈ Aerr . Therefore, we have by definition of AM that
there is either some atom unsatisfied(lr) ∈ AM or some atom selfCaused(la) ∈ AM.

53



CHAPTER 3. META-PROGRAMMING APPROACH

Assume that unsatisfied(lr) ∈ AM holds and consider the following rule rM ∈ Gr(Aerr ∪
πnoAS ):

rM = noAnswerSet← unsatisfied(lr) .

Since head(rM) = {noAnswerSet} and AM |= body(rM), {noAnswerSet} is supported by
Gr(Aerr ∪ πnoAS ).

Assume that selfCaused(la) ∈ AM holds and consider the following rule rM ∈ Gr(Aerr ∪
πnoAS ):

rM = noAnswerSet← selfCaused(la) .

Since head(rM) = {noAnswerSet} and AM |= body(rM), {noAnswerSet} is supported by
Gr(Aerr ∪πnoAS ). We showed that AM is supported by Gr(Aerr ∪πnoAS ). Since AM satisfies
Gr(Aerr∪πnoAS ), AM is supported by Gr(Aerr∪πnoAS ) and Gr(Aerr∪πnoAS ) is an absolutely
tight program by Theorem 2.34, we have that AM ∈ AS (Aerr ∪ πnoAS ). Thus, we have that
AM ∈ AS (DM(Π)).

Theorem 3.54 Let I be an interpretation for a propositional disjunctive program Π. Then,
I is no answer set of Π iff there is some noAS-MAS AM ∈ AS (DM(Π)) for program Π
guessing interpretation I.

Proof. (⇒) Assume I is no answer set of Π. By Theorem 2.33 either (i) I does not satisfy
Π, or (ii) there is a loop Γ ⊆ I of Π which is not externally supported by Π with respect
to I. Consider case (i): we have that I does not satisfy Π. Then, there is some rule r ∈ Π
such that r ∈ Π, I |= body(r) but head(r) ∩ I = ∅. Hence by Corollary 3.51, there is a
sat-MAS Aerr ∈ AS (Derr (Π)) for Π guessing I such that unsatisfied(lr) ∈ Aerr . Consider
case (ii): we have that there is a loop Γ ⊆ I of Π which is not externally supported by Π
with respect to I. Hence by Corollary 3.52, there is an ext-MAS Aerr ∈ AS (Derr (Π)) for Π
guessing I and Γ such that selfCaused(la) ∈ Aerr for all a ∈ Γ. Summarising cases (i) and
(ii), we have that there is a meta-answer-set Aerr ∈ AS (Derr (Π)) for Π guessing I such that
unsatisfied(lr) ∈ Aerr for some r ∈ Π, or selfCaused(la) ∈ Aerr for some a ∈ HB(Π). Consider
the set

AM = Aerr ∪ {noAnswerSet}.

By Lemma 3.53 we have that AM is an answer set of DM(Π). Since Aerr is a meta-answer-set
for Π guessing I, and {noAnswerSet}� Aerr , also AM is a meta-answer-set for Π guessing I.
Thus, we showed that AM is a noAS -MAS for Π guessing I.

(⇐) Assume AM ∈ AS (DM(Π)) is a noAS -MAS for program Π guessing I. Then, by
Lemma 3.53, we have that AM = Aerr ∪ {noAnswerSet} for an answer set Aerr of Derr (Π)
which contains at least one atom over one of the predicates unsatisfied/1 or selfCaused/1.

Assume that unsatisfied(lr) ∈ Aerr . By Proposition 3.49 we know that (i) Aerr is a sat-
MAS for Π, and thus by Proposition 3.10, Aerr is also an int-MAS for Π. As AM guesses I
and since πnoAS does not contain atoms over predicate int/1, we have that (ii) int(la) ∈ Aerr

iff int(la) ∈ AM. For (i) and (ii), by Definition 3.20, Aerr is a sat-MAS guessing I. Thus, by
Proposition 3.45, we have for rule r ∈ Π that I |= body(r) but head(r) ∩ I = ∅. Hence {r} is
not satisfied by I and thus I is no answer set of Π.

Assume that selfCaused(la) ∈ Aerr . By Proposition 3.49 we know that (i) Aerr is an ext-
MAS for Π, and thus by Proposition 3.10, Aerr is also an int-MAS for Π. As AM guesses I
and since πnoAS does not contain atoms over predicate int/1, we have that (ii) int(la) ∈ Aerr

54



3.3. META-PROGRAM

iff int(la) ∈ AM. For (i) and (ii), by Definition 3.20, Aerr is an ext-MAS guessing I. Thus,
by Proposition 3.48, we have that there is a loop Γ ⊆ I of Π such that Γ is not externally
supported by Π with respect to I. Thus, by Theorem 2.33, I is no answer set of Π.

Each AM ∈ AS (DM(Π)) gives reasons, why an interpretation I is no answer set of
program Π.

Theorem 3.55 Let Π be a propositional disjunctive program. Every AM ∈ AS (DM(Π))
contains at least one atom over one of the two error-indicating predicates unsatisfied/1,
selfCaused/1.

Proof. Let AM be an answer set of AS (DM(Π)). Towards a contradiction, assume that
for all meta-atoms aM ∈ {unsatisfied(lr) | unsatisfied(lr) ∈ HB(DM(Π))} ∪ {selfCaused(la) |
selfCaused(la) ∈ HB(DM(Π))} over predicates unsatisfied/1 and selfCaused/1, it holds that
aM /∈ AM.

Assume that noAnswerSet ∈ AM holds. Only ground instances of rules (36) and (37)
may support {noAnswerSet}. Consider an arbitrary ground instance r1M ∈ Gr(DM(Π)) of
rule (36) and an arbitrary ground instance r2M ∈ Gr(DM(Π)) of rule (37):

r1M = noAnswerSet← unsatisfied(lr) ,

r2M = noAnswerSet← selfCaused(la) .

We have AM 2 body(r1M) and AM 2 body(r2M). Therefore, {noAnswerSet} is not supported
by Gr(DM(Π)) with respect to AM. Therefore, the assumption that noAnswerSet ∈ AM
was false, hence noAnswerSet ∈ AM.

Consider the following constraint cM ∈ DM(Π):

cM = ← not noAnswerSet .

It holds that AM |= body(cM), hence AM /∈ AS (DM(Π)), which is a contradiction to the as-
sumption that AM ∈ AS (DM(Π)). Thus, for every AM ∈ AS (DM(Π)), there is a meta-atom
aM ∈ {unsatisfied(lr) | unsatisfied(lr) ∈ HB(DM(Π))} ∪ {selfCaused(la) | selfCaused(la) ∈
HB(DM(Π))} such that aM ∈ AM.

Theorem 3.56 For a propositional disjunctive program Π and an interpretation I for Π such
that I is no answer set of Π, DM(Π) has one or more answer sets AM such that AM is a
meta-answer-set for Π guessing I. Moreover, for every such AM it holds that

• unsupported(la) ∈ AM iff for atom a ∈ I, a is unsupported by Π with respect to I,

• unsatisfied(lr) ∈ AM iff for rule r ∈ Π, I |= body(r) but head(r) ∩ I = ∅, and

• violated(lr) ∈ AM iff r is a constraint in Π, violated under I.

Proof. By Theorem 3.54 it holds that DM(Π) has an answer set AM such that AM is a
meta-answer-set for Π guessing I. As AM is a supp-MAS, a sat-MAS, and an ic-MAS, by
Propositions 3.42, 3.45, and 3.39, it holds that

• unsupported(la) ∈ AM iff for atom a ∈ I, a is unsupported by Π with respect to I,

• unsatisfied(lr) ∈ AM iff for rule r ∈ Π, I |= body(r) but head(r) ∩ I = ∅, and

55



CHAPTER 3. META-PROGRAMMING APPROACH

• violated(lr) ∈ AM iff r is a constraint in Π, violated under I.

Theorem 3.57 For a propositional disjunctive program Π, an interpretation I for Π, and a
non-empty set Γ ∈ HB(Π) of atoms, it holds that Γ is a loop of Π such that Γ is subset of I
and Γ is not externally supported by Π with respect to I iff DM(Π) has one or more answer
sets AM, where AM is a meta-answer-set for Π guessing I such that selfCaused(la) ∈ AM
for all a ∈ Γ.

Proof. (⇒) Assume that Γ ⊆ I and Γ is a loop of Π such that Γ is not externally supported
by Π with respect to I. By Corollary 3.52, Derr (Π) has one or more answer sets Aerr , where
Aerr is a meta-answer-set for Π guessing I such that selfCaused(la) ∈ Aerr for all a ∈ Γ. As
Γ is non-empty, there is at least one atom over predicate selfCaused/1 in Aerr . Therefore, by
Lemma 3.53, AM = Aerr ∪ {noAnswerSet} is an answer set of DM(Π). As Aerr is a meta-
answer-set for Π guessing I, so is AM. Therefore, AM is a meta-answer-set for Π guessing I
such that selfCaused(la) ∈ AM for all a ∈ Γ.

(⇐) Assume DM(Π) has an answer set AM, where AM is a meta-answer-set for Π guessing
I such that selfCaused(la) ∈ AM for all a ∈ Γ. By Lemma 3.53, Aerr = AM \{noAnswerSet}
is an answer set of Derr (Π). As Aerr is a meta-answer-set for Π guessing I such that
selfCaused(la) ∈ AM exactly when a ∈ Γ, we have by Corollary 3.52 that Γ is a loop of
Π such that Γ is subset of I and Γ is not externally supported by Π with respect to I.

3.4 Search-Space Restriction and Examples

Since the user is confronted with a huge amount of information contained in AS (DM(Π)), it
makes sense to prune answer sets of DM(Π) which are not of interest to the user.

We distinguish between two approaches in restricting the amount of debugging informa-
tion: Pruning of answer sets by constraints and looking only at optimal answer sets using
weak constraints, respectively. In practice it is sometimes useful to apply both strategies
simultaneously.

Generally, every meta-atom in DM(Π) provides a handle for directing the search for errors,
allowing the user to specify the knowledge available about her or his expected results, e.g.
which atoms are (not) contained in expected interpretations, and which rules are applicable,
respectively blocked.

Example 3.58 Consider program Πex :

Πex = { r1 = a← not b, c,

r2 = b← not a,

r3 = c← not d,

r4 = e← c,

r5 = e← d,

r6 = f← c,not d,

r7 = g← not h, e,

r8 = h← not g ,

r9 = ← a, g }.

56



3.4. SEARCH-SPACE RESTRICTION AND EXAMPLES

{int(lb), int(lc), int(lf ), int(lh),noAnswerSet , unsatisfied(lr4),
ap(lr2), ap(lr3), ap(lr4), ap(lr6), ap(lr8),
bl(lr1), bl(lr5), bl(lr7), bl(lr9),
head(lr1 , la), head(lr2 , lb), head(lr3 , lc), head(lr4 , le),
head(lr5 , le), head(lr6 , lf ), head(lr7 , lg), head(lr8 , lh),
bodyP(lr1 , lc), bodyP(lr4 , lc), bodyP(lr5 , ld), bodyP(lr6 , lc),
bodyP(lr7 , le), bodyP(lr9 , la), bodyP(lr9 , lg),
bodyN (lr1 , lb), bodyN (lr2 , la), bodyN (lr3 , ld),
bodyN (lr6 , ld), bodyN (lr7 , lh), bodyN (lr8 , lg),
atom(la), atom(lb), atom(lc), atom(ld),
atom(le), atom(lf ), atom(lg), atom(lh),
rule(lr1), rule(lr2), rule(lr3), rule(lr4), rule(lr5),
rule(lr6), rule(lr7), rule(lr8), rule(lr9),
dpcy(la, la), dpcy(la, lc), dpcy(lb, lb), dpcy(lc, lc), dpcy(ld, ld),
dpcy(le, lc), dpcy(le, ld), dpcy(le, le), dpcy(lf , lc), dpcy(lf , lf ),
dpcy(lg, lc), dpcy(lg, ld), dpcy(lg, le), dpcy(lg, lg), dpcy(lh, lh),
strCon(la, la), strCon(lb, lb), strCon(lc, lc), strCon(ld, ld),
strCon(le, le), strCon(lf , lf ), strCon(lg, lg), strCon(lh, lh),
hasHead(lr1), hasHead(lr2), hasHead(lr3), hasHead(lr4),
hasHead(lr5), hasHead(lr6), hasHead(lr7), hasHead(lr8),
hInINotLoop(lr2), hInINotLoop(lr3), hInINotLoop(lr6), hInINotLoop(lr8),
anyHeadInI (lr2), anyHeadInI (lr3), anyHeadInI (lr6), anyHeadInI (lr8),
oHOfApRinI (lb), oHOfApRinI (lc), oHOfApRinI (lf ), oHOfApRinI (lh),
loop(la), loop(lb), loop(lc), loop(ld), loop(le), loop(lf ), loop(lg), loop(lh),
int(la), int(ld), int(le), int(lg)}

Figure 3.4: Answer set AΠex of program Πex from example 3.58

Assume the programmer wonders why I = {b, c, f, h} is not an answer set of Πex . The
corresponding meta-program DM(Πex ) has 2277 answer sets. This number can be reduced
to 9 by joining DM(Πex ) with the following constraints, pruning all meta-answer-sets which
are not guessing I:

← int(a),← int(d),← int(e),← int(g),
← not int(b),← not int(c),← not int(f),← not int(h).

The remaining meta-answer-sets only differ in which loop of Π they guess. As none of them
includes an atom over the selfCaused/1-predicate, all loops of Π are externally supported with
respect to I. Therefore, it is sufficient to focus on the remaining meta-answer-set guessing
no loop, hence we add a further constraint, ← loop( ), and receive meta-answer-set AΠex

which can be found in Figure 3.4. The only atom over an error-indicating predicate in AΠex

is unsatisfied(lr4), stating that rule r4 is not satisfied by I. ♦

Whenever the programmer is considering a specific interpretation I for program to debug Π,
a good overview of the situation can be obtained by the following strategy. We join DM(Π)
with the constraints ← not int(la) for all a ∈ I, ← int(lb) for all b ∈ HB(Π) \ I, and the

57



CHAPTER 3. META-PROGRAMMING APPROACH

following weak constraints:

:∼ atom(A),not selfCaused(A) [1 : 2], (39)
:∼ loop( ) [1 : 1]. (40)

Weak constraint (39) expresses that, whenever there is a loop of Π which is a subset of I
and not externally supported with respect to I, we obtain only meta-answer-sets indicating
maximal loops of Π which are a subset of I and not externally supported with respect to I.
If there is no such loop, weak constraint (40) becomes effective such that we obtain a single
meta-answer-set guessing I, but not guessing any loop.

Example 3.59 Consider program

Πex = { r1 = a← b,

r2 = b← c,

r3 = c← a,

r4 = ← a, b}

and interpretation I = {a, b, c}. When we join DM(Πex ) with the constraints ← not int(a),
← not int(b),← not int(c), the answer sets of the resulting program, projected to atoms over
the predicates int/1, unsupported/1, violated/1, unsatisfied/1, selfCaused/1, and loop/1 are
given by

{int(la), int(lb), int(lc), loop(la), loop(lb), loop(lc), selfCaused(la), selfCaused(lb),
selfCaused(lc), unsatisfied(lr4), violated(lr4)},
{int(la), int(lb), int(lc), loop(la), loop(lb), unsatisfied(lr4), violated(lr4)},
{int(la), int(lb), int(lc), loop(la), loop(lc), unsatisfied(lr4), violated(lr4)},
{int(la), int(lb), int(lc), loop(la), unsatisfied(lr4), violated(lr4)},
{int(la), int(lb), int(lc), loop(lb), loop(lc), unsatisfied(lr4), violated(lr4)},
{int(la), int(lb), int(lc), loop(lb), unsatisfied(lr4), violated(lr4)},
{int(la), int(lb), int(lc), loop(lc), unsatisfied(lr4), violated(lr4)},
{int(la), int(lb), int(lc), unsatisfied(lr4), violated(lr4)}.

When we also add the weak constraints (39) and (40), only the set

{int(la), int(lb), int(lc), loop(la), loop(lb), loop(lc), selfCaused(la), selfCaused(lb),
selfCaused(lc), unsatisfied(lr4), violated(lr4)}

remains, indicating that loop Γ = {a, b, c} is not externally supported with respect to I. By
adding the fact ← a to Πex , which provides external support for Γ with respect to I, the
resulting optimal answer set does not guess any loop. Its projection is given by

{int(la), int(lb), int(lc), unsatisfied(lr4), violated(lr4)},

indicating the remaining error, namely the violation of constraint r4. ♦

In the next example, we do not restrict our attention to a single interpretation, but consider
a specific class of interpretations.

58



3.4. SEARCH-SPACE RESTRICTION AND EXAMPLES

Example 3.60 Reconsider program Πex from Section 3.1, consisting of the rules

r1 = night ∨ day← ,
r2 = bright← candlelight ,
r3 = ← night , bright ,not torch on ,
r4 = candlelight← .

The programmer wants to know why there is no answer set A of Πex such that night ∈ A,
constraint r3 is not violated, and r4 is applicable. This conditions can be expressed by the
constraints

← not int(night),
← violated(lr3), and
← not ap(lr4).

As the union of DM(Πex ) and these constraints has 64 answer sets, we use the following weak
constraints to consider only meta-answer-sets involving a minimal number of error-indicating
meta-atoms:

:∼ violated( ) [1 : 2], (41)
:∼ unsupported( ) [1 : 2], (42)
:∼ unsatisfied(A),not violated(A) [1 : 2], (43)
:∼ selfCaused( ) [1 : 2], (44)
:∼ loop( ) [1 : 1]. (45)

Weak constraints (41)-(44) minimise the number of error-indicating meta-atoms. Note, that
weak constraint (43) only considers unsatisfied rules which are not constraints, as these are
handled separately by weak constraint (39). Among the answer sets which are optimal with
respect to weak constraints (41)-(44), weak constraint (45) gives preference to those involving
a minimal number of atoms over predicate loop/1.

After applying these optimisations, only two optimal answer sets remain. These answer
sets, projected to atoms over the predicates int/1, unsupported/1, unsatisfied/1, violated/1,
selfCaused/1, loop/1, ap/1, and bl/1, are given by

{ap(lr1), ap(lr2), ap(lr4), bl(lr3), int(lcandlelight), int(lnight), unsatisfied(lr2)} and

{ap(lr1), ap(lr4), bl(lr2), bl(lr3), int(lnight), unsatisfied(lr4)}. ♦

59



Chapter 4

Tagging Approach to Debugging

In previous work [5], we introduced a debugging method, based on a tagging technique,
formerly used for compiling ordered logic programs into standard ones [15]. Similar to the
meta-programming approach, described in Chapter 3, we use ASP techniques to debug propo-
sitional answer-set programs. In contrast to meta-programming, the tagging method does not
fully lift the program Π to debug to the meta level, but relies on a variant of Π augmented
with control and analysis atoms, called tags.

The general debugging question addressed by the basic version of the tagging technique
concerns the applicability of rules with respect to the answer sets of Π: the debugging system
states which rules are applicable and which rules are blocked for every answer set of Π. In the
meta-programming approach, the same information can be obtained for all interpretations
of Π, by computing the answer sets of standalone subprogram Dap(Π) of the meta-program
DM(Π).

The tagging technique can be extended to perform further sorts of debugging tasks. E.g.,
we propose an extension module for extrapolation of non-existing, yet putative answer sets
of a program. The problem addressed here coincides with the major question motivating the
meta-programming approach: “Why is some given interpretation not an answer set of a given
program?”. The approaches also use related means to tackle the problem: abnormalities
regarding the program, its completion, and its loop formulas, as identified by the tagging
technique, correspond to unsatisfied rules, unsupported atoms, and externally unsupported
loops, detected in the meta-programming method. This scheme of justifications for an inter-
pretation not to be an answer set is ultimately based on Theorem 2.37 (Lin-Zhao Theorem).
However, in the meta-programming approach, we technically use a model-theoretic variant
of this theorem by Lee [39]. Further details about the differences between the extrapolation
module and the meta-programming technique are discussed in Section 4.2.

For inconsistent programs, the module for extrapolation of non-existing answer sets can be
used to identify a minimal number of repairs to establish consistency. These are modifications
of the program in form of either the deletion of a rule, or the addition of a fact. To this end,
we use optimisation techniques of ASP-solvers.

In contrast to the meta-programming technique, where propositional disjunctive programs
are handled, the class of programs to debug is restricted to propositional normal programs in
the tagging approach. Integrity constraints must be handled by simulation.

For normal programs, the two approaches can usually be easily adapted to cover similar
debugging queries. As the tagging technique is based on a rather slight translation of the

60



4.1. SPLITTING CAUSE FROM CONSEQUENCE

original program, where the candidate interpretations still depend on the applicability of rules,
it is particularly suitable to analyse this coherence. E.g., following the work of Delgrande,
Schaub, and Tompits [15], tagging can be used to impose an order on the application of the
rules of a program. In terms of debugging, the question addressed here is which answer sets
of Π can be thought of being computed sequentially, by a step-by-step application of rules,
according to a rule order the developer has in mind. Although this could also be done by a
meta-interpreter, the meta-technique we propose in Chapter 3 can not be adjusted for this
purpose straightforwardly.

However generally, the clear separation of meta-level and program to debug makes the
meta-approach more flexible and extensible than the tagging technique:

• once the program to debug is encoded, it does not have to be recompiled when switching
debugging modules, and

• extension modules can be specified as abstract non-ground answer-set programs, without
prior knowledge of the program to debug.

In the next section we introduce the basic version of our tagging approach.

4.1 Splitting Cause from Consequence

The main idea of tagging is to split the head from the body for each rule in a program, and
thereby intervene in the applicability of rules. After this division, dedicated meta-atoms,
called tags, are installed to trigger rules. This way, the formation of answer sets can be
controlled and tags in the answer sets of the transformed (or tagged) program reflect inherent
properties of Π.

Technically, a propositional normal program Π to debug over alphabet A is rewritten into
a ground normal program TK[Π] over an extended alphabet A+. As the input language is
restricted to normal programs but we also want to handle constraints, we need to simulate
them. To this end, every constraint← body(c) is replaced by a rule n← body(c),not n, where
n is a globally new atom.

We call TK[Π] the kernel tagging or kernel transformation of Π, in order to distinguish it
from further translations, extending TK[Π]. It is defined as follows:

Definition 4.1 Let Π be a logic program over A and consider a bijection n, assigning each
rule r over A a unique name nr. Then, the program TK[Π] over A+ consists of the following
rules, for r ∈ Π, b ∈ body+(r), and c ∈ body−(r):

head(r)← ap(nr),not ko(nr) , (46)

ap(nr)← ok(nr), body(r) , (47)

bl(nr)← ok(nr),not b, (48)

bl(nr)← ok(nr),not not c, (49)

ok(nr)← not ok(nr) . (50)

2

The tags ap(nr) and bl(nr) intuitively express whether a rule r is applicable or blocked,
respectively, while the control tags ok(nr) and ko(nr), also occurring in TK[Π], are used for
manipulating the application of r.

61



CHAPTER 4. TAGGING APPROACH TO DEBUGGING

Intuitively the rules of Π are split into rules of forms (46) and (47), separating the appli-
cability of a rule from the actual occurrence of the respective rule head in an interpretation.

Analogously, rules of forms (48) and (49) elicit which rules are blocked. Tags, stating that
rule r is applicable or blocked, are only derived if ok(nr) holds, which is by default the case,
as expressed by rules of form (50).

The results of the debugging process can be obtained from the answer sets of the tagged
program. In particular the answer sets of TK[Π] extend the answer sets of Π by information
about applicability of rules, as stated by the following theorem:

Theorem 4.2 ([5]) Let Π be a logic program over A. We have a one-to-one correspondence
between the answer sets of Π and TK[Π] satisfying the following conditions:

1. If A is an answer set of Π, then

A ∪ {ok(nr) | r ∈ Π} ∪ {ap(nr) | r ∈ GEN(Π, A)} ∪ {bl(nr) | r ∈ Π \ GEN(Π, A)}

is an answer set of TK[Π].

2. If AK is an answer set of TK[Π], then AK ∩At(A) is an answer set of Π.

Example 4.3 Consider the program

ΠK = { r1 = a← b ,

r2 = a← not c ,

r3 = b← c,not d ,

r4 = c← not e ,

r5 = e← a ,

r6 = d← not b },

with the following set of answer sets:

AS (ΠK) = {{a, d , e}, {c, d}} .

The kernel transformation of ΠK is listed in Figure 4.1. The answer sets of the tagged program
are given by

AS (TK[ΠK]) = {{a, d , e,
ap(nr2), ap(nr5), ap(nr6), bl(nr1), bl(nr3), bl(nr4),
ok(nr1), ok(nr2), ok(nr3), ok(nr4), ok(nr5), ok(nr6)},
{c, d ,
ap(nr4), ap(nr6), bl(nr1), bl(nr2), bl(nr3), bl(nr5),
ok(nr1), ok(nr2), ok(nr3), ok(nr4), ok(nr5), ok(nr6)}} .

From this results, the user knows by Theorem 4.2 that, e.g., rule r2 of ΠK is applicable under
{a, d , e}, but blocked under {c, d}. ♦

Extension modules can use the control tags ok(nr) and ko(nr) in TK[Π] to influence the
formation of answer sets of the tagged program. This way, we can use tagging to address other

62



4.2. EXTRAPOLATION OF NON-EXISTING ANSWER SETS

a← ap(nr1),not ko(nr1) , a← ap(nr2),not ko(nr2) ,
ap(nr1)← ok(nr1), b , ap(nr2)← ok(nr2),not c ,
bl(nr1)← ok(nr1),not b , bl(nr2)← ok(nr2),not not c ,

ok(nr1)← not ok(nr1) , ok(nr2)← not ok(nr2) ,
b← ap(nr3),not ko(nr3) , c← ap(nr4),not ko(nr4) ,
ap(nr3)← ok(nr3), c,not d , ap(nr4)← ok(nr4),not e ,
bl(nr3)← ok(nr3),not c , bl(nr4)← ok(nr4),not not e ,
bl(nr3)← ok(nr3),not not d , ok(nr4)← not ok(nr4) ,

ok(nr3)← not ok(nr3) ,
e← ap(nr5),not ko(nr5) , d ← ap(nr6),not ko(nr6) ,
ap(nr5)← ok(nr5), a , ap(nr6)← ok(nr6),not b ,
bl(nr5)← ok(nr5),not a , bl(nr6)← ok(nr6),not not b ,

ok(nr5)← not ok(nr5) , ok(nr6)← not ok(nr6)

Figure 4.1: Kernel tagging TK[ΠK] of program ΠK from example 4.3

questions than whether a rule is applicable or blocked under a certain answer set. Generally,
such extension modules can be seen as an encoding D[∆] of a debugging request ∆. From
this point of view, we understand the tagging approach as a general framework for debugging
purposes, where the debugging results are provided by the answer sets of the union of TK[Π]
and D[∆]. The workflow of this debugging model is shown in Figure 4.2.

In the following, we will discuss an extension module used to extrapolate non-existing
answer sets of Π.

4.2 Extrapolation of Non-Existing Answer Sets

The idea behind this module is to break with the one-to-one correspondence between answer
sets of the tagged program and the program Π to debug, and analyse why interpretations
are not answer sets of Π. To identify reasons for that, we need categories of abnormality for
interpretations, giving hints on the cause for them not being answer sets. Here, we rely on the
characterisation of answer sets by Lin and Zhao [44], distinguishing between abnormalities
resulting from the program, its completion, and its loop formulas. Technically, we introduce
three abnormality tags, abp(nr), abc(a), and abl(a), corresponding to these three categories
of error, which occur in the answer sets of the new translation TEx[Π].

Let Π be a program over alphabet A and AEx an answer set of TEx[Π], then

• abp(nr) ∈ AEx signals that rule r is unsatisfied by I,

• abc(a) ∈ AEx points out that atom a is true but not supported with respect to I, and

• abl(a) ∈ AEx aims at indicating an atom a ⊆ I in the consequent of a violated loop
formula of Π,

where I = AEx ∩At(A).
The overall module TEx[Π] is a union of the kernel translation TK[Π], and three new

translations, TP, TC, and TL, of program Π to debug, defined as follows:

63



CHAPTER 4. TAGGING APPROACH TO DEBUGGING

.........................
........
.

.........................
........
.

................................

..

Original ProgramΠ

AS-Computation

TK[Π] ∪ D[∆] ∆

Kernel Tagging Compiled Request Debugging Request

Tagged Program

AS (TK[Π] ∪ D[∆])

Figure 4.2: Debugging by tagging

Definition 4.4 Let Π be a logic program over A. Then, for a set A ⊆ At(A),

1. the logic program TP[Π] over A+ consists of the following rules, for all r ∈ Π

{ head(r) }← ap(nr) , (51)

abp(nr)← ap(nr),not head(r) , (52)

ko(nr)← , (53)

2. the logic program TC[Π, A] over A+ consists of the following rules, for all a ∈ A, where
{r1, . . . , rk} = {r ∈ Π | head(r) = {a}}:

{ a }← bl(nr1), . . . , bl(nrk
) , (54)

abc(a)← a, bl(nr1), . . . , bl(nrk
) , (55)

3. and the logic program TL[A] over A+ consists of the following rules, for all a ∈ A:

{ abl(a) }← not abc(a) , (56)

a← abl(a) . (57)

2

The task of TP[Π] is to consider interpretations which do not satisfy all rules of the original
program Π as answer sets. Technically, a rule of form (51) replaces a corresponding rule of
form (46) from TK[Π]. We use a choice rule to express that if rule r of Π is applicable the
head of r may or may not be derived. In case it is not derived, the corresponding rule of

64



4.2. EXTRAPOLATION OF NON-EXISTING ANSWER SETS

form (52) adds the abnormality tag abp(nr) to the answer set. Rules of form (53) “knock
out” the replaced rules of form (46).
TC[Π, A] is used to derive atoms which are not supported by any rule. If all rules having

head atom a ∈ A are blocked, a may or may not be derived by the corresponding choice rule
of form (54). If a is derived, the abnormality tag abc(a) is true, due to the corresponding rule
of form (55).

Finally, TL[A] is used to detect atoms in the consequent of violated loop formulas. Here,
we randomly consider atoms to be abnormal and true, given that they are not already derived
despite of being unsupported. Clearly, by rules of form (56), also atoms which are not involved
in an unsatisfied loop formula are considered to be abnormal. However, when we consider
only abnormality-minimum answer sets, the occurrence of an abl(a) tag always indicates the
violation of a loop formula.

In the following, we only consider programs Π under an alphabet A such that HB(Π) =
At(A). The set of all potential abnormality atoms for a propositional normal program Π
under alphabet A such that HB(Π) = At(A) is given by

AB(Π) = {abp(nr) | r ∈ Π} ∪ {abc(a), abl(a) | a ∈ HB(Π)}.

We now define the extrapolation tagging of Π:

Definition 4.5 Let Π be a propositional normal program over A such that HB(Π) = At(A).
Then, for sets Π′ ⊆ Π and A ⊆ HB(Π), the extrapolation tagging of Π projected to Π′ and A
is given by

TEx[Π,Π′, A] = TK[Π] ∪ TP[Π′] ∪ TC[Π, A] ∪ TL[A] .

Moreover, the extrapolation tagging of Π is given by the program

TEx[Π] = TEx[Π,Π,HB(Π)]. 2

Using the extrapolation tagging projected to a subprogram and a set of atoms is useful to select
the rules and atoms of a program which are estimated to behave incorrectly. Abnormality
tags will only refer to the specified rules and atoms and the remaining program is assumed
to be correct. The subsequent results deal with the special case of TEx[Π], where all rules and
atoms in Π are considered.

Theorem 4.6 ([5]) Let Π be a logic program over A such that HB(Π) = At(A). Then, it
holds that

1. If A is an answer set of Π, then

A ∪ {ok(nr), ko(nr) | r ∈ Π} ∪ {ap(nr) | r ∈ GEN(Π, A)} ∪ {bl(nr) | r ∈ Π \ GEN(Π, A)}

is an answer set of TEx[Π].

2. If AEx is an answer set of TEx[Π] such that AEx ∩ AB(Π) = ∅, then AEx ∩ At(A) is an
answer set of Π.

Theorem 4.6 states that there is still a one-to-one correspondence between the answer sets of
Π, and the answer sets of TEx[Π] which do not involve abnormality tags. The next theorem
deals with the case which is more interesting concerning the extrapolation behaviour of TEx[Π],
where abnormalities do occur.

65



CHAPTER 4. TAGGING APPROACH TO DEBUGGING

Theorem 4.7 ([5]) Let Π be a logic program over A such that HB(Π) = At(A). Then, it
holds that

1. if AEx is an answer set of TEx[Π] and abp(nr) ∈ AEx, then AEx ∩ At(A) is not a model
of the formula BF (r)→ HF (r) in PF (Π);

2. if AEx is an answer set of TEx[Π] and abc(a) ∈ AEx, then AEx ∩At(A) is not a model of
a→

∨
r∈Π,head(r)={a} BF (r) in CF (Π,A);

3. if AEx is an answer set of TEx[Π] such that, for some Γ ∈ loopNT (Π), we have Γ ⊆
AEx∩At(A), AEx∩At(A) is not a model of the loop formula LF (Π,Γ), but AEx∩At(A)
is a model of

∨
r∈Π,head(r)={a}BF (r) for every a ∈ Γ, then abl(a′) ∈ AEx for some a′ ∈ Γ.

While occurrences of abnormality tags abp(nr) and abc(a) indicate a violation of PF (Π) or
CF (Π,A), respectively, an occurrence of abl(a) does not necessarily indicate a violated loop
formula. More precisely, having abl(a) in an answer set AEx of TEx[Π] means that a is also in
AEx∪At(A), a is supported by Π with respect to AEx∪At(A), and either a is only supported
by rules which recursively depend on a, or a is supported by a rule which does not depend on
a. In the second case, a could also be derived, if abl(a) was not in AEx. As abl(a) was derived
by a choice rule of form (56), AEx \ {abl(a)} is also an answer set of the tagged program.
Therefore, we can be sure that a loop formula was violated, when a tag abl(a) appears in an
abnormality-minimum answer set of TEx[Π].

In the meta-programming approach of Chapter 3 we do not encounter similar misleading
“false positive” occurrences of error-indicating meta-atoms in the answer sets of DM(Π). This
is because, unlike in tagging, there is an explicit check for loops being not externally supported.
Furthermore, in tagging, atoms of distinct loops associated to violated loop formulas are
detected, whereas in each answer set of the meta-program, one externally unsupported loop
is found at most. Therefore, as discussed in Subsection 3.3.16, if we omitted module πnoAS

we would obtain “false negative” results, namely meta-answer sets guessing an interpretation
I which is not an answer set of Π, without detecting any error.

Another difference between the tagging and the meta-programming approach is that in
the meta-approach unsupported atoms are regarded to be special cases of not externally
supported loops, whereas, in terms of the corresponding notions, violations of CF (Π,A) and
violations of loop formulas are regarded to be distinct types of error.

Example 4.8 Consider the program

ΠEx1 = { r1 = a← b,not c ,
r2 = b← a ,
r3 = c← not b ,
r4 = b← not a },

which has no answer sets, and assume that the programmer does expect the existence of
answer sets. The extrapolation tagging of ΠEx1 can be found in Figure 4.3. Furthermore, a
complete list of the corresponding answer sets is given in Figure 4.4, including the following
examples:

A1 = {c, ap(nr3), ap(nr4), bl(nr1), bl(nr2), abp(nr4)} ∪KOOK ,

A2 = {b, c, ap(nr4), bl(nr1), bl(nr2), bl(nr3), abc(c)} ∪KOOK ,

A3 = {a, b, ap(nr1), ap(nr2), bl(nr3), bl(nr4), abl(a)} ∪KOOK ,

A4 = {b, c, ap(nr4), bl(nr1), bl(nr2), bl(nr3), abc(c), abl(b)} ∪KOOK ,

66



4.2. EXTRAPOLATION OF NON-EXISTING ANSWER SETS

a← ap(nr1),not ko(nr1) , b← ap(nr2),not ko(nr2) ,
ap(nr1)← ok(nr1), b,not c , ap(nr2)← ok(nr2), a ,
bl(nr1)← ok(nr1),not b , bl(nr2)← ok(nr2),not a ,
bl(nr1)← ok(nr1),not not c , ok(nr2)← not ok(nr2) ,

ok(nr1)← not ok(nr1) , b← ap(nr4),not ko(nr4) ,
c← ap(nr3),not ko(nr3) , ap(nr4)← ok(nr4),not a ,
ap(nr3)← ok(nr3),not b , bl(nr4)← ok(nr4),not not a ,
bl(nr3)← ok(nr3),not not b , ok(nr4)← not ok(nr4) ,

ok(nr3)← not ok(nr3) ,
{a}← ap(nr1) , {b}← ap(nr4) ,
abp(nr1)← ap(nr1),not a , abp(nr4)← ap(nr4),not b ,
{b}← ap(nr2) , ko(nr1)← ,
abp(nr2)← ap(nr2),not b , ko(nr2)← ,
{c}← ap(nr3) , ko(nr3)← ,
abp(nr3)← ap(nr3),not c , ko(nr4)← ,
{a}← bl(nr1) , abl(a)← not abc(a) ,
abc(a)← bl(nr1), a , a← abl(a) ,
{b}← bl(nr2), bl(nr4) , abl(b)← not abc(b) ,
abc(b)← bl(nr2), bl(nr4), b , b← abl(b) ,
{c}← bl(nr3) , abl(c)← not abc(c) ,
abc(c)← bl(nr3), c , c← abl(c)

Figure 4.3: Extrapolation tagging TEx[ΠEx1] of program ΠEx1 from example 4.8

where KOOK = {ko(nr1), ko(nr2), ko(nr3), ko(nr4), ok(nr1), ok(nr2), ok(nr3), ok(nr4)}.
Answer set A1 represents interpretation I1 = {c} for Π. Abnormality tag abp(nr4) indicates

that rule r4 is violated, as its head atom, b, is not in I1. The tag abc(c) in answer set A2

states that atom c is in the considered interpretation I2 = {b, c}, although c does not occur in
the head of a rule of Π which is applicable under I2. Answer set A3 represents interpretation
I3 = {a, b} for Π. The occurrence of atom a in I3 is due to the applicability of rule r1 and
hence dependent on the truth of b. Similarly, b is only true because a is, as r2 is the only
applicable rule with head b. Hence, a and b are in a loop associated to a violated loop formula
in LF (ΠEX) and therefore A3 includes abnormality tag abl(a). Note that there is a dual
answer set of TEx[ΠEX] which includes abnormality tag abl(b).

Furthermore, tag abl(b) in answer set A4 is an example of a misleading loop-oriented
abnormality tag, as b is not involved in a loop associated to a loop formula, violated under
the represented interpretation I4 = {b, c}. Thus, A4 \ {abl(b)} is an answer set of TEx[ΠEx1],
namely A2. ♦

As stated before, in order to reduce the amount of information and to avoid misleading
loop-oriented abnormality tags at the same time, we only consider abnormality-minimum
answer sets of the extrapolation tagging. These can be computed, using standard optimisation
techniques of ASP, such as minimize statements in Smodels or weak constraints in DLV.

The next result captures a scenario in which only a subset of a program is subject to
extrapolation and only abnormality-minimum answer sets of the translation are considered.
From the perspective of an original program Π, the abnormality-minimum answer sets of

67



CHAPTER 4. TAGGING APPROACH TO DEBUGGING

{a, b, c, ap(nr2), bl(nr1), bl(nr3), bl(nr4), abc(a), abc(c)} ∪KOOK ,

{a, b, c, ap(nr2), bl(nr1), bl(nr3), bl(nr4), abc(a), abc(c), abl(b)} ∪KOOK ,

{a, b, ap(nr1), ap(nr2), bl(nr3), bl(nr4), abl(a)} ∪KOOK ,

{a, b, ap(nr1), ap(nr2), bl(nr3), bl(nr4), abl(b)} ∪KOOK ,

{a, b, ap(nr1), ap(nr2), bl(nr3), bl(nr4), abl(a), abl(b)} ∪KOOK ,

{a, c, ap(nr2), ap(nr3), bl(nr1), bl(nr4), abc(a), abp(nr2)} ∪KOOK ,

{a, c, ap(nr2), ap(nr3), bl(nr1), bl(nr4), abc(a), abl(c), abp(nr2)} ∪KOOK ,

{a, ap(nr2), ap(nr3), bl(nr1), bl(nr4), abc(a), abp(nr2), abp(nr3)} ∪KOOK ,

{b, c, ap(nr4), bl(nr1), bl(nr2), bl(nr3), abc(c)} ∪KOOK ,

{b, c, ap(nr4), bl(nr1), bl(nr2), bl(nr3), abc(c), abl(b)} ∪KOOK ,

{b, ap(nr1), ap(nr4), bl(nr2), bl(nr3), abp(nr1)} ∪KOOK ,

{b, ap(nr1), ap(nr4), bl(nr2), bl(nr3), abl(b), abp(nr1)} ∪KOOK ,

{c, ap(nr3), ap(nr4), bl(nr1), bl(nr2), abp(nr4)} ∪KOOK ,

{c, ap(nr3), ap(nr4), bl(nr1), bl(nr2), abl(c), abp(nr4)} ∪KOOK ,

{ap(nr3), ap(nr4), bl(nr1), bl(nr2), abp(nr3), abp(nr4)} ∪KOOK , where

KOOK = {ko(nr1), ko(nr2), ko(nr3), ko(nr4), ok(nr1), ok(nr2), ok(nr3), ok(nr4)}.

Figure 4.4: Answer sets of TEx[ΠEx1] of program ΠEx1 from example 4.8

TEx[Π,Π′,HB(Π′)] provide us with the candidate sets among At(A) that satisfy the require-
ment of being an answer set of Π under a minimum number of repairs on Π′. A repair is
either the deletion of a rule r or an addition of a fact a ← which prevents atom a from
being not supported or in a loop associated to a violated loop formula. The former repair
refers to an abnormality tag abp(nr), which is clearly avoided when the corresponding rule
r is deleted, and the latter to abc(a) or abl(a), since a →

∨
r∈Π∪{a←},head(r)={a}body(r) and

LF (Π ∪ {a←},Γ), for any loop Γ containing a, then amount to a→ > and ⊥ →
∧

a∈Γ¬a.

Theorem 4.9 ([5]) Let Π be a logic program over A such that HB(Π) = At(A) and (Π1,Π2)
a partition of Π such that {head(r1) | r1 ∈ Π1} ∩ HB(Π2) = ∅. Furthermore, let M be the
set of all answer sets AEx of TEx[Π,Π2,HB(Π2)] such that the cardinality of AEx ∩ AB(Π2) is
minimum among all answer sets of TEx[Π,Π2,HB(Π2)]. Then, it holds that

1. if AEx ∈M, then AEx∩At(A) satisfies all formulas in PF (Π1)∪ (CF (Π1,A)\{a→ ⊥ |
a ∈ HB(Π2)}) ∪ LF (Π1) and all formulas in PF (Π2) ∪ CF (Π2,A) ∪ LF (Π2) under a
minimum number of repairs on Π2;

2. if I ⊆ At(A) satisfies all formulas in PF (Π1)∪ (CF (Π1,A) \ {a→ ⊥ | a ∈ HB(Π2)})∪
LF (Π1) and all formulas in PF (Π2) ∪CF (Π2,A) ∪ LF (Π2) under a minimum number
of repairs on Π2, then there is a AEx ∈M such that I = AEx ∩At(A).

This results are interesting in the context of inconsistent programs, as the number of minimal
repairs for programs having answer sets is trivially zero.

68



4.2. EXTRAPOLATION OF NON-EXISTING ANSWER SETS

Example 4.10 Consider the inconsistent program

ΠEx2 = { r1 = a← not b ,

r2 = b← not c ,

r3 = c← not a }.

The extrapolation tagging TEx[ΠEx2, {r1},HB({r1})] of ΠEx2 projected to {r1} and HB({r1})
has two abnormality-minimal answer sets:

A1={b, c, abc(b), ap(nr3), bl(nr1), bl(nr2), ko(nr1), ok(nr1), ok(nr2), ok(nr3)} and
A2={c, abp(nr1), ap(nr1), ap(nr3), bl(nr2), ko(nr1), ok(nr1), ok(nr2), ok(nr3)}.

The minimum number of repairs needed to restore consistency is one. From abnormality
tag abc(b) in A1 we know that ΠEx2 ∪ {b ←} has the answer set {b, c}, and abp(nr1) in A2

indicates that ΠEx2 \ {r1} has the answer set {c}. ♦

69



Chapter 5

Implementation

The approaches of Chapters 3 and 4 have been implemented in the prototype debugging
system spock [6, 29]. The name spock makes reference to the fact that detecting errors is
done by means of logic (just like the famous Vulcan of Star Trek always does), since the
implemented techniques make use of ASP itself for debugging answer-set programs.

The system spock is a command-line oriented tool, written in Java 5.0 and published
under the GNU general public license [27]. It can be used either with DLV [40] or with
LPARSE/SMODELS and is publicly available at

http://www.kr.tuwien.ac.at/research/debug

as a jar-package including binaries and sources.

5.1 Architecture

The main task of spock is performing translations between answer-set programs for debugging
purposes. For a propositional disjunctive program ΠM , the meta-program DM(ΠM ), defined
in Chapter 3, can be computed. Furthermore, for propositional normal program ΠT and
a subprogram Π′T of ΠT , the translations TK[ΠT ], TEx[ΠT ], TEx[ΠT ,Π′T ,HB(Π′T )], TP[ΠT ],
TC[ΠT ,HB(ΠT )] and TL[HB(ΠT )], as introduced in the tagging approach in Chapter 4, are
supported. Furthermore, for the extrapolation tagging, spock allows for minimising the
number of abnormality tags.

The data flow for all transformations is depicted by Figure 5.1. First, independent
of the used translation, the input program is parsed and represented in an internal data
structure. Then, the actual program transformation is performed, as specified by command-
line arguments. The invocations of the individual translations are described later in this
chapter.

The meta-programming approach as well as the tagging technique use labels to refer to
individual rules. Therefore, we allow the programmer to add labels to the rules of the program
to debug. As this requires an extension of the program syntax, spock offers an interface to
DLV and LPARSE/SMODELS for computing answer sets of labelled programs. Figure 5.2 illustrates
the typical data flow of answer-set computation with spock.

70

http://www.kr.tuwien.ac.at/research/debug


5.1. ARCHITECTURE

<file_n>

Translation

<file_1>

<file_2>
... Parser

spock

Command Line

Standard Input

Representation
Program
Internal

Arguments

Input Program

Program

Figure 5.1: Data flow of program translations

<file_n>

<file_1>

<file_2>
... Parser

spock

Arguments
Command Line

Solver

Representation
Answer Set
Program and
Internal

Answer Sets

Standard Input
Program Syntax
Solver SpecificAnswer Sets

Input Program

Figure 5.2: Data flow of answer-set computation for labelled programs

71



CHAPTER 5. IMPLEMENTATION

program = (
. . .)∗rule((

. . .)∗rule)∗(
. . .)∗

rule = (rulelabel . . . ‘:’ . . . )? (head . . . ‘.’ |
head . . . ‘:-’ . . .body . . . ‘.’ | ‘:-’ . . .body . . . ‘.’)

head = atom ((‘v’|‘|’) . . . atom)∗

body = literal (‘, ’ . . . literal)∗

literal = atom | ‘not’ . . . atom
atom = symb (‘(’ . . . term(‘,’ . . . term)∗ . . . ‘)’)?
term = variable | symb
rulelabel = (‘a’− ‘z’ | ‘A’− ‘Z’ | ‘0’− ‘9’)∗

variable = (‘A’− ‘Z’)(‘a’− ‘z’ | ‘A’− ‘Z’ | ‘0’− ‘9’ | ‘ ’)∗

symb = (‘a’− ‘z’ | ‘0’− ‘9’)(‘a’− ‘z’ | ‘A’− ‘Z’ | ‘0’− ‘9’ | ‘ ’)∗
. . . = (. . . )∗ ‘\n’ (. . . )∗

. . . = (‘ ’ | ‘\t’)∗

Figure 5.3: Labelled program syntax of spock

5.2 System Call

Generally, spock is executed by a shell command of the form

java -jar spock.jar { OPTION | FILENAME }∗,

where { OPTION | FILENAME }∗ is an arbitrary sequence of options and filenames, provided
java is the execution command for the Java virtual machine. If no filename is given, spock ex-
pects input from the operation system’s standard input. A list of important options is given
in the Appendix.

5.3 System Input

The input primarily consists of the logic programs that are to be debugged. The accepted
program syntax is closely related to the core languages of either DLV or SMODELS. Note that
although spock allows a range of syntax constructs, like rule labels, head disjunctions, singu-
lar choice rules and weak constraints, the implemented debugging approaches work only on
subsets of the accepted input.

The subset of the accepted program syntax which is needed for the implemented ap-
proaches, is depicted in Figure 5.3, using regular expressions.

Rule labelling is introduced as a device to explicitly refer to certain rules. As stated in
Figure 5.3, a rule may have its label omitted. For a previously unlabelled rule, spock au-
tomatically assigns the label rn according to the line number n in which it appears in the
program. Note that duplicate rule labels will produce a warning message. If the input is
spread over multiple input files, their contents will be internally joined as if it was only one
file. Additional content read from standard input when using the ‘--’ flag is also appended
to any input from files.

Since labelled rules cannot be read by conventional ASP solvers, spock offers an interface
to DLV and SMODELS providing answer-set computation for labelled programs, described next.

72



5.4. ANSWER-SET COMPUTATION FOR LABELLED PROGRAMS

5.4 Answer-Set Computation for Labelled Programs

In order to perform answer-set computation for labelled programs, either DLV or SMODELS (the
latter in combination with its grounder LPARSE) must be found in the command search-path
of the used system.

As depicted in Figure 5.2, spock internally transforms the parsed input program Π into
a solver-compatible representation before forwarding it to the externally called answer-set
solver. The resulting set of answer sets, AS (Π), is then parsed and stored for further process-
ing. When using flag ’-o’, spock outputs AS (Π). An alternative graphical representation of
the answer sets of Π, as shown in Figure 5.4, can be obtained by flag ’-as’.

Command-line arguments for externally called systems can be forwarded using the flags
’-dlvarg’, ’-lparg’, and ’-smarg’.

Example 5.1 Consider input file file5.1, containing program Πcol :

r1 : node(a).
r2 : node(b).
r3 : node(c).
r4 : node(d).
r5 : edge(a, b).
r6 : edge(a, c).
r7 : edge(a, d).
r8 : edge(b, c).
r9 : edge(c, d).
r10 : edge(A, B) :- edge(B, A).
r11 : colour(X, r) v colour(X, g) v colour(X, b) :- node(X).
r12 : :- edge(A, B), colour(A, C), colour(B, C).

The answer sets for this program can be computed using DLV by the command:

java -jar spock.jar -x -o file5.1 .

Flag ’-x’ externally calls DLV on the input program and ’-o’ triggers the output of its answer
sets.

Note that the call yields the output of the corresponding answer sets in lexicographic
order. As an example, the first three answer sets are listed below, as output by spock:

{colour(a, b), colour(b, g), colour(c, r), colour(d, g),
edge(a, b), edge(a, c), edge(a, d), edge(b, a), edge(b, c),
edge(c, a), edge(c, b), edge(c, d), edge(d, a), edge(d, c),
node(a), node(b), node(c), node(d)}
{colour(a, b), colour(b, r), colour(c, g), colour(d, r),
edge(a, b), edge(a, c), edge(a, d), edge(b, a), edge(b, c),
edge(c, a), edge(c, b), edge(c, d), edge(d, a), edge(d, c),
node(a), node(b), node(c), node(d)}
{colour(a, g), colour(b, b), colour(c, r), colour(d, b),
edge(a, b), edge(a, c), edge(a, d), edge(b, a), edge(b, c),
edge(c, a), edge(c, b), edge(c, d), edge(d, a), edge(d, c),
node(a), node(b), node(c), node(d)}

73



CHAPTER 5. IMPLEMENTATION

Figure 5.4: Graphical representation of AS (Πcol )

Using the flag ’-as’, instead of ’-o’, the graphical representation of the answer sets of Πcol ,
shown in Figure 5.4, will be displayed.

Computing answer sets with SMODELS instead of DLV is usually done by a call of the form

java -jar spock.jar -xsm -o file5.1 ,

However, in this case, attempts to compute the answer sets of Πcol with SMODELS will produce
an error message, as Πcol involves head disjunctions which are not supported by SMODELS. ♦

5.5 Meta-Program Translation

Given a propositional disjunctive logic program Π over A, the input part, πin(Π ), of meta-
program DM(Π) over AM(A), as introduced in Chapter 3, can be obtained by the following
call of spock:

java -jar spock.jar -mtr FILE ,

where file FILE contains a representation of Π.

74



5.5. META-PROGRAM TRANSLATION

The remaining rules of the meta-program, DM(Π) \ πin(Π ), can be obtained by using
the flag ‘-mpr’, or read from a separate input file, as they are independent of Π. A standard
invocation of our debugging technique involves a second call of spock which reads the complete
meta-program from the first system call, and computes the answer sets of DM(Π):

java -jar spock.jar -mtr -mpr FILE |
java -jar spock.jar -x -o .

When reading DM(Π)\πin(Π ) from a separate file DEBUG, which might be useful for modifying
the meta-program, DEBUG must be read in the second call. Therefore we use the flag ‘--’ to
read from both, standard input and input files. The call is then as follows:

java -jar spock.jar -mtr FILE |
java -jar spock.jar -x -o -- DEBUG .

Example 5.2 Consider program Πex , given in file FILEex5.2:

r1: a v b :- c, not d.
r2: c :- d.
r3: d v e.
r4: :- e, not a, not b, not c, not d.

The programmer is interested in why there is no answer set of Πex including atom e, but not
a, b or c. An appropriate program over AM(A), stored in another file QUERY, can be used to
express this query by means of constraints:

:- not int(e).
:- int(a).
:- int(b).
:- int(c).

For this scenario, the system call

java -jar spock.jar -mtr -mpr FILEex5.2 |
java -jar spock.jar -x -o -dlvarg
-pfilter=int,ap,bl,unsatisfied,unsupported,
inconsistent,selfCaused QUERY

returns subsets of meta-answer sets, offering a projection on meta-atoms indicating the con-
sidered interpretation (int), rule applicability (ap, bl), and kind of error (unsatisfied,
unsupported, inconsistent, selfCaused):

{ap(r2), ap(r3), bl(r1), bl(r4), int(d), int(e),
selfCaused(d), unsatisfied(r2), unsupported(d), unsupported(e)}
{ap(r2), ap(r3), bl(r1), bl(r4), int(d), int(e),
selfCaused(e), unsatisfied(r2), unsupported(d), unsupported(e)}
{ap(r2), ap(r3), bl(r1), bl(r4), int(d), int(e),
unsatisfied(r2), unsupported(d), unsupported(e)}
{ap(r3), ap(r4), bl(r1), bl(r2), int(e),
inconsistent(r4), unsatisfied(r4)} ♦

75



CHAPTER 5. IMPLEMENTATION

5.6 Tagging Approach

The kernel translation TK[Π] over A+ of a logic program Π over A, as presented in Chapter 4,
can be obtained by the call

java -jar spock.jar -k FILE ,

where file FILE contains a representation of Π.

Example 5.3 For file file5.3, representing program ΠK from Example 4.3, when executing
the command

java -jar spock.jar -k file5.3 ,

spock returns the translated program TK[ΠK]:

a :- ap(r1), not ko(r1).
ap(r1) :- ok(r1), b.
bl(r1) :- ok(r1), not b.
ok(r1) :- not -ok(r1).
a :- ap(r2), not ko(r2).
ap(r2) :- ok(r2), not c.
bl(r2) :- ok(r2), not not c.
ok(r2) :- not -ok(r2).
b :- ap(r3), not ko(r3).
ap(r3) :- ok(r3), c, not d.
bl(r3) :- ok(r3), not c.
bl(r3) :- ok(r3), not not d.
ok(r3) :- not -ok(r3).
c :- ap(r4), not ko(r4).
ap(r4) :- ok(r4), not e.
bl(r4) :- ok(r4), not not e.
ok(r4) :- not -ok(r4).
e :- ap(r5), not ko(r5).
ap(r5) :- ok(r5), a.
bl(r5) :- ok(r5), not a.
ok(r5) :- not -ok(r5).
d :- ap(r6), not ko(r6).
ap(r6) :- ok(r6), not b.
bl(r6) :- ok(r6), not not b.
ok(r6) :- not -ok(r6).
:- falsum. ♦

The flags ‘-expo’, ‘-exco’, and ‘-exlo’ activate the extrapolation translations TP, TC,
and TL, respectively. Instead of using all three flags simultaneously, setting ‘-ex’ produces
the union of these program translations. Since the extrapolation taggings make only sense
in conjunction with the kernel tagging, we usually also use the ‘-k’ flag here. In order to
restrict the generation of an extrapolation tagging to a subprogram Π′ of Π, the names
of the considered rules must be explicitly stated in a comma-separated list following the

76



5.6. TAGGING APPROACH

‘-exrules=’ flag. As programs translated via TP, TC, and TL involve SMODELS-specific choice
rules, spock will produce disjunctive rules, simulating the respective choice rules for use with
DLV. However, if we want to use SMODELS we have to set the ‘-sm’ flag to activate SMODELS
syntax.

For computing only abnormality-minimum answer sets, as proposed in Chapter 4, spock
makes use of DLV-specific weak constraints. By using the flags ‘-minab’, ‘-minabp’, ‘-minabc’,
or ‘-minabl’, spock produces weak constraints which allow for minimising all abnormality
tags, all program-oriented abnormality tags, all completion-oriented abnormality tags, or all
loop-oriented abnormality tags, respectively. When using these options, we are restricted to
use DLV as solver, as SMODELS cannot handle weak constraints.

Example 5.4 Consider input file file5.4, containing program ΠEx2 from Example 4.10:

r1: a :- not b.
r2: b :- not c.
r3: c :- not a.

We use the command

java -jar spock.jar -k -ex -exrules=r1 -sm file5.4

for computing the extrapolation tagging TEx[ΠEx2, {r1},HB(ΠEx2)] of ΠEx2 projected to {r1}
and HB(ΠEx2):

a :- ap(r1), not ko(r1).
ap(r1) :- ok(r1), not b.
bl(r1) :- ok(r1), not not b.
ok(r1) :- not -ok(r1).
b :- ap(r2), not ko(r2).
ap(r2) :- ok(r2), not c.
bl(r2) :- ok(r2), not not c.
ok(r2) :- not -ok(r2).
c :- ap(r3), not ko(r3).
ap(r3) :- ok(r3), not a.
bl(r3) :- ok(r3), not not a.
ok(r3) :- not -ok(r3).
:- falsum.

ko(r1).
{a} :- ap(r1).
ab_p(r1) :- ap(r1), not a.
{a} :- bl(r1).
ab_c(a) :- bl(r1), a.
{b}.
ab_c(b) :- b.
{ab_l(a)} :- not ab_c(a).
a :- ab_l(a).
{ab_l(b)} :- not ab_c(b).
b :- ab_l(b).

77



CHAPTER 5. IMPLEMENTATION

For computing the abnormality-minimum answer sets of TEx[ΠEx2, {r1},HB(ΠEx2)], we call
spock as follows:

java -jar spock.jar -k -ex -exrules=r1 -minab file5.4 |
java -jar spock.jar -x -o .

The output of this operation yields the two resulting answer sets of Example 4.10:

{ab_c(b), ap(r3), b, bl(r1), bl(r2), c, ko(r1), ok(r1), ok(r2), ok(r3)},
{ab_p(r1), ap(r1), ap(r3), bl(r2), c, ko(r1), ok(r1), ok(r2), ok(r3)}. ♦

78



Chapter 6

Other Approaches

In this chapter, we will describe three approaches towards debugging of answer-set programs
which have recently been proposed [53, 7, 67]. All three methods deal with propositional
non-disjunctive programs.

6.1 Justifications for Answer-Set Programs

Pontelli, Son, and El-Khatib [53, 26] adopt the concept of justifications to the context of
answer-set programming. Justifications have originally been introduced as a means for debug-
ging and understanding of PROLOG programs [58, 52, 64], by giving either a proof description
why a certain property holds, or a counterexample indicating where a violation or conflict
occurs in the system.

Here, the general debugging question addressed is why an atom is true or false in an
answer set of a program to debug. The answers to this question are given in the form of
justifications. A justification is a graph explaining the truth value of an atom with respect
to a given answer set. This notion is extended by Pontelli and Son [53] to so-called online
justifications which provide explanations also for partial and inconsistent interpretations. In
both cases, the programs under consideration are propositional and normal.

Despite the fact that the computation of justifications can be elegantly done by ASP-
meta-programming, the question addressed by the meta-programming approach of Chapter 3
is a different one, which makes the approaches hard to compare. In contrast to the kernel
transformation of the tagging approach in Chapter 4, which also inspects answer sets of the
program to debug, the information provided by a justification is not restricted to simple
applicability of rules in an answer set, but delivers a full explanation for the truth of an
atom a, in terms of recursive dependencies of a on other literals. The individual steps in
this recursion are based on the so-called locally consistent explanation (LCE ) which gives an
immediate reason for the truth value of an atom a. The LCE is a set of sets of literals, where
the truth values of the literals of such a set provide sufficient information to derive the truth
value of a. If a is true with respect to interpretation I, there must be some applicable rule r
such that head(r) = {a}. Then, the body of r explains the truth value of a, hence it forms
an element of the LCE. If a is false with respect to I, every rule r such that head(r) = {a}
is not applicable, and there must be at least one true atom in the negative body, or at least
one false atom in the positive body of r. By taking one of these atoms for every rule r such
that head(r) = {a}, a member set of the LCE for the falsity of a can be built.

79



CHAPTER 6. OTHER APPROACHES

Definition 6.1 Let Π be a propositional normal program, a ∈ HB(Π) an atom and A ∈
AS (Π) an answer set of Π. Then, the locally consistent explanation (LCE) for a, denoted by
σΠ(A, a), is a set of sets such that

• case a is true under A:

σΠ(A, a) =


r ∈ Π,

body(r) head(r) = {a}, and
all l ∈ body(r) are true under A

 ,

• case a is false under A:
σΠ(A, a) = {α1, . . . , αk},

where each αi is a minimal set of literals such that for all l ∈ αi, l is false under A and
for all r ∈ Π, if head(r) = {a} then αi ∩ body(r) 6= ∅. 2

Example 6.2 Consider program

Π = { a← d , e ,

a← c,not d ,

a← not b ,

b← not a ,

c← not b }.

The program has two answer sets, A1 = {a, c} and A2 = {b}. Atom a is true under A1 and
false under A2, justified by the corresponding LCEs σΠ(A1, a) and σΠ(A2, a):

σΠ(A1, a) = {{c,not d}}, {not b}};
σΠ(A2, a) = {{d, c,not b}, {e, c,not b}}. ♦

By recursively identifying the immediate reasons of a truth value, a justification is char-
acterised as follows:

Definition 6.3 A justification for an atom a with respect to a propositional normal program
Π and an answer set A is a directed labelled graph JΠ(A, a) = 〈V,E, {+,−}〉, where {a} ⊆
V ⊆ HB(Π) ∪ {>,⊥} such that

1. every vertice in V \ {a} is reachable from a;

2. if b ∈ V is true under A then

• ∅ ∈ σΠ(A, b) iff 〈b,>,+〉 ∈ E and > ∈ V ;

• there is a unique α ∈ σΠ(A, b) satisfying the conditions that for each l ∈ α,

– if l is an atom, then l ∈ V , 〈b, l,+〉 ∈ E, l 6= b, and there is no path from l to
b in E such that all edges in the path are labelled by +,

– if l is a negated atom not d, then d ∈ V and 〈b, d,−〉 ∈ E;

• there are no other outgoing edges from b;

3. if b ∈ V is false under A then

80



6.1. JUSTIFICATIONS FOR ANSWER-SET PROGRAMS

a +

b − c + d −

⊥

+
−

−

−

+

Figure 6.1: JΠ(A1, a)

a +

b −

− −

Figure 6.2: JΠ(A1, a)

a −

b + c − d −

⊥

−

+
+−

−

+

Figure 6.3: JΠ(A2, a)

81



CHAPTER 6. OTHER APPROACHES

answer set atom value LCE
A1 a true {{not b}, {c,not d}}
A1 b false {{not a}}
A1 c true {{not b}}
A1 d false {∅}
A2 a false {{d , c,not b}, {e, c,not b}}
A2 b true {{not a}}
A2 c false {{not b}}
A2 d false {∅}

Table 6.1: Locally consistent explanation for atoms in A1 and A2

• ∅ ∈ σΠ(A, b) iff 〈b,⊥,+〉 ∈ E and ⊥ ∈ V ;

• there is a unique α ∈ σΠ(A, b) such that, for each l ∈ α,

– if l is an atom, then l ∈ V and 〈b, l,+〉 ∈ E,
– if l is a negated atom not d, then d ∈ V and 〈b, d,−〉 ∈ E.
– there are no other outgoing edges from b; 2

In other words, condition 2 states, that an atom b which is true under A has either a positive
edge to >, in case there is a fact b ←, or b has positive (respectively, negative) edges to the
atoms occurring positively (respectively, negatively) in the body of a single applicable rule
deriving b. There must not be any cycle of positive edges for ensuring that if b is contained
in a positive loop Γ, only explanations are given that indicate external support for Γ with
respect to A.

If b is false under A, condition 3 of Definition 6.3 states that there is a positive edge
from b to ⊥ if b does not occur in the head of any rule. Otherwise, for each rule r having
head(r) = {b}, we have a minimum number of edges such that there is a positive (respectively,
negative) edge from b to an atom (respectively, negated atom), being false under A and
occurring in the body of r.

Note that Definition 6.3 is ambiguous in the sense that there may exist multiple justifica-
tions for an atom with respect to the same program and answer set.

Example 6.4 Reconsider program Π from Example 6.2. Figure 6.1 is a justification for atom
a with respect to Π and A1. As an example for the ambiguity of Definition 6.3, note that
also Figure 6.2 is a justification for a with respect to Π and A1. The graph in Figure 6.3 is a
justification for a with respect to A2.

The LCEs from which the three justifications are derived are given in Table 6.1. ♦

In the justifications of Example 6.4 we find negative cycles of explanations, for instance
in Figure 6.2, a is true because b is not and b on the other hand is false because a is not
false. In order to avoid this kind of situation, the authors introduced a new vertice labelled
by “assume” [26] and used it subsequently [53] in a more refined definition for justifications.
The idea behind this new vertice is to regard the truth values of atoms connected to it as
given.

82



6.2. QUERY ALGORITHMS FOR DEBUGGING ASP

6.2 Query Algorithms for Debugging ASP

Brain and De Vos [7] focus on the questions why a set S of literals is satisfied by a specific
answer set A and why a set S of literals is not satisfied by any answer set. The pseudocode
of two procedural algorithms Λ1 and Λ2 is given, answering these questions for propositional
normal programs. Since two problems are addressed, we will discuss them separately.

6.2.1 Why is a set of literals satisfied by a specific answer set?

Given a propositional normal program Π over A, an answer set A of Π, and a set S of literals
over A, algorithm Λ1 exhibits the following behaviour:

• For every atom a ∈ S, Λ1 searches for rules r in Π such that head(r) = {a} and r is
applicable under A. For each such rule, Λ1 returns a textual message, stating that a is
in A as r is applied with respect to it.

• For every negated atom not b ∈ S, if there are no rules r ∈ Π having head(r) = {b},
Λ1 returns a corresponding message. Otherwise, for each (blocked) rule r such that
head(r) = {b}, Λ1 returns information about which literals in the body of r are not
satisfied by A, thus stating which literals are responsible for r to be blocked.

The information gained by Λ1 is identical to the locally consistent explanations of the elements
of S, as defined in the approach by Pontelli, Son, and El-Khatib, discussed in Section 6.1.
The meta-programming approach of Chapter 3 can be adapted to provide the same results
by joining subprogram Dap(Π) of DM(Π) with the rules

inAnyHead(At)← head( , At) ,

lcep(At, R)← int(At), head(R,At), ap(R) ,

lcen(At)← atom(At),not inAnyHead(At) ,

lce−n (At1, R, At2)← not int(At1), head(R,At1), bodyP(R,At2),not int(At2) ,

lce+
n (At1, R, At2)← not int(At1), head(R,At1), bodyN (R,At2), int(At2) ,

and with the constraints← not int(la) for all a ∈ A and← int(lb) for all b ∈ HB(Π)\A, used
for specifying the considered answer set. The new program has a unique meta-answer-set Alce

guessing A such that

• lcep(la, lr) ∈ Alce iff for rule r, head(r) = {a} and r is applicable under A,

• lcen(la) ∈ Alce iff atom a ∈ HB(Π) is not in the head of any rule of Π,

• lce−n (la, lr, lb) ∈ Alce iff atom a ∈ HB(Π) \A is in the head of rule r and b is an atom in
body(r), unsatisfied by A, and

• lce+
n (la, lr, lb) ∈ Alce iff atom a ∈ HB(Π) \ A is in the head of rule r and not b is a

negated atom in body(r), unsatisfied by A.

As only immediate reasons for the truth value of a literal l from S are given by algorithm
Λ1, the explanations are not very significant in the context of loops. Here, an atom a in the
considered answer set is also justified by rules which do not represent the external support of
a loop containing a, e.g. in program {r1 = a, r2 = a ← a}, the truth of a would be justified
by the applicability of tautological rule r2.

83



CHAPTER 6. OTHER APPROACHES

Example 6.5 Consider program

ΠΛ1 = { a← b,

c← not d, a,

d← not c, a,

b← }.

The answer sets of ΠΛ1 are given by AS (ΠΛ1) = {{a, b, c}, {a, b, d}}. The developer wants to
know why S = {a,not d} is satisfied by answer set {a, b, c}. Algorithm Λ1 will return the
following two answers:

“a is satisfied by {a, b, c} because rule a ← b is applied with respect
to it.”

“d is not satisfied by {a, b, c} as only rule d ← not c, a has head {d}
but c is in the answer set.” ♦

6.2.2 Why is a set of literals not satisfied by any answer set?

The question, algorithm Λ2 is dealing with, is closely related to the question why a spe-
cific interpretation is not an answer set, as addressed by our meta-programming and our
extrapolation-tagging approaches. Brain and De Vos’ formulation of the question suggests
a more general problem, as it implies that answers do not speak about individual interpre-
tations but subsume reasons for the specified set not being satisfied by all interpretations.
But in general, also Λ2 does not give a single reason for a set S of literals not to be satisfied
by any answer set, but provides different explanations with respect to different classes of
interpretations for the program to debug.

Given a propositional normal program Π and a set S of literals which is not satisfied by
any answer set of Π, Λ2 works in three phases:

1. The algorithm checks whether there is an atom a ∈ S such that {a} is not head of any
rule.

2. The algorithm checks whether there is a rule r ∈ Π which is applicable under the set of
atoms in S such that head(r) = {a} holds, but not a is contained in S.

3. If no error has been found yet, Λ2 creates multiple supersets of S in which further literals
are added incrementally, until the next step would introduce an error. In the process a
graph structure is built for every superset for avoiding cyclic derivations.

In phases 1 and 2, Λ2 gives explicit answers to the question why S is not satisfied by any
answer set. However, when phase 3 is reached, the programmer has to explore the created
supersets, and figure out why no further literal can be added to them. In such cases Λ2 can
be seen as an algorithm, incrementally building answer sets of Π, which stops and outputs
the immediate results before a partial interpretation turns out to be no answer set of Π.

84



6.3. DEBUGGING INCONSISTENT ANSWER-SET PROGRAMS

6.3 Debugging Inconsistent Answer-Set Programs

Syrjänen’s approach [67] addresses the issue of debugging inconsistent answer-set programs.
It is adapted from the field of symbolic diagnosis [56] and designed to find reasons for the
absence of answer sets. The programs under consideration are propositional, non-disjunctive,
and may include choice rules. The identified reasons for inconsistency of program Π are sets
of constraints in Π, and odd loops of Π. As shown by You and Youan [69], inconsistency is
always caused by odd loops or constraints in the considered class of programs.

Debugging in Syrjänen’s approach is divided into three phases. At first, odd loops are
detected. If no odd loop is found, minimal sets of constraints which return consistency to
the program when removed, called diagnoses, are computed. Finally, sets of constraints are
searched which are called conflict sets and indicate constraints that cannot be satisfied at the
same time.

Odd-loop detection is performed using an ASP meta-programming technique, related to
the method we introduce in Chapter 3. In fact, when considering non-disjunctive programs,
our meta-program DM(Π) can be unified with the meta-program used by Syrjänen, and
thereby extend its functionality by odd-loop detection. Given inconsistent non-disjunctive
programs without odd loops, our meta-programming approach can be used for computing
minimal diagnosis, when minimising atoms over the violated/1-predicate. Syrjänen’s tech-
nique for finding diagnosis bears resemblance to the tagging approach introduced in Chap-
ter 4. For each constraint c, a new meta-atom is introduced which allows for blocking c, like
it is done for all rules in tagging.

6.3.1 Odd-Loop Detection

Odd loops of a program Π are sets Γ ⊆ HB(Π) of atoms where the truth value of an atom
a depends recursively on itself through an odd number of negations. For example, program
Πex involves an odd loop:

Πex = { r1 = a← not b,

r2 = b← not c,

r3 = c← not a }.

Assume a is true. Then, since r3 is not applicable, we have that c is false. Thus, rule r2 is
applicable, therefore b is true, and hence a cannot be true as assumed, since r1 is blocked. A
similar contradiction arises when assuming that a is false, therefore AS (Πex) = ∅.

However, odd loops do not always cause inconsistency. There might be handles for an odd
loop Γ, as discussed by Costantini [14], which either block rules involved in Γ or set atoms of
Γ true, under some interpretation I such that I ∈ AS (Π).

Therefore, odd loops might be used for pruning unwanted answer sets. Syrjänen suggests
to consider all odd loops as errors, and to use a combination of choice rules and constraints
for pruning.

Odd-loop detection is performed using ASP meta-programming. Given a program Π, the
meta-program ΠSyr = Daux (Π)∪πM which Syrjänen uses for odd-loop detection is the union
of Daux (Π), as defined in Chapter 3, and program πM, given in Figure 6.4. The resulting
answer sets include meta-atoms indicating which atoms of the inconsistent program Π are in
an odd loop, and which rules r ∈ Π are involved in these odd loops.

85



CHAPTER 6. OTHER APPROACHES

posEdge(H,A)← head(R,H), bodyP(R,A) ,
negEdge(H,A)← head(R,H), bodyN (R,A) ,
even(X, Y )← posEdge(X, Y ) ,
odd(X, Y )← negEdge(X, Y ) ,
even(X, Z)← posEdge(X, Y ), even(Y, Z), atom(Z) ,
odd(X, Z)← posEdge(X, Y ), odd(Y, Z), atom(Z) ,
odd(X, Z)← negEdge(X, Y ), even(Y, Z), atom(Z) ,
even(X, Z)← negEdge(X, Y ), odd(Y, Z), atom(Z) ,
oddLoop(X)← odd(X, X) ,
inOddLoop(X, Y )← odd(X, Y ), even(Y, X) ,
firstInLoop(A)← oddLoop(A),not hasPredecessor(A) ,
hasPredecessor(A)← inOddLoop(B,A), B < A,
ruleInLoop(R,Z)← inOddLoop(X, Y ), inOddLoop(X, Z),

firstInLoop(Z), head(R,X), bodyP(R, Y ),
ruleInLoop(R,Z)← inOddLoop(X, Y ), inOddLoop(X, Z),

firstInLoop(Z), head(R,X), bodyN (R, Y ).

Figure 6.4: Subprogram πM of ΠSyr

6.3.2 Finding Inconsistency-Causing Constraints

Considering only programs without odd loops, inconsistency is related to applicable integrity
constraints [69]. The main goal is to find sets of constraints in program Π, called diagnoses,
whose removal from Π returns consistency to Π.

Definition 6.6 Let Π be a propositional non-disjunctive program without odd loops. Then,
a diagnosis of Π is a set D ⊆ C(Π) of constraints such that Π \D is consistent. 2

Consider example program

Πex = { r1 = a← not e,

r2 = e← not a,

c1 = ← a,

c2 = ← not a,

c3 = ← not b }.

This program has three diagnoses: D1 = {c1, c3}, D2 = {c2, c3}, and D3 = {c1, c2, c3}. In
order to reduce the amount of debugging information, Syrjänen considers only cardinality-
minimal diagnoses. In case of program Πex, D1 and D2 are minimal diagnoses, where |D1| =
|D2| = 2.

Diagnoses are detected using optimisation techniques of the answer-set solver. Each con-
straint c = ← a1, . . . , ak,not ak+1, . . . , an in the original program Π is replaced by two
new rules:

← a1, . . . , ak,not ak+1, . . . , an,not remove(c) , and

constraint(c)← .

86



6.3. DEBUGGING INCONSISTENT ANSWER-SET PROGRAMS

The atom remove(c) offers a handle to block constraint c. Using SMODELS’ choice rules, car-
dinality constraints and conditional literals, a fixed number of remove-atoms can be guessed.
Starting with a single one, by successively increasing the number of removed constraints, the
solving-procedure is repeated until answer sets exist. The remove-atoms in these answer sets
then indicate the minimal diagnoses of Π.

The same effect could be achieved in DLV, by using a disjunctive guess

remove(c) ∨ remove(c)←

for each constraint c, and a weak-constraint for minimising atoms over the remove/1-predicate.
In order to identify interrelations between the constraints of a program, Syrjänen intro-

duces the notion of conflict sets. A set of constraints is a conflict set if every minimal diagnosis
of the program contains exactly one member from the set.

Definition 6.7 Let Π be a propositional non-disjunctive program without odd loops and
D(Π) the set of its minimal diagnoses. Then, a conflict set is a set C ⊆ C(Π) of constraints
such that

1. for all diagnoses D ∈ D(Π) it holds that |D ∩ C| = 1; and

2. for all constraints c ∈ C(Π) there exists a diagnosis D ∈ D(Π) such that c ∈ D. 2

For program Πex from above, there are the two conflict sets, {c1, c2} and {c3}. Intuitively,
each conflict set represents constraints that cannot be fullfilled at the same time. Note that
conflict sets do not necessarily exist.

Like diagnoses, conflict sets are computed using SMODELS-specific constructs and an iterated
invocation of the solving procedure. During this iteration the number of estimated conflict
sets is increased until conflict sets are found, or we know that none exist. The maximal
number of iteration steps is limited by the number of constraints.

87



Chapter 7

Conclusion

In this work we have dealt with the issue of debugging propositional answer-set programs.
Debugging in ASP has not been studied thoroughly yet, but is important for practical appli-
cation of logic programs under the answer-set semantics.

We have introduced two new techniques for debugging propositional answer-set programs.
One of these approaches is based on meta-programming, lifting a given propositional disjunc-
tive program to the language of a non-ground meta-program. Our technique tackles the ques-
tion why specific interpretations are not answer sets of a program to debug. The classification
of reasons why an interpretation is no answer set is based on an alternative characterisation
of the answer-set semantics. As meta-programming is very powerful and flexible, our method
can be adapted to address many debugging relevant questions.

The other method introduced is a tagging technique which augments a non-disjunctive
program to debug with dedicated atoms for controlling the applicability of rules and analysing
the program. There are different versions of the method, addressing different debugging ques-
tions. In the basic variant, the debugging system gives statements about the applicability of
rules in context of answer sets of the program to debug. An extended version of the tech-
nique which is related to the meta-programming method, searches for abnormalities causing
an interpretation not to be an answer set.

Both approaches are declarative and therefore independent of the algorithm for computing
the answer sets of a program. Moreover, in both methods, the results of the debugging process
can be read off the answer sets of a debugging program. In order to reduce the amount of
debugging information to relevant parts, we make use of standard optimisation techniques of
ASP.

Besides our techniques, we have discussed and compared three existing approaches to-
wards debugging of non-disjunctive propositional answer-set programs. Furthermore, the
translations, needed for the introduced techniques have been implemented in the prototype
debugging-tool spock.

Very important for future research into debugging of answer-set program is to handle non-
ground programs, as programs in real-world application are typically non-ground. Clearly,
debugging strategies for propositional programs can be applied to the grounding of a non-
ground program. In general, however, groundings are of huge size. Thus, the problem of
relating non-ground rules to their ground instances is a major challenge here. Moreover,
another difficulty caused by the enormous size of groundings is keeping the debugging process
efficient. Another open task is investigating the specifics of restricting debugging to certain

88



program modules. Furthermore, future implementations for debugging should provide easy-
to-use interfaces, and be embedded in integrated development environments.

89



Appendix

Selected Argument Options of spock

-- If a filename is given, spock does not read from standard input, unless
this flag is set.

-p Outputs the given program with rule labels.
-c Outputs the given program without rule labels.
-x Runs DLV on the given program.
-xsm Runs Smodels on the given program.
-n=NR Computes maximally NR many answer sets.
-sm Formats various output in Smodels syntax, otherwise DLV syntax is

used.
-o Outputs all computed or read answer sets.
-as Displays all computed or read answer sets in a GUI frame.
-mtr Outputs meta-translation πin(Π ).
-mpr Outputs residual meta-program DM(Π) \ πin(Π ).
-k Outputs the kernel tagging TK[Π] of a given program Π.
-ex Outputs the extrapolation tagging TEx[Π,HB(Π)] of a given program

Π (like -expo -exco -exlo; see next).
-expo Outputs the program-oriented extrapolation tagging TP[Π] of a given

program Π.
-exco Outputs the completion-oriented extrapolation tagging TC[Π,HB(Π)]

of a given program Π.
-exlo Outputs the loop-oriented extrapolation tagging TL[HB(Π)] of a given

program Π.
-exrules=r,s,... Restricts extrapolation tagging generation to rules labelled r, s, . . .
-minab Outputs weak constraints to minimise abnormality tags (like the ones

described next).
-minabp Outputs weak constraints to minimise program-oriented abnormality

tags.

90



-minabc Outputs weak constraints to minimise completion-oriented abnormality
tags.

-minabl Outputs weak constraints to minimise loop-oriented abnormality tags.
-koall Outputs atom ko(nr) for every rule r in the given program.
-nas Outputs the number of computed or read answer sets.
-dlvarg ARG Adds an argument for external calls of DLV.
-lparg ARG Adds an argument for external calls of LPARSE.
-smarg ARG Adds an argument for external calls of SMODELS.

91



Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, USA, 1986.

[2] ANSI/IEEE. Standard Glossary of Software Engineering Terminology. IEEE, New York,
NY, USA, 1983.

[3] K. R. Apt, H. A. Blair, and A. Walker. Towards a Theory of Declarative Knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages
89–148. Morgan Kaufmann, Los Altos, CA, USA, 1988.

[4] C. Baral and M. Gelfond. Reasoning Agents in Dynamic Domains. In J. Minker, editor,
Proceedings of the Workshop on Logic-Based Artificial Intelligence, (LBAI’99), Wash-
ington, DC, USA. Computer Science Department, University of Maryland, 1999.

[5] M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran. Debugging ASP
Programs by Means of ASP. In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings
of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’07), Tempe, AZ, USA, volume 4483 of Lecture Notes in Artificial Intelligence,
pages 31–43. Springer, 2007.

[6] M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran. “That is Illogical
Captain!” – The Debugging Support Tool spock for Answer-Set Programs: System
Description. In M. De Vos and T. Schaub, editors, Proceedings of the 1st International
Workshop on Software Engineering for Answer-Set Programming (SEA’07), Tempe, AZ,
USA, pages 71–85, 2007.

[7] M. Brain and M. D. Vos. Debugging Logic Programs under the Answer-Set Semantics.
In M. D. Vos and A. Provetti, editors, Answer-Set Programming, Advances in The-
ory and Implementation, Proceedings of the 3rd International Answer-Set Programming
Workshop, (ASP’05), Bath, England, UK, volume 142 of CEUR Workshop Proceedings.
CEUR-WS.org, 2005.

[8] F. Buccafurri and G. Caminiti. A Social Semantics for Multi-agent Systems. In C. Baral,
G. Greco, N. Leone, and G. Terracina, editors, Proceedings of the 8th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05), Diamante,
Italy, volume 3662 of Lecture Notes in Computer Science, pages 317–329. Springer, 2005.

[9] F. Buccafurri and G. Gottlob. Multiagent Compromises, Joint Fixpoints, and Stable
Models. In A. C. Kakas and F. Sadri, editors, Computational Logic: Logic Programming

92



BIBLIOGRAPHY

and Beyond, Essays in Honour of Robert A. Kowalski, Part I, volume 2407 of Lecture
Notes in Computer Science, pages 561–585. Springer, 2002.

[10] “bug.” Britannica Concise Encyclopedia. Encyclopædia Britannica Online, 18 2007.
http://www.britannica.com/ebc/article-9358233.

[11] P. Burek and R. Grabos. Dually Structured Concepts in the Semantic Web: Answer
Set Programming Approach. In A. Gómez-Pérez and J. Euzenat, editors, The Semantic
Web: Research and Applications, Proceedings of the 2nd European Semantic Web Confer-
ence, (ESWC’05), Heraklion, Crete, Greece, volume 3532 of Lecture Notes in Computer
Science, pages 377–391. Springer, 2005.

[12] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 293–324. Plenum Press Publishing, New York, NY, USA, 1978.

[13] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, New York, NY,
USA, 1981.

[14] S. Costantini. Comparing Different Graph Representations of Logic Programs under the
Answer-Set Semantics. In A. Provetti and T. C. Son, editors, Answer-Set Programming,
Towards Efficient and Scalable Knowledge Representation and Reasoning, Proceedings
of the 1st International Answer-Set Programming Workshop, (ASP’01), Stanford, CA,
USA, 2001.

[15] J. Delgrande, T. Schaub, and H. Tompits. A Framework for Compiling Preferences in
Logic Programs. Theory and Practice of Logic Programming, 3(2):129–187, 2003.

[16] J. Dix, U. Kuter, and D. Nau. Planning in Answer-Set Programming using Ordered Task
Decomposition. In B. N. A. Günther, R. Kruse, editor, Proceedings of the 27th German
Annual Conference on Artificial Intelligence, (KI’03), Hamburg, Germany, pages 490–
504. Springer, 2003.

[17] U. Egly, T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Computing Stable Models with
Quantified Boolean Formulas: Some Experimental Results. In A. Provetti and T. C.
Son, editors, Answer-Set Programming, Towards Efficient and Scalable Knowledge Rep-
resentation and Reasoning, Proceedings of the 1st International Answer-Set Programming
Workshop, (ASP’01), Stanford, CA, USA, 2001.

[18] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv system.
AI Communications, 12(1-2):99–111, 1999.

[19] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the DLV
system. In J. Minker, editor, Logic-based Artificial Intelligence, pages 79–103. Kluwer
Academic Press, Norwell, MA, USA, 2000.

[20] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing Preferred Answer Sets by Meta-
Interpretation in Answer-Set Programming. Theory and Practice of Logic Programming,
3(4):463–498, 2003.

[21] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. The DLVK Planning System:
Progress Report. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of

93



BIBLIOGRAPHY

the 8th European Conference on Logics in Artificial Intelligence (JELIA’02), Cosenza,
Italy, volume 2424 of Lecture Notes in Computer Science, pages 541–544, 2002.

[22] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

[23] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv: Progress
Report, Comparisons and Benchmarks. In G. Cohn, L. Schubert, and S. Shapiro, editors,
Proceedings of the 6th International Conference on Principles of Knowledge Representa-
tion and Reasoning, (KR’98), Trento, Italy, pages 406–417. Morgan Kaufmann, 1998.

[24] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer-set Pro-
gramming with Description Logics for the Semantic Web. In D. Dubois, C. A. Welty, and
M.-A. Williams, editors, Proceedings of the 9th International Conference on the Prin-
ciples of Knowledge Representation and Reasoning, (KR’04), Whistler, Canada, pages
141–151. AAAI Press, 2004.

[25] T. Eiter and A. Polleres. Towards Automated Integration of Guess and Check Programs
in Answer-Set Programming: a Meta-Interpreter and Applications. Theory and Practice
of Logic Programming, 6(1-2):23–60, 2006.

[26] O. El-Khatib, E. Pontelli, and T. C. Son. Justification and Debugging of Answer-Set
Programs in ASP. In C. Jeffery, J.-D. Choi, and R. Lencevicius, editors, Proceedings of
the 6th International Workshop on Automated Debugging, (AADEBUG’05), Monterey,
CA, USA, pages 49–58. ACM, 2005.

[27] Free Software Foundation Inc. GNU General Public License - Version 2, June 1991, 1991.
http://www.gnu.org/copyleft/gpl.html.

[28] P. Fritzson, T. Gyimothy, M. Kamkar, and N. Shahmehri. Generalized Algorith-
mic Debugging and Testing. In Proceedings of the ACM SIGPLAN 1991 Conference
on Programming-Language Design and Implementation, (PLDI’91), Toronto, Canada,
pages 317–326. ACM Press, 1991.

[29] M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran. spock: A Debugging Sup-
port Tool for Logic Programs under the Answer-Set Semantics. In D. Seipel, M. Hanus,
A. Wolf, and J. Baumeister, editors, Proceedings of the 21st Workshop on (Constraint)
Logic Programming, (WLP’07), Würzburg, Germany, pages 258–261. Technical Report
434, Bayerische Julius-Maximilians-Universität Würzburg, Institut für Informatik, 2007.

[30] A. V. Gelder, K. Ross, and J. S. Schlipf. The Well-Founded Semantics for General Logic
Programs. Journal of the ACM, 38(3):620–650, 1991.

[31] M. Gelfond and J. Galloway. Diagnosing Dynamic Systems in A Prolog. In A. Provetti
and T. C. Son, editors, Answer-Set Programming, Towards Efficient and Scalable Knowl-
edge Representation and Reasoning, Proceedings of the 1st International Answer-Set Pro-
gramming Workshop, (ASP’01), Stanford, CA, USA, 2001.

[32] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
R. A. Kowalski and K. Bowen, editors, Proceedings of the 5th International Conference
on Logic Programming, (ICLP’88), Seattle, WA, USA, pages 1070–1080. The MIT Press,
1988.

94



BIBLIOGRAPHY

[33] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9(3/4):365–386, 1991.

[34] A. M. Gibbons. Algorithmic Graph Theory. Cambridge University Press, Cambridge,
England, UK, 1985.

[35] K. Heljanko and I. Niemelä. Answer-Set Programming and Bounded-Model Checking.
In A. Provetti and T. C. Son, editors, Proceedings of the AAAI Spring 2001 Symposium
on Answer-Set Programming: Towards Efficient and Scalable Knowledge Representation
and Reasoning, Stanford, USA, pages 90–96. AAAI Press, Technical Report SS-01-01,
2001.

[36] K. Inoue and C. Sakama. Negation as Failure in the Head. Journal of Logic Programming,
35(1):39–78, 1998.

[37] R. A. Kowalski. Algorithm = Logic + Control. Communications of the ACM, 22(7):424–
436, 1979.

[38] R. A. Kowalski. Logic for Problem Solving. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1979.

[39] J. Lee. A Model-Theoretic Counterpart of Loop Formulas. In L. P. Kaelbling and
A. Saffiotti, editors, Proceedings of the 19th International Joint Conference on Artificial
Intelligence, (IJCAI’05), Edinburgh, Scotland, UK, pages 503–508. Professional Book
Center, 2005.

[40] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on Com-
putational Logic, 7(3):499–562, 2006.

[41] Y. Lierler. CMODELS - SAT-Based Disjunctive Answer-Set Solver. In C. Baral,
G. Greco, N. Leone, and G. Terracina, editors, Proceedings of the 8th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05), Diamante,
Italy, volume 3662 of Lecture Notes in Computer Science, pages 447–451. Springer, 2005.

[42] V. Lifschitz. Action Languages, Answer Sets and Planning. In K. R. Apt, D. S. Warren,
and M. Truszczynski, editors, The Logic Programming Paradigm: A 25-YEAR Perspec-
tive, pages 257–373. Springer, Secaucus, NJ, USA, 1999.

[43] V. Lifschitz and H. Turner. Splitting a Logic Program. In P. Van Hentenryck, editor,
Proceedings of the 11th International Conference on Logic Programming, (ICLP’94),
Santa Margherita Ligure, Italy, pages 23–38. MIT-Press, 1994.

[44] F. Lin and Y. Zhao. ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[45] V. W. Marek and J. B. Remmel. On the Expressibility of Stable Logic Programming. In
T. Eiter, W. Faber, and M. Truszczynski, editors, Proceedings of the 6th International
Conference on Logic Programming and Nonmonotonic Reasoning, (LPNMR’01), Vienna,
Austria, volume 2173 of Lecture Notes in Computer Science, pages 107–120. Springer,
2001.

95



BIBLIOGRAPHY

[46] V. W. Marek and M. Truszczynski. Stable Models and an Alternative Logic Program-
ming Paradigm. In K. R. Apt, D. S. Warren, and M. Truszczynski, editors, The Logic
Programming Paradigm: A 25-YEAR Perspective, pages 375–398. Springer, Secaucus,
NJ, USA, 1999.

[47] L. Naish. Declarative Debugging of Lazy Functional Programs. In Proceedings of the 4th
Workshop on Logic Programming Environments, (WLPE’92), Washington, DC, USA,
pages 29–34, 1992.

[48] I. Niemelä. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. In I. Niemelä and T. Schaub, editors, Proceedings of the Workshop on Com-
putational Aspects of Nonmonotonic Reasoning, (CNMR’98), Trento, Italy, pages 72–79,
1998.

[49] D. V. Nieuwenborgh, M. D. Vos, S. Heymans, and D. Vermeir. Hierarchical Decision
Making in Multi-agent Systems Using Answer-Set Programming. In K. Inoue, K. Satoh,
and F. Toni, editors, Proceedings of the 7th International Workshop on Computational
Logic in Multi-Agent Systems, (CLIMA VII), Hakodate, Japan, volume 4371 of Lecture
Notes in Computer Science, pages 20–40. Springer, 2006.

[50] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A Prolog decision
support system for the Space Shuttle. In A. Provetti and T. C. Son, editors, Answer-Set
Programming, Towards Efficient and Scalable Knowledge Representation and Reason-
ing, Proceedings of the 1st International Answer-Set Programming Workshop, (ASP’01),
Stanford, CA, USA, 2001.

[51] M. Osorio, J. A. Navarro, and J. Arrazola. Debugging in A-Prolog: A Logical Approach.
In Proceedings of the 18th International Conference on Logic Programming, (ICLP’02),
London, England, UK, pages 482–483. Springer-Verlag, 2002.

[52] G. Pemmasani, H.-F. Guo, Y. Dong, C. R. Ramakrishnan, and I. V. Ramakrishnan. On-
line Justification for Tabled Logic Programs. In Y. Kameyama and P. J. Stuckey, editors,
Functional and Logic Programming, Proceedings of the 7th International Symposium on
Functional and Logic Programming, (FLOPS’04), Nara, Japan, volume 2998 of Lecture
Notes in Computer Science, pages 24–38. Springer, 2004.

[53] E. Pontelli and T. C. Son. Justifications for Logic Programs Under Answer Set Semantics.
In S. Etalle and M. Truszczynski, editors, Proceedings of the 22nd International Confer-
ence on Logic Programming, (ICLP’06),Seattle, WA, USA, volume 4079 of Lecture Notes
in Computer Science, pages 196–210. Springer, 2006.

[54] R. Reiter. On Closed World Data Bases. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 55–76. Plenum Press Publishing, New York, NY, USA, 1978.

[55] R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13(1-2):81–132, 1980.

[56] R. Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence, 32(1):57–
95, 1987.

[57] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal
of the ACM, 12(1):23–41, 1965.

96



BIBLIOGRAPHY

[58] A. Roychoudhury, C. R. Ramakrishnan, and I. V. Ramakrishnan. Justifying Proofs Using
Memo Tables. In Proceedings of the 2nd ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, (PPDP’00), Montreal, Canada,
pages 178–189, 2000.

[59] B. Ruzicka. Entwurf und Implementierung eines Debugger in einer Expertensystemumge-
bung. Diplomarbeit, Vienna University of Technology, Vienna, Austria, September 1990.

[60] R. Schindlauer. Answer-Set Programming for the Semantic Web. Dissertation, Vienna
University of Technology, Vienna, Austria, December 2006.

[61] E. Y. Shapiro. Algorithmic Program Debugging. PhD thesis, Yale University, New Haven,
CT, USA, May 1982.

[62] P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the Stable Model
Semantics. Artificial Intelligence, 138(1):181–234, 2002.

[63] T. Soininen and I. Niemelä. Developing a Declarative Rule Language for Applications
in Product Configuration. In G. Gupta, editor, Proceedings of the 1st International
Workshop on Practical Aspects of Declarative Languages, (PADL’99), San Antonio, TX,
USA, pages 305–319. Springer, 1999.

[64] G. Specht. Generating Explanation Trees even for Negations in Deductive Database
Systems. In Proceedings of the 5th Workshop on Logic Programming Environments,
(WLPE’93) , Vancouver, Canada, pages 8–13, Vancouver, Canada, 1993.

[65] T. Syrjänen. Lparse 1.0 User’s Manual. Helsinki University of Technology, Digital
Systems Laboratory, Espoo, Finland. http://www.tcs.hut.fi/Software/smodels.

[66] T. Syrjänen. Implementation of Local Grounding for Logic Programs With Stable Model
Semantics. Technical Report B18, Helsinki University of Technology, Digital Systems
Laboratory, Espoo, Finland, October 1998.

[67] T. Syrjänen. Debugging Inconsistent Answer-Set Programs. In J. Dix and A. Hunter,
editors, Proceedings of the 11th International Workshop on Nonmonotonic Reasoning,
(NMR’06), Lake District, England, UK, pages 77–83. University of Clausthal, Depart-
ment of Informatics, Technical Report, IfI-06-04, 2006.

[68] H. Wertz. Stereotyped Program Debugging : an Aid for Novice Programmers. Interna-
tional Journal of Man-Machine Studies, 16(4):379–392, 1982.

[69] J.-H. You and L. Y. Yuan. A Three-Valued Semantics for Deductive Databases and Logic
Programs. Journal of Computer and System Sciences, 49(2):334–361, 1994.

97



Index

abnormality tags, 63
absolutely tight program, 12
algorithmic debugging, 4
alphabet, 6
anonymous-variable notation, 6
answer set, 2, 10
answer-set programming, 2
answer-set semantics, 2
answer-set solvers, 2
applicable rule, 10
arity, 6
atom, 7

blocked rule, 10
body, 7

choice rule, 15
closed-world assumption, 1
CMODELS, 2
conflict set, 87
consistent, 11
constants, 6
constraint, 8
control tags, 61
cut operator, 1

debugging, 2
declarative debugging, 4
default negation, 7
dependency graph, 12
diagnosis, 86
disjunctive logic program, 8
DLV, 2, 70
domain, 6

error-indicating predicates, 52
external support, 13
extrapolation tagging, 65

fact, 8

false literal, 10
fault, 2

GNU general public license, 70
ground atom, 7
ground instantiation, 9
ground program, 8
ground rule, 8
grounding, 9
grounding of a program, 9

head, 7
Herbrand base, 9
Herbrand universe, 9
Horn clauses, 1

implementation, 70
inconsistent, 11
integrity constraint, 8
interpretation, 10
interpretation for a program Π, 10

Java 5.0, 70
justification, 79

kernel tagging, 61
kernel transformation, 61

literal, 7
locally consistent explanation, 80
logic programming, 1
loop, 12
loop formulas, 12
LPARSE, 2, 70

Mark-II, 2
meta-answer-set for program Π, 25
meta-answer-set guessing interpretation I, 30
meta-answer-set guessing loop Γ, 38
meta-program for Π, 21
meta-programming approach, 16

98



INDEX

model of a ground program, 10

negated atom, 7
negation-as-failure, 1
negative body, 7
negative dependency graph, 12
non-disjunctive program, 8
non-disjunctive rule, 8
non-ground atom, 7
non-trivial loop, 12
normal program, 8
normal rule, 8

online justification, 79

perfect model, 2
perfect-model semantics, 2
positive body, 7
positive dependency graph, 12
positive program, 8
positive rule, 8
potential usage, 21
predicates, 6
prerequisite, 24
PROLOG, 1

reduct, 10
repair of an answer set, 68
resolution rule, 1

safe rule, 8
satisfaction, 10
satisfied rule, 10
set of answer sets, 11
set of generating rules, 11
set of integrity constraints, 11
SMODELS, 2, 70
spock, 70
stable model, 2
stable-model semantics, 2
Star Trek, 70
stratification, 2
stratified program, 14
strongly connected component, 12
strongly connected graph, 12
substitution, 9
support, 13
supported-model semantics, 2

tag, 60
tagging technique, 60
terms, 6
tracing, 3
trivial loop, 12
true literal, 10

unsatisfied rule, 10
unsupported atom, 13

variables, 6
violated rule, 10
violated weak constraint, 15
Vulcan, 70

well-founded semantics, 2

99


	1 Introduction
	1.1 Definition of Debugging
	1.2 Debugging in Logic Programming
	1.3 Errors and Debugging in Answer-Set Programming
	1.4 Declarative Debugging

	2 Preliminaries
	2.1 Syntax
	2.2 Semantics
	2.3 Alternative Characterisations
	2.3.1 Dependency Graph and Loops
	2.3.2 Support and External Support
	2.3.3 Completion and Loop Formulas

	2.4 Stratified Normal Programs
	2.5 Further Conventions

	3 Meta-Programming Approach
	3.1 Basic Method
	3.2 Overall Architecture
	3.3 Meta-Program
	3.3.1 Meta-Programs and Meta-Answer-Sets
	3.3.2 Meta-Program for 
	3.3.3 Potential-Use Relation and Module Prerequisites
	3.3.4 Standalone Subprograms and Specialised Meta-Answer-Sets
	3.3.5 Transformation to the Meta-Level
	3.3.6 Auxiliary Rules
	3.3.7 Guessing an Interpretation
	3.3.8 Rule Applicability
	3.3.9 Dependency Graph
	3.3.10 Guessing Loops
	3.3.11 Detecting Violated Constraints
	3.3.12 Detecting Unsupported Atoms
	3.3.13 Detecting Unsatisfied Rules
	3.3.14 Detecting Externally Unsupported Loops
	3.3.15 All Together Now!
	3.3.16 Filtering Out Non-Error-Indicating Meta-Answer-Sets

	3.4 Search-Space Restriction and Examples

	4 Tagging Approach to Debugging
	4.1 Splitting Cause from Consequence
	4.2 Extrapolation of Non-Existing Answer Sets

	5 Implementation
	5.1 Architecture
	5.2 System Call
	5.3 System Input
	5.4 Answer-Set Computation for Labelled Programs
	5.5 Meta-Program Translation
	5.6 Tagging Approach

	6 Other Approaches
	6.1 Justifications for Answer-Set Programs
	6.2 Query Algorithms for Debugging ASP
	6.2.1 Why is a set of literals satisfied by a specific answer set?
	6.2.2 Why is a set of literals not satisfied by any answer set?

	6.3 Debugging Inconsistent Answer-Set Programs
	6.3.1 Odd-Loop Detection
	6.3.2 Finding Inconsistency-Causing Constraints


	7 Conclusion
	 Appendix: Selected Argument Options of spock
	Bibliography
	Index

