
DISSERTATION

Interface Design in the Time-Triggered
System-on-Chip Architecture

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines

Doktors der technischen Wissenschaften unter der Leitung von

O. Univ.-Prof. Dr. Hermann Kopetz

Institut für Technische Informatik 182

eingereicht an der Technischen Universität Wien,
Fakultät für Technische Naturwissenschaften und Informatik

von

Christian El Salloum

Matr.-Nr. 9625650

Laimgrubengasse 12A/12, A-1060 Wien

Wien, im Dezember 2007 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Interface Design in the Time-Triggered
System-on-Chip Architecture

The Time-Triggered System-on-a-Chip (TTSoC) architecture provides an inte-
grated execution environment for the component-based development of many
different types of embedded applications (e.g., automotive, avionics, consumer
electronics). At the core of this architecture is a time-triggered Network-on-a-
Chip (NoC) for the predictable interconnection of IP cores.

This thesis contributes to the TTSoC architecture by designing a Uni-
form Network Interface (UNI) that supports the integration of multiple het-
erogeneous IP cores—belonging to different criticality-classes and application
domains—into a single SoC. The UNI is implemented by a dedicated hardware
component called the Trusted Interface Subsystem (TISS), which is replicated
for each IP core. The TISS controls the IP core’s access to the time-triggered
NoC and provides encapsulation mechanisms that prevent any unintended in-
terference between IP cores, which is a major requirement for the integration
of mixed-criticality subsystems.

Exploiting the inherent fault isolation and determinism of the architecture,
we introduce a novel concept for fault-tolerance based on the replication of
entire IP cores organized in Triple Modular Redundancy (TMR) configurations.
With respect to TMR we have investigated two different approaches. While
on-chip TMR realizes the replicas in the same SoC to increase the reliability
of services residing on a single chip, off-chip TMR instantiates the replicas
on different SoCs interconnected by a fault-tolerant off-chip network, as it is
required for ultra-dependable systems.

Complementing the architectural framework, we have introduced a novel
naming scheme tailored to the unique challenges of large embedded systems
based on multi-processor SoCs. The naming scheme supports independent de-
velopment of application subsystems by providing a dedicated, independent,
and domain-specific namespace for each application subsystem and facilitates
dynamic resource management by decoupling the logical and the physical sys-
tem structure.

i

ii

Interface-Design in der Time-triggered
SoC Architektur

Die Time-Triggered System-on-a-Chip (TTSoC) Architektur unterstützt die
komponentenbasierte Entwicklung von eingebetteten Systemen in den unter-
schiedlichsten Bereichen wie zum Beispiel in der Automobilindustrie, der Luft-
und Raumfahrt oder der Unterhaltungselektronik. Den Kern der Architektur
bildet ein zeitgesteuertes Network-on-a-Chip (NoC), welches für eine determi-
nistische Kommunikation zwischen den IP-Cores eines SoCs sorgt.

Im Rahmen dieser Arbeit wurde für die TTSoC Architektur ein unifor-
mes Netzwerkinterface (UNI) definiert, welches die Integration von heterogenen
IP-Cores unterschiedlicher Kritikalitätsklassen in einem SoC ermöglicht. Das
UNI wird durch eine dedizierte Hardwarekomponente, das Trusted Interface
Subsystem (TISS), implementiert. Das TISS ist in jedem IP-Core repliziert,
kontrolliert die Zugriffe des IP-Cores auf das zeitgesteuerte NoC und verhindert
somit jegliche Form von unbeabsichtigter Interaktion zwischen den IP-Cores.

Weiters beschreibt diese Arbeit ein neuartiges Fehlertoleranzkonzept, wel-
ches auf der inhärenten Fehlerisolation und dem Determinismus der Architektur
aufbaut. Es basiert auf der Replikation von kompletten IP-Cores und deren
Anordnung in einer Triple Modular Redundancy (TMR) Konfiguration. Hier-
bei werden zwei unterschiedliche Ansätze beschrieben. Bei “on-chip TMR”
befinden sich die replizierten Komponenten auf demselben SoC, um die Zu-
verlässigkeit eines einzelnen Chips zu erhöhen. “Off-chip TMR” unterstützt die
Konstruktion von Systemen höchster Kritikalitätsklasse, indem die replizierten
IP-Cores auf unterschiedlichen SoC instanziiert werden, die mittels eines feh-
lertoleranten Netzwerks verbunden sind.

Weiters wird ein neuartiges Namensschema eingeführt, welches auf die spe-
ziellen Herausforderungen von SoC-basierenden eingebetteten Systemen abge-
stimmt ist. Das Namensschema unterstützt die unabhängige Entwicklung von
Subsystemen, indem für jedes Subsystem ein dedizierter und domänenspezifi-
scher Namensraum vergeben wird. Weiters zeichnet sich das Namensschema
durch die Entkopplung von logischer und physikalischer Systemstruktur aus.
Diese Eigenschaft ist für das dynamische Management von Systemressourcen
und die damit verbundene dynamische Rekonfiguration von großem Vorteil.

iii

iv

Danksagung

Diese Arbeit entstand im Rahmen meiner Forschungs- und Lehrtätigkeit am
Institut für Technische Informatik, Abteilung für Echtzeitsysteme, an der Tech-
nischen Universität Wien.

Besonders danken möchte ich dem Betreuer meiner Dissertation, Prof. Dr. Her-
mann Kopetz, der mir die Forschungstätigkeit am Institut für Technische Infor-
matik ermöglicht hat. Er unterstützte meine Arbeit durch wertvolle Anregun-
gen und stimulierende Diskussionen und prägte so meinen wissenschaftlichen
Werdegang.

Weiters danke ich Prof. Dr.Wolfgang Kastner, dem Zweitbegutachter dieser
Dissertation, für das Interesse an meiner Arbeit und für die konstruktiven Ver-
besserungsvorschläge.

Auch meinen Arbeitskollegen möchte ich meine Dankbarkeit zum Ausdruck
bringen, für ihre Freundschaft, das angenehme Arbeitsklima und die frucht-
bringende Zusammenarbeit. Die folgenden Freunde und Kollegen (in alphabe-
tischer Reihenfolge) haben durch das sorgfältige Korrekturlesen von früheren
Versionen dieser Arbeit wesentlich zur Qualität beigetragen: Wilfried Elmen-
reich, Bernhard Huber, Stefan Kral, Roman Obermaisser, Christian Paukovits,
Harald Paulitsch und Armin Wasicek.

Besonders bedanken möchte ich mich bei meiner lieben Freundin Judith. Auch
in Zeiten intensievster Arbeit konnte ich immer auf ihr Verständnis und ihre
Unterstützung zählen.

Zu guter Letzt möchte ich vor allem meinen Eltern Renate und Habib für den
emotionalen Rückhalt danken, auf den ich während meines bisherigen Lebens
immer vertrauen konnte.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution of this Thesis . 2

1.3 Structure of this Thesis . 4

2 Background and Basic Concepts 5

2.1 Federated vs. Integrated Architectures 5

2.2 The Paradigm Shift to Multi-Core 7

2.2.1 Power and Area Efficiency 8

2.2.2 Amdahl’s Law . 9

2.2.3 The Memory Bandwidth Gap 10

2.3 The Role of Complexity . 11

3 NoC Interfaces and Interconnects 15

3.1 AMBA . 15

3.1.1 Advanced High-performance Bus - AHB 16

3.1.2 Multi-Layer AHB . 18

3.1.3 AMBA AXI . 20

3.2 OCP . 24

3.3 Sonics SiliconBackplane . 25

3.4 Æthereal . 26

4 The TTSoC Architecture 29

4.1 Overall System Structure . 29

4.2 The Component Model . 31

4.2.1 Micro Components . 32

4.2.2 Time-Triggered NoC . 36

4.2.3 Architectural Elements for Resource Management 41

4.2.4 Gateways . 43

vii

4.2.5 Architectural Support for Diagnosis 44

4.3 Fault Tolerance . 45

4.3.1 On-chip TMR . 49

4.3.2 Off-chip TMR . 53

4.3.3 On-chip vs. Off-chip TMR 55

5 Naming 57

5.1 Basic Concepts . 57

5.1.1 Identifiers and Addresses 58

5.1.2 Properties of Names . 59

5.2 Naming in the TTSoC Architecture 61

5.2.1 The Model-Based Development Process 62

5.2.2 Platform-Independent System Structure 63

5.2.3 Physical System Structure 68

5.2.4 FIM-to-PAM Transformation 70

5.3 Discussion . 72

6 The Trusted Interface Subsystem 75

6.1 Communication Service . 75

6.1.1 Encapsulated Communication Channels 76

6.1.2 Interface to the Communication Service 77

6.1.3 Port Interrupts . 83

6.1.4 Time Stamping Service 83

6.1.5 Message Ordering . 83

6.1.6 Security-Relevant Properties 85

6.2 Additional Services . 85

6.2.1 Global Time Service . 85

6.2.2 Programmable Timer Interrupt Service 86

6.2.3 Watchdog Service . 86

6.2.4 Power Control Service 86

6.2.5 Diagnostic Dissemination Service 87

6.3 Dynamic Resource Management 87

6.3.1 Reconfiguration Time vs. Reconfiguration Period 87

6.3.2 Configuration Performed by the TNA 88

6.3.3 Configuration Performed the Host 89

7 Prototype Implementation 91

viii

7.1 Design of the Architectural Elements 91

7.1.1 NoC . 91

7.1.2 TISS . 94

7.1.3 Frontend . 97

7.2 Prototyping Hardware . 100

7.2.1 The Motherboard . 101

7.2.2 FPGA Boards . 102

7.2.3 CPU Boards . 102

7.2.4 I/O Boards . 103

7.2.5 Multimedia Boards . 103

7.3 Results . 103

8 Conclusion 107

A Specification of the UNI 111

A.1 The Port Interface . 111

A.1.1 Signal Specification . 111

A.1.2 State and Event Ports 112

A.2 The Control Interface . 114

A.2.1 Signal Specification . 115

A.2.2 Port Configuration Memory 117

A.2.3 Port Synchronization Flags 119

A.2.4 Register File . 120

B List of Acronyms 125

C Glossary 127

Bibliography 137

Curriculum Vitae 143

ix

x

Chapter 1

Introduction

1.1 Motivation

During the past forty years, the semiconductor industry has made tremendous
progress that has enabled the construction of chips approaching a billion of
transistors on a single die. These spectacular improvements and the associated
reduction of the cost per transistor have enabled new applications of embed-
ded systems with ever increasing functionality. A representative example is the
automotive industry, where a modern luxury car contains more than 70 Elec-
tronic Control Units (ECUs) and up to 10 millions lines of code [MGRG+04].
In-vehicle electronics is already the strongest innovation driver in the automo-
tive industry and accounts for up to 35% of the total value of a car. Considering
future applications, like steer-by-wire, we can expect this trend to continue.

Together with the increased functionality, the design complexity is also ris-
ing at an overwhelming rate. The International Technology Roadmap for
Semiconductors (ITRS) considers design complexity and designer’s productiv-
ity as key challenges on the way to giga-scale SoCs [ITR05]. This challenge can
only be tackled by lifting the design process to higher levels of abstraction.

A major problem of traditional design approaches for SoCs is that the Intellec-
tual Property (IP) cores of a processor are designed with bus-specific interfaces
exposing the implementation-specific details of the interconnect directly to the
core [BM06]. An example for this approach is AMBA AHB [ARM99] where
the interfaces of the attached cores include signals that are connected to bus-
internal components like the bus arbiter. Thus, the cores and the interconnect
are tightly coupled.

When the level of abstraction with respect to system integration began to rise, it
became necessary to reuse pre-designed cores, possibly provided by third party

1

1.2 Contribution of this Thesis 1 Introduction

suppliers, across multiple architectures with different on-chip communication
infrastructures.

The Time-Triggered System-on-a-Chip (TTSoC) architecture [Kop05] is a novel
system architecture that offers a component-based design methodology for man-
aging the complexity of chips with billions of transistors. By thorough decou-
pling of the computational components from the communication infrastructure,
the design of a computational component can abstract from the implementa-
tion of the interconnect, which facilitates the rapid development of multi-core
SoCs by using pre-verified functional cores.

For this purpose, the time-triggered SoC architecture provides an architectural
framework that supports the side-effect-free composition of component services,
based solely on the interface specifications, to form larger systems-of-systems.

As a fundamental concept, we introduce the notion of a micro component which
is a self-contained computational unit that provides its functionality over a
message-based interface that is defined in the value domain, as well as, in
the temporal domain. The clear separation of the processing within a mi-
cro component from the interactions among the micro components leads to a
communication-centric model that is highly appropriate for many applications.

Micro components are interconnected through a predictable and deterministic
time-triggered NoC, with dedicated time slots assigned to each micro compo-
nent. The time-triggered NoC prevents any unintended and unwanted inter-
ference between micro components employing dedicated encapsulation mech-
anisms, which reduces system complexity because the behavior of interfering
subsystems is more difficult to understand and to reason about than the be-
havior of cleanly encapsulated subsystems.

1.2 Contribution of this Thesis

A major contribution of this thesis is the design of an NoC interface that sup-
ports the integration of multiple heterogeneous IP cores—belonging to different
criticality-classes and application domains—into a single SoC. We call this in-
terface the Uniform Network Interface (UNI). It provides a set of core platform
services that facilitate the development of distributed real-time applications
and separate the application functionality from the underlying platform tech-
nology to reduce design complexity and to enable design reuse. This approach
corresponds to the concept of platform-based design as described in [SV02].

The specification of the UNI is complemented by a novel naming scheme tai-
lored to the unique challenges of large embedded systems based on multi-
processor SoCs. The naming scheme facilitates dynamic resource management

2

1 Introduction 1.2 Contribution of this Thesis

by establishing location transparency for logical system entities and by decou-
pling the logical and the physical system structure. Further benefits of the
proposed solution are the coexistence of a uniform namespace spanning over
multiple SoCs for system integration and multiple independent, domain-specific
namespaces enabling autonomous subsystem development.

The UNI is implemented by a dedicated hardware component called the Trusted
Interface Subsystem (TISS), which is replicated for each IP core. The TISS con-
trols the IP core’s access to the time-triggered NoC and provides encapsulation
mechanisms that prevent any unintended interference between IP cores, which
is a major requirement for the integration of mixed-criticality subsystems.

The core platform services of the TISS can be adapted, refined, and extended by
a frontend, which is a hardware element that is stacked on the TISS and trans-
lates the UNI to the interface of the attached IP core. The ability to customize
the UNI is of particular importance for the support of multiple heterogeneous
application domains and for the integration of legacy components.

The configuration of the TISS, which includes, among other parameters, the
time-triggered message schedule, can be dynamically adapted to support inte-
grated resource management, which is an important cornerstone for the con-
struction of power-aware and area-efficient systems. The design of the TISS
guarantees that the temporally deterministic system behavior and the encap-
sulation properties are retained despite dynamically triggered reconfiguration
activities.

In addition to the design of the UNI, the proposed naming scheme, and the
TISS, this thesis contributes to the time-triggered SoC architecture by intro-
ducing a novel concept for fault-tolerance. The proposed concept exploits the
inherent fault isolation and determinism of the architecture and is based on the
replication of entire IP cores that are grouped into Fault-Tolerant Units (FTUs)
according to the TMR scheme.

With respect to TMR we have investigated two different approaches: on-chip
TMR and off-chip TMR. In the case of on-chip TMR, the replicated IP cores
of an FTU are realized in the same SoC in order to increase the reliability of
services residing on a single chip.

Off-chip TMR is employed for ultra-dependable systems, as a single chip cannot
be expected to achieve the required reliability which is typically in the order
of 10−9 failures per hour [Kop97]. In this case, the replicated IP cores of an
FTU are located on different SoCs that are interconnected by a fault-tolerant
off-chip network (e.g., TTP [KG94] or FlexRay [Fle05]).

3

1.3 Structure of this Thesis 1 Introduction

1.3 Structure of this Thesis

Chapter 2 outlines the background and the motivation that led to the de-
velopment of the integrated TTSoC architecture. The chapter starts with a
comparison of the federated and the integrated architecture paradigm, then
motivates the paradigm shift to multi-core architectures, and concludes with
an elaboration of the role of complexity and complexity management in the
construction of future embedded devices.

Chapter 3 gives an overview of state-of-the-art NoC interfaces and intercon-
nects.

Chapter 4 describes the overall structure and the component model of the
TTSoC architecture, and introduces the concept of on-chip TMR and off-chip
TMR as the architecture’s basic fault-tolerance mechanisms.

The naming scheme is presented in Chapter 5, while the TISS and the core
platform services are described in Chapter 6.

Chapter 7 describes the design and implementation of a prototype that demon-
strates the feasibility of the proposed architecture. It covers a detailed memory
layout of the UNI, the design of the architectural elements, the description of
the prototype hardware, and the implementation results.

Chapter 8 concludes the thesis by summarizing the main contributions.

4

Chapter 2

Background and Basic Concepts

This chapter outlines the background and the motivation that lead to the
development of the integrated Time-Triggered System-on-a-Chip architecture.
The chapter starts by comparing the federated to the integrated architecture
paradigm, motivates the paradigm shift to multi-core architectures, and con-
cludes with an elaboration of the role of complexity and complexity manage-
ment in future embedded devices.

2.1 Federated vs. Integrated Architectures

One can distinguish two extreme classes of architecture paradigms, namely
federated and integrated architectures [OPHES06]. According to the feder-
ated paradigm, each application subsystem is realized on a dedicated computer
system, while in integrated architectures multiple application subsystems are
integrated within a single, possibly physically distributed, computer system.
Since both paradigms have specific advantages and disadvantages, most of the
existing real-time systems are positioned between these two extremes.

Federated architectures have been usually preferred for ultra-dependable sys-
tems since the physical separation of application subsystems facilitates error
containment, independent development, and complexity management. The
major advantages of federated architectures are listed below.

Fault and Error Containment. Since each application subsystem is real-
ized on a dedicated computer system, a physical fault in any hardware
component can only affect a single application subsystem. Thus, fault
containment is trivially achieved in federated architectures whereas in an
integrated architecture a hardware fault in any of the system components

5

2.1 Federated vs. Integrated Architectures 2 Background and Basic Concepts

has a potential impact on every application subsystem that shares that
component. Furthermore, the limited interactions between the different
application subsystems in a federated system facilitate the establishment
of error containment, i.e., the prevention of error propagation from one
application subsystem to another one.

Independent Development and IP Protection. The federated paradigm
enables independent development of application subsystems by different
vendors since each application subsystem is nearly independent, and the
interactions between application subsystems are limited to occur via gate-
ways. Thus, the need for communication between the development teams
of different application subsystems is kept on a minimum level. Further-
more, the use of heterogeneous technologies (e.g., processors, commu-
nication protocols and operating systems) for the different application
subsystems poses no problem.

In a federated architecture, the vendor of an application subsystem does
not have to reveal internals to the system integrator or to any other vendor
due to the clear separation of the application subsystems. This property
is relevant for the protection of the vendor’s intellectual property.

Complexity Control. Each application subsystem has a given complexity
which is inherent to the associated application (i.e., to the problem to
be solved). When multiple application subsystems are integrated into a
larger system, the complexity can significantly increase, if the architec-
ture does not prevent unintended interference between the application
subsystems. The federated approach prevents any unintended interfer-
ence trivially by assigning a dedicated distributed computer system to
each application subsystem, whereas an integrated architecture requires
elaborate mechanisms for temporal and spatial partitioning.

Compared to federated architectures, integrated architectures are very attrac-
tive due to the potential cost savings achieved by avoiding the duplication of
resources, the increased dependability due to the reduction of wires and con-
nectors, and the flexible coordination of different application subsystems.

Hardware Cost Reduction. Integrated architectures enable the multiplex-
ing of hardware resources (e.g., communication networks, sensors, and
computational nodes) that are needed by multiple application subsys-
tems. In contrast to this, the federated approach requires to duplicate
such resources which is likely to result in an unacceptable overhead. The
automotive industry is an example where the federated approach, is about
to reach its limits. Modern luxury cars like the BMW 7 [Dei02] series

6

2 Background and Basic Concepts 2.2 The Paradigm Shift to Multi-Core

already contain up to 70 ECUs, which are interconnected via multiple
different communication networks (e.g., CAN [Rob91], MOST [MC02]).

Dependability Improvements. In addition to the increase in resource effi-
ciency, the reduction of the number of ECUs leads to systems with fewer
connectors and wires. By analyzing field data from the automotive in-
dustry it was shown that more than 30% of electrical failures are caused
by connector problems [SM98]. Thus, the reduction of the ECU count
has a direct impact on the dependability of the overall system.

Furthermore, integrated architectures enable redundancy management in
a very flexible way. In a federated architecture, each fault-tolerant appli-
cation subsystem has its own spare components that it can use exclusively.
An application subsystem that has already used up all its spare compo-
nents and develops an additional fault, can fail even if there are other
available spare components in the system (i.e., in other application sub-
systems). In an integrated architecture, spare components can be made
universally available to multiple application subsystems.

Improved Coordination of Application Subsystems. Integrated archi-
tectures support the tactic coordination of tightly coupled application
subsystems. An example where such a coordination is required is the
passive safety mechanism (Pre-Safe) of the Mercedes S-Class [Bir03]. The
Pre-Safe systems tightens the seat belts, aligns the seats in a safe position
and closes the sun roof when a hazardous driving situation is detected.
For this purpose the comfort subsystem uses and correlates the informa-
tion of existing car dynamics sensors of other application subsystems.

An ideal future system architecture would combine the complexity management
advantages of the federated approach, but would realize the functional integra-
tion and hardware benefits of an integrated system [Ham03]. The challenge
is to devise an architecture that supports the integration of different applica-
tion subsystems—possibly with mixed criticality levels—on a single distributed
computer system, while retaining the fault isolation and complexity manage-
ment properties of the federated architecture paradigm.

The DECOS project [OPHES06] addressed exactly this challenge and laid the
foundation for the TTSoC architecture which is the topic of this thesis.

2.2 The Paradigm Shift to Multi-Core

A multi-core processor combines multiple independent cores into a single pack-
age. This section outlines the motivation for the transition to multi-core archi-
tectures and describes the consequences of that transition.

7

2.2 The Paradigm Shift to Multi-Core 2 Background and Basic Concepts

2.2.1 Power and Area Efficiency

Gordon E. Moore predicted that the total number of devices on a chip would
double every generation (18–24 months). Known widely as Moore’s Law, this
prediction made the case up to now and is still a driving force for technological
and social change. Figure 2.1 plots the growth of transistor counts for Intel
processors over the last decades, starting with the first microprocessor—Intel’s
4004—to the most recent microprocessors.

Doubling time: 24 months.

Doubling time: 18 months.

4004
8008

8080

8086

286 386

486

Pentium

Pentium II
Pentium III

Pentium 4
Itanium

Itanium 2

Itanium 2 9M

3

4

5

6

7

8

9

10

10

10

10

10

10

10

1970 1980 1990 2000

Year

N
um

be
r

of
 tr

an
si

st
or

s
on

 a
n

in
te

gr
at

ed
 c

irc
ui

t

Figure 2.1: Growth of Transistor Counts for Intel Processors

While Moore’s Law is still alive, and brings us an integration capacity of bil-
lions of transistors today, we have to consider ways to employ these transistors
effectively in order to deliver the desired performance. For decades, the in-
creasing number of transistors was used to push the performance of a single
processing core by developing larger micro-architectures with a higher com-
plexity. Examples are micro-architectures based on super-pipelined designs
featuring speculative, super-scalar, and out-of-order execution.

The problem is that performance increases that are exclusively based on ad-

8

2 Background and Basic Concepts 2.2 The Paradigm Shift to Multi-Core

vances in micro-architecture are governed by Pollack’s Rule [Pol99]. Pollack’s
Rule states that, in the same process technology, a leading micro-processor
consumes twice the area and power over the previous generation microproces-
sor, compared with a performance increase by a factor of 1.4. In other words,
doubling the number transistors in a single processor core results only in 40%
additional performance, which means that ever increasing single cores yield di-
minishing performance in a power and area envelope. In contrast to the single
core approach, a multi-core architecture has the potential to provide near linear
performance improvement.

Another key challenge in keeping Moore’s Law alive is integrated power man-
agement. The main issue is that the integration capacity is still increasing
according to Moore’s law, while the scaling of the supply voltage is slowing
down. Thus, the power consumption of a fixed-sized die will be constantly
increasing until reaching an unacceptable limit if appropriate counter measures
are not taken. Multi-core architectures are very flexible with respect to power
management due to the following reasons.

• To save power, each core can be individually turned off if its functionality
is not required at the moment.

• Each core can run at its optimized clock frequency and supply voltage.
This is especially useful for heterogeneous multi-core architectures.

• The computational load can be balanced among the processor cores in
order to distribute the heat uniformly across the die.

2.2.2 Amdahl’s Law

As mentioned above, multi-core systems deliver a higher potential compute
throughput than single-core systems for the same die size and in the same
power envelope. Nevertheless, the potential speedup is limited. Amdahl’s Law,
states that the theoretical maximum speedup achievable by parallelization is
limited by the relative size of the non-parallelizable part (i.e., the serial part)
of a program. Equation 2.1 shows how the maximum speedup (S) relates to
the relative size of the parallelizable part (p), the relative size of the serial part
(s = 1− p), and the number of parallel cores (N).

S =
s + p

s + p/n
=

1

s + (1− s)/N
(2.1)

Figure 2.2 depicts the maximum speedup for different values of s and different
numbers of parallel cores. The figure shows that even a small percentage of

9

2.2 The Paradigm Shift to Multi-Core 2 Background and Basic Concepts

6

7

8

9

10

90%

80%up

1

2

3

4

5

0 10 20 30 40 50 60 70

70%

60%

50%

Number of Cores

Sp
ee
du

Figure 2.2: Amdahl’s Law

non-parallelizable code in a program leads to a saturation of the achievable
speedup at a small number of cores.

It must be considered that this limitation is only valid if one tries to parallelize a
single application with a single continuous serial part across all the cores in the
chip. In the domain of embedded systems, a device typically integrates multiple
application subsystems that are inherently parallel. As an example consider
the electronic control system in a modern luxury car executing tasks for the
power train, the comfort electronics, or for the vehicle dynamics management
system. In such a system the real challenge is not to parallelize algorithms
solving one big problem as it is done for high-performance computing, but
to integrate multiple tasks that are inherently parallel without inducing any
additional complexity by the architecture (e.g., non-intended interference).

Furthermore, as embedded systems applications often process data flowing to
and from multiple independent serial parts, instead of a single continuous serial
part, a pipelined approach can naturally be employed for parallelization. For
example, a multi-media application could utilize dedicated serial parts (e.g., one
serial part per core) for decoding, application of different filters, and encoding.

2.2.3 The Memory Bandwidth Gap

The potential speedup of a multi-core processor can only be exploited if the
bandwidth between the memory and processor scales together with the pro-
cessor’s performance. An example of a state-of-the-art multi-core processor
is the IBM Cell Broadband Engine [Hof05] providing an aggregate memory
bandwidth of 25.6 GB/s via two 32 bit channels (3.2 Gbit/s per pin).

We can expect that the bandwidth requirements of next generation processors
will soon exceed several Tbit/s. Considering that a typical memory I/O cir-
cuit consumes about 25 mW/Gbps (or 25 W/Tbps) [Bor07], the traditional

10

2 Background and Basic Concepts 2.3 The Role of Complexity

memory subsystem approach is about to reach its limits. The main reason
is that traditional buses are transmission lines with LRC effects that require
complex and power-consuming signal processing techniques to attain a high
data rate. If we were able to shorten the bus length to a few millimeters, the
buses would behave more like lumped capacitors instead of transmission lines.
Such I/O circuits would consume substantially lower power, in the order of 1-2
mW/Gbps [Bor07].

A potential solution for shortening the bus length, is a three dimensional inte-
gration approach, where a thinned memory die is placed between the processor
and the package [VHR+07]. In this approach, shown in Figure 2.3, the signals
between the I/O pins and the processor are routed through the memory die
using silicon vias. The width of the bus can easily be increased to deliver the
required bandwidth, since the bus signals do not have to be routed out of the
package. At the same time, the signaling speed of the bus can be reduced to
further optimize the power efficiency.

DRAM

CPU

Memory Memory Memory Memory

Memory Memory Memory Memory

Memory Memory Memory Memory

Memory Memory Memory Memory

Through Silicon Via

Figure 2.3: 3D Memory Stacking

In a multi-core architecture, the three-dimensional integration approach would
allow each core to have its own memory with a dedicated memory bus that
is not shared with the other cores. Such an architecture would significantly
simplify arbitration and temporal predictability with respect to memory I/O.
On the other hand, it must be considered that the traditional shared memory
abstraction model will no more be feasible, and alternative inter-core commu-
nication mechanisms like message-passing will have to be employed.

2.3 The Role of Complexity

As pointed out in the previous section, Moore’s Law is still valid and we can
expect the trend of exponentially increasing transistor counts to continue. The

11

2.3 The Role of Complexity 2 Background and Basic Concepts

cost to realize a specific logic function in hardware and the energy required for
its execution are constantly decreasing.

The tremendous progress of the semiconductor industry enables new applica-
tions of embedded systems with ever increasing functionality. A good example
is the telecommunication industry. State-of-the-art mobile phones integrate
GPS navigation, multi-media players, high-definition cameras, and office appli-
cations and provide a high degree of connectivity to other devices by support-
ing a multitude of communication standards like Bluetooth1, IrDA2, USB3, and
Wi-Fi4 (WLAN).

We have to be aware that the astonishing leap of each generation of embedded
system devices does not come for free. Together with the increased function-
ality, the design complexity is also increasing at an overwhelming rate. The
International Technology Roadmap for Semiconductors [ITR05] considers de-
sign complexity and designer’s productivity as key challenges on the way to
giga-scale SoCs. Complexity is a key issue for the following reasons.

Development Cost. It is obvious that the complexity of a design has a di-
rect impact on the non-recurring engineering (NRE) cost of a product.
Devices with high complexity require a larger number of system designers
with a higher level of education during a longer development phase.

Time-to-Market. While the system complexity is exponentially increasing,
the time-to-market requirements for embedded system devices are be-
coming more and more stringent. Again the telecommunication industry
is a representative example where the required time-to-market—from the
idea to the final product—for the next generation of mobile phones is
predicted to be shorter than three months. Since the market is highly
competitive, missing the market window by only a few weeks results in a
significant financial loss.

It is not possible to conquer the challenge of developing devices with ever
increasing complexity within a shorter time interval by simply increasing
the size of development teams. In his book The Mythical Man-Month
[Bro95] Fred Brooks pointed out that the absolute throughput of a de-
velopment team saturates or even decreases at a given team size due to
the increased communication overhead.

The only solution to avoid exponentially increasing design cost and de-
sign time is to scale the overall productivity together with Moore’s Law,

1http://www.bluetooth.com
2http://www.irda.org
3http://www.usb.org
4http://www.wi-fi.org

12

2 Background and Basic Concepts 2.3 The Role of Complexity

which means that the productivity with respect to design, verification,
and testing has to double at least once per each technology generation.
This challenge is commonly denoted as the productivity challenge.

Dependability. Complexity has also a significant impact on the dependability
of a system. Right now we are in a situation where the number of bugs
is growing faster than Moore’s law. Verification and testing consumes
already a major amount of the total development costs of a product.

Even worse, in spite of a lot of time and money spent on verification and
testing, the uncontrolled complexity results in a large number of bugs
that remain undetected. This leads to products that are failing at the
customer and cause bad reputation of the vendor. A typical example
is the automotive industry, where costumers are irritated that their ex-
pensive leading-edge luxury cars may turn out less reliable than cheaper
series due to the complexity of the in-vehicle electronics.

To make the complexity manageable and to be able to concentrate on the
relevant properties of a system, we have to elevate the design process to a
higher level of abstraction. The following quote is taken from the Interna-
tional Technology Roadmap for Semiconductors: “For continued improvement
in designer’s productivity, an emerging system-level of design, well above RTL
(Register Transfer Level), is required. . . . Higher levels of abstraction allow
many forms of verification to be performed much earlier in the design process,
reducing the time to market and lowering costs by discovering problems ear-
lier.” [ITR05, p.8]

In many computer systems, the design complexity does not stem from the ac-
tual problem that has to be solved, but is introduced by the architecture used
and the development method employed. One example is the integration of mul-
tiple distributed application subsystems via a single CAN network. Even if the
complexity of each single application subsystem is low, the analysis of the inte-
grated system is difficult due to the emergent complexity induced by the hidden
interactions between the application subsystems. In a CAN network, the tem-
poral behavior of one application subsystem with respect to communication
is highly dependent on the communication activities of the other application
subsystems. Furthermore, a transient hardware fault in the network or in the
sender of a message can lead to masquerading effects by modifying the mes-
sage identifier. Thus, error propagation can occur between two application
subsystem even if they are totally independent on the logical level.

Other examples for architecture-induced complexity are multi-tasking operat-
ing systems in conjunction with modern pipelined microprocessors and complex
caching strategies. In such architectures the temporal behavior is theoretically

13

2.3 The Role of Complexity 2 Background and Basic Concepts

deterministic, but cannot be captured in simple models with low cognitive
complexity. “We cannot determine the behavior of the system not because we
cannot know “how it works”, but because its complexity exceeds our computing
or perceptual capacities.” [Ger02]

Concluding, we can summarize that complexity management and designer’s
productivity are key challenges for the successful development of future embed-
ded devices. These challenges have to be considered already at the architecture
level.

14

Chapter 3

NoC Interfaces and
Interconnects

This chapter gives an overview of state-of-the-art NoC interfaces and intercon-
nects. The network interface is the glue between an IP core and the on-chip
interconnect. Traditionally, the IP cores of an embedded controller have been
designed with bus-specific interfaces exposing the implementation-specific de-
tails of the interconnect directly to the core [BM06]. An example for this
approach is AMBA AHB [ARM99] where the interfaces of the attached cores
include signals that are connected to bus-internal components like the bus ar-
biter. Thus the cores and the interconnect are tightly coupled.

When the level of abstraction with respect to system integration began to rise,
it became good practice to reuse pre-designed cores, possibly provided by third
party suppliers, across multiple architectures with different on-chip commu-
nication infrastructures. This requirement caused a paradigm shift which is
commonly referred to as core centric design. State-of-the-art protocols pro-
vide interface definitions that abstract from the implementation details of the
interconnect. They can be either used with traditional buses or with modern
on-chip networks. Examples are AMBA AXI [ARM04] which is the most recent
specification of the AMBA protocol family or the Open Core Protocol (OCP)
[OCP05].

3.1 AMBA

The Advanced Microcontroller Bus Architecture (AMBA) specification defines a
standard for on-chip communication in high-performance embedded microcon-
trollers [ARM99][ARM01][ARM04]. It is released by ARM and represents the

15

3.1 AMBA 3 NoC Interfaces and Interconnects

current de facto standard for designing microcontrollers. This section gives an
overview of the different versions of the AMBA specification, which represent
a real-life example for the evolution of on-chip interconnects.

3.1.1 Advanced High-performance Bus - AHB

AMBA AHB [ARM99] is one of the first released specifications of the AMBA
protocol family. It acts as a high-performance system backbone bus and was
designed to interconnect high clock frequency system modules like processors or
on-chip memories. Figure 3.1 depicts a typical AMBA AHB-based microcon-
troller which consists of the AHB backbone bus, on which the CPU and several
other high-performance Direct Memory Access (DMA) devices reside, and a
bridge to an Advanced Peripheral Bus (APB) which interconnects low-power
peripherals like timer or I/O modules [ARM99]. While the AHB bus features
high performance, pipelined operation, burst transfers, and multiple bus mas-
ters, the APB bus provides a reduced interface complexity and is optimized for
minimal power consumption.

High-bandwidth
Memory Interface

High-performance
Processor

High-bandwidth
On-chip RAM

DMA bus
master

B
R
I
D
G
E

UART

Keypad PIO

Timer

AHB APB

AHB to APB Bridge

Figure 3.1: Typical AMBA AHB-Based Microcontroller

The following four types of components are differentiated in an AMBA AHB
system design, as shown in Figure 3.2.

AHB Master. Bus masters are the initiators of read and write operations.
An AHB design may contain one or more bus masters, but at any time
at most one master is allowed to actively use the bus.

AHB Slave. A bus slave is associated with a specific address range and re-
sponds to read or write operations within that range. In addition to
executing the read or write commands, it indicates the status of the pre-
vious transfer (e.g., success or failure) to the active master.

AHB Arbiter. The purpose of the bus arbiter is to ensure that at any point
in time, only a single bus master is granted access to the bus. De-
pending on the application requirements, different arbitration protocols
(e.g., priority-based arbitration) can be implemented.

16

3 NoC Interfaces and Interconnects 3.1 AMBA

AHB Decoder. The AHB decoder selects the slave that is involved in a trans-
fer by decoding the address of the given transfer. Each AHB implemen-
tation requires a single centralized decoder.

According to the specification, the AHB protocol is based on a central mul-
tiplexer interconnection scheme. Each master connected to the bus indicates
an intended transfer by driving its address and control signals. The arbiter
selects—via the central address and control multiplexer and the write data
multiplexer—a single master from which the address, control, and data signals
are routed to all the slaves. The decoder controls the read data multiplexer
which selects signals from the appropriate slave.

Master
1

Master
2

Master
3

Slave
1

Slave
2

Slave
3

Slave
4

Arbiter

Decoder

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

address and
control mux

write data mux

read data mux

HADDR

Figure 3.2: AHB Interconnection Scheme

A bus master must be granted access to the bus before it can start a transfer.
For this purpose it asserts a request signal to the central arbiter. After the
arbiter has granted the access to the master, the master starts the transfer by
driving the control and address signals, which contain the information of the

17

3.1 AMBA 3 NoC Interfaces and Interconnects

address, direction, and width of the transfer. Furthermore, it indicates whether
the current transfer is part of a burst operation or not. AMBA defines a burst
operation as one or more data transactions initiated by a single bus master
with a consistent width to an incremental address.

3.1.2 Multi-Layer AHB

Multi-layer AHB is an interconnection scheme that overcomes the restriction of
using a single shared bus by supporting parallel access path between multiple
masters and slaves using an advanced interconnect matrix [ARM01]. It is back-
ward compatible to the standard AHB protocol which means that previously
designed master and slave modules can be reused without any modification.

Multi-layer AHB supports a wide variety of bus structures. In a full multi-layer
structure, each master has a dedicated AHB layer which is connected to every
slave via an interconnect matrix (see Figure 3.3).

Interconnect
Matrix

Figure 3.3: AHB Multi-Layer Basic Structure

Within the interconnect matrix, each layer has a dedicated decoder that de-
termines which slave is selected for a given transfer, as depicted in Figure 3.4.
If two or more layers require access to the same slave, arbitration becomes
necessary. Since each slave port has its own dedicated arbitration logic, an
individual arbitration scheme (e.g., round robin or fixed priority) can applied
for each slave.

In order to reduce the complexity of the interconnect matrix in systems with
a large number of masters and slaves, the following options can be used to
optimize the system architecture [ARM01].

18

3 NoC Interfaces and Interconnects 3.1 AMBA

Interconnect Matrix

Layer 1

Layer 2

Figure 3.4: AHB Multi-layer Interconnect Matrix

Local Slaves. When a given set of slaves will be exclusively accessed by a
single master, or by a group of masters residing on the same layer, they
can be made private to the corresponding layer, as shown in Figure 3.5.
Private slaves do not add complexity to the interconnect matrix.

Interconnect
Matrix

Layer 1

Layer 2

Figure 3.5: AHB Multi-Layer Local Slaves

Multiple Slaves on a Single Slave Port. Multiple low-bandwidth slaves
can be combined to appear as a single slave to the interconnect matrix
(see Figure 3.6). This concept is particularly attractive if a set of slaves,
accessed by a single master during normal system operation, needs to be
accessible by more than one master in some special circumstances like
debugging.

Multiple Masters on a Single Layer. Another way to reduce the cost of
the interconnect matrix is to combine multiple masters to share a single
layer, as depicted in Figure 3.7. Such an approach can be applied to mas-
ters with a low-bandwidth demand that do not require parallel channels.

19

3.1 AMBA 3 NoC Interfaces and Interconnects

Master 1

Interconnect
Matrix

Slave 1

Layer 1

Master 2

Slave 2

Layer 2 Slave 3

Slave 4

Slave 5

Figure 3.6: AHB Multi-Layer Multiple Slaves on a Single Port

Master 1

Interconnect
Matrix

Slave 1Layer 1

Master 2
Slave 2

Layer 2

Slave 3
Master 3

Master 4

Figure 3.7: AHB Multi-Layer Multiple Masters on a Single Layer

The described optimizations are not restricted to be applied exclusively. They
can be combined with each other to connect the different part of a system in
an optimal way.

3.1.3 AMBA AXI

AMBA AXI (also called AMBA 3.0) [ARM04] represents the latest genera-
tion of the AMBA protocol family. It provides features to maximize resource

20

3 NoC Interfaces and Interconnects 3.1 AMBA

efficiency and data throughput like the support for multiple outstanding trans-
actions, out-of-order transaction completion, and efficient burst transactions
with only the start address issued.

In AMBA AHB, each transfer consists of an address and a subsequent data
phase [BM06]. Transaction pipelining is supported in the following way. The
address for the (i + 1)th transfer can be driven on the address lines while the
data phase of the ith transaction is in progress. Since address sampling is only
allowed after the data phase has completed, multiple outstanding transactions
are not possible. In contrast to the AHB protocol, AXI supports issuing multi-
ple outstanding transactions and out-of-order transaction completion. For this
purpose a master can assign an ID tag to every issued transactions. All trans-
actions with the same ID tag have to be completed in order while transactions
with different ID tags can be completed out of order. Out-of-order transac-
tions enable fast-responding slaves to complete ahead of slower slaves, even if
the transactions involving the slower slaves have been issued first (i.e. a fast
transaction can overtake a slower transaction).

The AMBA AXI architecture introduces the following five independent chan-
nels [ARM04].

Read address channel. The read address channel carries all of the required
address and control information for a read transaction.

Write address channel. The write address channel carries all of the required
address and control information for a write transaction.

Read data channel. The read data channel transports the read data and any
read response information (e.g., the completion status of the transaction)
from the slave back to the master that initiated the transaction.

Write data channel. The write data channel transports the write data to
the slave. The information on this channel is always treated as buffered,
so that the master does not have to wait for acknowledgments of previous
write transactions to perform new write transactions.

Write response channel. This channel is used by slaves to respond to write
transactions (e.g., completion signaling). The completion signal occurs
only once for each burst, and not for each transfer within a burst.

Figure 3.8 depicts how the read address and the read data channels are used
during a read transaction. Figure 3.9 shows how the write address, the write
data, and the write response channels are used during a write transaction.

Each of the channels uses a two-way VALID and READY handshake mech-
anism. The channel source uses the VALID signal to indicate that new data

21

3.1 AMBA 3 NoC Interfaces and Interconnects

Master
Interface

Slave
Interface

Read
Data

Read
Data

Read
Data

Address
and

Control

Read Address Channel

Read Data Channel

Read
Data

Figure 3.8: AMBA AXI Read Transaction

Master
Interface

Slave
Interface

Write
Data

Write
Data

Write
Data

Address
and

Control

Write Address Channel

Write Data Channel

Write
Response

Write Response Channel

Write
Data

Figure 3.9: AMBA AXI Write Transaction

or control information is available on the channel, while the destination uses
the READY signal to show that it can accept new data. The read and the
write data channel include an additional signal, the LAST signal, to indicate
the transfer of the final data item of a transaction. This two-way handshake
mechanism allows both the master and the slave to control the rate at which
data or control information is transfered.

AXI channels are strictly unidirectional, and there is no requirement for a fixed
relationship between the various channels. Depending on the implementation of
the interconnect, the bandwidth of the individual channels can differ. In most
systems one of the following three interconnect approaches is used [PM05]:

• Shared Address and Single Data buses (SASD)

• Shared Address buses and Multiple Data buses (SAMD)

• Multiple Address buses and Multiple Data buses (MAMD)

22

3 NoC Interfaces and Interconnects 3.1 AMBA

In the SASD approach, only a single master can be active per channel. This
concept is similar to the AMBA AHB protocol.

When SAMD is used, only a single master can be active per address chan-
nel, while multiple master and slave pairs can be active on the other channels
(e.g., master A can send write data to slave A, while master B is sending write
data to slave B). The number of master-slave pairs that can be active at the
same time depends on the implementation of the interconnect.

Using the MAMD approach, multiple pairs can be active on all channels at
the same time. This approach yields the highest performance with respect to
the interconnect. On the other hand, this approach results also in the most
complex scenario with respect to system verification, as multiple masters and
slaves can be active at any time.

The key advantage of AMBA AXI compared to previous AMBA specifications
(e.g., AMBA AHB) lies in the interface definition of the attached cores. In
AMBA AHB the master and the slave interfaces include signals that are con-
nected to bus-internal components like the arbiter [BM06]. Since the internal
bus architecture is exposed to the interface of the cores, it is not possible to
directly connect a master interface to a slave interface. Furthermore, the im-
plementation of the interconnect is tightly coupled to the interface of the cores.
Contrary to previous AMBA specifications, ABMA AXI is based on a point-
to-point interface definition (see Figure 3.10) [BM06].

Central Interconnect

Slave IF Slave IF

Master IFMaster IF

Master IF Master IF

Slave IF Slave IF

Figure 3.10: AMBA AXI Point-to-Point Master/Slave Interfaces

The protocol provides a single interface specification to describe interfaces:

• between a master and the interconnect

• between a slave and the interconnect

• between a master and a slave

23

3.2 OCP 3 NoC Interfaces and Interconnects

A connection between any two devices consists of a master interface and the
symmetrical slave interface [BM06]. The signals between a master interface
and a slave interface are not specific to the implementation of the intercon-
nect. Furthermore, the interface through which a master (resp. a slave) is
connected to the interconnect matches the interface of the corresponding slave
(resp. master). This means that a master and a slave can be connected di-
rectly to each other without modification of the interface. Since the interface
definition is decoupled from the implementation of the interconnect, a variety
of implementations can be used (e.g., Æthereal [GDR05] implements, among
other protocols, AXI at its boundaries).

3.2 OCP

The Open Core Protocol (OCP) [OCP05] defines a bus-independent point-to-
point interface between two communicating IP cores. An IP core can be a
simple peripheral core, an on-chip communication subsystem, or a complete
high-performance microprocessor. In OCP one of the communicating entities
acts as a master and the other one as the slave. Commands can be issued
exclusively by the master. The slave responds to the commands of the master,
either by accepting data from the master or by presenting requested data to
the master. For setting up a peer-to-peer communication, two instances of the
OCP are required: one where the first core acts as the master and the second
core acts as the slave, and one where the first core acts as the slave and the
second core acts as the master. It is determined by the inherent characteristics
of an IP core whether it needs the master side, the slave side, or both sides of
the OCP (see Figure 3.11).

Core Core Core

Master SlaveMaster Slave

Slave MasterSlave Master
Bus Initiator Bus Initiator / Target Bus Target

Reply

Request

OCP OCP

System Initiator System Initiator / Target System Initiator

Figure 3.11: OCP Core Interfaces

24

3 NoC Interfaces and Interconnects 3.3 Sonics SiliconBackplane

The OCP supports write and read commands, which enable a master to write
or read a specific address to or from the slave. In addition to the read and
write commands so-called sideband signaling for signals like interrupts, reset,
or errors is supported. The OCP is a strictly synchronous interface, where
all signals crossing the interface are driven by a single clock. All signals are
strictly uni-directional and point-to-point. The OCP does not specify the in-
terconnecting bus functionality or its implementation. It is the responsibility of
the designer of the communication subsystem to handle arbitration and to con-
vert an OCP request by a master into an implementation specific bus transfer
and to reconvert it to a legal OCP command at the slave’s side. The bus-
independent interface allows developers of OCP compliant IP cores to think
of them as being directly connected to each other in a point-to-point fashion
without an intervening on-chip bus. Thus, the complexity of bus-dependent
device selection and arbitration mechanisms is hidden from the IP cores.

3.3 Sonics SiliconBackplane

The Sonics SiliconBackplane uNetwork [Son02] is an on-chip network for the
interconnection of multiple IP cores within an SoC. It unifies all on-chip com-
munications by replacing dedicated physical connections between IP cores with
logical connections realized on a shared interconnect. Furthermore, it provides
guaranteed bandwidth and bounded latency to individual IP cores. The Sili-
conBackplane Network uses so-called agents (standardized network interfaces)
to decouple the implementation of the SiliconBackplane µNetwork from the
individual IP cores, enabling the IP cores to be designed independently form
the network.

The interface to an agent complies with the Open Core Protocol (OCP)
[OCP05]. An IP core can be connected as an OCP master, as an OCP slave,
or with both interfaces. Guaranteed bandwidth and bounded latency for indi-
vidual cores is achieved by a combination of a fixed-latency bus and a Time
Division Multiple Access (TDMA) bandwidth allocation scheme. The TDMA
allocation scheme is based on recurring frames which consist of up to 256 cy-
cles. Each cycle in a frame can be allocated to at most one agent. An agent
that is allocated a cycle is permitted to send a message on the bus during that
cycle. If an agent does not need its cycle, the cycle is dynamically allocated
in a round-robin fashion among the IP cores waiting for access. Thus, a two
level arbitration for high priority and lower priority data transfers scheme is
realized.

25

3.4 Æthereal 3 NoC Interfaces and Interconnects

3.4 Æthereal

The Æthereal architecture [GDR05] combines guaranteed services—such as
guaranteed throughput and bounded latency—with best effort services. Guar-
anteed services aid in the compositional design of robust SoCs, while best effort
services increase the resource efficiency by exploiting the NoC capacity that is
left unused by the guaranteed services.

The constituting elements of the architecture are Network Interfaces (NIs) and
routers which are interconnected by links. The NIs translate the protocol of
the attached IP core to the NoC-internal packet-based protocol. The routers
transport messages between the NIs.

Æthereal offers a shared-memory abstraction to the attached IP modules
[RDG+] and employs a transaction-based master/slave protocol. Masters initi-
ate a transaction by issuing a request which consists of a command (e.g., read
or write command at a specific address) and optional write data. These com-
mands are received and executed by one or more slave modules which may issue
a response back to the master including the status of the command execution
and optional data. The transaction based model was chosen to ensure back-
ward compatibility to existing on-chip network protocols like AXI [ARM04] or
OCP [OCP05].

In the Æthereal NoC, the signals of an IP core with a standardized interface
(e.g., AXI or OCP) are sequentialized in request and response messages, which
are transported by the NoC in the form of packets. The communication services
are provided via so-called connections which are composed out of multiple
unidirectional peer-to-peer channels : A typical peer-to-peer OCP connection
would consist of a request channel and a replay channel; a multi cast or narrow
cast connection can be implemented by a collection of channels, one or two for
each master-slave pair; see Figure 3.12, [BM06].

Each channel uses two queues, one at the NI of the sender and one at the NI
of the receiver. In order to guarantee message delivery, an end-to-end credit-
based flow control mechanism is employed that prevents queue overflows in the
NIs (see Figure 3.13, [BM06]). Each channel incorporates a counter (on the
sender side of the channel) that tracks the empty buffer space of the remote
destination queue [RDG+]. The initial value of counter is the size of the remote
queue, and the counter is decremented each time, when data is sent from the
source queue to the remote queue. When the receiver consumes data from the
remote queue, credits are generated to indicate that more space in the remote
queue is available. These credits are sent to the producer of the data where
they are added to the counter that tracks the empty buffer space of the remote
destination queue. Credits can be sent in dedicated credit packets, or they can

26

3 NoC Interfaces and Interconnects 3.4 Æthereal

Master Slave
request

response

Master

Slave 1

Slave 2

Master

Slave 1

Slave 2

request

request

response

request

request
response’

Peer-to-peer connection

Multicast connection:
Transaction executed
by all slaves

Narrowcast connection:
Transaction executed
by one slave

Figure 3.12: Æthereal Different Types of Connections

be piggybacked in the header of the packets for data in the other direction to
improve the efficiency of the NoC.

Master

REQ

RESP

Slave

REQ

RESP

Request Channel

Response Channel

NI NoC NI

remote
buffer space

credits
to report

remote
buffer space

credits
to report

Figure 3.13: Æthereal Credit-based Flow Control

Channels offer two types of service classes: guaranteed throughput (GT), and
best effort (BE). GT channels give guarantees on minimum bandwidth and
maximum latency by using a TDMA scheme. The TDMA scheme is based
on a table with a given number of time slots (e.g., 128 slots). In each slot,
a network interface can read and write at most one block of data. Given the
duration of a slot, the size of a block that can be transferred within one slot,
and the number of slots in the table, a slot corresponds to a given bandwidth
B. Therefore, reserving N slots for a channel results in a total bandwidth of
NB. The granularity with which the bandwidth of a channel can be reserved
equals 1/S of the maximum channel bandwidth, where S is the number of slots
in the TDMA table.

27

3.4 Æthereal 3 NoC Interfaces and Interconnects

Within a single channel, temporal ordering of messages is guaranteed. This
means that all messages are received in the same order as they were sent. Since
the NI treats different channels as different entities, ordering guarantees are
only provided for single channels. Across different channels, message reordering
is possible.

An Æthereal NI consists of a single fixed kernel and one or more variable shells
(see Figure 3.14, [BM06]). The NI shells translate transactions of a specific
IP protocol such as AXI or OCP to generic messages that are accepted by the
NI kernel. The NI kernel takes these generic messages marshals them into GT
or BE packets, schedules them to the routers, and implements end-to-end flow
control. The structure of the messages handed over by the NI shells may vary
depending on the specific protocol used by the attached IP core.

NI
kernel

A
X

I a
da

pt
er

D
TL

 a
da

pt
er m

ul
tic

as
t na

rro
w

ca
st

network interface (NI)

DTL
port

DTL
port

router

AXI
port

NI
ports

NI
ports

NI
ports

user network

AXI
port

Figure 3.14: Æthereal NI Kernel and Shells

From the point of view of the NI kernel, the message structure is irrelevant,
as it regards messages just as pieces of data to be send or received over the
NoC. Since the protocol specific functionality is confined by the NI shells, an NI
can be instantiated with different NI protocols by attaching the corresponding
shells.

28

Chapter 4

The TTSoC Architecture

The Time-Triggered System-on-a-Chip (TTSoC) architecture is a novel system
architecture for SoCs that offers a component-based design methodology for
managing the complexity of chips with billions of transistors through the con-
sequent decoupling of the computational components from the communication
infrastructure. Due to this decoupling, the design of a computational compo-
nent can abstract from the implementation of the interconnect, which facili-
tates the rapid development of multi-core SoCs by using pre-verified functional
cores. Therefore, the time-triggered SoC architecture provides an architectural
framework that supports the side-effect-free composition of component services
(based solely on the interface specifications) to form larger systems-of-systems.

This chapter describes the overall system structure and the component model
of the TTSoC architecture. Furthermore, it introduces the concept of on-chip
TMR and off-chip TMR, as the architecture’s basic fault-tolerance mechanisms.

4.1 Overall System Structure

A central issue in the TTSoC architecture is the provision of standardized,
validated, and potentially certified architectural services (e.g., communication,
diagnostic, or fault-tolerance services) that facilitate the development of dis-
tributed real-time applications. The architectural services separate the ap-
plication functionality from the underlying platform technology in order to
reduce design complexity and to facilitate design reuse, which corresponds to
the concept of platform-based design [SV02]. This section describes how the
architectural services are organized in the TTSoC architecture.

The TTSoC architecture is intended to be used across multiple heterogeneous
application domains, with highly specific and potentially mutually contradict-

29

4.1 Overall System Structure 4 The TTSoC Architecture

ing requirements with respect to the architectural services. Examples for dif-
ferent requirements are the desired properties of communication protocols:

Safety-critical applications (e.g., steer-by-wire systems) that have to deliver
a given service within a guaranteed time bound require communication ser-
vices that are highly deterministic in the temporal domain (e.g., time-triggered
protocols). In contrast to safety-critical applications, many non-safety-critical
systems typically have to be optimized for average load in order to optimize cost
(e.g., the comfort electronic system of car) and thus require a highly flexible
protocol that adheres to the event-triggered communication paradigm.

Additional architectural services have to be provided to support the reuse and
the integration of legacy applications by emulating the corresponding legacy
platform. Examples are emulations of standard communication protocols that
are frequently used in specific application domains (e.g., CAN [Rob91] in the
automotive sector, ARINC 629 [Moo89] for avionics, . . .).

Consequently, the set of provided architectural services has to be extendable
and configurable. Extendability is an important factor since it is not possible
to anticipate how applications and their requirements will evolve in the future.
Furthermore, it is a strong requirement that a newly added (maybe faulty)
service must not compromise the correct operation of existing services in the
temporal and in the value domain. Configurability is required to facilitate the
construction of resource-efficient systems. Therefore, the architecture should
be adaptable in a way, that any particular instantiation contains only those
services that are required in the actual system.

In order to support the flexible integration of architectural services for heteroge-
neous application domains, the TTSoC architecture was designed as a waistline
architecture (see Figure 4.1), which is based on a generic and minimal set of
validated and verified core platform services. These services are provided via
the so-called UNI and form the waist of the waistline architecture. The UNI
abstracts from the actual implementation of the core platform services which
means that any NoC that implements the UNI is compliant to the TTSoC
architecture.

Based on the UNI, a broad range of higher-level services can be realized which
are tailored to the requirements of specific application domains and refine or
extend the core platform services. Multiple higher-level services (e.g., tailored
to multimedia or to safety-critical applications) can coexist in a single sys-
tem. The TTSoC architecture provides encapsulation mechanism that prevent
any unintended interference between high-level services of different applica-
tion subsystems, which is a key requirement for the integration of application
subsystems of different criticality levels.

30

4 The TTSoC Architecture 4.2 The Component Model

Figure 4.1: Waistline Architecture

4.2 The Component Model

This section gives an overview on the constituting architectural elements of the
TTSoC architecture. The TTSoC architecture is built around a deterministic
time-triggered NoC which interconnects multiple, possibly heterogeneous IP
cores called micro components (see Figure 4.2).

A micro component is a self-contained computational unit that provides its
functionality over a well defined message-based interface. It is composed out
of two structural elements, the TISS and the host. While the host performs
the computations, which are required to deliver the intended service of the
micro component, the TISS provides a stable set of core platform services
(e.g., predictable transport of messages, global time service, watchdog service)
to the host. Furthermore, the TISS acts as a guardian for the NoC by ensuring
that a fault within the host of a micro component (e.g., a software fault or a
hardware fault) cannot lead to a violation of the micro component’s temporal
interface specification in a way that the communication between other micro
components would be disrupted.

The TTSoC architecture supports integrated resource management by two
dedicated architectural elements, the Resource Management Authority (RMA)
and the Trusted Network Authority (TNA). The RMA accepts resource re-
quest messages from the micro components and generates, according to internal
rules, a resource allocation mapping for the entire System-on-Chip (SoC). The
TNA checks the resource allocation mapping, provided by the RMA, against a
set of predefined constraints (e.g., conflict-freeness of the message schedule or

31

4.2 The Component Model 4 The TTSoC Architecture

availability of statically assigned resources for safety-critical application sub-
systems). If the mapping is valid, the TNA (re-)configures the NoC and the
TISSs accordingly.

The TNA, the time-triggered NoC, and the TISSs form the Trusted Subsystem
(TSS). The TSS constitutes the core of the TTSoC architecture and is assumed
to be free of design faults. It has to be certified according the criticality level
of the most critical micro component in the SoC.

The TTSoC architecture supports gateways to access chip-external networks
and to facilitate the construction of distributed systems by the interconnection
of multiple SoCs.

Furthermore, the architecture incorporates a dedicated architectural element
for diagnosis, the Diagnostic Unit (DU).

Time-Triggered Network-on-Chip

TISS TISS

Host

TISS

Local
I/O

TTE

TISS

Host

Local I/O

TISS TISS TISS

Host

Local I/O

Host

Local I/O

Host

Local I/O

Trusted
Network
Authority

(TNA)

Resource
Managem.
Authority

(RMA)

µC

Host

TISS

Local
I/O

CAN

TISS

Host

Local I/O

Diagnostic
Unit
(DU)

µC µC µC

µC µC µC µCµC

Application
Subsystem 0

Application
Subsystem 1

Application
Subsystem 2

micro component
(µC)

Figure 4.2: Component Model

4.2.1 Micro Components

A major characteristic of the TTSoC architecture is the high level of abstraction
with respect to system integration. Existing state-of-the-art NoC architectures
like Æthereal or the SiliconBackplane provide a shared memory abstraction to
the attached IP cores via a transaction based master/slave protocol as used in
OCP or AMBA AXI. Such protocols define low-level signals like address, data,
interrupt, reset, or clock signals and are typically employed at the interfaces of
processors, memory subsystems, or bus bridges.

The TTSoC architecture raises the level of abstraction by introducing the no-
tion of a micro component which is a self contained computational unit (e.g., a

32

4 The TTSoC Architecture 4.2 The Component Model

processor or an FPGA with local memory) that provides its functionality over
a message-based interface which is defined in the value as well as in the tempo-
ral domain. Thus, a micro component is more than a processor, or a memory
subsystem. It can be viewed as an entire computer that provides a defined part
of an application service. On this abstraction level, a message-based interface
that defines the exchanged messages at the application level, is much more ap-
propriate than an interface on signal-level as it is used for a processor-memory
interconnect.

Encapsulation

A key objective of the TTSoC architecture is to facilitate independent devel-
opment of application subsystems. This is accomplished by the use of encap-
sulation mechanisms that prevent any unintended interference between these
subsystems. The TTSoC architecture ensures by design (i.e., by the physical
separation of the individual micro components), that micro components can
interact with each other exclusively by the exchange of messages via the time-
triggered NoC; this means that there are no other hidden channels (e.g., implicit
interaction via shared memory or interrupts).

Since the time-triggered NoC is a shared resource, it has to be prevented that
a design fault (e.g. a software fault) within a given micro component can
lead to a violation of the micro component’s temporal interface specification
in a way that the communication between other micro components can be dis-
rupted. In order to prevent any temporal interference (e.g., delaying messages
of other micro components) or spatial interference (e.g., overwriting a message
produced by another micro component), a micro component is structured into
two architectural elements, the host and the TISS (see Figure 4.3).

The host performs the computations that are required to deliver the intended
service of a micro component. It can belong to different criticality levels, can
be developed by different suppliers, and is generally not assumed to be free of
design faults.

Contrary to the host, the TISS, which is a part of the TSS, is assumed to be
free of design faults and is certified to the highest criticality level of any host
within the SoC. It provides a stable and validated set of core platform services
to the host via the UNI, and acts as a guardian for the shared time-triggered
NoC by accessing it exclusively at a priori known points in time according to
the TDMA scheme. Therefore, each TISS incorporates its own dedicated time-
triggered message schedule—the Message Descriptor List (MEDL)—which is
written exclusively by the TNA and holds the information about the global
points in time of all message receptions and transmissions of the respective

33

4.2 The Component Model 4 The TTSoC Architecture

Trusted Interface Subsystem

Host

Front End

Application
Computer

(e.g., micro controller, special purpose hardware, FPGA)

UNI

Untrusted
Region

Trusted
Region

Figure 4.3: Structure of a Micro Component

micro component. The design of the TISS ensures, that the host cannot mod-
ify the MEDL and thus, cannot interfere with the correct operation of the
communication infrastructure.

The sum of all TISSs and the TNA, establish together a Fault Containment
Region (FCR) for the TSS. An FCR is a collection of components that operates
correctly regardless of any arbitrary logical or electrical fault outside the region
[LH94]. In return, the TSS establishes independent FCRs for each host, which
means that a host will operate correctly regardless of any fault in any of the
other hosts.

Structure of a Host

The host performs the computations that are required to deliver the intended
service of the micro component. It is structured into two architectural elements,
the application computer and the frontend. The application computer provides
the computational resources of the micro component and controls the micro
component’s local I/O interfaces (e.g., for sensors or actuators). It can be re-
alized as a general-purpose microcontroller, as a specialized hardware IP block
(e.g., an MPEG encoder), or as a Field Programmable Gate Array (FPGA). If
the application computer supports dynamic resource management, it will typ-
ically contain an execution environment, which communicates with the RMA
and switches between different operational modes or logical application func-
tions that should be executed on the micro component.

The frontend customizes the core platform services provided at UNI according

34

4 The TTSoC Architecture 4.2 The Component Model

to the requirements of the application computer and the application subsys-
tems that are intended to be executed on the micro component. In its simplest
version, the frontend is realized as a dual-ported memory providing a temporal
firewall interface [Kop97] to the application computer. If required, the fron-
tend can provide higher-level services, which are tailored to needs of specific
application domains. Examples are a fault tolerance service which performs
majority voting of replicated inputs for failure masking by TMR, or an en-
cryption and decryption service to facilitate secure communication with chip
external entities.

The decision to realize the frontend within the host, instead of incorporating
it into the TISS, was motivated by the following design drivers.

Openness and Configurability. If domain-specific services are exclusively
realized in a higher layer above the TISS (i.e., the frontend), the interface
of the TISS itself (i.e., the UNI) can be kept stable and uniform. The
uniformity of the UNI enables the instantiation of a single pre-validated
implementation of the TISS in multiple micro components, even if the mi-
cro components require different domain-specific services. Furthermore,
the concept of the frontend allows the addition and removal of domain-
specific services without changing the UNI or the TISS.

Since the UNI has an open interface specification, third party suppliers
are able to develop domain-specific services for the TTSoC architecture
by providing dedicated frontends for their application domain.

Fault Containment. Since third party suppliers should be unrestrictedly
allowed to provide additional domain-specific services, these services can
not always be assumed to be free of design faults. Therefore, non-
interference and fault containment with respect to domain-specific ser-
vices is a key issue for the TTSoC architecture. As mentioned above, a
host is an FCR for design faults. Since the frontend is part of the host,
a design fault in the frontend can only affect the local host but cannot
disrupt the correct computation or communication of any other micro
components. Thus, it is sufficient to certify a frontend according to the
criticality level of the micro components in which it will be employed.
This property is of major significance for the integration of application
subsystems with mixed criticality levels.

Interfaces of a Micro Component

A micro component incorporates the following four interfaces (see Figure 4.4).

35

4.2 The Component Model 4 The TTSoC Architecture

Linking Interface. A host provides its real-time services, and accesses the
real-time services of other hosts by the exchange of messages across its
Linking Interface (LIF). These messages have to be fully specified in
the value and the time domain in a LIF specification (see Section 5.2.2).
According to [KS03] a LIF specification consists of an operational specifi-
cation and a meta-level specification. While the operational specification
deals with the syntactic and temporal aspects of the messages exchanged
across the LIF, the meta-level specification describes the meaning of the
information contained in these messages.

The LIF of a host consists of multiple ports through which the host sends
and receives messages.

TISS CP. The TISS provides a configuration and planning interface (TISS
CP) through which the TNA configures TISS-internal parameters like the
time-triggered message schedule. To prevent any other micro component
than the TNA from accessing the TISS CP interface, the architecture
provides an encapsulated and protected channel from the TNA to the
CP interface of all TISSs. This encapsulated channel can be realized as a
separate physical channel, or by dedicated time slots on the main NoC.
To prevent that a design fault within the local host can interfere with the
temporal control of the time-triggered NoC, it is assured by design that
the host can not change the TISS-internal configuration written by the
TNA.

HOST CP. Hosts that support dynamic resource management, incorporate
a Host CP interface through which the parameters of the execution envi-
ronment of the host can be configured by the RMA. Examples for such
parameters are the application functionality that should be executed on
the host or performance parameters like clock frequency or power mode.

Local Interfaces. A host can incorporate local interfaces through which it
accesses peripherals (e.g. sensors, actuators, or gateways to other net-
works) in its environment.

4.2.2 Time-Triggered NoC

The time-triggered NoC interconnects the micro components within an SoC and
supports the predictable transport of periodic and sporadic messages. Further-
more, it performs clock synchronization in order to provide a global time base
for all micro components even if they reside in different clock domains.

36

4 The TTSoC Architecture 4.2 The Component Model

(Application Computer + Frontend)

Trusted Interface Subsystem

Local Interfaces to the Environment

State Port

Event Port

Host CP

TISS CP

Linking Interface

Figure 4.4: Interfaces of a Micro Component

1 sec bit 32 2-32 sec bit231 sec bit

Time granularity
about 0.23ns

Time horizon
about 136 years

Figure 4.5: Time Format of Time-Triggered NoC

Time Format

A digital time format can be characterized by three parameters: the granularity,
the horizon and the epoch. The granularity determines the minimum interval
between two adjacent ticks of a clock, i.e., the smallest interval that can be
measured with this time format. The reasonable granularity can be derived
from the achieved precision of the clock synchronization [KO87]. The horizon
determines the instant when the time will wrap around. The epoch determines
the instant when the measuring of time starts.

The time format of the time-triggered NoC is a binary time-format that is based
on the physical second (see Figure 4.5). Fractions of a second are represented
as 32 negative powers of two (down to about 230 picoseconds), and full seconds
are presented as 32 positive powers of two (up to about 136 years). Thus, each
instance can be represent by eight bytes. This time format is closely related to
the time-format of the Global Positioning System (GPS), which has the same
epoch and is also based on the physical second. In case there is no external
synchronization [KO87], the epoch starts with the power-up instant.

37

4.2 The Component Model 4 The TTSoC Architecture

Predictable Transport of Messages

According to the TDMA scheme, the available bandwidth of the network is di-
vided into conflict-free sending slots, i.e., the sending slots are allocated in way
that any contention within the NoC is prevented. Sending slots can be used for
the transmission of periodic time-triggered messages and for the transmission
of sporadic time-triggered messages. Contrary to periodic time-triggered mes-
sages, sporadic time-triggered messages are only sent—and thus energy is only
consumed—whenever the sender has to transmit a new event to the receiver.

The TTSoC architecture and existing TDMA-based SoC architectures like
Æthereal and the Sonics SiliconBackplane differ in the way how and for which
purpose, the TDMA scheme is employed. Common to all TDMA-based ar-
chitectures is, that the TDMA scheme is employed to avoid conflicts on the
shared interconnects and to provide encapsulation and timing guarantees for
the individual communication channels. The objective of Æthereal and the Son-
ics SiliconBackplane is to establish resource guarantees with respect to band-
width and latency. In contrast to these NoCs, the TTSoC architecture uses
the TDMA scheme to schedule periodic send instances of entire application-
level time-triggered messages. The supported periods are in the range from
a few nanoseconds up to milliseconds or seconds. This enables the temporal
alignment of the activities within the network and the activation of periodic
application tasks in order to reduce the end-to-end latency of the overall ap-
plication, which is vital for many types of real-time systems.

A

P1

B

P2

C

A
period

1 Start of control cycle
A Observation of sensor

input
2 Start of transmission of

sensor data
P1 Transmission of sensor

data
3 Start of processing of

control algorithm
B Processing of control

algorithm
4 Termination of processing
P2 Transmission of control

value
5 Start of output to

actuators
C Output operation at the

actuator
6 Termination of output

operation

1
2

3

4

5
4

3

2

6

5

Figure 4.6: Temporal Alignment in Control Loops

As an example, consider a control loop which is realized by three micro com-

38

4 The TTSoC Architecture 4.2 The Component Model

ponents, as depicted in Figure 4.6. Micro component A acquires the measured
value of the controlled variable via locally connected sensors, micro component
B calculates the value of the manipulated variable according to some kind of
control algorithm, and micro component C controls the corresponding actuators
according to the value of the manipulated variable. The periodic time-triggered
message P1 communicates the measured variable from micro component A to
micro component B, and the periodic time-triggered message P2 communicates
the value of the manipulated value from micro component B to micro compo-
nent C. In this example the micro components and the time-triggered messages
have the same period. The activities of the three micro components and the
two time-triggered messages are temporally aligned such that the end-to-end
latency (i.e., the time interval form the instant when the controlled variable is
observed to the instant when the value of the manipulated variable is applied to
the actuators) is minimized. In fact, the worst case end-to-end latency equals
the sum of the worst case execution times of all micro components and the
transmission time of the two messages. Such a real-time transaction is denoted
as a phase-aligned transaction [Kop97].

Contrary to the TTSoC architecture, existing SoC architectures do not sup-
port phase-aligned transactions, but only provide guaranteed bandwidth to
individual senders without supporting temporal alignment. In architectures
only supporting bandwidth guarantees without temporal alignment, one of the
following design decisions has to be made.

Over-Dimensioning of Communication Resources. One possible ap-
proach lets each core reserve the maximally required bandwidth through-
out the entire period of the control cycle to achieve the desired end-to-end
latency. This most likely results in a resource-inefficient design since all
bandwidth reservations would have to be satisfied all the time, even if
the individual cores will never use them at the same time.

Performance Degradation. Another approach is to reserve only that
amount of bandwidth that is needed to transmit a message within one
period (i.e., a sender will send a message always into the “next round”).
In this case, over-dimensioning of resources is avoided, but each sender of
a sequential transaction will add a delay of one period to the end-to-end
latency. For many real-time systems, this increased end-to-end latency
would lead to a degraded system performance (e.g., controller will have
a lower quality).

Periodic Reconfiguration. The third possibility, would be to emulate time-
triggered messages by periodically performing reconfiguration of the net-
work in order to free and re-allocate communication resources in each

39

4.2 The Component Model 4 The TTSoC Architecture

period. If these reconfiguration activities are visible to the system in-
tegrator, this approach would significantly contribute to the cognitive
complexity of the overall design.

Similarly, in a fault-tolerant system that masks failures by triple-modular re-
dundancy, a high bandwidth communication service is required for short inter-
vals to exchange and vote on the state data of the replicated channels. There-
fore, a real-time communication network should take consideration of these
pulsed communication requirements and provide appropriate services.

The TTSoC architecture implements time-triggered messages by a novel com-
munication primitive called pulsed data stream [Kop06]. A pulsed data stream
is a time-triggered periodic unidirectional data stream that transports data in
pulses with a defined length (one pulse corresponds to one message) from one
sender to n a priori identified receivers at a specified phase of every cycle of a
periodic control system.

A pulsed data stream consists of periodic pulses with a defined period, phase,
and duration. The design restricts the pulse periods of a pulsed data stream to
negative powers of two of the second, i.e., a period can be 1 second, 1/2 second,
1/4 second, 1/8 second, and so forth. This restriction is introduced in order
to reduce the complexity of the NoC, the computation of the time-triggered
schedule, and the dispatching of the periodic messages.

There are theoretically at most 32 different periods in the time-triggered NoC—
corresponding to the lower 32 bits in the time format. The period of a pulsed
data stream can thus be characterized by the corresponding bit of the binary
time format. We call this bit the period bit.

We define the start of a period as the periodic instant when all bits to the right
of the period bit of the corresponding period are zero. The pulse phase, i.e., the
offset of the start of the period to the start instant of the pulse, is given by the
bits to the right of the period bit.

A pulse consists of at least one fragment of variable size. The duration of a pulse
specifies the time between the start of the transmission of the first fragment
and the end of the transmission of the last fragment. Successive fragments of
a pulse data stream do not have to be transmitted in a dense sequence on the
NoC. This enables the concurrent transmission of multiple pulses—of different
pulsed data streams—over a single physical link by temporally interleaving the
fragments of the different pulses.

Figure 4.7 depicts the allocation of TDMA slots for an exemplary pulsed data
stream, which consists of two fragments. The free TDMA slots between the
two fragments can be used by fragments of other pulsed data streams.

40

4 The TTSoC Architecture 4.2 The Component Model

The fragmentation of pulses into fragments is not visible at the UNI. Thus,
the application subsystems in the hosts have to deal only with periodic mes-
sages that have a defined period, phase, length, and transmission time (the
transmission time of a message equals the duration of the associated pulse).

pulse period

pulse duration

activity inactivity activity inactivity

pulse phase

epoch of
global time

inactivity

fragm. 1 fragment 2
unused TDMA slot

TDMA slot reserved for
fragment 1
TDMA slot reserved for
fragment 2

Figure 4.7: Pulsed Data Stream

The proposed NoC works according to the cut-through principle, since the
timeliness, complexity, flexibility, and power requirements of an NoC can be
drastically reduced if the network does not require any memory for message
buffers. This means that no messages are stored within the network (e.g., in
switches). If message queuing is required, it is performed exclusively within a
micro component, using the micro component’s local memory.

4.2.3 Architectural Elements for Resource Management

A major focus of the TTSoC architecture is integrated resource management.
The integrated resource management infrastructure facilitates the dynamic al-
location of communication resources and power to the individual micro com-
ponents and the dynamic allocation of micro components to application sub-
systems.

With respect to resource management, the TTSoC architecture differentiates
between two fundamentally different types of application subsystems, safety-
critical and non safety-critical application subsystems. Safety-critical applica-
tion subsystems have to be certified according to the highest criticality classes
(e.g., Class A according to DO-178B). To facilitate validation, verification and
certification, the predominant design principles for safety-critical application
subsystems are simplicity and determinism. Therefore, also the correspond-
ing resource management mechanisms have to be simple and deterministic. In
many cases, safety-critical application subsystems will exclusively rely on stati-
cally assigned resources. In contrast, non safety-critical application subsystems
do not require certification to the highest criticality classes, and thus can be

41

4.2 The Component Model 4 The TTSoC Architecture

designed in a more flexible and resource-efficient way, even if this results in a
more complex and indeterministic design.

The TTSoC architecture provides for each of the two classes of application sub-
systems a dedicated architectural element for integrated resource management,
namely the TNA and the RMA [OKESH07]. The RMA computes the resource
allocations exclusively for the non safety-critical application subsystems, while
the TNA ensures that these resource allocations are not in conflict with the
resource allocations for the safety-critical application subsystems. As a part
of the TSS (see Figure 4.2), the TNA is assumed to be free of design faults.
This assumption is justified by the simple design of the TNA (checking the
proposed resource allocations of the RMA for conflicts with safety-critical ap-
plication subsystems is significantly simpler than the generation of the resource
allocations in the RMA). Contrary to the TNA, the RMA is not part of the
TSS. The TNA guarantees, that the RMA cannot interfere which the correct
operation of the safety-critical subsystems. Thus, the RMA does not have to be
certified to the highest criticality levels, and can incorporate arbitrary complex
designs and algorithms to facilitate resource-efficient allocation strategies for
non-safety-critical application subsystems.

Resource Management Authority (RMA). The RMA is responsible
for allocating the available resources to the non safety-critical application sub-
systems. We consider communication resources, computational resources, and
power as the integral resources that have to be managed. In a first step the
RMA collects resource allocation requests from the individual micro compo-
nents. Based on these requests, it calculates an update of the resource al-
locations exploiting application-specific knowledge (e.g., operational modes of
application subsystems and their resource requirements), as well as, system
knowledge (e.g., topology of the time-triggered NoC and computational re-
sources of the individual micro components).

The RMA directly accesses the Host CP interfaces of all non safety-critical mi-
cro components via the time-triggered NoC, but has no direct access to the con-
figuration parameters that affect resources that are shared with safety-critical
application subsystems. The RMA cannot directly update the time-triggered
message schedule in the TISSs via the TISS CP interfaces. For resources that
are shared with safety-critical subsystems, the RMA can only make reconfigu-
ration proposals to the TNA.

Trusted Network Authority (TNA). The TNA is a guardian for the
reconfiguration activities performed by the RMA. Therefore, the TNA checks
the proposed time-triggered message schedule for conflicts and ensures that

42

4 The TTSoC Architecture 4.2 The Component Model

resource reservations for safety critical application subsystems are not violated.
If an erroneous resource schedule is detected, the schedule is rejected and the
active schedule is retained. If the new schedule is correct, the TNA updates
the configuration accordingly. Since the TNA is part of the TSS it has direct
access to the CP interfaces of TISSs.

In addition to protecting static resource reservations for safety-critical applica-
tion subsystems, the TNA can incorporate certified reconfiguration strategies
to dynamically map the functionality of a safety critical application subsys-
tem to a spare micro component in case of a permanent fault of the micro
component hosting this functionality.

Thus, the requirement for 100% correctness of the hardware can be relaxated
which reduces the cost of manufactoring and testing of SoCs.

4.2.4 Gateways

The TTSoC architecture supports the integration of gateways for accessing
off-chip networks like TTP [KG94], FlexRay [Fle05], TTE [KAGS05], and
CAN [Bos91] in order to facilitate the interconnection of multiple SoCs for
the construction of distributed systems that are suitable for ultra-dependable
systems.

Ultra-dependable systems require a maximum failure rate of 10−9 critical fail-
ures per hour [SWH95], while component failure rates are usually in the order
of 10−5 to 10−6 [PMH98]. Thus, an ultra-dependable system has to be more
reliable than any one of its components. This can only be achieved by us-
ing fault tolerance mechanisms, based on distributed redundant components,
that ensure the continuous operation of the system even in the presence of a
bounded number of component failures.

If a time-triggered network like TTP, FlexRay, or TTE is used as an off-chip
network, the TDMA scheme of the time-triggered NoC can be synchronized
with the TDMA scheme of the off-chip network. The synchronized TDMA
schemes facilitate phase alignment of the relayed time-triggered messages on the
NoC and the corresponding messages on the time-triggered off-chip network.
Consequently, messages can be relayed within a bounded delay with minimum
jitter, which depends exclusively on the granularity of the global time base.

Furthermore, the alignment between the time-triggered messages on the NoC
and the periodic messages on the time-triggered off-chip network ensures that
replicated SoCs perceive each message reception within the same inactivity in-
terval of the global sparse time base [Kop92]. Thus, a consistent temporal order
can be established, which is significant for achieving replica determinism [Pol94]
as required for active redundancy based on exact voting.

43

4.2 The Component Model 4 The TTSoC Architecture

Gateways can provide the SoC with an externally synchronized time base
(e.g., GPS), which facilitates the temporal coordination of activities spanning
multiple SoCs, like the coordination of actuators that are attached to different
SoCs.

4.2.5 Architectural Support for Diagnosis

The TTSoC architecture incorporates a dedicated architectural element for
diagnosis, the DU. Diagnosis is done in three distinct phases: failure/error
detection, dissemination, and analysis.

Failure Detection. All structural elements of the SoC (i.e., the TISSs,
the hosts, the TNA and the DU) perform failure detection in order to indicate
faulty and abnormal behavior of micro components.

The TISS incorporates application-independent mechanisms in order to detect
failures of the attached host. A watchdog determines whether the host has
crashed, and another detection mechanism recognizes violations of message
inter-arrival and service times in case of sporadic message transmissions.

The host performs application-specific failure detection. These application-
specific failure detection mechanisms are not defined by the architecture, e.g., a
host can incorporate a dedicated failure detection mechanism for its local sen-
sors or actuators.

The RMA checks the resource requests from the micro components against
predefined quota. Each invalid request is recorded since it might indicate a
failure within the requesting micro component.

The DU performs failure detection by means of message classification. For this
purpose, the messages of all micro components that have to be diagnosed, are
routed to the DU which executes assertions on the syntactic, temporal, and
semantic correctness of messages according to the DSoS message classification
[GIJ+02]. Thus, the DU performs failure detection at the LIF of the micro
components.

Dissemination. Detected failures are reported to the DU via so called
failure indication messages. A failure indication message includes information
concerning the type of the occurred failure (e.g., crash failure of a host, illegal
resource allocation requests), the time of detection w.r.t. to the global time
base, and the location within the SoC (i.e., the micro component). For the
purpose of dissemination, a dedicated time-triggered message is allocated to
each architectural element that is capable of delivering failure indications.

44

4 The TTSoC Architecture 4.3 Fault Tolerance

Analysis. Based on the gathered failure information, the DU establishes a
holistic system view and executes Out-of-Norm Assertions (ONAs) to correlate
the different failure indication messages in space and time. Correlation in the
time domain is possible due to the time stamp (w.r.t. the global time base)
that is assigned to each failure detection. Correlation in the space domain
exploits the inherent fault isolation mechanisms of the TTSoC architecture
which prevents error propagation between micro components. Furthermore, the
DU monitors the repeated occurrence of failure indications for the same micro
component in order discriminate permanent failures from transient failures.

4.3 Fault Tolerance

The TTSoC architecture employs micro components in TMR configurations in
order to tolerate transient faults. TMR is an extension to the concept of triple
redundancy which was originally introduced by the computer pioneer John von
Neumann [vN56]. The concept of triple redundancy is depicted in Figure 4.8.
The three boxes labeled M represent identical modules containing any kind of
digital equipment (e.g., complete computers or less complex units like adders
or single gates). Each of these modules has a single output and is connected
to a majority organ labeled V. The majority organ accepts the input from the
three sources and delivers the majority opinion as an output. In this thesis we
will call the majority organ a voter.

Figure 4.8: Triple Redundancy

Assuming that the three modules fail independently, and the voter does not
fail, the reliability of the redundant system R can be described as a function
of the reliability of the single modules RM [LV62]. The reliability R is equal to
the sum of the probability that none of the modules fails, and the probability
that exactly one of the modules fails. Thus,

R = R3
M + 3R2

M(1−RM) = 3R2
M − 2R3

M (4.1)

The concept of Triple Modular Redundancy (TMR) differs from the original
triple redundancy concept by employing three identical voters instead of one

45

4.3 Fault Tolerance 4 The TTSoC Architecture

single voter (see Figure 4.9). As long as we assume that the voters are perfect
and do not fail, both concepts result in the same reliability of the redundant
system [LV62]. When considering the fact, that a voter can fail like any other
component in the system, the TMR concept can benefit from the redundant
voters.

2

2

2

1

1

1

3

3

3

Figure 4.9: Triple Modular Redundancy

We consider the voter at the input of a module and the module itself as a self-
contained unit, indicated by the dotted lines in Figure 4.9, which receives the
replicated inputs and performs voting by itself without relying on an external
voter. We call this behavior incoming voting and such a self-contained unit a
replica. The reliability RIV of a replica with incoming voting is the product of
the reliability of the voter RV and the contained module RM . Thus,

RIV = RV RM (4.2)

We denote three replicas in a TMR configuration an FTU. Since a replica
is a self-contained unit with a single reliability value including the reliability
of the internal voter and the internal functional module, the same function
used for calculating the reliability in the concept of triple redundancy can be
employed for calculating the reliability of an FTU in the TMR concept. Thus,
the reliability of an FTU is determined by:

RFTU = 3R2
IV − 2R3

IV

= 3(RV RM)2 − 2(RV RM)3 (4.3)

With respect to voting, one can differentiate between two kinds of strategies,
exact voting and inexact voting [Kop97].

Exact Voting. Exact voting means that the results of the three replicas
are compared bit-by-bit without considering the semantics of the results.
Two results are considered equal if they have exactly the same bit pattern.
Therefore, exact voting is a generic and application independent concept,
which requires only minimal overhead when realized in hardware.

46

4 The TTSoC Architecture 4.3 Fault Tolerance

Inexact Voting. In inexact voting, two results are considered equal if they
lie within a specific interval determined by the application. In order to
reason about the “sameness” of the two results, their bit patterns have to
be interpreted on the application level. For example, the distance between
two composite RGB values can only be calculated, if the structure of the
composite value is known. Furthermore, it can be very difficult to define
a correctness interval for realistic applications.

Due to the mentioned advantages, exact voting should be preferred over inexact
voting. The underlying assumption of exact voting is that the replicas show
replica-deterministic behavior [Pol96]. Replica determinism requires that all
correct replicas produce exactly the same output messages that are at most an
interval of d time units apart, as seen by an omniscient outside observer. In a
time-triggered system, the replicas are considered to be replica-deterministic if
they produce the same output messages at the same global ticks of their local
clock [Kop97].

A major source for replica non-determinism can lie in the design and the
implementation of the replica itself. Causes for indeterministic behavior at
the output of a replica can be non-deterministic program constructs, dynamic
scheduling decisions, timeouts, and race conditions in combination with the
unavoidable drift of the internal oscillator driving a replica’s control signals.

Similarly, replica determinism can be lost, if the replicas observe their input
messages in an inconsistent order. Consider the example in Figure 4.10 which
depicts the time line of the execution of three replicas (R1, R2, and R3) each
receiving three different messages (a, b, and c) from three different senders. We
assume that the replicas are event-triggered and process the incoming messages
immediately upon reception. We further assume that the sender of Message a
has a short transmission latency to Replica R1, a medium latency to R2, and
a long latency to R3, that the sender of Message b has a short transmission
latency to Replica R3, a medium latency to R1 and a long latency to R2, and
that the sender of Message c has a short transmission latency to Replica R2, a
medium latency to R3, and a long latency to R1. Due to the different transmis-
sion latencies, the replicas do not process the messages in a consistent order.
Replica R1 observes the order a, b, c, while R2 observes c, a, b, and R3 observes
b, c, a. In general, the operations that are performed upon the reception of a
message are not commutative.

Thus, an inconsistent reception order can lead to an inconsistent state in the
replicas. To avoid such a situation, consistent delivery order has to be guaran-
teed by the architecture for all messages that are received by the replicas of an
FTU.

47

4.3 Fault Tolerance 4 The TTSoC Architecture

Figure 4.10: Inconsistent Message Order

A TMR-based FTU is a fail-operational component, which means that it con-
tinues to deliver a correct service despite the failure of a single replica. Nev-
ertheless, the reliability of an FTU is reduced, if a failed replica remains in an
erroneous state. In fact, the reliability of a TMR-based FTU in which one of
the three replicas has already failed is actually lower than the reliability of a
single replica since the FTU requires both remaining replicas to stay opera-
tional. In order to obtain the original reliability of an FTU after the failure of
a replica, one of the following actions can be taken.

• In case of a transient fault where the hardware is still operational, a valid
state in the replica can be reestablished by adequate recovery mecha-
nisms.

• In case of a permanent hardware fault, the hardware of the replica can
be repaired or replaced during the next scheduled maintenance service.

• In case of a permanent hardware fault where a repair action cannot be
taken due to temporal or physical constraints (e.g., a faulty IP core within
a chip cannot be repaired), the role of the failed replica can be taken over
by an equivalent spare component.

In the following, we will explain how the TTSoC architecture realizes TMR-
based FTUs at the on-chip and off-chip level. This description will focus on
the following categories.

• Encapsulation. Common mode failures have to be avoided by encap-
sulation mechanisms that establish a dedicated FCR for each replica.
Without encapsulation it cannot be guaranteed that the replicas fail in-
dependently, and thus the equations 4.1 and 4.3 are not valid. If a
shared communication medium is employed, error containment mecha-
nisms (e.g., the bus guardian in TTP [KG94]) are needed to ensure that a
fault in a replica cannot disrupt the communication of the other replicas.

48

4 The TTSoC Architecture 4.3 Fault Tolerance

• Replica Determinism. has to be supported by the architecture to ensure
that the replicas of an FTU observe the received messages in a consistent
order.

• Temporal Predictability. The communication service has to be temporally
predictable in order to guarantee that the resulting system can meet its
deadlines even in peak-load scenarios.

• Recovery and Repair. The architecture should provide adequate recovery
and repair mechanisms in order to reestablish the original reliability of
an FTU after the failure of a replica.

4.3.1 On-chip TMR

The purpose of on-chip TMR is to increase the reliability of services residing on
a single chip.1 In the case of on-chip TMR, FTUs are constructed by mapping
the replicas to individual hosts of micro components residing in the same SoC
and communicating via the time-triggered NoC (see Figure 4.11). The following
paragraphs describe how the required architectural properties for TMR are met
with respect to on-chip TMR.

Host

Time-Triggered NoC

Host

Host

Host

Host

Host

Host

Host

Host

FTU of Service 1 FTU of Service 2 FTU of Service 3

Figure 4.11: On-Chip TMR

Encapsulation. The FCRs for physical faults are the individual hosts and
the TSS which consists of the NoC, the TISSs, and the TNA. Contrary to an
operating system that provides dedicated FCRs for multiple tasks on a single
processor by complex memory protection mechanisms and preemptive schedul-
ing strategies, the TTSoC architecture natively provides fault containment by
the physical separation of the individual hosts and the TSS.

The independence of the host-FCRs is guaranteed by the fact that hosts can
interact with each other exclusively via the exchange of messages over the NoC.
There are no other hidden channels (e.g., shared memory) through which a host
can interfere with any other host.

1For ultra-high reliability, however, off-chip TMR has to be employed (see Section 4.3.2).

49

4.3 Fault Tolerance 4 The TTSoC Architecture

The independence of the TSS-FCR is guaranteed by the fact that hosts have
no possibility to directly interfere with the operation of the TSS. The TSS
transports messages from one host to another host according to a predefined
time-triggered message schedule. This schedule can be exclusively configured
by the TNA which is itself part of the TSS. Thus, it is guaranteed that a faulty
host cannot disrupt the communication among other hosts.

Contrary to fault-tolerant off-chip networks like TTP [KG94]—which are parti-
tioned into multiple FCRs—the TSS is a single atomic FCR. This means that
a failure of one of its elements (i.e., the NoC, the TNA, or one of the TISSs)
can potentially cause a failure of the entire chip. Since in a typical SoC the die
area consumed by the TSS is expected to be relatively small compared to the
area consumed by the rest of the chip, we expect the failure rate of the TSS to
be relatively low. Therefore, for on-chip TMR we assume that the TSS does
not fail during the mission time of the system.

To conclude, the underlying assumptions for on-chip TMR with respect to
physical faults are that hosts fail independently and that the TSS does not
fail at all during the system’s mission time. Considering the fact that a single
chip is susceptible to common mode failures caused by disruption of the single
power supply, particle induced multi-bit errors, extensive EMI disturbances, or
physical damage the assumption coverage for these assumptions will not satisfy
the requirements for ultra-high dependable systems. Nevertheless, for many
applications with less stringent dependability requirements, on-chip TMR can
be a cost-effective alternative for increasing the reliability of systems realized
on a single SoC. Furthermore, in safety-critical systems on-chip TMR can be
used in conjunction with off-chip TMR to further improve reliability.

With respect to design faults, a host constitutes an FCR as long as no piece of
the design is used in any other host. If pieces of a design (e.g., library functions
or IP cores) are used in a set of hosts, the entire set has to be considered as a
single atomic FCR. The TSS is assumed to be free of design faults. It has to
be certified at least to the same criticality level as the most critical host in the
entire SoC.

Replica Determinism. The TTSoC architecture supports a variety of
different network topologies which range from simple shared buses to complex
mesh structures featuring multiple channels and concurrent message transfer.
In advanced topologies the paths between different sender and receiver pairs
can have different length (i.e., they can include a different number of hops),
and a message on a short path can be received before a message that has been
sent earlier, but over a longer path. Furthermore, multi-cast communication
can be temporally asymmetric since also the paths from a single sender to

50

4 The TTSoC Architecture 4.3 Fault Tolerance

the individual receivers may have different length. Therefore, messages are
potentially received in an inconsistent order as depicted in Figure 4.10.

In the TTSoC architecture, replica determinism is established by exploiting
the global time base in conjunction with time-triggered communication and
computational schedules. Computational activities are triggered after the last
message of a set of input messages has been received by all replicas of an FTU.
This instant is a priori known due to the predefined time-triggered schedules.
Thus, each replica wakes up at the same global tick and operates on the same
set of input messages. The messages in this set are treated as if they had been
received simultaneously, which allows neglecting the actual reception order.

Temporal Predictability. The predefined message schedule of the NoC
assures that each micro component can use its guaranteed reserved bandwidth
independently of the communication activities of the other micro components.
Furthermore, the concept of a pulsed data stream supports the reservation of a
defined bandwidth within a periodically recurring interval, which fits perfectly
to TMR in a time-triggered system. A replica of a typical FTU will periodically
read the replicated inputs, perform incoming voting, do the application specific
processing on the voted input data, and send its output value to the next FTU.

Real-Time

Figure 4.12: Voting on a Circular Time Model

The reactiveness of the overall system can be optimized if the execution of the
FTUs and the transmission of the messages are temporally aligned. Figure 4.12
depicts the execution of three FTUs in the periodic time model. The individual
replicas of an FTU can execute in parallel since they reside on dedicated micro
components. The pulses of the pulsed data streams are perfectly aligned with
the execution of the replicas, and thus increase the reactiveness of the system
by minimizing the end-to-end latency from the first to the last FTU in the
chain.

51

4.3 Fault Tolerance 4 The TTSoC Architecture

In addition to minimizing the end-to-end latency, the concept of a pulsed data
stream increases the resource efficiency since the communication bandwidth is
only reserved for those intervals in which its actually needed.

Recovery and Reintegration. For on-chip TMR, a dedicated component,
the Replica Coordination Unit (RCU), coordinates the recovery actions of an
FTU. The purpose of the RCU is the detection of host failures caused by
transient faults and the subsequent reseting of the faulty host. The RCU
detects host failures by comparing the redundant computational results in TMR
configurations. To accomplish that, the messages of all replicas of an FTU are
routed to the RCU where they are compared to each other. If one replica
deviates from the other two replicas, the RCU sends a restart-request message
to the TNA reporting the host on which the erroneous replica resides. Since
the TNA has direct access to the TISSs, and the TISSs control the reset lines
of the attached hosts, the TNA can restart the corresponding host.

After the restart of a replica, the replica has to build up a valid internal state
that is in perfect synchronicity with the state in the other replicas of the FTU.
To facilitate state recovery, each replica periodically sends out its internal state
via a history state message. With the same period, each replica votes over the
three history state messages (the own history state message and messages of
the other two replicas) and overwrites its internal state with the voted result
at the same global tick of its local clock. We call these periodic global ticks
the reintegration points of an FTU. Since the state of a correct replica after
a reintegration point is exclusively determined by its inputs (data inputs plus
the history state messages), a replica can be considered as stateless at the
reintegration point. Therefore, a restarted component has simply to wait for
the next reintegration point to reach a consistent state.

If the replica has failed due to a transient fault, a restart of the corresponding
host will be sufficient to reintegrate the replica. The RCU can make use of
threshold schemes such as the α-count [BCDGG00] in order to detect both,
permanent and intermittent faults. For this purpose, the RCU holds an failure
counter for each replica, which is increased each time the replica deviates from
the other replicas in an FCR, and which is decreased as time goes on. If
the counter reaches a defined upper threshold, the host on which the replica
resides is considered to be permanent faulty. In this case, the RCU can send
a reconfiguration request to the TNA to remove the faulty host from the FTU
and replace it with a spare host.

52

4 The TTSoC Architecture 4.3 Fault Tolerance

4.3.2 Off-chip TMR

To achieve ultra-high dependability, the TTSoC architecture supports the con-
struction of FTUs in which the individual replicas are mapped on the hosts
of distinct SoC components that are interconnected by a fault-tolerant off-
chip network like TTP, FlexRay, or Time-triggered Ethernet (see Figure 4.13).
Thus, the SoC components form network nodes of a fault tolerant distributed
system. Since each replica of an FTU is located on a distinct network node,
an FTU will still stay operational despite the failure of an entire node. We
will now show how the required architectural properties for TMR are met with
respect to off-chip TMR.

SoC

Time-Triggered off-Chip Network

SoC

SoC

SoC

SoC

SoC

SoC

SoC

SoC

FTU of Service 1 FTU of Service 2 FTU of Service 3

Figure 4.13: Off-Chip TMR

Encapsulation. In ultra-high dependable systems common mode failures
have to be considered that can cause an entire chip to fail. Examples are
disturbances in the power supply, particle induced multi-bit errors, extensive
EMI disturbances, or physical damage of the chip. Thus, single hosts in an
SoC can not be regarded as FCRs.

For off-chip TMR we consider an entire SoC as an FCR for physical faults.
The coverage of the assumption that the nodes in a distributed system fail
independently is much higher than for hosts within a single SoC. Contrary to
hosts in an SoC, the network nodes of a distributed system do neither reside
on the same die, nor in the same package. They can be physically separated
over large distances (e.g., on the opposite sides of a car or an airplane), and
can have individual power supplies.

The TTSoC architecture requires that faulty nodes cannot interfere with the
correct operation of the off-chip network. Furthermore, the off-chip network
has to be able to tolerate internal faults in order to meet the requirements
for ultra-high dependability. Therefore, it has to be partitioned into multiple
FCRs, which are integrated in a way that the network can deliver a correct
communication service despite the failure of a single internal FCR.

An example of an ultra-high dependable network that meets these requirements
is TTP [KG94]. TTP provides error containment via so-called bus guardians

53

4.3 Fault Tolerance 4 The TTSoC Architecture

which electronically connect each node only during its specified time slot to
the shared communication bus. Thus, a node which is violating its temporal
specification cannot disrupt the communication among the other nodes. Fur-
thermore, TTP was constructed to tolerate any arbitrary single fault within
the network itself, by providing two redundant communication channels (with
dedicated bus guardians) forming independent FCRs.

As for on-chip TMR, we consider a host as an FCR for design faults. When
pieces of a design are used for a set of hosts, the entire set has to be considered
as a single atomic FCR. The off-chip network is considered to be free of design
faults (e.g., TTP is certified for the usage in ultra-high dependable systems).

Replica Determinism. As described in Section 4.3.1, replica determinism
in the TTSoC architecture is based on a consistent view of the global time.
Time-triggered networks like FlexRay, TTP, or TTE provide fault-tolerant
clock synchronization to establish a system-wide global time. To facilitate the
temporal coordination of hosts residing on different nodes, the chip-wide global
time in each SoC is synchronized to the system-wide global time established by
the off-chip network.

Temporal Predictability. Temporal predictability is provided by the
combination of the on-chip and the off-chip time-triggered network. Due to the
fact that the time in the NoC is synchronized to the system-wide time of the
off-chip network, the message schedule of both networks can be aligned which
makes the exchange of messages at the on-chip/off-chip gateways temporally
predictable.

Recovery and Reintegration. For off-chip TMR there is no central unit
that can trigger a recovery action of replicas that are distributed across multiple
SoCs. The restart or the migration of a replica can be exclusively triggered by
the RCU within the SoC on which the replica resides. The output messages
off all three replicas of a distributed FTU have to be routed to the three RCUs
of the SoCs where the replicas reside, in order to enable recovery for off-chip
TMR. By comparing the output messages, a RCU can decide whether the local
replica functions correctly or whether it is affected by a transient or permanent
fault. In case of transient fault the replica can be restarted, and in case of a
permanent fault of the corresponding host, the replica can be migrated to a
spare host on the same SoC.

Thus, from a global point of view, an SoC in a distributed system is a self-
checking and self-healing component in which recovery actions are exclusively
triggered by the local RCU. The limitation of this approach is that the recovery

54

4 The TTSoC Architecture 4.3 Fault Tolerance

actions can only be performed as long as the TSS in the SoC is still operational.
The advantage is that a central coordination unit for recovery is not required.

4.3.3 On-chip vs. Off-chip TMR

As described in the previous sections, both options—on-chip and off-chip
TMR—satisfy the requirements for TMR with exact voting and temporal pre-
dictability. Obvious differences between the two proposed solutions can be
observed with respect to performance and end-to-end latency. While on-chip
networks can reach bandwidths over 100 GB/s and can have latencies as short
as several clock cycles, off-chip networks provide bandwidths in the range of
10 Mbit/s up to 1 Gbit/s with much higher latencies.

Another major difference between the two approaches is the degree of encapsu-
lation. Equation 4.1 and 4.3 assume that the individual replicas fail indepen-
dently. With respect to the communication channels, the equations are only
valid under one of the following assumptions.

• Each outgoing channel is part of the fault-containment region of the
replica that drives the channel, and the reliability value of the replica (RM

resp. RIV) includes the reliability of all of its output channels (i.e. chan-
nel failures are mapped to the sender, and channels of different senders
fail independently).

• Each incoming channel is part of the fault-containment region of the
replica that listens on the channel, and the reliability value of the replica
(RM resp. RIV) includes the reliability of its input channels (i.e. channel
failures are mapped to the receiver, and channels of different receivers fail
independently).

• The communication channels do not fail at all.

In other words, these assumptions require the set of output channels (resp.
input channels) of a single sender (resp. receiver) to fail either independently
of all other channels or not at all.

For off-chip TMR systems, which are based on a fault-tolerant protocols like
TTP, it is known that the coverage of these assumptions meets the requirements
for ultra-high dependable systems.

With respect to on-chip TMR the assumption coverage is lower, as the micro
components reside on the same die and as the NoC contains no fault toler-
ance mechanisms against internal faults. Still, for many applications with less
stringent dependability requirements on-chip TMR can be a cost-effective al-
ternative.

55

4.3 Fault Tolerance 4 The TTSoC Architecture

56

Tis but thy name that is my enemy.

Thou art thyself, though not a Montague.

What’s Montague? it is nor hand, nor foot,

Nor arm, nor face, nor any other part

Belonging to a man. O, be some other name!

What’s in a name? that which we call a rose

By any other name would smell as sweet

Shakespeare’s Romeo and Juliet

Chapter 5

Naming

Naming is an important aspect in all kinds of computer systems, especially in
distributed systems. Nevertheless, this issue is frequently overlooked during the
system design phase, which leads to designs with inappropriate high cognitive
complexity and negative properties with respect to composability, scalability,
and maintainability. This chapter starts by focusing on the most important
concepts that have to be considered when designing a naming scheme for a
computer system. Subsequent sections deal with the issue of naming in the
TTSoC architecture.

5.1 Basic Concepts

A name is used to refer to an individual entity within a given context. An entity
can be a human, a group of people, a species, a thing, or even an abstract idea,
a category or a concept. The process of assigning a name to a given entity is
called naming. A naming convention or naming scheme prescribes how to name
entities and describes how to refer to named entities [SSA98]. For instance, the
archetypical name of a male citizen in the naming convention of the ancient
Rome consisted of three parts (tria nomina): praenomen (given name), nomen
gentile or gentilicium (name of the gens or clan) and cognomen (name of a
family line within the gens) [Wik07].

The first question to be considered when designing a naming scheme for a
distributed system is the following: “What are the entities that have to be
named and what is the appropriate context?” 1 The answer to this question
is not trivial, since the fact whether something is regarded as an entity or as
a context depends on the considered level of abstraction. The next key issue

1quote taken from a discussion with Hermann Kopetz

57

5.1 Basic Concepts 5 Naming

is to choose an appropriate name type for the entities at a given abstraction
level. The following subsections will focus on important types of names and on
the relevant properties that a name can have in a distributed system.

5.1.1 Identifiers and Addresses

A distributed system comprises numerous different entities like hosts, clusters,
files, memory regions, processes, network connections, and so on. In order to
operate on an entity, it is necessary to access it, via an access point which is just
another kind of entity in a distributed system [Tv03]. The name of an access
point is called an address of the entity to which the access point belongs.

An entity can have more than one access point, and thus more than one address.
For example, an email account can be viewed as an access point of a person,
and the corresponding email address as an address of that person. Of course,
a person can have multiple accounts for different purposes (e.g., business and
private), and can thus have multiple addresses. The access points and thus
the addresses of an entity can change in the course of time (e.g. when people
change their job they usually change their business email address).

Another type of name that deserves special attention is an identifier or object
identifier (oid). An oid is used to distinguish an object from all other ob-
jects within a given scope. According to [WdJ92] an oid has to adhere to the
following two principles:

Uniqueness Principle: “In any possible state of the world, each relevant
object has one and only one oid, which differs from the oid of any other
relevant object.”

Persistence Principle: “Each relevant object has the same oid across all
relevant states of the world. That is, the oid of an object remains invariant
under any change of state of the object.”

The first principle allows us to pick out an object among other objects even if all
objects are in the same state (i.e., even if the objects would be indistinguishable
by looking only at their state), since it prevents that any two objects have the
same oid at the same time. Furthermore, it facilitates tests for object equality
and object difference by establishing a one-to-one relation between objects and
oids (i.e., it assures that an object is referred to by exactly one identifier and
thus prevents synonyms). If two oids are equal, they refer to the same object
and if they are different they refer to distinct objects.

The second principle guarantees that the equality and difference of oids does
not change in the course of time. If we would allow changes in the oids of

58

5 Naming 5.1 Basic Concepts

objects, the equality of oids—that have been observed at different points in
time—would not necessarily imply that the identified object are identical, nor
would different oids imply that the identified objects are distinct.

These two principles might appear obvious, but if we take a closer look we
will see that many naming schemes violate at least one of them and therefore
cannot be used for oids. In the following we mention two negative examples of
non-oids.

• Mobile phone numbers do not qualify as oids for persons. The unique-
ness principle is violated since a single person can have multiple phone
numbers and a single mobile phone can be shared by multiple people.
The persistence principle is violated since a person can change or lose
its phone number by changing or canceling the contract with the mo-
bile phone provider. Even worse, mobile phone numbers are reused by
the providers after a contract has been canceled. (Usually the provider
locks phone numbers only for a defined period after a contract has been
canceled.)

• Employee numbers are very special with respect to oids. They can serve as
oids as long as they are only used to identify employee roles (e.g., produc-
tion officer) within a company [WdJ95]. If we would like to use employee
numbers to identify the persons that play a certain role in a company, we
would have to enforce the following conditions. First, nobody can have
two jobs with different employee numbers in the same company. And sec-
ond, whenever a person is re-employed by the same company, the same
employee number is given to that person.

5.1.2 Properties of Names

After having elaborated the fundamental differences between addressing and
identification, we will now focus on general properties of names and point out
how these can either illuminate or confuse system design.

Absolute vs. Relative Names. Names are organized in namespaces.
An appropriate representation of a namespace is a labeled, directed graph. We
call a namespace that is described by a graph with a depth > 1 a hierarchical
namespace, otherwise the namespace is called flat.

A node in the graph that has only outgoing edges and no incoming edges is
called a root node [Tv03]. A name of an entity can be represented by the
sequence of labels of the nodes in a path of this graph. A name is called
absolute or fully-qualified, if the first node in the path is a root node, otherwise

59

5.1 Basic Concepts 5 Naming

it is called a relative. Absolute names denote the same entity in the entire
namespace, whereas relative names can have a different meaning in different
parts of the namespace. Absolute names are often used when an external
reference to a given entity is needed.

The main advantage of a relative name is that they require less centralization
with respect to the naming authority (we use the term naming authority to
denote the part of a system or the group of people that are in charge of assign-
ing names to the entities within a given system). The exclusive use of absolute
names requires a centralized naming authority, allocating the names for the
entire naming graph [OD83]. Relative names permit decentralizing naming au-
thorities, possibly one for each directory node. The ability to use decentralized
naming authorities is a key requirement for every composable architecture.

First of all, it facilitates complexity management by supporting a divide-and-
conquer strategy since the names within a given application subsystem can be
assigned independently of the names within other subsystems. This property
is advantageous for the reuse of subsystems and for the independent develop-
ment of subsystems by different development teams or third party suppliers.
Furthermore, relative names are insensitive to reorganization of the system ei-
ther during runtime to support dynamic resource management or during the
development to incorporate late changes in the design.

Pure vs. Impure Names. Regarding the type of information that is
contained in a name one can distinguish pure and impure names. According to
[Nee02] “a pure name is nothing but a bit-pattern that is an identifier, and is
only used for comparing for identity with other such bit-patterns.” This means
that a pure name does not contain any information concerning the object it
identifies. In contrast, an impure name yields information about the identified
object by examination of the name itself.

An example of an impure name is the Internet domain name of our university:
www.tuwien.ac.at. By examining the name, we can find out that the domain is
located in Austria and that it is an academic domain. Furthermore, the word
tuwien suggests that the domain name represents the University of Technology,
Vienna.

Since impure names contain information concerning the objects they identify,
they carry commitments that have to be honored in order to retain the validity
of the names. Thus, every information that is included within a name becomes
an invariant that the named objected must fulfill during its lifetime [SSA98].

Pure names do not commit one to anything and thus, the name remains valid
regardless of changes in the state of the identified object. On the other hand,

60

5 Naming 5.2 Naming in the TTSoC Architecture

impure names allow optimizations since one can get the included information
immediately without extra stages of indirection.

Location Dependent vs. Location Independent Names. As mentioned
above, impure names contain information about the objects to which they refer.
A special case of an impure name is a name that includes information about
the physical address of the referred object. Such a name is called location
dependent. If a name of an object is independent of the object’s address, it is
called location independent [Tv03].

Location independent names stay valid if the named entities are relocated (e.g.,
in the case of reconfiguration), whereas location dependent names would be-
come invalid. Therefore, location dependent names should only be used for
objects that will not change their physical address in their entire lifetime.

5.2 Naming in the TTSoC Architecture

The TTSoC architecture differentiates between the platform-independent struc-
ture and the physical structure of an embedded distributed system. The
platform-independent structure abstracts from the physical platform and de-
scribes the system from a logical point of view. It consists of the behavioral
specifications of the logical entities within the system and describes the in-
teraction patterns among these entities, including temporal constraints. The
physical structure describes the system from the physical point of view, speci-
fying the physical components and how these components are interconnected.

With respect to naming, these two aspects of a system pose different and con-
tradicting requirements (e.g., logical entities are inherently location indepen-
dent, while a physical core is strictly bound to a specific chip). Therefore, the
TTSoC architecture provides two dedicated naming conventions, one for the
platform-independent structure and one for the physical system structure.

The differentiation between these two structures is a key aspect for model-
based development where a platform-independent system model is mapped on
a specific hardware platform during the design phase, and for dynamic resource
management where the allocation of physical resources (e.g., communication
and computational resources) to logical system functions is adapted during
runtime.

61

5.2 Naming in the TTSoC Architecture 5 Naming

5.2.1 The Model-Based Development Process

This section gives a short overview of the model-based development process
employed in the TTSoC architecture. The central concept in the development
process is the Fully-Specified Interface Model (FIM) (see Figure 5.1). The FIM
describes the platform-independent structure of the distributed system. It in-
cludes the full syntactic and semantic specification of the subsystem’s interfaces
and their temporal constraints, but abstracts from the mapping of subsystems
to the physical resources of the platform. Thus, it abstracts also from the
concrete hardware on which the subsystems will be executed.

Figure 5.1: Model-Based Development Process

The Abstract Application Model (AAM) is a more abstract system representa-
tion than the FIM. In the AAM the interfaces of the individual subsystems
are only specified on an abstract level, and thus, some design decisions are
still left open (e.g., the selection of an adequate encryption method to achieve
the desired security properties of a communication channel). The AAM is not
specific to the TTSoC architecture and can exist in multiple variants for differ-
ent application domains (e.g., a developer of a consumer electronic device will
most likely use a different kind of AAM than a developer of a safety-critical
real-time system). Since the AAM is not specific to the TTSoC architecture,
the definition of an AAM is not in the focus of this thesis.

The Physical Allocation Model (PAM) is a more concrete system representation
than the FIM. It describes the mapping of the FIM to the physical system
structure. Thus, the definition of the individual subsystems in the PAM is
specific to the concrete hardware on which they are executed. The semantic
and syntactic interface specification of the subsystems in the PAM are exactly
the same as in the FIM. The temporal properties of the subsystem’s interfaces

62

5 Naming 5.2 Naming in the TTSoC Architecture

in the PAM are fully specified and satisfy the temporal constraints defined in
the FIM.

Table 5.1 summarizes the properties of the models that are involved in the
model-based development approach.

Model Semantic and
Syntactic Properties

Physical
Location

Temporal
Properties

AAM partly specified unspecified constraints
FIM fully specified unspecified refined constraints
PAM fully specified fully specified fully specified

Table 5.1: Overview of the System Representations

Since the FIM and the AAM abstract from the concrete hardware platform,
we regard them as a Platform Independent Models (PIMs) as defined by the
Model Driven Architecture (MDA) [OMG03]. The MDA defines platform inde-
pendence as a “quality, which a model may exhibit. This is the quality that the
model is independent of the features of a platform of any particular type. Like
most qualities, platform independence is a matter of degree. ... A platform
independent view shows that parts of the complete specification that does not
change from one platform to another. ... A platform independent model is a
view of a system from the platform independent viewpoint.” [OMG03]

According to the definition of the MDA, the PAM is a Platform Specific Model
(PSM) since it is linked to a specific technological platform.

The following sections describe the platform-independent structure (repre-
sented in the FIM) and the physical structure of a distributed system in the
TTSoC architecture. Furthermore, it describes how the two structures can be
mapped to each other in the PAM. At the end of this chapter, the proper-
ties of the proposed naming scheme are evaluated with respect to the concepts
introduced in Section 5.1.

5.2.2 Platform-Independent System Structure

The platform-independent system structure in the TTSoC architecture is an
extension of the structure in the DECOS integrated architecture [OPHES06].
In the TTSoC architecture, a real-time computer system is divided into a set of
nearly independent application subsystems, with each application subsystem
providing a part of the overall computer system’s functionality. We call such an
application subsystem a Distributed Application Subsystem (DAS) since it will
be most likely distributed on multiple micro components, potentially residing

63

5.2 Naming in the TTSoC Architecture 5 Naming

on different SoCs. Each DAS provides a meaningful service to the user (e.g., a
multi media DAS or a steer-by-wire DAS in a car).

A DAS is further decomposed into smaller units called jobs which are atomic
units with respect to the allocation to micro components (i.e., a single job
cannot be distributed on multiple micro components). Also, a job is a unit of
fault-containment for design faults.

In the TTSoC architecture the platform-independent structure of a distributed
system is expressed by the Fully-Specified Interface Model (FIM). The FIM
describes the functionality and the interaction patterns of the individual jobs
of a system by a behavioral specification, including temporal constraints. It
does not include any information about the micro components on which the jobs
will be executed and abstracts from micro component specific implementation
details of the jobs (e.g., a micro component can be realized as a special purpose
microcontroller, as an FPGA or as a special purpose hardware IP block). The
FIM meta model defines the rules and constructs according to which a FIM is
created.

The TTSoC architecture defines two different types of FIMs to describe a sys-
tem at two different levels of abstraction, the Uniform FIM (UFIM) and the
Macro FIM (MFIM). The UFIM is a uniform representation of the FIM that
is independent of any application domain. It describes the system at the level
of the UNI. This means that, with respect to the interface specification of
the jobs, the UFIM meta model defines exclusively constructs that refer to the
communication services that are natively provided by the UNI (e.g., unidirec-
tional communication channels). The specification of a job in the UFIM serves
as a contract between the system integrator and the job developer and can be
used for conformance testing.

The MFIM is a high-level representation of the FIM. It facilitates the modeling
of DASs at a higher level of abstraction than the UFIM, by providing macros
that translate high-level constructs into constructs supported in the UFIM.
Thus, the interface specification of the jobs in the MFIM can rely on higher-
level domain-specific services like voted channels for fault tolerance, encrypted
channels for security, or bidirectional channels for request/reply transactions.
The MFIM meta model can exist in multiple variations supporting different
sets of domain-specific services. For each MFIM meta model, a set of transfor-
mation rules has to be specified that define the transformation of a MFIM to
an equivalent UFIM as shown in Figure 5.2.

The Uniform FIM

In the Uniform FIM (UFIM), jobs interact with each other exclusively by the
exchange of elementary messages via UFIM-channels. The term UFIM-channel

64

5 Naming 5.2 Naming in the TTSoC Architecture

Transformation Rules
for the Specific MFIM

Constructed by
DAS Designer

Used by Job Developer
and System Integrator

Figure 5.2: UFIM vs. MFIM

denotes an encapsulated unidirectional communication channel that transports
messages under predefined temporal constraints (e.g., latency, period, absolute
phase offset to the start of the period, or relative phase offset to another chan-
nel) from a single source job to one or more destination jobs. It was decided to
restrict the communication in the UFIM to unidirectional channels in order to
avoid any back-error propagation from a receiver to the sender at the level of
UNI. If required, bidirectional channels can be provided at higher abstraction
levels in the MFIM as described in the following section. UFIM-channels are
not restricted to the scope of a single SoC. They can cross chip boundaries via
gateways and can interconnect jobs that are located on different SoCs. The
endpoints of an UFIM-channel are called UFIM-ports. A job can be attached
to multiple UFIM-channels and can thus have multiple UFIM-ports.

UFIM-ports are identified by the fully-qualified UFIM-port identifier. The con-
text of the namespace for UFIM-ports is the entire considered system. Thus,
a fully-qualified UFIM-port identifier uniquely identifies an UFIM-port within
the logical structure of the entire system. The fully-qualified UFIM-port iden-
tifier is formed by the concatenation of the following sub identifiers:

DAS Context. Uniquely identifies the context of the DAS (e.g., a car).

DAS Identifier. Uniquely identifies the DAS within the DAS context.

Local Job Identifier. Uniquely identifies the job in the scope of a DAS.

Local UFIM-port Identifier. Uniquely identifies the UFIM-port in the
scope of a job.

65

5.2 Naming in the TTSoC Architecture 5 Naming

The fully-qualified UFIM-port identifier is location independent, which means
that it does not contain information about the physical location of the referred
UFIM-port. It exactly identifies the position in the logical structure of the
system with respect to DASs and jobs, but does not tell anything about the
physical chip or micro component where the UFIM-port is located. Thus, the
fully-qualified UFIM-port identifier stays stable if a job (and its UFIM-ports)
is migrated from one micro component to another.

A UFIM-port is devoted to a specific part of a service provided or consumed by
a job and is associated with a specific message (e.g. the periodic dissemination
of the cruising speed of car). All the UFIM-ports of a job form the job’s
Linking Interface (LIF). The operational properties like syntax and temporal
constraints and the meta-level properties (i.e., the semantics) of every UFIM-
port of a job are captured in the job’s LIF specification [KS03]. In fact, the
UFIM of a job is exactly the LIF specification of that job. It describes the
temporally constraint behavior of the job that can be observed at its LIF, but
abstracts from its implementation. Thus, a model of a given job in the UFIM
can serve as a reference for conformance testing of an implementation of that
job.

The Macro FIM

A Macro FIM (MFIM) facilitates the description of DASs on a higher abstrac-
tion level than the UFIM. In addition to the modeling constructs provided by
the UFIM meta-model (e.g., UFIM-channels), the MFIM meta-model provides
macros that translate higher-level domain-specific constructs into constructs
supported in the UFIM. Usually, a MFIM meta-model is supplied together
with the appropriate middleware modules contained in the frontend (see Fig-
ure 4.3) that provide these services.

Jobs in the MFIM interact with each other by the exchange of messages via
MFIM-channels. The endpoints of an MFIM-channel are called MFIM-ports.
Contrary to UFIM-channels, MFIM-channels are not restricted to be unidi-
rectional. An MFIM-channel realizes a protocol abstraction that is defined by
the chosen MFIM meta model. An example for such a protocol abstraction
would be a bidirectional request/reply channel in the MFIM. At the level of
the UFIM, such a channel would be represented as two independent unidirec-
tional channels, one for the request and one for the reply. At the level of the
MFIM, the DAS designer can simply use the macro representing the bidirec-
tional request/reply channel and can abstract from its concrete realization.

Figure 5.3 depicts an exemplary MFIM that provides protocol abstractions
for fault-tolerant and secure communication channels and fault-tolerant jobs.
Fault-tolerant channels and jobs are marked with FT and secure channels are

66

5 Naming 5.2 Naming in the TTSoC Architecture

M
M

M

M
M MFIM Port

Figure 5.3: Exemplary DAS in a MFIM

marked with SEC. Job 1 is a fault-tolerant job and sends messages via a uni-
directional fault-tolerant channel to Job 2, while Job 2 sends messages over a
unidirectional encrypted channel to Job 3.

Transformation of the MFIM

As mentioned above, each MFIM meta model implies a set of transformation
rules to transform a MFIM to the equivalent UFIM. Figure 5.4 shows the
UFIM resulting from a transformation of the MFIM in Figure 5.3. The fault-
tolerant job Job 1 of the MFIM has been transformed to three replicas to form
a fault-tolerant unit in a TMR configuration.

On the abstraction level of the UFIM, these replicas are considered as three
independent jobs since there is no notion of fault-tolerance in the UFIM meta
model. Also Job 2 and Job 3 have been transformed. The fault-tolerant
MFIM-port of Job 2 has been wrapped by a model of a voter module which
performs incoming voting on the three UFIM-ports associated to the replicas of
Job 1. The MFIM-port of the encrypted channel at Job 2 has been wrapped
by a model of an encryption module while the MFIM-port at Job 3 has been
wrapped by a model of a decryption module. The models for the voter, the en-
cryption, and the decryption module are exclusively described with constructs
defined in the UFIM meta model and can thus, be interpreted on UFIM level.

The transformation process results in internally structured models of the jobs
in the UFIM (e.g., Job 2 consists of the job described in the MFIM and the
models of the wrapper modules that translate the high-level semantics of the
MFIM-ports to the semantics of the UFIM-ports). This internal structure only
concerns the information contained in the UFIM model of the job. It does not
commit the implementation of a job to anything.

Since the UFIM model of a job is in fact the job’s LIF specification, the LIF
specification is also structured. A structured LIF specification reduces the
cognitive complexity of a LIF which is a key aspect during system integration.

67

5.2 Naming in the TTSoC Architecture 5 Naming

MFIM
Job

Definition

M

M

MFIM
Job

Definition
M

U

MFIM
Job

Definition
M U

D
ec

ry
pt

E
nc

ry
pt

V
ot

e

U

U

U

MFIM
Job

Definition
M

MFIM
Job

Definition
M

M

U

MFIM Port

UFIM Port

U

U

U

Figure 5.4: MFIM Transformed to the UFIM

Furthermore, a structured LIF specification is relevant for the diagnostic unit
which performs diagnosis by observing the LIFs of the jobs of concern. If the
LIF specification is not structured, it is impossible to interpret the exchanged
messages on an abstraction level higher than the UNI (e.g., in a transaction
based system the information that two UFIM-ports are closely related to each
other because they form a transaction based request/reply port on a higher
level of abstraction would be lost).

5.2.3 Physical System Structure

Regarding the physical structure of a distributed system designed according
to the TTSoC architecture, a system consists of one or more clusters which
consist of one or more SoCs which again consist of multiple micro components.

The micro components within a single SoC communicate with each other via
SoC-channels. The term SoC-channel denotes an encapsulated unidirectional
communication channel that transports messages at predefined points in time
from a single source micro component to one or more destination micro com-
ponents within the same SoC. SoC-channels cannot cross the boundaries of a
single SoC. The endpoints of a SoC-channel are called SoC-ports. A micro com-

68

5 Naming 5.2 Naming in the TTSoC Architecture

ponent can be attached to multiple SoC-channels and can thus have multiple
SoC-ports.

SoC-ports are identified by the fully-qualified SoC-port identifier. The context
of the namespace for SoC-ports is a single SoC. Thus, each fully-qualified SoC-
port identifier uniquely identifies a SoC-port within a single chip. The fully-
qualified SoC-port identifier is formed by the concatenation of the following
sub identifiers.

Micro Component Identifier. Uniquely identifies the micro component
within the SoC

Local SoC-port Identifier. Uniquely identifies the SoC-port within the mi-
cro component

Contrary to the fully-qualified UFIM-port identifier, the fully-qualified SoC-
port identifier contains information about the physical location of the referred
SoC-port. A good analogy for an fully-qualified SoC-port identifier is the ad-
dress of a department of a company, where the micro component identifier
stands for the address of the company building and the local SoC-port identifier
for the post office box of the department. An important difference to the fully-
qualified UFIM-port identifier is that the fully-qualified SoC-port identifier is
not associated with any semantic information about the messages exchanged
over the SoC-port.

The SoC-channels (i.e., the connections between the SoC-ports) are established
by the TNA [OKESH07]. From an abstract point of view, the TNA acts like
an operator in a traditional telephone exchange system, were the local ter-
minations of telephone lines where connected by patch chords to establish a
connection.

The interconnection between multiple SoCs is established via Gateway
Channels (G-channels). A G-channel is a unidirectional communication chan-
nel that transports messages from a single source SoC to one or more destina-
tion SoCs. The endpoints of a G-channel are called Gateway Ports (G-ports).
A SoC can be attached to multiple G-channels and can thus have multiple
G-ports. A G-port is identified by the fully-qualified G-port identifier which is
formed by the following elements.

Cluster Identifier. Uniquely identifies the cluster within the entire system.

SoC Component Identifier. Uniquely identifies the SoC within the cluster.

Local G-port Identifier. Uniquely identifies the G-port on an SoC.

69

5.2 Naming in the TTSoC Architecture 5 Naming

TISS

Host

TISS

Host

TISS

GW

TISS

Host

TISS

GW

TISS

Host

TISS

Host

TISS

Host

S

S S S

G

SoC-Port

G-Port

SoC-Channel

G-Channel

S SSS

S
G G

SoC 1 SoC 2

Figure 5.5: SoC-channels and G-channels

A G-channel can be implemented on top of different underlying networks. The
underlying network determines the properties of a G-channel with respect to
temporal determinism, latency, bandwidth, dependability, and security. The
gateways in the micro components map the G-port identifiers to the corre-
sponding names in the namespace of the underlying network (e.g., if TCP/IP
is used as an underlying protocol to interconnect SoCs via the Internet, each
SoC could be assigned an IP address, and each local G-port identifier could be
assigned a TCP/IP port number).

Figure 5.5 depicts an example cluster comprising two SoCs. The SoC-channels
interconnect the micro components within a single SoCs, while a G-channel
interconnects the gateways of the two SoCs.

5.2.4 FIM-to-PAM Transformation

This section shows how the platform-independent structure of a distributed
system is mapped to individual SoCs, micro components, SoC-channels and
G-channels in the physical system structure.

The Physical Allocation Model

Before a UFIM of a job can be executed on a given micro component, it has to
be transformed to a Physical Allocation Model (PAM). Contrary to the UFIM,
the PAM is tailored to the specific characteristics of the micro component
on which a job should be executed. Nevertheless, the semantic and syntactic
properties of a job’s LIF in the PAM are exactly the same as in the UFIM. The
temporal properties of a job’s LIF in the PAM are fully specified and satisfy
the temporal constraints defined in the UFIM.

70

5 Naming 5.2 Naming in the TTSoC Architecture

We illustrate the relation between the UFIM and the PAM by the example of
the UFIM of Job 3 in Figure 5.4. The purpose of this job is to do some kind of
processing of incoming encrypted messages. The UFIM of the job is logically
structured into a model of a decryption module and a functional job that does
the actual data processing.

Figure 5.6 depicts three exemplary micro component-specific transformations
of the UFIM of the job to an equivalent PAM:

• In the first case the microcontroller on which the job should be mapped is
a simple general-purpose microcontroller. In this case, the PAM of the job
can be described by a piece of C code representing the M-FIM definition
of the job and a library that provides the decryption functionality.

• In the second case the micro component consists of a general-purpose
microcontroller and an appropriate frontend that provides the decoder
functionality in hardware. In this case, the PAM of the job can be de-
fined by a piece of C code for the M-FIM definition of the job and the
configuration parameters for the frontend.

• In the third case the micro component is an FPGA. Here the PAM of the
job can be described by an FPGA configuration bit stream that includes
both the M-FIM definition of the job and the decoder functionality.

Instantiating UFIM-channels

When a job is mapped to a micro component, an SoC-port that is adequate
with respect to the message length and the temporal properties, has to be
instantiated on the TISS of that micro component for each UFIM-port that
is defined in the job’s LIF. The host incorporates a data structure that holds
the binding of the UFIM-ports to the SoC-ports (the binding of UFIM-ports
to SoC-ports is established by the RMA [OKESH07]).

If all jobs that are attached to a UFIM-channel are mapped to micro compo-
nents in the same SoC, the UFIM-channel is mapped to a single SoC-channel.
If the jobs that are attached to an UFIM-channel are distributed over several
SoCs, the UFIM-channel is mapped to multiple SoC-channels and one or more
G-channels.

Figure 5.7 depicts an example with two UFIM-channels. One UFIM-channel
interconnects only jobs within a single micro component and is thus mapped
to a single SoC-channel. The other UFIM-channel crosses the chip boundaries
and thus needs two SoC-channels, one for each SoC, and one G-channel. At
the gateway, the G-ports have to be mapped to the corresponding SoC-ports.

71

5.3 Discussion 5 Naming

M U

PAM for
GP Microcontroller
+ Decryption HW

PAM for
GP Microcontroller

PAM for
FPGA

C Code
Decoder Library

C Code
MW Configuration

FPGA Bit Stream

M

U

MFIM Port

UFIM Port

Figure 5.6: UFIM to PAM Transformation - Jobs

Figure 5.7: UFIM to PAM Transformation - Channels

5.3 Discussion

The proposed naming scheme is designed for complexity management, inde-
pendent development, design reuse, and dynamic resource management.

72

5 Naming 5.3 Discussion

One key aspect is the hierarchical system structure. Since each DAS within a
distributed system has its own dedicated namespace, DASs can independently
be developed by different suppliers without the need for a central naming au-
thority coordinating the naming process for the entire system.

The naming scheme enables to look at the system from different abstraction
levels:

System Level. The system integrator needs a system-wide view to be able
to map the jobs to micro components and the UFIM-channels to SoC-channels
and G-channels. Therefore, he will always use the fully-qualified identifiers
for UFIM-ports, SoC-ports, and G-ports in order to be able to distinguish
between UFIM-ports of different jobs, between jobs of different DASs, between
SoC-ports of different micro components, and between micro components of
different SoCs.

DAS Level. When a designer of a single DAS specifies an UFIM-channel, he
will identify an UFIM-port only by the local job identifier and the local port
identifier. By omitting the DAS identifier and the DAS context identifier in the
design of the DAS (i.e., by using relative names), the DAS can be instantiated
multiple times in the same system or it can be reused across different systems.

Job Level. The designer of job will refer in its design exclusively to the local
port identifier of the UFIM-ports. This enables multiple instantiations of a job
in the same DAS (e.g., for the construction of fault tolerant units in a TMR
configuration) or the reuse of a job design across different DASs.

Another major aspect of the proposed naming scheme is that each identifier
contains only the information about the identified entities that will be stable
throughout the entire lifetime of the system. If an identifier would include
information about the variable part of the state of the identified entity, the
identifier would become invalid as soon as the respective part of the state
changes. Therefore, the naming scheme is based on the following principles.

• The platform-independent system structure and the physical system
structure have separated namespaces with dedicated naming conventions.
The strict separation of the platform-independent structure and the phys-
ical structure ensures that the uniqueness and persistence principles of
identifiers, as defined in Section 5.1.1, are not affected by dynamic re-
source management.

• The identifiers in the platform-independent system structure are location
independent, which means that they do not contain information about

73

5.3 Discussion 5 Naming

the physical location of the referred entities (i.e. DASs, jobs, or UFIM-
ports). They identify just the invariant position of an entity in the logical
structure of the system, but do not say anything about the physical chip
or micro component where the given entity is located. Therefore, a logical
identifier remains valid if the physical location of the identified entity
changes.

• The identifiers in the physical system structure are location dependent
(e.g., a micro component identifier specifies a physical location in an SoC
component). Contrary to the identifiers in the logical system structure,
the identifiers in the physical system structure do not contain any se-
mantic information about the system (e.g., a SoC-port is agnostic to the
semantics of the messages that are exchanged via that port).

Finally, the proposed approach supports multiple DASs with dedicated domain-
specific naming schemes in parallel by supporting the transformation of multi-
ple MFIMs, each with a dedicated namespace, onto the UFIM. The uniform
namespace of the UFIM ensures that the heterogeneity of the MFIMs does not
affect the integration of the system.

74

Chapter 6

The Trusted Interface
Subsystem

The Trusted Interface Subsystem (TISS) controls the access to the time-
triggered NoC and provides the UNI to the host. The design and the im-
plementation of the TISS must facilitate feasible validation and certification
up to the highest criticality levels, since the TISS is replicated in each micro
component. Being part of the Trusted Subsystem (TSS), the TISS is considered
to be free of design faults.

This chapter describes the core platform services, which are provided at the
UNI and show how the TISS establishes encapsulation with respect to the com-
munication infrastructure.1 Furthermore, we focus on the TISS’s capabilities
with respect to dynamic resource management.

6.1 Communication Service

As already mentioned in Chapter 4, one major objective of the TTSoC archi-
tecture is to facilitate independent development of application subsystems by
the use of encapsulation mechanisms that prevent any unintended interference
between subsystems. On the micro component level, encapsulation is natively
achieved by the physical separation of the individual micro components. On
the next higher level, where application subsystems are formed by multiple mi-
cro components interacting which each by exchanging messages, encapsulation
is required with respect to the communication infrastructure that interconnects
these micro components. For this purpose, the TTSoC architecture provides
encapsulated communication channels.

1The detailed memory layout of the UNI is described in Chapter 7.

75

6.1 Communication Service 6 The Trusted Interface Subsystem

6.1.1 Encapsulated Communication Channels

The term encapsulated communication channel denotes a unidirectional channel
that transports messages at predefined points in time from a single source to one
or more destinations. The endpoints of an encapsulated communication channel
are called ports.2 We distinguish between output ports which are located at
the source—where messages are produced—and input ports which are located
at the destinations where messages are consumed. A single micro component
can be attached to multiple encapsulated communication channels, and thus,
can have multiple input and output ports.

The topology of an encapsulated communication channel is defined by the
number of destinations (i.e., the number of input ports) and by the assignment
of the source and the destinations to specific micro components. Since the
number of destinations of an encapsulated communication channel is variable,
singlecast, multicast, and broadcast topologies are supported. Figure 6.1 depicts
three exemplary encapsulated communication channels, each having a different
type of topology.

Micro Component 1 Micro Component 2 Micro Component 3
Output Port

channel b
channel c

channel a

Input Port

Micro Component 4

Figure 6.1: Broadcast (a), Multicast (b), and Singlecast Topology (c)

The TTSoC architecture ensures temporal and spatial partitioning with respect
to encapsulated communication channels in order to prevent any unintended
interference between application subsystems. Communication activities in a
given encapsulated communication channel are neither visible, nor have any
effect (e.g., performance penalty) on the exchange of messages in any other
encapsulated communication channel. It is guaranteed that the only micro
component that can send messages over a given encapsulated communication
channel is the micro component that is defined as the source of that encapsu-
lated communication channel (i.e., the micro component where the output port
of the encapsulated communication channel is located).

Encapsulation is established by the TISS, which acts as a guardian for the
shared time-triggered NoC by accessing it exclusively at a priori known points in

2The ports provided at the TISS are actually SoC-ports as defined in Section 5.2.3 (the
TISS is agnostic to the ports in the FIM). For the sake of fluency, we will use the word port
instead of SoC-port in this chapter.

76

6 The Trusted Interface Subsystem 6.1 Communication Service

time according to the TDMA scheme. The implementation of the TISS ensures
that the host cannot alter the internal time-triggered schedule of the TISS in
order to guarantee that the encapsulation properties of the communication
service are not violated in the presence of a design fault or a hardware fault
within the host. As already mentioned in Chapter 4 the TISS itself is part of
the TSS and is considered to be free of design faults.

6.1.2 Interface to the Communication Service

The communication service of the TISS is accessed via the UNI. A key aspect
of the UNI is to establish platform independence by abstracting from the ac-
tual implementation of the employed NoC (e.g., with respect to arbitration,
encoding, routing, fragmentation, and reliability mechanisms). Looking at the
ISO-OSI reference model [Ros90], the transport layer is the first layer where
the offered services are independent of the implementation of the underlying
network, while the upper layers become more and more application oriented.
Therefore, we decided to position the UNI at the transport layer and to re-
alize optional domain-specific higher-level services in the frontend within the
host. With respect to the waistline architecture, this design results in a waist
(i.e., the UNI) that abstracts from the implementation of the network without
being “wider” than necessary.

A host accesses an encapsulated communication channel via the corresponding
port. As mentioned above, we differentiate between input and output ports.
In addition to their direction, we classify ports with respect to their access
paradigm which defines the way, how a host interacts with the corresponding
encapsulated communication channel. Two fundamental types of ports are
provided in order to satisfy the requirements of a wide range of application
domains: state ports and event ports.

State Ports

We call a message a state message, if its value results from the observation of
a state variable, i.e., a RT-entity [Kop97]. A state message contains always
the complete state of the state variable, and is thus inherently idempotent.
Following state semantics, a new arriving version of a state message overwrites
an old version and exactly-once processing is not required. We call this behavior
update-in-place.

State ports are used for the periodic transmission of messages with state se-
mantics. Due to the update-in-place strategy, a state port holds only a single
state message at a time.

77

6.1 Communication Service 6 The Trusted Interface Subsystem

In order to ensure that only consistent data is transmitted and received over the
NoC, explicit synchronization mechanisms are provided for both, input state
ports and output state ports that coordinate the update and read operations
of the host and the TISS.

Input State Ports. For input state ports, we employ the Non-Blocking
Write Protocol (NBW) [Kop97] to detect situations where an input state port
was updated by the TISS (due to the reception of a message) while the host
was performing a read access on that port. Therefore, each input state port
is associated with a sequencer which is exclusively written by the TISS and
read by the host (see Figure 6.2, and pseudocode listing 6.1). At start-up the
sequencer is initialized to zero. The TISS increments the sequencer each time
before it starts updating the contents of the port. After the TISS has finished
updating the contents of the port, it increments the sequencer again. The host
starts each read access to an input state port by checking the port’s sequencer.
If the value of the sequencer is odd, the host retries the read access immediately
because it knows that an update operation by the TISS is in progress. If the
value is even, it continues the read operation. At the end of the read operation
the host checks, whether the sequencer has been changed by the TISS during
the read operation. If this is the case, the host knows that it has acquired
inconsistent data and retries the read operation again, until it succeeds to read
an uncorrupted version of the message within the port.

Listing 6.1: Synchronization for Input State Ports
I n i t i a l i z a t i o n :

Seq := 0

TISS :
Seq := Seq + 1
<update port data>
Seq := Seq + 1

Host :
REPEAT

REPEAT

Seq beg in := Seq

UNTIL (Seq beg in i s even)
<read port data>

UNTIL (Seq beg in == Seq)

Hosts that are perfectly synchronized with the global time can access input
state ports by implicit synchronization and ignore the NBW sequencer field
which results in a higher performance for read accesses. Based on the a priori
known points in time when the input state port is updated by the TISS, the
host can temporally interleave its read accesses with the updates of the TISS
in a way that avoids conflicts.

78

6 The Trusted Interface Subsystem 6.1 Communication Service

Sequencer

1 state message / port

w
rit

e
re

ad

Figure 6.2: Input State Port

Output State Ports. The NBW protocol is inadequate for output state
ports, since the TISS has to transmit messages over the time-triggered NoC
with minimal jitter and thus, cannot afford a retry of a read access to an
output state port, when the read access resulted in inconsistent data due to a
concurrent update by the host.

For this reason, output state ports are synchronized by the use of a double
buffer mechanism, as depicted in Figure 6.3, with the host alternately updat-
ing one of the buffers while the TISS accesses the other buffer which contains
consistent data. Synchronization is established by the use of two synchroniza-
tion fields, the valid field and the transmit field (see pseudocode listing 6.2).
The valid field is exclusively written by host. It indicates which of the two
buffers currently contains valid data. In contrast to the valid field, the trans-
mit field is exclusively written by the TISS. It specifies which of the two buffers
is currently used for message transmission. The host is only allowed to update
the content of a buffer if the valid and the transmit field point to the other
buffer.

At start-up, both fields are initialized to zero (the value zero denotes the first
buffer). Since both fields are pointing to the first buffer, the host is allowed to
update the second buffer. After it has finished updating the second buffer, it
sets the valid field to one (the value one denotes the second buffer). At each
periodic instant in time at which the message associated to the port has to be
transmitted, the TISS checks the valid field and uses the corresponding buffer
for the transmission. The purpose of the transmit flag is to prevent that a
scenario like the following can occur: The valid field points to the first buffer
and the TISS transmits the contents of the first buffer. While the TISS is
transmitting the contents of the first buffer, the host updates the second buffer
and sets the valid field to point to the second buffer. Consider the case that the
TISS has not yet finished transmitting the contents of the first buffer. If the
host would now only look a the valid field (which points to the second buffer),
it could start updating the first buffer which would result in a transmission of
inconsistent data.

In order to prevent such a scenario, the TISS sets the transmit flag to the value
of the valid flag after the end of a message transmission, and the host verifies

79

6.1 Communication Service 6 The Trusted Interface Subsystem

Listing 6.2: Synchronization for Output State Ports
I n i t i a l i z a t i o n :

Transmit := 0
Valid := 0

Host :
WHILE Transmit != Valid

<do nothing>
ENDWHILE

IF Transmit == 0 THEN

<update bu f f e r 1>
Valid := 1

ELSE

<update bu f f e r 0>
Valid := 0

ENDIF

TISS :
IF Valid == 0 THEN

Transmit := 0
<t ransmit bu f f e r 0>

ELSE

Transmit := 1
<t ransmit bu f f e r 1>

ENDIF

always both fields before it starts updating the content of a buffer (it is only
allowed to update the content of a buffer if the valid and the transmit field are
pointing to the other buffer).

re
ad

1 state message / port

re
ad

transmitvalid

w
rit

e

w
rit

e

Figure 6.3: Output State Port

As for input state ports, output state ports can be accessed by implicit syn-
chronization if the host is perfectly synchronized to the global time. Based on
the a priori known points in time when the output state port is accessed by
the TISS, the host can temporally interleave its write accesses with the read
accesses of the TISS in way that conflicts are avoided. In this case, the double
buffer is not required which avoids the associated memory overhead. There-
fore, the explicit synchronization mechanism based on double buffering can be
individually enabled and disabled for each output state port.

80

6 The Trusted Interface Subsystem 6.1 Communication Service

Event Ports

We call a message an event message if its value refers to the difference between
an old state and a new state [Kop97]. This difference is also called event infor-
mation. Event-messages have to be handled according to the exactly-once se-
mantics. This means that every sent message should be processed exactly once
by each correct receiver. Therefore, messages have to be consumed on reading
and unread messages have to be queued instead of employing an update-in-
place strategy as it is the case for state messages.

Event ports are used for the sporadic transmission of messages with event
semantics. In order to support exactly-once semantics, event ports are realized
as queues (ring buffers) that can hold multiple event messages at a time (see
Figure 6.4). The length of a queue is variable.

Since the sender is blocked when the sender’s queue is full, exactly-once se-
mantics is supported under the condition that the receiver services its input
queue fast enough to prevent overflows. Without queues, the receiver would
have to guarantee a maximal service time. By using queues, weaker guarantees
are possible.

One example for such a weaker guarantee is that the receiver guarantees a
mean service time tmeanservice within each time interval of length l. In this
case, an overflow at the receiver can be prevented by configuring the associated
encapsulated communication channel to a period equal to tmeanservice and by
configuring the queue length to l/tmeanservice.

Note that this condition is sufficient but not necessary to prevent overflows at
the receiver and there exist other, more elaborate, queuing strategies that rely
on weaker assumptions [BT04].

Pos 1 Pos 2 Pos n Write
Pos.

Read
Pos.

1 event message / position

ToO
FR

ToO
FW

Figure 6.4: Event Port

Input Event Ports. Event ports are synchronized by means of variables
for the write position and the read position of a given port (explicit synchro-
nization). The TISS indicates the presence of a new input event message in an
input event port by increasing the write position of the port after it has written

81

6.1 Communication Service 6 The Trusted Interface Subsystem

the message into the corresponding position of the port (see pseudocode listing
6.3). The host indicates the consumption of a message by increasing the read
position of the port after it has consumed the message from the port.

By looking only at the read and write position, it is not possible to differentiate
between a full and an empty queue. Therefore, an event port incorporates two
additional bits, the Toggle on Overflow Read Position (ToOFR) bit and the
Toggle on Overflow Write Position (ToOFW) bit. At startup, both bits are
initialized to zero. The ToOFR bit (resp. ToOFW bit) is always toggled when
the increment of the read position (resp. the write position) has caused an
overflow of the read position (resp. the write position). If the read and write
position are equal and the ToOFR and the ToOFW bits are equal, the queue
is empty. If the read and write position are equal and the ToOFR and the
ToOFW bits are not equal, the queue is full.

Listing 6.3: Synchronization for Input Event Ports
I n i t i a l i z a t i o n :

ReadPos := 0
WritePos := 0
ToOFR := 0
ToOFW := 0

Host :
IF (ReadPos == WritePos) AND (ToOFR == ToOFW) THEN

RETURN <queue empty>
ELSE

<read message from po s i t i o n ReadPos>
ReadPos := (ReadPos + 1) modulo QueueSize

IF ReadPos == 0 THEN

<t o gg l e ToOFR>
ENDIF

ENDIF

TISS :
IF (ReadPos == WritePos) AND (ToOFR != ToOFW) THEN

<s i g n a l over f low>
ELSE

<wr i t e message to po s i t i o n WritePos>
WritePos := (WritePos + 1) modulo QueueSize

IF WritePos == 0 THEN

<t o gg l e ToOFW>
ENDIF

ENDIF

Output Event Ports. The reverse principle is used for output ports.
The host indicates the presence of a new output event message in an output
port by increasing the write position variable of the port after it has written
the message to the port. The TISS indicates the consumption of an output
event message by increasing the read position variable of the port after it has
consumed the message from the port.

82

6 The Trusted Interface Subsystem 6.1 Communication Service

6.1.3 Port Interrupts

The TISS provides a dedicated port interrupt for each port to facilitate the
temporal alignment of the encapsulated communication channels on the time-
triggered NoC and the computational activities of the host. In the case of input
ports, these interrupts are called reception interrupts and are triggered after
a message was received at that port. In the case of output ports these inter-
rupts are called transmission interrupts and are triggered after the associated
message has been transmitted.

The host can enable or disable the port interrupts for each individual port.

6.1.4 Time Stamping Service

The TISS integrates a time stamping service that supports time stamping of
received messages with respect to the global time. Time-stamps in event mes-
sages allows to temporally relate messages that have been sent by different
micro components to each other. For state messages, time stamps can be used
to determine whether the real-time image [Kop97] contained in a state port is
still temporally accurate or not.

Since time stamps require additional memory space, the time stamping service
can be individually enabled for each single port.

6.1.5 Message Ordering

The TTSoC architecture provides two types of guarantees with respect to mes-
sage ordering. Within a single encapsulated communication channel, the ar-
chitecture guarantees total temporal ordering of received messages with respect
to their sent instances (i.e., messages are received by any receiver in the same
order as they have been sent). Across multiple encapsulated communication
channels, a consistent delivery order is guaranteed.

Ordering Within a Single Channel

Within a single encapsulated communication channel, the TTSoC architecture
guarantees that messages are received by any receiver in the same order as they
were sent. This property is essential for being able to interpret serial data.

For a single encapsulated communication channel, message ordering is offered
natively by the design of the time-triggered NoC and the TISSs. The sending
TISS injects the messages of a given encapsulated communication channel into

83

6.1 Communication Service 6 The Trusted Interface Subsystem

the time-triggered NoC in the same order as they have been produced by the
host. The employed routing strategy within the time-triggered NoC guarantees
that the messages in an encapsulated communication channel are kept in the
same order as they have been injected. As mentioned in Section 4.2.2, the pulses
of a pulsed data stream consist of a fixed number of fragments. If we consider
a pulsed data stream with pulses that are partitioned into n fragments, the ith

fragment will be transmitted over the same path in each pulse of the pulsed
data stream for all i ∈ {1, ..., n}. Thus, a pulse cannot “overtake” another
pulse of the same pulsed data stream.

Nevertheless, the individual fragments, 1 to n, within a single pulse can be sent
over different paths of different length and can thus be received inconsistently.
An inconsistent reception order of fragments within a pulse is not visible for the
host, since the host reads only completely received messages, which is assured
either by using the explicit synchronization mechanisms of the ports or by
implicit synchronization.

System-wide Ordering

In contrast to many other state-of-the-art NoCs, which provide ordering guar-
antees only within a single channel (e.g., Æthereal), the TTSoC architecture
enables the establishment of a consistent delivery order across multiple encap-
sulated communication channels. Consistent delivery order means that any two
micro components will see the same sequence of message receptions within a
defined set of encapsulated communication channels. This type of ordering fa-
cilitates to establish replica deterministic behavior of micro components which
is required for the transparent masking of hardware errors by TMR [Pol94].

Since the TTSoC architecture supports different topologies with respect to the
time-triggered NoC, a message on a short path can be received before a message
that has been sent earlier, over another encapsulated communication channel
via a longer path. Thus, messages can potentially arrive in an inconsistent
order at the TISSs of different micro components as depicted in Figure 4.10.

A consistent delivery order can be established by exploiting the global time
base in conjunction with the time-triggered communication schedule and the
reception interrupts (see Section 6.1.3) of the TISS. If consistent delivery order
is required for a set of encapsulated communication channels, the reception
interrupt for each message is delayed at each TISS until the message has been
completely received by the last micro component. This instant is a priori
known due to the predefined time-triggered message schedule. Thus, the TNA
can program the delayed reception interrupts together with the MEDLs in the
individual TISSs accordingly.

84

6 The Trusted Interface Subsystem 6.2 Additional Services

6.1.6 Security-Relevant Properties

For some applications, it might be required to prevent a sensitive part of an
SoC from communicating with other parts of the system. For this purpose, the
TTSoC architecture provides adequate security mechanisms by design.

Each input and output port is mapped to a dedicated memory region within
the micro component. This mapping can be exclusively configured by the host.
Thus, the host can decide which memory region should be accessible for a given
port and the associated encapsulated communication channel. Memory regions
that are associated with an input port can only be written by the source of
the corresponding encapsulated communication channel, while memory regions
that are associated with an output port can only be read by every destination
of the corresponding encapsulated communication channel.

The TNA—as a trusted component—ensures that the encapsulated communi-
cation channels are routed only in such a way that security violations do not
occur. The routing information of the encapsulated communication channels is
stored within the TISSs of the micro components (see Section 7.1.1) and can be
exclusively (re-)configured by the TNA. Thus, no other, potentially malicious,
component in the SoC can interfere with the routes that have been set up by
the TNA.

6.2 Additional Services

In addition to the communication service, the TISS provides the global time
service, the programmable timer interrupt service, the watchdog service, the
power control service, and the diagnostic dissemination service.

6.2.1 Global Time Service

The TISS provides access to the synchronized global time (see Section 4.2.2) via
the global time service. The global time service allows to establish a temporal
relationship between events that have been time-stamped by different micro
components within the SoC.

Synchronizing the global time with an external time base (e.g., GPS) via a
gateway facilitates the temporal coordination of activities spanning multiple
SoCs (e.g., coordination of actuators attached to different SoCs).

If the consistent global time has not yet been established, because the whole
chip has just been started-up or restarted, the global time in the TISS has the
initial value 0.

85

6.2 Additional Services 6 The Trusted Interface Subsystem

6.2.2 Programmable Timer Interrupt Service

The TISS provides a programmable timer interrupt service that supports two
kinds of interrupts. One the one hand, it supports periodic interrupts with
definable periods and phase offsets and, on the other hand, interrupts that
occur at a single definable point in time. The timer can be programmed by
the host via two registers, the interrupt pattern register and the interrupt mask
register, which both have the same width as the global time. An interrupt will
be signaled whenever the following condition is true:

interrupt pattern == (global time & interrupt mask)

6.2.3 Watchdog Service

The TISS provides a watchdog service to monitor the health state of the mi-
cro component’s host. Therefore, the watchdog requires the host to update a
dedicated memory location at the TISS with a definable maximum period. If
the host fails to update this memory location within the defined period, it will
be reseted by the TISS and a failure indication will be disseminated via the
diagnostic dissemination service (see Section 6.2.5).

The watchdog comprises two registers, the watchdog period register and the
watchdog life sign register. The watchdog life sign register is the register that
has to be updated by the host with a predefined constant value.

The watchdog period register holds the maximum period with which the watch-
dog has to be updated. The period durations are restricted to negative powers
of two of the second, i.e., a period can be 1 second, 1/2 second, 1/4 second, 1/8
second, and so forth. The duration of each period can, thus, be characterized
by the corresponding bit of the binary time format; we call this bit the period
bit. The watchdog period register encodes the position of the period bit within
the binary time format. A reserved value in the watchdog period register indi-
cates that the watchdog function is turned off. The watchdog period register
can be exclusively set via the TISS CP interface by TNA.

6.2.4 Power Control Service

Since hosts are generally not considered to be free from design faults, it cannot
be assumed that a host will always behave according to the desired config-
uration that has been set in the Host CP interface. Therefore, it has to be
prevented that a misbehaving host can interfere with the correct operation of
the other micro components.

86

6 The Trusted Interface Subsystem 6.3 Dynamic Resource Management

In addition the NoC, power is also a shared resource between all the micro
components on the SoC. It can be limited by the maximum allowed heat dis-
sipation or by constraints implied by the battery (e.g., lifetime, capacity). A
faulty micro component that consumes more power than allowed can influence
the correct operation of the entire chip. Therefore, the TISS has physical con-
trol over the power lines or the clock lines of the host in order to be able to turn
off the host in case it does not operate in conformance to its specification. The
host can be powered down via the TISS CP interface which can be exclusively
accessed by the TNA (see Host Mode in Section A.2.4, page 120).

6.2.5 Diagnostic Dissemination Service

The TISS records anomalies in the behavior of a host. Any error that is detected
by the TISS is stored in the Error Status Flags, which is a read-only field for
the host. The content of this field is periodically sent in a status message to the
Diagnostic Unit (DU). Immediately after the content has been disseminated,
the Error Status Flags are reset. The period of the status message, the the
status dissemination period, is configured by the TNA.

The Error Status Flags contain information about the health state of the host,
determined by the watchdog service, and about errors that are related to the
encapsulated communication service (e.g., overflow for event ports or port con-
figuration errors). For a detailed description of the Error Status Flags see
Section A.2.4.

6.3 Dynamic Resource Management

The configuration of the TISSs can be dynamically adapted at runtime in order
to lay the foundation for integrated resource management. These reconfigura-
tion activities are partly performed by the TNA and partly by the hosts of the
micro components.

6.3.1 Reconfiguration Time vs. Reconfiguration Period

With respect to reconfiguration we have identified two relevant performance
indicators: The maximal reconfiguration time and the minimal reconfiguration
period.

Maximal Reconfiguration Time. The maximal reconfiguration time
bounds the time it takes the TISS to switch between any two configura-
tions (i.e., the maximal duration of the reconfiguration phase). During

87

6.3 Dynamic Resource Management 6 The Trusted Interface Subsystem

the reconfiguration phase, the TISS cannot receive or send any messages.
Thus, the maximal reconfiguration time bounds the minimal period
of any continuous service, i.e., a service that is not interrupted by the
reconfiguration activities of the associated micro component.

The maximal reconfiguration time depends exclusively on the TISS, while
the activities performed by the RMA and by the TNA to prepare and to
check a new configuration are not included in the maximal reconfiguration
time.

Minimal Reconfiguration Period. The minimal reconfiguration period
bounds the minimal time interval between any two reconfiguration events.
Thus, it determines the reactiveness of the entire SoC to reconfiguration
requests.

In contrast to the maximal reconfiguration time, the minimal reconfigura-
tion period depends on each activity that is required for reconfiguration.
These activates include the preparation of a new configuration proposal
by the RMA, the checking of the proposal by the TNA, the dissemination
of the configuration data by the time-triggered NoC, and switching to the
new configuration performed at the TISS.

6.3.2 Configuration Performed by the TNA

The TNA configures the parameters that are relevant for encapsulation and
diagnosis. These parameters are:

• the MEDL and the routing information for the time-triggered NoC (see
Section 7.1.1),

• the watchdog period,

• and the power mode of the host.

The time-triggered NoC provides an encapsulated and protected channel from
the TNA to the TISS CP interface of all TISSs to guarantee that no other
micro component than the TNA has the ability to change these parameters.
This encapsulated channel can be realized by a separate physical channel or by
dedicated time slots on the main network, protected by hardware mechanisms.
Furthermore, the design of the TISS ensures that the host has no write access
to the parameters configured by the TNA to prevent that a design error within
the host can interfere with the temporal control of the shared time-triggered
NoC.

88

6 The Trusted Interface Subsystem 6.3 Dynamic Resource Management

The TNA periodically sends to each micro component a dedicated state mes-
sage that contains the configuration data for the micro component’s TISS.
Sending the entire configuration data periodically simplifies the design and the
implementation of the TISS, since it allows to use the same mechanisms for
start-up, restart, and reconfiguration of a micro component.

In order to reduce the maximal reconfiguration time, the parameters configured
by the TNA are stored in a double buffer, where one buffer holds the active
configuration while the other buffer is updated by the TNA. Switching be-
tween the two buffers can be performed in a single clock cycle in our prototype
implementation. Thus, the reconfiguration time has zero jitter—observed on a
discrete timescale with a granularity of a single clock cycle.

The employed reconfiguration strategy ensures the MEDLs within the indi-
vidual TISSs of the SoC are always kept consistent. For this purpose, the
activation of the new configuration is performed at all TISSs at the same tick
of the global time. This instant is set by the TNA and is called the global
reconfiguration instant.

6.3.3 Configuration Performed the Host

The host is free to select the access paradigm according to which it wants to
interact with the encapsulated communication channels that are attached to
the micro component. Therefore, the host can configure each local port to act
as a state port (with explicit or implicit synchronization) or as an event port,
according to its specific needs. In the case of an event port, the host can also
define the length of the message queue.

Furthermore, the host assigns a start address to each individual port, and
enables or disables the port interrupt and the time stamping service for each
individual port (the time stamping service can only be enabled for input ports).

Since these parameters are only locally relevant and not visible on the time-
triggered NoC or at any other micro component, a faulty host cannot interfere
with the encapsulation mechanisms of the SoC by manipulating these param-
eters.

89

6.3 Dynamic Resource Management 6 The Trusted Interface Subsystem

90

Chapter 7

Prototype Implementation

This chapter describes the design and implementation of a prototype that
demonstrates the feasibility of the proposed architecture. It covers the de-
sign of the architectural elements, the description of the prototype hardware,
and the implementation results.

7.1 Design of the Architectural Elements

This section presents the principal operation of the NoC and the TISSs. Fur-
thermore, the design of a generic frontend is described that provides a tem-
poral firewall interface to the application computer and includes an interrupt
controller to manage the interrupts generated by the TISS and by optional
middleware modules. The design of the RMA and TNA are not part of this
thesis.

7.1.1 NoC

The NoC comprises multiple fragment switches, which transport the fragments
of a pulsed data stream from the sender to one or more receivers via one or
more hops. The fragment switches operate exclusively on fragment level and
are not aware that messages are split up into fragments in the sender’s TISS
and are reassembled in the TISSs of the receivers.

For the purpose of fragment transmission, fragment switches are interconnected
via bidirectional links. The end points of such a link are called interconnects.
The number of interconnects of a fragment switch is denoted as the arity of
the switch. Since the interconnects are bidirectional, a fragment switch with
arity n has n inputs and n outputs. The arity determines the possible topologies

91

7.1 Design of the Architectural Elements 7 Prototype Implementation

that can be constructed with the fragment switches. For example, consider a
two-dimensional mesh, a two-dimensional torus, and an arbitrary topology (see
Figures 7.1, 7.2, and 7.3). The mesh requires switches with an arity of three,
four, and five, while the torus requires switches with an homogeneous arity of
five. The depicted example of an arbitrary topology requires switches with an
arity of two, three, and four.

During the design of the NoC, the arity of a fragment switch can be chosen to
support a wide variety of topologies. In the current prototype implementation,
we use fragment switches with an arity of five and arrange the switches in a torus
topology. Compared to a mesh, the torus provides a better performance due
to its uniform connectivity which reduces the average logical distance between
the individual switches [Wik05].

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

Figure 7.1: 2D Mesh Topology

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

µCmp

Figure 7.2: 2D Torus Topology

The NoC is based on wormhole switching and source routing. Wormhole switch-
ing means that a fragment of a pulsed data stream is sent as a sequence of fixed
sized flow-control digits or flits through the network. The size of a flit is de-
termined by the width of the NoC, 32 bit in our current implementation. The
first flit of a fragment, called the header flit, contains the routing information,

92

7 Prototype Implementation 7.1 Design of the Architectural Elements

Figure 7.3: Example of an Arbitrary Topology

while the trailing flits of the fragment contain the data. In order to increase
the bandwidth and to keep the latency low, the flits of a fragment traverse the
path from the sender to the receiver in a pipelined manner, where the trailing
flits are directly following the header flit without waiting until the header flit
has reached its destination. Thus, a fragment “digs” through the network like
a worm with the head (i.e., the header flit) controlling the direction (i.e., the
route); hence the word “wormhole switching”.

Source routing means that the source (i.e., the TISS of the sender) supplies the
entire routing information. In our case, the routing information for a particu-
lar fragment is contained in the fragment’s header flit. A header flit consists
of multiple entries, one for each switch in the route from the sender to the
receivers.

The entry for a specific switch defines the interconnects to which the flits of
the corresponding fragment have to be forwarded. For a switch with arity n
an entry consists of n bits, where each bit corresponds to one of the switch’s
interconnects. A value of 1 in one of these bits indicates that, all flits that
will be received via the same interconnect through which the header flit was
received, should be forwarded to the interconnect that corresponds to that bit.
Consider a fragment switch with five interconnects labeled a, b, c, and d (i.e., a
fragment switch with an arity of 4). Assume that a header flit is received
via interconnect a and the bit of interconnect c is set to 1 in the corresponding
entry. This would mean that the switch should forward each flit that is received
on interconnect a to interconnect c.

Whenever a fragment switch receives a header flit, it consumes the first en-
try and adjusts its internal settings (i.e., the mapping of inputs to outputs)
accordingly. A flit switch with arity n requires n(log2 n) bits to store the map-
ping of inputs to outputs (for each of the n outputs, log2 n bits are required
to specify one of the n possible inputs to which the given output should be
connected). After having consumed the first entry, the fragment switch propa-

93

7.1 Design of the Architectural Elements 7 Prototype Implementation

gates the remainder of the header flit (and all subsequent trailing flits) to the
next fragment switch according to the internal settings. The internal settings
remain persistent until the arrival of a new routing flit at any of the switch’s
interconnects.

The NoC transports a fragment always within a single uninterruptible burst,
with one flit per clock cycle, with each flit following the same route. To allow
pulse interleaving (i.e., multiple concurrent pulses sharing the same intercon-
nect) a pulse can be divided into multiple fragments that can be individually
scheduled and routed. The fragment switches operate only at fragment-level
and are unaware that fragments are assembled to messages within the TISSs.

Furthermore, fragment switches are not aware of the time-triggered message
schedule and contain no arbitration logic and message buffers. It is guaranteed
by the time-triggered message schedule in the TISSs that the injection of mes-
sages into the NoC is done in a way such that no conflicts occur at any of the
interconnects of the fragment switches.

7.1.2 TISS

As depicted in Figure 7.4, the TISS consists of two modules, the pulse manager
and the port manager. The pulse manager sends and receives single fragments
to and from the NoC, while the port manager assembles multiple fragments to
messages and stores them in the memory of the frontend in the host. With
respect to the ISO-OSI reference model [Ros90] the pulse manager implements
the data link layer and the network layer (layers two and three), while the port
manager implements the transport layer (layer four).

OCP Master

NoC Interface

Control
Interface

Uniform Platform Interface

OCP Slave

Port
Interface

Front EndFront End

Fragment Switch

Figure 7.4: Structure of the TISS

94

7 Prototype Implementation 7.1 Design of the Architectural Elements

Pulse Manager

The pulse manager is attached to exactly one fragment switch of the NoC via
the NoC interface. Its purpose is to inject and to receive single fragments to
and from its attached fragment switch, according to the time-triggered message
schedule. For this purpose, it contains the locally relevant part of the time-
triggered message schedule (i.e., all the fragments of a message that have to be
send or received by the micro component) in the MEDL. The MEDL is orga-
nized in multiple linked lists of MEDL entires (one entry for each fragment),
with each list being dedicated to a specific period, as shown in Figure 7.5.
Within each list, the entries are organized in ascending order of their activa-
tion instants (e.g., activation of a send or receive operation) starting from the
start-up or the reconfiguration instant. Conceptually, the TTSoC architecture
supports 32 periods ranging from two seconds down to 2−30 seconds (approxi-
mately one nanosecond). In the current prototype implementation, the smallest
achievable period is 2−27 seconds due to constraints imposed by the prototype
implementation technology (FPGA).

Period 17
2-13 seconds

0xFF

0xFF

0xFF

0xFF

0xFF

Period 16
2-14 seconds

Period 29
2-1 seconds

Period 30
20 seconds

Period 31
21 seconds

Period 0
2-30 seconds

0xFF

Figure 7.5: Organization of the MEDL

To support multiple periods, the pulse manager provides a dedicated compare
logic for each list in the MEDL, i.e., for each period. That logic triggers the
corresponding send or receive operation whenever the significant part of the
global time (i.e., the bits right to the period bit, see Section 4.2.2) matches the
phase of the operation in the next entry of the list.

95

7.1 Design of the Architectural Elements 7 Prototype Implementation

The pulse manager does not contain any buffers for storing entire fragments.
Whenever a fragment is received via the NoC, the flits of the fragment are
passed on, one-by-one, to the port manager together with the associated port
number, which identifies the corresponding message, and the fragment number,
which identifies the fragment within the message. In reverse, when a fragment
is scheduled for transmission, the pulse manager issues a request to the port
manager which includes the port number and the fragment number of the
requested fragment. The port manager then passes the requested fragment flit-
by-flit to the pulse manager, which directly passes the flits on to the attached
fragment switch via the NoC interface.

In addition to dealing with media access control, the pulse manager is respon-
sible for routing. Therefore, it stores, for each fragment to be sent by the micro
component, the corresponding header flit in the header memory. Whenever a
fragment has to be sent, the pulse manager will first pass the corresponding
header flit to the fragment switch and then forward the trailing flits from the
port manager to the fragment switch.

The MEDL and the header memory are written by the TNA via the TISS CP
interface. In the current prototype implementation, the TNA accesses the CP
interface of the TISSs through the NoC via dedicated pulsed data streams.
At each TISS, the pulsed data stream associated with the TISS-CP interface
is received on port 127. Whenever a fragment is received via that port, the
pulse manager does not pass the fragment to the port manager, but it uses
it for updating the MEDL and the header memory. The MEDL and/or the
header memory are realized as double buffers, with one buffer holding the active
configuration while the other buffer is updated by the TNA. The activation
of the new configuration (i.e., the switch from one buffer to the other buffer)
is performed at all TISSs at the same tick of the global time (at the periodic
reconfiguration instant, see Section 6.3) in order to ensure consistency of the
configuration in all TISSs of the SoC.

Port Manager

The port manager provides the UNI to the host (see Section A for a detailed
specification of the UNI). Its main purpose is to manage the ports in the mem-
ory of the host’s frontend. Based on the port configuration memory (see Sec-
tion A.2.2), the port manager maps each fragment that is received or sent by
the pulse manager to the corresponding address in the memory of the fron-
tend. Message fragments are properly aligned and event messages are placed
or fetched at or from the correct position of the associated queue.

Furthermore, the port manager manages the port synchronization flags
(e.g., write and read position of event ports and synchronization flags for state

96

7 Prototype Implementation 7.1 Design of the Architectural Elements

ports) that ensure that data transfers between the TISS and the host are con-
sistent.

In addition to port management, the port manager implements the pro-
grammable timer-interrupt service, the watchdog service, the power control ser-
vice, and the diagnostic dissemination service (see Section 6.2).

7.1.3 Frontend

This section describes the design of a generic frontend that can be easily ex-
tended to include domain-specific middleware modules that refine and extend
the services provided at the UNI. As depicted in Figure 7.6, the frontend
consists out of the port memory, optional middleware modules, the interrupt
controller, the application computer address decoder, and the port interface
address decoder.

Application Computer - Address Decoder

Port Memory

Slave (128 bit)

Port Interface - Address Decoder

Middleware
Module n

Control
Interface

Port
Interface

Master Master MasterMaster

Slave

Interrupt
Controller

SlaveSlaveSlave

Slave Slave

Master Master

Slave

Master Slave

Master

Front End

Application Computer IRQ

Middleware
Module 1

Master

Slave

Slave

Master

UNI

Figure 7.6: Structure of the Frontend

Optional Middleware Modules

The integration of middleware modules into the frontend enables the refinement
and extension of the core platform services provided at the UNI. The design

97

7.1 Design of the Architectural Elements 7 Prototype Implementation

of the frontend enables the integration of multiple middleware modules that
provide different domain-specific services and operate in parallel. In order to
increase the resource efficiency, only those ports will be mapped to a specific
middleware module that actually require the module’s service (e.g., the port of
an encrypted communication channel can be mapped to an encryption module).
All other ports that do not use the middleware module will not experience any
additional delay or jitter.

A horizontal structure of middleware modules exploits the parallel nature of
multiple hardware blocks and makes the end-to-end latency independent of the
total number of middleware modules in the frontend. Vertically structured
middleware modules are only required when the functionality of different mod-
ules has to be applied sequentially to the same port (e.g., decryption of a voted
port).

Port Memory

The port memory stores the data part of all ports of the micro component,
except for the ports of communication channels that are fed to the middleware
modules. While the data part of all ports is stored in the frontend (i.e., in the
port memory or in middleware modules), the synchronization flags of the ports
are exclusively stored within the TISS.

The port memory acts as a temporal firewall interface [KO02] for the time-
triggered NoC by supporting the information pull paradigm for input ports
and the information push paradigm for output ports. Information pull is ideal
for sending messages, because the sender can determine the instant for passing
messages to the communication system, while information pull is ideal for the
reception of messages, since tasks of the receiver will not be interrupted by
incoming messages.

The port memory is realized as a dual-ported memory in order to avoid concur-
rency problems arising from possible simultaneous accesses of the application
computer and the port manager of TISS. In addition to handling concurrency,
the dual-ported memory supports a different word and address width at its two
ports which allows the width of the application computer’s data bus to differ
from the width of the NoC.

Interrupt Controller

The interrupt controller captures interrupt events generated by the TISS (the
SFlags and the SError signals of the UNI-control interface, see Section A) and
by any optional middleware module in the frontend.

98

7 Prototype Implementation 7.1 Design of the Architectural Elements

Since interrupt events will be set to logic 1 only for a single clock cycle1 after
the corresponding trigger condition was satisfied (e.g., a queue overflow has
occurred), any interrupt event has to be captured by the interrupt controller
and has to be transformed to an Interrupt Request (IRQ), which is pending
until it is acknowledged by the host.

The interrupt controller can be accessed by the application computer via the
following registers.

Interrupt Status Register. This register captures any interrupt event gen-
erated by the TISS or by a middleware module in the frontend. The
detailed layout of the interrupt status register is depicted in Figure 7.7.
A pending interrupt is indicated by a value of 1 of the corresponding bit.
Writing a 1 to one of the bits acknowledges and clears the corresponding
interrupt, whether it was pending or not. The port index bits have a
special meaning described below.

Port Status Registers. The port status registers are four 32 bit regis-
ters which are always set together with the port operation complete

interrupt. They indicate which of the ports triggered the interrupt.
Each port is represented by dedicated bit in one of the four registers
(port 0 by bit 0 of register 0; port 1 by bit 1 of register 0; . . . ; port 32 by
bit 0 of register 1; . . . ; port 127 by bit 31 of register 3).

The purpose of the port index bits in the interrupt status register

is to free the host from searching through all four port status

registers to find the ports that have triggered a port completion

interrupt. Therefore each of the port index bits represents one port

status register. A value of 1 in a port index bit indicates that at
least one port represented by the bits in the corresponding register has
raised a port operation complete interrupt.

The bits in the port status registers and the port index bits can
be cleared by writing a 1 to them. In order to ensure that the applica-
tion computer does not miss any interrupt, it should always acknowledge
the port operation complete interrupt before it inspects the port

index bits and the port status registers. If the port operation

complete interrupt is still cleared (i.e., has a value of 0) after the ap-
plication computer has serviced and cleared all interrupts in the port

status registers, it can be sure that no new interrupts arrived while
it was servicing the old interrupts.

Interrupt Mask Register. This register selects which interrupts should be
enabled. The layout of this register is the same as the layout of the

1with respect to the OCP clock of the UNI

99

7.2 Prototyping Hardware 7 Prototype Implementation

interrupt status register shown in Figure 7.7. An interrupt is en-
abled by writing a 1 to the corresponding bit in the interrupt mask. An
enabled interrupt will be recorded in the interrupt status register

and will be signaled to the host via an IRQ. Disabled interrupts do
not generate IRQs, but are still be recorded in the interrupt status

register.

Middle Ware Interrupts Pidx3 Pidx2 Pidx1 Pidx0 TI Ovf PC Err

0

Rec ... Reconfiguration Interrupt

15

Rec

124 356789

Err ... Error Interrupt
PC ... Port Operation Complete
Ovf ... Queue Overflow Interrupt

TI ... Timer Interrupt
Pidx ... Port Index

Figure 7.7: Interrupt Status Register

Application Computer Address Decoder

The purpose of the application computer address decoder is to map the port
memory, the control interface of the TISS, the registers of the interrupt con-
troller, and the middleware modules into structured address spaces that can be
accessed by the application computer. The exact layout of the address space
is specific to the frontend and its middleware modules and is not part of the
TTSoC architecture definition.

Port Interface Address Decoder

The TISS assumes a homogeneous address space at the UNI-port interface and
is agnostic to the fact that the addresses of some ports identify a memory
location in a middleware module. The purpose of the port interface decoder is
to map the port memory and the memories of all middleware modules into a
homogeneous address space for the TISS.

7.2 Prototyping Hardware

The prototype implementation is based on a custom-made development kit de-
signed and manufactured by TTTech2. The heart of the development kit is
motherboard with an FPGA device and with nine extension slots—conforming

2http://www.tttech.com

100

7 Prototype Implementation 7.2 Prototyping Hardware

to TTTech’s Powerlink specification—for attaching different extension boards.
The kit emulates an SoC by housing the NoC, the TNA, and all the TISSs in
the FPGA on the motherboard, while the hosts are realized by the extension
boards. The available extension boards include several CPU boards equipped
with different CPUs and volatile and non-volatile memory, FPGA boards pro-
viding various memory resources, multimedia boards, and I/O boards to inter-
face the environment.

FPGA Board FPGA Board

CPU Board FPGA Board

I/O Board

Front End

App.
Computer

Front End

App.
ComputerNoC, TNA, TISSs

Figure 7.8: Prototype Hardware

The CPU and the FPGA extension boards provide slot connectors on the top
and on the bottom which enables stacking multiple extension boards on a single
slot of the motherboard (see Figure 7.8). The bottom board is always an FPGA
board housing the frontend of the host, which contains optional middleware
modules. On top of the frontend there is either a CPU board or an FPGA
board taking the role of the application computer. If the micro component
has to communicate with the environment, the application computer will also
contain an I/O board or a multimedia board on the top of the stack.

7.2.1 The Motherboard

The central element of the motherboard is an Altera EP2C70 FPGA, which is
the biggest device of the Altera Cyclone II device family. The features of the
FPGA are summarized in the following table:

Logic Elements 68,416
M4K RAM Blocks (4 kbit + 512 Parity Bits) 250
Total RAM Bits 1,152,000
Embedded 18x18 Multipliers 150
PLLs 4
Maximum User I/O Pins 622

The motherboard can be connected to a PC via an Altera USB-Blaster JTAG
adapter in order to ease the development process. The Altera development
environment enables on-the-fly configuration and flash programming, as well
as the communication with an embedded logic analyzer for debugging purposes.

The motherboard contains a 8MByte Flash memory and 2MByte SRAM to
enhance the storage capacity of the FPGA. This extra storage may be required

101

7.2 Prototyping Hardware 7 Prototype Implementation

for the implementation of the TNA, which will be realized as a soft core in the
central FPGA.

Furthermore, the motherboard contains a slot to connect a Navman Jupiter
Pico-T GPS receiver in order to provide a high-precision time base.

7.2.2 FPGA Boards

The FPGA boards will be used to implement the frontend of every host and
in some hosts they will also serve as the application computer. The FPGA
extension board is based on an Altera Cyclone II EP2C35 FPGA, which has
the following features.

Logic Elements 33,216
M4K RAM Blocks (4 kbit + 512 Parity Bits) 105
Total RAM Bits 483,840
Embedded 18x18 Multipliers 35
PLLs 4
Maximum User I/O Pins 475

The board provides various memory devices which are 128Mbit SDRAM,
18 Mbit SSRAM, 64 Mbit Flash memory, and 1 kbit EEPROM to save non-
volatile configuration data of the application. Furthermore, it is equipped with
an SD-card reader for accessing SD-Flash cards.

7.2.3 CPU Boards

The CPU boards are exclusively used to implement the application computers
of some of the hosts (the application computers of the other hosts will be
implemented on the FPGA extension boards). All CPU boards comply to
TTTech’s Powerlink specification. We use different CPU boards to demonstrate
the ability to integrate heterogeneous micro components. The following boards
are available:

• Freescale MPC555 4 MByte Flash, 512kByte SRAM

• Freescale MC9S12XDP512 2MByte Flash, 512kByte SRAM

• Infineon TriCore TC1796 4MByte external Flash, 4MByte internal
Flash, 1MByte SRAM

• Infineon C167 1MByte Flash, 512kByte SRAM

102

7 Prototype Implementation 7.3 Results

7.2.4 I/O Boards

The I/O extension boards interface the environment, by providing serial inter-
faces for RS232, CAN, LIN, TTP/A, and Ethernet, as well as, digital I/Os.

7.2.5 Multimedia Boards

The multimedia board is equipped with a 240 x 320 pixel LCD color touch-
screen and an AC97 compatible audio device. Furthermore, it provides an USB
controller that can function as an USB host as well as an USB device.

7.3 Results

In order to evaluate the feasibility of the proposed approach, a VHDL model of
the described architectural components was designed and synthesized for the
FPGA on the target platform3.

The time-triggered paradigm enabled a very efficient implementation of the
NoC’s fragment switches with respect to power, area consumption, and per-
formance. Since the time-triggered schedule is defined in such a way that
contention never occurs, the NoC does not have to incorporate any arbitration
logic or message buffers. The TISSs inject messages always at the proper in-
stants of the global time, while the fragment switches themselves are agnostic
to the time-triggered schedule. Thus, the task of dispatching, which is quite
complex for messages with different periods, is contained in the TISSs which
reduces the resource overhead of the fragment switches.

Furthermore, the proposed routing strategy has a positive effect on the area
and power consumption of the fragment switches. Due to the source routing
concept, a fragment switch has to store only the routing information of the
fragments that are currently passing through the switch. As described in Sec-
tion 7.1.1, a fragment switch with arity n requires only n(log2 n) bits of storage
for routing, independently of the total size of the NoC or the number of different
fragments that are passing sequentially through the switch.

The proposed NoC outperforms a traditional bus in two aspects. First of all,
a bus scales very poorly as the number of attached cores increases, since a
large number of cores results in a high capacitive bus loading due to fan-out
[Wik05]. In order to further optimize the power efficiency of the NoC, the
individual fragment switches are automatically set into a standby mode when

3The VHDL model was designed, implemented, and tested by Christian Paukovits in the
course of his PhD thesis.

103

7.3 Results 7 Prototype Implementation

no fragments are to be processed by the switch. This is accomplished by means
of clock gating. The power consumption induced by the transmission of a single
flit is only determined by the power consumption of a single fragment switch
since a single flit causes exactly one fragment switch to be active at a time.
The overall peak power consumption is determined by the maximum number of
concurrently transfered flits and is independent from the length of the routes.

FPGA — Altera EP2C70
Component Logical Elements FMax
Switch 444 342,58 Mhz
Port M. 1027 142,98 Mhz
Pulse M. 16 1453 172,53 Mhz
Pulse M. 32 2918 139,98 Mhz

Table 7.1: Implementation Results

Table 7.1 summarizes the cost and performance results of the synthesized
VHDL-model. An interesting observation is that the port manager of the
TISS which includes all the synchronization mechanisms for state and event
ports consumes only a relatively small portion of the total number of logical
elements required by the TISS. The main part of the logical elements of the
TISS is consumed by the pulse manager due to its support for dispatching
messages with multiple periods (each period requires a dedicated comparator
logic). The table shows that doubling the number of supported periods results
in double the amount of logical elements for the pulse manager.

Table 7.2 depicts the memory requirements of the TISS. The total size of the
MEDL depends on the number of fragments that should be send or received
by the micro component (each periodic send or receive operation consumes an
entry in the MEDL). Each fragment has a to be preceded by a header which
specifies the route of the fragment, but multiple fragments can share the same
header (in case they use the same route). Thus the number of required headers
is less-than-or-equal the number of fragments that have to be sent by the TISS.
The size of the memories for the port flags and the port configuration depends
on the number of ports that should be supported by the micro component,
since each port requires an entry in both of the memories.

For an exemplary configuration we consider a micro component that supports
32 different ports. We assume that the messages of 24 of the ports can be sent
within a single fragment, while the messages of the 8 remaining ports have to
be fragmented into two fragments due to concurrent transfers over the same
link of any of the fragment switches. This results in a total number of 40
fragments that have to be processed by the TISS. We assume that 8 of the
fragments share the same route, which means that 32 headers are required for

104

7 Prototype Implementation 7.3 Results

Entity Width
MEDL Entry 71 bit
Fragment Header 32 bit
Port Configuration Entry 32 bit
Port Flags Entry 32 bit

Table 7.2: TISS - Memory Requirements

the fragments. This exemplary configuration would require 32 port flags entries,
32 port configuration entries, 40 MEDL entries and 32 fragment headers, which
results in a total memory requirement of 739 bytes.

Summarizing the implementation results, we can conclude that the time-
triggered paradigm enabled a very efficient implementation with respect to
power, area, and performance. Furthermore, the design is flexible enough to
be customized according to domain-specific requirements.

105

7.3 Results 7 Prototype Implementation

106

Chapter 8

Conclusion

If we want to manage the complexity of an evolving system at a higher level
of abstraction, we have to conceptualize components that constitute stable in-
termediate forms and exhibit aggregate properties. If these properties can be
described by an appropriate interface model, it is not required to understand
the internal structure of the components in order to reason about the inter-
actions among components and the emerging system properties. Furthermore,
an appropriate interface model contributes to the “evolvability” of a system
by allowing to change and to enhance a component’s implementation, in order
to response to technological developments without revising the overall system
architecture.

Inspired by this insight, we have introduced in the proposed time-triggered
SoC architecture the notion of a micro component, which can be considered
as a basic unit of abstraction that provides its functionality via a message-
based interface, which is defined both in the value domain and in the temporal
domain. The micro components within an SoC are interconnected through
a predictable and deterministic time-triggered on-chip network with inherent
fault isolation and a global time base.

In contrast to existing synchronous on-chip interconnects (e.g., Æthereal, Son-
ics SiliconBackplane), which employ a TDMA scheme solely to establish re-
source guarantees with respect to bandwidth and latency, the proposed SoC
architecture is based on a new communication primitive, called pulsed data
stream [Kop06], which uses a TDMA scheme to schedule periodic send in-
stances of entire application-level messages. The supported periods are in the
range from a few nanoseconds, to milliseconds, up to seconds. This enables
the perfect alignment of the activities within the network to the activation of
periodic application task (e.g., periodic dissemination of a sensor value in a
process control application). In addition, a global time base is provided at the

107

8 Conclusion

application level in order to facilitate the temporal coordination of subsystems
distributed across multiple micro components.

The proposed SoC architecture prevents by design any unintended and un-
wanted interference between micro components. This reduces the complexity
of the resulting system and enables the integration mixed-criticality subsystems.
Interactions between micro components are restricted to occur exclusively via
explicitly exchanged messages on the time-triggered NoC.

As a key element for encapsulation we have introduced the TISS, which pro-
vides a set of core platform services via the UNI. Among these services are
the so-called encapsulated communication channels, which are unidirectional
channels that transport messages at predefined points in time from a single
source to one or more destinations. The communication activities in a given
encapsulated communication channel are neither visible nor have any effect
(e.g., performance penalty) on the exchange of messages in any other encapsu-
lated communication channel. Temporal and spatial partitioning with respect
to encapsulated communication channels is guaranteed by the TISS, which acts
as a guardian for the shared time-triggered NoC. This ensures that a design
fault (e.g., a software fault) within a given micro component cannot lead to a vi-
olation of the micro component’s temporal interface specification in such a way
that the communication between other micro components would be disrupted.

The inherent fault isolation and the determinism of the proposed architecture
can be ideally exploited to perform error masking by TMR. We have shown
(i) how the architecture’s determinism ensures that correct replicas always
reach the same computational result within a bounded time interval, which is
required for exact voting, and (ii) how the encapsulation mechanisms preserve
the independence of replicas by preventing common mode failures.

Complementing the architectural framework, we have introduced a naming
scheme that is ideally suited for large embedded systems based on multi-
processor SoCs. One key aspect is the hierarchical system structure, which
provides a dedicated, independent, and domain-specific namespace for each
application subsystem within a distributed system. Thus, subsystems can be
independently developed by different suppliers without the need for a central
naming authority that coordinates the naming process for the entire system. A
further benefit of the proposed solution is the location transparency for logical
system entities, established by decoupling the logical and the physical system
structure, which facilitates model driven design and dynamic resource manage-
ment.

By building a prototype implementation we have shown that the time-triggered
paradigm enables a very efficient implementation of the proposed architecture
with respect to power, area, and performance. A major advantage of our

108

8 Conclusion

approach is that the NoC does not have to incorporate any arbitration logic
or message buffers since the time-triggered message schedule is constructed in
such a way that contention never occurs.

109

8 Conclusion

110

Appendix A

Specification of the UNI

The chapter contains the detailed specification of the Uniform Network
Interface (UNI). The UNI consists of two parts: the port interface, through
which the TISS accesses the ports in the memory of the host, and the control
interface, which is used by the host for configuration and synchronization pur-
poses. Both interfaces were designed to be fully compliant with the Open Core
Protocol in order to insure a wide acceptance by the industry.

A.1 The Port Interface

The purpose of the port interface is to access the ports in the memory of
the host. Transactions over this interface are exclusively triggered by the TISS
according to the time-triggered message schedule. Therefore, the port interface
is realized as an OCP Master on the side of the TISS and as an OCP Slave on
the side of the host.

A.1.1 Signal Specification

This section describes the OCP signal specification of the UNI port interface.
The individual signals are listed in Table A.1.

Clk. At the UNI, the TISS drives the OCP clock while the frontend in the
host is responsible for controlling the clock-domain crossing between the
clock domains of the TISS and the host. Freeing the TISS from dealing
with clock-domain crossing simplifies its design significantly.

MAddr. This field specifies the address of the current read or write transfer.
To be fully OCP-compliant, MAddr is a byte address. Since OCP requires

111

A.1 The Port Interface A Specification of the UNI

Name Width Driver Function
Clk 1 bit TISS OCP clock
MAddr 16 bit TISS transfer address
MCmd 3 bit TISS transfer command
MData 32 bit TISS write data
SData 32 bit host read data
SError 1 bit host error status

Table A.1: OCP Signals of the Port Interface

all addresses to be word aligned, and since the port interface has a data
word width of 32 bit, the two least significant bits of the address are
hardwired to 0.

MCmd. This field indicates the type of transfer the TISS is requesting; the
following three OCP command are supported.

MCmd[2:0] Command
000 idle
001 write
010 read

MData. MData carries the write data from the TISS to the host; the width
of this field is equal to the width of the NoC (32 bit in our prototype
implementation).

A.1.2 State and Event Ports

This section describes the memory layout of state and event ports as they are
stored in the frontend of the host. The TISS accesses the port memory of the
frontend by data words that have the same width as the width of the NoC,
which allows the TISS to store or to fetch an entire flit in each cycle to or from
the port memory. In our current implementation of the NoC, this width is 32
bit.

State Ports. The memory layout of a state port depends on the message
size (in number of flits), the synchronization method (explicit or implicit), and
the optional activation of the time stamp service for that port. Figure A.1
shows the layout of an output state port of size N (flits) with explicit syn-
chronization. For an output state port with explicit synchronization, 2N data
words are allocated in the memory within the frontend due to the shadow

112

A Specification of the UNI A.1 The Port Interface

memory required for explicit synchronization. An output state port with im-
plicit synchronization consumes only N data words. For input state ports the
memory consumption depends on the activation of the time stamping service.
Figure A.2 shows the memory layout of an input state port with enabled time
stamps. An input state port with enabled time stamps consumes N + 2 data
words due to the 64 additional bits required for storing the global time, while
an input state port with disabled time stamps consumes only N data words.

N ... Port Size

0 Flit 0

1 Flit 1

N-1 Flit N-1

N Shadow Flit 0

N+1 Shadow Flit 1

2*N-1 Shadow Flit N-1

Bit 32 Bit 0

Figure A.1: Output State Port with Explicit Synchronization

Time Stamp (Low Word)

Time Stamp (High Word)

2 Flit 0

N+1 Flit N-1

Bit 32 Bit 0

0

1

Figure A.2: Input State Port with Enabled Time Stamps

113

A.2 The Control Interface A Specification of the UNI

Event Ports. The memory layout of event ports depends on the message
size (in number of flits), queue length (in number of messages), and the optional
activation of the time stamp service. Figure A.3 depicts an event port with
message size N , queue length L, and time stamping enabled. With enabled
time stamps an event port consumes L(N + 2) data words in the frontend
memory, since a time stamp is stored for each message in the queue. Event
ports with time stamping disabled consume only LN data words.

Queue Position 0 - Time Stamp (Low Word)

Queue Position 0 - Time Stamp (High Word)

2 Queue Position 0 - Flit 0

N+1 Queue Position 0 - Flit N-1

Bit 32 Bit 0

0

1

Queue Position 1 - Time Stamp (Low Word)

Queue Position 1 - Time Stamp (High Word)

N+4 Queue Position 1 - Flit 0

N+2

N+3

Queue Position L-1 - Time Stamp (Low Word)

Queue Position L-1 - Time Stamp (High Word)

(L-1)*(N+2)+2 Queue Position L-1 - Flit 0

(L-1)*(N+2)

(L-1)*(N+2)+1

L*(N+2)-1 Queue Position L-1 - Flit N-1

Figure A.3: Event Port with Enabled Time Stamps

A.2 The Control Interface

The control interface is used for configuration and synchronization purposes.
It is implemented as an OCP slave and has—independently of the width of the
NoC—a fixed data word width of 32 bit.

114

A Specification of the UNI A.2 The Control Interface

A.2.1 Signal Specification

This section describes the OCP signals of the control interface. Besides the
OCP data flow signals, which are used to access TISS-internal registers and
memories for configuration and synchronization purposes, the interface provides
sideband signals to reset the host and to indicate error conditions and interrupts
(see Table A.2).

Name Width Driver Function
Clk 1 bit TISS OCP clock
MAddr 9 bit host transfer address
MAddrSpace 2 bit host address space
MCmd 3 bit host transfer command
MData 32 bit host write data
MByteEn 4 bit host write byte enable
MRespAccept 1 bit host host accepts response
SCmdAccept 1 bit TISS TISS accepts transfer
SData 32 bit TISS read data
SResp 1 bit TISS transfer response
SError 1 bit TISS error status
SFlag 10 bit TISS IRQ status
SReset n 1 bit TISS host reset

Table A.2: OCP Signals of the Control Interface

Clk. As for the port interface, the TISS drives the OCP clock lines while the
frontend in the host is responsible for handling the clock-domain crossing
between the clock domains of the TISS and the host.

MAddr. This field specifies the address of the current read or write transfer.
MAddr is a byte address, with the two least significant bits are hardwired
to 0.

MAddrSpace. This field specifies the address space and is an extension of
MAddr. The control interface is partitioned into three different address
spaces:

MAddrSpace[1:0] Address Space
00 reserved
01 port configuration
10 port synchronization flags
11 register file

115

A.2 The Control Interface A Specification of the UNI

The function of the address spaces will be described below.

MCmd. This field indicates the type of transfer the host is requesting. The
following three OCP commands are supported: idle, write, and read. The
encoding is the same as in the MCmd field of the UNI port interface (see
Section A.1).

MData. This field carries the write data from the host to the TISS. The
width of this field is independent of the width of the NoC.

MByteEn. This field enables a partial access of a data word, by indicat-
ing which individual bytes of the word are part of the current transfer.
Therefore, MByteEn consists of one bit for each byte in the data word.
Setting MByteEn[i] to value 0 indicates that the byte associated with
MData[(8i+7):8i] or SData[(8i+7):8i] is masked out in the current
transfer.

MRespAccept. The host indicates that it accepts the current read data from
the TISS by setting this signal to 1. As long as the signal is set to zero,
the TISS will hold the value of the last response steady. This signal may
be required for slower hosts that cannot read the response data in a single
cycle.

SCmdAccept. A value of 1 on this line indicates that the TISS accepts the
transfer request of the host.

SData. This field carries the requested read data from the TISS to the host.
The width of this field is independent of the width of the NoC.

SResp. The TISS uses this field to respond to a request from the host. The
SRep is encoded as follows:

SResp[1:0] Response
00 no response
01 data valid
10 request failed
11 response error

If SResp has the value 01, the SData field holds valid read data. The
value 10 indicates that a read or write transfer was requested at an invalid
address. The value 11 indicates that a write transfer was requested for a
read-only address (e.g., the global time register).

SError. Whenever the TISS detects one or more errors (see the description of
the register file) it sets the SError signal to 1 for exactly one cycle of the
OCP clock.

116

A Specification of the UNI A.2 The Control Interface

SFlag. Via this field, interrupt events generated by the TISS are communi-
cated to the host (to be precise, to the interrupt controller in the fron-
tend). If an interrupt conditions occurs, the corresponding signals will
be set to 1 for exactly one cycle of the OCP clock. (The interrupt events
are synchronous signals!) Thus, in most cases the frontend of the host
will incorporate an interrupt logic that records the interrupts until they
have been serviced by the host. The SFlag field consists of the following
signals:

Signal Interrupt
SFlag[6:0] Port Number
SFlag[7] Port Operation Complete
SFlag[8] Global Reconfiguration Instant
SFlag[9] Programmable Timer Interrupt

Global Reconfiguration Instant. This interrupt is triggered each
time the TISS switches to a new communication schedule. This
will happen at all TISSs at the same tick of the global time.

Programmable Timer Interrupt The programmable timer can be
configured by the host to trigger an interrupt at a defined instant
with respect to the global time.

Port Operation Complete. This interrupt is triggered whenever a
message has been completely received or transmitted. This inter-
rupt is triggered by an entry in the MEDL of the TISS, which is
written by the TNA. For multicast or broadcast messages, the TNA
assures that the interrupt is triggered at the same tick of the global
time at each of the receivers.

Port Number. The port number indicates the corresponding port when
the Port Operation Complete interrupt is triggered.

SReset n. The SReset n signal is a synchronous (sampled with the OCP
clock), low-active reset signal through which the TISS can reset the host.

A.2.2 Port Configuration Memory

The port configuration memory is exclusively written by the host. It is used for
configuring the local port parameters: the type of the port, the synchronization
method, the port interrupts, the time stamp service, the queue length, and the
port address. Globally relevant port parameters that are, like the send and
receive instants or the route are written by the TNA and are, thus, not part of
this memory.

117

A.2 The Control Interface A Specification of the UNI

The port configuration memory consists of consecutive entries (one for each
port) which have a constant width of one data word (32 bit). The word ad-
dress of an entry equals the number of the corresponding port. Thus the entry
of a given port can be directly accessed without the need to search in the port
configuration memory. In the current implementation, 128 ports are supported,
with port number 125 being reserved for the watchdog, port 126 for the diag-
nostic dissemination service, and port 127 for the TISS CP interface which is
written by the TNA. An entry in the port configuration memory consists of
the following fields (see Figure A.4).

Port Enable. Enables or disables the port (0 . . . port is disabled; 1 . . . port
is enabled)

Port Type. Sets the type of the port (0 . . . state port; 1 . . . event port)

Port Sync. Sets the synchronization method for state ports (0 . . . explicit
synchronization; 1 . . . implicit synchronization). Explicit synchronization
consumes double the amount of memory due to the required double buffer.
In case of an event port this field is a “don’t care” value.

Interrupt Enable. Enables or disables Port Operation Complete interrupt
for that port (1 . . . interrupts are enabled; 0 . . . interrupts are disabled).

Time Stamp Enable. Enables or disables the time stamping services for that
port (1 . . . time stamps are enabled; 0 . . . time stamps are disabled).

Port Base Address. Specifies the start address (in words) of the port in the
port memory of the frontend.

QLength. Specifies the total size of an event port in data words (see Sec-
tion A.1.2 for details on how the size is calculated)

QLength Port Base Address T
S

I
E

0

PE ... Port Enable

PS … Port Sync

31Addr 519

PT … Port Type

P
S

P
T

P
E

3 2 14

IE … Interrupt Enable
TS … Time Stamp Enable

Figure A.4: Port Configuration Entry

118

A Specification of the UNI A.2 The Control Interface

A.2.3 Port Synchronization Flags

The port synchronization flags are used to synchronize the port accesses be-
tween the host and the TISS. Like the port configuration memory, the port
synchronization flags are organized into consecutive entries (one for each port)
which have a constant width of one data word (32 bit). The word address of
an entry equals the number of the corresponding port. The interpretation of
an entry of the port synchronization flags depends on the port type configured
in the Port Configuration Memory (see Figure A.5).

dc T
T TISS Addr dc

dc T dc

0

V ... valid

31Addr 16

T … transmit

V

1

dc … don’t care

dc NBW dc

031Addr 16

H
T

0

HT … Host ToOF

31Addr 16

TT … TISS ToOF

Host Addr

13

dc … don’t care

24

29

dc … don’t care

Figure A.5: Port Synchronization Flags

TISS Addr. This field is only significant, if the port is configured as an event
port. In case of an input event port it specifies the write position; in case
of an output event port it specifies the read position. The read or write
position is interpreted as a word offset from the base address of the given
port. The TISS Addr is incremented according to the following formulas
where N denotes the message size and QLength the total port size in 32
bit wide data words:

Time Stamps Increment
disabled TISSAddr = (TISSAddr + N) mod QLength
enabled TISSAddr = (TISSAddr + N + 2) mod QLength

TISS ToOF. (Toggle on Overflow of TISS Addr) This field is only significant,
if the port is configured as an event port. This bit is toggled by the TISS

119

A.2 The Control Interface A Specification of the UNI

each time the TISS Addr becomes 0 after it was incremented (i.e., after an
overflow). This bit is used together with the Host ToOF bit to distinguish
between an empty and a full queue (see Section 6.1.2).

NBW. This field is only significant if the port is configured as an input
state port. It represents the sequencer for the NBW protocol (see Sec-
tion 6.1.2).

Transmit. This field is only significant if the port is configured as an output
state port with explicit synchronization. The semantics of the transmit

bit is described in Section 6.1.2.

Host Addr. This field is only significant if the port is configured as an event
port. For input event ports, it specifies the read position, for output
event ports it specifies the write position. The read or write position is
interpreted as a word offset from the base address of the given port. The
Host Addr is incremented according to the following formula where N
denotes the message size and QLength the total port size in 32 bit wide
data words.

Time Stamps Increment
disabled HostAddr = (HostAddr + N) mod QLength
enabled HostAddr = (HostAddr + N + 2) mod QLength

Host ToOF. (Toggle on Overflow of Host Addr) This field is only significant
if the port is configured as an event port. This bit is toggled by the host
each time the Host Addr becomes 0 after it was incremented (after an
overflow). This bit is used together with the TISS ToOF bit to distinguish
between an empty and a full queue (see Section 6.1.2).

Valid. This field is only significant if the port is configured as an output state
port with explicit synchronization. The valid bit is described in Sec-
tion 6.1.2.

Under normal operation, the TISS Addr, ToOF TISS, NBW, and transmit fields
can be exclusively written by the TISS and are read-only for the host. The host
can only perform write accesses to these fields if the communication is disabled
via the Communication Disable bit in the register file. This is required to
reset the port flags after the host has changed the port configuration.

A.2.4 Register File

The register file, shown in Figure A.6, contains read-only and read/write reg-
isters, which are all 32 bit wide. The register file consists of the following

120

A Specification of the UNI A.2 The Control Interface

Global Time (Lower Word)

Global Time (Higher Word)

Watchdog Lifesign

res T
E

C
D

H
M res Watchdog

Period res

0

HM ... Host Mode

TE … Timer Interrupt Enable

31

0

Addr 13162023

1

Error Status Flags

4 Timer Interrupt Pattern (Lower Word)

5 Timer Interrupt Patter (Higher Word)

6 Timer Interrupt Mask (Lower Word)

7 Timer Interrupt Mask (Higher Word)

CD ... Communication Disable

2

2425

3

res ... reserved

Figure A.6: Register File

fields.

Global Time. The 64 bit wide global time can be accessed via the first two
(read-only) registers of the register file. In order to guarantee that the 64
bits are consistently read with two 32 bit accesses, the following synchro-
nization method is employed: Whenever the lower 32 bits of the global
time are accessed by the host, the upper 32 bits of the global time are
frozen by copying them into shadow register. An access to the upper 32
bits of the global time will return the contents of this shadow register.
Thus, the host will always read a consistent value as long as it accesses
the lower word before the higher word, independently from the time that
elapses between the two accesses.

Watchdog Life Sign. If the watchdog is enabled, the host has to update this
register with the value “0x55555555” with a maximal period as defined
in the Watchdog Period field. If the host fails to update this field within
the defined period, it will be reseted by the TISS (via the SReset n
signal) and the failure will be recorded in the Error Status Flags.

Communication Disable. Via this bit, the host can disable all communica-
tion activities despite the reception of the TNA configuration message
and the dissemination of the error status field (1 . . . communication is
disabled; 0 . . . communication is enabled).

Timer Interrupt Enable. This bit enables or disables the programmable
timer interrupt service (0 . . . timer interrupt is disabled; 1 . . . timer

121

A.2 The Control Interface A Specification of the UNI

interrupt is enabled). The programmable timer interrupt service should
always be disabled while the Timer Interrupt Pattern and the Timer

Interrupt Mask fields are configured to prevent invalid interrupts caused
by inconsistent data in these fields during the configuration.

Host Mode. The Host mode is set by the TNA and specifies the on/off state
of the host (1 . . . host is turned on; 0 . . . host is turned off). This bit
controls either the power lines or the clock line of the host.

Watchdog Period. This field specifies the watchdog period. A value of
“11111” indicates that the watchdog is disabled. This field is configured
by the TNA and is read-only for the host.

Error Status Flags. Any error that is detected by the TISS will be recorded
in the Error Status Flags. This field is read-only for the host and
its content is periodically sent to the diagnostic unit by the diagnostic
dissemination service of the TISS (see Section 6.2.5). After the content
has been disseminated, the Error Status Flags are immediately reset.
The dissemination period is configured by the TNA. The Error Status
Flags consist of the following fields (see Figure A.7).

Queue Overflow Error. At least one overflow occurred.

Overflow-Port Number. The port number where the last overflow oc-
curred. This field is only valid if Queue Overflow Error = 1.

Port Memory Error. A write or read operation of the TISS to the
port memory in the frontend of the host has failed (e.g., due to a
mis-configured address in the port configuration).

Port Configuration Error. A message was scheduled for a port that
is disabled in the port configuration memory.

Communication Error. A message was scheduled while communica-
tion was disabled by the host by the Communication Disable bit.

Watchdog Miss. The host missed updating the watchdog for at least
one period.

Repeated Error. At least one of the indicated errors has occurred more
than once within the current error status dissemination period (see
Section 6.2.5).

Timer Interrupt Pattern & Timer Interrupt Mask. These two fields
configure the programmable timer interrupt service. The functionality
of the programmable timer interrupt service is described in Section 6.2.2.

122

A Specification of the UNI A.2 The Control Interface

Figure A.7: Error Status Flags

123

A.2 The Control Interface A Specification of the UNI

124

Appendix B

List of Acronyms

AAM Abstract Application Model

DAS Distributed Application Subsystem

DMA Direct Memory Access

DU Diagnostic Unit

ECU Electronic Control Unit

FCR Fault Containment Region

FIM Fully-Specified Interface Model

FPGA Field Programmable Gate Array

FTU Fault-Tolerant Unit

G-channel Gateway Channel

G-port Gateway Port

GPS Global Positioning System

IP Intellectual Property

IRQ Interrupt Request

ITRS International Technology Roadmap for Semiconductors

LIF Linking Interface

MDA Model Driven Architecture

125

B List of Acronyms

MEDL Message Descriptor List

MFIM Macro FIM

NBW Non-Blocking Write Protocol

NoC Network-on-a-Chip

OCP Open Core Protocol

ONA Out-of-Norm Assertion

PAM Physical Allocation Model

PIM Platform Independent Model

PSM Platform Specific Model

RCU Replica Coordination Unit

RMA Resource Management Authority

SoC System-on-Chip

TDMA Time Division Multiple Access

TISS Trusted Interface Subsystem

TMR Triple Modular Redundancy

TNA Trusted Network Authority

TSS Trusted Subsystem

TTSoC Time-Triggered System-on-a-Chip

UNI Uniform Network Interface

UFIM Uniform FIM

126

Appendix C

Glossary

Abstract Application Model (AAM) The Abstract Application Model is
an abstract representation of the system or a subsystem, where the in-
terfaces of the individual subsystems are not fully specified, and thus,
some design decisions are still left open (e.g., the selection of an adequate
encryption method to achieve the desired security properties of a commu-
nication channel). In a subsequent step in the design process, the AAMs
of all subsystems have to be transformed into a FIM, which includes the
full specification of the LIF of each job of the system.

Application Computer The application computer is part of the micro com-
ponent ’s host. It provides the computational resources of the micro com-
ponent and controls the micro component’s local I/O interfaces (e.g., for
sensors or actuators). It can be realized as a general-purpose microcon-
troller or FPGA or as a specialized hardware IP block (e.g., an MPEG
encoder).

Application Service The application service is the intended sequence of
messages that is produced by a job via output ports at the LIF and the
controlled object interface in response to the progression of time, inputs
(via input ports at the LIF and the controlled object interface), and state.

Architecture A technical system architecture (or architecture for short) is
a framework for the construction of a system for a chosen application
domain. It provides core platform services and imposes an architectural
style for constraining an implementation in such a way that the ensuing
system is understandable, maintainable, and extensible and can be built
cost-effectively. (see also → federated architecture, → integrated architec-
ture)

127

C Glossary

Architectural Style The architectural style consists of rules and guidelines
for the partitioning of a system into subsystems and for the design of the
interactions among subsystems. The subsystems must comply with the
architectural style to avoid a property mismatch at the interfaces between
subsystems.

Behavior The behavior of a subsystem is the sequence of messages (i.e., in-
tended and unintended) that is produced by the subsystem at its LIF.

Cluster A cluster is a physically distributed computer system that consists
of a set of nodes interconnected by a physical network. If the cluster
supports a single DAS only, we speak of a federated cluster. In this
case, the DAS is physically separated from the clusters of other DASs.
Since the jobs belong to the same DAS, they possess a common level of
criticality.

An integrated cluster, on the other hand, supports more than one DASs.
Each of these DASs receives a share of the communication and component
resources of the integrated cluster.

Controlled Object The controlled object is the industrial plant, the process,
or the device that is to be controlled by the computer system.

Core Platform Services The core platform services (e.g., predictable trans-
port of messages, global time service, watchdog service) are provided via
the UNI and are independent of any particular DAS. They facilitate the
development of distributed real-time applications and separate the appli-
cation functionality from the underlying platform technology to reduce
design complexity and to enable design reuse.

The core platform services can be adapted, refined, and extended by a
frontend, which is a hardware element that translates the UNI to the
interface of the attached application computer.

Declared State The declared state is the state of a subsystem, which is
considered as relevant by the system designer for future behavior of the
subsystem (forward view).

Diagnostic Unit (DU) The Diagnostic Unit is a dedicated micro compo-
nent for the purpose of diagnosis. It performs failure detection at the LIF
of the jobs by executing assertions on the syntactic, temporal, and seman-
tic correctness of messages according to the DSoS message classification
[GIJ+02]. Furthermore, the DU receives failure indication messages gen-
erated by other architectural elements of the SoC (e.g., hosts, TISSs, the
TNA, or the RMA). A failure indication message includes information

128

C Glossary

concerning the type of the occurred failure (e.g., crash failure of a host),
the time of detection w.r.t. to the global time base, and the location
within the SoC (i.e., the micro component). Based on the gathered fail-
ure information, the DU establishes a holistic system view and executes
ONAs to correlate the different failure indication messages in space and
time.

Distributed Application Subsystem (DAS) A Distributed Application
Subsystem is a nearly independent distributed subsystem of a large dis-
tributed real-time system that provides a well-specified application ser-
vice. Examples of DASs in a present day automotive application are
body electronics, the power-train system, and the multimedia system.
Examples of DASs in a present day avionic application are the cabin
pressurization system, the fly-by-wire system, and the in-flight entertain-
ment system. DASs are often developed by different organizational en-
tities (e.g., by different vendors) and maintained by different specialists.
Since DASs may be of different criticality (e.g., vehicle dynamics control
vs. multimedia system), the probability of error propagation across DAS
boundaries must be sufficiently low to meet the dependability require-
ments.

A DAS is further decomposed into smaller units called jobs.

Event Message An event message is a message that contains event obser-
vations. An event observation contains the difference between the “old
state” (the last observed state) and the “new state”. The time of the
event observation denotes the point in time of the state change. In or-
der to maintain state synchronization, the handling of event messages
requires exactly-once semantics. The arrival of an event message usually
gives rise to a control signal, which triggers subsequent computational
and communication activities.

Error Containment Although a fault containment region can demarcate
the immediate impact of a fault, fault effects manifested as erroneous data
can propagate across the boundaries of fault containment regions. For this
reason the system must also provide error containment for avoiding error
propagation by the flow of erroneous messages (→ Error Containment
Region).

Error Containment Region The set of fault containment regions that per-
forms error containment is denoted as an error containment region. An
error containment region must consist of at least two independent fault
containment regions. The error-detection mechanisms must be part of a
different fault containment region than the message sender, otherwise the

129

C Glossary

error detection service can be affected by the same fault that caused the
message failure.

Fault Containment Region (FCR) A Fault Containment Region is a col-
lection of components that operates correctly regardless of any arbitrary
logical or electrical fault outside the region [LH94].

Fault Hypothesis The fault hypothesis is the specification of the faults
that must be tolerated without any impact on the essential system ser-
vices. The fault hypothesis states the assumptions about units of failure
(→ fault containment region), failure modes, failure frequencies, failure
detection, and state recovery.

Fault-Tolerant Unit (FTU) A unit consisting of a number of replica de-
terminate micro components that provides the specified service even if
some of its micro components fail.

Federated Architecture In a federated architecture, each DAS is imple-
mented on a dedicated distributed computer system, consisting of nodes
dedicated to jobs (in the automotive industry called Electronic Control
Units - ECUs) and a physical network (e.g., a CAN network) among the
nodes. In a federated architecture, each DAS is physically separated from
other DASs, which leads to clear boundaries for responsibility and error
propagation.

Frontend The frontend is part of the micro component ’s host. It adapts,
refines, or extends the core platform services, provided by the UNI, ac-
cording to the requirements of the attached application computer. In its
simplest version, the frontend is realized as a dual-ported memory pro-
viding a temporal firewall interface [Kop97] to the application computer.
If required, the frontend can provide higher-level services, which are tai-
lored to the needs of specific application domains. Examples are a fault
tolerance service which performs majority voting of replicated inputs for
failure masking by TMR, or an encryption and decryption service to fa-
cilitate secure communication with chip external entities.

Fully-Specified Interface Model (FIM) The Fully-Specified Interface
Model describes the functionality and the interaction patterns of the indi-
vidual jobs of a system by a behavioral specification, including temporal
constraints. It does not include any information about the micro com-
ponents on which the jobs will be executed and abstracts from micro
component specific implementation details of the jobs (e.g., a micro com-
ponent can be realized as a special purpose microcontroller, as an FPGA
or as a special purpose hardware IP block).

130

C Glossary

The TTSoC architecture defines two different types of FIMs to describe
a system at two different levels of abstraction, the UFIM and the MFIM.

Gateway Channel (G-channel) A Gateway Channel is a unidirectional
communication channel that transports messages from a single source
SoC to one or more destination SoCs (i.e., a channel between gateways
of different SoCs).

Gateway Port (G-port) A Gateway Port is an endpoint of a G-channel.

Host The host performs the computations that are required to deliver the
intended service of a micro component. It is structured into two architec-
tural elements, the application computer and the frontend.

Integrated Architecture An integrated architecture is characterized by the
integration of multiple DASs within a single distributed computer system.
An integrated architecture possesses a single physical network that is
exploited for the construction of multiple virtual networks. In the TTSoC
architecture, architectural services are employed to encapsulate DASs
and restore the complexity management advantages and natural error
containment between DASs of a federated architecture.

Interface State The interface state contains the history of the component
that is relevant for the future behavior of the component as seen from
this interface. Interface state is defined between the intervals of activity
on the sparse time base. Interface state is a subset of the state of the
component and should be accessible from the interface.

Job A job is a subsystem of a DAS and the basic unit of distribution (i.e., a
single job cannot be distributed on multiple micro components). It is the
object of temporal and spatial partitioning and interacts with other jobs
solely by the exchange of messages through its LIF.

An example for a job in a safety-critical brake-by-wire DAS of a car would
be the software, which fits into a single micro component, for comput-
ing the brake force based on the actual wheel slip. For fault-tolerance
reasons, multiple instances of the job will be executed redundantly at dif-
ferent components, e.g., three instances in a triple-modular redundancy
configuration.

Linking Interface (LIF) A job provides its real-time services, and accesses
the real-time services of other jobs by the exchange of messages across
its Linking Interface. These messages have to be fully specified in a LIF
specification which consists of an operational specification and a meta-
level specification [KS03]. While the operational specification deals with

131

C Glossary

the syntactic and temporal aspects of the messages exchanged across the
LIF, the meta-level specification describes the meaning of the information
contained in these messages.

Macro FIM The Macro FIM is a high-level representation of the FIM. It
facilitates the modeling of DASs at a higher level of abstraction than
the UFIM, by providing macros that translate high-level constructs into
constructs supported in the UFIM. Thus, the interface specification of
the jobs in the MFIM can rely on higher-level domain-specific services
like voted channels for fault tolerance, encrypted channels for security, or
bidirectional channels for request/reply transactions. The MFIM meta
model (→ meta model) can exist in multiple variations supporting differ-
ent sets of domain-specific services. For each MFIM meta model, a set of
transformation rules has to be specified that define the transformation of
a MFIM to an equivalent UFIM.

Message Descriptor List (MEDL) The Message Descriptor List is a data
structure within each TISS that determines when a message must be sent
on, or received from, the NoC.

Micro Component A micro component is a self-contained computational
unit that provides its functionality over a well defined message-based in-
terface. It is composed out of two structural elements, the TISS and the
host. While the host performs the computations, which are required to
deliver the intended service of the micro component, the TISS provides
a stable set of core platform services to the host. Furthermore, the TISS
acts as a guardian for the NoC by ensuring that a fault within the host of
a micro component cannot lead to a violation of the micro component’s
temporal interface specification in a way that the communication between
other micro components would be disrupted.

MFIM-channel MFIM channels are used to describe the communication
between jobs in the MFIM. Contrary to the UFIM-channels in the UFIM,
MFIM channels are not restricted to be unidirectional. Their character-
istics are determined by the chosen MFIM meta model (→ meta model).

MFIM-port An MFIM port is an endpoint of an MFIM-channel. A job
in the MFIM can have multiple MFIM-ports since it can be attached to
multiple MFIM-channels.

Non-Blocking Write Protocol (NBW) The Non-Blocking Write
Protocol is a synchronization protocol between a single writer and many
readers. It achieves data consistency without blocking the writer [Kop97].

132

C Glossary

Out-of-Norm Assertion (ONA) An Out-of-Norm Assertion detects
anomalous component behavior that cannot be judged as correct or faulty
at the time of occurrence. Out-of-norm assertions operate on the output
messages and the interface state and encode fault patterns on the consis-
tent distributed state induced by a sparse time base and are specified in
the dimensions of value, time and space.

Meta Model A meta model defines the rules and constructs according to
which a model is created.

Physical Allocation Model (PAM) The Physical Allocation Model is a
more concrete system representation than the FIM. It describes the map-
ping of the FIM (to be more precise, the UFIM) to the physical system
structure. Contrary to the UFIM, the PAM is tailored to the specific
characteristics of the micro component on which a job should be exe-
cuted. Nevertheless, the semantic and syntactic properties of a job’s LIF
in the PAM are exactly the same as in the UFIM. The temporal proper-
ties of a job’s LIF in the PAM are fully specified and satisfy the temporal
constraints defined in the UFIM.

Platform-Independent Model (PIM) A Platform Independent Model is
a model of a system that is independent of the specific technological
platform used to implement it.

Platform-Specific Model (PSM) A Platform Specific Model is a model of
system that is linked to a specific technological platform.

Replica Determinism Replica determinism is a desired property between
replicated subsystems. A set of replicated subsystems is replica deter-
minate if all subsystems in this set produce exactly the same output
messages that are at most an interval of d time units apart, as seen by
an omniscient outside observer. In a time-triggered system, the subsys-
tems are considered to be replica-deterministic if they produce the same
output messages at the same global ticks of their local clock [Kop97].

Resource Management Authority (RMA) The Resource Management
Authority is, besides the TNA, one of the two dedicated architectural
elements for resource management. It accepts resource request messages
from the jobs and generates, according to internal rules, a resource allo-
cation mapping for the entire SoC.

SoC-Channel The term SoC-Channel denotes an encapsulated unidirec-
tional communication channel in the physical system structure that trans-
ports messages at predefined points in time from a single source micro

133

C Glossary

component to one or more destination micro components within the same
SoC (SoC-Channels cannot cross the boundaries of a single SoC).

SoC-Port An SoC-port is an endpoint of an SoC-channel. A micro com-
ponent can have multiple SoC-Ports since it can be attached to multiple
SoC-channels.

Sparse Time Base If the time base of the global time in a distributed
system is dense (i.e., the events are allowed to occur at any instant of
the timeline), then it is in general not possible to generate a consistent
temporal order of events on the basis of the time-stamps. Due to the
impossibility of synchronizing clocks perfectly and the denseness property
of real time, there is always the possibility that a single event is time-
stamped by two clocks with a difference of one tick. By introducing the
concept of a sparse time base [Kop92] this problem can be solved. In the
sparse time model the continuum of time is partitioned into an infinite
sequence of alternating durations of activity (π) and silence (∆). Thereby,
the occurrence of significant events is restricted to the activity intervals
of a globally synchronized action lattice. In this time model, the costly
execution of agreement protocols can be avoided, since every action is
delayed until the next lattice point of the action lattice.

State The state enables the determination of a future output solely on the
basis of the future input and the state the system is in. In other word, the
state enables a “decoupling” of the past from the present and future. The
state embodies all past history of the given system. Apparently, for this
role to be meaningful, the notion of the past and future must be relevant
for the system considered (taken from [MT89, p. 45]) (→ declared state,
→ interface state).

State Message A state message is a periodic message that contains state
observations. An observation is a state observation, if the value of the
observation contains the state of a real-time entity. The time of a state
observation denotes the point in time when the real-time entity was sam-
pled. The handling of state messages occurs through an update in place
and non-consuming read.

State Recovery State recovery is the action of (re-)establishing a valid state
in a subsystem after a failure of that subsystem.

Subsystem A subsystem is a part of a system that represents a closure with
respect to a given property.

Trusted Interface Subsystem (TISS) The Trusted Interface Subsystem
is part of the micro component and provides a stable set of core platform

134

C Glossary

services via the UNI. Furthermore, it acts as a guardian for the NoC by
ensuring that a fault within the host of a micro component (e.g., a soft-
ware fault) cannot lead to a violation of the micro component’s temporal
interface specification in a way that the communication between other
micro components would be disrupted.

Trusted Network Authority (TNA) The Trusted Network Authority is,
besides the RMA, one of the two dedicated architectural elements for
resource management and is responsible for the (re-)configuration of the
TISSs and the NoC. It checks the resource allocation proposal, provided
by the RMA, against a set of predefined constraints (e.g., conflict-freeness
of the message schedule or availability of statically assigned resources for
safety-critical application subsystems). If the mapping is valid, the TNA
(re-)configures the NoC and the TISSs accordingly.

Trusted Subsystem (TSS) The Trusted Subsystem consists of the TNA,
the time-triggered NoC, and the TISSs. The TSS is assumed to be free
of design faults and has to be certified according the criticality level of
the most critical micro component in the SoC.

Uniform Network Interface (UNI) The Uniform Network Interface is
the basic architectural interface of the TTSoC architecture. It is located
between the TISS and the host. The UNI provides a set of core platform
services which facilitate the development of distributed real-time appli-
cations and separate the application functionality from the underlying
platform technology to reduce design complexity and to enable design
reuse.

Uniform FIM (UFIM) The Uniform FIM is a uniform representation of
the FIM. It describes the system at the level of the UNI. This means
that, with respect to the interface specification of the jobs, the UFIM
meta model (→ meta model) defines exclusively constructs that refer to
the communication services that are natively provided by the UNI (e.g.,
unidirectional communication channels). The specification of a job in the
UFIM serves as a contract between the system integrator and the job
developer and can be used for conformance testing.

UFIM-channel UFIM-channels are used to describe the communication
between jobs in the UFIM. The term UFIM-channel denotes an encapsu-
lated unidirectional communication channel that transports messages un-
der predefined temporal constraints (e.g., latency, period, absolute phase
offset to the start of the period, or relative phase offset to another chan-
nel) from a single source job to one or more destination jobs.

135

C Glossary

UFIM-port A UFIM-port is an endpoint of a UFIM-channel. A job can have
multiple UFIM-ports since it can be attached to multiple UFIM-channels.

136

Bibliography

[ARM99] ARM. AMBA Specification Rev. 2.0, 1999.

[ARM01] ARM. Multi-layer AHB Overview, 2001.

[ARM04] ARM. AMBA AXI Protocol Specification V 1.0, 2004.

[BCDGG00] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and
F Grandoni. Threshold-based mechanisms to discriminate tran-
sient from intermittent faults. Transactions on Computers,
49:230–245, March 2000.

[Bir03] S. Birch. Pre-safe headlines S-Class revisions. Automotive Engi-
neering, 111(1):15–18, 2003.

[BM06] L. Benini and G. Micheli. Network on Chips: Technology and
Tools. Morgan Kaufmann Publishers, 2006.

[Bor07] S. Borkar. Thousend core chips—a technology perspective. In
Proceedings of the 44th Design Automation Conference - DAC.
ACM, June 2007.

[Bos91] Robert Bosch Gmbh, Stuttgart, Germany. CAN Specification,
Version 2.0, 1991.

[Bro95] F.P. Brooks, Jr. The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition. Addison-Wesley, 1995.

[BT04] J. Boudec and P. Thiran. Network Calculus, A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, 2004.

[Dei02] A. Deicke. The electrical/electronic diagnostic concept of the new
7 series. In SAE Convergence International Congress & Exposi-
tion On Transportation Electronics, Detroit, MI, USA, 2002.

137

BIBLIOGRAPHY BIBLIOGRAPHY

[Fle05] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General
Motors Corporation, Freescale GmbH, Philips GmbH, Robert
Bosch GmbH, and Volkswagen AG. FlexRay Communications
System Protocol Specification Version 2.1, May 2005.

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. The æthereal net-
work on chip: Concepts, architectures, and implementations.
IEEE Design and Test of Computers, 22(5):414–421, 2005.

[Ger02] C. Gershenson. Complex philosophy. In Proceedings of the 1st
Biennial Seminar on Philosophical, Methodological & Episte-
mological Implications of Complexity Theory, La Habana, Cuba,
2002.

[GIJ+02] M. C. Gaudel, V. Issarny, C. Jones, H. Kopetz, E. Mars-
den, N. Moffat, M. Paulitsch, D. Powell, B. Randell, A. Ro-
manovsky, R. Stroud, and F. Taiani. Final version of the DSoS
conceptual model. DSoS Project (IST-1999-11585) Deliverable
CSDA1, December 2002. Available as Research Report 54/2002
at http://www.vmars.tuwien.ac.at.

[Ham03] R. Hammett. Flight-critical distributed systems: Design con-
siderations [avionics]. IEEE Aerosdpace and Electronic Systems
Magazine, 18(6):30–36, 2003.

[Hof05] H. Peter Hofstee. Introduction to the cell broadband engine. Tech-
nical report, IBM Corporation, 2005.

[ITR05] ITRS. The international roadmap for semiconductors—2005 edi-
tion. Technical report, 2005.

[KAGS05] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer. The
Time-Triggered Ethernet (TTE) design. 8th IEEE International
Symposium on Object-oriented Real-time distributed Computing
(ISORC), May 2005.

[KG94] H. Kopetz and G. Grünsteidl. TTP – a protocol for fault-tolerant
real-time systems. IEEE Computer, 27(1):14–23, January 1994.
Vienna University of Technology, Real-Time Systems Group.

[KO87] H. Kopetz and W. Ochsenreiter. Clock synchronization in dis-
tributed real-time systems. IEEE Transactions on Computers,
36(8):933–940, 1987.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability. IEEE’s
Computing & Control Engineering Journal, 2002.

138

BIBLIOGRAPHY BIBLIOGRAPHY

[Kop92] H. Kopetz. Sparse time versus dense time in distributed real-
time systems. In Proceedings of 12th International Conference on
Distributed Computing Systems, Japan, June 1992.

[Kop97] H. Kopetz. Real-Time Systems Design Principles for Distributed
Embedded Applications. Kluwer Academic Publishers, Boston,
1997.

[Kop05] H. Kopetz. A time-triggered SoC-platform for distributed em-
bedded application. Research Report 34/2005, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstr. 1-
3/182-1, 1040 Vienna, Austria, 2005.

[Kop06] H. Kopetz. Pulsed data streams. In Working Conference on
Distributed and Parallel Embedded Systems (DIPES), pages 105–
124, Braga, Portugal, October 2006. Springer.

[KS03] H. Kopetz and N. Suri. Compositional design of RT systems: A
conceptual basis for specification of linking interfaces. In Proceed-
ings of the 6th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 51–60, May 2003.

[LH94] J.H. Lala and R.E. Harper. Architectural principles for safety-
critical real-time applications. In Proceedings of the IEEE, vol-
ume 82, pages 25–40, January 1994.

[LV62] R.E. Lyons and W. Vanderkulk. The use of triple-modular redun-
dancy to improve computer reliability. IBM Journal of Research
and Development, 6(2):200, April 1962.

[MC02] Germany MOST Cooperation, Karlsruhe. MOST Specification
Version 2.2, 2002.

[MGRG+04] K.D. Muller-Glaser, C. Reichmann, P. Graf, M. Kuhl, and K Rit-
ter. Heterogeneous modeling for automotive electronic control
units using a case-tool integration platform. In IEEE Interna-
tional Symposium on Computer Aided Control Systems Design,
pages 83–88, September 2004.

[Moo89] J.F. Moore. Arinc 629, the civil aircraft databus for the 1990s.
In IEE Colloquium on Time Critical Communications for Instru-
mentation and Control, 1989.

[MT89] M. D. Mesarovic and Y. Takahara. Abstract Systems Theory.
Springer-Verlag, 1989.

139

BIBLIOGRAPHY BIBLIOGRAPHY

[Nee02] Needham, R. M. . Naming. In Sape Mullender, editor, Distributed
Systems, pages 315–327. ACM Press, second edition, 2002.

[OCP05] OCP-IP Association. Open Core Protocol Specification 2.1, 2005.

[OD83] D. C. Oppen and Y. K. Dalal. The clearinghouse: a decentralized
agent for locating named objects in a distributed environment.
ACM Transactions on Information Systems, 1(3):230–253, 1983.

[OKESH07] R. Obermaisser, H. Kopetz, C. El Salloum, and B. Huber. Error
containment in the time-triggered system-on-a-chip architecture.
In Proceedings of the International Embedded Systems Symposium
(IESS’07), Irvine, CA, USA, May 2007.

[OMG03] OMG. MDA guide version 1.0.1, 2003.

[OPHES06] R. Obermaisser, P. Peti, B. Huber, and C. El Salloum. DECOS:
An integrated time-triggered architecture. e&i journal (journal of
the Austrian professional institution for electrical and information
engineering), 3, March 2006.

[PM05] M. Posner and D. Mossor. Designing using the AMBA 3 AXI
protocol. Synopsys, 2005.

[PMH98] B. Pauli, A. Meyna, and P. Heitmann. Reliability of electronic
components and control units in motor vehicle applications. In
VDI Berichte 1415, Electronic Systems for Vehicles, pages 1009–
1024. Verein Deutscher Ingenieure, 1998.

[Pol94] S. Poledna. Replica determinism in distributed real-time systems:
A brief survey. Real-Time Systems, 6:289–316, 1994.

[Pol96] S. Poledna. Fault-Tolerant Real-Time Systems: The Problem of
Replica Determinism. Kluwer Academic Publishers, 1996.

[Pol99] F. J. Pollack. New microarchitecture challenges in the coming
generations of CMOS process technologies. In Proceedings of the
32nd annual ACM/IEEE international symposium on Microar-
chitecture, page 2, Washington, DC, USA, 1999. IEEE Computer
Society.

[RDG+] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, and
P. Wielage. An efficient on-chip network interface offering guar-
anteed services, shared-memory abstraction, and flexible network
configuration.

140

BIBLIOGRAPHY BIBLIOGRAPHY

[Rob91] Robert Bosch Gmbh, Stuttgart, Germany. CAN Specification,
Version 2.0, 1991.

[Ros90] M. T. Rose. The Open Book: A Practical Perspective on OSI.
Prentice Hall International, 1990.

[SM98] J. Swingler and J.W. McBride. The synergistic relationship of
stresses in the automotive connector. In Proceedings of the 19th
International Conference on Electric Contact Phenomena, pages
141–145, 1998.

[Son02] Sonics. Sonics µNetwork technical overview
(http://www.sonicsinc.com), 2002.

[SSA98] A. Silva, P. Sousa, and M. Antunes. Naming: Design pattern and
framework, 1998.

[SV02] A. Sangiovanni-Vincentelli. Defining platform-based design.
EEDesign of EETimes, February 2002.

[SWH95] N. Suri, C.J. Walter, and M.M. Hugue. Advances In Ultra-
Dependable Distributed Systems, chapter 1. IEEE Computer Soci-
ety Press, 10662 Los Vaqueros Circle, P.O. Box 3014, Los Alami-
tos, CA 90720-1264, 1995.

[Tv03] A. S. Tanenbaum and M. van Steen. Distributed Systems: Prin-
ciples and Paradigms. Prentice Hall International, 2003.

[VHR+07] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar. ”an 80-tile 1.28 TFLOPS Network-on-
Chip in 65nm CMOS”. In IEEE International Solid-State Circuits
Conference, ISSCC, February 2007.

[vN56] J. von Neumann. Probabilistic logics and synthesis of reliable or-
ganisms from unreliable components. In C. Shannon and J. Mc-
Carthy, editors, Automata Studies, pages 43–98. Princeton Uni-
versity Press, 1956.

[WdJ92] Roel Wieringa and Wiebren de Jonge. The Identification of Ob-
jects and Roles – object identifiers revisited, 1992.

[WdJ95] Roel Wieringa and Wiebren de Jonge. Object identifiers, keys,
and surrogates: Object identifiers revisited. Theory and Practice
of Object Systems, 1(2):101–114, 1995.

141

BIBLIOGRAPHY BIBLIOGRAPHY

[Wik05] D. Wiklund. Development and Performance Evaluation of Net-
works on Chip. PhD thesis, Department of Electrical Engineering
Linköping University, SE-581 83 Linköping, Sweden, 2005.

[Wik07] Wikipedia, the free Encyclopedia. Roman naming conventions.
Wikimedia Foundation, June 29 2007.

142

Curriculum Vitae

Christian El Salloum

October 31th , 1975 Born in Vienna (Austria)

September 1982 – Elementary School in
June 1986 St. Aegyd (Austria)

September 1986 – Comprehensive Secondary School in
October 1995 Lilienfeld (Austria)

October 1995 – Military Service in
May 1996 Spratzern (Austria)

October 1996 – Studies of Computer Science at the
January 2003 Vienna University of Technology with distinction

March 2002 – Exchange Student in Computer Science at the

July 2002 École nationale supérieure de l’aéronautique et de l’espace
Toulouse (France)

June 2003 Master’s Degree in Computer Science

since April 2003 PhD Studies and Research/Teaching Assistant
at the Vienna University of Technology

