
Masterarbeit

Porting the CACAO Virtual Machine

to POWERPC64 and Coldfire

ausgeführt am

Institut für Computersprachen
Arbeitsbereich für Programmiersprachen und Übersetzerbau

der Technischen Universität Wien

unter der Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall

durch
Bakk. techn. Roland Richard Lezuo

Burggasse 35/1
1070 Wien

Oktober 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

CACAO is a freely available just in time compiler for the Java language.
In the course of this master thesis code generators for the POWERPC64 and
Coldfire architectures were developed.

This work describes is the generic structure of a CACAO code genera-
tors and elaborates implementation details. Benchmarking results of POW-
ERPC64 compared with CACAO on x86 64 as well as SUN and IBM Java
implementations will be presented.

Finally code simplification and future performance optimizations will be
proposed by lessons learnt from this master thesis.

Kurzfassung

CACAO ist eine frei verfügbare virtuelle Maschine für Java welche auf einer
just-in-time Compiler Architektur basiert. Im Zuge dieser Arbeit wurden
Code Generatoren entwickelt die die Ausführung von Java Programmen auf
POWERPC64 und Coldfire Prozessoren ermöglicht.

Es wird sowohl die generische Struktur eines CACAO Codegenerators
beschrieben, als auch Details der Implementierungen die erstellt worden ist.
Die Qualität der Arbeit wir aufgrund von Benchmarkergebnissen, in denen
die POWERPC64 Architektur gegen IBM Java und CACAO auf x86 64,
sowie SUN Java verglichen wird überprüft.

Schliesslich werden die aus der Arbeit erkannten Vereinfachungen der
Codebasis sowie künftige Schritte zur Optimierung der Effizienz zusammenge-
fasst.

Contents

1 Introduction 7

1.1 The Java language . 7

1.1.1 The big picture . 7

1.1.2 Design goals . 8

1.2 Language features . 9

1.3 Executing Java programs . 10

1.4 CACAO architecture . 11

1.4.1 Overview . 11

1.4.2 Startup and shutdown 12

1.4.3 Linker . 13

1.4.4 Method compilation 15

1.5 Java byte code . 18

2 Related work 25

2.1 SUN HotSpot . 25

2.2 IBM J9 . 26

2.3 Jikes RVM . 26

2.4 Kaffe . 28

2.5 Parrot . 30

2.6 Mono . 32

2.7 Summary . 33

3 Code generators for CACAO 35

3.1 Symbols needed by CACAO 35

3.2 Register allocation . 38

3.3 Code generation macros . 39

3.4 Post compile time code patching 40

3.5 Data segment . 40

3.6 Runtime code patching - Patchers 41

3.7 Exceptions . 43

1

2 CONTENTS

4 POWERPC64 code generator 47

4.1 The POWERPC64 architecture 47
4.2 Design decisions . 47

4.2.1 PPC64 ELF ABI . 47
4.2.2 PPC64 CACAO ABI 48
4.2.3 Loading addresses . 48
4.2.4 Integer and long arithmetic 50
4.2.5 Float and double arithmetic 50
4.2.6 Exception handling . 50

4.3 Porting PPC to PPC64 . 51
4.4 Implementation details . 52
4.5 Current state and benchmark results 54

5 Coldfire code generator 63

5.1 The Coldfire architecture . 63
5.2 The development environment 63
5.3 Design decisions . 65

5.3.1 CACAO register usage 65
5.3.2 M68K ABI . 67
5.3.3 CACAO ABI . 67
5.3.4 Dedicated pv register 68
5.3.5 Branching instructions 69
5.3.6 Exceptions . 69
5.3.7 Native double return values 70

5.4 Implementation details . 70
5.5 Current state and benchmark results 72

6 Summary 75

6.1 Conclusion . 75
6.2 Future . 75
6.3 Source code . 76

List of Figures

1.1 CACAO architecture overview 11
1.2 Method signature specifiers 12

1.3 A CACAO vtable . 12
1.4 Method compilation . 16

1.5 Stack changes . 19
1.6 Instruction type prefixes . 19

2.1 SUN HotSpot code generation 25
2.2 IBM J9 code generation . 26

2.3 Jikes RVM code generation . 28

2.4 Kaffe code generation . 29
2.5 Parrot code generation . 31

2.6 Mono code generation . 33

3.1 Data segment layout . 41

3.2 Patcher assembler output (old) 42
3.3 Patcher assembler output (new) 43

3.4 Number of exceptions in DaCapo 45
3.5 Stackframeinfo chaining with native invocation 45

4.1 PPC64 function descriptor . 48

4.2 PPC64 CACAO ABI . 49
4.3 PPC64 patcher argument stack 53

4.4 JVM98 benchmark (lower is better) 55
4.5 DaCapo 2006-10-MR2 benchmark (small, lower is better) . . . 56

4.6 DaCapo 2006-10-MR2 benchmark (default, lower is better) . . 57
4.7 DaCapo 2006-10-MR2 benchmark (default, lower is better) . . 58

4.8 SciMark 2.0a benchmark (higher is better) 59

4.9 SciMark 2.0a benchmark (higher is better) 60
4.10 DaCapo 2006-10-MR2 benchmark (small, various, lower is bet-

ter) . 61

3

4 LIST OF FIGURES

5.1 M68K stack layout . 67
5.2 M68K CACAO ABI . 68
5.3 M68K patcher argument stack 71
5.4 DaCapo 2006-10-MR2 antlr benchmark 73
5.5 SciMark 2.0a benchmark . 74

Listings

1.1 Java hello world . 8
1.2 Java memory leak . 8
1.3 Stack operations . 19
2.1 Jikes RVM baseline add instruction 27
2.2 Jikes RVM baseline assembler add instruction 27
2.3 Jikes RVM optimzing add instruction 27
2.4 Kaffe intermediate example 29
2.5 Kaffe intermediate transformation 29
2.6 Kaffe codegenerator definition example 30
2.7 Parrot codegeneration example 31
2.8 Parrot JIT definition . 31
2.9 Mini generic instruction selection 32
3.1 Codegeneration for iadd . 39
3.2 Codegeneration macros . 40
4.1 PowerPC64 load a 64bit address 49
4.2 PPC64 exception triggering 51
5.1 Coldfire compiler bug testcase 64
5.2 Coldfire compiler bug testrun 65
5.3 Linux 2.6.10 sys cacheflush patch 66
5.4 M68K exception using trap . 69
5.5 M68K exception by illegal memory access 70

5

6 LISTINGS

Chapter 1

Introduction

1.1 The Java language

1.1.1 The big picture

The Java programming language was designed as a language for micro con-
trollers around 1990[12]. One design goal was easy portability to new micro
controllers which lead to a virtual machine (VM) based implementation of
the language. The Java language has a syntax very similar to C++ but
its design is more influenced by smalltalk. In Java every object is derived
from java.lang.Object so there is exactly one class hierarchy. Additionally
so called primitive types are used which are not part of the class hierarchy
and therefore disturb the orthogonally of the language. The rationale for
primitive types is performance as no runtime type checks are needed when
operating with them.

Today the Java language is widely used, primary for server side appli-
cations but also for cross platform solutions and web applets. It is also
used for teaching computer science students, for example at Vienna Uni-
versity of Technology although doing so is not uncritizised [8]. On http:

//freshmeat.net 5267 out of 41.916 projects (as on 3.1.2007) are tagged as
being implemented in the Java language. It has to be stated that these num-
bers are not representative as freshmeat.net mainly hosts UNIX software
nonetheless it shows that Java has practical relevance.

The world famous ”Hello world!” program in Java may look like listing 1.1.
Although hello world programs tend to have little expressiveness describing
features of a language they at least show the wordiness and Java is a very
wordy language. This is not a bad thing as reading code tends to be easier
when the language is more verbose, which is important for large scale projects
with more than a handful of developers.

7

8 CHAPTER 1. INTRODUCTION

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");

}

}

Listing 1.1: Java hello world

public class MemLeak {

private static java.util.Vector buffer =

new java.util.Vector ();

public static void main(String [] args) {

for (;;) {

java.lang.Integer i = new java.lang.Integer (1);

buffer.add(i);

}

}

}

Listing 1.2: Java memory leak

1.1.2 Design goals

Java is a rather modern language and although compiled it has dynamic
features as well. Java provides automatic garbage collection and does not
provide pointer types. The rational behind this decisions was the believe
that pointers are the main source of programming errors in C/C++. It is
a common misbelief that Java eliminates memory leaks as a whole, it just
eliminates some error classes where memory can leak. As counterexample for
a Java program leaking memory see listing 1.2, which will be aborted by a
java.lang.OutOfMemoryError exception. The problem with this program
is the static Vector buffer which will always hold a valid reference to the
Integer objects allocated in the loop. Therefore the garbage collector can
not remove the objects and eventually all available memory will be used. In
cases where static members are involved or objects with a very long lifespan
the programmer has to take care that no resources are leaked.

A very interesting feature of the Java language is the security manager.
The Java class library has hooks weaved in calling back java.lang.Security

Manager before executing code which may harm the system. The security
manager of a program can be provided by the user so he has fine grained
controls even for untrusted programs. That this sandbox can not be left easily

1.2. LANGUAGE FEATURES 9

is due to the virtual machine based implementation of the Java language
which defines an interface to the host running the Java program. As any
operations affecting the underlying system have to be passed through that
interface it is possible to prevent possible harmful actions by blocking them
at this defined border.

The Java platform is designed to be architecture neutral and portable. It
therefore makes no assumption about host specific properties like machine
word size or endianess. Instead a virtual machine interface is defined ex-
pected to be provided by the host. It is the responsibility of the virtual
machine vendor to encapsulate hardware details in a way compatible with
the expectations of a Java program executed. This includes word sizes, mem-
ory model and the semantics of built in functions or native interfaces. All
programs written in the Java language can then be executed in a Java vir-
tual machine (JVM) without any modification and are expected to behave
identically.

It is stated that Java is high performance. This statement won’t hold
when comparing interpreted Java programs against native compiled binaries
- an interpreter will always have some overhead [17, 11]. Nonetheless good
performance of Java programs can be achieved by using just-in-time (JIT)
compiler techniques, which may actually out perform native compiled code
[23]. The majority of this paper will cover this topic. As a possibility to boost
performance it is suggested to use the Java native interface (JNI)1. The JNI
defines an interface to invoke native compiled code which may perform better
than an implementation using Java. The main drawback of doing so is to
loose the portability of the program.

Further the Java language supports threading at language level. This
also lead to the class library being thread safe which eliminates a source of
bugs with which for example C++ programmers are confronted when using
standard template library (STL) containers in multi threaded applications.

Linking in Java happens dynamically. Classes are loaded and linked into
the program when first accessed, not when the program is loaded. This is
convenient when loading application via network as the initial start-up time
is reduced.

1.2 Language features

Java offers so called primitive data types, types which are no objects. The
integer types offered by the language are all signed, there is no unsigned data
type available. The following integer types are offered:

1http://java.sun.com/docs/books/jni/html/intro.html

10 CHAPTER 1. INTRODUCTION

• byte (8 bit)

• short (16 bit)

• int (32 bit)

• long (64 bit)

The character type char is a 16 bit unsigned integer type as Java uses
Unicode2 as character encoding. Java also offers two floating point types,
float (32 bit) and double (64 bit). Additionally a boolean type is offered
which can be assigned the symbolic values true and false solely.

Objects are the main abstraction in Java programs. Objects can have
members (primitive data types, other objects) and methods. Methods consist
of statements and can operate on the members of an object. Java supports
class inheritance with the limitation that a class can only inherit from one
so called superclass. In addition so called interfaces are offered. An interface
solely consists of method signatures and constants. A class implementing an
interface has to provide an implementation for each interface method.

A more detailed introduction into the Java language is beyond the scope
of this paper.

1.3 Executing Java programs

Java programs are compiled into so called class files by the Java compiler.
The compilation process translates the textual representation of the program
into an easier to parse intermediate form, called byte code. The byte code
is not machine specific but operates on an abstract machine model. There
are around 200 instructions, which a JVM executing the byte code has to
implement. There are different approaches to implement a JVM. The earliest
JVMs were interpreters, today just-in-time compilers are common. A just in
time compiler creates machine code for the methods denoted as byte code
and executes them directly on hardware. The name comes from the fact
that the code is compiled directly before a method is executed. Most JVM
implementations have an interpreter and compile only performance critical
parts of the Java program.

2http://www.unicode.org

1.4. CACAO ARCHITECTURE 11

1.4 CACAO architecture

1.4.1 Overview

Figure 1.1: CACAO architecture overview

As described in [14], the CACAO system uses a compile only approach
to execute bytecode. An interpreter has been added recently but a mixed
mode where parts of the code are compiled and other parts are interpreted
is not implemented. When initially loading a class no methods are compiled.
This is done to save start-up time and due to the fact that many methods
are never executed at all (when executing the DaCapo benchmark suite a
total number of 86730 methods are loaded from class files but only 28240 are
actually compiled. This is approximately 33%).

For each class loaded a so called vtable is created. A vtable contains
pointers to the methods implemented by a class. Each object knows it’s
classes vtable and looks up the method entry point there on invocation.
Interface methods need a second indirection to be looked up. Figure 1.3
shows the layout of a vtable. Method lookup tries to match the signature
of the method to be called with a signature of a method referenced by the
vtable. In Java not only the method name but also the types of the arguments
define the signature. java.lang.System.exit(I)V is an example for a Java
method signature. The letter I means that there is an integer argument V

means a return value of type void. Figure 1.2 shows how to construct method
signatures. Array types are denoted by prefixing the type with [(there are
not arrays of type void however).

12 CHAPTER 1. INTRODUCTION

Type: int long float double byte char short bool void

Specifier: I J F D B C S Z V

Figure 1.2: Method signature specifiers

Figure 1.3: A CACAO vtable

Figure 1.1 gives an overview of the CACAO architecture. The byte code
gets parsed and information is added. This results in an intermediate rep-
resentation (IR) consisting of ICMD. For each method one of two possible
compilers can be used. The baseline compiler is the simpler one and is used
to quickly generate code. The optimizing compiler will only be used for per-
formance critical methods. The compile time is increased, but much better
code is generated. This pays back when the method is executed frequently[3].
It has to be noted that at the time of the writing only the baseline compiler
is working. LSRA[24] and SSA[20] are currently implemented, recompilation
framework is in place but still unused, this basically means that the current
CACAO does not do any optimizations.

The vtable entries initially point to so called compiler stubs. The com-
piler stub when invoked determines the call site (from where it has been
invoked), triggers compilation of the method which should have been called
and updates the vtable accordingly (just-in-time compilation).

1.4.2 Startup and shutdown

The startup happens in src/vm/vm.c and initializes all modules needed by
the runtime environment. The Java program is started with a single call

1.4. CACAO ARCHITECTURE 13

to vm call method, which runs the main method of the given class. This
method returns when the Java program main thread has terminated. When
there are still active threads vm destroy waits for all of them terminating
before the whole Java program is terminated. In case of program termina-
tion caused by an uncaught exception a global variable called exceptionptr

points to this exception. A stacktrace is generated and the VM terminates
with an error exit code by calling java.lang.System.exit(I)V. Last men-
tioned function is called with a success exit code when no exception has
occurred.

1.4.3 Linker

The linker is responsible for building the vtable of a class. It therefore has
to load and link all interfaces a class implements as well as its superclass (re-
cursively). When initializing the linker important classes are preloaded. The
very first class to be loaded is java.lang.Class. Hardcoding classes to be
loaded of course binds the VM somewhat to a class library layout and naming
conventions. There are essential classes in a Java SE (Standard Edition) not
found in a Java ME (Micro Edition). What follows is an incomplete list of
classes the VM assumes to exist. They are used hardcoded from within the
VM. Cacao supports GNU Classpath3 (a free implementation of a Java class
library), Sun CLDC4 (a Java Micro Edition profile for mobile handsets), and
recently support for Sun OpenJDK5 class libraries - the open source version
of the Java SE - has been added.

Some classes are only needed when using a specific class library imple-
mentation. Such classes are marked.

• java.lang.Object

• java.lang.Class

• java.lang.ClassLoader

• java.lang.Cloneable

• java.lang.SecurityManager

• java.lang.String

• java.lang.System

3http://www.gnu.org/software/classpath/
4https://phoneme.dev.java.net/
5http://openjdk.java.net/

14 CHAPTER 1. INTRODUCTION

• java.lang.Thread

• java.lang.ThreadGroup

• java.lang.VMSystem

• java.lang.VMThread

• java.io.Serializable

• java.lang.Throwable

• java.lang.Error

• java.lang.LinkageError

• java.lang.NoClassDefFoundError

• java.lang.OutOfMemoryError

• java.lang.VirtualMachineError

• java.lang.AbstractMethodError (Java SE)

• java.lang.NoSuchMethodError (Java SE)

• java.lang.VMThrowable (GNU Classpath)

• java.lang.Exception

• java.lang.ClassCastException

• java.lang.ClassNotFoundException

• java.lang.IllegalArgumentException

• java.lang.IllegalMonitorStateException

• java.lang.Void (Java SE)

• java.lang.Boolean

• java.lang.Byte

• java.lang.Character

• java.lang.Short

• java.lang.Integer

1.4. CACAO ARCHITECTURE 15

• java.lang.Long

• java.lang.Float

• java.lang.Double

• java.lang.NullPointerException

• java.lang.StackTraceElement (Java SE)

• java.lang.reflect.Constructor (Java SE)

• java.lang.reflect.Field (Java SE)

• java.lang.reflect.Method (Java SE)

• java.security.PrivilegedAction (Java SE)

• java.util.Vector (Java SE)

1.4.4 Method compilation

Whenever a not compiled method gets invoked the compiler stub ultimately
invokes jit compile intern which controls the compilation (see figure 1.4).
As a first step it is tested whether the method is native, in this case no
code needs to be compiled, but a stub invoking the native function needs
to be emitted. This stub code translates CACAO internal argument passing
conventions to platform C ABI and calls the native function. When bytecode
needs to be compiled the following phases are passed consecutively.

Parse

The basic blocks are determined. A basic block starts at an instruction
which can be jumped to and ends at the first branching instruction or at the
next basic block, whatever applies first. The stack usage of the method is
simulated, and the Java byte code operands are translated into an internal
representation. Complex instructions, like dup x2 are converted to a sequence
of simpler instructions.

Stack analysis

For each basic block a symbolic evaluation of the code is performed, to check
whether the stack underflows. At basic block boarders so called interface
registers are used to merge control flow [13].

16 CHAPTER 1. INTRODUCTION

Figure 1.4: Method compilation

Control flow graph

Afterwards a control flow graph is built upon the basic blocks. The control
flow graph is needed for the verifier. Code verification is mandatory for a
Java virtual machine and specified in the JVM specification 6. The verifier
basically assures that all local variables references are valid, that parameters
on the stack have correct types and no stack underflows occur.

Typecheck

As local variables are just index numbers in bytecode with no type informa-
tion attached, they can be reused when their live ranges do not overlap. The
verifier has to symbolically evaluate the code in more detail than needed for
stack analysis.

Loop optimization

When enabled the compiler can try to optimize array bound checks in loops.
The array bound check can be propagated outside the loop when the opti-
mizer can prove that the index will stay in known borders and will therefore
be only checked once [7].

6http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

1.4. CACAO ARCHITECTURE 17

Static if-conversion

If-conversion is used to reduce the number of mispredicted branches, which
lead to cache invalidation and therefore penalizes performance. To benefit
from if-conversion a processor must support predicated opcodes. These are
opcodes which are only executed when certain conditions (e.g. flags in the
status registers) are met. For CACAO ARM and x86 64 are possible bene-
ficiaries of if-conversion. Performance impact on real hardware is described
in [4] for the Intel Itanium processor.

Inlining

Method inlining is another way to improve performance. Small methods are
embedded in the caller instead of generating a method invocation. For Java
this is especially true as a lot of getter methods are used which basically
just return a value they read by a getfield instruction. Additionally a lot
of initializers are called when creating an object. Most of them are empty
or trivial. 80% of method invocations can be saved by inlining in some
testcases[19].

Static, final and private methods are good candidates for inlining as the
compiler knows which code will get called. Overwritten methods can not be
inlined as the decision which implementation to call depends on the runtime
type of the object. A potentially overwriteable method which is not over-
loaded on the other hand can be inlined as well. Care has to be taken when
new classes get loaded by the program because some class may overload the
method in which case the inlining has to be undone - by recompiling the
method. All speculative inlinings need to be kept track of to handle this
case.

Block reordering

All basic blocks get reordered with respect to their calling frequency. This is
done to increase cache locality and described in [9].

Register allocation

Every slot from the stack machine model gets assigned a register on the real
hardware. As there is only a limited number of registers available and the
number of used stack slots may exceed the registers of a processor register
allocation is crucial for performance. The register allocator in CACAO is
replaceable, but for now only a very simple allocator is implemented.

18 CHAPTER 1. INTRODUCTION

The simple register allocator first allocates interface registers[13] and does
register precoloring for argument and return registers. Next so called tem-
poraries and finally local variables are allocated. When there are not enough
registers available the stack slot is allocated in memory and has to be swapped
in before each usage and stored back afterwards. More sophisticated regis-
ter allocators may avoid some spilling and copying but take more time and
therefore hurt performance more than they benefit as compile time is part of
method run time (at least for the first run). [13].

LSRA Linear Scan Register Allocation is a fast register allocator suitable
for just in time compilation described in [15]. It’s results are comparable
with more expensive graph coloring based allocators. CACAO will only use
LSRA when compiling a method using the optimizing compiler, the baseline
compiler uses the simple register allocator described earlier.

Code generation

The last step of compilation is the code generation. CACAO supports mul-
tiple platforms and all phases so far have been generic. Code generation
basically iterates all bytecodes of a method and writes machine code im-
plementing theses bytecodes. Chapter 3 will examine the work of the code
generator in more detail.

1.5 Java byte code

The Java compiler does not produce machine code which can be executed
on the host CPU directly but an intermediate form called byte code. There
are around 200 instructions defined which a virtual machine has to execute
according to their specification. Instructions are specified as operations on
an operand stack. This type of virtual machine is therefore called a stack
machine. The program listing 1.3 manipulates the stack as shown in figure
1.5. The opcode iconst 3 pushes the integer 3 on top of the stack, iconst 5

pushes 5, iadd takes the two topmost elements of the stack, adds them and
pushes the result back. The stack growing from bottom to top and its initial
state is unknown but also unimportant.

The JVM internally uses 32 bit for each stack slot. Therefore the primitive
types boolean, char, byte, short, int and float take exactly one stack
slot, long and double take two. Each instruction consists of at least one byte
(the opcode itself) followed by optional arguments. The getfield instruction
for example uses two argument bytes indexing the field in the object, while

1.5. JAVA BYTE CODE 19

iconst_3

iconst_5

iadd

Listing 1.3: Stack operations

Figure 1.5: Stack changes

it’s object reference is passed on the stack. The arithmetic instructions are
additionally tagged with the type of the arguments (e.g. iadd adds two int

whereas ladd adds two long values). Figure 1.6 shows the type prefixes.
The following sections list the most important opcodes defined by the

virtual machine definition grouped by usage.

Arithmetic opcodes

• iadd, ladd, fadd, dadd - addition

• isub, lsub, fsub, dsub - subtraction

• imul, lmul, fmul, dmul - multiplication

• idiv, ldiv, fdiv, ddiv - division

• irem, lrem, frem, drem - remainder of division

• ineg, lneg, fneg, dneg - negation

Bit instructions

• ishl, lshl - shift left

Prefix: i l f d b c s a

Type: int long float double byte char short address

Figure 1.6: Instruction type prefixes

20 CHAPTER 1. INTRODUCTION

• ishr, lshr - shift right

• iushr, lushr - shift right unsigned (logical shift)

• ior, lor - logical or

• iand, land - logical and

• ixor, lxor - logical exclusive or

Comparisons

• dcmpg, dcmpl - compare doubles

• fcmpg, fcmpl - compare floats

• lcmp - compare longs

Conversions

• i2l, i2f, i2d, l2f, l2d, f2d - widening conversions

• i2b, i2c, i2s, l2i, f2i, f2l, d2i, d2l, d2f - narrowing con-
versions

Flow control

• ifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonull - takes
one int value from stack, compare with 0, and jump at a given offset
if true.

• if icmpeq, if icmpne, if icmplt, if icmpgt, if icmple,

if icmpge - take two int values from stack, compare and jump at given
offset.

• if acmpeq, if acmpne - take two addresses from stack, compare and
jump at given offset.

• lookupswitch - used to implement the switch/case statement of the
Java language.

• tableswitch - similar to lookupswitch

• goto, goto w - jump at given address

1.5. JAVA BYTE CODE 21

• jsr, jsr w - jump to subroutine, store return address on stack

• ret - return from subroutine

Load and store

The virtual machine additionally knows the concept of local variables. These
are numbered memory locations, not located on the stack. Local variables
are generated by the compiler for each method and can be thought of as an
fixed size array. Local variables are used to pass method arguments and hold
temporary variables needed during calculations. The following operations
are used to access them.

• iload, lload, fload, dload, aload - load value from given vari-
able and stores on stack.

• bipush, sipush - push a constant byte/short onto the stack.

• ldc, ldc2 w - push a 32/64 bit value onto the stack.

• istore, lstore, fstore, dstore, astore - take value off stack and
stores it in local variable.

• wide - most opcodes use an 8 bit offset to number local variables. If
such an opcode is preceded by wide it uses a 16 bit offset.

Some instructions used for optimization - like the already mentioned iconst 3,
which stores an integer value of 3 onto the stack - have been skipped for clar-
ity.

Stack operations

• pop, pop2 - remove the (two) topmost element(s) from the stack.

• dup, dup2 - duplicate the topmost element (twice).

• dup x1, dup2 x1, dup x2, dup2 x2 - duplicate one or two words and
insert them one or two words below the top of stack.

• swap - swap the two topmost elements.

22 CHAPTER 1. INTRODUCTION

Object operations

• new - create an instance of a class

• instanceof - test whether an object is of class type

• checkcast - similar to instanceof

Field operations

• getfield, getstatic - load on stack content of (static) member

• putfield, putstatic - store value in (static) member

Method invocation

• invokevirtual - invoke a method using vtable lookup.

• invokeinterface - invoke a method looking up in interface table.

• invokespecial - used to invoke initialization methods and methods
from superclass and private methods.

• invokestatic - invoke a static method

• ireturn, lreturn, freturn, dreturn, areturn - return value of
given type.

• return - return void type.

Array operations

• newarray, anewarray, mulitnewarray - create a new array.

• baload, caload, saload, iaload, laload, faload, daload,

aaload - load from array.

• bastore, castore, sastore, iastore, lastore, fastore,

dastore, aastore - store into array.

• arraylength - store length of array onto stack.

1.5. JAVA BYTE CODE 23

Miscellaneous operations

• athrow - throw an exception.

• monitorenter, monitorexit - each object has a monitor associated
with it, when entered it blocks access from concurrent threads until
left.

A detailed definition of the Java instruction set has been published by
SUN (The JavaTMVirtual Machine Specification, Second Edition) which is
also available online at http://java.sun.com/docs/books/jvms/second_

edition/html/VMSpecTOC.doc.html.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

This chapter will introduce a few important other Java VMs. Sun’s HotSpot,
IBM’s J9 and the open source Jikes RVM. The architecture of their code gen-
erator will be compared to CACAO’s design. Further interesting VMs will
be introduced. Kaffee an open source Java VM, Parrot the Perl 6 implemen-
tation and Mono a C# VM.

2.1 SUN HotSpot

SUN’s own Java VM implementation features two different implementations1.
Client and server mode. Client mode JIT compiler focuses on local optimiza-
tions, whereas server mode takes the global situation into account at much
higher compile time costs. Code generators are available for SPARC, x86
and AMD64. An rough overview of the architecture is given in figure 2.1.

CACAO does not feature two different operation modes (client, server),

1http://java.sun.com/products/hotspot/whitepaper.html#client

Figure 2.1: SUN HotSpot code generation

25

26 CHAPTER 2. RELATED WORK

Figure 2.2: IBM J9 code generation

the compiler has only one IR, whereas HotSpot has two IRs (in client mode).
In client mode HotSpot differs hardware architecture earlier than CACAO
and has a platform specific LIR.

2.2 IBM J9

The IBM J9 virtual machine is derived from the Sun Classic VM, but has
been further developed[10]. Code generators are available for PPC, x86 and
AMD64. The JIT compiler transforms the byte code into extended byte code
(EBC) which is still stack based. After optimizing the EBC (e.g. inlining)
this form is transformed into a register based quadruple (QUAD) represen-
tation. Common subexpression elimination is among other things performed
on the finer grained quadruple code which is the transformed into a directed
acyclic graph (DAG) which gets scheduled and is then transformed back
into quadruple code for code generation. This architecture of the optimizing
compiler is shown in figure 2.2.

IBM’s J9 even features three IRs for the optimizing compiler. Like in
CACAO most stages are generic, only the codegenerator is architecture spe-
cific.

2.3 Jikes RVM

The Jikes RVM2 was initially started as project Jalapeño[1] by IBM in 1997.
It has been put under an open source license in 2001 and is since then actively
maintained. The main focus of the project is to provide a research VM.
New ideas shall be quickly implementable on top of Jikes RVM. Nonetheless
Jikes RVM is a fast VM too. Most parts of the VM are implemented in
the Java language as well, only around 1000 lines of C code are needed for
bootstrapping. Jikes RVM features an unoptimizing baseline compiler as well
as an highly sophisticated optimizing compiler. Code generators are available
for PPC and x86.

2http://jikesrvm.org

2.3. JIKES RVM 27

protected final void emit_iadd() {

popInt(T0);

popInt(T1);

asm.emitADD(T2, T1, T0);

pushInt(T2);

}

Listing 2.1: Jikes RVM baseline add instruction

public final void emitADD(int RT, int RA, int RB) {

int mi = ADDtemplate | RT << 21 | RA << 16 | RB << 11;

mIP++;

mc.addInstruction(mi);

}

Listing 2.2: Jikes RVM baseline assembler add instruction

Listing 2.1 shows a baseline compiler code snippet taken from /rvm/src/

org/jikesrvm/compilers/baseline/ppc/VM Compiler.java emitting the
code to generate a Java iadd instruction. The code snippet generating the
assembler code is shown in listing 2.2 and is taken from src/org/jikesrvm/

compilers/common/assembler/ppc/VM Assembler.java

The optimizing compiler is using a different assembler, generated by a
BURS[16] implementation. Listing ref 2.3 shows the definition of an add in-
struction take from rvm/src-generated/opt-burs/ppc/PPC Alu32.rules

An overview of the code generator is given in figure2.3. Jikes’s baseline
compiler is similar to CACAO, its optimizing compiler features three IRs
with one being hardware specific.

r: LONG_ADD(r,r)

20

EMIT_INSTRUCTION

LONG_ADD (P(p), Binary.getResult(P(p)),

R(Binary.getVal1(P(p))),

R(Binary.getVal2(P(p))));

Listing 2.3: Jikes RVM optimzing add instruction

28 CHAPTER 2. RELATED WORK

Figure 2.3: Jikes RVM code generation

2.4 Kaffe

The Kaffe3 project is one of the oldest free (GPL licensed) Java implementa-
tions around. Version 0.6 was released in 1996, version 1.1.7 was released in
march 2007. Kaffe features an interpreter and a JIT for some architectures.
It also supports different flavour of Unixes including Linux and FreeBSD.
Version 1.1.7 includes JIT for ALPHA, ARM, X86, X86 64, PPC, M68K
MIPS, S390 and others. Kaffe has 2 different JIT engines, in this paper only
JIT3 (the newer one) is covered. An architectural overview is shown in 2.4.

As a first step of code generation Kaffe translates the Java byte code
into an Kaffe specific intermediate format. This transformation is driven by
kaffe/kaffevm/kaffe.def. An example of such a transformation rule is
given in listing 2.4, which shows the transformation for the Java bytecode
operation IADD.

The translation of this sequence of opcodes into machine code is imple-
mented in kaffe/kaffevm/jit3/icode.c. For each opcode processed a call-
back into an architecture specific code generator is invoked. This translation
process knows about machine details and only invokes callbacks implemented
by the code generator. This is controlled by a bunch of HAVE macros, e.g.
HAVE add int. An example of such a callback invocation is given in listing
2.5.

The Code generation is driven by a machine definition file in the config sub
directory of the Kaffe source. For m68k the file is located at config/m68k/
jit3-m68k.def. As example the generation of machine code performing
integer addition is given in listing 2.6.

The main difference to the CACAO architecture is the highly config-
urable but generic code generator which drives machine code output for each

3http://kaffe.org

2.4. KAFFE 29

define_insn(IADD)

{

/*

* ..., val1 , val2 -> ..., val1+val2

*/

trace_jcode ("iadd\n");

check_stack_int(0);

check_stack_int(1);

add_int(stack(1), rstack(1), rstack (0));

pop (1);

}

Listing 2.4: Kaffe intermediate example

void

add_int(SlotInfo * dst , SlotInfo * src , SlotInfo* src2)

{

#if defined(HAVE_add_int_const)

if (slot_type(src) == Tconst) {

add_int_const(dst , src2 , slot_value(src)->i);

}

else if (slot_type(src2) == Tconst) {

add_int_const(dst , src , slot_value(src2)->i);

}

else

#endif

_add_int(dst , src , src2);

}

Listing 2.5: Kaffe intermediate transformation

Figure 2.4: Kaffe code generation

30 CHAPTER 2. RELATED WORK

define_insn(add_int , addi_RRR)

{

int r = rreg_int (2);

int w = rwreg_int(0);

assert(rreg_int (1) == w);

op_addl_dd(r, w);

}

static inline void

op_addl_dd(int src , int dst)

{

debug(("addl %s, %s\n", regname(src), regname(dst)));

assert_dreg(src);

assert_dreg(dst);

WOUT(0xD080 | (dst << 9) | (MODE_d << 3) | (src & 7));

}

Listing 2.6: Kaffe codegenerator definition example

platform. The code generator provides a bunch of functions emitting the
assembler instructions, but contains no loop iterating the byte code.

2.5 Parrot

Parrot 4 0.0.1 was released in September 2001, the last release as of now is
0.4.12 which has been released in May 2007. Parrot was originally started as
implementation of Perl 6 but now focuses on providing a virtual machine for
many dynamically typed languages as Python and Lua. Parrot is a register
based virtual machine featuring a lot of high level instructions, including e.g.
an implementation for the coversine function5 or string concatenation. Parrot
also tries to make objects implemented in different languages interoperable.
The JIT compiler is ported for alpha, arm, x86, IA64, PC, sun4, MIPS and
HPPA.

The Parrot JIT compiler is written in a markup language processed
by a Perl script to generate C source code. An example snippet from
src/jit/ppc/jit emit.h is given in listing 2.7 and shows how an add in-

4http://www.parrotcode.org
51 − sin(x)

2.5. PARROT 31

Figure 2.5: Parrot code generation

#define jit_emit_3reg_x(pc, opcode , D, A, B, type , Rc) \

*(pc++) = opcode << 2 | D >> 3; \

*(pc++) = (char)(D << 5 | A); \

*(pc++) = B << 3 | type >> 7; \

*(pc++) = (char)(type << 1 | Rc);

#define jit_emit_add_rrr(pc, D, A, B) \

jit_emit_3reg(pc, 31, D, A, B, 0, 266, 0);

Listing 2.7: Parrot codegeneration example

struction is emitted. Code generation is driven by src/jit/ppc/core.jit

which implements Parrots intermediate instructions, an example is given
in listing 2.8 and shows generation of an addition, the binop x x template
expands to jit emit add rrr, this expansion is done by the Perl script
tools/build/jit2c.pl. An overview is shown in figure 2.5.

The main difference to CACAO is the introduction of another intermedi-
ate language to describe the code generators. In addition Parrot is a register
based VM where CACAO is stack based and Parrot is tailored towards dy-
namically typed languages.

Parrot_add_i_i {

binop_x_x s/<_N >/_i/ s/<op >/add/ s/<s1 >/ISR1/

s/<s2 >/ISR2/ s/<T>/INT/

}

Listing 2.8: Parrot JIT definition

32 CHAPTER 2. RELATED WORK

lreg: OP_I8CONST {

MONO_EMIT_NEW_ICONST(s,state ->reg1 ,tree ->inst_ls_word);

MONO_EMIT_NEW_ICONST(s,state ->reg2 ,tree ->inst_ms_word);

}

Listing 2.9: Mini generic instruction selection

2.6 Mono

The Mono6 project was initiated by Miguel de Icaza in 2001. Novell7 picked
up the idea and Mono 1.0 was released in June 2004. The Mono project aims
to provide a C# compiler and a .NET runtime under a free software license.
The Mono system is available for different operation systems and features
a JIT compiler for all supported platforms. As of today s390, SPARC32,
PPC, x86, x86 64, IA64, arm, alpha and MIPS are supported. Mono code
generation is driven by the function mini method compile which first of all
reads in the .NET IL (intermediate language) and constructs a mono specific
intermediate representation (IR).

This IR is then transformed by mini select instructions into a ma-
chine dependent optimized IR. An iburg like instruction selector[6] called
mini has been implemented for this purpose. There are also generic rules, e.g.
to map 64 bit operations to 32 bit operations, or to use floating point software
emulation when appropriate. Listing 2.9 shows an example rule for loading a
64 bit constant on a 32 bit architecture (mono/mini/inssel-long32.brg).

mono codegen finally produces machine instruction from the IR by calling
an architecture specific backend (e.g mono/mono/mini/mini-ppc.c). The
code generator iterates all IR opcodes of a basic block and selects machine
instructions by using a big switch statement. This process is visualized in
figure 2.6.

The machine instructions are described in a CPU specific file, and ex-
ample taken from mono/mono/mini/cpu-g4.md may look like add: dest:i

src1:i src2:i len:4, which describes the add instruction and its register
usage. This information is used by the Mono registers allocator and instruc-
tion scheduler, but is otherwise unrelated to instruction selection.

The biggest difference between CACAO and Mono is the machine depen-
dent transformation on the IR performed by Mono. This reduces the size
of each code generator as e.g. 64 bit arithmetic byte code instruction don’t
need to be implemented by each 32 bit generator. In CACAO each 32 bit

6http://www.mono-project.com
7http://www.novell.com

2.7. SUMMARY 33

Figure 2.6: Mono code generation

code generator implements 64 bit arithmetic.

2.7 Summary

Despite their similar function code generators differ a lot. The number of
introduced IRs is related to optimizations implemented. Only the commercial
VMs implement the complex optimizations demanding different IRs. Some
VM vendors decided to implement an instruction selector, while others iterate
the IR and generate machine code by a switch statement. Another design
decision is when to consider hardware specific aspects. Most code generators
try to stay generic as long as possible. CACAO does not use an instruction
selector. Therefore the code generators source size is huge, but mostly trivial.
By directly implementing the machine code generating in C no additional
language (like Parrot’s JIT definition) has to be learned for development.

34 CHAPTER 2. RELATED WORK

Chapter 3

Code generators for CACAO

CACAO provides code generators for many platforms. Currently code gen-
erators for ALPHA (FreeBSD, Linux), ARM (Linux) i386 (Cygwin, Darwin,
FreeBSD Linux), MIPS (Irix, Linux), POWERPC (Darwin, Linux, NetBSD),
SPARC64 (Linux), x86 64 (Linux) and s390 (Linux) are available. When
building CACAO for a platform the according code generator is linked stat-
ically. To be able to easily exchange code generators an internal interface is
defined. A code generator has to implement this interface.

3.1 Symbols needed by CACAO

The following symbols need to be defined to link a code generator with CA-
CAO. As CACAO is under development this list is not stable, probably some
symbols have been renamed and/or added, removed. The functions prefixed
with md are machine dependent, but also often operating system depended,
they have been factored out to make porting from one operating system to
another easier. The asm prefixed functions are implemented in assembler
language for various reasons. The signatures of the functions do not match
reality, none of them is void actually, the notation has been chosen to differ
between functions and global variables, the signature is skipped for clarity.

• void codegen(void) {}
Main driver function for the code generator.

• void createnativestub(void) {}
Generates code which translates CACAO internal argument format to
platform C ABI format and calls a native function.

• void createcompilerstub(void) {}
Generates code which invokes the compiler when a not compiled method

35

36 CHAPTER 3. CODE GENERATORS FOR CACAO

is invoked.

• void md init(void) {}
Initializations needed for the machine dependent part.

• void md get method patch address(void) {}
When a method has been compiled the method entry point has to be
patched so that further invocations execute the compiled code directly.
This function returns a pointer to the memory location of the method
entry point and differs types of method invocations.

• void md icacheflush(void) {}
Invalidates the processors instruction cache. This is needed when code
patching took place as the processor would execute obsolete instruc-
tions else.

• void md stacktrace get returnaddress(void) {}
Returns the return address of the current stackframe. The caller does
not need to know about the details of the platform. This is needed for
the stacktrace generating code.

• void md codegen get pv from pc(void) {}
Each CACAO method has a procedure vector, this is its start address
(entry point). This function takes a program counter as argument and
returns the start address of the method.

• void md signal handler sigsegv(void) {}
Cacao uses illegal memory access to implement exceptions. The signal
handler gets called by the operating system in such a case and activates
exception handling.

• void md codegen patch branch(void) {}
This function changes the displacement of a branching instruction. The
caller does not need to know details about the platform.

• void md cacheflush(void) {}
Invalidates the CPU data cache, this is needed when data patching
took place otherwise the processor would work with obsolete values.

• void md param alloc(void) {}
This function preallocates stack slots to argument registers for method
invocations. This prevents copying values to argument registers by
holding the arguments in the correct registers in the first place.

3.1. SYMBOLS NEEDED BY CACAO 37

• void md return alloc(void) {}
Preallocates the register holding the return value of a native function
call.

• int nregdescint;

An array containing the usage description for each integer register. A
register description is one of: reserved, argument, saved and temporary.
The register allocator needs this information. Saved registers are callee
saved, whereas the others are caller saved.

• int nregdescfloat;

Same as nregdescint for floating point registers.

• void compare and swap(void) {}
Compare and swap (CAS) is a universal locking primitive [22] and can
be used to implement lot of non-blocking algorithm. In CACAO it
is used to implement method and object locks. Not all platforms are
capable to provide an atomic implementation as it would be needed.

• #define STORE ORDER BARRIER()

Guarantees that store operation preceding the barrier are finished be-
fore stores following the barrier.

• #define MEMORY BARRIER BEFORE ATOMIC()

Needed to implement the Java memory model as described in chapter
17 of the Java Language Specification 1.

• #define MEMORY BARRIER AFTER ATOMIC()

See MEMORY BARRIER BEFORE ATOMIC().

• #define MEMORY BARRIER()

See MEMORY BARRIER BEFORE ATOMIC().

• #define PATCHER CALL SIZE

The size of a patcher in bytes. Patcher are described in 3.6.

• #define BRANCH NOPS

Generates enough nop instructions to overwrite it with a branch in-
struction later.

• void asm vm call method{}
Called when a Java method is invoked by C code. Mainly performs
argument adaption, from C ABI to CACAO intern argument handling.

1http://java.sun.com/docs/books/jls/third_edition/html/memory.html

38 CHAPTER 3. CODE GENERATORS FOR CACAO

• void asm vm call method [int|long|float|double] {}
These four functions are specialized versions of the above. The type in
the name indicates the type of the return value expected.

• void asm vm call method exception handler {}
Needed to propagate exceptions beyond an asm vm call method stack-
frame. See 3.7 for more details.

• void asm call jit compiler {}
Invokes the JIT compiler from within JIT code and takes care of the
calling conventions.

• void asm criticalsections {}
A data structure needed by asm getclassvalues atomic, contains
start and end address of critical sections.

• void asm getclassvalues atomic {}
Subtype testing in CACAO is implemented by relative numbering [18]
which uses the post order numbering of an inheritance tree. These
values need to be recomputed when new classes get loaded and may
not be read while class loading is performed. This function reads a
classes values and sets up a critical section around itself.

• void asm abstractmethoderror {}
This stub gets called when an abstract method is executed (which is
prohibited in Java) and throws an AbstractMethodError exception.

3.2 Register allocation

When the code generator is invoked, all stack slots used by the method have
been assigned a register or a memory location. The code generator has to
emit code running on register based hardware, so each operand has to be
loaded into a register before usage. For that reason three registers (of each
type) are reserved for the code generator. Every bytecode instruction can
be implemented using a maximum of three registers. The reserved regis-
ters are called REG ITMP1, REG ITMP2 and REG ITMP3 for integer operations
and REG FTMP1, REG FTMP2, REG FTMP3 for floating point operations. The
emit load s1, emit load s2 and emit load s3 functions are used to load
operands for the current bytecode operation. These functions take a tempo-
rary register as argument and return the register holding the operand. When
the operand was in memory it has been loaded into the given temporary regis-
ters, otherwise the register assigned for the operand by the register allocator

3.3. CODE GENERATION MACROS 39

case ICMD_IADD:

s1 = emit_load_s1(jd, iptr , REG_ITMP1);

s2 = emit_load_s2(jd, iptr , REG_ITMP2);

d = codegen_reg_of_dst(jd, iptr , REG_ITMP2);

M_IADD(s1, s2, d);

M_EXTSW(d,d);

emit_store_dst(jd, iptr , d);

break;

Listing 3.1: Codegeneration for iadd

is returned. An emit store function is used to finally store the result in
either destination register or memory location. The destination register of
an operation is returned by the function codegen reg of dst. See listing 3.1
for an example showing the implementation of the iadd opcode on PPC64.

By using this API the code generator is completely decoupled from regis-
ter allocation, with the costs of statically assigning three registers dedicated
to the code generator.

3.3 Code generation macros

The code generator iterates over all bytecode instructions of the method to
be compiled selecting machine code by a switch statement. The generated
machine code is written to temporary memory and afterwards copied to an
executable memory location. The assembler instructions are generated by
macros, so care has to be taken with side effects of arguments which could
be evaluated twice. To achieve a better conformity of the code generators all
platforms try to use similar macro names originally inspired by alpha naming
conventions. Listing 3.1 shows the implementation of the iadd operation for
POWERPC64. One can see the load of the two operands. The macros M IADD

emits the machine code for an addition, M EXTSW is needed for sign extension
and is platform specific. Finally the result is stored in the according register.
jd and iptr contain information about the state of the JIT compiler and the
current instruction processed. The implementation of the M IADD is shown
in listing 3.2.

40 CHAPTER 3. CODE GENERATORS FOR CACAO

#define M_OP3(opcode ,y,oe,rc,d,a,b) \

do { \

*((u4 *)cd->mcodeptr) = (((opcode)<<26) | ((d)<<21)\

| ((a)<<16) | ((b)<<11) | ((oe)<<10) | ((y)<<1)\

| (rc)); \

cd->mcodeptr += 4; \

} while (0)

#define M_IADD(a,b,c) M_LADD(a,b,c)

#define M_LADD(a,b,c) M_OP3(31, 266, 0, 0, c, a, b)

Listing 3.2: Codegeneration macros

3.4 Post compile time code patching

One reason the code generated is written into a buffer is due to unresolved
jumps. Imagine a forward jump in a method. The target address points into
code still not generated and the compiler does not know the exact offset in
advance as it depends on the opcodes in between. Additionally the offset
also depends on the whereabouts (register, memory) of the operands used by
the instructions in between as this may change their size. For that reason a
post pass has been added to code generation which patches the code after
generation. A function named codegen add branch ref is responsible for
collecting branch addresses which may be unresolved at compile time. As an
argument it takes the target basic block. When the jump can not be resolved
the branch displacement will be patched in the post compilation phase using
the function md codegen patch branch. By using the machine dependent
patching function the post compilation phase is platform independent.

3.5 Data segment

The generated code needs lots of constant values, some embedded in the
program executed but also function entry addresses. Some architectures
can load immediate values large enough to hold all constant values needed,
other architectures have immediates not covering the whole range. For that
reason a data segment holding constant values is generated for each method.
The data segment is built together with code and later both are copied into
memory consecutively. The first operation of the method is reference by
the procedure vector (pv) in CACAO. Further instructions are at memory
locations above the pv the data segment is below the pv (see figure 3.1).

3.6. RUNTIME CODE PATCHING - PATCHERS 41

Figure 3.1: Data segment layout

When a constant exceeding the size of immediate operands is needed it is
loaded from the data segment by using an indirect load operation. In addition
a method header is stored in the data segment which points to a C data
structure describing the method (e.g. stack size, argument types, signature).
The exception table and the line number table are stored in the data segment
as well.

3.6 Runtime code patching - Patchers

Some references can not be resolved at compile time at all. An example
would be a getstatic instruction, which loads a static field from a given
class. The class may be unresolved when code for getstatic was generated
in which case the runtime system has to load and initialize the class, resolve
the address of the member and return that value. For this purpose so called
patchers are embedded into the generated code which remove themselves
after execution as they are only needed once.

The old approach

Old versions of CACAO implement patchers as branch instructions and jump
to a generated patcher stub setting up a special stack frame and invoke
asm patcher wrapper thereafter. asm patcher wrapper takes care of regis-
ter storing and restoring and calls patcher wrapper which is written in C.
Figure 3.2 shows the assembler code of an embedded patcher. These snippets
are from x86 64 and show an invokestatic with and without patcher. The
leftmost snippet shows an invocation with known method entry point. The
right snippet shows the code generated when the entry point was unknown at
compile time. A branch to a patcher has been emitted. The patcher invoca-
tion is one byte shorter than the original invocation, therefore the assembler
output is disturbed by the last byte of the original machine code (0xff).
One can see the sequence 0x41 0xff 0xd2 which is the callq of the original

42 CHAPTER 3. CODE GENERATORS FOR CACAO

Figure 3.2: Patcher assembler output (old)

code. The patcher jumps to the shown patcher stub. This stub sets up the
special stack layout used by patchers and invokes the patcher wrapper. This
wrapper finally calls the patcher needed. The patcher is implemented in C
code and afterwards the patcher invoking instruction is overwritten by the
original machine code. This code is an argument for the patcher and can
be seen in the patcher stub at line 3. 0x41ffffff87158b4d is the endian
correct representation of a x86 64 mov instruction as seen in line 1 of the
code snippet without patcher.

On some architectures patcher invocations may be larger than the instruc-
tion patched. This may lead to problems at basic block borders. Imagine a
short instruction needing patching at the end of a basic block. The patcher
invocation exceeds the basic block and overwrites some bytes in the follow-
ing basic block. For correct operation the patcher would need to be executed
before the following basic block is executed, but that is not assured. For
that reason when a patcher is inserted into emitted code it is checked if at
least PATCHER CALL SIZE bytes follow. If that is not the case an appropriate
number of NOPs is inserted at the end of the basic block.

The new approach

Recent versions of CACAO use a different approach to decrease the assembler
code and get rid of the patcher stubs at all. Instead of branching to a stub,
an illegal instruction is generated covering the original code. The operating
system raises a signal caught by a signal handler. The signal handler needs to
be able to differ patchers from exceptions, e.g. by using a different trapping

3.7. EXCEPTIONS 43

Figure 3.3: Patcher assembler output (new)

instruction. The handler then looks up the proper patcher and invokes it.
For that purpose a list of patching positions combined with the patcher to be
invoked and the data passed via patcher stack in the old approach is kept in
memory. The code generator needs to provide a function called emit trap

capable to generate a trapping instrucion using 32 bits. Assembler code to
build the patcher stack can be removed, as well as patcher stub generating
code.

Figure 3.3 shows the generated assembler code on the x86 64 architecture.
The illegal instruction (u2da) is generated where a patcher is needed When
the trap instruction is executed control flow branches to a signal handler
written in C. The disassembler wrongly interpretes the bytes 15 87 ff ff

ff as adc instruction. They are part of the offset of the mov instruction
covered by the ud2a instruction.

A race condition exists when patching the trapping instruction in case he
instruction can not be overwritten atomically on multiprocessor machines.
One thread could just patch back the original code, while a different thread
executes exactly this code and comes across a half patched instruction. For
that reason single word instructions are used for trapping, as they can be
written back atomically.

3.7 Exceptions

Exceptions are an integral part of the Java language and are used a lot.
Nonetheless exceptions are rare events and occur irregularly. Figure 3.4 shows
the number of exceptions for a run of the DaCapo benchmark suite using

44 CHAPTER 3. CODE GENERATORS FOR CACAO

default data size. Although the number of exception for lusearch seems to
be huge it has to be seen in relation to the approximately 540 million method
calls.

Each method has an exception handler table associated. This table de-
scribes the start and end instruction of each exception handler directly cor-
responding to the Java language try clause. When an exception occurs at
some point in the program, a lookup is performed in the exception table.
The type of the occurring exception is compared to the type of each handler
covering the throwing instruction.

If a match can be found the handler is executed, else the exception is
propagated outside the method. For the caller this looks like a throwing
invoke instruction. As the caller of a method is unknown at compile time,
the caller has to be determined at runtime. This is achieved by looking up the
return address which is stored on the stack. The offset is known as CACAO
knows about the stack usage of each method. Stack space is allocated on
method entry and no dynamic allocation is performed.

An operation called ”stack unwinding” is performed whenever an ex-
ception is propagated to its caller. As control flow continues at the invok-
ing instruction all callee saved registers have to be restored for each stack
frame unwound. Callee saved register are stored on the method stack when a
method is entered, therefore the restore operation is implemented by loading
these registers from known stack locations.

This process either terminates when an appropriate handler has been
found or the whole stack is unwound in which case the exception is unhandled
and the program will be aborted.

In CACAO no explicit code is generated for calling back the runtime
when an exception occurred but an illegal memory operation is performed.
POSIX compatible operation systems provide a signal handling mechanism
which invokes a function in this case. This signal handler tests if the memory
operation was performed intentionally and if so it calls the exception han-
dling code. In case the memory access took place unintentionally an internal
exception is thrown and the vm aborts.

When native functions have been called they could have thrown an ex-
ception too. Natives can not throw exceptions directly but have to notify the
runtime by setting a flag in the environment. When they return the envi-
ronment is checked for an exception and exception handling code is executed
when needed. Exception handling is complex because natives may call back
into Java code. The stack layout is only known in JIT code, native code has
a different stack layout and stack unwinding would fail when a native frame
is found. Therefore a chained data structure called stackframe info is built
up when invoking natives. Figure 3.5 illustrates this chaining. Technically

3.7. EXCEPTIONS 45

antlr bloat chart fop hsqldb jython lusearch luindex pdm
318 265 1194 6233 224 40040 524381 5014 15420

Figure 3.4: Number of exceptions in DaCapo

Figure 3.5: Stackframeinfo chaining with native invocation

there are no stackframeinfo structures for JIT frames, as this stack layout
is known and contains all needed information already.

When unwinding the stack finds asm vm call method (each native to
Java invocation is performed by this function), the exception is caught and
builtin throw exception is invoked which assignds the exception object
to the (thread) global exceptionptr. When the asm vm call method was
invoked by a native the stackframeinfo structure enables the exception han-
dling code to figure out the call site in JIT code (see stacktrace create).

46 CHAPTER 3. CODE GENERATORS FOR CACAO

Chapter 4

POWERPC64 code generator

4.1 The POWERPC64 architecture

The POWERPC architecture1 has been created in 1991 by Apple, IBM and
Motorola. The specification describes many features, but a processor does
not have to implement all of them. There exist specifications for 32 and 64
bit modes, as well as little and big endian modes. CACAO supports 64 bit
big endian mode. POWERPC is a reduced instruction set computer (RISC)
CPU, with a load-store design. It has 32 general purpose registers and 32
floating point registers. Instructions have a fixed size of 32 bit. The floating
point registers are 64 bit wide and can hold IEEE-7542 single and double
precision values.

4.2 Design decisions

4.2.1 PPC64 ELF ABI

The Linux Standard Base (LSB) published by The Linux Foundation3 spec-
ifies calling conventions and stack layout to be used for PPC64. CACAO
implements LSB 3.14.

1http://www.power.org
2http://ieee.org
3http://www.linux-foundation.org
4http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-PPC64/

LSB-Core-PPC64.html

47

48 CHAPTER 4. POWERPC64 CODE GENERATOR

Figure 4.1: PPC64 function descriptor
function entry point TOC address environment pointer

4.2.2 PPC64 CACAO ABI

The CACAO register usage is shown in figure 4.2. r0 has a special meaning
during address operations on PPC64 and can not be used uniformly therefore.
To keep the register allocator simple it is marked as reserved. r1 is used as
stack pointer conforming to the ELF ABI. r13 is reserved for system usage.
r12 is also reserved and is used by the runtime linker when invoking function
descriptors.

Function descriptors

r2 is used for linking purpose and contains a linking module specific address
pointing to the start of the data segment called TOC (table of contents).
The compiler generates code loading constants relative to r2. When invoking
functions residing in an external linkage unit (e.g. a shared object) a special
calling sequence invoking a so called function descriptor is used. The format
of a function descriptor is shown in 4.1. The function descriptor is provided
instead of the function entry point when calling an external symbol. This
demands different calling conventions when linking CACAO statically.

4.2.3 Loading addresses

To load a 64 bit address into a register the assembler sequence 4.1 is needed.
This is due to the 32 bit fixed sized opcodes which restrict immediate values
to 16 bit for lis and ori. rldicr shifts the register left 32 bits and then
the rest of the 64 bit value is ORed in. As even the ”Hello World” program
needs about 13000 address constants using the code from listing 4.1 to load
addresses would waste a lot of memory. For that reason all address constants
are loaded using the data segment on PPC64. For that purpose one register
is reserved and holds the start address of the data segment during execution
of JIT code. This register is called pv the procedure vector. Loading an
address constant is thus reduced to a single 32 bit long ld instruction with
a 16 bit signed offset. For offsets beyond this 32 kb boundary the addis

instruction is used to realize an effective offset of 32 bit which restricts the
maximum size of the data segment to 2 GiB. The memory consumption is
12 byte for small offsets and 16 for larger ones instead of 20 bytes for the
sequence shown in listing 4.1.

4.2. DESIGN DECISIONS 49

Figure 4.2: PPC64 CACAO ABI
Register Argument Callee saved Caller saved Reserved

r0 X
r1 X
r2 X

r3-r10 X
r11 X
r12 X
r13 X
r14 X
r15 X
r16 X

r17-r23 X
r24-r31 X

f0 X
f1-f13 X
f14 X
f15 X

f16-f31 X

lis 4, address@highest

ori 4, 4, address@higher

rldicr 4, 4, 32,31

oris 4, 4, address@h

ori 4, 4, address@l

Listing 4.1: PowerPC64 load a 64bit address

50 CHAPTER 4. POWERPC64 CODE GENERATOR

4.2.4 Integer and long arithmetic

On 64 bit architectures implementing Java long arithmetic is easy as the
machine operations directly correspond to their Java opcode counterparts.
More care is needed when implementing integer arithmetic as results may
exceed the value range of the integer data type. On PPC64 it is possible to
implement each integer operation using long arithmetic and sign extending
the result afterwards. It is important to always have integer values correctly
sign extended as the i2l opcode (which converts integers to long) is imple-
mented as NOP (no operation). In JIT code integer variables are treated as
long, and take 8 byte on the stack when spilled. Only when reading from or
writing into data structures shared with C code conversion from or to 32 bit
has to be performed.

4.2.5 Float and double arithmetic

All floating point registers are 64 bit wide and can hold an IEEE-754 double
precision value. It’s up to the software to take care about single precision
values. In CACAO the type of the register contents is always known, so it is
no problem to decide whether to emit a single or double precision load/store
operation. When spilling float registers on the stack lfd (load double) and
stfd (store double) instruction can be used as they treat the content as bit
pattern and do not convert it. Only when writing into data structures shared
with C code lfs (load single) and stfs (store single) have to be used in case
of single precision variables.

4.2.6 Exception handling

To trigger exception handling CACAO relies on the operating systems signal
handling facilities. On PPC64 an illegal memory access (segmentation fault)
is performed to trigger a signal and finally an exception. As the same mech-
anism is used to trigger null pointer exceptions a way to distinguish between
null pointer exceptions and other exception types is needed. On PPC64 reg-
ister r0 behaves non uniform when used during address calculations where
it’s value is 0. This is used for triggering exceptions, as r0 is reserved and
not used during code generation. The signal handler looks up the register
involved in the segmentation fault and throws a null pointer exception when
r0 was not used, but an exception of the type indicated by the offset when
r0 was used. The code listing 4.2 shows the implementation of a CALOAD

(character array load) instruction. In line 5 a segmentation fault is triggered
using r0 as base register (denoted as 0 by the disassembler), with an offset

4.3. PORTING PPC TO PPC64 51

0x0000008000dd3338: e8a30018 ld r5 ,24(r3)

0x0000008000dd333c: ea05001a lwa r16 ,24(r5)

0x0000008000dd3340: 7c358040 cmpld r21 ,r16

0x0000008000dd3344: 41800008 blt -

0x0000008000dd334c

0x0000008000dd3348: 82a00002 lwz r21 ,2(0)

0x0000008000dd334c: 7aac0fa4 rldicr r12 ,r21 ,1,62

0x0000008000dd3350: 398c0020 addi r12 ,r12 ,32

0x0000008000dd3354: 7ca5622e lhzx r5,r5,r12

Listing 4.2: PPC64 exception triggering

of 2, which corresponds to an array index out of bounds exception. The
compare statement in line 3 tests the index with the size of the array loaded
in line 2. When the test succeeds line 4 jumps over the faulting instruction,
and program execution continues normally, otherwise the exception handling
code will be triggered.

4.3 Porting PPC to PPC64

The PPC code generator was already implemented when work on the PPC64
code generator started. Due to the similarity of the two architectures most
code was reused. Most work was needed to change the ABI5. This included
a changed stack layout (8 byte slots instead of 4 byte slots). The design
of a CACAO code generator has lots of subtle dependencies not expressed
by the programming language. This is due to the mixing of assembler and
C code as well as complexity added by the JIT only approach of CACAO.
CACAO needs patchers to resolve references not known at compile time
during runtime. Patchers may then load and link classes or modify offsets
in assembler instructions. This leads to difficult to debug code and lots of
corner cases.

An example CACAO convention: When generating an invokevirtual

a special register (r12) is used to load the address of the method from the
vtable of the class. This offset may not be known at JIT time, so it is
possible that a patcher is created. The patcher (patcher invokevirtual)
resolves the method and patches back the offset. If the method needs to
be compiled a call to asm call jit compiler is generated which expects
the address of the method in r12. After the method has been compiled

5http://refspecs.freestandards.org/LSB_3.1.0/LSB-Core-PPC32/

LSB-Core-PPC32/book1.html

52 CHAPTER 4. POWERPC64 CODE GENERATOR

md get method patch address patches back the address of the newly com-
piled method. To differ the various cases of method invocation it inspects
the opcode at the call site and in that way depends on r12 too. Addition-
ally asm vm call method needs to fake invokevirtual and therefore also
depends on r12. When altering register usage any of the above functions
CACAO breaks in some obscure ways.

4.4 Implementation details

Exceptions are implemented triggering segmentation violations. The lwz

instruction is used for two reasons: it’s the only load instruction support-
ing byte alignment on PPC64 and it is not used anywhere else. Byte wise
alignment is needed to signal the type of exception triggered. The types are
encoded as integer constants defined in exception.h. EXCEPTION HARDWARE

ARITHMETIC e.g. has value 1 and therefore byte alignment is needed. The
base register used to load from is r0 which is 0 for address operations. The
segfault is handled by md signal handler sigsegv. If r0 was used as base
address an exception of the type encoded by the displacement is generated.
Otherwise a normal null pointer exception is generated.

Patchers are generated behind the method using them. Each patcher cre-
ates a special stack frame 8 words in size. And finally invokes asm patcher

wrapper. As invocation of asm patcher wrapper needs 3 assembler instruc-
tions and is the same for all patchers it is generated only once, all further
patchers branch to this invocation using a single branch instruction.

asm patcher wrapper saves argument and temporary registers and in-
voked the C function patcher wrapper providing 3 arguments, the address
of the 8 word argument stack, the pv and the return address. When patcher

wrapper returns argument and temporary registers are restored (as C func-
tion may have altered them) and an exception test is performed. Depending
on the result exception handling is invoked, or the patched code is executed.

patcher wrapper reads the patcher to be invoked from 8 word argument
stack, enters the Java objects monitor and attaches a stack frame for stack
tracing. When the patcher returns a test for exceptions is performed and the
monitor is left after the stack frame has been detached. The stack frame is
important to propagate exceptions occurring while running the patcher. As
patcher may initialize classes arbitrary complex Java code can be executed.

The patcher functions invoked from patcher wrapper take the 8 word
argument stack as only argument. They read all values needed from the
8 word argument stack. They then modify data segment and/or code and

4.4. IMPLEMENTATION DETAILS 53

Figure 4.3: PPC64 patcher argument stack
offset content
0 pv of JIT method / patcher to be invoked
1 displacement in dseg of data to be patched
2 unresolved field
3 machine code to be patched back (on return address)
4 Java object in which patching takes place
5 return address into JIT code (to be patched)
6 unused on ppc64
7 unused on ppc64

need to invoke cache flushing functions for modified memory regions. The
patchers need to be changed when the generated code is changed.

The format of the 8 word argument tack is shown in figure 4.3.

Stackwalking is generic for PPC64 as the stack is never modified and a
pv register is used. Therefore the CACAO runtime always knows the JIT
method executed (by inspecting pv) and can unwind the stack generic (as
the stackpointer is never modified by JIT code).

Atomicity is implemented by means of ldarx and stdcx for implementing
compare and swap. ldarx loads an value and sets a reservation. The stdcx

instruction only succeeds when the reservation was not altered. PPC used
lwarx and stwcx the 32 bit counterparts. All memory barrier related macros
(STORE ORDER BARRIER, MEMORY BARRIER AFTER ATOMIC, MEMORY BARRIER

MEMORY BARRIER BEFORE ATOMIC) are implemented using isync and sync

instructions and are identical to the PPC implementation.

Cacheflushing can be realized by the user space instructions dcbst and
icbi and is implemented in asm cacheflush. The cache line size is a critical
parameter and is set to 128 hardcoded. This needs to be changed for chips
with different cache line size (if there any).

Dynamic linking CACAO on PPC64 needs special handling. When link-
ing statically function invocation is realized by branching to the function
entry point. When linked dynamically an indirection has to be used when
branching to the function entry point. As CACAO generated JIT code di-
rectly branches to the function entry point (no matter if statically or dynam-
ically linked) not all functions have a function descriptor. Most functions

54 CHAPTER 4. POWERPC64 CODE GENERATOR

in asmpart.S are exported as if linking would happen statically. Only func-
tions invoked from C code need to provide a function descriptor. This are all
asm vm call method* functions and asm cacheflush. These function must
not be called from JIT code directly, only by means of a native stub, which
is the case.

4.5 Current state and benchmark results

As the PPC64 port is rather complete it has been benchmarked intensively.
All benchmarks where performed on a dual PPC970 (POWERPC G5) with 2
GHz clock speed and 1.4 GiB of RAM. The operating system used is a Gentoo
GNU/Linux, kernel version 2.6.12, the compiler GCC 3.4.4 (Gentoo 3.4.4-
r1, ssp-3.4.4-1.0, pie-8.7.8). The system is a pure 64 bit system. The tests
were performed during night hours where the machine load is low, because it
was unavailable for exclusive use. No activities of other users where noticed
during the test runs. Nonetheless the results jittered a lot so each test was
run 10 times, the diagrams show the best and the worst result. As reference
Java implementation IBM’s Java(TM) 2 Runtime Environment, Standard
Edition (build pxp64dev-20060511 (SR2)) was used.

Figure 4.4 shows the results of the JVM986 benchmark suite. IBM’s
virtual machine is 50%-70% faster than CACAO, expect for 201 compress.
This is probably due to the optimization features of IBM’s JIT compiler[21]
whereas CACAO does not do any optimizations.

Figure 4.5 shows the results of running the DaCapo[2] benchmark suite
in the small configuration with 256 MiB of heap. Here the results are a bit
better than in the JVM98 results with IBM’s being at most 50% faster but
in most tests performance is almost equal with CACAO winning 2 test, one
with 70%. Nonetheless the small configuration is not recommended for real
performance analysis by the DaCapo team.

Figure 4.6 shows the results of the default configuration which is recom-
mended for performance analysis. Here the pattern of the JVM98 benchmark
is repeated. CACAO is 50%-70% slower than IBM’s virtual machine. Even
the chart benchmark is now faster on IBM’s Java, which again is probably
due to runtime optimizations. Such optimizations pay off the longer the test
runs as higher compile times amortize better.

To rule out performance decreasing programming errors in the PPC64
code generator the same benchmark was run on an AMD64 dual core system,
with 2 GiB of RAM running at 3800+ MHz. On this platform SUN’s Java
implementation was benchmarked additionally. The results are shown in

6http://www.spec.org/jvm98/

4.5. CURRENT STATE AND BENCHMARK RESULTS 55

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

_201_compress

_202_jess

_205_raytrace

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

se
c

PPC64 JVM98 (best/worst of 10 runs)

CACAO rev 8132 nodebug
IBM JDK 50 SR2

Figure 4.4: JVM98 benchmark (lower is better)

56 CHAPTER 4. POWERPC64 CODE GENERATOR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

antlr bloat chart fop hsqldb jython lusearch luindex pmd

m
se

c

PPC64 DaCapo small (best/worst of 10 runs)

CACAO rev 8132 nodebug
IBM JDK 50 SR2

Figure 4.5: DaCapo 2006-10-MR2 benchmark (small, lower is better)

4.5. CURRENT STATE AND BENCHMARK RESULTS 57

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

antlr bloat chart fop hsqldb jython lusearch luindex pmd

m
se

c

PPC64 DaCapo default (best/worst of 10 runs)

CACAO rev 8132 nodebug
IBM JDK 50 SR2

Figure 4.6: DaCapo 2006-10-MR2 benchmark (default, lower is better)

58 CHAPTER 4. POWERPC64 CODE GENERATOR

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

antlr bloat chart fop hsqldb jython lusearch luindex pmd

m
se

c

AMD64 DaCapo default (best/worst of 10 runs)

CACAO rev 8132 nodebug
IBM JDK 50 SR5

SUN JDK 1.6.0

Figure 4.7: DaCapo 2006-10-MR2 benchmark (default, lower is better)

4.5. CURRENT STATE AND BENCHMARK RESULTS 59

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Composite FFT SOR Monte Carlo LU Sparse matmult

po
in

ts

AMD64 SciMark 2.0a

CACAO rev 8132 nodebug
IBM JDK 50 SR2

SUN JDK 1.6.0

Figure 4.8: SciMark 2.0a benchmark (higher is better)

60 CHAPTER 4. POWERPC64 CODE GENERATOR

 0

 50

 100

 150

 200

 250

 300

 350

 400

Composite FFT SOR Monte Carlo LU Sparse matmult

po
in

ts

PPC64 SciMark 2.0a (best/worst of 10 runs)

CACAO rev 8132 nodebug
IBM JDK 50 SR2

Figure 4.9: SciMark 2.0a benchmark (higher is better)

figure 4.7 and figure 4.8 and show high consistency with the results on PPC64,
so the performance issues are of generic nature in CACAO.

Figure 4.9 shows the results of the SciMark7 benchmark which mainly
tests floating point operations. Even here IBM’s VM is 50%-70% faster than
CACAO. This is especially remarkable as those tests mainly exist of tight
computational loops which indicates smart and highly specialized optimiza-
tions [21].

Figure 4.10 finally shows the results of three different CACAO versions
plus IBM’s VM as reference. The interesting point here is the difference
between CACAO rev 8132 and CACAO rev 8132 with the --disable-debug
configure flag and -O2 compiler optimization flag. A 10%-30% speedup is
gained by those settings.

7http://math.nist.gov/scimark2/

4.5. CURRENT STATE AND BENCHMARK RESULTS 61

 0

 2000

 4000

 6000

 8000

 10000

 12000

antlr bloat chart fop hsqldb jython lusearch luindex pmd

m
se

c

PPC64 Dacapo small (various)

CACAO 20070502
CACAO rev 8132

CACAO rev 8132 nodebug
IBM JDK 50 SR2

Figure 4.10: DaCapo 2006-10-MR2 benchmark (small, various, lower is bet-
ter)

62 CHAPTER 4. POWERPC64 CODE GENERATOR

Chapter 5

Coldfire code generator

5.1 The Coldfire architecture

The M68K has been created 1979 by Motorola when they released the first
Motorola 68000 CPU. The original M68K had 32 bit wide registers, three 16
bit ALUs which operated as a 32 bit ALU by chaining them together and a 24
bit address bus. It is a complex instruction set computer (CISC) architecture
with variable sized opcodes and large immediate values. CACAO implements
a code generator for Freescales Coldfire architecture1 which implements a
subset of M68K’s instructions. Coldfire is a RISC architecture with 32 bit
registers, a 32 bit ALU and variable sized opcodes. Versions prior to 4e
did not feature a MMU or FPU, whereas later versions do so. Coldfire also
defines extensions a specific CPU may implement. There exist specifications
for a multiply-accumulate (MAC) and an enhanced MAC (EMAC), some
earlier core versions (V2) did not support hardware division, therefore DIV
is also an optional unit.

5.2 The development environment

For developing the code generator a Freescale M547xEVB LIGHT has been
used. A MCF5474ZP266 Coldfire CPU was used. Due to limited power and
storage a NFS root filesystem was set up and crosscompilers were used. A
2.6.10 Linux kernel was used with Freescale’s Coldfire patches applied. The
compiler used was a modified GCC from http://www.codesourcery.com/.
At least version 4.1.1 should be used as version 3.4.0 has a floating point
bug which is triggered by Classpath2, the class library used by CACAO. The

1http://www.freescale.com/coldfire
2http://www.classpath.org

63

64 CHAPTER 5. COLDFIRE CODE GENERATOR

int main(int args , char**argv)

{

float f = 3.14;

double d = 3.14;

if (f == (float)d) {

printf("Foo\n");

} else {

printf("Bar\n");

}

f = 0.75;

d = 0.75;

if (f == (float)d) {

printf("Foo\n");

} else {

printf("Bar\n");

}

}

Listing 5.1: Coldfire compiler bug testcase

test case extracted is shown in listing 5.1. The output of the two programs
compiled with different compiler versions is given in listing 5.2. The problem
is the conversion from double to float nested in an if statement. In this case
the conversion is not done. As the test case illustrates not all double values
have different encoding as float and therefore the bug is not triggered every
time.

Because CACAO modifies code during runtime instruction caches need to
be flushed after code has been modified or subtle non-deterministic bugs may
show up. Coldfire has a cache flush operation (CPUSHL) but this operation
may only be executed in supervisor mode of the CPU. As CACAO does not
run native but depends on an operating system supervisor instructions can
not be executed directly (CACAO is executed in user mode). Therefore the
operation system has to provide a system call which executes cache flush-
ing operations for the application if needed. The Coldfire patches for Linux
2.6.10 only provided a cache flush system call for original M68K and not
for Coldfire so a patch was developed. The sys cacheflush function is im-
plemented in arch/m68k/kernel/sys m68k and has to be modified as given
in listing 5.3. It has to be noted that this patch implements cache flush-

5.3. DESIGN DECISIONS 65

/ # ./ test411

Foo

Foo

/ # ./ test340

Bar

Foo

/ #

Listing 5.2: Coldfire compiler bug testrun

ing for Coldfire only, the code for M68K cache flushing has been removed.
At present both caches are flushed, regardless of the scope parameter which
enables the application to indicate which cache to flush (data or instruction).
DcacheFlushInvalidateCacheBlock and IcacheInvalidateCacheBlock are
part of the Freescale patches and violate Linux kernel naming conventions3.

5.3 Design decisions

5.3.1 CACAO register usage

Coldfire CPUs differ integer registers, address registers and floating point
registers. All floating point registers are wide enough to hold double pre-
cision values but can also operate on single precision values. There are 8
registers of each type available. CACAO reserves 3 registers as temporary
registers which are used exclusively for implementing byte code instructions,
however not all instructions need all 3 registers. For the Coldfire port it
was decided to reserve 3 registers of each type as temporary registers. This
made implementing instructions easy as one can move data from integer to
address registers when the register pressure is high, but wastes registers. A
clean solution would be a register allocator for temporary registers. As such
a feature is planned no effort was made to reduce the number of reserved
registers, although the benchmarking results show a 15% speedup increas-
ing the number of CACAO used address register (see figure 5.4). Likely a
noticeable speedup could be achieved by reducing the number of temporary
registers.

3Documentation/CodingStyle in the Linux source tree

66 CHAPTER 5. COLDFIRE CODE GENERATOR

/* sys_cacheflush --flush (part of) the processor cache.*/

asmlinkage int

sys_cacheflush(unsigned long addr , int scope , int cache ,

unsigned long len)

{

struct vm_area_struct *vma;

lock_kernel();

vma = find_vma (current ->mm, addr);

if (vma == NULL || addr < vma ->vm_start ||

addr + len > vma ->vm_end) {

printk("sys_cacheflush parameters invalid");

if (vma != NULL)

printk("vma=%p,start=%x,end=%x,addr=%x,len=%d\n",

vma,vma ->vm_start ,vma ->vm_end ,addr ,len);

unlock_kernel();

return -1;

}

DcacheFlushInvalidateCacheBlock(addr , len);

IcacheInvalidateCacheBlock(addr , len);

unlock_kernel();

return 0;

}

Listing 5.3: Linux 2.6.10 sys cacheflush patch

5.3. DESIGN DECISIONS 67

Figure 5.1: M68K stack layout
Offset Content
%fp + 0 previous framepointer
%fp + 4 return address
%fp + 8 arguments

5.3.2 M68K ABI

The application binary interface (ABI) of Coldfire is the same as for M68K,
but no real documentation exists online. The following calling conventions
are used by the Gnu Compiler Collection (GCC) and CACAO follows these
conventions when calling external functions.

• Arguments are passed via stack. There are no register arguments. All
arguments are passed using 32 bit slot size. Double and long arguments
use 2 stack slots.

• Arguments are pushed onto the stack, the last argument as pushed
first.

• When returning a value register %d0 is used when the return value is
64 bit %d1 is used in addition. 4

• A callee may destroy the contents of the registers %d0, %d1, %a0, %a1,
%f0 and %f1.

• All other registers are callee saved.

Register %a7 (%sp) is used as stack pointer and %a6 (%fp) as frame-
pointer. Stack and framepointer are chained using the link and unlk as-
sembler instructions. The stack layout used by GCC is shown in table
5.1. There are however no guarantees, as no official documentation exists,
and the stack layout is know to be violated when compiling code with the
-fomit-frame-pointer flag.

5.3.3 CACAO ABI

For CACAO it was decided to stick to the C ABI as close as reasonable.
However, some things were changed. The CACAO register usage is shown in

4There are however cases when GCC expects pointer return value in %a0, whether this
is a bug or not was not further investigated, CACAO as a workaround returns in both %a0

and %d0.

68 CHAPTER 5. COLDFIRE CODE GENERATOR

Figure 5.2: M68K CACAO ABI
Register Argument Callee saved Caller saved Reserved
%a0 X
%a1 X
%a2 X
%a3 X
%a4 X
%a5 X
%a6 X
%a7 X
%d0 X
%d1 X
%d2 X
%d3 X
%d4 X
%d5 X
%d6 X
%d7 X
%f0 X
%f1 X
%f2 X
%f3 X
%f4 X
%f5 X
%f6 X
%f7 X

table 5.2. Register %a7 (%sp) is used as stack pointer and therefore reserved,
%a6 which is used as framepointer (%fp) in the C ABI is used as additional
register in JIT code as stack frame chaining would be redundant, as the stack
usage of each method is known a priori. Method arguments are passed via
stack solely, no argument registers are used.

5.3.4 Dedicated pv register

As Coldfire does not have a huge amount of available registers it was decided
not to use a dedicated pv register. The pv is the so called procedure vector, a
pointer to the entry of the JIT method. It is used to access the data segment
which is below method’s code. As M68K supports 32 bit immediate values
for load operations it was decided not to use the data segment at all for code

5.3. DESIGN DECISIONS 69

0x40b0280a: 246f 0000 moveal %sp@(0),%a2

0x40b0280e: 4a8a tstl %a2

0x40b02810: 6602 bnes 0x40b02814

0x40b02812: 4e4e trap #14

0x40b02814: 247c 40af a0cc moveal #1085251788 ,%a2

0x40b0281a: 4e92 jsr %a2@

Listing 5.4: M68K exception using trap

generation, but emit opcodes using immediate values.

5.3.5 Branching instructions

There is a 16 and 8 bit program counter relative address mode which could be
use for size optimization. The 16 bit variant is used during code generation,
the 8 bit variant is currently not used. For the antlr benchmark of the
DaCapo[2] benchmark suite (version 2006 10 MR2) on M68K a total number
of 13322 branch instruction are generated of which 7585 have 8 bit offsets.
This are around 57% of all branches. Starting eclipse 5 on PPC64 generated
75438 branches of which 50111 (66%) have 8 bit offset. So introducing 8
bit offset optimization could save around 400k of code for eclipse. On the
other hand 20M of memory (generated code and data, no CACAO runtime)
is used in total. So the overall saving would be approximately 2%. It has
to be noted however, that 8 bit branching offsets are used implementing the
complex byte instructions like e.g. instanceof and checkcast.

5.3.6 Exceptions

Coldfire’s instruction set includes a trap instruction with a 4 bit vector argu-
ment. This instruction is translated into an illegal instruction signal (SIGILL)
by the Linux kernel. A signal handler is installed by CACAO which inspects
the trapping instruction. If the trap instruction triggered the signal excep-
tion handling is initiated, else an error is reported and the VM aborts. An
example of this mechanism is shown in listing 5.4. This is the disassembled
machine code of an INVOKESPECIAL instruction. The value in %a2 is tested
against 0. If not equal the trap instruction is jumped over otherwise the trap
is executed and an exception will be thrown. The value 14 denotes the exact
type of the exception (a null pointer exception in this case).

5http://eclipse.org

70 CHAPTER 5. COLDFIRE CODE GENERATOR

0x40b02f50: 2f48 0000 movel %a0 ,%sp@(0)

0x40b02f54: 246f 0000 moveal %sp@(0),%a2

0x40b02f58: 266a 0000 moveal %a2@(0),%a3

0x40b02f5c: 286b 005c moveal %a3@(92),%a4

0x40b02f60: 4e94 jsr %a4@

Listing 5.5: M68K exception by illegal memory access

Nullpointer exceptions can also be triggered when invoking a method on
a null object. To spare the code needed to test each object reference before
invoking a method CACAO relies on the memory management unit (MMU)
of the Coldfire CPU. As example the code generated for a INVOKEVIRTUAL

instruction is shown in listing 5.5. The object is originally stored in %a0. In
line 3 the vtable of the object is accessed and finally, in line 4, the address
of the method to be invoked is loaded. When the object was the null object
(and therefore %a2 contained value 0), line 3 will perform an illegal memory
access and a signal (SIGSEGV) will be generated by the kernel. CACAO
catches the signal and throws an exception (a null pointer exception in this
case).

5.3.7 Native double return values

Because the M68K ABI declares %d0 and %d1 as return registers for 64 bit
values double values are returned via these two registers as well. The Coldfire
instruction set does not offer an instruction to load a floating point register
from two integer registers, so both integer registers have to be written into
memory and read back as double value. This demands two additional stack
slots to be allocated for each method, as it is unknown whether a native
function will be invoked or not. Synchronized Java methods need a lock
word, which resides on the method stack as well. This lock word is normally
only allocated when the method has the synchronized flag set. On Coldfire
the lock word shares one stack slot with the two slots needed for the double
conversion as their lifetimes do not overlap, so the code generator allocates
two additional stack slots for the (unlikely) conversion, but does not need to
allocate a stack slot in case of synchronized methods.

5.4 Implementation details

Exceptions are triggered using the trap instruction. A difficulty arises
for EXCEPTION HARDWARE NULLPOINTER which is defined 0 in exceptionis.h.

5.4. IMPLEMENTATION DETAILS 71

Figure 5.3: M68K patcher argument stack
offset content
0 patcher to be invoked
1 unresolved field
2 2nd machine word to be patched back
3 machine word to be patched back
4 Java object
5 REG ITMP3 which needs to be restored

The trap instruction with argument 0 is caught inside the kernel and never
delivered to userspace. A special symbol named M68K EXCEPTION HARDWARE

NULLPOINTER is defined to 14 and used instead of the original define. An addi-
tional signal handler md signal handler sigill is used to catch the signals
triggered by trap. For classcast checks and array index out of bounds checks
an additional argument is needed for the exception handling mechanism (the
object, the index). As the trap instruction can not be used to encode more
data an instruction with negligible side effect is generated preceding the trap.
The tst.b instruction not used anywhere else in JIT code has been chosen.
It takes an register as argument, the one containing the value of interest.
The M TRAP SETREGISTER macro is used to generate the instruction.

Patchers are generated after the method using them. In contrast to the
PPC64 solution each patcher directly branches to asm patcher wrapper.
The argument stack size is 6 words and the layout shown in figure 5.3.

Stackwalking needs special handling on Coldfire as neither a pv regis-
ter exists nor is the stack pointer exclusively controlled by CACAO. CA-
CAO runtime provides codegen get pv from pc which is used to calculate
pv when needed. This function queries an AVL tree[5] with knowledge about
all generated methods to calculate the pv from an address part of the method.
The jsr instruction (jump subroutine) used to invoked function implicitly
pushes the return address onto the stack. When unwinding the stack this
offset has to be considered. The CACAO runtime supports this case, it is en-
abled by adding M68K defines in stacktrace.c and stacktrace.h. When
removing the stackframe the size is increased by one word to consider the
return address.

Atomicity can not be achieved on Coldfire as the hardware lacks support.
compare and swap is implemented but not atomically. A compiler warning is

72 CHAPTER 5. COLDFIRE CODE GENERATOR

generated to warn users about this fact. The memory barrier related macros
are not implemented as well.

5.5 Current state and benchmark results

The code generator developed is complete and reasonable bug free, but as
CACAO lacks an own garbage collector (GC) and the Boehm GC 6 caused
segmentation faults only a small number of tests could be run. Because
an exact garbage collector had been in development while implementing the
code generator it was decided not to fix Boehm GC on Coldfire. Testing has
to be resumed as soon as the garbage collector is completed. The M68K port
successfully runs jctest, a CACAO internal test program, fptest (same for
floating point arithmetic), DaCapo antlr, SciMark and many other programs
with small memory footprint.

The following benchmarks were performed with different features of the
code generator enabled or disabled. In the graphs ”CACAO” refers to a
CACAO build with all features enabled. In earlier versions of the code gen-
erator the ABI reserved register %fp was not used within JIT code, ”CACAO
without fp” refers such a build, but is otherwise identically to CACAO. The
M68K code generator may be compiled with soft floating point arithmetic
which does not use floating point registers and instructions, this build is
called ”CACAO with softfloat”. The benchmarks were produced using CA-
CAO rev 8100 running on a ColdFire V4e @ 131.4 MHz with 64 MB RAM, a
NFS mounted root file system under Linux Freescale 2.6.10 kernel. The whole
system has been crosscompiled using the m68k-linux-gnu-gcc (CodeSourcery
Sourcery G++ 4.1-30) 4.1.1 compiler.

DaCapo antlr

The DaCapo[2] antlr benchmark is a parser generator which reads in a gram-
mar file and generates a parser and lexical analyzer for it. It rarely uses
floating point arithmetic. Figure 5.4 shows how the 3 versions of CACAO
perform with this load. The most interesting case is the difference between
”CACAO” and ”CACAO without fp”, a 16.5% speedup. This speedup is
solely caused by using one additional address register.

6http://www.hpl.hp.com/personal/Hans_Boehm/gc/

5.5. CURRENT STATE AND BENCHMARK RESULTS 73

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

CACAO CACAO without fp CACAO with softfloat

m
se

c

CACAO Dacapo

CACAO dacapo

Figure 5.4: DaCapo 2006-10-MR2 antlr benchmark

74 CHAPTER 5. COLDFIRE CODE GENERATOR

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

CACAO CACAO without fp CACAO with softfloat

po
in

ts

CACAO SciMark

composite
FFT (1024)

SOR (100x100)
Monte Carlo

Sparse matmult
LU (100x100)

Figure 5.5: SciMark 2.0a benchmark

Chapter 6

Summary

6.1 Conclusion

The aim of this work was to develop CACAO code generators for POW-
ERPC64 and Coldfire. The POWERPC64 port is officially part of the 0.98
release of CACAO and passes all internally used test cases. It can also be
used to run well known Java programs like Eclipse1 and Jboss2. Bugs left
will be fixed by the CACAO team when reported.

The Coldfire port is not as mature as POWERPC64. The main problem
are limited memory resources of the development board and the unfinished
exact garbage collector. Nonetheless the port is complete which means that
all features are implemented, what remains are bugs which can be fixed as
soon as the garbage collector works on Coldfire. The first steps for imple-
menting the garbage collector have been done and will be finished soon.

6.2 Future

Future plans for the code generators include a patching mechanism using sig-
nals instead of assembler stubs, as well as JIT compiler invocation via signals.
These demands became clear when implementing the exact garbage collector.
This will reduce the assembler language usage and improve maintainability,
a problem encountered during PPC64 porting.

The register allocator could be enhanced to reduce the number of tempo-
rary registers permanently reserved for implementing byte code instructions.
Most instruction do not need 3 temporary registers. The situation is even
worse for architectures with designated address registers like M68K where 6

1http://www.eclipse.org/
2http://www.jboss.org/

75

76 CHAPTER 6. SUMMARY

registers are reserved. One problem to solve is the need of a register usage
description per byte code instruction, which may be architecture specific.

There are plans to implement the exception handling code in C language.
This would further reduce the lines of assembler code needed to implement
a code generator. Exception handling code is among the most difficult parts
for programmers, so porting CACAO for a new platform would become much
easier.

During this work a change in asm vm call method was introduced. Orig-
inally this function was called with an array containing value and type of
the arguments for the Java method to be invoked. The function then trans-
formed this data structure to the platform ABI. On many platforms this
included multiple loops and difficult offset calculations for stack arguments.
Especially POWERPC64 has a very difficult ABI to implement. The new
arguments consist of two arrays, one containing the values for all argument
registers, the second containing the stack for the callee. The function now
simply iterates both arrays and copies the arguments into registers and onto
the stack. The stack has been prepared in C code which is much easier than
in assembler language. This patch saved around 300 lines of code on POW-
ERPC64 and made asm vm call method almost trivial. This changes need
to be ported to all code generators.

6.3 Source code

All source code developed for this master thesis has been committed to a
public accessibly Mercurial3 repository. Anonymous access is enabled. On
an UNIX system the following command checks out the source code.

$hg clone http://mips.complang.tuwien.ac.at/hg/cacao/ cacao

The code generators reside in the directories src/vm/jit/powerpc64 and
src/vm/jit/m68k and have been put under the GPL license. More informa-
tion is available from http://cacaojvm.org.

3http://www.selenic.com/mercurial/wiki/

Bibliography

[1] Alpern Augart Blackburn. The jikes research virtual machine project:
Building an open-source research community. IBM SYSTEMS JOUR-
NAL, 44(2), 2005.

[2] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-
fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The
DaCapo benchmarks: Java benchmarking development and analysis. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN confer-
ence on Object-Oriented Programing, Systems, Languages, and Applica-
tions, New York, NY, USA, October 2006. ACM Press.

[3] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael
Hind, Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srini-
vasan, and John Whaley. The jalapeño dynamic optimizing compiler for
java. In JAVA ’99: Proceedings of the ACM 1999 conference on Java
Grande, pages 129–141, New York, NY, USA, 1999. ACM Press.

[4] Youngsoo Choi, Allan Knies, Luke Gerke, and Tin-Fook Ngai. The im-
pact of if-conversion and branch prediction on program execution on the
intel R©itaniumTMprocessor. In MICRO 34: Proceedings of the 34th an-
nual ACM/IEEE international symposium on Microarchitecture, pages
182–191, Washington, DC, USA, 2001. IEEE Computer Society.

[5] C. C. Foster. Information retrieval: information storage and retrieval
using avl trees. In Proceedings of the 1965 20th national conference,
pages 192–205, New York, NY, USA, 1965. ACM Press.

[6] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. En-
gineering a simple, efficient code-generator generator. ACM Lett. Pro-
gram. Lang. Syst., 1(3):213–226, 1992.

77

78 BIBLIOGRAPHY

[7] Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM
Lett. Program. Lang. Syst., 2(1-4):135–150, 1993.

[8] Jason Hong. The use of java as an introductory programming language.
Crossroads, 4(4):8–13, 1998.

[9] Xianglong Huang, Stephen M. Blackburn, David Grove, and Kathryn S.
McKinley. Fast and efficient partial code reordering: taking advantage
of dynamic recompilatior. In ISMM ’06: Proceedings of the 2006 in-
ternational symposium on Memory management, pages 184–192, New
York, NY, USA, 2006. ACM Press.

[10] Kazuaki Ishizaki, Mikio Takeuchi, Kiyokuni Kawachiya, Toshio Sug-
anuma, Osamu Gohda, Tatsushi Inagaki, Akira Koseki, Kazunori Ogata,
Motohiro Kawahito, Toshiaki Yasue, Takeshi Ogasawara, Tamiya On-
odera, Hideaki Komatsu, and Toshio Nakatani. Effectiveness of cross-
platform optimizations for a java just-in-time compiler. In OOPSLA ’03:
Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, pages 187–
204, New York, NY, USA, 2003. ACM Press.

[11] Iffat H. Kazi, Howard H. Chen, Berdenia Stanley, and David J. Lilja.
Techniques for obtaining high performance in java programs. ACM Com-
put. Surv., 32(3):213–240, 2000.

[12] David Holmes Ken Arnold, James Gosling. The Java Programming
Language. Addison-Wesley Longman, 2005.

[13] Andreas Krall. Efficient JavaVM just-in-time compilation. In Jean-Luc
Gaudiot, editor, International Conference on Parallel Architectures and
Compilation Techniques, pages 205–212, Paris, 1998. North-Holland.

[14] Andreas Krall and Reinhard Grafl. CACAO — A 64-bit JavaVM just-in-
time compiler. Concurrency: Practice and Experience, 9(11):1017–1030,
1997.

[15] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.
ACM Trans. Program. Lang. Syst., 21(5):895–913, 1999.

[16] Todd A. Proebsting. Burs automata generation. ACM Trans. Program.
Lang. Syst., 17(3):461–486, 1995.

[17] Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec Wolman,
Wayne A. Wong, Jean-Loup Baer, Brian N. Bershad, and Henry M.

BIBLIOGRAPHY 79

Levy. The structure and performance of interpreters. In ASPLOS-
VII: Proceedings of the seventh international conference on Architectural
support for programming languages and operating systems, pages 150–
159, New York, NY, USA, 1996. ACM Press.

[18] Papalaskaris M. A. Schubert L. K. and J Taugher. Determining type,
part, color, and time relationships. IEEE Computer (special issue on
Knowledge Representation), 16(10), 1983.

[19] Edwin Steiner. Adaptive inlining via on-stack replacement. Diplomar-
beit, Vienna University of Technology, 2007.

[20] Arthur Stoutchinin and Francois de Ferriere. Efficient static single
assignment form for predication. In MICRO 34: Proceedings of the
34th annual ACM/IEEE international symposium on Microarchitecture,
pages 172–181, Washington, DC, USA, 2001. IEEE Computer Society.

[21] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,
K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the ibm java
just-in-time compiler. IBM Syst. J., 39(1):175–193, 2000.

[22] John D. Valois. Lock-free linked lists using compare-and-swap. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, pages 214–222, New York, NY, USA, 1995.
ACM Press.

[23] Ankush Varma and Shuvra S. Bhattacharyya. Java-through-c compila-
tion: An enabling technology for java in embedded systems. In DATE
’04: Proceedings of the conference on Design, automation and test in
Europe, page 30161, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[24] Christian Wimmer and Hanspeter Mössenböck. Optimized interval split-
ting in a linear scan register allocator. In VEE ’05: Proceedings of the
1st ACM/USENIX international conference on Virtual execution envi-
ronments, pages 132–141, New York, NY, USA, 2005. ACM Press.

