
. .

Alexander Leitsch

M.Sc. Arbeit

Herbrand Sequent Extraction

ausgeführt am

Institut für Computersprachen

Arbeitsgruppe Theoretische Informatik und Logik

der Technischen Universität Wien

unter der Anleitung von

Univ.Prof. Dr.phil. Alexander Leitsch

durch

Bruno Woltzenlogel Paleo

Wien, 04. Mai 2007 .

Bruno Woltzenlogel Paleo

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

ii

. .

Alexander Leitsch

Master Thesis

Herbrand Sequent Extraction

carried out at the

Institute of Computer Languages

Theory and Logic Group

of the Vienna University of Technology

under the instruction of

Univ.Prof. Dr.phil. Alexander Leitsch

by

Bruno Woltzenlogel Paleo

Vienna, May 04, 2007 .

Bruno Woltzenlogel Paleo

ii

Contents

Kurzfassung v

Abstract vii

Dedication ix

Acknowledgements xi

1 Introduction 1

2 Notations and Definitions 3
2.1 Meta-Notations . 3
2.2 First-Order Logic . 3

2.2.1 The Language . 4
2.2.2 Manipulation of Formulas 5
2.2.3 Classifications . 7

2.3 Sequent Calculus . 8
2.3.1 Sequents . 9
2.3.2 Inference Rules . 11
2.3.3 LK-Proofs . 13
2.3.4 Positions and Substitutions in Proofs 14
2.3.5 Formula Occurrences in Proofs 16

2.4 Summary of Notations for Positions and Substitutions 17

3 Proof Analysis and Proof Transformations 19
3.1 Prenex Form . 19
3.2 Skolemization . 20
3.3 Herbrand Sequent . 22
3.4 Cut-Elimination . 23

4 Extraction of Herbrand Sequents 25
4.1 Extraction from Prenex Proofs 27

4.1.1 Extraction via Mid-Sequent Reduction 28
4.1.2 Extraction via Collection of Instances 42

iii

iv CONTENTS

4.2 Extraction from Non-Prenex Proofs 47
4.2.1 Extraction via Proof Transformation to Quantifier-

free LKA . 48
4.2.2 Extraction via Collection of Sub-Formula Instances . . 55

5 Conclusion 75

Kurzfassung

Nach der Definition einer Verallgemeinerung des Herbrandschen Theorems
für Sequente, beschreiben wir drei schon existierende Algorithmen für die
Extraktion eines Herbrandsequents aus formalen Beweisen, die im Sequen-
tialkalkül LK geschrieben sind. Darüber hinaus verbessern wir diese drei Al-
gorithmen und entwicklen daraus einen vierten Algorithmus, welcher deren
Ideen vereinigt und generalisiert. Dieser Algorithmus wurde dann realisiert
und in das CERes (Cut-Elimination by Resolution) Projekt integriert. Die
Wichtigkeit der Extraktion von Herbrandsequenten liegt darin, dass Her-
brandsequente die Kreativität der Beweise enthält.

v

vi KURZFASSUNG

Abstract

After defining a generalization of Herbrand’s Theorem for sequents, we de-
scribe three pre-existing algorithms for the extraction of a Herbrand sequent
of the end-sequent of proofs in the Sequent Calculus LK. Furthermore, we
improve these three algorithms by designing a new fourth algorithm, which
combines and generalizes their essential ideas. The implementation of this
new algorithm was realized within the framework of the project CERes
(Cut-Elimination by Resolution). The importance of extracting Herbrand
sequents from proofs lies on the fact that a Herbrand sequent summarizes
the creative content of a proof.

vii

viii ABSTRACT

Dedication

I dedicate this master thesis to my parents, who in spite of the distance,
continued to support me with their love and attention.

ix

x DEDICATION

Acknowledgements

I would like to thank my supervisor, Prof. Alexander Leitsch, for providing
an interesting, relevant and useful topic for this Master Thesis, and for ad-
vising me, pointing me the good directions to pursue in moments of doubts,
and revising this thesis.

The discussions with Prof. Leitsch and his Ph.D. students in the weekly
meetings of the CERes Project were also very influential to this thesis. They
not only gave me knowledge and a broader view on the area in which this
work is inserted, but they also transmitted their motivation to me. Specially,
I would like to thank Stefan Hetzl, for very interesting discussions about
my theoretical doubts, and both Clemens Richter and Stefan Hetzl, for
explaining the source code of CERes.

My studies at TU-Dresden and TU-Wien were supported by the Pro-
gramme Alβan, the European Union Programme of High Level Scholarships
for Latin America (scholarship no. E05M054053BR).

I am also grateful to colleagues and friends who shared time, experiences,
fun and knowledge with me during this period of one year in Germany and
one year in Austria.

xi

xii ACKNOWLEDGEMENTS

Chapter 1

Introduction

In Proof Theory, we are interested in constructing and analyzing formal
proofs, which strictly follow axioms and rules of inference of formal logi-
cal proof calculi, as Hilbert Calculi, Natural Deduction Calculi or Sequent
Calculi. Some of the main advantages of the formalization of proofs are:

• The correctness of formal proofs can be easily checked, by verifying
whether the formal axioms and rules of the calculus were correctly
employed.

• Formal proofs for formalized statements (formulas) may be constructed
by computers executing Automatic Theorem Provers, as in [11].

• New informal proofs for statements may be discovered by applying
formal transformations to their corresponding formal proofs, as in [3]
and [4].

• Formal proofs, when viewed and studied as a model and ideal for
informal mathematical proofs, allow meta-mathematical investigations
into the foundations of Mathematics.

However, formal representations of real informal mathematical proofs
or computer generated proofs of real mathematical problems usually have
some drawbacks that make them difficult to be analyzed and understood
by mathematicians or by humans in general. Firstly, the size of a formal
proof is usually huge ([2]), which makes it hard to be visualized in its whole.
Secondly, many of its individual inferences are only structural, necessary
not to carry some essential idea about the proof, but only to satisfy the
formalities of the calculus used. Thirdly, inference rules of proof calculi not
always correspond easily to natural inferences in informal proofs. Together
these drawbacks imply that, given a formal proof, it is not easy for a human
to extract its essential idea, because one gets lost in a proof which looks like a
huge data structure of repetitive, bureaucratic and non-intuitive formalities

1

2 CHAPTER 1. INTRODUCTION

that involuntarily hide the crucial information. Therefore there is a clear
need for summarization of formal proofs or for extraction of its essential
ideas, whenever these proofs are intended to be analyzed and understood by
humans.

This thesis describes one possible technique that helps to fulfill this need
in the particular case of First-Order Logic and Sequent Calculus LK. Our
technique relies on the concept of Herbrand Sequent (a generalization of
Herbrand Disjunction ([9]) and its extraction from LK-Proofs in a way that
summarizes their creative content, which lies on the instantiations chosen
for quantified variables.

The following chapters form this thesis:

• Chapter 2, Notations and Definitions, defines the language used for
First-Order Logic and the variant of Sequent Calculus LK used.

• Chapter 3, Proof Analysis and Transformations, defines the concept
of Herbrand sequent and describes important and related results, as
Herbrand’s Theorem and Gentzen’s Mid-Sequent Theorem, which are
essential to the methods described in the next chapter.

• Chapter 4, Extraction of Herbrand Sequents, has four subsections, each
devoted to a different algorithm for the extraction of Herbrand Se-
quents.

The novel contribution made by this thesis is the fourth algorithm, Ex-
traction via Collection of Sub-Formula Instances, which combines and gen-
eralizes the three pre-existing algorithms.

Chapter 2

Notations and Definitions

The notations and definitions described in this chapter construct the basic
formal language and the formal proof calculus which are used in this thesis:
First-Order Logic and the Sequent Calculus LK. Together they allow the
formalization of proofs.

2.1 Meta-Notations

The symbol (=) is usually used ambiguously in science. Here we reduce this
ambiguity by using the two different symbols below:

• .=: is used to define a simpler notation for a, usually more complex,
existing expression. Thus A .= B implies that we may use A as a
shorthand notation for B.

• =: is used to assert that two expressions are syntactically equal.

2.2 First-Order Logic

In this section we firstly describe a language for First-Order Logic, which
consists of an alphabet and formation rules to construct well-formed terms
and formulas from these.

Secondly, notations for the manipulation of formulas are described. These
notations allow reference to sub-formulas in specific positions of the formula
and substitution of variables or sub-formulas in formulas.

And finally, further definitions are given, which distinguish and classify
special properties owned by certain sub-formulas, quantifiers and variables.
These classifications are important for the definition of the algorithms that
will be described in the subsequent chapters.

3

4 CHAPTER 2. NOTATIONS AND DEFINITIONS

2.2.1 The Language

Definition 2.2.1 (Alphabet of First-Order Logic). The Alphabet of First-
Order Logic consists of:

1. A countable set of variables V

2. A countable set of constant symbols C

3. For every n ≥ 1, a countable set of function symbols Fn. (F .=
⋃

n≥1 Fn

is the set of all function symbols).

4. For every n ≥ 1, a countable set of predicate symbols Pn. (P .=⋃
n≥1 Pn is the set of all predicate symbols).

5. A set of propositional connectives {∨,∧,→,¬}

6. A set of quantifiers {∀,∃}

7. The set of parentheses {(,)}

8. The set of symbols {>,⊥}

Definition 2.2.2 (Terms). The set of terms T is defined as the smallest set
satisfying:

1. V ⊂ T

2. C ⊂ T

3. For all n ≥ 1: If f ∈ Fn and t1, . . . , tn ∈ T , then f(t1, . . . , tn) ∈ T .

Definition 2.2.3 (Formulas). The set of formulas FFOL is defined as the
smallest set satisfying:

1. For all n ≥ 1: If P ∈ Pn and t1, . . . , tn ∈ T , then P (t1, . . . , tn) ∈ FFOL.

2. If A ∈ FFOL, then ¬A ∈ FFOL

3. If A,B ∈ FFOL, then (A ∧B) ∈ FFOL

4. If A,B ∈ FFOL, then (A ∨B) ∈ FFOL

5. If A,B ∈ FFOL, then (A→ B) ∈ FFOL

6. If A ∈ FFOL and x ∈ V , then (∀x)A ∈ FFOL

7. If A ∈ FFOL and x ∈ V , then (∃x)A ∈ FFOL

For the sake of transparency, we usually omit the outermost parentheses
of a formula.

2.2. FIRST-ORDER LOGIC 5

2.2.2 Manipulation of Formulas

Definition 2.2.4 (Positions of a Formula). Let A be a formula, then its
set of positions pos(A) is the smallest set of strings belonging to {1, 2}∗ and
such that pos(A) satisfies:

1. ε ∈ pos(A)

2. If A is of the form ¬B, then {1.λ|λ ∈ pos(B)} ⊂ pos(A).

3. If A is of the form (B ∧ C), then ({1.λ1|λ1 ∈ pos(B)} ∪ {2.λ2|λ2 ∈
pos(C)}) ⊂ pos(A).

4. If A is of the form (B ∨ C), then ({1.λ1|λ1 ∈ pos(B)} ∪ {2.λ2|λ2 ∈
pos(C)}) ⊂ pos(A).

5. If A is of the form (B → C), then ({1.λ1|λ1 ∈ pos(B)} ∪ {2.λ2|λ2 ∈
pos(C)}) ⊂ pos(A).

6. If A is of the form (∀x)B, then {1.λ|λ ∈ pos(B)} ⊂ pos(A).

7. If A is of the form (∃x)B, then {1.λ|λ ∈ pos(B)} ⊂ pos(A).

Example 2.1 (Positions of a Formula). Below are the sets of positions for
some example formulas:

1. pos(F (a) ∨G(b)) = {ε, 1, 2}

2. pos(F (a) ∨ (G(b) ∧ F (b))) = {ε, 1, 2, 21, 22}

3. pos((∀x)F (x) ∨ (G(b) ∧ F (b))) = {ε, 1, 2, 11, 21, 22}

4. pos(F (c) ∨ (∃x)(G(x) ∧ F (b))) = {ε, 1, 2, 21, 211, 212}

Definition 2.2.5 (Depth of a Position of a Formula). Let λ be a position
of a formula F . Then, the depth of λ, depth(λ) is defined inductively:

1. depth(ε) .= 0.

2. depth(1.λ′) .= 1 + depth(λ′).

3. depth(2.λ′) .= 1 + depth(λ′).

Definition 2.2.6 (Atomic Formulas, Compound Formulas). A formula A is
atomic if pos(A) = {ε}. In this case, A is clearly of the form P (t1, . . . , tn),
where P ∈ Pn and t1, . . . , tn ∈ T . Otherwise, it is said to be compound.

Definition 2.2.7 (Sub-formulas occurring in given Positions). Let λ be a
position of the formula A. Then the sub-formula occurring in position λ is
denoted |A|λ. Formally, we may define the computation of |A|λ inductively:

6 CHAPTER 2. NOTATIONS AND DEFINITIONS

1. |A|ε
.= A

2. If A is of the form ¬B and λ = 1.λ′ with λ′ ∈ pos(B), then |A|λ
.=

|B|λ′ .

3. If A is of the form B ◦ C (for ◦ ∈ {∧,∨,→}) and λ = 1.λ′ with
λ′ ∈ pos(B), then |A|λ

.= |B|λ′ .

4. If A is of the form B ◦ C (for ◦ ∈ {∧,∨,→}) and λ = 2.λ′ with
λ′ ∈ pos(C), then |A|λ

.= |C|λ′ .

5. If A is of the form (Qx)B (for Q ∈ {∀,∃}) and λ = 1.λ′ with λ′ ∈
pos(B), then |A|λ

.= |B|λ′ .

Example 2.2 (Sub-formulas occurring in given Positions). Below are some
examples of sub-formulas occurring in specified positions of the formula
F (c) ∨ (∃x)(G(x) ∧ F (b)):

1. |F (c) ∨ (∃x)(G(x) ∧ F (b))|ε = F (c) ∨ (∃x)(G(x) ∧ F (b))

2. |F (c) ∨ (∃x)(G(x) ∧ F (b))|1 = F (c)

3. |F (c) ∨ (∃x)(G(x) ∧ F (b))|2 = (∃x)(G(x) ∧ F (b))

4. |F (c) ∨ (∃x)(G(x) ∧ F (b))|21 = (G(x) ∧ F (b))

5. |F (c) ∨ (∃x)(G(x) ∧ F (b))|211 = G(x)

6. |F (c) ∨ (∃x)(G(x) ∧ F (b))|212 = F (b)

Definition 2.2.8 (Sub-formula Substitution). Let λ be a position of the
formula A such that B .= |A|λ. The formula obtained by substituting the
occurrence of B in position λ in A by C is denoted Aλ[C] or Aσfo, where
σfo .= {λ/C}

Example 2.3 (Sub-formula Substitutions in a Formula). Below are some
examples of substitutions of sub-formulas occurring in specified positions of
the formula F (c) ∨ (∃x)(G(x) ∧ F (b)) by the formula S(s):

1. (F (c) ∨ (∃x)(G(x) ∧ F (b)))ε[S(s)] = S(s)

2. (F (c) ∨ (∃x)(G(x) ∧ F (b)))1[S(s)] = S(s) ∨ (∃x)(G(x) ∧ F (b))

3. (F (c) ∨ (∃x)(G(x) ∧ F (b)))2[S(s)] = F (c) ∨ S(s)

4. (F (c) ∨ (∃x)(G(x) ∧ F (b)))21[S(s)] = F (c) ∨ (∃x)S(s)

5. (F (c) ∨ (∃x)(G(x) ∧ F (b)))211[S(s)] = F (c) ∨ (∃x)(S(s) ∧ F (b))

6. (F (c) ∨ (∃x)(G(x) ∧ F (b)))212[S(s)] = F (c) ∨ (∃x)(G(x) ∧ S(s))

2.2. FIRST-ORDER LOGIC 7

2.2.3 Classifications

Definition 2.2.9 (Positive and Negative Sub-formulas). Let B be a sub-
formula of a First-Order Logic formula A. We classify B as a positive or
negative Sub-formula of A according to the following cases:

• If B = A, then B is a positive sub-formula of A.

• If A = ¬A1 and B is a positive sub-formula of A1, then B is a negative
sub-formula of A.

• If A = ¬A1 and B is a negative sub-formula of A1, then B is a positive
sub-formula of A.

• If A = (A1 ∨ A2) and B is a positive sub-formula of A1, then B is a
positive sub-formula of A.

• If A = (A1 ∨ A2) and B is a positive sub-formula of A2, then B is a
positive sub-formula of A.

• If A = (A1 ∨ A2) and B is a negative sub-formula of A1, then B is a
negative sub-formula of A.

• If A = (A1 ∨ A2) and B is a negative sub-formula of A2, then B is a
negative sub-formula of A.

• If A = (A1 ∧ A2) and B is a positive sub-formula of A1, then B is a
positive sub-formula of A.

• If A = (A1 ∧ A2) and B is a positive sub-formula of A2, then B is a
positive sub-formula of A.

• If A = (A1 ∧ A2) and B is a negative sub-formula of A1, then B is a
negative sub-formula of A.

• If A = (A1 ∧ A2) and B is a negative sub-formula of A2, then B is a
negative sub-formula of A.

• If A = (A1 → A2) and B is a positive sub-formula of A1, then B is a
negative sub-formula of A.

• If A = (A1 → A2) and B is a positive sub-formula of A2, then B is a
positive sub-formula of A.

• If A = (A1 → A2) and B is a negative sub-formula of A1, then B is a
positive sub-formula of A.

• If A = (A1 → A2) and B is a negative sub-formula of A2, then B is a
negative sub-formula of A.

8 CHAPTER 2. NOTATIONS AND DEFINITIONS

Definition 2.2.10 (Strong and Weak Quantifiers). Let B .= (Qx)B′ be a
sub-formula of A. We classify Q as strong or weak according to the following
cases:

• If Q = ∀ and B is a positive sub-formula of A, then Q is strong in A.

• If Q = ∀ and B is a negative sub-formula of A, then Q is weak in A.

• If Q = ∃ and B is a positive sub-formula of A, then Q is weak in A.

• If Q = ∃ and B is a negative sub-formula of A, then Q is strong in A.

Definition 2.2.11 (Scope of Quantifiers, Bound and Free Variables). Let
A be a formula of the form (Qx)B, with Q ∈ {∀,∃} and B ∈ FFOL. B and
all its sub-formulas and variables are said to be in the scope of (Qx). A
variable x is said to be bound if it is in the scope of (Qx). A variable x is
said to be free if it is not in the scope of any (Qx).

Definition 2.2.12 (Variable Substitution). σ .= {v1 ← t1, . . . , vn ← tn}
denotes a variable substitution. Aσ is the formula obtained from A by
substituting all occurrences of free-variables vj by the corresponding terms
tj .

Definition 2.2.13 (Unifier). Let A and B be formulas. If there is a variable
substitution σ such that Aσ = Bσ, then A and B are said to be unifiable
and σ is called a unifier for A and B.

2.3 Sequent Calculus

A Sequent Calculus is one of the possible calculi one may use to define the
concept of provability of First-Order Logic formulas. The first two variants
of sequent calculi were invented by Gentzen in 1934 [6], and they were called
LK, for classical First-Order Logic, and LJ , for intuitionistic First-Order
Logic.

Here we use a variant of Gentzen’s Sequent Calculus LK. The main
difference of our variant is the allowance of arbitrary atomic sequents as
axiom sequents. This is an important feature, because real mathematical
theories usually have a huge number of trivial (from the logical point of
view, atomic) axioms, and it would be impractical to carry all these axioms
in the antecedent of sequents in our LK-Proofs. 1. Allowing arbitrary axiom

1For example, in order to prove a formula F within a theory that assumes the atoms A
and B among other formulas (F1, . . . , Fn), in traditional Sequent Calculus LK we would
try to find an LK-Proof for the sequent A, B, F1, . . . , Fn ` F , and this LK-Proof would
repetitively carry the atoms A and B along its branches. With our variant of the calculus
LK, we may find an LK-Proof for the sequent F1, . . . , Fn ` F which possibly admits the
sequents ` A and ` B as axiom sequents.

2.3. SEQUENT CALCULUS 9

sequents in the calculus makes the LK-Proofs shorter and more readable,
since they do not display so much trivial logical information.

However, arbitrary axiom sequents also bring two disadvantages. Firstly,
derived end-sequents do not directly correspond to valid First-Order Logic
formulas anymore, but to First-Order Logic formulas that are valid relatively
to the allowed axioms. Secondly, Gentzen’s famous cut-elimination theorem
holds only in a weaker form. Since his elimination rule for a cut on an axiom
requires axiom sequents of the form A ` A, atomic cuts cannot be eliminated
in our variant of the Sequent Calculus LK, which allows arbitrary atomic
axiom sequents.

Furthermore we provide definitional and equality rules, which bring the
Sequent Calculus closer to real mathematical proofs.

We define our variant of the Sequent Calculus LK incrementally. In the
first subsection we give definitions that construct sequents from First-Order
Logic formulas. In the second subsection, rules of inference are defined and
constructed with sequents, and the admissible schemata of rules of inference
in our LK is presented. In the third subsection, LK-Proofs are defined
using rules of inference as their building blocks. Finally, a fourth chapter
describes notations used to refer to specific parts of an LK-Proof or to
denote substitutions of these parts by others.

2.3.1 Sequents

Definition 2.3.1 (Sequent). A sequent is a pair of tuples of formulas. The
first tuple is the antecedent of the sequent and the second tuple is the con-
sequent of the sequent. We use the notation A1, . . . , An ` B1, . . . , Bm,
where A1, . . . , An is the antecedent and B1, . . . , Bm is the consequent. The
antecedent and the consequent of a sequent may also be empty (n ≥ 0
and m ≥ 0). If all the formulas in the antecedent and in the consequent
are atomic formulas or negated atomic formulas, then the sequent is called
atomic.

We use the symbols Γ,Π and ∆, possibly with subscripts, to denote
sequences of formulas in the antecedent and consequent of sequents.

Definition 2.3.2 (Sequent Formation). Given two tuples A and C of for-
mulas, we denote by seq(A,C) the sequent having A as its antecedent and
C as its consequent. Given two sets or multi-sets SA

.= {A1, . . . , An} and
SC

.= {C1, . . . , Cm} of formulas, we denote by seq(SA, SC) a permutation
variant of the sequent A1, . . . , An ` C1, . . . , Cm.

Definition 2.3.3 (Sequent Composition). Let s .= A1, . . . , An ` B1, . . . , Bm

and s′ .= A′
1, . . . , A

′
n′ ` B′

1, . . . , B
′
m′ . The composition of s and s′,

A1, . . . , An, A
′
1, . . . , A

′
n′ ` B1, . . . , Bm, B

′
1, . . . , B

′
m′ is denoted s ◦ s′.

10 CHAPTER 2. NOTATIONS AND DEFINITIONS

Definition 2.3.4 (Subsequent). Let s1 and s2 be sequents. s1 is a sub-
sequent of s2, if and only there is s′ such that s1 ◦s′ is a permutation variant
of s2.

Definition 2.3.5 (Positions and Formula Occurrences in a Sequent). Let
s be a sequent with n formulas in the antecedent and m formulas in the
consequent. A position in a sequent is a string of the form c.k where c ∈
{A,C} and k is a number such that k ∈ {0, 1, . . . , n}, if c = A, or k ∈
{0, 1, . . . ,m}, if c = B. c indicates whether the position refers to a formula
in the antecedent or in the consequent of the sequent, and k indicates the
index of the referred formula in the antecedent or in the consequent. By
|s|µ we denote the formula occurring in position µ of s. By convention,
|s|A.0

.= > and |s|C.0
.= ⊥.

Example 2.4 (Positions and Formula Occurrences in a Sequent). Let s .=
A,B,C ` D,E. Then:

• |s|A.2 = B

• |s|A.3 = C

• |s|C.1 = D

Definition 2.3.6 (Occurrence Substitution in a Sequent). By sµ[B] we
denote the sequent obtained from s by substituting the formula occurrence
in position µ by B. Alternatively, sµ[B] may also be denoted sσos with
σos .= {µ/B}

Example 2.5 (Occurrence Substitution in a Sequent). Let s .= A,B,C `
D,E. Then:

• sA.2[F] = s{A.2/F} = A,F,C ` D,E

• sA.3[F] = s{A.3/F} = A,B, F ` D,E

• sC.1[F] = s{C.1/F} = A,B,C ` F,E

Definition 2.3.7 (Sub-formula Position in a Sequent). Previously defined
notations allow us to denote a sub-formula in position λ of a formula occur-
rence in position µ of a sequent s by the expression ||s|µ|λ. Alternatively
we define the following simpler notation to express this same sub-formula:
|s|(µ,λ).

Definition 2.3.8 (Sub-formula Substitution in an Occurrence in a Sequent).
Previously defined notations allow us to denote the result of substituting a
sub-formula in position λ of a formula occurrence in position µ of a sequent
s by the formula A by the expression sµ[(|s|µ)λ[A]]. Alternatively we define
the following two simpler notations to express this same result:

2.3. SEQUENT CALCULUS 11

• s(µ,λ)[A].

• sσfs, where σfs .= {(µ, λ)/A}

Definition 2.3.9 (Positive and Negative Occurrences in a Sequent). Let
s = A1, . . . , An ` B1, . . . , Bm be a sequent. We say that A1, . . . , An are
negative occurrences in s and B1, . . . , Bm are positive occurrences in s.

Definition 2.3.10 (Positive and Negative Sub-formulas in a Sequent). Let
s be a sequent, A be an occurrence of s and B be a sub-formula of A.

• If A occurs positively in s and B is a positive sub-formula of A, then
B is a positive sub-formula of s.

• If A occurs negatively in s and B is a positive sub-formula of A, then
B is a negative sub-formula of s.

• If A occurs positively in s and B is a negative sub-formula of A, then
B is a negative sub-formula of s.

• If A occurs negatively in s and B is a negative sub-formula of A, then
B is a positive sub-formula of s.

Definition 2.3.11 (Strong and Weak Quantifiers in a Sequent). Let s be a
sequent, A be an occurrence of s and Q be quantifier in A.

• If A occurs positively in s and Q is a strong quantifier in A, then Q is
a strong quantifier in s.

• If A occurs positively in s and Q is a weak quantifier in A, then Q is
a weak quantifier in s.

• If A occurs negatively in s and Q is a strong quantifier in A, then Q
is a weak quantifier in s.

• If A occurs negatively in s and Q is a weak quantifier in A, then Q is
a strong quantifier in s.

2.3.2 Inference Rules

Definition 2.3.12 (Rule). A rule of Sequent Calculus can be of any of the
three forms below:

sC
r

sP
sC

r

sP1 sP2

sC
r

In these rule schemes, we say that sC is the conclusion sequent. sP ,sP1 ,sP2

are premise sequents. Rules are classified according to the number of premise

12 CHAPTER 2. NOTATIONS AND DEFINITIONS

sequents. Rules of the first form are nullary rules. Rules of the second form
are unary rules. And rules of the third form are binary rules

The following rules are used in our version of LK:

1. axiom
sA

axiom

where sA is an arbitrary atomic sequent. We call the conclusion se-
quent of an axiom rule axiom. In particular, axioms of the form A ` A
for A atomic correspond to logical tautologies 2.

2. propositional
Γ ` ∆, A Π ` Λ, B
Γ,Π ` ∆,Λ, A ∧B ∧ : r

A,B,Γ ` ∆
A ∧B,Γ ` ∆ ∧ : l

A,Γ ` ∆ B,Π ` Λ
A ∨B,Γ,Π ` ∆Λ ∨ : l

Γ ` ∆, A
Γ ` ∆, A ∨B ∨ : r1

Γ ` ∆, A
Γ ` ∆, B ∨A ∨ : r2

Γ ` ∆, A B,Π ` Λ
A→ B,Γ,Π ` ∆,Λ →: l

A,Γ ` ∆, B
Γ ` ∆, A→ B

→: r

A,Γ ` ∆
Γ ` ∆,¬A ¬ : r

Γ ` ∆, A
¬A,Γ ` ∆ ¬ : l

3. first-order

Γ ` ∆, A{x← α}
Γ ` ∆, (∀x)A ∀ : r

A{x← t},Γ ` ∆
(∀x)A,Γ ` ∆ ∀ : l

Γ ` ∆, A{x← t}
Γ ` ∆, (∃x)A ∃ : r

A{x← α},Γ ` ∆
(∃x)A,Γ ` ∆ ∃ : l

For the ∀ : r and the ∃ : l rules the variable α must not occur in Γ nor
in ∆ nor in A. This is the eigenvariable condition

For the ∀ : l and the ∃ : r rules the term t must not contain a variable
that is bound in A.

2in Gentzen’s original sequent calculi, only axioms of the form F ` F , where F is any
arbitrary formula, were allowed.

2.3. SEQUENT CALCULUS 13

4. structural

Γ ` ∆
Γ ` ∆, A1, . . . , An

w : r Γ ` ∆
A1, . . . , An,Γ ` ∆ w : l

where n > 0

Γ ` ∆, A,Π
Γ ` ∆, A, . . . , A,Π

c : r

Γ, A,Π ` ∆
Γ, A, . . . , A,Π ` ∆ c : l

A1, . . . , An ` ∆
Aσ(1), . . . , Aσ(n) ` ∆

π(σ) : l
Γ ` A1, . . . , An

Γ ` Aσ(1), . . . , Aσ(n)
π(σ) : r

where σ is a permutation given as list of cycles

Γ ` ∆, A A,Π ` Λ
Γ,Π ` ∆,Λ cut

2.3.3 LK-Proofs

Definition 2.3.13 (LK-Proof). an LK-Proof is a tree in which:

1. Each node is a rule.

2. Leaves are axiom rules.

3. For every node r, each of its premise sequents is the conclusion sequent
of a direct ancestor 3 node. of r.

Definition 2.3.14 (End-sequent of a proof). The conclusion sequent of the
root of a proof ϕ is called end-sequent and is denoted endseq(ϕ).

Definition 2.3.15 (Valid Sequent). A sequent s is said to be a valid sequent,
if and only if there is an LK-Proof ϕ such that endseq(ϕ) = s.

Definition 2.3.16 (Alternative view of an LK-Proof). Alternatively and
more informally, an LK-Proof can also be viewed as a tree where the nodes
are sequents, the leaves are axioms, and the edges are rules connecting the
conclusions with the premises.

3The tree is drawn in the standard way, with the root below and the leaves above.
When we say that a node m is the ancestor of a node n, we mean that n is in the path
between m an the root.

14 CHAPTER 2. NOTATIONS AND DEFINITIONS

Definition 2.3.17 (Regular Proofs). An LK-Proof is called regular if and
only if for each pair of strong quantifier rules ρ1 and ρ2, the eigen-variable
of ρ1 is different from the eigen-variable of ρ2.

Definition 2.3.18 (Logical Equivalence of Formulas). Two Formulas A and
B are said to be equivalent, A ∼ B, if and only if there is an LK-Proof ϕ
such that the end-sequent of ϕ is ` (A→ B) ∧ (B → A).

Definition 2.3.19 (Logical Equivalence of Sequents). Let s .= A1, . . . , An `
B1, . . . , Bm and s′

.= A′
1, . . . , A

′
j ` B′

1, . . . , B
′
k be sequents. Then s and s′

are said to be equivalent, if and only if there is an LK-Proof ϕ such that
endseq(ϕ) =` (F1 → F2) ∧ (F2 → F1), where F1

.= (. . . (A1 ∧ . . .) ∧ An) →
(. . . (B1 ∨ . . .) ∨Bm) and F2

.= (. . . (A′
1 ∧ . . .) ∧A′

j)→ (. . . (B′
1 ∨ . . .) ∨B′

k).

Definition 2.3.20 (Logical Equivalence between Formulas and Sequences
of Formulas). Let A1, . . . , An be a sequence of formulas (occurrences or sub-
formulas) in a sequent s, and let A be a formula. Then:

• A+
1 , . . . , A

+
n ∼ A, if and only if A1, . . . , An occur positively in s and

A ∼ (A1 ∨ (. . . (An−1 ∨An)))

• A−
1 , . . . , A

−
n ∼ A, if and only if A1, . . . , An occur negatively in s and

A ∼ (A1 ∧ (. . . (An−1 ∧An)))

2.3.4 Positions and Substitutions in Proofs

Definition 2.3.21 (Positions of an LK-Proof). Let ϕ be an LK-Proof.
Then its set of positions LKpos(ϕ] is the smallest set of strings belonging
to {1, 2}∗ and such that LKpos(ϕ) satisfies:

• ε ∈ LKpos(ϕ)

• If the root of ϕ is a unary rule, then {1.ν|ν ∈ LKpos(ϕ′)} ⊂ LKpos(ϕ)
where ϕ′ is the sub-tree of ϕ having the premise-sequent of the root
of ϕ as its end-sequent.

• If the root of ϕ is a binary rule, then {1.ν|ν ∈ LKpos(ϕ1)} ⊂ LKpos(ϕ)
and {2.ν|ν ∈ LKpos(ϕ2)} ⊂ LKpos(ϕ); where ϕ1 is the sub-tree of
ϕ having the first premise-sequent of the root of ϕ as its end-sequent,
and ϕ2 is the sub-tree of ϕ having the second premise-sequent of the
root of ϕ as its end-sequent.

Definition 2.3.22 (Depth of a Position of a Proof). Let ν be a position of
a proof ϕ. Then, the depth of ϕ, depth(ϕ) is defined inductively:

1. depth(ε) .= 0.

2. depth(1.ν ′) .= 1 + depth(ν ′).

2.3. SEQUENT CALCULUS 15

3. depth(2.ν ′) .= 1 + depth(ν ′).

Definition 2.3.23 (Sub-proofs occurring in given Positions). Let ν be a
position of the LK-Proof ϕ. Then the sub-proof occurring in position ν is
denoted |ϕ|ν . Formally, we may define the computation of |ϕ|ν inductively:

1. |ϕ|ε
.= ϕ

2. If ν = 1.ν ′ with ν ′ ∈ pos(ϕ1), then |ϕ|ν
.= |ϕ1|ν′ , where ϕ1 is the

sub-tree of ϕ having the first premise-sequent of the root of ϕ as its
end-sequent.

3. If ν = 2.ν ′ with ν ′ ∈ pos(ϕ2), then |ϕ|ν
.= |ϕ2|ν′ , where ϕ2 is the

sub-tree of ϕ having the first premise-sequent of the root of ϕ as its
end-sequent.

Definition 2.3.24 (Sub-proof Substitution). Let ϕ be an LK-Proof. Then
ϕν [ϕ′] denotes ϕ∗ obtained from ϕ by substituting its sub-proof in position
ν by ϕ′ 4. Alternatively we also define the following notation to express this
same ϕ∗: ϕσpp, where σpp .= {ν/ϕ′}.

Definition 2.3.25 (Sequent Position in a Proof). Previously defined nota-
tions allow us to denote any sequent in a proof by first obtaining a sub-proof
and then extracting the end-sequent of this sub-proof. Thus, a sequent in
a Proof ϕ, which is the end-sequent of a sub-proof ϕ′ in position ν can
be denoted by endseq(|ϕ|ν). Alternatively we define the following simpler
notation to express this same sequent: |ϕ|[ν].

Definition 2.3.26 (Sequent Substitution in a Proof). Let ϕ be an LK-
Proof such that s .= |ϕ|[ν]. Then we denote by ϕ[ν][s′] the proof ϕ′ resulting
from the substitution of the sequent s in position ν by the sequent s′ in the
proof ϕ. Alternatively we also define the following notation to express this
same proof ϕ′: ϕσsp, where σsp .= {[ν]/s′}

Definition 2.3.27 (Occurrence Position in a Proof). Previously defined
notations allow us to denote an occurrence in position µ of an end-sequent
s in a sub-proof ϕ′ in position ν of a proof ϕ by the expression ||ϕ|[ν]|µ.
Alternatively we define the following simpler notation to express this same
occurrence: |ϕ|[ν,µ].

Definition 2.3.28 (Occurrence Substitution in a Proof). Let ϕ be an LK-
Proof such that F .= |ϕ|[ν,µ]. Then we denote by ϕ[ν,µ][F ′] the proof ϕ′

resulting from the substitution of the occurrence F in position µ of the end-
sequent of the sub-proof in position ν by the formula F ′. Alternatively we
also define the following notation to express this same proof ϕ′: ϕσop, where
σop .= {[ν, µ]/F ′}

4ϕν [ϕ′] will be a valid LK-Proof, only if endseq(ϕν) = endseq(ϕ′). Nevertheless,
substitutions resulting in invalid proofs can still be useful as intermediary steps in proof-
transformation algorithms.

16 CHAPTER 2. NOTATIONS AND DEFINITIONS

Definition 2.3.29 (Sub-formula Position in a Proof). Previously defined
notations allow us to denote a sub-formula in position λ of an occurrence in
position µ of an end-sequent s in a sub-proof ϕ′ in position ν of a proof ϕ
by the expression |||ϕ|[ν]|µ|λ. Alternatively we define the following simpler
notation to express this same sub-formula: |ϕ|[ν,µ,λ].

Definition 2.3.30 (Sub-formula Substitution in a Proof). Let ϕ be an LK-
Proof such that A .= |ϕ|[ν,µ,λ]. Then ϕ[ν,µ,λ][A′] denotes the proof ϕ′ resulting
from the substitution of the sub-formula A in position λ of the occurrence in
position µ of the end-sequent of the sub-proof in position ν by the formula
A′. Alternatively we also define the following notation to express this same
proof ϕ′: ϕσfp, where σfp .= {[ν, µ, λ]/A′}

2.3.5 Formula Occurrences in Proofs

Some occurrences of formulas in proofs are of particular importance, and
therefore in this section we define them.

Definition 2.3.31 (Active Occurrences, Main and Auxiliary Occurrences).
In the rules of Sequent Calculus some occurrences are written down explicitly
with roman letters (A,B,C,. . .), while others occur implicitly in the context,
which is written down with capital greek letters (Γ,∆,Π,. . .). For a rule r
in a proof ϕ, the formula occurrence in the conclusion sequent of r which
corresponds to the formula written down explicitly in the definition of r
is called main occurrence of r. The formulas in the premise sequents of r
which correspond to formulas written down explicitly in the definition of r
are called auxiliary occurrences of r. If a formula is a main occurrence or
an auxiliary occurrence of r, then it is called active occurrence of r.

Definition 2.3.32 (Axiom-Occurrence, End-Occurrence, Cut-Occurrence,
Terminal Occurrence). A formula occurrence in the conclusion sequent of
an axiom rule is called axiom-occurrence. A formula occurrence in the end-
sequent of a proof is called end-occurrence. An auxiliary occurrence of a
cut-rule is called cut-occurrence. If an occurrence is an end-occurrence or a
cut-occurrence, then it is called a terminal occurrence.

Definition 2.3.33 (Ancestor-Relation of Occurrences). Let A be an occur-
rence in a premise-sequent of a rule r in a proof ϕ and let C be an occurrence
in the conclusion-sequent of r. A is an immediate ancestor of C, if A is an
auxiliary occurrence of r and C is the main occurrence of r or if A occurs in
the context of a premise-sequent of r and C is the corresponding occurrence
in the corresponding context in the conclusion-sequent of r.

The Ancestor-Relation over occurrences is the transitive closure of the
immediate-ancestor-relation. That is, A1 is an ancestor of A2 if and only if
A1 is an immediate ancestor of A2 or there exists an immediate ancestor Z
of A2 such that A1 is an ancestor of Z.

2.4. SUMMARY OF NOTATIONS FOR POSITIONS AND SUBSTITUTIONS17

Table 2.1: Notations for Positions
Notation Explanation
|F |λ Sub-formula in position λ of the Formula F
|s|µ Occurrence in position µ of the sequent s
|s|(µ,λ) Sub-formula in position λ of the occurrence in posi-

tion µ of the sequent s
|ϕ|ν Sub-proof in position ν of the proof ϕ
|ϕ|[ν] End-sequent of the sub-proof in position ν of the

proof ϕ
|ϕ|[ν,µ] Occurrence in position µ of the end-sequent of the

sub-proof in position ν of the proof ϕ
|ϕ|[ν,µ,λ] Sub-formula in position λ of the occurrence in posi-

tion µ of the end-sequent of the sub-proof in position
ν of the proof ϕ

Definition 2.3.34 (Used Occurrences). An occurrence F in a proof ϕ is
called used if there is an axiom-occurrence which is an ancestor of F .

2.4 Summary of Notations for Positions and Sub-
stitutions

In the previous sections, many notations were defined to access and sub-
stitute sub-formulas, occurrences, sequents and sub-proofs in specified po-
sitions in occurrences, sequents and proofs. Tables 2.4 and 2.4 provide a
summary of all the notations introduced. In this section we also give a
general definition of composition of substitutions.

Definition 2.4.1 (Composition of Substitutions). Let σαβ and σγβ be sub-
stitutions, where α,β and γ range over {f, o, s, p} according to the possibili-
ties displayed in table 2.4. Then σαβ ◦σγβ denotes the composition of these
substitutions, such that:

Z(σαβ ◦ σγβ) .= (Zσαβ)σγβ

18 CHAPTER 2. NOTATIONS AND DEFINITIONS

Table 2.2: Notations for Substitutions
Notation 1 Notation 2 Explanation

Fλ[A′] Fσfo = F{λ/A′} Substitution of sub-formula in
position λ of the Formula F by
A′

sµ[F ′] sσos = s{µ/F ′} Substitution of occurrence in
position µ of the sequent s by
F ′

s(µ,λ)[A′] sσfs = s{(µ, λ)/A′} Substitution of sub-formula in
position λ of the occurrence in
position µ of the sequent s by
A′

ϕν [ϕ′] ϕσpp = ϕ{ν/ϕ′} Substitution of sub-proof in
position ν of the proof ϕ by
ϕ′

ϕ[ν][s′] ϕσsp = ϕ{[ν]/s′} Substitution of the end-
sequent of the sub-proof in
position ν of the proof ϕ by s′

ϕ[ν,µ][F ′] ϕσop = ϕ{[ν, µ]/F ′} Substitution of the occurrence
in position µ of the end-
sequent of the sub-proof in po-
sition ν of the proof ϕ by F ′

ϕ[ν,µ,λ][A′] ϕσfp = ϕ{[ν, µ, λ]/A′} Substitution of the sub-
formula in position λ of the
occurrence in position µ of the
end-sequent of the sub-proof
in position ν of the proof ϕ
by A′

Chapter 3

Proof Analysis and Proof
Transformations

LK-Proofs satisfying certain syntactical restrictions can be useful for differ-
ent purposes. One might be interested, for example, in proofs where every
sequent has formulas in negation normal form only, or in skolem normal
form. Or one might want proofs in cut-normal form, in which the cut-rule
is not used.

Given an LK-Proof for a sequent s, it is sometimes possible to trans-
form this proof into another proof for s that satisfies the desired syntactical
restrictions. In this chapter we define some restrictions and normal forms
that are required by some of the algorithms described in subsequent chap-
ters, and we present some theorems regarding transformations that provide
LK-Proofs satisfying these restrictions.

3.1 Prenex Form

Intuitively, a formula in prenex form is a formula in which all quantifiers are
in its beginning. One of the main purposes of the prenex form in our case,
is that it is a pre-requisite for certain algorithms, as for example Gentzen’s
Mid-Sequent Reduction.

Any formula in First-Order Logic can be transformed to an equiva-
lent formula in prenex form. However, this transformation reduces human-
understandability, because the original positions of the quantifiers, possibly
nested within propositional connectives, usually convey a reading of the for-
mula that is closer to the way humans think.

Definition 3.1.1 (Prenex Form). A formula A is in prenex form if and
only if it is of the form (Q1x1)(Q2x2) . . . (Qnxn)B, for some n ≥ 0, for
Q1, . . . , Qn ∈ {∀,∃}, and for B quantifier-free. A sequent s is in prenex
form if and only if all its formulas are in prenex form. An LK-Proof is in
prenex form if and only if all its sequents are in prenex form.

19

20CHAPTER 3. PROOF ANALYSIS AND PROOF TRANSFORMATIONS

Theorem 3.1 (Transformation into Prenex Form). For any formula A,
there is a formula A′ in prenex form and logically equivalent to A.

3.2 Skolemization

Skolemization is here defined as the process of removing strong quantifiers
from First-Order Logic formulas or from sequents. Our definition of Skolem-
ization generalizes more common definitions given in First-Order Logic, in
order to make it suitable for Sequent Calculus and for structural skolemiza-
tion.

Usually, skolemization is defined as the removal of existential quantifiers
from First-Order Logic formulas, and dual-skolemization or herbrandization
is defined as the removal of universal quantifiers. With these definitions, one
can show that, for arbitrary F1 andF2 in prenex form, skolemization(F1) `
if and only F1 ` and ` dualskolemization(F2) if and only if ` F2. Our gen-
eralized definition of skolemization corresponds, in the prenex case, to the
removal of universal quantifiers (dual-skolemization) in the consequent and
to the removal of existential quantifiers (skolemization) in the antecedent.
Moreover, in the non-prenex case our definition allows structural skolemiza-
tion: it does not require the non-prenex formulas or sequents to be firstly
transformed to prenex normal form, as it is usually done with the more
common definitions; instead it allows the undesired strong quantifiers to be
removed in place.

Theorem 3.2 states that Skolemization preserves validity. Therefore, to
prove that a sequent s is valid, it suffices to search for an LK-Proof for Sk(s).
This is good, because Skolemization, for our purposes, has two advantages:

1. An LK-Proof without quantified cut-formulas of a skolemized sequent
has neither (∀ : r) nor (∃ : l) rules. Therefore there is no need to worry
about eigen-variable conditions.

2. What appears as an eigen-variable in a non-skolemized proof, appears
as a term with skolem constants and skolem functions in the corre-
sponding skolemized proof. These terms are usually more human-
understandable than just eigen-variable, because they show explicit
dependencies in their expressions with skolem constants and skolem
functions.

Moreover, Structural Skolemization has two advantages over Prenex
Skolemization:

1. By leaving the weak quantifiers in their places, the human-readability
and the human-understandability of the formula or of the sequent is
better preserved.

3.2. SKOLEMIZATION 21

2. As shown in [1], Prenex Skolemization may result in a non-elementary
increase in the Herbrand Complexity of an LK-Proof.

Below we give formal definitions and about Structural Skolemization of
Formulas and Sequents. Algorithms for Structural Skolemization of LK-
Proofs may be found in [10].

Definition 3.2.1 (Skolemization of a First-Order-Logic Formula). Let F ∈
FFOL. Then the Skolemization of F , Sk(F) is defined inductively as:

1. If F does not have strong quantifiers, then Sk(F) .= F .

2. If F has strong quantifiers and (Qy) is its first strong quantifier, then:

(a) If (Qy) is not in the scope of weak quantifiers,
then Sk(F) .= Sk(F−(Qy){y ← cy})

(b) If (Qy) is in the scope of the weak quantifiers (Qx1)(Qx2) . . . (Qxn)
appearing in this order,
then Sk(F) .= Sk(F−(Qy){y ← fy(x1, x2, . . . , xn)})

where:

• cy is a constant symbol not occurring in F and is called a skolem-
constant.

• fy is a function symbol not occurring in F and is called a skolem-
function.

If the skolem-constant and skolem-function symbols are chosen deter-
ministically in the definition of Sk, then Sk is indeed a function.

Definition 3.2.2 (Set of Skolemizations of a Formula). For different choices
of skolem-constant and skolem-function symbols, Sk(F) produces differ-
ent skolemized formulas (which are however equal modulo renaming of the
skolem-constant symbols and of the skolem-function symbols). Skolem(F)
denotes the set of all the skolemized formulas of F :

Skolem(F) .= {Ski(F)|Ski is a skolemization}

Definition 3.2.3 (Sequent Skolemization). Let s .= A1, . . . , An ` B1, . . . , Bm

be a sequent such that Sk(A1∧ . . .∧An → B1∨ . . .∨Bm) = A′
1∧ . . .∧A′

n →
B′

1 ∨ . . . ∨B′
m. Then Sk(s) .= A′

1, . . . , A
′
n ` B′

1, . . . , B
′
m.

Theorem 3.2 (Validity Preservation of Skolemization). Let s be a sequent.
s is a valid sequent if and only if Sk(s) is a valid sequent.

22CHAPTER 3. PROOF ANALYSIS AND PROOF TRANSFORMATIONS

3.3 Herbrand Sequent

The concept of Herbrand Sequent is the core of this thesis. It allows a certain
kind of reduction from First-Order Logic to propositional logic, because a
Herbrand sequent for a sequent s contains sufficient instantiations for the
quantified variables in s. Hence, by extracting a Herbrand Sequent from an
LK-Proof, a summarized representation of its creative first-order content is
obtained.

Herbrand Sequents, as described here, are a generalization of Herbrand
Disjunctions [9] for the Sequent Calculus LK. Apart from the practical use
described in this thesis, the concept of Herbrand Disjunction (or Herbrand
Sequent) is also very important for the foundations of Logic and Mathemat-
ics, by way of Herbrand’s Theorem. A concise historical and mathematical
discussion of Herbrand’s Theorem, as well as its relation to Gödel’s Com-
pleteness Theorem, may be found in [5].

Herbrand’s Theorem, by stating that every valid sequent has a Herbrand
sequent, implies that it is always possible to extract Herbrand sequents from
proofs, and therefore our general idea of using Herbrand sequents to sum-
marize information about LK-Proofs is applicable to any LK-Proof, even
though some of our particular algorithms may impose certain restrictions
on the LK-Proofs that they can analyze.

A weaker form of Herbrand’s Theorem, restricted to prenex sequents, is
equivalent to the famous Mid-Sequent Theorem or Sharpened Hauptsatz,
by Gentzen [6]. The proof of this theorem relies on a proof-transformation
called Mid-Sequent Reduction, which we use as a first algorithm for the
extraction of Herbrand Sequents from prenex LK-Proofs.

Definition 3.3.1 (Herbrand Sequents of a Sequent without Strong Quan-
tifiers). Let s .= A1, . . . , An ` B1, . . . , Bm be a valid sequent containing
weak quantifiers only and let A0

1, . . . , A
0
n, B

0
1 , . . . , B

0
m be its formulas with-

out quantifiers. Furthermore, let A1
j , . . . , A

ij
j be quantifier-free substitution

instances of A0
j (Ah

j , for 0 < h ≤ ij , is obtained from A0
j by substituting

its free variables by terms) and B1
k, . . . , B

pk
k be quantifier-free substitution

instances of B0
k. A valid sequent of the form

s′ = A1
1, . . . , A

i1
1 , . . . A

1
n, . . . , A

in
n ` B1

1 , . . . , B
p1
1 , . . . , B

1
m, . . . , B

pm
m

is called a Herbrand Sequent of s.
Clearly, there are infinitely many such sequents and H(s) denotes the

set of all Herbrand sequents of s.

Example 3.1 (Herbrand Sequent of a Sequent). Let s .= P (0), (∀x)(P (x)→
P (s(x))) ` P (s(s(0))). Then some Herbrand Sequents of s are:

• P (0), P (0) → P (s(0)), P (s(0)) → P (s(s(0))) ` P (s(s(0)))

• P (0), P (0), P (0) → P (s(0)), P (s(0)) → P (s(s(0))) ` P (s(s(0)))

3.4. CUT-ELIMINATION 23

• P (0), P (0) → P (s(0)), P (s(0)) → P (s(s(0))), P (s(s(0))) → P (s(s(s(0)))) ` P (s(s(0)))

•

Definition 3.3.2 (Herbrand Sequents of a Sequent). Let s be an arbitrary
sequent. We define the set of its Herbrand sequents:

H(s) .=
⋃

s′∈Skolem(s)

H(s′)

If s∗ ∈ H(s), then s∗ is called a Herbrand Sequent of s.

Theorem 3.3 (Herbrand’s Theorem). A sequent s is valid if and only if
there exists a Herbrand sequent of s.

Proof. Originally in [9], stated for Herbrand Disjunctions. Also in [5] with
more modern proof calculi.

Theorem 3.4 (Mid-Sequent Theorem or Sharpened Hauptsatz). Let ϕ be a
prenex LK-Proof without non-atomic cuts. Then there is an LK-Proof ϕ′ of
the same end-sequent such that no quantifier rule occurs above propositional
and cut rules.

Proof. Original proof, for Gentzen’s original Sequent Calculus LK and cut-
free LK-Proofs, is available in [6].

3.4 Cut-Elimination

The importance of Cut-Elimination, a proof transformation invented by
Gentzen [6], for the automatic analysis of mathematical proofs lies on the
fact that the removal of cuts from formal LK-Proofs corresponds to the
elimination of lemmas from informal mathematical proofs. The resulting
cut-free LK-Proof has the property that all the formulas in its sequents are
sub-formulas of formulas in the end-sequent, thus making implicit parame-
ters explicit.

The main result, regarding cut-elimination is Gentzen’s Hauptsatz or
Cut-Elimination Theorem [6], which states that any LK-Proof can be trans-
formed to a cut-free LK-Proof with the same end-sequent. However, since
our variant of the Sequent Calculus LK allows arbitrary axiom sequents,
Gentzen’s Hauptsatz holds only in a weaker form, because his elimination
rule for a cut on an axiom requires axiom sequents of the form A ` A. Our
variant of LK admits transformation to proofs without non-atomic cuts, but
in general atomic cuts cannot be eliminated 1.

1A simple example of an LK-Proof in our variant of the Sequent Calculus LK which
does not admit a transformation to a cut-free proof is:

24CHAPTER 3. PROOF ANALYSIS AND PROOF TRANSFORMATIONS

Although Gentzen’s method for Cut-Elimination was the first one, others
exist, as for example Cut-Elimination by Resolution (CERes) [?] and Cut-
Elimination by Projection [8]. Cut-Elimination is not unique, and therefore
different methods or choices within these methods may lead to new inter-
esting proofs.

The importance of cut-elimination for this thesis lies on the fact that all
algorithms require LK-Proofs without non-atomic cuts.

Theorem 3.5 (Weak Cut-Elimination Theorem). Let ϕ be an LK-Proof.
Then there exists an LK-Proof ϕ′ without non-atomic cuts such that
endseq(ϕ) = endseq(ϕ′).

Proof. A proof for the original Cut-Elimination Theorem can be found in
[6].

Equal(b, a) ` Equal(a, b) Equal(a, b), Equal(b, c) ` Equal(a, c)
cut

Equal(b, a), Equal(b, c) ` Equal(a, c)

This example also shows the usefulness of allowing arbitrary atomic axiom sequents as
a way to express symmetry and transitivity of the predicate Equal.

Chapter 4

Extraction of Herbrand
Sequents

Four algorithms for the Extraction of Herbrand Sequents from LK-Proofs
are described in this chapter. Each algorithm is described in its own sub-
section, each organized as follows:

• Firstly, necessary notations and definitions specific for the algorithm,
are introduced.

• By using all the previously defined mathematical notations and defin-
itions, the algorithm is formally and functionally stated.

• Since the formal functional description of the algorithm is sometimes
difficult to understand, a high-level and imperative pseudo-code for
the algorithm is provided.

• The soundness of the algorithm is proved. This proof is divided in two
lemmas: a proof that the extracted sequent is well-instantiated and a
proof that the extracted sequent is valid.

• One or more examples are presented, showing how to apply the algo-
rithm to specific LK-Proofs.

The algorithms may be classified on whether they require the LK-Proofs
to be in Prenex form and on whether they need to perform transformations
in order to extract the Herbrand sequent. Table 4 summarizes this classifi-
cation.

Throughout this chapter, LK-Proofs are assumed to be free of non-
atomic cuts. Thanks to theorem 3.5, a weaker form of Gentzen’s Cut-
Elimination Theorem, this in principle does not limit the applicability of
these algorithms, because proofs could have their non-atomic cuts elimi-
nated.

25

26 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Table 4.1: Classification of the Algorithms
Prenex LK-Proofs
Required

Prenex LK-Proofs
not Required

Proof-
Transformations
Used

Mid-Sequent Reduc-
tion

Transformation to
LKA

Proof-
Transformations
not Used

Collection of Instances Collection of Sub-
formula Instances

4.1. EXTRACTION FROM PRENEX PROOFS 27

4.1 Extraction from Prenex Proofs

The extraction of a Herbrand sequent in the case of LK-Proofs in prenex
form is easier than in the more general case of LK-Proofs that are not in
prenex form, and it can be done by the simpler algorithms described in the
next two subsections.

By theorem 3.1, these two algorithms could in principle also be applied
to non-prenex LK-Proofs by firstly transforming them to prenex form. How-
ever, this has disadvantages in terms of human-understandability and com-
plexity, and therefore the two algorithms described in section 4.2 should be
preferred for the general (not necessarily prenex) case. Nevertheless, the
algorithms described in this section form the basis for the understanding of
the more complex algorithms of the next section.

28 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

4.1.1 Extraction via Mid-Sequent Reduction

The algorithm described in this subsection is based on a mid-sequent re-
duction explained in [7] and similar to the one described by Gentzen in
his proof of the sharpened Hauptsatz (Mid-Sequent Theorem) in [6]. The
essential idea of the algorithm is to transform an LK-Proof into a proof
in which no propositional-rules or cut-rules appear below quantifier-rules.
Such a proof has a so-called mid-sequent, located between the lower part of
the proof, which has the quantifier-rules, and the upper part of the proof,
which has the propositional rules.

This algorithm is slightly different from the algorithm in [7], because here
we allow proofs with atomic cuts, while there they require the proof to be
cut-free. Unless stated otherwise, we assume LK-Proofs in this subsection
to be free of non-atomic cuts.

Definition 4.1.1 (Degree of a Quantifier-rule). Let ρ be a quantifier rule in
an LK-Proof ϕ. Then the degree of ρ, degree(ρ), is defined as the number
of propositional-rules and cut-rules in the path from ρ to the root of ϕ.

Definition 4.1.2 (Associated Contraction). Let ϕ be an LK-Proof con-
taining a quantifier-rule ρ with main occurrence θ. Every contraction-rule
below ρ that has an auxiliary occurrence θ′ such that θ is ancestor of θ′ and
the only active formula occurrences this ancestor path passes through are
active formula occurrences of contraction-rules, is said to be associated with
ρ.

Example 4.1 (Associated Contractions). Let ϕ be the LK-Proof below:

P (0) ` P (0) [ϕ1]
→: l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x)))(ρ2:c2,ρ1:c2) ` P (s3(0))
∀ : l[ρ3]

P (0), (∀x)(P (x) → P (s(x)))(ρ3:c2), (∀x)(P (x) → P (s(x)))(ρ2:c2,ρ1:c2) ` P (s3(0))
c : l[c2]

P (0), (∀x)(P (x) → P (s(x))) ` P (s3(0))

where ϕ1 is:

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
∀ : l[ρ1]

P (s2(0)), (∀x)(P (x) → P (s(x)))(ρ1:c2,ρ1,c1) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x)))(ρ1:c2,ρ1,c1) ` P (s3(0))
∀ : l[ρ2]

P (s(0)), (∀x)(P (x) → P (s(x)))(ρ2:c2,ρ2:c1), (∀x)(P (x) → P (s(x)))(ρ1:c2,ρ1,c1) ` P (s3(0))
c : l[c1]

P (s(0)), (∀x)(P (x) → P (s(x)))(ρ2:c2,ρ1:c2) ` P (s3(0))

In this proof occurrences have been labeled with (ρj : ci) to indicate that they
belong to the ancestor path that associates ci to ρj. Therefore the following
associations exist in this proof:

• the contractions associated with ρ1 are c1 and c2.

• the contractions associated with ρ2 are c1 and c2.

4.1. EXTRACTION FROM PRENEX PROOFS 29

• the contraction associated with ρ3 is c2.

Definition 4.1.3 (Mid-Sequent Reduction). Let ϕ be an LK-Proof. We
define the transformation ⇀M pushing downwards a non-deterministically
chosen quantifier-rule ρ with degree(ρ) > 0, according to the following cases:

1. ρ is a (∀ : r)-rule: Let τ be the first propositional or cut-rule below ρ
and assume that there is no quantifier rule between ρ and τ (if this is
not the case, choose the quantifier rule that is in between, instead of
ρ, to push downwards).

(a) τ is a unary propositional-rule: Then the subproof χ of ϕ with
root τ has the following form:

[ψ]
Γ ` ∆, F{x← α}

∀ : r[ρ]
Γ ` ∆, (∀x)F

c : ∗, w : ∗[δ]
Γ′ ` ∆′, (∀x)F

∗ : ∗[τ]
Γ′′ ` ∆′′, (∀x)F

The premise of τ contains (∀x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∀x)F as
auxiliary formula (for assuming it has would lead to contradiction,
because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∀x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∀x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ ` ∆, F{x← α}

c : ∗, w : ∗[δ\δ′]Γ′ ` ∆′,Π, F{x← α}
∗ : ∗[τ]

Γ′′ ` ∆′′,Π, F{x← α}
∀ : r[ρ]

Γ′′ ` ∆′′,Π, (∀x)F
c : ∗[δ′]Γ′′ ` ∆′′, (∀x)F

(b) τ is a binary rule and ρ is in the left branch: Then the subproof
χ of ϕ with root τ has the following form:

[ψ]
Γ ` ∆, F{x← α}

∀ : r[ρ]
Γ ` ∆, (∀x)F

c : ∗, w : ∗[δ]
Γ′ ` ∆′, (∀x)F Γ′1 ` ∆′

1 ∗ : ∗[τ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∀x)F

30 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

The left premise of τ contains (∀x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∀x)F as
auxiliary formula (for assuming it has would lead to contradiction,
because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∀x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∀x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ ` ∆, F{x← α}

c : ∗, w : ∗[δ\δ′]Γ′ ` ∆′,Π, F{x← α} Γ′1 ` ∆′
1 ∗ : ∗[τ]

Γ′′,Γ′′1 ` ∆′′,∆′′
1,Π, F{x← α}

∀ : r[ρ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1,Π, (∀x)F
c : ∗[δ′]Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∀x)F
(c) τ is a binary rule and ρ is in the right branch: Then the subproof

χ of ϕ with root τ has the following form:

Γ′1 ` ∆′
1

[ψ]
Γ ` ∆, F{x← α}

∀ : r[ρ]
Γ ` ∆, (∀x)F

c : ∗, w : ∗[δ]
Γ′ ` ∆′, (∀x)F

∗ : ∗[τ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∀x)F
The right premise of τ contains (∀x)F (as a descendant of the
main occurrence of ρ) because neither contractions nor weaken-
ings can remove it. The propositional rule τ does not have this
(∀x)F as auxiliary formula (for assuming it has would lead to con-
tradiction, because the main formula of τ wouldn’t be in prenex
form). Hence the conclusion of τ also contains this (∀x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∀x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

Γ′1 ` ∆′
1

[ψ]
Γ ` ∆, F{x← α}

c : ∗, w : ∗[δ\δ′]Γ′ ` ∆′,Π, F{x← α}
∗ : ∗[τ]

Γ′′,Γ′′1 ` ∆′′,∆′′
1,Π, F{x← α}

∀ : r[ρ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1,Π, (∀x)F
c : ∗[δ′]Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∀x)F

4.1. EXTRACTION FROM PRENEX PROOFS 31

The eigen-variable condition of ρ in χ′ is fulfilled because α does not
occur in Γ, ∆, Γ′, ∆′. In particular, α is not added by a weakening in
δ because the proof is regular.

2. ρ is a (∃ : r)-rule: Let τ be the first propositional or cut-rule below ρ
and assume that there is no quantifier rule between ρ and τ (if this is
not the case, choose the quantifier rule that is in between, instead of
ρ, to push downwards).

(a) τ is a unary propositional-rule: Then the subproof χ of ϕ with
root τ has the following form:

[ψ]
Γ ` ∆, F{x← t}

∃ : r[ρ]
Γ ` ∆, (∃x)F

c : ∗, w : ∗[δ]
Γ′ ` ∆′, (∃x)F

∗ : ∗[τ]
Γ′′ ` ∆′′, (∃x)F

The premise of τ contains (∃x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∃x)F as
auxiliary formula (for assuming it has would lead to contradiction,
because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∃x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∃x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ ` ∆, F{x← t}

c : ∗, w : ∗[δ\δ′]Γ′ ` ∆′,Π, F{x← t}
∗ : ∗[τ]

Γ′′ ` ∆′′,Π, F{x← t}
∃ : r[ρ]

Γ′′ ` ∆′′,Π, (∃x)F
c : ∗[δ′]Γ′′ ` ∆′′, (∃x)F

(b) τ is a binary rule and ρ is in the left branch: Then the subproof
χ of ϕ with root τ has the following form:

[ψ]
Γ ` ∆, F{x← t}

∃ : r[ρ]
Γ ` ∆, (∃x)F

c : ∗, w : ∗[δ]
Γ′ ` ∆′, (∃x)F Γ′1 ` ∆′

1 ∗ : ∗[τ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∃x)F

32 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

The left premise of τ contains (∃x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∃x)F as
auxiliary formula (for assuming it has would lead to contradiction,
because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∃x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∃x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ ` ∆, F{x← t}

c : ∗, w : ∗[δ\δ′]Γ′ ` ∆′,Π, F{x← t} Γ′1 ` ∆′
1 ∗ : ∗[τ]

Γ′′,Γ′′1 ` ∆′′,∆′′
1,Π, F{x← t}

∃ : r[ρ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1,Π, (∃x)F
c : ∗[δ′]Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∃x)F
(c) τ is a binary rule and ρ is in the right branch: Then the subproof

χ of ϕ with root τ has the following form:

Γ′1 ` ∆′
1

[ψ]
Γ ` ∆, F{x← t}

∃ : r[ρ]
Γ ` ∆, (∃x)F

c : ∗, w : ∗[δ]
Γ′ ` ∆′, (∃x)F

∗ : ∗[τ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∃x)F
The right premise of τ contains (∃x)F (as a descendant of the
main occurrence of ρ) because neither contractions nor weaken-
ings can remove it. The propositional rule τ does not have this
(∃x)F as auxiliary formula (for assuming it has would lead to con-
tradiction, because the main formula of τ wouldn’t be in prenex
form). Hence the conclusion of τ also contains this (∃x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∃x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

Γ′1 ` ∆′
1

[ψ]
Γ ` ∆, F{x← t}

c : ∗, w : ∗[δ\δ′]Γ′ ` ∆′,Π, F{x← t}
∗ : ∗[τ]

Γ′′,Γ′′1 ` ∆′′,∆′′
1,Π, F{x← t}

∃ : r[ρ]
Γ′′,Γ′′1 ` ∆′′,∆′′

1,Π, (∃x)F
c : ∗[δ′]Γ′′,Γ′′1 ` ∆′′,∆′′

1, (∃x)F

4.1. EXTRACTION FROM PRENEX PROOFS 33

3. ρ is a (∀ : l)-rule: Let τ be the first propositional or cut-rule below ρ
and assume that there is no quantifier rule between ρ and τ (if this is
not the case, choose the quantifier rule that is in between, instead of
ρ, to push downwards).

(a) τ is a unary propositional-rule: Then the subproof χ of ϕ with
root τ has the following form:

[ψ]
Γ, F{x← t} ` ∆

∀ : l[ρ]
Γ, (∀x)F ` ∆

c : ∗, w : ∗[δ]
Γ′, (∀x)F ` ∆′

∗ : ∗[τ]
Γ′′, (∀x)F ` ∆′′

The premise of τ contains (∀x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∀x)F as
auxiliary formula (for assuming it has would lead to contradiction,
because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∀x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∀x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ, F{x← t} ` ∆

c : ∗, w : ∗[δ\δ′]Γ′, F{x← t},Π ` ∆′

∗ : ∗[τ]
Γ′′, F{x← t},Π ` ∆′′

∀ : l[ρ]
Γ′′, (∀x)F,Π ` ∆′′

c : ∗[δ′]Γ′′, (∀x)F ` ∆′′

(b) τ is a binary rule and ρ is in the left branch: Then the subproof
χ of ϕ with root τ has the following form:

[ψ]
Γ, F{x← t} ` ∆

∀ : l[ρ]
Γ, (∀x)F ` ∆

c : ∗, w : ∗[δ]
Γ′, (∀x)F ` ∆′ Γ′1 ` ∆′

1 ∗ : ∗[τ]
Γ′′,Γ′′1, (∀x)F ` ∆′′,∆′′

1

The left premise of τ contains (∀x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∀x)F as
auxiliary formula (for assuming it has would lead to contradiction,

34 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∀x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∀x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ, F{x← t} ` ∆

c : ∗, w : ∗[δ\δ′]Γ′, F{x← t},Π ` ∆′ Γ′1 ` ∆′
1 ∗ : ∗[τ]

Γ′′,Γ′′1, F{x← t},Π ` ∆′′,∆′′
1 ∀ : l[ρ]

Γ′′,Γ′′1, (∀x)F,Π ` ∆′′,∆′′
1
c : ∗[δ′]Γ′′,Γ′′1, (∀x)F ` ∆′′,∆′′

1

(c) τ is a binary rule and ρ is in the right branch: Then the subproof
χ of ϕ with root τ has the following form:

Γ′1 ` ∆′
1

[ψ]
Γ, F{x← t} ` ∆

∀ : l[ρ]
Γ, (∀x)F ` ∆

c : ∗, w : ∗[δ]
Γ′, (∀x)F ` ∆′

∗ : ∗[τ]
Γ′′,Γ′′1, (∀x)F ` ∆′′,∆′′

1

The right premise of τ contains (∀x)F (as a descendant of the
main occurrence of ρ) because neither contractions nor weaken-
ings can remove it. The propositional rule τ does not have this
(∀x)F as auxiliary formula (for assuming it has would lead to con-
tradiction, because the main formula of τ wouldn’t be in prenex
form). Hence the conclusion of τ also contains this (∀x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∀x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

Γ′1 ` ∆′
1

[ψ]
Γ, F{x← t} ` ∆

c : ∗, w : ∗[δ\δ′]Γ′, F{x← t},Π ` ∆′

∗ : ∗[τ]
Γ′′,Γ′′1, F{x← t},Π ` ∆′′,∆′′

1 ∀ : l[ρ]
Γ′′,Γ′′1, (∀x)F,Π ` ∆′′,∆′′

1
c : ∗[δ′]Γ′′,Γ′′1, (∀x)F ` ∆′′,∆′′

1

4. ρ is a (∃ : l)-rule: Let τ be the first propositional or cut-rule below ρ
and assume that there is no quantifier rule between ρ and τ (if this is
not the case, choose the quantifier rule that is in between, instead of
ρ, to push downwards).

4.1. EXTRACTION FROM PRENEX PROOFS 35

(a) τ is a unary propositional-rule: Then the subproof χ of ϕ with
root τ has the following form:

[ψ]
Γ, F{x← α} ` ∆

∃ : l[ρ]
Γ, (∃x)F ` ∆

c : ∗, w : ∗[δ]
Γ′, (∃x)F ` ∆′

∗ : ∗[τ]
Γ′′, (∃x)F ` ∆′′

The premise of τ contains (∃x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∃x)F as
auxiliary formula (for assuming it has would lead to contradiction,
because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∃x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∃x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ, F{x← α} ` ∆

c : ∗, w : ∗[δ\δ′]Γ′, F{x← α},Π ` ∆′

∗ : ∗[τ]
Γ′′, F{x← α},Π ` ∆′′

∃ : l[ρ]
Γ′′, (∃x)F,Π ` ∆′′

c : ∗[δ′]Γ′′, (∃x)F ` ∆′′

(b) τ is a binary rule and ρ is in the left branch: Then the subproof
χ of ϕ with root τ has the following form:

[ψ]
Γ, F{x← α} ` ∆

∃ : l[ρ]
Γ, (∃x)F ` ∆

c : ∗, w : ∗[δ]
Γ′, (∃x)F ` ∆′ Γ′1 ` ∆′

1 ∗ : ∗[τ]
Γ′′,Γ′′1, (∃x)F ` ∆′′,∆′′

1

The left premise of τ contains (∃x)F (as a descendant of the main
occurrence of ρ) because neither contractions nor weakenings can
remove it. The propositional rule τ does not have this (∃x)F as
auxiliary formula (for assuming it has would lead to contradiction,
because the main formula of τ wouldn’t be in prenex form). Hence
the conclusion of τ also contains this (∃x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∃x)F exactly n
times where n is the number of contractions in δ′.

36 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

We define χ ⇀M χ′ with χ′ as shown below:

[ψ]
Γ, F{x← α} ` ∆

c : ∗, w : ∗[δ\δ′]Γ′, F{x← α},Π ` ∆′ Γ′1 ` ∆′
1 ∗ : ∗[τ]

Γ′′,Γ′′1, F{x← α},Π ` ∆′′,∆′′
1 ∃ : l[ρ]

Γ′′,Γ′′1, (∃x)F,Π ` ∆′′,∆′′
1
c : ∗[δ′]Γ′′,Γ′′1, (∃x)F ` ∆′′,∆′′

1

(c) τ is a binary rule and ρ is in the right branch: Then the subproof
χ of ϕ with root τ has the following form:

Γ′1 ` ∆′
1

[ψ]
Γ, F{x← α} ` ∆

∃ : l[ρ]
Γ, (∃x)F ` ∆

c : ∗, w : ∗[δ]
Γ′, (∃x)F ` ∆′

∗ : ∗[τ]
Γ′′,Γ′′1, (∃x)F ` ∆′′,∆′′

1

The right premise of τ contains (∃x)F (as a descendant of the
main occurrence of ρ) because neither contractions nor weaken-
ings can remove it. The propositional rule τ does not have this
(∃x)F as auxiliary formula (for assuming it has would lead to con-
tradiction, because the main formula of τ wouldn’t be in prenex
form). Hence the conclusion of τ also contains this (∃x)F .
Let δ′ be the contractions in δ that are associated with ρ and
let Π be the multi-set that contains the formula (∃x)F exactly n
times where n is the number of contractions in δ′.
We define χ ⇀M χ′ with χ′ as shown below:

Γ′1 ` ∆′
1

[ψ]
Γ, F{x← α} ` ∆

c : ∗, w : ∗[δ\δ′]Γ′, F{x← α},Π ` ∆′

∗ : ∗[τ]
Γ′′,Γ′′1, F{x← α},Π ` ∆′′,∆′′

1 ∃ : l[ρ]
Γ′′,Γ′′1, (∃x)F,Π ` ∆′′,∆′′

1
c : ∗[δ′]Γ′′,Γ′′1, (∃x)F ` ∆′′,∆′′

1

The eigen-variable condition of ρ in χ′ is fulfilled because α does not
occur in Γ, ∆, Γ′, ∆′. In particular, α is not added by a weakening in
δ because the proof is regular.

We define ϕ ⇀M ϕ′ with ϕ′
.= ϕν [χ′], where ν is the position of χ in ϕ.

In other words, ⇀M is compatibility-closed. ⇀∗
M denotes the reflexive and

transitive closure of ⇀M .

4.1. EXTRACTION FROM PRENEX PROOFS 37

Definition 4.1.4 (Mid-Sequent Normal Form). an LK-Proof ϕ is in mid-
sequent normal form, M −NF , if and only if there is no LK-Proof ϕ′ such
that ϕ ⇀M ϕ′.

Theorem 4.1 (Existence of Mid-Sequent Normal Form). For every LK-
Proof ϕ, there exists an LK-Proof ϕ′ such that ϕ ⇀∗

M ϕ′ and ϕ′ is in
Mid-Sequent Normal Form.

Proof. This follows from Gentzen’s Sharpened Hauptsatz (Mid Sequent The-
orem), in [6].

Theorem 4.2 (Splitting of a Prenex Proof in Mid-Sequent Normal Form).
An LK-Proof in Mid-Sequent Normal Form of a prenex end-sequent and
without non-atomic cuts has degree(ρ) = 0 for any quantifier-rule ρ. This
means that there is no propositional or cut-rule below a quantifier-rule.
Such a proof can thus be split in two parts: an upper part containing only
propositional-rules and structural-rules; and a lower part containing only
quantifier-rules, contraction-rules and weakening-rules. However this split-
ting is not unique, because we can split the proof at any position between
the lowest propositional-rule or cut-rule and the highest quantifier-rule. Be-
tween these two rules there may be several contractions and weakenings.

Theorem 4.3 (Non-Confluency of Mid-Sequent Reduction). Mid-Sequent
Reduction is not confluent. For an LK-Proof ϕ, there may be more than
one LK-Proof ϕ′ in mid-sequent normal form such that ϕ ⇀M ϕ′.

Algorithm 4.1 (Herbrand Sequent Extraction via Proof Transformation
(Mid-Sequent Reduction)). We may extract a Herbrand sequent from an
LK-Proof ϕ with end-sequent in prenex form by executing the following
steps:

1. Find (by executing mid-sequent reductions) ϕ′ such that ϕ ⇀∗
M ϕ′

and ϕ′ is in mid-sequent normal form.

2. Let ρ be the lowest axiom-rule, propositional-rule or cut-rule (ρ in in
the path between the end-sequent and any other axiom-rule, propositio-
nal-rule or cut-rule). And let s be the conclusion sequent of ρ. Then
compute and output HM (ϕ) .= set(U(s)), where U(s) is the sequent
containing only the used occurrences of s and set(s′) is the set-normali-
zed sequent of s′ (s′ with duplicate occurrences removed).

38 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Algorithm 4.1.1: HM (ϕ)

ϕ′ ← ϕ
while (ϕ′ not in Mid-Sequent Normal Form)
do ϕ′ ←MidSequentReduction(ϕ′)

ρ← lowest axiom, propositional or cut rule
s← conclusion sequent of ρ
sH ← UsednessNormalization(s)
sH ← SetNormalization(sH)
return (sH)

Lemma 4.1 (Extracted Sequent Well-Instantiated). Let ϕ be an LK-Proof
and let its end-sequent be |ϕ|[ε] = A1, . . . , An ` B1, . . . , Bm.
A0

1, . . . , A
0
n, B

0
1 , . . . , B

0
m are its formulas without quantifiers. Then the se-

quent extracted by algorithm 4.1 has the form:

HM (ϕ) = A1
1, . . . , A

i1
1 , . . . A

1
n, . . . , A

in
n ` B1

1 , . . . , B
p1
1 , . . . , B

1
m, . . . , B

pm
m

where: A1
j , . . . , A

ij
j are quantifier-free substitution instances of A0

j and
B1

k, . . . , B
pk
k are quantifier-free substitution instances of B0

k.

Proof. Let ϕ′ and s be a normal form of ϕ and its mid-sequent as specified
in algorithm 4.1. Since above s we don’t have quantifier-rules, none of the
occurrences in s can have quantified variables. Therefore, all occurrences
of s are quantifier-free formulas. Furthermore, these occurrences must be
substitution instances of the formulas in |ϕ|[ε], because below s we have
only quantifier-rules, contractions and weakenings. HM (ϕ) = set(U(s)) is
a subsequent of s, therefore its occurrences are quantifier-free substitution
instances of the occurrences in |ϕ|[ε].

Lemma 4.2 (Validity of the Extracted Sequent). Let ϕ be an LK-Proof.
Then HM (ϕ) is valid.

Proof. As specified in algorithm 4.1, let ϕ′ be a normal form of ϕ and ρ its
lowest propositional-rule, axiom-rule or cut-rule. Let s be the conclusion
sequent of ρ, and let ν be the position of the subproof of ϕ′ which has ρ as
its root. Then we can construct the following LK-Proof for HM (ϕ), thus
demonstrating its validity:

[|ϕ′|ν]
s w : ∗, c : ∗

HM (ϕ)

4.1. EXTRACTION FROM PRENEX PROOFS 39

Theorem 4.4 (Soundness of Algorithm 4.1). Let ϕ be an LK-Proof. Then
the sequent extracted by algorithm 4.1, HM (ϕ), is a Herbrand sequent.

Proof. Lemmas 4.1 and 4.2 show that the extracted sequent satisfies the
requirements in definition 3.3.2, therefore it is a Herbrand sequent.

Theorem 4.5 (Determinacy ofHM (ϕ)). The output of algorithm 4.1,HM (ϕ)
is uniquely defined.

Proof. This is not trivial, because the non-confluency of mid-sequent reduc-
tion, implying that there may be different proofs ϕ′ in mid-sequent normal
form for ϕ, means that the first step of algorithm 4.1 is non-deterministic.
However, even though step 1 may result in different proofs ϕ′, step 2 gives the
same result for any of these possible proofs ϕ′ in mid-sequent normal form.
This is a corollary of theorem 4.6, which shows the equality of the results
obtained by algorithms 4.1 and 4.2. Since algorithm 4.2 is deterministic, the
sequent extracted by algorithm 4.1 must also be uniquely defined.

Definition 4.1.5 (Herbrand Sequent of an LK-Proof in Prenex Form). The
determinacy of the output of algorithm 4.1 (as expressed in theorem ??) and
theorem 4.8 together allow us to define The Herbrand Sequent of an LK-
Proof ϕ with End-Sequent in Prenex Form, HP (ϕ), as the very result of the
algorithm, HM (ϕ).

Example 4.2 (Mid-Sequent Reduction of an LK-Proof with Prenex End-se-
quent to a M −NF and Extraction of its Herbrand Sequent). Let ϕ be the
LK-Proof below:

P (0) ` P (0)

[ϕ∗]

P (s(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
→: l

P (0), P (0)→ P (s(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x)→ P (s(x))), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
c : l

P (0), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

where ϕ∗ is:

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0))→ P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
→: l

P (s(0)), P (s(0))→ P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
∀ : l[2]

P (s(0)), (∀x)(P (x)→ P (s(x))), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
c : l

P (s(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

40 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

ϕ has two quantifier rules (marked with numbers [1] and [2] that appear
above propositional rules. Therefore ϕ is not in M − NF . By applying 3
mid-sequent reductions, as demonstrated below, we can produce an LK-Proof
ϕ′ which is in M −NF . Firstly, we permute the quantifier rule [1] with the
(→: l)-rule immediately below it:

P (s(0)) ` P (s(0))

...
P (s2(0)), P (s2(0))→ P (s3(0)) ` P (s3(0))

∀ : l[1]
P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

→: l
P (s(0)), P (s(0))→ P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

...

�M

P (s(0)) ` P (s(0))

...
P (s2(0)), P (s2(0))→ P (s3(0)) ` P (s3(0))

→: l
P (s(0)), P (s(0))→ P (s2(0)), P (s2(0))→ P (s3(0)) ` P (s3(0))

∀ : l[1]
P (s(0)), P (s(0))→ P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

...

Secondly, we permute the quantifier rule [2] with the first (→: l)-rule
below it:

P (0) ` P (0)

...

P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l[2]

P (s(0)), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))

...

�M

P (0) ` P (0)

...

P (s(0)), P (s(0) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l[2]

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))

...

After these two mid-sequent reductions, our transformed proof is cur-
rently:

4.1. EXTRACTION FROM PRENEX PROOFS 41

P (0) ` P (0)

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s(0)), P (s(0) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l[2]

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), (∀x)(P (x) → P (s(x))) ` P (s3(0))

Quantifier rule number [1] is still above propositional rules, therefore
another mid-sequent reduction is necessary:

P (0) ` P (0)

...

P (s(0), P (s(0) → P (s2(0)), P (s2(0) → P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s2(0)), P (s(0) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))

...

�M

P (0) ` P (0)

...

P (s(0), P (s(0) → P (s2(0)), P (s2(0) → P (s3(0)) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
∀ : l[1]

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))

...

This last mid-sequent reduction produces an LK-Proof ϕ′ in M −NF :

P (0) ` P (0)

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
∀ : l[1]

P (0), P (0) → P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l[2]

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), (∀x)(P (x) → P (s(x))) ` P (s3(0))

We can now extract the Herbrand sequent of ϕ, which in this case is
simply the conclusion sequent of the lowest (→: l)-rule of ϕ′:

HM (ϕ) = HM (ϕ′) =

P (0),

P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

 ` P (s3(0))

42 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

4.1.2 Extraction via Collection of Instances

Algorithm 4.1 extracts a Herbrand Sequent by performing several mid-
sequent reductions that transform the original proof. This extensive trans-
formation is quite a waste of computational effort if we are not interested in
the transformed proof, but only in a Herbrand Sequent for the end-sequent
of the original proof.

It turns out that it is possible to compute the same Herbrand Sequent
just by analyzing the original proof, instead of transforming it. In this
subsection we explain this algorithm, which was firstly described in [7].

The idea is to notice that quantifier-free substitution instances in occur-
rences of HP (ϕ) defined in 4.1.5 are necessarily the auxiliary occurrences
of some quantifier-rules in ϕ. Therefore we can compute HP (ϕ) just by
analyzing ϕ, collecting its appropriate auxiliary occurrences and then con-
structing a sequent by composing the quantifier-free subsequent with the
sequent formed from these collected auxiliary occurrences. In other words,
we remove the quantified occurrences of the end-sequent and in their place
we put their substitution instances given by the auxiliary occurrences of the
quantifier-rules.

By showing that the result of applying algorithm 4.2 is exactly the same
as the result of applying algorithm 4.1, the soundness of algorithm 4.2 follows
trivially from the already proved soundness of algorithm 4.1. Furthermore,
since algorithm 4.2 is deterministic, it follows that the non-determinism of
algorithm 4.1 is irrelevant, since its result is necessarily unique and equal to
the result of algorithm 4.2.

Definition 4.1.6 (Set of Quantifier Rules). Q(ϕ) is the set of all quantifier-
rules of the LK-Proof ϕ.

Definition 4.1.7 (Sets of Used Auxiliary Occurrences). Let R be a set of
rules. With AA(R) we denote the set of used auxiliary occurrences in the
antecedent of the rules in R. With AC(R) we denote the set of used auxiliary
occurrences in the consequent of the rules in R.

Definition 4.1.8 (Used Subsequent). Let s be a sequent. With U(s) we
denote the subsequent of s obtained by removing from s all occurrences that
are not used.

Definition 4.1.9 (Quantifier-free Subsequent). Let s be a sequent. With
D(s) we denote the subsequent of s obtained by removing from s all occur-
rences that contain quantifiers.

Algorithm 4.2 (Herbrand Sequent Extraction via Proof Analysis (Instance
Collection)). Let ϕ be an LK-Proof with end-sequent s in prenex form.
Then a Herbrand sequent of the end-sequent of ϕ may be extracted from ϕ
by computing:

HIC
.= set(sP (ϕ) ◦QP (ϕ))

4.1. EXTRACTION FROM PRENEX PROOFS 43

where:
sP (ϕ) .= D(U(s))

QP (ϕ) .= D(seq(AA(Q(ϕ)),AA(Q(ϕ))))

Algorithm 4.1.2: HIC(ϕ)

s← end-sequent of ϕ
sP ← UsednessNormalization(s)
sP ← QuantifierFreeSubSequent(sP)
Q← QuantifierRules(ϕ)
UA ← AntecedentUsedAuxiliaryOccurrences(Q)
UC ← ConsequentUsedAuxiliaryOccurrences(Q)
QP ← Sequent(UA, UC)
QP ← QuantifierFreeSubSequent(QP)
sH ← sP ◦QP

sH ← SetNormalization(sH)
return (sH)

Theorem 4.6 (Equality of Results obtained via Algorithms 4.2 and 4.1).
Let ϕ be an LK-Proof with end-sequent in prenex form. Then:

HM (ϕ) = HIC(ϕ)

Proof. The proof below is adapted from [7].
Let ϕ be a prenex LK-Proof. Let ϕ∗ be a mid-sequent normal form of

ϕ computed non-deterministically by algorithm 4.1.
We proceed by induction on the length n of the Mid-Sequent Reduction

sequence of ϕ to ϕ∗.

1. For n = 0 we have ϕ = ϕ∗ and ϕ in Mid-Sequent normal form. We
show

HM (ϕ) = set(sP (ϕ) ◦QP (ϕ))

by induction on the size of the quantifier part.

Let ρ be the lowest propositional-rule, axiom-rule or cut-rule and let s
be its conclusion sequent. Then HM (ϕ) = set(U(s)). We can partition

ϕ as
ϕp

ϕq
where ϕp ends with ρ and ϕq consists only of quantifier

rules, weakenings and contractions (which are all unary). We proceed
by induction on m, the number of rules in ϕq:

If m = 0 then QP (ϕ) = ∅,sP = U(s) and therefore

HIC(ϕ) = set(sP (ϕ) ◦QP (ϕ)) = set(U(s)) = HM (ϕ)

44 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

If m > 0, let ϕq =
ϕ′q
ρ′

.

By Induction Hypothesis we know for ϕ′ =
ϕp

ϕ′q
that HM (ϕ′) =

set(sP (ϕ′) ◦ QP (ϕ′)). But HM (ϕ) = HM (ϕp) = HM (ϕ′) and we also
have set(sP (ϕ′)◦QP (ϕ′)) = set(sP (ϕ)◦QP (ϕ)) because if ρ′ is a quan-
tifier rule with an unused auxiliary occurrence or a contraction or a
weakening, then set(sP (ϕ)) = set(sP (ϕ′)) and QP (ϕ) = QP (ϕ′), and
if ρ′ is a quantifier rule with a used auxiliary formula occurrence F ,
then F moves from sP (ϕ′) into QP (ϕ).

2. For the induction step (n > 0) we show that: if ϕ ⇀M ϕ′, then:

(a) QP (ϕ) = QP (ϕ′)

(b) sP (ϕ) = sP (ϕ′).

That sP (ϕ) = sP (ϕ′) is the case comes from the fact that mid-sequent
reduction does not modify the end-sequent and preserves usedness.

To prove that QP (ϕ) = QP (ϕ′) we observe that no quantifier rules are
added, nor removed. Moreover, mid-sequent reduction also does not
add nor remove weakenings and the ancestor relation in the modified
parts is not modified. So

seq(AA(Q(ϕ)),AC(Q(ϕ))) = seq(AA(Q(ϕ′)),AC(Q(ϕ′)))

, and thus QP (ϕ) = QP (ϕ′).

Lemma 4.3 (Extracted Sequent Well-Instantiated). Let ϕ be an LK-Proof
and let its end-sequent be
|ϕ|[ε] = A1, . . . , An ` B1, . . . , Bm. A0

1, . . . , A
0
n, B

0
1 , . . . , B

0
m are its formulas

without quantifiers. Then the sequent extracted by algorithm 4.2 has the
form:

HIC(ϕ) = A1
1, . . . , A

i1
1 , . . . A

1
n, . . . , A

in
n ` B1

1 , . . . , B
p1
1 , . . . , B

1
m, . . . , B

pm
m

where: A1
j , . . . , A

ij
j are quantifier-free substitution instances of A0

j and
B1

k, . . . , B
pk
k are quantifier-free substitution instances of B0

k.

Proof. By theorem 4.6 we have HIC(ϕ) = HM (ϕ), and by lemma 4.1,
HM (ϕ) has the desired form. Therefore HIC(ϕ) also has the desired form.

Lemma 4.4 (Validity of the Extracted Sequent). Let ϕ be an LK-Proof.
Then HIC(ϕ) is valid.

4.1. EXTRACTION FROM PRENEX PROOFS 45

Proof. By theorem 4.6 we have HIC(ϕ) = HM (ϕ), and by lemma 4.2,
HM (ϕ) is valid. Therefore HIC(ϕ) is also valid.

[|ϕ′|ν]
s w : ∗, c : ∗

HM (ϕ)

Theorem 4.7 (Soundness of Algorithm 4.2). Let ϕ be an LK-Proof. Then
the sequent extracted by algorithm 4.2, HIC(ϕ), is a Herbrand sequent.

Proof. Lemmas 4.3 and 4.4 show that the extracted sequent satisfies the
requirements in definition 3.3.2, therefore it is a Herbrand sequent.

Example 4.3 (Extraction of the Herbrand Sequent of an LK-Proof of a
Prenex End-Sequent without Proof Transformation). Let ϕ be the LK-Proof
in example 4.2:

P (0) ` P (0)

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l[2]

P (s(0)), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), (∀x)(P (x) → P (s(x))) ` P (s3(0))

The set Q(ϕ) of quantifier rules of ϕ has the following rules:

P (s2(0)), P (s2(0))→ P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

P (s(0)), P (s(0))→ P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
∀ : l[2]

P (s(0)), (∀x)(P (x)→ P (s(x))), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

P (0), P (0)→ P (s(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x)→ P (s(x))), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

Its set of used auxiliary antecedent occurrences is:

AA(Q(ϕ)) =

P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

Its set of used auxiliary consequent occurrences is:

AC(Q(ϕ)) = {}

46 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

The sequent formed from these used occurrences is:

seq(AA(Q(ϕ))),AC(Q(ϕ)))) =

 P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

 `
Since all the formulas in seq(AA(Q(ϕ))),AC(Q(ϕ)))) are quantifier-free,

we have:

QP (ϕ) = D(seq(AA(Q(ϕ))),AC(Q(ϕ)))))
= seq(AA(Q(ϕ))),AC(Q(ϕ))))

=

 P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

 `
Furthermore:

sP (ϕ) = D(U(s))
= P (0) ` P (s3(0))

And hence, we have:

H(ϕ) = set(sP (ϕ) ◦QP (ϕ))

=

P (0),

P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0)

 ` P (s3(0))

4.2. EXTRACTION FROM NON-PRENEX PROOFS 47

4.2 Extraction from Non-Prenex Proofs

When the end-sequent is not in Prenex form, mid-sequent reduction clearly
cannot be used to extract a Herbrand sequent, because rules referring to
quantifiers nested under propositional connectives must necessarily occur
above the rules referring to these propositional connectives, and thus mid-
sequent reduction will not be capable of pushing down these quantifier rules
until they are all below all the propositional rules. Example 4.4 shows this.

Algorithm 4.2 also cannot be used, because the collected instances are
all included without distinction with depth 0 in the constructed Herbrand
sequent, while in the Non-Prenex case, these instances should be included
in the nested position from which they originate.

In principle, those two algorithms could still be used, if the non-prenex
LK-Proofs were firstly transformed to prenex form, but this would decrease
human-understandability, because it is easier for humans to understand for-
mulas and proofs when the quantifiers are in their original places than in
the beginning of the formulas as a result of prenexification.

Therefore, we must design new algorithms to extract Herbrand sequents
from LK-Proofs of end-sequents in non-prenex form. Here we describe
two such algorithms. The first one, Extraction via Proof Transformation
to Quantifier-free LKA, was described in [1] and involves the definition of
an auxiliary formula-structure (array-formula) and modifications in the Se-
quent Calculus to deal with this structure. The second algorithm, Extraction
via Collection of Sub-Formula Instances, generalizes the algorithm of Extrac-
tion via Collection of Instances for the case of non-prenex end-sequents by
using the same formula-structure defined for the first algorithm.

Example 4.4 (End-sequent in non-prenex form and an LK-Proof for it).
Let the end-sequent be P (0)∧(∀x)(P (x)→ P (s(x)) ` P (s2(0)), which is not
in prenex-form. Any LK-proof of this end-sequent will have a propositional
rule ∧ : l below the quantifier rules ∀ : l, which are responsible for insert-
ing the ∀-quantifier in copies (obtained by contraction) of the sub-formula
∀x(P (x)→ P (s(x)). One example of such a proof is the LK-Proof ϕ shown
below. A Herbrand sequent cannot be obtained by applying the mid-sequent
theorem in this case, because the quantifier rules cannot be pushed down until
they are brought under the ∧ : l rule.

[ϕ′]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) ` P (s2(0))
∀ : l

P (0), P (0)→ P (s(0)), (∀x)(P (x)→ P (s(x)) ` P (s2(0))
∀ : l

P (0),∀x(P (x)→ P (s(x)), (∀x)(P (x)→ P (s(x)) ` P (s2(0))
c : l

P (0),∀x(P (x)→ P (s(x)) ` P (s2(0))
∧ : l

P (0) ∧ (∀x)(P (x)→ P (s(x)) ` P (s2(0))

48 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

4.2.1 Extraction via Proof Transformation to Quantifier-free
LKA

The algorithm described in this subsection is restricted to LK-Proofs of
end-sequents with weak quantifiers only. The reason for this is that the
proof transformations used in this algorithm would violate the eigen-variable
conditions. This is not a limitation for the algorithm, since end-sequents may
have their strong quantifiers eliminated via skolemization. Therefore, unless
stated otherwise, we assume that sequents don’t have strong quantifiers.

The method basically consists of transforming the LK-Proof into a quan-
tifier free proof in a modified version of Sequent Calculus called LKA, which
admits sequents containing so-called array-formulas. Then the end-sequent
of this LKA-Proof is transformed back to a sequent without array-formulas.
As proved in theorem 4.8, this final sequent is indeed a Herbrand sequent
of the end-sequent of the original LK-Proof, and thus the algorithm here
described is sound. Furthermore, the soundness and determinism of the algo-
rithm allow us to associate a unique Herbrand sequent for each LK−Proof
of an end-sequent in non-prenex form with weak quantifiers only (Definition
4.2.4).

Definition 4.2.1 (Array Formula). An array formula is defined inductively
as:

1. First-Order-Logic Formulas are Array Formulas

2. If A1, A2, . . . , An are Array Formulas, then 〈A1, A2, . . . , An〉

3. If A,B are Array Formulas, then ¬A,A ∨B,A ∧B,A→ B are Array
Formulas.

Definition 4.2.2 (Sequent Calculus LKA). IfA1, A2, . . . , An, B1, B2, . . . , Bm

are Array Formulas, then A1, A2, . . . , An,` B1, B2, . . . , Bm is called an Ar-
ray Sequent.

The Sequent Calculus LKA is the Sequent Calculus LK with addition
of the following rules:

∆, A,Γ, B,Π ` Λ
∆, 〈A,B〉,Γ,Π ` Λ

〈〉 : l
Λ ` ∆, A,Γ, B,Π

Λ ` ∆, 〈A,B〉,Γ,Π 〈〉 : l

Algorithm 4.3 (Ψ: Transformation of LK-Proofs into
Quantifier-free LKA-Proofs). We define a mapping Ψ which transforms an
arbitrary LK-Proof ϕ into an LKA-Proof without quantifiers by executing
the following two steps:

1. We construct ϕ′ by omitting all quantifier-rules.

4.2. EXTRACTION FROM NON-PRENEX PROOFS 49

2. ϕ′ is generally not an LK-Proof, because its remaining contraction-
rules are not necessarily correct anymore. Therefore we replace these
”false” contraction-rules (starting from above downwards) by 〈〉 : l and
〈〉 : r rules. If

Γ, A1,∆, A2,Π ` Λ
Γ, A3,∆,Π ` Λ c : l

occurs in ϕ′ and A1 6= A2, then replace it by:

Γ, A1,∆, A2,Π ` Λ
Γ, 〈A1, A2〉,∆,Π ` Λ

〈〉 : l

Analogously, if:
Λ ` Γ, A1,∆, A2,Π

Λ ` Γ, A3,∆,Π
c : r

occurs in ϕ′ and A1 6= A2, then replace it by:

Λ ` Γ, A1,∆, A2,Π
Λ ` Γ, 〈A1, A2〉,∆,Π

〈〉 : r

Ψ(ϕ) is the quantifier-free LKA-Proof obtained by executing the two
steps above.

Example 4.5 (Transforming an LK-Proof with quantifiers into a quanti-
fier-free LKA-proof). Let ϕ be the LK-proof shown in example 4.4. Firstly
we omit all quantifier rules and obtain the following LK-Proof ϕc with false
contractions:

[ϕ′]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) ` P (s2(0))
c : l

P (0), (∀x)(P (x)→ P (s(x)) ` P (s2(0))
∧ : l

P (0) ∧ (∀x)(P (x)→ P (s(x))→ P (s2(0)) ` P (s2(0))

Then we replace the false contraction rule by an array formation rule,
thus obtaining the LKA-Proof Ψ(ϕ).

[ϕ′]

P (0), P (0)→ P (s(0)), P (s(0))→ P (s2(0)) ` P (s2(0))
〈〉 : l

P (0),
〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0))

〉
` P (s2(0))

∧ : l
P (0) ∧

〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0))

〉
` P (s2(0))

Definition 4.2.3 (Φ: Mapping from Array Formulas to sequences of FOL–
Formulas). We define a mapping Φ which transforms array formulas and
sequents into First-Order Logic formulas and sequents. In other words, Φ
eliminates 〈. . .〉 and can be defined inductively by:

50 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

1. If A ∈ FFOL, then Φ(A) .= A

2. Φ(〈A,B〉) .= Φ(A),Φ(B)

3. If Φ(A) = A1, . . . , An, then Φ(¬A) .= ¬A1, . . . ,¬An

4. If Φ(A) = A1, . . . , An and Φ(B) = B1, . . . , Bm, then Φ(A ◦ B) .=
A1 ◦B1, . . . , A1 ◦Bm, . . . , An ◦B1, . . . , An ◦Bm, for ◦ ∈ {∧,∨,→}

5. If Φ(A) = A1, . . . , An, then Φ((Qx)(A)) .= (Qx)(A1), . . . , (Qx)(An),
for Q ∈ {∀,∃}.

6. Φ(A1, . . . , An ` B1, . . . , Bm) .= Φ(A1), . . . ,Φ(An) ` Φ(B1), . . . ,Φ(Bm)

Example 4.6 (Mapping from Array Formulas to sequences of FOL-For-
mulas). LetΨ(ϕ) be the LKA-Proof in example 4.5. Then, its end-sequent
mapped to FOL-Formulas is:

Φ(|Ψ(ϕ)|[ε]) =
(

P (0) ∧ P (0)→ P (s(0)),
P (0) ∧ P (s(0))→ P (s2(0))

)
` P (s2(0))

Algorithm 4.4 (Herbrand Sequent Extraction via Proof Transformation to
Quantifier-free LKA). Let ϕ be an LK-Proof. A Herbrand Sequent of |ϕ|[ε]
can be obtained by computing:

HLKA
(ϕ) .= Φ(|Ψ(ϕ)|[ε])

Algorithm 4.2.1: HLKA
(ϕ)

ϕ′ ← Ψ(ϕ)
sH ← end-sequent of ϕ′

sH ← Φ(sH)
return (sH)

Lemma 4.5 (Extracted Sequent Well-Instantiated). Let ϕ be an LK-Proof
and let its end-sequent be |ϕ|[ε] = A1, . . . , An ` B1, . . . , Bm.
A0

1, . . . , A
0
n, B

0
1 , . . . , B

0
m are its formulas without quantifiers. Then the se-

quent extracted by algorithm 4.4 has the form:

HLKA
(ϕ) = A1

1, . . . , A
i1
1 , . . . A

1
n, . . . , A

in
n ` B1

1 , . . . , B
p1
1 , . . . , B

1
m, . . . , B

pm
m

where: A1
j , . . . , A

ij
j are quantifier-free substitution instances of A0

j and
B1

k, . . . , B
pk
k are quantifier-free substitution instances of B0

k.

Proof. By definition of Φ ([1]).

4.2. EXTRACTION FROM NON-PRENEX PROOFS 51

Algorithm 4.5 (ΦP : Transformation of an LKA-Proof into an LK-Proof).
We define a mapping ΦP which transforms an arbitrary LKA-Proof ϕ into an
LK-Proof without quantifiers by replacing (starting from above downwards)
the 〈〉 : l and 〈〉 : r rules. If

Γ, A1,∆, A2,Π ` Λ
Γ, 〈A1, A2〉,∆,Π ` Λ

〈〉 : l

occurs in ϕ′, then replace it by:

Γ, A1,∆, A2,Π ` Λ
Γ, (A1 ∧A2),∆,Π ` Λ ∧ : l

Analogously, if:
Λ ` Γ, A1,∆, A2,Π

Λ ` Γ, 〈A1, A2〉,∆,Π
〈〉 : r

occurs in ϕ′ and A1 6= A2, then replace it by:

Λ ` Γ, A1,∆, A2,Π
Λ ` Γ, (A1 ∨A2),∆,Π

∨ : r

ΦP (ϕ) is the quantifier LK-Proof obtained by executing the procedure
above.

Lemma 4.6 (Equivalence of HLKA
(ϕ) and |ΦP (Ψ(ϕ))|[ε]). Let ϕ be an LK-

Proof. Then the sequents HLKA
(ϕ) and |ΦP (Ψ(ϕ))|[ε] are logically equiva-

lent.

Proof. Let s .= |ϕ|[ε] be the end-sequent of ϕ. Let s′ .= |Ψ(ϕ)|[ε] be the end-
sequent of Ψ(ϕ). Let s∗ .= |ΦP (Ψ(ϕ))|[ε] be the end-sequent of ΦP (Ψ(ϕ)).
By the definition of ΦP , we note that:

• If 〈A1, A2〉 occurs positively in s′, then (A1 ∨A2) occurs in the corre-
sponding position in s∗;

• If 〈A1, A2〉 occurs negatively in s′, then (A1 ∧A2) occurs in the corre-
sponding position in s∗;

Now we prove, by structural induction, that for each formula A in posi-
tion µ in s′, the sequence of formulas Φ(A) is logically equivalent to |s∗|µ:

• If A ∈ FFOL, then Φ(A) = A = |s∗|µ.

• If A = 〈A1, A2〉 occurs positively, then |s∗|µ = (A1∨A2). Furthermore
s∗ = Γ ` ∆, (A1 ∨A2),Π ∼ Γ ` ∆, A1, A2,Π. Hence |s∗|µ ∼ A+

1 , A
+
2 =

Φ(A).

52 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

• If A = 〈A1, A2〉 occurs negatively, then |s∗|µ = (A1∧A2). Furthermore
s∗ = Π, (A1 ∧A2),Γ ` ∆ ∼ Π, A1, A2,Γ ` ∆. Hence |s∗|µ ∼ A−

1 , A
−
2 =

Φ(A).

• If A is of the form ¬B and B occurs positively and Φ(B) = B1, . . . , Bn,
then by induction hypothesis, we have |s∗|(µ,1) ∼ Φ(B)+ ∼ ((. . . (B1 ∨
B2) . . .)∨Bn). Hence |s∗|µ ∼ ((. . . (¬B1∧¬B2) . . .)∧¬Bn). And since
Φ(A) = ¬B1, . . . ,¬Bn, we have: |s∗|µ ∼ Φ(A)−.

• If A is of the form ¬B and B occurs negatively and Φ(B) = B1, . . . , Bn,
then by induction hypothesis, we have |s∗|(µ,1) ∼ Φ(B)− ∼ ((. . . (B1 ∧
B2) . . .)∧Bn). Hence |s∗|µ ∼ ((. . . (¬B1∨¬B2) . . .)∨¬Bn). And since
Φ(A) = ¬B1, . . . ,¬Bn, we have: |s∗|µ ∼ Φ(A)+.

• If A occurs positively and it is of the form B ◦ C with ◦ ∈ {∧,∨}
and Φ(B) = B1, . . . , Bn and Φ(C) = C1, . . . , Cm, then by induction
hypothesis we have |s∗|(µ,1) ∼ Φ(B)+ ∼ ((. . . (B1 ∨ B2) . . . ∨ Bn) and
|s∗|(µ,2) ∼ Φ(C)+ ∼ ((. . . (C1 ∨ C2) . . . ∨ Cn). Hence, by distributivity
of ◦ with respect to ∨, |s∗|µ ∼ ((. . . ((. . . (B1◦C1)∨. . .)∨(B1◦Cm)) . . .∨
((. . . (Bn ◦ C1) ∨ . . .) ∨ (Bn ◦ Cm)). Therefore, |s∗|µ ∼ Φ(A)+ = B1 ◦
C1, . . . , B1 ◦ Cm, . . . , Bn ◦ C1, . . . , Bn ◦ Cm.

• If A occurs negatively and it is of the form B ◦ C with ◦ ∈ {∧,∨}
and Φ(B) = B1, . . . , Bn and Φ(C) = C1, . . . , Cm, then by induction
hypothesis we have |s∗|(µ,1) ∼ Φ(B)− ∼ ((. . . (B1 ∧ B2) . . . ∧ Bn) and
|s∗|(µ,2) ∼ Φ(C)− ∼ ((. . . (C1 ∧ C2) . . . ∧ Cn). Hence, by distributivity
of ◦ with respect to ∧, |s∗|µ ∼ ((. . . ((. . . (B1◦C1)∧. . .)∧(B1◦Cm)) . . .∧
((. . . (Bn ◦ C1) ∧ . . .) ∧ (Bn ◦ Cm)). Therefore, |s∗|µ ∼ Φ(A)− = B1 ◦
C1, . . . , B1 ◦ Cm, . . . , Bn ◦ C1, . . . , Bn ◦ Cm.

• If A occurs positively and it is of the form B → C, and Φ(B) =
B1, . . . , Bn and Φ(C) = C1, . . . , Cm, then by induction hypothesis we
have |s∗|(µ,1) ∼ Φ(B)− ∼ ((. . . (B1 ∧ B2) . . . ∧ Bn) and |s∗|(µ,2) ∼
Φ(C)+ ∼ ((. . . (C1 ∨ C2) . . . ∨ Cn). Hence, by distributivity of →
with respect to ∨ and ∧, |s∗|µ ∼ ((. . . ((. . . (B1 → C1) ∨ . . .) ∨ (B1 →
Cm)) . . . ∨ ((. . . (Bn → C1) ∨ . . .) ∨ (Bn → Cm)). Therefore, |s∗|µ ∼
Φ(A)+ = B1 → C1, . . . , B1 → Cm, . . . , Bn → C1, . . . , Bn → Cm.

• If A occurs negatively and it is of the form B → C, and Φ(B) =
B1, . . . , Bn and Φ(C) = C1, . . . , Cm, then by induction hypothesis we
have |s∗|(µ,1) ∼ Φ(B)+ ∼ ((. . . (B1 ∨ B2) . . . ∨ Bn) and |s∗|(µ,2) ∼
Φ(C)− ∼ ((. . . (C1 ∧ C2) . . . ∧ Cn). Hence, by distributivity of →
with respect to ∨ and ∧, |s∗|µ ∼ ((. . . ((. . . (B1 → C1) ∧ . . .) ∧ (B1 →
Cm)) . . . ∧ ((. . . (Bn → C1) ∧ . . .) ∧ (Bn → Cm)). Therefore, |s∗|µ ∼
Φ(A)− = B1 → C1, . . . , B1 → Cm, . . . , Bn → C1, . . . , Bn → Cm.

4.2. EXTRACTION FROM NON-PRENEX PROOFS 53

Lemma 4.7 (Validity of the Extracted Sequent). Let ϕ be an LK-Proof.
Then HLKA

(ϕ) is valid.

Proof. By lemma 4.6, HLKA
(ϕ) and |ΦP (Ψ(ϕ))|[ε] are logically equivalent,

and |ΦP (Ψ(ϕ))|[ε] is valid because algorithm 4.5 constructs a proof for it.
Therefore, HLKA

(ϕ) is also valid.

Theorem 4.8 (Soundness of Algorithm 4.4). Let ϕ be an LK-Proof. Then
the sequent extracted by algorithm 4.4, HLKA

(ϕ), is a Herbrand sequent.

Proof. Lemmas 4.5 and 4.7 show that the extracted sequent satisfies the
requirements in definition 3.3.2 and thus it is a Herbrand sequent.

Definition 4.2.4 (Herbrand Sequent of an LK-Proof with End-sequent
in Non-Prenex Form). The determinism of algorithm 4.4 and theorem 4.8
together allow us to define The Herbrand Sequent of an LK-Proof ϕ with
End-Sequent in Non-Prenex Form, HP (ϕ), as the very result of the algo-
rithm, HLKA

(ϕ).

Example 4.7 (Extraction of Herbrand Sequent via Transformation from
LK to LKA). Let ϕ be the LK-Proof below. It is slightly modified with
respect to the LK-Proof ϕ of example 4.2, because it has an end-sequent
in non-prenex form, obtained from the end-sequent in example 4.2 by the
additional rule (∧ : l).

P (0) ` P (0)

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l[2]

P (s(0)), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), (∀x)(P (x) → P (s(x))) ` P (s3(0))
(∧ : l)

P (0) ∧ (∀x)(P (x) → P (s(x))) ` P (s3(0))

Since its end-sequent is not in prenex-form, Mid-Sequent Reduction can-
not be used to extract its Herbrand sequent. As an alternative way to extract
its Herbrand sequent, we can transform ϕ into its LKA-Proof Ψ(ϕ), as
shown below.

First we have to omit quantifier rules from ϕ, thus obtaining the following
LK-Proof with false contractions.

54 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

P (0) ` P (0)

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
c : l

P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), (∀x)(P (x) → P (s(x))) ` P (s3(0))
(∧ : l)

P (0) ∧ (∀x)(P (x) → P (s(x))) ` P (s3(0))

Then we replace. starting from above and going downwards, the 2 false
contractions, (c : l)-rules, by (〈〈 : l)-rules. The resulting Ψ(ϕ) is:

P (0) ` P (0)

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
〈〉 : l

P (s(0)),

P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0))

�
` P (s3(0))

→: l
P (0), P (0) → P (s(0)),

P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0))

�
` P (s3(0))

〈〉 : l
P (0),

P (0) → P (s(0)),

P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0))

��
` P (s3(0))

(∧ : l)
P (0) ∧

P (0) → P (s(0)),

P (s(0)) → P (s2(0)), P (s2(0)) → P (s3(0))

��
` P (s3(0))

We can then extract the Herbrand sequent of Ψ(ϕ) by:

H(Ψ(ϕ)) = Φ(|Ψ(ϕ)|[ε])

= Φ

P (0) ∧

〈 P (0)→ P (s(0)),〈
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

〉 〉
` P (s3(0))

= Φ

P (0) ∧

〈 P (0)→ P (s(0)),〈
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

〉 〉 ` P (s3(0))

=

 P (0) ∧ P (0)→ P (s(0)),

Φ
(
P (0) ∧

〈
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

〉) ` P (s3(0))

=

 P (0) ∧ P (0)→ P (s(0)),
P (0) ∧ P (s(0))→ P (s2(0)),
P (0) ∧ P (s2(0))→ P (s3(0))

 ` P (s3(0))

4.2. EXTRACTION FROM NON-PRENEX PROOFS 55

4.2.2 Extraction via Collection of Sub-Formula Instances

The algorithm described in the previous subsection is able to extract a Her-
brand sequent for a non-prenex proof, but it has the same disadvantage that
the mid-sequent reduction algorithm had for the prenex case: it needs to
transform the whole proof. In this subsection we describe an algorithm that
extracts a Herbrand sequent for the non-prenex case without transforming
the proof. This algorithm, which we call Herbrand Sequent Extraction by
Sub-Formula Instance Collection, generalizes algorithm 4.2 using some ideas
of algorithm 4.4.

We notice that algorithm 4.2 collects all the instances of all quantified
occurrences of the end-sequent and then it constructs a Herbrand sequent by
removing all those quantified occurrences of the end-sequent and inserting
all the collected instances. However, in the non-prenex case, one difficulty
arises: we need to substitute collected instances not for occurrences in the
end-sequent, but for specific sub-formulas in the end-sequent. This requires
two modifications:

1. we need to keep track of which instances belong to which sub-formula
and collect them separately. We do this by introducing labels in the
LK-Proof and the notion of rule-reference to a sub-formula.

2. since a quantified sub-formula in position λ may have more than one
instance, as a result of possible contractions on its ancestors, we may
need to substitute all these instances in the same place, in the same
position λ. We solve this by grouping all these instances in a temporary
array-formula. Later we expand the whole formula that contains the
array-formula into a sequence of standard First-Order-Logic formulas,
using the already defined function Φ to eliminate the temporary arrays.

Although the essence of the generalization, as explained above, is rel-
atively simple, the formal specification of the algorithm requires many ex-
tensions of the definitions of positions and substitutions to deal with the
temporary array-formulas. Among these extensions, the most important is
the concept of unifying substitution. When dealing with LK-Proofs contain-
ing quantifiers nested in the scope of other quantifiers, it may happen that
substituting formulas do not unify with the sub-formulas they were supposed
to substitute, and these substitutions should be avoided, because performing
them would imply the deletion or corruption of instantiations due to another
contracted copy of the outer quantified formula or to another branch of the
tree. Unifying substitutions must distinguish different contracted copies of
a sub-formula, and in order for this to be possible, we also define markers
for sub-formulas. Example 4.17 shows an LK-Proof with nested quantifiers
in which unifying substitutions play a big role.

As for the previous algorithm, Extraction via Transformation to LKA,
in this algorithm it is also assumed that the proofs are skolemized.

56 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Definition 4.2.5 (Position-labeled Sequent). A position-labeled sequent s
is a sequent in which each occurrence is labeled with a position (µ, λ), where
µ is a position of a occurrence in s and λ is a position of a sub-formula in
this occurrence.

Definition 4.2.6 (Position-labeled LK-Proof). A position-labeled LK-Proof
is defined recursively as an LK-Proof in which:

• Each occurrence in position µi in the end-sequent is labeled with
(µi, ε).

• For each rule, the context occurrences in the premise have the same
labels as their corresponding occurrences in the conclusion.

• For each rule, let (µm, λm) be the label of its main occurrence. Then
its auxiliary occurrences are labeled with (µm, λm.j), where j is the po-
sition of main occurrence’s sub-formula corresponding to the auxiliary
occurrence.

• Cut-formulas (and their ancestors) are not labeled.

Example 4.8 (Position-labeled LK-Proof). The LK-Proof ϕ below is shown
with position labels in the upper-right corner of each occurrence:

P (0)(A.1,1) ` P (0)(A.1,211)

[ϕ1]

P (s(0))(A.1,212), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0)(C.1,ε))
→: l

P (0)(A.1,1), P (0) → P (s(0))(A.1,21), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0))(C.1,ε)

∀ : l
P (0)(A.1,1), (∀x)(P (x) → P (s(x)))(A.1,2), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0))(C.1,ε)

c : l
P (0)(A.1,1), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0))(C.1,ε)

∧ : l
(P (0) ∧ (∀x)(P (x) → P (s(x))))(A.1,ε) ` P (s3(0))(C.1,ε)

where ϕ1 is:

P (s(0))(A.1,212) ` P (s(0))(A.1,211) [ϕ2]

P (s(0))(A.1,212), P (s(0)) → P (s2(0))(A.1,21), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0))(C.1,ε)

∀ : l[2]

P (s(0))(A.1,212), (∀x)(P (x) → P (s(x)))(A.1,2), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0))(C.1,ε)

c : l
P (s(0))(A.1,212), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0)(C.1,ε))

where ϕ2 is:

P (s2(0))(A.1,212) ` P (s2(0))(A.1,211) P (s3(0))(A.1,212) ` P (s3(0))(C.1,ε)

→: l
P (s2(0))(A.1,212), P (s2(0)) → P (s3(0))(A.1,21) ` P (s3(0))(C.1,ε)

∀ : l[1]
P (s2(0))(A.1,212), (∀x)(P (x) → P (s(x)))(A.1,2) ` P (s3(0))(C.1,ε)

Definition 4.2.7 (Marking Atomic Sub-Formulas: Contractions and Depth).
The marker of an atomic sub-formula F occurring in position [ν, µ, λ] of a
labeled LK-Proof ϕ is denoted by M([ν, µ, λ]), and it is a string belonging
to N∗. All sub-formulas from ϕ are marked, starting from the bottom and
going upwards, according to the inductive rules below:

• Base Case 1: If F is an atomic sub-formula in the end-sequent (ν = ε),
thenM([ν, µ, λ]) = 1.

4.2. EXTRACTION FROM NON-PRENEX PROOFS 57

• Base Case 2: If F is an atomic cut-formula, thenM([ν, µ, λ]) = 1.

• Inductive Case: Let ρ be a rule in ϕ and let m be the marker of a
sub-formula F in its conclusion sequent. If ρ is a contraction rule and
F is its main occurrence, then we mark all ancestors Fj of F with mj.
Otherwise, we mark the ancestors of F with m1.

Example 4.9 (Marking Atomic Sub-Formulas). In the proof ϕ below, we
show the marker of each atomic sub-formula as strings subscripted to the
predicate symbol.

P1111111(a, b) ` P1111111(a, b) P1211111(a, c) ` P1111111(a, c)
∧ : l

P111111(a, b), P121111(a, c) ` P111111(a, b) ∧ P111111(a, c)
∀ : l

P11111(a, b), (∀y)(P12111(a, y)) ` P11111(a, b) ∧ P11111(a, c)
∀ : l

(∀y)(P1111(a, y)), (∀y)(P1211(a, y)) ` P1111(a, b) ∧ P1111(a, c)
∀ : l

(∀y)(P111(x, y)), (∀x)(∀y)(P121(x, y)) ` P111(a, b) ∧ P111(a, c)
∀ : l

(∀x)(∀y)(P11(x, y)), (∀x)(∀y)(P12(x, y)) ` P11(a, b) ∧ P11(a, c)
c : l

(∀x)(∀y)(P1(x, y)) ` P1(a, b) ∧ P1(a, c)

The markers provide us with two kinds of information:

• The length of the marker informs the depth in the proof-tree in which
the sub-formula occurs.

• Whenever a contraction occurs in a given depth of the tree, we have
numbers different from 1 in the corresponding position of the marker.
These numbers keep track of different copies of the atomic sub-formula
that were contracted.

Definition 4.2.8 (Marking Atomic Sub-Formulas: Contractions and Con-
traction-Depth). The contraction-marker of an atomic sub-formula F occur-
ring in position [ν, µ, λ] of a labeled LK-Proof ϕ is denoted byMC([ν, µ, λ]),
and it is a string belonging toN∗. All sub-formulas from ϕ are marked, start-
ing from the bottom and going upwards, according to the inductive rules
below:

• Base Case 1: If F is an atomic sub-formula in the end-sequent (ν = ε),
thenMC([ν, µ, λ]) = ε.

• Base Case 2: If F is an atomic cut-formula, thenMC([ν, µ, λ]) = ε.

• Inductive Case: Let ρ be a rule in ϕ and let m be the marker of a
sub-formula F in its conclusion sequent. If ρ is a contraction rule and
F is its main occurrence, then we mark all ancestors Fj of F with mj.
Otherwise, we mark the ancestors of F with m.

The length of the contraction-marker of a sub-formula is called contraction-
depth of the sub-formula.

58 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Example 4.10 (Marking Atomic Sub-Formulas: Contractions and Con-
traction-Depth). Considering example 4.9, we notice that the markers serve
the purpose of distinguishing contracted copies, but since we are usually not
interested in the depth of sub-formulas, those sequences of 1 generated when-
ever a sub-formula in the conclusion has only one copy in the premises is
useless and only prevents the easy reading of the interesting information con-
tained in the markers. Marking with Contraction-markers, however, adds
new numbers to the string only when a sub-formula has more than one copy
in the premises, making it easier to read and distinguish contracted copies.
The LK-Proof below is the same shown in example 4.9, but with contraction-
markers instead of simple markers:

P1(a, b) ` P (a, b) P2(a, c) ` P (a, c)
∧ : l

P1(a, b), P2(a, c) ` P (a, b) ∧ P (a, c)
∀ : l

P1(a, b), (∀y)(P2(a, y)) ` P (a, b) ∧ P (a, c)
∀ : l

(∀y)(P1(a, y)), (∀y)(P2(a, y)) ` P (a, b) ∧ P (a, c)
∀ : l

(∀y)(P1(x, y)), (∀x)(∀y)(P2(x, y)) ` P (a, b) ∧ P (a, c)
∀ : l

(∀x)(∀y)(P1(x, y)), (∀x)(∀y)(P2(x, y)) ` P (a, b) ∧ P (a, c)
c : l

(∀x)(∀y)(P (x, y)) ` P (a, b) ∧ P (a, c)

Contraction-markers provide us with two kinds of information:

• The length of the marker, the contraction-depth, informs the number
of contractions (implicit or explicit) suffered by the sub-formula in the
path from the sub-formula to its terminal formula (a formula in the
end-sequent or a cut-formula).

• Whenever a contraction occurs the copies being contracted have dif-
ferent numbers in the last position of their contraction-markers. This
allow us to distinguish them.

Definition 4.2.9 (Rule-Reference to Sub-formula). We say that a rule refers
to a sub-formula in position λ of a formula occurrence in position µ of the
end-sequent if and only if its main occurrence is labeled with (µ, λ).

Definition 4.2.10 (Set of Rules Referring to a Sub-Formula). Q(µ,λ)(ϕ) is
the set of all rules of the LK-Proof ϕ referring to the sub-formula in position
λ of the formula occurrence in position µ in the end-sequent.

Definition 4.2.11 (Sets of Used Auxiliary Occurrences). Let R be a set
of rules. With A(R) we denote the set of used auxiliary occurrences in the
rules in R.

Definition 4.2.12 (Set to Array Formation). LetM be a set of occurrences.
With S(M) we denote the array-formula formed with the occurrences in M .

Definition 4.2.13 (Array-Formula Referring to a Sub-Formula). Let λ be
a position in an occurrence in position µ of the end-sequent of a proof ϕ.

4.2. EXTRACTION FROM NON-PRENEX PROOFS 59

Then we define the array-formula referring to the sub-formula in position λ
of the occurrence indexed with µ in the end-sequent:

QA
(µ,λ)(ϕ) .= S(A(Q(µ,λ)(ϕ))))

Definition 4.2.14 (Dequantification of a Sequent). Let s be a sequent with
all variables standardized apart. Then D(s) denotes the sequent obtained
from s by removing all quantifiers and substituting all the variables that
were bound by these quantifiers by distinct eigen-constants.

Definition 4.2.15 (Positions of an Array-Formula). Let A be an array-
formula, then its set of positions pos(A) is the smallest set of strings belong-
ing to {1, 2}∗ and such that pos(A) satisfies:

1. ε ∈ pos(A)

2. If A is of the form ¬B, then {1.λ|λ ∈ pos(B)} ⊂ pos(A).

3. If A is of the form (B ∧ C), then ({1.λ1|λ1 ∈ pos(B)} ∪ {2.λ2|λ2 ∈
pos(C)}) ⊂ pos(A).

4. If A is of the form (B ∨ C), then ({1.λ1|λ1 ∈ pos(B)} ∪ {2.λ2|λ2 ∈
pos(C)}) ⊂ pos(A).

5. If A is of the form (B → C), then ({1.λ1|λ1 ∈ pos(B)} ∪ {2.λ2|λ2 ∈
pos(C)}) ⊂ pos(A).

6. If A is of the form (∀x)B, then {1.λ|λ ∈ pos(B)} ⊂ pos(A).

7. If A is of the form (∃x)B, then {1.λ|λ ∈ pos(B)} ⊂ pos(A).

8. If A is of the form 〈A1, A2, . . . , An〉, then {1.λ|λ ∈ pos(Aj)for somej ∈
{1, . . . , n}} ⊂ pos(A)

Definition 4.2.16 (Multi-sets of Sub-formulas occurring in given Positions
of an Array-Formula). Let λ be a position of the array-formula A. Then the
multi-set of sub-formulas occurring in position λ is denoted |A|λ. Formally,
we may define the computation of |A|λ inductively:

1. |A|ε
.= {A}

2. If A is of the form ¬B and λ = 1.λ′ with λ′ ∈ pos(B), then |A|λ
.=

|B|λ′ .

3. If A is of the form B ◦ C (for ◦ ∈ {∧,∨,→}) and λ = 1.λ′ with
λ′ ∈ pos(B), then |A|λ

.= |B|λ′ .

4. If A is of the form B ◦ C (for ◦ ∈ {∧,∨,→}) and λ = 2.λ′ with
λ′ ∈ pos(C), then |A|λ

.= |C|λ′ .

60 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

5. If A is of the form (Qx)B (for Q ∈ {∀,∃}) and λ = 1.λ′ with
λ′ ∈ pos(B), then |A|λ

.= |B|λ′ .

6. If A is of the form 〈A1, A2, . . . , An〉, and λ = 1.λ′,
then |A|λ

.=
⋃

λ′∈pos(Aj),j∈{1,...,n}{|Aj |λ′}.

Example 4.11 (Multi-sets of Sub-Formulas occurring in given Positions
of an Array-Formula). Let A .= 〈P (a) ∧ (∀y)(Q(a, y) → Q(a, s(y))), P (b) ∧
(∀y)(Q(b, y)→ Q(b, s(y))))〉 be an array-formula. Then:

|Aε = {〈P (a)∧(∀y)(Q(a, y)→ Q(a, s(y))), P (b)∧(∀y)(Q(b, y)→ Q(b, s(y)))〉}

|A|11 = {P (a), P (b)}

|A|12 = {(∀y)(Q(a, y)→ Q(a, s(y))), (∀y)(Q(b, y)→ Q(b, s(y)))}

Definition 4.2.17 (Sub-Formula Substitutions in Array-Formulas). Let λ
be a position of the array-formula A such that |A|λ = {B1, B2, . . . , Bn}. The
array-formula obtained by substituting the Bj in position λ in A by C is
denoted Aλ[C] or Aσfo, where σfo .= {λ/C}.

Example 4.12 (Sub-Formula Substitutions in Array-Formulas). Let A =
〈P (a) ∧ (∀y)(Q(a, y)), P (b) ∧ (∀y)(Q(b, y))〉 be an array-formula. Then:

A{2/Q(a, 0)} = 〈P (a) ∧Q(a, 0), P (b) ∧Q(a, 0)〉

Definition 4.2.18 (Marker-Unification). Two formulas A and B marker-
unify, UnifiableM (A,B), if and only if they unify and the contraction-
markers of the atomic sub-formulas of A (or B) are prefix substrings of the
contraction-markers of the corresponding sub-formulas of B (or A). Marker-
unification is thus unification aware of contraction-markers.

Example 4.13 (Marker-unification). Marker-unification is standard unifi-
cation extended to formulas with contraction-markers, as exemplified below:

• UnifiableM (P (a), P (x)).

• UnifiableM (P12(a), P (x)).

• UnifiableM (P12(a), P1(x)).

• ¬UnifiableM (P12(a), P2(x)).

• UnifiableM (Q12(a) ∧ P12(a), Q1(a) ∧ P1(x)).

• ¬UnifiableM (Q12(a) ∧ P12(a), Q2(a) ∧ P2(x)).

4.2. EXTRACTION FROM NON-PRENEX PROOFS 61

Definition 4.2.19 (Unifying Substitutions in Array-Formulas). Let λ be a
position of the array-formula A such that |A|λ = {B1, B2, . . . , Bn}. Let C .=
〈C1, . . . , Cm〉. Let AQ

.= {j|Bj(is of the form (Qx)B′
j} with Q ∈ {∀,∃}.

For j ∈ AQ, let Uj
.= {Ck|Ck ∈ |C|1 and UnifiableM (Ck, B

′
j)}. Let A′

Q
.=

{j|Uj 6= ∅}. then, by Aσfo, where σfo .= {λ/C}, we denote the array-
formula obtained by substituting in A those Bj (j ∈ A′

Q) in position λ by
the array formula S(Uj).

Furthermore, σfs and σfp are defined analogously.

Example 4.14 (Unifying Substitutions in Array-Formulas). Let A = 〈P (a)∧
(∀y)(Q(a, y)), P (b) ∧ (∀y)(Q(b, y))〉 be an array-formula. Then:

A{2/Q(a, 0)} = 〈P (a) ∧Q(a, 0), P (b) ∧ (∀y)(Q(b, y))〉

because Q(a, 0) unifies with Q(a, y), but not with Q(b, y). The difference
between usual substitutions and unifying substitutions can be seen by com-
paring this example with example 4.12

Example 4.15 (Unifying Substitutions with Contraction-markers). Let A .=
(∀x)(∀y)P (x, y). Then:

A{ε/〈(∀y)P1(a, y), (∀y)P2(a, y)〉} = 〈(∀y)P1(a, y), (∀y)P2(a, y)〉

A{ε/〈(∀y)P1(a, y), (∀y)P2(a, y)〉} ◦ {1/〈P1(a, b), P2(a, c)〉} = 〈〈P1(a, b)〉, 〈P2(a, c)〉〉

A{ε/〈(∀y)P1(a, y), (∀y)P2(a, y)〉} ◦ {1/〈P1(a, b)〉} ◦ {1/〈P2(a, c)〉} = 〈〈P1(a, b)〉, 〈P2(a, c)〉〉

For the sake of contrast, without contraction-markers we would have:

A{ε/〈(∀y)P (a, y), (∀y)P (a, y)〉} = 〈(∀y)P (a, y), (∀y)P (a, y)〉

A{ε/〈(∀y)P (a, y), (∀y)P (a, y)〉} ◦ {1/〈P (a, b), P (a, c)〉} = 〈〈P (a, b), P (a, c)〉, 〈P (a, b), P (a, c)〉〉

A{ε/〈(∀y)P (a, y), (∀y)P (a, y)〉} ◦ {1/〈P (a, b)〉} ◦ {1/〈P (a, c)〉} = 〈〈P (a, b)〉, 〈P (a, b)〉〉

By comparing the last substitutions of the cases with and without
contraction-markers, we can see their importance. Without
contraction-markers, the instantiation of (∀y)P (a, y) to P (a, c) was lost,
because P (a, y) was firstly unified with P (a, b) substituted by it.

Algorithm 4.6 (Extraction of Herbrand Sequent without Proof-Transfor-
mation for Proofs with Non-prenex End-sequents). Let ϕ be a Position-
labeled LK-Proof, and let s be its end-sequent.
Let:

SQSF (s) .= {(µi, λi)|λi is a position such that |s|(µi,λi) is a
sub-formula starting with a quantifier}

62 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

For each position (µi, λi) ∈ SQSF (s), let its corresponding substitution
be:

σfs
(µi,λi)

.= {(µi, λi)/QA
(µi,λi)

(ϕ)}

Then we compute the following sequent from ϕ:

HA(ϕ) .= set(P (Φ(s(σfs
(µ0,λ0) ◦ . . . ◦ σ

fs
(µn,λn)))))

where: depth(λi) < depth(λj), if i < j and µi = µj
1

Algorithm 4.2.2: HA(ϕ)

s← end-sequent of ϕ
SQSF ← positions of quantified sub-formulas of s
for each (µi, λi) ∈ SQSF

do

Q(µ,λ) ← ReferencingRules(ϕ, (µ, λ))
A(µ,λ) ← UsedAuxiliaryOccurrences(Q(µ,λ))
QA

(µ,λ) ← ArrayFormation(A(µ,λ))
σfs

(µi,λi)
← {(µi, λi)/QA

(µi,λi)
}

sH ← s
SortByDepth(SQSF)
for each (µi, λi) ∈ SQSF

do
{
sH ← sHσ

fs
(µi,λi)

sH ← Φ(sH)
sH ← Dequantification(sH)
sH ← SetNormalization(sH)
return (sH)

Lemma 4.8 (Extracted Sequent Well-Instantiated). Let ϕ be an LK-Proof
and let its end-sequent be |ϕ|[ε] = A1, . . . , An ` B1, . . . , Bm.
A0

1, . . . , A
0
n, B

0
1 , . . . , B

0
m are its formulas without quantifiers. Then the se-

quent extracted by algorithm 4.6 has the form:

HA(ϕ) = A1
1, . . . , A

i1
1 , . . . A

1
n, . . . , A

in
n ` B1

1 , . . . , B
p1
1 , . . . , B

1
m, . . . , B

pm
m

where: A1
j , . . . , A

ij
j are quantifier-free substitution instances of A0

j and
B1

k, . . . , B
pk
k are quantifier-free substitution instances of B0

k.

Proof. By definition of Φ ([1]).
1This condition on the order of the composition of substitutions guarantees that vari-

ables bound by outer quantifiers are substituted before variables bound to nested inner
quantifiers. This is important, because otherwise the substitution of an outer bounded
variable would erase the substitution of an inner bounded variable.

4.2. EXTRACTION FROM NON-PRENEX PROOFS 63

Lemma 4.9 (Validity of the Extracted Sequent). Let ϕ be an LK-Proof.
Then HA(ϕ) is valid.

Proof. Here we informally sketch a proof by induction.
In order to prove that HA(ϕ) is valid, we show a proof transformation

that can be used to transform ϕ into an LK-Proof ϕ∗ of HA(ϕ) 2. This
transformation progressively eliminates quantifier-rules from ϕ and adjusts
the sequents so that the resulting proof always remains a valid LK-Proof.

• Base Case; Quantifiers with depth 0 :

For a quantifier with depth 0 in an occurrence in position µ of the end-
sequent, we transform the proof by deleting all quantifier-rules and
all contraction-rules referring to (µ, ε) and by performing a unifying
substitution of the sub-formula in position (µ, ε) by

Φ(QA
(µ,ε)(ϕ))

• Induction Case; Quantifiers with depth n+ 1:

Let ϕ′ be the proof after all quantifiers up to depth n have been elim-
inated. And we are now interested in eliminating a quantifier with
depth n+ 1 in a sub-formula in position (µ, λ) in the end-sequent.

Let ν1, . . . , νn be positions in ϕ′ such that ϕ′[νi]
has an ancestor occur-

rence of |ϕ′|[ε,µ] such that |ϕ′|[ν,µi,ε] = |ϕ′|[ε,µ,λ].

We transform |ϕ′|νi by deleting all quantifier-rules and contraction-
rules referring to (µi, ε) and by performing a unifying substitution 3

of the sub-formula in position (µi, ε) by

Φ(QA
(µ,λ)(ϕ))

Additionally, if the formula occurrence at position [νi, µi, ε] is an an-
cestor of some sub-formula Fs in position λs of an occurrence F , then
we perform a unifying substitution of F by

Φ(Fσfo
s)

where
σfo

s
.= {λs/Q

A
(µ,λ)(ϕ)}

2Alternatively, a similar, easier but more indirect, proof could be done by transforming
ϕ into a valid LKA-Proof.

3We do a unifying substitution instead of just a normal substitution, because in general
the sub-formula in position (µi, 1) may have had some of its variables instantiated by outer
quantifiers and therefore it may not be unifiable with the formulas in QA

(µ,λ)(ϕ). In the
case they do not unify, we do not want to perform the substitution, since this would affect
the instantiation that was done by outer quantifiers.

64 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Let ϕ1 be the result of applying the transformations above for all quan-
tifiers in the end-sequent of ϕ. If some of the quantified sub-formulas of ϕ
were not used (in other words, if they don’t have an ancestor in an axiom),
then ϕ1 will still contain some quantifiers in the end-sequent. We therefore
transform ϕ1 into ϕ2 by dequantification (in other words, we substitute the
remaining quantified variables in sub-formulas of the end-sequent and in
their ancestor sub-formulas by eigen-constants).

Since QA
(µ,λ)(ϕ) is an array-formula which may have more than one for-

mula possibly coming from different proof branches, ϕ2 may have excessive
formulas in some branches. The instantiation brings to one branch instan-
tiated formulas that are actually necessary only in another branch. These
excessive formulas must be generated and removed by inserting extra weak-
enings and by doubling some propositional rules in ϕ2, in order to produce
a well-formed LK-Proof ϕ∗.

By the way we constructed ϕ∗, eliminating the quantifiers from ϕ by
substituting them by the corresponding array formula with their instances,
it is clear that the end-sequent of ϕ∗ is HA(ϕ).

Example 4.18 shows this process of transforming an LK-Proof ϕ into an
LK-Proof ϕ∗ for its extracted Herbrand sequent.

Example 4.16 (Extraction of Herbrand Sequent without Proof Transfor-
mation). Here we consider the same proof ϕ of example 4.7, but now with
labels, which however are shown below only for the end-sequent s:

P (0) ` P (0)

P (s(0)) ` P (s(0))

P (s2(0)) ` P (s2(0)) P (s3(0)) ` P (s3(0))
→: l

P (s2(0)), P (s2(0)) → P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (s(0)), P (s(0)) → P (s2(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l[2]

P (s(0)), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
→: l

P (0), P (0) → P (s(0)), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x) → P (s(x))), (∀x)(P (x) → P (s(x))) ` P (s3(0))
c : l

P (0), (∀x)(P (x) → P (s(x))) ` P (s3(0))
∧ : l

(P (0) ∧ (∀x)(P (x) → P (s(x))))(A.1,ε) ` P (s3(0))(C.1,ε)

Firstly we compute the set of positions corresponding to sub-formulas
beginning with quantifiers in the quantifiers:

SQSF (ϕ) = {(A.1, 2)}

Then we compute the sets of quantifier rules referring to the sub-formulas
beginning with quantifiers. In our case, there is only one such a set, namely
Q(A.1,2)(ϕ), with the following rules:

P (s2(0)), P (s2(0))→ P (s3(0)) ` P (s3(0))
∀ : l[1]

P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

4.2. EXTRACTION FROM NON-PRENEX PROOFS 65

P (s(0)), P (s(0))→ P (s2(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
∀ : l[2]

P (s(0)), (∀x)(P (x)→ P (s(x))), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

P (0), P (0)→ P (s(0)), (∀x)(P (x)→ P (s(x))) ` P (s3(0))
∀ : l

P (0), (∀x)(P (x)→ P (s(x))), (∀x)(P (x)→ P (s(x))) ` P (s3(0))

Its corresponding sets of used auxiliary occurrences are:

A(Q(A.1,2)(ϕ)) =

P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

The array-formula formed from these used occurrences is:

QA
(A.1,2)(ϕ) =

〈
P (0)→ P (s(0)), P (s(0))→ P (s2(0)), P (s2(0))→ P (s3(0))

〉
We can then construct the corresponding substitution of sub-formulas in

sequents:

σfs
(A.1,2) = {(A.1, 2)/QA

(A.1,2)(ϕ)}

=

(A.1, 2)/

〈 P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

〉
Finally, we can extract the Herbrand sequent of the proof:

HA(ϕ)) = set(D(Φ(sσfs
(A.1,2))))

= set

P
Φ

P (0) ∧

〈 P (0)→ P (s(0)),
P (s(0))→ P (s2(0)),
P (s2(0))→ P (s3(0))

〉
` P (s3(0))

= set

D
 P (0) ∧ P (0)→ P (s(0)),

P (0) ∧ P (s(0))→ P (s2(0)),
P (0) ∧ P (s2(0))→ P (s3(0))

 ` P (s3(0))

= set

 P (0) ∧ P (0)→ P (s(0)),
P (0) ∧ P (s(0))→ P (s2(0)),
P (0) ∧ P (s2(0))→ P (s3(0))

 ` P (s3(0))

=

 P (0) ∧ P (0)→ P (s(0)),
P (0) ∧ P (s(0))→ P (s2(0)),
P (0) ∧ P (s2(0))→ P (s3(0))

 ` P (s3(0))

Example 4.17 (Extraction of Herbrand Sequent without Proof Transfor-
mation and with Nested Quantifiers). Let ϕ be the proof below:

66 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

ϕ1 ϕ2 ∧ : r Q(a, 0),
(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))),
(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y))))

 ` Q(a, s2(0)) ∧ (P (a) ∧ P (b))

c : l(
, Q(a, 0),

(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y))))

)
` Q(a, s2(0)) ∧ (P (a) ∧ P (b))

where ϕ1 is:

Q(a, 0) ` Q(a, 0)

Q(a, s(0)) ` Q(a, s(0)) Q(a, s2(0)) ` Q(a, s2(0))
→: l

Q(a, s(0)), Q(a, s(0)) → Q(a, s2(0)) ` Q(a, s2(0))
∀ : l

Q(a, s(0)), (∀y)(Q(a, y) → Q(a, s(y))) ` Q(a, s2(0))
→: l

Q(a, 0), Q(a, 0) → Q(a, s(0)), (∀y)(Q(a, y) → Q(a, s(y))) ` Q(a, s2(0))
∀ : l

Q(a, 0), (∀y)(Q(a, y) → Q(a, s(y))), (∀y)(Q(a, y) → Q(a, s(y))) ` Q(a, s2(0))
c : l

Q(a, 0), (∀y)(Q(a, y) → Q(a, s(y))) ` Q(a, s2(0))
w : l

Q(a, 0), P (a), (∀y)(Q(a, y) → Q(a, s(y))) ` Q(a, s2(0))
∧ : l

Q(a, 0), P (a) ∧ (∀y)(Q(a, y) → Q(a, s(y))) ` Q(a, s2(0))
∀ : l

Q(a, 0), (∀x)(P (x) ∧ (∀y)(Q(x, y) → Q(x, s(y)))) ` Q(a, s2(0))

and ϕ2 is:

[ϕ21] [ϕ22](
(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))),
(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y))))

)
` P (a) ∧ P (b)

c : l(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))) ` P (a) ∧ P (b)

with ϕ21:

P (a) ` P (a)
w : l(P (a), (∀y)(Q(a, y)→ Q(a, s(y)))) ` P (a)
∧ : l(P (a) ∧ (∀y)(Q(a, y)→ Q(a, s(y)))) ` P (a)
∀ : l(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))) ` P (a)

and ϕ22:

P (b) ` P (b)
w : l(P (b), (∀y)(Q(b, y)→ Q(b, s(y)))) ` P (b)
∧ : l(P (b) ∧ (∀y)(Q(b, y)→ Q(b, s(y)))) ` P (b)
∀ : l(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))) ` P (b)

Firstly we compute the set of positions corresponding to sub-formulas
beginning with quantifiers in the end-sequent:

SQSF (ϕ) = {(A.2, ε), (A.2, 12)}
Then we compute the sets of quantifier rules referring to the sub-formulas

beginning with quantifiers. In the case of this example, there are two such
sets (because the cardinality of SQSF is 2). The first set, Q(A.2,ε)(ϕ), has
the following rules:

4.2. EXTRACTION FROM NON-PRENEX PROOFS 67

Q(a, 0), P (a) ∧ (∀y)(Q(a, y)→ Q(a, s(y))) ` Q(a, s2(0))
∀ : l

Q(a, 0), (∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))) ` Q(a, s2(0))

(P (a) ∧ (∀y)(Q(a, y)→ Q(a, s(y)))) ` P (a)
∀ : l(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))) ` P (a)

(P (b) ∧ (∀y)(Q(b, y)→ Q(b, s(y)))) ` P (b)
∀ : l(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y)))) ` P (a)

The second set, Q(A.2,12), has the following rules:

Q(a, s(0)), Q(a, s(0))→ Q(a, s2(0)) ` Q(a, s2(0))
∀ : l

Q(a, s(0)), (∀y)(Q(a, y)→ Q(a, s(y))) ` Q(a, s2(0)) Q(a, 0),
Q(a, 0)→ Q(a, s(0)),

(∀y)(Q(a, y)→ Q(a, s(y)))

 ` Q(a, s2(0))

∀ : l Q(a, 0),
(∀y)(Q(a, y)→ Q(a, s(y))),
(∀y)(Q(a, y)→ Q(a, s(y)))

 ` Q(a, s2(0))

The sets of used auxiliary occurrences are:

A(Q(A.2,ε)(ϕ)) =
{
P (a) ∧ (∀y)(Q(a, y)→ Q(a, s(y))),
P (b) ∧ (∀y)(Q(b, y)→ Q(b, s(y))))

}
and:

A(Q(A.2,12)(ϕ)) = {Q(a, s(0))→ Q(a, s2(0)), Q(a, 0)→ Q(a, s(0))}

The array-formulas formed from these used occurrences are:

QA
(A.2,ε)(ϕ) =

〈
P (a) ∧ (∀y)(Q(a, y)→ Q(a, s(y))),
P (b) ∧ (∀y)(Q(b, y)→ Q(b, s(y))))

〉
QA

(A.2,12)(ϕ) = 〈Q(a, s(0))→ Q(a, s2(0)), Q(a, 0)→ Q(a, s(0))〉

We can then construct the corresponding 2 substitutions of sub-formulas
in sequents:

σfs
(A.2,ε) = {(A.2, ε)/QA

(A.2,ε)(ϕ)}

=
{

(A.2, ε)/
〈
P (a) ∧ (∀y)(Q(a, y)→ Q(a, s(y))),
P (b) ∧ (∀y)(Q(b, y)→ Q(b, s(y))))

〉}

σfs
(A.2,12) = {(A.2, 12)/QA

(A.2,12)(ϕ)}

= {(A.2, 12)/〈Q(a, s(0))→ Q(a, s2(0)), Q(a, 0)→ Q(a, s(0))〉}

68 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Finally, we can extract the Herbrand sequent of the proof (explanations
on each of the derivation steps are given subsequently):

HA(ϕ) =1 set(P (Φ(s(σfs
(A.2,ε) ◦ σ

fs
(A.2,12)))))

=2 set(D(Φ((Q(a, 0),
(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y))))

` Q(a, s2(0)) ∧ (P (a) ∧ P (b)))(σfs
(A.2,ε) ◦ σ

fs
(A.2,12)))))

=3 set(D(Φ(((Q(a, 0),
(∀x)(P (x) ∧ (∀y)(Q(x, y)→ Q(x, s(y))))

` Q(a, s2(0)) ∧ (P (a) ∧ P (b)))σfs
(A.2,ε))σ

fs
(A.2,12))))

=4 set(D(Φ((Q(a, 0),
〈P (a) ∧ (∀y)(Q(a, y)→ Q(a, s(y))),
P (b) ∧ (∀y)(Q(b, y)→ Q(b, s(y))))〉

` Q(a, s2(0)) ∧ (P (a) ∧ P (b)))σfs
(A.2,12))))

=5 set(D(Φ((Q(a, 0),
〈P (a) ∧ 〈Q(a, s(0))→ Q(a, s2(0)),
Q(a, 0)→ Q(a, s(0))〉,
P (b) ∧ 〈(∀y)(Q(b, y)→ Q(b, s(y))〉〉
` Q(a, s2(0)) ∧ (P (a) ∧ P (b))))))

=6 set(D(Φ((Q(a, 0),
P (a) ∧ 〈Q(a, s(0))→ Q(a, s2(0)),
Q(a, 0)→ Q(a, s(0))〉,
P (b) ∧ 〈(∀y)(Q(b, y)→ Q(b, s(y))〉
` Q(a, s2(0)) ∧ (P (a) ∧ P (b))))))

=7 set(D(Φ((Q(a, 0),
P (a) ∧ (Q(a, s(0))→ Q(a, s2(0))),
P (a) ∧ (Q(a, 0)→ Q(a, s(0))),
P (b) ∧ 〈(∀y)(Q(b, y)→ Q(b, s(y))〉
` Q(a, s2(0)) ∧ (P (a) ∧ P (b))))))

=8 set(D((Q(a, 0),
P (a) ∧ (Q(a, s(0))→ Q(a, s2(0))),
P (a) ∧ (Q(a, 0)→ Q(a, s(0))),
P (b) ∧ (∀y)(Q(b, y)→ Q(b, s(y))
` Q(a, s2(0)) ∧ (P (a) ∧ P (b)))))

4.2. EXTRACTION FROM NON-PRENEX PROOFS 69

=9 set((Q(a, 0),
P (a) ∧ (Q(a, s(0))→ Q(a, s2(0))),
P (a) ∧ (Q(a, 0)→ Q(a, s(0))),
P (b) ∧ ((Q(b, c∗)→ Q(b, s(c∗))
` Q(a, s2(0)) ∧ (P (a) ∧ P (b))))

=10 Q(a, 0),
P (a) ∧ (Q(a, s(0))→ Q(a, s2(0))),
P (a) ∧ (Q(a, 0)→ Q(a, s(0))),
P (b) ∧ (Q(b, c∗)→ Q(b, s(c∗)))
` Q(a, s2(0)) ∧ (P (a) ∧ P (b)))

Explanations for each derivation step:

1. Expansion of the definition of HA(ϕ).

2. Expansion of the end-sequent s.

3. Expansion of the definition of the composition of substitutions.

4. Application of the unifying substitution σfs
(A.2,ε).

Since (P (x)∧ (∀y)(Q(x, y)→ Q(x, s(y)))) unifies with the formulas in
QA

(A.2,ε)(ϕ) ((P (a)∧(∀y)(Q(a, y)→ Q(a, s(y)))) and (P (b)∧(∀y)(Q(b, y)→
Q(b, s(y))))), the occurrence (∀x)(P (x) ∧ (∀y)(Q(x, y) → Q(x, s(y))))
is substituted by QA

(A.2,ε)(ϕ).

5. Application of the unifying substitution σfs
(A.2,12). Since (Q(a, y) →

Q(a, s(y))) unifies with with the formulas in QA
(A.2,12)(ϕ) (Q(a, s(0))→

Q(a, s2(0)) and Q(a, 0) → Q(a, s(0))), (∀y)(Q(a, y) → Q(a, s(y))) is
substituted by QA

(A.2,12)(ϕ). On the other hand (Q(b, y)→ Q(b, s(y))),
which is also in position (A.2, 12), does not unify with the formulas
in QA

(A.2,12)(ϕ), because the term b clashes with the term a. There-
fore (∀y)(Q(b, y) → Q(b, s(y))) remains unchanged (not substituted).
This exemplifies the importance of performing a unifying substitution
instead of just a normal substitution. Different branches of the tree
required the quantified x to be instantiated to b and to a. Then only
the branch of the tree responsible for the instantiation of x to a re-
quired the quantified y to be instantiated, according to the formulas
in QA

(A.2,12)(ϕ). If we had performed a normal substitution, we would
have undesirably erased the instantiation of x to b due to the other
branch of the tree. Unification is thus used to take care of branching
and contractions in the LK-Proof.

70 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

6. First iteration in the expansion of array-formulas, by way of Φ.

7. Second iteration in the expansion of array-formulas, by way of Φ.

8. Third iteration in the expansion of array-formulas, by way of Φ.

9. Dequantification of the sequent. Since (∀y)(Q(b, y) → Q(b, s(y))) is
not used (it appeared only by weakenings in ϕ), it was not substituted
by any unifying substitution. Hence an undesired quantifier remained
in the sequent. The dequantification simply removes the quantifier and
substitutes y by an eigen-constant c∗, without affecting the validity of
the sequent, since the fact that it appeared by weakening means that this
sub-formula is actually irrelevant for the proof. We could have simply
removed the sub-formula completely, but the definition of Herbrand
sequent requires instantiations of the complete formulas.

10. Set-normalization of the sequent.

Example 4.18 (Constructing a Proof for HA(ϕ)). Let ϕ be the LK-Proof
below:

[ϕ0] [ϕ1]
(P (0) ∧ (∀y)(Q(y))) ∧ (∀x)(P (x)) ` P (0) ∧ P (1) [ϕ2]
(P (0) ∧ (∀y)(Q(y))) ∧ (∀x)(P (x)) ` (P (0) ∧ P (1)) ∧ P (2)

where ϕ0 is:

P (0) ` P (0)
w : l

P (0), (∀x)(P (x)) ` P (0)
w : l

P (0), (∀y)(Q(y)), (∀x)(P (x)) ` P (0)
∧ : l(P (0) ∧ (∀y)(Q(y))), (∀x)(P (x)) ` P (0)
∧ : l(P (0) ∧ (∀y)(Q(y))) ∧ (∀x)(P (x)) ` P (0)

and ϕ1 is:

P (1) ` P (1)
∀ : l(∀x)P (x) ` P (1)
w : l

P (0), (∀x)P (x) ` P (1)
w : l

P (0), (∀y)Q(y), (∀x)P (x) ` P (1)
∧ : l(P (0) ∧ (∀y)Q(y)), (∀x)P (x) ` P (1)
∧ : l(P (0) ∧ (∀y)Q(y)) ∧ (∀x)P (x) ` P (1)

and ϕ2 is:

4.2. EXTRACTION FROM NON-PRENEX PROOFS 71

P (2) ` P (2)
∀ : l(∀x)P (x) ` P (2)
w : l

P (0), (∀x)P (x) ` P (2)
w : l

P (0), (∀y)Q(y), (∀x)P (x) ` P (2)
∧ : l(P (0) ∧ (∀y)Q(y)), (∀x)P (x) ` P (2)
∧ : l(P (0) ∧ (∀y)Q(y)) ∧ (∀x)P (x) ` P (2)

Its Herbrand sequent, extracted by algorithm 4.6 is:

HA(ϕ) = (P (0)∧(Q(c∗1)))∧P (1), (P (0)∧Q(c∗2))∧P (2) ` (P (0)∧P (1))∧P (2)

Now we transform ϕ into an LK-Proof ϕ∗ of this Herbrand Sequent.
Firstly, we perform the unifying substitutions in the inductive way explained
in Lemma 4.9, and we obtain the pseudo-proof ϕ1 below, where false infer-
ence rules are marked with ∗:

[ϕ0
1] [ϕ1

1]
(P (0) ∧ (∀y)(Q(y))) ∧ (∀x)(P (x)) ` P (0) ∧ P (1) [ϕ2

1]
(P (0) ∧ (∀y)(Q(y))) ∧ P (1), (P (0) ∧ (∀y)(Q(y))) ∧ P (2) ` (P (0) ∧ P (1)) ∧ P (2)

where ϕ0
1 is:

P (0) ` P (0)
w : l

P (0), P (1), P (2) ` P (0)
w : l

P (0), (∀y)(Q(y)), P (1), P (2) ` P (0
∧ : l(P (0) ∧ (∀y)(Q(y))), P (1), P (2) ` P (0)
∧ : l∗(P (0) ∧ (∀y)(Q(y))) ∧ P (1), (P (0) ∧ (∀y)(Q(y))) ∧ P (2) ` P (0)

and ϕ1
1 is:

P (1) ` P (1)
∀ : l

P (1), P (2) ` P (1)
w : l

P (0), P (1), P (2) ` P (1)
w : l

P (0), (∀y)(Q(y)), P (1), P (2) ` P (1)
∧ : l(P (0) ∧ (∀y)(Q(y))), P (1), P (2) ` P (1)
∧ : l∗(P (0) ∧ (∀y)(Q(y))) ∧ P (1), (P (0) ∧ (∀y)(Q(y))) ∧ P (2) ` P (1)

and ϕ2
1 is:

P (2) ` P (2)
∀ : l

P (1), P (2) ` P (2)
w : l

P (0), P (1), P (2) ` P (2)
w : l

P (0), (∀y)(Q(y)), P (1), P (2) ` P (2)
∧ : l(P (0) ∧ (∀y)(Q(y))), P (1), P (2) ` P (2)
∧ : l∗(P (0) ∧ (∀y)(Q(y))) ∧ P (1), (P (0) ∧ (∀y)(Q(y))) ∧ P (2) ` P (2)

72 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Then we perform dequantification and we obtain ϕ2 below:

[ϕ0
2] [ϕ1

2]
(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (0) ∧ P (1) [ϕ2

2]
(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` (P (0) ∧ P (1)) ∧ P (2)

where ϕ0
2 is:

P (0) ` P (0)
w : l

P (0), P (1), P (2) ` P (0)
w : l

P (0), Q(c∗1), P (1), P (2) ` P (0)
∧ : l(P (0) ∧Q(c∗1)), P (1), P (2) ` P (0)
∧ : l∗(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (0)

and ϕ1
2 is:

P (1) ` P (1)
∀ : l

P (1), P (2) ` P (1)
w : l

P (0), P (1), P (2) ` P (1)
w : l

P (0), Q(c∗1), P (1), P (2) ` P (1)
∧ : l(P (0) ∧Q(c∗1)), P (1), P (2) ` P (1)
∧ : l∗(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (1)

and ϕ2
2 is:

P (2) ` P (2)
∀ : l

P (1), P (2) ` P (2)
w : l

P (0), P (1), P (2) ` P (2)
w : l

P (0), Q(c∗2), P (1), P (2) ` P (2)
∧ : l(P (0) ∧Q(c∗2)), P (1), P (2) ` P (2)
∧ : l∗(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (2)

Finally, we insert the missing weakenings and propositional-rules, in or-
der to obtain the desired LK-Proof ϕ∗:

[ϕ∗0] [ϕ∗1]
(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (0) ∧ P (1) [ϕ∗2]
(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` (P (0) ∧ P (1)) ∧ P (2)

where ϕ∗0 is:

4.2. EXTRACTION FROM NON-PRENEX PROOFS 73

P (0) ` P (0)
w : l

P (0), P (1) ` P (0)
w : l

P (0), P (1), P (2) ` P (0)
w : l

P (0), Q(c∗1), P (1), P (2) ` P (0)
∧ : l(P (0) ∧Q(c∗1)), P (1), P (2) ` P (0)
∧ : l(P (0) ∧Q(c∗1)) ∧ P (1), P (2) ` P (0)
w : l(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)), P (2) ` P (0)
∧ : l(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (0)

and ϕ∗1 is:

P (1) ` P (1)
w : l

P (1), P (2) ` P (1)
w : l

P (0), P (1), P (2) ` P (1)
w : l

P (0), Q(c∗1), P (1), P (2) ` P (1)
∧ : l(P (0) ∧Q(c∗1)), P (1), P (2) ` P (1)
∧ : l(P (0) ∧Q(c∗1)) ∧ P (1), P (2) ` P (1)
w : l(P (0) ∧Q(c∗1)) ∧ P (1), P (0) ∧Q(c∗2), P (2) ` P (1)
∧ : l(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (1)

and ϕ∗2 is:

P (2) ` P (2)
∀ : l

P (1), P (2) ` P (2)
w : l

P (0), P (1), P (2) ` P (2)
w : l

P (0), Q(c∗2), P (1), P (2) ` P (2)
∧ : l(P (0) ∧Q(c∗2)), P (1), P (2) ` P (2)
∧ : l

P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (2)
w : l(P (0) ∧Q(c∗1)), P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (2)
∧ : l(P (0) ∧Q(c∗1)) ∧ P (1), (P (0) ∧Q(c∗2)) ∧ P (2) ` P (2)

74 CHAPTER 4. EXTRACTION OF HERBRAND SEQUENTS

Chapter 5

Conclusion

The main contribution of this thesis is the development of an algorithm
for the extraction of Herbrand sequents from formal proofs written in the
Sequent Calculus LK. This algorithm draws ideas from two previously ex-
isting algorithms in a way that combines their strengths but avoids their
weaknesses. Namely, the algorithm here developed also accepts proofs in
non-prenex form, and it doesn’t need to perform expensive proof transfor-
mations to obtain the desired Herbrand sequent.

The resulting Herbrand sequent acts as a summarization of the interest-
ing content of the formal proof, thus improving its human-understandability.
However, since the algorithm is restricted to the Sequent Calculus LK for
First-Order Logic, it remains for future work to investigate how it could be
adapted and extended to other calculi and other logics.

75

76 CHAPTER 5. CONCLUSION

Bibliography

[1] M.Baaz; A.Leitsch. On skolemization and proof complexity. Funda-
menta Matematicae, (20):353–379, 1994.

[2] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and
Hendrik Spohr. Ceres: An Analysis of Fürstenberg’s Proof of the In-
finity of Primes. in preparation.

[3] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and
Hendrik Spohr. Cut-Elimination: Experiments with CERES. In Franz
Baader and Andrei Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR) 2004, volume 3452 of Lecture
Notes in Computer Science, pages 481–495. Springer, 2005.

[4] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and
Hendrik Spohr. Proof Transformation by CERES. In Jonathan M. Bor-
wein and William M. Farmer, editors, Mathematical Knowledge Man-
agement (MKM) 2006, volume 4108 of Lecture Notes in Artificial In-
telligence, pages 82–93. Springer, 2006.

[5] S. R. Buss. On Herbrand’s theorem. Lecture Notes in Computer Sci-
ence, 960:195, 1995.

[6] G. Gentzen. Untersuchungen über das logische schließen. In M.E.Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland Publishing Company, Amsterdam - London, 1969.

[7] Stefan Hetzl. The two dual parts of formal proofs. In preparation.

[8] Stefan Hetzl. Projection-based cut-elimination and normalization.
Diplom, Technische Universitt Wien, Wien, March 2004.

[9] J.Herbrand. Recherches sur la Theorie de la Demonstration. PhD
thesis, University of Paris, 1930.

[10] M. Baaz; A. Leitsch. Cut normal forms and proof complexity. Annals
of Pure and Applied Logic, 97:127–177, 1999.

77

78 BIBLIOGRAPHY

[11] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications,
19(1):35–48, 2006.

