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Abstract 
 

 

In my master’s thesis, I have implemented a graph partitioning heuristic in 

IMUNES system. IMUNES is a program for network emulation/simulation. 

Since network emulation and simulation are computationally very intensive, a 

method for dividing the computational load between distributed processors, in a 

way that minimizes interprocessor communication, is required. The emulation in 

IMUNES is represented as graph nodes interconnected with links, so the problem 

of dividing the computational load between processors is reduced to dividing the 

nodes and edges of the graph, called graph partitioning.    

After METIS graph partitioning algorithm, I implemented the graph 

partitioning which has three stages. In the first stage, coarsening, a hierarchy of 

approximations to the original problem is created. In the second stage an initial 

solution to the problem is found, which is then iteratively refined in the third 

stage.     

In the main part of this thesis I describe the implementation of the three 

stages of the multilevel partitioning scheme in IMUNES. The main goal in my 

thesis was to implement a real-time job partitioning in IMUNES system. After 

implementation, I conducted some performance and quality evaluation. 

Experiment results, at the end of the thesis, show that implemented methods 

achieve the same quality level of partitions as when derived by the METIS 

method, but require more execution time because of a trade-off between speed 

and platform independence by using a Tcl/Tk script language instead of some 

compiled programming language. 
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1 Introduction 
 

 

Network simulation and emulation is a valuable tool for testing, understanding and 

evaluating research prototypes of an existing or imaginary network system. Mostly, a 

simulation of the target network is also simpler and cost more effective: only a software 

model of the target system has to be created, which can be run on any hardware. On the 

other hand, it can be very hard or in some cases impossible to create an exact model of the 

target system and to simulate the real network conditions.  

There are two major classes of experimental environments: 

• Simulation environments – allow the user to predict the behaviours of 

network protocols and applications under different situations using an 

internal model specific to the simulator. Simulated networks can typically 

scale well in size, but simulated devices may have limited functionalities and 

their behaviour may be different than the real devices would have. 

• Emulation environments – closely reproduce the features and behaviour of 

real hardware, while having implemented virtual network configurations atop 

of it: this means that experimenters can use real operating systems and other 

software, and run their applications unmodified. Differently from simulation 

systems, in an emulator the network undergoes the same state changes that 

would occur in the real word. 

 

My thesis focuses on the fundamental concepts of emulation environments, and provides a 

brief introduction of IMUNES [2], an open source software emulator.  

The primary challenge for emulation environments is the emulated network size 

scalability. Because emulated environments are supported by real hardware, the 

computational resources needed to run an emulated system may be higher than the available 

underlying physical system can provide. This requires the careful allocation and mapping 

(multiplexing) from the virtual resources to available physical resources. The simplest 

solution is to map virtual network nodes and links one-to-one onto dedicated physical 

resources. This is an inefficient use of shared hardware, because most of emulated resources 

use just a small part of the available resources. A more complex method is a controlled 

multiplexing of virtual onto physical resources. Inadequately mapped resources can degrade 

performance or introduce artefacts into an experiment [13]. 
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As noted before, the emulated complex network topologies demand a lot of processing 

power. One of the effective ways of doing it is by dividing the work among distributed 

processors. This division is done through a process known as graph partitioning. The 

problem is to divide the vertices of a given graph into roughly equal and disjoint parts called 

partitions, with a minimal number of edges connecting the vertices in different partitions. 

Graph partitioning is an NP-complete problem, for which many algorithms have been 

developed. Some of them produce very good partitions, but are very expensive in processing 

power, and some tend to be fast, but often produce bad partitions. 

Currently there are a few packages with graph partitioning algorithms. One of the 

well-known is METIS [3]. METIS is developed by George Karypis and Vipin Kumar, at the 

University of Minnesota. 

For my master's thesis I have implemented an algorithm that divides the workload in 

IMUNES after the METIS methods. First the algorithm analyses the graph and extracts 

required information, such as the number of nodes and links, their types, connections etc., in 

order to divide the graph better according to its characteristics. After the algorithm has 

collected all required pieces of information, the first stage begins. In the fist stage, it uses 

Heavy-edge algorithm (HEM) to generate smaller graphs; in the second stage it uses Graph 

growing algorithm (GGP) to divide the graph in partitions; and in the third stage it uses 

Fiduccia and Mattheyses (FM) improvement of the Kernighan-Lin algorithm (KL) to refine 

the partitions. Additionally, several other algorithms for each stage of the graph partitioning 

are also described. 
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2 An Overview of Emulation Environments 
 

 

There are a lot of emulation products available, which differ in the type of the device they 

emulate, emulation technique, the size of virtual networks they can handle, distribution 

license, etc. In this section description of some of the best-known emulation environments are 

given: PlanetLab [13], Emulab [14] and ModelNet [15]. All three network emulators run 

experiments involving a set of geographically distributed nodes. 

 

2.1 PlanetLab 

 

PlanetLab is a network of computers geographically distributed at sites around the world, 

forming a global platform for supporting distributed systems and network research. This 

network of computers is called “PlanetLab nodes”. PlanetLab started 2002, and until the time 

of writing this thesis it spans over eight hundred nodes at almost four hundred sites [13]. To 

use the PlanetLab network one can either have an account, which are limited to persons 

affiliated with universities and corporations hosting PlanetLab nodes, or it can use one of the 

free public services. The members of PlanetLab develop the tools for the community, and as 

a result each user has a wide choice of tools to use. 

  Each research project, that uses the PlanetLab network, has a virtual machine access 

to a subset of the nodes. The set of virtual machines is called a “slice”. The slice is created 

through PlanetLab Central (PLC), and it represents a container in which owner's services are 

placed. After the PLC creates and assigns a slice to the user, the user may assign nodes to the 

slice. After assigning nodes to the slice, virtual servers for that slice on every assigned node 

are created. Slices expire after two months, and if not extended, are destroyed and all files in 

the slices are removed. 

 

PlanetLab’s main characteristics are centralized trust authority and resource control. 

 PlanetLab Central (PLC) is a centralized trust design as a trusted intermediary between 

node owners and node users. PLC controls everything involving the public PlanetLab 

(permissions, resource allocation, etc.), and saves administrative information primarily about 

sites, users, and nodes, and information about slices running on the infrastructure. The 

administrators are limited to customize their systems and the owners of individual nodes have 
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very limited control over their own resources. One of the advantages of centralization the 

control is a uniform view of the system. 

 

A set of allocated resources on a single PlanetLab node is called “sliver”, and is implemented 

as Linux-VServer (Virtual Server). Network virtualized access of sliver on PlanetLab nodes is 

implemented using VNET (Virtualized Network Access). The goal of VNET is to be as 

transparent as possible, allowing PlanetLab users not to have to recompile any code. 

 

2.2 Emulab 

 

Emulab is a widely available, remotely accessible, network emulation laboratory (testbed). It 

is developed at the University of Utah. Emulab consists of both a facility and a software 

system. To start a “project” at Emulab for research or educational use almost any university, 

industrial research labs, US and non-US institutions are eligible. After the project is approved, 

the researcher is permitted to authorize additional project members and grants them access to 

the project. 

 Emulab facility is made of a cluster of interconnected PCs. Each PC is connected with 

four network interfaces to a switching fabric (a set of Cisco switches). This enables the users 

to build arbitrary network topologies without the need to physically move any wires. Emulab 

contains a wide range of experimental resources, including wired cluster PCs that can run 

operating systems like Linux, FreeBSD and Windows, physically distributed 802.11 wireless 

PCs, network processors, sensor boards, and software radio platforms. 

 A user can define an experiment by using a GUI tool or directly in NS simulation 

language. The definition includes description of the network topology, link characteristics, 

operating systems, and other software which runs on all machines. When a defined 

experiment is started, a set of machines is allocated for it, the network topology on the 

switches is configured, and the custom disk images are loaded. When a user starts an 

experiment, most of resources are allocated at a time only to that user. Thus, when Emulab is 

full, new users cannot enter the system. In Emulab the user of a started experiment has 

complete control over the allocated resources. 

 Emulab today has a portal to PlanetLab, allowing Emulab users to allocate slices on 

PlanetLab. Combination of both testbeds allows for much richer experimentation and 
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deployment. This combination can currently be used only from the Emulab’s side, and not 

from the PlanetLab’s. More about the combining the two testbeds can be found under [35]. 

 

2.3 ModelNet 

 

Modelnet is a software emulator developed at the University of California, San Diego. It 

allows building distributed network experiences running on realistic Internet-like 

environments. ModelNet enables researchers to deploy unmodified software prototypes in a 

configurable environment.  

 The architecture of the ModelNet network comprises of Edge Nodes and Core Nodes. 

User specified operating systems and application software runs on a virtual node. Virtual 

nodes are multiplexed across a set of physical machines that are called edge nodes. Each 

virtual node has a unique IP address. Edge nodes are configured to route their packets through 

a scalable cluster of core nodes. One core node consists of one or more physical machines, 

which are physically interconnected by gigabit links. The core nodes have modified FreeBSD 

kernels that enable them to emulate the behaviour of a target network under the offered traffic 

load. Each core node routes the packet through an emulated network of pipes and subject it to 

the bandwidth, loss and latency of a target network topology. The emulation runs in real time, 

so packets traverse the emulated network with the same rates, delays and losses as in the real 

network. 

 A typical cluster machine has mostly far more CPU power and network bandwidth 

than a single instance of the user application requires. Because of this, ModelNet creates, 

possibly, hundreds of virtual nodes on each application host. 

 ModelNet runs in four phases. The first phase, Create, generates a target network 

topology specified by a user. A topology is a graph whose nodes represent clients or 

intermediate nodes in the network, and whose edges represent network links. The current 

version of ModelNet supports few generation tools for topology generation. Next, the network 

topology is transformed to a pipe topology that models the target network. The second phase, 

Assignment, maps pieces of the pipes to core nodes, partitioning the pipe graph to distribute 

emulation load across the core nodes. The Binding phase assigns virtual nodes to the edge 

nodes and sets them up for executing the applications. Multiple VNs are multiplexed onto 

each edge node, and edge nodes are bound to a single core node. The final phase, Execution, 

executes target application code on the edge nodes. 
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3 IMUNES 
 

 

IMUNES (Integrated Multiprotocol Network Emulator/Simulator) [2] is a lightweight 

network emulator developed at the University of Zagreb. Instead of running entire kernels as 

processes, it modifies a FreeBSD OS kernel to allow running multiple lightweight virtual 

nodes on a single operating system kernel. This kernel-level emulation allows efficient 

traffic manipulation, since it replaces frequent and expensive data coping and context 

switching by moving packets only by reference. The virtual nodes are interconnected via 

kernel-level links to form arbitrarily complex network topologies. In IMUNES, each virtual 

node offers equally rich set of capabilities as the standard kernel does, and can be efficiently 

implemented by reusing the existing OS kernel code. User-level applications are executed 

within virtual nodes with the illusion of running on a single workstation with its own 

network interfaces, thus they need not to be adapted for the new environment. 

IMUNES is an open source project under GNU license. 

 

3.1 The Architecture 

 

The conventional organization of UNIX operating systems kernel and network stack is shown 

in Figure 1. 

 

In UNIX operating systems the computer's memory is partitioned into two disjointed areas, 

one reserved for the kernel (kernel space) and the other for the applications (user space). All 

the user processes share a network facility and addressing space, which presents some limits 

to certain emerging applications, like for virtual hosting. 

 

The idea of reusing and extending an existing OS network stack, as well as the concept of 

virtual machines is not new. Some of the different variations can be found in [27]. 

 

In IMUNES, a kernel is modified to allow multiple independent network stack instances to 

co-exist simultaneously within one OS kernel. The model of modified OS kernel in IMUNES 

is shown in Figure 2. 
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Figure 1: Common organization of UNIX OS kernel 

 

 

 

 
Figure 2: Modified OS kernel image in Imunes [37] 
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The key element of IMUNES emulation model is a virtual node. A virtual node is an isolated 

kernel entity, which consists of a group of associated user processes and a network stack 

instance. Each existing user process is associated with at most one network stack instance at 

a time. Each network stack instance is functionally independent, and maintains its private 

variables like routing tables, routing cache, list of network interfaces, communication 

sockets, as well as a set of optional networking facilities like packet filters, traffic shapers, 

etc. The standard user applications can be executed without any modifications, recompiling 

or runtime library replacement. 

 Upon the startup, the system creates one (default) virtual node, which contains the 

real network interface and all current user processes. The subsequent created processes are 

automatically associated with the default virtual node and real network interface. After 

startup the system administrator can dynamically create additional virtual nodes, associate 

them with real or pseudo network interfaces and create or reassign user processes into their 

environments. Different network stacks need explicit methods for establishing 

communication between them. To provide the methods for it IMUNES extends the standard 

netgraph framework in the FreeBSD kernel. User processes running in one virtual node are 

able to interact only with their own network stack instance and interfaces associated with its 

own virtual node. Communication between virtual nodes is accomplished either via bridged 

virtual or physical Ethernet interfaces, or through virtual point-to-point channels constructed 

from a pair of FreeBSD's standard netgraph interface nodes. The bridging method is entirely 

hidden inside of the kernel, allowing transparent connection to virtual nodes from the outer 

world via one or more physical Ethernet interfaces. Passing packets between two virtual 

nodes is done only by reference, thus providing zero coping. 

 Figure 3 illustrates the traditional virtualization model (a) and in IMUNES 

implemented virtualization model (b). 

 

3.2 IMUNES Topology 

 

IMUNES implements a simple Tcl/Tk based graphical topology editor and a topology 

compiler. Graphical topology editor in IMUNES allows for quick creation and viewing 

experiments consisting of two basic units: nodes and links. Nodes can exist independently, but 

for a link to exist, two different nodes must be available.  
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Figure 3: (a) Traditional virtualization model, (b) lightweight vm model -- packet going 

from vm1 to vm2 is copied ...) [27] 

 
 
Nodes are made of network layer nodes: PCs, hosts, routers, and link layer nodes: switches, 

hubs and physical interfaces (RJ45). Link layer nodes provide just link layer functionality 

(data transfer between network entities), and are not implemented as virtual nodes but are just 

netgraph nodes. Network layer nodes provide network layer functionality (routing, 

fragmentation, reassembly, etc.), and are implemented as virtual nodes in a kernel. Each 

network node is a fully functional FreeBSD system with its own instance of a network stack. 

Host and PC types of nodes differ from router node in the type of routing. Router is capable of 

packet forwarding and uses dynamic routing; host and PC are not capable of packet 

forwarding and use static routing. Each router runs xorp [36] or quagga [24] open source 

routing software on a virtualized networking stack. 

 Links always connect two different nodes, and no two different links connect the same 

two nodes. Each link has its characteristics like link type, link bandwidth, BER, delay, etc. 

According to type, a link can be Ethernet (default) or serial, whereas all links are presumed to 

be full duplex. Links are also implemented as netgraph nodes. 

 Graphical editor simplifies creating, configuring and interconnecting the nodes in the 

target topology. During the emulation execution the services on different nodes can be started, 

terminated or changed through a command line interface of each node. An example of 

IMUNES graphical editor and an open shell on one node is shown in Figure 4. 
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Figure 4: IMUNES GUI with a sample network topology and open shell on one node 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

4 Basic Notations and Definitions 
 

The notation used in this and subsequent lectures is here described.    

 

The graph ),,,( ev WWEVG =  is an undirected, weighted graph, without self edges (e, e) or 

multiple edges from one vertex to another. G is subject to the following conditions: 

• V is a set of vertices in graph G, whose elements are called nodes or vertices  

• E is a set of edges connecting the vertices 

( ) VvvEewherevve ∈∈= 2121 ,,,, . Elements of the set E are called edges 

or lines. 

• vW  a set of weights of each vertex Vv ∈   

• eW  a set of weights of each edge Ee ∈ . The notation V  means the number 

of vertices in V, and E the number of edges in E  

Two vertices are adjacent if they are connected by an edge. Adjacent nodes are also often 

called neighbours. 

If ( ) VvvEewherevve ∈∧∈= 2121 ,,, , then 1v and 2v  are adjacent and neighbours, 

and to an e incident. 

A connected or complete graph is the one in which every vertex is through one or 

more edges connected with every other vertex in the graph, otherwise it is called 

disconnected. An isolated vertex is one which has no neighbours, i.e. it is not connected to 

any other vertex. 

A partition of the graph G is the mapping of the set of vertices V into P disjoint sets 

Vp, so that VV p =U . A partition is “good”, if the vertices mapped to disjoint sets are highly 

similar, the weight between different sets is minimal and the weight within sets is maximal. 

An edge-cut of G is a set of edges, whose incident vertices belong to different 

partitions, and whose removal leaves the graph disconnected. 
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5 Related Work 
 

 

Many algorithms have been developed for the graph partition problem. Partition heuristics, 

described here, use graph bisection, i.e. they first bisect the graph G into two parts G1 and 

G2, ( 21 GGG ∪= ), and then in each further recursion subdivide each part again in two 

partitions.  

 

There are two classes of heuristics, depending on the information available about the graph 

G. In the first case, the geometric information of the graph is used to find a good partition. 

This type of heuristic is called geometric partitioning algorithm. Geometric algorithms tends 

to be fast, but produce slightly worse partitions than spectral methods, and need to have 

coordinates for the vertices of the graph. In many problem areas (e.g. linear programming) 

there is no geometrical information about the graph. 

The other class of heuristics doesn’t have geometry associated with the graph. These 

kinds of graphs require combinatorial rather than geometric algorithms to partition them. 

Spectral partitioning algorithms produce very good partitions for a wide class of problems 

but are also very expensive. They are a class of techniques used to solve partial differential 

equations, often involving the use of the Fast Fourier Transform. Spectral method can be 

accelerated by using a multilevel algorithm. The idea behind the multilevel algorithms is to 

reduce the size of the graph by collapsing vertices, partitioning the smallest graph, and then 

extending the partition to construct the original graph. Multilevel algorithms are faster than 

spectral ones, but produce worse partitions. 

First heuristics for minimum bisection were given by Kernighan and Lin [10], 

enhanced by Hendrickson and Leland [1] by applying vertex and edge weights, and later 

further improved by Fiduccia and Mattheyses [11].  

Well known software packages such as Chaco [12] and METIS can be used for graph 

partitioning, which apply heuristics to generate approximate solutions. Algorithms in METIS 

are based on multilevel graph partitioning. In IMUNES system the implementation of graph 

partitioning is based on METIS partitioning algorithms. 
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5.1 CHACO 

 

Chaco is a software package of various graph partitioning algorithms, available under license 

from Sandia National Laboratories. It can be used either as a stand-alone application or as a 

library of graph partitioning functions that can be linked from other applications. It addresses 

three types of problems: graph partitioning, embedding the partitions into different topologies, 

and the use of spectral methods to sequence the graphs. 

 

Chaco implements five classes of partitioning algorithms: simple, inertial, spectral, 

Kernighan-Lin (KL), and multilevel-KL (see Initial partitioning). Those methods are 

categorized as global or local (Kernighan-Lin). A “local” method is also referred to as 

“improvement heuristic”, because it takes a partitioned graph and attempts to improve the 

quality of the partitions. After [28] the combination of global and local methods leads to 

significant improvements in performance and robustness. 

 Most graph partitioning algorithms divide the graph recursively into two halves 

(Bisection) until the desired number of partitions has been reached. Chaco additionally offers 

to divide the graph recursively into four (Quadrisection) or eight (Octasection) parts. 

 To minimize the total communication time between sets Chaco uses the minimization 

of the total number of cuts, and the minimization of the total number of hops. The total 

number of hops takes into account the “architectural distance” between the sets, that is, the 

physical distance of the processors or regions of an integrated circuit, to which the partitions 

are to be mapped. 

 

5.2 METIS 

 

METIS is a set of programs for partitioning large irregular graphs, computing fill-reducing 

orderings of sparse matrices, and for partitioning large hypergraphs. The algorithms in 

METIS are based on the state-of-the-art multilevel paradigm (see 6.1).  

 METIS is a family of software packages consisting of three different packages: 

METIS, ParMETIS, and hMETIS. METIS is designed for partitioning large unstructured 

graphs on serial computers. ParMETIS (Parallel METIS) extends the functionality provided 

by METIS by parallelizing of METIS serial methods. hMETIS (Hypergraph METIS) is a set 

of programs for partitioning large unstructured hypergraphs and very large circuits. METIS 
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and hMETIS are developed by George Karypis, and ParMETIS by George Karypis and Kirk 

Schloegel. METIS family of algorithms is freely available on the web [29]. 

 

In the following sections, the METIS algorithms, and the implementation of such algorithms 

in IMUNES system are described.  
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6 Graph Partitioning 
 

 

The problem of partitioning a graph into k partitions is defined as follows: Given a graph 

),( EVG = , with nodes V and edges E connecting them. The nodes represent data or tasks 

and edges represent communication between the nodes. The goal is to partition V into k 

equal sized subsets, kVVV ,,, 21 K  such that  

i. ∅=∩ ji VV , ji ≠∀    

ii. 
k

n
Vi ≈ , where nV =  

iii. { }kiVVi ,,1, KU ∈=  

 

while minimizing the capacity of the edge cut. The first condition (i) denotes that the two 

subsets can’t have a shared node. The second condition (ii) denotes that each subset has 

approximately equal number of nodes. And the last condition (iii) denotes that the union of 

all subsets is a set V. 

If the graph to be partitioned has weights associated with the nodes and the edges, the 

goal of partitioning is to have k disjoint subsets such that the sum of the node weights in 

each subset is the same, and the sum of the edge weights, whose incident nodes belong to 

different subsets, is minimized.  

Graph partitioning is an important problem that has extensive applications in many 

areas including scientific computing, VLSI design, and task scheduling. It is NP-complete 

(Garey and Johnson, 1979), so in recent years much attention has been given to developing 

efficient heuristics. 

 

6.1 Multilevel Graph Bisection 

 

The idea behind the multilevel graph bisection is quite simple. There are three different 

stages to multilevel partitioning algorithm. First, in the initial level the nodes of the graph G 

are matched and in pairs coalesced to define a new coarse graph. Secondly, the smallest 

graph in the sequence of coarsed graphs is partitioned. And thirdly, the partition is 

propagated back towards the original graph (finer graph) through the sequence of larger and 

larger graphs. The refinement is successively applied on the graph in each sequence. Note 
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that the structure of the graph progresses from a fine to a coarse one, and then back to a fine 

resolution. The algorithm uses edge and node weights to preserve in the coarse graphs as 

much structure of the original graph as possible. 

 

The structure of multilevel graph partitioning algorithm is outlined in the following table. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
    

             Table 1: Structure of multilevel graph partitioning [1] 

 
 
Example of multilevel graph partitioning scheme: 

 

 

Figure 5: Original graph G0 

 

Figure 5 illustrates a sample graph 0G , which is to be partitioned in 3 parts. 0G  consists of 

21 nodes, so each partition should contain 7 nodes. 

 

 

(1) Until graph is small enough 

              graph := coarsen(graph) 

(2) Partition graph 

(3) Until graph = original graph 

              graph := uncoarsen (graph) 

              partition := uncoarsen(partition) 

              locally refine partition if desired 
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Figure 6: Coarsed graph G1 

 

Figure 6 illustrates a graph after the first pass of coarsening method. G1 is coarsed to 12 

nodes. 

 

 

 

Figure 7: Coarsed graph G2 

 
Figure 7 illustrates a graph after the second pass of coarsening method. G2 consists of 6 

nodes. 

 

 

 

Figure 8: Coarsest graph G3 

 

In Figure 8 is shown the graph after the last pass of the coarsening method; the coarsest 

graph G3. In the next step, the coarsest graph G3 is partitioned into 3 partitions. 
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Figure 9: Partitioning the coarsest graph G3 

 

The partitioning is in this case trivial, because the graph consists of 3 nodes which need to be 

assigned to 3 partitions. Partitioning methods assign to each node in G3 one of the three 

partition, as shown in Figure 9. 
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Figure 10: Uncoarsed graph G2 with partitions 

 

Next, the coarsest graph G3 with partitions is uncoarsed to the graph G2, and the partitions in 

G3 are projected to G2. Figure 10 illustrates the graph G2 with projected partitions. 

 

 

Figure 11: Uncoarsed graph G1 with partitions 

 

In the next uncoarsening step, the graph G1 is uncoarsed from the graph G2, and the 

partitions in G2 are projected to the G1, as it can be seen in Figure 11.  
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Figure 12: Original graph G0 with partitions 

 

In the last step of the algorithm (see Figure 12), the graph G1 is uncoarsed to the original 

graph G0, and its partitions are projected to the G0. Each partition consists of 7 nodes. 

 

6.2 Graph Partitioning Metrics 

 

In this thesis several metrics for evaluating the quality of graph partitioning are used.  

 

Edge-Cut 

Edge-cut is the sum of weights of all edges whose incident vertices belong to different 

partitions. It represents the cost of communication between different processors. 

 

Size of each partition 

The size of partition measures the number of all vertices in a partition. In the unweighted 

graph the closer the sizes of all partitions are the more balanced the partitions are. 

 

Weight of each partition 

The weight of a partition is the sum of all vertices’ weight in a partition. In the weighted 

graph the closer the weights of all partitions are the more balanced the partitions are. 

 

Execution Time 

Execution time is the amount of time required for graph partitioning. 
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6.3 Graph Partitioning in IMUNES 

 

The algorithm for graph partitioning in IMUNES is integrated in the IMUNES system. Like 

the rest of the GUI, the algorithm is also written in Tcl/Tk script language, to make it 

platform independent. 

 

Starting graph partitioning 

Graph partitioning can be started through the IMUNES system, by choosing a 

“Graph partitioning” option under the “Tools” submenu in the main menu. This opens a new 

window Graph partitioning (see Figure 13) with the partitioning settings.  

 

 

 

Figure 13: Graph partition settings dialog 

 

 

In the upper part of the Graph partitioning window, the number of parts, in which the 

topology is to be partitioned, must be entered. The number of partitions must be greater than 

1 and less than the number of nodes in the topology. In the middle part of the window, two 

buttons “Node weights” (see Figure 14) and ”Link weights” (see Figure 15) open two new 

dialogs for changing the weight of each individual node and link. The algorithm starts when 

the button OK is pushed.  
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Figure 14: Node weight settings dialog 

 

 

 

Figure 15: Link weight settings dialog 
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6.4 UML Diagram 

 

The following UML diagrams illustrate the multilevel partitioning scheme, as has it been 

implemented in IMUNES. The diagrams illustrate general steps involved in graph 

partitioning. 

The first diagram (Figure 16) shows the first two phases of the multilevel scheme; 

coarsening and partitioning. Before the algorithm can start, the graph and all of its preferences 

are read, whereas all the useful information for partitioning is sorted out and saved. After that, 

the algorithm starts recursive by partitioning the graph. The first phase of the multilevel 

scheme is coarsening (“coarsen graph”). In this phase the graph is reduced in each iteration, 

until the desired size is reached (“Coarsen enough?” yields “Yes”). After coarsening, the 

smallest (coarsest) graph is sent to the partitioning phase (“init partitioning”). In the 

partitioning phase the graph is partitioned, new partitions are compared with the current best 

partitions, and if they are better then the current best, new partitions are saved as the best 

partitions. New partitions are created and compared with the best one, until “Enough 

partitions tried” yields “Yes”. The coarsest graph with the best saved partitions is sent to the 

refinement. 

The second diagram (Figure 17) shows the last phase of the multilevel scheme; 

uncoarsening and refining. The first step of refining is “balance”, where it is verified whether 

the graph is partitioned in approximately equal partitions, or not (that is, the partitions are 

“unbalanced”). If the partitions are unbalanced, one node from the bigger partition is chosen 

and switched to the other, smaller partition. The nodes are moved from one partition to the 

other until the partitions become balanced, or enough swapping has been tried (“Are partitions 

unbalanced?” yields “No”, or “Enough swapping tried?” yields “Yes”). Balanced partitions 

are then refined (“refine”). With refining the partition, the algorithm tries to reduce the edge-

cut. If refining is needed, the node from the bigger partition, which brings the biggest 

decrease in edge-cut, is switched to the smaller partition (“swap node’s partition”). The 

partitions are refined until there can’t be any more node found to switch the partition, or 

enough swapping has been tried (“Is there any node to swap the partition?” yields “No”, or 

“Enough swapping tried?” yields “Yes”). In the “Uncoarse”, the refined partitions are 

projected from the coarser graph to the coarse graph one level higher. The partitions are 

uncoarsed until the original graph is reached (“Reached the original graph?” yields “Yes”). If 

the graph is to be partitioned in more then 2 partitions it is split in 2 subgraphs (“Split graph”), 

which are then again partitioned separately. 
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         Figure 16: UML diagram for the first part of the multilevel scheme 
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Figure 17: UML diagram for the uncoarsening and refining phases 
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6.5 Graph data structure 

 

In IMUNES, a graph is represented via two lists: node_list and link_list. node_list contains 

information about each node like node id, node weight, node type, and etc., while link_list 

contains information about each link, such as link id, incident nodes to that link, link 

bandwidth, and etc. Nodes represent computational tasks, and edges represent data 

exchanges.  

  

For each node Vv ∈ , all interesting information for the graph partitioning algorithm, from 

those two lists, is saved in two arrays: 

 a) node_weight – the weight of v 

 b) node_neighbour –  list of to v adjacent nodes 

 

Interesting information about the edges in the graph is also saved in two arrays: 

 a) edge_array –   the array of all edges in the graph, and their incident nodes 

 b) edge_weight –  the weight of each Ee ∈  

 

There is no need to hold all the nodes in an array in order to access them. Instead, the 

algorithm just needs to know the total number of nodes in the graph (nvertices). It uses the 

indexes, starting with index 0 and ending with index (nvertices – 1), to unambiguously 

address each node's information in each array.  

           

The variable nparts specifies in how many partitions the graph is to be divided into. Its size 

is reduced by half in each recursion of the algorithm. The desired size of each partition is 

kept in an array tpwgts.  

 

The original graph is regarded as a weighted graph, with a unit weight assigned to each edge 

and each node. Each node and each edge in IMUNES has its characteristics, which helps to 

better partition the work. For the graph partitioning algorithm the node_weight and 

link_weight can represent the load, the capacity, the network flow, or any other 

characteristic. 
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Currently, there are five types of nodes in IMUNES: 

 

• Router 

• Host 

• PC 

• RJ45 

• Hub 

• Switch 

   

Weights can be assigned to the whole groups of nodes or to each node separately. At the 

time of writing this thesis, the weight of nodes is not yet calculated regarding its 

characteristics, but left to the users to set it according to their needs. 

The weight of the link is calculated from the link’s bandwidth and delay. Weights can 

only be changed for each link separately. To change the weight of a link, there are two 

possibilities: it can be changed by changing the bandwidth and/or delay in link’s preferences 

(click once on the link) or through “Graph partition” window. If it is changed through the 

“Graph partition” window, changed characteristics also change in the whole program. 

 

6.6 Non-sequential input data 

 

For the graph partitioning algorithm it is necessary that the arrays that it uses always have 

sequentially ordered data. However, it is often the case that the graph that is to be partitioned 

has non-sequential nodes and/or links. A list with the non-sequential nodes and/or links is at 

the beginning of partitioning transformed into sequential arrays. 

 

Figure 18 (a) illustrates a sample graph with non-sequentially ordered node ids and link ids, 

(b) illustrates this sample graph after it has been transformed into a graph with sequential 

ordered node ids and link ids. The ids in (b) are ordered in the same ascending sequence as 

the real ids in (a); in this example, the mapping for nodes is {n0->0, n3->1, n4->2, n7->3, 

n13->4, n14->5}, and for links {l0->0, l1->1, l3->2, l4->3, l7->4}. 
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(a) (b) 
 

Figure 18: Example of transforming a non-sequential data into sequential data 

 

 

6.7 Disconnected graphs 

 

A graph is disconnected when it contains two or more components which are not connected 

by any edge (see Figure 19). The partitioning algorithm recognizes and can handle this type 

of graph. 

 
 
 

 
 

Figure 19: Example of a disconnected graph 
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7 The Algorithm 
 

 

7.1 Coarsening 

 

The goal of the coarsening phase is to create a sequence of smaller graphs, each with fewer 

vertices.  

 

 
 
 
 

Consider a graph ),( 000 EVG = , with a sequence of smaller graphs kGGG ,,, 21 K , such that 

ii VV >−1 . The smaller graph iG  is constructed from the finer graph 1−iG  by finding a 

maximal matching 1−iM , and collapsing as many pairs of adjacent vertices of 1−iG  as 

possible. Matching is defined as a set of edges, where no two edges share the same vertex. 

Maximal matching of a graph is the matching that contains the maximal possible number of 

vertices, to which no more vertices can be added while remaining matching. This is the most 

time consuming phase of the three (coarsening, partitioning, uncoarsening and refining).  

There are two processes, through which the vertices in the coarsening phase traverse: 

matching and contraction (mapping and creating). 

 

The first process is matching. In matching, the algorithm finds two adjacent vertices v and u 

to collapse them together. The collapsed pair (v, u) is called a match. Each vertex can be a 

match only once at each coarsening level. Pairs of vertices are matched until no more 

unmatched vertices remain. If a vertex v is unmatched, but all of its neighbours are matched, 

it is then matched with itself (v, v). The matching algorithm is sketched in Figure 21. 

 

 

Figure 20: A sequence of coarsening 
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There are a few ways that can be used to select matching for coarsening. They determine the 

order in which the vertices are added to the matching. Some of them are described here. In 

the graph partitioning algorithm for IMUNES implemented method, is a heavy – edge 

matching (HEM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
For Each matching edge (v,u) 

Contract edge to form new vertex n 

Vertex weight(n) := weight(u) + weight(v) 

If u and v are both adjacent to a vertex k Then 

Edge weight(n,k) := weight(u,k) + weight(v,k) 

      End if 

End for 

Figure 21: Constructing a coarse approximation to a graph 

 
RM () 

Unmark all vertices and set M = Ø 

While there are unmarked vertices left 

Randomly select unmarked vertex v 

Mark v 

If v has unmarked neighbours Then 

Randomly choose unmarked neighbour u of v     (*) 

    Mark u 

Add edge e = (v, u) to M 

End if 

End while 

End 

 
Figure 22: Random matching (RM) 
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• Random matching (RM)  

Random matching (RM) is a method that uses a randomized algorithm to match the vertices. 

The vertices are visited in random order. If one visited vertex v is not already matched, then 

one of its unmatched adjacent vertices is randomly selected. If such a vertex u exists, the pair 

(v, u) is matched together. The complexity of the random matching is in worst-case O(|E|) 

[3]. A sketch of RM algorithm is shown in Figure 22. 

 

• Heavy - edge matching (HEM) 

Heavy-edge matching (HEM) is a method that matches a vertex with the adjacent vertex 

with the heaviest edge weight. HEM matching, just like random matching, also uses a 

randomized algorithm, where the vertices are visited in random order. However, if some 

vertex v is not already matched, then instead of randomly selecting one of its unmatched 

adjacent vertices (line (*) of Figure 22), an unmatched adjacent vertex u with the heaviest 

edge weight among the neighbours of v is selected for the match (v, u). HEM reduces the 

weight of the edge-cut:  

 Consider a graph ),( iii EVG =  as a coarse and ),( 111 +++ = iii EVG  as the coarsest 

graph of the original graph G = (V, E). iM  is the matching used to coarsen iG  to 1+iG . Let 

)(AW  be the sum of the edge weights in A, where A is the set of edges, e.g. )( iEW  is the 

sum of the edge weights of all the edges in iE . After [3] HEM matching produces better 

results than RM:    

  

 )()()( 1 iii MWEWEW −=+  ( 1 ) 

 

  

As it can be seen from the Equation 1, the sum of edge weights of the coarser graph is 

reduced by the weight of the matching. By matching the heaviest edges, the edge weight of 

the coarser graph is decreased by a greater amount. Since the coarser graph has smaller edge 

weight, it also has a smaller edge-cut. 

 

• Light Edge Matching (LEM) 

In some problems, the total edge weight of the coarser graph needs to be maximized instead 

of minimized (like in HEM). LEM algorithm is very similar to HEM algorithm. To compute a 

matching with minimal edge weight, instead of selecting to v an unmatched adjacent vertex u 
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with the largest edge weight among the neighbours, the algorithm selects an unmatched 

adjacent vertex l with the smallest edge weight among the neighbours (line (*) of Figure 22). 

 

• Heavy Clique Matching (HCM) 

In an unweighted graph ),( EVG = , a fully connected subgraph ( )ccc EVG ,=  of G is called 

a clique. The HCM algorithm matches the vertices, whose clique has high edge density. The 

edge density is calculated from: 

  

 

( )1

2

−cc

c

VV

E
 

 

( 2 ) 

 

 

An example of the matching is shown in Figure 23. 
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In the example shown in Figure 23, matching of a sample graph is given. Two arrays in the 

figure show the resulting matching between the nodes; node 0 is matched with node 3, node1 

with node 2, node 8 with itself, and so on.       

 

The second process is mapping. For every matched pair (v, u) of vertices in 1−iG  a new 

vertex n is created to represent the pair in the next level graph iG . In each iteration of 

Figure 23: An example of matching 
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creating a smaller graph, new vertices are labeled consecutive in range [0, number of new 

vertices]. This label uniquely identifies the vertex in the coarse graph to its parents in the 

finer graph. Information about mapping is saved in the array nmap. For each pair of matched 

vertices (v, u), it is true that nmap[v] = nmap[u]. In order to preserve the characteristics of 

the original graph, the weight of the new vertex n is set equal to the sum of the weights of 

the parent pair of vertices (v, u). The vertex n inherits all the neighbours of its parent 

vertices: 

 

[ ] [ ] )(),(,)()(\)()()( uneighboryvneighborxynmapxnmapynmapxnmapnneighbor ∈∈∩∪=

 

All edges leading from the merged vertices are left unchanged, except for an edge 

connecting the merged vertices. This edge doesn't exist in the next iteration. Edge weights 

are also left unchanged unless both parent vertices are adjacent to the same neighbour. In 

that case, the new edge that represents the two original edges is given the weight of the sum 

of the weights of both original edges. 

 

 

   (a)             (b) 

Figure 24: Example of updating the edge weights in coarsed graph 

 

 

In Figure 24, the four vertices are coarsed, and two new vertices are created. The four edges 

connecting pairs of vertices in (a) are in the new, coarsed graph (b), combined into one edge 

with the weight of the sum of all four edges weight. Two edges between collapsed nodes 

(edge between node 0 and 2, and node 1 and 3) are removed. 
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An example of the mapping is shown in Figure 25. 
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In the example shown in Figure 25, the mapping of a sample graph is given. The graph in the 

figure is the coarsed graph from the example in Figure 23. For each pair of the coarsed 

vertices in the graph, a new vertex is created. Two arrays in the figure show the mapping 

from each coarsed vertex to its mapped vertex; nodes 0 and 3 are mapped to node 0, nodes 1 

and 2 to the node 2, and so on. The number of vertices in the finer graph (nvertices) is 

reduced from 9 to 5 (cnvertices) in the coarsed graph. 

 

The coarsening phase stops when the number of vertices in the coarsest graph is smaller than 

the threshold, or when the graph can't be coarsened any further. At its simplest, the 

contraction can be terminated when the number of vertices in the coarsest graph is the same 

as the number of subsets required. However, during the collapsing of vertices together, some 

new vertices may become much heavier than the others, so that collapsing the vertices until 

there is the same number of vertices as the number of subsets, could result in partitions with 

very different vertices’ weights. Coarsening can in each recursion reduce the graph size by 

half. 

 

Figure 25: An example of mapping 
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7.2 Initial partitioning 

 

Initial partitioning is the second phase of the multilevel graph partitioning where the initial 

partition for each vertex is computed. The initial partition is computed by recursively 

bisecting the coarse graph ( )ccc EVG ,=  into two subgraphs ( )111 , ccc EVG =  

and ( )222 , ccc EVG = , where ∅=∩ 21 cc GG , ccc GGG =∪ 21 .  

 

In the each run of the initial partitioning algorithm, two partitions are created. Those 

partitions are always seen as partitions 0 and 1. To compute the real partition of each node, 

at the end of each recursion of the partitioning, the number of already made partitions is 

added to each partition. The example in Figure 26 shows how real partitions for a sample 

graph are computed. 

 

The Figure 26: An illustration of the multilevel recursive bisection algorithm illustrates on a 

sample graph how the multilevel recursive bisection algorithm works. The graph is to be 

partitioned in 7 partitions. (a) The original graph is in each recursion divided into 2 halves, 

first half gets the partition 0 and the second the partition 1. Graph division stops when the 

number of end nodes equals to the desired number of partitions, in this example when the 

number of end nodes is 7. (b) To calculate the real partitions; zero is added to the partitions 0 

and 1 in the first subgraph, because there are no partitions before them; two is added to the 

partitions 0 and 1 in the second subgraph, because two partitions are already created; four is 

added to the partition 0 in the third subgraph, because there are already four partitions created, 

and so on. (c) Shows the real partitions. 

 

There are a few different algorithms for partitioning the coarse graph. Some of them are 

described here. 

 

• Simple partitions methods 

 

Linear 

In the Linear scheme, the location of the vertices in the original graph is used to determine 
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the partitions. For an unweighted graph with n vertices and divided into p partitions, the first 

p

n
 vertices of the graph are assigned to partition 0, the second 

p

n
 to partition 1, and so on. 

 

 
 

Figure 26: An illustration of the multilevel recursive bisection algorithm 

 

Linear algorithm is extremely fast, on the order of O(n). However, the edge-cut of its 

partitions is generally high. 
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Random 

In the Random scheme, each vertex is randomly assigned to a partition which has less than 
p

n
 

vertices, in a way that preserves balance. Partitioning using Random scheme is very fast, on 

the order O(n), but the edge-cut of its partitions is, like in Linear scheme, generally high. 

Scattered 

The Scattered scheme, like Linear scheme, also uses the location of the vertices in the original 

graph to determinate the partitions. Vertices are assigned to the partitions in an n mod p 

fashion, where n is the position of the vertex, and p the number of partitions. For example, the 

vertex at the position 0 is assigned to the partition 0, the vertex at the position 1, to the 

partition 1, etc. Scattered algorithm is also very fast, on the order O(n), and produces 

partitions with generally high edge-cut. 

 

• Inertial partitions methods 

 

The Inertial method is a relatively simple and fairly quick graph heuristic. It uses geometric 

information to partition the graph. The user supplies geometric coordinates for each vertex in 

one, two or three dimensions. The algorithm first computes the principle axis of the graph, 

which is generally the direction in which the graph is elongated. The vertices are then 

projected onto the principle axis. The projection sorts the vertices according to their 

coordinate values for this axis. The vertices are then divided by plane(s) orthogonal into 

partitions of approximately equal sizes. 

 

• Spectral partitions methods 

 

Spectral methods [3][28][28] use eigenvectors of a matrix constructed from the graph to 

decide how to partition it. This method computes the eigenvector y corresponding to the 

second eigenvalue of the Laplacian matrix which is also called the Fiedler vector. 

 

 The Laplacian matrix Q = D - A, where A the adjacency matrix such that 

 

    cjij E ) v,(v if) v,t(vedge_weigh ∈i   

               0      otherwise 
a = ai,j = 
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Given y, the set of vertices V is partitioned into two parts. Let r be the ith element of the y 

vector, and the median of the values of yi. P[j] = 1 for all the vertices such that yj <= r, and 

P[j] = 2 for all the vertices such that yj > r. 

The eigenvector y can be computed using the Lanczos [30][31] or the multilevel method 

combining Rayleigh Quorient Iteration [32][33] and the linear solver Symmlq [34]. 

 

• Multilevel-KL 

 

Multilevel-KL algorithm described in [3] uses “multilevel” heuristic which consists of three 

phases: coarsening, partitioning and uncoarsening (see Section 7). Kernighan-Lin algorithm is 

invoked at every level of uncoarsening to refine the partition. 

 

• Kernighan-Lin Algorithm (KL) 

 

Kernighan-Lin algorithm is a greedy, local optimization strategy. It starts with an initial 

bipartition of a graph, and searches for a subset of vertices in the graph, such that swapping 

them leads to a reduction of the number of edge-cuts. 

Kernighan-Lin algorithm finds locally optimal partitions if it is given a good initial 

partition [28][3]. KL algorithm is described in more detail in Section 7.3. 

 

• Graph Growing Algorithm (GGP) 

 

The algorithm implemented in the IMUNES system is the graph growing algorithm. To bisect 

the graph, the graph growing algorithm randomly chooses one “starting” node, and then uses 

Breadth - first search algorithm - to search the graph for other nodes.  

 

At the beginning of the partitioning process, the algorithm assigns each node to the first 

partition ( 0P ). Then it randomly chooses the “starting” node, marks it, and puts it in the 

empty queue. Until the queue is not empty, the algorithm takes the first node from the queue, 

changes the partition of the node to the second partition ( 1P ), if its size suits, and searches 

for the node’s unmarked neighbours. If such a neighbour exists, it marks it and puts it in the 

queue (FIFO queue). The search algorithm ends when the size of found nodes fills up the 
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size of the second partition ( 1P ). The quality of this algorithm depends on the coarse phase 

and of the choice of the “starting” node. Different “starting” nodes produce different edge - 

cuts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

        Algorithm 1: Breadth – first algorithm (BFS) 

 

If the algorithm comes to an empty queue, and the second partition ( 1P ) is not filled up 

either, it means that this graph is disconnected. In such case, the algorithm tries to find a new 

“starting” node, by iterating through the list of nodes, and searching for the first unmarked 

node. If the node is found, the algorithm continues, otherwise it ends. 

 

BFS(G) 

For each vertex u in V[G] 

partition[u] := P0 

visited[u] := 0 

End for 

s := random node from V[G] 

visited[s] := 1 

ENQUEUE(Q, s) 

While (Q != Ø) 

u := DEQUEUE(Q) 

If (u.size not too big) 

partition[u] := P1 

End if 

For each vertex v in Adj[u] 

If (visited[v] = 0) 

visited[v] := 1 

ENQUEUE(Q, v) 

End if 

End for 

End while 

End; 
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The important fact about the Breadth - first algorithm is that all vertices at the same distance 

from the “starting” node are searched. After all the vertices on the same distance are 

exhausted, the distance is increased by one, and the vertices at the next distance are searched 

further. This feature of BFS algorithm allows better partitioning, by swapping a group of 

adjacent vertices to the same partition. 

Figure 27 and Figure 28 illustrate the progress of Breadth - first search algorithm on a 

sample graph. As the vertices are explored by the algorithm, they are shown grey. Used 

paths between two distances are shown with full line: 

 

 
 

 
 

 

BFS starts at a given vertex (Start node), which is at distance 0 (see Figure 27). In the first 

stage, all vertices at the distance 1 are searched. 

 
 

 
 

 
 

Figure 27: BFS search at the distance 1 

Figure 28: BFS search at the distance 2 
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When all the vertices at the distance 1 are exhausted, the vertices at the distance 2 are 

explored while the vertices at the distance 1 became black (see Figure 28). BFS traversal 

terminates when every vertex has been visited. 

 
 
Analysis 
In each iteration of Breadth - first algorithm, each node is enqueued and dequeued once at 

the most. In the worst case, when all the vertices of coarser graph cG ( cV ) are enqueued and 

dequeued, the algorithm takes O( cV ). Since the size of the coarser graph cG  is small ( cV < 

50), it takes only a few steps for the initial partition of the coarse graph cG . 

 

• Greedy Graph Growing Algorithm (GGGP) 

 

Greedy graph growing algorithm makes, similar to Kernighan-Lin algorithm, use of the gain 

(see next section). Instead of growing the partition in a strict breadth-first fashion, GGGP 

obtains for each vertex v its gain in the edge-cut by inserting v into the growing region. The 

vertices with the smallest gain are inserted first. When a vertex is inserted into growing 

partition, to its adjacent vertices, which are not yet inserted, the gain is updated (if exists) or 

created. Thus, at each step, the vertex with the smallest increase (or largest decrease) in the 

edge-cut is added to the partition. 

 The quality of GGGP also depends on the choice of the initial vertex, but less then 

GGP. 

 

7.3 Refining the initial partition 

 

The initial partitions P0 and P1 computed for the coarse graph cG  are further refined. The 

refinement is based on the swapping of vertices between the two partitions to reduce the 

edge-cut.  

 

The choice of swapping is based on Fiduccia and Mattheyses (FM) [11] improvement of the 

Kernighan - Lin algorithm [6]. The idea behind Kernighan - Lin algorithm is the concept of 

the gain. The gain vg of a vertex v shows how big there a reduction in edge-cut could be, if 
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the vertex v is moved to the other partition. More formally, if a vertex v is moved between 

two partitions, the corresponding gain vg  can be expressed as: 
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where P[v] is a partition of vertex v, P[u] is a partition of vertex u, and ),( uvw is the weight 

of the edge connecting vertices v and u. If vg  is positive, than swapping the vertex v will 

reduce the cost of the edge-cut; while if vg  is negative, than swapping the vertex v will 

increase the cost of the edge-cut; and if vg  equals zero, there will not be any reduction or 

incensement of the cost of the edge-cut.  

 

In the program, the gain value is computed using two arrays, ID and ED, for each vertex v: 

    
 [ ]

[ ] [ ]
∑

=

=
uPvP

uvwvID ),(  ( 4 ) 

 

 

Until No better partition is discovered 

 Best Partition := Current Partition 

 Compute all initial gains 

 Until Termination criteria reached 

  Select vertex to move 

  Perform move 

  Update gains of all neighbours of moved vertex 

  If Current Partition balanced and better then Best Partition Then 

   Best Partition := Current Partition 

 End Until 

 Current Partition := Best Partition 

End Until 

 

Figure 29: An algorithm for refining graph partitions [1] 
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 [ ]
[ ] [ ]
∑

≠
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uPvP

uvwvED ),(  ( 5 ) 

 
 
where u is a neighbour of v, w(v, u) is the edge-weight of the edge between u and v. ID 

stands for internal degree, and holds the sum of the edge-weights of the edges incident to the 

vertices in the same partition. ED stands for external degree, and holds the sum of the edge-

weights of the edges incident to the vertices in different partitions. The gain is then given by: 

 

 [ ] [ ]vIDvEDg v −=  ( 6 ) 

 

Edge - cut is calculated from the ED array. It holds the total size of the edge weight of all the 

edges connecting two vertices in different partitions: 

 

 [ ]∑
∈

=
Vv

VEDcut *5.0  ( 7 ) 

 

The Fiduccia and Mattheyses (FM) algorithm starts with the initial partitions of the coarse 

graph. In each iteration it chooses a set of vertices whose swapping reduces the edge-cut. If 

such a set exist, the vertices in that set are swapped. The swapping repeats until no such set 

of vertices is found, which means that the partition is at a local minimum and no more 

refinement is possible.  

In the implementation of FM in a program a few trials are performed to reduce the 

edge-cut of coarse graph cG . All the vertices, which are connected to one or more vertices 

from the other partition ( [ ] 0>vED ), are saved in a list boundary. At the beginning of each 

iteration the array partitions is initialized to the initial partition and the new swapping is 

tried. Vertices from the boundary list are put in two priority queues, one for the vertices 

from the first partition ( 0P ) and the other for the vertices from the second partition ( 1P ). 

Each vertex’s priority is defined by its gain. The highest the gain, the highest is the vertex's 

priority. Set of vertices for swapping is chosen from the partition whose size is bigger. This 

step is needed to keep sets from becoming unbalanced. A vertex with the highest gain from 

the bigger partition is then moved to the smaller partition. Each vertex can only be moved 

once during each trial of the algorithm. The highest gain can also be negative, in which case 

the edge-cut is not reduced but increased. This is needed so that algorithm doesn’t get stuck 

in local minima. Once a vertex is moved, the gain values of all its neighbours are updated. 
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The neighbours who where until that moment in the same partition as the moved vertex, are 

now in the other partition and the neighbours who were in the other partition are now in the 

same partition as the vertex: 

 
For each neighbour n, now in the same partition as v: 

 
 [ ] [ ] ),( nvwnEDnED −=  (8) 

 [ ] [ ] ),( nvwnIDnID +=  (9) 

For each neighbour n, now in the different partition than v: 

 
 [ ] [ ] ),( nvwnEDnED +=  (10) 

 [ ] [ ] ).( nvwnIDnID −=  (11) 

 

At the end of each iteration the new edge-cut is compared with the current best solution. And 

if it is better than the saved one, it is saved as the best solution with the partition array. 

 

Analysis 

The algorithm consists of two nested loops. The outer loop tries a few times to refine the 

partitions. In each new iteration it initializes the variables to “starting” values. The cost of 

the initialization is O(n), n is the number of vertices. In the inner loop each vertex is visited 

only once, and the gain of each vertex is computed, the cost of this being O(n+m), where m 

is the number of edges. Reversion through all vertices and its neighbours costs O( 2
m ). 

 

7.4 Uncoarsening 

 

In the uncoarsening phase, the goal is to project the partition from the coarser graph back to 

the original graph. In each iteration the partition of the coarse graph (starting with the coarsest 

graph up) is projected to a one level higher graph. Iteration stops when the original graph is 

reached. 

 

The partition of the coarser graph iG  is projected all the way up through the coarse graphs 

021 ,,, GGG ii K−− , in order to reach the original graph 0G . Each vertex v of nG  contains a 

distinct subset of vertices of 1−nG . To project the partition of the graph nG  onto the graph 
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1−nG , the partition of the vertex v is assigned to the v corresponding set of vertices of 1−nG ; 

the vertices which are contained in the vertex v get the same partition as v has. 

The projected partition may not be at a local minimum with respect to graph 1−nG , 

event though it is at the local minimum with respect to graph nG . This is because graph 1−nG  

is finer than graph nG . Finer information is then used to refine and improve the quality of the 

partitions in 1−nG . The refining scheme used to refine the partitions in uncoarsening phase, is 

FM refinement, used also in refining new partitions, described in Section 7.3. 

In the implementation, the algorithm doesn't start with the coarsest graph nG , but with 

a one level higher coarse graph 1−nG . Going through the vertices of 1−nG , to each vertex v 

from 1−nG  the corresponding vertex r and r's partition is found. This partition is than assigned 

to v. After all vertices from 1−nG  have been assign one partition, ID and ED values are also 

computed and saved. 

 

Analysis 

The cost of the projection of the partition from the graph 1G  to the graph 2G  is O(n), where 

n is the number of vertices in the graph 2G . The arrays ID and ED are also passed on the 

graph 2G , with a cost of O(n*m), where m is the number of each vertex’s 2Gv ∈  adjacent 

vertices. 

 

7.5 Graph Splitting 

 

The graph is split into two subgraphs after its vertices are divided into two partitions. The 

vertices in the first partition make the first subgraph and the nodes in the second partition the 

second subgraph. The edges connecting both subgraphs don’t exist from this level of 

recursion downwards. Each subgraph contains about the half of the vertices’ weight of the 

original graph. Figure 30 illustrates an example of graph splitting. 

 

7.6 Preprocessing 

 
 
Some preprocessing needs to be done at the initialization of the algorithm, and in each 

recursion, before the first step of graph partitioning algorithm, coarsening, begins.  
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Initialization 

 

The processing at the initialization of the algorithm includes the transformation of IMUNES 

vertex and edge lists into for graph partitioning algorithm suitable arrays, calculation of 

weights and their saving into lists, and computation of the desired sizes of end partitions. 

 

 
 
 
 
 
 
The transformation of IMUNES vertex and edge lists, as well as calculation of its weights 

was described in Section 6.5.  

The number of partitions the graph is divided into (nparts) is obtained at the start of 

the partitioning by the user. At algorithm initialization, an array tpwgts is created. There are 

so many elements in an array as the number of parts in which the graph is going to be 

partition, each element holding the size of its ratio of the graph: 

 

 

nparts
itpwgts

1
)( = ,    where { }1,,0 −∈ npartsi K  

 

(12) 

 

 

Figure 30: Sample graph is split in 2 parts 
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Recursion 

 

-  Calculating each partition’s weight 

To compute the desired size of each partition, the algorithm needs to know how many parts 

the graph is to be divided into, how many vertices are in the graph and how much do they 

weight. All those information are gathered at the initialization, and updated as the algorithm 

progress in its execution. 

In each recursion of the algorithm, after splitting the graph into two halves, the weight of the 

next two partitions needs to be calculated. The calculation is done in a few steps: 

 
1. Calculate the sum S of the weight of all vertices in the graph: 

 

(13) 

 
∑

−

=

=
1

0

)(_
nvertices

i

iweightnodeS  

 

 

2. Calculate the total ratio T of the first partition: 

 

∑









=

=
2

0

)(

nparts

i

itpwgtsT  

 

(14) 

 

3. Calculate the size of the first partition (it is nearly half of the weight of the graph): 

 [ ] TStpwgts *02 =  (15) 

 
 

4. Calculate the size of the second partition (makes the rest of the weight of the graph, 

and is often heavier than the first partition): 

 [ ] [ ]0212 tpwgtsStpwgts −=  (16) 

 
 
-  At the end of each recursion, depending on how many partitions the graph will 

additionally be divided into, the algorithm is either repeated or finished. 

 

If the recursion is repeated, ex. nparts > 2, then the graph is divided into two separate parts 

(see Section 7.5), and for each separate part the values concerning the partition’s size (tpwgts 

array) and number (nparts) are recalculated. 

 

-  Update the tpwgts array 
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1. The ratios for the first subgraph are recalculated by dividing the old ratios with the 

total ratio of the whole partition: 

 
 

(17) 

 
[ ]

[ ]






∈=

2
,0,
nparts

i
T

itpwgts
itpwgts  

 

 

 
 

Figure 31: Recursion of the algorithm 

 

    

2. And the new rations for the second subgraph are calculated by dividing the old ratio 

with the rest of the total ratio of the whole partition: 

 
 

(18) 

 
[ ]

[ ]






∈

−
= nparts

nparts
i

T

itpwgts
itpwgts ,

2
,

1
 

 

 

 

-  Update the number of partitions 

The number of parts to partition the graph is also recalculated. In each recursion the graph is 

partitioned in two new, additional partitions, therefore in each recursion the total number to 
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partition the graph is reduced by 2. The number is also divided between two subgraphs, that 

way the first subgraph gets 






2

nparts
 partitions, and the second subgraph the rest, 







−

2

nparts
nparts  partitions. 
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8 Experimental Results 
 

 

In this section, the results from different experiments are presented. The first experiment 

focuses on the execution time of graphs for different network topologies. The second focuses 

on the quality of partitions, and the third one on the edge-cut.  

 

All experiments for this thesis were performed on a personal computer with AMD Athlon64 

and 512 MB RAM. The installed operating system is FreeBSD 4.11. 

 

8.1 Timings for various network topologies 

 

Graphs from various network topologies are used for testing the algorithm. All of those 

graphs are undirected and weighted. The network topologies used for testing are star, ring, 

full mesh and tree, the most used topologies for networks. For all the tests with network 

topologies, except for the tree test, the same weight for nodes and links is used in order to 

represent the results easier. In the tree test different node types with different node weights 

and link weights are used, to picture a real network.  

The first three tests should show how the algorithm reacts in individual network 

topologies, and the last one should show how the algorithm with different interconnected 

topologies works. 

 

8.2 Star 

 

In star topology each node is directly connected to a central network hub, switch or router.  

 

The algorithms in the coarsening phase (RM and HEM) are not well suited for star topology. 

This is because RM and HEM disregard the possibility of matching disconnected nodes, 

since those nodes are not neighbours. The coarsening phase in this case may produce a very 

unbalanced coarse graph. Moreover, RM and HEM match in each iteration only the central 

node with a node connected to it, which means that matching needs )1( −nO  steps to coarse 

the graph, where n is the number of vertices connected in star-like structure. 
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Figure 32: Star - graph with 90 nodes 

 

 

A) Total timing for Star topology 
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     Figure 33: Star topology timings for test graphs 

 
 

Table 1 gives the run times (T(s)) for different graphs with star-like structure partitioned in 
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2, 4, 8, 16, 32, 64, and 128 partitions. The chart in      Figure 33 graphically illustrates the 

timings in the table. 

 

Number of nodes Number 

of 

partitions 5 20 30 40 60 70 90 130 

2 
0.013432 0.069398 0.2822253 0.448345 1.171291 1.680963 3.057247 7.841835 

4 
0.022237 0.101626 0.340814 0.608222 1.562072 2.105716 3.708379 9.428316 

8 N/A 
0.121671 0.355433 0.644864 1.573684 2.221258 3.853826 9.769447 

16 N/A 
0.137449 0.371197 0.685840 1.637396 2.281283 3.966196 9.774199 

32 N/A N/A N/A 
0.703748 1.64263 2.292259 4.020681 10.08976 

64 N/A N/A N/A N/A N/A 
2.316462 4.062516 9.93395 

128 N/A N/A N/A N/A N/A N/A N/A 
10.60498 

 

Table 1: Run time comparison between graphs with different number of nodes 

 
 
b) Quality of partitions 

 

The chart in Figure 34 is based on results of a star-like graph G with 90 nodes. The 

percentages on the y-axis show the percentage of nodes from the whole. The x-axis denotes 

the number of partitions, in which the nodes are distributed. The chart shows a nearly equal 

distribution of nodes in different partitions.  

 

c) Total edge-cut 

 

In the star topology the edge-cut results are high. As mentioned earlier, edge-cut increases 

with each link between two nodes in different partitions. Since the algorithm distributes the 

nodes in the graph in nearly equal partitions (by size), and all the nodes in the graph are 

connected only to the node in the middle, putting the middle node in a partition leaves 







−

k

n
n  (see Section 6, ii) condition) other nodes in different partitions, and just as much 

increases the edge-cut (see Table 2). 
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Number of nodes Number of 

partitions 
5 20 30 40 60 70 90 130 

2 2 9 14 19 29 33 43 64 

4 3 14 22 29 43 50 66 96 

8 N/A 17 26 34 51 59 77 112 

16 N/A 18 28 37 55 65 83 121 

32 N/A N/A N/A 38 57 67 86 125 

64 N/A N/A N/A N/A N/A 68 88 127 

128 N/A N/A N/A N/A N/A N/A N/A 128 

 

Table 2: Total of edge-cuts comparison between graphs with different number of nodes 

 

8.3 Ring 

 

Ring is a network topology in which nodes are connected in a closed loop. Every node is 
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Figure 34: Distribution of nodes in different partitions 
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linked to two others. 

 
 

6.4.1 Total timing for Ring topology 
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Figure 35: Ring – graph with 40 nodes 

Figure 36: Ring topology timings for test graphs 
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Total timings for the ring topology are much lower then by star topology (see Table 3). The 

reason is the coarsening and matching phase, which in just a few steps produces better 

balanced coarse graphs, than by star topology, which significant improves performance. 

 

Number of nodes Number  

of  

partitions 5 20 30 40 60 70 90 130 

2 0.018514 0.049718 0.05167 0.146507 0.115831 0.143352 0.221096 0.316519 

4 0.030207 0.080555 0.10699 0.197555 0.209188 0.308619 0.516873 0.574916 

8 N/A 0.119505 0.155408 0.258056 0.311466 0.402530 0.846527 0.724937 

16 N/A 0.164115 0.215895 0.359187 0.418082 0.518079 1.024577 0.878811 

32 N/A N/A N/A 0.475214 0.537911 0.634810 1.214013 1.010585 

64 N/A N/A N/A N/A N/A 0.832473 1.398125 1.146311 

128 N/A N/A N/A N/A N/A N/A N/A 1.335671 

 

Table 3: Run time comparison between graphs with different number of nodes 

 

 

6.4.2 Quality of partitions 
 
The chart in Figure 37 is based on the ring-like graph with 90 nodes. As well as the chart for 

the ring topology, the y-axis shows the percentage of nodes in different partitions, and the x-

axis denotes the number of partitions. The chart shows even more equally distributed nodes 

in partitions than the chart for the star-like graph. 

 

6.4.3 Total edge – cut 
 

The number of edge-cut in ring-like graphs is minimal. For each new partition of the graph, 

edge-cut increases only by one (see Table 4). 
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Number of nodes Number 

of 

partitions 5 20 30 40 60 70 90 130 

2 2 2 2 2 2 2 2 2 

4 4 4 4 4 4 4 4 4 

8 N/A 8 8 8 8 8 8 8 

16 N/A 16 16 16 16 16 16 16 

32 N/A N/A N/A 32 32 32 32 32 

64 N/A N/A N/A N/A N/A 64 64 64 

128 N/A N/A N/A N/A N/A N/A N/A 128 

 

Table 4: Total of edge-cuts comparison between graphs with different number of nodes 
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Figure 37: Distribution of nodes in different partitions 
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8.4 Full Mesh 

 

Full mesh topology is a network topology in which nodes are connected with every other node 

in the network.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

6.5.1 Total timing for full mesh topology 
 

Full mesh is very computationally expensive. As it can be seen from the chart Figure 39 and 

Table 5, the time needed to partition the graph grows (very fast) with the number of nodes in 

the graph. For this reason only the small full mesh - like graphs are tested. 

 
 
6.5.2 Quality of partitions 
 
The chart in Figure 40 shows that the nodes in full mesh graphs are slightly worst distributed 

than the fall is in other two network topologies. 

 
 
 

Figure 38: Full mesh graph with 20 nodes 
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Number of nodes Number 

of 

partitions 5 10 15 20 25 

2 0.023353 0.302575 1.772264 4.925654 30.503502 

4 0.032155 0.350482 1.993322 5.712546 31.810411 

8 N/A 0.370302 2.034807 5.823654 31.985632 

16 N/A N/A N/A 5.856440 32.099377 

 

Table 5: Run time comparison between full mesh graphs with different number of nodes 
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Figure 39: Full mesh topology timings for test graphs 
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6.5.3 Total of edge-cut 
 

Edge-cuts are very high in full mesh - like graphs (see Table 6). This is also understandable, 

because each node is connected to each other node, which means that at least once each 

partition is connected to a different one.  

 

Number of nodes Number 

of 

partitions 5 10 15 20 25 

2 6 25 56 99 156 

4 9 37 84 149 234 

8 N/A 43 98 174 273 

16 N/A N/A N/A 186 291 

 

Table 6: Total of edge-cuts comparison between graphs with different number of nodes 
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Figure 40: Distribution of nodes in different partitions 
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8.5 Tree 

 

In this section the example graph is taken from a real network map, to see how this 

algorithm works on a real network with different and interconnected topologies. 

    Nodes weight and links weight in this test are calculated from each node's and 

link's characteristics (see Section 6.5). 

 

6.6.1 Total timing and edge-cut 

 

Beside the timing and edge-cut result values, standard deviation for each result is also 

provided. The deviation of test results in previous tests was not discernible, where in this test 

it is - because of the differently sized nodes and links, and the algorithm which uses 

randomized methods to partition the graph.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 41 and Figure 42 illustrate the execution time and edge-cut between partitions for 
tree-like sample graph. Both graphs show a monotonically increase in time, btw. edge-cut. 
Table 7 contains the data from the example. 
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Figure 41: Timing for tree like sample graph 
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Timing Edge-cut Number  

of  

partitions 
Mean Std. Deviation Mean Std. Deviation 

2 0.218608 0.013098 101.333336 0.8888889 

4 0.43860 0.016194666 435.33334 44.444443 

8 0.61426866 0.036359113 802.0 133.33333 

16 0.6860487 0.042385112 2336.6667 176.88889 

32 0.856333 0.036103334 4272.6665 177.77777 

64 1.0168877 0.0568331 6306.0 66.666664 

 

Table 7: Timing and edge-cut comparison for tree like sample graph 

 

 

 

 

 

Figure 42: Edge-cut for tree like sample graph 
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6.6.2 Quality of partitions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Despite the differently sized nodes and links, the partitions are of similar weight, with some 

partitions weighting a little bit more then the others (see Figure 43). 
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Figure 43: Distribution of nodes in different partitions 
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7 Conclusions 
 

This thesis describes the implementation of a multilevel partitioning algorithm in IMUNES 

system after the METIS partition algorithm. Multilevel partitioning algorithm is a fast 

algorithm which is able to obtain partitionings with a very high quality, and utilize the 

concepts of vertex and edge weights to minimize the edge-cut. The implementation in 

IMUNES is in Tcl/Tk script language, which makes the algorithm slower than it would be in 

some procedural or object-oriented programming language. 

 

7.1 Timings 

 

As can be seen from the above results, the algorithm executes quite fast despite it is written 

in a script language.  

    The differences in time between the various topologies can be quite large. The full 

mesh topology takes about hundred times longer then the other topologies to execute. The 

fastest execution time has the ring topology. 

      

7.2 Partition Quality 

 

In terms of quality of partitioning, there is not much difference between different topologies. 

The greatest problems with the evenly distribution of the vertices has the full mesh topology. 

The ring topology can be partitioned in almost perfect partitions. In different interconnected 

topologies some unbalances can happen, which greatly depends on the complexity and the 

magnitude of the size difference in graph’s node’s weights. 

 

7.3 Edge-cuts 

 

Edge-cuts can negatively effect the execution time of the application. There are big 

differences between the various topologies. Most edge-cuts produce full mesh topology, 

while ring topology produces minimal edge-cuts, that is, just as many edge-cuts as there are 

partitions. 
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