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Zusammenfassung (German)

Gemetrische Toleranzanalybefasst sich mit ungenau definierten geometrischen Ob-
jekten und den numerischen Problemen in diesem Kontext. ,Geometrische Objekte*
kénnen sein: Punkte, Gerade, Unterraume, Kurven, Flachen und so weiter. Wir be-
trachten geometrische Objekte, die nur ungenau gegeben sind — genauer solche, wo die
Ungenauigkeit durch eine Menge spezifiziert wird, in der das Objekt liegen soll. Einer
unserer Schwerpunkt liegt auf dem Rechnen mit solchen Mengen, die in diesem Zu-
sammenhangoleranzzoneheil3en. Diese Dissertation bearbeitet zwei Themenkreise
aus diesem Bereich.

Das erste Kapitel dieser Arbeit beschaftigt sich mit Punktwolken in der euklidischen
Bewegungsgruppe, wobei eine solche Punktwolke die Toleranzzone einer Position ei-
nes starren Korpers beschreibt. Wir betrachten die Wirkung einer solchen Positions-
Wolke auf starre Koérper, das heil3t, wir berechnen das Volumen, das von einem starren
Korper uberstrichen wird, wenn er alle Positionen aus der Wolke annimmt. Ein Spe-
zialfall davon ist, dal3 die Wolke eine (diskrete) Kurve, also einen einparametrigen
Bewegungsvorgang, reprasentiert. Hier beschaftigen wir uns mit Mengen von Posi-
tionen, deren Dimension gleich der Dimension der Bewegungsgruppe ist. Neben der
Interpretation als Toleranzzone hat eine solche Punktwolke in der Bewegungsgruppe
auch noch eine andere: Diese Positionen kénnen durch Messungen oder Simulation
gefunden worden sein. Wir analysieren geometrische Eigenschaften von solchen Men-
gen, und geben Algorithmen zum Bestimmen des Uberstrichenen Volumens an. Die
Dimension des Problems, a priori gleich sechs, wird auf zwei reduziert. Diese Ergeb-
nisse sind in [40] erschienen.

Das zweite Kapitel erforscht Beziehungen zwischen geometrischen Objekten im drei-
dimensionalen euklidischen Raum vom Standpunkt der Toleranzanalyse aus. Unsere
Untersuchungen basieren auf einer Ungleichung aus [38], die den Linearisierungsfeh-
ler bei implizit gegebenen geometrischen Objekten betrifft. Durch das Sammeln von
numerisch-experimentellen Daten und die Analyse von Grenzfallen untersuchen wir
den Einfluss der Wahl des Koordinatensystems auf die Toleranzanalyse von quadrati-
schen Bedingungen fiir die gegenseitige Lage von geometrischen Objekten. Wir unter-
suchen auch, wie eine geeignete Wahl von Koordinaten fir geometrische Objekte die
Abschatzung des Linearisierungsfehlers beeinflusst. Eine kurze Fassung dieser Arbeit
findet sich in [39].
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Preface

Geometric tolerance analysis concerned with imprecisely located geometric objects

and the computational problems arising in this context. Here “geometric objects” may
be points, lines, subspaces, curves, surfaces, and so on. We consider geometric objects
which are given imprecisely, such that the amount of uncertainty is specified by a
certain set (dolerance zongwhere the object is known to be contained in. We are
interested in computations with such tolerance zones. This thesis collects work on two
specific topics within the context of geometric tolerance analysis.

The first chapter considers a cloud of poses (i.e., positions of a rigid body in three-
dimensional Euclidean space), which represents the tolerance zone of a pose. We
consider the action of such a pose cloud on bodies in space. l.e., we investigate the
volume swept by a bod¥X if it assumes all positions represented by the cloud. A
special case of this is a one-parameter motiod,afhere the set of poses is curve-like.
Here we consider a full- dimensional subset of the motion group. Beside the tolerance
interpretation, there is also another one important for applications: The pose cloud
may have been obtained by measurements or simulation. We analyze the geometric
properties of such sets of poses and give algorithms for computing the swept volume.
The dimension of the problem, which equals six a priori, is reduced to two. This work

is published in [40].

The second chapter investigates relations between geometric objects in EuBlidean
from the viewpoint of tolerance analysis. Our investigations are based on an inequal-
ity concerning the linearization error in geometric constraint solving which is given

in [38]. By collecting numerical data and looking at limit cases we investigate the
influence of the choice of coordinate system on analysis of a collection of quadratic
constraint equations, which represent geometric problems in Euclidean space. We also
investigate how modifying the coordinates used for geometric objects affect estimating
the linearization error. A short version of this chapter is published in [39].
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Chapter 1

Swept volumes of many poses

1.1 Introduction

The volume swept by a moving rigid body is a topic of great interest and is extensively
studied in the literature. We do not attempt to give an exhaustive list of references, but
mention only [1] for an overview, [23] for computation, and [5] for some mathematical
methods. The available literature deals mostly with one-parameter sweeps.

Speaking from a more general and abstract viewpoint, we could say that a rigikbody
moveswvhen it assumes any of a given sé€tof positions. We usposeas a synonym

for position. Theswept volumeneans the union of all positiong (X) of the rigid
body X, aso' runs throughe?. We write.o7 (X) for this swept volume.

An important special case of this concept is tKamoves only by translations: The
new positiona(X) of the rigid body under consideration is the Xet y, wherey is a
translation vector taken from a sét

g (X)={X+y|yeY}={x+y|xeX,yeY}=X+Y. (1.1)

We see that the swept volume coincides with kiekowski sum X+Y of the setsX
andY. Minkowski sums are an active area of research. The list of references given
here [2, 9, 13, 20, 35, 15] is by no means exhaustive.

If o/ is a one-parameter set, either in the discrete or the continuous sens& then
undergoes a one-parameter motion, moving from one pose to the next. An example
of a higher-dimensional motion is provided by the Minkowski sum case above, where
X moves by translations: N has interior points, then it has dimension three, &nd
undergoes a three-dimensional motion, assuming a three-dimensional set of positions
in space. We deal with a full-dimensional subsétof the Euclidean motion group,
whose dimension equals six.

Such a set of poses can have the following two interpretations: One is that & pose
is imprecisely defined, and the amount of uncertainty is specifiedtbleence zone
</, which is a neighbourhood af. The other interpretation is that undergoes a

8



Figure 1.1: The difference between Boolean union (top) and envelope (bottom) in the
case of a discrete 1-parameter motion. Differences are in the smoothness of the swept
volume’s boundary.e/ (X) and the computational cost.

small unstructured motion, and poses a2, ... have been obtained by measurements
or simulation. This collection of poses then is a point cloud-like objepb&e cloudl
whose shape is that of a 6-dimensional subset of the Euclidean motion group.

81.1.1 The continuous case and the discrete case

There is a continuous version of the concepts mentioned above (rigid body, set of
poses, swept volume), and also a discrete one. For computational purposes, the rigid
body X is represented by its boundary as triangle mesh, and the’ sdtposes by a

pose cloud The swept volume will be given by a triangle mesh again. Computation-
ally, there are two approaches to compute the swept volume, which for the 1-dimen-
sional case are illustrated by Figure 1.1.

For given poses!, a?,..., we can compute the Boolean uniafh(X) Ua?(X)U....

The result is an approximation (e.g., via a triangle mesh) of the voluf(¥). As
Figure 1.1 clearly shows, the smoothness of the volume computed in this way often
does not adequately reproduce the smoothness of the valdiiXg. Boolean union

not only results in insufficient smoothness, also its computational cost is high. It is
therefore often important to find candidates for the boundary pointg @€) without
having to resort to Boolean set operations. Thus one is led to considemtbmpeof

a moving surface (the boundary Xj with respect to a smooth motion. This approach
works well if both the bodyX and the set of poses’ are at least piecewise smooth.
This chapter approaches the computatiorn/iixX) via envelopes.



81.1.2 The relation to tolerance analysis

The concept of tolerance zone which represents an imprecisely defined object [33,
22, 21] has been used in a geometric context e.g. in [31] and [37], where geometric
constructions occurring in Computer-Aided geometric design are analyzed from the
tolerancing viewpoint. Tolerance zones for motions are studied in [34] from an abstract
point of view. There is also related work on geometric transformations in the 2D case
[10, 11, 12].

Within the tolerance analysis context, we solve the worst case tolerancing problem of
computing a bounding volume for the positia(X) of a rigid bodyX, where the pose

o is only known to be contained in some st X itself may already be the tolerance
zone of a point.

81.1.3 Applications: computing bounding volumes

The sequential nature of time does not allow genuine multi-parameter motions to take

place in the real world. However, there are situations where a rigid body executes a

one-parameter motion of a complicated, chaotic, or unknown nature, and nevertheless
one is interested in a bounding volume which contains all possible positiof)s

In that case measurements or simulation may provide a collection of poses which more
or less densely covers a certain subsébf the Euclidean motion group. The latter

has dimension six, so the dimension@fcan be any of 0..,6. In this chapter we

are not concerned with the issue of estimating that dimension. We consider the full-

dimensional case and are aware of the fact that pose clouds can be “thin” and thus
represent lower-dimensional shapes.

81.1.4 Overview

We first present elementary Euclidean kinematics in Section 1.2: poses, velocities, and
infinitesimal motions. Because we later need them for theoretical investigations, also
the matrix exponential function and logarithm are introduced. Section 1.3 deals with
tolerance zones? of poses, i.e., full-dimensional subsets of the Euclidean motion
group, and with the question what happens if a rigid b¥dyssumes all poses k.

We consider the abstract question of outward normal vectors of tolerance zones and
derive a theoretical result on the oriented envelope of a rigid BXodhith respect taz7.
Section 1.4 deals with pose clouds, their support planes, and the actual computation
of the swept volume, in part using the matrix logarithm. In Section §1.4.3 we show
how to avoid the matrix logarithm in computations. We further consider a smoothing
process which takes the tolerancing side conditions into account. Numerical examples
(Section 1.6) conclude this chapter. Most of the material presented here has been
published in [40].
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1.2 The Euclidean motion group

In Section 1.2 we present facts about kinematics and its relations to line geometry
which can be found e.g. in [6] or [32].

The position of a rigid body in 3-dimensional Euclidean space is given by an or-
thogonal matrixA and a translation vecter We writea = (A, a) € R3*3+3 to indicate

such a position. IX assumes positioa, it is moved toc(X), which means that € X

is transformed to the poigt= Ax+a. We do not consider orientation-reversing poses,
so we forbid def& = —1 and require dét = 1. The Euclidean motion group is the set

of such poses and denoted bysSE

SE = {(Aa) e R¥>3+3 | ATA= E3, detA > 0}. (1.2)

It is a six-dimensional surface in the spa@&3*3 of matrix/vector pairs.

We further use the following property of skew-symmetric matrices: For any skew-
symmetric 3 by 3 matri¥/, there is a vectoc such thatvx= c x x for all x. The
corresponding notation is as follows:

0 —¢s C2] c=axis(V),
—{

c=(Cy,C2,C3),V=| ¢c3 0 —c 1.3
(61,C2,Ca) [ S . V = Skewc). (13)

—-Cc ¢ O

81.2.1 Smooth motions and their velocities

With the real parametdras time, a smooth motioa(t) = (A(t),a(t)) consists of a
matrix-valued smooth functioA(t) and a vector-valued smooth functiat) such
that oc(t) is a pose in Sgfor all t. The trajectory of the point under this smooth
motion is the curvex(t) -x = A(t)x+a(t). The smooth motion itself can be seen as a
curve lying in Sk.

The velocity vector of the pointis the derivative

a(t) - x= %(A(t)x—l—a(t)) = A()x+at), (1.4)

but we also employ theelocity with respect to the coordinate system attached.to X
This means the velocity vectegy(x) such thaiiv (x) equals the velocity vector of

v (x) = A(t) TTA®)x+ A(t) Tta(t). (1.5)

Differentiating A(t)TA(t) = E3 with respect to the time shows thatA(t)TA(t) +
(AM)TA®))T =0, so the matrixA(t)TA(t), namelyA(t)~tA(t), is skew-symmetric,
S0 we can define two vectodsd by
W (X) =d(t) x x+d(t), where (1.6)
d(t) = A(t) " ta(t), d(t) = axis(A(t) tA(t)). (1.7)



It is convenient to identify poses, their derivatives and the velocities with block matri-
ces as follows:

1 o . [o o To 0
at) = {a(t) A(t)]’ a(t) = {a(t) A(t)]’ Vi = [d_(t) Skevvd(t))}' (1.8)

Now that poses are matrices, we can multiply and invert them. It is elementary that
(A,a)- (B,b) = (AB,Ab+a) and(A,a)~1 = (A-1 —~A~1a), with A=1 = AT. Further,
the vectorgl(t),d(t) of (1.6) fulfill the relation

[d—(ot) Skev;’d(t))} — a(t) La). (1.9)

Observe that itx and o are replaced bga andpa for any poses, then
{d_(ot) Skev(q)d(t))} = (Ba)() M (Ba(t) = () ax(t). (1.10)

Namely, the vectord,d_do not change in the operation of any pose.

81.2.2 \Velocities and the tangent spaces 8&3

Any surfaceM has a tangent space in each of its points. It consists of the derivative
vectors of curves in the surface which pass through that point. For the surface SE
points are poses, and curves are smooth motions. A time-dependent(ppssther

seen as a matrix/vector pair, or as a block matrix in the sense of (1.8), has a derivative
a(t), which either is seen as a matrix/vector pair, or as a block matrix according to
(1.8). As the derivativex = (A, 4) assigns a velocity vector to points&#, it is called
aninfinitesimal motiorattached to the pose= (A, a). For each pose = (A, a), there

is a six-dimensional space of infinitesimal motions

Taa)SEs = {(A8) e R¥33 | (A TA)T = —A 1A} (1.11)

attached to it. The space of infinitesimal motions attached to the identity( Ros®
is denoted by

s& = Tig, 0SB = {(A,8) e R¥3 AT = A} (1.12)

We use the vectord,d_computed with (1.9) or (1.7) as coordinates for infinitesimal
motions. According to (1.10), the six-dimensional abstract tangent space at &y
given pose is identified with geas well as the space dfd’s.

Recall that a straight line parallel to the vectarhich passes through the poits
assigned the Plicker coordinatgswith | = x x |. These coordinates have the property
thatl does not depend on the choicexadn the line, and the line is recovered from the
coordinated, | as the solution set of the three linear equatioasx x | in the variable

12



x. Any pairl, with (I,I_> = 0 andl # 0 occurs as Plucker coordinates of a line in
Euclidean three-space.

If a bodyX in three-space has a smooth boundary, we can select a boundary aaiht
consider an outward normal vectothere. The line orthogonal to the boundary in the
pointx (the surface normal) has the Plicker coordinat@swith n = x x n according

to the previous paragraph. Choose a psse (A a). Then the outward normal vector
of «(X) at the boundary poirkx+ ais given byAn. We are interested in infinitesimal
motions attached to the posewhich movex towards the inside ak(X).

The infinitesimal motiorx does not movex towards the outside af(X), if and only
if the velocity vectora - x of (1.4) does not point towards the outsideodiX). With
the normal vecton, this relation is expressed by

(Ax+a,An) < 0. (1.13)

When using coordinate vectatisd for the infinitesimal motion, and the Pliicker coor-
dinatesn, n for the surface normal, this is equivalent to

(d,A) + (d,n) < 0. (1.14)

(as follows from(Ax+ &, An) = (A~2Ax+A~1a,n) = (d x x+d,n).)
Remark: The velocity vector of is tangentto the boundary otx(X) if and only if

(d,n) + (d,n) = 0 holds. This is the condition familiar from kinematics that the line
with Pliicker coordinates, nis a path normal of the infinitesimal moti@n

§1.2.3 The matrix exponential and logarithm
The exponential function of a square mat¥ixis defined by the power series:
Mk
exp(M) = z R (1.15)

k>0

The sum at the right hand side obviously converges, soMXxexists. There are two
elementary properties of the matrix exponential:

1. If another square matrikl commutes withM, i.e., MN = NM, then expM +
N) =exp(M)exp(N).

2. If tis a scalar, then expM) = € exp(M).

The exponential of matrix-valued curves have an interesting relation in the derivatives.

Proposition 1. Let M(t) be a matrix-valued curve such that(®) = 0, then the matrix
curveexp(M(t)) has the same derivative as(M att = 0.

13



Proof:

d d(
dt expM(t) ‘ 0 g d_ ! ’ 0 aM(t) t=0 (1.16)

For computing exfM), we computes_, '}f—,k instead, whersis big enough.

For measuring distortion we use the Frobenius norm of a matrix defing/itjy :=
tr(MTM). Itis multiplicative in the sense th#M - N|| < [[M]| - ||N|| for all M andN.

Then the computational error of the matrix exponential is

g MK i H'VIH“:H'\/IHs+1 g M1
e K| T e K (s+1)! &, (s+2)(s+3)---k
s+l « j s+1
IMIE 2 M M gy w17

< 1 =
~ (s+1)! jZO j! (s+1)!
Thus we prefer the small magnitudeMf We have the following algorithm.

Algorithm 1. Suppose that M is an n by n matrix aads a small positive value, we
want to compute R exp(M), such that|R—exp(M)|| < €.

1. LetR=N=E,,

2. Ifm< 3, leta=m, repeat N= Y, a= 2% R=R+N and k= k+ 1 until
ae" < e.

3.1fm> 3, letM= 2m and a= 3, repeat N="M a= R=R+N and

k= k+luntllae2 < ¢, letR= R,

(k+1)

The matrix exponential provides a good mapping from as well ask33, to Sk.

Proposition 2. In the notation of(1.8), the exponential of any infinitesimal motion in
seg; is a pose. Conversely, for any poseSk; we can find an infinitesimal motion in
se; whose exponential is the given pose.

Proof: If (V,v) is an infinitesimal motion in sgethen{o 0] { (,) 0 ] and the

vV Vk 1V Vk
exponential
ool [ 1 o B VK
eXp{\TV} o {f(V)\TeXp(V) } , where f(V)= kZO (k+1)! . (1.18)

This is a pose, as
(exp(V))Texp(V) = expVT)expV) = exp(—V) expV) = exp(0szx3) = E3
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and detexp(V)) = 1.
For the second part of the proof, we let

cosp —sing 0 0 0-9¢0
R=|sing cosp 0|, gq=|0|, Q=|¢ 0O (1.19)
0 01 p 0 00O

10
qgR
trary poseg(A, a), we choose an appropriate Cartesian coordinate systdm ., bs),

a scalamp, and an angle € (—x, ] such that(A,a) is exactly expressed as the pose
(R,q) in the new coordinate system, i.e.,

Through elementary computation, we know that({%oQo}) = [ } For an arbi-

~1[10]z [10 = [10 B
B [aA]B_{q R}’ where B—{b }, B = (by,bp,bs).
[0 0]z.1 0 0

ThenB{q Q}B = {Bq—BQBTb BQBT} and

exp(é[g QO} 51— éexp([g 3})5—1 _ BH g} 1 [; g}.

So, for an arbitrary poséA, a) we have found an infinitesimal motiqi8QB", Bg—
BQB'b) in se such that

eXp({Bq—gQBTb B(SBT }) - {; 21' (1.20)

O

Especially the exponential of the zero infinitesimal motion is the identity pose. The
matrix logarithm is the local inverse of the exponential such thgHgg- 0. From the
proof of Prop. 2 we get an algorithm to compute the logarithm of a pose.

Algorithm 2. Suppos€A, a) is a pose, we look fdog({i1 2}).

1. Compute a unit vectorgee R3 such that(A— 13)bz = 0;

2. Compute a unit vectorsoe R3 such that(A? + (1—tr (A))A+I3)by = 0;

3. bp =bz xby; p=(a bs);

4. Computesint andcog in R from R= BT AB and determine the anglest(—r, 7]

from the value o§int andcog;
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5. Compute a vector B R® such that(A—13)b = plz — a;

10 0 0
° Iog([a A}) - [BqBQBTb BQE' |

“log” is only locally unique, just as the arcsine and arccos functions. Obviously “log”
can be unambiguously defined in the neighbourhood of the identity definedrly
¢ <.

8§1.2.4 StraighteningSEs

A parameterization of the surface $IE given by the matrix exponential function: A
pose depends ofv,V) € R3+3 via

0 0 1 0
a(v,Vv) = exp{\7 Skev(/v)} = {a(v,x?) AVT) } : (1.21)

We use the notatiom = exp(v,Vv), (v,v) = loga. For the actual computation “exp”
and “log” see Algorithms 1 and 2. Moreover, according to (1.18), we can compute
exp(v,V) by computing exfV) andf(V)v separately, wherg = Skewv). From the
definition off in (1.18), we get

F(M) = %exp(%)[f(%)Jrf(—%)}, (1.22)

and wherM is regular,
f(M) = M~L(expM) —E). (1.23)

So we have the following algorithm to computé).

Algorithm 3. Suppose that M is an n by n matrix aads a small positive value. We
want to compute R: f(M) such that|R—f(M)|| < e.

1. If detM) # 0, compute R= M~1(exp(M) — E).
2. Otherwise, compute g |M]|.

3. Ifm< 3, thenletR=N=Ep, k=2, a=7;repeat N="M, a= 2% R=R+N
and k= k+ 1 until aed" < €.

4. Otherwise, compute
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It is well known that “exp” maps the domain defined || < = diffeomorphically
onto the set of poses whose rotation angle is lessthan

Near the identity poséE,0), we have the approximate identity
exp(v,v) ~ (E + Skewv), V), (1.24)

which is made more precise below by (1.28). This means that near the identity we
may usev,V as coordinates for poses, and we may use the matrix logarithm (at least
theoretically) for flattening S&and analyzing small subsets of it.

The power series of the exponential function has the following easy estimate:
lexpM) — (En+M)|[ = | Z'\C—,kllﬁ H'\lf—,“kzgﬂll\/lH), (1.25)
K2 © K2 *
whereg(t) = —1—t. If a = (A a) is a pose angd with coordinatesd,d is an
infinitesimal motion, the block matrices which represer#ndp have the norms

) 4T _
1812 =t (| 0 suon—ay | dsony | ) =211+ 1012 .20

||ay|2:tr([é;][;f\b — 4+ a2 (1.27)

For the special case of block matrices for infinitesimal motions as in (1.8), (1.25) leads
to the inequality

| exp(v, V) — (E + Skewiv), V)| < g(R), (1.28)
whereR is the norm of the infinitesimal motion with coordinates. Namely,R? =
2||v||? + |IV]|?. The functiong(t) hasg(0) = §(0) = 0, so the approximation is very
good if bothv,v are small. For biggev, v, this inequality gives only little information,
becauseg(t) grows rapidly.

The following well known property of the logarithm is an easy consequence of the
previous inequality or Prop. :

Proposition 3. If «(t) is a smooth one-parameter motion which passes through the
identity pose(E,0) for t = 0 and has the tangent vector (i.e., infinitesimal motion)
with coordinates dd there, then also the cunlega(t) in R® has the tangent vector
(d,d) e R®att=0.

For straightening a piece of S&round a pose, we use

logy (B) :=log(a1p). (1.29)

(1.29) is a way to represent poses neduy vectors inR3+3. A domain where log can
be unambiguously defined is e.g. the set of pgsedere the rotation angle between
a andp is less tharr. The mapping log is schematically illustrated by Figure 1.2.
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log(c o) (<)

Figure 1.2: Schematic illustration of a tolerance zawein SE;, poses(C,c) and
(E,0), and the matrix logarithm.

+¢&

Figure 1.3: From left to right: The seXs <7’ (X), and.«?” (X) for different non-smooth
tolerance zones. The diametersagf andg%” are 02 and 05 respectively.

1.3 Tolerance zones

It is an aim of this chapter to deal with discrete “pose clouds”. Like in the caBg,of
where point clouds represent solids or surfaces, pose clouds represent six-dimensional
solids in SkB. We first have a look at the continuous case, i.e., the case of a domain
with smooth boundary inside SELater we consider pose clouds which represent such
solids.

Suppose that? is such a set of poses in §BMe assume that/ is the closure of its
interior (topological properties refer to the manifoldsSEot to ambient spadg3>3+3)
and is compact. The diameter.af could be expressed in terms of the Frobenius norm.

81.3.1 Sweptvolumes

The swept volumez/(X) of a rigid bodyX which assumes every pose in the sét
is defined as the union of aft(X) asa ranges ineZ. Such volumes are illustrated
in Figure 1.3. We are interested in the boundaxy(X). The following elementary
statement, which is a first step in this direction, uses the bound&iesndo.«v of the
bodiesX and.es.
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Proposition 4. For a point xe X and a posex € <7, the pointa - x is contained in the
boundaryo.<Z(X) of the swept volume only if x is a boundary point of X and the pose
o is a boundary pose of/.

As has been remarked in the introduction, the computing of Minkowski sums could
be seen as a special case of this chapter, if all motions are translations. Prop. 4 has a
counterpart in the Minkowski sum context:NE X andy €Y, thenx+y is a boundary

point of X +Y only if bothx € X andy € 9Y.

Proof: (i) If x is not a boundary point oX, then neither isx - x a boundary point of
a(X). It follows thata - x is no boundary point of7(X). (i) If o is in <7, but not in
the boundary, then small translations in all directions will cham@eich that it is still
contained ingZ. It follows that for anyx, « - x can still be translated in all directions
without leavinga(X). Thus it is no boundary point of the swept volume. O

§1.3.2 Tangent spaces of tolerance zones

The boundary surfaces of the tolerance zone’ has five-dimensional tangent spaces.
The tangent space at the paeses a subspace of the six-dimensional space of infinites-
imal motions attached ta. Fortunately our introduction of coordinatdsd for in-
finitesimal motions by (1.6) identifies the space of infinitesimal motions attached to a
posea with the vector spac®3+2 of pairsd, d, so a five-dimensional subspace is de-
termined byonelinear relation between the six coordinatesloi: We are numbering

the coordinates afl, d such thatd = (di, d, d3) andd = (dg, ds, dg). Thecoefficients

in the linear relation are numbered in an unorthodox way:

Nadq + Nsdy + Ngds + N1d4 + Nods + N3dg = O. (1.30)

We collect the coefficients; in two vectorsn, n such than = (ng, ny, n3) andn= (ng,
ns, Ng). Then (1.30) reads

(m,d) + (n,d) =0. (1.31)

§1.3.3 Flattening tolerance zones i®E;

The reason why we apply mappings like the logarithm to poses is that a vector space
is a friendly environment with regard to computing tangent spaces and their linear
equations. Moreover, the logarithm has the following nice property:

Proposition 5. The equation of the boundary’s tangent space is the same iiore/
and for0in logy ().

Proof: The coordinatesl,d_for an infinitesimal motiorﬁ' attached tax do not change
if we multiply both g and a with the same pose from the left. Thug has ate the
same tangent space equatiorZés= o~ - o7 has air ™! - a.
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By Prop. 3, taking the logarithm does not change the coordinates of tangent vectors.
So if the identity pose happens to be a boundary posg,dhen log, (<) = log(#)
has in(0,0) the same tangent vectors.@shas in(E,0). O

81.3.4 Envelopes

8 1.3.4 contains the main theoretical results of this chapter. We extend the concept
of normal vector pointing outward&hich is well known in the context of smoothly
bounded solids to tolerance zones. We definedtfiented envelopef a rigid body

with respect to a tolerance zone and show that the boundary of the swept volume is
contained in this envelope. By the passage to so-calléel part equality is achieved.

This is the basis of our algorithms given later — we compute the boundary of the swept
volume via computing the oriented envelope.

The well known Minkowski sum case

If X andY are bodies ifR® with a smooth boundary, then boundary pomtsdX and

y € dY can contribute to a boundary poixt-y of the Minkowski sumX +Y only if

the tangent spaces ¥f at x and ofY aty are parallel. This is the so-calleshvelope
condition If it is possible to query’ for boundary points whose tangent plane has a
given orientation, computation of the Minkowski sum’s boundary is two-dimensional
in nature: For a sample of boundary poirtsx?, . .. of X, we search for corresponding
points inY and thus get a surface-shaped collection of points. It is calledrihelope

of the boundary X with respect to the translations defined by the boundaryThe
actual boundary oK +Y is contained in that surface. Another name for the envelope
is convolution surfacef the boundarieg X andoY.

Without much effort it is possible to refine the envelope condition: Each boundary
point of eitherX orY is given a normal vector which points towards the outside. Then
X+Yyis a boundary point oK +Y only if the outward normal vectors associated with
the pointsx andy coincide. Again, for a sampbe, X2, ... of boundary points it we

can query the boundary of for pointsy"/ such thatx' andy"/ has the same normal
vector. The boundary of the Minkowski sum is contained indhented envelopef X

with respect tdY, which is the surface which contains all suris-y"I. The envelope
usually is twice as big as the oriented envelope.

It is the purpose of the following sections to generalize these concepts to sets of poses.
Outward normal vectors

In general, the vectom is anoutward normal vectoof a solid in a boundary point,
if for all vectorsv which donot point toward the outside of in that point, we have
(n,x) < 0. For a tolerance zong (which is not a solid in a vector space) we do the
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following: In view of Prop. 5, the tangent space.af at a boundary pose occurs
also as tangent space of |pg7. When grouping the coefficients in the linear equation
of this tangent space as in (1.31),n) is a normal vector of log.<7. By multiplying
bothn andn with —1 if necessary, we can make the veatom) point outward, and
we say it is aroutward normal vectoof .7. The fact tha{n,n) points outward means
that for all vectorgd,d) pointing inwards, we have

dinz + dong + d3ns + dgng + dsny + dgnz < O. (1.32)

As the boundary of the swept volume is two-dimensional, and the boundary of a tol-
erance zone has dimension five, only a small part (in fact, a two-dimensional one) can
be expected to contribute to the boundary of the swept volume. With theXsalids

is different: Its boundary already has the right dimension, so we can expect that a
substantial part 0§ X contributes ta.7(X). Below follows a nice geometric relation
between normal vectors e and those poses which contribute to the swept volume’s
boundary.

Oriented Envelopes Def. 1 defines the concept of oriented envelope of a solid with
respect to a full-dimensional set of poses (its computation is the topic of Section
1.4). The purpose of this definition is to find a set which is not much larger than the
boundary of the swept volume we are looking for.

Definition 1. Suppose that x is a boundary point of X with outward normal vector n.
If (n,n) with n=xx n is an outward normal vector of the tolerance zoseat the
boundary posé, thenp - x is a point of the oriented envelope of X with respeatto

Proposition 6. The boundary of the swept volum&X) is contained in the oriented
envelope of X with respect i@

Proof: We assume that, n andp are as in Def. 1. The solifi(X) is contained in
the swept volumez(X) and touche®.o7(X) from the inside in the poing - x. Any
smooth one-parameter motiedit) which starts witho(0) = g and hasx(t) € < for
all t movesX inside the swept volume. So the velocity vectorx att = 0 points
towards the inside of7(X), and therefore towards the inside pfX). If we use
coordinate vectorsl,d for the infinitesimal motion, this fact is expressed by the
inequality (1.14). This is the same inequality as (1.32) which says(tha} is an
outward normal vector. O

The outer boundary of a solid In the context of this chapter we are not interested
in any interior holes the compact solisand.<7(X) may have. We therefore employ
the concept obuter boundary For any compact sef, the difference seR"\ Y has
exactly one unbounded component (th#sideof Y). The part of the boundary of
Y which is adjacent to the outside ¥fis called theouter boundaryof Y. If Y is a
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surface theno®ty exists, but we call ibuter partof Y in order not to apply the word
“boundary” to something which is boundary-shaped already.

The operation of computing the outer part of a surface is e.g. built in software which
handles triangle meshes. It consists of the trimming away of interior surface compo-
nents.

Proposition 7. If X is a solid and¢/ is a tolerance zone, then the outer boundary of
the swept volume is the same as the outer part of the oriented envelope.

Proof: The implicationdX CY € X = 9°UX = 9°" is obvious from the definition
of 9°Ut, With Y as the oriented envelope, the result follows from Prop. 6. O

If we specialize this result to the case of Minkowski sums, we get the statement that
9°"(X +Y) is the same as the outer part of of the convolution surfa@Xaindoy.

All normal vectors occur If M is a compact smooth surface in Euclidean space, it

is easy to show that every unit vectoioccurs as an outward normal vector in some
pointx (choose the pointin M where(x, n) is maximal). With tolerance zones in §E

such simple arguments are not available, as the meaning of ‘normal vector’ is different
and depends on the coordinates we have introduced for infinitesimal motions. There is
however the following property of tolerance zones of simple shape, whose proof uses
a topological argument.

Proposition 8. Assume that the tolerance zoné is smooth, has the topology of a
ball, and is contained in a subset 8&; where the mappintpg,, is well defined, for
somex. Then for every unit vectdn,n) € R3+3 there isp € 9. such that(n, n) is an
outward normal vector at the pogke

The proof uses the concept of Brouwer degree of a mapping, its homotopy invariance
and the following facts: the degree of a diffeomorphism eqddlsand the degree of
a mapping which is not onto equals zero [30].

Proof: Normal vectors ofe# do not change if we multiply with a poses from the
left. Thus we can without loss of generality assume that (E,0) and log, = log.

We consider the mappingy which assigns to a pose its outward unit normal vector.
It is well known that there is a smooth isotopy of (8g7) to a sphere, which without
loss of generality can be made arbitrarily small and clog6,i0) € R3+3. By applying
“exp” we get a smooth isotopy frode to a surfacéM, which is the exponential of a
small sphere. With (1.28) the normal vectordwf are arbitrarily close to the normal
vectors of a sphere, so the mappwgwhich assigns to each poseM the outward
unit normal vector is 1-1 and onto. It follows that deg) = deq vp) = +1, sovg is
onto. U
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1.4 Point clouds and envelope computation

We now consider pose clouds in $§Rvhich are still denoted byy. The poses con-
tained in.Z are denoted by the symbais, o? and so on. Algorithm 6 given below
employs the matrix logarithm, which means higher computational complexity than
necessary. Section § 1.4.3 shows how to get rid of logarithms.

81.4.1 Normal vectors of point clouds

We define outward normal vectors as below.

Definition 2. The vector n is called an outward normal vector af@vexpoint cloud
xL,..., X" inavertex ¥, if (xo,n) > (x',n) foralli.

It means that the entire cloud is contained in the halfspace with equatjah <

(n,xlo). This halfspace is bounded bysapport planeof the cloud. Of course, if the
point cloud is dense and approximates a smooth surface, a normal vector defined in
this way approximates the normal vector in the sense of differential geometry. For a
given point cloud and normal vectar there is always a vertex where this vector is an
outward normal vector.

For a non-convex point cloud’, this definition of outward normal vector is no longer
useful. However, if we choosefrom a uniform sample of points in the unit sphere and
compute corresponding half-spaces which coniainthen the intersection of those
half-spaces approximateg’s convex hull. The domain associated with the cloud in
this way is not smaller than the domain represented by the cloud itself, and it is close
to it if .o/ happens to have convex shape. We collect the instructions for computing
thisapproximate convex huibgether with the points where given vectors are outward
normal vectors in the following algorithm:

Algorithm 4. SupposeX...,x" is a point cloud, and h...,n% is a point cloud rep-
resenting the surface of the unit sphere. Compute all vajxgs') and for each i,
choose an index(i) such that(xI(), n') > (xJ ') for all j. Then the vertex) has i
as an outward normal vector, and the intersection of the half-space$ < (xi() nf)
is an approximate convex hull of the point cloud. &

§81.4.2 Normal vectors of pose clouds

We cannot apply Algorithm 4 to a pose cloud directly. But by definition,(n,n) is

an outward normal vector at the boundary pasd it is an outward normal vector of
log,, <7 at the origin of the coordinate system. This property can be usadgbngif
givenn, n ande fulfill the normal vector condition. Searching farwhen onlyn,n are
given, is done in a way similar to Algorithm 4, using the fact that the matrix logarithm
has low distortion for small pose clouds.
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Suppose that a rigid body is triangulated, with verti€esnd outward normal vectors

n' atx'. We compute Pliicker coordinate'sn’ with nf = x' x n'. For each, we want

to find a posex!() of the given pose cloud whet@',n') is an outward normal vector.
Similar to Algorithm 4, we do not search the entire pose cloud, but a convex hull-like
object associated with the pose cloudaifrepresents a tolerance zone, this operation
means convexification and thus enlarging the tolerance zone, i.e., an error on the safe
side.

Algorithm 5. Suppose a pose clout!, ..., o and vectorsh,n are given. Compute
poses wherén, n) is an outward normal vector of the pose cloud as follows:

1. For eachindexiin,...,r, compute the point cloud” = logi(.27), which con-

sists of((v1,v1), ... (V',V¥)). By construction(v!,v¥) = 0. If (n,v) + (n,v}) <0
holds for all index j, ther' is a pose we are looking for.

2. Collect all such index i in a sequenge i, ..., IN_1. &

This procedure is rather slow, as its computational complexity grows @fti),
whereN is the number of poses in the cloud. A faster algorithm is proposed below,
which does the following: We take any logarithm.af and look for a pose where the
given vector is a normal vector. This is only an approximate answer, however. So we
now take the logarithm with respect to the pose thus found, and repeat the process until
it becomes stationary.

Algorithm 6. Suppose a pose cloutt, ..., a" and vectoran,n are given. Compute
poses whergn, n) is an outward normal vector of the pose cloud as follows:

1. Let N=0and choose an indey with 1 <ig <r.

2. Compute the point cloud” =logyiy (<), which consists of (v}, V), ... (V,
V')). By construction(v'N viN) = 0.

3. Find imaxsuch that{n, V) + (0, V') is maximal for i= imax.
4. Letini1 = Imax INnCrement N.

5. If the sequence of indices computed has become periodic with period k (i.e.,
IN = in—k), terminate with the outpuliy,...,in_1. Otherwise continue with

2. &

If Algorithms 5 or 6 terminate with a unique indeéx, we have found a pose'™
where(n, n) is an outward normal vector. Otherwise therelarel candidates for that
pose. Which to choose, is the topic of Section § 1.4.4 below. Before that, we give an
elementary interpretation of Algorithms 5 and 6.
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8§1.4.3 An elementary interpretation

In the proof of Prop. 6 we encountered the following situation: A pdse v and

a boundary poink of X with outward normal vecton have the property that - x

is a boundary point of the swept volum£(X). Then necessarilg(X) touches the
boundary of</(X) from the inside. Any velocity vecto# - x attached tg3 which

points towards the inside a# must fulfill

(&-x,Bn) <0 (B =(B,b)). (1.33)

As explained in that proof, this expresses the fact that any one-parameter motion inside
</ which starts in3 assigns a velocity vector towhich points towards the inside of

the swept volume. The inequality (1.33) also expresses the factrthax, n) is an
outward normal vector of7.

Now 7 = al,...,a" is a pose cloud. Assume that= a'o. All difference vectors

o' — B are vectors attached ppointing towards the inside af/. The denser?, the

better the set of difference vectors approximates the set of vectors pointing towards the
inside.

It is easy to set up an algorithm which for giveandn finds a boundary posg such

that (1.33) is fulfilled. In view of the discussion above, this is in principle the same as
Algorithms 5 or 6, which find poses whe(g x n,n) is an outward normal vector of

/. It goes as follows: First, (1.33) is rewritten as

(Bn, (A —B)x+ (@ —b)) <0 (i=1,...,r). (1.34)
This is equivalent to
(n,B (A —B)x+B~1(a —b)) <0,
and in view of 1ol = (B~1A' B~1(a' — b)) also equivalent to
(g~ ta'-x) <(nx) (i=1,...r). (1.35)

Thus we have the following Algorithms 7 and 8, which are corresponding to Algo-
rithms 5 and 6 respectively, for finding poses which for a given boundary poit of
contribute to the oriented envelope:

Algorithm 7. Suppose that a pose cload, ..., o" and a boundary point & 9X with
an outward normal vector n are given. Compute poses wl®ne) is an outward
normal vector of the pose cloud as follows:

1. For each index iirL,...,r, if ((a')~tal-x,n) < (x,n) holds for all index j, then
o' is a pose we are looking for.

2. Collect all such indices iin a sequenge ks, .. .,IN_1. &
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Algorithm 8. Suppose a pose cloud, ..., " and a boundary point x 9X with an
outward normal vector n are given. Compute poses whene) is an outward normal
vector of the pose cloud as follows:

1. Let N=0and choose an indey with 1 <ig <r.
2. Find imaxsuch that i— ((a'N)~1a' - x, n) attains its maximum for+ imax.

3. Let iNy1 = imax and increment N. Terminate if the sequencen becomes
constant or periodic, otherwise start again with 2. &

Algorithms 7 and 8 can be used as substitutes for Algorithms 5 and 6 respectively
in the later Algorithms 9 and 10. They are an entire order of magnitude faster and
numerical experience shows that they indeed find the same indices as Algorithms 5
and 6.

§81.4.4 Making the result unique

As the purpose of Algorithms 5, 6, 7, and 8 is to compute, for a given pairstX with

an outward normal vectar, a posex such thaix - x is a boundary point of the swept
volume, it is not difficult to decide which of thecandidates suggested by Algorithms
5, 6, 7, or 8 is the right one:

Algorithm 9. Suppose a pose cloud, ..., a" and vectors m = x x n are given. We
want to compute a pose where(n,n) is an outward normal vector of/.

1. Compute indices\l g, . . . ,in—1 With Algorithms 5, 6, 7, or 8.

2. Compute a mean normal vector of the bodiés i (X) in the pointsoN-i - x by
letting "ean= sk _; Ain-in,

3. Choose i {iN_k;...,in—1} Such that{c' - x, "™ is maximal, i.e., x is moved
as far as possible in direction¥2" O

The following algorithm computes a discrete version of the oriented envelope of a
triangulated rigid body with respect to a pose cloud'.

Algorithm 10. Suppose tha@X is given as a triangle mesh with verticelsand out-
ward normal vectors h Further, a pose cloudy is given. For all X, use Algorithm 9
to compute an indeX j) from X, nl and.7. Then the point/'(l) . x is a vertex of the
oriented envelope of X with respect46. The connectivity of the triangulation of the
oriented envelope is the same as the on@of &

According to Prop. 7, the outer part of the oriented envelope equals the boundary of the
swept volume. A tame example, where the swept volume is bounded by the oriented
envelope, is illustrated in Figure 1.4.
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Figure 1.4: (a): Triangle mesh representing the boundary of an ellip&o{8): The
boundary of a swept volume’ (X).

1.5 Trimming and smoothing

The result of the algorithms above usually has self-intersections, especially if the rigid
body X we started with is not convex (cf. Figure 1.11.e). Fortunately computing the
outer part of a surface is a built in feature of various software packages, and we will
not consider that problem here.

§1.5.1 Smoothing

Another topic is smoothness of the swept volume’s boundary. High-dimensional point
clouds must have much more points in order to represent a smooth object faithfully.
We cannot expect that pose clouds have this property. Numerical experience shows
that smoothin@.<7(X) is often necessary. In the spirit of tolerance analysis, we must
not makesr(X) smaller by smoothing, so we suggest the simple procedure below. It
depends on the fact that the normal vectors in a boundary painta of the swept
volume is given byAn, if nis the normal vector oX atx:

Algorithm 11. Assume a triangle mesh with verticesapd normal vector$) in the
vertices.

1. For all i store the neighbours of the vertexig the set C(cf. Figure 1.5).

2. Consider the forcesiF= ¥ jc, ﬁ exerted on yfrom its neighbours.

3. Vertices ywhere(F,nj) > 0 are moved into an equilibrium position: Consider
F as a function of yand choose d such thak(y; + dn;),n;) = 0. Move y to
yi +dn. ¢

81.5.2 Rounding off sharp edges

Rounding off sharp edges in a triangulated dataXsetith tubular surfaces of very
small radius or even zero radius has the effect that the normal vector does not abruptly
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Yi2

Figure 1.5: A vertex in the triangle mesh with its neighbours.

change from one face to the next. This rounding procedure (Algorithm 12) has been
applied to the car paX in Section §1.6.2.

Algorithm 12. Assume a triangle mesh with vertex set P, face set F and normal vec-
tors set N of the vertices, and a given threshold anglg.e. the biggest angle) of the
sharp edge, we want to modify the triangulation such that there is no sharp edge.

1. Look for all the sharp edges. (a) Compute the normal vectors of all faces ac-
cording to the positions of their vertices; (b) For each pair of adjacent faces,
compute the angle between them using the normal vectors in (a). If the angle is
less thanw, then the edge connecting the two faces is a sharp edge.

2. Introduce new edges along each sharp edge. Supposetpaiga sharp edge
connecting facesypsp2 and pp2p3, (cf. Figure 1.6). Suppose the unit normal
vectors of the faces;psp2 and p.p2ps are m and np, respectively. Choose a
number n (e.g. A= 5). Introduce new vertices

PLi=Pi2=--=P1n=0MN
and
P21=PpP22=...,= P2n= P2.
The normal vectors at both new verticegc@and  « are given by
I—1 i—1
(1- Tl)nl+mn2 (i=1,...,n)

Delete the facesyp4p2 and pp2ps from the face set. Introduce new faces:

P1P4P1,1, P1,1P4P2,1, P21P4P2,P2P3P2n, P3PLnP2n, P1,nP3P1,
P1PLiPLi+1,  P2P2i+1P2i, PLiP2iPLi+1, PiPLi+1P2i+1, (i=1,...,n—1).

28



P3 P3

1.n n

P1 P2 P1 : : 0]

Pa Pa
Figure 1.6: Adding edges with the purpose of rounding sharp edges.

3. Delete the vertices that connect exactly two modified edges. As shown in Figure
1.7, the vertex pwill be deleted, and all faces containing it undergo some modi-
fication. Fori=1,...,n—1, the faces p;;1p2,p2 are replaced by i 1p2; p’z,i’
and the faces pp,; 1 P2 are replaced by P;p5;. 1P2i+1. For all other faces
that contain the vertex  the vertex p is replaced by p,, or py2 which de-
pends on which sides the face is located to the ecigp@.fdn detall, if ppipj,

PjP2pi or pipjp2 is a face containing § we will consider the inner product
(pj— pi, p2— p1). Ifitis positive, p will be replaced by §,, in this face; other-
wise it will be replaced by p;. 7

Figure 1.8 shows an example of rounding the sharp edges of a cube.

1.6 Numerical examples

We experienced computation times of PGeconds per vertex and pose on a PC with
1.0 GHz in computing the oriented envelope, without trimming and smoothing. De-
pending on the size of the pose cloud, up to 7% of points with non-unique index in
Algorithms 6 and 8 were observed.

8§1.6.1 Pose clouds of varying smoothness

To show numerical examples, we consider the pose clouds= al,...,a" (k=
1,2,...,5), wherea' = exp(d',d"), andd' andd' are 3-vectors which are chosen as

follows:

1. In @4, r = 200, (d',d") are randomly chosen such that||2 + ||d'||2 < 0.2.
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Figure 1.7: Deleting vertices in rounding sharp edges.

A is the same a8y, but 01 < ||d||2+ ||d"||2 < 0.2.
Ag is the same a8y, but||d'|| < 0.2, ||d'|| < 0.2.

In A4, we letr = 2% and take(d',d') as the vertices of the cube3 [0, 1]°.

a & w DN

In As, we letr = 202 and choose bottl andd’ as one of 20 evenly distributed
points on a sphere of radius 0.2It?. These 20 evenly distributed points are,

e.g.,%’, where

p=(i1(0,0,3) +i2(2v'2,0,—1) +i3(—V2,v6,—1) +is(—V2,—V6,-1),
(1.36)
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Figure 1.8: rounding the sharp edges of a cube. (a) the original cube; (b) the cube after
rounding sharp edges, where only a slight difference in shading is visible; (c) the offset
surface of (b), where the verticgs with outward unit normal vectan; are moved to

pi + 2n;.
andi,...,i4 are non-negative integers with+i, +iz+is = 3.

We apply these pose clouds to a 3D model courtesy of Vienna University of Tech-
nology and the well known Stanford dragon respectively. The oriented envelopes are
computed by Algorithm 10, and Figures 1.9 and 1.10 show these swept volumes.

81.6.2 Swept volumes of vibrating parts

Figure 1.11.a shows the evenly sampled surface of a can{pasthich assumes all
poses in some cloud’. The motion of the part, i.e., the posesdfi could for example

be given by simulating vibration. The result of the actionadfon X is shown in
Figures 1.11.b and 1.11.c. Details of the oriented envelope is shown in Figures 1.11.d-—

i.
The pose cloud? used in the figure of the simulating vibration does not come from
an actual simulation but is designed as below:

. . . _— . —_— 8
o ={a'|i=1,2...,200}, o =expd,d), (d.d)="73 rjsinwji)V;, (1.37)
=1

whereV; are eight random unit vectors &P, and
o = (1.123212.21343.3421,4.4532 5.5643 7.75,8.89,10.0),
r = (0.01,0.006,0.004,0.0026 0.0017,0.0008 0.0004 0.0002.
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Figure 1.9: (a) A 3D model courtesy of Vienna University of Technology; (b)-
() Swept volumes of the object correspondingda, .. ., /s of Section §1.6.1, re-
spectively.

1.7 Conclusion

We have shown how to compute the swept volume of a solid given by a triangle mesh
under the action of a full-dimensional set of poses, which can be thought of either
as tolerance zone of an imprecisely defined pose, or as a set of poses obtained by
measurements or simulation. The algorithms are based on geometric properties of
normal vectors of pose clouds and oriented envelopes. Thus the problem which a
priori is difficult and requires searching in high dimensions, is reduced to dimension
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(€)

Figure 1.10: (a) The Stanford dragon; (b)—(f) Swept volumes of the Stanford dragon
corresponding ta7, ..., a7 of Section § 1.6.1, respectively.
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Figure 1.11: (a) Car part courtesy AVL List GmbH. (b) Swept volume for a pose cloud
representing vibration. (c) the mixture image of the original and the swept. (d)—(i) Part
surface and the oriented envelope. Here trimming is necessary.

34



two.

35



Chapter 2

Asymptotic analysis of implicit
tolerance problems

2.1 Introduction

Geometric constraint solvingneans the problems which arise when the location of
geometric objects is described via relations between them. Issues important in ap-
plications of this concept argolvability of constraint problems and thesensitivity

to errors[21]. Many methods have been proposed for geometric constraint solving:
based on dependency graphs [7, 27, 14, 26, 29], rule-based [8, 16, 17, 36] and numer-
ical ones [25, 28], and methods based on symbolic computing [16, 17, 24]. See also
the survey article [22].

This chapter is concerned with the propagation of errors through implicit constraints,
based on the concept tdlerance zond22, 31, 33, 37]. The present chapter is a
sequel of [38], which describes a general analysis of the propagation of tolerance zones
through implicit constraints, with a focus on geometric constructions.

We assume that a certain number of geometric objects are given imprecisely — each
of them is known to be contained in a certain tolerance zone. Other geometric objects
are located via constraints, and we want to give tolerance zones for them. This is done
by linearizing the system of constraints and estimating the linearization error. For
each configuration, this works only up to a certain maximum size of tolerance zones,
dependent on the particular instance of the constraint problem we wish to analyze, on
the number of objects and constraints involved, and on the behavior of the constraints’
derivatives.

Estimating the linearization error in the way presented here is most efficient if the
constraints are quadratic polynomials. The reason for this is that these constraints are
reproduced exactly by their second order Taylor expansion. As it is hard to think of ge-
ometric relations which are not expressible via quadratic polynomials, this means that
for many applications estimating the norms of second derivatives in a certain region
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as described in Section §82.3.3 can be replaced by computing those norms once. A
short discussion of the relation of this work and tolerance zones in general to interval
arithmetic can be also found in the introductions to [37] and [38]. Most of the material
in this chapter is also contained in the technical report [39].

2.2 Preliminaries

We consider two kinds of entities: tlixedvariablesx = (x1,...,Xn), and themoving
variablesy = (y1,...,ym) with xi,yj € R. The constraintsimposed ornx andy are
collected in &C? functionF as follows:

F:UxV—=W:FXxYy) =(Fi(Xy),....,Fm(xy) U=R"V=W=R"), (2.1)

where each componehR{(x,y) represents a constraint. Solving the constraint problem
means finding for givenx such thaf (x,y) = 0.

We shortly discuss solvability and uniqueness of a solution: Supposé tbat) =

0. A local solution of the constraint problem which extends the soluiaw) is a
functionG:U — V, defined in a connected neighbourhoodistich thaf (x,G(x)) =

0 for all x whereG is defined. It follows from the inverse function theorem that such
a local solution exists iFy(u,Vv) is nonsingular. If we are interested in only onewe
write y; = Gj(x).

§2.2.1 Linear and bilinear mappings: notation

For the convenience of the reader we repeat some facts concerning linear and bilinear
operators, their norms, and their relation to the Taylor expansion in Section §2.2.1—
Section §2.2.4.

We use the symbold, V, W for linear spacesL(U,W) andB(U,V,W) denote the
spaces of linear mappings frobh to W and bilinear mappings frod xV to W,
respectively. We employ the notation “u” and “B[u,Vv]” to indicate that we apply

to u andp to the pair(u,v). “a(u)” is a linear mapping which depends anFor each

B € B(U,V,W) there are associated mappings

B? € L(U,L(V,W)), BY € L(V,L(U,W)), with B[u,v] = B (u) - v=BY¥(v)-u. (2.2)

Subscripts indicate coefficients of vectors with respect to previously defined bases:
a € L(U,W)andp € B(U,V,W) have the coordinate representations

[o- U]y = Z“ri Uj and  Blu,v, = Zﬁrij Ui, (2.3)
I 5]
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respectively. Theoordinate matrixof o contains the coefficients;;. It is elementary
that the coordinate matrices of the linear mappipfigu) andBY¥ (v) consist of

Wlrj = Zuiﬁrij and BY (V)] = ZVJBHJ: (2.4)

respectively.

§2.2.2 Taylor expansion of the constraints

Derivatives of the functior of (2.1) with respect tox andy at (u,v) are the linear
mappings

Fx(u,V) € L(UW), Fy(u,v) eL(V,W) (U=R"V=W=R"), (2.5)

whose coefficients are given by the partial derivati%%sandg—';, respectively. Sec-
ond derivatives oF are the bilinear mappings

Fax € B(U,U,W), Fy € B(U,V,W),Fyy € B(V,V,W) (U=R"V=W=R™), (2.6)

whose coefficients are the second partial derlvatbge? ai 5; and- ‘9 ':' - (in that

order). Taylor's theorem says that for aqy,v), (h,k) € R“ X Rm there |se € [0,1]
with

F(+ 1D = F (V) +Fel[J) -h+Ry([Y]) -k (27)
2Pl (8] BI04+ Py 191+ 01D I K + SFn([4]-+ OS] K

Here we employed column vector notatidi” for (u,v) € R" x R™.

§2.2.3 Computing norms of linear and bilinear mappings

We assume that € L(U,W), B € B(U,V,W), and that the linear spacesV,W are
equipped with norms. We are going to use tfenorms inp = 1,2, o

IXlp:= (3 x[P)? for 1<p<, (2.8)
and||x||. = max |i|. In any case,
lellLuw) = sup [le-ullw, [[Bllsuvw) = sup [BuVw.  (2.9)
lufu<1 Iullu,lIviv<1

For computing norms ib(U,W), see e.g. [19]. In general, if the unit sph&gin U is
a convex polyhedron with verticeg then for any normed spaeeand linear mapping
o U — X, we have

leelliu x) = max [[a- i |- (2.10)
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This applies to the 1-norm and thenorm inU. As to bilinear mappings, it is not
difficult to show that

1BllBUvw) = ||l3¢“L(U,L(V7W)) = 1BY L vieuw))- (2.11)

This means that in case eith8 or S, is a polyhedron, we are able to compute
1Bllguvw)- We write ||B][pqr in order to indicate that the spacdsV,W use the
p-, ¢-, andr-norms, respectively.

A case not handled by the polyhedral approad|gi$ 2 ., which equals the maximum

singular value of the diW matrices(f;; )I'::ll;m,/ Further, there is the inequality

1Bll2.22 < VdAImWI|[B][22, (2.12)

For more details, see also [38].

82.2.4 Norms of derivatives

The three vector spackk V, W involved in the definition of in (2.1) and the second
derivatives in (2.6) are assumed to be equipped with no¥ms.W as a linear space,
butV andW may be different as normed linear spaces. We are going to consider only
solutions of the constraint problems where there are upper bounds of the following
form

IFa(u V)| < @, [Fxy(uV)[| < B, IFyy(uV)]| <y (a®+B2+7*>0). (2.13)

Upper bounds as required by (2.13) are particularly simple to giFeisfaquadratic

function, because thefyy, Fxy, andFyy depend neither or nor ony. Later we need
the following function:

1

A(st) = >

(0S4 2B st+ yt?). (2.14)

2.3 Tolerance zones and implicit equations

This section sums up results of [38]. We first discuss local solutions of implicit equa-
tions and later apply a linearized local solution to tolerance zones. Theorem 1 below
yields an upper bound for the error we make in this process, provided tolerance zones
are small enough. The range of validity of Theorem 1 is the subject of Section 2.5
below.

§2.3.1 Local solutions

Geometric tolerance analysis means that we are dealing with imprecisely defined ge-
ometric object9s, p2, ..., each of which is contained in its tolerance zéheP, . ...
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Geometric objects)1, 0o, ... depend on they’s, and we want to find tolerance zones
Q1,Qo,... for theqy, o, ... such that wheneveap; € R for all i, we can be sure that
g; € Q; for all j. We treat this problem by introducing coordinates for all geometric
entities involved, such that eagd is represented by a group of fixed variables, and
eachq; is given by a group of moving variables:

X= (X1, Xrgs g1y s Xrgtrgs-- 5 %n), Y= (Y1, -, Y51, - -5 Ym)- (2.15)

—————
P1 P2 01

If pi € R for all i, then the vectog, which actually constitutes coordinates for, p,
..., Is contained in the set

PoxPox...eRTxR2x....

Supposd-(u,v) = 0 as above, such that= u,y = v represents a particular solution
of the constraint problem, then the local solutipa G(x) leads to a tolerance zone
G(P. x P x ...) for the vectory. We define the function&(}) as those coordinates of
G, which belong to the geometric objegt

G(X) = (G1(X),...,Gs; (X),Gsy+1(X), - - ., Gsy+5,(X), - ., Gm(X)). (2.16)

o =GY(x) % =G?(x)

Thus a tolerance zone of the geometric entjtys given byG(j)(Pl xPox...). Itis
customary to consider only such tolerance zdaesghich have the topology of a ball.
For computations one usually chooses simple shapes, such as convex ones.

As an example, we consider the case 4, m= 2, and
FL(x,y) = (X1 —y1)? + (X2 — y2)? — 290Q

Fa(x,y) = (X3 —y1)? + (X4 — y2)* — 4100

A particular solution is
(u,v) = (0,0,60,0,20,50).

This constraint problem has the following interpretation: The points
p1=(X1,%2), P2=(X3,X4), O = (Y1,¥2)
are constrained by the conditions
|pr—qi>=2900 and |p2— /| =4100

Figure 2.1.a illustrates tolerance zorigsP,, and the tolerance zor@, = G(l)(Pl X
P), wherey = G(x) is a local solution of the equatida(x,y) = 0 in a neighbourhood
ofx=uy=w.
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Qi CGjin(Pr x P)
+C//BZ

Figure 2.1: (a) Exact and (b) linearized tolerance zones. (c) Upper bound of lineariza-
tion error.

§2.3.2 Linearizing constraints

We linearize the local solutiop = G(x) in a neighbourhood of a particular solution
u,v with F(u,v) = 0:

Giin(u+h) = G(u) + Gx(u) - h, whereGyx(u) = —Fy(u,v) *Fx(u,v) € L(U,V).
(2.17)
The matrixGy can be partitioned into column groups which correspond to the variables
contribute to a particular geometric entjy, and into row groups which contribute to
a particular entityg;. Thus we get the following block matrix decomposition with
numberg; ands; from (2.15), and a first order approximation for tolerance zdges

G&l’l) G7E(Z,l)

Gy =
IX G:g(l,Z) G7)(2,2)

}s1 :>{QJ GIm(Plezx ) 2.18)

ys2 =i +5G" - (R—p).

-— -
51 r2
This Minkowski sum of affinely transformed tolerance zoRes particularly simple
to compute ifs < 2 in (2.15) (cf. [18]). We continue the example above, which is

illustrated by Figure 2.1: Here

)

1[10 25 20-25
[gvgen]= L
Ge=| & |6 |= 30{ 8 20 -8 10]-

The resulting linearized tolerance zone is shown in Figure 2.1.b. B%tﬂ andG.&Zl)

are singular, andi&i’l) - (R — pi) is a straight line segment. It follows that we approxi-
mate the tolerance zorig, by a parallelogram.

§2.3.3 Estimating the linearization error

The linearization erroris the difference between an exact local solut@@rand the
linearized oneGji,. Following [38], we use functioA defined in (2.14).
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If F is linear, then the norm§Fy|,... are zero and linearization is exact. For our
purposes it is essential thA{s,t) is non-zero ifs,t > 0. Therefore we require that
oa?+ B2+ >0.

Theorem 1. Consider a solutionu,v) of the constraint problem g,y) = 0, and
assume thad(s,t) is defined according t(2.14) Further assume that there is a local
solution G with v= G(u) and the corresponding linearized solution;G Choose
C,C/,Cnaxsuch that

1G]

Crnax—= . C<Cmax C =|GxU)[C. (2.19
B [0 e o A

A perturbation in u causes v to move witi{lG+- h) = v+ k. The linearization of
this equation is G (u+h) = v+ kjn. The linearization error obeys the following
inequalities:

Ih| <C = [kl <2C, [[k—kin|l <[[Fy(u,v)"Y|-A(C,2C") <C".  (2.20)

By modifying the proof of Theorem 1 in [38], it is easy to show the following stronger
result:

Theorem 2. Consider a solutionu,v) of the constraint problem #&,y) = 0, and
assume that there exist upper bourdsp’ andy such thatvxc U,y eV,

IEy(u V) TE ) < o, [[Fy(u,v) TRy V) < B, [[Fy(u,v) TRy (xy)| < 7.
Define
N(st):= %(a’sz+2[3’st+ 7t?).

Further assume that there is a local solution G with-\G(u) and the corresponding
linearized solution G,. Choose QC’,Caxsuch that
S (<0

N (1,2 Gx(u)ll)’

A perturbation in u causes v to move wit{lG+- h) = v+ k. The linearization of
this equation is G (u+h) = v+ kjn. The linearization error obeys the following
inequalities:

Ihl <C = [kl <2C', |[k—kin|l <&'(C,2C") <C". (2.22)
Proof: From Talor expansion, there isfac [0, 1] such that

1
K—kin = — EF,y(u,V>*1(F,xx(U+ oh,v+ 0K)[h, h|
+ 2Fyy(u+ 0h,v+ 6K)[h,K] + Fyy(u+ 6h,v+ 0K) [k, K]).
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Then
1 -
[k=Kinll < 5 (IFy(Uv)" Fax(u+0h,v-+ 0K) | [ 1]

+ 2| Fy(u,v) " Fay(u+6h, v+ 6K) | ||| [[K]| +[|Fy(u, V)~ Fyy(u+ 6h, v+ 6K) || [[K]?)
< A([[hll, 1K])- (2.23)

LetC" = A'(C,2C"), thenC” < C’ which is equivalent to the conditid® < Crax-
If ||k|| < 2C’, according to (2.23), the linearization error

Ik —kin[| < A(|[h]l, [Ik]|) < &'(C,2C") =C"
By the definition ofk;,, we have
K[| < [lkiin || + [[k—Kin || < [[Gx(u)|[[[h]] +C" <C"+C".

This implies that eithefik|| < C'+C” or ||k|| > 2C". AsC” < C/, there is a certain
region, bounded by the spheres of radilis-C” and Z’, which contains no vectdk.
As G was supposed to be a local solution, and the spffieffe< C is connected, the
local value ofk must remain inside the sphere of radis- C”. So

k| <C +C" < 2C
O

Similar to Theorem 1, the estimates here can be sharpened a little without much effort:
Theorem 2 says thdh|| < C implies that|| k|| < C' and||k — ki, || < C”. We get the
relation

Ik —kin || < A'([[h[J, [|K]|) < A"(C,C"+C") =:C" < C".

In case the constraints Fhare quadratic, (2.19) has the advantage over (2.21) that the
norms||Fxx|| ||Fxyll [|Fyyll have to be computed only once. On the other hand, (2.21)
gives a larger value d@nax. There is also the following difference: F:U xV —

W, thenFy € L(V,W) and F,yfl € L(W,V). So for (2.21), we compute norms in the
following spaces:

FaY(u?V)ilF,XX(Xv y) € B(U ’ U 7V)7

EY<Ua V)_lEXY(X7 y) € B(U 7V7V)7
u

FY( ’ )71F~,W(X7y) S B<V7V>V)'

)

[38] gives examples which use Theorem 1 in order to give an upper bound for the
linearization error. Figure 2.1.c illustrates an offset of the linearized tolerance zone,
where the exact tolerance zo@Qe is known to be contained in.

Theorem 1 gives an answer to the question of maximal size of the tolerance zone of the
fixed variables such that a tolerance zone of the corresponding moving variables can
be linearization computed with linear analysis plus an estimate for the linearization
error. Conversely, assume that the tolerance zone of the moving variables is prescribed
as a ball of radiu€*, we have
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Theorem 3. With the assumption in Theorem 1, if

C* < Chax = 2[|Gx(u)[|Cmax (2.24)
then the choice of
C* Cmax) Cmax
C=,/C — 2.25
\/f‘“‘x(|cax<u>||+ 7 ) 2 (2:29)

ensures thafh|| < C implies||k|| < C*.

Proof: From (2.24) and (2.25) we know th@t< Cnyax according to Theorem 1, if
|h|| <C < Chax then

Ikl <C'+[IFy Hl-A(C,2¢") =C*.

O

According to Theorem 2, Theorem 3 remains true if we make the substitution

IFy(u,v) 7 HIA(s ) — A'(s)t). (2.26)

§2.3.4 Balancing the constraint equations

Obviously the local solutions do not change if we multiply some constraints by factors,
but the computation &y is affected by it. A rule of thumb might be that all variables
should have values of the same order of magnitude. The same holds true for the choice
of coordinate system, especially the choice of unit length. Some of the coordinates
may reflect length, or length squared, or might have no dimension. The coordinate
vector of a plane, for instance, contains a unit vector together with a coordinate whose
geometric meaning is length. By choosing the unit length appropriately it is easy to
achieve any magnitude of that single coefficient. A general answer to the balancing
guestion appears to be difficult.

It is an aim of the following sections to investigate several geometric constructions
in EuclideanR? in order to gain insight in the behavior Gf,ax and the norms of
derivatives needed when changing the coordinate system.

2.4 Coordinates and relations

This section sums up elementary properties of coordinates for points, oriented lines
and oriented planes in Euclidean space.
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geometric relation | number and nature of number and nature of
constraints involving more | constraints involving only
than one geometric entity | one geometric entity
dist(p,q) = d 1||p—ql2=d 0 _
pelL 3l pxl=I B 1] M%=1,4 =0
pelL 2 twoof px|=I 2 [1>=1,(,)=0
q= pedaj () 4laxl=1(p-ql)=0 | 1|[I]>~1.(,H=0
dist(p,U) =d 1|up+(u,p) =d 1| [jul|*>=1
peu 1] up+(u,p)=0 1] |lulP=1
<G,H)=6 1| (g,h) =cosb 4| [lgl>=1,||h>=1,
(9.9)=0, (h,h)=0
G|/ H 3| g=1:h, 3| [lgl>=1.JhiP=T,
_ (9,9)=0, (h,n=0
GNH # {} 11 (gM+{gh =0 41 1gl*=1, [[hl[>=1,
B (9,9)=0,(h,m=0 _
Lcu 3| uxi=ul 3 [lul? = 1]?=1, {.F=0
LLU 3| u=+l 2 | ||ul|>=1,J2=T, (I,1)=0
u|v 3lu=+v 1 ||ull’P=1,Ivli*=T

Table 2.1: Relations between poirggy, linesL = (1,1), G = (g,g), H = (h,h), and
planedJ = (up,u), V = (vo,V). (cf. Section §2.4.2).

§2.4.1 Coordinates for geometric objects

A point (X1,X2,X3) € RR3 naturally is given the coordinates, x», Xs. The planewith
equation(u,X) 4+ up =0 such thauu= (uy, up, u3) has the coordinate@ig, uz, Uy, ug).

We normalize the equation such thgt+ u3 + u = (u,u) = 1. Actually such coordi-
nates represent an oriented plane, i.e., a plane together with a side of the plane where
the normal vectou points to. Aline parallel to the vector= (11, I, I3) with 12 412 +

12 =1 is uniquely characterized by the moment vedterx x |, if x is a point on the

line, and the line is reconstructed as the solution set of the three equatidns |, if
vectorsl andl with (I,1) = 0 are given [32]. Thus we coordinatize the set of straight
lines inR3 by the six coordinated, 1) = (I, ..., ls) with the side conditiongl,|) =1
and(l,1) =0. Actually any such coordinate vector means an oriented line(ahd

—I) means the same line, but equipped with the reverse orientation. We will not always
mention that lines and planes are oriented.
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§2.4.2 Relations between geometric objects

We summarize relations between geometric objects in Tables 2.1 and 2.2. We use the
symbolsp, q for points,L = (I,I) = (g,9), H = (h,h) for lines, andJ = (up,u),

V = (vp, V) for planes. First comes a relation which involves points only: the distance
constraint. Next are relations between a point and a line. The incidence rglatian

either uses only two out of the three equatibasp x |, or the condition thafl,I) =0

has to be dropped. This is indicated by the canceling stroke in the right hand column.

We further consider the case tligis the pedal point op onL, which means thag € L

and the linepV g is orthogonal td_. For the pedal point we give two formulas: One in
Table 2.1, and another on in Table 2.2, which introduces as a new variable the distance
of p’s pedal pointg from the origin’s pedal pointx |. The oriented distance of points

on aline, denoted by the symhﬁu_(p, q), is negative, if the vectqog does not point

in the same direction ds

Next come relations between points and planes, which are straightforward. Relations
between lines include parallelity, distance of parallel lines, and distance of skew lines
G,H. The latter constraint can be made quadratic by introducing both sine and cosine
of the angle<(G,H) as new variables.

Relations between a line and a plane are orthogonality (two cases), parallelity and
incidence L C U). A relation between planes given here is parallelity. As the line
given as intersection of two planes has coordinates proportiorialstos, ugv — vou),

also this results in a quadratic relation.

In Table 2.2, we introduce auxiliary variables (callédor d) into relations, which

either keep the symmetry in deleting equations and then make the equation easier, or
make equations quadratic. For instance, we consider the pedal point in a line again, as
represented in Table 2.2. After introducing a new varigble (I, p), we do not have

to delete any equations. The four other relations in that table would not be quadratic if
no auxiliary variables were introduced. It is easy to add more relations to these tables.

§2.4.3 Changing the coordinate system

It is an aim of this chapter to study the influence of translation, rotation, and scaling of
the underlying coordinate system on the local tolerance analysis via Theorem 1. The
choice of a different unit length (i.e., a scaling of the coordinate system with a factor
s> 0), translation by € R3, and rotation by a matriA € SO; transform coordinates
according to

p— sp (1) — (1,9), (Uo, U) — (Stb,U). (2.27)
p—p+t,  (I,)— (I, I+tx]),  (up,u) — (Up— (u,t),u).  (2.28)
p— Ap, (I,1),— (ALA) (U, u) — (U, Au). (2.29)

The valueCnax as computed by Theorems 1 or 2 means the maximum size of tolerance
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geometric relation | number and nature of number and nature of
constraints involving more | constraints involving only
than one geometric entity | one geometric entity

q=pedal (p) 4| (l,p) =12, 2| 1[2=1, 1,1)=0
[A =dist.(p,q)] I x1+Al=q
o= pedal, (p) 4| up+(q,u)=0 1| |ul>=1
A =disu(p,a)]| |p-a=Au, _
G| H 4|g==h|gFh>=d? |3 ||g|>=1.Ih}>=T.
dist(G,H) = d (g,3=0, (h,h)=0
distG,H)=d |2 (g.h =1, 5| [lgl*=IIh|[2=A2 + A3=1,
[A2=cos1(G,H)] (g,h) + (g,h) = dAy (9.9)=0,(g.h)=0
L=UnVv 6| A(I,1) = (uxv,upv—vou) | 3| ||I[|>=1,{,H—=T,
ul[>=1, ||v][>=1

Table 2.2: Relations becoming quadratic with new variables (cf. Section § 2.4.2).

zone of the fixed variables<® around a local solutiorx = u,y = v of the constraint
problemF (x,y) = 0. When changing the unit length so that coordinates of points get
multiplied by a factois > 0, Cihax usually will change.

If the fixed variables consist only of points, then an optimal method for local tolerance
analysis would result iIl€ynax getting multiplied bys. If the different parts ok as
described by (2.15) have also other meanings, such a simple statement is no longer
possible. For lines and planes, for instance, not all coordinates are scaled. While
it would be nice ifCnax would get bigger if all coordinates are multiplied bywe

cannot expect this to be the case.

As all three type of geometric entities considered in detail in this chapter contain at
least one coordinate which is scaled wihwe do the following: We scale witk
according to (2.27), and have a Iook%?—& which in the case of points means the size
of tolerance zone with respect to the coordinate system before scaling.

2.5 Examples

In this section, we collect constraints useful in geometric constraint solving problems
and show the influence of translation, rotation, and scaling on the valdg.itcom-

puted via Theorem 1. In the detailed computations included in the text, we use 1-norm
in the fixed variable space and 2-norm in the moving variable space. Other norms
are illustrated in data tables only. When investigating the influence of translations and
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I-lu -l | IRy Fodl IFy Foll IRy Figll Gl S S

© o 0.00 4.00 0.00 18.05 125 4513
% 1 0.00 3.00 0.00 45.26 1.67 150.87
% 2 0.00 2.61 0.00 23.93 192 91.83
1w 0.00 2.00 0.00 816 2.50 40.80
1 1 0.00 2.00 0.00 18.16 250 90.80
1 2 0.00 1.62 0.00 10.80 3.09 66.73
2w 0.00 2.46 0.00 10.10 2.03 41.03
2 1 0.00 2.83 0.00 2445 177 86.44
2 2 0.00 2.83 0.00 12.64 177 44.69

Table 2.3: Experimental values for various norms and the valags andCy, ., ac-
cording to the constraint problem of Section § 2.5.1, wisete0.1.

rotations we select the translation vecttrs) and rotation matrice&(¢) as

1 O 0
t(7) —[

0 cosp —sing
§2.5.1 The pedal pointin a plane

A a q

]> Al9) =

0 sing cosy

Consider pointg; = (X1,%2,%3), 01 = (Y1,Y2,Y3), and a plan&) = (xg,...,X7). For-
mally, we letp, = U. We consider the constrainEgx,y) = 0 defined by the relation
g1 = peday; (p1) according to Table 2.1. The auxiliary varialilés identified withy,,
so we get

X4+ XsY1 + XeY2 + X7Y3 Xs X6 X7 O

_ X1 —YaXs — Y1 | -1 0 0—xs
F(xy) = Yo — Ya¥e — Yo = RB=| 0.1 0-x (2.30)

X3 —Ya4X7 — Y3 0 0-1-x

BesidesFxx = 0 andFyy = 0, 50,Cmax(u, V) = (2||Fy Fxyll) 1. In view of (2.27) Crmax
does not depend on the choice of unit length. A logarithmic diagraﬁﬂ@éfis given
in Figure 2.2.d. For the particular solution

x = (50,28.9,81.6,0,0,0,1) and y=(50,289,0,816),

~—

data are shown in Table 2.3. Other experimental data are shown in Figure 2.2.

8§2.5.2 The pedal pointin aline

Consider the geometric relatian = peda] (p1), wherep; = (X1,X2,X3) is a fixed
point,g; = (Y1,Y2,Y3) iS @ moving pointL = (x4, ...,Xg) is a line. According to Table
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. Acmax(f)

7 >¢

(a) (b)

Acmax(¢) ZT'“(CmaX(S)/S)

N
T R Ins

(€) (d)

Figure 2.2: The change G,ax Over coordinate transformations in the constraint prob-
lem of Section §2.5.1. (a) The pedal point in a plane. (b) Diagram of the change of
Cmax over the rotation angle while rotating the coordinate system. (c) the same for
translating the coordinate system. (d) Logarithmic diagrar?—rg@f over a scaling fac-
tors.

2.2, we add a variablg = y;. We get the following constraint problef(x,y) = 0,
where

XaX1 + X5X2 + XeX3 — Y4

X5Xg — XpXg +YaXa — V1 | (2.31)
XeX7 — XaXg + YaXs — Y2

X4Xg — XeX7 + YaXe — Y3

Formally, we letl = p,. As a particular solution, we consider

F(xy) =

p1 = (100,100,100), L= \/;’(—1, 1,1,0,—100,100),
gL = %(100, 200200), and A =ys= 102\/6.

Experimental data are shown in Table 2.4.

When scaling with a factog > 0, Fy does not depend an So the bilinear mappings
By = Ey_lEXX andB, := Ey_lEXy are constanttyy is zero.Gx expands to

—XZ  —XaXs —XaXe (—XaX1—Ya)S (—XaXo—Xg)S (—XaXzg+Xg)S O Xo —Xs

—XaXs —X&  —XsXg (—XsX1+X9)S (—XsXo—Ya)S (—XeX3—X7)S —X¢ O —Xa
—XaXs —XsXe X2 (—XeX1—Xg)S (—XeXo+X7)S (~XeXs—VYa)S ¥ —Xa O
—X4 —Xsg —Xs —X1S —X2S —X3S 0 0 0

It is obvious that botMg := lims_,o Gx and lims_. % depend only orx. Thus we get
the following expressions f&max:
e _ 26
[1Bal| +4|B2]|[|Gx||’
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I-lu -l | IRy Fodl IFy Foll IRy Figll Gl S S

© o 7.46 1.00 0.00 31.73 4.72 299.70
% 1 24.39 3.00 0.00 76.86 1.62 249.59
% 2 12.63 1.73 0.00 43.82 2.77 242.92
1w 1.00 1.00 0.00 13.94 4.91 136.93
1 1 2.73 1.00 0.00 29.71 4.89 290.44
1 2 1.41 1.00 0.00 18.10 4.90 177.53
2w 1.15 1.00 0.00 17.45 4.92 171.68
2 1 4.62 2.00 0.00 43.87 247 216.49
2 2 2.31 2.00 0.00 25.07 2.47 123.94

Table 2.4: Experimental values for various norms and the vaags andCp,,, ac
cording to the constraint problem of Section §2.5.2, wisete0.1.

Flo Il | IRy Rl IR Rll IRy Rl Cpos Co

© o 2828  129.10 6.00 39.80 1.39 108.13
0 1 28.28 39.11 420 44.91 219 197.07
% 2 28.28 56.37 4.90 39.93 1.98 158.34
1 o 14.14 20.00 6.00 14.14 4.76 134.56
1 1 14.14 14.14 420 14.14 6.78 191.66
1 2 14.14 14.21 4.90 14.14 597 168.87
2 o 14.14 43.89 6.00 20.20 3.03 122.23
2 1 84.85 34.64 420 26.36 3.42 180.36
2 2 34.64 49.23 4.90 20.21 3.36 135.93

Table 2.5: Experimental values for various norms and the vaags andCp,,, ac
cording to the constraint problem of Section § 2.5.3, wisete0.001.

and
2|[Mol| : 1

,  limChax= ==—.
1B1]l +4[[Mol[[[B2]| " s " 2||By|

It follows that the graph ofy = In Cmax over( = Ins has asymptotes of the form=
—& +InC for boths — 0 ands — oo where IrC is the logarithm of either of the
two values in (2.32). Experimental data for the chang€pfx when changing the
coordinate system is also shown in Figure 2.3.

s—0

82.5.3 The distance of skew lines

Consider the following constraint problem: The liGe= (g,9) and the pointp are
fixed, andH = (h, h) is a moving line which is incident witp. Further, distG,H) =d
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A Cmax(7)

<

(a) (b)

/\Cmax(¢9) IN(Crmax(S)/9)

— —
N Ins
() (d)

Figure 2.3: (a) The pedal point in a line. (b)—(d) analogous to Figure 2.2, but for the
constraint problem of Section §2.5.2.

t‘]

and<(G,H) = 0, whered and 6 are fixed. This is not quite the constraint problem
“dist(G,H) = d” of Table 2.2, because there the angle was expressed in terms of the
auxiliary variablest; = sin6, A, = cosf. As this example shows, it is possible to take
the constraints with exactly the variables as listed in the tables above, but it is certainly
better from the viewpoint of problem size and magnitud€gfy that the number of
variables is low. In this special case we have the 6 equations

h=pxh (3 Equationy, ||h|>=1, (g,h)=cosh, (g h)+(g,h)=dsine.
for the 6 variableih,r_l). LetG = (X1,...,%g), P= (X7,%X8,X9), d = X130, A1 = X1 @and
A2 = X12. We get

Y4+ XgYy2 — Xgy3
Y5+ X7Y3 — XoY1
Y6 +XgYy1 — X7Y2
, 2.33
Vit ¥3+y5-1 239
X1Y1 + XoY2 + X3y3 — X11
| X1Y4 4 X2Y5 + X3Y6 + XaY1 + X5Y2 + XeY3 — X10X12 |

F(X,y) =
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0 X9—xg 1 0 O]
—Xo 0 010
= Xs—x7 0001
Y7l 2y1 22230 0 0
X1 X2 X3 000
Xa X5 XeX1X2X3 |
0 0 0000 O-y3 y» 0 0 0
000 00O vy O0-yy 0 0 O
=_|000O0O0O0Oy w 0 o0 0 o
X710 0 0 0 0 O 0 0 0 0 0 o’
yi Y2 y3 0 0 O 0 0 0 0 -1 0
[ Ya Y5 Y6 Y1 Y2 y3 0 0 0 —Xx2 0 —xio
I:I’,XX = O12>< 12(r - 17 sy 5)7 F4,xy - 012><67 Fr,yy - O6><6(r = 17 27 35 57 6)7
Ooo Oy 063 Opx3
Foxx = x . Fexy=| Kr O3x3 (r=1273),
O3x0 K
03x3 0343
0] E
Fo o = Ez Osx3 Fory = 2230333 Faoy— 2E3 0343
"Y1 Ogy3 Ogx3 | Y P Y1 0353 033 |
Opx3 Opx3
where
00-1 00 O 001 0-10
K=| 00 0|, Ki=|00-1| Ky=| 000| Ks=|1 00|
—-10 O 01 O -100 0 0O

The particular solution chosen hereGs= \/72(1, —1,0,0,0,—-100), p= (0,0, 100),
d=100,6=%,H =(1,0,0,0,100 0). Table 2.5 shows experimental data for norms
andCnax. When scaling with a factos > 0, the variablesq, ..., X10,Y4,Ys,Ys are
scaled bys, while the others keep unchanged. We get

0
—200s

o

NP

200
0

N

0

0
V2

00—

0 2 00]
0O O 20
0 O 02
0 O ooy
0O O 00
100v2sv2 —/20 |



i 0 0 0 5 0 07
0 0 O 56 —100V/2s O
Fi(s) = 1 1 -1 0 —-10066 100v/2s—+/2
Y ~100s{ 1066 0 0-—5000+210000/2s> O
0106 0O 500G2 0 0
| 0 010G 0 0 0]
0 000O0OOODO 0 0 0 O
0 00O0OOO0OOUO0O-1 0 0 0
0 0 0O0O0OO0ODQ 01 0 0 0 0
X=lo 0000000 0 0 O ol
1 00 0O0OOODO 0 0-1 0
|0 1060 1 0000 0-—¥ 0 —100s
0 00 000O0OO0 0 O 0
) 00 0 00O0O 0 0 V2 0
Gy(s) = V2 —v2 0 22 00 0 0 & & V2 V2
100v/2s 00 000O0O 0 0 —100y/2s O
0 00 00000 -1 O 0 0
0 00 00001 0 O 0 0
We compute the bilinear mappingglF,xx, Ey_lEXy, Ey_lEyy:
_ _ —/2
Ry 'F(S)]lr = 012012 (1 #3),  [Fy TFx(9)]3 = Tos 6
[F,yilF.,xy(S)]l = O12x9, [F?yilF,xy(S)]Z = —\/§F5,xy>
[Fy 'Fxy(9)]s = Foxy.  [Fy "Fxy(S)l6 = Faxy;
100v/2sE; —v/2E3 100y/2SE; 03,3
_ 1 —V2E; O _ 0 0
F-1E - 3 3% 3 E-1E _ 3% 3 3x3 |.
[ R 7XY(S)]3 100s Kl _ K2 03><3 ) [ Y% 7Xy(s)]4 Kl 03><3
033 033 O3x3  Osx3
Ez; O —2E3 0
F—lF S — F—lF S — 3 3% 3 F—lF s — 3 U3x3
F (91 = [F; ()2 {03X303X3, (=] oo |

—100sE3 O3x3
03x3  0Osx3

10053 O3x3

Fy 'Fyy(9)]a=
[Fy “Fyy(9)]a { 03x3 0O3x3

[Fy Fyy(9)]s = ,[Fy *Fyy(8)]6 = Oexs.
| oo
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I-llu - lv | IRy *Fodl IRy *Fgll IRy Ryl IGxl|  Sme Smar

0 0 0.00 28.57 2.98 15.22 6.76 205.67
0 1 0.00 31.43 1.21 3351 6.94 465.17
0 2 0.00 24.74 244 21.45 6.49 278.52
1 0 0.00 7.14 298 7.07 17.70 250.31
1 1 0.00 8.47 1.21 8.39 26.84 450.25
1 2 0.00 7.16 244 7.11 20.42 290.35
2 00 0.00 14.25 2.98 10.03 11.32 226.95
2 1 0.00 18.35 1.21 1894 12.11 45854
2 2 0.00 24.62 2.44 10.06 10.17 204.77

Table 2.6: Experimental values for various norms and the vaags andCp,,, ac
cording to the constraint problem of Section § 2.5.4 (first variant), wher€.001.

Hence we have the following limits:

Ao = lims_o(SGx(s)), Aw = liMs oo Gg(s);
Bo = |im5_,0(SFy71F7xx(S)), Bo = ||ms—>oo(F I:xx( 9));
-1 Ry 1ny( s) (2.34)
Co =Ilims0(SK, "Fxy(s)),  Coo=liMg oo ——;
Do = lims_o(Fy *Fyy(9)), Dm:|im%wigy”,
By definition, we have
_ Crmax(s) 1 . 1
lim = . lim(Cmax(8)) = =————————.  (2.35)
s = 2ACol+ TAolllDol)’ oS ) = g b

Thus the graph off =1In C%X overé =Inshas the asymptotes

1N = —In2([|Co| + [l Aol[[|Dol|)]

as¢ — —o and
N = =35 —In(2]|Ax||[|De]])
asé — o, They intersect af =Insy, where

< 1ol| + [[Aoll[[ Dol
[1Aoo || Des |

This is illustrated in Figure 2.4.

Further, Figure 2.4 shows the behavioGyfay if the origin is moved or the coordinate
system is rotated. It is apparent that the choice of origin is important, an@thats
only marginally influenced by the choice gfprovideds < .
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A ) G

—
i (0
@ (b)
)\ Cmax(9) IN(Cmax(8)/9)
A ) _ )
T \ Ins

() (d)

Figure 2.4: (a) A line passes through a fixed point and has fixed distance and angle to
another line. (b)—(d) analogous to Figure 2.2, but for the constraint problem of Section
§2.5.3.

8§2.5.4 The line spanned by two points

We consider two point®; = (X1, X2, X3), P2 = (X4, X5, Xg) as fixed variables, and the
coordinates of the line = (I,1) = (y1,...,Ys) Spanned by them as moving variables.
Table 2.1 contains two different ways of expressing the conditionghatl.. Because
the four equations= p; x | plus(l,I) = 0 are not independent, each incidence condi-
tion can use only three of them. For reasons of symmetry, it is preferable that we drop
(I,IY =0, but we can do that only once — for the other incidence constraint, one of the
three equations df= p; x | has to go also. Thus we get the following six equations
forys,...,VYe: i i
Yi+y3+y3-1
Y3X2 —Y2X3 — VY4
Y1X3 —Y3X1 — Y5
F(xy) = VoXa —YiXa—Ya | 0. (2.36)
Y3Xs — Y2X6 — Ya
| YiXe —Y3X4 — Y5 |
The particular solution for which we display experimental data in Table 2.6 and Figure
2.5b-dis

22, 11
p1 = (40,30,70), p2=(30,40,—70), L= %(_E’ > —7,—24524535).
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A Cmax(7)

VT VT
=
¢

(a) (b)

w \ o
— —

:
Cmax(9) © /) Cmax(7) s
Z%\_/\/\/;(P i A ZT Ins>
‘ (e)

(f) (9) N

Figure 2.5: (a) A line spanned by two points. (b)—(d) analogous to Figure 2.2, but for
the constraint problem of Section §2.5.4. (e)—(g) analogous to (b)—(d) but with the
second variant.

It is elementary to compute the following derivatives:

[ 2y1 2y 2y3 O 0O O] [ 0 0 0 00 O
0O—x3 x—-1 0 O 0O y3—-y» 00 O
F_ x3 0-x 0-1 O F_ -y3 0 yy 00 O
Y —X2 X1 0O 0 0-1Y¢ X Yo —V1 0 00 (0N K
O—x x—-1 0 O 0O 0 O O0Oyz—y
X6 0-x 0-1 0 | 0 0 0O0-y30 y1|
Further,Fxx=0,F1xy=0,Fy=0forr=2,...,6 Frxy:{ Ke 03X3}forrzz 3,4
” o T U 03x3 03«3 T

2E3 0343

, where we have used the
03x3 O3x3

| O3x3 O3x3 _ _
Frxy = { K. 5 Oss } for r = 5,6, andFyyy _{

abbreviations
00O 00-1 010
Ko=|00 1|, K3=|{00 0|, Ks4=|-100]{.
0-10 100 0 00
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We scale the coordinates with a facgars 0. For this particular solution,

[ V22 V22-14Y22 0 0 O]
0-23166 990s-33 0 O
() = 1] 23165 0 -13266 0-33 O
4 33| —990s 13265 0 0 0-33/

0 2316 13266-33 0 O
| 231G 0 -996s 0-33 O]

—210v/22s 1 197 0 1 —197]
210/22s  —197 1 0 197 -1
Fl(s) = 1 2940\/22s —14 —~14 0 14 14
Y 27726 —10290G2 —1435G —490s 0-1337G  49Cs |
102900/222  490s —1337G 0 —490s—1435G
14700/22s?> —7850s —5870s—2772%G 785G 587G

O 000 OO
0-14-10 0 O
V2214 0-10 0 O
=611 1 00 0 o
0O 0 0 0-14-1
| 0 0 014 0-1|
197 1 —14 —-197 -1  14]
1 197 14 -1 -197 —14
V22 14 14 2 14 -14 -2

Cx(s) = 130683 —490s1435(1060C 490s 13376 920s |’
—13376 —490s 9205 —-1435G 4905 106s
—7850 587% 980s 58705 —7850s —98(s |

1 1 7_
1 o Ko+ 197K3 0343 -1 . 197K, + Kz 0343
Fy Po(s)la= 277205[ Ko —197Ks Osxs} Ry F(s)]2 = 2772@[—197K2—K3 Osxs}’
i 1 K Ke - 1 [ —20%,—7K30
1 . 2 3 U3x3 1 = — 2 3 313
[Fy "Fo(9)]s = 198CS[ K2+Ksz Osxs ]’ By Pololls 396{ ~ 191Kz +7K3 033 1,

[Fy_lEXy(S)]S =

1] 7Kp—191K3 Ogus
7 39 ’

—7K5 —205K3 0343

[Fyfl':,xy(s)]ts =

' 277

1 | —78K;y —587K3— 2774 0343
783K, 4+ 587K3 03x3 |
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Y22E, 0 v22p.
FlF. (s _{ 3 3><3‘|7 e :{ 66 =3 3><3}7
Fy (9l 03><3 033 Fy w9l 03x3 0O3x3

L 245
[F,y ley( )] :{ 33\/2_2E3 O3x3 :|, [F,yilF,yy(S)h :|: \/_ZSES 03><3]

O3x3  O3x3 03><3 033

(ol =] Ey om0 | (g ig ) BYZER 0]

O3x3  O3x3 03x3 0343

We consider the limits

Bo=1lm(sGu(s)), Co=lim(sF Fx(s)), Do=lim(F;*Fy(s), (2.37)

- Ry Ry(S)
B = M (Gx(9)),  Co=Iim (Fy *Figf(8)), Do = fim ===
Theorem 1 now shows that
. Cmax(S) 1 . 1
lim = , Iim(SGnax(9)) = ==  (2.38)
s=0 S 2(|IColl + IBoll[Do]])” s=e 2||Beo ||| Deo |

Thus the graph off =In CmTaX overé = Inshas the asymptotes

1 = —In[2([|Col| + [|Boll[|Dol|)]

1 = —2€ — In(2||Bs[||Des||)

asé — . They intersect af =Insy, where

2= 1ol + [[Boll | Dol
[[Boo || Des |

This is illustrated in Figure 2.5.d.

By introducing the oriented distande= (‘Eﬁ}_(pl, p2) of the pointsp; andpy, we get a

set of equations different from the previous ofig* = 1, | = p1 x| andp, = py +dl.
Experimental data are shown in Table 2.7 and Figures 2.5,d—f. The limit case of scaling
in the constraint is similar to that of Section §2.5.9 and we don't include the details
here. We notice the following facts: Introduction of an auxiliary variable did not
diminish the size oCnax Overmuch, and it did improve the behavior with respect to
translations. However, itis apparently more important to choose the right scaling factor
sthan it was with the first variant.
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I-llu v | IR Foodl IRy gl IFy Fipll lIGl| S =

© o 0.00 2.00 443 298 6.45 3847
0 1 0.00 2.00 2.34 925 4.14 76.63
0 2 0.00 1.73 3.77 466 5.08 47.31
1w 0.00 1.00 4.43 139 13.74 38.09
1 1 0.00 1.00 2.34 234 1511 70.81
1 2 0.00 1.00 3.77 150 14.73 44.16
2 o 0.00 1.41 443 197 9.69 38.10
2 1 0.00 2.65 2.34 433 7.67 66.39
2 2 0.00 2.65 3.77 2.03 951 38.64

Table 2.7: Experimental values for various norms and the v&@mpgsandC;,,,accord-
ing to the constraint problem of Section § 2.5.4 (second variant), waer@0051.

Iy IV | IR Rl IRl IRy iRyl (1G] Cm S

0 00 0.00 4.00 1.73 231 6.25 28.87
0 1 0.00 3.00 231 520 3.33 34.64
0 2 0.00 2.89 1.15 2.89 8.04 46.41
1 00 0.00 0.67 1.73 0.38 37.50 28.87
1 1 0.00 1.67 231 0.96 12.86 24.74
1 2 0.00 0.88 1.15 0.51 34.02 34.64
2 00 0.00 1.73 1.73 1.00 14.43 28.87
2 1 0.00 1.81 231 1.81 8.35 30.22
2 2 0.00 1.63 1.15 1.00 17.94 35.87

Table 2.8: Experimental values for various norms and the valags andCy, 4, ac-
cording to the constraint problem of Section § 2.5.5, wisete0.01.

§2.5.5 The plane spanned by three points

Consider the three points = (X1, X2, X3), P2 = (X4, X5, %), P3= (X7, X, X9) as fixed
variables and the coordinates of the plahe- (up, u) = (yi, ..., Yys4) as moving vari-
ables. The condition that;, p2, ps € U is expressed by the three constraifpis u) +

up = 0 together with the normalizatiofu||?> = 1. Experimental data for the particular
solutionp; = (100,0, 0), p2 = (0,100, 0), p3= (0, 0, 100), andU = \/Té (=100 1,1,1)

are shown in Table 2.8 and Figure 2.6.

We demonstrate the influence of the choice of unit length via the following detailed
computations. Obviousl¥yx = 0, so

1
(IIFy Foo/l + Gl IFy Ryl

Cmax: 2
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Cm ax( T)

(a) (b)

/\Cmax(¢9) IN(Crmax(S)/9)

— \ —
T \L Ins
() (d)

Figure 2.6: (a) A plane spanned by three points. (b)—(d) analogous to Figure 2.2, but
for the constraint problem of Section §2.5.5.

. (&0,M0) JIn Sox

— Ins

Figure 2.7: Detail of Figure 2.6.d (asymptotes).

We have s o o
ys+ys+y;—1
+ YoX1 + Y3Xo + YaX
F(xy) = Y11 Y2X1 1 Y3X2 1 YaX3

Y1+ Y2Xa + Y3X5 + YaXe |
Y1+ Y2X7 +Y3Xg + YaXg
0 2y2 2y3 2y, 013 01x3 0143
= 1 X X X3 _| M 01,3013
Y11 x4 X5 X6 |7 % | Oxa M O1x3 |
1 X7 Xg Xo 01x301x3 M
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Ey_l = nl’l(nij )4><4, whereM = [YZ,Y37Y4], m= del(EY)’

X1 X2 X3 Y2Y3Ya Y2Y3Ya Y2Y3VYa
N1=|XaX5 X6 |, N2=—2|XaX5Xe |, (13 =2 | X1 X2 X3 |, N4 = —2| X1 X2 X3 |,

X7 X8 X9 X7 Xg X9 X7 X8 X9 X4 X5 Xg

1x X3 0y3Ys 0y3Ya O0y3Ys
M1=—1XXe|, Mp=2{1XsXe|, Ma=-2{1X2X3|, My=2{1Xx2x3
1Xg Xg 1 Xg X9 1 Xg X9 1Xs Xg

1x1 X3 0y2Ya Oy2Ys OYy2Ya

1 X7 Xg 1 X7 Xg 1 X7 Xg 1 X4 Xg

1x % Oy2ys3 Oy2ys3 Oy2y3
Ng1=—|1XaXs|, ng=2|1XaXs|, mu3=-2[1X1X2|, Nu=2|1X1 %2 |.
1x7xg 1x7 xg 1x7 xg 1x4 %5

Further, the coordinate matricgy|rij for r = 1,2,3,4 are given in block matrix form
as

N O3x4 Opa
Fixy = Ogx4, Foxy = s FRxy=| N |, Faxy= ** |, whereN =[ O3x1 E3 }
Opx4 0 N
3x4
So the four components E{flEXy have the form
1 nr2N
Ry 'Fglr==| maN | (r=1,2,3,4).
' m
nr4N

The coordinate matricg§yy|1jj = 2diag0,1,1,1) and[Fyy]rij = O4xa (r # 1), so the
four components of, 'F,y have the form

[Ey_lEW]r = 2%d|aqo7 17 1, 1) (r =1, 27 37 4)

We get the following expression f@:

noM nisM nygM
1 nooM n23M no4M
m| NzoM nzsM ngaM |

NaoM Ng3M ng4M

Cx=

Now introduce scaling witls, i.e.,
(X1;---5X9) > (SX, ..., %) and  (yu,...,Ya) — (S¥1,Y2,Y3,Ya)
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according to (2.27). We writ€, 'Fyy(s), F, 'Fyy(s), Gx(s) in order to indicate that
there is a dependence enWe see that:

n12N 1 nr2N
Fy Bl = | maN |, [Fy "Rg(9))r = -] haN | (r=2,3,4).
N14N nraN

[Fy Fyy(9)]1 = oM dlag(O 1,1,1),

)

[Fy "Fyy(s)]r = 2md|ag(0, LY (r#1).

smoM sm3M smaM

1 npoM M npgM
Cx(s) = sm| Ng2M ngsM NnggM
NaoM - nggM- ngaM

We consider the limit of, 1Fy(s), F, 'Fyy(s) and Gx(s) ass — 0 ands — e, and
introduce the following notation:

O1><3 01><3 01><3

1 N2oM nNosM nogM
B _I|m S — ;
0 ( G(9) = m| nzoM nzsM nz4M
N42M ngzM ngaM
. 11 n1oM ngzM nyaM
Bo := lim Gy(s) = — X
S—00 x(S) m| 03x3 03x3 O3x3

Co:=lim(sF "Fxy(s) - | (r=2,3,4
Cor 1= lim Fy” 1ny( S): [Col1=[Fy "Fxy(D]1, [Coolr =Oausa (r=2,34
Do := “ms_iOF I:yy( S): [Dol1=Oaxa, [Do]r= [F,y_l':.,yy(l)]r (
Do, := lim (CFy 'Fyy(9): [Dali = [Fy *Fyy(D]1,  [Deolr = Oaxa (

I

Col1 =0gx4,  [Colr = [Fy "Fxy(D)]r

);
);
r=2,3,4);
r=2,34).

Then the limits are given by

. Cmax(S) 1 . 1
| _ ] S
s = G+ BolDol) 4 (SCmaxS) = ZrE B

(2.39)

The graph ofp =In CmTax over& =Inshas exactly the same behavior as the respective
graph in Section § 2.5.4 (first variant), as is also illustrated by Figure 2.7.
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I-lu l-Dv | IRy Bl IRy *Foll IRy *Fall [1Gxll Sp Spe

© o 0.00 4.75 0.00 3.38 1053 71.24
% 1 0.00 4.75 0.00 6.89 10.53 145.15
% 2 0.00 4.00 0.00 4.21 1249 105.13
1w 0.00 1.30 0.00 1.30 38.42 100.00
1 1 0.00 2.14 0.00 214 23.33 100.00
1 2 0.00 1.30 0.00 1.30 38.42 100.00
2 o 0.00 2.22 0.00 1.70 2255 76.56
2 1 0.00 2.82 0.00 321 17.70 113.48
2 2 0.00 2.57 0.00 1.89 19.44 7352

Table 2.9: Experimental values for various norms and the valags andCy, 4, ac-
cording to the constraint problem of Section § 2.5.6, wisete).01.

I-lu I-Iv [ IR "Rl IRy Fooll IRy "Ryl Gl G S

© o 5.66 0.00 566 3.27 26.44 172.73
00 1 20.01 0.00 243 753 2638 397.47
% 2 8.53 0.00 417 370 31.23 231.04
1w 1.06 0.00 566 0.82 101.14 165.16
1 1 1.82 0.00 243 1.84 106.21 390.23
1 2 1.06 0.00 417 1.06 106.95 226.86
2 o 1.06 0.00 566 141 6107 172.72
2 1 7.44 0.00 243 321 59.66 383.45
2 2 2.81 0.00 417 141 7812 221.07

Table 2.10: Experimental values for various norms and the v&pgsandC,,, ac-
cording to the constraint problem of Section §2.5.7, wisete0.001.

§2.5.6 Intersection of line and plane

The intersection pointy = (y1,Y2,y3) of a lineL = (I,1) and a plandJ = (up,u)
is computed via the first of the two incidence conditiapse L and the incidence
conditiong; € U mentioned in Table 2.1. A5« = 0, Fyy =0, andFy is scale-invariant,
alsoCrax is scale-invariant.

For the particular solution

83
L= %(3, —5,7,350, —350, —400),

U= (07 0,0, _1)7 and ;= (507 50, 0)7

experimental data are shown by Table 2.9 and Figure 2.8.
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(a) (b)

/\Cmax(¢9) IN(Crmax(S)/9)

— —
\ Ins
() (d)

Figure 2.8: (a) Intersection of a line and a plane. (b)—(d) analogous to Figure 2.2, but
for the constraint problem of Section §2.5.6.

t‘]

82.5.7 Intersection of two planes

We consider the intersection lihe= (I,1) = (y,...,Ys) of two planedJ = (up,u) =
(X1,...,%) andV = (vp,V) = (Xs,...,Xg), Where the planes are fixed and the line is
moving. The constraints (x,y) = 0 is defined by the relatioh =U NV according to
Table 2.2. By introducing the auxiliary variable= y7, we get

[ Vi+Ys+y5—1 ] " 2y1 2253 0 0 0 O
X3Xg — XaX7 — Y1Y7 -y7 0 0 0 0O Oy
X4Xp — XoXg — Yo7 O-y7 0 0 0 O-y

F(Xy)=| Xox7 —X3X6 —Yy3y7 |= Fy=| 0 O-y7 0 0 O0-y3|, (2.40)
X1Xg — XoX5 — Y4Y7 0O 0 O-y7 O O-ys
X1X7 — XaX5 — Y5Y7 0 0 0 O0-y7 O-ys

| X1Xg — X4X5 — YeY7 | . 0 0 0 0 O0-y7-V¥s._

0 0O 0O 0O O O 0 0
0 0 xg—x 0 O0-—xu X3
O—xg 0 x5 0 x4 0—x

F=] 0 x7—x% 0 0-x3 x 0],

Xs—Xs 0 O0—Xx xx 0 O
X7 0—x 0O0-x3 0 xx O

(X3 0 O-X-Xx4 0 0 x|




[ —v1y72(1—y2) —2y1y2 —2y1y3000]
—Yoy7 —2y1y22(1—y3) —2y2y3000
| 1| YT —2nys —2yays2(1- y3)000
Ry =2 —Yay7 —2y1¥a —2y2¥a —2y3ya200]|,
| —ysy7 —2y1ys —2ysys —2ysy5020
—YeY7 —2V1¥6 —2Y2¥s —2Y3¥e 002
| V2 2y1y7 2ysy7 2ysy7000]
[0 Riy1r Xg+Royr —x7+Rsyr O Ray1 —X4+Rsy1 X3+ Rey1 |
0 —xg+Ryy2 Roy2 Ry 0 Xa+Rayo Rsy> —X2 4 RsY>
0 Xx7+Riys —X+Roys Rsys O-—x3+Rsys Xo+Reys Rey3
Gx =| X6 —X5+ Ruya Roya Rays —X2 X1+ Raya Rsya Reys |-
X7 Riys —Xs5 + Roys Rays —X3 Rays X1+ Rsys Reys
X8 RiYe Roys —X5 4+ Rays —X4 RaYe Rsys X1+ ReYs
L O —Ruy7 —Roy7 —Rsyz O —Ray7 —Rsy7 —ReY7
Here we have used the abbreviations
Ry = Xgy2 — X7Y3, Rz = XeY3 — Xgy1, R3 = X7y1 — XeY2,
R4 = X3Y3 — XaY2, Rs = Xay1 — XoY3, Re = XoY2 — X3y1.
Further,
0 0 0 0
_ 1| Oga —M; } 0 0—-y1ys Yiy2
FolFodi= —| &° r=1,...,7), whereM;=
[ ; ,XX]Y y7|: MI’ O4><4 ( ) 9 )7 1 O y1y3 O 1_y1 9
O-yiy¥2—1 0
0 0 0 0 0 0 0 0
My—| © 0-yaysya(yz=1) | . _| O 01— Y3 y1y2y3
0 yays3 0 —yiye | 0 y5-1 O0-yiys|
Oy1(1-¥3) yiy2 0 0O-yiy2ys yiys O
0 1 0 0 0 0 1 0
Mg=| L O-Ya¥a Yoya _| O O-yays Ya¥s
0 VYaya 0—y1ys |’ -1 y3ys 0—y1ys |’
0—Yoya Y1Ya 0 0—y2¥s Y1Ys 0
0 0 0 1 O 0 O O
0 0—-Yy3Y¥e Y2Y6 0 0 y3—y2
Mg = M- = .
571 0 yvaye  O-yiys| 7 Ylo-ys 0y
—1-Y2¥6 YiYs 0 0O yo-y1 O

65



As toFy 'Fyy, we have

Fo ) — | BRGYYnYYn Yy 0.0.00N g
o y7 Ny 0
— dla _ya_yv_yaoaoao N
[Ey 1Eyy]7 :|i q ! N7;|_ ! ) 07 17
where ) X )
1—-y7 —Y1¥2 —Y1Y3 —Y1Va —Y1¥5 —Y1Y6 Y1
—Y1Y2 1= Y5 —YoY3 —Yoya —Y2Ys —Y2Y6 Y2
IN Ny| —| YWY Y23 1—Y5 —Yaya —Yays —Ya¥e Y3
Loees T 0O 0 O 1 0 o0
0 0 0 0 1 00
. 0 0 0 0 0 10
Fyy is zero.

When scaling with a factas > 0, coordinates transform according to

(X1,X5,Ya,Ys,Y6) — S(X1,Xs5,Y4,Y5,Y6)-

All other variables are independent snWe consider the limit case. We can compute
the following matrices

. . Gx(s)
Bo = lim Gx(s); Bo = lim ——=;
0= lim Cx(); som S
Fy 1Fux(S)
—h —1 . — h ay 7XX .
CO_L'_%EY Fxx(S); CW_MO s
Fy tFyy(S)
—h -1 . —h vy ’yy
Do = lim Fy “Fyy(s); D> = lim —=——=—.
From 2/Gu(9)|
S
Cmax(S) = ———1 ’X—l 2
IRy "Fxx(S)[| +4/[Fy “Fyy(S) Il Gx(s) ||
we get
| 21/Bol | 1
lim Cmax(s) = , lim (Chax(9)) = ==
I Cmax(®) = e alBol Do S (9 = R 5.

Thus the graph of)y =1In C%X over& =Inshas the asymptotes

n = —& +In(2||Bol|) — In(|[Col| +4/Bo]| || Dol )

asé — —o and
N = —3¢ —In(2||Bu || De )
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Figure 2.9: (a) Intersection of two planes. (b)—(d) analogous to Figure 2.2, but for the
constraint problem of Section §22.5.7.

as& — . They intersect af =Insy, where

 _ 1Coll-+4/Bo]/2[Dol,
4]Bo 8D

Experimental data for the particular solution

U= ?(100)_17_17_1% V= ?(1007_1’_1’ 1)’

2 2
L= é(—l, 1,0,0,0,100), and A = é\fz

are shown in Table 2.10 and Figure 2.9.

82.5.8 Frameworks

A frameworkis a constraint system where all variables are points and the only con-
straints either are distancgpi — p; 1?2 = di2j involving a fixed and a moving variable,

or distances of the forrig; — gj[|* = df, involving moving variables. The interested
reader is referred e.g. to [3, 4], where the the md§jigherigidity matrix) is the topic

of investigations concerning the generic rigidity and flexibility of frameworks.
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I-llu v | IR Foodl IRy gl IFy Fipll lIGl| S =

© o 0.09 0.09 0.03 500 204 2045
0 1 0.15 0.05 0.03 7.00 1.88 26.38
0 2 0.10 0.06 0.02 520 3.28 34.13
1w 0.01 0.01 0.03 1.00 11.76 23.33
1 1 0.02 0.02 0.03 200 6.06 24.24
1 2 0.01 0.01 0.02 141 1215 34.38
2 o 0.01 0.03 0.03 225 5.04 22.62
2 1 0.03 0.03 0.03 332 379 2517
2 2 0.02 0.03 0.02 233 6.92 32.29

Table 2.11: Experimental values for various norms and the v&pgsandC;,,, ac-
cording to the constraint problem of Section § 2.5.8, wisetel.

I-lu Iy [ IR "Rl IRy Fooll IRy "Ryl G o S

© o 0.00 0.00 4.43 298 7.42 44.29
% 1 0.00 0.00 1.85 8.04 6.58 105.72
% 2 0.00 0.00 2.85 453 7.58 68.75
1w 0.00 0.00 443 139 1597 44.29
1 1 0.00 0.00 1.85 1.56 33.82 105.72
1 2 0.00 0.00 2.85 139 2470 68.75
2 o 0.00 0.00 4.43 197 1127 44.29
2 1 0.00 0.00 1.85 3.64 1453 105.72
2 2 0.00 0.00 2.85 197 1744 68.75

Table 2.12: Experimental values for various norms and the v&pgsandC,,, ac-
cording to the constraint problem of Section §2.5.9, wisere0.0051.

With these distance constraints, we have
Fy(s)=sFy(1), Fx(s)=sFx(1), Fyy(S)=Fyy(1), Fxx(8)=Fxx(1), Fxy(S)=Fxy(1).

It is now obvious thaGy(s) = Gx(1) and thatc”‘%(s) does not depend on the scaling
factors.

We consider the simple problem that a paiatis given by its three distancei;? =
a1 — pi||? from pointspy, po, ps. The particular solution

P1= (1007 Oa O>7 P2 = <O7 1007 0)7 P3 = (07 07 100)

for d; = d, = 100 anddsz = 100y/3 is illustrated in Figure 2.10 and Table 2.11.
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Figure 2.10: (a) A point has fixed distances from three fixed points. (b)—(d) analogous
to Figure 2.2, but for the constraint problem of Section §2.5.8.

§2.5.9 Two points determine a unit vector

This is a constraint problem not contained in the tables above. We have the fixed
variablesp; = (x1, X2, X3), p2 = (X4, Xs, Xg) and the moving variableg = (y1,Y2,Y3) €
R3, y4 € R with the constraint§qy || = 1, pr — P2 = Y401 (Y4 is the distance gp; from
P2).
The particular solution
P2 —P1

P1= (407 307 70)7 P2 = (307 407 _7O>7 0L = Va ,  Ya= ” P2 — le

is illustrated in Table 2.12 and Figure 2.11.

We haveFyx = 0 andFyy = 0, so we get

B 1
2|69 IFy RSl
An elementary computation shows that

SCREE )

Cmax( 5)

where
0(S)=yq sy Sy S3 —Sy —Sy —Sys|
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Figure 2.11: (a) An unit vector spanned by two points. (b)—(d) analogous to Figure
2.2, but for the constraint problem of Section § 2.5.9.

and
N 1-y2  —yiy Vi3 ¥i—-1  yiy» iy
G =| -y 1-y3 —Vays y1yo ys—1 Yoy3
—yiys  —Yo¥s  1-V¥3  yiys yays  y3—1
We define v Vo
~ Vi V3
M(V1,V2,V3,V4) = Vi V4]
Vo V3 V4

and gef, 'Fyy(s) = g, Bs, whereBs € B(R*, R*, R?) has the following coordinates:

[Bsl1 = M(syay1, 1 —y2,—yay1,—y1ys), [BsJ2=M(SYay2, —Yay1,1— Y3, ~Yay2),
[BsJs = M(SYaya, —Y1y3, —YaY2,1—¥3), [Bsla = M(—S%y2y3, Syay1, SYayz, Syays).

Limits for s— 0 ands — o are the following:

1 é(s)]
Lo := I|m sz( S) = y4|:01><6

Lo := lim Gy(s) = O :
S0 Y1 ¥Y2Y3s —=Y1 —Y2 —V3

Further,

1_
limsF 1y (s) = —B
S—>0 7y 7YY( ) y4 07
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Q(ﬁo, u) I Smax

— Ins

Figure 2.12: Detail of Figure 2.11.d (asymptotes).

whereBy has the following coordinates:

Bol1 =M(0,1- V], ~Yay1, ~y1ys), [Bol2=M(0, ~yzy1,1-Y5, ~Yay2),
B

[Bojz = M(0, —y1Y3, —Yay2,1—V3), [Bola = Osxa.

The limit lims_.., £F, 'Fyy(s) is denoted byB., and expands to

[Boo)r = 04xaforr=1,23; [Bw|s = diag —Ya4, —Ya, —Y4,0).

Thus
lim ( 1C (s) = lim (SGnax(s)) = 1 (2.41)
520 T 2|Lol|[[Bofl T s T 2 Lo [Basl| |
The graph of) =1In C%(S) over = Inshas the asymptotes
n =& —In(2|Loll|[Bol|) (§ — —),
N =-2¢ —In(2||Le|||Bw]}) (§ — ).
They intersect in the point
Lo/[|Bo _ _
(Goto) = 3(n JL2WEO (el Bol L B)). (242
We haveéy = Insy, where _
< _ Lol IBoll
[ILeo][ 1|

This is illustrated in Figure 2.12.

2.6 Scalar coordinates

There are all kinds of coordinates such as Cartesian coordinates, homogeneous co-
ordinates, Pliicker coordinates and the normalized form of them. All they have their
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. . normalized homog] .
entity S-coordinate eneous coordinate transformation
_li (Uo,ULUz) W|th (Vo,Vj_,Vz) W|th Up=Vo
2D-line ud=uz+u3 VZvi=1 u=voyi (i=12)
_ (Uo,ul,U27U3) W|th (Vo,Vl,V27V3) W|th Up=Vo
3D-plane ud=u2+u3+u3 VZHv3+v2=1 u=vovi (i=1,2,3)

Table 2.13: S-coordinates and normalized homogeneous coordinates of 2D-lines and
3D-planes

S-coordinate normalized Plicker coordinate
(0.9) with [g[=[dl. (0.@ =0|(mm) with [m[=1 (mm =0
transformation: g=|m|| m, g=m

Table 2.14: S-coordinate and normalized Pliicker coordinate of 3D-line

advantages and disadvantages in dealing with different situations. For instance, ho-
mogeneous coordinates enable uniform computations involving both infinite and finite
objects. However, they do not behave nicely with respect to the unit length, and also
have many problems in dealing with the distance between geometric entities. Here we
construct another kind of coordinates for lines and planes in Euclidean space such that
all components of the coordinate are proportional to the distance of the entity from the
origin. We call them scalar coordinates or simply S-coordinates, as the magnitude of
their components are invariant or proportional with respect to scaling or the choice of
unit length.

§2.6.1 S-coordinates of lines and planes

Ordinary Cartesian coordinates for a point are already proportional to the distance of
the point from the origin, so we keep using them for points.

For a line inR? or a plane inR3, we use its distance from the origin as the first
component of the S-coordinate, and the coordinates of the pedal point of the origin on
it multiplied by —1 as the others. (See Table 2.13).

For a line inR3, we construct the S-coordinate from its the normalized Pliicker coor-
dinate, as shown in Table 2.14. (d,) is the S-coordinate of a line iR3, g'is the
moment vector of a unit force in the line with respect to the origin, gisth direction
vector of the line such thafg|| = ||g]|. ||g]| equals the distance of the origin from the
line.
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geometric relation | number and nature of number and nature of
constraints involving more | constraints involving only
than one geometric entity | one geometric entity
dist(p,q) =d 1| |p—ql*=d 0 _
peL 3l pxI=|Hjr _ 1| HP=(1],{H=0
pelL 2 | two of px 1 = Il 2| [HP=(11]f%, (1, 1)=0
q=pedaj (p) 4| gxt=l[I,(p—q,1) =0 | 1| [1][>=1]|? (L H+=0
dlst(p, )=d 1 u0+<u p>_uod 1| ||ull?=u3
peU 1] ug+(u,p) = 1] fJull>=u3
<(G,H)=6 149, >—\|97|||h|10089 4| lglP=gll?. [hl2=[/h]|?,
_ (9,9)=0,(h,h)=0 _
G| H 3 [[hllg==[lglh, 3| ||gl*=Ilg]l?, [lhi2=thT,
<g,§>=0,<h,h>=0 _
GNH # {} 1| [[hll(g.h)+ [|gll(&:h) =0 |4 H@JHZ—HsiH2 [hl[>=(Ih]?,
(9,9)=0, (h,h)=0
LcU 3| [1uxT=udl 2 ||U|J_2—U07H|H2—|“H2
_ {H=0 _
LLU 3| [[MJu= Fuol 2 | |ul[>=ug, [ILIE=HT?,
(1,1)=0
UV 3| vou= +ugv 1| ||ull?=ud, |IvP=v2

Table 2.15: Relations between poimsy, linesL = (I,1), G = (9,9), H=(h, h), and
planedJ = (up,u), V = (v, V) with S-coordinates. (cf. Section §2.6.2).

§2.6.2 Expressing geometric relations by S-coordinates

To express geometric relations by S-coordinates, we only need to replace the unit nor-
mal vectors such ala v, I, g, andh in the geometric relations with the ordinary co-
ordinates by—, 5 HIH’ Hgll’ and HEII respectively. Analogous to Section §2.4.2, we
summarize the geometric relations with S-coordinates in Tables 2.15 and 2.16.

§2.6.3 Transformation of the scalar coordinate system

The transformation formulas for scalar coordinates can be derived easily from those of
(2.27), (2.28) and (2.29). With the symbols as in Section § 2.4.3, we have

p— Sp (L1 — (1,1, (Up,u) — S(Up, u) (2.43)
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geometric relation | number and nature of number and nature of
constraints involving more | constraints involving only
than one geometric entity | one geometric entity

a= pedaj (p al{p =2, _ 2| [2=[Il]2. 4. 1)=0
A=d0p] | [IxT+A =gl
q=pedal,(p) 4| us+(gquy=0 1] [u)2=u2

[2 = dist(p,U)] up(p—q) = Au,

Gl H 4| lhllg==|gllh, 3| |lgl2=1|g]12, hi2=tth?

dist(G,H) = d lgFhiZ=d? (9.99=0,(h h)=0
distG,H)=d |3|(gh =AlglInl, || lgl2=|gl [h|Z = ]
MZ: cos(G,H )} HhH(g,hHEH_ﬁ%‘):gllH@”\|h||» (g,@)=0, (g, r_]>:0
L=Unv 6| A(1,0) = (ux v,@v—v2u) | 3| 1]2=|?.0. 5=,

lull>=ug, lIvI|*=vg

Table 2.16: Relations becoming quadratic with new variables with S-coordinates. (cf.
Section §2.6.2).

_ | 1l (120
pprt, (1) — A ‘||;H||2|||t><l+lllll )
(uo, ) — (1 @)(Uo, u) (2.44)
Uo
p— Ap, (|7|_)—>(HA|HAI,A|_), (ug, U) — (o, Au) (2.45)

Obviously, Cmax of Theorem 1 is expected to be multiplied byas well in case of
choosing a different unit length.

§2.6.4 Geometric constraint problems with S-coordinates

Here we consider some of the examples in Section 2.5 again, but we use S-coordinates
in order to see hoWax is influenced by scaling.
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-l -l | IRy "Rl IRy Bl IRy "Ryl (1G]l S o

© o 0.00 7.18 26.16 141 1.13 3.20
0 1 0.00 10.12 9.66 531 0.81 8.5
0 2 0.00 6.05 10.64 245 156 7.63
1w 0.00 2.59 26.16 0.52 3.11 3.21
1 1 0.00 3.82 9.66 1.86 2.30 8.53
1 2 0.00 2.19 10.64 0.83 4.55 7.53
2 o 0.00 3.64 26.16 0.71 226 3.19
2 1 0.00 6.48 9.66 3.24 1.32 858
2 2 0.00 5.98 10.64 122 2.63 6.45

Table 2.17: Experimental values for various norms and the v&pgsandC;,,, ac-
cording to the constraint problem of Constructing a 3D-line with S-coordinate form
two points, wheres= 0.01.

Example 1. The line spanned by two points

We consider the example of Section §2.5.4 again, this time using S-coordinates. A
new free variabley = ||| || is introduced. The particular solution here is

L =(—3.5183.518 —49.25 —34.8,34.82 4975 and d=49.497.
From Table 2.15 we get the constraint problEfx,y) = 0, where

Vs +Y5+Y5—Y5
YatYs+Ys—Y
Y3X2 — Y2X3 — YaYy7
F(X,y) =| yiXa — y3X1 — Ysy7 |- (2.46)
Y2X1 —Y1X2 — YeY7
Y3Xs — Y2Xe — YaYy7
| Y1X6 — Y3X4 — Y57 |

We select the unit length= 1. Table 2.17 showgf‘;—ax and%ax, computed with differ-
ent norms.

Here,Fxx = 0, Fxy andFyy are constant with respect $p

Fi(9) = S(1).F; (9 = (Fy (1),Gu(8) = Fy (OF(®) = Fy H(DR(1) = Gu(1).

vy

It follows that
1

IFy H(8)Fll +2lIFy H(9)Fyy

Cmax(s) =

Gx(9)l

S
IRy H(D)Fyy

Fy {(DFy G (D)1’

|+2
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Cmax(9) /\/A Crmax(7) ) In Cmaxts
 _
—0 T In s

| (@) (b) (©)

Figure 2.13: The change @ax over coordinate transformations in the constraint
problem of Example § 2.6.4 in Section § 2.6.4. (a) Diagram of the char@ggfbver

the rotation angle while rotating the coordinate system. (b) the same for translating
the coordinate system. (c) Logarithmic diagran&@éx over a scaling factos.

I-llu IV [ Il IRy Fll IRy Ryl (1G] Cmx S

o)) 00 0.00 5.20 6.93 1.73 2.91 10.07
I 1 0.00 4.73 7.73 4.73 1.21 11.45
I 2 0.00 4.24 400 245 356 17.45
1 00 0.00 0.67 6.93 0.22 22.66 10.07
1 1 0.00 2.24 7.73 0.75 6.23 9.32
1 2 0.00 1.15 400 0.38 18.56 14.29
2 0 0.00 1.73 6.93 0.58 8.72 10.07
2 1 0.00 2.83 7.73 1.63 3.24 10.57
2 2 0.00 2.00 400 0.81 949 1551

Table 2.18: Experimental values for various norms and the v&ggsandC;,,, ac-
cording to the constraint problem of Constructing a 3D-plane with S-coordinate form
three points, where= 0.01.

andc%(s‘) does not depend a1 See Figure 2.13.
Example 2. The plane spanned by three points

We continue to consider the example in Section § 2.5.5. In terms of S-coordinates, the
particular solution of the plane is changed to

U = (—57.7,33.3394 33.3394 33.3394).

According to Table 2.15, the constraints read

V5 +Y3+Yi—Vs
F(xy) = y; +X0y2 +XoYs+XaYa | _ o (2.47)
Y1+ XaY2 + X5Y3 + X6Ya
Y5 -+ X7Y2 + XgY3 + XoYa

We select the unit lengte= 1. Table 2.18 showgfg—ax and C"‘Tax computed using
different norms.
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Cmax(¢) Cmax(7) Aln —Cmasx(s)
— 0 T _ In s

‘ (a) (b) ‘ (©)

Figure 2.14: (a)—(c) analogous to Figure 2.13, but for the constraint problem of Exam-
ple §2.6.4 in Section §2.6.4.

Il Il | IRy Rl Iy Foll IR Fopll Gl S S

© o 14.57 21.18 2.86 1325 0.84 22.33
0 1 29.20 11.12 7.73 21.54 028 12.10
% 2 16.97 11.70 571 14.23 054 15.25
1w 6.00 4.06 2.86 3.46 3.47 24.07
1 1 7.73 4.35 773 470 1.22 1143
1 2 6.03 3.53 571 3.48 210 14.59
2 o 6.00 7.75 2.86 508 222 2252
2 1 24.00 7.57 7.73 839 068 11.47
2 2 12.00 8.31 571 5.38 126 13.59

Table 2.19: Experimental values for various norms and the v&pgsandC,,, ac-
cording to the constraint problem of Constructing the intersection of a 3D-line and a
3D-plane with S-coordinate, whese= 0.01.

Here, Fxx = 0, Fxy and Fyy do not depend os, Fx(s) = sk(1), Ey—l(s) =1 7y_1(1),
Gu(3) = Fy (SIR(S) = F; H(1)R(2) = Gu(1). SO
1

IFy (8)Fyll +2lIFy ()l
S

Ry H(DRwllIGK (D)1

We see tha{@ is constant. See Figure 2.14.

Crmax(S)

Gx(9)l

IRy MRy

|+2

Example 3. The intersection of a line and a plane

We continue the example in Section 8 2.5.6. When using S-coordinates, the particular
solution is given by

L= (1) = (—35183.518 —49.25, —34.8,34.82,4.975)

and
U = (ug,u) = (—57.7,33.3394 33.3394 33.3394).
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Cmax(s)

Cmax(¢) Cmax(T) [ In ==
_ ¢ 7 In s>
‘ (a) (b) ‘

(€)

Figure 2.15: (a)—(c) analogous to Figure 2.13, but for the constraint problem of Exam-
ple §2.6.4 in Section §2.6.4.

A new free variableys = |1 is introduced. For the particular solutigy = 49.497.
From Table 2.15, we have
X% + >2<BY1 ;— Xg)gz + >;10y3
Fooy)=| % TX%—Ya | (2.48)

X3Y2 — X2Y3 — XqY4
X1Y3 — X3Y1 — X5Y4

We select the unit lengte= 1. Table 2.19 shows tha?lg—ax and Cf*gax with respect to
different norms.

Fxx, Fxy andFyy are independent & andF(s) =sk(1), Ey—l(s) = % 7y—1(1), Gx(s) =
Fy H(s)F(s) = Fy H(1)F«(1) = Gx(1). Thus,

2(|Gx(1)]]
15 (DRl + 2l sy (LRl Gx(D)| + 4l 5Fy (LRl
= SG‘naX(l)a

Cmax( S) =

Gx(D)]I?

We see tha?maTX(S) does not depend a1 This is illustrated by Figure 2.15.
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