
Masterarbeit

picoJava-II in an FPGA

ausgeführt zum Zwecke der Erlangung des
akademischen Grades eines

Diplom - Ingenieurs

am

Institut für Technische Informatik 182/1

der

Technischen Universität Wien

unter der Leitung von

o. Univ. - Prof. Dipl. - Ing. Dr. Herbert Grünbacher

und

Univ.Ass. Dipl. - Ing. Dr. Martin Schöberl

als verantwortlich mitwirkendem Assistenten

durch

Wolfgang Puffitsch
Matr. - Nr. 0125944

Aspanger Straße 17, A–2822 Bad Erlach

Wien, im 23. November 2007 .

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://ti.tuwien.ac.at/rts/
http://www.tuwien.ac.at/
mailto:e0125944@student.tuwien.ac.at

ii

picoJava-II in an FPGA

The picoJava-II processor is Sun MicroSystems’ Java processor and thus a
popular reference design for other Java processors. While a number of new designs
are targeted at FPGAs, the picoJava-II processor was designed for ASICs – as there
is no implementation in an FPGA known, the validity of direct comparisons is
limited. Moreover, no performance figures are known from ASIC implementations,
which means that comparisons in this area could rely on estimations only. The
goal of this diploma thesis is the implementation of the picoJava-II processor in an
FPGA and the creation of the necessary environment for conducting benchmarks.

In this thesis, an overview about various Java processors is presented;
picoJava-II’s architecture is covered in detail. The design of the hardware modules
that need to be implemented is described as well as the diverse software compo-
nents. picoJava-II is compared to other Java processors with respect to resource
usage and clock frequency. Furthermore the results of the benchmarks are used to
evaluate the processor’s performance.

iii

iv

picoJava-II in einem FPGA

Der picoJava-II Prozessor ist ein von Sun Microsystems entwickelter Java-
Prozessor und daher ein beliebtes Referenzdesign für andere Java-Prozessoren.
Während viele neue Designs jedoch in FPGAs laufen, wurde der picoJava-II Pro-
zessor für ASICs entwickelt - da keine Realisierung in einem FPGA bekannt ist, ist
die Aussagekraft von direkten Vergleichen begrenzt. Da darüberhinaus auch kei-
ne Ergebnisse bezüglich der Performance von ASIC-Implementierungen bekannt
sind, konnten sich Vergleiche auf diesem Gebiet nur auf Abschätzungen stützen.
Das Ziel dieser Diplomarbeit ist die Implementierung des picoJava-II Prozessors in
einem FPGA und die Schaffung der notwendigen Umgebung für die Durchführung
von Benchmarks.

In dieser Arbeit werden überblicksmäßig verschiedene Java-Prozessoren
präsentiert; die Architektur von picoJava-II wird detailliert dargestellt. Das De-
sign der für die Realisierung notwendigen Hardware-Module wird beschrieben, wie
auch die verschiedenen Software-Komponenten. picoJava-II wird mit anderen Java
Prozessoren bezüglich Resourcenverbrauch und Taktfrequenz verglichen. Weiters
werden die Ergebnisse dieser Benchmarks dafür verwendet, die Performance des
Prozessors zu bewerten.

v

vi

Danksagung

Besonderer Dank geht an meine Familie, die mich in allen Belangen bei meinem
Studium unterstützt hat.

Ich möchte auch meinem Betreuer, Dipl. - Ing. Dr. techn. Martin Schöberl, für
seine hilfreichen Ratschläge danken, die wesentlich zum Gelingen dieser Arbeit
beigetragen haben.

vii

viii

Contents

1 Introduction 1
1.1 Structure of This Work . 1
1.2 Motivation . 2
1.3 The Java Virtual Machine . 2
1.4 FPGAs . 3

2 Related work 5
2.1 ASIC Designs . 6

2.1.1 picoJava-II . 6
2.1.2 JEMCore . 6
2.1.3 Cjip . 7
2.1.4 Jazelle . 7

2.2 FPGA Designs . 8
2.2.1 Lightfoot . 8
2.2.2 LavaCORE . 8
2.2.3 Komodo . 8
2.2.4 jamuth . 9
2.2.5 FemtoJava . 9
2.2.6 JOP . 9
2.2.7 BlueJEP . 10
2.2.8 jHISC . 10
2.2.9 SHAP . 11

3 The picoJava-II Architecture 13
3.1 Components . 13
3.2 Pipeline . 15
3.3 Instruction Folding . 15
3.4 Stack Cache . 17
3.5 Caches . 17
3.6 Registers . 19
3.7 Traps . 20
3.8 Method and Trap Frames . 21

ix

3.9 Quick Bytecodes . 21
3.10 Memory Layout . 22
3.11 Garbage Collection . 25

4 Hardware Implementation 29
4.1 Design Environment . 29

4.1.1 The DE2 Board . 29
4.1.2 Quartus-II . 31
4.1.3 ModelSim . 32

4.2 Megacells . 32
4.2.1 Stack Cache . 33
4.2.2 Cache Memories . 34

4.3 Memory and I/O . 34
4.3.1 SimpCon . 35
4.3.2 picoJava-II’s Memory Interface 37
4.3.3 Translating Transactions . 38
4.3.4 XML Schema . 39
4.3.5 Modules . 41

5 Software Implementation 43
5.1 Provided Software . 43
5.2 Loader . 44

5.2.1 Bytecode Engineering Library 45
5.2.2 Passes . 45
5.2.3 Layout of the Memory Image 46
5.2.4 Code Transformations . 47

5.3 Traps . 48
5.3.1 Memory Allocation . 49
5.3.2 Description of Individual Traps 49

5.4 Boot Process . 51
5.4.1 Boot Slot/Trampoline . 52
5.4.2 Boot Loader . 52

5.5 Class Library . 53
5.5.1 Custom Classes . 53
5.5.2 Standard Classes . 55

6 Results 57
6.1 Logic Resource Usage . 57
6.2 Memory Consumption . 57
6.3 Speed . 59
6.4 Performance . 60

6.4.1 JBE . 60

x

6.4.2 Benchmarked Platforms . 61
6.4.3 Evaluation . 61

6.5 Discussion . 64

7 Conclusion and Outlook 67

A Listings for Memory Mapping 69
A.1 XML Schema . 69
A.2 Memory Map . 71

B Memory and I/O Modules 73
B.1 Boot ROM Module . 73
B.2 LEDs Module . 75
B.3 Timer Module . 77

C Trap Implementations 79
C.1 new quick() . 79
C.2 lookupswitch() . 82
C.3 call clinit() . 83
C.4 lmul() . 85

D Library Classes 87
D.1 Native . 87
D.2 Constants . 88
D.3 UART . 89
D.4 UARTOutputStream . 90
D.5 Leds . 91
D.6 Timer . 92

Acronyms 93

xi

List of Figures

3.1 Block diagram of picoJava-II . 14
3.2 A common folding pattern . 16
3.3 Execution of a common folding pattern 16
3.4 Scheme of the stack cache . 18
3.5 Cache hierarchy . 18
3.6 Method frame . 21
3.7 Trap frame . 22
3.8 Format of references . 23
3.9 Object format . 23
3.10 Object format with handle . 23
3.11 Format of object headers . 23
3.12 Runtime Class Information structure 24
3.13 Method structure . 25
3.14 Class structure . 25
3.15 Relation of structures . 26

4.1 The DE2 board . 31
4.2 Timing dependent on routing . 34
4.3 The Memory Control Unit . 35
4.4 SimpCon back-to-back write and read at pipeline level 1 36

5.1 Schematic of bootstrap and execution 51
5.2 Implemented subset of the Java class library 56

6.1 Benchmark results in different configurations 63
6.2 Benchmark results compared to other processors 64
6.3 Jitter measurement . 65

xii

List of Tables

3.1 Folding groups . 17

4.1 Standard signals of SimpCon . 36
4.2 Extended signals of SimpCon . 36
4.3 picoJava-II’s memory interface signals 37
4.4 picoJava-II transaction types . 38

5.1 Layout of memory image . 47
5.2 Boot slot/trampoline . 53

6.1 LC usage of individual components 58
6.2 Memory usage of individual components 59
6.3 Detailed results of micro benchmarks 62
6.4 Detailed results of application benchmarks 63
6.5 Comparison of Java processors . 65

xiii

Listings

4.1 Sample module definition . 40
A.1 xml schema for memory mapping 69
A.2 xml memory map . 71
B.1 Boot ROM module . 73
B.2 LEDs module . 75
B.3 Timer module . 77
C.1 Implementation of new quick() . 79
C.2 Implementation of lookupswitch() 82
C.3 Implementation of call clinit() . 83
C.4 Implementation of lmul() . 85
D.1 com.jopdesign.harvey.system.Native 87
D.2 com.jopdesign.harvey.system.Constants 88
D.3 com.jopdesign.harvey.io.UART . 89
D.4 com.jopdesign.harvey.io.UARTOutputStream 90
D.5 com.jopdesign.harvey.io.Leds . 91
D.6 com.jopdesign.harvey.io.Timer . 92

xiv

Chapter 1

Introduction

Java was designed to be an object-oriented, portable, robust and secure language.
The latter three attributes are achieved by compiling the source code into a plat-
form independent representation and render Java promising for embedded systems,
where these features are just as important as in any other computing system.
Java’s platform independent representation is usually interpreted or executed via
Just In Time (JIT) compilation – both ways are not feasible in embedded systems
for reasons of performance and/or resource consumption. These techniques also
compromise Worst Case Execution Time (WCET) predictability for systems which
have to meet real-time requirements. Addressing these issues, usually with bias
towards performance, several Java processors have been developed, most promi-
nently picoJava, which was released by Sun Microsystems in 1997.

In this thesis, the implementation of picoJava-II in an Field Programmable
Gate Array (FPGA) is presented, which includes the design of various hard-
ware and software components. The implementation is also compared to other
Java processors w. r. t. its resource usage, speed, and performance. The com-
ponents developed in the course of this thesis are open source and summa-
rized in a package nicknamed Harvey, which is available for download at http:

//www.soc.tuwien.ac.at/files/harvey/. Parts of this work have already been
published in a research paper; similarities between the respective paper, [36], and
this thesis are thus inevitable and may occur without reference note.

1.1 Structure of This Work

The rest of this chapter points out the motivation behind this thesis and pro-
vides a short introduction to the Java Virtual Machine (JVM) and FPGAs.

Chapter 2 describes other Java processors in order to provide an overview about
the current state of the art.

1

http://www.soc.tuwien.ac.at/files/harvey/
http://www.soc.tuwien.ac.at/files/harvey/

CHAPTER 1. INTRODUCTION

Chapter 3 explains the architecture of the picoJava-II processor in detail.

Chapter 4 shows the design of various hardware components, including internal
memories, I/O, and external memory components.

Chapter 5 explains the design of software components, necessary to emulate
complex instructions, create executable programs, and provide a standard
Application Programming Interface (API).

Chapter 6 evaluates the design and compares it to other Java processors.

Chapter 7 draws a conclusion and outlines potential future work.

1.2 Motivation

picoJava is often referenced in research papers about other Java processors, but
information about implementations is rare. Attempts to release picoJava commer-
cially failed, and only one research paper [15] about an actual implementation of
picoJava-II in an Application-Specific Integrated Circuit (ASIC) could be found.

There is a paper that states that the SPECjvm98 benchmark been conducted
on picoJava-II [19]. Apart from a statement that results in simulation and actual
hardware were within 3% of each other, results are missing however. The paper
thus does not provide any information to compare picoJava-II to other processors.
Other papers pretend to compare the jHISC processor to picoJava [49, 48]. A closer
look at the results is disappointing, however: the results are estimations instead
of benchmarks of actual programs, and they are based on unrealistic assumptions.
The provided data is therefore of very limited usefulness only.

This thesis describes the implementation of the picoJava-II processor in an
FPGA and compares it to other Java processors. The goal is to provide sound
data for comparing the processor to other processors in order to verify or disprove
assumptions about it that are found in other papers. By providing an implemen-
tation which consists of open source components only, it is also possible to conduct
further tests without the need to implement the required components anew. Some
of the designed components can also be reused in the context of other processors.

1.3 The Java Virtual Machine

The JVM [26] is an abstract computing machine designed to support the Java pro-
gramming language [8]. In order to enhance portability and to achieve a high code
density, it is a stack machine with variable-length instructions (called bytecodes)
[27]. Furthermore, its instruction set is left intentionally incomplete, because one
design goal was to provide a high level of security. This includes that memory

2

1.4. FPGAs

is treated as black box so a malicious program cannot exploit a certain memory
layout. As a consequence, the JVM must rely on an underlying operating system,
or at least rudiments thereof.

The JVM specification defines 201 bytecodes which span a wide range of com-
plexity: from simple arithmetic (like iadd) through floating point operations (like
dmul) to highly sophisticated instructions like anewarray which resolves a symbolic
reference to a class and allocates an array of that type on the heap.

A fully compliant implementation of the JVM must be able to parse the class
file format, dynamically load new classes and to verify loaded classes. As the
Java programming language relies on garbage collection for memory management,
some garbage collector has to be implemented. These constraints entail that a
fully compliant implementation of the JVM can hardly consist of pure hardware,
but will usually also include some software as well.

1.4 Field Programmable Gate Arrays

Traditionally, processors have been implemented in ASICs. The process of creating
an ASIC is expensive and takes a considerable amount of time. For that reason,
a design has to be tested and verified thoroughly before even a prototype can
be produced. The advantage of this technology is however, that the circuit is
optimized for the application it implements.

An FPGA in contrast, is a general purpose semiconductor device that allows
the implementation of virtually any logic circuit. This is achieved with the help
of Logic Cells (LCs), which are configurable units consisting of a small Look-Up
Table (LUT) (with usually four inputs) and a flip-flop (which can be bypassed).
The connections between the LCs can be configured, so logic functions which are
more complex than a single LC allows can be implemented as well. FPGAs also
contain memory blocks, which are more efficient for storage than LCs. Modern
FPGAs contain specialized blocks for common tasks, e. g., multiplication, and are
large enough to implement complex architectures like picoJava-II or even multi-
processors. The advantage of this technology are its cost – development boards
for FPGAs are available for less than e100 – and its fast turn-around time.

The flexibility of FPGAs comes at a price however: the die area is bigger and
it is also slower, compared to an ASIC implemented in the same semiconductor
technology. For the die area, a factor of 17 to 35 is reported in [25], depending
on the design and the blocks available on the FPGA. In the same paper, a factor
of 3.0 to 4.8 was determined for the critical path delay, again depending on the
design and on the speed grade of the FPGA.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Related work

Since Java appeared in 1995, many projects have been concerned with speeding
up the execution of Java bytecodes. While one way is to natively execute the
bytecodes in hardware, another way is JIT compilation. The latter prevailed and
is the standard in desktop and server environments; the former is a niche product,
but still an option in embedded systems, where resources are scarce. Especially in
hard real-time and safety-critical systems JIT compilation is unfeasible, because
it is too hard to predict and infers an inacceptable variability of the execution
time. Batch compilation of Java programs would be a third way, but it voids
the portability of binaries and other advantages the JVM offers. In the following
sections, an overview of several Java processors is provided.

Apart from dedicated Java processors, also coprocessors are available to speed
up the execution of Java programs (e. g., Nazomi’s JA108 [29]). The PSC1000
processor [31], which is rooted in an architecture optimized for FORTH, is also
marketed as Java processor. Some processors like the Moon processor are not
described in the following sections, because although they are described in related
literature, e. g., [38], no primary information about them is available any more.

In the following sections, two measures for the resource consumption of a pro-
cessor will be used: gates and LCs. The term gate is rooted in the NAND-gate
which is the smallest two-input gate in CMOS logic and consists of four transistors.
To compute the gate count of an ASIC, its transistor count is divided by four. LCs
are used for measuring the complexity of FPGA designs. An LC usually consists of
a four-input LUT and a flip-flop, but various other features may occur in different
FPGA families. Although this affects the number of LCs for a design, the measure
is used, because it is the smallest common denominator for comparisons.

Another number that is relevant for evaluating an FPGA design is its memory
usage. It is kept separate from the LC count, because it concerns a different
resource on FPGAs. In ASICs, usage of on-chip memory is often taken into account
for the gate count, because the resource in question, the die area, is the same.

The number of gates and LCs cannot be converted easily, but a factor of 5.5

5

CHAPTER 2. RELATED WORK

to 7.4 is suggested in [38] for rough measures. Various details of a design may
influence this factor however; e. g., a synthesis tool might translate logic functions
into memory lookups and thus trade off LCs with memory. As shown in [25], the
usage of specialized blocks in an FPGA almost halves the area ratio when being
compared to ASICs.

2.1 ASIC Designs

2.1.1 picoJava-II

picoJava-II was designed for being implemented as an ASIC. It can be imple-
mented in 128 K gates for the logic and 314 K gates for internal memories [15].
Unfortunately, there is no data about the maximum frequency available, but some-
times it is assumed that the processor can run at 100 MHz ([30] uses this frequency
for picoJava-I). picoJava-II’s documentation specifies timings suitable for operation
at 200 MHz [44]. As the maximum frequency depends on the target technology
and no information about that is available, these figures have to be used with
caution. The Frequently Asked Question section [47] on Sun’s home page quotes
120 MHz for a performance estimation, and recommends a “0.25-micron or better
process to achieve the expected frequency”. The architecture is described in detail
in Chapter 3.

2.1.2 JEMCore

JEMCore is a direct-execution Java processor by aJile [2], [1]. It is based on the
32-bit JEM2 Java chip developed by Rockwell-Collins and available as IP core
and stand alone processor. In silicon, two versions exist today: the aJ-80 and the
aJ-100.

JEMCore is targeted at multi-threaded real-time applications. It features a
hard real-time, multi-threading kernel in hardware, atomic threading operations
and built-in deterministic scheduling queues. Thread switching can be done in less
than 1 µs. An optional unit, the Multiple JVM Manager (MJM), is available to
support two independent JVMs. JEMCore uses 25 K gates, the optional MJM
unit uses another 10 K gates.

The aJ-80 and aJ-100 processors run at 80 or 100 MHz, respectively. They
comprise a JEMCore, an MJM, 48 KB internal RAM, and peripheral components.
32 KB of the internal memory are dedicated data memory, 16 KB are used as
microcode memory. While aJ-100’s memory interface is configurable to be 8, 16
or 32 bits wide, the aJ-80 processor supports only a 8-bit memory interface.

6

2.1. ASIC DESIGNS

2.1.3 Cjip

The Cjip processor from Imsys implements multiple instruction sets to support
applications written in Java and C/C++ [21]. The instruction sets are described
in detail in [20]; object oriented instructions such as getfield are not part of the
instruction set, however.

Internally, Cjip is a CISC architecture, with most instructions – especially
instructions related to the JVM – implemented in microcode. Microinstructions
are 72 bits wide and provide efficient control over the processor’s hardware logic.
As the microcode memory is writable, custom instructions can be implemented
easily. The downside of this approach is that even simple instructions take several
cycles (e. g., iadd takes 12 cycles).

The processor can run at speeds of up to 80 MHz in 0.35 µm CMOS technology.
It uses 36 KB of ROM and 18 KB of RAM for fixed and writable microcode,
respectively. The Arithmetic Logic Unit (ALU) contains 33 registers, 1 KB on
on-chip memory is used as stack cache and string buffer. According to [38], the
logic core consumes about 20 percent of a 1.4-million-transistor chip, which would
equal 70 K gates.

2.1.4 Jazelle

Jazelle is an extension to the instruction set of ARM processors, similar to the
Thumb instruction set. There are two flavors: Jazelle DBX and Jazelle RCT [32].
The latter is designed to aid runtime compilation (RCT is an acronym for Runtime
Compilation Target), the former implements direct execution of Java bytecodes –
DBX is short for Direct Bytecode Execution. As the focus of this work is direct
execution rather than just-in-time compilation, Jazelle DBX will be discussed in
this section.

Jazelle DBX is implemented in less than 12 K gates according to [7]. This
number does not include the “traditional” parts of the processor, however, which
would have to be taken into account when comparing it to a stand-alone processor.
It is integrated into processors with speeds from 100 to 620 MHz and up to 128 KB
of data and instruction cache. One example of the processors that implements
Jazelle is the ARM7EJ-S processor. ARM states that this processor takes 75 K to
80 K gates to be implemented [6] and runs at around 100 MHz, depending on the
target technology.

7

CHAPTER 2. RELATED WORK

2.2 FPGA Designs

2.2.1 Lightfoot

Lightfoot is a hybrid 8/32-bit RISC processor core from DCT, based on a Harvard
architecture [12, 13]. Its data path is 32 bits wide, while its instructions are
only 8 bits wide. Unlike many other RISC processors, it supports variable length
instructions. It features a three-stage pipeline and contains a 32-bit ALU with a
32-bit barrel shifter and a 2-bit multiply step unit.

The core does not execute Java bytecodes natively, but as it allows parts of
its instruction set to be re-configured, it allows efficient implementation of virtual
machines. According to DCT, it is eight times faster than RISC interpreters
running at equivalent clock speeds.

In Xilinx FPGAs, it can run at speeds of up to 40 MHz. It consumes 1710 slices
in these FPGAs, which equals 3400 LCs. The core has also been incorporated
into an ASIC, the VS2000 processor from Velocity Semiconductor [43]. In this
processor, which also adds 4 KB of data and 4 KB of instruction cache, it can run
at 60 MHz, and it uses less than 30 K gates.

2.2.2 LavaCORE

LavaCORE is a configurable Java processor core [10]. Before the core is synthe-
sized, the application can be analyzed and bytecodes can be omitted or moved
from hardware to software to optimize various cost criteria. Cache sizes as well
as data widths are also configurable. Other modules that come along with Lava-
CORE include a hardware encryption unit, a floating point unit and a garbage
collector.

The stack is realized as register file, which is implemented as 32x32 dual-
ported RAM. The ALU is a 32-bit integer unit, which also includes a 2-cycle,
32-bit multiplier.

In a Xilinx Virtex-II FPGA, the core consumes 2220 slices (= 4400 LCs) and
runs at 25 MHz. The hardware deployed includes also Flash memory, which can be
used to store up to eight configurations for dynamic reconfiguration of the FPGA.

2.2.3 Komodo

Komodo is a multi-threaded Java processor, featuring a four-stage pipeline [11]. Its
focus is the handling of multiple real-time threads rather than performance. The
hardware allows four separate threads – three real-time threads can be mapped to
hardware threads directly, other threads must be non real-time threads and are
mapped to the fourth hardware thread. Thread switching can be done after each
bytecode instruction and can be used to hide latencies in instruction fetching.

8

2.2. FPGA DESIGNS

Interrupts are handled by separate threads rather than routines that block
the execution of other tasks. Due to the zero-cycle thread switching capability,
this allows low-latency event-handling. It also supports a scheduling scheme called
Guaranteed Percentage, which assigns a fixed share of computing time to a certain
thread [24].

A disadvantage is that the frequency of the processor pipeline is a quarter
of the system clock. An FPGA prototype running with a pipeline frequency of
4.125 MHz (or a system clock of 16.5 MHz) is mentioned in [50]. A frequency of
5 MHz (20 MHz system clock) and a resource usage of 1300 CLBs (= 2600 LCs)
in a Xilinx FPGA is reported in [38].

2.2.4 jamuth

jamuth is a further development of Komodo described in the previous section; the
focus on real-time multi-threading also applies to this processor [51]. In difference
to Komodo, a 4 KB instruction cache and a scratch memory were introduced to
speed up instruction fetching. jamuth also runs considerably faster, with a pipeline
frequency of 33 MHz, which correponds to a system frequency of 132 MHz. Its
resource usage is unknown, but expected to be comparable to Komodo.

2.2.5 FemtoJava

FemtoJava is an application specific micro-controller that can execute Java byte-
codes natively [22]. In order to reduce the resource usage, the application in
question is analyzed and bytecodes that are not used are omitted from the newly
generated version of the processor. Up to 68 bytecodes can be implemented which
are executed in 3 to 14 cycles. Depending on the number of implemented byte-
codes, the processor consumes between 1000 and 2000 LCs and can run at speeds
between 4 and 8 MHz in an Altera Flex 10K FPGA.

There exists also a pipelined version of FemtoJava [17] which uses up to
3749 LCs and runs at 34 MHz in an Altera APEX 20KE FPGA. The pipelined ver-
sion does not only run at a higher frequency, it also performs considerably better
in terms of cycles per instruction [9].

2.2.6 JOP

The Java Optimized Processor (JOP) is a Java processor targeted at embedded
hard real-time systems [38]. As features like stack dribbling and conventional
caches are difficult to analyze w. r. t. WCET, these features have been avoided. The
stack cache uses only two registers and a dual-port RAM, which is less complex
than a stack cache that is organized as register file both in terms of resource
consumption and WCET analyzability.

9

CHAPTER 2. RELATED WORK

In order to provide both predictability and acceptable performance, an ana-
lyzable method cache was developed [39]. Instead of caching blocks of memory,
methods are always cached as a whole, which is possible because in Java no jumps
outside of a method are allowed. As cache operations can thus only occur upon
invocation or return of a method with this caching scheme, far less information
has to be analyzed, which makes computation of the WCET feasible.

In its standard configuration, JOP uses 3.25 KB of on-chip memory for its
caches. The processor consumes – depending on the precise configuration – about
1800 LCs and can be clocked at 100 MHz in an Altera Cyclone FPGA.

As JOP is still developed actively, recent figures differ from the original version.
In [40], an enhancement of some array operations is described. The enhanced
version still runs at 100 MHz and consumes 2900 LCs.

2.2.7 BlueJEP

BlueJEP is an embedded Java processor, developed using the Bluespec SystemVer-
ilog environment [18]. It has its roots in JOP and is also micro-programmed pro-
cessor. An obvious difference to JOP is the six-stage pipeline, but also a number
of other features were changed.

As the Bluespec SystemVerilog environment is relatively new and acts on a
higher abstraction level as VHDL, BlueJEP is unsurprisingly larger than JOP,
using 3460 slices on a Xilinx Vertex-II FPGA (= 6900 LCs). The core of the
processor alone consumes 2422 LCs. In terms of speed, BlueJEP runs at 85 MHz
in a Virtex-II FPGA.

2.2.8 jHISC

jHISC is a Java processor based on the High Level Instruction Set Computer
(HISC) [49, 48]. Its goal is to achieve high performance by speeding up object
oriented instructions. Similar to picoJava, instruction folding is used to translate
stack-oriented instructions into a more RISC-like instruction set.

While HISC uses 128-bit descriptors for references and variables to achieve
fast execution of object oriented instructions, these descriptors were reduced to 32
bits in jHISC. Additional information to increase performance is stored along in
object headers. Software traps are avoided where possible and – apart from 64-bit
operations – 94% of all bytecodes are implemented in hardware.

The processor features a five-stage pipeline and uses a 4 KB instruction cache
and 8 KB data cache; as it is mandatory for processors that use instruction folding,
the stack cache is realized as register file. In a Xilinx Virtex FPGA, it has a
maximum frequency of 33 MHz and uses 8326 slices, equal to 16600 LCs.

10

2.2. FPGA DESIGNS

2.2.9 SHAP

The Secure Hardware Agent Platform (SHAP) is a recent implementation of the
JVM. It was published in 2007 by the Dresden University of Technology and tar-
gets “multi-threaded general-purpose applications in a secure environment under
real-time constraints” [33].

Garbage collection is taken care of by a hardware module that is integrated into
the memory management unit. This eliminates the need for using computational
power of the processor core for this task. The implemented garbage collection
algorithm is a concurrent mark-and-sweep algorithm to avoid long blocking times
of stop-the-world garbage collectors.

The handling of the invokeinterface instruction is aided by explicitly insert-
ing type coercion instructions. This enables the processor to dispatch interface
methods in constant time without the need for expensive sparse data structures
[35].

SHAP uses a method cache, similar to the one used in JOP. In difference to
JOP, it uses a stack-oriented policy; it also does not use a block-oriented allocation
scheme, but can place methods anywhere within the cache memory [34].

In a SPARTAN-3 FPGA from Xilinx, the processor runs at 50 MHz. With
the garbage collection module integrated, SHAP uses 2387 slices on this FPGA,
equaling about 4800 LCs. Without this module, it uses 1359 slices, equaling
2700 LCs. The stack memory is 8 KB in size and supports up to 32 threads; the
method cache is 2 KB in size.

11

CHAPTER 2. RELATED WORK

12

Chapter 3

The picoJava-II Architecture

The first version of picoJava [30] was introduced by Sun Microsystems in 1997. It
was targeted at the embedded systems market as Java processor with restricted
support for programs written in C1. In 1999, the processor was redesigned and
subsequently named picoJava-II, which is the version of the processor which is
described throughout this work.

After Sun decided not to produce picoJava in silicon, it was licensed to Fujitsu,
IBM, LG Semicon and NEC. These companies also did not issue the processor
in silicon and Sun finally released the Verilog code for picoJava-II under the Sun
Community Source License (SCSL) [46].

3.1 Components

picoJava-II consists of a number of components, which are described in detail in
[44]. Figure 3.1 shows a block diagram of these units; the components which
are shaded grey in this figure are not provided along with the source code of
picoJava-II, but have to be implemented in order to make it operable and are
referred to as megacells.

The components are named as follows:

• Instruction Cache Unit

• Integer Unit

• Floating Point Unit

• Data Cache Unit

• Stack Manager Unit

1The ELF file format even specifies a tag for identifying picoJava.

13

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

Instruction
Cache Unit

Bus Interface Unit

Integer Unit

Data
Cache Unit

Powerdown, Clock
and Scan Unit

Stack Manager Unit

Instruction cache RAM
and tag RAM

Floating Point Unit

Microcode ROM

 Data cache RAM
 and tag RAM

 Floating-point ROM

Stack cache

Figure 3.1: Block diagram of picoJava-II (adapted from [44])

• Bus Interface Unit

• Powerdown, Clock and Scan Unit

Instruction Cache Unit The Instruction Cache Unit (ICU) is responsible for
fetching and caching instructions. It itself contains the instruction cache memory,
the instruction buffer and logic to connect and control these units. The instruction
cache is a direct mapped cache with a line size of 16 bytes, which can be configured
to be 0, 1, 2, 4, 8, or 16 KB in size. The instruction buffer holds 16 bytes and can
deliver up to 7 bytes in one cycle to the Integer Unit (IU).

Integer Unit The Integer Unit (IU) decodes and executes the instructions. It
contains logic to execute operations directly in hardware or via microcode. As the
most complex instructions are emulated with traps, these traps are also generated
in this unit. An important part of the IU is the stack cache, which will be described
in more detail in Section 3.4. The operation of the Instruction Folding Unit (IFU),
which is also located inside the IU, is described in Section 3.3.

Floating Point Unit The Floating Point Unit (FPU) executes floating point
instructions via microcode. This unit is optional; if it is not present, the according
instructions have to be emulated with traps.

Data Cache Unit The Data Cache Unit (DCU) handles transactions for load
and store instructions. The data cache can be configured to be 0, 1, 2, 4, 8, or
16 KB in size. It is a two-way set associative, write back, write allocate cache, with

14

3.2. PIPELINE

a line size of 16 bytes. Logic for aligning byte and half-word accesses is contained
in this unit, as well as a buffer for write backs.

Stack Manager Unit The Stack Manager Unit (SMU) controls data transfers
to and from the stack cache, which is located in the IU. It contains logic to handle
stack overflow and underflow conditions and speculative dribbling.

Bus Interface Unit The Bus Interface Unit (BIU) is picoJava-II’s interface to
its environment. Arbitration between requests from the ICU and the DCU is done
here. Requests to memory and I/O devices are generated here as well.

Powerdown, Clock and Scan Unit The Powerdown, Clock and Scan Unit
(PCSU) manages the various powerdown modes picoJava-II supports.

3.2 Pipeline

picoJava-II contains a six-stage pipeline:

Fetch Instructions are fetched from external memory or the instruction cache.

Decode The Instruction Folding Unit groups and precodes instructions.

Register Up to two operands are read from the stack cache.

Execute Instructions are executed directly in hardware or via microcode.

Cache This stage accesses the data cache.

Writeback Result are written back to the stack cache.

3.3 Instruction Folding

Instruction folding is a mechanism to speed up execution of common instruction
patterns found in stack architectures. The instruction sequence shown in Figure 3.2
resembles the instruction add r1, r2, r3 of a register machine. While the se-
quence for the stack machine consists of four instructions, the register machine
would have to execute only one instruction, that can be executed in a single cycle
easily. Stack manipulation causes an overhead of up to 30 percent to complete the
same number of computations on a stack machine, compared to a register machine
[27]. The idea behind instruction folding is to translate suitable sequences into
RISC-like instructions that access the stack cache like a register file and thus can

15

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

A Java instruction

c = a + b;

translates to the following bytecodes:

iload_1
iload_2
iadd
istore_3

Figure 3.2: A common folding pattern

iload_1 iload_2 iadd istore_3 iload_1+iload2+iadd+istore_3

TOS

TOS

TOS

TOS

TOS TOS TOSTOS-1 TOS-1TOS-2

Execution without folding
Execution with folding

Figure 3.3: Execution of a common folding pattern (adapted from [27])

be executed efficiently. Figure 3.3 shows the difference between execution with
and without instruction folding.

The first step to recognize foldable patterns in picoJava-II is to examine and
classify the top seven bytes of the instruction buffer. There are six categories for
classifying instructions:

LV A load from a local variable or global register, a push of a constant,
e. g., iload 1

OP An operation that consumes two and produces one stack entries,
e. g., iadd

BG2 An operation that consumes two stack entries and breaks the group,
e. g., iaload

BG1 An operation that consumes one stack entry and breaks the group,
e. g., ifnull

16

3.4. STACK CACHE

LV LV OP MEM
LV LV OP
LV LV BG2
LV OP MEM
LV BG2
LV BG1
LV OP
LV MEM
OP MEM

Table 3.1: Folding groups

MEM A store to a local variable or global register,
e. g., istore 2

NF A nonfoldable instruction,
e. g., pop

Certain patterns of these categories are grouped together and translated into
RISC-like instructions. In Table 3.1, these patterns are shown; each line in the
table represents a foldable group.

3.4 Stack Cache

The stack cache is an integral part of picoJava-II’s architecture. It combines both
stack-based processing and register-like efficiency [27]. Due to this duality, it is
sometimes referred to as “register file”, e. g., the file describing the hardware unit
is called rf.v. It is a direct mapped cache, or, from another point of view, a circular
buffer. Figure 3.4 shows how the stack cache is organized.

In order to keep the data in the stack cache valid, a technique called dribbling
is used: when the stack grows, old entries are spilled to memory, when the number
of valid entries gets too low, the stack is filled with entries from memory [30]. This
is done in the background; consequently, the stack cache has two write ports and
three read ports. The limits for spilling and filling the cache can be configured to
achieve optimal performance.

3.5 Caches

picoJava-II uses separate caches for instructions and data. This separation results
in the need for explicitly ensuring the consistency of the caches. The stack cache
is also a part of the stack hierarchy; some instructions act on the stack cache,

17

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

grow shrink

E
x
e

c
u

ti
o

n
 u

n
it D

a
ta

 c
a

c
h

e
spill

fill

TOS

low mark

high mark

Figure 3.4: Scheme of the stack cache (adapted from [27])

Noncacheable
operations

Memory
operations

Stack cache
operations

Instruction
fetch

Stack cache

Data cache Instruction cache

Memory

Figure 3.5: Cache hierarchy (adapted from [45])

others on the data cache, yet others bypass the caches and access memory directly.
Figure 3.5 shows the various caches and how they relate to each other.

Mixing cached and non-cached instructions (e. g., store word and
ncstore word) may cause problems, because the state of the memory and
the caches do not match. E. g., data written to memory with non-cached instruc-
tions is overwritten upon write-backs from the cache. A part of the memory, the
region from address 0x30000000 to 0x3fffffff, is never cached. Therefore, I/O
modules are preferably mapped to that region.

A number of special instructions is provided for diagnosis, initializa-
tion, and flushing of the caches. The cache flush, cache index flush and
cache invalidate instructions act upon both the instruction and data cache in
order to faciliate synchronisation of the caches. Other instructions enable the user
to read and write the contents of the caches and the tag memories.

18

3.6. REGISTERS

3.6 Registers

Several registers are maintained by the core, which are visible to the user. They
are read with the read reg and priv read reg instructions and written with the
write reg and priv write reg instructions.

The following registers are available:

Program Counter Register pc adresses the first byte of the instruction cur-
rently executed.

Local Variable Pointer Register vars points to the base of the current local
variables region on the stack; local variable zero is located at that address,
other variables towards lower addresses.

Frame Pointer Register frame contains the base address of the current call
frame information on the stack; code compiled from other languages might
use it differently, however.

Top-of-Stack Pointer Register optop points to the current top-of-stack.

Minimum Value of Top-of-Stack Register oplim contains the minimum
value that the optop register can hold; limits stack growth to a certain
memory region.

Address of Deepest Stack Cache Entry Register sc bottom is used by
the stack cache management to track the “deepest” valid entry in the stack
cache.

Constant Pool Register const pool points to the element zero of the con-
stant pool; additional entries are located towards higher addresses.

Memory Protection Registers userrange1 and userrange2 are used to
handle memory protection.

Processor Status Register psr controls which features of the processor are en-
abled at which level (e. g., address checking).

Trap Handler Address Register trapbase contains the address of the trap
table and a field to read the type of a trap. As a consequence of its layout,
the trap table must always be aligned to a 2 KB boundary.

Monitor Caching Registers The registers lockcount0, lockcount1,
lockaddr0 and lockaddr1 are used to accelerate the monitorenter and
monitorexit instructions.

19

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

Garbage Collection Register gc config holds information to filter stores to
the heap and thus supports garbage collection.

Breakpoint Registers The registers brk1a and brk2a contain breakpoint ad-
dresses, the register brk1c is used to manage breakpoints.

Version ID Register versionid contains a number to identify the manufac-
turer.

Hardware Configuration Register hcr contains hard-wired, read-only infor-
mation about the parameters of the processor (e. g., cache sizes).

Global Registers The registers global0. . .global3 are used to store global
information in applications.

3.7 Traps

Traps are used for three purposes in picoJava-II:

1. Instruction emulation

2. Exceptions

3. Interrupts

Instructions which are not implemented in hardware or in microcode, are em-
ulated through traps. This includes especially instructions which involve class
loading or resolving symbolic references. Many of these instructions can be re-
placed with their quick counterparts, which often remove the need for taking a
trap or at least simplify the trap significantly (cf. Section 3.9). Another important
class of instructions which need to be emulated are floating point instructions, if
picoJava-II is configured not to include the FPU. The index into the trap table for
emulating an instruction equals its bytecode. Other traps are mapped to locations
of instructions which do not need to be emulated.

The exceptions which have traps associated include “standard” exceptions
which can be thrown by various bytecodes, such as the NullPointer exception.
The hardware can also give rise to exceptions; illegal instructions or invalid align-
ment of memory addresses will trigger the execution of the corresponding traps.

picoJava-II supports 16 interrupt traps: one trap is dedicated to the nonmask-
able interrupt, the remaining traps handle interrupts with 15 different priority
levels. The latency of interrupts can vary from six cycles in the best case to sev-
eral hundred cycles if caches need to be flushed. Assuming that a cache line fill or
writeback takes 30 clock cycles, the worst case latency is 926 cycles [45].

20

3.8. METHOD AND TRAP FRAMES

VARS

FRAME

Object reference

OPTOP

Previous VARS

Return PC

Previous FRAME

Argument i

Argument 1

Local variable j

Local variable 1

Current method pointer

Previous CONST_POOL

Figure 3.6: Method frame (adapted from [45])

3.8 Method and Trap Frames

Figure 3.6 shows how the stack layout of a method immediately after invocation
looks like. The layout of the arguments and local variables is enforced by the
JVM specification. The saved values of pc, vars, frame and const pool are
used to restore the respective values upon return. The pointer to the descriptor
of the current method is used to retrieve the current class, which is needed for
synchronization. Of course, trap functions may use this information for other
purposes as well.

In Figure 3.7 the stack layout of a trap function at the start of its execution
is shown. Note that it is not compatible to the layout of a regular method. The
vars register remains unchanged during the invocation of the trap and must be
set by the software to the new value of optop before returning from the trap.
The value of the return pc has normally to be changed as well, because it points
to the instruction that caused the trap, i. e., this instruction would be executed
again.

3.9 Quick Bytecodes

picoJava-II does not only support the instructions defined in the Java Virtual
Machine Specification [26], but also quick bytecodes. These instructions were
mentioned in the first edition of the specification, but were removed in the second

21

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

VARS

FRAME

OPTOP

Previous VARS

Return PC

Previous FRAME

Old operand stack

Saved PSR

Figure 3.7: Trap frame (adapted from [45])

edition. They were introduced to simplify the execution of complex bytecodes,
which would have to resolve symbolic references even if these references already
have been resolved.

An example for this is the getfield instruction. This instruction has to resolve
the symbolic references to the field and the class. After the offset of the field has
been computed, this will not change throughout execution. When the getfield

instruction gets replaced with the getfield quick instruction, the index to the
constant pool gets replaced with the offset of the field in the object. picoJava-II
can then execute this instruction without taking a trap, which of course enhances
performance significantly. The getfield quick instruction can be executed in one
or four cycles, depending on whether the object is referenced directly or through
a handle. Taking a trap in contrast infers an overhead only for setting up the trap
frame of about six cycles [45].

3.10 Memory Layout

References in picoJava-II do not only contain the address of an object, but also
some additional information. Bits 30 and 31, referred to as GC in Figure 3.8, can
be used by a garbage collector. They are described in Section 3.11 in detail. Bit 1,
labelled X in Figure 3.8, can be used freely by the software. Bit 0, called handle bit
and labelled H, decides whether an object is accessed directly or through a handle.
Accessing objects through handles allows the garbage collector to move objects
easily, at the expense of slowing down instructions which operate on objects.

Figures 3.9 and 3.10 show how picoJava-II accesses objects, depending on
whether the handle bit is cleared or set. Arrays do not differ substantially from
objects; their layout contains one word for the size and an according number of
elements.

22

3.10. MEMORY LAYOUT

31 30 29 2 1 0
GC Address X H

Figure 3.8: Format of references (adapted from [45])

Object Reference Optional header words

Instance Variable K

Instance Variable 1

GC 00

Object header

Figure 3.9: Object format (adapted from [45])

Object Reference Optional header words

Instance Variable K

Instance Variable 1

GC 01

Object storage pointer

Object header

Figure 3.10: Object format with handle (adapted from [45])

31 30 29 3 2 1 0
X X Method Vector Base X X L

Figure 3.11: Format of object headers (adapted from [45])

Figure 3.11 shows the format of the object header. Bit 0 is reserved as lock bit
(labelled L) and is used for synchronization. Bits 3 to 29 hold a reference to the
method vector table; as all other bits of the object header are zeroed out when
accessing the method vector table, it must be aligned to a double-word boundary.
The remaining four bits of the object header are reserved for implementation
dependent uses.

To allow implementation dependent information to be stored together with
objects, additional header words may be defined, which then have to be maintained
by software.

The data structures picoJava-II uses are enforced by the instructions imple-
mented in hardware. As there are a number of fields which are unused by these

23

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

Method Vector Base

Method struct n pointer

Method struct 0 pointer

00 000

Runtime class info reference Object or array header

Unused

Unused

Unused

Unused

Unused

Class ID

Unused

Figure 3.12: Runtime Class Information structure (adapted from [45])

instructions, information which is needed by instructions that are implemented as
traps can be stored there. An example for this is the invokeinterface quick() trap
function described in Section 5.3.2. It uses a word in the Runtime Class Info struc-
ture for the size of the method vector table and a word in the Method structure
to identify interface methods.

The Runtime Class Information structure is shown in Figure 3.12. The field
Class ID is used by the checkcast quick and instanceof quick instructions and
must be a unique identifier for the class. The Method Vector Base field of object
references points to the method vector, which is part of the Runtime Class Info
structure.

Each entry of the method vector points to a Method structure; the layout of
this structure is shown in Figure 3.13. The Method start PC field points to the
first instruction of the method. The Argument bytes and Local variable bytes
fields hold the number of bytes to be taken into account upon invokation of the
method for the respective purpose. The Constant pool pointer field points to the
constant pool of the method, the Class reference field to its class. The Index field
is used to construct the method pointer that is part of the method frame.

The Class structure shown in Figure 3.14 describes a class that is loaded into
memory. It consists of references to the Runtime Class Information and the super
class and thus provides the information for moving upwards in the object hierarchy.

Figure 3.15 shows how the various structures described in this section relate to
each other.

24

3.11. GARBAGE COLLECTION

Class reference

Method struct n pointer Method start PC

Local variable bytes

Index

Unused

Unused

Unused

Unused

Constant pool pointer

Args bytes

Figure 3.13: Method structure (adapted from [45])

Super class reference

Class reference Object or array header

Unused

Unused

Unused

Unused

Unused

RT class info reference

Unused

Unused

Figure 3.14: Class structure (adapted from [45])

3.11 Garbage Collection

picoJava-II facilitates garbage collection in several ways. The means described in
this section can be used to implement different garbage collection algorithms.

Object references contain a handle bit, which decides whether an object is to be
accessed directly or through a handle (cf. Figures 3.9 and 3.10). By using handles,
objects can be relocated easily, because only the reference in the handle changes,
and references to a certain object elsewhere do not need to be changed. Relocation
of objects is usually done by garbage collectors to avoid fragmentation of memory.

In each reference, three bits are available for use by software, and in each object
header four bits are available. These bits can be used for garbage collection, e. g.,
to mark objects in a mark-sweep garbage collector. By using bits in the reference
or object header, there is no need to load additional data from memory.

25

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

O
bject reference

Instance V
ariable K

Instance V
ariable 1

M
ethod V

ector B
ase

S
uper class reference

C
lass reference

O
bject or array header

U
nused

U
nused

U
nused

U
nused

U
nused

R
T

 class info reference

U
nused

U
nused

M
ethod struct n pointer

M
ethod struct 0 pointer

O
bject or array header

U
nused

U
nused

U
nused

U
nused

U
nused

C
lass ID

U
nused

C
lass reference

M
ethod start P

C

Local variable bytes

Index

U
nused

U
nused

U
nused

U
nused

C
onstant pool pointer

A
rgs bytes

E
lem

ent n

E
lem

ent 0

C
onstant pool pointer

F
igu

re
3.15:

R
elation

of
stru

ctu
res

26

3.11. GARBAGE COLLECTION

Third, picoJava-II supports write barriers, which enable the garbage collector
to track which references are written to memory. This information is needed by
concurrent garbage collectors to cooperate with other threads.

27

CHAPTER 3. THE PICOJAVA-II ARCHITECTURE

28

Chapter 4

Hardware Implementation

This chapter describes the implementation of the various hardware components
that had to be designed. First, the development board and design software used
are described, thereafter the details of the actual implementation are covered.

4.1 Design Environment

4.1.1 The DE2 Board

For hardware development, the Development and Education Board (DE2) board
from Terasic and Altera was used [3]. A picture of the board is shown in Figure 4.1.
At its heart, the board features an Altera Cyclone II 2C35 FPGA (speed grade
6, ordering code EP2C35F672C6) with 33216 LCs and 483840 bits of on-chip
memory. The FPGA also contains 35 embedded multipliers and 4 Phase Locked
Loops (PLLs); 475 pins are available for I/O. The board also contains a number
of other components, which are described in the following paragraphs.

The DE2 board contains an Altera EPCS16 Serial Configuration device and
a USB Blaster circuit. This circuit is connected to the PC which is used for
programming the board. Programming the FPGA is done in JTAG mode, with the
appropriate switch on the board set to “RUN”. When changing the position of that
switch to “PROG” and using Active Serial programming, the Serial Configuration
Device can be programmed. The configuration stored in that device is used to
program the FPGA upon power-up.

The FPGA can be clocked from three different sources: an oscillator that
produces a 50 MHz clock signal, one that produces a 27 MHz clock signal, and an
SMA connector that can be used to connect an external clock source. The 27 MHz
signal is an input to the TV decoder chip, and fed from that chip to the FPGA.

Three different types of memory are provided on the DE2 board: Synchronous
Dynamic Random Access Memory (SDRAM), Static Random Access Memory

29

CHAPTER 4. HARDWARE IMPLEMENTATION

(SRAM) and Flash memory. The SDRAM chip provides 8 MB of synchronous
dynamic RAM at speeds of up to 133 MHz. The SRAM chip provides 512 KB
asynchronous static RAM with an access time of 10 ns. The Flash memory is
4 MB in size and can be accessed within 70 ns.

Four pushbutton switches are provided on the board, named key0 to key3.
They are debounced using a Schmitt Trigger circuit and can thus be used for clock
or reset signals. The buttons provide a high logic level when not pressed, and a low
logic level when depressed. On the board there are also 18 toggle switches (sliders,
sw[0]. . . sw[17]) which are not debounced and should therefore be used for level-
sensitive data only. There are furthermore 18 red Light Emitting Diodes (LEDs)
(ledr[0]. . . ledr[17]) and nine green LEDs (ledg[0]. . . ledg[8]) on the DE2
board. The LEDs are turned on by driving the associated pin high.

Eight 7-segment displays are also found on the board; all segments of all display
are connected to pins of the FPGA (hex0[0]. . .hex0[6], . . . , hex7[0]. . .hex7[6]).
The segments are lit by applying a low logic level to the appropriate pin.

The DE2 board contains an Liquid Crystal Display (LCD), which is controlled
by a HD44780 display controller. By sending appropriate commands to the con-
troller, it can be used to display text messages.

The bord contains a 16-pin D-SUB connector for VGA output. While the
signals for synchronization are fed to the FPGA directly, analog signals for red,
green and blue are produced by an Analog Devices ADV7123 triple 10-bit high-
speed video DAC. The board supports resolutions of up to 1600×1200 pixels at
100 MHz.

24-bit audio signals can be processed via a Wolfson WM8731 audio CODEC
that supports microphone-in, line-in and line-out ports and is controlled by a serial
I2C bus interface. The sample rate can be adjusted from 8 kHz to 96 kHz.

The DE2 board provides an Analog Devices AD7181 TV decoder chip. It
can be programmed by a serial I2C bus, and automatically detects and converts
standard television signals into 4:2:2 component video data.

A Universal Asynchronous Receiver Transmitter (UART) is also part of the
DE2 board; a MAX232 transceiver chip and a 9-pin D-SUB connector are used for
RS-232 communication. Two pins of the FPGA are connected to the appropriate
circuit, uart rxd and uart txd. Another serial port of the board is the PS/2
interface, that uses a connector for a PS/2 mouse or keyboard. The appropriate
pins are referred to as ps2 clk and ps2 dat.

Wireless communication is provided using the Agilent HSDL-3201 low power
infrared transceiver. Speeds of up to 115.2 Kbit/s are supported via the irda txd
and irda rxd pins.

Ethernet is supported via a Davicom DM9000A Fast Ethernet controller chip.
It comprises a general processor interface, 16 KB SRAM, a media access control
unit, and a 10/100M PHY transceiver.

The board is equipped with a Philips ISP1362 single-chip Universal Serial

30

4.1. DESIGN ENVIRONMENT

P
ow

er S
upply C

onnector

A
udio C

onnectors

U
S
B
 H

ost P
ort

U
S
B
 D

evice P
ort

U
S
B
 B

laster P
ort

R
S
−232 P

ort

E
thernet P

ort

V
G
A
 V

ideo P
ort

V
ideo In

PS/2 Port

Expansion Headers

SD Card Slot

IRDA Transceiver

External Clock

8 Green LEDs
4 Debounced Pushbuttons

18 Toggle Switches

18 Red LEDs

7−Segment Displays

Liquid Crystal Display

RUN/PROG Switch

Power Switch

Altera Cyclone II FPGA
8 MB SDRAM
512 KB SRAM

4 MB Flash Memory

Figure 4.1: The DE2 board (photography by Josef Fahrner)

Bus (USB) controller, that provides both USB host and devices interfaces. It is
compliant with the Revision 2.0 of the USB specification, supporting data transfer
at up to 12 Mbit/s.

Two 40-pin expansion headers are provided on the board. The headers
allow access to 36 pins of the FPGA each, and also provide one pin for
+5V, one pin for +3.3V and two GND pins. Each (gpio 0[0]. . .gpio 0[35],
gpio 1[0]. . .gpio 1[35]) pin of the headers is connected to two diodes and a re-
sistor to protect the FPGA from high and negative voltages.

4.1.2 Quartus-II

Quartus-II by Altera is an integrated development environment for designing hard-
ware [4]. The version used in the context of this work is Quartus-II 7.11 Web Edi-
tion; the term Web Edition refers to the fact that it is a feature-reduced version
which is available for free. The software is unsurprisingly intended to be used with
FPGAs from Altera only.

The tool supports all phases of designing hardware, from design entry through
synthesis and simulation to download to the FPGA. It is possible to replace
individual steps with third-party tools, however. Calling these tools is integrated
into the IDE, and ModelSim, a simulation tool which is described in Section 4.1.3,
is even available for download along with Quartus-II. The individual steps can also

1Version 7.2 was available at the moment of writing, but produces inferior results in terms of
both LC count and maximum frequency.

31

CHAPTER 4. HARDWARE IMPLEMENTATION

be called from the command line, which makes it possible to control the design
flow with scripts or make and fit it into a larger project. In the course of this
thesis, make was used to automate the design flow.

Quartus-II allows access to many parameters for synthesis, fitting and routing,
e. g., the effort spent on fitting the design. It also provides two timing analyzers,
the “classic” timing analyzer and TimeQuest. The latter understands timing con-
strains as they are used for Synopsys design tools, which are targeted at ASICs.
As these tools were used for designing picoJava-II, design constraints that came
along with the source code could be reused with only minor modifications (cf.
Section 6.3).

The integrated simulation of Quartus-II was used for simulating individual
modules only, because ModelSim is more powerful and was thus used for the
more costly (in terms of computation power) simulations of the whole processor.
Functional simulation was not available: on the one hand, ModelSim had troubles
with handling Verilog include files and VHDL and Verilog cannot be mixed; on
the other hand, Quartus-II could not create an appropriate net list, due to the size
of the design and/or limitations of the software.

4.1.3 ModelSim

ModelSim is a hardware simulation tool by Mentor Graphics [28]. For this project,
the version that is available for download along with Quartus-II was used (Mod-
elSim Altera Web Edition v6.1g) [4]. It provides a more powerful simulation en-
vironment than the one integrated into Quartus-II, using a Verilog or VHDL test
bench.

Simulations of the whole processor are slow, due to the complexity of the design:
the download of a single byte via UART takes more than an hour to be simulated.
By changing the code for booting and using a small on-chip memory to hold
programs, it was possible to simulate execution without the need for simulating
the UART.

The emphasis in debugging the design was to download it to the FPGA how-
ever, because programs that run within seconds in the hardware would have run for
days in ModelSim. Only after the bug had been isolated sufficiently in hardware,
simulation was used to get more detailed data about the execution.

4.2 Megacell Implementations

As presented in Chapter 3, several modules have to be implemented to make
picoJava-II operable. The design of these modules is described in this section.
Although not being intended to, the code provided by Sun for the microcode and
floating point ROM modules can be used for synthesis without modification. The

32

4.2. MEGACELLS

implementation of these units was thus a non-issue and is hence not described
further.

4.2.1 Stack Cache

As the stack cache is an essential part of the processor, this unit was to be designed
before all other hardware. The stack cache has, as described in Section 3.4, two
write ports and three read ports to support both instruction folding and dribbling
at the same time. While no memory with this setup is readily available, the
situation is worsened by the fact that the stack cache is specified to be implemented
as asynchronous memory, which is not available in modern FPGAs. This also
cannot easily be circumvented, because the appropriate signals are valid during
the low period of the clock signal only. Because of this, simply using the negative
edge of the clock is not an option.

As a consequence, the edges2 of the write enable signals have to be used to trig-
ger the latching of the input values. More precisely, the edge of a signal computed
from the write enable signals, because a flip-flop can react to the edge of a single
signal only. On the other hand, the level of the write enable signals has to be
evaluated in order to determine which write port the data should be latched from.
The usage of the edge and the level of a signal makes a race condition inevitable,
which cannot be solved from within the source code. The tool has to route the
signals such that the edge that triggers the flip-flop is sufficiently separated in time
from effects that this edge creates at the input of the flip-flop.

Figure 4.2 shows the problem that has to be solved: depending on the precise
routing, the write enable signal will arrive earlier or later at the flip-flop, and data
will be valid earlier or later as well. The synthesis tool has to understand the
timing dependency, which is not straight-forward, because the write-enable signal
is processed as data before it is used as “clock”. If the tool misses to route the
design correctly, setup and/or hold times will be violated and invalid data will be
stored. Interestingly, the problem to be solved is very similar to problems that
arise in asynchronous hardware design styles (cf. [14]).

Quartus-II did not recognize the appropriate timing relations in the first at-
tempts to design the stack cache, and therefore did not even mention possible
timing violations. Several possible implementations were tried, differing in how
the “clock” for the flip-flops was created, which edge was used, how the input sig-
nal was selected and so forth. Finally a design was found which fulfills all specified
properties and is handled correctly by the design tool.

A drawback of the current implementation of the stack cache is that it is
implemented with flip-flops instead of on-chip memory. The stack cache consumes

2Latches would have been not only against common design rules but also more resource-
intensive in an FPGA.

33

CHAPTER 4. HARDWARE IMPLEMENTATION

write
enable

data
data valid

routing

Figure 4.2: Timing dependent on routing

6 K LCs and thus enlarges the design significantly. It also might slow down
the whole processor due to the more complex placement and routing. It has
been suggested to change the implementation of the stack cache to access on-chip
memory in a time-multiplexed manner in order to allow two writes in one cycle.
As the critical path is not located in this unit and the design is balanced w. r. t.
LC count and memory consumption (cf. Chapter 6), this has not been pursued
further.

4.2.2 Cache Memories

The modules for the cache memories need not be designed if caches are disabled,
appropriate dummy modules are provided by Sun. However, it is profitable to
implement these modules to achieve maximum performance. The modules are
specified well in [44] and high-level source code from Sun further clarifies their
operation.

The specification describes the internal memories as asynchronous memories,
which would not be available in modern FPGAs. As the inputs to those memories
are registers located inside the megacells, the designs could be transformed to use
synchronous memories. Apart from that, the implementation strictly follows the
specification and surprisingly worked from the very first moment.

4.3 Memory and I/O

In order to reuse memory and I/O modules from JOP (and possibly other designs),
it was decided to use the SimpCon interface [42] for communication between the
core and the peripheral modules. Of course, the protocol picoJava-II uses has to
be translated to that interface (pj2sc), and demultiplexing/multiplexing has to
be done for the various peripheral modules (mmap). Figure 4.3 outlines the relation
of the units described in this section, which are contained in the Memory Control
Unit (MCU).

34

4.3. MEMORY AND I/O

mmap
mcu

UART

SRAM

LEDs
DEMUX

MUX
pj2scpicoJava environment

Figure 4.3: The Memory Control Unit

4.3.1 SimpCon

The SimpCon interface [42] provides an on-chip interconnect standard that was
designed to be simple and efficient. Table 4.1 shows the signals that are defined
in the SimpCon specification; the column “Direction” states where the signal is
generated. As these signals were not sufficient to adequately match the semantics
of picoJava-II’s bus interface, additional signals were defined, which are shown
in Table 4.2. Unlike other on-chip protocols, acknowledgment, which takes place
through the signal rdy cnt, uses two bits. rdy cnt signals the number of cycles
until the end of a transaction, with values exceeding three (11) cycles being mapped
to 11. 00 consequently means that the transaction is finished.

To allow efficient operation, transactions may be pipelined: depending on
rd pipeline level and wr pipeline level, transactions may start before the
previous transaction has finished. Pipeline level 1 means that a transaction can
start in the same cycle data is available or written, i. e., when rdy cnt is 00. At
pipeline levels 2 and 3, transactions may start at rdy cnt values of 01 and 10,
respectively. Figure 4.4 shows two transactions immediately following one another
at pipeline level 1.

A write transaction is started by asserting wr for one cycle. address and
wr data are registered by the slave and need to be valid in the same cycle only.
The slave signals the end of the transaction with the rdy cnt signal. Asserting
rd for one cycle starts a read transaction. Again, address must be valid in this
cycle. A rdy cnt value of 00 means that rd data is valid. At pipeline levels 2 and
3, rdy cnt probably does not actually reach that value, in which case rd data is
valid in the cycle it would have reached 00.

The sel bytes signal was introduced, because, unlike JOP, picoJava-II does
not only use 32-bit transactions, but also 16- and 8-bit transactions. As alignment
is applied strictly, it is possible to address memory word-wise and only select the

35

CHAPTER 4. HARDWARE IMPLEMENTATION

Signal Bits Direction Purpose
address 1-32 Master Address lines from master to slave
wr data 32 Master Data lines from master to slave
rd 1 Master Start of read transaction
wr 1 Master Start of write transaction
rd data 32 Slave Data lines from slave to master
rdy cnt 2 Slave Transaction end signaling
rd pipeline level 2 Slave Maximum pipeline level for reads
wr pipeline level 2 Slave Maximum pipeline level for writes

Table 4.1: Standard signals of SimpCon

clock

address

wr_data

rd_data

wr

rd

rdy_cnt

data

data

address address

2 1 0 2 1 00

Figure 4.4: SimpCon back-to-back write and read at pipeline level 1

Signal Bits Direction Purpose
sel bytes 4 Master Select bytes for byte and half-word transactions
error 1 Slave Signals an invalid transaction

Table 4.2: Extended signals of SimpCon

bytes to be read or written. While the issue could have been ignored for read
transactions, there was no feasible solution with the originally specified signals for
write transactions. For 32-bit transactions, all four bits of the signal have to be
logical high when the rd or wr signal is high. For 16-bit transactions, two patterns
are allowable: 0011 and 1100. If the bits 0 and 1 are logical high, the two least-
significant bytes are accessed. If a single bit is set in the sel bytes signal, the
appropriate byte is to be accessed. Again, bit 0 corresponds to the least significant
byte. Other patterns than described above are not allowed.

The error signal is motivated by the fact that invalid transactions could not
be discovered in the original version of the specification. Especially when reusing
components, it is profitable to immediately detect misuse through well-defined
means. When a slave detects a request it cannot handle, e. g., a write transaction
to a ROM, it pulls the error signal to logical high so the master can react appro-

36

4.3. MEMORY AND I/O

Signal Bits Direction Purpose
pj data out 32 Core Data lines from core to environment
pj addr 30 Core Address lines from core to environment
pj type 4 Core Type of transaction
pj size 2 Core Size modifier for transaction type
pj tv 1 Core Signals pending transaction
pj ale 1 Core Address latch enable, start of transaction
pj data in 32 Module Data lines from environment to core
pj ack 2 Module Transaction end signaling

Table 4.3: picoJava-II’s memory interface signals

priately, e. g., executing a trap. The signal is available to the master in the cycle
after the transaction has been latched by the slave, similar to rd data from an
immediately responding slave; rdy cnt is 00 in this cycle. Keeping the signal as-
serted for a single cycle is sufficient for this implementation and it is not expected
to impose a limitation on the design of other masters.

The SimpCon specification does not address endianness issues explicitly, but a
little-endian ordering can be followed from how data with less than 32 significant
bits should be handled. In the scope of this implementation, the endianness for
data transferred through SimpCon is always little-endian. This means that en-
dianness has to be swapped on the boundary of picoJava-II, which handles data
in big-endian ordering. As the conversion of the endianness does not use any
resources on the FPGA and is a question of wiring only, this does not degrade
the design in any way. While endianness is of no importance for data that is used
word-wise only, it is important if the individual bytes are interpreted. An example
is the boot ROM described in Section 4.3.5, holding instructions which of course
have to be interpreted in the correct order. In order to deliver the data correctly
to the core, the ordering of the words stored in the ROM has to be swapped3.

4.3.2 picoJava-II’s Memory Interface

The picoJava-II core communicates with its environment via the bus interface units
with the signals presented in Table 4.3. As in Table 4.1, the column “Direction”
states whether the processor core or the peripheral module generates the respective
signal. Table 4.4 shows the different types of transactions picoJava-II distinguishes
[44].

Transactions are started by asserting pj tv and driving pj ale low. While
the former stays logical high until the transaction is acknowledged, the latter goes

3It would have also been possible to swap ordering of the memory initialization, but in the
chosen ordering the bytecodes can be read left-to-right, which seemed more appropriate.

37

CHAPTER 4. HARDWARE IMPLEMENTATION

pj type pj size Description Bytes
0x0 - Instruction cache fill 16
0x2 0x0, 0x2 Instruction fetch, non-cached 1, 4
0x4 - Data cache fill 16
0x5 - Data cache write-back 16
0x6 0x0, 0x1, 0x2 Data load, non-cached 1, 2, 4
0x7 0x0, 0x1, 0x2 Data store, non-cached 1, 2, 4
0xc - Cache fill, initiated by SMU 16
0xd - Write-back, initiated by SMU 16
0xe 0x2 SMU load, non-cached 4
0xf 0x2 SMU store, non-cached 4

Table 4.4: picoJava-II transaction types

back to logical high after one cycle. In case of back-to-back requests, pj tv may
not go back to logical low between transactions. A pj ack value of 0x0 signals an
idle cycle, 0x1 is used for acknowledging successful completion of a request. 0x2

and 0x3 are used for memory and I/O errors, respectively. In case of an error,
transactions are aborted immediately.

Requests that involve 16 bytes (“burst transactions”) are acknowledged for
every word that is transferred. In case such a transaction does not start at a
16 byte boundary, the following reads or writes will “wrap around” the 16 byte
boundary. E. g., a request of type 0x5 at address 0x1234 will return the words at
addresses 0x1234, 0x1238, 0x123C and 0x1230, in this order. Other transactions
are always aligned to the size of the transaction. For sub-word requests, the
relevant data is located in pj data out and pj data in as if these were aligned
to a 4 byte boundary, in big-endian order. E. g., for a request of type 0x7 with
size 0x1 at address 0x1234, the data to be written is located at bits 31 to 16 in
pj data out.

4.3.3 Translating Transactions

As SimpCon distinguishes between reads and writes only, the number of types
for requests could be reduced. Furthermore, sub-word accesses differ from word
accesses only in the value of sel bytes on the SimpCon side. On the other hand,
burst transactions have to be serialized to four word-sized requests. The module
that realizes the translation is called pj2sc.

When being idle a request from picoJava-II can bring the state machine that
translates requests into four different states: read, write, burst read and
burst write4. Before changing to one of these states, the appropriate signal val-

4The actual names of the states in the source code are different in order to stress other aspects

38

4.3. MEMORY AND I/O

ues for SimpCon are computed. The appropriate mask for sel bytes is dependent
on the transaction type and the requested address. The endianness of wr data is
swapped to little-endian and the two least significant bits of the address are cut
away – they are reflected in the sel bytes mask. Of course, rd or wr are asserted,
depending on the type of the transaction.

read and write simply wait until the transaction is finished and then ac-
knowledge the request. In the case of read, rd data is passed on to the core via
pj data in; again, the endianness has to be swapped, to return big-endian data.
After acknowledgment, the state machine goes idle again.

burst read and burst write wait for the SimpCon transaction to finish as
well. In contrast to read and write, a new request is generated to handle the
burst transaction appropriately. For read transactions, data is delivered to the
core, for write transactions, fresh data is read from pj data out. The address is
changed to wrap around 16 byte boundaries and rd or wr are asserted again. A
sequence of such states is traversed, until the fourth request is waited for in read
or write state.

The state machine is designed for interfacing with modules at pipeline level 1
or above. As this is trivial to implement this should not be a severe restriction on
the modules to be used together with this implementation of picoJava-II. An ad-
vantage of this solution is of course, that back-to-back transactions can be handled
faster.

4.3.4 XML Schema

In order to provide comfortable means for specifying where memory and I/O mod-
ules should be mapped to, an Extensible Markup Language (XML) schema was
designed. The code for the schema can be found in Listing A.1 in Appendix A.
Listing 4.1 shows an example of how a definition of a single module looks like, when
following the schema; the configuration file that was actually used in the course of
synthesizing the processor is presented in Listing A.2, again in Appendix A.

A module, represented by a mmap-item is identified by its name, which also
corresponds to the name of the module in Verilog (or possibly some other hardware
description language). To allow several instances of the same module to coexist,
an identifier can be specified to distinguish them (instance). Other attributes of
a module are its base address base and the number of words that belong to that
module (range). Modules can be parameterized with param items, which assign
an arbitrary value to an identifier. Input, output and bi-directional pins can be
defined as well with inpins, outpins and inoutpins items, containing pin definitions.
To define signals wider than one bit, the range of a pin can be specified by two
numbers, separated by a colon.

of them.

39

CHAPTER 4. HARDWARE IMPLEMENTATION

Listing 4.1: Sample module definition

1 <mmap−item name=”sc uart” instance=”first” base=”0xffffffe” range=”2”>
<params>

<param name=”addr bits” value=”1” />
<param name=”clk freq” value=”40000000” />

5 <param name=”baud rate” value=”57600” />
</params>
<inpins>

<pin name=”rxd” />
</inpins>

10 <outpins>
<pin name=”txd” />
<pin name=”display” range=”16:0” />

</outpins>
<inoutpins></inoutpins>

15 </mmap−item>

A memory map (mmap) is also identified by a name, which is used for naming
the memory mapping module to be generated. The mmap-items contained in an
mmap constitute which addresses should be mapped to which modules.

From this XML description, a small Java program (GenMMap.java) generates
a Verilog module that demultiplexes SimpCon requests and multiplexes the slaves’
responses. The module compares the address of a SimpCon request to the base
addresses and ranges of the modules and decides on that basis which module the
signals should be routed to. The address routed to the module is decremented by
the respective base address. By doing so, the module only has to handle its own
address range and can be mapped to any address without needing to be changed.
The module most recently used is saved so rd data, rdy cnt and error can be
routed back to the master.

The advantage of using an XML configuration file is obvious when comparing
the XML file and the generated Verilog module: while the XML file mmap.xml is
only 65 lines long, the generated module, mmap.v, is 270 lines long, more than 4
times as big – the more compact XML file allows the user to concentrate more on
the configuration and less on how the demultiplexing/multiplexing works. Another
advantage is that changes have to be made only in a single place. When modifying
the memory mapping in the Verilog code, changes have to be made in several places
(e. g., signals are defined in one place and used in another), a practice which is
known to be error-prone.

40

4.3. MEMORY AND I/O

4.3.5 Modules

Boot ROM The Boot ROM is an 8 KB on-chip ROM that contains the code for
booting the processor; the appropriate software is described in Section 5.4. The
Verilog code can be found in Listing B.1 in Appendix B. It is remarkable how well
the memory interface for Altera’s on-chip memories fits the SimpCon interface.
Only the computation of the error signal is custom logic.

UART The UART module is reused from JOP [38]. The only changes that had
to be made was the definition of the signals the SimpCon specification was extended
with and the computation of the error flag. It operates at 57600 baud and provides
fifo buffers for sending and receiving that can hold up to two characters each.

LEDs This module provides access to the LEDs on the DE2 board. Two regis-
ters, representing the red and green LEDs on the board, can be read and written.
The source code of this module is shown in Listing B.2 and shows a full-fledged
SimpCon module with address decoding and error handling in 60 lines of code,
which contain only 30 lines of actual logic.

Timer In order to provide a cycle accurate timing mechanism, another module
was implemented. In this module, a 32 bit register is incremented every cycle;
its content can be both read and written. The implementation of this module is
provided in Listing B.3.

SRAM The SRAM module provides access to the 512 KB SRAM on the DE2
board. Like the UART module, it was reused from JOP [38]. Large parts of the
module had to be rewritten however, to provide half-word and byte access to the
memory. These changes were necessary, because JOP only provides access to 32-
bit units. The advantage of the sub-word accesses is that they are faster, because
they need to access the 16-bit SRAM only once.

41

CHAPTER 4. HARDWARE IMPLEMENTATION

42

Chapter 5

Software Implementation

The software described in this chapter which is specific to this implementation
of picoJava-II uses the prefix com.jopdesign.harvey for packages. The prefix
com.jopdesign was used with permission of Martin Schöberl, the owner of the
respective domain name.

5.1 Provided Software

Along with the Verilog code, Sun also provides software to be used with picoJava-II.
Some of this software is ready to be used, other parts have to be modified in order
to be useful.

Assembler/Disassembler Sun provides an assembler and disassembler that
both understand all picoJava-II’s instructions. The assembler creates class files,
but is less strict on checking the correctness of the resulting code than a usual
Java compiler. As a consequence, it is possible to produce invalid classes –
some “invalid” classes are useful however, as functionality that is not available
in plain Java can be provided. An example of this is the hashCode() method from
java.lang.Object, which usually returns the reference of the object, converted to
an integer number. The assembler accepts such a conversion, although it violates
the requirements for class file verification (cf. [26]).

Instruction Accurate Simulator The Instruction Accurate Simulator (IAS)
allows the simulation of picoJava-II. It is written in C and does rely on being
run on a SPARC processor under Solaris. As simulation of the software was not
necessary – it could be run on the actual hardware –, no efforts were made to port
the IAS to other processors or operating systems.

43

CHAPTER 5. SOFTWARE IMPLEMENTATION

Loader Along with picoJava-II, a static loader is provided, which is, like the IAS,
written in C specific to SPARC processors and Solaris. As the loader is an integral
part of the software development tool chain for picoJava-II, it was necessary to
either port the provided loader, write one from scratch, or adapt one from another
processor. The latter was decided as a consequence of several issues:

• Resolving endianness issues in an unknown piece of software was expected
to be challenging.

• The SCSL would have restricted redistribution of the adapted code consid-
erably.

• Using C in a project closely related to Java would have introduced a peculiar
dependency on the build environment.

• Writing a loader from scratch was considered to be more complex than mod-
ifying an existing one.

• Adapting JOP’s loader was expected to require roughly the same effort as
porting the provided loader – but it is written in Java and puts less restric-
tions on redistribution.

Code for Traps Implementations for the various traps are provided by Sun,
but they are in some places specific to the simulation environment and have thus
to be modified. To avoid redistribution issues, it was decided to rewrite the trap
functions instead of just adapting them. The original code was a good source to
understand the inner workings of some instructions however, and helped to avoid
misconceptions of the specification.

5.2 Loader

In order to transform class files into a form the respective JVM can execute, these
files need to be loaded. In the scope of this section, the term loading will refer
to the processes of loading and linking as used in [26], and will also include the
resolution of symbolic references.

The specification of the JVM defines that classes can be loaded dynamically at
run-time. This is not considered to be suitable for embedded real-time systems, due
to the temporal uncertainties introduced by it and the typically scarce resources in
such systems. To circumvent these problems, picoJava-II uses a static class loader,
a practice which can be found at other Java processors as well (e. g., SHAP).

The loader described in this section is based on the loader for JOP and uses
Bytecode Engineering Library (BCEL) [5] for manipulating the class files. It looks
up all potentially used classes, transforms the code and resolves references and

44

5.2. LOADER

finally generates the memory image to be loaded to the processor. The individual
steps are described in Section 5.2.2.

5.2.1 Bytecode Engineering Library

The Bytecode Engineering Library (BCEL) [5] is a library to generate and trans-
form Java class files. One of its intended uses is in alternative class loaders that
modify the classes before they are passed on to the JVM. It allows access to all
aspects of a class file, ranging from the class itself down to individual instructions.
Operations on the class files are implemented along the Visitor design pattern.

A convenient feature for transformations on bytecode level is the fact that it
is possible to search for code patterns using regular expressions. Through this
feature (and object orientation) it is also possible to work conveniently on subsets
of instructions, e. g., changing all instructions that access the constant pool.

Instructions are modeled as objects with an opcode, their length and possibly
other data such as an index to the constant pool. As BCEL refuses to operate on
code that contains unknown instructions, it was necessary to extend it so instruc-
tions specific to picoJava-II are recognized correctly. This could be done by writing
simple classes representing the instructions and adding appropriate methods to the
default visitor class.

5.2.2 Passes

The loader uses several passes to transform class files into an executable memory
image:

TransitiveHull Finds all classes that are potentially used i. e., all classes which
are mentioned in the constant pool.

SetClassInfo Finds super class, attaches methods to classes and collects string
constants.

FindUsedConstants Reduces the constant pool by including only constants that
are actually used.

BuildVT Builds methods tables and interface table.

FixVT Assigns interface identifiers to methods.

ReplaceQuick Replaces instructions with their quick counterparts.

InsertSynchronized Inserts instructions for synchronized methods.

SetMethodInfo Computes the sizes of all methods.

45

CHAPTER 5. SOFTWARE IMPLEMENTATION

CountStaticFields Computes the sizes of all static fields.

ClassAddress Computes addresses of class information structures.

ResolveCPool Resolves all references.

PjWriter Writes out the memory image in a human-readable form.

The file emitted by the PjWriter pass is then transformed to a memory initial-
ization file suitable for hardware synthesis or to a plain binary file for downloading
the program via UART.

5.2.3 Layout of the Memory Image

Table 5.1 shows the layout of the memory image that is generated by the Loader
and can be executed by the processor. The individual areas are described in more
detail in the following.

Boot Slot This area contains code for very basic initializations and invocation
of the actual method to be executed. It is described in more detail in Sec-
tion 5.4.

Bytecode Area The bytecodes of all methods are dumped into this area.

Class Initializers The first word of this area specifies the number of <clinit>()
methods for the application. The other words hold the addresses of these
methods.

Constant String Area Constant String objects are contained in this area; the
layout of the objects is the same as for any String object.

Static Field Area Static fields of all objects are located in this area.

Class Information Area The structures representing classes are dumped to this
area. The individual structures are described in Section 3.10.

Trap Table The trap table contains the addresses of the various traps; for every
trap a word is available to hold arbitrary information.

An issue that had to be introduced to the loader was the alignment of some
areas, most notably the trap table, which has to be located at a 2048 byte bound-
ary. This may cause the need for a considerable amount of padding, which in turn
can increase the memory consumption considerably. Instead of the 2 KB for the
actual data, up to almost 4 KB of memory may be necessary to store the trap
table. Method tables have to be aligned to a double-word boundary. To achieve
this, the class information area is aligned to such a boundary, and constant pools
are padded to double-words. The other structures in this area always use an even
amount of words and thus do not break alignment.

46

5.2. LOADER

Area Content

Boot Slot Trampoline

Bytecode Area
Method 1 bytecodes

. . .
Method n bytecodes

Class Initializers

<clinit>() count
<clinit>() 1 address

. . .
<clinit>() n address

Constant String Area
String 1

. . .
String n

Static Field Area
Static field 1

. . .
Static field n

Class Information Area

Class Structure 1
Runtime Class Info Structure 1

Method Table 1
Constant Pool 1

. . .
Class Structure n

Runtime Class Info Structure n
Method Table n
Constant Pool n

Trap Table

Trap 0 address
Trap 0 constant pool address

. . .
Trap 256 address

Trap 256 constant pool address

Table 5.1: Layout of memory image

5.2.4 Code Transformations

As already mentioned, a number of instructions is replaced with their quick coun-
terparts to simplify and speed up execution. Another transformation on the code
is necessary for correct handling of synchronized methods.

Java provides two mechanisms for synchronizing threads: synchronized blocks,
which use monitorenter and monitorexit instructions, and synchronized meth-
ods, which are identified by a flag in the method access and property flags [26]. For
methods, it is considered that synchronization takes place during invocation and
return. As the respective instructions do not offer this functionality in picoJava-II,

47

CHAPTER 5. SOFTWARE IMPLEMENTATION

it is a natural solution to insert code to do this.

In picoJava-II’s reference manual, it is suggested to modify the code of a method
as follows:

• Prepend code to execute monitorenter, branch to the body of the method,
execute monitorexit and return.

• Replace returning instructions in the method body with an instruction to
return to the prepended code.

• Change exception tables appropriately.

The solution chosen is different:

• Prepend code to execute monitorenter.

• Insert monitorexit instructions before returning instructions.

The advantage of the chosen solution is that it does not need a special instruc-
tion to return to the prepended code and can thus be reused for other processors
as well. As the loader is based on the one for JOP, the pass to do the transfor-
mation can be ported back to that processor easily. The disadvantage is however,
that methods are possibly larger, because monitorexit instructions might be du-
plicated.

The solution suggested in the reference manual would have had the advantage
that only exception tables have to be changed with a fixed offset. As BCEL
was used, which takes care of addressing issues like alignment of switch tables
automatically, no efforts had to be made not to raise such issues.

5.3 Traps

Traps are an essential part of picoJava-II, because parts of its instruction set are
implemented by them. Especially object-oriented bytecodes, which have to resolve
symbolic references from the constant pool cannot be implemented reasonably in
hardware or microcode. Quick bytecodes remove a lot of complexity from the
respective instructions, but some instructions use trap functions even in their quick
variant.

The trap table is organized as 256 8-byte entries; the word at the lower address
provides the address of the trap code, the following word bytes can be used freely
in principle. In this implementation, it is used for storing the constant pool for
the trap method.

48

5.3. TRAPS

5.3.1 Memory Allocation

The memory management implemented is very simple and does not support
garbage collection. Register global0 contains the lowest address available for
the heap. Upon memory allocation, it is increased, so it points to the lowest free
address again. This approach has the advantage that it is very simple, but it
does not record any information for garbage collection. For the benchmarks to be
run, this was no restriction, but for a production system, this probably has to be
changed.

5.3.2 Description of Individual Traps

Not all trap functions have been implemented: On the one hand, some traps cannot
occur because the respective instructions are replaced by the loader. On the other
hand, some traps were left out because they did not appear in the programs that
were run for benchmarking. The unimplemented traps are mapped to the ignore()
method, which enables the user to identify the missing function.

newarray() This trap allocates an array on the heap. For doing this, the tag
byte is examined to determine the type of the array first. This information is used
together with the requested number of elements to compute the number of words
to be allocated. Allocation is done as described in Section 5.3.1; the memory area
is initialized, then the according reference is returned.

new quick() The new quick instruction is a simplified version of new and al-
locates a new object on the heap. The trap function has to make room for the
return value on the stack and determine the size of the object to be allocated be-
fore memory allocation can take place as described in Section 5.3.1. The allocated
object is of course initialized prior to returning from the trap function. The code
for this function is provided in Listing C.1 in Appendix C.

anewarray quick() anewarray quick is the quick counterpart of anewarray

and very similar to newarray. The computation of the size is simplified compared
to newarray(), because all references are of the same size. anewarray quick() how-
ever has to determine the location of the respective class information structure
and store it into a reserved field in the array.

invokeinterface quick() The implementation of invokeinterface quick() uses a
different approach than the global table used by JOP [38] and the coloring/coer-
cion algorithm used for SHAP [35]. Every interface method is assigned a unique
identifier; if a method implements an interface method, this identifier is stored in
a field in the method structure. This identifier is also stored in the index field of

49

CHAPTER 5. SOFTWARE IMPLEMENTATION

the invokeinterface quick instruction1. The invokeinterface quick() trap func-
tion searches the method table of an object for a method with the same identifier,
which is then invoked. The word of the Runtime Class Information structure which
is located right above the method table, is used to hold the size of the method
table so only valid entries are searched. The advantage of this approach is that it
does not infer any memory requirements – the fields for the size and the identifiers
would be unused otherwise –, the disadvantage is that the algorithm is executed
in linear time instead of constant time.

lookupswitch() This trap function is fairly simple: it searches the requested
key in the list of matches/offset pairs and branches to the according address upon
return. If the key is not found, it branches to a default target. The implementation
of this trap is shown in Listing C.2.

call clinit() call clinit() is mapped to the soft trap instruction, trap number
0x0d. It is used for invoking the <clinit>() methods of an application. This
trap function reads the Class Initializers area in the memory image and calls the
<clinit>() functions recorded there. The code for this function is provided in
Listing C.3.

lmul(), ldiv(), lrem() The trap functions lmul(), ldiv() and lrem() are special
in that they are not implemented in assembly language only. As the method
frame of regular functions is not compatible to the one used for traps, the frame
for invoking a method written in Java has to be set up by the trap function. After
the invoked method returns, the result has to be copied to where the result of the
trap function is expected. Listing C.4 shows the code for doing this. The core
functionality of the traps was partly reused from JOP, partly rewritten, and uses
standard algorithms for bit-wise multiplication and division.

ignore() All traps that do not have a sensible implementation are mapped to this
function. It sends one byte which identifies the trap to the UART and, followed by
@ and four bytes which contain the program counter where the trap occurred. For
reasons of simplicity, binary numbers are sent, which means that it is necessary to
use a tool that can display data received via the UART as binary (or hexadecimal)
numbers to use the information reasonably.

instanceof quick(), checkcast quick() These traps have dummy implemen-
tations only, which send their trap number to the UART and return immediately.

1The field consequently does not hold an index to the constant pool as the name would
suggest.

50

5.4. BOOT PROCESS

boot() main()

Boot ROM RAM

Figure 5.1: Schematic of bootstrap and execution

This also means that they return their argument which may or may not be ac-
ceptable for an application. The data sent to the UART however allows the user
to detect if one of these traps is executed and take action if needed.

5.4 Boot Process

Before a program can be executed, picoJava-II needs to be initialized: the stack
cache must be enabled, data and instruction caches need to be initialized, instruc-
tion folding must be enabled. It is also necessary to set the trapbase register to
allow traps to be executed. As the space on an FPGA is limited and non-trivial
applications do not fit onto on-chip ROMs, it is also necessary to load a program
from non-volatile memory or via a communication interface.

In the design of the bootstrap sequence, it was tried to make as little assump-
tions about a program to be loaded as possible. This enables a user to employ
different mechanisms than presented in this section. Another requirement was to
use the same format for the boot memory and other programs, which makes it
possible to use a single loader for both purposes. The format used is described in
Section 5.2.3.

Figure 5.1 schematically shows how booting and invoking the main method
is done. The processor starts execution at address 0, where the boot memory is
located. The code in the boot slot invokes the boot() method, which does the
necessary initializations and downloads a program via UART. When this method
returns, the code in the boot slot jumps to the main memory, where the program
has been loaded to. The boot slot of this program calls the main() method; upon
return from this method, an endless loop is entered to prevent random code from
being executed.

While the presented procedure might look overly complex, it is well motivated.
Invoking a method instead of jumping to some piece of code has the advantage
that internal registers are set to reasonable values in an efficient and convenient
way. By letting the boot slot of the downloaded program call the main() method,
no assumptions about its format have to be made. It would also not have been
feasible to invoke the main() method from the boot loader: this would have meant
to either require it to be located at some fixed location, unnecessarily limiting

51

CHAPTER 5. SOFTWARE IMPLEMENTATION

flexibility, or to pass on additional information to the boot loader. As this would
have complicated the download process considerably, it was decided against.

5.4.1 Boot Slot/Trampoline

Table 5.2 shows the content of the boot slot, which is located at the beginning of
the memory image (described in Section 5.2.3) and shaded grey in Figure 5.1. It
fulfills four purposes:

1. Initialize the trapbase register.

2. Call a trap to invoke the <clinit>() methods.

3. Invoke either boot() or main().

4. Jump to the main memory or loop forever.

As it is possible to use the trap table of the boot loader for the main program, the
first step may be left out and replaced with nop instructions.

The code shown in Table 5.2 contains a number of nop bytecodes which are
not necessary for correct operation. By inserting them, instructions do not cross
word boundaries, which eases the generation of the code and makes the resulting
memory image easier to understand. The code is however clearly not optimal
w. r. t. memory usage. As this wastes a few words of memory only and a far greater
memory overhead is inferred by the unused words in the diverse class information
structures anyway, it was decided to leave it in this readable but unoptimized form.

5.4.2 Boot Loader

The boot loader, implemented by the boot() method, serves two purposes: initial-
izing the processor and loading a program to the main memory. The very first step
of the initialization is to enable the stack cache, in order to avoid problems with
the code further executed. After that, it is necessary to initialize the instruction
and data caches appropriately. While it would be possible in an FPGA to put the
caches into a correct state upon power-up, a simple external reset would not put
these memories into their initial state. After enabling the caches and instruction
folding, the processor is in a fully usable state and the program can be transferred
to the main memory.

There are two sources for programs, either a non-volatile memory or a commu-
nication interface. As it was necessary during development to run many different
programs rather than only a single program, it seemed natural to use the latter
possibility. With an appropriate hardware module at hand, it was an easy decision
to use the UART on the DE2 board. For downloading the program, four bytes for
the size of the memory image in bytes are received and information for memory

52

5.5. CLASS LIBRARY

Offset Content
0 nop; sipush trapTableAddress & 0xffff;
4 nop; sethi trapTableAddress >>> 16;
8 priv write trapbase; nop; nop;

12 nop; sipush classInitAreaAddress & 0xffff;
16 nop; sethi classInitAreaAddress >>> 16;
20 soft trap; nop; nop;
24 nop; sipush constantPoolAddress & 0xffff;
28 nop; sethi constantPoolAddress >>> 16;
32 write const pool; nop; nop;
36 nop; invokestatic quick #1 // method to call;
40 nop; goto jumpTarget ;
44 1 // length of fake constant pool
48 methodStructAddress of method to call
52 0 // padding

Table 5.2: Boot slot/trampoline

allocation is updated. After that, the memory image is received and stored to the
main memory. When all bytes have been downloaded, the boot() method returns
to the boot slot.

5.5 Class Library

An important part of Java is its class library. It is not written in Java only, but
it makes use of native methods in various places as well. This means in turn that
these methods have to be reimplemented when porting an existing implementation
of the class library to another platform.

5.5.1 Custom Classes

On the one hand, Java is native to a Java processor, on the other hand not all
necessary features can be accessed from within the Java programming language
(cf. Section 5.1, paragraph “Assembler/Disassembler”). In order to circumvent the
limitations, the class Native was designed, which is written in assembly language
and provides the otherwise inaccessible functionality (e. g., access to memory). The
approach to wrap the “native” functionality in a single class is also found in the
class library for JOP.

com.jopdesign.harvey.system.Native Three methods are provided by this
class: The methods ncload() and ncstore() provide non-cached access to memory.

53

CHAPTER 5. SOFTWARE IMPLEMENTATION

a2i() converts a reference to an integer and is used by the hashCode() method in
java.lang.Object. The implementation of the class is shown in Listing D.1.

com.jopdesign.harvey.system.Constants This class is used to allow easy
reconfiguration of the software if the hardware is changed. It provides constants
for the addresses various hardware modules are mapped to. Listing D.2 shows the
version of the class corresponding to the memory mapping configuration file shown
in Listing A.2. Note that the memory map uses word-wise addressing, while the
addresses in the software use byte-wise addressing.

com.jopdesign.harvey.io.UART A low-level interface to the UART module
is provided by this class. The methods receive() and send() block until data can be
read from or written to the UART and then perform the respective operation. The
implementation uses the means provided by com.jopdesign.harvey.system.Native
and com.jopdesign.harvey.system.Constants; the source code is shown in List-
ing D.3.

com.jopdesign.harvey.io.UARTOutputStream This class bridges the gap
between the custom, low-level routines and the standard Java I/O methods. It
extends the java.io.OutputStream class and can thus be passed to other classes
that are built on top of it, e. g., java.io.PrintStream. The only method that had
to be provided was the write() method for a single byte – all other methods are
implemented in java.lang.OutputStream already. The source code is shown in
Listing D.4.

com.jopdesign.harvey.io.Leds Access to the LEDs on the DE2 board
is provided by this class through the methods getReds(), setReds(), get-
Greens(), and setGreens(). Like the class to interface the UART, it uses
com.jopdesign.harvey.system.Native and com.jopdesign.harvey.system.Constants.
Listing D.5 shows the source code for this class.

com.jopdesign.harvey.io.Timer The low-level timing facilities provided by
the hardware timer module can be accessed through this class. It is written
in assembly language and does not use com.jopdesign.harvey.system.Native and
com.jopdesign.harvey.system.Constants. The rationale behind this is that as little
jitter as possible should be inferred by the measurement. By accessing the respec-
tive memory location directly, caching effects that may occur upon invocation of a
method are cut down. The implementation provides the methods getTime() and
setTime() and is shown in Listing D.6.

54

5.5. CLASS LIBRARY

5.5.2 Standard Classes

A subset of the standard Java class library has been implemented to allow a min-
imum level of compatibility. The implementation is based on the implementation
for JOP, which in turn is based on the GNU Classpath class library [16].

Figure 5.2 shows the classes that are available for picoJava-II; not all features
of these classes are supported, however. One example is the method systemAr-
rayCopy() of the class java.lang.System which relies on checking the type of an
object, a feature which is not implemented yet (cf. Section 5.3). Another example
are the wait() and notify() methods of java.lang.Object, which are not available,
because threading is not supported. As neither a hardware FPU is included nor a
software implementation of floating-point operations has been ported yet, support
for such operations is missing as well.

A special java.lang.Object class is used as super class for the boot loader and
related classes, which does not implement any methods apart from its construc-
tor. The full implementation of the class is dependent on many other classes and
would require a much larger boot memory. By using a stripped-down version of
java.lang.Object, only a minimal set of classes is compiled into the boot memory.

55

CHAPTER 5. SOFTWARE IMPLEMENTATION

• java.lang.Object
• java.util.Calendar
• java.util.Character
• java.util.Date
• java.util.Integer
• java.util.Long
• java.util.Math
• java.util.Number (implements java.io.Serializable)

• java.lang.Double (implements java.lang.Comparable)
• java.io.OutputStream

• java.io.PrintStream
• java.lang.String
• java.lang.StringBuffer
• java.lang.StringBuilder
• java.lang.System
• java.lang.Throwable

• java.lang.Error
• java.lang.Exception

• java.lang.IOException
• java.lang.RuntimeException

• java.lang.IllegalArgumentException
• java.lang.NumberFormatException

• java.lang.IndexOutOfBoundsException
• java.lang.ArrayIndexOutOfBoundsException
• java.lang.StringIndexOutOfBoundsException

• java.util.NoSuchElementException
• java.lang.NullPointerException

• java.util.TimeZone
• java.util.Vector

Figure 5.2: Implemented subset of the Java class library

56

Chapter 6

Results

6.1 Logic Resource Usage

The final version of picoJava-II (16 KB both data and instruction cache, no FPU)
consumes 27.5 K LCs, or 83% of the FPGA used. Among the designed components,
the stack cache is the biggest consumer, using more than 6 K LCs. The bridge
between picoJava-II and SimpCon and the memory and I/O modules use about 1 K
LCs altogether. The parts of the instruction and data caches to be implemented
consume less than 300 LCs. For detailed numbers see Table 6.1; the figures in
this table slightly differ from the ones presented in [36]. This is due to a bug-
fix in the picoJava-II/SimpCon translation unit, a simplification of the memory
mapping unit and minor changes in the configuration of the synthesis process.
The significantly different resource consumption of the DCU and the ICU can be
explained with the fact that the latter contains the relatively complex instruction
buffer. Note that in Table 6.1 the LC count of a module does not include the LC
count of sub-modules also listed in this table.

A comparison of the number of LCs with the gate count reported in [15], 128 K
gates for the logic, yields a factor of 4.7. This factor seems to be rather low (cf.
Section 1.4), but when taking into account that some logic functions are realized
through memory blocks and do not add to the number of LCs, this still seems
plausible.

6.2 Memory Consumption

This implementation of picoJava-II uses 47.6 KB of on-chip memory (81% of the
memory available of the FPGA used), as shown in Table 6.2. 37.1 KB are used
for cache and tag memories, 8.0 KB for the boot ROM and the remaining 2.6 KB
for the implementation of logic functions. Especially the bytecode decoding in the
folding unit is transformed to memory lookups by the synthesis tool. The caches

57

CHAPTER 6. RESULTS

Unit LCs

Data Cache Unit 1255
Data Cache RAM 192
Data Cache Tags 82
Instruction Cache Unit 4014
Instruction Cache RAM 0
Instruction Cache Tags 16
Execution Unit 7013
Hold Logic 9
Folding Unit 1054
Microcode Unit 2684
Pipeline Control 534
Register Control Unit (without Stack Cache) 3317
Stack Cache 6242
Trap Unit 116
Stack Management Unit 560
Powerdown, Clock and Scan Unit 0
Bus Interface Unit 24
Memory Map 71
Boot ROM 1
LEDs 46
SRAM Interface 144
Timer 114
UART 128
Interface picoJava-II/SimpCon 494

Total 27562

Table 6.1: LC usage of individual components

could be configured to be smaller – even to be non-existent –, but doing so would
affect the performance. The boot memory could be smaller as well, but it has to
be at least 4 KB in size if it holds the trap table (2 KB for the trap table and up
to 2 KB for the alignment, as it cannot be located at address 0).

As the memory consumption is dependent on the configuration of the pro-
cessor and can be changed easily, it is not very meaningful to use this figure to
assess the complexity of the processor. However, it is an indicator for how heavily
an implementation uses caching to speed up memory accesses. picoJava-II uses
more memory than almost any other Java processor; only aJ-80, aJ-100, Cjip and
some implementations of Jazelle use more on-chip memory. Due to its high LC
consumption, the resource usage on the FPGA is still fairly balanced.

58

6.3. SPEED

Unit Memory Blocks Bits KB

Data Cache 32 2×65536 16.0
Data Cache Tags 6 2×9728 2.4
Data Cache Status 5 2560 0.3
Instruction Cache 32 2×65536 16.0
Instruction Cache Tags 5 19456 2.4
Boot Memory 16 65536 8.0
Folding Unit 8 18432 2.3
Microcode Unit 3 624 0.1
Others 2 2048 0.3

Total 109 390256 47.6

Table 6.2: Memory usage of individual components

6.3 Speed

Without any constraints on the timing analysis, a maximum frequency of less
than 10 MHz was reported. The reason for this is a timing loop in the Integer
Multiplication/Division/Remainder Unit (IMDRU), which is located inside the
IU. The design constraints provided by Sun cut this loop and a closer look at the
source code showed that there is no de facto data flow through this loop. The
design constraints were therefore translated to be understood by the TimeQuest
timing analyzer which is part of Quartus-II (cf. Section 4.1.2).

With the timing loop cut, the highest achievable frequency is around 44 MHz.
The worst case timing path is located within the IMDRU 1 and dominated by the
interconnect delay (69% of the total delay). A different organization of the stack
cache could as a side effect help in terms of speed by allowing for more efficient
placement and routing – the effect of this is hardly predictable, but only minor
enhancements are expected. With a 50 MHz clock present at the DE2 board, a
operation frequency of 40 MHz was chosen, so it could be easily generated by a
PLL.

The maximum clock frequency of 44 MHz is considerably slower than the
≥100 MHz which are assumed for an implementation in an ASIC (cf. Section 2.1.1).
On the one hand, the ASIC target technology on which the assumptions are based
are unknown and might be considerably older than the FPGA technology used in
this work. On the other hand, FPGAs infer a considerable amount of overhead for
timing delays. According to [25], FPGAs are 3.0 to 4.8 times slower than ASICs
using the same feature size, depending on the design and the speed grade of the
FPGA.

Due to the vague information available, this result does neither support nor

1The IMDRU does not implement single-cycle multiplication, but uses a sequential algorithm.

59

CHAPTER 6. RESULTS

falsify prior assumptions w. r. t. to picoJava-II’s maximum frequency. Neverthe-
less, the result is valuable, as it is the first result which is based on an actual
implementation in an FPGA.

6.4 Performance

6.4.1 JBE

The JavaBenchEmbedded (JBE) benchmark suite version 1.1 [41] was used to
measure the performance of picoJava-II. It was developed in lack of a suitable
benchmark for small embedded systems to evaluate the performance of JOP [37].
The benchmark suite consists of a number of micro-benchmarks which measure
the performance of individual instructions, one synthetic benchmark and two ap-
plication benchmarks. The test loop is self adjusting, meaning that the loop count
is adapted until the benchmark runs for more than one second. This makes it
possible to compare systems even if their processing power differs in several orders
of magnitude. Version 1.1 of JBE contains one more application benchmark than
version 1.0 (which was used in [38]); apart from that, the versions differ only in
minor details which are not vital to the benchmark results, so comparisons are
still valid.

The benchmarks use two loops: one that runs the code to be evaluated and
one that makes up for the unwanted overhead. In case of the micro-benchmarks,
it is not always possible to test only a single instruction. An example is the
benchmark that assesses the speed of the addition operation, which actually differs
in the instruction sequence iload 3; iadd from the overhead loop. For application
benchmarks, no overhead is taken into account, because the whole application is
to be evaluated.

The synthetic benchmark which is part of JBE, Sieve, calculates prime numbers
using the “Sieve of Eratosthenes” algorithm. In a slightly modified version, it was
the first benchmark that could be executed on picoJava-II in the course of this
work.

The Kfl application benchmark (from German “Kippfahrleitung”, a special
overhead contact system) is derived from a real world application. It simulates
sensors, actors, and a communication system in order to provide a realistic work-
load. While the main loop of the application is executed periodically in the original
application, the benchmark does not wait for a next period but runs at maximum
speed.

The second application benchmark, UDP/IP, simulates two UDP server/-
clients, which exchange messages through a loop-back device. Every iteration,
a request is generated, transmitted through the communication stack, an answer
is generated and transmitted back.

60

6.4. PERFORMANCE

JBE also provides a benchmark that gives some insight into the WCET be-
havior of a system [37]. It measures the execution time of individual iterations of
the Kfl benchmark, emulating a sequence of commands. This means that some
variability of execution times or jitter is inherent to the application. While it is not
a safe way to determine the WCET behavior of a system, a high ratio of best and
worst case execution times may disprove the suitability of a system for real-time
applications.

6.4.2 Benchmarked Platforms

The results for picoJava-II were obtained using the the DE2 board as described in
Section 4.1.1. As already mentioned, a clock frequency of 40 MHz was chosen.

For JOP, results from three versions, all clocked at 100 MHz, were used: JOP,
JOP* and JOP*DE2. JOP refers to the version as described in [38]; the benchmark
figures are taken from there. JOP* is the most recent version of JOP, as described
in [40]. Benchmark figures are not taken from there, but from separate runs of the
benchmark suite. The platform this version runs on differs from the DE2 board;
most importantly, a 32-bit SRAM with 15 ns access time is available on that board
instead of a 16-bit SRAM. Due to the different memory access times and processor
frequencies, JOP* and picoJava-II both need two cycles for a 32-bit transaction.
JOP*DE2 like JOP* refers to the most recent version of JOP, but running on the
DE2 board, which means that this version needs more cycles for memory accesses,
but is perfectly comparable in terms of the overall access time.

The SaJe platform includes an aJ-100 processor clocked at 100 MHz, JStamp
is a development platform featuring an aJ-80 processor running at 74 MHz. The
results for Komodo were obtained through a cycle-accurate simulation, assuming
33 MHz as system clock frequency. A more detailed description of these platforms
can be found in [38], where the benchmark figures are taken from.

6.4.3 Evaluation

Table 6.3 shows the detailed results of the JBE micro benchmarks. Depending on
the precise benchmark application (i. e., which benchmarks are included for one
run), picoJava-II showed a deviation of some results. The results shown are the
worst case results with all benchmarks included and bogus instructions added at
the beginning of the benchmark application to explore the deviation. A possible
explanation for this behavior is the interplay of caching and instruction folding,
but this could not be confirmed yet.

Apart from the iload iadd and invokeinterface benchmarks, picoJava-II shows
superior performance. In the getfield benchmark, picoJava-II runs even 7.3 times
faster than JOP* and 8.7 times faster than JOP*DE2. The benchmark loop of
if cmplt “not taken” for some reason runs equally fast as the overhead loop. Again,

61

CHAPTER 6. RESULTS

Benchmark picoJava-II JOP* JOP*DE2

iload 3 iadd 2 2 2
iinc 3 4 4
ldc 3 9 11
if icmplt taken 6 6 6
if icmplt not taken -a 6 6
getfield 3 22 26
getstatic 5 15 19
iaload 3 11 17
invoke 24 128 133
invokestatic 24 100 103
invokeinterface 196 144 153

Table 6.3: Detailed results of micro benchmarks in clock cycles

aNo valid result.

the interplay of caching and instruction folding is the suspected cause, but could
not be confirmed yet. The inferior performance of picoJava-II in the invokeinterface
benchmark is caused by the different algorithm for resolving interface methods (cf.
Section 5.3.2, paragraph “invokeinterface quick()”). The differences between JOP*
and JOP*DE2 can be explained with the different memory interface.

Figure 6.1 shows benchmark results for different configurations of picoJava-II;
caches are 16 KB in size when present. The figures shown are the geometric mean
of Sieve, Kfl and UDP/IP, scaled such that the fastest configuration scores 100.

One interesting aspect of these results is that instruction folding is futile with-
out the instruction cache present. With both the instruction and the data cache,
it increases performance by 25%, without the instruction cache, the increase is less
than 2%. This seems to be reasonable when considering that instruction fetching
is a bottle neck without caching; without enough instructions present to be folded,
this technique cannot improve performance. The figures also show that instruction
folding indeed makes up for much of the overhead caused by stack manipulation
(30% according to [27]).

The instruction cache has a bigger impact on the performance than the data
cache. Together with instruction folding, the instruction cache increases perfor-
mance by 75%, while the data cache causes an improvement of 34% only.

Results for the Sieve, Kfl and UDP/IP benchmarks, comparing various Java
processors and hardware platforms, are shown in Figure 6.2. The detailed results
of the conducted benchmarks are presented in Table 6.3 and Table 6.4; the figures
not shown in these tables were taken from [38]. The results for picoJava-II are
the results in its fastest configuration, i. e., with 16 KB for both the data and
instruction cache. The results in Figure 6.2 are scaled such that the fastest result

62

6.4. PERFORMANCESheet1

Page 1

I+D cache I cache D cache no cache
0

10

20

30

40

50

60

70

80

90

100 With folding
Without folding

Configuration

S
ca

le
d

pe
rf

or
m

an
ce

Figure 6.1: Benchmark results in different configurations

Benchmark picoJava-II JOP* JOP*DE2

Sieve 7721 6585 5407
Kfl 23813 18864 16094
UDP/IP 11950 8371 7049

Table 6.4: Detailed results of application benchmarks in iterations per second

for each benchmark equals a score of 100.

picoJava-II is clearly the fastest processor benchmarked; the closest follower,
JOP*, achieves only 70 to 85% of its performance. JOP*DE2 scores less than
70% using exactly the same hardware board as picoJava-II. JOP and SaJe obtain
50 to 60%, and JStamp to Komodo do not even reach a tenth of picoJava-II’s
performance.

Figure 6.3 shows the result of the jitter measurement in JBE; the execution
times are scaled such that the shortest execution times correspond to 1. In this
benchmark, JOP* and picoJava-II behave very similar; while the ratio between
best and worst case execution time for the former is 3.6, it is 3.9 for the latter. For
almost all iterations, the difference is ≤10%. Only for the very first iteration the
scaled execution time differs significantly, which can be explained with the caching
behavior of picoJava-II. In the very first iteration, the caches must be filled; after

63

CHAPTER 6. RESULTS
Sheet1

Page 1

picoJava-II JOP* JOP*DE2 JOP SaJe Jstamp Komodo
0

10

20

30

40

50

60

70

80

90

100 Sieve
Kfl
UDP/IP

S
ca

le
d

pe
rf

or
m

an
ce

Figure 6.2: Benchmark results compared to other processors

that, the relatively small application runs out of the caches.
However, the jitter measurement does not prove that picoJava-II is very well-

behaved w. r. t. WCET. The highly varying latency of interrupts and the caches
which were not designed to be WCET analyzable make it unlikely that tight,
provable bounds can be computed. The benchmark however shows that average
case jitter occurring on picoJava-II is comparable to the jitter of JOP*.

6.5 Discussion

Table 6.5 compares picoJava-II to other Java processors w. r. t. resource usage for
logic and maximum frequency. picoJava-II consumes between four and thirteen
times the number of LCs of other designs. The only exception is jHISC, but even
compared to this processor, picoJava-II uses 76% more LCs. The size of picoJava-II
is not only a theoretical disadvantage; it requires a larger and thus more expensive
FPGA platform. As power dissipation is related to the gate count of a device [23],
picoJava-II is expected to be inferior to other Java processors in this respect as
well.

When comparing picoJava-II to other Java processors w. r. t. its maximum fre-
quency, it is clearly among the slowest processors: only 4 processors are slower,
while 10 processors are faster. Despite its low operation frequency, picoJava-II is

64

6.5. DISCUSSION

Sheet1_3

Page 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
0

0,5

1

1,5

2

2,5

3

3,5

4 picoJava
JOP*

Iteration

S
ca

le
d

 e
xe

cu
tio

n
 t

im
e

Figure 6.3: Jitter measurement

Core Processor Technology Gates LCs Frequency

picoJava-II
ASIC 128 K ?
Altera FPGA 27.5 K 40 MHz

JEMCore
aJ-80 ASIC 35 K 80 MHz
aJ-100 ASIC 35 K 100 MHz

Cjip ASIC 70 K 80 MHz
Jazelle ARM7EJ-S ASIC 80 K 100 MHz

Lightfoot
Lightfoot Xilinx FPGA 3.4 K 40 MHz
VS2000 ASIC 30 K 60 MHz

LavaCORE Xilinx FPGA 4.4 K 25 MHz
Komodo Xilinx FPGA 2.6 K 16.5 MHz
jamuth Altera FPGA ? 132 MHz

FemtoJava
Original Altera FPGA 2.0 K 8 MHz
Pipelined Altera FPGA 3.7 K 34 MHz

JOP
Original Altera FPGA 1.8 K 100 MHz
Newest Altera FPGA 2.9 K 100 MHz

BlueJEP Xilinx FPGA 6.9 K 85 MHz
jHISC Xilinx FPGA 16.6 K 33 MHz
SHAP Xilinx FPGA 2.7 K 50 MHz

Table 6.5: Comparison of Java processors

65

CHAPTER 6. RESULTS

the Java processor performing best in the benchmarks conducted, being almost
30% faster than the closest follower, JOP*. On both the board picoJava-II was
benchmarked on and the JOP* platform, 32-bit memory accesses take 2 cycles
(cf. Section 6.4.2). Assuming that picoJava-II then interfaces the same memory as
JOP*, its results can be scaled up to a virtual frequency of 100 MHz by multiplying
them by 2.5. When comparing the two platforms at that frequency, picoJava-II is
more than 3 times faster for the benchmarks shown in Figure 6.2. As such scaling
of the frequency is problematic in general, no further comparisons were made in
this respect.

picoJava-II was not designed to be WCET analyzable; its average case jitter
was measured to be comparable to JOP’s, however. Considering this and the
performance measurements, picoJava-II might be an option for systems where
performance is more important than provable deadlines of computations.

66

Chapter 7

Conclusion and Outlook

In this thesis, it has been shown that it is possible to implement picoJava-II in
an FPGA. In order to do this, a considerable amount of hardware and software
had to be designed or at least adapted. Megacells which implement functionality
of picoJava-II that is missing from the source code provided by Sun had to be
designed as well as hardware modules for memory access and I/O. Apart from
the stack cache megacell, which design did not fit well to an FPGA, the imple-
mentation of the megacells was straight-forward. To ease the task of mapping the
memory and I/O modules to memory, an XML schema was designed. A small tool
translates configuration files written according to this schema to Verilog source
code automatically. The memory and I/O modules were partly designed from
scratch, partly reused from JOP. The modules use the SimpCon interface, so a
component that translates between picoJava-II’s memory interface and SimpCon
had to be designed as well.

The software that was designed involves a static loader, trap functions, and
a minimal class library. The loader statically resolves all references and replaces
complex instructions with their simpler quick counterparts. It also adds code
for proper synchronization of synchronized methods. The trap functions provide
functionality which is not implemented in microcode or hardware directly. Garbage
collection is not supported yet, so a very simple memory allocation scheme can be
used. The class library provides a subset of the standard class library to allow a
minimum level of compatibility to other implementations of Java.

picoJava-II uses far more resources than other Java processors, but it also
performs considerably better. Especially when taking into account its relatively
slow clock frequency, its superior performance becomes evident. Future research
will examine which concepts from picoJava-II contribute to its performance and
in how far they are responsible for its ample resource consumption. Features that
add to the performance without inferring too much hardware overhead can then
perhaps be transferred to other processors.

This implementation is not complete; especially in the area of garbage collection

67

CHAPTER 7. CONCLUSION AND OUTLOOK

and threading, it is not compliant to the specification of the JVM. Future research
will probably have to close this gap. A number of modules were adapted from JOP;
some of these adaptations are probably useful in the context of JOP as well and
future work will include back-porting them.

68

Appendix A

Listings for Memory Mapping

A.1 XML Schema

Listing A.1: xml schema for memory mapping

1 <xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:simpleType name=”number”>
<xsd:restriction base=”xsd:string”>

5 <xsd:pattern value=”(0x[0−9a−fA−F]+)|([1−9][0−9]∗)|([0−7]+)”/>
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=”range”>
10 <xsd:restriction base=”xsd:string”>

<xsd:pattern value=”[0−9]+:[0−9]+”/>
</xsd:restriction>

</xsd:simpleType>

15 <xsd:element name=”mmap” type=”MMap”/>

<xsd:complexType name=”MMap”>
<xsd:sequence>

<xsd:element name=”mmap−item” type=”MMap−Item”
20 minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>
<xsd:attribute name=”name” type=”xsd:string” use=”required” />
<xsd:attribute name=”instance” type=”xsd:string” default=””

use=”optional” />
25 </xsd:complexType>

<xsd:complexType name=”MMap−Item”>

69

APPENDIX A. LISTINGS FOR MEMORY MAPPING

<xsd:sequence>
<xsd:element name=”params” type=”Params” />

30 <xsd:element name=”inpins” type=”Pinmaps” />
<xsd:element name=”outpins” type=”Pinmaps” />
<xsd:element name=”inoutpins” type=”Pinmaps” />

</xsd:sequence>
<xsd:attribute name=”name” type=”xsd:string” use=”required” />

35 <xsd:attribute name=”instance” type=”xsd:string” use=”optional” />
<xsd:attribute name=”base” type=”number” use=”required” />
<xsd:attribute name=”range” type=”number” use=”required” />

</xsd:complexType>

40 <xsd:complexType name=”Params”>
<xsd:sequence>

<xsd:element name=”param” type=”Param”
minOccurs=”0” maxOccurs=”unbounded” />

</xsd:sequence>
45 </xsd:complexType>

<xsd:complexType name=”Param”>
<xsd:attribute name=”name” type=”xsd:string” use=”required” />
<xsd:attribute name=”value” type=”xsd:string” use=”required” />

50 </xsd:complexType>

<xsd:complexType name=”Pinmaps”>
<xsd:sequence>

<xsd:element name=”pin” type=”Pin”
55 minOccurs=”0” maxOccurs=”unbounded” />

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=”Pin”>
60 <xsd:attribute name=”name” type=”xsd:string” use=”required” />

<xsd:attribute name=”range” type=”range” use=”optional” />
</xsd:complexType>

</xsd:schema>

70

A.2. MEMORY MAP

A.2 Memory Map

Listing A.2: xml memory map

1 <?xml version=”1.0” ?>
<mmap name=”mmap”>

<mmap−item name=”sc bootrom” base=”0” range=”0x0000800”>
5 <params> </params>

<inpins> </inpins>
<outpins> </outpins>
<inoutpins> </inoutpins>

</mmap−item>
10

<mmap−item name=”sc sram16” base=”0x0000800” range=”0x0020000”>
<params>

<param name=”address bits” value=”18” />
</params>

15 <inpins> </inpins>
<outpins>

<pin name=”addr” range=”17:0” />
<pin name=”nwe” />
<pin name=”noe” />

20 <pin name=”nub” />
<pin name=”nlb” />
<pin name=”nce” />

</outpins>
<inoutpins>

25 <pin name=”data” range=”15:0” />
</inoutpins>

</mmap−item>

<mmap−item name=”sc timer” base=”0xffffffb” range=”1”>
30 <params> </params>

<inpins> </inpins>
<outpins> </outpins>
<inoutpins> </inoutpins>

</mmap−item>
35

<mmap−item name=”sc leds” base=”0xffffffc” range=”2”>
<params> </params>
<inpins> </inpins>
<outpins>

40 <pin name=”red” range=”17:0” />
<pin name=”green” range=”8:0” />

71

APPENDIX A. LISTINGS FOR MEMORY MAPPING

</outpins>
<inoutpins> </inoutpins>

</mmap−item>
45

<mmap−item name=”sc uart” base=”0xffffffe” range=”2”>
<params>

<param name=”addr bits” value=”1” />
<param name=”clk freq” value=”40000000” />

50 <param name=”baud rate” value=”57600” />
<param name=”txf depth” value=”2” />
<param name=”txf thres” value=”1” />
<param name=”rxf depth” value=”2” />
<param name=”rxf thres” value=”1” />

55 </params>
<inpins>

<pin name=”rxd” />
</inpins>
<outpins>

60 <pin name=”txd” />
</outpins>
<inoutpins> </inoutpins>

</mmap−item>

65 </mmap>

72

Appendix B

Memory and I/O Modules

B.1 Boot ROM Module

Listing B.1: Boot ROM module

1 module sc bootrom (clk, reset,
address, sel bytes , wr, rd, wr data,
rd data, rdy cnt, error);

5 input clk ;
input reset ;
input [31:0] address;
input [3:0] sel bytes ;
input wr;

10 input rd;
input [31:0] wr data;
output [31:0] rd data;
output [1:0] rdy cnt;
output error ;

15
reg error ;

bootrom bootrom unit (.address (address),
. clock (clk),

20 .clken (rd),
.q ({rd data [7:0],

rd data [15:8],
rd data [23:16],
rd data[31:24]}));

25
assign rdy cnt = 2’b00;

73

APPENDIX B. MEMORY AND I/O MODULES

always @(posedge clk)
begin

30 error <= 1’b0;
// no writes allowed
if (wr != 1’b0)

error <= 1’b1;
end

35
endmodule

74

B.2. LEDS MODULE

B.2 LEDs Module

Listing B.2: LEDs module

1 module sc leds (clk, reset ,
address, sel bytes , wr, rd, wr data,
rd data, rdy cnt, error ,
leds red , leds green);

5
input clk ;
input reset ;

input [1:0] address;
10 input [3:0] sel bytes ;

input wr;
input rd;
input [31:0] wr data;
output [31:0] rd data;

15 output [1:0] rdy cnt;
output error ;

output [17:0] leds red ;
output [8:0] leds green ;

20
reg [31:0] rd data;
reg error ;

reg [17:0] leds red ;
25 reg [8:0] leds green ;

assign rdy cnt = 2’b00;

always @(posedge clk)
30 begin

if (reset == 1’b1)
begin

leds red <= 18’b0;
leds green <= 9’b0;

35 end
if (wr == 1’b1)

begin
if (address [0] == 1’b0)

leds red <= wr data[17:0];
40 else

leds green <= wr data[8:0];

75

APPENDIX B. MEMORY AND I/O MODULES

end
if (rd == 1’b1)

begin
45 if (address [0] == 1’b0)

rd data <= { 14’b0, leds red };
else

rd data <= { 23’b0, leds green };
end

50
error <= 1’b0;
// force word−wise access
if ((rd == 1’b1 || wr == 1’b1) && sel bytes != 4’b1111)

error <= 1’b1;
55 end

endmodule

76

B.3. TIMER MODULE

B.3 Timer Module

Listing B.3: Timer module

1 module sc timer (clk, reset,
address, sel bytes , wr, rd, wr data,
rd data, rdy cnt, error);

5 input clk ;
input reset ;

input [1:0] address;
input [3:0] sel bytes ;

10 input wr;
input rd;
input [31:0] wr data;
output [31:0] rd data;
output [1:0] rdy cnt;

15 output error ;

reg [31:0] rd data;
reg error ;

20 reg [31:0] timer, next timer;

assign rdy cnt = 2’b00;

always @(posedge clk)
25 begin

if (reset == 1’b1)
begin

timer <= 32’h00000000;
end

30
if (rd == 1’b1)

rd data <= timer[31:0];

if (wr == 1’b1)
35 timer <= wr data;

else
timer <= next timer;

error <= 1’b0;
40 // force word−wise access

if ((rd == 1’b1 || wr == 1’b1) && sel bytes != 4’b1111)

77

APPENDIX B. MEMORY AND I/O MODULES

error <= 1’b1;
end

45 always
begin

next timer <= timer+1;
end

50 endmodule

78

Appendix C

Trap Implementations

C.1 new quick()

Listing C.1: Implementation of new quick()

1 public static Method new quick:”()V” {
read optop; // set VARS to old OPTOP
bipush 16;
iadd;

5 write vars ;

// make space for return value
read frame; // adjust FRAME
iconst 4 ;

10 isub;
write frame;

iconst 0 ; // OPTOP is in the way

15 iload 3 ; // copy context
istore 4;
iload 2 ;
istore 3 ;
iload 1 ;

20 istore 2 ;
iload 0 ;
istore 1 ;

iload 2 ; // load PC
25 iconst 1 ;

iadd; // pointer to index1
load ubyte;

79

APPENDIX C. TRAP IMPLEMENTATIONS

bipush 8;
ishl ; // index1 << 8

30
iload 2 ; // load PC
iconst 2 ;
iadd; // pointer to index2
load ubyte;

35
ior ; // (index1 << 8) | index2

iconst 2 ; // index = index∗4
ishl ;

40
read const pool;
iadd;
load word; // pointer to the class info struct

45 dup; // write method table pointer
load word;
read global0;
store word;

50 read global0; // add space for header
iconst 4 ;
iadd;
write global0 ;

55 dup; // size is at [class info struct+4]
iconst 4 ;
iadd;
load word;

60 nq Init :
dup; // duplicate size for indexing

nq InitLoop:
dup; // check index
ifle nq InitLoopDone;

65 iconst 4 ; // decrement index
isub;
dup; // compute end of heap+header+index
read global0;
iadd;

70 iconst 0 ; // [end of heap+header+index] = 0
swap;

80

C.1. NEW QUICK()

store word;
goto nq InitLoop;

nq InitLoopDone:
75 pop; // remove index

nq StoreRetval:
read global0; // current end of heap without space for header
iconst 4 ;

80 isub;
istore 0 ; // return old end of heap

nq UpdateEndOfHeap:
read global0; // current end of heap+header

85 iadd; // plus size
write global0 ; // new end of heap

nq Done:
read vars ; // adjust VARS to old OPTOP−4

90 bipush 4;
isub;
write vars ;

iload 1 ; // PC = PC+3
95 iconst 3 ;

iadd;
istore 1 ;

priv ret from trap ;
100 }

81

APPENDIX C. TRAP IMPLEMENTATIONS

C.2 lookupswitch()

Listing C.2: Implementation of lookupswitch()

1 public static Method lookupswitch:”()V” {
read optop; // set VARS to old OPTOP+4
bipush 20;
iadd;

5 write vars ;
iload 2 ; // get PC
iconst 4 ; // align(PC+1, 4)
iadd;
bipush 0xfc;

10 iand; // top of stack is var #5
iload 5; // load default
load word; // this is now var #6
iinc 5, 4; // load npairs
iload 5;

15 load word;
lus SearchLoop:

dup; // check npairs
ifle lus Done;
iconst 1 ; // decrement npairs

20 isub;
iload 0 ; // load key to lookup
iinc 5, 4; // load table key
iload 5;
load word;

25 iinc 5, 4; // advance
if icmpne lus SearchLoop; // compare keys

lus Found:
iload 5; // load branch target
load word;

30 istore 6;
lus Done:

iload 6; // add offset to return address
iload 2 ;
iadd;

35 istore 2 ;
priv ret from trap ;

}

82

C.3. CALL CLINIT()

C.3 call clinit()

Listing C.3: Implementation of call clinit()

1 public static Method call clinit :”()V” {
read optop; // set VARS to old OPTOP+4
bipush 20;
iadd;

5 write vars ;

iload 0 ; // get base of <clinit> table

load word; // get size
10 cc Loop:

dup; // check size
ifle cc LoopEnd;
iconst 1 ; // decrement size
isub;

15 dup; // compute base+4∗size
iconst 2 ;
ishl ;
iload 0 ;
iadd;

20 write const pool ; // set constpool
invokespecial Method ”call clinit”:”()V”; // call <clinit>
goto cc Loop;

cc LoopEnd:
pop;

25
// drop argument
read frame; // adjust FRAME

bipush 4;
iadd;

30 write frame;

iload 1 ; // copy context
istore 0 ;
iload 2 ;

35 istore 1 ;
iload 3 ;
istore 2 ;
iload 4;
istore 3 ;

40
cc Done:

83

APPENDIX C. TRAP IMPLEMENTATIONS

iload 1 ; // PC = PC+2
iconst 2 ;
iadd;

45 istore 1 ;

priv ret from trap ;
}

84

C.4. LMUL()

C.4 lmul()

Listing C.4: Implementation of lmul()

1 public static Method lmul:”()V” {
// set VARS to old OPTOP+16
read optop;
bipush 32;

5 iadd;
write vars ;

read const pool; // save const pool

10 priv read trapbase; // get new const pool
iconst 4 ;
iadd;
load word;
write const pool ;

15
lload 0 ; // call regular function
lload 2 ;
invokestatic ”com/jopdesign/harvey/system/TrapsLong”.”lmul”:”(JJ)J”;
lstore 0 ; // store result

20
write const pool ; // restore const pool

read vars ; // adjust VARS to old OPTOP−8
bipush 8;

25 isub;
write vars ;

iload 3 ; // PC = PC+1
iconst 1 ;

30 iadd;
istore 3 ;

priv ret from trap ;
}

85

APPENDIX C. TRAP IMPLEMENTATIONS

86

Appendix D

Library Classes

D.1 com.jopdesign.harvey.system.Native

Listing D.1: com.jopdesign.harvey.system.Native

1 package com/jopdesign/harvey/system;

public class Native {

5 public static Method a2i:”(Ljava/lang/Object;)I” {
aload 0;
ireturn ;

}

10 public static Method ncload:”(I)I” {
iload 0 ;
ncload word;
ireturn ;

}
15

public static Method ncstore:”(II)V” {
iload 1 ;
iload 0 ;
ncstore word;

20 return;
}

}

87

APPENDIX D. LIBRARY CLASSES

D.2 com.jopdesign.harvey.system.Constants

Listing D.2: com.jopdesign.harvey.system.Constants

1 package com.jopdesign.harvey.system;

public class Constants {

5 /∗ constants for UART ∗/
public static final int IO UART DATA = 0xfffffffc;
public static final int IO UART STATUS = 0xfffffff8;

/∗ constants for LEDs ∗/
10 public static final int IO LEDS GREEN = 0xfffffff4;

public static final int IO LEDS RED = 0 xfffffff0 ;

/∗ constants for Timer ∗/
public static final int IO TIMER DATA = 0xffffffec;

15 }

88

D.3. UART

D.3 com.jopdesign.harvey.io.UART

Listing D.3: com.jopdesign.harvey.io.UART

1 package com.jopdesign.harvey.io;

import com.jopdesign.harvey.system.Native;
import com.jopdesign.harvey.system.Constants;

5
public class UART {

public static void send(int val) {

10 while ((Native.ncload(Constants.IO UART STATUS) & 0x01) == 0) {
/∗ do nothing ∗/

}
Native.ncstore(Constants.IO UART DATA, val);

}
15

public static int receive() {
while ((Native.ncload(Constants.IO UART STATUS) & 0x02) == 0) {

/∗ do nothing ∗/
}

20 return Native.ncload(Constants.IO UART DATA);
}

}

89

APPENDIX D. LIBRARY CLASSES

D.4 com.jopdesign.harvey.io.UARTOutputStream

Listing D.4: com.jopdesign.harvey.io.UARTOutputStream

1 package com.jopdesign.harvey.io;

import java.io.OutputStream;

5 public class UARTOutputStream extends OutputStream {

public void write(int i) {
UART.send(i);

}
10 }

90

D.5. LEDS

D.5 com.jopdesign.harvey.io.Leds

Listing D.5: com.jopdesign.harvey.io.Leds

1 package com.jopdesign.harvey.io;

import com.jopdesign.harvey.system.Native;
import com.jopdesign.harvey.system.Constants;

5
public class Leds {

public static int getReds() {
return Native.ncload(Constants.IO LEDS RED);

10 }

public static void setReds(int val) {
Native.ncstore(Constants.IO LEDS RED, val);

}
15

public static int getGreens() {
return Native.ncload(Constants.IO LEDS GREEN);

}

20 public static void setGreens(int val) {
Native.ncstore(Constants.IO LEDS GREEN, val);

}

}

91

APPENDIX D. LIBRARY CLASSES

D.6 com.jopdesign.harvey.io.Timer

Listing D.6: com.jopdesign.harvey.io.Timer

1 package com/jopdesign/harvey/io;

public class Timer {

5 public static Method getTime:”()I” {

bipush 0xec;
ncload word;

10 ireturn ;
}

public static Method setTime:”(I)V” {

15 iload 0 ;
bipush 0xec;
ncstore word;

return;
20 }

}

92

Acronyms

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BCEL Bytecode Engineering Library

BIU Bus Interface Unit

CISC Complex Instruction Set Computing

CMOS Complementary Metal Oxide Semiconductor

CODEC Encoder/Decoder

DCU Data Cache Unit

FPGA Field Programmable Gate Array

FPU Floating Point Unit

HISC High Level Instruction Set Computer

IAS Instruction Accurate Simulator

ICU Instruction Cache Unit

IFU Instruction Folding Unit

IMDRU Integer Multiplication/Division/Remainder Unit

IP Intellectual Property

IU Integer Unit

JBE JavaBenchEmbedded

JIT Just In Time

93

ACRONYMS

JOP Java Optimized Processor

JTAG Joint Test Action Group

JVM Java Virtual Machine

LC Logic Cell

LCD Liquid Crystal Display

LED Light Emitting Diode

LUT Look-Up Table

MCU Memory Control Unit

MJM Multiple JVM Manager

PCSU Powerdown, Clock and Scan Unit

PLL Phase Locked Loop

RISC Reduced Instruction Set Computing

SCSL Sun Community Source License

SDRAM Synchronous Dynamic Random Access Memory

SHAP Secure Hardware Agent Platform

SMA SubMiniature version A

SMU Stack Manager Unit

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

VHDL Very High Speed Integrated Circuit Hardware Description Language

WCET Worst Case Execution Time

XML Extensible Markup Language

94

Bibliography

[1] aJile Systems. aJ-100 Real-time Low Power Java Processor. product brief,
2000.

[2] aJile Systems. aJile Java Processor Core JEMCore. preliminary product brief,
2000.

[3] Altera. DE2 Development and Education Board User Manual, 2006.

[4] Altera. Quartus II Web Edition Software. Available at http://www.altera.
com/support/software/sof-quartus.html, October 2007.

[5] Apache Software Foundation. Byte Code Engineering Library. Available at
http://jakarta.apache.org/bcel/, October 2007.

[6] ARM. ARM Technical Support FAQs. Available at http://www.arm.com/

support/faqip/3718.html, October 2007.

[7] ARM. Jazelle Technology for Execution Environments. product flyer, May
2007.

[8] Ken Arnold and James Gosling. The Java Programming Language. Addison-
Wesley, Reading, MA, USA, second edition, 1998.

[9] Antonio Carlos S. Beck and Luigi Carro. A VLIW low power Java processor
for embedded applications. In SBCCI ’04: Proceedings of the 17th symposium
on Integrated circuits and system design, pages 157–162, New York, NY, USA,
2004. ACM.

[10] B. Bose, M.E. Tuna, and J.M. Nagy. LavaCORETM configurable JavaTM

processor core. In Aerospace Conference Proceedings, 2002. IEEE, volume 4,
pages 4–1953–4–1959 vol.4, 2002.

[11] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer. A multi-
threaded Java microcontroller for thread-oriented real-time event-handling. In
Parallel Architectures and Compilation Techniques, 1999. Proceedings. 1999
International Conference on, pages 34–39, 12-16 Oct. 1999.

95

http://www.altera.com/support/software/sof-quartus.html
http://www.altera.com/support/software/sof-quartus.html
http://jakarta.apache.org/bcel/
http://www.arm.com/support/faqip/3718.html
http://www.arm.com/support/faqip/3718.html

BIBLIOGRAPHY

[12] DCT. Lightfoot data sheet. data sheet, 2000.

[13] DCT. Lightfoot 32-bit Java Processor Core. data sheet, September 2001.

[14] Martin Delvai and Andreas Steininger. Solving the Fundamental Problem of
Digital Design – A Systematic Review of Design Methods. 9th Euromicro
Conference on Digital System Design, Aug. 2006.

[15] S. Dey, D. Panigrahi, Li Chen, C.N. Taylor, K. Sekar, and P. Sanchez. Using
a soft core in a SoC design: experiences with picoJava. Design & Test of
Computers, IEEE, 17(3):60–71, July-Sept. 2000.

[16] Free Software Foundation. GNU Classpath. Available at http://www.gnu.

org/software/classpath/.

[17] Victor F. Gomes, Antonio C. S. Beck F., and Luigi Carro. A VHDL Implemen-
tation of a Low Power Pipelined Java Processor for Embedded Applications.
Instituto de Informatica - Universidade Federal do Rio Grande do Sul, Porto
Allegre, Brazil, 2004.

[18] Flavius Gruian and Mark Westmijze. BlueJEP: a flexible and high-
performance Java embedded processor. In JTRES ’07: Proceedings of the
5th international workshop on Java technologies for real-time and embedded
systems, pages 222–229, New York, NY, USA, 2007. ACM Press.

[19] Sudheendra Hangal and Mike O’Connor. Performance Analysis and Valida-
tion of the picoJava Processor. IEEE Micro, 19(3):66–72, 1999.

[20] Imsys. ISAJ Reference 2.0, January 2001.

[21] Imsys. IM1101C (the Cjip) Technical Reference Manual, V0.28, 2007.

[22] Sérgio Akira Ito, Luigi Carro, and Ricardo Pezzuol Jacobi. Making Java Work
for Microcontroller Applications. IEEE Des. Test, 18(5):100–110, 2001.

[23] N. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and N. Vijaykrishnan. Leakage Current - Moore’s Law Meets
Static Power, 2003.

[24] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and Th. Ungerer. Real-
time Event-handling and Scheduling on a Multithreaded Java microcontroller.
Microprocessors and Microsystems, 27(1):19–31, 2003.

[25] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs.
In Steven J. E. Wilton and Andr DeHon, editors, FPGA, pages 21–30. ACM,
2006.

96

http://www.gnu.org/software/classpath/
http://www.gnu.org/software/classpath/

BIBLIOGRAPHY

[26] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, MA, USA, second edition, 1999.

[27] H. McGhan and M. O’Connor. picoJava: a direct execution engine for Java
bytecode. Computer, 31(10):22–30, Oct. 1998.

[28] Mentor Graphics. ModelSim. Available at http://www.model.com, October
2007.

[29] Nazomi. JA 108 product brief. Available at http://www.nazomi.com.

[30] J. Michael O’Connor and Marc Tremblay. picoJava-I: The Java Virtual Ma-
chine in Hardware. IEEE Micro, 17(2):45–53, 1997.

[31] Patriot Scientific Corporation. PSC1000 Microprocessor Reference Manual,
March 1999.

[32] Chris Porthouse. Jazelle for Execution Environments. white paper, May 2005.

[33] Thomas B. Preußer, Martin Zabel, and Peter Reichel. The SHAP Microar-
chitecture and Java Virtual Machine. Technical Report ISSN 1430-211X,
Technische Universität Dresden, Fakultät Informatik, April 2007.

[34] Thomas B. Preußer, Martin Zabel, and Rainer G. Spallek. Bump-pointer
method caching for embedded Java processors. In JTRES ’07: Proceedings
of the 5th international workshop on Java technologies for real-time and em-
bedded systems, pages 206–210, New York, NY, USA, 2007. ACM Press.

[35] Thomas B. Preußer, Martin Zabel, and Rainer G. Spallek. Enabling constant-
time interface method dispatch in embedded Java processors. In JTRES ’07:
Proceedings of the 5th international workshop on Java technologies for real-
time and embedded systems, pages 196–205, New York, NY, USA, 2007. ACM
Press.

[36] Wolfgang Puffitsch and Martin Schoeberl. picoJava-II in an FPGA. In JTRES
’07: Proceedings of the 5th international workshop on Java technologies for
real-time and embedded systems, pages 213–221, New York, NY, USA, 2007.
ACM Press.

[37] Martin Schoeberl. Evaluation of a Java Processor. In Tagungsband Austrochip
2005, pages 127–134, Vienna, Austria, October 2005.

[38] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded Real-Time
Systems. PhD thesis, Vienna University of Technology, 2005.

97

http://www.model.com
http://www.nazomi.com

BIBLIOGRAPHY

[39] Martin Schoeberl. Instruction Cache für Echtzeitsysteme, April 2006. Aus-
trian patent AT 500.858.

[40] Martin Schoeberl. Architecture for object-oriented programming languages.
In JTRES ’07: Proceedings of the 5th international workshop on Java tech-
nologies for real-time and embedded systems, pages 57–62, New York, NY,
USA, 2007. ACM Press.

[41] Martin Schoeberl. JOP Performance. Available at http://www.jopdesign.
com/perf.jsp, October 2007.

[42] Martin Schoeberl. SimpCon - a Simple and Efficient SoC Interconnect. In Pro-
ceedings of the 15th Austrian Workhop on Microelectronics, Austrochip2007,
Graz, Austria, October 2007.

[43] Velocity Semiconductor. VS2000 - 32-bit Lightfoot CPU with Ethernet MAC.
preliminary product manual, 2004.

[44] Sun Microsystems. picoJava-II Microarchitecture Guide. Sun Microsystems,
March 1999.

[45] Sun Microsystems. picoJava-II Programmer’s Reference Manual. Sun Mi-
crosystems, March 1999.

[46] Sun Microsystems. Sun Community Source License Microelectronics Cores,
March 1999.

[47] Sun Microsystems. Sun Community Source Licensing SCSL - Processor Tech-
nology Resources - Frequently Asked Questions. Available at http://www.

sun.com/software/communitysource/processors/faq.xml, October 2007.

[48] YiYu Tan, Man Lo Kai, and A.S. Fong. A Performance Analysis of an
Object-Oriented Processor. In Information Technology: New Generations,
2006. ITNG 2006. Third International Conference on, pages 690–694, 10-12
April 2006.

[49] Y.Y. Tan, C.H. Yau, K.M. Lo, W.S. Yu, P.L. Mok, and A.S. Fong. Design
and implementation of a Java processor. Computers and Digital Techniques,
IEE Proceedings-, 153:20–30, 2006.

[50] S. Uhrig and T. Ungerer. Hardware-based power management for real-time
applications. In Parallel and Distributed Computing, 2003. Proceedings. Sec-
ond International Symposium on, pages 258–265, 13-14 Oct. 2003.

98

http://www.jopdesign.com/perf.jsp
http://www.jopdesign.com/perf.jsp
http://www.sun.com/software/communitysource/processors/faq.xml
http://www.sun.com/software/communitysource/processors/faq.xml

BIBLIOGRAPHY

[51] Sascha Uhrig and Jörg Wiese. jamuth: an IP processor core for embedded
Java real-time systems. In JTRES ’07: Proceedings of the 5th international
workshop on Java technologies for real-time and embedded systems, pages 230–
237, New York, NY, USA, 2007. ACM Press.

99

	Titlepage
	Contents
	1 Introduction
	1.1 Structure of This Work
	1.2 Motivation
	1.3 The Java Virtual Machine
	1.4 FPGAs

	2 Related work
	2.1 ASIC Designs
	2.1.1 picoJava-II
	2.1.2 JEMCore
	2.1.3 Cjip
	2.1.4 Jazelle

	2.2 FPGA Designs
	2.2.1 Lightfoot
	2.2.2 LavaCORE
	2.2.3 Komodo
	2.2.4 jamuth
	2.2.5 FemtoJava
	2.2.6 JOP
	2.2.7 BlueJEP
	2.2.8 jHISC
	2.2.9 SHAP

	3 The picoJava-II Architecture
	3.1 Components
	3.2 Pipeline
	3.3 Instruction Folding
	3.4 Stack Cache
	3.5 Caches
	3.6 Registers
	3.7 Traps
	3.8 Method and Trap Frames
	3.9 Quick Bytecodes
	3.10 Memory Layout
	3.11 Garbage Collection

	4 Hardware Implementation
	4.1 Design Environment
	4.1.1 The DE2 Board
	4.1.2 Quartus-II
	4.1.3 ModelSim

	4.2 Megacells
	4.2.1 Stack Cache
	4.2.2 Cache Memories

	4.3 Memory and I/O
	4.3.1 SimpCon
	4.3.2 picoJava-II's Memory Interface
	4.3.3 Translating Transactions
	4.3.4 XML Schema
	4.3.5 Modules

	5 Software Implementation
	5.1 Provided Software
	5.2 Loader
	5.2.1 Bytecode Engineering Library
	5.2.2 Passes
	5.2.3 Layout of the Memory Image
	5.2.4 Code Transformations

	5.3 Traps
	5.3.1 Memory Allocation
	5.3.2 Description of Individual Traps

	5.4 Boot Process
	5.4.1 Boot Slot/Trampoline
	5.4.2 Boot Loader

	5.5 Class Library
	5.5.1 Custom Classes
	5.5.2 Standard Classes

	6 Results
	6.1 Logic Resource Usage
	6.2 Memory Consumption
	6.3 Speed
	6.4 Performance
	6.4.1 JBE
	6.4.2 Benchmarked Platforms
	6.4.3 Evaluation

	6.5 Discussion

	7 Conclusion and Outlook
	A Listings for Memory Mapping
	A.1 XML Schema
	A.2 Memory Map

	B Memory and I/O Modules
	B.1 Boot ROM Module
	B.2 LEDs Module
	B.3 Timer Module

	C Trap Implementations
	C.1 new_quick()
	C.2 lookupswitch()
	C.3 call_clinit()
	C.4 lmul()

	D Library Classes
	D.1 Native
	D.2 Constants
	D.3 UART
	D.4 UARTOutputStream
	D.5 Leds
	D.6 Timer

	Acronyms

