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Kurzfassung

Drahtlose MIMO (Multiple input multiple output) Systeme verwenden mehrere Sende-

und Empfangsantennen und erlauben eine Verbesserung der Zuverlässigkeit (diversity

gain) und der Datenrate (multiplexing gain) der Übertragung. Diese Vorteile kom-

men jedoch Hand in Hand mit einem höheren Rechenaufwand für die Detektion, ins-

besondere bei Verwendung von Soft-Detektion, die im Vergleich zu Hard-Detektion ein

besseres Detektionergebnis liefert und eine Grundvoraussetzung für iterative Empfänger-

strukturen, so genannte Turbo-Empfänger, darstellt. In dieser Diplomarbeit gehen wir

von einem Sphere-Decoder für die MIMO Soft-Detektion aus und präsentieren Mod-

ifikationen, die einen flexiblen Abtausch von Rechenaufwand auf der einen Seite und

Detektionsleistung bzw. Diversität auf der anderen Seite erlauben. Der flexible Ab-

tausch zwischen Rechenaufwand und Detektionsleistung wird dabei durch Beschneiden

der LLRs erreicht, das in den Sphere-Decoder einbezogen wird, und durch Vorgabe des

Maximalwertes für die LLRs gesteuert werden kann. Für den flexiblen Abtausch zwis-

chen Rechenaufwand und Diversität wird ein partieller Entzerrer zusammen mit einem

fehlangepassten ML-Detektor verwendet, wobei ein einziger Parameter, der den Grad der

Vorentzerrung beschreibt, den Abtausch bestimmt. Zusätzlich zu diesen beiden Modi-

fikationen wird eine untere Schranke für Teilmetriken im Spere-Decoder präsentiert, die

eine weitere Komplexitätsreduktion ohne Verlust an Detektionsleistung erlaubt. Zum

Abschluss dieser Diplomarbeit werden Simulationsergebnisse für die vorgestellten De-

tektionsalgorithmen präsentiert, die eine Beurteilung ihrer Leistungsfähigkeit erlauben.
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Abstract

Multiple input multiple output (MIMO) wireless systems that use multiple transmit and

receive antennas allow a gain in reliability (diversity gain) and capacity (multiplexing

gain). Unfortunately, these advantages come at the cost of higher computational com-

plexity, particularly when using soft detection (SD). SD features improved performance

compared to hard detection and is a prerequisite for iterative receiver structures (turbo

receivers). In this diploma thesis we consider the sphere decoder for soft-output MIMO

detection and present modifications that allow flexible trade-offs between computational

complexity on the one hand and performance and diversity on the other hand. For the

trade-off between complexity and performance we incorporate LLR clipping into the

sphere decoding algorithm that allows to adjust the trade-off via the clipping level.

For the trade-off between complexity and diversity we use a partial equalizer followed

by a mismatched ML detector where the trade-off is adjusted using a single parame-

ter governing the amount of pre-equalization. Additionally to these two modifications

we present a lower bound on partial sphere decoder metrics that allows to reduce the

complexity of the detection using the sphere decoder without performance degradation.

The thesis is rounded up by simulations that evaluate the performance of the presented

detection schemes.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Spectrally Efficient Wireless Systems

The conversion of the modern society into an information society, in which the cre-

ation and distribution of information pose a significant economic, political, and cultural

activity, leads to a high demand for information and for powerful communication sys-

tems for the exchange of this information. The information transmitted is gained from

a multitude of sources, such as audio, video as well as data and text. In addition,

increasing mobility of the users requests mobile communication systems that allow to

access information everywhere and anytime. The strongly increasing amount of data

transmitted using wireless communication technologies leads to a shortage of communi-

cation resources. This is especially true for the limited resource of frequency bandwidth.

The increased demand for high transmission capacity has to be coped by increasing the

spectral efficiency, in other words by more advantageous utilisation of existing frequency

bands and channel conditions.

1
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1.1.2 Fading and Diversity

The transmission of data using wireless systems is impaired by signal fading and in-

terference. Fading is a consequence of multipath propagation that occurs due to the

presence of reflectors and scatterers (e.g. houses, mountains, . . . ) in the environment

surrounding the transmitter and the receiver. The environment provides multiple paths

over which a transmitted signal can travel. This results in a superposition of multiple

copies of the transmitted signal at the receiver, each different in attenuation, delay and

phase shift. The different characteristics of the paths can result in either constructive

or destructive interference that lead to an amplification or an attenuation of the signal

power at the receiver. Strong destructive interference and therefore a strong attenua-

tion of the signal, called deep fade, may result in a temporary failure of communication

due to a decrease in the signal-to-noise ration (SNR). In mobile communications the

channel is permanently changing and deep fades can occur anytime. While in additive

white Gaussian noise (AWGN) channels the bit error rate (BER) decreases exponen-

tially with increasing signal-to-noise ratio the probability of deep fades dominates the

BER in Rayleigh fading channels which causes the BER to decrease only linearly with

increasing SNR [1].

Diversity techniques can be applied to reduce the probability of deep fades and therefore

enhance the link reliability. These techniques are based on the concept of providing

replicas of the same information signal through independently fading channels to the

receiver. The probability all these signal components will fade simultaneously is reduced

considerably. This reduction is called diversity gain.

There are several ways in which the receiver can be provided with multiple replicas

of the same signal [2]. Frequency diversity can be used in case of frequency-selective

fading. Then the signal can be transferred utilizing several carriers (e.g. OFDM),

where the separation between successive carriers has to be larger or equal than the

coherence bandwidth, or spread over a larger frequency band (e.g. spread spectrum).
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In the case of time-selective fading temporal diversity can be used, where the signal is

transferred at different points in time. The separation between successive time slots

has to be at least the coherence time of the channel. Temporal diversity is usually

exploited via interleaving, forward error correction coding (FEC), and automatic repeat

request (ARQ). Other rarely used ways of exploiting diversity are angle diversity and

polarisation diversity.

A more recent method for achieving diversity that will be dealt with throughout this

thesis, is spatial (or antenna) diversity. It is employed based on transmitting or receiving

information signals from multiple antennas. The antennas have to be spaced by more

than the coherence distance, which is the minimum spatial separation of antennas for

independent fading and depends on the wavelength and angular spread of the multiple

paths arriving at or departing from an antenna array. We distinguish between receive

diversity, i.e. the use of multiple antennas at the receiver, and transmit diversity, i.e.

the use of multiple antennas at the transmitter [3].

For transmit diversity two different cases are possible. Transmit diversity in the case

where the transmitter has knowledge of the channel state information (CSI) involves

transmission such that the signals sent from the individual antennas arrive in phase

at the receive antenna. If the CSI is not known at the transmitter, transmit diversity

requires more sophisticated methods such as space-time coding which uses coding across

antennas and time. The idea behind these methods is to send the information with

different preprocessing from different antennas such that the receiver can combine these

signals to obtain diversity. Transmit and receive diversity are both similar and different

in many ways. While receive diversity, assuming an appropriate receiver, needs solely

multiple independently fading antennas and is independent of the used coding and

modulation scheme, transmit diversity needs special coding and modulation in order

to be effective. Also, receive diversity provides array gain, whereas transmit diversity

does not provide array gain when the channel is unknown at the transmitter [1].
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1.1.3 MIMO and Spatial Multiplexing

Employing multiple antennas at the transmit and the receive side allows to obtain spa-

tial multiplexing [3]. The idea behind spatial multiplexing is that the use of multiple

antennas at both sides of the link together with rich scattering in the propagation envi-

ronment opens up multiple transmission links within the same frequency band to yield

an increase in capacity, called multiplexing gain. It grows linear in the number of anten-

nas and is very attractive since it comes at no extra bandwidth or power consumption.

Multiple input multiple output (MIMO) wireless systems use multiple antennas at both

link ends and are therefore able to provide improved link reliability (diversity gain)

and increased spectral efficiency (multiplexing gain) [3]. Unfortunately the gain in link

reliability and transmission rate come at the cost of higher computational complexity.

This complexity is particularly high when using soft detection for MIMO, which features

improved performance compared to hard detection and is a prerequisite for iterative

receiver structures (turbo receivers). It is a major issue of current investigation and this

diploma thesis in particular to reduce this complexity while still retaining full diversity

and multiplexing gain.

1.2 Issues Addressed in this Diploma Thesis

This thesis deals with detection algorithms for MIMO soft detection and starts in Chap-

ter 2 with a short introduction to the basics of MIMO systems followed by an explanation

of the MIMO system model used throughout this thesis and hard and soft-detection for

MIMO. A sphere detector for soft output detection is reviewed in Chapter 3 followed

by refinements and modifications to reduce the computational complexity of this detec-

tor in Chapter 4. Chapter 5 provides numerical simulations of a 4 × 4 MIMO system,

presents their results and closes this thesis with an interpretation of the results.



Chapter 2

MIMO Basics

Multiple input multiple output (MIMO) wireless systems are systems that use both

multiple transmit and receive antennas. This can lead to a combination of transmit

and receive diversity. Assuming MT transmit and MR receive antennas, a maximum

of MTMR links is available and therefore, if all of these links fade independently and

appropriate diversity combining is employed, the diversity order is MTMRth [3]. The

multiple transmit and receive antennas additionally allow to exploit spatial multiplexing

which leads to an increase in capacity, such that the data rate grows linearly in the

number of receive antennas [3].

MIMO systems provide diversity gain and multiplexing gain in rich scattering environ-

ments. These gains in reliability and transmission rate do not need additional bandwidth

or power but come at the cost of higher computational complexity and at the cost of

increased hardware effort due to the use of multiple antennas.

2.1 MIMO System Model

In this diploma theses we use a MIMO transmission system for single-user communi-

cation and consider a point-to-point link using spatial multiplexing. The transmission

5
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system that consists of several functional blocks is depicted in Figure 2.1 and described

in the following.

The source data constitute the input of the transmission system. We assume that these

source data have already been source coded to reduce redundancy and to represent

the data in an efficient way. The source data is channel coded by the channel encoder

that introduces redundancy in a controlled manner to allow error-detection and error-

correction. In a next step, the interleaver (Π), the coded data is reordered to protect the

transmission against burst errors. In the mapper the coded data is mapped to transmit

symbols. The sequence of transmit symbols is divided in the demultiplexer into sub-

sequences for the transmission from multiple transmit antennas. In the signal generators

the sub-sequences are converted into transmit signals that are transmitted over the

channel using multiple transmit signals. The channel corrupts the transmit signals,

adds noise and produces the receive signals that are demodulated to pseudosymbols in

the demodulators. The soft detector jointly detects the bits contained in the transmit

symbol stream and as a result delivers soft information that is reordered to the original

order in the deinterleaver (Π−1). The channel decoder decodes the stream of soft-

information into estimates for the source data.

Most of the blocks in the MIMO transmission system are similar to the single input single

output (SISO) case and therefore well known. Hence we don’t mention them in detail

but take a closer look on the MIMO specific parts of the transmission system. Under the

assumption of flat fading, the blocks encircled by the dashed line in Figure 2.1 can be

represented by the simplified MIMO system illustrated in Figure 2.2. It consists of one

transmitter equipped with MT antennas and one receiver that has MR ≥ MT antennas

and uses the receive signals of all antennas to jointly detect the transmit symbols. The

transmitter simultaneously sends the symbols s1, . . . , sMT
that are obtained by mapping

blocks of length MC of the bits bi from the output of the interleaver to the elements of
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the symbol alphabet A using the mapping function

sm = s
(
b(m−1)MC+1, . . . , bmMC

)
, m = 1, . . . , MT. (2.1)

Here MC is the number of bits per alphabet symbol and therefore the symbol alphabet A

has cardinality |A| = 2MC. The symbols s1, . . . , sMT
are sent within the same frequency

band from the MT antennas over the channel that is assumed to be flat-fading. It

affects the sent symbols which is described by the complex fading channel coefficients

hi,j with i = 1, . . . , MR and j = 1, . . . , MT, where hi,j describes the link between the jth

transmit antenna and the ith receive antenna. At the ith receive antenna we obtain a

superposition of the transmitted symbols weighted by the channel coefficients hi,j plus

Gaussian noise ni,

yi =

MT∑

j=1

hi,jsj + ni.

After arranging s1, . . . , sMT
, y1, . . . , yMT

, and n1, . . . , nMT
into the vectors s, y, and n

respectively, and arranging the channel coefficients hi,j into a matrix H, we obtain the

vector-matrix description for the MIMO system,



y1

y2

...

yMR




=




h1,1 h1,2 . . . h1,MT

h2,1 h2,2 . . . h2,MT

...
...

. . .
...

hMR,1 hMR,2 . . . hMR,MT







s1

s2

...

sMT




+




n1

n2

...

nMR




,

or, in a more compact form,

y = Hs + n. (2.2)

The receive vector y is an MR × 1 vector containing the received signals. The transmit

vector s is a MT×1 vector of symbols whose entries are chosen from the symbol alphabet

A and are independent and identically distributed (i.i.d.), i.e. E{ssH} = I. The MR ×

MT channel matrix H contains the channel coefficients that are complex Gaussian with

zero mean and variance σ2
h (Rayleigh fading), i.e. hi,j ∼ CN (0, σ2

h) and E{hi,jhk,l} =

σ2
hδi,kδj,l, where δi,k and δj,l denote the Kronecker delta. In case of a large number of
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scatterers in the channel contributing to the signal at the receiver, application of the

central limit theorem leads to this Gaussian model for the channel matrix coefficients [2].

We assume fast fading, which means that the channel matrix is constant during one use

of the channel, i.e. for the duration of the transmission of one s, and changes in an

independent fashion from one use of the channel to another. Furthermore we assume

that the channel matrix H is perfectly known at the receiver. The noise vector n is an

MR × 1 vector of i.i.d. complex Gaussian noise entries with zero mean and variance σ2
n,

i.e. ni ∼ CN (0, σ2
n) and E{nnH} = σ2

nI.

2.2 MIMO Hard-Detection

In the MIMO case the hard-detection problem is given by the calculation of an estimation

ŝ for the transmitted symbol vector s as a function D(y) of the observed receive vector

y, i.e.

ŝ = D(y). (2.3)

The estimation for the bits b̂j that have been mapped to the symbols in the symbol

vector s can be obtained by demapping the estimate ŝ. The optimum decision function

is the one that maximizes the probability P{ŝ = s} of a correct decision, [4]

Dopt(y) = arg max
D(y)

P{ŝ = s} = arg max
D(y)

P{D(y) = s}. (2.4)

The probability of a correct decision (i.e. ŝ = s) is

P{ŝ = s} =

∫

CMR

P{ŝ = s|y}f(y)dy,

where P{ŝ = s|y} is the conditional probability that it has been decided for the cor-

rect MIMO symbol given the receive vector y and f(y) is the probability distribution

function (pdf) of the receive vector y. Since f(y) does not depend on the decision

function Dopt(y) and since moreover f(y) ≥ 0, P{ŝ = s} is maximized if and only if the
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conditional probability P{ŝ = s|y} is maximized for each y ∈ CMR. This conditional

probability can be developed as

P{ŝ = s|y} = P{s = D(y)|y} = p (D(y)|y)

where p (D(y)|y) is the conditional probability mass function (pmf) of the estimated

MIMO transmit symbol ŝ given the received vector y. Thus the optimum decision

function Dopt(y) in (2.4) is obtained by maximizing p (D(y)|y) for fixed y with respect

to the variable Dopt(y). Writing Dopt(y) = s and recalling that Dopt(y) ∈ AMT, we

obtain

Dopt(y) = arg max
s∈AMT

p (s|y) ,

which means that the conditional probability of s given y has to be maximized. This

conditional probability is know as the posterior probability of s and the decision rule is

accordingly called the maximum a-posteriori (MAP) decision rule. To omit the decision

function Dopt(y) we rewrite the MAP decision rule as

ŝMAP(y) = arg max
s∈AMT

p (s|y) , (2.5)

i.e. the MAP decision detects the symbol vector ŝ that is most probable for the given

y. The formulation of the MAP decision rule in (2.5) is inconvenient since the posterior

probability p (s|y) in not directly known. Using Bayes’ rule we express the MAP decision

rule in terms of known quantities

ŝMAP(y) = arg max
s∈AMT

p (s|y)

= arg max
s∈AMT

{
f (y|s)

p(s)

f(y)

}

= arg max
s∈AMT

{f (y|s) p(s)} , (2.6)

where f (y|s) is the conditional pdf of the receive vector y given the transmitted signal

vector s and p(s) is the pmf of the transmit symbol vector s. In case that all transmit

vectors s are equally likely or this is assumed because of the distribution beeing unknown
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the pmf p(s) is equal and constant for all s, i.e. p(s) = 1
2MCMT

, and can therefore be

omitted in (2.6). We obtain

ŝML(y) = arg max
s∈AMT

{
f (y|s)

1

2MCMT

}
= arg max

s∈AMT

f (y|s) , (2.7)

with the conditional pdf f (y|s) that is called a likelihood function if it is viewed as a

function of s with y fixed. Hence the decision rule is called the maximum likelihood

(ML) decision rule. The detector using the MAP decision rules (2.5) is optimum in the

sense that it yields the minimum MIMO symbol error probability. In case of equally

likely symbols the ML decision rule (2.7) equals the MAP decision rule and is therefore

optimal as well in that case. For the system model with additive white Gaussian noise

(AWGN) and known channel (see Section 2.1) we obtain the likelihood function

f(y|s) =
1

(πσ2
n)MR

e
− 1

σ2
n
‖y−Hs‖2

,

which leads to the ML decision rule

ŝML = arg min
s∈AMT

‖y −Hs‖2 . (2.8)

It can be seen that the hard-detection in case of additive white Gaussian noise and

equally likely symbols simplifies to a minimum distance decision.

The hard-detection delivers hard decisions for the estimate ŝ of the symbol vector s

and, after demapping ŝ, for the estimate b̂j of the corresponding bits. It does not deliver

any reliability information that could be exploited by the channel decoder. Doing so,

hard-detection omits a large part of the information contained in the receive vector y.

2.3 MIMO Soft-Detection

Soft-detecion delivers, like the hard-detection covered in Section 2.2, estimates b̂j for the

bits bj that are mapped to the transmit vector s. Additionally it delivers information on
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s1 s2

s3s4

s1 = [s1 s1]
T ↔ b1 = [0 0]T

s2 = [s2 s1]
T ↔ b2 = [1 0]T

s3 = [s1 s2]
T ↔ b3 = [0 1]T

s4 = [s2 s2]
T ↔ b4 = [1 1]Ty1

y2

Figure 2.3: Detection example for a 2× 2 MIMO system using BPSK modulation.

how reliable these estimates are. This supplementary information, termed soft informa-

tion, can be exploited by an appropriate channel decoder to achieve a better decoding

performance. Moreover the performance can be further improved using iterative receiver

structures, so called turbo-receivers (e.g. in [5]).

We want to compare hard and soft-detecion by means of an example using a simple 2×2

MIMO system with BPSK modulation. Figure 2.3 shows the possible transmit symbols

s1, . . . , s4 (with the bit vectors b1, . . . ,b4 mapped to them, which will be denoted using

the symbol “↔” in the following) and two possible receive vectors y1,y2 in the signal

space. In the case of an AWGN channel with equally likely symbols s1 and s2 the

optimal MAP decision rule (2.6) simplifies to the minimum distance decision (2.8),

ŝMAP = ŝML = arg min
s∈AMT

‖y −Hs‖2 ,

i.e. the estimate ŝ is the symbol that is closest to the receive vector y in the sense of

Euclidean distance. For that case the dashed lines in the Figure 2.3 mark the boundaries

of the decision regions for the hard-decision case. Under these circumstances it is obvious

that for the receive vectors y1 and y2 a detector using hard-detection would decide for
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ŝ(y1) = s1 ↔ b1 and ŝ(y2) = s3 ↔ b3. This decision, however, omits the reliability

information contained in the receive vectors and ignores the code structure. Assuming

that low noise values are more likely than larger ones (e.g. for zero-mean Gaussian

noise), the information on how reliable the decision is can be taken out of the distance

between the receive vector y and the corresponding transmit symbol estimate ŝ. In

Figure 2.3 the decision for ŝ(y2) = s3, for instance, is much more reliable than the

decision for ŝ(y1) = s1 because y2 is closer to s3 than y1 is to s1. Exploiting the

reliability information together with the channel code structure underlying the bits

mapped to the transmit symbols leads to a performance gain.

In the soft-detection case the information about the decision and its reliability are usually

delivered jointly for every bit using log-likelihood ratios (LLRs). These are defined as

L (bj |y) = ln
P (bj = 1|y)

P (bj = 0|y)
, (2.9)

where P (bj = 1|y) and P (bj = 0|y) are the conditional probabilities for bj = 1 and

bj = 0 respectively, conditioned on y. The definition of the LLRs in (2.9) is quite clear.

By putting the posterior probabilities for bj = 1 and bj = 0 into relation and taking the

logarithm we get values in the interval (−∞,∞) that allow to obtain the hard decision

for a bit by calculating

b̂j(y) =





0 if L(bj |y) < 0

1 if L(bj |y) ≥ 0.
(2.10)

The reliability information, the soft information, can be obtained by exploiting the

modulus |L(bj)|. The higher the modulus the higher the reliability of the bit decision.

For the example in Figure 2.3 the soft detector could deliver the LLRs L(b1|y1) = −5

and L(b2|y1) = −15. These values are given as an example and are therefore only

descriptive and not exact but they represent the information contained in the receive

vector y1. The hard decision for the bits b(y1) = [b1(y1) b2(y1)]
T can be derived from

the sign according to (2.10) and results in b1(y1) = 0 and b2(y1) = 0. Looking at the

moduli of the LLRs we see that the higher value |L(b2|y1)| = 15 states a quite high
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reliability of the decision for the bit b2 which reflects the fact that the receive vector

y1 is quite close to the transmit symbol s1, where b1 = 0, and far from the transmit

symbols s3 and s4, where b1 = 1, i.e where the bit is complementary. The smaller value

of |L(b1|y1)| = 5 on the other side reflects the fact that the receive vector y1 is close

to the transmit symbol s1, where b1 = 0, and far from the transmit symbols s2 and s4,

where b1 = 1, i.e where the bit is complementary. The difference in the LLR values for

the two bits arises out of the fact that the distance between y1 and s2 is smaller than

the distance between y1 and s3 and the decision is therefore less reliable.

The detector passes the LLRs on to the channel decoder that is capable of using the

soft information for the decoding, e.g. channel decoders using the BCJR (Bahl, Cocke,

Jelinek and Raviv) algorithm [6]. This allows to reach a performance gain compared to

the hard-detection case.



Chapter 3

Soft-Output Sphere Detection

3.1 Log-Likelihood Ratios

Minimizing the probability of making an error detecting a bit means maximizing the a

posteriori probability. Therefore the maximum a posteriori (MAP) detection is optimal

in the sense of error probability. The a posteriori probability is usually expressed using

log-likelihood ratios (LLRs).

Based on the MIMO system model presented in Section 2.1 the a-posteriori LLR of a

bit bj for j = 1, . . . , MTMC conditioned on the receive vector y, is [5]

L (bj |y) = ln
P (bj = 1|y)

P (bj = 0|y)
, (3.1)

where P (bj = 1|y) and P (bj = 0|y) are the conditional probabilities for bj = 1 and

bj = 0 respectively, conditioned on y.

Using Bayes’ theorem, we can write the soft output value (3.1) as

L (bj |y) = ln
p(y|bj = 1)

P (bj=1)

p(y)

p(y|bj = 0)
P (bj=0)

p(y)

= ln
p(y|bj = 1)

p(y|bj = 0)
+ ln

P (bj = 1)

P (bj = 0)
. (3.2)

Here, p(y|bj) is the conditional probability density function (pdf) of y conditioned on

bj , p(y) is the pdf of y and P (bj = 1) and P (bj = 0) are the probabilities for bj = 1 and

15
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Figure 3.1: Example for the sets X
(0)
2 and X

(1)
2 in a 2× 2 MIMO system using 4-PSK mod-

ulation.

bj = 0 respectively. Transforming the conditional probability distributions p(y|bj = 1)

and p(y|bj = 0) in (3.1) and assuming that both cases, bj = 0 and bj = 1, are equally

likely, we obtain

L (bj |y) = ln

∑

b∈X
(1)
j

p(y|b)P (b)

∑

b∈X
(0)
j

p(y|b)P (b)
= ln

∑

b∈X
(1)
j

p(y|b)

∑

b∈X
(0)
j

p(y|b)
, (3.3)

where X (0)
j and X (1)

j are disjoint sets of vector symbols that have the jth bit bj of the

transmit symbol s equal to 0 and 1, respectively, and b is the vector containing the bits

bj for j = 1, . . . , MTMC. Figure 3.1 gives an example for such sets for the second bit b2

in case of a 2× 2 MIMO system using 4-PSK modulation. We furthermore assume that

y is complex Gaussian distributed, i.e. [4]

p(y|b) = p (y|s = s (b)) =
1

(πσ2
n)MR

e
− 1

σ2
n
‖y−Hs(b)‖2

. (3.4)

As a next step we define the Jacobian logarithm [5]

jacln(a1, a2) , ln(ea1 + ea2) = max(a1, a2) + ln(1 + e−|a1−a2|)

= max(a1, a2) + r(|a1 − a2|),
(3.5)
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where r(|a1−a2|) can be viewed as a refinement of the coarse approximation max(a1, a2).

Simplifying the calculation of the logarithm by entirely omitting r(|a1 − a2|) leads to

the max-log approximation,

ln(ea1 + . . . + eaN ) = ln

(
N∑

n=1

ean

)
≈ max(a1, . . . , aN), (3.6)

which only retains the dominating term in (3.6) and allows the approximate calculation

of the logarithm by means of a maximum search. Inserting (3.4) in (3.3) and using the

max-log approximation (3.6) for the Jacobian logarithm (3.5), we obtain

L (bj |y) = ln

∑

b∈X
(1)
j

p(y|b)

∑

b∈X
(0)
j

p(y|b)
= ln

∑

b∈X
(1)
j

p(y|b)− ln
∑

b∈X
(0)
j

p(y|b)

= ln
∑

b∈X
(1)
j

e
− 1

σ2
n
‖y−Hs‖2

− ln
∑

b∈X
(0)
j

e
− 1

σ2
n
‖y−Hs‖2

= max
b∈X

(1)
j

{
−

1

σ2
n

‖y −Hs‖2
}
− max

b∈X
(0)
j

{
−

1

σ2
n

‖y −Hs‖2
}

.

Finally, after omitting the noise variance σ2
n, we attain the max-log approximation for

the calculation of the LLRs

L (bj |y) ≈ min
b∈X

(1)
j

‖y −Hs‖2 − min
b∈X

(0)
j

‖y −Hs‖2 . (3.7)

The LLR L (bj |y) has to be computed for all coded bits bj . For each bit, one of the two

minima in (3.7) is the value corresponding to the maximum likelihood (ML) solution

λML = min
s∈AMT

‖y −Hs‖2 = ‖y −HŝML‖
2 , (3.8)

where

AMT = X (0)
j

⋃
X (1)

j .

Here, with a slight abuse of notation, we use X (0)
j and X (1)

j to denote sets of both the

bit vectors b and the symbol vectors s. The other minimum in (3.7) is given by

λML
j = min

s∈X
(bML

j
)

j

‖y −Hs‖2 (3.9)
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where bML
j denotes the binary complement of the jth bit in the binary label of the ML

solution ŝML and X
(bML

j )

j is the set of vector symbols for which bj = bML
j . Using (3.8)

and (3.9) allows to write the max-log approximation (3.7) for the LLRs as

L (bj |y) ≈





λML − λML
j if bML

j = 0

λML
j − λML if bML

j = 1.
(3.10)

This shows that the calculation of the LLRs narrows down to the calculation of λML

and the λML
j for j = 1, . . . , MCMT. However, the calculation itself is computational

very expensive as there have to be calculated the ML metric and MCMT metrics of

the counter hypothesis. The ML metric itself is the result of a minimum search over

|A|MT = 2MCMT and every metric of the counter hypothesis itself is the result of the

minimum search over |X
(bML

j )

j | = 2MCMT−1 different symbol vectors s.

3.2 Tree Search Problem

To reduce the computational complexity the sphere decoding algorithm [7] is used after

transforming the search for (3.8) and (3.9) into tree-search problems.

We introduce the QR-decomposition of a general complex n × m matrix A [8]. If

n ≥ m there is an n × m matrix Q with orthonormal columns (QHQ = I) and an

upper triangular m × m matrix R such that A = QR. If m = n, Q is unitary, i.e.

QQH = QHQ = I. If in addition A is nonsingular, i.e. Ax = 0 only for x = 0, then R

may be chosen so that all its diagonal entries are real-valued and positive, and in this

case, the factors Q and R are both unique.

We use the QR-decomposition H = QR of the channel matrix H and transform the

input-output relation (2.2) into the modified input-output relation

ỹ , QHy = Rs + QHn (3.11)

by left-multiplying by QH. Note that QHn ∼ CN (0, σ2
nI) since QHQ = I. This leads to
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the following equivalent formulations for (3.8) and (3.9):

λML = min
s∈AMT

‖ỹ −Rs‖2 , (3.12)

λML
j = min

s∈X
(bML

j
)

j

‖ỹ−Rs‖2 . (3.13)

We define the partial symbol vectors (PSVs) s(i) = [si, si+1, . . . , sMT
]T and arrange them

in a tree. Figure 3.2 shows the corresponding tree structure with MT levels, where every

level corresponds to one transmit antenna, and nodes that are represented by the PSVs

s(i). The tree’s root lies above level i = MT and each path down via several nodes on

the levels i = MT − 1, . . . , 2 to a leaf on level i = 1 corresponds to a symbol vector

s ∈ AMT. The path drawn with bold lines, for instance, corresponds to the symbol

vector s = [s(3), s(3), . . . , s(2), s(1)]. The leaf with the smallest metric in AMT and X
(bML

j )

j

corresponds to the solution of (3.12) and (3.13), respectively. Taking into account the

upper triangular structure of R the calculation of the term ‖ỹ −Rs‖2 simplifies to

‖ỹ −Rs‖2 = |ỹMT
−RMT,MT

sMT
|2︸ ︷︷ ︸

|eMT |
2

+ |ỹMT−1 − RMT−1,MT−1sMT−1 − RMT,MT
sMT
|2︸ ︷︷ ︸

|eMT−1|
2

+ . . .

. . . + |ỹ1 − R1,1s1 −R1,2s2 − . . .−R1,MT
sMT
|2︸ ︷︷ ︸

|e1|
2

=

MT∑

i=1

|ei|
2 ,

where the metrics can be calculated recursively by summing up the distance increments

(DIs)

|ei|
2 =

∣∣∣∣∣ỹi −
MT∑

k=i

Ri,ksk

∣∣∣∣∣

2

(3.14)

of all branches from the root (i = MT) to a leaf (i = 1) of the tree. The partial sums

di =

MT∑

k=i

|ek|
2 = di+1 + |ei|

2 with dMT+1 = 0, (3.15)
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Figure 3.2: Sketch of the tree structure of an MT ×MR MIMO system.
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named partial Euclidean distances (PEDs), correspond to a node on level i. Every node

in the tree is associated with a PED di, representing the DIs |ek|
2 (k = i, . . . , MT)

summed up traversing the branches from the tree’s root to the node.

3.3 Schnorr-Euchner Sphere Decoder

The transformation of the max-log LLR calculation into a tree structure allows the use of

a sphere decoding algorithm, like the one of Schnorr-Euchner [9] (SESD). The algorithm

constrains the search to nodes that lie within a hypersphere of radius R around ỹ by

comparing the PEDs (3.15) of every node with the current radius. If the PED di of

a node already exceeds the radius R it is not necessary to traverse its sub-tree since

di ≥ di+1. Therefore the tree is pruned and the complexity of the minimum search is

reduced efficiently. The algorithm additionally performs a radius reduction starting with

an initial radius of R =∞ and updating the radius according to R2 = d(s) whenever a

leaf s has been reached. To reduce the radius more quickly the sub-trees of nodes are

traversed in ascending order of their PEDs.

3.3.1 Repeated Tree Search

To solve (3.12) and (3.13) it is necessary to search for the ML metric and MCMT metrics

of the counter hypothesis. The most straightforward way to do this is a repeated tree-

search (RTS) described in [5]. First (3.12) is solved using the SESD to find the ML

hypothesis bML
j and the corresponding ML metric λML. The SESD is reran to determine

the metrics of the counter hypothesis λML
j after prepruning the search tree by forcing

the decoder to exclude from the search all nodes (and their corresponding subtrees) that

do not have leaves in X
(bML

j )

j (i.e. for which bj = bML
j ). The main disadvantage of the

RTS strategy lies in the fact that large parts of the tree are traversed repeatedly.
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3.3.2 Single Tree Search

The key to a more efficient tree-search than RTS is to ensure that every node in the tree

is visited at most once. This can be accomplished by solving (3.12) and (3.13) simulta-

neously, i.e., by searching the ML metric λML and all metrics of the counter hypothesis

λML
j , j = 1, . . . , MCMT, in one tree traversal. This single tree-search (STS) strategy,

presented in [10], is based on a list containing the ML metric λML, its corresponding

bit sequence bML and the metrics of all counter hypothesis λML
j . This list has to be

administrated whenever a leaf of the tree is reached. During the search the list contains

only preliminary values and the final values are obtained after traversing the complete

tree. In the following, with a slight abuse of notation, we use the same symbols for the

preliminary and the final values.

After initializing the algorithm by setting all metrics to infinity, i.e. λML = λML
j =

∞ (∀j) the list is administrated according to the following steps when reaching a leaf.

1. If a new ML hypothesis is found, i.e. d(s) < λML, the metric of the former ML

hypothesis λML becomes the metric of the new counter-hypotheses λML
j for each

bit in the ML hypothesis that is changed in the update process, i.e. λML
j = λML for

all j for which bj = bML
j . This is followed by updating the ML metric λML = d(s)

and the ML hypothesis bML = b. This procedure ensures that all λML
j always

contain the metric associated with a valid counter-hypotheses to the current ML

hypothesis.

2. If no new ML hypothesis is found, i.e. d(s) ≥ λML, only the counter-hypotheses

have to be checked. For all j for which d(s) < λML
j and bj = bML

j , the metric of

the counter-hypotheses is updated, λML
j = d(s).

Since the STS algorithm traverses the tree only the implementation of the pruning

criterion mentioned above is more complicated. A given node s(i) on level i and the

subtree originating from that node have the partial binary label b(i) consisting of the bits
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bj , j = iMC, iMC+1, . . . , iMC+MT. The remaining bits bj (j = 1, 2, . . . , (i−1)MC+MT)

corresponding to the subtree are unknown at this point. The pruning criterion for s(i)

along with its subtree is compiled from two conditions. First, the bits in the partial

binary label b(i) are compared with the corresponding bits in the binary label of the

current ML hypothesis. In this comparison, for all j with bj = bML
j , the corresponding

metric of the counter-hypotheses λML
j might be affected when further searching the

node’s subtree. Second, all counter-hypotheses corresponding to the subtree of s(i) with

the associated metrics λML
j , j = 1, 2, . . . , (i−1)MC +MT, may also be updated since the

corresponding bits are not yet known. In summary, the metrics which may be affected

during further search in the subtree of a node s(i) are given by the set

N = {nl} =
{
λML

j |bj = bML
j , j ≥ iMC

}
∪
{

λML
j |j < iMC

}
.

The node s(i) and its subtree are pruned if its PED d(s(i)) satisfies

d(s(i)) > max
nl∈N
{nl} , (3.16)

that is, if the PED in a node already exceeds all metrics relevant for the subtree.

This pruning criterion ensures that the subtree of a given node is explored only if it

can lead to an update of either the ML hypothesis or of at least one of the counter-

hypotheses.

We will revise the function of the SESD using STS by means of a short example. We

use the simple case of a 2 × 2 MIMO system using BPSK modulation, and assume

that the symbols s1 and s2 represent the bit values 0 and 1 respectively. The tree

structure corresponding to the system is depicted in Figure 3.3. We start with the QR-

decomposition of the channel matrix H and set the metrics λML = λML
1 = λML

2 = ∞.

We start traversing the tree from its root and calculate the PEDs on tree level 2, i.e.

dA
2 and dB

2 , by setting dMT+1 = d3 = 0 and calculating the DIs |e2|
2 for every symbol

on tree level 2, i.e. |e2|
2
A and |e2|

2
B, according to (3.14) using the PSV s

(2)
A and s

(2)
B .

So far no leaf of the tree has been reached and the comparison of the calculated PEDs
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Figure 3.3: Tree structure for a 2× 2 MIMO system using BPSK modulation.

with the metrics according to (3.16) will not lead to a pruning of the tree since still

λML = λML
1 = λML

2 =∞.

The subtrees of the nodes on level 2 are traversed in order of the size of their PEDs,

starting with the smallest value. For this example we assume that dA
2 < dB

2 so that we

continue with the subtree of node A. We traverse to tree level 1 and calculate its PEDs,

i.e. dC
1 and dD

1 , by calculating the DIs |e1|
2 for every symbol on tree level 1, i.e. |e1|

2
C and

|e1|
2
D and adding them to dA

2 . The PEDs are sorted by size again and the smallest value,

which we assume is dC
1 , is used to update the ML metric λML, because dA

2 < λML =∞,

and the ML hypothesis is set to bML = [0 0] which is the bit label corresponding to sC .

For the symbol vector sD the first bit is complementary to the ML hypothesis and it is

therefore used to update the metric λML
1 for the counter-hypothesis for this bit, because

dD
1 < λML

1 =∞.

The left side of the tree has been completely traversed now and the algorithm continues

on the right branch because the comparison of dB
2 with the metrics according to (3.16)

will not lead to a pruning of the tree since still λML
2 =∞. We continue with calculating
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the PEDs on tree level 1, i.e. dE
1 and dF

1 , by calculating the DIs |e1|
2 for every symbol

on tree level 1, i.e. |e1|
2
E and |e1|

2
F and adding them to dB

2 . The PEDs are sorted by

size again and we assume that the smaller value is dE
1 . We assume that dE

1 > λML, i.e.

the ML hypothesis and its metric are not updated, but dE
1 is used to update the Metric

λML
2 for the counter-hypothesis for this bit, because dE

1 < λML
2 =∞ and the second bit

for this node is complementary to the ML hypothesis. Finally, assuming that |e1|
2
F has

a large value, we obtain a large value for dF
1 as well, which leads to a pruning of node F

according to (3.16).

Efficient tree pruning can start after finding preliminary values for the ML hypothesis

and its metric as well for the metrics of the counter-hypothesis. In our example we had

to traverse the tree until reaching node E before we found the first values for all these

variables. The reason for that is the size of the tree. For larger trees the pruning would

cut off larger parts of the tree and therefore reduce the computational complexity to a

greater extent.

3.4 LLR Clipping

The dynamic range of LLRs is a priori not bounded. Practical systems need to constrain

the maximum LLR value to enable implementation which evidently leads to a perfor-

mance degradation. A straightforward way to ensure that LLR values are bounded is

to clip them after the detection stage so that

|L(bj)| ≤ Lmax, (3.17)

i.e. they do not exceed a certain level Lmax.

An enhanced and very common way to apply the LLR clipping is to incorporate it into

the single tree-search algorithm such that it leads to a reduced search complexity [11].

Whenever a leaf has been reached and a new ML hypothesis has been found, after
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carrying out the steps described in Section 3.3.2, the metrics of the counter-hypotheses

have to be updated according to

λML
j ←− min

{
λML

j , λML + Lmax

}
∀j. (3.18)

This causes the counter-hypotheses to be reduced more quickly and leads to enhanced

pruning. For Lmax −→∞, we obviously approach the exact max-log solution, which has

a high complexity. For Lmax −→ 0, the decoder performance approaches that of a hard-

output ML detector for which the complexity is significantly lower than for Lmax −→∞.

The parameter Lmax can therefore be used to adjust the complexity-performances trade-

off. Regarding complexity, smaller Lmax leads to a reduction of complexity, as a more

aggressive pruning criterion is used. Instead of the original criterion (3.16) the criterion

d(s(i)) > min

{
max
nl∈N
{nl} , λ

ML + Lmax

}
(3.19)

is used to decide if a node s(i) and its subtree are pruned. It additionally prunes nodes

and their subtrees that have PEDs d(s(i)) ∈ [λML +Lmax, λ
ML
j ]. For lower clipping levels

Lmax this interval is larger and therefore provokes more nodes to be pruned.

Note that the receiver using LLR clipping is not optimal in the sense of the max-log

approximation (3.7) any more.



Chapter 4

Modifications for the Sphere

Decoder

The soft-output sphere detector presented in Chapter 3 represents a basic detector con-

cept that can be further developed to allow a more sophisticated search for the solution

of (3.8) and (3.9) in order to reduce the computational complexity of the soft-detection.

In this chapter, modifications of the original detector are presented for the sake of fur-

ther complexity reduction. Furthermore we present a detection scheme that allows for

a complexity-diversity tradeoff.

The schemes are mainly based on the fact, that in mobile communication scenarios,

where the channel remains constant for several symbol durations, it is much more prefer-

able to spend most of the computational effort only once, at the beginning of each frame.

They add additional tasks (and complexity) to the overall detection algorithm, e.g. a

QR-decomposition or a singular value decomposition (SVD), to reduce the complexity

of the actual detection. The complexity added by the additional tasks is compensated

by the reduction in complexity in the actual detection. This represents a shift of com-

plexity from the detection to the additional measures. Since the additional tasks are

performed only once but serve for the detection of several symbols, they lead to even

27
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more reduction in the overall computational complexity of the detection algorithm.

4.1 Partial Equalizer

The tree-search algorithm in Section 3.2 is optimal in the sense of the max-log ap-

proximation (see (3.7)) and consists of the two ML detections (3.8) and (3.9). The

computational complexity of the ML detection

ŝML = arg min
s∈AMT

‖y −Hs‖2 . (4.1)

in general grows exponentially with MT, even if the detection is implemented using the

sphere-detector [12]. We define the diversity order as [13, 14]

d = lim
1

σ2
n
→∞

log P (s1 → s2)

log σ2
n

, (4.2)

where P (s1 → s2) denotes the pairwise error probability (PEP). For ML detection the

PEP for the event that s1 was transmitted and s2 is detected conditioned on the channel

matrix H, PML(s1 → s2|H), equals [15]

PML(s1 → s2|H) = Q

(
‖Hδ‖√

2σ2
n

)
,

where δ = s1−s2 is the error vector and Q(·) denotes the Q-function. For i.i.d. Rayleigh

fading, the mean PEP for ML detection is upper bounded as [15]

PML(s1 → s2) = EH {PML(s1 → s2|H)} ≤ CML

(
1 +
‖δ‖2

4σ2
n

)−MR

, (4.3)

where CML > 0 is a constant. Using (4.2) and (4.3) it follows, that the diversity order

that can be reached using ML detection is d = MR, which is the full diversity.

ZF detection, on the other hand, is based on equalizing the receive vector y with the

pseudoinverse [16]

H+ = (HHH)−1HH,
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i.e. r = H+y, and component-wise quantisation of the equalized receive vector r = H+y

to the symbol alphabet A, i.e.

ŝZF = QA {r} = QA

{
H+y

}
= QA

{
s + H+n

}
, (4.4)

where QA {·} denotes the quantisation function.

For ZF detection the PEP conditioned on the channel matrix H, PZF(s1 → s2|H),

equals [17]

PZF(s1 → s2|H) = Q


 ‖δ‖2√

2σ2
nδ

H(HHH)−1)δ


 ,

and for i.i.d. Rayleigh fading, the mean PEP for ZF detection is upper bounded as [18]

PZF(s1 → s2) = EH {PZF(s1 → s2|H)} ≤ CZF

(
1 +
‖δ‖2

4σ2
n

)−(MR−MT+1)

, (4.5)

where CZF > 0 is a constant. Using (4.2) and (4.5) it follows that the ZF detector yields

diversity order dZF = MR −MT + 1, but its computational complexity is low compared

to the ML detector.

ML and ZF detection are opposite extremes in terms of diversity and complexity. In

[13,14] a scheme for hard-detection is devised that allows a continuous trade-off between

these two extremes to be able to adapt the detection to the available computational

power and/or the necessary diversity gain. The adaption itself can be done by adjusting

a single design parameter α whose meaning will be explained presently. In the following

the scheme presented in [13,14] is described and finally slightly modified to be used for

soft-detection.

The scheme is based on a unifying framework for the ML and ZF detector. As introduced

in Section 2.1, n is spatially white complex Gaussian noise. From the ZF domain relation

(4.4) we see that the noise in the ZF domain is distributed as H+n ∼ CN (0, σ2
nG

−1),

where the positive definite matrix G = HHH denotes the Gramian matrix of H. There-

fore the distribution of the equalized receive vector r conditioned on s is equal but
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centered to the symbol vector s, r ∼ CN (s, σ2
nG

−1). This allows to rewrite the ML

detection (4.1) as

ŝML = arg min
s∈AMT

(r− s)HG(r− s). (4.6)

Similarly, the component-wise detection (4.4) performed by the ZF detector can be

written as

ŝZF = arg min
s∈AMT

(r− s)H(r− s). (4.7)

Both the ML and the ZF detection can thus be written in terms of a positive definite

quadratic form in the ZF domain with the difference that ML takes the full correlation

matrix into account (see (4.6)) by using G in the quadratic form whereas ZF detection

completely ignores the noise correlation by using a quadratic form induced by I = G0

(see (4.7)).

Based on this unified framework [13, 14] proposes an intermediate receiver between the

ML and the ZF extremes by taking part of the noise correlation matrix into account,

i.e.

ŝ = arg min
s∈AMT

(r− s)HG1−α(r− s). (4.8)

where 0 ≤ α ≤ 1. Choosing α = 0 or α = 1 yields the ML and ZF detector, respectively.

For 0 < α < 1, we expect that (4.8) leads to some tradeoff between ML and ZF.

We introduce the singular value decomposition (SVD) of H [8],

H = UDVH,

where the ordered singular values σMT
≥ . . . ≥ σ1 ≥ 0 of H are collected in D =

diag(σMT
, . . . , σ1) and the MR ×MT matrix U and the MT ×MT matrix V have the

properties UHU = VHV = VVH = I and UUH 6= I. Note that the eigenvalues λi of

the Gramian matrix G = HHH are related to the singular values of H via λi = σ2
i ≥ 0.

We here also introduce Λ = diag(λMT
, . . . , λ1) = D2.

In particular, the Gramian matrix G can now be written as

G = HHH = (UDVH)HUDVH
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= VDHUHUDVH = VD2VH = VΛVH

and G1−α can be developed as

G
1−α

2 = (VΛVH)
1−α

2 = VΛ
1−α

2 VH.

G1−α has condition number

κ(G1−α) = κ(G)1−α

that decays exponentially with α. The condition number κ is defined as the ratio of

the largest and the smallest singular value, i.e. κ = σmax/σmin = σMT
/σ1 ≥ 1. G1−α in

general is better conditioned than G, i.e. its condition number is smaller

κ(G) ≥ κ(G1−α) = (κ(G))1−α,

from which we expect a lower computational complexity [19, 20].

Instead of solving (4.8) directly a more convenient formulation and interpretation is

derived. To this end we rewrite the quadratic form in (4.8) using the square-root of

G1−α as

(r− s)HG1−α(r− s) = (r− s)HG
1−α

2 G
1−α

2 (r− s) =
∥∥∥G

1−α
2 r−G

1−α
2 s

∥∥∥
2

. (4.9)

Using the SVD H = UDVH of the channel matrix H we obtain

H+ = (HHH)−1HH = G−1HH = VΛ−1VH(UDVH)H

= VΛ−1VHVDUH = VD−1UH

and

G
1−α

2 = (HHH)
1−α

2 = ((UDVH)HUDVH)
1−α

2

= (VDHUHUDVH)
1−α

2 = (VD2VH)
1−α

2

= (VΛVH)
1−α

2 = VΛ
1−α

2 VH .
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The first term on the right-hand side in (4.9) can then be developed as

r̃ = G
1−α

2 r = G
1−α

2 H+y = VΛ
1−α

2 VHVD−1UHy = VD−αUHy = W−1
α y. (4.10)

Here, the unitarity of V and the fact that Λ = D2 have been used. It can be seen that

the expression G
1−α

2 r is equivalent to applying a partial equalizer W−1
α = VD−αUH to

the receive vector y. To further understand the effect of the partial equalizer, we insert

(2.2) in (4.10), which yields

r̃ = W−1
α (Hs + n) = Cαs + ñ. (4.11)

The matrix Cα = W−1
α H = VD−αUHUDVH = VD1−αVH = G

1−α
2 is what remains

of the channel after applying the partial equalizer and ñ = W−1
α n ∼ CN (0, σ2

nG
−α)

denotes the spatially correlated noise. Hence, using (4.11), (4.8) can finally be written

as

ŝMML = arg min
s∈AMT

‖r̃−Cαs‖
2 . (4.12)

This looks like the ML detector for the linear model (4.11), but the correlation σ2
nG

−α

of the noise ñ is ignored. Therefore (4.12) is called mismatched ML detection (MML).

Note that for α = 0 (4.12) reduces to the ML detector (4.1):

ŝMML = arg min
s∈AMT

‖r̃−C0s‖
2 = arg min

s∈AMT

∥∥∥G 1
2r−G

1
2 s

∥∥∥
2

=

= arg min
s∈AMT

(r− s)HG(r− s) = arg min
s∈AMT

(r− s)HHHH(r− s) =

= arg min
s∈AMT

[H(H+y − s)]H [H(H+y − s)] = arg min
s∈AMT

‖y −Hs‖2 = ŝML.

Similarly for α = 1 (4.12) equals

ŝMML = arg min
s∈AMT

∥∥H+y − s
∥∥2

= QA

{
H+y

}
= ŝZF,

which is the ZF detector (4.4).

The scheme (4.8) proposed in [13, 14] can be implemented in terms of two stages, illus-

trated in Figure 4.1. The first stage, described by (4.11), partially equalizes the channel
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y r̃ ŝ
W−1

α
arg min
s∈AMT

‖r̃−Cαs‖
2

partial equalizer mismatched ML detector

Figure 4.1: Proposed receiver for hard-detection consisting of a partial equalizer and mis-

matched ML detection.

and the second stage performs mismatched ML detection using the equalizer output ac-

cording to (4.12), ignoring correlations between the components of the equalized noise

vector ñ. The amount of equalization and correspondingly the amount of noise cor-

relation being ignored depend on the value of α. For α close to 0 there is very little

equalization and low noise correlation that is ignored. For α close to 1 the mismatched

ML detector performs poorly since it ignores strong noise correlations. However, the

channel is almost fully equalized in this case, which results in strongly reduced com-

plexity since Cα almost equals the identity matrix.

Some modifications are necessary to be able to use the scheme for soft-detection. First

(4.12) is modified to allow the calculation of the approximations

λ̃ML = min
s∈AMT

‖r̃−Cαs‖
2 (4.13)

and

λ̃ML
j = min

s∈X
(bML

j
)

j

‖r̃−Cαs‖
2 (4.14)

for (3.8) and (3.9), respectively. Then we use (4.13) and (4.14) for the calculation of the

LLRs L̃(bj |y) similar to (3.10) to obtain

L̃ (bj |y) =





λ̃ML − λ̃ML
j if bML

j = 0

λ̃ML
j − λ̃ML if bML

j = 1.
(4.15)

The scheme modified for the application in soft-detection can be implemented in terms

of two stages, illustrated in Figure 4.2. As in the hard-detection case the first stage,

described by (4.11), partially equalizes the channel. The second stage, described by
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y

r̃

r̃ λ̃ML

λ̃ML
j

W−1
α

min
s∈AMT

‖r̃−Cαs‖
2

min

s∈X
(bML

j
)

j

‖r̃−Cαs‖
2

partial equalizer

mismatched ML detector

mismatched ML detector

Figure 4.2: Proposed receiver for soft-detection consisting of a partial equalizer and |A| mis-

matched ML detectors.

(4.13) and (4.14) respectively, performs 1 + |A| mismatched ML detections, ignoring

correlations between the components of the equalized noise vector ñ. The only differ-

ence between the mismatched ML detectors is that the minimum search is performed

over different sets AMT and X
(bML

j )

j . This search can be performed simultaneously using

the STS algorithm presented in Section 3.3.2. The only modification necessary is to sub-

stitute (3.8) with (4.13) and (3.9) with (4.14) before performing the QR-decomposition.

Considerable complexity is added by the SVD which is necessary for every realisation

of the channel matrix H (i.e. in the worst case for every MIMO symbol s sent) but it is

negligible compared to the complexity of the minimum search, especially in the case of

soft-detection.

In the case of hard-detection the presented scheme allows a continuous trade-off in

terms of diversity between ML and ZF detection. This can be done by adjusting a

single parameter α. Assuming MR ≥ MT, setting α = 0 yields the ML detector that

has high computational complexity but allows to reach the full diversity order d = MR.

Setting α = 1 yields the ZF detector that has low computational complexity but only

allows a diversity order of d = MR −MT + 1. For 0 < α < 1 we get a detector that
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poses a compromise between the ML and ZF detectors. Defining

α0 = min

(
1,

MR

MT − 1
−

1

2

)
>

1

2
,

the diversity order of the mismatched ML detector in the hard-decision case is [14]

dMML =





(MR −MT + 1)α + (1− α)MR for α ∈ [0, α0]

MR−MT+1
2α−1

for α ∈ [α0, 1].

For soft-detection we expect a similar behaviour which motivates us to perform extensive

simulations. The results of these simulations and a discussion of the behaviour of the

scheme in the case of soft-detection will be presented and in Chapter 5.

4.2 Lower Bound On Partial Metrics

The scheme presented in Section 4.1 showed to work properly only for small α. For

larger α the partial equalizer causes strong noise enhancement and the sphere decoder

spends a lot of computational complexity on unnecessarily traversing the tree. Therefore

a variation of the sphere decoder proposed in [21] was used in combination with the

partial equalizer presented in [13, 14]. The variation calculates a lower bound for the

metric of the remaining part of the tree to further reduce the radius R and to allow

more effective tree pruning which leads to a complexity reduction. In the following, the

main idea of this sphere decoder variant is reviewed. Throughout this thesis it is used

as in [13,14], i.e. in combination with the partial equalizer, but can be used without the

partial equalizer as well. Therefore it is presented based on the original system model

(2.2) instead of (4.11).

We start with the modified input-output relation (3.11) that allows to solve the decoding

problem using a tree search. We split the corresponding metric into two terms including

the first k − 1 and the last MT − k + 1 layers respectively,

‖ỹ−Rs‖2 =

∥∥∥∥∥∥


 ỹk

ỹk


−


 R1

k R2
k

0 Rk




 sk

sk



∥∥∥∥∥∥

2
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=

∥∥∥∥∥∥


 ỹk −R1

ksk −R2
ks

k

ỹk − 0sk −Rksk



∥∥∥∥∥∥

2

=
∥∥ỹk −R1

ksk −R2
ks

k
∥∥2

+
∥∥ỹk −Rksk

∥∥2
(4.16)

where ỹk = [ỹ1, . . . , ỹk−1], ỹk = [ỹk, . . . , ỹMR
], sk = [s1, . . . , sk−1], sk = [sk, . . . , sMT

] and

R1
k = [R]ij for i, j ∈ {1, . . . , k−1}, R2

k = [R]ij for i ∈ {1, . . . , k−1} and j ∈ {k, . . . , MT},

Rk = [R]ij for i, j ∈ {k, . . . , MT}.

At the kth layer, the sphere bound ‖ỹ −Rs‖2 ≤ R2 amounts to

∥∥ỹk −Rksk
∥∥2
≤ R2 −

∥∥ỹk −
[
R1

kR
2
k

]
s
∥∥2

.

Using the Rayleigh-Ritz theorem [8] we obtain a lower bound ρ2
k for ‖ỹk − [R1

kR
2
k] s‖

2

as

ρ2
k = σ2

min(R
1
k) ‖Q{ak} − ak‖

2 ,

with ak = (R1
k)

−1(ỹk − R2
ks

k) and σmin(R
1
k) denoting the minimum singular value of

R1
k and Q{ak} denoting the component-wise quantization with respect to the symbol

alphabet A. For the calculation of the singular value the Power Method [16] can be

used, since σ2
min(R

1
k) = λmin((R

1
k)

HR1
k) and the inversion of R1

k and the matrix-matrix

multiplication (R1
k)

HR1
k can be iteratively computed.

The lower bound ρ2
k gives a foresight on the partial metric of the subtree (that has not

been traversed yet) of the current node and can therefore be seen as a future metric. It

allows at each layer to use a modified sphere bound

∥∥ỹk −Rksk
∥∥2
≤ R̃2

with the reduced sphere radius

R̃2 = R2 − ρ2
k.

The reduced sphere radius leads to a more efficient pruning and hence to a smaller

number of visited nodes.
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To be able to use this variation of the sphere decoder with the SESD presented in

Section 3.3 we have to apply a simple modification. Using the SESD we don’t have a

single radius but 1 + MCMT radii. Using the lower bound ρ2
k the pruning criterion for

the SESD (3.16) modifies to

d(s(i)) > max
nl∈N
{nl} − ρ2

k, (4.17)

which means that a node s(i) and its subtree are pruned if (4.17) is satisfied. Note that,

because ρ2
k is a lower bound, the sphere decoder still performs optimal in the sense of

the max-log approximation (3.7).

If the lower bound is used together with LLR clipping, as described in Section 3.4, the

pruning criterion (4.17) modifies to

d(s(i)) > min

{
max
nl∈N
{nl} , λ

ML + Lmax

}
− ρ2

k. (4.18)

Note that in this case the sphere decoder does not perform optimal anymore, which is

caused by the LLR clipping.



Chapter 5

Simulation Results

For simulation purposes the algorithms described in the previous chapters were imple-

mented in MATLAB. In the following the simulated transmission system is described

in detail including a derivation of the model used for the channel impulse response and

of the SNR definition used. Finally the chapter is closed by the a presentation of the

conducted simulations.

5.1 Simulated Transmission System

For the simulations the MIMO-OFDM transmission system with MT transmit antennas

and MR receive antennas shown in 5.1 was implemented. It consists of several blocks

that will be described in the following.

A random bit sequence di with independent identically distributed bits is used as source

data. The bit sequence di is channel coded by the channel encoder using a rate R = 1
2

convolutional code, leading to the coded data sequence b′j . In a next step, the interleaver

(Π), the coded data sequence b′j is reordered to protect the transmission against burst er-

rors. This leads to the interleaved coded data sequence bj . In the mapper the interleaved

coded data sequence bj is mapped to transmit symbols sl of a 16-QAM alphabet A. The

38
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Figure 5.1: Block diagram of the simulated MIMO transmission system implementing OFDM

modulation from source to estimation data.

transmit symbol sequence sl is divided into MT sub-sequences by the demultiplexer for

the transmission from MT transmit antennas. In a next step an OFDM modulation is

performed for every sub-sequence. This is done by grouping K symbols to one OFDM

symbol and performing a inverse discrete Fourier transform (IDFT). After adding the

cyclic prefix (CP) of length LCP the time domain signal of length N = K + LCP is

converted into transmit signals in the signal generators and sent over the channel us-

ing multiple transmit antennas. The channel, whose model will be described presently,

corrupts the transmit signals and produces the receive signals that are demodulated to

pseudosymbols in the demodulators. The discrete Fourier transform (DFT) is performed

to get back the sub-sequences of transmit symbols. The soft-detector jointly detects the

bits contained in the transmit symbol sequences and as a result delivers log-likelihood

ratios L(b′j) that are reordered to the original order in the deinterleaver (Π−1). For

our simulations we used several different soft-detectors that are all based on the SESD

described in Section 3.3. The different versions are mentioned in detail later when the
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Parameter Value Description

K 128 Number of OFDM subcarriers

MT 4 Number of transmit antennas

MR 4 Number of receive antennas

R 1
2

Channel code rate

LCP K/4 = 32 Cyclic prefix length

MC 4 Number of bits per symbol

Table 5.1: Parameters used for the simulations.

conducted simulations are explained. The soft-detector delivers log-likelihood ratios

L(bj) that are decoded by the channel decoder, in our case a soft-in Viterbi decoder.

Finally we obtain the estimates d̂i for the source data bits di. Table 5.1 summarises the

parameters used for the simulations.

5.1.1 Channel Impulse Response

The channel coefficients hi,j[k] in the frequency domain, as described in 2.1, can be

obtained by calculating the DFT of the impulse response gi,j[l]. Since this procedure

is the same for all antenna indices i and j we omit these in the following for the sake

of convenience and write h[k] and g[l] instead of hi,j[k] and gi,j[l] respectively. The

channel impules response g[l] is modeled as a tapped delay line with uncorrelated taps

and exponential delay profile. This is explained in more detail in the following.

Due to multipath propagation in the channel a superposition of multiple copies of the

transmitted signal is obtained at the receiver. These copies are delayed and attenuated

differently. To represent this fact, the channel’s impulse response for the link from a

transmit antenna to a receive antenna is a sum of taps, i.e. independently delayed

unit impulses weighted by independent coefficients. We therefore model the channel’s
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impulse response g[l] using the following function

g[l] =





x[l] e−l/2τ for 0 ≤ l ≤ L− 1

0 for l < 0 and l > L− 1.
(5.1)

Here x[l] is a strictly stationary, strictly white zero-mean complex Gaussian random

process with mean function E{x[l]} = 0 and autocorrelation function E{x[l]x∗[l′]} =

σ2
x δ[l− l′], where E{·} denotes the expected value with respect to the time index l. The

impulse response (5.1) is therefore a nonstationary, strictly white zero-mean complex

Gaussian random process with mean function

E{g[l]} = E{x[l]} e−l/2τ = 0

and autocorrelation function

rg[l, l
′] = E{g[l]g∗[l′]} = E{x[l] e−l/2τx∗[l′]e−l′/2τ} =

= σ2
x δ[l − l′] e−(l+l′)/2τ = σ2

x δ[l − l′] e−l/τ for 0 ≤ l, l′ ≤ L− 1. (5.2)

The channel’s impuls response therefore consists of L taps l = 0, . . . , L − 1, where the

lth tap has l samples delay and variance E{|g[l]|2} = rg[l, l] = σ2
x e−l/τ for 0 ≤ l ≤ L−1.

Using the DFT of g[l], defined as

h[k] =
K−1∑

n=0

g[l]e−j 2πkn
K ,

we obtain the variance of h[k] as

σ2
h = E

{
|h[k]|2

}
= E {h[k]∗h[k]}

= E

{(
K−1∑

l=0

g[l]e−j 2πkl
K

)∗(K−1∑

l=0

g[l]e−j 2πkl
K

)}

= E

{
K−1∑

l=0

K−1∑

l′=0

(
g[l]e−j 2πkl

K

)∗ (
g[l′]e−j 2πkl′

K

)}

= E

{
K−1∑

l=0

g[l]∗g[l] +

K−1∑

l=0

K−1∑

l′=0,l′ 6=l

g[l]∗g[l′]ej
2πk(l−l′)

K

}
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=

K−1∑

l=0

E {g[l]∗g[l]}+

K−1∑

l=0

K−1∑

l′=0,l′ 6=l

E {g[l]∗g[l′]} ej
2πk(l−l′)

K

=

K−1∑

l=0

E {g[l]∗g[l]} =

L−1∑

l=0

σ2
x e−l/τ ,

where on the last line L ≤ K has been assumed and (5.2) has been used.

5.1.2 SNR Definition

Generally the SNR (in dB) is defined as

SNR = 10 log

(
Ps

Pn

)

where Ps and Pn denote the signal power and the noise power in the received signal

respectively.

In the following we will derive both the signal power and the noise power separately to

be able to properly calculate the SNR for the simulations. At the ith receive antenna we

obtain a superposition of the transmitted symbols weighted by the channel coefficients

hi,j and additionally superposed by the noise term ni,

yi =

MT∑

j=1

hi,jsj + ni.

We derive the powers Ps and Pn from yi by taking into account only the signal part of

the receive signal and only the noise part of the receive signal respectively. We obtain

Ps = E

{(
MT∑

j=1

hi,jsj

)(
MT∑

j=1

hi,jsj

)∗}
= E

{
MT∑

j=1

MT∑

j′=1

(hi,jsj) (hi,j′sj′)
∗

}

= E

{
MT∑

j=1

(
|hi,j|

2|sj|
2
)

+

MT∑

j=1

MT∑

j′=1,j′ 6=j

(hi,jsj) (hi,j′sj′)
∗

}

=

MT∑

j=1

E
{
|hi,j|

2
}

E
{
|sj |

2
}

+

MT∑

j=1

MT∑

j′=1,j′ 6=j

E {hi,j}E {sj}E
{
h∗

i,j′

}
E
{
s∗j′
}

=

MT∑

j=1

σ2
hσ

2
s = MTσ2

hσ
2
s
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and

Pn = E {nin
∗
i } = E

{
|ni|

2
}

= σ2
n.

The powers Ps and Pn represent the signal and the noise power at a single receive

antenna. Since we use MR antennas, the total signal power at the receiver results to

MRPs and the total noise power at the receiver results to MRPn. The SNR at the

receiver (in dB) can therefore be calculated as

SNR = 10 log

(
MRPs

MRPn

)
= 10 log

(
MRMTσ2

hσ
2
s

MRσ2
n

)
= 10 log




MT

L−1∑
l=0

σ2
x e−l/τσ2

s

σ2
n




5.2 Simulations and Results

The MIMO-OFDM transmission system presented in Section 5.1 was used for the sim-

ulations. For the different simulations the transmission system was changed only in one

of the blocks, the soft-detector. In all cases a sphere-decoder was used as soft-detector,

but the used algorithm and its parameters have been varied. The variations will be

described in detail presently.

It was observed how different sphere-detection algorithms and their parameters influ-

ence the performance and the complexity of the soft-detection. The performance was

measured counting the number of bit errors in the estimated data bits d̂i and calculating

a bit error rate (BER). The complexity was measured using the number of nodes that

are visited by the particular sphere decoding algorithm. A node was considered visited

if it is not pruned, i.e. its partial Euclidean distance (PED) di (cf. (3.15)) does not

satisfy the pruning criterion (cf. (3.16),(3.19) or (4.17)). In the case of our transmission

system using MT = 4 transmit antennas and a 16-QAM alphabet A the detector has to

search the minima over a set AMT with cardinality |AMT| = |A|MT = 164 = 65536 to

calculate the LLRs according to (3.7). Therefore the maximum number of nodes visited

is 65536.
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5.2.1 Schnorr-Euchner Sphere Decoder with LLR Clipping

For the first simulation we used the basic Schnorr-Euchner Sphere Decoder (SESD) as

described in Section 3.3. We additionally implemented the LLR clipping as described in

Section 3.4 and simulated the influence of the clipping level Lmax on the bit error rate

(BER) and the number of nodes visited.

Figure 5.2 shows the resulting BER over the SNR for the clipping levels Lmax = {∞, 8, 4,

1, 0.2}. The corresponding complexity of the detection represented by the mean number

of nodes visited over the SNR for the same clipping levels is shown in Figures 5.3 and 5.4.

Figure 5.5 shows the mean number of nodes visited until the ML metric λML has been

found, which corresponds to the search complexity of the hard detection. Figures 5.6

and 5.7 show the cumulative distribution function (cdf) for the number of nodes visited

and the number of nodes visited until the ML metric λML has been found, respectively.

The clipping level Lmax =∞ corresponds to the SESD that performs optimal in the sense

of a maximum likelihood (ML) detection. This optimal performance comes at the cost

of the highest complexity represented by the high mean number of nodes visited in the

area of some thousand nodes. Compared to the total number of nodes (|AMT| = 65536)

this means that only about a fifth of all nodes is visited. Setting the clipping level Lmax

to lower values causes the SESD to loose its optimality in the detection performance,

but at the same time the complexity of the detection is reduces tremendously. For

the case with Lmax = 8 the mean complexity reduces to about five percent (for higher

SNRs) which comes at the cost of a performance loss of about 2 dB. Further reducing

the clipping level Lmax increases this trend. The cdfs show the same dependency on the

clipping level Lmax and are shifted to the left when reducing Lmax. Note that the value

of Lmax does not influence the slopes of the BER over SNR curves.

The simulation results show that, using the SESD with LLR clipping, the parameter

Lmax can be used for a performance-complexity trade-off. Applying moderate LLR

clipping can help to significantly reduce complexity while only slightly degrading BER.
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Figure 5.2: Schnorr-Euchner sphere decoder with LLR clipping: bit eror rate (BER) versus

signal to noise ratio (SNR) for different clipping levels Lmax.
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Figure 5.3: Schnorr-Euchner sphere decoder with LLR clipping: mean number of nodes vis-

ited versus SNR for different clipping levels Lmax.



5.2. Simulations and Results 46

0 4 8 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

1400

SNR/dB

M
ea

n 
no

. o
f n

od
es

 v
is

ite
d

 

 
L

max
 = 8

L
max

 = 4

L
max

 = 1

L
max

 = 0.2

Figure 5.4: Schnorr-Euchner sphere decoder with LLR clipping: mean number of nodes vis-

ited versus SNR for different clipping levels Lmax (except Lmax =∞).
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Figure 5.5: Schnorr-Euchner sphere decoder with LLR clipping: mean number of nodes vis-

ited until ML metric λ
ML has been found versus SNR for different clipping levels

Lmax (except Lmax =∞).
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Figure 5.6: Schnorr-Euchner sphere decoder with LLR clipping: cdf of the mean number of

nodes visited for different clipping levels Lmax and an SNR of 18dB.
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Figure 5.7: Schnorr-Euchner sphere decoder with LLR clipping: cdf of the mean number of

nodes visited until ML metric λ
ML has been found for different clipping levels

Lmax and an SNR of 18dB.
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5.2.2 Schnorr-Euchner Sphere Decoder with LLR Clipping and

Lower Bound on Partial Metrics

We extended the SESD with LLR clipping used in the previous simulation with the lower

bound on partial metrics presented in Section 4.2. Again, we monitored the influence of

the clipping level Lmax on the detection performance and the complexity of the detection.

Figure 5.8 shows the BER over the SNR for the clipping levels Lmax = {∞, 8, 4, 1, 0.2}.

No difference can be found in the performance between the previous case without the

lower bound on partial metrics and the present one implementing this lower bound.

This is what we expected since the lower bound does not affect the optimality of the

detection. Figures 5.9 and 5.10 show the corresponding mean complexity. Figure 5.11

shows the complexity for finding the ML metric λML. Figures 5.12 and 5.13 show the

cumulative distribution function (cdf) for the number of nodes visited and the number

of nodes visited until the ML metric λML has been found, respectively.

It can be seen that, in case of ML detection Lmax = ∞, the use of the lower bound on

partial metrics has only little effect on the cdf of the number of nodes visited and its

mean. For lower SNR values the complexity is reduced noticeable but for larger SNR

values the reduction in complexity is quite small.

For lower values of the clipping level Lmax the saving in complexity is higher. The mean

number of nodes visited is reduced to less than the half. For the ML detection case as

well as for the lower values of Lmax it can be seen that the mean number of nodes does

not depend as intense on the SNR as without the lower bound.
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Figure 5.8: Schnorr-Euchner sphere decoder with LLR clipping: bit eror rate (BER) versus

SNR for different Lmax with lower bound on partial metrics.
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Figure 5.9: Schnorr-Euchner sphere decoder with LLR clipping: mean number of nodes vis-

ited versus SNR for different clipping levels Lmax with lower bound on partial

metrics.
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Figure 5.10: Schnorr-Euchner sphere decoder with LLR Clipping: mean number of nodes

visited versus SNR for different clipping levels Lmax (except Lmax = ∞) with

lower bound on partial metrics.
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Figure 5.11: Schnorr-Euchner sphere decoder with LLR clipping: mean number of nodes

visited until ML metric λ
ML has been found over signal to noise ratio (SNR)

for different clipping levels Lmax (except Lmax =∞) with lower bound on partial

metrics.



5.2. Simulations and Results 51

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes visited

cd
f

 

 

L
MAX

 = ∞ (ML)

L
MAX

 = 8

L
MAX

 = 2

L
MAX

 = 1

L
MAX

 = 0.2

SNR = 18dB

Figure 5.12: Schnorr-Euchner sphere decoder with LLR clipping: cdf of the mean number

of nodes visited for different clipping levels Lmax with lower bound on partial

metrics and an SNR of 18dB.
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Figure 5.13: Schnorr-Euchner sphere decoder with LLR clipping: cdf of the mean number of

nodes visited until ML metric λ
ML has been found for different clipping levels

Lmax with lower bound on partial metrics and an SNR of 18dB.
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5.2.3 Schnorr-Euchner Sphere Decoder with Partial Equalizer

We used the basic Schnorr-Euchner Sphere Decoder (SESD) as described in Section 3.3

and additionally implemented the partial equalizer described in Section 4.1. We simu-

lated the influence of the amount of partial equalization, described by the parameter α,

on the detection performance and the complexity of the detection.

Figure 5.14 shows the BER over the SNR for different values of the parameter α. It

can be seen, that for α = 0 we obtain the same performance as for the basic SESD

(cf. Figure 5.2), i.e. in this case the detector is ML optimal. For α = 1 we obtain the

performance for the zero forcing (ZF) detection, i.e. detection after full equalization

of the channel’s influence. For the values 0 ≤ α ≤ 1 we get performances that lie

between the ML and the ZF case. It can be seen that with increasing α the performance

degrades and the slopes of the curves get flatter too. This can be interpreted as a loss

of diversity order. Figure 5.15 shows the mean detection complexity for different α

and Figure 5.16 shows the mean number of nodes visited until the ML metric λML has

been found for different α, which corresponds to the search complexity of the hard

detection. Figures 5.17 and 5.18 show the cdf of the nodes visited and the nodes visited

until the ML metric λML has been found, respectively. For α = 0, the ML detection

case, the complexity is not reduced at all. For higher values of α partial equalization is

performed with higher intensity which leads to strong noise enhancement and therefore

higher complexity for low SNRs. For higher SNRs however we observe a small reduction

in complexity that rises with increasing α. From the cdfs it can be seen that the influence

of α on the complexity of the search for the ML metric λML is stronger than on overall

complexity. All these observations are in accordance with our expectations.

The simulation results show that, using the SESD partial equalization, the parameter

α can be used for a diversity-complexity trade-off.
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Figure 5.14: Schnorr-Euchner sphere decoder with partial equalizer: bit eror rate (BER)

versus SNR for different α.

0 4 8 12 14 16 18 20 22 24
2000

4000

6000

8000

10000

12000

14000

16000

SNR/dB

M
ea

n 
no

. o
f n

od
es

 v
is

ite
d

 

 

α = 0 (ML)
α = 0.25
α = 0.5
α = 0.75
α = 1 (ZF)

Figure 5.15: Schnorr-Euchner sphere decoder with partial equalizer: mean number of nodes

visited versus SNR for different α.
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Figure 5.16: Schnorr-Euchner sphere decoder with partial equalizer: mean number of nodes

visited until ML metric λ
ML has been found versus SNR for different α.
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Figure 5.17: Schnorr-Euchner sphere decoder with partial equalizer: cdf of the mean number

of nodes visited for different α and an SNR of 18dB.
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Figure 5.18: Schnorr-Euchner sphere decoder with LLR clipping: cdf of the mean number of

nodes visited until ML metric λ
ML has been found for different α and an SNR

of 18dB.
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5.2.4 Schnorr-Euchner Sphere Decoder with Partial Equalizer

and Lower Bound on Partial Metrics

The SESD using the partial equalizer was extended with the lower bound on partial

metrics presented in Section 4.2. The influence of the amount of partial equalization,

described by the parameter α, on the detection performance and the complexity of the

detection was monitored.

Figure 5.19 shows the BER over the SNR for different values of the parameter α. We

obtain the same performance as in the previous case without the lower bound on partial

metrics. This is what we expected since the lower bound does not affect the detection

performance. Figure 5.20 shows the mean detection complexity for different α and

Figure 5.21 shows the mean number of nodes visited until the ML metric λML has been

found for different α, which corresponds to the search complexity of the hard detection.

Figures 5.22 and 5.23 show the cdf of the nodes visited and the nodes visited until the

ML metric λML has been found, respectively. For α = 0 the use of the lower bound on

partial metrics has only little effect on the complexity. This is similar to the observations

for Lmax = ∞ in Section 5.2.2. For all simulated values of α the complexity is reduced

noticeable for lower SNR but for larger SNR values the reduction in complexity is quite

small. It seams that the lower bound on partial metrics combats the influence of strong

noise enhancement in the lower SNR region.

As in the previous simulation the parameter α can be used for a diversity-complexity

trade-off, but with even lower detection complexity due to the lower bound on partial

metrics.



5.2. Simulations and Results 57

0 4 8 12 14 16 18 20 22 24

10
−4

10
−3

10
−2

10
−1

10
0

SNR/dB

B
E

R

 

 

α = 0 (ML)
α = 0.25
α = 0.5
α = 0.75
α = 1 (ZF)

Figure 5.19: Schnorr-Euchner sphere decoder with partial equalizer: bit eror rate (BER)

versus SNR for different α with lower bound on partial metrics.
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Figure 5.20: Schnorr-Euchner sphere decoder with partial equalizer: mean number of nodes

visited versus SNR for different α with lower bound on partial metrics.
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Figure 5.21: Schnorr-Euchner sphere decoder with partial equalizer: mean number of nodes

visited until ML metric λ
ML has been found versus SNR for different α with

lower bound on partial metrics.
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Figure 5.22: Schnorr-Euchner sphere decoder with partial equalizer: cdf of the mean number

of nodes visited for different α with lower bound on partial metrics and an SNR

of 18dB.
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Figure 5.23: Schnorr-Euchner sphere decoder with LLR clipping: cdf of the mean number of

nodes visited until ML metric λ
ML has been found for different α with lower

bound on partial metrics and an SNR of 18dB.
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5.2.5 Schnorr-Euchner Sphere Decoder with LLR Clipping,

Partial Equalizer and Lower Bound on Partial Metrics

The SESD was implemented including both LLR clipping and the partial equalizer. The

lower bound on partial metrics was implemented as well because its contribution to the

reduction came at no performance costs in the previous simulations. The influence of

the two parameters α and Lmax on the detection performance an the complexity of the

detection was monitored.

Figures 5.24, 5.25, and 5.26 show the BER, the mean number of nodes visited, and the

mean number of nodes visited until the ML metric λML has been found, respectively,

versus the SNR for different values of the parameter α and the clipping level Lmax.

The Figures 5.27 and 5.28 show the cdf of the number of nodes visited and the cdf

of the number of nodes visited until the ML metric λML has been found, respectively.

Figures 5.29, 5.30, 5.31, 5.32, 5.33 and Figures 5.34, 5.35, 5.36, 5.37, 5.38 show the same

values for the clipping levels Lmax = 2 and Lmax = 0.2, respectively.

It can be seen, that the partial equalizer together with LLR clipping does not perform

as expected. Clipping the LLRs to a level of Lmax = 8 for instance (cf. Figures 5.24 to

5.28) does not change much in the detection performance but influences its complexity,

which is lower than without LLR clipping but gets larger with increasing α. However,

the complexity for finding the ML metric λML is reduced as well by the LLR clipping

and still gets lower with increasing α. It can therefore be stated that the LLR clipping

interferes the function of the partial equalizer which does not offer a complexity-diversity

trade-off anymore. Lowering the clipping level to Lmax = 2 (cf. Figures 5.29 to 5.33) and

even further to Lmax = 0.2 (cf. Figures 5.34 to 5.38) worsens the detection performance

for α = 0 (ML) but slightly improves the detection performance for α = 1 (ZF). At the

same time the complexity is reduced and, as for Lmax = 8, it rises with increasing α.

Figure 5.39 compares the necessary SNR for BER = 10−3 for different values of α and
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Lmax. It can be seen that for constant Lmax the performance degrades with increasing

α, but for higher values of α low clipping levels allow a better detection performance.

Figure 5.40 compares the corresponding complexities. Without any LLR clipping the

complexity decreases with increasing α but when applying LLR clipping increasing α

degrades the detection complexity. All these facts are summarised in Figure 5.41 that

shows the necessary mean number of nodes versus the necessary SNR for BER = 10−3.

Without LLR clipping increasing α leads to a reduction in complexity and a degradation

in detection performance, i.e. a rise in necessary SNR for the desired BER. When

applying LLR clipping increasing α leads to an increase in both the complexity and the

necessary SNR.
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Figure 5.24: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: bit

eror rate (BER) versus SNR for different α with lower bound on partial metrics

and Lmax = 8.
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Figure 5.25: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: mean

number of nodes visited versus SNR for different α with lower bound on partial

metrics and Lmax = 8.



5.2. Simulations and Results 63

0 4 8 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

80

SNR/dB

M
ea

n 
no

. o
f n

od
es

 v
is

ite
d 

un
til

 M
L 

m
et

ric
 λ

M
L h

as
 b

ee
n 

fo
un

d

 

 

α = 0 (ML)
α = 0.25
α = 0.5
α = 0.75
α = 1 (ZF)

L
MAX

 = 8

Figure 5.26: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: mean

number of nodes visited until ML metric λ
ML has been found versus SNR for

different α with lower bound on partial metrics and Lmax = 8.
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Figure 5.27: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: cdf

of the mean number of nodes visited for different α with lower bound on partial

metrics, an SNR of 18dB, and a clipping level of Lmax = 8.
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Figure 5.28: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: cdf

of the mean number of nodes visited until ML metric λ
ML has been found for

different α with lower bound on partial metrics, an SNR of 18dB and a clipping

level of Lmax = 8.
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Figure 5.29: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: bit

eror rate (BER) versus SNR for different α with lower bound on partial metrics

and Lmax = 2.
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Figure 5.30: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: mean

number of nodes visited versus SNR for different α with lower bound on partial

metrics and Lmax = 2.
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Figure 5.31: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: mean

number of nodes visited until ML metric λ
ML has been found versus SNR for

different α with lower bound on partial metrics and Lmax = 2.
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Figure 5.32: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: cdf

of the mean number of nodes visited for different α with lower bound on partial

metrics, an SNR of 18dB, and a clipping level of Lmax = 2.
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Figure 5.33: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: cdf

of the mean number of nodes visited until ML metric λ
ML has been found for

different α with lower bound on partial metrics, an SNR of 18dB and a clipping

level of Lmax = 2.
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Figure 5.34: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: bit

eror rate (BER) versus SNR for different α with lower bound on partial metrics

and Lmax = 0.2.
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Figure 5.35: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: mean

number of nodes visited versus SNR for different α with lower bound on partial

metrics and Lmax = 0.2.
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Figure 5.36: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: mean

number of nodes visited until ML metric λ
ML has been found versus SNR for

different α with lower bound on partial metrics and Lmax = 0.2.

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes visited

cd
f

 

 

α = 0 (ML)
α = 0.25
α = 0.5
α = 0.75
α = 1 (ZF)

SNR = 18dB
L

MAX
 = 0.2

Figure 5.37: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: cdf

of the mean number of nodes visited for different α with lower bound on partial

metrics, an SNR of 18dB, and a clipping level of Lmax = 0.2.
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Figure 5.38: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: cdf

of the mean number of nodes visited until ML metric λ
ML has been found for

different α with lower bound on partial metrics, an SNR of 18dB and a clipping

level of Lmax = 2.
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Figure 5.39: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: nec-

essary SNR for BER = 10−3 versus α for different Lmax with lower bound on

partial metrics.
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Figure 5.40: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: nec-

essary mean number of nodes for BER = 10−3 versus α for different Lmax with

lower bound on partial metrics.
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Figure 5.41: Schnorr-Euchner sphere decoder with partial equalizer and LLR clipping: neces-

sary mean number of nodes versus necessary SNR for BER = 10−3 for different

α and Lmax with lower bound on partial metrics.



Chapter 6

Summary and Outlook

The thesis dealt with soft detection for MIMO systems and the sphere decoder as the

most common algorithm used for detection. To combat the high computational com-

plexity of the original algorithm modifications were presented and their performance was

evaluated by simulations. The first modification, LLR clipping, allows a flexible trade-

off between performance and complexity by adjustment of the clipping level. The second

modification, a partial equalizer together preceding the SD, allows a flexible trade-off be-

tween diversity and complexity by adjustment of the amount of equalization. The third

modification, a lower bound on partial metrics, allows a complexity reduction without

affecting the detection performance. The simulation results show that the modifications

work as desired if they are applied independently of each other. However, a combination

of the partial equalizer and LLR clipping does not result in the expected complexity

reduction. It is likely that this is a result of too aggressive clipping. To approve this

assumption and find out an appropriate clipping level for the combination of the partial

equalizer with LLR clipping (potentially depending on the SNR) further investigation

and simulations are necessary.
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