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Abstract

Huge amounts of data are generated and collected every day and usually need to be
analyzed in order to extract useful information. However, the analysis of large amounts
of data can be very challenging. By using graphical representations, visual analysis tech-
niques use the capabilities of the human visual system to assist in this task. Unlike the
data used in Scientific Visualization, the field of Information Visualization deals with dis-
playing abstract data, which has usually no spatial structure, thus requiring additional
steps in order to map the data to the 2D computer display. This work focuses on a
special type of data, namely categorical (qualitative) data. Categorical data dimensions
typically have only a limited number of distinct values. The categories may lack any
inherent ordering and meaningful ways to compute distances. Additionally, categorical
data is often hierarchically structured. These characteristics make the visualization of
categorical data variables challenging. Traditional (item-based) visualization techniques
are usually not ideal for presenting categorical.

Besides surveying available categorical data visualization techniques, the main con-
tribution of this work are two new approaches for the visualization of hierarchically
structured, categorical data. The first technique, Parallel Hierarchies, visualizes mul-
tiple hierarchies simultaneously, using a parallel axes layout and using the frequency
of each category to scale its respective visual representation. Categories of adjacent
hierarchies are connected and statistics are used to emphasize relationships between
categories. The second presented visualization, the Hierarchical Scatterplot, is a novel
approach to visualize a categorical hierarchy in respect to two numerical dimensions.
Again, statistics are used to support this task.

Both approaches allow for an interactive data analysis and are integrated in an
existing visual analysis framework.
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Kurzfassung

Jeden Tag werden riesige Datenmengen produziert, was die Analyse dieser Daten sehr
anspruchsvoll macht. Mit der Darstellung von grafischen Repräsentationen anstelle
von Tausenden Zahlen, machen sich Visualisierungstechniken die Fähigkeiten des men-
schlichen Sehsystems bei der Unterstützung in dieser Aufgabe zu nutzen. Der Bereich
der Informationsvisualisierung beschäftigt sich hauptsächlich mit abstrakten Daten.
Abstrake Daten haben normalerweise keine räumliche Strukture und benötigen daher
zusätzliche Schritte, um die Daten auf den Bildschirm abzubilden. Kategorische Daten
zeichnen sich in der Regel durch eine limitierte Anzahl von möglichen Ausprägungen
aus und haben nicht notwendigerweise eine Ordnung, räumlichen Zusammenhang oder
Distanz. Zusätzlich sind kategorische Daten oft hierarchisch strukturiert. Diese Merk-
male machen die Visualisierung von kategorischen Variablen schwer und traditionelle
Visualisierungstechniken reichen meist nicht aus, um sie sinnvoll darzustellen. Im Fol-
genden werden aktuell verfügbare Techniken zur Visualisierung von kategorischen Daten
vorgestellt.

Der wichtigste Beitrag dieser Arbeit ist allerdings die Präsentation von zwei neuen
Visualierungstechniken für hierarchisch strukturierte, kategorische Daten. Die erste
Technik, Parallel Hierarchies, stellt mehrere Hierarchien gleichzeitig mit Hilfe eines
Parallelachsen-Layouts dar und verwendet die Häufigkeiten der einzelnen Kategorien,
um ihre grafische Darstellung zu skalieren. Kategorien von benachbarten Hierarchien
werden dabei grafisch verbunden und interessante Verbindungen mit aufgrund von statis-
tischen Berechnungen hervorgehoben. Da die meisten Datensätze aber weder auss-
chließlich numerisch, noch ausschließlich kategorisch sind, beschreibt der zweite Ansatz
eine neuartige Technik, den Hierarchical Scatterplot, um eine kategorische Hierarchie in
Bezug auf zwei numerische Dimensionen darzustellen. Auch hier unterstützt Statistik
die Aufgabe.

Beide Techniken sind für eine interaktive Analyse der Daten ausgelegt und wurden
in ein bestehendes Visualisierungssystem integriert.
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Chapter 1

Introduction

Due to the tremendous performance increase of computers in the last years (Moore’s
law [48]), the amount of data being produced increases at an incredible rate. Advances
in technology allow the collection and storage of huge amounts of information gathered
by various sources such as financial transactions, medical data, or surveys. Researchers
from the University of Berkeley estimate that, every year, more than 1 Exabyte (= 1
Million Terabytes) of data is generated, of which a large portion is available in digital
form [33]. The more difficult task, however, is analyzing the data in order to find valuable
information which may be hidden in the data sets and efficient tools to support the user
are required. Visual analysis techniques use the great bandwidth offered by the human
visual system to support this task by communicating the data in a visual form [24].
Graphical representations are used instead of displaying thousands of numbers to ease
the exploration and analysis of the data.

This work aims at a specific topic, i.e. the visualization of categorical data. Typical
data sets often consist of hundreds of dimensions which may be separated into numer-
ical and categorical. Because categorical data has a limited number of distinct values
and characteristics like the ordering or distance between categories may not be given or
possible to calculate, the visualization of this data type is especially challenging and tra-
ditional visualizations are often not effective. Furthermore, data is frequently structured
in a hierarchy, also requiring appropriate visualization.

In the following chapters two new visualization techniques for hierarchically struc-
tured, categorical data are proposed. The first technique, called Parallel Hierarchies, is
based on the work of Bendix et al. [7]. Built upon the idea of Parallel Sets, Parallel
Hierarchies is an approach to visualize multiple dimensions to find associations between
them. The Hierarchical Scatterplot, on the other hand, is a novel approach to visualize
categorical together with numerical data. Based on aggregates of subsets of the data,
the technique can be used to analyze the distribution of categories within numerical di-
mensions. Both techniques were integrated in an existing information visualization tool
(Bulk Analyzer) and designed using common visualization techniques like interactive
view linking and brushing.
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1.1 Visualization

Visualize: to recall or form mental images or pictures (Random House
Unabridged Dictionary, Random House, Inc. 2006).

Basically, visualization is the use of any graphical representation, for example images,
diagrams or animations, to communicate a message [78]. While visualization has been
used to present abstract as well as concrete ideas since the dawn of man, it is now
used in computer science to transform complex and abstract data into an image on
the screen. Visualization makes use of the human visual system and brain capabilities
using external resources for cognition, hypothesis building, and reasoning. This process,
called external cognition [10] is one of the main advantages of visualization since it uses
the very large bandwidth of the human visual system to support understanding and
decision making. Card and Shneiderman [10] point out the importance of interaction in
visualization, which allows the user to change the visualization constantly to react to
new insights gained while analyzing the shown information.

1.1.1 Scientific and Information Visualization

Visualization is often divided in two fields: Scientific Visualization and Information
Visualization. As Matt Ward points out [55] Information Visualization and Scientific
Visualization share common goals and techniques, which makes a clear separation of
the two very hard. Although there is no clear consensus on the boundaries there is a
commonly used distinction.

Scientific Visualization

Scientific Visualization mostly deals with inherently spatial data (2-dimensional or 3-
dimensional) [24] such as MRI data or wind flows. It is often further divided into the
areas of Volume Visualization and Flow Visualization and others.

Information Visualization

On the other hand, Information Visualization (InfoVis) can be seen in contrast to Scien-
tific Visualization (SciVis) because it is usually used to visualize abstract data. Examples
include survey results and financial transactions. Unlike the data used in SciVis the non-
scientific, abstract data of InfoVis does not have an inherent mapping to space. Whereas
the spatial layout of SciVis data makes it easier to visualize intuitively, additional steps
have to be performed to map InfoVis data to the computer screen.

The two fields do not only share goals and techniques, but they also increasingly
share data making a distinction even harder. Predominantly abstract data sets found in
InfoVis may include scientific data, like the location of a store in longitude and latitude
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and scientific data could include abstract meta data. Therefore, Chris Johnson thinks
that the goal is to create integrated visualization and analysis capabilities that use the
best of Information and Scientific Visualization research techniques and to create new
integrated ”Scientific-Information” Visualization software systems [55].

1.1.2 Objectives

The overall goal of visualization is to allow the human user to gain insight into the
presented data. Using one’s perceptual abilities, conclusions can be drawn while in-
teracting with the visualization. One may distinguish between three types of goals for
visualization [32]:

Exploration

Data exploration (also known as explorative analysis [32]) is the process of gaining
insight into data without any given hypothesis. The main goals are the identification of
structures and trends in dataset which have not been discovered before [73]. Interaction
is essential and the graphical visualizations have to support the user in the fact finding
process. The verification of results discovered during the exploration process can for
example be further investigated using InfoVis techniques (see confirmation) or data
mining methods.

Example: A manager notices that one of the company’s stores sold considerably more
products than the other stores and wants to find the cause. Using the interactive tools
of a visualization system, the manager can analyze the data provided by all stores to
find possible answers.

Confirmation

The starting point is a hypothesis about the data, therefore this process is sometimes
called hypothesis testing. In contrast to exploration the confirmative analysis is oriented
towards goals, which are known in advance. Given the visualization of the chosen data
the user should be able to decide whether the hypothesis was correct or not.

Example: A patient shows symptoms of a brain tumor. The doctors analyze the visual-
ization of data gathered by a computer tomography to find out, whether their assump-
tion was correct or not.

Presentation

Most people think of visualization as a way to present and explain complex facts to
people. Adequate techniques are chosen to display the facts or data in a way that
others can understand the communicated ideas. In data analysis, this is often used as
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a post processing step after the data has been analyzed. Presentation techniques are
widespread and can be found in common consumer software like Microsoft Excel.

Example: A recently launched marketing campaign doubled the company’s revenue. By
using diagrams, the company is able to present their success in a comprehensible way
to its shareholders.

The described categories above often overlap; explorative and confirmative analysis
are often used together in an interactive way.

Visual Information Seeking Mantra

Visual data exploration often follows the Visual Information Seeking Mantra as de-
scribed by Shneiderman [61]:

Overview first, zoom and filter, then details on demand

In cases where little is known about data at the beginning of the data exploration process
the user needs to be able to identify interesting regions or patterns in the data as a first
step, requiring a kind of overview. Zooming can then be used to focus on such patterns
and the user may decide to filter out currently unimportant information. Drilling down
in interesting regions even further allows to reveal details on demand. InfoVis techniques
can be used for all steps in the exploration process, requiring the visualization to display
data at different granularity levels and provide interactive controls (see chapter 2.2 for
details).

Keim extended Schneiderman’s Visual Information Seeking Mantra to get the Visual
Analytics Mantra [34] which addresses the problem, that fully visual and interactive
methods are often not sufficient for very large data sets. Therefore, the data is analyzed
first and only the important parts are visualized.

Analyse first, show important, zoom, filter and analyse further,
details on demand
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Figure 1.1: Information Visualization Pipeline (image adapted from Card et al. [10])

1.2 Information Visualization

Information Visualization is the communication of abstract data through the
use of interactive visual interfaces (Keim et. al., Challenges in Visual Data
Analysis, 2006 [36]).

1.2.1 Information Visualization Pipeline

The Information Visualization Pipeline (Figure 1.1) was first proposed by Card et
al. [10] and shows the process of converting raw data to visual representations. First,
the raw data is transformed into a convenient and well-organized data format. The
result of this step (called Data Transformation) is typically a dataset containing data
entities with data attribute values associated. Often the dataset is stored as tables,
with columns being the data attributes (or dimensions) and rows containing single data
records. Data processing such as filtering and aggregation can be applied to further
adapt the data for analysis. The second step is the Data Mapping, which is also the
heart of the Information Visualization pipeline. It is used to generate visual structures
based on the data or subsets of it. It is also the transition from data to a visual form
after which the information is no longer data dependent. The main challenge here is to
identify a visual structure which is suitable for the specific kind of data and supports the
user. Next, the visual structures are mapped to the screen and the user is provided with
various View Transformations to interact with the view (e.g. zooming and panning).
The resulting view is presented to the user, who may customize any of the steps of the
pipeline to adjust the visualization to match his or her goals.
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Ind. Var. Dep. Var. Example
1 1 1D Function
2 1 Heightfield
2 2 2D Vectorfield
3 1 3D Density Distribution
3 3 3D Flows and Streams
(1) N Database Table

Table 1.1: Examples of data with different numbers of independent and dependent
variables.

1.2.2 Data Types

Visual representations are usually influenced by the data type and most visualization
taxonomies are based on the type of data involved [61]. Common characteristics to
classify visualization with respect to the data types include:

Number of data dimensions

One of the most frequently used data characteristics is the data dimensionality. The
dimensionality of a data set is defined by the number of independent variables (arguments
in mathematic functions). Besides the independent variables, there may be one or
many dependent variables. For example, in a temporal data set (with time as the only
independent variable) one or multiple data values can be associated to each point in
time (e.g., a series of stock prices). A 2D height field, on the other hand, consists of
two independent variables (the geographical location defined by X and Y) but only one
dependent variable (the height at each point). To display this data, all three variables
have to be visualized, e.g., by using 3-dimensional space. Table 1.1 lists a number of
other examples.

Whereas the visualization of inherently spatial data (e.g. height fields or MRI data
sets) is usually quite intuitive, mapping multi-dimensional and multivariate data is not
straight forward. Survey data sets often consist of hundred dimensions and even thou-
sands of dimensions are not uncommon in relational databases. More sophisticated
visualization techniques are needed for these datasets [33].

Nature of the data

Quantitative data (also called numerical data) is data measured (or computed) on
a numerical scale, a numerical dataset may be any list of numbers. Such data usually
has an inherent order and any two values can be easily compared to each other, allowing
distance computations between them. Quantitative data can further be divided into
continuous and discrete data. Continuous variables may assume any floating point value
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Categorical Data Traditional Visualizations
Discrete (Usually) Continuous
No inherent ordering Assumes an ordering
Many dimensions Few dimensions
Few possible values Many values

Table 1.2: Discrepancies between qualitative data and traditional visualization tech-
niques.

(e.g., temperature: 2.5◦C, 10◦C, 15.5◦C, 20.29◦C, etc.), discrete variables may only
assume a finite number of possible values (e.g., number of students in a class: 10, 15,
23, etc.).

Qualitative data or categorical data is extremely varied in nature. The variables of
such data can be measured using only a limited number of values or categories. Therefore
categorical data can be numerical as well as non-numerical. It can further be classified
into ordinal and nominal data. The latter does not have any inherent order (e.g., family
status: single, married, divorced, etc.) whereas ordinal data has a conventional ordering
(e.g. months: January, February, March, etc.). Discrete data with only a few unique
values is also often handled as categorical data (e.g., coded survey answers: 1 = very
good, 2 = good, etc.). Besides that, numerical data can easily be categorized by using
intervals and binning to subdivide the data into categories. Visualizing categorical data
is challenging because the calculation of numeric differences may not be possible and
there does not need to be any inherent ordering. Therefore one of the main issues is
to find a suitable visual mapping (see details in Chapter 1.2.4) and due to a number
of discrepancies (see Table 1.2) traditional visualizations are often not suited well for
categorical data.

More complicated types are often neither numerical, nor categorical. Such variables
may be complex numbers, vectors, tensors or other more complex structures, like texts
or hypertexts. Whereas vectors can be described by multiple numerical values, they can
not easily be compared and lack of an inherent ordering. Texts and hypertexts, on the
other hand, can not be described by numbers, making standard visualization techniques
usually not applicable [72].

Structure of the data

Linear data is usually stored in data structures like tables or arrays and visualized using
graphs, an example is temporal data which is data that changes over time. Hierarchical
data is intrinsically structured and based on the concept of contained items (e.g. trees).
A hierarchy is a collection of items which are linked using a parent-child relationship,
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Figure 1.2: Keim’s classification of Information Visualization techniques (image courtesy
of Keim [33]).

i.e., each items has a link to one parent item. Network data is often represented with
graph structures and describes any sort of entities linked together.

1.2.3 Visualization Taxonomies

Various taxonomies to classify Information Visualization techniques have been proposed
over the last few years. Early approaches where mostly based on the data types before
Shneiderman incorporated tasks into his taxonomy [61]. He used seven types of data
(1-, 2-, 3-dimensional data, temporal data, multi-dimensional data, tree and network
data) and defined seven tasks: overview, zoom, filter, details-on-demand, relate, history,
and extract [61]. Keim developed a similar classification [33]. While he also used the
data type as one criterion (although a slightly different classification of data), he used
the visualization technique as well as interaction and distortion techniques instead of
Shneiderman’s tasks (see Figure 1.2). The three dimensions in Keim’s classification can
be assumed as orthogonal, which means any data type can be used with any visualization
and any interaction technique. It must also be noted that a visualization system will
most likely use different data types as well as a combination of different visualization or
interaction techniques.

Whereas Shneiderman’s and Keim’s taxonomies are (at least partly) based on data
type, Tory and Möller proposed a different approach where visualization techniques
are based on algorithms rather than data [72]. Assumptions about the data are used
to categorize the algorithms. Because those decisions are made by the visualization
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Figure 1.3: Tory and Möller’s classification of visualization tasks. The classification is
structured by the data model (continuous or discrete) and by how much the spatializa-
tion is constrained (image courtesy of Tory and Möller [72]).

designers, the set of assumptions is called design model in contrast to the user model,
which is the set of ideas the user has about the object of study. As stated by Tory
and Möller, users will favor techniques that are based on a design model matching
their own ideas. Therefore user and design models are linked making a model based
classification reasonable. Design models are first classified, in terms of whether they
are discrete or continuous. Secondly, they are divided based on the influence of the
designer on different attributes like spatialization or color. Examples for continuous
models where the spatialization is given by the dataset are medical images. In contrast,
the implied design model for categorical data will most likely be discrete and chosen
since the spatial layout is not inherent in the abstract data (some categorical data, e.g.
categories of temperatures, will lean toward a constrained model). At lower levels the
models are further classified similar to the above described data based taxonomies.

1.2.4 Categorical and Hierarchical Data Visualization

As stated in Chapter 1.2.2, categorical data is usually discrete and variables are mea-
sured using a limited number of values. Categorical variables usually do not have any
inherent ordering, spatial layout, or distance metric. According to Friendly [16] existing
visualization techniques for categorical data often tend to be designed for a special pur-
pose and can only be applied to a limited range of tasks (e.g., Mosaic Displays [15] are
designed for discovering associations whereas whereas Parallel Coordinates [28] can be
used for detecting outliers, analyzing associations or exploring clusters) and specifically
designed visualization methods for categorical data have not been as common as visu-
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alizations for numeric data. A lot of early techniques are also limited by the amount of
data dimensions or the size of the visualized data in general [58].

Visualization techniques designed for categorical data can be classified as either non-
transformational or transformational:

Non-transformational Techniques directly map data onto visual representations
on the screen and do not need to transform or map it first. Some other data or algorithm
is used to calculate a location for the graphical objects, e.g. Glyphs (see Chapter 2.1.2).
In general, non-transformational techniques do not work with traditional visualizations
such as Parallel Coordinates or Scatterplots.

Transformational techniques first transform each category to a numeric value,
which may then be used within standard views. One commonly used mapping transfor-
mation is a frequency-based mapping. The frequency of each unique value is calculated
and later utilized for spatialization (see frequency-based approaches in Chapter 2.1.3).

While a lot of research has gone into improving the mapping transformation from
categorical to numerical data [43, 58], standard InfoVis views are generally not well
suited for the display of categorical data if they are not adapted to it (see Chapter
2 for examples). Especially techniques like Parallel Coordinates, which implement a
continuous design model (see Tory’s and Möller’s taxonomy in Chapter 1.2.3) suffer from
the discrepancy of design model and user model which is usually discrete if categorical
data is used. Categorical data is almost always associated with some meta information,
for example the name of the category. This meta information is often important for the
user, but is usually not supported by standard views.

Hierarchies are often used to structure categorical data. The hierarchies may be
stored in the data set or generated either by the user or classification algorithms. For
example, a data set containing financial transactions could be divided into categories of
year, which are then further divided in months or days. It is also common to base spe-
cialization (”drill down”) and generalization (”roll up”) on certain categories in OLAP
(”Online Analytical Processing”) applications (see Chapter 2.3.2) and a simultaneous
visualization of different hierarchical levels is often required (e.g. comparing the average
financial results of a year to a month).

Many approaches to visualize hierarchies have been proposed over the last few years
and many are adaptions of traditional techniques for hierarchical structures (e.g. Hier-
archical Parallel Coordinates [18], TreeMaps Layouts for Hierarchical Data [59]).
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1.3 Thesis Organization

This thesis is structured as follows: Chapter 2 contains an overview of existing visual-
ization techniques for categorical data and important InfoVis fundamentals. Chapter 3
explains the data model, the views are based on. In Chapter 4, Parallel Hierarchies
are described as a visualization technique to visualize multiple hierarchical structured
categorical dimensions. Another novel visualization technique, the Hierarchical Scatter-
plot, allowing for analysis of categorical and numerical data is presented in Chapter 5.
In Chapter 6 both methods are evaluated visualizing a real-world data set. Details
about the implementation are given in Chapter 7. The thesis is then wrapped up by
the summary and conclusion in Chapters 8 and 9.



Chapter 2

State of the Art and
Fundamentals

In the introduction it was explained that the visualization of multi-dimensional categor-
ical data provides many challenges. After describing traditional and new Information
Visualization methods and how they deal with categorical data, the most important in-
teraction techniques are explained. Later an introduction into the related areas of data
mining and ”Online Analytical Processing” as well as an overview of the Bulk Analyzer
visualization system is given.

2.1 Visualization Metaphors

The subsequent section provides a survey of common InfoVis methods. As the focus of
this thesis is on the visualization of hierarchically structured categorical data and due to
limited space, only a subset of InfoVis techniques was surveyed. The various approaches
are analyzed with categorical data in mind and therefore, advantages and disadvantages
with respect to that are pointed out. After starting with spreadsheets and tables, the
methods are divided into item-based and frequency-based techniques. Whereas the
former display single data points, the latter use the item counts of categories or data
intervals for the graphical representations.

2.1.1 Spreadsheets and Tables

A spreadsheet is a rectangular table where values are arranged in rows and columns.
Spreadsheets have been used for hundreds of years and when Microsoft introduced the
Windows operating system, Excel was one of the first released products [52]. Various
aggregations are used to reduce large data sets to a comparable small amount of concise
information. Traditional 2-D tables can only compare two dimensions of variables at a
time which is a major disadvantage when dealing with multi-dimensional data sets.
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Figure 2.1: Using a pivot table in Microsoft Excel to calculate the average miles per
gallon in relation to their origin and number of cylinders.

Pivot tables can be used to summarize large data sets quickly by aggregating the
data as they allow the calculation of summary information without requiring the user to
write formulas like in spreadsheets. For example, pivot tables can automatically count,
sum or count the data of a spreadsheet table. Different dimensions of the dataset can be
assigned to rows or columns and arranged dynamically which is called pivoting : the users
can examine the data from various angles, independent from the layout of the involved
spreadsheet tables. Other dimensions can be aggregated and the numbers displayed
in the table’s cells (see Figure 2.1). They are one of the most popular interfaces for
multi-dimensional databases and are often used for OLAP (see Chapter 2.3.2).

Crosstabulations are used to show the joint distribution or frequency of two (or
more) variables in a table. Each cell of the table is used to display one cross tabulation.
Crosstabulation is useful for categorical data with a limited number of unique values
and is used to identify relationships between the crosstabulated variables. It is a very
popular method to analyze survey data where each cell of the table displays the number
of respondents (or the distribution) that gave a certain combination of responses. A
simple form of the crosstabulation is the 2 x 2 table where only two variables with two
unique values are used. The fourfold display is a method to visualize 2 x 2 tables [17].
An example including a detailed description of a crosstabulation can be found later in
this chapter in Section 2.1.3 (see also Figure 2.11).

Sifer points out that while scatterplots are better for reading clusters, tabular ap-
proaches are better for analyzing and comparing distributions [62]. Pivot tables support
many dimensions and can also be used for hierarchical structures which makes them a
powerful tool.

Table Lens is an interesting approach to visualize an entire data set at once, without
the need of scrolling [54]. The Table Lens presents the data in a table, where each row
corresponds to a data item and each column represents a data variable. By dynamically
distorting the spatial layout of the table, large amounts of information can be displayed.
Initially, the data is shown in a compressed form, where categorical data fields are
displayed using using colored boxes and variable length bars represent numerical data
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Figure 2.2: The Table Lens allows the user to view large amounts of data at once using
a Focus+Context approach. Image courtesy of Inxight Software, Inc. [30]

fields (see Figure 2.2). Because rows and columns are not bent by warping, the user can
efficiently scan the data and recognize trends and patterns. The user can select certain
areas which are then enlarged and detailed information about the data is presented.
Additionally, these focus areas can easily be moved, enlarged or shrunk.

2.1.2 Item-based Techniques

Item-based techniques display single data points and are the most popular approaches to
visualize numerical data. Because categorical data is usually described by a limited num-
ber of unique values, item-based visualizations are usually not suitable. Additionally,
categorical variables may need to be transformed into numeric values first. Nevertheless,
several approaches to visualize categorical data are based upon item-based techniques.

Scatterplots

A scatterplot is a visualization that displays and relates two (or three in the three-
dimensional case) quantitative variables of a data set. The data is drawn as a set of
points where each point represents one item of the data set (see Figures 2.17 and 2.18
for examples). While a scatterplot does not specify dependent or independent variables
it can show various kind of relationships in the data (correlations are suggested by
patterns of dots) [67]. Scatterplots are also often used to identify outliers. Their major
advantage is the ease of use and interpretation. Although scatterplots usually can handle
large data sets better than many other visualization techniques, they are still limited by
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Figure 2.3: 3-D scatterplot using coloring to display a forth dimension.

the number of points reasonably displayed at one time and read by users as well as the
number of displayed dimensions.

Three dimensional scatterplots use orthogonal or perspective projections to visualize
three dimensions at once. Figure 2.3 also shows how coloring with a transfer function can
be used to incorporate an additional dimension. Scatterplot matrices are a method to
visualize multiple dimensions where each pairwise combination of dimensions is displayed
as a scatterplot. Although conceptionally not limited, the available screen space sets a
practical limit to the number of simultaneously shown dimensions.

Scatterplots are generally not very suitable for visualizing categorical data nor can
they display any hierarchical structuring in the data set. Ma and Hellerstein show
an approach to order categories so they can be better viewed with techniques such as
scatterplots [43]. Another typical problem of scatterplots are overlapping points, which
are displayed on top of each other and the user can tell how many data items each point
represents. One widely used approach to solve this problem, is the use of ”jittering” [12].
Jittering scatters the overlapping data points across a wider area, allowing the user to
identify the number of data items at each point. Unfortunately, the jitter technique
causes data items to be positioned incorrectly, which may affect the interpretation of
the data negatively. Therefore, Manson recommends the use of additional attributes
(e.g., coloring of points) or animation to solve the problem [45].

Trendanalyzer, a visualization system developed by the Gapminder Foundation [21],
allows the analysis of world development indicators (e.g., income per capita, life ex-
pectancy, child mortality, etc.) using a scatterplot approach. The countries, represented
as circles, are placed on the two numerical axes according to chosen indicators. The size
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Figure 2.4: The visualization software Trendanalyzer allows the user to explore the
relationship between health and wealth of countries, which are represented by circles.
Screenshot of Gapminder World 2006 [21].

of the circle, as well as its color, also depend on indicators, such as population or income
group (see Figure 2.4 for a screenshot).

Spotfire [65] uses a scatterplot as its main visualization view and although several
other methods can be chosen by the user, the scatterplot tends to be the most popular
as a survey by Kobsa has shown [38].

Glyphs and Icons

In glyph based visualizations, one or more attributes of a data point are mapped to
a particular symbol or shape, which is in many cases a metaphor of the respective
application domain. Glyphs are used to display multiple dimensions at once, enabling
the user to identify similarities, relationships, or anomalies in the data set. See Figure 2.5
for a few examples of glyphs ranging from star glyphs to the well known Chernoff
faces [11, 50, 80]. Each glyph is represented by a number of geometric and appearance
attributes which are mapped to certain dimensions of the data.

After a glyph has been generated it must be placed on the screen. Various strategies
for placing glyphs exist: while sometimes a certain dimension of the raw data is assigned
to the position attribute, others are based on the structure of the data set which can
be very effective for ordered or hierarchical data. Many glyph placement strategies are
explained by Ward [76] and implemented in the XmdvTool [75].

Lee et al. [42] also found that glyph placement is a major challenge in Information
Visualization. In an evaluation of several glyph visualizations, glyphs usually lead to
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Figure 2.5: The left image shows various examples of glyphs (image courtesy of Ward
et al. [76]). The right image shows four plots (image courtesy of Massart [46]).

slow and inaccurate responses. Most users had problems understanding the spatial
location of the glyph compared to others.

In addition to the placement problem glyphs have some other drawbacks. First, the
number of simultaneously displayed glyphs is limited by the screen space. Depending on
the glyph type, there is a minimal size below which an interpretation becomes increas-
ingly hard. Furthermore, users may perceive different appearance attributes differently.

Box Plots (also known as box-and-whisker plot) are a very popular type of glyph [46].
The box plot is a commonly used technique in the field of statistical analysis to quickly
interpret the distribution of data (see Figure 2.5 for an example). While regular glyphs
represent one or more attributes of a single data point, a box plot visualizes a range of
data points. It may therefore be considered a range- or distribution-based technique,
since it is neither item- nor frequency-based.

Based on robust statistics the box plot displays the median and the interquartile
range (IQR) of a distribution to make it resistant to outliers. The IQR is the range
between the third and first quartiles which is the range where the middle 50% of the
ranked data are found. The length of the box is equal to the IQR and the position of
the median is indicated by a line. The whiskers show the range of the data. Strong
outliers are excluded by limiting the range to the third quartile + 1.5 x IQR in one and
first quartile - 1.5 x IQR in the other direction. Sometimes ticks or points are drawn to
indicate these strong outliers.
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(a) Traditional parallel co-
ordinates are mostly used
for continuous data. Image
courtesy of Hauser et al. [26]

(b) Using parallel coordinates
with categorical data.

(c) Pre-processing the data
using a DQC approach lead-
ing to better results. Images
courtesy of Rosario [58]

Figure 2.6: Three examples of Parallel Coordinates.

Parallel Coordinates

Parallel Coordinates are a common technique to visualize multi-dimensional data sets.
The approach was first mentioned by Inselberg and Dimsdale [28] and has since been
incorporated into many visualization systems to identify correlations between variables.

The main idea is to position the axes in parallel, which has the major advantage
compared to scatterplots that this approach has no theoretical limit with respect to the
number of simultaneously shown dimensions (the amount of dimension shown at once
is only limited by the available screen space which may be enlarged using scrolling).

Each N-dimensional point is represented by a polyline which intersects each axis at
the position corresponding to the value of the respective dimension of that entry (see
Figure 2.6). It is a special property of Parallel Coordinates that lines are equivalent
to points in Cartesian coordinates and points in Parallel Coordinates are equivalent to
lines in Cartesian coordinates, so it can be considered a dual space.

The visual structure of Parallel Coordinates make it easy to add additional dimen-
sions by simply adding more axes to the view. The order of the axes is significant,
as correlations are perceived most easily for neighboring axes, although the user can
typically change this order interactively.

One difficulty of Parallel Coordinates is the cluttering of information when large data
sets are displayed. Various approaches such as clustering and proximity-based coloring
have been proposed to solve this problem[18]. A first step for large, but not huge data
sets is to use transparency when drawing the polylines [31].

Generally, categorical data can not be visualized well using Parallel Coordinates as
the categorical values first have to be transformed into numeric values. However, artifi-
cial patterns and errors in the interpretation of the visualization can easily be introduced
and are sometimes inevitable [58]. As shown in Chapter 1.2.4 the user usually associates
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categorical data with a discrete model whereas the Parallel Coordinates implement a
continuous model, which explains the bad utilization of available screen space. The in-
terpretation of categorical values may be confusing and hard to understand. Moreover,
Parallel Coordinates commonly do not display any meta information such as the names
of the categories.

Rosario et al.[58] introduced an approach that handles ordering and spacing of cat-
egorical values in a Parallel Coordinates system. Before positioning the categories on
the parallel axes, the categorical data is pre-processed using a Distance-Quantification-
Classing (DQC) approach so that the calculated order considers similarity of the cat-
egories. Additionally a degree of similarity is used to space the categories along one
axis leading to a more efficient and meaningful location of the data values. While the
authors note that the mapping is distance and association-preserving Bendix [6] points
out that categorical values naturally lack any distance.

Figure 2.6 shows an example of categorical data visualization using Parallel Coor-
dinates comparing the traditional approach (categorical values are mapped using equal
spacing and ordered arbitrarily) to the Distance-Quantification-Classing approach. The
results are easier to interpret, but the discrepancy between expected and implemented
models still make Parallel Coordinates not very suitable for categorical data.

2.1.3 Frequency-based Techniques

As stated above, categorical data lends itself to a discrete user model. Because most
item-based visualization techniques are based on a continuous design model, they are
usually not the optimal choice for categorical values. Frequency-based techniques on the
other hand, implement a discrete model eliminating the discrepancy of user imagination
and presented image [7]. Frequency-based methods use the frequency of each category,
i.e., the number of entries within that particular category, to scale visual representations
accordingly.

Friendly [15] also states that principles of perception, detection and comparison have
suggested that areas are the best representations for frequencies.

Absolute and relative frequencies are often mistakenly interchanged. In this work
the term “absolute frequency” refers to the actual item count and it is a discrete number.
Relative frequencies on the other hand are normalized by the total number of occur-
rences. In most cases the relative frequencies are used to compare two statistics and if
not stated otherwise the short term frequency is used for relative frequencies.

Bar Charts

Bar charts or bar graphs are a common method for visualizing the frequencies of cat-
egorical values or value ranges of continuous data. The frequencies are represented by
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Figure 2.7: Comparison of histogram and bargram, both displaying the same data.
Image courtesy of Wittenburg et al. [79]

the areas of the bars. While vertically oriented, equal-width bar charts (histograms) are
more familiar to most people and allow for more exact comparisons, horizontally ori-
ented, equal-height bar charts (bargrams) use the available screen space more efficiently.

Histograms are equal-width bar charts where the height of the bar is associated
with a frequency. The number of bars (or bins) is either selected by the user (for
continuous data) or given by the number of unique values (e.g. a categorical data
dimension). Attempts to determine an optimal number of bars are available but make
strong assumptions about the data distribution. Therefore it is usually better to give
the user the option to change the number of bins according to their needs or the used
data set. The frequency of a histogram bin is calculated by comparing each value of the
data set to the bin boundaries and counting the ones that fall into the boundary.

1-D histograms are displayed in two dimensions on the screen while 2-D histograms
(the boundary is a region and not just a single interval) are usually displayed in 3-D
or as a 2-D ”height fields”. Kosara et al. [41] present several approaches to visualize
histograms for time-varying data. Another variant is the cumulative histogram where
the cumulative number of observations is counted up to the specified bin.

Generally, histograms are very useful since they give the user a quick and easy-to-
understand overview of the distribution of a data dimension. They can also be very pow-
erful in combination with other views (see brushing and view linking in Chapter 2.2.1).

Bargrams are equal-height bar charts and represent the frequencies of the bins by
their relative widths. Any bins without data are ignored. As you can see in Figure 2.7,
gaps are not shown and this information is therefore lost. Bargrams need less screen
space than histograms and multiple bargrams can displayed at once. Wittenburg et
al. proposed parallel bargrams which, similar to Parallel Coordinates, display multiple
dimensions on uniformly spaced axes [79]. In contrast to Parallel Coordinates, the axes
are oriented horizontally and no lines are drawn. Value bins are can be brushed revealing
possible relationships in other dimensions and bins.

The commercial Information Visualization product InfoZoom uses parallel bargrams
as the main view (see Figure 2.8) and also allows for the visual analysis of hierarchies
and tree structures [64].
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Figure 2.8: InfoZoom is using parallel bargrams to display multiple dimension on one
screen. Image courtesy of Kobsa [38].

Pixel Bar Charts are derived from the bar charts as described before (histogram and
bargram) but present data values directly instead of just using the frequency of a bin.
The idea can be described as a combination of a bar chart and a scatterplot. The data
is first partitioned using a categorical data dimension before single pixels are arranged
within a bar using one or two numerical attributes. The pixels are colored according
to the data values. Space filling pixel bars solve the problem of traditional bar charts
where large portions of the screen space are not used because of differing heights of the
bars. The space filling approach scales the whole area assigned to a category, instead
of only adjusting height or width of a bar and therefore uses almost all pixels on the
screen to display information. Keim et al. [35] extended this approach further to display
hierarchical data which allows the user to drill down on selected bars.

Mosaic Display

Mosaic Displays implement a discrete design model and graphically represent the fre-
quencies of the categorical values [17]. Using a recursive space-subdivision algorithm the
width and height of the available space is divided alternately using the variables of the
assigned dimensions. Friendly [15] enhanced the Mosaic Display by using coloring and
shading to map additional information. Other implementations use the color to display
the levels of one variable in order to make the categories more visually distinct. Mosaic
Displays have further been extended with several interactive features [27].
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Although the number of dimensions handled by the algorithm is only limited by the
available screen space, Mosaic Displays become difficult to understand when the number
of displayed dimensions is larger than three or four.

Dimensional Stacking

Dimensional Stacking is another technique based on a discrete design model making it
suitable for multi-dimensional categorical data [5]. Similar to Mosaic Displays, a two-
dimensional grid is recursively subdivided by the categories of the assigned dimensions
until all dimensions are used. The space is split into small rectangles where the next pair
of dimensions is embedded. Whereas Mosaic Displays use the frequency of a category
to scale the respective area, the rectangles of Dimensional Stacking are of the same size
but filled according to the data values.

The technique preserves much of the spatial information and can therefore be used
to find outliers or clusters in the data set. Dimensional Stacking is limited in the number
of reasonably displayed dimensions as well as in interactive features, making it a seldom
used technique.

TreeMaps

The most common way of representing hierarchies in a graphical form is a tree visualiza-
tion. As with other visualization techniques, trees are limited by the size of the screen
which is especially an issue when very large hierarchies are visualized. There has been
much work on the visualization of large hierarchies resulting in a variety of different
approaches. A comparison of several 2-D visualizations of hierarchies was written by
Barlow and Neville [4]. Furthermore, a number of popular techniques has evaluated by
Kobsa [39].

Whereas traditional tree visualizations represent the tree as a rooted, directed graph
with connected nodes, the TreeMap is a space-filling approach where each node is rep-
resented by a rectangle whose size is proportional to an attribute of the node, such as
the frequency count.

Proposed by Shneiderman [60], TreeMaps have since been a popular visualization
technique. Given the discrete design model of TreeMaps they are especially useful for
hierarchically structured data sets. The algorithm recursively subdivides the available
screen space by traversing the hierarchy topdown and alternatingly splitting the area
horizontally and vertically. The areas of the rectangles at one hierarchy level can depend
on the frequency count of the respective categories but may also be calculated using a
different data dimension (e.g. the total revenue generated). Each node must have total
value of its subtree stored or otherwise this data must be aggregated first. Furthermore
an additional dimension can be used to color the rectangles accordingly. See Figure 2.9
for an example.
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Figure 2.9: Displaying similar data in a spreadsheet, a tree visualization and a TreeMap.
The areas of the TreeMap are sized according to the market cap and the performance
ID is used for coloring (these values are not displayed in the tree example). Images
courtesy of Panopticon Software [63].

The major advantage of TreeMaps is that they utilize the whole available space and
provide a good overview of a hierarchical structure as well as information about the data
distribution. However, as Schreck et al. [59] point out, the standard TreeMap algorithm
may produce tessellations of many different rectangle aspect ratios complicating the
comparison of two nodes by the user.

Various enhancements of the original slice-and-dice algorithm exist which are im-
proved with respect to the the aspect ratio. Several algorithms implemented by Watten-
berg and Bederson, and an interactive comparison, are available online [77]. Schreck et
al. evaluated the space efficiency of different TreeMap techniques and proposed the Grid
TreeMap which provides a higher degree of regularity than the standard techniques [59].
CatTrees [40] are another extension of TreeMaps that allows the manipulation of the
hierarchy itself. After an initial hierarchy is loaded the user can change the order of the
hierarchical structure. This can be useful if the data set is not inherently structured
and little is known about the data (explorative analysis, see Chapter 1.1.2).

Parallel Sets

Similar to Parallel Coordinates (see Chapter 2.1.2) and bargrams (Chapter 2.1.3) Paral-
lel Sets use a layout where the data dimensions are represented by parallel axes. Whereas
the continuous design model of Parallel Coordinates makes them unsuitable for cate-
gorical variables, Parallel Sets like bargrams have a discrete design model, based on the
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Figure 2.10: Screenshot of Parallel Sets in action. Three dimensions, Class, Sex and
Survived, from the titanic data set are visualized. The active dimension, in this example
Class, is used to assign the colors to the connections. Image courtesy of Bendix[6].

frequencies of categories which is tailored towards categorical data. Each dimension is
represented by its categories and is aligned horizontally. The numeric axes of Parallel
Coordinates are replaced by proportionally scaled boxes. As with bargrams the relative
frequencies of the corresponding categories are used to scale these boxes.

Furthermore the lines of Parallel Coordinates are replaced by parallelograms which
connect each pair of categories of adjacent dimensions. In the worst case, Parallel Coor-
dinates may represent all data items with a single line. Parallel Sets solve this problem
by again using the relative frequencies to scale the connections and enable the user
to compare the width of the parallelograms to see how many observations are repre-
sented by the combination of categories. One active dimension, which can be selected
by the user, is used to assign the color-coding of the connections. Additionally, the
active dimension defines the visual ordering and segmentation of connections into sub-
connections. This process, also dependent on the ordering of the displayed dimensions,
starts at the active dimension and connections of neighboring dimensions are split into
sub-connections according to their number of categories. Figure 2.10 shows an example,
where three dimensions of a data set are displayed and connections are split as well as
colored according to one active dimension.

To obtain the information represented by the Parallel Sets visualization, a crossabu-
lation is used (see Figure 2.11 for an example). As shown in Chapter 2.1.1 crosstabula-
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Figure 2.11: Crosstabulation of two dimensions (class and sex). Image courtesy of
Bendix et al. [7]

Figure 2.12: Using the information from the crosstabulation to scale the categories and
connections. Image courtesy of Bendix [6].
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Figure 2.13: In the upper image histograms are used to display the conditional prob-
abilities while the lower image shows the degree of independence. Images courtesy of
Bendix et al. [7].

tion is a combination of frequency tables where each cell represents the combination of
two variables. Crosstabulations are commonly used in statistics to identify relationships
between variables.

For each attribute combination of the i-th row and the j-th column, the absolute
frequency (item count) fij , the relative frequency pij = fij/f++ (f++ =

∑ ∑
fij)

and the individual row and column frequencies (rij = fij/fi+ and cij = fij/f+j with
fi+ =

∑
j fij , f+j =

∑
i fij) are calculated. The marginal frequencies pi+ and p+j , only

affected by one dimension (i.e. they can be obtained for every dimension without using
a crosstabulation), are used to scale the individual categories while the connections are
scaled by the relative frequencies pij .

Obviously, Parallel Sets display all information which also crosstabulations delivers.
But whereas the standard crosstabulation considers only two dimensions at once in
a single table, Parallel Sets can display multiple dimensions and a user can examine
relationships by comparing the colored and split-up connections.

While the marginal frequencies which can be seen as probabilities P (A), the calcu-
lated frequencies of a crosstabulation are conditional probabilities P (A|B). As proposed
by Bendix et al. [7], the Parallel Sets visualization can be extended by histograms which
are drawn inside each category box. These histograms among other display options can
then be used to visualize the conditional probability or the ”degree of independence”
which is the deviation of conditional to the unconditional probability:

doi(A, B) = P (A|B)− P (A)

The two categories A and B are independent, if P (A|B) and P (A) are equal. This
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Figure 2.14: Comparison of Parallel Sets (left) and Parallel Trees (right) visualizing the
same two dimensions. Image courtesy of Sifer et al. [62].

information has proven to be very valuable in finding relationships and patterns in the
data set. See figure 2.13 for an example.

Parallel Sets are a highly interactive. Dimensions and categories may be rearranged
as well as grouped together. Furthermore, dimension composition is an interactive
approach to dimension reduction where the domain knowledge of the user is integrated
in the process. Additionally, dimensions and categories can be highlighted revealing
extra information (tooltip, association lines drawn in foreground).

Bendix et al. [7] also point out that Parallel Sets are not limited to categorical
dimensions but also support continuous data which has been categorized using binning
or clustering.

Parallel Trees

Parallel trees arrange and scale categories similar to Parallel Sets, but do not show any
connections between the dimension. According to Sifer an increasing number of colored
paths of varying thickness become difficult to read in case of many categories [62].

Instead, Parallel Trees implicitly link one active dimension with all others by coloring
parts of the boxes (see Figure 2.15 for an example). Like the connections in Parallel
Sets, the relative frequency pij (see Figure 2.11) is used to scale these colored parts.
Figure 2.14 compares the Parallel Sets and Parallel Trees visualizations. Parallel Trees
only show the relationship between the active dimension and all others rather than
between adjacent dimensions (like Parallel Sets). Sifer feels that this reduced visual
complexity provides a significant advantage if more than three dimensions are shown.

The main feature of Parallel Trees is the support for hierarchies of categorical data.
As shown in Figure 2.15 multiple levels of a hierarchy can be shown and compared
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Figure 2.15: The categories ”Boston” and ”New York” are selected (green and yellow)
coloring all other dimensions accordingly. Furthermore one can see the hierarchical
structure of the dimensions. Image courtesy of Sifer [62].

simultaneously. Each hierarchy (also called Dimension Tree) is represented by a top
level which aggregates all items, at least one intermediate level and a bottom level
containing separate nodes for the highest possible detail level. Figure 2.15 shows a
visualization of a sales data set, containing 365 orders for a total of 5254 items. The
lowest level contains 365 nodes which width is proportional to its item quantity. All
intermediate levels are scaled similarly.

In order to drill-down on data subsets or single categories, categories on any level
can be selected, highlighted or filtered. All dimensions are then filtered accordingly,
showing only a restricted view of the data, excluding currently irrelevant information.
For example, a user could restrict a sales dataset to only show information about a
certain product. Afterwards, additional categories (e.g. a specific month) can be selected
and the remaining dimensions are filtered accordingly. Visual cues, such as the border
color of a category, are used to show which dimensions are restricted. Though powerful,
a student study by Sifer shows that users prefer coloring over filter selections to make
comparisons [62]. He also states that it is possible to lose track of the query sequence
when many dimensions are involved.

Interactive Sankey Diagrams

Traditional Sankey diagrams are static visualizations of dynamic processes. For example,
a Sankey diagram can be used to visualize the flow of energy within a city. The diagrams
display quantitative information about transport flows, their relationships as well as
their transformation. Used since the 19th century, Sankey Diagrams represent weighted,
directed graphs.
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Figure 2.16: The energy distribution in a city visualized using an interactive Sankey
diagram. Different types of energy are represented by the nodes, and the width of nodes
as well as edges provides information about the quantitative flow of energy. Image
courtesy of Riehman et al. [56]

Riehman et al. [56] describe a system which allows for an interactive analysis of
such diagrams. The used visual metaphor is very similar to the one of Parallel Sets as
scaled nodes are laid out on horizontally aligned parallel axes. Furthermore, the nodes
can be grouped to form a hierarchy, which can be analyzed at different levels of detail.
An important feature of the visualization is flow tracing. The user can select any node
or edge, highlighting the contributions of all flows. Instead of simply highlighting all
contributing edges, the authors suggest, that the actual contribution of each edge (i.e.
quantitative information of the flow) is emphasized.

Using straight connections for the edges introduces the problem of non-constant line
widths if the connections are not horizontal or vertical. Figure 2.16 shows how this can
be solved by constructing curved edges using concentric circles and parallel lines. Besides
that, the visualization sorts the edges and shows the tick edges, which usually represent
the most important information, on top of thin edges. Alternatively, the sorting order
can be switched by the user to avoid occluded edges.
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Figure 2.17: Brushing and linking in the BulkAnalyzer visualization system. A region of
interest is brushed in the scatterplot (high horsepower, low acceleration) which is then
linked to a histogram revealing the low mileage of those cars (red color).

2.2 Important Interaction Techniques

Interaction with the visualized data is key to the analysis process, and the recognition
of relationships and patterns within the data. The following section describes some
commonly used interaction techniques.

2.2.1 Brushing and View Linking

The idea behind linking and brushing is to combine different visualization views and
techniques in order to overcome the issues of single views. Brushing can be employed by
the user to interactively select regions or points of interest directly within views, where
selected data items are then highlighted in all linked views [25]. Doleisch et al. point
out that linking views in order to interactively update all changes in the different views
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Figure 2.18: An example for Focus+Context visualization. The scatterplot view is
zoomed revealing more information where needed.

simultaneously is crucial for any visualization system using multiple views [14].

Highlighting subsets can be achieved in many ways, a simple but effective way is to
use the same coloring for selected points in all views (see Figure 2.17). Another solution
is to use transparency where selected points are drawn opaque while the points outside
the selected subset are half transparent. The interaction of brushing is highly dependent
on the used view. For instance in a scatterplot, the user could brush multiple points by
selecting a rectangular region. Categorical visualizations may give the user the option
to select single categories by clicking on them.

Additionally brushes can often be modified later by either direct (using the mouse
to alter the brush) or indirect manipulation (using separate widgets of the user interface
to specify brush coverage). As one possible extension, smooth brushes allow for a non-
binary transition between points inside and outside the selected subset. Brushes can
also be combined by using logical operators like AND, OR and NOT making them a
very powerful toolset in the visual data exploration process. A framework for flexible
and interactive feature specification using smooth brushes is described by Doleisch et
al. [14].

Structure based brushes are proposed by Fua et al. [19] which allow for brushing
in hierarchies of data. The technique was implemented in the XmdvTool, a platform
for visually exploring multidimensional data [75]. XmdvTool also introduced an n-
dimensional brush where each of the brush’s dimensions correspond to a data attribute
(or range of values). Similar results can be achieved by combination of two- or one-
dimensional brushes found in most other systems.
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2.2.2 Focus and Context Approach

A major problem of large datasets is that it is hard to show the whole dataset simul-
taneously without losing information. In simple approaches the user has the choice
between either viewing only an overview of the data or a zoomed visualization where
specific details are revealed. Both, overview and details, are important in the visual data
exploration (see the information seeking mantra in Chapter 1.1.2). Focus+Context tech-
niques combine both types of information supporting the visualization of the entire data
at once as well as specific details [10].

One of the first Focus+Context techniques was the fisheye strategy by Furnas [20].
This strategy enlarges the focus directly within the overview context, which is dis-
torted to fit in the limited display space. Techniques using this strategy are also called
distortion-oriented techniques. While most research work has been devoted to distor-
tion techniques, Hauser points out that the idea of separating focus from context is more
general [24]. The use of other visual dimensions, such as color or opacity, is suggested
in addition to (or instead of) space distortion.

Interaction is very important for Focus+Context visualization since the user needs
to be able to focus according to his or her goals. Therefore a Focus+Context system
should give the user the ability to not only focus on specific regions of data, but also
change those region interactively. Various approaches of focusing in different datasets
are shown by Hauser [24]. In general a notion of which parts of the data are in the focus
(and which are not) is required. This can either be a binary decision or a smooth one,
as mentioned by Doleisch et al. [14].

2.3 Data Mining and OLAP

The combination of Information Visualization and data mining, often called visual data
mining, is getting more and more important as data set sizes continue to increase.
As Hauser and Kosara [25] point out, both approaches attain similar goals but apply
different methods to do so.

2.3.1 Data Mining

Data mining or Knowledge-Discovery is the analytic process of finding patterns or rela-
tionships in usually very large data sets. The obtained models are typically validated by
applying them to new subsets in order to predict future trends and behaviors. Thear-
ling [71] defines data mining as the extraction of hidden predictive information from large
databases and predictive data mining is an often used type with the goal of generating
predictions [67].

Unlike to the visual data exploration techniques of InfoVis, data mining is an au-
tomated process usually involving little user interaction. Artificial neural networks,
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Figure 2.19: Hierarchical structure of the time dimension which consists of four levels:
all, year, quarter, and month. Images courtesy of Stolte et al. [69].

decision trees and nearest neighbor methods are examples of common techniques in
data mining.

Visual data mining is an approach to combine traditional data mining techniques and
InfoVis visualizations to utilize the advantages of both, automated analysis methods and
the human perception. Keim et al. [37] provide an extensive overview of visualization
and interaction techniques, which include most of the methods described in the previous
two sections as well as novel approaches to visualize data clusters, decision trees and
text documents, to name a few. The work of Rongitsch [57] investigates the differences
between data mining and InfoVis, also coming to the conclusion that the integration of
both fields has to be the goal to enhance the data analysis process.

Association Rules The concept of association rule mining was introduced by Agrawal
et at. [3]. Association rules provide predictions and patterns in the data set in the form of
X → Y where X and Y are two disjunctive subsets of the data (”if-then” statements).
An example for an association rule is the statement that 95% of all people living in
Austria speak German fluently. Note that association rules are directed, e.g., not 95%
of all fluent German speakers are living in Austria. Association rules can also be used
with hierarchies, e.g., Germany, Austria and Switzerland can be combined in a single
category. Certain constraints on measures of significance and interestingness have to
be satisfied by the association rule (whether a rule is important enough to be worth
consideration).

Drill-Down Analysis is another concept, which can also be applied to data min-
ing [67]. Instead of the whole data set at once, only a few interesting variables are
chosen and analyzed. The user can then drill-down on interesting subsets and adapt
the data mining process to the gained insight. This more interactive approach has sim-
ilarities to the explorative analysis in visualization (see Chapter 1.1.2) and is especially
suitable for hierarchical structured data sets.
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Figure 2.20: Star Data Model for OLAP. Images courtesy of Mailvaganam [44].

2.3.2 Online Analytical Processing

The term Online Analytical Processing (OLAP) was introduced by Codd in 1993 [13].
The goal of OLAP is to answer multi-dimensional analytical queries; typical applications
are sales and financial reports. Rather than using a relational database, OLAP uses a
multi-dimensional view of aggregate data. One could think of it as an n-dimensional
spreadsheet. Multi-dimensionality is also one of the key requirements for any OLAP
system because almost all business models are represented by at least four or five di-
mensions [49]. Additionally huge data sets with millions of stored transactions have
to be supported and queries should be answered quickly whether a request is for the
weekly sales of a single product or yearly sales across all products [62]. MDX is the
most commonly used query language for OLAP systems and the output is typically in
matrix form.

In general OLAPs are designed to give an overview analysis of what has happened [44].

Relational databases organize the data into relations (tables) which store multiple
records (rows). OLAP data is often collected from relational data (which is used to
process orders etc.) and organized in a star data model (Figure 2.20). The so called fact
table in the center is surrounded by other tables, the dimensions. Each data attribute
(such as product, consumer, employee and time period) is represented as a separate
dimension. The fact table, on the other hand, stores numerical measurements (e.g.
the total quantity of a product sold in a specific time period). While the fact table
usually only has a small number of fields but is usually very long since it stores counts
for all the possibly dimension combinations. The dimensions are often hierarchically
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Figure 2.21: OLAP Cube with Time, Markets and Product Dimensions. Images courtesy
of Mailvaganam [44].

structured (Figure 2.19) and counts are aggregated in the fact table [69]. The major
advantage of using this data model are the very fast response times to queries because
measurements and counts do not need to be calculated when the data is queried, but
are already available in the fact table.

The example from Figure 2.20 could be used to answer queries like ”which employee
sold the most units of a specific product in the last year”. Using the star schema OLAP
cubes (Figure 2.21) are created where the values of the fact table are stored in the
cube’s cells. The cubes can have any number of dimensions and are not restricted to
three dimensions. OLAP operations can then be applied on the cube, reducing the
whole data set to a subset by slice-and-dice, performing aggregations with drill-down
and roll-up or rotating the cube to view different dimensions. The most common used
interface for exploring OLAP cubes is the pivot table [62] (see Chapter 2.1.1).

OLAP and data mining have similar goals, but are conceptionally different, as OLAP
stresses as user-driven, interactive approach, while data mining mostly operates auto-
matically on the data. OLAP usually deals with aggregations in highly dimensional
hierarchically structured data sets and is used to extract information on different gran-
ularity levels. Whereas data mining provides methods for finding patterns and relation-
ships in data sets, OLAP does not. Both, the more interactive and explorative analysis
of OLAP and the automated tools of data mining can be used in conjunction and com-
plement each other well. For example association rules can be mined using OLAP cubes
as Messaoud et al. propose [47].

2.3.3 OLAP and Information Visualization

As Vinnik and Mansmann state, the ultimate benefit of applying OLAP technology
depends on the ”intelligence” and usability of visual tools available to end-users [74].
Visualization is often used to help users understand the results generated by OLAP
queries or data mining processes. Furthermore, InfoVis techniques can also be used
to gain some initial insight into the data set before data mining is used on interesting
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Figure 2.22: The Polaris user interface displaying a hierarchical data set. Image courtesy
of Stolte et al. [69].

subsets. On the other hand, data mining or OLAP may be used as a first step to find
interesting patterns or relationships which are further explored later or confirmed by
the use of InfoVis methods.

Most research and commercial OLAP systems include visualization methods. One
example is Polaris [68] and its commercial successor Tableau Software [70]. Polaris
extends the interface concept of Pivot Tables and makes use of tabular layouts to display
multiple different graphics and views at once. Polaris is built upon a formalism for
describing table based visualizations which defines the mapping of data sources to layers,
the mapping of dimensions to rows and columns and aggregation of data values. While
these parameters affect the ”outer layout”, the formalism further describes how data
within a single view cell is represented. This includes the type of graphical display, the
mapping of values to graphical attributes (e.g. color) etc.

Table configurations can either be specified visually (see Figure 2.22 for an example
of the Polaris interface) or by means of an XML specification. Using the interface, users
can construct and refine visual queries which then update the visualizations. Polaris sup-
ports hierarchies, making it a suitable tool for visually exploring OLAP data cubes [69]
and also allows the reordering of hierarchical structures. The available visualization
techniques (scatterplots, bar charts, glyph based displays etc.) adapt automatically to
display continuous or categorical data.

Another visualization system, ADVIZOR, implements a relational model but also
allows the exploration of OLAP cubes. ADVIZOR supports hierarchical data and imple-
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Figure 2.23: An example screen of the Bulk Analyzer system displaying a data set using
multiple linked views and brushing to highlight data across visualizations.

ments various different visualization techniques including bar charts, histograms, scat-
terplots or more specific views such as the time table or the data sheet. ADVIZOR and
many other InfoVis systems are described and compared in a survey by Hansen [23].
In 2001 Kobsa [38] compared three multi-dimensional InfoVis systems (Eureka, Spotfire
and InfoZoom) empirically and described advantages and disadvantages of the different
approaches.

2.4 Bulk Analyzer

The Bulk Analyzer is a visual analytics software for high dimensional, large data sets
which is currently in development at the VRVis Research Center [2]. Originally de-
veloped for the analysis of engine simulations, Bulk Analyzer supports various input
formats and visualization techniques and may be, to a certain extent, seen as a general
Information Visualization toolkit. The Bulk Analyzer system is based on several basic
methodologies, which are applied to all parts of the system. Some of these methodolo-
gies, which are also important for the visualization of categorical data, are described in
the following section.
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2.4.1 Multiple Linked Views

The Bulk Analyzer system is a multi view approach (see Figure 2.23), providing the
user with various different visualizations. A large number of views can be displayed
simultaneously and views may be arranged on the screen by the user. All views are
bidirectionally linked to each other over a feature specification language similar to the
approaches described in Section 2.2.1. Every user interaction in one view immediately
updates all other views, making the visual exploration and analysis of large, mostly
inhomogeneous data sets possible. The interactive feature specification process (called
brushing) is dependent on the specific view, enabling the view designer to choose ade-
quate techniques for this purpose.

The Bulk Analyzer is furthermore based on a Focus+Context system (shown in
Figure 2.18), which is directly connected to the interactive brushing. Using the provided
methods, a user can brush, and therefore select, subsets of the data using one or multiple
views. The selected subsets are then highlighted in all views and drawn in a more
prominent way than the rest of the data. The Bulk Analyzer offers three of such subsets,
called the focus, context, and super focus layers. Focus and context layers can be set
similarly using combined brushing and are especially useful for comparisons of subsets of
the data. It is important to note that focus and context layers are not disjunctive subsets
but may overlap. Whereas the brushes of these two layers can be quite complex using
the feature specification language, the super focus layer is selected simply by hovering
the mouse pointer over interesting regions of the data (e.g., a bar of a histogram, a
point of a 2D scatterplot) and can be used to quickly explore the data in multiple views.
Another interesting aspect of this system is, that the structure of the focus and context
layers, i.e., the set of brushes defining the subset, may be altered by the user at any
time. Every brush is associated with a specific view and the user may choose to modify
the brush interactively, even if the view used to create the brush at first is not shown.

Additionally, the Bulk Analyzer allows the user to zoom in on parts of the data
and use distortion techniques in order to keep an overview of the data while showing
a smaller subset in greater detail. Zoom and distortion is handled separately in every
view, allowing the user to focus on different regions of interest in multiple views.

2.4.2 Categorical Data Support

The Bulk Analyzer system is built upon the InfoVis Library, which was designed to
provide a common framework for storing structured data for InfoVis applications. Data
is stored in table structures, similar to relational databases and the InfoVis Library
offers a set of means to work with this data. The library supports various data types,
including categorical data, which is handled differently than other types. More precisely,
categories are subsets of the data, independent from the underlying data types or origin
of the data. The framework furthermore allows the hierarchical structuring of categories
which associates a hierarchy with one dimension of the data set. Details on this subject
can be found in the next chapter.



Chapter 3

Data Model

In order to incorporate hierarchically structured categorical data into an Information
Visualization tool like the Bulk Analyzer the data model has to support this kind of
data. This chapter describes the underlying data model as well as operations working
on the data model. But first, categorical and hierarchical data are defined.

3.1 Categorical Data

In current research, a list of characteristics is used to clarify the term categorical data [7,
43, 58]. First and foremost, a categorical variable is usually defined by a rather small
number of possible values. Independent of the data type, whether it is non-numeric (e.g.
String) or numeric (e.g. Integer), any data with a small number of possible values can
be seen as categorical.

As mentioned in Section 1.2.2, categorical data may not have a natural ordering.
Even numerical values do not necessarily imply an inherent ordering of the values, since
they are often used to code data (e.g., ”male” = 1, ”female” = 2). Similarly, they
need not have natural numeric differences and interpolation between two values may be
impossible or meaningless.

On the other hand, some categorical data may have an ordering as well as numeric
differences, which makes identifying reliable characteristics for categorical data difficult.
In this thesis, categorical data is only characterized by the limited number of distinct
values and no other properties are expected.

3.2 Hierarchical Structure

A hierarchy is a structured system of asymmetrical and acyclic relationships. Each
entity of the system is subordinate to exactly one other entity of the hierarchy. The
entities are ordered or ranked in a way where one of the related nodes is the parent
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Continent Country Region Population
Europe Austria Wien 1.668.737
Europe Austria Burgenland 278.215
Europe Austria Salzburg 529.033
Europe Germany Bayern 12.488.392
Europe Germany Sachsen 4.249.774
... ... ...

Figure 3.1: Hierarchical structure of a subset of the data from above, visualized as a
tree.

and the other the child. Examples are relationships, such as ”B is part of A” or ”A
contains B” where A would be the parent or also called ”superior” and B the child or
”subordinate”. Each parent in a hierarchy can have many children while a child can
have only one parent, also known as one-to-many relationship or 1:N mapping. Special
types of hierarchies may always have a fixed number of child nodes for each parent (e.g.,
full binary trees).

Multiple individual entities or nodes which have the same ”distance” to the root
node, are called a level. Therefore a hierarchy can also be described as a system of
nested levels in which one level can be appropriately regarded as nested within another
level, introducing an ordering of levels. This allows a description in terms of higher
and lower levels, where lower levels are nested within higher levels. In a system of 1:N
mappings, the number of nodes generally increases with the distance of a level from the
root node, resulting into fewer nodes at higher levels and more nodes at lower levels.
Since higher levels contain the lower levels, hierarchies can be used to look at the same
data set at different granularity levels. In some types of hierarchies, all leave nodes (i.e.,
nodes without any children) are at the same depth.

In graph theory, hierarchies are called trees. A tree is a connected acyclic graph and
got its name because the traditional approach to draw the root node at the top of the
page and the children below looks like an upside down tree. Trees can be ordered or
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unordered. Whereas nodes in an unordered tree arbitrarily placed below their parent
node, the most common form are ordered trees where some order is imposed on the
children of each node.

Hierarchies are often a natural way to structure data and can be found in a lot of
different areas, e.g., evolutionary trees in biology, organizational structures in manage-
ment, or directories in file systems. Furthermore, data which is not inherently structured
can be put into a hierarchy by aggregating elements of lower levels. This is often used
in financial applications and in OLAP, see Chapter 2.3.2 for details. Another example
is shown in Figure 3.1. The data set, which contains population numbers of several
different regions of the the world, consists of four dimensions, three categorical ones and
one numeric attribute. The continent, country and region dimensions are hierarchically
structured.

Hierarchies of categories can greatly enhance the understanding of a dataset by
allowing the user to view the data at different granularity levels. This perfectly fits with
the information seeking mantra (see Section 1.1.2)), overview first, zoom and filter, then
details-on-demand.

3.3 Categorical Hierarchies

After the term categorical data has been explained above, the subsequent section ex-
plains how categories can be identified in data sets. A description of how categorical
data can be structured hierarchically follows and several operations on these hierarchies
are presented.

3.3.1 Identifying Categories

Basically, categories can be identified in any data dimension but it depends on the
data types as well as the number of unique values how this is reasonably achieved.
First, the dimension is analyzed whether the data is inherently categoric or continuous.
A dimension is considered inherently categorical, if the data type is ”Boolean”, or if
the number of distinct values lies below a certain threshold, which depends on the
data. Therefore, the choice of the threshold is left to the user, who may change the
default setting (20 proved to be a reasonable number for most cases but may be to little
for others, e.g., a data set containing categories for all 50 United States of America)
depending on the task.

If the dimension is continuous, intervals are necessary to group (or bin) the data into
categories. The intervals can be either uniformly spaced across the dimension’s value
range or automatically adjusted to contain equal frequencies. Additionally, the user can
interactively change the number of intervals and their boundaries. To assist the user in
the process of identifying categories, the values of one data dimension are sorted and
displayed together with the interval boundaries in the form of a histogram. Figure 3.2
shows an example.
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(a) Uniform intervals. (b) Non-uniform intervals.

Figure 3.2: Comparing uniform and non-uniform intervals when creating categories from
a continuous data dimension. The interval boundaries are highlighted in orange.

Missing Data: Data sets are often incomplete and dimensions are missing data en-
tries, e.g., because a respondent did not answer a question of a survey. The handling
of missing data is a challenging problem in visualization. One solution is to not display
any data items with missing entries at all. While simple to implement, this also means,
that potentially interesting data is not visible to the user because of a missing entry
(e.g., in a data set with 100 dimensions, only one data value may be missing, possibly
invalidating all 99 others). Therefore, the proposed approach allows the creation of a
category containing all missing values. This solution, which works for both, inherently
categoric and continuous data dimensions, enables the user to work with the missing
data as it can be displayed and handled similar to valid data categories.

3.3.2 Building Hierarchies

After identifying suitable categories for a data dimension, a hierarchy containing the
categories is created. Initially, the hierarchy is trivial, consisting of one root node (the
name of the hierarchy, often the name of the data dimension) and the categories as its
child nodes. The categories are disjunctive subsets of the data dimension, no data entry
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is part of more than one category in this hierarchy. Together, the categories represent
the entire data dimension.

The initial hierarchy can be modified to introduce a stronger classification (special-
ization) or a less precise classification (generalization) by extending the hierarchy with
additional levels. Both concepts, generalization and specialization, are important mech-
anisms to follow the ”overview first, details on demand” approach [61] and enable the
user to view the data from varying degrees of detail (see Section 3.3.4).

In any hierarchy, all categories of each hierarchy level are disjunctive subsets of the
data. Therefore, each hierarchy level represents the same data, but with a different
classification.

Combining Categories

The combination of categories is a simple way to explicitly specify connections between
categories, which are somehow (e.g. semantically) related. As shown in Figure 3.3 by
combining the two categories A and B, a new parent category A+B is introduced which
functions as a parent node for both A and B. While the degree of detail on the first
level of the hierarchy has been reduced, the overall information of the hierarchy has
been increased by extending its structure based on some meta-information about the
categories.

Since the initial hierarchies only have one level of categories after they have been
created, combinations can therefore be very useful to introduce additional levels of detail.
An example is a country dimensions which stores each country separately. Without any
other dimension or information, the user can combine the countries into regions or
continents. Currently, combining categories is a manual process but may be adapted to
an automated approach in the future. For example, single weeks of a time dimension
could automatically be combined into months, months into quarters, quarters into years
and so on.

Refining Hierarchies

While a combination introduces a more general category derived from specific ones,
a refinement splits a general category and creates more specific ones below. This is
done by using a second hierarchy which then refines each leaf-node of the first one,
adding an additional level of detail to the hierarchy. Figure 3.4 shows an example,
where ”Hierarchy 1” gets refined by ”Hierarchy 2”. While the first level of the hierarchy
remains unchanged, an more specific level is added to the structure by adding categories
below each former leaf-node. As one can see, refining is not commutative and the result
differs whether ”Hierarchy 1” gets refined by ”Hierarchy 2” or vice versa (though the
resulting leaf-nodes will be equal).

As different hierarchies may be derived from different dimensions, a refinement step
thus means an integration of information from multiple dimensions into a single hier-
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(a) (b)

Figure 3.3: The left picture shows the hierarchy before the combination, the right one
afterwards.

archy. Therefore refining can also be considered a kind of dimension reduction. For
example, a user could refine a dimension ”sex” with ”marriage status” if the relation-
ship of ”married man” and ”married women” in regard to other dimensions should be
measured.

Hierarchies can be refined by an arbitrary number of other hierarchies and it is
also possible to only refine parts of the hierarchy (single leaf-nodes or sub-hierarchies).
Furthermore, a hierarchy can be ”unrefined”, which restores the original structure.

3.3.3 Other Operations

Move: In addition to combining and refining, the structure of a hierarchy can also be
changed by moving categories (and their attached child categories) to different parent
nodes. To maintain the criterion of disjunctive subsets, old and new parent node have
to be at the same hierarchy level. Consequently, moved categories stay at the same level
too.

Reorder: Each node imposes an order of its children. Therefore, reordering allows
to specify a meaningful order in cases where such an order of the categories exists
(e.g. intervals, days of the week, etc.). Every level and sub-hierarchy can be ordered
individually.

Delete: Because a hierarchy may represent only a subset of the data, any category
can be deleted. Even though this means that not the whole data set is represented
any more, the criterion of disjunctive subsets is still fulfilled. Removing a category will
further delete all sub-categories if it has any.
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(a) (b)

Figure 3.4: The left picture shows the hierarchy before the refinement, the right one
afterward.

Rename: The application tries to find suitable names for categories (e.g. the interval
boundaries) but especially after the structure of the hierarchy has been changed by the
above described methods, it may be helpful to rename certain categories.

3.3.4 Navigation with Hierarchies

It is necessary to distinguish between modifications as mentioned above, and the way,
how hierarchies and categories are locally used by individual views, most importantly
the navigation within hierarchies.

In order to examine the data at different levels of abstraction, the user must have
the ability to move down the hierarchy (viewing data with increased detail) and up the
hierarchy (viewing data with decreased detail). These two operations, drill-down and
roll-up, are the two basic navigational functions used in hierarchies with multiple levels
of aggregations.

By using selective drill-down and roll-up operations, the user sets the cut, which is
a disjunctive and complete subset of nodes of the hierarchy (i.e. it refers to all the data
contained within the hierarchy itself). The purpose of the cut is to represent a certain
state of navigation with respect to the level of detail and is used to visualize the data at
different levels of abstraction. Instead of simply choosing a single level of the hierarchy,
the cut can consist of categories in various levels, providing detailed information as well
as context where needed.



3.3. CATEGORICAL HIERARCHIES 46

(a) (b)

Figure 3.5: The left picture shows the initial state of the hierarchy with the top level in
the cut (blue colored). The user then selects the category ”München” to be represented
in the cut, which adopts the cut accordingly and still maintains a disjunctive subset of
nodes.

Drill-down and roll-up are possible directly within the visualizations (see the next
chapters) which then automatically update the displayed data. These operations operate
on nodes currently in the cut (e.g. a drill-down on a node will put all its children in the
cut), but may also be used to modify the cut to include certain categories, which are
currently outside the cut, as shown in Figure 3.5.



Chapter 4

Parallel Hierarchies

In this Chapter, a new visualization technique for hierarchically structured categorical
data is proposed. The approach, which uses a parallel axis layout, similar to Parallel Sets
and Parallel Trees, is able to display multiple categorical dimensions at once. Extending
the idea of Parallel Sets, Parallel Hierarchies emphasize the visualization relationships
between categories and allow for interactive brushing, as they are designed to be easily
integrated within the concept of a system for visual data analysis.

Before describing the statistical background of the visualization, the motivation for
the Parallel Sets approach is going to be explained. Afterwards, the Parallel Hierarchies
visualization and its features are described in detail.

4.1 Motivation

Data sets as resulting from surveys or financial applications (see OLAP in Chapter 2.3.2)
are often high-dimensional and contain a large number of categorical dimensions. The
”Identity II” survey, for example, carried out by the International Social Survey Pro-
gramme [53] contains 44170 entries (respondents) and 241 dimensions (questions asked)
of which almost all are categorical. In order to analyze such data sets, traditional visual-
ization approaches are often not sufficient since they are usually not designed to handle
categorical data. On the other hand, solutions designed for categorical data normally
do not visualize continuous data as well as techniques catered toward this type of data.
Therefore, one of the main motivations of Parallel Hierarchies was to integrate them into
an existing visual data analysis system based on multiple linked views. Using brushing
across views, the user is able to take advantage of different visualization techniques.

As explained in Section 3.2, categorical data is often inherently structured or may be
structured by the user to find the right level of aggregation for a certain task. Considering
this hierarchical structure, the visualization facilitates an appropriate analysis of the
data.
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Shortcomings of Existing Techniques Parallel Sets as described in Section 2.1.3
are a visualization geared towards categorical dimensions, which is motivated by Parallel
Coordinates, and works very well with multiple categorical dimensions. Parallel Trees
are a similar approach, but also support hierarchies. Current implementations of both
techniques are based on a single view and not integrated in a visual data analysis system.

Parallel Sets and Parallel Trees use the frequencies of categories to scale their visual
representations (in both cases rectangles) and the categorical dimensions are aligned
horizontally. Whereas Parallel Sets use parallelograms to connect categories of adjacent
dimensions to visualize the data relations between categories, Parallel Trees do not show
any connections between categories or dimensions. Instead, categories can be brushed
to reveal the distribution of data in other categories. Sifer et al. [62] note, that the
connections of Parallel Sets are very hard to read when many categories are displayed. As
a matter of fact, the smaller the parallelograms are, the harder comparisons are. Parallel
Trees try to solve this problems by displaying a hierarchical structure and different levels
of aggregations can be used to compare subsets of the data.

Parallel Sets and Parallel Trees highlight the relations between different categor-
ical attributes of the data by using the item count of categories. Called support in
statistics [22]), this emphasizes items which occur frequently in the data set (i.e., cate-
gories with a high item count), but important patterns between smaller subsets of the
day may be missed completely. Called the rare item problem [22], this disadvantage is
very relevant in data sets with uneven distribution for individual items (e.g. financial
transactions where a few items are used very often while most others are rarely used).
Therefore, other measurements such as the degree of independence (see the histograms
in Parallel Sets [7]) are often more interesting for analysts.

These shortcomings led to the major goals of the Parallel Hierarchies approach: the
visualization has to be able to display a large number of categories as well as hierarchies,
and simplify the pattern finding process by highlighting interesting information about
relationships.
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4.2 Statistical Background

The most common technique of analyzing categorical data statistically is a crosstabula-
tion or short crosstab. Crosstabs provide information about combinations of categories
of multiple (usually two) dimensions and are also used as the statistical background of
Parallel Hierarchies (see Section 2.1.1 for details). An example of a crosstab with two
dimensions is given in Table 4.1.

The first information of the crosstab is the distribution of categories in regard to
their own dimension. For example, it shows that 1325 or 32.5% of the 4077 people
that were asked are very proud of their country’s achievements in sports (absolute and
relative frequencies of the first column in 4.1a). Furthermore, 939 or 23% (frequencies
of the fourth row) of the people are living in Austria.

Each cell gives information about the combination of crosstabulated values. The
absolute frequency or count is the number describing how many observations fall into
a specific combination (e.g., 463 Austrians say that they are very proud). Relative
frequencies are absolute counts normalized by the total number of occurrences (463 very
proud Austrians are 11.4% of the total, 4077). The relative frequency of an event (in
this case a subset of the data) is also a probability estimate of the event and may be used
to predict future occurrences. The quality of this estimation depends on the number of
entries. In the following sections probability and relative frequency are going to be used
interchangeable.

The expected count measures how many occurrences are expected by taking the
distributions within the dimensions into account. Given 939 Austrians (23% of the
total) and 1325 very proud respondents (32.5%), 305.2 Austrians are expected (32.5%
of 939, 23% of 1325) to be very proud.

Using conditional probabilities (or conditional relative frequencies), the relative fre-
quency of one category combination with regard to one category (rows or columns) can
be seen. For example, 49.3% of the Austrians are very proud (463 of 939) and 34.9% of
the total amount of very proud people are from Austria.

One very valuable piece of information in the pattern finding process is the dis-
crepancy of expected and actual frequency. One can see in the above example, that
Austrians are proportionally more proud of achievements in sports. Similarly, the con-
ditional probabilities can be compared to individual category probabilities (e.g. 49.3%
of the Austrians are very proud while only 32.5% of the total are very proud).

The classifications for which crosstabs can be used are not limited to the categories
of an attribute of the source data, e.g. in a system allowing for interactive selection, the
information ”is selected/is not selected” is a highly relevant classification and including
it in the crosstab is a powerful way of characterizing the selection by statistical means.

The results of a crosstab can simply be aggregated in a hierarchy. As a result,
selective drill-down and roll-up operation only affect a subtree and the entire hierarchy.
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Very Somewhat Not very Not at all
Count 206 694 233 60 1193
Expected 387,7 582,0 175,9 47,4 1193
% Countries 17,3% 58,2% 19,5% 5,0% 100,0%
% How proud 15,5% 34,9% 38,8% 37,0% 29,3%
% of Total 5,1% 17,0% 5,7% 1,5% 29,3%
Count 145 408 199 51 803
Expected 261,0 391,8 118,4 31,9 803
% Countries 18,1% 50,8% 24,8% 6,4% 100,0%
% How proud 10,9% 20,5% 33,1% 31,5% 19,7%
% of Total 3,6% 10,0% 4,9% 1,3% 19,7%
Count 511 520 88 23 1142
Expected 371,1 557,1 168,3 45,4 1142
% Countries 44,7% 45,5% 7,7% 2,0% 100,0%
% How proud 38,6% 26,1% 14,6% 14,2% 28,0%
% of Total 12,5% 12,8% 2,2% 0,6% 28,0%
Count 463 367 81 28 939
Expected 305,2 458,1 138,4 37,3 939
% Countries 49,3% 39,1% 8,6% 3,0% 100,0%
% How proud 34,9% 18,5% 13,5% 17,3% 23,0%
% of Total 11,4% 9,0% 2,0% 0,7% 23,0%
Count 1325 1989 601 162 4077
Expected 1325 1989 601 162 4077
% Countries 32,5% 48,8% 14,7% 4,0% 100,0%
% How proud 100,0% 100,0% 100,0% 100,0% 100,0%
% of Total 32,5% 48,8% 14,7% 4,0% 100,0%

 

How proud: Its achievements in sports
Total

Total

C
ou

nt
ri

es

Germany

UK

USA

Austria

(a)

(b) (c)

Table 4.1: The table a) shows a crosstab as produced by statistical software like
SPSS [66]. b) and c) explain the different values. See below for details.

Given the two dimensions X = ”How proud ...” and Y = ”Countries”, each cell of the
crosstab provides the following information:

• Absolute frequency fij (”count”): the actual item count of the two combined
categories.

• Expected absolute frequency eij (”expected”): calculated by f+j ∗ pi+ or
fi+ ∗ p+j (where fi+ is the marginal row count calculated by

∑n
j=1 fij , p+i the

row frequency, f+j the marginal column count and p+i the column frequency).

• P (Xi|Yi) or confidence(Yi → Xi) (”% Countries”): the conditional probability
of Xi under the condition Yi, calculated by P (Xi ∩ Yi)/P (Yi).

• P (Yi|Xi) or confidence(Xi → Yi) (”% How proud”): the conditional probability
of Yi under the condition Xi, calculated by P (Xi ∩ Yi)/P (X).

• Relative frequency pij or P (Xi ∩ Yi) (”% of Total”): The quantum of the two
combined categories in relation to the overall frequency.
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Figure 4.1: The screenshot shows the Bulk Analyzer system using the Parallel Hierar-
chies to visualize six hierarchies of categorical dimensions of the ISSP [53] survey data
set. Association lines between adjacent dimensions are graphical representations for
statistical measurements to identify relationships, as explained below.

4.3 Visualization

Figure 4.1 shows a screenshot displaying a typical setup of the Parallel Hierarchies visu-
alization in the Bulk Analyzer system, where many featurs are turned on. The various
features will be explained in detail in the subsequent sections (initially, no hierarchies
are assigned to the view and the screen is white). An arbitrary number of dimensions
can be visualized and arranged in any order. The layout of the hierarchies is similar to
Parallel Sets and a horizontal alignment is chosen because of the horizontal alignment
of labels, which are crucial to associate the graphical representation with a category.
Furthermore, a larger number of categories may be displayed since the available screen
space is better used (given that most resolutions display more information horizontally
than vertically).
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Figure 4.2: Hierarchical structures are displayed using nested boxes. The currently
selected cut is visualized, while parent nodes are displayed by borders and labels.

4.3.1 Categories and Hierarchies

Categories are represented by adjacent boxes and relative frequencies are used to de-
termine their widths, where the full width of the view (not including margins) means
100% of the shown data. Categories with higher item counts are therefore wider than
categories with smaller counts. Thus, the sizes of the boxes is an immediate clue regard-
ing the distribution and structure of one hierarchy. If categories are hidden, the shown
categories still fill the entire width of the visualization, in order to allow for focusing
on important categories. Because differently sized hierarchies can be misleading when
being compared, a number displayed next to the dimension label shows the percentage
of the displayed data in respect to the entire data set.

The concept navigating a hierarchy based on selective drill-down and roll-up opera-
tions was described in Chapter 3.3.4. Initially the cut is placed at the highest level of the
hierarchy and the categories of this level are visualized as explained before. Drilling-down
on a category with sub-categories modifies the cut and the visualization is updated. In
order to represent the hierarchical structure, the visualization of the sub-categories are
recursively nested within the box of their common parent node, which is still displayed
(see Figure 4.2) by the bounding rectangle.

With an increasing number of hierarchical levels being displayed, the height of the
dimension increases too. The lowest level (e.g. the individual Western European states
in the above example) is displayed at a fixed height and the height of the other boxes
are scaled accordingly. The horizontal spacing between categories decreases with any
level to facilitate the visual discrimination of the various levels.

4.3.2 Layers

As described in Section 2.4, the Bulk Analyzer system allows the brushing of three
independent subsets or layers of the data. The data in these layers is highlighted in all
views, allowing the user to efficiently compare subsets of the data across views. In order
to passively integrate the layers in the Parallel Hierarchies visualization, individual bars
are displayed within each category box of the cut (this information is not shown for nodes
above the cut). The layers have global colors assigned, making them distinguishable
across visualizations. Similar to the width of each box, the bars are scaled according
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Figure 4.3: Visualizing the dimensions country and how proud: achievements in sports?
reveals that most people are somewhat proud, while a lot of people from Austria and
the USA are very proud.

to the relative frequencies of the entries being selected by the layer with respect to the
according category (i.e., if the item count of one category is 200 and 100 of them are
in one layer, the associated bar will fill half the width of the category). As information
is shared between all views, layers link the Parallel Hierarchies visualization with other
views and are also very powerful way when multiple dimensions are explored at once.

Using the Parallel Hierarchies approach, the crosstab example from before can now
be visualized, as seen in Figure 4.3. A few things can be immediately seen from the
graphical representations. First, the interviewees seem to be quite equally distributed
over the countries, though France stands out with almost twice as many respondents as
Great Britain. Furthermore, most people stated, that they are either ”very proud” or
”somewhat proud” of their country’s achievements in sports. Only a small number are
not ”very proud” and people being ”not proud at all” are the minority. This gives the
user a basic overview of the distribution of categories within the single dimensions.

Categories can be selected by left-clicking, which was used to select the categories
”very proud” (red), ”somewhat proud” (green) and ”not proud at all” (blue), revealing
the distribution of these categories within the country categories. Details about brushing
can be found in Section 4.4.3.

The percentage of Austrians and US Americans being very proud of sports achieve-
ments seems to be considerably higher than of the other countries. There are no such
significant differences in the category ”somewhat proud”, but it can be seen that Austria
is the only country where the amount of respondents being ”very proud” is larger than
”somewhat proud”. The category ”not proud at all” is quite small, which makes the
analysis of its distribution in other categories hard.

4.3.3 Colors

Disabled by default, a qualitative color scheme of different colors may be used to color the
categories to make the differentiation of categories more visually appealing. The scheme
uses colors of which the hue is as dissimilar as possible but have similar brightness and
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(a)

(b)

Figure 4.4: The same dimension, colored in the top picture and without colors below.
While the colors make the appearance more visually appealing, they could also be mis-
leading in that they implicate unwanted associations and make the colored layers bars
harder to read.

luminance [8]. Different hues for successive categories help to prevent wrong implications
of magnitude differences, but the use of colors may still be misleading for some users
since each hierarchy uses the same color scheme (i.e, categories in different hierarchies
use identical colors). Experiments have shown, that users often assumes a relationship
between similarly colored categories even though there may be no notable relationship
between them. Additionally, the colors may implicate unwanted semantical associations
(e.g., blue = cold). Besides that, the colored layer bars are usually easier to see and
compare using gray background instead of colors (see Figure 4.4).

Of course, coloring could also enhance the user’s understanding of the data, if used
correctly. For example, associations such as ”blue = cold” may be used for a ”tempera-
ture” dimension. Although different color schemes for different hierarchies are currently
not supported, it may be an interesting addition in future implementations.

4.4 Additional Features and Optimizations

The following section illustrates further features and optimizations of Parallel Hierar-
chies, which enhance the basic approach presented above and allow the user to analyze
data sets more efficiently. Furthermore, important interactive capabilities of the view
are described.

4.4.1 Expected frequencies

The expected frequencies and their deviation to the actual values are two important re-
sults of the crosstab (see Section 4.2). The expected relative frequency of a combination
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(a)

(b)

Figure 4.5: Arrows are used to visualize the discrepancy between actual and expected
frequency, which can enhance the pattern finding process significantly. Image a) shows
the idea and b) an example of the expected frequency display integrated in the Parallel
Hierarchies visualization.

of two subsets is the product of the individual relative frequencies: Pexpected(X ∩ Y ) =
P (X) ∗ P (Y ).

An example: the data set consists of 1000 items, subset X contains 100 (10%) while
subset Y contains 250 (25%). The expected absolute frequency of X ∩ Y is therefore 25
while the expected relative frequency is 2.5% (10% ∗ 25%). In other words, without any
prior knowledge about the datset or its distribution, 25 items would be expected to be
included in subset X and in subset Y.

Visualization

The first implemented approach uses the categorical information about the membership
to the global layers to calculate the expected frequency of entries selected in each layer
for each of the displayed categories, i.e. for every category and every layer one expected
value is calculated. Typically, the deviation of expected frequencies from actual fre-
quencies is of high interest, as it expresses to which amount the category is over- or
under-proportionally related to the selection criterion underlying the various layers.

To visualize the expected frequencies together with their deviation from the actual
values, a half-transparent arrow is drawn which has its base at the expected value and



4.4. ADDITIONAL FEATURES AND OPTIMIZATIONS 56

Figure 4.6: This example shows how differently sized hierarchies may be misleading.
The ”Austria: Region” hierarchy consists of about 900 entries (2% of the entire data
set) while the above hierarchy includes all entries (almost 50.000). The category ”Wien”
is selected but its distribution in the other dimension can not be seen since the actual
and expected frequencies are relatively small (with regards to the entire category).

its top at the actual value (see Figure 4.5a for a sketch). Experience shows that this
visualization facilitates the perception of relationships between layers and categories
significantly.

Figure 4.5b shows the same example as Figure 4.3, but includes the expected fre-
quency arrows. Without looking at any other category, it can be seen that the actual
number of very proud Austrians is considerably higher than the expected number. On
the other hand, less than half of the expected number of French respondents are very
proud of their country’s achievements in sports.

Rare item problem

Similar to the layer bars themselves, the expected frequency display can become increas-
ingly hard to read for small categories or subsets. For example, if the category has an
item count of 10.000 and the subset only includes 100 items, the expected and actual
frequency will be too small to see the deviation between the two, even though it may be
significant. Since dimensions may be of different sizes if missing values are not included
(e.g., some questions in a survey may be asked only to people from a certain country
while others are asked everywhere; see Section 3.3.1 for details on missing data) and
categories may be hidden, the graphical representations of categories may be large, even
though the associated subset is very small. See Figure 4.6 for an example.

One solution is the use of association measurements, which are independent of the
dimension sizes. Here, relationships and patterns are highlighted even if the analyzed
subsets of the data have varying sizes. This approach, which is described in more
detail in Section 4.4.2, significantly enhances the analysis of differently sized hierarchies.
However, it does not solve the problem of hard-to-read layer bars. A possible solution,
which is not yet implemented, would be to filter all displayed hierarchies to include only
a smaller subset (e.g., the whole survey data set may be filtered to only include the
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Figure 4.7: Visualizing associations highlights relationships between categories and con-
siderably simplifies the pattern finding process. In this example, the degree of indepen-
dence (the deviation of conditional probability P (Y |X) to the probability P (Y )) is used
and negative correlations are disabled.

answers of Austrians). Although this prohibits the explorative analysis of the whole
data set at once, it may be used to analyze previously found patterns in more detail.

4.4.2 Displaying Trends and Relations

Parallel Hierarchies are able to visualize statistical measurements, similar to the ones
found in association rules mining, to assist the user in discovering relationships between
categories of adjacent hierarchies. Association rules are basically ”if-then” statements
(e.g., ”if category respondent is from Austria then he or she is likely to be proud of
achievements in sports”), details of the concept were described in Chapter 2.3.1. Using
Parallel Hierarchies, these statements are represented visually by the lines connecting
categories of adjacent hierarchies (Figure 4.7). These ”association lines” can be used to
display positive as well as negative correlations. In addition to facilitating spotting of
relationships between each two particular categories, they also convey an approximate
impression whether two hierarchies themselves are strongly related (many bold lines) or
not (hardly any lines).

Measurements

Parallel Hierarchies currently include a number of commonly used interest measurements
for association rules [22]. The user may change the active measurement at any time and
changes are reflected immediately in the visualization.

Support is the relative frequency of the conjunction of two categories X and Y.

support(X → Y ) = support(Y → X) = P (X ∩ Y )
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As explained by Agrawal et al. [3] it is used as a measurement of significance of a
subset. Possible values range from 0% (no items in the subset) to 100% (the subset
contains the entire data set). If the support is over a user-defined threshold, the subset is
called frequent or large. Basically, the support represents the proportion of occurrences
which contain categories X and Y. As we have seen before, the disadvantage of this
measurement is the rare item problem. Rare items will always have a low support even
though they may include interesting patterns.

Example: The categories X and Y are each part of a hierarchy with a total of 100 items
and contain 20 and 10 items respectively. 5 items are in both categories, which is 5% of
the whole data set. Therefore, the support(X → Y ) is 0.05 or 5%.

Confidence (sometimes also called strength) is the ratio of the relative frequency of
X ∩ Y to the relative frequency of X.

confidence(X → Y ) = support(X → Y )/support(X) = P (X ∩ Y )/P (X) = P (Y |X)

Confidence may also be seen as the conditional probability P (Y |X), with X as the given
condition or antecedent and Y as the consequent [3]. In other words, confidence is the
relative frequency of Y when X is given (e.g. the respondent is known to be Austrian and
the relative frequency of ”very proud of achievements in sports” under that condition is
searched for). Like other probability measurements, values range from 0% to 100%. It
is important to notice, that confidence is directed and gives different results for X → Y
and Y → X.

The confidence is often used in conjunction with the support. In a first step, signifi-
cant data subsets are detected by using the support measurement. Then, the confidence
is used to extract possible relationships within these frequent subsets. The drawback of
the confidence is its sensitivity to P(Y) (the relative frequency of Y). A high probabil-
ity of Y will likely result in a high conditional probability P (Y |X), even if there is no
important association or relationship between X and Y.

Example continued: For categories X and Y the confidence(X → Y ) is 0.25 or 25%
(i.e., 25% of the items of category X also belong to category Y). Confidence(Y → X)
on the other hand would be 50%.

Lift or interest as proposed by Brin et al. [9] is the ratio of confidence to expected
confidence.

lift(X → Y ) = lift(Y → X) = confidence(X → Y )/support(Y ) =
confidence(Y → X)/support(X) = P (X ∩ Y )/(P (X) ∗ P (Y ))
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The expected confidence(X → Y ) equals the support(Y ) if X and Y are statistically
independent. Therefore the lift may be seen as a measurement of how many times more
often X and Y occur together than if they were independent. It shows the probability
increase of Y , given X. Lifts smaller than 1 indicate a negative association, positive
associations are implied by values above 1 (no value cap).

Especially rare item sets can produce very high lift values (as (P(X)*P(Y) becomes
very small) and comparing two very small categories may give misleading results, the
lift is not directed, i.e. lift(X → Y ) and lift(Y → X) produce the same results as minor
changes have an over-proportional effect on the lift.

Example continued: The lift for categories X and Y is 2.5, which means that X and Y
occur 2.5 times more often than if they were independent. The value of 2.5 implies a
positive association of the two categories.

Degree of Independence In contrast to the lift, which measures the ratio between
confidence and expected confidence, the degree of independence measures the deviation
of these two values.

DOI(X → Y ) = confidence(X → Y )− support(Y ) = P (Y |X)− P (Y ) =
P (X ∩ Y )/P (X)− P (Y )

The degree of independence (DOI) is directed and results can be quite different for
X → Y and Y → X. Results range from -100% to +100%, with a DOI of zero indicating
that both categories are independent. Positive and negative associations are suggested
by values above and below zero.

Whereas the lift may produce misleading results for small subsets, the DOI works
well for all sizes (e.g. given a confidence of 3% and an expected confidence of 0.5%, the
lift is 6.0 while the DOI is +2.5%). Since associations between larger categories may be
more important to the user, the support is commonly used to identify significant subsets
first.

Example continued: The DOI(X → Y ) is 15% (= 25% - 10%), indicating a small
positive association. For Y → X the DOI is significantly higher with 30% (in this
example 50% of category Y’s items are also part of category X, which 30% more than
the expected 20%).

Visualization

The measurements described above are calculated for all pairs of categories between
adjacent dimensions. The view is read top to bottom, making X the higher category and
Y the lower one. Whereas the results of support, confidence and degree of independence
can be directly visualized, the result of the lift, which does not have an upper value cap,
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must first be clamped (4.0 as an indication for a strong positive association is used as
an upper value cap) and then scaled between -100 and +100:

Liftscaled =


(Lift− 1) ∗ 100 if Lift ≤ 1
(Lift−1

3 ) ∗ 100 if 1 < Lift < 4
100 if Lift ≥ 4

To visualize these results, a line is drawn for each pair of categories of adjacent
hierarchies and the value of the selected measurement is used to determine the width
and color of the line. Positive associations are visualized by red lines and negative
associations by blue lines. The saturation of the color and the width of the lines depend
on the actual value (e.g. a value of 100% would result in a bright red colored line).

Figures 4.8 a) to d) show a comparison of the four different association measurements
using the same data set (negative associations are disabled in this example). Lift and
degree of independence produce the most significant visual results, clearly highlighting
similar associations. As mentioned before, the lift suffers from the rare item problem,
which is also evident in the example (a strong association is shown between the two
smallest categories of the two lowest hierarchies). On the other hand, the confidence is
clearly affected by the larger categories.

As mentioned above, a threshold may prove very useful, as shown in the Figures 4.9
a) to c). The threshold is a user-defined value between 0% and 100% and association
lines not exceeding this values are hidden, strongly improving the perception of the more
distinct relationships. The user may change the threshold interactively and results are
updated immediately.

Because positive associations are usually more interesting to the analyst since nega-
tive correlations often do not convey any additional information, but are a consequence
of the unequal distribution already represented by the positive correlations, negative
associations may be disabled. Figure 4.9 shows an example of the degree of indepen-
dence with negative associations enabled. It furthermore displays, how a large number
of connections is visualized simultaneously. By sorting the connections in ascending or-
der of their assigned association measurement results, the most important information
is shown in front of the less important connections.
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(a) Support

(b) Confidence

Figure 4.8: The different association measurements.
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(c) Lift

(d) Degree of independence

Figure 4.8: The different association measurements.
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(a) No threshold.

(b) Threshold of 13%

(c) Threshold of 25%

Figure 4.9: Thresholds are very useful to decrease the number of displayed lines, high-
lighting the most important associations. The pictures show three different threshold
settings using the ”degree of independence” as measurement.
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Differently Sized Hierarchies

The problem of differently sized hierarchies, as mentioned in the last section, is also
evident in the calculation of association measurements. Figure 4.10a shows an example
where a 2% subset of the data, the Austrian regions, is compared to a dimension with
50 times more entries. Without any adjustment, the values of support and confidence
are almost zero, whereas lift and degree of independence indicate a negative association
between the categories, simply because the frequency of one Austrian region is very
small in a data set with more than 40 nations. Although mathematically correct, this
behavior is usually not expected nor wanted by the user. Therefore, an additional subset,
called shown mask, which contains an union of shown entries from both hierarchies, is
calculated for each pair of adjacent hierarchies. Using the shown mask as a basis to
determine the probabilities of each category, the association measurements are adjusted.

This leads to the expected results, as one can see in Figure 4.10b, and associations
between differently sized hierarchies can be measured. Unfortunately this introduces a
new problem. Whenever categories are hidden or shown again, the shown mask and the
association measurements change, which may be confusing for the user. Therefore, this
feature is optional and may be enabled or disabled at any time.

4.4.3 Interaction

Besides the already mentioned interaction possibilities, the Parallel Hierarchies visual-
ization offers several features to interactively work with the presented data.

Hierarchy Navigation

The concept of selecting a cut within a hierarchy with selective drill-down and roll-up
operations was explained in section 3.3.4.

Using the right mouse button, a category can be selected and a pop-up menu ap-
pears. The menu gives the user the possibility to drill-down and roll-up in the displayed
hierarchical structure. Additionally, double clicking on a category will drill-down to
its sub categories, if it has any. Besides navigating the hierarchy directly within the
visualization (which is especially convenient if the hierarchical structure is know to the
user), the tree view in the control panel may be used for the same purpose.

Brushing Categories

Categories can be brushed simply by left-clicking on their graphical representation. By
selecting a category, the layers of the Bulk Analyzer system are updated based on the
complex combinations of brushes the framework offers. Logical operations such as AND
or OR, make it possible to select multiple categories in different hierarchies (e.g. one
could brush all ”very proud Austrians”) which makes the view appropriate as a kind
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(a)

(b)

Figure 4.10: The top picture demonstrates the problem when associations of two dif-
ferently sized hierarchies are calculated. The proposed solution shown in b) bases all
calculations on the shown mask, which is the overlapping part of the currently visible
subsets of both hierarchies.

of filter for other selections. As mentioned in Section 2.4, brushing is not limited to a
single view, but may be done across various visualizations.

Brushed categories are highlighted in the visualization by a colored border and can
also be de-selected again. The selection of categories is not restricted to categories of
the hierarchy’s cut, any displayed parent node of the hierarchy may be brushed as well.
Figure 4.11 shows how two categories can be selected to analyze their distribution in
regard to other hierarchies and categories.

Reordering Categories

The data model facilitates a number of temporary operations on the hierarchy, such as
the reordering of categories. For example, it eases the visual analysis, if categories, which
show some association or relationship, are located close to each other. Using drag and
drop, a category can be picked up and dropped at the desired position. In a hierarchy,
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Figure 4.11: The categories ”Western Europe” and ”Female” have been brushed and
combined using the Refine Operator, putting all Western European women in the current
selection. The active selection (Female) is highlighted by a bright orange border, while
the other selection (Western Europe) is shown by a dark orange border.

Figure 4.12: The United States category is moved closer to ”very proud” since there
seems to be some relationship between the two categories.

categories can not be moved outside their parent categories. Therefore, categories of the
same subtree will always be located near each other.

Reordering Hierarchies

Similar to categories, hierarchies can also be reordered by using drag and drop. Because
association measurements are only calculated and shown between adjacent hierarchies,
this is often a necessary and commonly used task.

If little is know about the data, one may assign multiple dimensions to the view
before reordering them until an interesting pattern is found. Another way is to first use
brushing to detect interesting occurrences in the data set (the layers are used to display a
”global” distribution of the data), before hierarchies are reordered to investigate further.
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Figure 4.13: A tooltip can be used to display additional information.

Hiding Categories and Hierarchies

Categories and hierarchies can be hidden from the current display by dragging them
out of the screen or using the pop-up menu. Sometimes the number of hierarchies and
categories is too large and filtering the displayed data is a key issue in order to work
with the visualization. Hidden categories and hierarchies can be shown again at any
time using the tree view of the control panel.

Tooltips

While the graphical representations of frequencies, expected frequencies, or associations
provide a very good overview of possible patterns and relationships in the data set,
often exact information is ultimately needed, i.e., plain numbers to draw the necessary
conclusions. This data is presented by means in form of a tooltip, which is shown
whenever the mouse cursor is pointed over a category. The tooltip displays information
about the absolute frequencies of the layers as well as the deviation from the actual
frequency. Furthermore, the tooltip displays if and how many sub categories the selected
category contains. Finally, the full label of the category is shown by the tooltip, which
is often not possible in the visualization due to spatial constraints.



Chapter 5

Aggregate-based Hierarchical
Scatterplot

Whereas the concept of Parallel Hierarchies is an approach to visualize multiple hier-
archically structured categorical data dimensions at once, the technique proposed in
the following chapter presents a detailed view of a single hierarchy in regard to two
numerical dimensions, allowing for a unique analysis of data sets. The hierarchy itself
is visualized similar to its visual representation in Parallel Hierarchies, but categories
are additionally placed on a scatterplot-like view with two numerical axes. In the scat-
terplot, the categories are represented by glyphs and placed using aggregates, similar to
those found in pivot tables (see Section 2.1.1). The visualization is very interactive and
aggregates may be changed at any time, making the approach very flexible and useful
for a wide range of different applications.

After the motivation of the approach is given, details of the visualization are ex-
plained. Additional feature of the technique are presented last.

5.1 Motivation

Most datasets in real-world applications are not strictly numerical nor are they exclu-
sively categorical. Instead, datasets usually consist of both kinds of dimensions (and
other, more complex data types, see Section 1.2.2. In Chapter 3 it is demonstrated how
a numerical data dimension can be used to identify categories by setting intervals. This
enables the user to analyze numerical data with categorical data visualization techniques
such as the Parallel Hierarchies.

However, this approach has a few drawbacks. Most importantly, the placement of
the interval borders may be quite arbitrary and even small changes may affect the results
significantly. Values being close to each other may end up in different categories while
more distant values may be combined in the same category. Furthermore, characteristics
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Country Average of Income Average of Work hours / Week
Austria (AT) 1067,77 41,18
Finland (FI) 1811,90 37,85
France (FR) 1617,73 38,78
Germany-East (DE-E) 1006,77 42,33
Germany-West (DE-W) 1234,72 39,67
Portugal (PT) 643,51 41,76
Spain (ES) 761,44 39,02
(Leer)
Overall 1222,92 40,09

Figure 5.1: Using a pivot table to display the averages of two aggregated continuous (in-
come, work hours per week) dimensions in regard to one categorical dimension (country),
which is used to subdivide the entire data set.

of numerical values are lost by the transformation. For example, calculations possible
with numerical values are usually not realizable with categories.

Therefore, in order to take advantage of the characteristics of numerical data, the
visualization has to support numerical values directly. Various techniques to visual-
ize numerical data, e.g., the scatterplot, were presented in Chapter 2. Most of these
approaches usually do not work well for categorical data. The Trendanalyzer visual
analysis system [21] (see Section 2.1.2), on the other hand, is an example, how both
data types can be successfully combined in a single visualization. However, it is rather
limited in other aspects (e.g., no support for hierarchical data, no complex brushing
of data, no linking of multiple views, etc.) and the does not allow the aggregation of
arbitrary data subsets data to position the circles (i.e., the positioning information is
stored within the data set).

Figure 5.1 shows an example of a pivot table, a tool which can be found in most
spreadsheet applications (see Section 2.1.1 for details). A pivot table subdivides the
whole data set by (multiple) categorical data dimensions and utilizes these partitions
to calculate aggregates of (multiple) numerical dimensions. In the above example, the
dimension ”Country” is used to divide the whole data set into disjunctive subsets. The
numerical dimensions are then aggregated for each subset, e.g., to calculate the average
income for each country. Various aggregates (e.g., average, maximum, minimum, sum,
etc.) may be chosen. Pivot tables furthermore support hierarchical structures, allowing
drill-down and roll-up operations in the data set.

The general concept of using numerical aggregates in conjunction with a categorical
dimension is very powerful. Hence, the main motivation was to design an appropriate
visualization for this task. Additionally, and similar to Parallel Hierarchies, the view
should be able to operate with hierarchically structured data and give the user the
possibility to analyze the data at different levels of granularity. Another main motivation
was to integrate the visualization into the existing Bulk Analyzer data analysis system.
Therefore, brushing and the linking of arbitrary views had to be supported by the
technique.
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Figure 5.2: This screenshot shows the Bulk Analyzer application with the hierarchical
scatterplot view displaying the ISSP [53] survey data set. On the left is the control
panel of the view, while the controls on the right are global Bulk Analyzer settings. The
bottom shows the current cut of the assigned hierarchy, in this case countries. The main
visualization is shown in the middle, displaying a filled circle for each category. Similar
to a 2D scatterplot, the view has two numeric dimensions assigned. Aggregates are used
to determine the positions of the circles, in this case the average of work hours per week
(X-axis) and the median of income (Y-axis). Lines are used to display the hierarchical
structure by showing the position of parent nodes.

5.2 Visualization

Figure 5.2 shows the hierarchical scatterplot in action. The basic layout of the visu-
alization is similar to the 2D scatterplot, hence the name of the technique. However,
instead of displaying each single entry of the data, a glyph (a filled circle) represents
each category, an approach comparable to Gapminder’s Trendanalyzer [21]. By default,
glyphs are scaled by the frequency of their associated category, i.e., the more entries a
category has, the larger is the size of the respective glyph of the category. Optionally,
the user may choose to use the level of the category in the hierarchy to determine the
glyphs size, which proved useful for complex hierarchies.
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In addition to the scatterplot, the hierarchy is also displayed in a separate part of
the view below the main visualization. This display is similar to the visualization of a
single hierarchy in the Parallel Hierarchies view, as described in Section 4.3.1. On one
hand, the cut display is used to navigate the hierarchy and the user may change the
cut by drill-down or roll-up operations, reorder or hide categories and define brushes.
On the other hand, the cut display provides a second visualization of the hierarchy,
also displaying the actual and expected frequencies of the subsets defined by the various
layers as in the Parallel Hierarchies view (see Section 4.4.1 for details), making the cut
display a very valuable tool for certain tasks, such as comparing the sizes of categories,
which is often more intuitive using the cut display instead of the scatterplot, or the
analysis of expected frequencies without using a Parallel Hierarchies view. To increase
the readability of labels for a larger number of categories, this part of the view can
optionally be displayed using an extended area with a scroll bar.

Categories are colored using the same color scheme as in Parallel Hierarchies, see
Section 4.3.3 for details. Whereas coloring is an optional feature in Parallel Hierarchies,
it is very important in the Hierarchical Scatterplot to match categories in the cut display
and scatterplot parts.

5.2.1 Glyph Placement

The most important aspect of the visualization is the glyph placement. By aggregation
of data items of the subsets defined by the categories, two values are calculated and
used to position the glyph on the two axes. The aggregates are calculated using two
numerical dimensions, which are assigned to X and Y axis respectively. For example,
a glyph may be placed according to the category’s average of one numeric dimension
and its maximum value of the second dimension. The assigned dimensions can be
exchanged at any time, resulting in a new placement of all categories. Similarly, the
active aggregates (see Section 5.3.2 for a list of possible choices) may be changed.

5.2.2 Hierarchical Structure

Whereas only categories of the hierarchy’s cut are represented by glyphs, the hierarchical
structure above the cut may optionally be visualized by lines connecting each category
with its parent. Parent categories are displayed by small black circles, also placed
according to their respective aggregates. Figure 5.3 shows how different line widths are
used to indicate various levels of the hierarchy. The lower the level, the thinner the lines
are drawn, revealing the hierarchical structure.

This approach allows for quick comparisons of the displayed categories to their parent
categories, without the need of drill-down or roll-up in the hierarchy. Additionally, the
lines connection each category to its parent can be interpreted as distance vectors.
Analysis and comparison of these vectors provides further information about the data.
For example, it may be very significant if a category lies close to entire hierarchy (which
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(a) (b)

Figure 5.3: On the left the hierarchical structure is displayed using lines, which connect
categories to their parent nodes. The connecting lines are disabled on the right.

is also represented as a parent node) on one axis, but far from the overall result on the
second axis. The vectors also help revealing patterns between the categorical hierarchy
and the numerical dimensions.

5.2.3 Example

Using the Hierarchical Scatterplot approach, the data from the pivot table (Figure 5.1)
can be graphically visualized, as illustrated by Figure 5.4. One can see at first glance,
that Finland is the country with the highest average income (about 1800 euros a month).
Surprisingly, it is also the country with the lowest average number of working hours per
week (under 38). Looking at the sizes of the categories it can be seen that the number of
respondents varies between the different countries with most people coming from France.

The overall averages of the entire data set is shown by the black circle all categories
are connected to (in this example, the overall average is located behind the glyph of
Germany). Concluding from this data set, the average income in France and Finland is
higher than the overall average. While Finland’s average age is clearly below the overall
average, France has the highest average age of all compared countries. In general, there
seems to be no correlation between average income and age.

5.3 Additional Features and Optimizations

Based on the basic idea, which was presented above, several features were implemented
to enhance the Hierarchical Scatterplot approach. Important features, such as the layer
integration and the placement of glyphs using aggregates, as well as optimizations are
described in the subsequent sections.
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Figure 5.4: The picture shows the cut displayed on the bottom, with seven countries
currently within the cut. In this example, one can compare average income and average
age of different countries.

5.3.1 Layer Integration

The two parts of the view integrate the layers of the Bulk Analyzer system differently:
The display using nested bars handles subsets as described for the Parallel Hierarchies
view (see Chapter 4), thus highlighting the frequencies (both actual and expected and
the difference between them). The Hierarchical Scatterplot display on the other hand
visualizes the subsets defined by the layers in a similar way as for child nodes within
the hierarchy, thereby stressing the deviation of the selected subsets from the entire
categories with respect to the current aggregates of the attributes mapped to the X-
and Y- axes. For this reason, the Hierarchical Scatterplot uses additional glyphs.

For each category and layer, a glyph is placed, scaled and displayed similarly to the
default glyphs. Additionally, lines are drawn connecting these glyphs to the glyphs of
the entire categories. To distinguish the different subsets, the border of the additional
glyphs are colored using the layer’s color (Bulk Analyzer’s three layers are red, green
and blue by default).

Figure 5.5 depicts how this feature can be used in conjunction with linked brushing.
The example again compares the average income and average working hours per week
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Figure 5.5: Using a Parallel Hierarchies view, female (green) and male (red) subsets were
brushed using Bulk Analyzer’s focus and context system. The Hierarchical Scatterplot
then shows how these subsets affect each category by positioning additional glyphs. One
can easily see how average income and working hours per week differ for men and women
in the displayed countries.

in various countries. Another view - a Parallel Hierarchies visualization - was used to
define two layers by brushing two categories of another dimension, in this case male and
female, respectively of the sex dimension. In addition to comparisons between countries,
one can now also analyze how male and female results vary. The visualization clearly
shows that female respondents earned and worked less than men. Furthermore, the
subsets can also be compared to other categories.

5.3.2 Aggregates

The Hierarchical Scatterplot provides various aggregates, which can be chosen indepen-
dently for each axis. All aggregates calculate values to position the corresponding glyphs,
but may also provide additional information. For example, each aggregate defines the
value range needed for the data mapping process.

Average/Median: The average aggregate and the median aggregate calculate the
average and median respectively of their assigned subsets. The result is used to place
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(a) (b)

(c) (d)

Figure 5.6: Four examples of how the various aggregates may be combined to display
different aspects of information. In picture a) a whisker aggregate is used for the Y-
axis while the index is used for X to show the distribution of income in the individual
Austrian regions. In b) the box plots for income and working hours are shown for five
regions. c) shows how a combination of index and count aggregates can be used to reveal
the hierarchical structure of a hierarchy with respect to the sizes of various branches.
The count was replaced by the minimum aggregate in d).
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the glyph in the shown coordinate system. The value range equals the value range of
the assigned numerical dimension. An example of the average aggregate is shown in
Figure 5.4.

Sum: The sum aggregate adds up all values of a given subset, e.g., the total revenue
of a specific store. The value range is calculated by summing up all negative values for
the minimum and all positive values for the maximum.

Minimum/Maximum: These aggregates yield the minimum and maximum values
of a subset. The value range is defined by the smallest possible minimum, which is
the minimum of the entire dimension and the largest possible maximum, which is the
maximum of the dimension.

Index: This ”aggregate” merely returns the position of the category in the current
cut, i.e., it does not aggregate any data and is thus independent of the data dimension
mapped to the axis. It is nevertheless useful to equally distribute the glyphs on one
axis, which allows for more exact 1D comparisons. Minimum and maximum values are
determined by the number of categories in the cut.

Count: The count aggregate calculates the absolute frequency of a subset, i.e., the
item count. Like the index, this aggregate does not depend on the data of the assigned
numerical dimension. Possible values range from zero to the total number of entries in
the data set. The count aggregate can be used to display the hierarchical structure of a
hierarchy in tree form (Figure 5.6).

Whisker: The whisker aggregate calculates all values needed to draw a box plot (see
Section 2.1.2 for details). Basically, the box plot is used to interpret the distribution of
data based on the median, the interquartile range and the 2,5% and 97,5% percentiles.
When choosing the whisker aggregate, a box plot is drawn over the filled circle, which
is used as by all other aggregates. The median is used to place the circle and box plot
on the screen.

The examples in Figure 5.6 illustrates some of the possible ways to combine aggre-
gates and demonstrates how versatile a categorical hierarchy can be visualized with this
approach.

5.3.3 Transparency

Whenever many categories are displayed simultaneously, the visualization can get clus-
tered and difficult to use. The display of brushed subsets makes the problem even more
severe and important information becomes increasingly hard to see. One reason is, that
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Figure 5.7: This example shows 33 categories being visualized using the Hierarchical
Scatterplot. 45 additional glyphs are drawn for brushed subsets of the data. Using
transparency these subsets are highlighted.

glyphs may overlap and larger glyphs often completely hide smaller ones. In order to
improve on this, the glyphs are first sorted according to their size and consequently,
smaller glyphs are drawn in front of the larger glyphs.

Besides that, each layer has an individual opacity/transparency setting attached,
which can be set by the user. Using these settings, a large number of glyphs can be
displayed better, though it is almost impossible to visually match the representations as
bars and as glyphs (Figure 5.7). As the Hierarchical Scatterplot becomes more and more
similar to a non-hierarchical scatterplot as the number of displayed glyph increases, the
view still shows important aspects of the data, even if a clear identification of all shown
categories is not possible simultaneously due to their number: clusters and correlations
stay visible well and trends of their deviation of brushed parts (e.g., ”do all glyphs
deviate into the same direction?”) are still perceivable. In the example, the brushed
parts are highlighted using a higher opacity setting than the main category glyphs.

5.3.4 Interaction

Like Parallel Hierarchies, the Hierarchical Scatterplot visualization is a highly interactive
technique. Besides the cut navigation, which works similar to the Parallel Hierarchies
view, the Hierarchical Scatterplot provides the user with a set of interaction capabilities.
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(a) (b)

Figure 5.8: Picture a) illustrates how categories are often crowded in one spot. Adopting
the mapping to the extents of the glyphs results in a much better visualization as seen
in b).

Brushing categories

Categories can be brushed in the cut display (which works equally to Parallel Hierarchies,
see Section 4.4.3 for details) as well as directly in the Hierarchical Scatterplot. Any
category glyph can be clicked to brush the associated subset in the data set. If more
than one glyph is displayed under the mouse cursor, all categories will be selected. The
user can furthermore draw a selection rectangle to select multiple categories at once.
Besides that, the user can point the mouse cursor over any glyph or category which puts
the category in the super focus. This highlights the category in both parts of the view,
the scatterplot and the cut display, allowing for an easy identification and matching of
categories.

Again, Bulk Analyzer’s framework allows the combination of multiple brushes and
links the Hierarchical Scatterplot with other views. Together with the opacity settings
mentioned above, brushing and selecting categories proved also useful to highlight in-
teresting areas in the Hierarchical Scatterplot.
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Data Mapping Adjustments

The Hierarchical Scatterplot uses the data mapping controls provided by the Bulk An-
alyzer system to for zooming into certain areas, moving these areas or using distortion
(Figure 2.18).

Initially, the entire value range as determined by the aggregates is shown. Because
glyphs are often crowded in a small area (e.g., all countries have an average income
between 500 and 2000 euros, but the possible values range from 0 to 10.000), the view
provides an option to automatically adopt the mapping to the extents of the displayed
glyphs (Figure 5.8).

Tooltips

Similar to Parallel Hierarchies, tooltips can be used to display detailed information.
The user may point the mouse cursor over any category in the cut display as well as
over any glyph in the visualization to see a tooltip. The most interesting information of
the tooltip, besides the name of the category itself, is probably the exact result of the
assigned aggregates.



Chapter 6

Case Study

The following chapter illustrates the usefulness of the Parallel Hierarchies and Hierar-
chical Scatterplot visualizations by analyzing a real-world data set. Both techniques
are used together to explore a survey data set with more than 44.000 entries and 30
dimensions, of which 25 are categorical and 5 are numerical. The goal of the analysis is
to discover unexpected relations and interesting patterns.

6.1 The Data

The analyzed dataset originates from a survey about national consciousness and iden-
tity. The survey was conducted by the International Social Survey Program (ISSP)
in 33 countries between February 2003 and January 2005. The questionnaire con-
sists of 104 general questions, plus several questions specific to particular countries.
All in all, the data set consists of 241 dimensions and the number of respondents
(data entries) is 44.170. The data set is divided into demographic values (sex, age,
martial status, income, etc.), a wide range of question groups (identification with the
town/region/country/continent, perceived pride in several fields, immigration, global-
ization, etc.) and dimensions specific to particular countries (party affiliation, region,
etc.). Most values in the dataset are coded, i.e., the answer very proud is represented
by the number 1 to reduce the file size. For some groups of questions, the numbers
also provide an order of the categories (e.g., very close to not close at all), whereas
there is no inherent ordering for others. For an easier understanding, the numbers were
replaced by the names of the categories. Most questions allow for only a limited number
of possible answers, which explains why the majority of dimensions is categorical.

For this case study, a selected subset of all dimensions has been taken into consid-
eration. In particular, the case study focuses on the question groups of national pride
and identity. Therefore, 30 interesting dimensions were extracted from the original data
set. Table 6.1 lists and describes some groups of questions and the possible values of
categorical dimensions, numerical dimensions are listed in Table 6.2. Besides several
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demographic variables (e.g., country, sex, martial status, highest education level), di-
mensions specific to Austria have been included to further explore patterns in regard
to Austrian regions or political parties. These dimensions are listed in Table 6.3. If a
respondent did not answer a certain question or the answer was invalid, the entry was
marked missing. Most of the time, these entries are hidden in the visualizations.

There is no inherent hierarchical structure, but certain dimensions lend itself to such
a structure (e.g., the countries can be structured based on the geographical location or
mother tongue). Furthermore, hierarchies may be refined by using the generalization
and specialization operations explained in Chapter 3.

Group Example Description
Proudness How proud are you of:

countries achievement in
sports.

Various other questions regarding pride
in specific areas such as sports, arts and
literature, or armed forces. Answers
categorized in very proud, somewhat
proud, not very proud and not proud
at all.

Immigrants Immigrants increase crime
rates.

How much the respondent agrees to
statements about negative effects of
immigrants. Answers: agree strongly,
agree, neither agree nor disagree, dis-
agree, disagree strongly.

Identity Most important group you
identify with.

Groups the respondent identifies
with. Possible answers: occupation,
race/ethnicity, gender, age group,
religion, political party, nationality,
family, social class, part of country.

Figure 6.1: A selection of question groups with categorical values as answers.

Variable Description
Age Age of respondent, ranging from 15 years to 98. In

some countries the minimum age is 18.
Income Respondent earnings in local currency. This variable

is country specific, even if it is integrated in the same
variable. Usually the values are monthly incomes, but
some countries state annual incomes.

Working hours per week The number of hours (usually) worked weekly. Rang-
ing from 1 to 96 hours (which includes all values
above).

Years of schooling The number of years the respondent spent in schools.

Figure 6.2: The numerical dimensions.
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Variable Description
Region The Austrian province the respondent lives in: Wien,

Niederösterreich ...
Party Party affiliation, possible answers: SPÖ, ÖVP, Grüne,

FPÖ, other.
Size of community Coded size of community: more than 1 million, 50.001

to 1 million ... less than 2.000.

Figure 6.3: The dimensions specific to Austria.

6.2 Goals

As stated before, this case study focuses on a subset of the question asked by the In-
ternational Social Survey Program in their survey about national identity. Specifically,
national pride across countries and possible influences are analyzed in detail. Further-
more, a closer look at Austria is taken.

At the beginning of this case study, little was known about the survey results. Various
questions guided the research:

• Are the specific areas of national pride related?

• How does national pride compare across countries?

• Is pride influenced by sex, age or education?

• How influential is the party affiliation in Austria on questions asked?

Both previously proposed visualization techniques, Parallel Hierarchies and the Hi-
erarchical Scatterplot, were used to answer these questions, as well as explore the data
set to reveal other potential patterns within the survey data, while, at the same time,
demonstrating their usefulness.

6.3 Categorization and Hierarchical Structuring

Because a majority of dimensions in the survey dataset are inherently categorical (i.e.,
they have a small number of possible values), the process of categorization is straight
forward.

Initially, most dimensions do not directly lend itself toward a hierarchical structure.
Only for the dimension ”Countries” exists an inherent structure by combining countries
of the same region and regions of the continent. The result (Figure 6.4) illustrates that
a majority of respondents came from Europe, most of them from Western European
states. Africa is the only continent only merely represented by a single country, namely
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Figure 6.4: The structure and representation of the countries dimension.

South Africa. But, as can be seen, the number of respondents in South Africa was larger
than in any other country.

In order to improve the confidence of the results, it has proved useful during the
exploration to combine similar categories (e.g., not proud and not proud at all) with
small numbers of entries into hierarchies to obtain less yet more significant categories.
In contrast, the refinement operation has been used to derive more specific categories
and integrate information of other dimensions into a single hierarchy. For example,
the hierarchy ”Austrian Party Affiliation” has been refined by the dimension ”Sex”,
resulting in an additional level of categories in the hierarchy (”SPÖ + Male”, ”SPÖ +
Female”, ”̈’OVP + Male”, etc.).

Later in this case study, it can be seen, how useful the support for hierarchical
structuring in both views is. The possibility to analyze the data at different levels
of detail greatly enhances the user’s understanding of the data (and its structure).
Compared to other categorical data visualization techniques, like Parallel Sets or the
Mosaic Display (see Chapter 2), the use of hierarchies also proved to be time-saving. A
lot of tasks do not require the analysis of the highest level of detail (e.g., compare the
survey results of Austria with the overall results of Asia) and interactive selection of
the displayed cut (see Section 3.3.4 for details) allows for a more flexible analysis than
Parallel Trees (Section 2.1.3).

6.4 National Pride in Comparison

The first goal was to compare the national pride of different countries. In order to
obtain this goal, six dimensions, all regarding pride in specific areas, have been added to
a Parallel Hierarchies visualization and the connection measurements of lift and degree
of independence (see 4.4.2) have been used.

Figure 6.5 shows at a glance that pride in achievements in sports, history, arts and
literature, and science is generally very large. Sports is the most frequently cited source
of national pride, with more than 75% respondents indicating it makes them proud of
their country.

Comparing only the very proud categories, the achievements in history stands out
as the one with the most entries. People are distinctly less proud of their country’s
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Figure 6.5: Displaying the lift (a symmetrical measurement of how many times more
often two categories X and Y occur together than if they were independent) of adjacent
dimensions reveals a pattern between similar answers. The colored red lines indicate,
that the degree of pride correlates across the several dimensions (e.g., if one is very
proud in one area, he or she is likely to be very proud in others as well).

armed forces and less than 50% are proud of their social security system. The latter
is also the area with the least amount of very proud people. Democracy and global
political influence (not shown in the picture) also rank low, indicating that people tend
to be more proud of achievements in non-political areas than of achievements of their
government.

Whereas the above analysis could have been done with similar approaches, like Par-
allel Sets or Parallel Trees, the Parallel Hierarchies view introduces several statistical
measurements to highlight associations in a unique and efficient way. These measure-
ments significantly enhance the visualization in several ways. First, they provide a
quick and time-saving overview of potentially interesting relationships without the need
of brushing. Secondly, proficient users are provided with additional information, which
is not available elsewhere.

Using the association lines, it is possible to quickly identify several relationships
between the different dimensions. Obviously, the degree of pride is strongly correlated
across the several areas, which means that a person stating to be very proud in one
area, is more likely to be very proud in other areas as well. The same holds true for not
very proud, not proud at all and, to some extent, somewhat proud. Since the association
lines only show patterns between adjacent dimensions, moving around the dimensions
to prove this pattern for all combinations. Brushing and enabling the layer bars may
also be used to assist this task.
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At this point, it is important to repeat again that the lift measurement favors small
categories and may produce large results for two categories with a low confidence value.
The result produced by lift and degree of independence measurements basically tells
us, how more likely something occurs compared to the expected value. Therefore, one
has to be careful to draw conclusions such as ”if a person is not proud of achievements
in sports, he or she is also most likely not proud of achievements in science” without
taking the support and confidence into account. Although the support between the not
proud at all categories is low in the above example, the confidence validates the findings
and further prove of their relevance can be found by the degree of independence, which
shows similar results to the lift.

6.4.1 Pride in Sports Achievements

After comparing multiple question concerning pride, the next objective was to analyze
these dimensions with regard to the various countries. Figure 6.6 shows the process
starting at the highest level of the countries hierarchy. At first, only a pattern between
Australia and very proud as well as Asia and not proud can be seen by using the degree
of independence measurement. After drilling down one level, the individual countries
are displayed. Drill-down operations are especially important if the grouped categories
are quite inhomogeneous, as can be seen in Europe, where the situation is very different
for geographically close countries. Here, it can also be useful to drill down only on
selected categories (e.g., to compare the results of each Western European country with
the overall results of Asia), which is a unique feature of both views, Parallel Hierarchies
and the Hierarchical Scatterplot.

By only displaying positive associations and using a threshold to filter out weak con-
nections, it is easy to identify dominating relationships. Once again, this demonstrates
the usefulness of statistics in conjunction with the visualization. As a result of this step,
people in Australia, New Zealand, Austria, Ireland and Venezuela tend to be very proud
of their nation’s achievements in sports, whereas Finland, Great Britain, Switzerland,
Poland, Chile, Thailand and Israel are considerably less proud of the achievements of
their countries in sports. The lift measurement highlights similar relationships and the
findings can be verified by using the confidence measurement, which shows a high confi-
dence between the above described relationships. Because each country only represents
approximately 2.2% of the whole data set, the support is naturally small (however, 2.2%
still represent about 1000 occurrences in the data set).

In the next step, an emphasis was put on Western European countries (Figure 6.6d)
by hiding all other regions. Then, the very proud, not very proud and not proud at all
categories are brushed. Using these layer and the expected frequency display, it is now
easy to compare these categories for each category. Austria and Ireland are again the
two countries with the highest percentage of very proud respondents (about 50%). It is
also interesting that the number of Irish people stating not to be proud of achievements
in sports is almost zero.
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This procedure also showed, how the association lines can be efficiently used together
with brushing. First, the lines were used to identify several interesting relationships
between categories. Then, brushing was used to confirm these patterns as well as provide
additional information about the data distribution. By using the tool tip function (i.e.,
hovering the mouse over a specific category), details about the relationships can be
accessed (e.g., to see how many Austrians stated to be very proud of their country’s
sport achievements). Additionally, the expected frequency arrows, a novel feature of
Parallel Hierarchies, greatly help the understanding of the patterns within the data set.

6.4.2 Pride in Other Domains

Similar to achievements in sports, other questions regarding pride have been analyzed
as well. Analogically, the structure of the countries hierarchy has been used to iden-
tify trends in various levels of detail, as illustrated by Figure 6.7. Western European
countries generally tend to be proud of their social security system, while the majority
of Eastern Europeans is not proud of it at all. Drilling down in the Western European
nations has revealed, that the four nations with the highest degree of very proud people
are Austria, Denmark, Finland and France. Further analysis (hiding countries and using
brushing) has shown that Austria is leading in the pride on social welfare.

The United States, Great Britain and Israel have the greatest pride in their armed
forces, followed by Australia, New Zealand and Venezuela. Western European nations
rank average with an equal distribution of the four possible answers. Eastern Europe,
with the exception of Poland, has the lowest pride in that area.

In general, national pride seems to be greatest in stable, developed democracies
and lowest in former communist states, especially in domains related to politics or
the economy. All these findings can be verified using other statistical measurements,
although the support remains small due to the relatively small number of items in each
country (approx. 2.2% = 1000 items).

6.4.3 Influence of Age and Sex

Little evidence of any gender difference regarding pride can be found when comparing the
various hierarchies, as no significant distinction is visible for any question. Before using
the age dimension in the Parallel Hierarchies visualization, the inherently numerical
dimension has had to be categorized. Using intervals as described in Section 3.3.2, six
categories (15-27, 27-36, 36-45, 45-54, 54-65, 65+) with equal frequencies have been
identified (i.e., each category consists of an equal number of items). The connections
indicate a slight correlation between people older than 65 and very proud category in
most questions asked. Brushing has been used in Figure 6.8 to confirm this and has
shown, that the relationship between age and pride is strongest in the domain of armed
forces.
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(a)

(b)

(c)

(d)

Figure 6.6: Starting at the highest level of the hierarchy (a) drill-down operations are
used to reveal more and more details (b and c). In the bottom picture, Western Europe
is shown in more detail and all other countries are hidden. Furthermore, brushing is
used to compare the frequencies of very proud and not (very) proud regarding each
country. All examples use the degree of independence (the deviation of confidence from
expected confidence) as connection measurement and a threshold of 15%.
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(a)

(b)

Figure 6.7: Comparing pride regarding the social welfare system already reveals a trend
at a lower detail level by the degree of independence. In the top picture (a) the difference
between Western and Eastern Europe is obvious and drilling down one level shows
additional information about the distribution within these regions (b).

Figure 6.8: Using the (symmetrical) lift measurement to highlight patterns, a correlation
between the oldest age group and very proud of armed forces can be found.
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6.4.4 Influence of Education

Another interesting issue is the relationship between educational level and national pride.
In order to analyze all domains of national pride in conjunction with other interesting
dimensions of the survey on a single screen, the spacing between hierarchies has been
reduced and association lines have been disabled. Brushing people with respect to
their educational level in different layers has been used to find interesting patterns
(Figure 6.9).

The first observation is, that more respondents (about 60%) have a higher education
(higher secondary completed, above higher secondary, university degree). Similarly the
lower education categories (no formal qualification, lowest formal qualification, above
lowest qualification) are grouped. Brushing both groups reveals one interesting general
pattern: the higher the education, the less proud people are in regard to specific achieve-
ments of their country. This relation is significant in the domains of sports and armed
forces, and to a smaller degree also in the social welfare system. To a lesser extent, this
trend surprisingly even holds for the fields of art, literature or science.

Concerning the additional variables which have been added to the view, the first
one, ”general speaking, [country] is a better country than most others” is a more general
question to indicate national pride. Here, the influence of education on pride is even
stronger, supporting the pattern found before. Furthermore, the visualization also shows
that lower educated people generally feel closer to their country. They also rather tend
to agree to the statement immigrants increase crime rates.

By getting rid of the association lines, a large number of hierarchies can be displayed
simultaneously and the visualization has similarities to Parallel Trees (Section 2.1.3),
where one active dimensions is linked with all others. Sifer states that this reduced
visual complexity provides a significant advantage if more than three dimensions are
shown [62]. Whereas Parallel Trees only display the data in this reduced form, Parallel
Hierarchies allow the user to adapt the view according to the current task or the number
of displayed dimensions. Additionally, this is another great example of how the expected
frequency display improves the visualization. Without the arrows, only the distribution
of the brushed data subsets could be observed, whereas the arrows highlight the patterns
in a prominent way. This time-saving feature also enhances the user’s understanding, as
interesting deviations from the expected values are pointed out and easy to understand.

However, one has to be careful when using the deviation of expected frequency to
actual frequency (displayed as arrows in the layer bars) to find patterns. In small data
sets, slight variations in the data (e.g., caused by noise) may result in different results.
In this case study, the used data set consists of over 44.000 items and even rather small
deviations of 1% represent more than 400 occurences, making the significant influence
of (random) variations rather unlikely. To prove this, two random subsets of the whole
data set were analyzed using the same methods as above. Both times the results were
similar to the patterns found before.
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Figure 6.9: Brushing is used to visualize the influence of education on national pride,
which reveals that lower educated people tend to be more proud. The arrows indicating
the deviation of expected frequency to actual frequency allow for an efficient identifi-
cation of patterns. For example, the red and green arrows in the how close do you
feel to your country dimension (lowest in the picture) each represent approximately 400
respondents. Colors were disabled to highlight the red and green bars.
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Figure 6.10: Family or martial status and occupation are the two most mentioned
groups a person identifies with. Interesting are the relations of Spain and Taiwan with
Age Group as well as Chile with Gender. In this example, the degree of independence
measurement with a threshold of 15% has been used.

6.5 Identification

After discovering some interesting patterns concerning national pride, the next task was
to analyze another main topic of the survey: identification (interviewees were asked
about the most important group they identify with).

Figure 6.10 shows that family or martial status, occupation and gender are the three
largest groups. Brushing by using the super focus has revealed that family was most
often mentioned in Australia, North America and Western Europe, but is less important
in Asia and South America. The association lines also show the relation of Australia and
North America to the family category, but also reveal that, contrary to the continent
Asia, South Korea and the Philippines are correlated with this category as well. Other
interesting associations include the one between Spain, Taiwan and age group, and Chile
with gender. A closer look into the gender group discloses that there is no evidence of
gender difference. The number of women stating gender as the most important group
they identify with is only diminutively larger than the number of men.

6.5.1 Influence of Age and Education

Using the Hierarchical Scatterplot, the relation of identification groups to age and educa-
tion (Figure 6.11) can be visualized. Unlike before, the numerical dimension education:
years of schooling is used, instead of the highest educational level. There is a direct
correlation between the two dimensions dealing with education, i.e., the more years
somebody spent in school, the higher the educational level is.
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Several interesting observations can be made using the average aggregate for both
numerical dimensions. First, the average age is, not surprisingly, lowest for age group
and, quite surprisingly, social class. Religion on the other hand has the highest average
with 48 years. Compared to most others, people identifying themselves with their age
group also spent less years in schools, only ethnic background and nationality have
an even lower average. On the other hand, people identifying themselves with their
occupation have by far the largest average.

Interestingly, the difference in education is not as high as one may assume. The
smallest and largest averages are only (about) a year apart. Switching from average
to median aggregates reveals that all categories, except ethnic background, have an
median of 12 years of schooling. The median of the category ethnic background is 11
years. Therefore, one must be careful to draw too quick conclusions from results of a
single aggregate and it shows the importance of giving the user the possibility to switch
between different aggregates.

In addition to these results, which could have been calculated using a traditional
pivot table (Section 2.1.1, the Hierarchical Scatterplot facilitates the analysis by using
several other visual clues. First, the size of each circle represents the number of people
identifying with each group, allowing for a quick comparison of each group. It also
helps to explain the influence of single identification groups on the overall results (the
larger the category, the larger its influence on the overall result). Furthermore, the lines
connecting each category glyph with the entire hierarchy’s result, enhance the visual
analysis of how each group deviates from the overall result. For example, long vertical
lines imply, that the category is close to the overall value of the horizontal axis, but
it departs clearly on the other one (e.g., relgion or social class). Together with the
support for hierarchies, these deviation vectors set the Hierarchical Scatterplot apart
from comparable techniques, like Gapminder’s Trendanalyzer [21] and allow for an even
more efficient and comprehensible visual analysis.

One question asked in the survey is ”Do you agree that one benefit of the Internet is,
that more information is available?”. Using brushing and the Hierarchical Scatterplot,
we can analyze how this dimension relates to the results found before. Two subsets of the
data, all respondents that agreed strongly (36%) and the ones that did not agree (neither
agree or disagree, disagree, disagree strongly ; 12%), are brushed in a Parallel Hierarchies
view. The influence of this question, as visualized in Figure 6.12, is substantial. As
before, the lines connecting each subset with its category help trained users to identify
general trends as well as single deviations.

People which agree strongly with the benefit of the Internet tend to be younger and
better educated, independent of the group they identify with the most. The largest
difference between the two subsets can be found in the category ”age group”. Overall,
the average age difference between the two subsets is about 6 years. The average years
of schooling deviation is about 2 years.
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Figure 6.11: Using the Hierarchical Scatterplot different identification groups are visu-
alized with respect to their average age and education. Additionally, the overall average
can be compared to each category.

Figure 6.12: The deviation of two brushed subsets (agree strongly to benefits of the
Internet and do not agree) to each other is visualized, revealing that people who agree
strongly are younger and better educated.



6.6. CLOSER LOOK AT AUSTRIAN RESULTS 94

Figure 6.13: Using association lines and the lift measurement, reveals that people affil-
iated with the Green party are less proud of achievements in sports. FPÖ supporters,
on the other hand tend to be less proud of achievements in arts and literature.

6.6 Closer Look at Austrian results

The next section focuses on a smaller subset of the entire survey, namely Austria specific
variables (e.g., party affiliation and regions).

6.6.1 Pride and immigrants

Similar to the analysis of national pride in different countries (Section 6.4.1), relations
and patterns in respect to the party affiliation have been searched. The lift measurement
was chosen to discover associations in the Parallel Hierarchies visualization. Afterwards,
confidence and degree of independence have been used to confirm any patterns found
before.

Several interesting observations can be made during that process (see Figure 6.13).
While respondents affiliated with the Green party are prouder of achievements in arts
and literature than people affiliated with other parties (or people with no party affilia-
tion), they are considerably less proud in the areas of sports, history and armed forces
(the last two not shown in picture). FPÖ supporters on the other hand and people not
affiliated with any party tend to be less proud of achievements in arts and literature.

As discovered before, Austria had the greatest pride in the social security system of
all nations. Interestingly, the visualization shows that SPÖ supporters are less proud in
this domain than others. A possible reason for this surprising result may be the fact,
that, at the time the survey was conducted (2004), Austria was ruled by a ÖVP/FPÖ
government and SPÖ supporters expressed their unhappiness with the political situation.
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Figure 6.14: A 2D scatterplot has been used to select a subset of people (age: 20 -
40, income: above 1500 Euros). The Hierarchical Scatterplot illustrates the average
working hours per week for each party as well as the deviation of the selected subset.
Please note that the coloring of the parties is based on a general color scheme, although
a more conventional color scheme (e.g., SPÖ = red, ÖVP = black, etc.) would be more
appropriate here.

6.6.2 Income, Working Hours and Education

In Figure 6.14, the Hierarchical Scatterplot illustrates a significant deviation of working
hours per week for people affiliated with different parties and shows how the index
”aggregate” can be used to equally distribute glyphs along one axis. People supporting
the Green party have the lowest average working hours per week with about 38.5, while
ÖVP supporters work almost 45 hours a week. In between are SPÖ supporters and
FPÖ with 40.5 and 42 hours respectively.

People between the age of 20 and 40 who earn more than 1500 Euros a month
have been selected in a 2D scatterplot view. This reveals additional information in the
Hierarchical Scatterplot. First, the expected frequencies arrows in the cut display show,
that there are less SPÖ supporters, but more FPÖ supporters in the selection than
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expected. Furthermore, the additional glyphs for the focus layer illustrate, that the
average working hours per week of the selected people is considerably higher than the
overall results. Whereas the deviation is only small for the category ÖVP, it is especially
noticeable for SPÖ and FPÖ.

This also demonstrates, how beneficial the integration into an existing visual analysis
system is. Using other views, like the 2D scatterplot, and the possibility to combine
brushes by logical operations, the user can visually select complex subsets of the data.
Comparable techniques (e.g., Parallel Sets or Gapminder) are often implemented as
single-view visualizations and therefore, usually lack the flexibility of a complete InfoVis
system.

The visual analysis illustrated in Figure 6.15 shows how a whisker plot can be used to
augment the standard circles. In the shown example, Green party supporters seem to be
considerably higher educated than affiliates of other parties. In fact, the lower end of the
whisker plot of the Greens category is at the median position of FPÖ. ÖVP supporters
have the second highest education (using the median as the main measurement for
comparisons), followed by the categories of FPÖ and SPÖ. The example also depicts,
how more complex glyphs, like the whisker plot, can be used to enhance the Hierarchical
Scatterplot by providing providing additional information about the data distribution.
Whereas novices probably prefer simple representations, the extra information can be
very helpful especially for proficient users. The open design of the implementation allows
for a simple integration of additional glyph types (as well as additional aggregates).

Figure 6.15: The whisker visualization shows that respondents affiliated with the Green
party were higher educated than the rest.



Chapter 7

Implementation

Both visualization techniques, the Parallel Hierarchies and the Hierarchical Scatterplot,
were designed as extensions for Bulk Analyzer, a visual analytics software currently
in development at the VRVis Research Center [2] (see Section 2.4). The system is
built on the basis of the InfoVis Library [51] and allows for the integration of various
visualization techniques using a plug-in system. The InfoVis Library, the Bulk Analyzer,
and its plug-ins are written in C++ and use the open source framework GTK+ [1] for
the user interface and all operating system specific issues. Additionally, the views use
OpenGL to render the visualizations at interactive frame rates. The Bulk Analyzer runs
on Windows and Linux operating systems.

The following sections will provide some information about technical aspects of the
Bulk Analyzer environment used to implement the previously described Parallel Hier-
archies and Hierarchical Scatterplot visualizations.

7.1 InfoVis Library and Bulk Analyzer

As mentioned before, the InfoVis Library is an important part of Bulk Analyzer and all
visualizations built upon it. The library was designed to provide a common framework
for storing structured data for InfoVis applications and provides a set of means to work
with this data. The InfoVis Library uses tables to structure the data similar to relational
databases. A table consits of an arbitrary number of channels which represent the data
attributes (columns in relational databases) and entries (rows), which represent the
items of the table.

Apart from the InfoVis Library, the Bulk Analyzer provides a framework that allows
the development of different types of visualizations. New kinds of views, application
specific data importers and algorithms for data derivation can be added to the system
by utilizing the plug-in mechanism offered by the system. The Bulk Analyzer core checks
for available plug-ins at start-up and loads the extensions appropriately. Together with
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the InfoVis Library, the Bulk Analyzer core implements the entire Data part of the Infor-
mation Visualization Pipeline. While the views are responsible for the mapping of data
to visual structures, the Bulk Analyzer core also provides functionality to interactively
control this transformation (e.g., by a data mapping widget).

7.2 View Structure

The Parallel Hierarchies and Hierarchical Scatterplot plug-ins, respectively, consist of
three main parts: the View, the Frontend, and the Backend. The view class, which
implements the BAIView interface, functions as the backbone, connecting the other parts
and also receiving notifications from the Bulk Analyzer core. Moreover, the view holds a
set of currently assigned hierarchies. The frontend provides the user interface including
the controls. The backend on the other hand, is responsible for the actual view-logic, the
drawing of the visual structures in the main window, and for processing user-interactions
interactively. Figure 7.1 shows an overview of the structure, highlighting the main parts
of the view.

View

Parallel Hierarchies

Frontend

Backend

Bulk 
Analyzer

Notifications

InfoVis
Library

HierarchySet

Plugins

Figure 7.1: The main structure of the Parallel Hierarchies plug-in. The view connects
the frontend and the backend. Furthermore, it receives notifications from the Bulk
Analyzer core.

The view class can be considered the main class of the Parallel Hierarchies plug-in.
Its main purpose is to receive notifications from the Bulk Analyzer core and forward them
to the appropriate sub-parts (frontend and backend). Furthermore, the view handles
almost all possible user actions.

The frontend is responsible for most things related to the user interface. GTK+ is
used to layout the view, provide widgets such as scrollbars and create the view’s controls,
which are shown whenever a view is active (only one view can be active at any time,
clicking inside the view’s window activates it).
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The backend implements the actual view-logic and handles the drawing for the Par-
allel Hierarchies visualization. Notifications, regarding user input or data changes, are
forwarded by the view class and processed within the backend. In the Parallel Hier-
archies visualization, the backend is responsible for computing the dimensions of each
visual structure (i.e., the boxes for the hierarchies, categories and layers), conducting
the calculations for the association measurements, drawing and updating the visual
representations, as well as managing selections and brushing, to name a few tasks.

In order for the application to stay responsive at any time, which was the most
challenging task when implementing the views, calculations are carried out in a sepa-
rate thread, the background worker thread. That means, time- and computationally-
intensive updates are not dealt with immediately when the notification arrives, but the
notification thread invalidates the parts which have to be recomputed or updated. To
further enhance the responsiveness of the views, the concept of preview rendering, which
is considered in most Bulk Analyzer views, was implemented. As soon as the most im-
portant parts have been updated (e.g., the visual representations of the categories), a
quick preview of the visualization is rendered. Later, the preview is replaced with the
final image.

7.3 Performance Analysis

A performance analysis was carried out using Intel VTune Performance Analyzer [29]
to analyze the time spent in specific areas of the source code. Additionally, the time
spent to update different parts of the visualized data was measured internally. The
performance was measured using three generic data sets ranging from 44.170 to 441.700
items. For each single analysis, five hierarchies, each with 26 dimensions, were created
and assigned to the Parallel Hierarchies view. One of these hierarchies together with
two numerical dimensions was also assigned to the Hierarchical Scatterplot. Afterward,
all available association measurements and aggregates were calculated. A Intel Pentium
4 with 2.8 GHz, 1024 MB RAM and an ATI Radeon 9500 graphics card was used in the
process.

As mentioned above, Bulk Analyzer uses several threads to carry out updates and
calculations across the views. Table 7.1 shows three sample threads and compares the
time spent in selected parts of the application. ”Thread 1” is mainly responsible for
creating the hierarchies and other general Bulk Analyzer functions. ”Thread 2” carries
out all the calculations needed for the Parallel Hierarchies view, while ”Thread 3” does
the same for the ”Hierarchical Scatterplot”. Other threads such as the notification
thread are not listed in the table, because the amount of time used for them is negligible.
Not surprisingly, ”Thread 1” is remains idle most of the time (or carries out other jobs)
for medium-sized data sets, but the time spent in the InfoVis Library (IVL) and the
Bulk Analyzer Core functions increases with larger data sets. ”Thread 2” shows a
significant amount of time spent in the IVL as well. Whereas the calculations in the
Parallel Hierarchies plug-in are finished quite quickly, most time is spent accessing the
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44.170 176.680 441.700
InfoVis Library 16% 23% 23%
BACore 8% 10% 13%
InfoVis Library 58% 70% 80%
ParallelHierarchies 24% 16% 8%
InfoVis Library 49% 48% 45%
StatLib 22% 32% 35%
HierScatterplot 7% 4% 3%

~ 1 sec ~ 1.5 sec ~ 3 sec

< 0.1 sec < 0.3 sec < 0.7 sec

< 0.1 sec < 0.1 sec < 0.3 sec

Time to update connections

Time to update super focus

Time to update aggregates
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Thread 1

Thread 2

Thread 3

Table 7.1: Analyzing the views using three different data set sizes shows a majority of
time spent in the InfoVis Library and StatLib functions.

data. The analysis of ”Thread 3” illustrates similar results. Even less time is spent in
the actual Hierarchical Scatterplot source code, but most work is done accessing the
data in the IVL and aggregating the items in the Statistics Library (StatLib).

Additionally, the time used to update different parts of the visualization was mea-
sured. For all data set sizes, the super focus was updated almost immediately with
no visible lag. With the exception of more complex aggregates, the same can be said
about the aggregate calculations. Median and Whisker aggregates take slightly longer
to calculate (about 0.7 seconds for the largest data set). In the Parallel Hierarchies view,
most time is spent when the user switches the active association measurement. For five
hierarchies with 26 categories a total of 2704 connections have to be calculated (676 for
each adjacent pair).

This analysis shows, that most time is spent accessing the data, while other calcu-
lations take only little time. In general, both visualizations scaled very well with the
larger data sets and stayed responsive at any time.



Chapter 8

Summary

In the recent years, the progress of computer performance has led to vast amounts of data
being generated and stored each day. However, extracting valuable information from
large amounts of raw data is challenging. Visual analysis techniques present data in a
visual form, consequently taking advantage of the human visual system and appropriate
interaction facilities enable the user to explore and analyze the data. The techniques
introduced in this work are specifically aimed toward the visualization of categorical
data. Traditional item-based visualization techniques (e.g., scatterplots) do not work
well for categorical data as they do not use the space efficiently or may even be not
reasonably applicable at all, if the categories lack an inherent ordering. Since categorical
data is also often structured in a hierarchical way, respective visualization techniques
should consider this, too.

This work presents two approaches to visualizing hierarchically structured, categor-
ical data.

8.1 Introduction

In general, visualization is the use of graphical representations to communicate a mes-
sage [10]. In computer science, visualization is the process of transforming data into
an image on the screen. It makes use of the human visual system and brain capa-
bilities, greatly enhancing the detection of noteworthy subsets or patterns within the
the data [10]. Even though they share to some extent common goals and techniques,
the field of visualization is traditionally divided into two parts: Scientific Visualization
(SciVis) and Information Visualization (InfoVis).

Information Visualization is usually used to visualize abstract, heterogeneous data.
Whereas Scientific Visualization mostly deal with inherently spacial data (e.g., medical
data, flow simulation data, etc.), abstract data does not have (or at least not entirely)
an inherent mapping to space, which requires additional steps to map the data to the
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computer screen [24]. The focus of InfoVis often lies in the exploration of data, making
a high degree of user interaction essential.

The approaches presented in this work focus on the visualization of hierarchically
structured, categorical data.

Categorical Data is very common in real-world data sets. Basically, two kinds of
data attributes can be distinguished: numerical (quantitative, continuous) or categorical
(qualitative) attributes. Numerical data always has an inherent ordering and meaningful
distances can be computed between any two values. Categorical data usually only has
a limited number of distinct values and does not need to have inherent ordering, nor
is the calculation of numerical differences possible in general. However, it is sometimes
reasonable for the purpose of visualization to treat discrete data with only a few possible
values as categorical data as well, although this data provides both ordering and distance
measurements. The reason is that visualization techniques for categorical data (which
are mostly frequency based) tend to utilize available screen space better for a small
amount of distinct values than techniques for numerical data, which typically assume a
continuous distribution of values.

The fact that the data may be lacking ordering and distance measures makes its
visualization very challenging, because graphical representations may imply incorrect
relationships between data entities.

Hierarchical Structures are often used to augment categorical data. The structure
may be inherent in the data or generated (by the user or classification algorithms). One
approach to create a hierarchy is to aggregate elements of lower levels, commonly used
by OLAP applications [69]. Using hierarchies, the data can be viewed and analyzed
from varying granularity levels, often greatly enhancing the user’s understanding of the
data set.

8.2 Related Work

Categorical data lends itself toward a discrete user model, a classification presented in
a taxonomy proposed by Tory and Möller [72]. Most common visualization techniques,
such as Parallel Coordinates [28] or scatterplot views, on the other hand, are based on
a continuous design model. The discrepancy between the user expectation (a discrete
model) and the presented image, is one of the reasons why traditional approaches are
often not suitable for categorical data.

For categorical data it is more natural to use frequency-based techniques, which
implement a discrete model [15]. Examples for frequency-based approaches include
histograms [41], parallel bargrams [79], the Mosaic Display [15, 27], and TreeMaps [60,
77]. The techniques that were most influencing for the design of the Parallel Hierarchies
visualization are Parallel Sets [7] and Parallel Trees [62].
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Parallel Sets are based on the idea of Parallel Coordinates, and similarly represent
data dimensions on a parallel axes layout. Each dimension is described by its categories,
replacing the numeric axes of Parallel Coordinates by proportionally scaled boxes. To
scale these boxes, the relative frequencies of the corresponding categories are calculated.
Categories of adjacent dimensions are connected by parallelograms, which represent the
relations between different categorical attributes of the data. Comparable to the boxes,
the parallelograms are scaled by the frequency of the described data items, allowing the
user to compare the width of the parallelograms to analyze the data relations.

Parallel Sets display all information provided by standard crosstabulations, but also
allow the visualization of multiple dimensions simultaneously, making the examination
of complex relationships and patterns possible. Additionally, the visualization can be
extended to display statistical measurements such as the conditional probabilities or the
degree of independence [7]. These statistics are displayed by histograms, drawn inside
each category box. Furthermore, numerical data may be visualized as well, using binning
or clustering to categorize the continuous data.

In general, Parallel Sets are highly interactive, allowing the user to rearrange dimen-
sions and categories, highlight the relations between different categorical attributes of
the data, or use dimension composition to reduce the number of dimensions.

Parallel Trees use a similar approach to Parallel Sets, but lack of any visualized
connections between adjacent dimensions. As an alternative, Parallel Trees use one
active dimension, set by the user, to implicitly link it with all others by coloring parts
of the boxes. Therefore and contrary to Parallel Sets, which show relationships between
all adjacent dimensions, Parallel Trees only show the relationship between the active
dimension and all others.

The main feature of Parallel Trees is their support for hierarchical structures. Each
hierarchy consists of at least three levels (a top level aggregating all items, at least one
intermediate level and a bottom level displaying the highest possible detail) and all are
shown simultaneously. The approach allows the selection and filtering of categories at
any level, updating the other categories and hierarchies accordingly. Using these tools,
the user can drill-down on data subsets or single categories.

Bulk Analyzer The visualizations presented in this thesis have been integrated into
the Bulk Analyzer visual analytics system. Bulk Analyzer employs a multi view ap-
proach, allowing the display of various visualizations simultaneously. The views are
bi-directionally linked and every user interaction (e.g., brushing) in one view updates
all other views, a crucial feature for interactive data analysis [14]. Another important
visualization concept included in Bulk Analyzer, is Focus+Context visualization, which
allows the concurrent display of overview (context) and details (focus) [24].
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Figure 8.1: Hierarchical structures are displayed using nested boxes. The currently
selected cut is visualized, while parent nodes are displayed by borders and labels.

8.3 Parallel Hierarchies

Data sets commonly used in real world applications often contain a large number of
categorical dimensions. As pointed out above, traditional visualization techniques do
not usually support categorical data well. Solutions geared toward the visualization
of categorical data such as Parallel Sets or Parallel Trees, on the other hand, do not
visualize continuous data as well. In general, a single visualization technique is unlikely
to be suitable for all types of data. Therefore, one of the main motivations for the
development of the presented approach was to integrate a categorical data visualization
into an existing visual data analysis system (Bulk Analyzer) and provide the user with
a wide range of linked visualization techniques.

Parallel Hierarchies builds on the idea of Parallel Sets, but emphasizes relationships
and patterns between categories more. Furthermore, the visualization supports hier-
archically structured data and all Bulk Analyzer features, such as interactive brushing
across various views.

8.3.1 Visualization

Similar to Parallel Sets, a horizontal alignment is chosen to layout an arbitrary number
of dimensions, which may be arranged by the user in any order. Adjacent boxes rep-
resent the categories of each dimension. The boxes are scaled according to the relative
frequency of the respective category, where the full width of the view means 100% of
the data. This allows for an easy comparison of categories since categories with a higher
number of items are wider than categories with a smaller item count.

Parallel Hierarchies allows the user to examine the data at different levels of ab-
straction. Two operations, drill-down (moving down the hierarchy) and roll-up (moving
up the hierarchy), are used to select a disjunctive and complete subset of nodes of the
hierarchy, the cut. The cut represents all the data contained within the hierarchy and
can be seen as a state of navigation. Figure 8.1 shows how the hierarchical structure of
a dimension is represented in the visualization. Whereas the categories within the cut
are displayed as described before, they are nested within their parent categories, which
are displayed as scaled boxes as well.
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Figure 8.2: Arrows are used to visualize the discrepancy between actual and expected
frequency, which can enhance the pattern finding process significantly. In the example
the categories ”very proud” (red) and ”somewhat proud” (green) were brushed, revealing
their distribution in the above ”Country” dimension.

The Bulk Analyzer system allows for the brushing of multiple individual selections,
which are linked with all other views. Therefore, the integration of the layers in the
visualization is not only crucial to share information across different views, but also a
very powerful tool to explore multiple dimensions at once. To passively integrate the
layers in the visualization, individual bars are displayed within each category box of
the cut. These bars are scaled similar to the box itself, i.e., if half of the entries of the
category are selected, the associated bar will fill half of the category.

To simplify the detection of unexpected relationships, Parallel Hierarchies optionally
displays the expected frequencies and their deviation from the actual values for each
layer visually (see Figure 8.2. In general, the expected frequency reveals information
about data distribution without any prior knowledge about the data set. For example,
given a data set of 1000 items, a subset X with 100 items and a subset Y with 250
items, the expected frequency of X ∩ Y is 25. For every category and every layer
one expected frequency and its deviation to the actual frequency is calculated. The
deviation has proved to be of very high interest, since it expresses to which degree a
category is over- or under- proportionally related to the selection criterion underlying
each layer and it facilitates the perception of relationships between layers and categories
significantly. Both results are visualized by a half-transparent arrow, which has its base
at the expected value and its top at the actual value.

8.3.2 Displaying Trends and Relations

To further enhance the detection of patterns, the Parallel Hierarchies approach displays
trends and relations between categories by visualizing interest measurements, a com-
monly used technique in the field of association rule mining [3]. The results of these
interest measurements are visually represented by lines connecting the categories of ad-
jacent hierarchies, displaying positive (red lines) as well as negative (blue lines) correla-
tions and conveying an approximate impression of how strongly categories or hierarchies
are related (thickness of the lines and saturation of the color; see Figure 8.3).
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Figure 8.3: The ”degree of interest” measurement reveals some interesting relation-
ships between the adjacent hierarchies ”Country” and ”How proud: Its achievements in
sports”.

A number of commonly used interest measurements are available in the Parallel
Hierarchies view:

• Support: the relative frequency of the conjunction of two categories X and Y.

• Confidence: the ratio of the relative frequency of X ∩ Y to the relative frequency
of X.

• Lift: the ratio of confidence to expected confidence.

• Degree of Independence: the deviation of confidence from expected confidence.

The user may change the active measurement at any time. Furthermore, a threshold
can be set to hide uninteresting lines, strongly improving the perception of the more
distinct relationships.

8.4 Aggregate-based Hierarchical Scatterplot

As already mentioned above, most real-world data sets are not exclusively numerical
nor are they strictly categorical. Numerical data may be categorized using intervals
and displayed using the Parallel Hierarchies visualization, but even slight changes in the
interval borders may affect the results significantly, resulting in the lose of numerical
data characteristics (e.g., the possibility to calculate the distance between two values)
in the process.

The technique proposed in this section is a novel approach to visualize a single hi-
erarchy with respect to two numerical dimensions, supporting both data types directly.
Categories are represented by glyphs and placed on a scatterplot-like view with two nu-
merical axes using numerical aggregates. Numerical aggregates are a simple yet powerful
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Country Average of Income Average of Work hours / Week
Austria (AT) 1067,77 41,18
Finland (FI) 1811,90 37,85
France (FR) 1617,73 38,78
Germany-East (DE-E) 1006,77 42,33
Germany-West (DE-W) 1234,72 39,67
Portugal (PT) 643,51 41,76
Spain (ES) 761,44 39,02
(Leer)
Overall 1222,92 40,09

Figure 8.4: Using a pivot table to display the averages of two continuous (income, work
hours per week) dimensions in regard to one categorical dimension (countries).

way to use numerical data in conjunction with a categorical dimension. Figure 8.4 illus-
trates how aggregates are used in a pivot table to calculate the average of two numerical
dimensions using the categories defined by the dimension ”Country”.

Similar to the Parallel Hierarchies visualization, the Hierarchical Scatterplot sup-
ports hierarchically structured data and fits within the Bulk Analyzer framework.

8.4.1 Visualization

Figure 8.5a shows how the information from the pivot table is displayed in the Hier-
archical Scatterplot. Each category of the assigned hierarchy’s cut (see the previous
section) is represented by a glyph (a filled circle). By default, glyphs are scaled by the
frequency of their associated category, i.e., the more entries a category has, the larger
the size of the respective glyph of the category.

Additionally, the hierarchy is displayed in a separate part of the view below the
scatterplot, similar to the visualization in the Parallel Hierarchies view. This allows the
user to navigate the hierarchy using drill-down and roll-up operations, but also provides
additional information, such as the actual and expected frequencies of brushed subsets.
Categories use the same colors in both parts of the view, which is crucial for the user to
match categories efficiently.

By default, only the categories of the hierarchy’s cut are displayed in the scatterplot
as glyphs and the hierarchical structure is only visible in the lower part of the view.
Optionally, the structure can be visualized in the scatterplot as well. Parent categories
are visualized by black dots, which are placed according to their respective aggregates
and connected by lines to their children. Different line widths are used to indicate
various levels of the hierarchy. In the example (Figure 8.5a), the lines connect each
glyph with the dot representing the entire hierarchy, making it possible to compare the
individual aggregates to the overall results and often provide interesting information
about patterns in the data set.
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(a) (b)

Figure 8.5: The left picture (a) how the data from the pivot table is visualized using
the Hierarchical Scatterplot approach. Using a Parallel Hierarchies view, female (green)
and male (red) subsets were brushed using Bulk Analyzer’s focus and context system
in picture (b). The Hierarchical Scatterplot then shows how these subsets affect each
category by positioning additional glyphs.

8.4.2 Aggregates

The Hierarchical Scatterplot provides various aggregates that can be chosen indepen-
dently for each axis: average, median, sum, maximum, minimum, whisker, index and
count. Apart from information for positioning of the glyphs, the ”whisker” aggregate
calculates all values needed to draw a box plot, which replaces the filled circle used for
all other aggregates. On the other hand, the ”index” and ”count” aggregates do not
aggregate any data and are therefore independent of any numerical dimension. The
”index” attribute is used to equally distribute glyphs on one axis, while the ”count”
aggregate places the glyphs according to the item count of the respective category.

8.4.3 Layer Integration

The lower part of the view integrates the layers of the Bulk Analyzer system like the
Parallel Hierarchies view and also highlights the difference between actual and expected
frequencies. The scatterplot section displays the subsets defined by the layers as glyphs,
thereby stressing the deviation of the brushed subsets from the entire categories with
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respect to the chosen aggregates. Placement and visual presentation of these additional
glyphs is similar to the original glyphs, which represent the categories. To distinguish
the different layers, the border of each additional glyph is colored using the layer’s
globally defined color. Figure 8.5b demonstrates how, using this approach, brushing can
gain additional information. In another view the categories ”Male” and ”Female” were
selected, allowing the user to analyze how male and female results vary in regard to the
numerical dimensions and the active aggregates.

Apart from this passive integration of the layers, the user may also brush categories
directly in the Hierarchical Scatterplot view. By clicking on glyphs or categories, the
category will be selected in the focus layer. Additionally, multiple categories can be
selected at once by drawing a selection rectangle. To quickly highlight one category, the
user can point the mouse cursor over any glyph.

8.5 Conclusion

Although categorical data is very common in the field of visual data analysis, the num-
ber of visualization techniques geared toward this kind of data is still quite limited. In
this work, two techniques to visualize hierarchically structured, categorical data were
presented. The first one, Parallel Hierarchies, builds upon the intuitive approach of
Parallel Sets, visualizing multiple hierarchies at once by using the item count of each
category to scale its visual representation. Common tasks in InfoVis are to find inter-
esting patterns and unexpected relationships within data sets, and Parallel Hierarchies
supports the user by highlighting trends between categories and hierarchies. The second
proposed technique, the Hierarchical Scatterplot, presents a novel approach to visualize
the categories of a single hierarchy in regard to two numerical dimensions. Both ap-
proaches supplement each other very well. Furthermore, the integration into an existing
visual analytics system allows the techniques to be used in a wide variety of tasks.
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Conclusions and Future Work

Considering some of the most common visualization techniques, it is apparent that
most are not well adapted to categorical data. Surprisingly, only limited research on the
subject of categorical data visualization has been carried out in recent years and tech-
niques often tend to be more for special purposes. In this thesis, two novel visualization
techniques, designed specifically for categorical data, were described. The presented
techniques also greatly benefit from the hierarchical structuring of categorical dimen-
sions. By navigating through the hierarchy, the user can view the data at different levels
of abstraction, which has proven to be especially useful for data dimensions with a large
number of categories. Both visualizations complement each other well. While the Par-
allel Hierarchies view is used to display associations and patterns between hierarchies,
the Hierarchical Scatterplot provides the user with a detailed view of a single hierarchy
and its structure. Furthermore, the integration of the techniques into the Bulk Analyzer
framework allows them to be used in a wide variety of problems, as other views may be
used to support the analysis as well.

Although the case study has shown that the presented visualizations work very
well, there are a few outstanding features which could further enhance their usability.
Currently, both techniques are very useful to explore data sets and find patterns, but
lack a display of the exact measurements calculated internally. The pop-ups provide
some additional information, but may not be sufficient for cases where detailed results
are needed. Additionally, the Parallel Hierarchies visualization does not provide the
option to brush or select lines which connect adjacent categories. This feature could
be used to extract interesting associations and use them outside the visualization, for
example, to make predictions based upon the results. In general, untrained users may
not be aware of the fact, that some association measurements (confidence and degree of
independence) are asymmetric measurements and the visualization must be read top-to-
bottom. Therefore, future implementations could highlight the direction, in which the
lines are interpreted and allow the user switch the orientation interactively. It would
also be worthwhile to see if an automated process to extract association rules, similar
to approaches from data mining, would further enhance the user’s experience. Such
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an approach may calculate a number of association measurements, combine the results
in a meaningful way and highlight the most promising associations or patterns in the
visualization. Currently, the Hierarchical Scatterplot scales the size of the displayed
glyphs according to the item count of the respective category or, optionally, its depth
in the hierarchy. Future versions, however, could give the user the possibility to assign
any numerical dimension to represent the glyph sizes.

In my opinion, this work has shown that the collaboration of statistics and Infor-
mation Visualization can be very beneficial. Statistics help to decrease the work for
the user by allowing him or her to focus on the most noteworthy subsets of the data.
Visualization makes use of the human visual system and the domain knowledge of the
user. Combining both fields may be challenging, but it is worth the effort for an im-
proved experience. I think that interactively combining the statistical capabilities of the
computer with the pattern recognition capabilities of the human is and will continue to
be one of the most promising fields of visual data analysis.

While working on this thesis, I have learned how important external feedback is. For
example, when showing the Parallel Hierarchies view to users, it turned out, that the
default coloring of the graphical representations confused most users. Similarly, one of
the most useful feature of the Hierarchical Scatterplot, the display of vectors connecting
each category with its father node in the hierarchy, was not included in the initial design,
but was integrated after first experiments with the view.

During the course of my studies in this field, I have recognized the interdisciplinary
benefits of visualization. For example, easy-to-use software motivates users to experi-
ment with the tools, making visualization an entertaining, yet very valuable educational
tool. Here it is even more important to guide users with appropriate visual clues, as
complex and large data can easily overwhelm novices, as well as learned users.

In general, I think that a good user interface design will play an increasingly im-
portant role in Information Visualization. Whereas today, most research in this field,
including this work, focuses on the graphical representation of data, in the future, us-
ability will be even more important to efficiently work with ever increasing amounts of
data. Therefore, I believe that efficient ways to interact with the data, together with
the integration of statistics, will be fundamental for future approaches.
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