
D I S S E R T A T I O N

Semantic Web Information Retrieval

A Semantic Web Based Virtual Query System for Supporting
User Query Formulation and Information Retrieval in The

SemanticLIFE Personal Digital Memory Framework

Ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von
o.Univ.-Prof. Dipl.-Ing. Dr.techn. A Min Tjoa

Institut für Softwaretechnik und Interaktive Systeme
Technische Universität Wien

und
Univ.-Prof. Dipl.-Ing. Dr.techn. Roland Wagner
Institut für Anwendungsorientierte Wissensverarbeitung

Johannes Kepler Universität Linz

eingereicht an der

Technische Universität Wien
Fakultät für Technische Naturwissenschaften und Informatik

von

Hoang Huu Hanh
Matrikelnummer: 0327076

Wiesberggasse 9/33
A-1160 Wien, Österreich

Wien, im Feb 2007

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Im Jahre 1945, erfand Vannevar Bush die Idee von Memex, einer “Vorrichtung, in der
alle Bücher, Aufzeichnungen und Unterhaltungen einer Person gespeichert und mech-
anisiert werden, damit man mit sehr hoher Geschwindigkeit und Flexibilität beraten
werden kann. Diese Vorrichtung ist eine vergrößerte und vertrauliche Ergänzung zum
Gedächtnis” [Bus45]. Das SemanticLIFE Projekt ist ein Versuch, an Vannevar Bush’s
Anblick einen Schritt näher zu kommen. Bis zuletzt können wir eine rasante Ver-
breitung neuer Projekte beobachten, die einige der Ziele Bush’s erfinderischen Ideen
anstreben. Diese Verbreitung wird hauptsächlich durch die schnell wachsende Vo-
rantreibung der technologischen Entwicklung verursacht, die neue Potentiale für die
Realisierung öffnet. Ein Indikator für die Reduktion der Diskrepanz zwischen den Vi-
sionen von Memex und deren Realisierung ist die Ansage vom britischen Computing
Research Committee (http://www.ukcrc.org.uk/) als eine der sieben größten Heraus-
forderungen fürs Computing Research [FR03], “Gedächtnisse fürs Leben - Mit Infor-
mationen über die menschliche Lebenszeit hinaus zurechtzukommen”. Das ACM Sem-
inar über sukkzessives Archivieren und Wiederherstellen von persönlichen Erfahrungen
(http://research.microsoft.com/CARPE2004/) ist ein anderes Indiz dafür, daßdie Zeit
um solche Systeme einzuführen reif ist.

In Richtung dieser Ziele, persönliche Informationen des gesamten Leben einer
Person abzuspeichern und wiederherzustellen, ziehen Forscher auch andauernde Spe-
icherung und Abrufung aller Daten von persönlichen Erlebnissen, unter anderem auch
E-Mails, Kontaktinformationen, Treffen, besuchte Webseiten, Dokumente, Logdaten
von Instant-Messaging Programmen, Telefongesprächen usw. in Betracht. Die her-
ausfordernde Aufgaben sind, wie man nützliches Wissen von dieser mit Informatio-
nen überfüllter Bibliothek extrahiert; und wie man dieses Wissen effektiv verwendet.
Das virtuelle Abfrage System (Virtual Query System) der SemanticLIFE, das in dieser
Dissertation vollständig dargestellt wird, ist eine Annäherung an die erwähnten Auf-
gaben und stellt in einer erfinderischen Art und Weise die benutzerorientierte Abfrage-
Formulierung, ein sogenanntes “front-end” zur Verfügung. Mit Unterstützung des
virtuellen Frage Systems, wird dem SemanticLIFE-Benutzer bei der Ausgabe von ein-
deutigen Fragen geholfen, um die reichen semantischen Informationen von seinen his-
torischen persönlichen Daten wiederherzustellen.

Bei der Entwicklung von ähnlichen PIM Systemen wird der Fokus sehr oft auf back-
end gesetzt, wie zum Beispiel auf die Erfassung von allen Datenquellen, Integration und
Speicherung deren in großen Datendepots. Zu diesem Zweck ist es notwendig, die On-
tologies der verschiedenen Datenquellen in ein allgemeines Ontology des Systems abzu-
bilden. Jedoch werden Benützer innerhalb des Systems hinsichtlich der gespeicherten

Informationen mit mangelndem Wissen konfrontiert und würden vieldeutige Anfragen
formulieren, so müssten viele Hindernisse überwunden werden, bevor das System die
verlangten Resultate liefern kann.

Meine Dissertation strebt ein Design von innovativen Eigenschaften unseres
virtuellen Abfrage-Systems an. Dieses Abfragesystem basiert auf eine “front-end”
Annäherung, die dem User erlaubt, angestrebte Informationen von sehr großen Da-
tendepots in einer effizienten Art und Weise zu extrahieren. Die Konzeption dieses
Abfrage-Systems, das grundsätzlich auf Reduktion von semantischen Mehrdeutigkeiten
von Benützerabfragenspezifikationen im sehr frühen Stadium des Informationsextrak-
tionsprozesses basiert und den User durch die Verwendung von einem Satz von Abfrage-
Schablonen im Abfrageprozess führt, die sowohl auf Benutzers Abfragen basieren
wie auch auf virtuelle Informationen, heisst “Context Ontology”. Diese Annäherung
integriert viele Forschungsbemühungen aus den Bereichen der semantischen Netze,
Abfrageoptimierung, Zwischenspeicherung von semantischen Abfragen für RDF, der
Schlussfolgerung, des Ontology-Diagramms und der Benutzerinteraktion.

Abstract

Back in 1945, Vannevar Bush coined the idea of Memex as “a device in which an indi-
vidual stores all his books, records, and communications, and which is mechanized so
that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate
supplement to his memory” [Bus45]. The SemanticLIFE project is an attempt to come
a step closer to Vannevar Bush’s vision. Recently we can observe a mushrooming of
new projects aiming at some of the goals of Bush’s innovative ideas. This is mainly
caused by the racy technological development which opens new realization potentials.
An indicator for the narrowing of the discrepancy between the visions of Memex ver-
sus its realization is the announcement of “Memories for life - Managing informa-
tion over a human lifetime” as one of the seven Grand Challenges for Computing Re-
search [FR03] by the UK Computing Research Committee (http://www.ukcrc.org.uk/).
The ACM Workshop on Continuous Archival and Retrieval of Personal Experiences
(http://research.microsoft.com/CARPE2004/) is another indicator for the maturity of
our present time to implement such systems.

Towards the goals of personal information storage and retrieval of all one’s data
throughout a lifetime, researchers consider continuous archival and retrieval of all media
relating to personal experiences including emails, contacts, appointments, web browsing
history, documents, IM logs, phone calls, etc. The challenging issues are how to extract
useful knowledge from this rich library of information; and how to use this knowledge
effectively. The SemanticLIFE’s Virtual Query System, which is presented thorough
this thesis, is an approach for mentioned issues and by providing an innovative way of
user-oriented query formulation, so-called “front-end” approach, to the SemanticLIFE
Personal Information Management (PIM) system. With support of the Virtual Query
System, the SemanticLIFE user is supported in issuing unambiguous queries to retrieve
the rich semantic information from his/her historical personal data.

Most often when developing similar PIM systems, researches focus on back-end
issues, i.e. capturing all data sources, integrate and then store them in huge repositories.
For this purpose it is necessary to map the ontologies of the various data sources
into a common ontology of the system. However, users are confronted with the lack
of knowledge concerning the stored information inside the system, and they would
formulate ambiguous requests, so that many barriers have to be overcome before the
system could deliver the demanded results.

My thesis is aiming at a design of the innovative features of our Virtual Query
System. This query system is based on a front-end approach allowing the user to
retrieve the information of interest from huge ontology-based repositories in an efficient

way. The conception of this query system which is primarily based on the reduction of
semantic ambiguities of user query specifications at the very early stage of the retrieving
process; and continually guide the user in query process using a set of query templates
based-on the user’s querying context as well as the virtual information, say context
ontology. This approach integrates many research efforts from the area of the Semantic
Web, query refinement, semantic query caching for RDF data, inference, ontology
mapping, and user interaction.

Acknowledgement

Pursuing a PhD program is an enjoyable trying progress where dissertation is a signif-
icant checkpoint’s deliverable. The work in this dissertation has been conducted within
three and half years studying at the Institute of Software Technology and Interactive
Systems, Vienna University of Technology, Austria. However, without help, support,
and encouragement of several persons I would never have been able to finish this work.

First of all, I would like to express my sincere gratitude to my supervisor, Prof. A Min
Tjoa for his inspiring and encouraging way to guide me to a deeper understanding of
knowledge work, and his valuable guidance during the whole work with this dissertation.
He showed me different ways to approach a research problem, broaden my view to inves-
tigate the topic, and the need to be persistent to accomplish any goals. More important,
I deeply indebted for his spiritual supports which help me passing any difficulties to
reach the target.

I would like to thank Prof. Roland Wagner at Johannes Kepler University of Linz, my
second supervisor for his guidance and comments to my work.

Thanks to all my colleagues at the Institute of Software Technology and Interactive Sys-
tems for providing a good working collaboration atmosphere as well as further debates
and discussion in many topics. Especially, my obligation is given to all members of
the SemanticLIFE Team from the day one, Andi Rauber, Alexander Schatten, Monika
Lanzberger, Amin Andjomshoaa, Shuab Karim, Shah Khusro, Khabib Mustofa, Khalid
Latif, Ahmed Mansoor and Nguyen Manh Tho. I also would like to send my apprecia-
tion to Mrs. Maria Schweikert, and Ing. Michael Schadler for their support in providing
me the perfect working environment.

Last but not least, I am greatly indebted to my devoted wife Hanh–Tien and my lovely
daughter Thieu–Anh for supporting me with love and spiritual understanding. Their
love and support without any complaint or regret has enabled me to complete this dis-
sertation.

This work has been financed out of the means of the Austrian Development Coop-
eration in framework of the North–South Dialog Scholarship Program (Grant No.
1186-4/EZA/2002), and generously supported by ASEA–UNINET and the Austrian
National Bank within the frameworks of the project “Application of Semantic Web
Concepts for Business Intelligence Information Systems” (Grant No. 11284).

Vienna, February 2007
Hoang Huu Hanh

Contents

List of Figures x

List of Tables xi

List of Listings xii

Abbreviations xiii

1 Introduction 1
1.1 The Web of Today . 1
1.2 Knowledge Access and The Semantic Web 3

1.2.1 Limitations of Current Search Technology 3
1.2.2 Role of Semantic Technology 4

1.3 ‘Memories for Life’ and SemanticLIFE 5
1.4 A Brief Introduction to Our Approach 6
1.5 Thesis Outline . 7

2 Semantic Web Fundamentals 9
2.1 The Semantic Web . 9
2.2 The Goals of the Semantic Web 10
2.3 Describing Data with RDF . 10

2.3.1 RDF . 10
2.3.2 Terminology . 11
2.3.3 Identifying Resources . 12

2.4 Ontologies . 12
2.4.1 Ontologies . 12
2.4.2 Ontology Languages . 13

2.5 Summary . 14

3 SemanticLIFE: The Personal Digital Memory Project 15
3.1 Motivation . 15
3.2 Related Work . 16
3.3 ‘SemanticLIFE’ . 18
3.4 System Architecture . 20

3.4.1 Design Principles . 20

Contents vii

3.4.2 Internal Communication 21
3.4.3 Data Acquisition . 21
3.4.4 Analysis Module . 22
3.4.5 Storage and Indexing Module 23
3.4.6 Search and Query Functionality 24
3.4.7 Extensibility and Persistence of Information and Semantics 25
3.4.8 Client Interaction . 25

3.5 Summary . 26

4 Ontology-based Query Systems: The State of The Art 27
4.1 Introduction . 27
4.2 Classification Criteria . 27
4.3 Search Strategies with Ontology Support 28

4.3.1 Ontology-Enhanced Keyword Search 28
4.3.2 Ontology-based Multi-facet Search 29
4.3.3 Native Ontology-based Search 30

4.4 Query Formulation . 32
4.5 Query Refinement . 34

4.5.1 Query Ambiguity Discovering 34
4.5.2 Query Refinement . 35
4.5.3 Ranking and User Interaction 37
4.5.4 Inference . 37

4.6 Methodologies in Common . 38
4.6.1 Role of Ontologies . 38
4.6.2 Query Refinement . 38
4.6.3 Keyword-Concept Mapping 39
4.6.4 Graph Patterns . 39
4.6.5 Inference . 39
4.6.6 Fuzzy Concepts, Relations, and Logics 40

4.7 Discussion and Summary . 40

5 The Virtual Query System 42
5.1 Motivation . 42
5.2 Virtual Query System Enabled SemanticLIFE 43

5.2.1 Information Retrieval in the SemanticLIFE Framework . . 43
5.2.2 Aims of The Virtual Query System 44

5.3 The Virtual Query System . 44
5.3.1 The Architecture . 44
5.3.2 The Virtual Query System Workflow 47

5.4 Summary . 48

6 The Virtual Query Language 50
6.1 Introduction . 50

Contents viii

6.2 VQL - The VQS’s Virtual Query Language 51
6.2.1 The Goals of the VQL . 51
6.2.2 The Syntax of VQL . 52
6.2.3 Operators and Expression in VQL 55
6.2.4 The VQL Query Types . 56
6.2.5 VQL Query Results Format 58
6.2.6 Well-formed and Validated VQL Queries 61

6.3 Query Operators of VQL . 62
6.3.1 GetInstances Operator . 63
6.3.2 GetInstanceMetadata Operator 63
6.3.3 GetRelatedData Operator 64
6.3.4 GetLinks Operator . 64
6.3.5 GetFileContent Operator 66

6.4 VQL Parser: Query Languages Mapping 67
6.4.1 Expression Mapping . 67
6.4.2 Syntax Mapping . 68
6.4.3 Semantic Mapping . 69

6.5 Summary . 70

7 An Innovative Query Formulation 71
7.1 Introduction . 71
7.2 The Virtual Data Component . 72

7.2.1 The Goals . 72
7.2.2 Metadata Storage Sources Collecting 72
7.2.3 Context-based Support of the VDC 73

7.3 Context-based Query Formulation in the VQS 75
7.3.1 The VQL Query Template 75
7.3.2 VQS User Context . 77
7.3.3 VQS Query Map . 78
7.3.4 Context-based Querying 78
7.3.5 Context-based Query Results Representation 79

7.4 Semantic Navigation with the VQS 80
7.4.1 VQS Semantic Traces . 80
7.4.2 Context-based Navigation 80

7.5 Summary . 81

8 Implementation Results 82
8.1 The SemanticLIFE Infrastructure 82

8.1.1 A Short History . 82
8.1.2 Current Architecture . 84

8.2 SemanticLIFE’s SOPA . 85
8.2.1 SOPA – The Service-Oriented Plug-in Architecture 85
8.2.2 The SemanticLIFE’s Service Bus 85

Contents ix

8.2.3 Services Pipeline . 88
8.3 The Virtual Query System: Specifications 89

8.3.1 VQS Workflow . 90
8.3.2 The Used Techniques . 91
8.3.3 The VQS Plugins . 92

8.4 The Virtual Data Component . 96
8.5 The Context-based Querying Feature 97

8.5.1 VQL Query Templates . 97
8.5.2 The Context-based Querying 98

8.6 Application Scenarios . 99
8.6.1 Personalized Project Management Scenario 99
8.6.2 The Personal E–Government services 100

8.7 Summary . 101

9 Conclusion 102
9.1 The SemanticLIFE Framework . 102
9.2 The Virtual Query System . 103
9.3 Future Work . 104

Bibliography 106

Curriculum Vitae 114

List of Figures

1.1 MyLifeBits Store Diagram . 6

2.1 An RDF triple example . 11
2.2 An Example of a University Hierarchy 13

3.1 The Architecture of the SemanticLIFE Framework 21

4.1 A Phase of GRDL - ICS-Forth [ACK04] 32
4.2 SEWASIE - graphical query formulation 33

5.1 The VQS Enabled SemanticLIFE Information Retrieval 43
5.2 The Components of the Virtual Query System 45
5.3 The Workflow of the Virtual Query System components 48

6.1 The schema for general VQL queries 52
6.2 The VQL query is validated. 61
6.3 The VQL query is not validated. 62
6.4 The Expression Tree. 68

7.1 A Fragment of the SemanticLIFE’s Datafeeds Ontology 72
7.2 A Example of the Virtual Data Component Ontology 73
7.3 The schema of the VQL query template 76
7.4 An Example of Context-based Querying 79
7.5 The Process of Returning Query Results in the VQS 79

8.1 The first architecture design of the SemanticLIFE framework . . . 83
8.2 The New Architecture of the SemanticLIFE Framework 84
8.3 An query service extension in the SemanticLIFE framework . . . 87
8.4 Service transparency in the SOPA architecture 89
8.5 VQS Workflow in its UML Sequence Diagram 90
8.6 The Declaration of the Query Execution Plugin 93
8.7 The Declaration of the VQS Components Plugin 94
8.8 The Declaration of the Query Interface Plugin 94
8.9 Project Management Context Ontology Diagram 96
8.10 The Graphical User Interface of the Virtual Data Component . . 97
8.11 UML Sequence Diagram of the VQS Context-based Query 98

List of Tables

4.1 Summary of Ontology-based Query Systems 40

List of Listings

6.1 An Example of a XML-based VQL Query 53
6.2 An example of VQL SCHEMA query 57
6.3 An example of the VQL RDF query type 57
6.4 The XML VQL Query Result . 58
6.5 The TEXT VQL Query Result 59
6.6 The JASON VQL Query Result 60
6.7 The VQL RDF Query Schema . 61
6.8 An Example of the VQL GetInstanceMetadata Query Operator . 63
6.9 An Example of the VQL GetRelatedData Query Operator 64
6.10 An Example of the VQL GetLinks Query Operator 65
6.11 An Example of the VQL GetFileContent Query Operator 66

7.1 A VQL Query Template Example 77

8.1 The business services extension-point schema 86
8.2 Abridged version of a service extension description 87
8.3 Calling a service plugged into the Services Bus 87
8.4 A Simple Pipeline . 88
8.5 The Query UI Plugin Listing . 95

Abbreviations

ACM Association for Computer Machinery
AI Artificial Intelligence
API Application Programming Interface
B2B Business To Business
B2C Business To Customer
DAML DARPA Agent Markup Language
DBMS Database Management System
IEEE Institute of Electrical and Electronics Engineers
IEEE CS IEEE Computer Society
JAR Java Archive
J2EE Java Platform 2 - Enterprise Edition
J2SE Java Platform 2 - Standard Edition
JDBC Java Database Connectivity
OWL Web Ontology Language
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RDQL RDF Query Language (Jena)
RQL RDF Query Language (Sesame)
RuleML Rule Markup Language
RUP Rational Unified Process
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SPARQL Simple Protocol And RDF Query Language
SWRL Semantic Web Rule Language
UDDI Universal Description, Discovery, and Integration
UML Unified Modeling Language
W3C World Wide Web Consortium
WSDL Web Service Description Language
XML eXtension Markup Language
XPath XML Path Language
XQuery XML Query Language
XSD XML Schema Definition
XTM XML Topics Maps

1 Introduction

1.1 The Web of Today

The World Wide Web (WWW or Web) has changed the way people communicate
with each other and the way business is conducted. It lies at the heart of a
revolution that is currently transforming the world toward a knowledge economy
and, more broadly speaking, to a knowledge society [AvH04]. This development
has changed the way we think of computers, i.e. they were originally used for
computing; nowadays, their foremost use is currently for information processing
and text processing.

The today’s WWW content is mostly suitable for human beings. Typical cur-
rent uses of the WWW involve people’s seeking and using information, searching
for and getting in touch with other people, reviewing catalogs of online stores
and filling out product order forms [AvH04].

These activities are not particularly well supported by software tools. Apart
from the existence of links that establish connections between documents, the
main valuable utilities are search engines. The keyword-based search engines,
such as Yahoo!1 and Google2, are the main tools for using today’s Web. It
is clear that WWW would not have been the huge success as it has without
the search engines. However, there are still problems associated with their use
according [AvH04]:

• High recall, low precision.

• Low or no recall.

• Results are highly sensitive to vocabulary.

• Results are single WWW pages.

1 Yahoo!, http://www.yahoo.com/
2 Google, http://www.google.com/

1 Introduction 2

Currently, the main obstacle to provide better support to Web users is that
the meaning of Web content is not machine-accessible. Of course, there are tools
that can retrieve texts, split them into parts, check the spelling. However when
it comes to interpreting sentences and extracting useful information for users, the
capabilities of current software are still very limited [AvH04]. For instance, it is
simply difficult to differentiate the meaning of two following sentences

I am a student of computer science.

and

I am a student of computer science, you may think.

With the current text processing method over the Web pages at present,
how can this problem be solved or improved at least? One solution is to use
the content as it is represented today and to develop increasingly sophisticated
techniques based on artificial intelligence and computational linguistics. This
approach has been followed for some time now, but despite some advances the
task still appears too ambitious [AvH04].

An alternative approach also according to [AvH04] is to represent WWW
content in a form that is more easily machine-processable and to use intelligent
techniques to take advantage of these representations. This idea refers to the plan
of revolutionizing the WWW as the Semantic Web initiative. It is important to
understand that the Semantic Web will not be a new global information highway
parallel to the existing World Wide Web; instead it will gradually be evolved of
the existing WWW [AvH04].

The Semantic Web is spread out by the World Wide Web Consortium (W3C).
The main factor of the Semantic Web initiative is Tim Berners-Lee, the person
who is famous at the invention the World Wide Web in the late 1980s. He
expects from this initiative the realization of his original vision of the Web, a
vision where the meaning of information played a far more important role than
it does in today’s WWW [BL98, BL99, BLHL01].

The Semantic Web’s development has been pushed forward with a lot of
industry motivation such as Oracle with the Semantic Technologies Center3 and
HP Labs with the Semantic Web Research Programme4; and governments are
investing heavily in this area. The U.S. government has established the DARPA
Agent Markup Language (DAML) Project, and the Semantic Web is among the
key action lines of the European Union’s Sixth Framework Programme5.

3 http://www.oracle.com/technology/tech/semantic technologies/
4 http://www.hpl.hp.com/semweb/
5 http://ec.europa.eu/research/fp6/

1 Introduction 3

1.2 Knowledge Access and The Semantic Web

1.2.1 Limitations of Current Search Technology

Query Formulation

In general, when specifying a search, users enter a small number of terms in the
query. Yet the query describes the information need, and is commonly based on
the words that people expect to occur in the types of document they seek. This
causes a fundamental problem, in which not all documents use the same words
to refer to the same concept. Therefore, not all the documents that discuss the
concept will be retrieved by a simple keyword-based search.

Furthermore, query terms may have multiple meanings (polysemy). As con-
ventional search engines cannot interpret the sense of the user’s search. The
ambiguity of the query leads to the retrieval of irrelevant information. Despite
the problems of query ambiguity can be overcome to some degree by careful
choice of additional query terms, there is many people may not be prepared to
do this [DSe06].

Lack of Semantics

Conversing to the problem of polysemy is the fact that conventional search engines
that match query terms against a keyword-based index will fail to match relevant
information. This happens if the keywords used in the query are different from
those used in the index, despite having the same meaning (index term synonymy).
Although this problem can be overcome to some extent through thesaurus-based
expansion of the query [BRA05, WR05], the resultant increased level of document
recall may result in the search engine returning too many results for the user to
be able to process realistically [DSe06].

In addition to an inability to handle synonymy and polysemy, conventional
search engines are unaware of any other semantic links between concepts. For
example, considering the following query:

‘football club’ Europe ‘David Gill’ director

In this example, the user might require documents concerning a football club
in Europe, a person called David Gill, and a board appointment. However, we
note that a document containing the following sentence would not be returned
using conventional search techniques:

‘At a meeting in September 2003, the board of Manchester United PLC ap-
pointed David Gill as CEO’

1 Introduction 4

In order to be able to return this document, the search engine would need to
be aware of the following semantic relations:

‘Manchester United PLC is a company, which possesses the football club called
Manchester United FC; Manchester is located in the UK, which is a part of Eu-
rope; A CEO is a kind of director’.

Lack of Context

Many search engines fail to take into consideration aspects of the user’s context
to help disambiguate their queries. User context would include information such
as a person’s role, department, experience, interests, project work and so on.

The real practices have been illustrated this matter. Any person working
in a particular business searching for information is presented with numerous
irrelevant results if they simply enter few keywords for his/her query. More
relevant results are only returned if users modify their query to include further
search terms to indicate the part of the business in which they work. According
to [iPr06], users are in general unwilling to do this.

1.2.2 Role of Semantic Technology

Semantic technologies have the potential to offer solutions to many of the limi-
tations described above, by providing enhanced knowledge access based on the
exploitation of machine-processable metadata. Central to the vision of the Se-
mantic Web are ontologies. These facilitate knowledge sharing and reuse between
agents, be they human or artificial. They offer this capability by providing a con-
sensual and formal conceptualization of a given domain. Information can then
be annotated with respect to an ontology. This leads to distributed, heteroge-
neous information sources being unified through a machine-processable common
domain model (ontology).

Search engines solely based on conventional information retrieval techniques
tend to offer high recall but lower precision. The user is faced with too many
results and many results that are irrelevant due to failures concerning polysemy
and synonymy.

The use of ontologies and associated metadata can allow the user to more pre-
cisely express their queries thus avoiding the problems identified above. Users can
choose ontological concepts to define their query or select from a set of returned
concepts following a search in order to refine their query. They can specify queries
over the metadata and indeed combine these with full text queries if desired.

1 Introduction 5

Furthermore, the use of semantic web technology offers the prospect of a more
fundamental change to knowledge access. Current technology supports a process
wherein the user attempts to frame an information need by specifying a query in
the form of either a set of keywords or a piece of natural language text. Having
submitted a query, the user is then presented with a ranked list of documents
of relevance to the query. However, this is only a partial response to the user’s
actual requirement which is for information rather than lists of documents.

It is suggested here, therefore, that the future of search engines lies in sup-
porting more of the information management process, as opposed to seeking in-
cremental and modest improvements to relevance ranking of documents. In this
approach, software supports more of the process of analyzing relevant documents
rather than merely listing them and leaving the rest of the information analysis
task to the user. Users also need information relevant to their interests and to
their current context. They need not to find just documents, but sections and
information entities within documents and even digests of information created
from multiple documents.

1.3 ‘Memories for Life’ and SemanticLIFE

People are capturing and storing an ever-increasing amount of information about
themselves, including emails, web browsing histories, digital images, and audio
recordings. This tsunami of data presents numerous challenges to computer sci-
ence, including: how to physically store such “digital memories” over decades;
how to protect privacy, especially when data such as photos may involve more
than one person; how to extract useful knowledge from this rich library of infor-
mation; how to use this knowledge effectively, for example in knowledge-based
systems; and how to effectively present memories and knowledge to different
kinds of users. The unifying grand challenge is to manage this data, these digital
memories, for the benefit of human life and for a lifetime [FR03].

The idea of Bush’s article became very popular and, nowadays, that “big”
idea is not something impossible because many systems are geared towards its
realization. Two of those applications are Haystack6 and MyLifebits7 [GBL03b,
GBL+02b]. Haystack was developed with the aims to make users comfortable
in organizing various information sources and make relationships of information
transparent in the way that make the most sense to them. It provides easier
management of email, schedule (calendar), contact person, photo, browsing and
relationship exploration. MyLifebits is a system close to the main idea of Memex.
The system provides features for managing information coming from almost most

6 http://haystack.lcs.mit.edu/
7 http://research.microsoft.com/barc/mediapresence/MyLifeBits.aspx

1 Introduction 6

Figure 1.1: MyLifeBits Store Diagram

common data sources of current modern life. It claims that currently it can hold
information of 25 item types including: web browsing, chat session, contacts,
documents, email, events, photos, music, and video (Figure 1.1). Items can be
linked implicitly via time property (enable visualization by timeline) or explicitly
using typed-link [GLB06].

The efficient information retrieval in the mentioned systems is a vital issue
for their success. Details of these problems are discussed in Chapter 4.

1.4 A Brief Introduction to Our Approach

Our approach originates from the user-side manner in trying to formulate unam-
biguous requests as early as possible during the querying process. The principle
of the approach follows “better known, clearer request” and “customizing than
generating”. If users are aware of what information they possess, they could ask
precise queries against their stored data. This helps the query refinement pro-
cess of the system by eliminating ambiguities at a very early stage of the query
process.

Secondly, the user’s nature of asking question is that he/she often does not
know what he/she is looking for; but he/she remembers some concepts about
related information he/she is looking for. This leads us to a way of querying
(browsing/navigating) the system by using re-defined query templates (patterns)
based-on his/her querying context. This would help the user not to be embar-
rassed in a new phase of query formulation.

1 Introduction 7

The difficulty of query formulation appears not only in the initial phase but it
continues in the query process or query refinement. During the query process, the
user is asked for new requests using the new knowledge to get the information of
interest. In order to ease the user from thinking of new constraints of their queries;
we propose a new way based on the users’ nature: i.e. prefer to customsize the
query patterns to make new queries. We trace the context of the user’s query
process and recommend the user the appropriate query patterns matching up
his/her query context.

These approaches resulted in our query system the Virtual Query System
(VQS) for the SemanticLIFE framework with a query language called the Virtual
Query Language for the VQS; and with a new way of query formulation entitled
pattern- and context-based querying process. The details of our approaches and
related research issues are discussed in the next chapters in this thesis.

1.5 Thesis Outline

The thesis structure is organized as follows:

Part I. Fundamentals and Motivation

In this part, we give a brief overview of the Semantic Web, the background
concepts and other related work, current ontology-based systems. This part
includes the following chapters:

Chapter 1 gives a general overview of the topic and related issues that covers the
dissertation. It also give an introduction to the approach of our research.

Chapter 2 describes the concepts and motivation of the Semantic Web. This
chapter highlights technologies that are useful for research of ontology-based
querying.

Chapter 3 introduces the SemanticLIFE Personal Digital Memory project with
the motivation and its general infrastructure; with our approach which is
the base for developing a query system with new innovative features in
simplifying the complex query formulations.

Chapter 4 presents a state-of-the-art of the current ontology-based query sys-
tems similar to our approach. This survey is based on an deep investigation
of techniques and research directions of current approaches.

1 Introduction 8

Part II. Virtual Query System

Chapter 5 describes a design overview of our Virtual Query System (VQS) with
the innovative features such as context ontology, i.e. query and context-
and query pattern-based querying.

Chapter 6 introduces a query language for the VQS in the attempt to support
users in generating easy queries. The language is called Virtual Query
Language.

Chapter 7 gives an introduction of an innovative approach in query formulation:
the context-based querying process and several related techniques from our
approach such as query templates (so-called named queries or query pat-
terns), query map and user query context are described.

Chapter 8 After establishing the theoretical foundation, this chapter deals with
the implementation and evaluation of the VQS and related issues. We
first describe the realization of the platform independent and scalable
SemanticLIFE infrastructure along with facilities, before we introduce the
design and implementation of the VQS query processing architecture. In
addition, Chapter 8 also demonstrates the practical benefits of the VQS by
outlining three application scenarios.

Part III. Conclusion and Outlook

Chapter 9 presents a conclusion about what we have achieved, i.e. the
SemanticLIFE framework and the VQS approach. Future work is sketched
for further steps ahead.

2 Semantic Web Fundamentals

2.1 The Semantic Web

The dream of a more powerful web has brought the idea of attaching semantic to
web pages in some way. The Semantic Web idea was then introduced and pop-
ularized by Tim Berners-Lee, Ora Lassila and Jim Hendler in their article “The
Semantic Web” [BLHL01] in 2001. The term Semantics Web itself was actually
already mentioned a few years before Tim Berners-Lee did, but active responses
and efforts by many researches boomed only after the publication of [BLHL01].
It is stated in the article that:

“The Semantic Web is an extension of the current web in which infor-
mation is given well-defined meaning, better enabling computers and
people to work in cooperation.”

The word semantic implies meaning or as defined in WordNet, “relating to the
study of meaning and changes of meaning”. The term semantic in the Semantic
Web shows that not only people but also computers can discover the meaning of
data on the Web. Nevertheless, most tasks are done by people such as inferring
most meaning on the Web, reading web pages and the labels of hyperlinks, and
writing specialized software to work with the data. The phrase Semantic Web
is the vision in which all computers and people can access data throughout the
World Wide Web to achieve useful goals for users.

Software is already used to satisfy user requirements on the Web; however
the difference relies on the “use” word. We, not computers, directly do tasks
such as surfing the Web, do business on websites, read the labels on hyperlinks,
and select links. Hence, it would be quicker and more convenient if a process
proceeded by itself could be launched. This is also the main objective of the
Semantic Web – to turn such capabilities into wider use.

2 Semantic Web Fundamentals 10

2.2 The Goals of the Semantic Web

The Semantic Web and Semantic Web technologies provide us a promising way
to managing information and processes. The fundamental principle of which is
the creation and use of semantic metadata.

For information, metadata can exist at two levels. Firstly, they may describe
a document, e.g. a web page; or part of a document, e.g. a paragraph. On
the other hand, they may describe entities within the document. In any case,
metadata is a semantic nature, i.e. it tells us about the content of a document (e.g.
its subject matter, or relationship to other documents) or about an entity within
the document. In contrary, the metadata on today’s Web, encoded in HTML,
purely describes the format in which the information should be presented: using
HTML, we can specify that a given string should be displayed in bold or red font
but we cannot specify that the string denotes a specific meaning.

After analyzing of disadvantages of today’s Web and contrary advantages of
semantic metadata, [DSe06] goes to a conclusion that using semantics we can
improve the way information is presented. At its simplest, instead of a search
providing a linear list of results, the results can be aggregated by meaning. For
example, a search for ‘Eclipse’ can provide documents clustered according to
whether they are about a software development platform, a universal event, or
different subjects all together. However, we can go further than this by using se-
mantics to merge information from all relevant documents, removing redundancy,
and summarizing where appropriate. Relationships between key entities in the
documents can be represented. Supporting all this is the ability to reason, that
is to draw inferences from the existing knowledge to create new knowledge.

The use of semantic metadata is also crucial for integrating information
from heterogeneous sources, whether within one organization or across organi-
zations [DSe06]. Typically, different schemas are used to describe and classify
information, and different terminologies can be used within the information. By
creating mappings between the different schemas, it is possible to create a unified
view and to achieve interoperability between the processes using the informa-
tion.

2.3 Describing Data with RDF

2.3.1 RDF

The Resource Description Framework (RDF) is an extremely flexible technology,
capable of addressing a wide variety of problems. RDF has different aspects of

2 Semantic Web Fundamentals 11

specification with our own interpretations of what it is and what it is good for.
In the role of describing data and metadata, RDF (and other potential languages
for the role) includes the following capabilities:

• Able to describe most kinds of data that will be available

• Able to describe the structural design of data sets

• Able to describe relationships between bits of data

Toward these ends, RDF uses a simple data model. Basically, there are
entities called resources, and there are statements that can be made about those
resources. A single statement links two resources. These statements are like
simple sentences that have a subject-verb-object structure, such as “Tien
lives in Vienna”. ‘Tien’ is the subject, ‘lives in’ is the verb, and ‘Vienna’

is the object. In short, it represents a data model. Naturally, complications
arise as the model is adapted to practical applications, but fundamentally RDF
is about simple statements that describe information about specific subjects.

2.3.2 Terminology

In RDF, a statement is represented by a triple: the subject of a statement is in
fact called the subject, the equivalent of a verb is called the predicate, and the
remaining part is called the object. Other terms are also in common use: property
instead of predicate, and value instead of object (because many RDF statements
assign property values to their subjects).

Figure 2.1: An RDF triple example

Figure 2.1 depicts the structure of an RDF triple. The value of a property
can be a simple value, like an ordinary number or a string of characters such as
"Hanh H. Hoang" in the diagram. Such values are called literals. The value of
a property can be either a literal or another resource, as appropriate. RDF has
a way of indicating whether a literal value has a data type, meaning that it is
intended to be, for example, an integer or a chunk of XML. A literal cannot be
the subject of a statement.

2 Semantic Web Fundamentals 12

A collection of RDF data has no standard name. It is sometimes called an
RDF store, an RDF data set, a knowledge base, or even a database.

2.3.3 Identifying Resources

To be widely usable over the Web, RDF needs to be able to identify the entities
it describes in a standard, widely used manner so that a host of systems on the
Web can also refer to them. Older systems, such as conventional databases, have
no standard way to identify their (equivalent of) subjects across systems and
networks.

To identify resources—that is, what RDF makes statements about—RDF
uses URI (Uniform Resource Identifier) references. A URI can be used to identify
a concept, a tangible thing that cannot be downloaded, or a chunk of data that can
be retrieved over a network. A URI reference is a URI plus optional characters,
such as the so-called fragment identifier (the part that follows the # sign after a
URI, if any). RDF has rules about how to construct related URIs so that they
can be used conveniently when RDF data is exchanged.

2.4 Ontologies

2.4.1 Ontologies

The core of all Semantic Web applications is the use of ontologies. There are
several definitions of an ontology, however the following definition is commonly
agreed by the community: ‘An ontology is an explicit and formal specification of
a conceptualization of a domain of interest’ [Gru93]. This definition stresses two
key points: that the conceptualization is formal and hence permits reasoning by
computer; and that a practical ontology is designed for some particular domain
of interest.

In general, an ontology formally describes a domain of interest; and typically,
an ontology consists of a finite list of terms and the relationships between these
terms [Pas05]. The terms denote important concepts (classes of objects) of the
domain.

For example, staff members, students, courses, lecture theaters, and disci-
plines are some important concepts in a university context. The relationships
typically include hierarchies of classes. A hierarchy specifies a class C to be a

2 Semantic Web Fundamentals 13

subclass of another class C ′ if every object in C is also included in C ′. For exam-
ple, all faculty are staff members. Figure 2.2 shows a hierarchy for the university
domain [Pas05].

Figure 2.2: An Example of a University Hierarchy

In addition, according to [Pas05], apart from subclass relationships, ontologies
may include information:

• properties (e.g. X teaches Y)

• value restrictions (e.g. only faculty members can teach courses)

• disjointness statements (e.g. faculty and general staff are disjoint)

• specification of logical relationships between objects (e.g. every department
must include at least ten faculty members)

In short, an ontology consists of concepts (also knowns as classes), relations
(properties), instances and axioms. Hence a more concise definition of an ontology
is as a 4-tuple 〈C, R, I, A〉, where C is a set of concepts, R a set of relations, I a
set of instances and A a set of axioms [SS04].

2.4.2 Ontology Languages

Many efforts in over the world (almost in Europe and the U.S.A.) on defining
ontology languages, e.g. RDF/RDFS and DAML+OIL, has now converged under
the W3C, to introduce a Web Ontology Language, OWL1 [DSe06].

OWL is built on the Resource Description Framework (RDF) which is essen-
tially a data modeling language, also defined by the W3C. The OWL language

1 Web Ontology Language, http://www.w3.org/2004/OWL/

2 Semantic Web Fundamentals 14

provides mechanisms for creating all the components of an ontology: concepts,
instances, properties (or relations) and axioms. Two sorts of properties can be
defined: object properties and datatype properties. Object properties relate in-
stances to instances. Datatype properties relate instances to datatype values, for
example text strings or numbers. Concepts can have super and subconcepts, thus
providing a mechanism for subsumption reasoning and inheritance of properties.
Finally, axioms are used to provide information about classes and properties, for
example to specify the equivalence of two classes or the range of a property.

Indeed, OWL has three types: OWL Lite, OWL DL (Description Logic) and
OWL Full. OWL Lite provides a limited feature set, though decent for many
applications. OWL DL, a superset of OWL Lite, is based on a form of first order
logic known as Description Logic. OWL Full, a superset of OWL DL, removes
some restrictions from OWL DL but at the price of introducing problems of
computational tractability. Practically, OWL Lite is very good enough for many
tasks.

2.5 Summary

To conclude this chapter, we borrow words from [Pas05] to summarize the promis-
ing features of the Semantic Web technology and the views derived from.

“The Semantic Web is not an integrated technology. It is a concept of how
computers, people, and the Web can work together more effectively than is pos-
sible now. Because it is visionary, it has no one definition. In fact, we saw a
staggering array of notions such as the machine-readable-data view, the intelli-
gent agents view, and many more in” [Pas05]. Basically, all the views assume
that computers will be able to process data that today is mainly accessible to
people and use this data to perform tasks that help people.

3 SemanticLIFE: The Personal
Digital Memory Project

3.1 Motivation

“A memex is a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may
be consulted with exceeding speed and flexibility. It is an enlarged
intimate supplement to his memory” - Vanevar Bush in [Bus45]

The ‘SemanticLIFE’ project, which is introduced in this chapter, is an attempt
to come a step closer to Vanevar Bush’s vision of the Memex from the year 1945.
Recently we can observe a mushrooming of new projects aiming at some of the
goals of Bush’s innovative ideas. This is mainly caused by the racy technologi-
cal development which opens new large realization potentials. An indicator for
the narrowing of the discrepancy between the visions of Bush’s memex versus its
realization is the announcement of ‘Memories for Life’1 – Managing information
over a human lifetime as one of the seven Grand Challenges for Computing Re-
search by the UK Computing Research Committee [FR03]. The announcement
of the First ACM Workshop on Continuous Archival and Retrieval of Personal
Experiences in October 2004 is another indicator for the maturity of our present
time to implement such systems.

Another significant development which narrows the gap toward the realization
of Memex-like systems is the advent of the Semantic Web initiatives. As proposed
by Tim Berners-Lee [BLHL01] the realization of Semantic Web would narrow this
gap by the use of domain specific ontologies and their reuse.

The goal of our project is to build a Personal Information Management (PIM)
system over a Human Lifetime using ontologies for the representation of seman-
tics, let say the Personal Digital Memory. Basic ontological infrastructure re-

1 http://www.memoriesforlife.org/

3 SemanticLIFE: The Personal Digital Memory Project 16

quired for applications development on top of the current generation of the Web
are very well described in [FHLW03]. The ‘SemanticLIFE’ project aims at real-
izing a digital personal diary that records everything a person wants to be kept.
This notion defines also the boundaries of our project - we do not deal with mem-
ory issues of the unconscious or procedural memories (e.g. how to open a bottle).
We are aiming at a tool which supports the long term memory by associating
metadata with content and ontologies. The possibility of adding annotations to
all stored objects should enrich the potential use of such a ‘diary’. The project as
a whole covers aspects of Human Computer Interfaces, Databases, Data Mining,
Information Retrieval, Security, Device Engineering, etc.

The idea of Bush’s article became very popular and, nowadays, that challeng-
ing idea becomes feasible because many systems are geared toward its realization.
There have been many applications in the same track such as MyLifeBits from
Microsoft, Haystack from Massachusetts Institute of Technology (MIT), e-Person
from HP Labs Semantic Web Research, LifeStream of Yale University. Among
them, Haystack and MyLifeBits are still being developed until now and some
results have been archived. Details of these work will be presented in the related
work section.

3.2 Related Work

In the area of digital memories research, a lot of work has already been carried
out in some major projects. In this section we highlight some of their significant
features.

MyLifeBits (Microsoft Research)

MyLifeBits2 is a system closer to the real idea of Memex [GBL+02b, GBL03b].
The system provides features for managing information coming from almost most
common data source of current modern life. It claims that currently it can hold
information of 25 item types including: web browsing, chat session, contacts,
documents, email, events, photos, music, and video [GLB06].

MyLifeBits is a system for storing all of one’s lifetime data on a PC. The
guiding principles are: (a) collections and search must replace hierarchy for orga-
nization, (b) multiple visualizations, (c) easy annotations (d) the authoring tool
should support reuse of external references [GBL+02a]. As an experiment, G.
Bell has captured all his articles, books, cards, etc, and stored them digitally.
He is now paperless, and is beginning to capture phone calls, instant message

2 MyLifeBits, http://research.microsoft.com/barc/mediapresence/MyLifeBits.aspx

3 SemanticLIFE: The Personal Digital Memory Project 17

(IM) logs, television, and radio [GBL03a]. They have successfully incorporated
multiple annotation types, and creation of stories which are helpful for the short
term memory.

They are still trying to explore features such as versioning, document simi-
larity ranking and faceted classification. Until now, they were more concerned
with functionality, but now the future work is related with user interface (UI),
advanced visualization techniques, data mining for search, new capture mode and
devices, shared usage, security, privacy and social issues.

Haystack (MIT)

Haystack3 was developed with the aims to make users easy in organizing various
information sources and make relationships of information easily and in the way
that make the most sense to them. It provides easier management of email, sched-
ule (calendar), contact person, photo, browsing and relationship exploration.

Haystack uses ontologies for information management [HKQ02]. Its ultimate
goal is to provide high-quality retrieval. Primarily it is designed as a single
machine single user tool so as to give a psychological illusion of privacy and
security. The guiding design principles are: (a) generic handling of all types of
information, (b) flexibility to define additional information types by the user,
(c) ability to define the interaction objects and associated operations directly by
the user and (d) ability to delegate certain information processing tasks to the
agents.

Haystack has a typical three tier architecture [AKS99], i.e., a database layer,
service layer and client layer. It also provides some implementation at the Trust
layer of Semantic Web by using reification mechanism for RDF storage, and
identifier strings as digital signatures during storage of RDF statements. The
future developments include ontology conversion, enhanced query mechanisms
using machine learning tools to improve retrieval, provide better interface for
hybrid search, recommender system based upon user’s interests.

e-Person (HP)

Developed by HP, an ePerson is a personal representative on the net that is
trusted by a user to store personal information, and make it available under ap-
propriate controls for shared working environments. HP’s approach is focused
on three principals, i.e., social filtering of information by the users themselves,

3 Haystack, http://haystack.lcs.mit.edu/

3 SemanticLIFE: The Personal Digital Memory Project 18

structured knowledge in terms of ontologies mutually agreed upon by the commu-
nities, and person-centric instead of being corporate-centric in terms of ownership,
vocabularies and scaling [BCDD02].

The ePerson infrastructure is designed as a series of layers, i.e. transport
layer (TCP/UDP and Jabber transports), knowledge-base access layer (remote
access to RDF stores and services), Structure layer (modeling of RDF vocabular-
ies using DAML), Knowledge sources layer (provides specific knowledge services
such as classification servers, importing profiles from the history server and a dis-
covery server), and Applications layer (reusable UI components, viewing tools for
knowledge based access during development and the SnippetManager application
itself).

Lifestreams (Yale University)

Lifestreams [FG96], is an academic project at Yale University. It is a personal
store that uses a simple organizational metaphor, a time-ordered stream of docu-
ments combined with several powerful operators that replaces many conventional
computer constructs (such as named files, directories, and explicit storage). Their
work on the client side includes an X-Window client, command line interface and
a PDA client.

The motivating ideas were, (a) storage should be transparent, (b) directories
are inadequate as an organizing device, (c) archiving should be automatic, (d) the
system should provide sophisticated logic for summarizing or compressing a large
group of related documents on one screen, (e) reminding should be made more
convenient, and (f) personal data should be accessible anywhere and compatibility
should be automatic.

3.3 ‘SemanticLIFE’

Living systems have different characteristics like self-regulation of processes, re-
production and growth [Nic96]. Nevertheless, the relevant characteristics could
be envisioned in a semantic way in personal knowledge management. Ontologies
of personal life items grow and reproduce new ones with processes and services.
These ontologies include information about our life objects such as documents,
persons, places, organizations, events and tasks.

In the physical world, entities are usually interconnected, either by physical
or by semantic means; in the latter case, the semantic meaning is added by
human interaction (in an abstract sense) with the physical world. Life items in
the system proposed in this thesis can be understood as information entities (in

3 SemanticLIFE: The Personal Digital Memory Project 19

some cases they are representations of such physical entities) stored according
to ontologies in a semantic database, which are connected to other information
entities according to their semantic meaning. Also ontologies ‘live’ in a way, as
they develop and modify permanently during the system- and user- lifetime.

Current (Web-) technologies are highly efficient in processing data for human
reception; that is, the transformation from data to information, the ‘generation
of meaning’ is up to the human. A great deal of effort has already been made,
and work is still going on to represent semantics explicitly on the Web. This
is required to give computer systems the capability to enhance preprocessing of
huge amounts of data for the user. It becomes more important as the ‘aware-
ness radius’ of the contemporary knowledge worker and consumer is continuously
increasing. This results from the observation, that users do not limit their in-
formation search to specific data repositories, like searching for an address or an
event in a calendar any longer. The availability of databases under common or
similar interfaces (like web-pages) creates the demand to express more complex
queries demanding information aggregated from many different systems using
different semantic concepts.

The proposed PIM Systems can significantly contribute in overcoming the
common inherent human problems such as limited short term memory, memory
loss, forgetfulness, high complexity of data etc. Therefore, it is useful for the
system to be able to define and capture the user’s life-related events and takes
or triggers appropriate action(s) for it. This process involves the following sub-
processes:

1. Capture events and associated information

2. Process action associated with events (e.g., in the sense of an active
database system)

3. Extract Metadata from the event, or allow the user to enrich the data
manually with semantic meaning

4. Store the data including semantic context as ontology in an efficient manner

5. Allow the user to query the data or support the user directly or via associ-
ated applications and tools with context-sensitive information or action

The typical usage of such system can be illustrated with following example:
Consider scientists, who work in a specific domain. They might be interested
to get into contact with other researchers in the scientific community that (1)
share the same interests or have similar problems (2) are publishing in similar
conferences and (3) were recently active in the specific field of research (4) and
speak a common language. The result of such a query could be the web pages
and email addresses of the researchers coming into question.

3 SemanticLIFE: The Personal Digital Memory Project 20

It is clear that such problems can only be solved by querying a multitude
of information resources like web pages, conference journals, scientific databases,
email repositories, newsgroups and the like. Moreover, the system needs to ‘un-
derstand’ that entities differently labeled are identical in a semantic sense and
also need to be able to ‘understand’ and solve specific issues like the fact, that
some results are only valid in a specific interval of time or in a specific language
and so on.

Additionally as described in [DHNS03], the system must be able to adjust
to new user features derived from user interactions with the system or from the
information being fed. Thus each user may have individual views and navigational
possibilities for working with the system. From the technology perspective, new
technologies emerge and older ones fade out. If a system has a too tight coupling
with some technology, it may become obsolete with the change in technology. A
layered approach that provides some extent of separation from the technology is
more suitable, making the overall structure still working if there is a change in
the technology or even in case of replacement by the newer ones.

3.4 System Architecture

3.4.1 Design Principles

The SemanticLIFE framework is developed on a highly modular architecture to
store, manage and retrieve the lifetime’s information entities of individuals. It
enables the acquisition and storage of data while giving annotations to email
messages, browsed web pages, phone calls, images, contacts, life events and other
resources. It also provides intuitive and effective search mechanism based upon
the stored semantics, and the semantically enriched user interfaces according to
the user’s needs. The ultimate goal of the project is to build a PIM system over a
Human Lifetime using ontologies as a basis for the representation of its content.

The whole SemanticLIFE system has been designed as a set of interactive
plug-ins that fit into the main application and this guarantees flexibility and ex-
tensibility of SemanticLIFE platform. Communication within the system is based
on a service-oriented design with the advantage of its loosely coupled character-
istics. As depicted in Figure 3.1, there is a bundle of components that form the
complete SemanticLIFE framework such as the Data Feed Plugin using Google
Desktop4 as input line to gather the personal data, the VQS Plugin is the query
system of the system, and the Pipeline Plugin to compose the collective service
calls.

4 Google Desktop, http://desktop.google.com/.

3 SemanticLIFE: The Personal Digital Memory Project 21

Figure 3.1: The Architecture of the SemanticLIFE Framework

3.4.2 Internal Communication

Due to the SOA-based and loosely coupling design, components of the Semanti-
cLIFE system are plugins offering the services in form of the service extensions
of the main and commonly service namely Service Bus. Service Bus performs
service calls from and to plugins using the registered service extensions on it.

To compose complex solutions and scenarios from atomic services which are
offered by SemanticLIFE plug-ins, the Service Oriented Pipeline Architecture
(SOPA)5 has been introduced. SOPA provides a paradigm to describe the system-
wide service compositions and also external web services as pipelines. SOPA
provides some mechanisms for orchestration of services and transformation of
results.

3.4.3 Data Acquisition

Currently web-applications and frameworks are not designed to deal with se-
mantic issues as described in the previous section, as mainly human users are
analyzing and interpreting the data themselves. However, this makes the process
of solving more complex problems which requires aggregated information from
various sources time consuming, inconsistent, unreliable and hence inconvenient.
So the need for a well-defined interface to data repositories on the web as well as
personal data stores is undeniable [GC03].

5 JAX Innovation Award 2006 Proposal, http://www.jax-award.com/.

3 SemanticLIFE: The Personal Digital Memory Project 22

Therefore, all information entities associated with one’s lifespan must be
stored in an ontological way according to some already established metadata
frameworks such as RDF and Topic Maps, to facilitate the semantic queries, life
trails and processing of life events. Information items can be of various kinds
such as documents, emails, images, audio or video streams.

Hence the first step in creating a ‘SemanticLIFE’ repository is to implement a
powerful data acquisition module. Basically three different types of data sources
are distinguished:

• Data acquired automatically and stored in a semantic data store

• Data acquired or enriched manually by the user

• External data sources that are invoked when needed, and are not imported
into the semantic data store

The third type is, in the strict sense, not a data acquisition step. But it is
important to understand, that there are data repositories that are not reason-
able to import into the system, e.g., typically because they are external, fast
changing, contain huge amounts of data and are highly structured by definition.
Examples could be literature databases, enterprise information systems, company
databases, web-search engines and so on. These external sources are invoked on
demand (query) and a fitting ontological representation is generated by a plug-in
defined in the system (see Figure 3.1).

Data with user annotation is fed into the system using a number of ded-
icated plug-ins from variety of data sources such as Google Desktop captured
data, communication logs, and other application’s metadata. The data objects
are transferred to the analysis plug-in via the message handler. The analysis
plug-in contains a number of specific plug-ins which provide the semantic mark-
up by applying a bunch of feature extraction methods and indexing techniques
in a cascaded manner. The semi-structured and semantically enriched infor-
mation objects are then ontologically stored via the repository plug-in. In the
SemanticLIFE system, data sources are stored in forms of RDF triples with their
ontologies and metadata. This repository is called a metastore.

3.4.4 Analysis Module

In order to efficiently extract the meta-information, the incoming messages are
sent to the analysis interface in the first step. This is basically a plug-in mech-
anism that allows adding various analysis modules to pre-process messages of
certain types. In these analysis steps meta-data is generated and added to the
message. Depending on the message type, more than one analysis module might
be invoked in processing a particular message. But it is important to understand

3 SemanticLIFE: The Personal Digital Memory Project 23

at that point, that no data is removed during these analysis steps. This is desired
to guarantee that no original data is lost or modified, and the history of changes
is preserved! Moreover it allows re-processing data already in the semantic store
in the case, that more powerful analysis modules are available in the future.

As mentioned above, incoming messages may contain the information items,
placed in a nested manner. Additionally, an information item can have some
other information items attached with it, like an email with attachments. Also,
an information item can have other information items embedded within, like
images, audio or video clips within an HTML or PDF file. Consequently, all
the information items have to be analyzed in a nested way for the extraction of
meta-information available in their respective headers.

Of course, currently automatic information extraction is limited to messages
or data sources that provide certain machine-readable structures. For example,
it is still extremely difficult to extract structured information (description) about
the content of a picture or a movie. Making manual annotations to information
items being fed into the system will ultimately improve its quality. This should act
as a complement to content analysis and automatic metadata extraction described
earlier.

After all analysis steps are finished and the generated metadata is added to
the message subsequently, this message is sent back to the message queue, which
forwards it to the storage module.

3.4.5 Storage and Indexing Module

The Storage is responsible for extracting the XML-based metadata information
from the message and writes it into the semantic data repository. Upon reception
of a message from the Event Handler, the following steps are performed:

• Parsing of the message and extraction of metadata.

• Invoke the appropriate plug-in for writing to specific ontology framework,
via Connector Interface.

• Updating indexes.

A basic consideration regarding the storage is, that the size of storage media
is continuously increasing, which makes it possible to keep all data that were
entered into the system. This is a very basic feature of the system, as it allows
keeping a personal history from the data as well as from the semantic viewpoint.

Besides annotating entities with metadata, building connections with related
entities is a crucial feature of the storage module. Such relationships can be built
automatically or with human intervention leading to the concept of weak and

3 SemanticLIFE: The Personal Digital Memory Project 24

strong links respectively. The weak link creation could be carried out periodically
or based upon some related events. For example, email objects can be related
based on the senders, the receivers or automatically by the subjects. But also
relations based on some criteria given by the user are needed. Later, the user
can retrieve information along with other related information. Then it would be
possible to retrieve a trail of documents, messages and pictures [GBL+02b].

The connections stored in the system should also have the ability of refreshing
or updating itself in an automatic or semi-automatic manner. The updates occur
as a result of changes in instance values, class hierarchy such as relations of classes
and subclasses, kinds of properties in ontology and rules in the knowledge base.

3.4.6 Search and Query Functionality

Structured database systems like relational or object oriented database systems
usually provide query mechanisms that allow powerful queries on highly struc-
tured data. As mentioned above, it is difficult to define highly structured queries
(e.g., in a language like SQL) when a multitude of information systems are ad-
dressed or the information is only semi-structured. Hence the system must be
capable to work with ‘weaker’ search terminology that has to be transformed into
more specific queries by the system.

As the data is already stored semantically enriched (or the metadata is added
‘on the fly’ invoking external data sources respectively), it is possible to provide
more powerful ‘imprecise searches’, that go far beyond ‘simple’ full-text indices
and return information to the user in more meaningful, rich and intuitive ways.
But the term ‘imprecise’ has two meanings: firstly, the generated queries are
about undefined targets. Secondly, the target of the query is specified but there is
ambiguity in the query. Therefore, the system has to solve these problems during
query generation, by exploring the systems database and ontology repository and
generate queries for a specific technology.

Finally these specific queries could be ontological query languages like
SPARQL, RQL or RDQL for RDF. For nested and distributed sub-queries, many
joins and complex subqueries would require ordering, re-ordering by the Query
Optimization module, so that an optimal query execution plan is generated. Also,
suitable search algorithms for non-ontological searches are to be used. Later, the
generated queries could also be stored for possible reuse for system optimiza-
tion.

The next step is query post processing: The received query output needs
analysis and ranking to derive more precise results matched to user’s requests and
preferences. Analysis and ranking would rely on specific calculations in terms
of semantic distances and reasoning steps to give more concrete and accurate

3 SemanticLIFE: The Personal Digital Memory Project 25

results. To perform these tasks, the system has to refer to the set of rules and
user preferences. For this purpose data from internal or external data sources
are also taken into account. As the system keeps the complete history of entered
data post processing needs to filter data according to the desired time-span for
the problem domain.

After analysis and ranking of the query results, the system would aggregate
the results before sending the result back. The processed query results can be
presented to the user through presentation application that prepares the search
result, e.g. for rendering in a web-browser. The query user interface needs to
be designed in a way that the user is able to write and refine the queries in an
iterative manner, which is on the back-end supported by the query engine of the
server.

3.4.7 Extensibility and Persistence of Information and
Semantics

The core of the system is based on its analysis and metadata extraction capabili-
ties. New data sources emerge by the time and need to be treated by the system.
It becomes a time consuming task to add support for newer data sources if the
system has tight coupling with its components. A light weight asynchronous
messaging based solution is required where new modules could be just plugged
into the system without any change in the existing code.

Furthermore, openness is an extremely important issue considering systems
that are designed for a lifetime acquisition of information and metadata [McB02].
Hence the ‘SemanticLIFE’ project is developed as an open source application,
which uses various open source frameworks. Moreover for each module it is
evaluated if open standards exist for the representation of data, semantics and
data exchange.

3.4.8 Client Interaction

The messaging interface provides a standardized communication mechanism for
various types of clients as described above. In the current prototypical imple-
mentations, the system is oriented on individual users. However, it is clear, that
future (server) versions need to be implemented as multiuser systems.

This is an encouraging task, but the arising problems are mainly ‘typical’
problems of multiuser server systems. As the focus of our system is treatment of
semantically enriched information, only a brief discussion of these issues is given
here.

3 SemanticLIFE: The Personal Digital Memory Project 26

First of all user management and authentication requirements need to be
implemented into the server system. As a consequence each message has to keep
the information of the user (who performs a query for example). All sensitive
processing units (mainly the storage and search module) then have to filter the
messages or query results according to the user rights and roles defined for the
user. This will be most probably an ontology by itself and will be stored in the
server.

This user module might additionally maintain profiles of various types, such
as users, devices, applications, tasks and interaction objects. This will help in
presenting the results to the user in a way which is more personalized, accessible
and fits the input/output capabilities of the device being used (thin, fat clients,
etc.).

3.5 Summary

As SemanticLIFE is an evolving research project, we are not aiming at finaliz-
ing a commercial product. In the contrary, SemanticLIFE will be continuously
improved in an evolutionary manner.

As many standards and tools are still under heavy development, our approach
was and is to develop multiple prototypes with a similar functionality using dif-
ferent technologies. In this ‘evolutionary’ approach the best strategy will succeed
and implemented into the “final” system.

As soon as technology and standard decisions converge, different team mem-
bers will focus on specific parts of the system including multi-user and security
issues, user interface design (particularly concerning queries and ontology edit-
ing) and developing testing schemes to explore the limits of the server approach,
particularly concerning the amount of data, query performance and size of the
ontology.

4 Ontology-based Query Systems:
The State of The Art

4.1 Introduction

This chapter is aiming at presenting a survey of main approaches in current
ontology-based search/query systems and researches. This survey based on an in-
vestigation of approximately 40 important publications on ontology-based search/-
query systems. Furthermore, the approaches are analyzed in this chapter are very
recently high-profiled. Nevertheless, in this chapter, we are not covering the topic
of semantic ‘search engines’ but we focus on ‘query systems’ or ‘query modules’
in current systems or frameworks which are based on ontology and the Semantic
Web technology.

From the data gathered from this survey, relevant research directions in
ontology-based querying were identified based on similarities of research goals.
Besides research directions, we also analyze the literature for the common
methodology and gives a short discussion about mentioned issues.

4.2 Classification Criteria

The main issues of our investigation presented in the next sections are described
according to the following well-considered criteria:

Search strategies with support of ontology. Here, we are going to analyze
three basic approaches of ontology-based search/query systems in gener-
ating queries: the traditional keyword search with augmenting of ontology,
multi-facet (view-based) search, and native ontology-based search/query.

4 Ontology-based Query Systems: The State of The Art 28

Query Formulation. We survey the approaches dealing with the query formu-
lation problem, including the issues of proposing a new query language,
complex constraint queries, problem solving, and query user interface as
well.

Query refinement. With this criterion, we analyze how ontology-based query
systems deal with the problems of ambiguity solving, ranking, and inference
during the query refinement process. We also distinguish approaches in the
current query refinement techniques.

User’s interaction. The user’s interaction criterion is discussed along two as-
pects: query user interface in query formulation, and user’s interaction
during query refinement and answering processes.

Roles of ontologies in the approaches. Roles of ontologies are investigated on
the aspects of reasoning/inference, query refinement, result ranking, query
user interface are analyzed in details.

The term “search” and “query” are interpreted similarly in this thesis somehow.
However, they are not totally identical in some other contexts. In the scope of
this thesis “search” is used for a general purpose, and “query” is used for the
query process of a system.

4.3 Search Strategies with Ontology Support

4.3.1 Ontology-Enhanced Keyword Search

In the early research of the semantic-enabled search, efforts deal with enhancing
traditional keyword search with semantic techniques. In this approach, ontolog-
ical techniques are used in several ways to enhance keyword search and increase
precision.

Firstly, there are many query expansion applied in keyword search use the
thesaurus ontology navigation in query expansion such as [MTT98], [MM00],
[BRA05], and [WR05]. Particularly, using WordNet ontology1 which defines sets
of synonym and metonym is the common method in these systems. These systems
function following the same basic line: first, the keywords are located in the on-
tology, then other concepts are located through graph traversal, after which terms
related to those concepts are used to either expand or constrain the search. For
example, in [MTT98] and [MM00] query terms are expanded to their synonyms
and metonyms by boolean operators.

1 Wordnet 2.0, http://wordnet.princeton.edu/

4 Ontology-based Query Systems: The State of The Art 29

An algorithm is presented in [RSA04] for finding relevant information to a
query via text search. Firstly, the text search technique is used into a document
collection. Secondly, a process of RDF graph traversal is started from the an-
notations of those documents to find related concepts such as the document’s
author and the project the document belongs to. The RDF traversal is used to
identify the interested, similar and linked concepts.

Meanwhile, the main goal of the OntoDoc [CMN04] system is to allow users to
query their own personal digital libraries in an ontology-based fashion. OntoDoc
uses a reference ontology to represent a conceptual model of the digital library
domain, distinguishing between text, image and graph regions of a document.
OntoDoc offers the user two options to query his/her digital library: 1) free
text searching using WordNet as the same as above approaches; or 2) through
composition of semantic expressions by browsing ontology.

A simpler usage of enhancing keyword search results is undertaken in the
TAP’s interface [GMM03]. Here, a traditional keyword search targeted at a
document database is enhanced by matching the keywords against concepts in
an RDF repository. The the found documents are then returned along with
matched concepts. In the case that several concepts match the keyword, the user
can select the appropriate concept to constrain the search. Here, the idea is not to
expand search terms, but to clarify the documents if appropriate to concepts.

Another search system in the same line is the CIRI search system [AJS+04].
The search is carried out through an ontology browser to select concepts for con-
straining the search. The actual search is performed through keywords associated
to selected concepts. In CIRI, the user selects concepts directly from the ontology
visualization instead of mapping the keywords into the underlying ontology to
constrain the search.

4.3.2 Ontology-based Multi-facet Search

There is a powerful search paradigm which is a combination of the multi-facet
search [MHS05] and ontology-based search [HSV03] called ontology-based multi-
facet search. This is a union of the IR community and the ontology technique.
This approach is reflected in search mechanisms of the Ontogator [HSV03], On-
toViews [MHSV04]-based portals and SWED portals [RSC04]. In a ontology-
based multi-facet search, the distinct views are created via ontology containing
the hierarchy and class relationships.

In Ontogator, a search component of OntoViews, the underlying domain on-
tologies are mapped into facets and facilitate a multi-facet search. After finding
information of interest by the multi-facet search, Ontogator uses the domain
ontology together with annotation data to recommend the user related results.

4 Ontology-based Query Systems: The State of The Art 30

These relevant results are not yet available in the multi-facet search phase, which
then can be delivered by the recommendation system of Ontogator by semantic
navigations.

In some versions of OntoViews [MHSV04], authors define a concept called
semantic auto-completion which uses the keyword search as an introduction to
the ontology navigation. The idea is that the main interface of the portal opens
with a keyword field. The keywords, however, are linked to ontological classes
in the different views instead of directly to information items [HSV03]. As the
result, semantic disambiguation can be made. Finally, the search performs as a
multi-facet search. Once the search has proceeded to the point where at least
a single interesting instance is found, additional information can be retrieved
via browsing. This process is similar to the browsing of Web pages though the
hyperlinks. However, here the items are resources and the links between them
are defined by their relations.

In short, the idea behind this approach is that the user can start generating
his/her queries from the views associated to the underline ontologies which is
most natural to the user.

4.3.3 Native Ontology-based Search

Parallel with the above approaches, there are the methods for writing down infor-
mation with its ontology. Here, some research efforts are based on the assumption
of concepts, instances and relationships, and deal with the task of efficiently find-
ing instances of the core semantic web data types.

With the help of ontology technique, OntoLoger [SGS03] builds a query mech-
anism by recording the user’s behaviors in an ontology and recall it. OntoLoger,
similarly to its general version- the Library Agent [Sto03b], is a query system
based on usage analysis in the ontology-based information portals. Its query
mechanism is based on usage-data in form of an ontology, so-called semantic log
file. The structure of the ontology reflects the users’ needs. By using this, On-
toLoger supports the user in fine-tuning of his initial query. Moreover, during
the refinement process, the system also uses this log ontology for ranking query
results and refinements according to the user’s needs.

A similar approach to [AJS+04] but with enhanced services (reasoning, cat-
alog, etc.) and more dimensions of data with respect to searching geographic
information, is taken in the GeoShare project [HSR+04]. GeoShare uses ontolo-
gies for describing vocabularies and catalogs as well as search mechanisms for
keywords to capture more meaning. During the search process, the user narrows
his/her search space’s size by selecting specific domain (thematic, spatial, or
temporal model); then he/she picks the appropriate concepts from these models

4 Ontology-based Query Systems: The State of The Art 31

and application ontologies, covering all available concepts, to define the concrete
query. After that, he/she can parameterize his query to concertize the retrieval
process. In the sequel, the system processes the query and transforms it into
the ontology language for the terminological part, where the system looks for
equivalent concepts and subconcepts. After processing the query, the system
composes a ranked list of relevant information providers based on the weightings
of a specific reasoning process.

Semantic web data consist of ontological and instance data. The actual data
the user is interested in are entities belonging to a class, but the domain knowl-
edge and relationships are described primarily as class relationships in the on-
tology, and this is exemplified in the SHOE search system [HH00]. In SHOE,
the user is firstly provided a visualization of the ontology, and he/she can choose
the class of instances he/she is looking for. The possible relationships or prop-
erties associated with the class are then searched, and the user constrains the
instances by applying keyword filters to the various instance properties.A simi-
lar approach is also applied in some versions of the SEAL portal [MSS+01] and
Ontobroker [DEFS98].

However, there are some differences between these systems in their usage on-
tologies. In SHOE, providers of information can introduce arbitrary extensions
to a given ontology. Furthermore, no central provider index is defined. In con-
trast, Ontobroker relies on the notion of an Ontogroup [DEFS98] and domain
specific ontology defining a group of web users that agree on an ontology for a
given subject. In addition, the Ontogroup is stored in a provider index.

Knowledge Sifter [KCD+04] is another approach using ontologies and is based
on agent technique. The agents of this system help users to perform the query
process. For example, the Ontology Agent provides a conceptual model for the
domain by an OWL schema specification. A Web Service Agent accepts a user
query which has been refined by consulting Ontology Agent and decomposed by
the Query Formulation Agent. The Integration Agent is responsible for com-
piling the sub-query results from various sources, ranking them according user
preferences, as supplied by Preferences Agent.

In a further effort of the above approaches, the authors of Haystack [HKQ02]
based their user interface paradigm almost completely on browsing from resource
to resource [QHK03]. This is affirmed by scientific results of a search behav-
ior research [TAAK04] that actually most human beings seek information via a
process they call “orienteering”, rather than carefully formulating a query that
precisely defines the a desired information target. Users often prefer to start from
a familiar location, or a vague search, and “home in” on the desired information
through a series of associative steps [KBH+05]. The browsing functionality can be
similarly found in the approach of OntoViews-based portals between individual
information items.

4 Ontology-based Query Systems: The State of The Art 32

4.4 Query Formulation

Formulating complex queries is the problem of finding a group of objects of certain
types which are connected by certain relationships. For instance, formulate the
query “Find all publications published in IEEE proceedings from 2000 to 2003
about ‘ontology-based ontology’, cited by recent publications in 2005”. Where
“publications”, “IEEE proceedings”, “2000, 2003, and “2005” are ontological
class restrictions on nodes and “published in”, “cited by”, and “time restriction”
are the required connecting arcs in the pattern.

In the Semantic Web context, these such patterns are easy to formalize and
to query. However, they remain uneasy for the users. Therefore, a number of
approaches of the research on formulating complex queries have been developed
on the user-oriented methods which are mainly GUI interfaces for creating such
query patterns as visually as possible.

In an effort of this line, [ACK04] presents GRQL, a graphical user interface
for building graph pattern queries that is based on ontology navigation. Firstly,
a class in the ontology is selected as a starting point and all properties of the
class are shown for expansion. Clicking on a property expands the graph pattern
which contains that property, and moves selection to the range class defined for
that property. An example by [ACK04], clicking the “creates property” in an
Artist class creates the pattern "Artist → creates → Artifact", and moves
the focus to the Artifact class, showing the properties for that class for further
path expansion. In addition to lengthening the path, other operations can be
performed on the query pattern.

Figure 4.1: A Phase of GRDL - ICS-Forth [ACK04]

The pattern can be bound to concern only some subclasses of a class, e.g.
by binding Artifact to “Painting or Sculptures” in the previous example to
"Artist → creates → Painting or Sculpture" [ACK04]. In a similar way,
property restriction definitions can be bound into subproperties. More complex
queries can be formulated by visiting a node created earlier and branching the ex-
pression there, creating patterns such as the one visually depicted in Figure 4.1.

Another graphical query generation interface, SEWASIE, is described
in [CMF+04]. Herewith, the user is given some pre-prepared domain-specific
patterns to choose from as a starting point. From this point, the user can extend

4 Ontology-based Query Systems: The State of The Art 33

and customize. The refinements to the query can either be additional prop-
erty constraints to the classes or a replacement of another compatible class in
the pattern such as a sub or superclass. This is performed through a clickable
graphic visualization of the ontology neighborhood of the currently selected class,
as shown in Figure 4.2.

Figure 4.2: SEWASIE - graphical query formulation

In a further effort of reducing the complexity of query formulation, the ap-
proach of GetData Query interface [GM03] used in “Semantic Search” [GMM03]
expresses the need of a much lighter weight interface for constructing complex
queries. The reason is that the current query languages for RDF, DAML, and
more generally for semi-structured data provide very expressive mechanisms that
are aimed at making it easy to express complex queries; however, the queries
require a lot of computational resources to process. The idea of GetData is to de-
sign a simple query interface which enables to network accessible data presented
as directed labeled graph. This approach should provide a system which is very
easy to build, support both type of users, data providers and data consumers. In
a similar way, the contribution of [GHP01] is a high profiled example.

The multi-facet search portals mentioned in previous section can also be re-
garded of as user interfaces for generating a very constrained subset of complex
graph patterns. In a simple case, the query is formulated as searching for an
information with particular properties. Nevertheless, in a wider sense the defini-
tions of how the objects are mapped to the views can be arbitrarily complex and
involved graph navigation.

4 Ontology-based Query Systems: The State of The Art 34

4.5 Query Refinement

Query refinement is an important part of a query process, particularly in the pro-
cess of resolving problems of disambiguation from users’ queries in the Semantic
Web applications. A bulk of approaches for this issue has been developed. The
varieties of these approaches are being to be discussed as follow; and we start
with current approaches.

4.5.1 Query Ambiguity Discovering

[CTC02] have shown that the precision of information query relies strongly on
the clarity of the query which a user posts to the system. When the query is
formulated in an ambiguous manner, one can expect that a high percentage of
irrelevant information can be retrieved, independently of the mechanism which
is used for querying. Therefore, [Sto03b] argues that the query disambiguation
should be the initial step in searching or querying for information in information
systems. In another word, the determination of an ambiguity in a query, as well
as the sources of such an ambiguity, is the prerequisite for the efficient information
searching.

Word sense disambiguation of the terms in the input query and words in the
documents have shown to be useful for improving both precision and recall of
an information retrieval (IR) system. In the approaches of [MTT98], [MM00]
and[BRA05], lexical relations from WordNet are used for query expansion, but
without treating the query ambiguity.

The Librarian Agent [Sto03b] examines the query ambiguity in two factors:
the structure of the query and the content of the knowledge repository. Regarding
ambiguities in the query structure, two issues are defined: structural ambiguity
in which the structure of a user’s query is analyzed regarding the underlying
ontology; and semantic ambiguity. Here the terms from a user’s query is ana-
lyzed regarding the relations existing in the underlying ontology. Another factor
of query ambiguity is the content of the knowledge repository. The ambiguity
of a query posted in a knowledge repository is obviously repository-dependent.
For instance, a user post a query of “World Cup” with his intend of retrieving
the competitors in 2006 Soccer World Cup against the collection of news articles
in which the articles about Chess World Cup Tournament are predominant, it
is simply impossible for the system to return soccer articles consistently ranked
higher then related to chess. In order to overcome this difficulty, [Sto03b] intro-
duces a ‘Response factor’ for taking into account the specificities of knowledge
repository content in determining the ambiguity of a query. The Response factor
of a query is the measure to know how the terms from that query cluster the

4 Ontology-based Query Systems: The State of The Art 35

resources in the underlying knowledge repository. The Response factor also de-
scribes the probability that a knowledge resource relevant for the query will not
be relevant for the one of the non-empty subsets of that query.

In recent activities, this group have introduced another approach for the pro-
cess of detecting query ambiguity and refinement [Sto03a]. In this process, firstly,
potential ambiguities (i.e. misinterpretations) of the initial query are discovered
and assessed (Ambiguity-Discovery phase). Next, these ambiguities are inter-
preted regarding the user’s information need, in order to estimate the effects
of an ambiguity on the fulfillment of the user’s goals (Ambiguity-Interpretation
phase). And finally, the recommendations for refining the given query are ranked
according to their relevance for fulfilling the user’s information need and according
to the possibility to disambiguate the meaning of the query (Query Refinement
phase). In that way, the user is provided with a list of relevant query refinements
ordered according to their capabilities to decrease the number of irrelevant results
or/and to increase the number of relevant results.

4.5.2 Query Refinement

The approach of [Sto03b] for query refinement tries to simulate and reflect the
refinement model which a human librarian (or a shop assistant) uses in her daily
work. It means that we use three sources of information in suggesting query
refinement: 1) the structure of the underlying ontology, 2) the content of the
knowledge repository and 3) the users’ behaviors (how users refine their queries
on their own). Since the first two sources are used for measuring the ambiguity
of a query, the query refinements based on them are treated cooperatively as the
ambiguity-driven query refinement.

In the ambiguity-driven query refinement approach, the ambiguity parame-
ters presented in the previous section are combined and presented to the user in
case she wants to make a refinement of the initial query. Each of the ambiguity
parameters has its role in quantifying ambiguity. For each of the parameters,
query term(s) that affect the ambiguity most importantly are determined. In
that way, the user receives the most specific suggestions.

[Sto03a] presents another query refinement approach called information-need
driven query refinement. This approach is a formalized one; it is based on 1)
the definition of an order between queries, in order to create a map of the query
neighborhood query map (i.e. query space), and 2) the characterization of the
query ambiguity, in order to control the navigation in the query space com-
pass. The query refinement process is then realized as the movement through the
query’s neighborhood in order to change the ambiguity of that query.

4 Ontology-based Query Systems: The State of The Art 36

Similarly, in [Sto03a] an extension of the Query Management component
in the Librarian Agent framework, presents a comprehensive approach for the
refinement of ontology-based queries, which is founded on the incrementally and
interactively tailoring of a query to the current information needs of a user. These
needs are implicitly and on-line elicited by analyzing the user’s behavior during
the searching process. The gap between a user’s need and his query is quantified
by measuring several types of query ambiguities. Consequently, in the refinement
process a user is provided with a ranked list of refinements, which should lead to
a significant decrease of these ambiguities. Moreover, by exploiting the ontology
background, the approach supports the detection of “similar” results that should
help a user to satisfy his information need.

The third source for making the query’s refinement recommendations
in [Sto03b] mentioned above requires an analysis of the users’ activities in an
ontology-based application. That is also the approach of many query refinement
mechanisms and OntoLoger [SGS03] is a one of them. OntoLoger is based on the
log-ontology (usage-data) and analyzes the user’s behavior in order to guide the
user in refinement process. By doing this, the refinement process will support
a user in fine-tuning of his/her initial query. Thereafter, it ranks the received
resources according to their relevance of the user’s query, and finally, the system
relaxes the user’s query such that its best approximation can be found.

In a similar manner to OntoLoger, OntoViews with its query mechanism
Ontologator, deals with the query refinement based on the domain ontology and
user annotation on data. The Recommendation system of Ontogator utilizes
the domain ontology together with annotated data and recommendation rules
to recommend the user to view other related information which maybe missed
by his initial query. This process is known s the semantic browsing function.
Through this kind of system, the user can refine his/her queries by selecting
related information that suits his needs.

Query refinement in Knowledge Sifter is an aggregation of query expansion
(Query Formulation Agent), which is also used in [MTT98], [MM00] and[BRA05],
and recommendation system (Integration Agent) techniques. The Query Formu-
lation Agent consults the Ontology Agent to refine or generalize the query based
on the semantic median provided by the available ontology services. Besides, the
Integration Agent is responsible for compiling the sub-query results from vari-
ous sources, ranking them according user preferences, as supplied by Preferences
Agent, for such attributes as: 1) The authoritativeness of a source which is in-
dicated by a weight assigned to that source; and 2) The weight associated with
a term comprising a query. Furthermore, the Integration Agent calculates each
result’s similarity by normalizing the total similarity value; ranks these results
according to their similarity values and return the ranking information to the
User Agent for display.

4 Ontology-based Query Systems: The State of The Art 37

On the methodology side, the query refinement in GeoShare is similar to
discussed approaches. However its implementation differs in some aspects.
GeoShare’s query refinement is based on its reasoning service and data anno-
tation. The user, after given guidance to give an initial query on the basis of the
data model and the underlying ontology, receives a ranked list of results or re-
finements which are outcome of processes of data retrieval and reasoning on data
annotation. At this stage, the user can select ‘information providers’ according
to his needs.

4.5.3 Ranking and User Interaction

In processes of query refinement and answering of the current ontology-based
systems, the roles of ranking and the interaction of the user are very important.
Ranking mentioned on surveyed papers included refinement ranking and as well as
results ranking. This task is almost a general requirement for query refinement
in semantic web applications, because of the nature of imprecise querying or
searching. Ranking is almost always based on domain ontology, user ontology,
user’s profile or preference, and annotation data as well. All discussed ontology-
based query systems in this chapter use this kind of technique.

In addition, user interaction in a query mechanism can be considered in many
contexts such as formulating queries, query refinement and answering processes.
However, relying on the power of the query refinement, the well-designed ontolo-
gies (such as domain ontology, user ontology), and the approach of the systems,
user’s interaction is required much or less. For example, in end-user based sys-
tems such as Ontogator, OntoLoger, query refinement based on user-data analysis
and user ontology; so that the intervention of the user during the refinement pro-
cess is less. In contrast, in other systems, the user interaction might be more.
GeoShare [HSR+04] and Knowledge Sifter are examples.

4.5.4 Inference

Inference or reasoning is a challenging task in semantic web applications.
GeoShare is one among the very few actual applications currently make use of in-
ference based on OWL, Description Logics or actually any other rule systems. It
uses OWL and Racer as inference engine for the system. Many of others that do,
such as [FHH03], could have also been developed using simpler graph patterns.

4 Ontology-based Query Systems: The State of The Art 38

4.6 Methodologies in Common

While surveying the field of ontology-based querying research, some common
methodologies can be determined. The knowledge and understanding of these
common methods as well as how they are used in the various actual approaches
are of great importance for future ontology-based search/query methodologies.

4.6.1 Role of Ontologies

In the regarded systems, ontologies are very crucial and play a key-role. Ontolo-
gies appears from the starting (query formulation) until the end (query answering)
of querying processes. We can conclude the roles of ontology as following:

1. Providing a pre-defined set of terms for exchanging information between
users and systems.

2. Providing knowledge for systems to infer information which is relevant to
user’s requests.

3. Filtering and classifying information.

4. Indexing information gathered and classified for presentation.

4.6.2 Query Refinement

All query refinement methods which are ontology-based approaches aimed at
disambiguation the posted user’s queries. In the IR community, generally, we
can see two directions of modifying queries or query results to the needs of users:
query expansion and recommendation systems. Query expansion is aimed at
supporting the users to make a better formulated query, i.e. it attempts to
improve retrieval effectiveness by replacing or adding extra terms into the initial
query.

The interactive query expansion supports such an expansion task by suggest-
ing candidate expansion terms to the users based on some indexes or concept
hierarchies. Recommendation systems try to recommend items similar to those a
given user has liked in the past, or identify users whose tastes are similar to those
of the given user. More and more ontology-based query refinement techniques
are formalized, and more complex and more effective approaches have been in-
troduced, that are [SGS03] (usage-based), [Sto03b] (ambiguity-driven), [Sto03a]
(information-need driven) and [Sto03a] (step-by-step).

4 Ontology-based Query Systems: The State of The Art 39

4.6.3 Keyword-Concept Mapping

Mapping between keywords and ontological concepts is a method commonly used
in discussed ontology-based query systems. Huge research efforts are specif-
ically achieved on the issue of combining searching through textual material
with searching through formally defined information (for example in [HSV03]
and OntoWebs-based systems).

The natural language is the form that is most familiarly to human beings.
Mapping patterns to sentences can give the user a clearer awareness of the rep-
resented knowledge, and again the user may be more comfortable in formulating
his/her queries as natural language sentences. In this case keywords provide an
entry-point for a quick way of finding information. Keywords and other restric-
tions can be easily specified for the text search fields in comparison with the
ontology navigating to identify the concepts and graph patterns to be used as
query constraints.

4.6.4 Graph Patterns

Graph patterns are an important concept in semantic web search methods which
is used in different functions. Firstly, because of the way the RDF data model
is organized, graph patterns are often used to formulate complex constraint
queries.

In some systems, such as OntoViews, general RDF path patterns are also used
to link interested resources to each other, or to formulate patterns for identifying
interested connecting paths between named resources [AS03]. Additionally, in
results presentation, the parameters fetching information are also often considered
as simple graph patterns.

4.6.5 Inference

Obviously inference on the semantic web must be regarded as a very complex
problem. The fact that the Semantic Web is designed to work under the open
world assumption, whereas most well explored logics operate only on the base of
a closed world assumption, builds a fundamental difficulty. Also, the vision of the
semantic web which comprises a large amount of data, constitutes a problem for
most current inference algorithms. GeoShare is one among the very few actual
applications which currently use inference based on OWL. Meanwhile, many of
others that do, such as [ACK04], could have also been developed using simpler
graph patterns.

4 Ontology-based Query Systems: The State of The Art 40

Search Methods Approaches Query Query Formulation Using
Systems Enhanced- Ontology- Front- Back- Refine- Infer- Query Ontology- annotated

Keyword based End end ment ence UI-based based data
Ontologator X X X X
Ontologer X X X X
KnowledgeSifter X X X
OntoViews X X X X X X X
OntoDoc X X X X
GeoShare X X X X X X
Ontobroker X X X X X
SHOE X X X X
SEAL X X X
Haystack X X X X X
TAP X X X X

Table 4.1: Summary of Ontology-based Query Systems

4.6.6 Fuzzy Concepts, Relations, and Logics

In the research of enhancing the traditional search with ontology techniques,
there is a requirement for formalisms allowing the combining fuzzy annotations
based on text search with the semantic annotations. As a result, a number of
formalizations and experimentations with fuzzy logics, fuzzy relations and fuzzy
concepts have been undertaken in that field ([ZYZ+05] is herefore an excellent
example).

Fuzzy logics are, however, not only useful in combining text search with
ontologies. In [SDA04], authors use fuzzy qualifiers to constrain the complex
queries, and in [Par04] user profiling is used for measuring the relevance of an
ontological relation.

4.7 Discussion and Summary

A number of common patterns can be detected in the approaches described in
this thesis. On the technical level, it can be concluded that in the working context
of an RDF model, quite many of the used common methodologies are of general
nature.

Usually complex constraint queries are focused on models where individuals
and classes are the interesting information items; we can observe relations which
are present as equal partners in all the graph pattern, path and logic formalisms.
After the deduction of a result set by using complex constraints, there are strong
tendencies to use graph traversal algorithms to locate additional result items.
While fuzzy logic formalisms and fuzzy concepts allow us to combine keyword
search results as equal partners in complex constraint querying.

4 Ontology-based Query Systems: The State of The Art 41

Besides, the ontology-based query refinement, which includes ranking issue
and user-interaction, can be recognized as innovative approach for improvement of
query precision and helping users clarify their queries from ambiguous initial ones.
The query refinement has been started very early along with the query process in
semantic web application, which uses simple expansion algorithms. The current
approaches have proved their power with effective refinement strategies based
on ontologies. The only approach which does not neatly wrap into the others
is inference-based problem solving. Inference in general builds a much greater
challenge for the most usual cases of ontology-based query systems.

A summary of the discussed ontology-based query systems according the
common criteria is presented in the Table 4.1.

5 The Virtual Query System

5.1 Motivation

Towards the goals of personal information storage and retrieval of all data
throughout a lifetime, researchers consider continuous archival and retrieval of all
media relating to personal experiences including emails, contacts, appointments,
web browsing, documents, phone calls, etc. The challenging issues are how to
extract useful knowledge from this rich library of information; and how to use
this knowledge effectively [FR03].

The SemanticLIFE [AHK+04] user is supported in issuing imprecise queries
to retrieve the rich semantic information from his/her historical personal data.
For example, consider scientists, who work in a specific domain. They might be
interested to get into contact with other researchers in the scientific community
that (1) share the same interests or have similar problems (2) are publishing in
similar conferences and (3) were recently active in the specific field of research
(4) and speak a common language. The result of such a query could be the web
pages and email addresses of the researchers coming into question.

Most often when developing similar PIM systems, researches focus on back-
end issues, i.e. capturing all data sources, integrate and then store them in
huge repositories. For this purpose it is necessary to map the ontologies of the
various data sources into a common ontology of the system. However, users are
confronted with the lack of knowledge concerning the stored information inside
the system, and they would formulate ambiguous requests, so that many barriers
have to be overcome before the system could deliver the demanded results.

This chapter is aiming at an introduction of the innovative features of our
Virtual Query System design. This query system is based on a front-end ap-
proach allowing the user to retrieve information from huge ontology-based repos-
itories in an efficient way. The conception of this query system which is primarily
based on the reduction of semantic ambiguities of user query specifications at the
very early stage of the retrieving process; and continually guide the user in query

5 The Virtual Query System 43

process using a set of query templates. This approach integrates many research
efforts from the area of the Semantic Web, query refinement, semantic query
caching for RDF data, inference, ontology mapping, and user interaction.

5.2 Virtual Query System Enabled SemanticLIFE

5.2.1 Information Retrieval in the SemanticLIFE Framework

In SemanticLIFE, it is uneasy to define highly structured queries when a mul-
titude of information systems are addressed or the information is only semi-
structured. Hence the system must be capable to support user-queries which are
formulated with an imprecise search terminology by automatically transforming
them into more specific queries.

Figure 5.1: The VQS Enabled SemanticLIFE Information Retrieval

In the SemanticLIFE metastore, the data is already stored in a semantically
enriched manner, it provides more powerful imprecise searches. Here, the term
“imprecise” has two meanings: firstly, the query processing system has to satisfy
imprecisely defined user information needs. Secondly, the target of the user-
query is well specified but there are ambiguities in processing the query because
of the heterogeneity of the different data sources. Therefore, the system solves
these problems during query generation by exploring the system database and
ontology. A part of the query module uses system metadata and ontology to
provide the user a better awareness of stored data.

The querying process in SemanticLIFE depicted in Figure 5.1 is supported by
our Virtual Query System. This mediator system is not only capable to deal with
the discussed issues above but also reduces the imprecision of the user’s requests
by offering the user an overview of the relevant stored information and query

5 The Virtual Query System 44

templates during his/her information retrieval process. As a result, the user will
significantly specify more precise queries on information and data stored in the
system.

5.2.2 Aims of The Virtual Query System

Formulating unambiguous queries is always a demanding task to users as they
do not have the overview on the semantics of stored data. The principle of the
Virtual Query System (VQS) is to provide an ontology-based virtual information
view of the system data, which we could call virtual information. Hereby, “virtual
information” are the metadata extracted from the SemanticLIFE metastore and
delivered to the user after a well-organizing process. The user can clearly specify
queries on the “real” data in the repositories when he/she can “be aware of”
what is inside of the system.

The VQS also provides predefined query patterns which will be matched
with users’ query space and the matching ones then will be recommended to
the users. In addition, based on a common ontology and the internal analysis
(inference, detecting ambiguity and fuzziness of user queries), the VQS refines the
user’s queries and generates “real” queries against data sources in the metastore.
Finally, relied on user’s experiences, reflected in user ontology or user profile, the
VQS recommends the most related results to the user.

In short, we can summarize the main goals of the VQS which are different to
the similar approaches as follow:

1. Enabling users to be aware of the semantics of data stored in their
SemanticLIFE systems.

2. Supporting users in query formulation not only in the initial phase by de-
livering the “virtual information”, but also during the information retrieval
with pre-defined query patterns based-on their query context or querying
space.

3. Presenting the results based-on the user’s profile in an interactive manner
which is integrated with above features.

5.3 The Virtual Query System

5.3.1 The Architecture

The Virtual Query System (VQS) consists of six modules, presented in igure 5.2,
to deal with the challenging task of a complete Semantic Web query system.

5 The Virtual Query System 45

Figure 5.2: The Components of the Virtual Query System

The Virtual Data Component

The Virtual Data Component (VDC) contains the metadata of storage sources.
This VQS crucial module acts as a virtual information layer to be delivered to
the user. It enables the user to be aware of the semantics of the data sources
stored and to specify more precise queries.

The VQS collects metadata from data sources in the metadata repository
of the SemanticLIFE system. An analysis process is carried out on these meta-
data sources to get the semantic information. Then the processed information is
stored in this module as a “context ontology” and will be delivered. The features
of VQS are very similar to those of a recommender system. Furthermore, this part
is also referred as an image of the system database in further query processing,
so-called the context-based querying which is discussed in detail in Chapter 7 and
in [HAT06a, HNAT06]. A query languages has been developed for querying the
virtual data from this component (more details in [HT06b]).

This component is the main different point of our system in compared with
similar approaches discussed in [HT06a]. The rational behind the idea of this
approach is that when users are aware of their data then they could formulate
more unambiguous requests. This ultimately leads to the reduction of the query
refinement process complexity. Additionally, this virtual data component plays
as a context ontology. This makes the SemanticLIFE system very flexible as the
system can adapt to a new scenario by simply changing the context ontology.

This component also enhances the query process by the “context-based”
querying feature. With this feature, the query patterns will be proposed by
the system based-on the context where the user is in. The details of this VDC
feature and VDC itself are discussed in Chapter 7.

5 The Virtual Query System 46

The Ontology Repository

The second part of the system is the ontology repository which builds up the
core of the VQS. The repository contains the ontologies used in the VQS sys-
tem such as the global ontology or inference ontologies. According to [CSC04],
an ontology-driven approach to data integration relies on the alignment of the
concepts of a global ontology that describe the domain, with the concepts of the
ontologies that describe the data in the local databases. Once the alignment
between the global ontology and each of the local ontologies is established, users
can potentially query hundreds of databases using a single query that hides the
underlying heterogeneity.

Sub-Query Formulation

Sub-queries formulation is another essential part of the VQS. From the user’s
initial virtual query, this part parses it into the sub queries (Qi in the Figure 5.2)
based on the global ontology for specific data sources. This module does not
only transform the virtual query to sub-queries for specific data sources but ad-
ditionally perform inference on the user’s request in order to create more possible
sub-queries afterward. After this process, the “real” queries (RDF queries) for
each the data sources to be generated.

The VQS Services

Ontology Mapping. Mapping service is a mechanism to map local ontologies
into a global one. This service deals with new data sources added with their
respective ontologies, so that these ontologies are mapped or integrated to the
global ontology. In our approach, we do not reinvest to develop a new ontology
mapping framework. We use the MAFRA framework [MMSV02] for our mapping
tasks.

Query Caching. This service improves the performance of the VQS by caching
the queries in a period of time. We distinguish two kinds of caching mechanisms:
query caching and result caching. The first addresses the process of generating
sub-queries; and the second covers the caching of query results. Both caching
types will use the semantic query caching methodology proposed in [Stu04].

5 The Virtual Query System 47

Inference. The ontology-based inference service provides a basis for the deduc-
tion process on the relationships (rules) of concepts of the ontologies specified.
Inference tasks are performed on the foundation of the ontologies and the data de-
scribed by them. This service helps the system to analyze and evaluate the user’s
virtual queries in the process of generating sub-queries based-on the inference
ontology.

Query Refinement

The VQS’s query refinement is another important service for our query process-
ing. This is the interactive way (semi-automated) for the VQS dealing with user’s
ambiguous queries, which is based on incrementally and interactively (step-by-
step) tailoring a query to the current information needs of a user [SSS04]. This
query refinement service of the VQS is a semi-automated process: in the refine-
ment process, the user is provided with a ranked list of refinements, which leads
to a decrease of some of these ambiguities. In another hand, by exploiting the
user’s profile, the ontology background, and as well as user’s annotation on data,
this VQS service supports finding “similar” results.

The Virtual Query User Interface

The Virtual Query User Interface (VQUI) delivers the virtual data to the user
and helps the user to define virtual queries. A set of query patterns is offered
to the user. If these patterns do not match the demands, the user can use a
query-by-example tool alternatively to write the virtual queries. The VQUI also
acts as query results composition which performs the integration and aggregation
of the sub-query results and show to the user.

5.3.2 The Virtual Query System Workflow

The workflow of the VQS is illustrated in the Figure 5.3. In the figure, the dashed
arrows denote the internal activities; normal arrows are used for the interaction
between the user and the VQS. The external query queue is used for receiving
queries from the user and to return the results. Inside of the system, an internal
query queue will be used to receive processed sub-queries and to deliver results.

The following steps are performed in a chronological order: At the very early
stage when the VQS is installed into the whole system of SemanticLIFE, action
(1) will be performed. This action collects meta-data of the data sources from
the meta-store, performs necessary statistical computation and stores the results

5 The Virtual Query System 48

into the Meta-data sources. Parallel, the global ontology is mapped from local
ontologies using the VQS ontology mapping service.

Figure 5.3: The Workflow of the Virtual Query System components

As also depicted in Figure 5.1, the user directly retrieves the information by
specifying his/her queries to the VQS with help of the query interface. The VQS
gets user input through the virtual queries. Using this interface, the user can be
confronted with intentional information of the meta-data sources, so that we can
avoid to a certain degree ambiguous requests (2).

In the next step, the formulated query, so-called virtual query, is sent to the
VQS (3) and from this stage, the virtual query is evaluated on the foundation of
the ontology-based services of the VQS (4). The VQS query caching service is
now in charge of the subsequent processing of the virtual query: firstly, it looks
up in to the query cache, if there is a match, the result is quickly returned to
the user. In the second case if the virtual query does not match, an analysis
and evaluation process will be undertaken (4) and the virtual query with the
analyzed information will be sent to the Sub-queries formulation (5). As a result,
sub-queries for each specific real data source will be generated. Finally, query
results will be passed to the user ((6) and (7)). They are aggregated in the Query
Result Composition part before the delivery to him/her in a suitable form.

5.4 Summary

In this chapter we have introduced the Virtual Query System used for querying
tasks in the SemanticLIFE framework. The VQS is an approach of building a
complete Semantic Web query system based on a “front-end” approach.

5 The Virtual Query System 49

Besides applying current Semantic Web technologies known in the area such
as ontology mapping, user annotation and semantic query caching for RDF data,
we have designed a query system which aims at a significant complexity reduc-
tion in formulating semantic meaningful queries and at the same time aims at a
considerable reduction of the number of ambiguous user queries. The details of
the innovative features of the VQS is presented in the next chapters.

6 The Virtual Query Language

6.1 Introduction

Making unambiguous queries in the Semantic Web applications is a challenging
task for users. The Virtual Query System (VQS) of the SemanticLIFE framework
is an attempt to overcome this challenge. The VQS is a front-end approach for
user-oriented information retrieval [HTN06, HAT06b].

The issue is on the user-side, where users are required to make queries for their
information of interest. The current query languages for RDF, DAML and more
generally for semi-structured data provide very expressive mechanisms which are
suitable for back-end querying mechanisms. To users, who are inexperienced
with them, these query languages are too complicated to use. Additionally, the
communication of components of the SemanticLIFE system with the VQS re-
quires the facility to transfer their requests without knowledge of the RDF query
language. Another important point is the portability of the system, i.e. if the
system is bound to specific RDF query language, we could have problems when
shifting to another one.

In the effort of coming over the above tackles, there is an approach of creat-
ing much lighter query languages than current expressive RDF query languages.
According to [HT06a], the approaches of [GHP01] and the GetData Query inter-
face [GM03] are hight-rate examples. [GHP01] describes an a simple expressive
constraint language for Semantic Web applications. The framework defines a
‘Constraint Interchange Format’ in form of RDF for the language, allowing each
constraint to be defined as a resource in its own right. Meanwhile, the approach
of the GetData Query interface of TAP1 expresses the need of a much lighter
weight interface for constructing complex queries. The idea of GetData is to de-
sign a simple query interface which enables to network accessible data presented
as directed labeled graph.

1 TAP Infrastructure, http://tap.stanford.edu/.

6 The Virtual Query Language 51

Continuing this trend, we present in this chapter an effective and lighter
weight query language namely Virtual Query Language (VQL). This language is
used by the VQS for information querying in the SemanticLIFE system. The
VQL is a much lighter weight language than RDF query languages; but it offers
interesting features to complete the tasks of information querying in the Semantic
Web applications. In addition, the VQL is designed to assist the users make
queries in simple manner and simplify the communication between components
of the SemanticLIFE system with the query module - the VQS.

6.2 VQL - The VQS’s Virtual Query Language

6.2.1 The Goals of the VQL

A number query languages have been developed for the Semantic Web data such
as data in form of RDF (RQL [KAC+02], RDQL [Sea04], SPARQL [PS05], and
iTQL [WGA05]). Why do we need yet another query language?

All these query languages provide very expressive mechanisms that are aimed
at making it easy to express complex queries. Unfortunately, with such expressive
query languages, it is not easy to construct queries to average users as well as to
ask abstract information. What we need is a much lighter weight query language
that is easier to use. A simple lightweight query system would be complementary
to more complete query languages mentioned above. VQL is intended to be a
simple query language with a support in a “semantic” manner for users’ queries.
In the context of the VQS and the SemanticLIFE system, we can see the aims of
VQL as follows:

• VQL helps clients making queries without knowledge of RDF query lan-
guages. The user just gives basic parameters of needed information in VQL
queries, and would receive the expecting results.

• VQL assists users in navigating the system via semantic links or associations
provided in the powerful query operators based on ontologies.

• VQL simplifies the communication between the Query module and other
parts. With VQL the components asking for information do not need to
create RDF query statements which are uneasy tasks for them. Addition-
ally, this feature keeps the SemanticLIFE’s components more independent
as they do not bind to a specific RDF query language.

• VQL enables the portability of the system. Actually, the SemanticLIFE
and VQS choose a specific RDF query language for its back-end database.
However, they probably could be shifted to another query language, so

6 The Virtual Query Language 52

that this change does not effect other parts of the systems, especially the
interface of the system database.

6.2.2 The Syntax of VQL

Query Document Syntax

Definition 6.1. A VQL query document has four parts: parameters, data
sources, constraints (relations), and query results format which are described
in the schema depicted in Figure 6.1.

Figure 6.1: The schema for general VQL queries

The first part contains parameters of specifying the information of interest.
A parameter consists of a variable name, the criteria value, and additional at-
tributes for sorting or eliminating unneeded information from the results.

The second part—sources—is used for specifying the sources where the in-
formation will be referred to extract from. Obviously, the information need to be
defined in the first part must be related to the sources specified in this part.

Thirdly, the constraints of the query—relations—are defined in the third part
of the document. Here the relations between sources, parameters are combined
using the VQL operators. Finally, the format of query results is identified in the
fourth part. VQL supports four query results formats that are XML, text, RDF

6 The Virtual Query Language 53

graph, and serialized objects of query result sets. This provides flexibility for
clients to process the query results.

XML-based Format

A standard format for information exchange, a easy-to-use and familiar-to-clients
format, a widely accepted standard, and a flexible and open format are the re-
quirements for the VQL query document. We have considered some alternatives
and decided to choose XML as the format for VQL query syntax. A XML-based
VQL query is structured as follows (Listing 6.1):

Listing 6.1: An Example of a XML-based VQL Query

1 <query type="data">
2 <params >
3 <param show="1" name="s1:messageTimeStamp">2005 -11 -01</param>
4 <param show="0" name="s2:messageTimeStamp">2005 -11 -31</param>
5 </params >
6 <sources >
7 <source name="fileupload">FileUpload </source >
8 <source name="browsingsession">BrowsingSession </source >
9 </sources >

10 <relations >
11 <relation id="1" param="s1" source="">dt:gt</relation >
12 <relation id="2" param="s2" source="">dt:lt</relation >
13 </relations >
14 <resultformat >xml</resultformat >
15 </query>

- The top level or the body of query is the <query> element. Here, the query
type must be specified type attribute. The reserved terms used for this attribute
are "data", "schema", "rdf1" and "rdf2" for different VQL query types (Sec-
tion 6.2.4). For example, <query type="data"> is a VQL data query.

- The second level contains required sub-elements. Depending on the type of
a VQL query the elements are used respectively: for the data query, elements of
<params>, <sources>, and <relations> are used once for each. These elements
have their children specified in the third level. Listing 6.1 is an example.

For the schema query or the VQL RDF type 1 query, we use only one
<statement> element which contains a RDF query statement (Figure 6.1). For
the “rdf2” query, elements of <select>, <from>, <where>, <orderby>, <limit>
and <offset> are used in the same way, where last three are optional as described

6 The Virtual Query Language 54

in Listing 6.3. Moreover at this level, we must identify the query results format
in the <resultformat> element as "xml", "text", "rdf", or "object".

- The third level elements are only applied for the VQL data queries. The ele-
ments are children of <params>, <sources>, and <relations>; and the tags con-
sequently are <param>, <source>, and <relation> with their own attributes.

- <param> element : each parameter is identified by this element with required
attributes: show and name. While show is set to 1 or 0 that means the result
of this parameter is shown in the result sets or not; name has two parts: a
variable and the meta − information which are put together with ":", i.e.
variable:metainfo. Besides, this element has two optional attributes known as
order="1"/"0" and exclude="string". The order attribute is used for sorting,
while exclude is for excluding some information from query results. The element
is enclosed with an optional value for filtering.

Example 6.2.1. A parameter is defined as follow:
<param show="1" name="v1:emailTo">tuwien.ac.at</param>

The parameter in this example is dened for extracting information of email
addresses sent to recipients in domain of tuwien.ac.at. The variable v1 contains
the meta-information emailTo.

- <source> element : names of concerned sources for users’ requests will be put
here. This element has only one attribute name which is an internal name of data
sources. This internal name is assigned automatically by the system.

Example 6.2.2. A data source is defined as follow:
<source name="at.ac.tuwien.slife.feed.email">Email</source>

Here, the source is specified using two names, the internal name, which is
hidden to users, is put in name attribute; and the external name is optional.

- <relation> element : contains a constraint of the VQL query. The required at-
tributes of each constraint are: id=“number”, param=“variable”, source=“source-
name”, and optional or=“id”. The id is assigned a number, variable in the re-
lated <param> is used in this param attribute. Attribute source is identified with
source − name or left empty in the case of only one data source specified; and
or is assigned by id of another <relation> in order to make an OR expression.
The operator for the constraint is put as value of the <relation> element.

Example 6.2.3. A constraint is defined as follow:
<relation param="v1" source="Email">str:match</relation>

This is a constraint to form an expression for the query. The expression
means to get the email addresses from Email data source where emails are from
tuwien.ac.at domain. The operator str:match is a pattern comparison.

6 The Virtual Query Language 55

6.2.3 Operators and Expression in VQL

The SemanticLIFE’s back-end is organized by using ontologies and RDF enhanc-
ing with data typing and a powerful index mechanism. Hence, the supported
operators in VQL inherit these features and reflect them in its operators.

Logic Operators

VQL’s logic operators consist of AND, OR and NOT. While NOT is defined in
each <param> element by using the exclude attribute, AND and OR operators
are identified in <relation> items. OR is defined by the "or" attribute, e.g.
or="2" means that the current constraint will be combined with the constraint
number “2” using logic OR operator. AND is implied in a relation without "or"
attribute.

Comparison Operators

The comparison operators are used in <relation> part of VQL queries. These
operators are presented as follow:

equal An equal comparison in form of triples which is used by leaving the
<relation> item empty.

gt The operator means GREATER-THAN which is used for comparing values of
basic data types such as String, numbers.

lt Similarly to the previous one, the operator means LESS-THAN.

dt:gt This operator is used for comparing the date/time value AFTER a point
of time. Value format of this type confronts XML Schema (XSD)2 data
types, i.e. ‘DD-MM-YYTHH:MM:SSZ’ where ‘T’ is the delimiter and ‘Z’ is
the time-zone.

dt:lt Similarly to the dt:lt operator; but it means for the date/time value
BEFORE a point of time.

str:match This is the pattern matching operator for strings. This comparison
operator uses common pattern expression.

ft:match This is the powerful operator relying the full-text index applied in
SemanticLIFE’s metastore. It is used for searching the full-text data such
as content of a file or email attachments, or stored WWW pages.

2 XML Schema, http://www.w3.org/XML/Schema

6 The Virtual Query Language 56

Expressions

In order to formulate the expressions for the query criteria, VQL uses "or" at-
tribute in <relation> elements as boolean OR operator to combine these con-
straints first, and then it uses boolean AND to combine into the final expression.
The sequence of <relation> elements are important in combining expressions.

6.2.4 The VQL Query Types

VQL Query Types

Definition 6.2. VQL query types are different forms of VQL query documents
used for special purposes of information retrieval in the VQS.

There are three VQL query types: data query type, schema query type and
the embedded query types. The VQL query types conform the main syntax of the
VQL query document but having some particular part for each types.

Data Query Type

The VQL data query type is commonly used for information querying. A query
of this type consists of the four parts as discussed above. In order to inform VQL
parser to process the query as a VQL data query, we identify "data" term in the
query: <query type="data">.

An example for this query type is shown in Listing 6.1: the query re-
trieves messages’ time-stamp of files uploaded and browsed web pages in the
SemanticLIFE repository in ‘November 2005’.

From this query type, we formulate deductive queries for special operations in
semantically information retrieval. These operations help users easily get infor-
mation of interest and obey the principle of VQL design: “ask minimum words,
get maximum information”. The deductive queries, so-called VQL Query Opera-
tors, are described in details in section 6.3.

Schema Query Type

The syntax of this query type consists of two parts: the first one is the
<statement> element containing a RDF query statement; and the second part is
used to set the query results format. Necessarily, "schema" must be identified in
the query body. A schema query example is illustrated in Listing 6.2.

6 The Virtual Query Language 57

Listing 6.2: An example of VQL SCHEMA query

1 <query type="schema">
2 <statement >
3 select ?Message ?p ?o
4 from &lt;rmi: //192.168.168.174/ slife#BaseModel&gt;
5 where ?Message &lt;slife:messageBody&gt; ?oo
6 and ?oo ?p ?o
7 and ?Message &lt;slife:fileName&gt; ’CFP*’ in
8 &lt;rmi: //192.168.168.174/ slife#
9 FTLiteralsModel&gt;;

10 </statement >
11 <resultformat >xml</resultformat >
12 </query>

However, the question is that how does the user create RDF query state-
ments? Actually, the schema or ontology queries are offered to clients in form
query templates or programmatic VQL API.

Embedded Query Types

Similarly, with embedded query types RDF query statements are wrapped in VQL
query documents. We distinguish two ways of embedding the RDF statements:
firstly, a whole statement is embedded; while their parts is embedded separately
in the second type.

Listing 6.3: An example of the VQL RDF query type

1 <query type="rdf2">
2 <select >$s $p $o</select >
3 <from>rmi: //192.168.168.174/ slife#BaseModel </from>
4 <where>$s $p $o</where>
5 <resultformat >text</resultformat >
6 </query>

The format of the first embedded query type, so-called VQL RDF query type
1, is similar to the schema query described Listing 6.2, where the term "rdf1"

is used instead of "schema" in the <query> tag. Meanwhile, in VQL RDF query
type 2, each parts of RDF query statement, such as select and from, are put in
respective query parts.

Listing 6.3 is an example of VQL RDF query of type 2, in which "rdf2" is
specified in <query> tag. As depicted in the figure, the expressions of clauses of
the RDF query statement are filled in respective elements of the VQL query.

6 The Virtual Query Language 58

6.2.5 VQL Query Results Format

In order to increase the flexibility in query results processing, VQL provides
four query results formats that are XML format, text format, RDF graph, and
serialized query results. In a VQL query, we identify the query results format in
the <resultformat> element at the second level (see Figure 6.1).

Query Results XML Format

The VQL query results XML format is similar to a W3C’s format for SPARQL
XML query results presented in [Bec05]. This XML format for VQL query results
has two main parts: the first one is the list of the query’s variables which actually
are properties mentioned in the query and additional information such as the
message’s URI variable and the data source type of the resource. The second
part contains found items, i.e. values of these variables. A VQL query result is
described in Listing 6.4 is an example.

Listing 6.4: The XML VQL Query Result

1 <answer >
2 <query>
3 <variables >
4 <Datasource/>
5 <fileName/>
6 <fileLastModified/>
7 </variables >
8 <solution >
9 <Datasource resource="http://www.slife.at/DS#FileUpload"/>

10 <fileName >14 _07_04_Butler.pdf</fileName >
11 <fileLastModified >2004 -07 -14 T15:10:29 +02 :00
12 </fileLastModified >
13 <solution >
14 ...
15 </query>
16 </answer >

In order to receive the query result in the XML format, the "xml"

term should be put in the result-format element of the query document:
<resultformat>xml</resultformat>.

Query Results Text Format

Some applications have the trend of avoiding using any XML parser to simplify
the query results processing. Therefore, the text format of query results is an

6 The Virtual Query Language 59

alternative solution for them.

The text format of VQL query results is structured as follows: firstly, a
summary of the result is presented, including a number of returned rows and a
number of the query’s variables; and they are presented as Rows = num_of_rows

and Vars = num_of_vars. In the second part, the variable’s values of each item
are then paired in form of VAR_NAME = VALUE. These pairs are connected by
semicolons, and one row is for each items. A simulated text result of a query is
presented as follow (Listing 6.5):

Listing 6.5: The TEXT VQL Query Result

1 Rows = 2
2 Vars = 3
3 [VAR1 = MSG_URI1; VAR2 = VAL21; VAR3 = VAL31]
4 [VAR1 = MSG_URI2; VAR2 = VAL22; VAR3 = VAL32]

The VQL query results will be transformed into the text format, if the "text"
term must be identified in the result-format element of the query document:
<resultformat>text</resultformat>

Query Results Jason Format

Jason is the intentionally misspell of JSON3 and used for a query result format.
JSON is a light-weight data-interchange format. It is easy for humans to read
and write, for machines to generate and parse. JSON is based on a subset of
the Javascript programming language. JSON is a text format that is completely
language independent but uses conventions that are familiar to programmers
of the C-family of languages, including C, C++, C#, Java, JavaScript, Perl,
Python, and many others. These properties make JSON an ideal data-interchange
language.

In order to request the VQL returns the query result in form of JSON format,
the "json" term must be put in the result-format element of the query document
as <resultformat>json</resultformat>. The following listing is an example
of query results in form of Jason format (Listing 6.6).

Query Results RDF Format

The RDF-graph format of query results is designed for semantic web client appli-
cations preferring semantic enriched data. Since the RDF format is the standard

3 JavaScript Object Notation, http://www.json.org/

6 The Virtual Query Language 60

Listing 6.6: The JASON VQL Query Result

1 {"head":
2 { "vars": ["a" ,"b"] },
3 "results": {
4 "distinct": false ,
5 "ordered": false ,
6 "bindings": [
7 {
8 "a": { "type": "uri" , "value": "http: //www" } ,
9 "b": { "type": "uri" , "value": "http: //www ..." }

10 } ,
11 ...] }
12 }

for this purpose, the query results will be transformed to RDF graphs before
returning them to the clients. RDF/XML is used as default RDF format of these
query results. Obviously, the clients must have abilities to process RDF-graphed
query results by using amongst RDF parsers such as Java-based semantic web
frameworks, Jena4 or JRDF5.

In order to request the VQL returns the query result in form of RDF graphs,
the "rdf" term must be put in the result-format element of the query document
as <resultformat>rdf</resultformat>.

Serialized Query Results Object

Concerning communication of the inside components of the SemanticLIFE sys-
tem, sometimes we would like to use query results object without format transfor-
mation. In this case, the VQL must satisfy the demands by support of serializing
the results object using the Java serialization technique and sending the serialized
object back to the asking component.

In order to request the VQL returning the query result in form of serialized
objects, the "object" term must be identified in the result-format element of the
query document as <resultformat>object</resultformat>. Nevertheless, this
format is API-dependent, therefore the requirement is that the asking component
must use the exactly same RDF API to what VQL parser uses.

6 The Virtual Query Language 61

Figure 6.2: The VQL query is validated.

6.2.6 Well-formed and Validated VQL Queries

Checking the validity of the generated VQL queries plays an important in order
to help the user dealing with the virtual queries formulation. As first mentioned
on the section 6.2.2 (Figure 6.1), we have XML schemas for validating the VQL
queries. Actually, there are XML schemas to checking the well-formedness for the
VQL query types. Users can choose to verify their VQL queries before executing
them; or letting the VQS do itself before carrying out any VQL queries.

Listing 6.7: The VQL RDF Query Schema
1 <?xml version="1.0" encoding="UTF -8"?>

2 <xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema"

3 elementFormDefault="qualified">

4 <xs:element name="query">

5 <xs:complexType >

6 <xs:sequence >

7 <xs:element ref="statement"/>

8 <xs:element ref="resultformat"/>

9 </xs:sequence >

10 <xs:attribute name="type" use="required" type="xs:NCName"/>

11 </xs:complexType >

12 </xs:element >

13 <xs:element name="statement" type="xs:string"/>

14 <xs:element name="resultformat" type="xs:NCName"/>

15 </xs:schema >

In general, in VQL we have two formats for VQL queries which are VQL
data queries and VQL RDF-embedded queries. Herefore, we have created two

4 Jena Semantic Web Framework, http://jena.sourceforge.net/
5 Java RDF, http://jrdf.sourceforge.net/

6 The Virtual Query Language 62

XML schemas for each: the first schema is described in Figure 6.1 for the data
queries; and the second one, whose XML code is presented in Listing 6.7, is for
the embedded queries.

VQS uses these schema for validating every VQL queries before executing
them. If the VQL query is not validated and well-formed, the system will guide
the user to correct it by point out where the errors are as in Figure 6.3. In case the
user did not specify the type of his VQL query, the system would consequently
check out of two VQL schemas.

Figure 6.3: The VQL query is not validated.

If the query is form-valid, the system could carry out it continuously. Fig-
ure 6.2 shows an example of validating a well-formed VQL query, the information
will be shown to the user.

6.3 Query Operators of VQL

In this section, we present VQL Operatoes which are deductive queries from the
data query type for special operations for making complex queries in simpler
manner which helps users “minimum of words, maximum of information”. This
conforms the principle of building user-centered applications as in [GS03].

6 The Virtual Query Language 63

6.3.1 GetInstances Operator

GetInstances operator is the common form of VQL data queries. The operator
retrieves appropriate information according the criteria described in parameters,
sources, constraints of the query. The properties with show attribute set to "1"

will be involved in the query results.

Listing 6.1 is an example of GetInstances operator. As depicted, the query
is about retrieving the message’s time-stamp from 01/11/2005 to 30/11/2005 of
uploaded files and browsed WWW pages. The operators in the constraint part,
"dt:gt" and "dt:lt", are combined using boolean ‘AND’.

6.3.2 GetInstanceMetadata Operator

This query operator assists the user easily retrieve all metadata properties and
their values of resulting instances. This query operator is very useful when the
user does not care or not know exactly what properties of data instances are.
The case could happen when he/she makes request; or he/she would like to get
all metadata of these data items by the simplest way.

Listing 6.8: An Example of the VQL GetInstanceMetadata Query Operator

1 <query type="data">
2 <params >
3 <param show="1" name="p0:messageTimeStamp">2005 -11 -01</param>
4 <param show="0" name="p1:messageTimeStamp">2005 -11 -30</param>
5 <param show="1" name="p2:METADATA"/>
6 </params >
7 <sources >
8 <source name="fileupload">FileUpload </source >
9 </sources >

10 <relations >
11 <relation id="1" param="p0" source="">dt:gt</relation >
12 <relation id="2" param="p1" source="">dt:lt</relation >
13 </relations >
14 <resultformat >xml</resultformat >
15 </query>

In order to make a GetInstanceMetadata operator, we must put one param-
eter in the query document with the reserved string "METADATA". The other
parameters could be used for the criteria of the query to filter the query results.
The rest of the query document is similar to a normal data query. Listing 6.8
describes a example of this operator. In the example, the query is about getting
the metadata and their values of uploaded files which are sent from 01/11/2005

to 30/11/2005, as well as the timestamps of these files.

6 The Virtual Query Language 64

6.3.3 GetRelatedData Operator

In semantic web applications, particularly in the SemanticLIFE system, finding
relevant or associated information plays an important role. When we make a
query to search for a specific piece of information, we also would like to see
associated information to what we found. For example, when we are looking for
an email message with a given email address, we also want to see the linked data
to this email such as the contact having this email address, appointments of the
person in the email, web pages browsed by this person. Obviously, this operator
shows the VQL power and obeys the principle of “minimum words, maximum
information” for users.

Listing 6.9: An Example of the VQL GetRelatedData Query Operator

1 <query type="data">
2 <params >
3 <param name="p1:emailTo" show="0">hta@gmx.at</param>
4 <param name="p2:RELATED -WITH" show="1" />
5 </params >
6 <sources >
7 <source name="email">Email</source >
8 <source name="contact">Contact </source >
9 </sources >

10 <relations >
11 <relation id="1" param="p1" source="email" />
12 </relations >
13 <resultformat >xml</resultformat >
14 </query>

In order to make a request of this operator, we must identify a parameter
containing the a reserved word "RELATED-WITH" in the query document. The
<sources> element is used to limit a range of data sources in searching associated
information as presented in follows (Listing 6.9).

In this example, the query asks for instances of Email data source containing
a specific email address, e.g. hta@gmx.at; and from found messages, the related
information in the appreciate data sources, which are identified in <sources> of
the query, will be located as well.

6.3.4 GetLinks Operator

This query operator operates by using the system’s ontology and RDF graph
pattern traversal. The operator aims at finding out the associations/links be-
tween instances and objects. For instance, we are querying for a set of instances

6 The Virtual Query Language 65

of emails, contacts and appointments, and normally, we receive these data sepa-
rately. However, what we are expecting here is that the links between instances
(as well as objects) provided additionally. The links are probably properties of
email addresses, name of the persons, locations, and so on.

GetLinks operator helps us to fulfill this expectation. This operator is sim-
ilar to GetInstanceMetadata in the way of exploiting the metastore. While
GetInstanceMetadata operator tries to get related instances based on analysis
of a given link or information and the ontologies, GetLinks extracts the associa-
tions in instances or objects. In order to make a GetLinks operator, the reserved
word "SLINKS" (semantic links) must be identified in one <param> element.

Listing 6.10: An Example of the VQL GetLinks Query Operator

1 <query type="data">
2 <params >
3 <param show="1" name="p1:emailTo">hta@gmx.at</param>
4 <param show="1" name="p2:conName">Hoang Thieu Anh</param>
5 <param show="1" name="p3:SLINKS" />
6 </params >
7 <sources >
8 <source name="email">Email</source >
9 <source name="contact">Contact </source >

10 <source name= calendar ">Calendar </source >
11 </sources >
12 <relations >
13 <relation id="1" param="p1" source="email" or="2" />
14 <relation id="2" param="p2" source="contact" />
15 </relations >
16 <resultformat >xml </ resultformat >
17 </query >

We distinguish the detecting links between instances and objects as follow-
ing: if sources are specified in the query document without any parameters except
"SLINKS", then the links will be detected between objects. Otherwise, if some
parameters are shown, the links are implied for instances’ associations. An ex-
ample of GetLinks query operator is presented in Listing 6.10. The query will
return the associations between instances having the given receiver’s email and
the contact name in three data sources Email, Contact, and Calendar.

By providing these operators, VQL offers a powerful feature of navigating the
system by browsing data source by data source, instances by instances based on
found semantic associations.

6 The Virtual Query Language 66

6.3.5 GetFileContent Operator

The SemanticLIFE system covers a large range of data sources, from personal
data such as contacts, appointments, emails to files stored in his/her computer,
e.g. the office documents, PDF files, media files. Therefore, a query operator to
get the contents of these files is very necessary.

Normally, to carry out this task, we must define two parameters in the query
document, the first one is the file path got from the previous query; and the second
one is defined with reserved word "CONTENT". In the <source> element of the
query, a data source is identified as a reference; and the constraint part is often left
empty. The query is described in Listing 6.11 is an example of GetF ileContent
operator, where a content of the file having name "CFP_WISM_06.pdf" with its
full path will be extracted from the metastore.

Listing 6.11: An Example of the VQL GetFileContent Query Operator

1 <query type="data">
2 <params >
3 <param show="0" name="p0:filePath">
4 c:/slifedata/uploadedfiles /2005/11/28/ CFP_WISM06.txt
5 </param>
6 <param show="1" name="p2:CONTENT"/>
7 </params >
8 <sources >
9 <source name="fileupload">fileupload </source >

10 </sources >
11 <relations/>
12 <resultformat >xml</resultformat >
13 </query>

The files have been uploaded to SemanticLIFE metastore through a Message
Handler [AHK+04], and they are coded using BASE64 data encoding6. The
metastore will decode and stores them in the file system, then it carries out a
full-text index on these files for faster and more accurate retrieving later on.
After executing the GetF ileContent query, clients receive a BASE64-encoded
string encapsulated in a XML document. For the user, what he/she needs is the
‘real’ contents of the file, and it is the VQS interface’s turn to do the job that
decodes the content and shows it to the user [HTN06].

6 RFC 3548, http://www.faqs.org/rfcs/rfc3548.html.

6 The Virtual Query Language 67

6.4 VQL Parser: Query Languages Mapping

The VQL parser translates the VQL query to correspondent RDF query state-
ments; accesses the metastore to get results, then transforms them to the appre-
ciate format and sends the processed results back to the user. In this section, we
present the first stage of a query process in the VQS [HTN06] using VQL that
is the mechanism to map VQL queries to RDF queries. The mappings consist of
three phases: expressions mapping, syntax mapping; and semantic mapping.

6.4.1 Expression Mapping

Expressions in VQL queries are likely to be mathematical, while the “expressions”
in RDF queries are in form of the triples. Therefore, an accurate expression
mapping from normal expressions in VQL queries to triple expressions in RDF
queries is crucial. VQL carries out this task as following steps:

1. Forming mathematical expressions from elements of a VQL query.

2. Representing the final aggregated expression into an expression tree.

3. From the expression tree, we traverse and formulate triple expressions for
RDF query with referring to ontologies and related sources in the VQL
query.

Example 6.4.1. Looking back at Listing 6.1 as an example, an expression will
be formed from described query’s parts as follows (here msgTS is used instead
of messageT imeStamp for shorter representation):

(msgTS ≥ #01/11/2005#) ∩ (msgTS ≤ #30/11/2005#)

From this expression, we can create the expression tree as depicted in Fig-
ure 6.4. Using this tree, we generate the triple expressions for the RDF query by
traversing the tree. The generated triple expressions are described below in RDF
query language.

(<slife:msgTS> >= ’2005-11-01T00:00:00Z’) and

(<slife:msgTS> <= ’2005-11-30T00:00:00Z’)

where, "slife" is the namespace for the ontology and data schema of
SemanticLIFE metastore.

6 The Virtual Query Language 68

Figure 6.4: The Expression Tree.

Furthermore, the data sources are taken into account during mapping expres-
sions. The specified data sources in the VQL query document (in sources part
and <relation> elements) are used for either identifying the expression applied
on them or generating correspondent queries for them. Hence from a VQL query,
more than one RDF query are probably generated.

6.4.2 Syntax Mapping

Syntax mapping takes care the issue of translating from VQL query syntax to
a RDF query language syntax. VQL queries are actually interpreted as SELECT

statements of RDF query languages. The SELECT statement contains three re-
quired clauses select, from, where, and optional clauses such as orderby, and
filter. The syntax mapping will parse VQL query’s parts to the clauses of RDF
SELECT statement(s).

First of all, the select clause of the RDF query will be filled by <params>

parts of the VQL query. The parameters set to "1" will be put as variables of
the select clause, and unshown parameters (set to "0") are used for forming the
criteria only. Additionally, some extra variables will be added in the clause to get
the message’s URI and the name of data sources. Secondly, the from clause will be
generated automatically by VQL parser. For the time being, all data sources are
stored in one huge metastore with a unique network address. And this network
address plugged access protocol will be placed in from clause. Thirdly, generated
triple expressions will be used for the where clause. As discussed, the process
of generating the triple expression combines all three parts of the VQL query
- params, sources, and relations - along a further analysis by adding more
expressions to clarify the criteria.

Last but not least, we have two optional attributes, order and exclude, for
each parameter. If the order is set to "1", then the variable will be added into
orderby clause. And if an exclude is specified, an expression for filtering will be
added into the where clause.

6 The Virtual Query Language 69

6.4.3 Semantic Mapping

The semantic mapping takes part in both mapping tasks above to resolve semantic
ambiguity problems. This is the vital and decisive mapping task of the VQL. The
semantic mapping is going to solve the following concerns during query generating
process from the user’s initial VQL query:

• Disambiguating query items

• Resolving semantic conflicts

Disambiguating query items

This feature ambiguities inside itself. Coping with ambiguous items in the VQL
query made by a user is a decisive step in parsing it later on. Here the ambiguity
could be in terminological manner, i.e. requested data properties are not clear.
For example, a "Name" property in a query is ambiguous because the query parser
can not identify which “name” will be extracted, contact name or name of email
sender/receiver.

Clarifying these properties could be done by using data source specified in the
query and the ontologies of the system. Based on the data sources, the appreciate
properties in the ontology will be detected and used instead of ambiguous items.
For instance, concerning the "Name" property is described above, this mapping
task must rely on the related source described either in source or constraints
elements, e.g. Contact; after on, based on ontologies, appreciate properties will
be located such as contactFirstName, contactLastName.

Resolving semantic conflicts

In a further disambiguation users’ queries, especially when the user asks for in-
formation using an ambiguous entity over many data sources. The issue is that
how to identify user’s “intended” properties for which data sources. For example,
"Name" property is constrained with Email and Contact. If the "Name" prop-
erties is constrained with a source identified in a <relation> element, then the
issue is similar to the discussion above. Otherwise, the query has to:

• get all related properties in system ontology based on specified data sources.
In this case, there are probably more than one query generated; or

• suggest the most related properties from ontology based on a semantic
similarity of properties in the same query. For instance, if other properties
are major requesting for Contact items, so that the “names” of Contact
object would be suggested.

6 The Virtual Query Language 70

Obviously, the strategies could be combined as a aggregated solution in resolving
this problem.

Furthermore, all discussions above are mainly focused on VQL data query;
however these solutions of The semantic mapping is applied for all types of the
VQL query. Generally, all user-entered queries should be check for implied seman-
tic problems as well as the syntax of them. All these problems could be limited
by using a query generation interface of the VQS which is discussed details in
another context; and the system library (API) as well. Nevertheless, because of
the openness of the VQS and VQL, these issues must be taken care.

6.5 Summary

In this chapter we have presented the Virtual Query Language, a design of a query
language aiming at a significant complexity reduction in formulating semantic
meaningful queries.

Along with the VQS, this query language design helps VQS’s users comfort-
ably work with the virtual information. With support of the VQL, the users
only care about the concepts (information) of interest when they formulate the
requests. The VQL also introduces the special operators deducted from the VQL
query data type that support users in making complex queries in a simpler man-
ner, as well as the operators are also used by the VQS itself for further analysis
in the information retrieval process.

In addition, in this chapter we also presents the parsing mechanism for VQL.
The VQL parser can deal with the syntactic mapping from VQL queries to the
RDF queries. It can cope withthe semantic mapping: disambiguating the con-
cepts and semantic conflicts .

7 An Innovative Query Formulation

7.1 Introduction

The Semantic Web and ontologies have created a promising background for ap-
plying the intelligent techniques in information systems especially in Personal
Information Management (PIM) systems. In PIM systems, the effectively infor-
mation retrieval from a huge amount data of an individual is a challenging issue.
The SemanticLIFE’s VQS is our approach of using semantic web techniques with
an user-oriented method in order to tackle this challenge.

In the VQS-enhanced SemanticLIFE, the user is supported in issuing im-
precise queries to retrieve the rich semantic information from his/her historical
personal data. However, users themselves often do not actually know or remem-
ber the specific qualities of what they are looking for, but have some awareness
of other things related to the desired items [HT06a]. The VQS supports users
in this nature when querying the information from the huge ontological reposi-
tory effectively not only in the initial phase with offered ‘virtual information’ but
during the query process with the ‘context-based’ querying features.

In this chapter, we emphasize on the “front-end approach” with the help of
system ontologies and data sources: how to collect the metadata of data storage
sources and organize them into the form of an ontology; how to represent the
“virtual information” to the user for consuming; and how it is used to support
the user in generating unambiguous queries. The core of this approach is the
Virtual Data Component or so-called the Metadata Storage Sources which will
answer these questions.

The VQS system, with the organization of the ‘Virtual Data Component’ as
a context ontology, will guide its users to go through the system by intelligently
recommended query patterns based on the current query context, so-called query
map, and that context ontology (the virtual information). In our “front-end”
approach, this is the most crucial feature that is different to the current ontology-
based query systems [HT06a].

7 An Innovative Query Formulation 72

7.2 The Virtual Data Component

7.2.1 The Goals

From the user perspective, the Virtual Data Component (VDC) plays an impor-
tant role in the process of query generation in the VQS approach. The core of
the VQC is the module containing the Metadata Storage Sources (MSS). This
module acts as a virtual information layer allowing the user to be aware of the
meaning of the stored data sources and he/she can then specify more precise
queries as the result.

The VDC harvests the metadata of the data sources within the SemanticLIFE
metadata repository. An analysis process and a statistical computation are car-
ried out on these metadata sources to get the semantic information which is then
stored in the VDC and will be delivered to the user query generation interface.
This component is also referred as an “image” of the system database in further
query processing.

7.2.2 Metadata Storage Sources Collecting

In the SemanticLIFE metastore, there are different data sources’s ontologies exist
along with the instances. The SemanticLIFE system manages a huge range of
data from common personal information such as contacts, calendar, tasks, notes,
documents, files, phone calls, instant messaging logs and so on; to general data
such as maps and weather information [AHK+04].

Figure 7.1: A Fragment of the SemanticLIFE’s Datafeeds Ontology

Figure 7.1 presents the data feeds covered by the SemanticLIFE framework
in the current prototype. The data feeds are about the personal data of an

7 An Innovative Query Formulation 73

individual’s diary. From this ontology and the underlined instances, a VDC
service is called to extract the metadata, perform some statistical computation
and store the information in a new ontology, called the context ontology. This
ontology is used in the VDC to provide semantic information on the corresponding
data sources to the users.

As mentioned, the core of the VDC is a synthesis ontology which is
formed from these variety datafeeds ontologies. This task has been done
by using MAFRA ontologies merging framework, with “semantic bridge con-
cept” [MMSV02], as the mapping service to merge the ontologies. The process
consists of aligning the schemes and merging the instances as well.

7.2.3 Context-based Support of the VDC

The loosely-coupled organization of the metadata storage sources (an ontology
of the ‘virtual information’) reflects the flexibility of the Virtual Query System
as well as the SemanticLIFE system. Based-on this ontology, the context-based
query templates are also categorized according to the concepts. We can apply
the VQS or the SemanticLIFE system in different contexts by simply making
changes of this ontology.

Figure 7.2: A Example of the Virtual Data Component Ontology

7 An Innovative Query Formulation 74

The metadata storage sources are constructed as an ontology namely context
metadata or context ontology. By doing the taxonomy and reasoning on the
concepts and also on the instances, the metadata could be classified into the
categories and the data are arranged into the relevant ontology dependent on the
context that the SemanticLIFE framework is used for.

Figure 7.2 shows the ontology constructed by merging data sources’ schemes
and the instances. The ontology in the figure is an ontology for a personal diary
recording the daily activities of an individual who works in some projects. The
extracted metadata will be fetched from system datafeeds ontologies and put
into the VDC’s context ontology and conformed to its hierarchy. For example,
the “Place” class is an abstract concept and formed from classes “Contact”,
annotations, maps and their instances. This make the semantic information be-
comes more contextually, and we call this process is the concept contextualization.

Definition 7.1. A concept contextualization, Con, in VQS is a transformation
of concept (class) C of system ontology, O1, to the context ontology, O2. The
relationships between C and other concepts in O2 will be reformed.

Con : 〈C,O1〉 7−→ 〈C,O2〉

Hence, the context ontology could be redefined based-on the concept contex-
tualization as following:

Definition 7.2. The concept ontology, CO, of the VDC is:

CO =
n⋃

i=1

Coni

where, n is the number of concepts.

The metadata in the VDC’s context ontology (‘context ontology’ in short)
is still associated to the ‘real’ metadata in the system ontology. The metadata
in the new context is used for the VQS’s purposed in rendering information for
presentation and reasoning during the querying process.

Additionally, the VDC contains the summary information for each data
sources over the customized time-lines such as total items, number of items for
each data sources. This provides the user a very good awareness about his/her
data in the system. As a result, the user can query on the necessary statistic
information.

The Virtual Data Component is the typical feature of our system compared
with the other systems mentioned in Chapter 4. The basic idea behind is quite

7 An Innovative Query Formulation 75

simple: If the user is aware of his/her data, then he/she could generate more
unambiguous request. In the one hand, this reduces the complexity of the query
refinement process. And in another hand, with the VDC as a context ontology,
the system could flexibly adapt to a new scenario by changing the correspondent
context ontology.

7.3 Context-based Query Formulation in the VQS

In the VQS, the user is not only supported in the query formulation by the ‘vir-
tual’ information, but also during his/her querying process by a load of features
introduced as follows.

7.3.1 The VQL Query Template

Definition 7.3. A VQL Query Template (VQL-QT) is an abstract query pat-
tern, which is attached with a specific VQL query, containing the concepts and
resources for the user querying process.

VQL-QTs are classified on these concepts and resources so that the appro-
priate template will be recommended to the user based his/her querying context.
VQL-QTs help the user generating clear requests by only replacing the values
into the selected query pattern.

VQL Query Template Syntax

In the VQS, the VQL query templates, so-called VQL query patterns (VQL-
QPs), are defined to assist the user in formulating unambiguous queries. The
query templates contain the VQL queries with the necessary parameters and the
associated data sources. A VQL-QT or VQL-QP mainly consists of:

- A VQL query in form of a query file name.

- Parameters containing the values from the user’s input .

- Resources involved in the querying process.

and two optional parts:

- Description of the VQL-QT which is used for display to users.

- Query result format to specify the dedicated format of the results.

7 An Innovative Query Formulation 76

Figure 7.3: The schema of the VQL query template

The structure of a VQL query template is illustrated in Figure 7.3, in which
the components of the VQL query template are shown in a hierarchical tree.

Listing 7.1 is an example of a VQL query template. That VQL query template
is about retrieving the locations of all web pages found by Goolge search engine1

and these web pages have been browsed by a given person in a period of time.
The related sources for the retrieving process are mentioned in the <resources>

part. The parameters are put in sub parts <param> and these parameters could
be changed or added by the user according the information of interest.

VQL Query Template in Use

The VQL query templates are classified on the concepts of the VDC’s context
ontology as well as their involved data sources—so-called resources—they are
involved. The concepts of the VDC’s context ontology are reflected in parameters
of the VQL-QPs. Based on this classification, the VQS will match the VQL-QTs
with the user query context and the appropriate VQL-QP will be delivered to
the user as a recommendation.

1 Google, http://www.google.com/

7 An Innovative Query Formulation 77

Listing 7.1: A VQL Query Template Example

1 <?xml version="1.0"?>
2 <template type="vql">
3 <description >Finding a location of webpage browsed by
4 a person using Googl search engine </description >
5 <query name="webpersonse.vql">
6 <param>?location </param>
7 <param>?tiemStamp </param>
8 <param>?person </param>
9 </query>

10 <resources >
11 <resource >Webpage </resource >
12 <resource >Location </resource >
13 <resource >Person </resource >
14 </resources >
15 <rsformat >xml</rsformat >
16 </template >

When the template is in use, the attached VQL query will be loaded and its
variables are then replaced by the template’s parameters. The VQL query could
be continually edited by the user afterward dependent on the user’s interest.

Furthermore, during the VQS user’s querying process, a new VQL-QT could
be also created. The new VQL-QTs creation can be carried out in two ways:
firstly, it comes from an analysis based-on the querying context of the user. Sec-
ondly, from the editing of an existing VQL-QT which the user needs to save for
later use in form of another VQL-QT.

7.3.2 VQS User Context

Definition 7.4. The VQS User Context (VQS-UC) is a set of requested con-
cepts from the context ontology linked to the system ontologies and associated
resources, as well was the properties are in action.

Let call U is a VQS-UC, we have:

U = 〈C, R, P 〉

where C is the set of the underlying concepts, R is a set of associated resources,
and P is a set of queried properties.

In general, in order to formulate a VQS-UC, an analysis process is carried
out based on the objects in the querying process. The analysis process counts on
the following metadata:

7 An Innovative Query Formulation 78

• Querying concepts, their associated resources (based-on the system ontolo-
gies) and the querying properties.

• The detected semantic links (obtained from VQL’s GetLinks operator)
would help in term of finding the relationships of the information.

• And the query results the last execution of the user’s querying process.

A VQS-UC is used to keep the user’s querying concepts and querying space
that is about how the concepts and query results associated. From that, the new
knowledge will be deducted for ideas of the further requests.

7.3.3 VQS Query Map

Definition 7.5. A VQS Query Map (VQS-QM) is a network of VQL query
templates, in which the nodes are the VQL query templates and the connections
are the related concepts and their properties. M = 〈T, C, P 〉 is a VQS-QM, where
T is the set of VQL-QTs, C is the set of concepts of the underlying resources,
and P is the set of querying properties.

Generally, with the associated data sources and the VDC’s context ontology,
the VQL query templates creates a query map to make the connection network
among the templates and underlined resources.

According to the connections between the templates, when a VQL-QT is
chosen for making the new queries, the system also recommend the linked VQL-
QTs. Besides, when the user selects one or more properties to generate his/her
query, the system could also recommend the relevant templates to the user based
on the query map. The connections in the query map are used to determine
which templates could be used.

This query map is a very useful feature of the system because it allows finding
the related query templates more exactly and quickly.

7.3.4 Context-based Querying

The Virtual Data Component also enhances the query process by a “context-
based” querying feature, i.e. the query patterns will be proposed by the system
according to the context where the user is in. However, a user’s query context
not only contains all the queried objects and the querying concepts but they are
also associated to each other based on the context ontology.

How could the VDC recommend the relevant templates to the user? During
context-based information retrieval process, the VDC will do following steps:

7 An Innovative Query Formulation 79

1. Keeping track on the concepts queried by the user.

2. From these queried concepts, a context of the user’s querying process will
be formed. The context is a graph of queried and querying concepts.

3. When the user asks for a new template from his/her querying context
through an interactive interface, then a match of the query map in the
virtual data component and the user’s querying context will be made

4. The query patterns/templates will be collected and offered to the user.

Figure 7.4: An Example of Context-based Querying

For example, the context query being applied is about project management
which contains the concepts of Project, Person, Document, Publication, Partner,
Time, Location and so on. The user’s query context could be a graph of Person,
Location, Web search for Project as depicted in Figure 7.4. In this case a query
template such as “finding a person I have contacted in Vienna in a related project
found by Google search engine” will be proposed.

This feature is applied in the VQS’s interactive interface, in which the user
can right clicks on the results objects, instances or virtual data objects and the
system will show dedicated templates based on his/her context.

7.3.5 Context-based Query Results Representation

Figure 7.5: The Process of Returning Query Results in the VQS

The query results back to the VQS according to the schema the SemanticLIFE
metastore. Therefore, for the user’s information consuming, the results is put into

7 An Innovative Query Formulation 80

the “context” of the query concerning the VDC’s ontology before presenting to
the user as depicted in Figure 7.5.

As described in the figure, the results from the SemanticLIFE metastore
are based on the system ontologies; therefore, via the VDC, the query results
are contextualized with the VDC’s context ontology. Moreover, based-on the
VDC’s ontology, the related information associated to the relationships within
its hierarchy is also presented as the recommendation to the user.

7.4 Semantic Navigation with the VQS

7.4.1 VQS Semantic Traces

The traces are to keep tracing on successful querying sessions. VQS keeps traces
in form of query pipelines with annotation and classification, i.e. every trace is
attached with pipelines, used resources and annotation of each pipeline.

Definition 7.6. A trace is an extended pipeline with the user’s annotation and
the context applied. Let call T is a trace, we have:

T = {Pi, CTi}i=1−n

where T is an ordered set with Pi is a the ith query pipeline and CTi is the
attached ith context, which is a finite set of m concepts:

CT = {Ck}k=1−m

where Ck is a concept.

Based-on these traces, the users could resume and restore last querying ses-
sions. Moreover the traces could be used as the guidelines for the new querying
processes as the recommendations.

7.4.2 Context-based Navigation

The VQS is aiming at not only information retrieval aspects, but in inventing a
new way of query and process the query results for the next round. With helps of
the VQS-UC, VQS-QTs, VQS semantic traces, the feature of system navigation
by semantics, semantic navigation, is realized.

Initially, the VQS’s user would generate a new query based-on the virtual
information of the VDC. The user could also select from the commonly used

7 An Innovative Query Formulation 81

VQL-QTs and customize according his/her interest. After this initial phase, the
user enters the process of retrieving information, the system helps him/her for
the next query formulation. This could be done based on many VQS’s features
such as the user’s querying context, his/her query map, the query patterns in
form of the VQL-QTs, as well as the query results, especially the results of the
VQL operators which is rich of semantics.

In addition of the semantic traces, the VQS supports the user go through the
system by navigating source by source, concept by concept which would enter-
tain the user by suggestions and offered query patterns associated with his/her
querying space (query context and query map).

7.5 Summary

In this chapter, we have presented two main points: the Virtual Data Component
(VDC) organization; and a new approach for query formulation during the user’s
querying process. The VQS activities basically rely on the way how the metadata
organized and reflected in the VDC of the VQS. The VDC plays an vital role in
our approach. It is the base for supporting the innovative query formulations of
the VQS.

The VQS not only supports the user in formulating the virtual queries over
virtual data but also assists the user during the querying process with a concept
“context-based querying”. The concept is a combination of the context ontology,
the query templates and the query space of the user. Through this concept we
have introduced the “query map” which is a way to organize the query templates
for quick response to the demands.

In aggregation of the innovative features, the new way of support users in
exploiting the system—semantic navigation—is also discussed with helps of the
semantic traces, which are used to keep users’ querying session, and such stuffs
like VQL-QT, VQS-UC, query map.

8 Implementation Results

8.1 The SemanticLIFE Infrastructure

The SemanticLIFE framework has been built on a very high-loosely coupling ar-
chitecture: plugin architecture. Each component acts as an independent plugin
with its commonly-agreed interface about input and output data. This architec-
ture design deliberates its components from their development and implementa-
tion.

8.1.1 A Short History

The general design of the SemanticLIFE framework has not been changed so
much from “the day one”. However there are some changes in the details of
technologies applied and approaches in building components. Figure 8.1 shows
the first architecture design of the SemanticLIFE framework.

The SemanticLIFE framework is built based-on the Java Plugin Framework
(JPF)1, an opensource platform for developing plugin applications. The enabler
of the system is the Message Handler which processed every messages come
through the SemanticLIFE system, i.e. incoming, outgoing and the internal ex-
change messages. The Message Handler component is a web service providing the
service call for all other components. Every SemanticLIFE’s component (plugin)
is registered into the system’s JPF, and can send information to each other by
calling a service of the Message Handler by mentioning source and destination
components.

In the first and second prototypes, our SemanticLIFE framework had the
following components successful developed:

• Datafeed modules

1 http://jpf.sourceforge.net/

8 Implementation Results 83

Figure 8.1: The first architecture design of the SemanticLIFE framework

• Message Handler

• Simple Analysis Module

• Storage Module

• Search/Query Module

• Simple Presentation Module (Visualization)

Among the above modules, the Datafeed modules have been changed signifi-
cantly. From the beginning of our project, a set of datafeed modules were built
to deal with different data sources, such as emails, personal data (appointments,
tasks, notes), documents, web browsing sessions, chat logs with efficient synchro-
nization mechanism to detect changes from the data sources. For example, the
Datafeed module for personal Outlook data had been developed with a synchro-
nization mechanism—SyncML2—reflected in its Java implementation, Sync4j3;
and it worked well with all Outlook data types.

However, the problems we have to deal with these datafeed modules are
caused by the versioning issue, i.e. these applications must be kept updated for
the changes of data sources’ versions. This leads to another approach that is not
so much version-dependent.

2 http://www.snycml.org/
3 http://www.sync4j.org/

8 Implementation Results 84

8.1.2 Current Architecture

JPF is an excellent platform for plugin-based application development; however
when we started a new prototype for the SemanticLIFE with several new require-
ments and higher demanding tasks we decided to choose the Eclipse platform with
its innovative features. The new architecture of the SemanticLIFE framework is
depicted in Figure 8.2.

Figure 8.2: The New Architecture of the SemanticLIFE Framework

The main changes from the first two prototypes are:

1. Conform SOA software architecture.

2. Components are plugins offering services.

3. The Message Handler is now replaced by the Service Bus for registering
and invoking the services.

4. SemanticLIFE framework is now based-on the Eclipse platform to benefit
its powerful features such as PDE4, RCP5, ECP6, GMF7 and SWT8.

5. A new architecture is developed for the service transparency and collective
services invocation called Service Oriented Pipeline Architecture (SOPA).

6. The Datafeed modules are replaced by the GoogleDesktop plugin in order
to collecting data from the personal storage without considering the data
source versioning.

4 Plug-in Development Environment, http://www.eclipse.org/pde/
5 Rich Client Platform, http://www.eclipse.org/rcp/
6 Eclipse Communication Framework, http://www.eclipse.org/ecf/
7 Graphical Modeling Framework, http://www.eclipse.org/gmf/
8 The Standard Widget Toolkit, http://www.eclipse.org/swt/

8 Implementation Results 85

The data acquisition module—Datafeed module—is developed with help of
Google Desktop tool. The Google Desktop is becoming a ‘middleware’ for up-
per level applications to access the data on computers with the powerful index
mechanism and a wide range data cover and monitoring such as files, documents,
personal data stored in Outlook.

8.2 SemanticLIFE’s SOPA

In this section, we introduce an service-oriented architecture which is the heart of
the SemanticLIFE architecture. This part is a contribution mainly from [And06]
firstly designed for specific tasks inside the SemanticLIFE framework. Neverthe-
less, it can be applied in a wide range of SOA’s applications.

8.2.1 SOPA – The Service-Oriented Plug-in Architecture

Services and pipelines are grounding components of our proposed Service-
Oriented Pipeline Architecture (SOPA). The services may range from GUI ser-
vices (a.k.a. visual plug-ins) to business processing components (Web Services).
On the other hand, pipelines describe the composition of these services to fulfill
particular tasks. 〈S, P 〉 is a SOPA where the services S could be GUI services
Sv, internal web services Sw, and external web services Sx i.e. S = 〈Sv, Sw, Sx〉.
The pipelines P orchestrate different business services (Sw and Sx) and apply
transformations T to render the results back to the user or other services i.e.
P = 〈Sw, Sx, T 〉.

8.2.2 The SemanticLIFE’s Service Bus

Based-on Eclipse PDE and its extension point mechanism, we have built a solu-
tion for our integrating and publishing web services in the SemanticLIFE frame-
work. One part of our proposed solution is Services Bus offering the extension
point for service developers to publish their standard Java classes as web services.
The standard extension point mechanism of Eclipse facilitate visual configuration
of extensions with the extension provider. During the application start-up, the
Services Bus loads all the connected services and automatically deploys them
using embedded Jetty and Apache AXIS9. The deployment scripts are created
on the fly from the service description. Thus developers can, at the same time,
benefit from Eclipse RCP and Java web services in the similar and coherent

9 Apache Axis, http://xml.apache.org/axis/

8 Implementation Results 86

mechanism. Lastly, the Services Bus uses the standard WSDD10 and WSDL11

conventions for the service configuration. Different aspects of Services Bus plug-in
are discussed in detail below.

Plug-n-Play Web Services

The rational behind the development of Services Bus is to achieve the vision
of plug-n-play web services using plug-in and extension mechanism of Eclipse
platform. First of all an extension-point was configured by following the service
specification and deployment standards such as WSDL and WSDD. An abridged
version of the extension point schema is depicted in Listing 8.1.

Listing 8.1: The business services extension-point schema
1 <schema targetNamespace="at.slife.sbus">

2 <element name="service">

3 <complexType >

4 <sequence >

5 <element ref="operation" minOccurs="1" maxOccurs="unbounded"/>

6 </sequence >

7 <attribute name="name" type="string" use="required"/>

8 <attribute name="class" type="string" use="required">

9 <annotation >

10 <appInfo ><meta.attribute kind="java"/></appInfo >

11 </annotation >

12 </attribute >

13 </complexType >

14 </element >

15

16 <element name="operation">

17 <complexType >

18 <sequence >

19 <element ref="parameter" minOccurs="1" maxOccurs="unbounded"/>

20 </sequence >

21 <attribute name="name" type="string" use="required"/>

22 <attribute name="returnType" use="required"/>

23 </complexType >

24 </element >

25

26 <element name="parameter">

27 <complexType >

28 <attribute name="type" use="required"/>

29 <attribute name="name" type="string"/>

30 </complexType >

31 </element >

32 </schema >

Importantly the Services Bus exposes this extension point whereas the web
services developers consume it to publish standard Java classes as services (see
Figure 8.3 and Listing 8.2). Thus the web services could be developed and main-
tained analogous to other Eclipse plug-ins. The Services Bus on the other hand

10 Apache Axis WSDD, http://xml.apache.org/axis/wsdd/
11 Web Services Description Language, http://www.w3.org/TR/wsdl/

8 Implementation Results 87

reads configuration details of all the connected services during application start-
up. It then automatically creates the WSDD based deployment script and uses
embedded Jetty and Apache AXIS to complete the task.

Listing 8.2: Abridged version of a service extension description

1 <extension point="at.slife.sbus.services">
2 <service class="at.slife.query.QueryService"
3 name="at.slife.query">
4 <operation name="runQuery" returns="string">
5 <parameter name="queryStatement" type="string"/>
6 <parameter name="resultFormat" type="string"/>
7 </operation >
8 </service >
9 </extension >

Figure 8.3: An query service extension in the SemanticLIFE framework

Service Call Transparency

The Services Bus can be seen as the door to the SOPA system. It is responsible
for routing the service call requests to the actual connected service. An important
functionality of Services Bus is to deliver a lever of abstraction between system
services which greatly improves the flexibility of SOPA systems. Thus it provides
a uniform access layer and transparency to internal and external services.

Listing 8.3: Calling a service plugged into the Services Bus

1 Object [] params = . . .
2 Cal l c l i e n t = new Cal l ("at.slife.query") ;
3 Object r e s u l t = c l i e n t . invoke ("runQuery" , params) ;

The services plugged into the Services Bus could be called using either the
utility classes provided by the Services Bus (see Listing 8.3) or by using Apache
AXIS. The former shares the same naming conventions for class and method
names of the later, and both type of calls return exactly the same results. Ad-
ditionally for local services specifying only their name is sufficient but calling
external web services requires providing complete end-point URI.

8 Implementation Results 88

8.2.3 Services Pipeline

A Pipeline in SOPA terminology is a uniquely named set of service-calls and
intermediate transformations. The pipeline plug-in enables the SOPA systems
to realize scenarios based on the basic services and the pipelines. The pipeline
idea has been inspired from Apache Cocoon12 which is a web development frame-
work built around the concepts of separation of concerns and component-based
web development. Cocoon implements these concepts around the notion of ‘com-
ponent pipelines’, each component in the pipeline specializing on a particular
operation. This makes it possible to use a LEGOTM-like approach in building
web solutions, hooking together components into pipelines without any required
programming.

The pipelines and their corresponding structure are defined using an XML
structure that specifies the pipeline components and relevant transformations.
Listing 8.4 shows the basic structure of a typical pipeline:

Listing 8.4: A Simple Pipeline

1 <pipeline name="square">
2 <parameters >
3 <parameter name="num" type="xsd:double"/>
4 </parameters >
5 <call service="org.example.arithmatics" operation="multiply"/>
6 <parameter >{num}</parameter >
7 <parameter >{num}</parameter >
8 </call>
9 <transform method="xml" stylesheet="result.xsl"/>

10 </pipeline >

As shown above a pipeline is identified by its name (line 1). Each pipeline may
receive some input parameters that might be used anywhere inside the pipeline’s
scope. Lines 2 to 4 show the parameter section and definition of a parameter
called "num". The most interesting part of a pipeline which distinguishes our ap-
proach from other such solutions is the service-call part. At line 5 the "multiply"
operation of the service "org.example.arithmatics" is requested. The oper-
ation call can consume parameters of the pipeline. It is important to mention
that the services in a SOPA system are not limited to those provided by other
plug-ins but also include pipelines and external Web Services (distinguished by
complete end-point URI). We will discuss this issue in depth afterwards.

The results returned by the services may be transformed during the execution
of a pipeline. This feature let the results be transformed and converted to required
format. The transformation is performed by applying an XSLT transformation

12 http://cocoon.apache.org/

8 Implementation Results 89

to the current pipeline results. The pipeline plug-in keeps the results internally
and finally at serialization phase the results are rendered in required format. The
supported serialization formats are TEXT, XML, HTML, and XSWT13.

Figure 8.4: Service transparency in the SOPA architecture

As explained in the previous section, the available services in the SOPA
environment are routed via the Services Bus plug-in; i.e. all services will be
requested from Services Bus which is responsible for finding and then invoke the
corresponding service to do the task. This feature provides a service transparency
in the whole SOPA environment.

As stated earlier the services in SOPA are not limited to plug-in exposed
services but optionally may include pipelines and external Web Services. As
a result the SOPA system brings the service orchestration scenarios to a new
horizon. The business scenarios developed under eclipse programming framework
can combine resources coming from internal or external components via a single
service routing plug-in (Services Bus plug-in). Figure 8.4 depicts the service
transparency.

8.3 The Virtual Query System: Specifications

Based-on the SemanticLIFE infrastructure with the basics of SOPA and Service
Bus features, the VQS module and its components have been developed as plu-
gins of the whole SemanticLIFE framework. The VQS is a integration plugin
containing all its component plugins with service extensions.

13 http://eclipsewiki.editme.com/XSWT/ or http://xswt.sourceforge.net/

8 Implementation Results 90

Figure 8.5: VQS Workflow in its UML Sequence Diagram

8.3.1 VQS Workflow

The detailed workflow of the VQS is described in the UML sequence diagram
depicted in Figure 8.5. Here, at first, a process of fetching metadata from the
SemanticLIFE metastore and organized then into the VDC of the VQS as the
context ontology. This process only run once and it would be updated if the
ontologies of metastore is changed.

The overview of the VQS workflow has been mentioned in Section 5.3.2,
where we only highlight the other important points. Firstly, as described in
the Figure 8.5, in the phase of query formulation, the user could use the VQL
query templates which are pre-defined query patterns of the VQS. This helps the
users in the first steps. The VQL-QTs could be retrieved directly by the user
with(out) referring to the selective information of the VDC. Moreover, after the
initial phase, the VQL-QTs would be offered automatically based-on the user
query context.

Next, the VQL queries delivered to the subqueries generation phase are se-
mantically clarified based on the system ontologies. The query refinement is

8 Implementation Results 91

performed semi-automatically: referring to the VQS services to detect the am-
biguities during this phase; the generated subqueries are updated by the user if
necessary as a feedback to finalize the execution of the RDF queries. Finally, the
query results are again “contextualized” by VQS services before representing to
the user.

8.3.2 The Used Techniques

In the VQS implementation, we have taken the SemanticLIFE architecture as the
baseline and inherited the innovative features of the Eclipse platform. We have
used the Java open-source frameworks in form of the Semantic Web applications,
the ontology engineering and the web services.

The Eclipse Platform

The Eclipse platform gives a technical background not only for developing the
basic SemanticLIFE architecture, but also its modules as plugins using Eclipse
PDE. In the development of the VQS and its components, the help of PDE, RCP,
SWT is very valuable. Particularly, in the Eclipse-based VQS GUI design, we
have used WindowBuilder Pro14, a product of Instantiations15.

WindowBuilder Pro is a powerful and easy to use two-way Java GUI designer
based on the Eclipse SWT technology. It is composed of the SWT Designer and
the Swing Designer and is a very easy to create Java GUI applications without
spending a lot of time writing code to display simple forms.

The Semantic Web Framework

The Semantic Web framework is mainly used in our development is the Jena
Semantic Web Framework16 of HP Labs. Jena is a leading Java framework in
the area of building Semantic Web applications. Jena provides a programmatic
environment for RDF, RDFS and OWL, SPARQL and includes a rule-based
inference engine. Jena is open source and grown out of work with the HP Labs
Semantic Web Research17.

With the new releases (since version 2.4), Jena has integrated the Lucene
index engine18 to provide a powerful full-text searching feature for the SPARQL

14 http://www.windowbuilderpro.com/
15 http://www.instantiations.com/
16 http://jena.sourceforge.net/
17 http://www.hpl.hp.com/semweb/
18 http://lucene.apache.org/

8 Implementation Results 92

query language. This help to increase the precision in searching documents in
the SemanticLIFE framework.

The Ontology Mapping Framework

MAFRA – MApping FRAmework – is a conceptual description of the ontology
mapping process. Ontology mapping is the process where semantic relations
are defined between two ontologies at the conceptual level which in turn are
applied at data level transforming source ontology instances into target ontology
instances.

The MAFRA Toolkit19 implements a specific architecture for MAFRA. The
architecture of the system is based on the notion of Service which represents
not only the system transformation capabilities, but also the expertise in the
manipulation of specific semantic relations.

The Web Services Framework

Finally, for the backbone of the whole system, which connects the services ex-
tensions offered, invokes the services or related tasks, the Apache Web Services
frameworks20 have been used in our SemanticLIFE development. The VQS ser-
vice development inherits from the baseline system for its service extension de-
velopment.

The XML parser

A XML parser is an essential part in our approach and development. Our VQL
queries, VQL query templates, query pipelines and traces are coded in XML-
format. With the enhanced features, we choose DOM4J21 as our XML parser in
the VQS development.

8.3.3 The VQS Plugins

The VQS implementation has been developed with three plugins: the core query
execution unit, the VQS components and the VQS query GUI plugins.

19 http://mafra-toolkit.sourceforge.net/
20 http://ws.apache.org/
21 http://www.dom4j.org/

8 Implementation Results 93

Query Execution Plugin

This plugin is the lowest component in the VQS architecture as it works directly
with the back-end database. The query execution unit contains internal service
extensions such as: the query execution, the query results transformation (e.g.
transforming the query results to the specific format such as XML, JSON, RDF
graphs, or formatted text); and an aggregated query invocation that consists of
the query execution and results transformations. The declaration of this plugin
into the SemanticLIFE master service is shown in the Figure 8.6.

Figure 8.6: The Declaration of the Query Execution Plugin

VQS Components Plugin

This plugin is the main implementation of our query system which contains the
main features of the VQS. The services are mostly for internal use of the VQS
querying process; however, some service extensions are offered to other external
uses such as getting the ‘virtual’ information, retrieving the VQS-UC, executing
VQL queries, and getting the VQL-QT(s). The declaration of the VQS compo-
nents plugin into the SemanticLIFE framework is shown in Figure 8.7.

VQS User Interface Plugin

This plugin is the top layer in the VQS architecture as it works interactively
with the SemanticLIFE’s users. The query interface plugin consists of functional
windows (views) built on Eclipse RCP ViewParts and SWT widgets. These com-
ponents are then organized in a separate Eclipse perspective associated with the

8 Implementation Results 94

Figure 8.7: The Declaration of the VQS Components Plugin

main SemanticLIFE perspective. The declaration of the query interface plugin
into the ‘backbone’ of the SemanticLIFE framework is shown in the Figure 8.8.

Figure 8.8: The Declaration of the Query Interface Plugin

With the above declarations, each plugin needs an interface to “plug” (reg-
ister) into the SemanticLIFE plugin infrastructure; so that when the main ap-
plication runs, all registered plugins will automatically be loaded. The following
listing is an example for registering the VQS query UI plugin:

8 Implementation Results 95

Listing 8.5: The Query UI Plugin Listing

1 pub l i c c l a s s QueryUIPlugin extends AbstractUIPlugin
2 {
3 pr i va t e s t a t i c f i n a l S t r ing PLUGIN ID = "at.slife.query.ui" ;
4

5 // The s h a r e d i n s t a n c e .

6 pr i va t e s t a t i c QueryUIPlugin p lug in ;
7

8 pub l i c QueryUIPlugin () {
9 plug in = th i s ;

10 }
11

12 pub l i c s t a t i c InputStream getResource (S t r ing r e s)
13 throws IOException {
14 Path path = new Path (r e s) ;
15 URL ur l = Platform . f i nd (p lug in . getBundle () , path) ;
16 re turn u r l . openStream () ;
17 }
18

19 pub l i c void s t a r t (BundleContext context)
20 throws Exception {
21 super . s t a r t (context) ;
22 }
23

24 pub l i c void stop (BundleContext context)
25 throws Exception {
26 super . stop (context) ;
27 plug in = nu l l ;
28 }
29

30 /∗ ∗
31 ∗ R e t u r n s t h e s h a r e d i n s t a n c e .

32 ∗/

33 pub l i c s t a t i c QueryUIPlugin ge tDe fau l t () {
34 re turn p lug in ;
35 }
36

37 pub l i c s t a t i c ImageDescr iptor get ImageDescr iptor (S t r ing path) {
38 re turn AbstractUIPlugin .
39 imageDescriptorFromPlugin (PLUGIN ID , path) ;
40 }
41

42 protec ted void i n f o (S t r ing message) {
43 plug in . getLog () . l og (new Status (IS ta tus . INFO, PLUGIN ID , 0 ,
44 message , nu l l)) ;
45 }
46

47 protec ted void e r r o r (S t r ing message , Exception exp) {
48 plug in . getLog () . l og (new Status (IS ta tus .ERROR,PLUGIN ID , 0 ,
49 message , exp)) ;
50 }
51 }

8 Implementation Results 96

8.4 The Virtual Data Component

As mentioned in the previous chapter, the VDC contains the virtual information
stored in a context ontology. The context ontology can be customized by the
usage of the system and the user. For example, the system could have been used
in use case of personal project management system, therefore the VDC’s context
ontology would reflect the scenario as depicted in Figure 8.9.

Figure 8.9: Project Management Context Ontology Diagram

The VDC interface display the virtual information aggregated from the data
of SemanticLIFE metastore with reference to the context ontology and the system
ontology. Figure 8.10 is a screenshot of the VQS interface containing the VDC
component.

In the Figure 8.10, the VDC component is reflected in two views, the first one
is the left-upper views which contains the context ontology; and the second one
is the middle view with tab entitled “Query Home”. This view shows the virtual
information extracted from the SemanticLIFE metastore in form of the summary
information of the personal data. In this ‘home’ window, there are two tabs for
presenting the virtual information: the basic and advanced level. The basic view
is just for basic information of the user’s personal data; and the advanced view

8 Implementation Results 97

Figure 8.10: The Graphical User Interface of the Virtual Data Component

presents additional information such as time-based statistical information, last
ten items stored; last ten queries executed.

Other modules of the VQS are also depicted in Figure 8.10. The VQL-QT(s)
is listed in the right-upper view, and the traces are kept in the right-lower window.
The middle-lower part is used for results presentation. Finally, the query pipelines
are shown in the left-lower view of the main interface window.

8.5 The Context-based Querying Feature

8.5.1 VQL Query Templates

As the VQL-QTs are coded in XML that means any party could create and
edit the VQL-QTs outside the system. This could lead to syntactical errors
during the query template processing. Therefore, we have built a validity checking
mechanism for VQL-QTs based-on the its XSD schema.

8 Implementation Results 98

There are two cases of performing this check: firstly, when the VQS sys-
tem starts, all VQL-QTs are checked for their validity. Secondly, this checking
procedure will be called upon a VQL-QT is loaded for using.

8.5.2 The Context-based Querying

Figure 8.11: UML Sequence Diagram of the VQS Context-based Query

Figure 8.11 shows the sequence diagram of the VQS context-based querying
feature. We make it clear that this feature would be initialized after the first
query is successfully executed. Firstly, based on the VQS-UC the necessary re-
sources for the next query are obtained with respect to the context ontology; VQS
then retrieves the VQL-QT repository to get the appropriate VQL-QT upon the
resources.

The VQL-QT is then returned to the user for editing. Continuously, a pro-
cedure of the VQS would consult to the current query map and recommend the
relevant VQL-QT(s) to the user.

After execution the VQL query from the selected VQL-QT, the system will
update the VQS-UC for the next round of the querying process. This process will
reflect in the change of the VQL-QT view in the VQS GUI main window. The
updated VQL-QT view contains only the VQL-QT(s) for the current VQS-UC.
Nevertheless, there is an option to see all VQL-QTs at this time.

During the querying process, the user could save temporarily the queries in
form of “traces” shown in the “Traces” window in the main GUI screen. In
addition, the user can save the traces into permanent query pipelines for later
use because the traces will be removed for the next start of the system. He/she
could also add, change or delete the inappropriate VQL-QT(s) to imprive his/her
query effectiveness.

8 Implementation Results 99

8.6 Application Scenarios

After having introduced the VQS approach for the ontology-enhanced querying
of SemanticLIFE, we want to illustrate in this chapter by means of two applica-
tion scenarios how our approach may be practically applied and what benefits it
offers.

The first scenario is about the personalized project management (Sec-
tion 8.6.1) and the second scenario addresses the domain of e-Government in
term of personal use (Section 8.6.2). These two application scenarios have in
common that they require an infrastructure providing means for user-supported
querying. Moreover, as mentioned before, the ultimate goal of the SemanticLIFE
framework is aiming at building a personal digital memory supporting the PIM
systems. Therefore all the scenarios taken into consideration must reflect their
personal usage perspective.

8.6.1 Personalized Project Management Scenario

Scenario Description

A scientist works for several projects at the same time with different roles. Ev-
eryday he/she has a lot of work to do such as reading and sending a lot of emails
to projects’ members, making many phone calls, processing digital documents,
browsing the websites for his tasks, reading the paper/articles, and coding at
sometimes. Generally, he/she often makes annotation on what he has done.

He/she wants the SemanticLIFE system to organize his/her large repository
in a semantic way in order to retrieve effectively. Searching information in a
“mountain” of information of working projects is a challenging task for him/her.
He/she would like to have the support through the SemanticLIFE’s query mech-
anism, the VQS, to simplify the task of information retrieval.

VQS-contextualization

In order to fit the scenario into the SemanticLIFE, especially the information
retrieval task of the VQS, we can divide it into two main parts.

Firstly, the SemanticLIFE will deal with the issues related to storing data
semantically with the user’s annotation. A range of covered data could be email
messages, contacts (persons), calendar for storing appointments, tasks for keep-
ing projects’ tasks and progresses, digital documents, call logs, IM logs, web

8 Implementation Results 100

browsing sessions, external publication databases. All these data are kept into
the SemanticLIFE metastore with an underline ontologies.

Secondly, the main focus of the scenario is about the information retrieval in
the context of the SemanicLIFE’s VQS. This task is divided into two subparts:
first, the query formulation should be simple to the user so that he/she could
have the supportive feeling during his/her information retrieval sessions. The
second point is the capabilities of the VQS in returning the aggregated, exact
results as his/her interest as well as associated information that may be helpful
for the user. It means the VQL-QTs are oriented to the subject of scenario;
and the query results must be based on the context ontology for suggesting the
information as much relevant as possible.

The context ontology for this scenario is described in Figure 8.9. Additionally,
the demonstration for this application use case is presented in following link:
http://www.ifs.tuwien.ac.at/∼hhhanh/vqs/scenario1/.

8.6.2 The Personal E–Government services

Scenario Description

This scenario addresses the role of the VQS in dealing the user’s problems during
an individual’s life relating e-government services. The personal matters of e-
government services could be housing concerns, health-care/insurance services,
children schooling, justice matters and so on. With these, the user must store
a lot of his/her personal data during his/her life, and the range of data is quite
diversified.

In this scenario, we do not discuss about the issue of storing with anno-
tated information and ontological enrichment, we only mention the information
retrieval aspect to support the user in seeking the information of interest effec-
tively.

VQS-contextualization

In this scenario, the user has to deal with a lot of data from many government
services. The range of this data could consist of digital documents (Word/PDF
documents, digital forms, scanned documents in forms of images or PDF files,
and medical records and so on), contact persons, appointments, emails, logged
phone calls (if any), digital map, web browsing sessions or website URLs, etc.
The SemanticLIFE could help the user in organizing this data and store them in
its metastore with the semantic enrichment.

8 Implementation Results 101

The most important issue relies on the VQS with the context ontology that
can customize and orient all tasks to the user’s needs. In order to customize the
VQS for this scenario, the following matters must be prepared:

- The context ontology reflecting the personal e-gov services which mainly
focuses on organizing the personal document library.

- Extracting the metadata from SemanticLIFE metastore into the context
query is also the main concern.

- The set of VQL query templates for the proposed services.

- The presentations of VDC and the query results.

The context ontology and the demonstration for
this application scenario is presented in following link:
http://www.ifs.tuwien.ac.at/∼hhhanh/vqs/scenario2/.

8.7 Summary

The SemanticLIFE Framework is a collective work of a team, and it is still going
on with the exploration of new research directions.

In this chapter, we have presented the implementation contribution of the
query mechanism to the whole picture of SemanticLIFE. Details of used technolo-
gies, frameworks and the system design as well as two scenarios are described.
Additionally, the Service Bus, which is backbone of the SemanticLIFE frame-
work, is presented along the SOPA architecture. SOPA is an innovative feature
used by the VQS to organize the collective query invocation, and keep the queried
sessions for later use.

9 Conclusion

In this thesis we have introduced the SemanticLIFE framework as a personal
information management system to organize the personal data of humans and
discover the implicit knowledge with help of the Semantic Web technologies. In
the aspect of information retrieval in the SemanticLIFE system, we have pre-
sented an user-oriented approach—front-end approach—as an effort to help Se-
manticLIFE’s users in formulating the unambiguous queries as well as to simply
the way of creating complex queries. In this approach, an innovative method
of making queries based-on the metadata of the system data and the context of
the user and query space has been discussed. As the result, a query language—
the Virtual Query Language—has been developed, and the most importance is
that the Virtual Query System with many new features has been successfully
implemented.

9.1 The SemanticLIFE Framework

Inspired by the ‘Memex’ vision of Vannevar Bush in his article ‘As May We
Think’ [Bus45] and the emerging of the Semantic Web technologies, the Seman-
ticLIFE project is aimed at realizing the digital memories for managing the per-
sonal lifetime information and events.

The ideas of Bush’s became very popular nowadays with many research
and applications are geared to its realization. The distinguished vision of the
SemanticLIFE project is the ideas about capturing and digitalizing life-events,
life-information of individuals by exploiting the metadata from personal data; an-
notating and associating the extracted metadata and semantic enriched data for
users’ information retrieval. The important issues of the SemanticLIFE PIM
are: (1) how the personal data are to be discovered, organized and associated in
answering the questions from the users; (2) to enable the users to early querying
for information of interest when they use the system.

9 Conclusion 103

The development of the SemanticLIFE framework is a joint-work of all mem-
bers of SemanticLIFE-Team. The SemanticLIFE framework implementation has
not completely and ideally finished due to the evolutionary character of a basic
research project. There are some components still need to be completed and
improved. Nevertheless, the whole system is now functioning with the basic and
important components.

Firstly, the data acquisition module is developed with help of Google Desktop
tool as ‘middleware’ for upper level applications to access the data on computers
with the powerful index mechanism and a wide range data cover and monitoring
such as files, documents, personal data stored in Outlook. The data are col-
lected and semantically enriched by RDFizing and annotating with ‘Annotation’
component before storing into the SemanticLIFE metastore.

Secondly, a new architecture of the system has been developed based-on
Eclipse platform with new invention of the SOPA with Pipeline service and Ser-
vice Bus—a replacement of former Message Handler. With this architecture, the
components are registered into the system as plugins with their operations con-
figured as service extensions. A set of plugins for information retrieval are known
as query and query UI plugins are also developed with many new features such
as their own query language, new way of formulating queries, query templates.

And finally, a presentation and visualization tool is also successfully devel-
oped. It allows users to customize their views of information and data personally
and flexibly. The results are personally consulted with user profiles when render-
ing for presentation.

9.2 The Virtual Query System

In the main part of this thesis, we have focused on our query system—the Vir-
tual Query System—for the SemanticLIFE framework. Starting from the idea
of users’ awareness about their stored data which could help in asking for infor-
mation, our front-approach offers many features based-on the well-organization
of the collected metadata from the SemanticLIFE metastore. These metadata
are organized as the virtual information and stored in an ontology—the context
ontology.

We have also investigated the similar approaches in current ontology-based
query systems which have been discussed in details in Chapter 4. The survey give
us motivation for building another ontology-based query system and the research
directions which help to add a new approach into in on-building query system
of the SemanticLIFE. As presented through three chapter (Chapter 5 – Chapter
7), the VQS has three distinguished parts: the Context Ontology, so-called the

9 Conclusion 104

‘virtual information’, the Virtual Query Language (VQL) and its parser, and the
innovative context-based querying feature.

The second contribution of VQS is its query language—the Virtual Query
Language. This language is aiming at a light-weight query language instead of
RDF query languages. It enables the users and SemanticLIFE’s components to
deliberate from knowledge and binding to a specific RDF query language. VQL
is a XML-based language, so that we can formulate queries by any means of
editing or even create on the fly with the help of VQL’s interface. A schema-based
validation has been built for well-formed checking. In addition, the VQL parser is
successfully developed for syntactically and semantically mapping VQL queries
to the RDF queries used in the metastore. Furthermore, in our user-oriented
approach for VQL, we define VQL Operators that simplify the complex queries
formulation from the user’s side. The operators are about getting the related
information from the initial request, retrieve the metadata information of data
sources, the semantic associations of requested information, and the documents
encoded and uploaded into the metastore.

With VQS, the SemanticLIFE’s user cann not only be supported in the query
formulation at the initial phase of querying process, but also in getting help from
the VQS during the process. Based-on the user context of querying and the
VQS’s context ontology, the VQS analyzes the user’s query space—known as
VQS Query Map—for the new knowledge, and trying to match with the pre-
defined query patterns—known as VQL Query Templates—and then recommend
the most appropriate query patterns to the user. We have considered this feature
as an innovative approach to support users in complex query formulation.

As a part of the final product, an interactive query mechanism for VQS
approach implementation and its programmatic interface based-on the Semanti-
cLIFE’s architecture and SOPA have been developed and tested for some appli-
cations scenarios. The results are very much promising.

Last but not least, by outlining two attractive application scenarios, i.e. user-
oriented querying mechanism for the personal project management, and an infor-
mation retrieval environment for the personal use in manner of the e-Government
service, we have highlighted the benefits of using the VQS infrastructure for an
attractive information retrieval.

9.3 Future Work

In our future work, we will focus on the realization of the e-Learning and e-
Government scenarios. Additionally, we plan to extend these two scenarios by
integrating the features and functionality described in the third scenario, i.e. the

9 Conclusion 105

context-based query system. By integrating the underlying workflow ontology,
we want to demonstrate the benefits of seamlessly integrating multiple ontology
instances—possibly originating from different domains—within one VQS appli-
cation.

Based on real-world data gathered from this use case, we will carry out fur-
ther experiments for performance evaluation, in particular to achieve a more
detailed analysis and understanding of the effects of the various factors on query
performance. We will use the application-specific data as starting point for the
development of a VQS query optimizer.

Furthermore, our future work will focus on the improvement of the VQL ans
its parser, as well as the development of an ontology for VQL queries and VQL
query templates. These issues are to improve the preciseness during the process
of matching the user’s context and query map’s knowledge.

And finally, we plan to take a focus on user modeling research for ap-
plying them into the VQS’s approach to improve the personal aspect of the
SemanticLIFE’s aims. This would enable the VQS to work towards a more user-
oriented future.

Bibliography

[ACK04] Nikos Athanasis, Vassilis Christophides, and Dimitris Kotzinos. Gen-
erating on the fly queries for the semantic web: The ics-forth graphi-
cal rql interface (grql). In Sheila A. McIlraith, Dimitris Plexousakis,
and Frank van Harmelen, editors, Proceedings of International Se-
mantic Web Conference - LNCS 3298, pages 486–501. Springer,
November 2004.

[AHK+04] Mansoor Ahmed, Hanh H Hoang, Shuaib Karim, Shah Khusro,
Monika Lanzenberger, Khalid Latif, Elka Michlmayr, Khabib
Mustofa, Tinh H Nguyen, Andreas Rauber, Alexander Schatten,
Tho M Nguyen, and A Min Tjoa. Semanticlife - a framework for
managing information of a human lifetime. In Proceedings of the 6th
International Conference on Information Integration and Web-based
Applications and Services, September 2004.

[AJS+04] Eija Airio, Kalervo Jarvelin, Pirkko Saatsi, Jaana Kekalainen, and
Sari Suomela. Ciri - an ontology-based query interface for text
retrieval. In Proceedings of 11th Finnish Artificial Intelligence,
Helsinki, 2004.

[AKS99] Eytan Adar, David Karger, and Lynn Andrea Stein. Haystack:
Per-user information environments. In Proceedings of the 8th Inter-
national Conference on Information and Knowledge Management.,
1999.

[And06] Amin Andjomshoaa. Service-oriented pipeline architecture. JAX
Innovation Award Proposal, 2006. http://jax-award.de/.

[AS03] Kemafor Anyanwu and Amit Sheth. Ρ-queries: enabling query-
ing for semantic associations on the semantic web. In Proceedings of
the 12th international conference on World Wide Web, pages 690–
699, New York, NY, USA, 2003. ACM Press.

[AvH04] Grigoris Antoniou and Frank van Harmelen. A Semantic Web
Primer. MIT Press, 2004.

[BCDD02] Dave Banks, Steve Cayzer, Ian Dickinson, and Reynolds Dave. The
ePerson Snippet Manager: A Semantic Web Application. Technical
report, HP Laboratories Bristol, 2002.

Bibliography 107

[Bec05] Dave Beckett. Sparql query results xml format. Technical report,
W3C Working Draft, August 2005.

[BL98] Tim Berners-Lee. Semantic web road map. September 1998.

[BL99] Tim Berners-Lee. Weaving the Web: The Original Design and Ul-
timate Destiny of the World Wide Web. Harper Sans Francisco,
October 1999.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic
web: A new form of web content that is meaningful to computers
will unleash a revolution of new possibilities. Scientific American,
284(5):34–43, May 2001.

[BRA05] Davide Buscaldi, Paolo Rosso, and Emilio Sanchis Arnal. A wordnet-
based query expansion method for geographical information retrieval.
Technical report, CLEF Workshop, August 2005.

[Bus45] Vannevar Bush. As we may think. The Atlantic, 176(1):101–108,
July 1945.

[CMF+04] Tiziana Catarci, Tania Di Mascio, Enrico Franconi, Giuseppe San-
tucci, and Sergio Tessaris. An ontology based visual tool for query
formulation support. In Robert Meersman and Zahir Tari, editors,
Proceedings of OTM 2003 Workshops - LNCS 2889, pages 32–33.
Springer, 2004.

[CMN04] Luigi Cinque, Alessio Malizia, and Roberto Navigli. Ontodoc: An
ontology-based query system for digital libraries. In Proceedings of
the 17th International Conference on Pattern Recognition - Volume
2, pages 671–674, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[CSC04] Isabel F. Cruz, William Sunna, and Anjli Chaudhry. Ontology align-
ment for real-world applications. In Proceedings of The National
Conference on Digital Government - DG.O 2004, 2004.

[CTC02] Steve Cronen-Townsend and W. Bruce Croft. Quantifying query
ambiguity. In Proceedings of the Conference on Human Language
Technology, pages 94–98, 2002.

[DEFS98] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer.
Ontobroker: Ontology based access to distributed and semi-
structured information. In Proceedings of the IFIP TC2/WG 2.6
Eighth Working Conference on Database Semantics- Semantic Issues
in Multimedia Systems, pages 351–369, Deventer,The Netherlands,
1998. Kluwer, B.V.

[DHNS03] Peter Dolog, Nicola Henze, Wolfgang Nejdl, and Michael Sintek. To-
wards the adaptive semantic web. In Proceedings of the International

Bibliography 108

Workshop on Principles and Practice of Semantic Web Reasoning,
pages 51–68. LNCS-2901, Springer-Verlag, 2003.

[DSe06] John Davies, Rudi Studer, and Paul Warren (eds.). Semantic Web
Technologies – Trends and Research in Ontology-based Systems. Wi-
ley, 2006.

[FG96] Eric Freeman and David Gelernter. Lifestreams: A storage model
for personal data. In ACM SIGMOD Record, Bulletin 25,1, pages
80–86, March 1996.

[FHH03] Richard Fikes, Pat Hayes, and Ian Horrocks. Owl-ql: A language for
deductive query answering on the semantic web. Technical Report
KSL 03-14, Stanford University, Stanford, CA, 2003.

[FHLW03] Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang
Wahlster. Spinning the Semantic Web: Bringing the World Wide
Web to Its Full Potential. MIT Press, 2003.

[FR03] Andrew Fitzgibbon and Ehud Reiter. “memories for life” - man-
aging information over a human lifetime. Technical report, Grand
Challenges in Computing Workshop, UK Computing Research Com-
mittee, May 2003.

[GBL+02a] Jim Gemmel, Gordon Bell, Roger Lueder, Steven Drucker, and Curtis
Wong. Mylifebits: Fulfilling the memex vision. In ACM Multimedia
’02, pages 235–238, December 2002.

[GBL+02b] Jim Gemmell, Gordon Bell, Roger Lueder, Steven Drucker, and Cur-
tis Wong. Mylifebits: Fulfilling the memex vision. In ACM Multi-
media, December 2002.

[GBL03a] Jim Gemmel, Gordon Bell, and Roger Lueder. Mylifebits: Living
with a lifetime store. In ATR Workshop on Ubiquitous Experience
Media, September 2003.

[GBL03b] Jim Gemmell, Gordon Bell, and Roger Lueder. The mylifebits life-
time store. In ACM SIGMM Workshop on Experiential Telepresence
2003, November 2003.

[GC03] Vladimir Geroimenko and Chaomei Chen. Visualizing the Semantic
Web. XML-based Internet and Information Visualization. Springer,
2003.

[GHP01] Peter Gray, Kit Hui, and Alun Preece. An expressive constraint
language for semantic web applications. in preece,. In Proceedings
IJCAI-01 Workshop on E-Business and the Intelligent Web, pages
46–53, 2001.

Bibliography 109

[GLB06] Jim Gemmell, Roger Lueder, and Gordon Bell. Mylifebits: Personal
database for everything. Communication of The ACM, 49(1):88–95,
January 2006.

[GM03] R. Guha and Rob McCool. Tap: a semantic web platform. Inter-
national Journal on Computer and Telecommunications Networking,
42(5):557–577, August 2003.

[GMM03] R. Guha, Rob McCool, and Eric Miller. Semantic search. In Pro-
ceedings of the 12th international conference on World Wide Web,
pages 700–709, New York, NY, USA, 2003. ACM Press.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199–220, 1993.

[GS03] Elena Garcia and Miguel-Angel Sicilia. User interface tactics in
ontology-based information seeking. Psychology Journal, 1(3):242–
255, 2003.

[HAT06a] Hanh Huu Hoang, Amin Andjomshoaa, and A Min Tjoa. Towards
a new approach for information retrieval in the semanticlife digital
memory framework. In Proceedings of the 6th IEEE/WIC/ACM In-
ternational Conference on Web Intelligence, Hong Kong, December
2006. In press.

[HAT06b] Hanh Huu Hoang, Amin Andjomshoaa, and A Min Tjoa. Vqs:
An ontology-basedquery system for the semanticlife digital memory
project. In Robert Meersman, Zahir Tari, and Pilar Herrero, editors,
Proceedings of the 2th IFIF WG 2.14 & 4.12 International Work-
shop on Web Semantics, LNCS 4278, pages 1796–1805, Montpellier,
France, November 2006. Springer.

[HH00] Jeff Heflin and James Hendler. Searching the web with shoe. In
AAAI Workshop, pages 35–40. AAAI Press, 2000.

[HKQ02] David Huynh, David Karger, and Dennis Quan. Haystack: A plat-
form for creating, organizing and visualizing information using rdf.
In Proceedings of International Workshop on the Semantic Web, 7
2002.

[HNAT06] Hanh Huu Hoang, Tho Manh Nguyen, Amin Andjomshoaa, and
A Min Tjoa. A front-end approach for user query generation and
information retrieval in the semanticlife framework. In Proceedings
of the 8th International Conference on Information Integration and
Web-based Applications and Services, Yogyjakarta-Indonesia, De-
cember 2006. OCG Book Series. In press.

[HSR+04] Sebastian Hübner, Rainer Spittel, Rainer, Ubbo Visser, and
Thomas J. Vögele. Ontology-based search for interactive digital
maps. IEEE Intelligent Systems, 19(3):80–86, 2004.

Bibliography 110

[HSV03] Eero Hyvönen, Samppa Saarela, and Kim Viljanen. Ontogator: Com-
bining view- and ontology-based search with semantic browsing. In
Proceedings of XML-Finland Conference: Open standards, XML and
the Public Sector, October 2003.

[HT06a] Hanh Huu Hoang and A Min Tjoa. The state of the art of ontology-
based query systems: A comparison of current approaches. In Pro-
ceedings of the International Conference on Computing and Infor-
matics, June 2006.

[HT06b] Hanh Huu Hoang and A Min Tjoa. The virtual query language for
information retrieval in the semanticlife framework. In Proceedings of
the International Workshop on Web Information Systems Modeling
- CAiSE 06, pages 1062–1076, June 2006.

[HTN06] Hanh Huu Hoang, A Min Tjoa, and Tho Manh Nguyen. Ontology-
based virtual query system for the semanticlife digital memory
project. In Proceedings of the 4th International Conference on Com-
puter Sciences, February 2006.

[iPr06] iProspect. Search engine user behavior study. iProspect White
Pagers, April 2006.

[JSS00] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. Real life,
real users, and real needs: a study and analysis of user queries on
the web. Information Processing Management, 36(2):207–227, 2000.

[KAC+02] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dim-
itris Plexousakis, and Michel Scholl. Rql - a declarative query lan-
guage for rdf. In Proceedings of the Eleventh International World
Wide Web Conference, pages 592–603. ACM Press, August 2002.

[KBH+05] David R. Karger, Karun Bakshi, David Huynh, Dennis Quan, and
Vineet Sinha. Haystack: A general purpose information management
tool for end users of semistructured data. In Proceedings of 2nd
Biennial Conference Innovative Data Systems Research, pages 13–
26, January 2005.

[KCD+04] L. Kerschberg, M. Chowdhury, A. Damiano, H. Jeong, S. Mitchell,
J. Si, and S. Smith. Knowledge sifter: ontology-driven search over
heterogeneous databases. In Proceedings of 16th International Con-
ference on Scientific and Statistical Database Management, June
2004.

[McB02] Brian McBride. Four steps towards the widespread adoption of a
semantic web. In Proceedings of the 1st International Semantic Web
Conference, 2002.

[MHS05] Eetu Mäkelä, Eero Hyvönen, and Teemu Sidoroff. View-based user
interfaces for information retrieval on the semantic web. In Pro-

Bibliography 111

ceedings of End User Semantic Web Interaction Workshop, Alway,
Ireland, 2005. CEUR-WS.

[MHSV04] Eetu Mäkelä, Eero Hyvönen, Samppa Saarela, and Kim Viljanen.
Ontoviews a tool for creating semantic web portals. In Proceedings of
the 3rd International Semantic Web Conference, Hiroshima, Japan,
2004. Springer.

[MM00] Dan I. Moldovan and Rada Mihalcea. Using wordnet and lexical
operators to improve internet searches. IEEE Internet Computing,
4(1):34–43, 2000.

[MMSV02] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz.
Mafra - an ontology mapping framework in the semantic web. In
Proceedings of the 12th International Workshop on Knowledge Trans-
formation, July 2002.

[MSS+01] Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer,
and York Sure. Seal - a framework for developing semantic web
portals. In Proceedings of the 18th British National Conference on
Databases, pages 1–22, London, UK, 2001. Springer-Verlag.

[MTT98] Rila Mandala, Takenobu Tokunaga, and Hozumi Tanaka. The use
of WordNet in information retrieval. In Sanda Harabagiu, editor,
Proceedings of the Conference on Use of WordNet in Natural Lan-
guage Processing Systems, pages 31–37, Somerset, New Jersey, 1998.
Association for Computational Linguistics.

[Nic96] J. M. Nicolau. On thoughts about the brain. Brain Processes, The-
ories and Models, pages 71–77, 1996.

[Par04] David Parry. A fuzzy ontology for medical document retrieval. In
Proceedings of the second workshop on Australasian information se-
curity, Data Mining and Web Intelligence, and Software Internation-
alisation, pages 121–126, Darlinghurst, Australia, 2004. Australian
Computer Society, Inc.

[Pas05] Thomas B. Passin. Explorer’s Guide to the Semantic Web. Manning,
2005.

[PS05] Eric Prud’hommeaux and Andreas Seaborne. Sparql query language
for rdf. W3C Working Draft, November 2005.

[QHK03] Dennis Quan, David Huynh, and David R. Karger. Haystack: A plat-
form for authoring end user semantic web applications. In Proceed-
ings of the 12th International World Wide Web Conference, pages
738–753, May 2003.

[RSA04] Cristiano Rocha, Daniel Schwabe, and Marcus Poggi Aragao. A
hybrid approach for searching in the semantic web. In WWW ’04:

Bibliography 112

Proceedings of the 13th international conference on World Wide Web,
pages 374–383, New York, NY, USA, 2004. ACM Press.

[RSC04] Dave Reynolds, Paul Shabajee, and Steve Cayzer. Semantic infor-
mation portals. In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pages 290–291,
New York, NY, USA, 2004. ACM Press.

[SDA04] Shailendra Singh, Lipika Dey, and Muhammad Abulaish. A frame-
work for extending fuzzy description logic to ontology based docu-
ment processing. In Proceedings of 2rd International Atlantic Web
Intelligence Conference - LNAI 3034, pages 95–104, Berlin - Heidel-
berg, May 2004. Springer.

[Sea04] Andy Seaborne. Rdql - a query language for rdf. Member submission,
W3C, 2004.

[SGS03] Nenad Stojanovic, Jorge Gonzalez, and Ljiljana Stojanovic. On-
tologer: a system for usage-driven management of ontology-based
information portals. In K-CAP ’03: Proceedings of the 2nd interna-
tional conference on Knowledge capture, pages 172–179, New York,
NY, USA, 2003. ACM Press.

[SS04] Steffen Staab and Rudi Studer. Handbook on Ontologies. Interna-
tional Handbooks on Information Systems. Springer, 2004.

[SSS04] N. Stojanovic, R. Studer, and L. Stojanovic. An approach for step-
by-step query refinement in the ontology-based information retrieval.
In Prococeedings of the IEEE International Conference on Web In-
telligence (WI’04), pages 36–43, 2004.

[Sto03a] Nenad Stojanovic. Information-need driven query refinement. In Pro-
ceedings of the IEEE/WIC International Conference on Web Intelli-
gence, pages 388–395, Washington, DC, USA, 2003. IEEE Computer
Society.

[Sto03b] Nenad Stojanovic. On the role of a librarian agent in ontology-based
knowledge management systems. Journal of Universal Computer Sci-
ence, 9(7):697–718, July 2003.

[Stu04] H. Stuckenschmidt. Similarity-based query caching. In Proceedings
of the 6th International Confonference on Flexible Query Answering
Systems, 2004.

[TAAK04] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R.
Karger. The perfect search engine is not enough: a study of orien-
teering behavior in directed search. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 415–422,
New York, NY, USA, 2004. ACM Press.

Bibliography 113

[WGA05] David Wood, Paul Gearon, and Tom Adams. Kowari: A platform
for semantic web storage and analysis. In Proceedings of the 14th
International WWW Conference, 2005.

[WR05] Dennis Wollersheim and J. Wenny Rahayu. Ontology based query
expansion framework for use in medical information systems. Inter-
national Journal of Web Information Systems, 1(2):101–115, March
2005.

[ZYZ+05] Lei Zhang, Yong Yu, Jian Zhou, ChenXi Lin, and Yin Yang. An
enhanced model for searching in semantic portals. In Proceedings of
the 14th international conference on World Wide Web, pages 453–
462, New York, NY, USA, 2005. ACM Press.

Curriculum Vitae

Full Name: HOANG Huu Hanh
Address in Austria: Wiesberggasse 9/33

A-1160 Vienna, Austria
Address in Vietnam: 15/2 Nguyen Su Street

Hue City, Vietnam
Born: 13 April 1974

in Hue City, Vietnam.
Nationality: Vietnamese.
Marital Status: Married.

Education

Since 2003 PhD Studies of Computer Science at
Vienna University of Technology, Austria.

1999 – 2001 Master Studies of Computer Science at
Hanoi University of Technology, Vietnam.
Thesis: Performance Evaluation of TCP/IP Computer Network.

1992 – 1996 Bachelor Studies of Mathematics & Informatics at
Hue Pedagogy University, Vietnam.
Thesis: Vietnamese Text Data Compression.

1989 – 1992 Gia-Hoi High School, Hue City, Vietnam.
1980 – 1989 Nguyen-Du Elementary and Secondary School,

Hue City, Vietnam.

Working Experience

Since 2003: Research Assistant at Institute of Software Technology and Interac-
tive Systems, Vienna University of Technology, Austria.
Research areas: Software Engineering, Semantic Web, Ontologies, Knowledge
Management.

Curriculum Vitae 115

1996 – 2003: Lecturer at Hue University of Sciences, Vietnam.
Teaching areas: DataBases and DBMS, Software Engineering, Computer Net-
works, Web Development, Programming Languages.

February–March 2003: Visiting Lecturer at Hue-Aptech Computer Education
(Quang-Tri branch), Vietnam.
Teaching subjects: DBMS, Web Development, Computer Networks.

1997 – 2002: Being involved in a number of projects:

• National Project (as Project Assistant): Employee Management System
in the “Building the Management Software System at Hue University of
Sciences” project, 2003. (Grant No. NN03.09).

• Ministerial Project (as Project Assistant): “Computerizing the University
Management at Hue University of Sciences”, 1996. (Grant No. B96.TD.01).

• University Projects (as Project Manager):

- Vietnamese Data Compression, 1997.

- Building the Inter-Network at Hue University of Sciences, 1999.

- A Research Survey on XML Technology, 2001.

• External Project (as Project Manager): “Building the Internal Network
for Information Exchange at Department of Education – Thua-Thien-Hue
Province”, 2000.

Publications

Invited Talk

Information Retrieval in the SemanticLIFE Personal Digital
Memory Framework (Hoang Huu Hanh, Nguyen Manh Tho), invited
talk at CISE 2006, The 18th International Conference on Computer and
Information Science and Engineering, Vienna, Austria, December 16-18,
2006.

Conference and Workshop Papers

1. A Front-End Approach for User Query Generation and Informa-
tion Retrieval in the SemanticLIFE Framework (Hoang Huu Hanh,
Nguyen Manh Tho, Amin Andjomshoaa, A Min Tjoa), full paper accepted
at iiWAS 2006, The 8th International Conference on Information Integra-
tion and Web-based Applications and Services, Yogyjakarta, Indonesia, De-
cember, 2006.

Curriculum Vitae 116

2. Towards a New Approach for Information Retrieval in the Se-
manticLIFE Digital Memory Framework (Hoang Huu Hanh, Amin
Andjomshoaa, A Min Tjoa), short paper accepted at WI 2006, The 6th
IEEE/WIC/ACM International Conference on Web Intelligence, Hong
Kong, December, 2006.

3. VQS - An Ontology-based Query System for the SemanticLIFE
Digital Memory Project (Hoang Huu Hanh, Amin Andjomshoaa, A
Min Tjoa), full paper accepted at SWWS 2006, The 2nd IFIP WG 2.12
& WG 12.4 International Workshop on Web Semantics, LNCS 4278, pp.
1796-1805, Montpellier, France, November 1-3, 2006.

4. The Virtual Query Language for Information Retrieval in the Se-
manticLIFE Framework (Hoang Huu Hanh, A Min Tjoa), full paper
accepted at WISM 2006, The International Workshop on Web Information
Systems Modeling, pp. 1065-1076, Luxembourg, June 5-7, 2006.

5. The State of the Art of Ontology-based Query Systems: A Com-
parison of Existing Approaches (Hoang Huu Hanh, A Min Tjoa), full
paper accepted at ICOCI 2006, The IEEE International Conference on
Computing and Informatics, Kuala Lumpur, Malaysia, June 6-8, 2006.

6. Ontology-based Virtual Query Systems for the SemanticLIFE
Digital Memory Project (Hoang Huu Hanh, A Min Tjoa, Nguyen Manh
Tho), short paper accepted at RIVF 2006, The 4th IEEE International Con-
ference on Computer Sciences, HoChiMinh City, Vietnam, February 12-16,
2006.

7. ‘SemanticLIFE’ - A Framework for Managing Information of A
Human Lifetime (Ahmed M., Hoang Huu Hanh, Karim M.S., Khusro
S., Lanzenberger M., Latif K., Michlmayr E., Mustofa K., Nguyen H.T.,
Rauber A., Schatten A., Tho M.N. and Tjoa A. M.), full paper accepted at
iiWAS 2004, The 6th International Conference on Information Integration
and Web-based Applications and Services, Jakarta, Indonesia, September
27-29, 2004.

Books

1. Programming Language C (Le Manh Thanh, Hoang Huu Hanh, Truong
Cong Tuan), Education Publishing House, Vietnam, 1998. (Vietnamese)

2. Building Websites with FrontPage (Le Manh Thanh, Hoang Huu
Hanh), Education Publishing House, Vietnam, 2000. (Vietnamese)

