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Kurzfassung

Kern der hier vorliegenden Dissertation ist die Untersuchung des Deformationsverhal-

tens dehnungsempfindlicher Spaltsinnesorgane von Arachniden. Die einzelnen Spalte sind

isoliert, in losen Gruppen oder in sogenannten lyraförmigen Organen angeordnet, wobei in

letzteren die Spalte typischerweise sehr eng beieinander liegen. Das Ziel dieser Arbeit ist es,

das komplexe Deformationsverhalten der einzelene Spalte innerhalb lyraförmiger Organe

zu verstehen, das durch die Interaktionseffekte zwischen den Spalten, wie Abschirmung

und Verstärkung, bestimmt wird. Ausserdem werden die Einflüsse der Spaltmorphologie

und der Form der Cuticula im Bereich der Einbettung der Organe auf die Spaltdeformatio-

nen untersucht. Zwei Modellierungsstategien werden verfolgt, ein analytisches Verfahren

aus dem Bereich der Bruchmechanik, die Methode von Kachanov, und die Methode der

Finiten Elemente (FE). Die Ergebnisse der Simulationen sind Spaltdeformationen, die ent-

weder an einer bestimmten Stelle oder entlang der Spaltufer ausgewertet werden, ebenso

wie Spannungs- und Verzerrungsfelder im Nahfeld der Spalte.

Die Genauigkeit des analytischen Verfahrens von Kachanov wird mit Hilfe von Ergeb-

nissen aus der FE Analyse untersucht. Die Grenzen der Einsetzbarkeit der analytischen

Abschätzungen sind erreicht, wenn der Abstand zwischen den Spalten die halbe Spaltlänge

unterschreitet, d.h. diese Methode ist zur Untersuchung von Einzelspalten oder losen

Gruppen, aber nicht von lyraförmigen Organen, geeignet.

Zur Untersuchung von Spaltanordnungen, in denen die Spalte sehr eng beieinader liegen,

wird im weiteren die FE Methode verwendet. Die FE Methode zeichnet sich dadurch aus,

dass die Qualität der Ergebnisse nicht durch den kleinsten Abstand der Spalte limitiert

wird, eine Vielzahl von unterschiedlichen Spaltgeometrien untersucht werden kann und

eine einfache Erweiterung auf dreidimensionale Konfigurationen möglich ist. Im ersten
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Schritt werden die charakteristischen geometrischen Parameter der Spalte, wie Streckung,

Spaltform, Geometrie der Mittellinie der Spalte und Spaltorientierung, hinsichtlich deren

Einfluss auf die Spaltdeformation untersucht. In Arachniden findet man unter anderem

Spalte mit C- oder S-förmiger Mittelline, jedoch sind die meisten Spalte gerade. Bei In-

sekten treten bevorzugt Öffnungen mit ellipsenähnlicher Form in den dehnungsempfind-

lichen Campaniformen Sensillen auf. Weiters wird die Richtungsempfindlichkeit generischer

ebener Anordnungen von fünf gleichen Spalten, wie sie auch schon mit Hilfe der Methode

nach Kachanov untersucht wurden, d.h. Stapel, versetzter Balken und Dreieck, analysiert,

nun jedoch auf Basis von Spaltabständen wie sie auch bei lyraförmigen Organen auftreten.

Lyraförmige Organe sind hochentwickelte Spaltanordnungen mit Variationen hinsichtlich

der Form der Spaltmittellinie, der Spaltbreite, der Orientierung und der Länge der einzel-

nen Spalte. Der Einfluss dieser Variationen auf die Richtungsempfindlichkeit der Anord-

nungsmuster wird mit ebenen Spaltformationen basierend auf realen lyraförmigen Orga-

nen der Spinnen Cupiennius salei und der Vogelspinne Aphonopelma untersucht. Für den

speziellen Fall des lyraförmigen Organs HS8, das sich auf der Tibia von C. salei befindet,

werden die mit einem ebenem FE-Modell bestimmten Spaltdeformationen mit Resultaten

von Messungen mit Hilfe von Weißlichtinterferometrie Messungen bestimmt.

Schließlich erweitern wir die FE-Modelle in die dritte Dimension und verwenden Schalen-

modelle, um die unterschiedlichen Formen der Cuticula an der Stelle der Organe, im

speziellen globale und lokale Krümmungseffekte, zu untersuchen. Eine Reihe numerischer

Simulationen verwenden ebene und zylindrische Bereiche, in denen Einzelspalte modelliert

werden, die auf lokalen Erhebungen in der Form von Kuppen und Leisten liegen. Ausser-

dem werden dreidimensionale Strukturmodelle entwickelt und verwendet, um den Einfluss

der Querschnitte und der Steifigkeit der Membranen sowie der Materialeigenschaften der

Rezeptorlymphe innerhalb der Spalte auf die Spaltdeformation zu untersuchen.

Ein Kapitel der Dissertation ist schließlich der Frage gewidmet, wie entsprechende bio-

mimetische Sensoren aufgebaut sein könnten.
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Abstract

In the present thesis the intriguing mechanics of strain sensitive arachnid slit sensilla are

studied. Individual slits occur singly, in loose groups, and in so called lyriform organs,

where they are arranged in close neighborhood. The emphasis of this work is put on the

complex deformation patterns of lyriform organs under mechanical far field loading, i.e., on

the role of interaction effects, namely shielding and amplification, between the slits, and on

the effects of details of the slits’ morphology and the three dimensional shape of the cuticle

at the site of the organs on the slits’ deformation. Two modeling approaches are employed,

an analytical method developed within the framework of fracture mechanics, Kachanov’s

method, and the Finite Element (FE) method. The results of these simulations are slit

face displacements evaluated along the individual slits and at discrete points along the

slits’ faces as well as stress and strain fields in the vicinity of the slits.

The accuracy of Kachanov’s analytical approximations for planar arrangements of slits is

assessed by comparisons with results obtained by Finite Element analysis. The limits of

the applicability of Kachanov’s approximation to slit sensilla are found to be reached when

the lateral spacing between interacting slits is less than half their length, i.e., the method

is suitable for studying single slits and loose groups but not lyriform organs.

For studying more closely spaced slits the FE method is used. This method is not sub-

ject to intrinsic limitations in the closest neighboring distance between the slits, allows a

wide variety of slit shapes to be studied, and can be easily extended to three dimensional

configurations.

In a first step the influence of the geometrical parameters describing single isolated slits,

such as aspect ratio, slit shape, geometry of the slits’ centerlines, and slit orientation, on
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the slit deformation is analyzed. In arachnids slits can have a C- or S-shaped centerline but

are usually straight. Insects show ellipse-like openings of low aspect ratio for their strain

sensitive campaniform sensilla rather than slits with parallel faces and rounded ends. In

a next step the directional response of generic planar arrangements of five slits similar to

those studied with Kachanov’s method, i.e. non-staggered, oblique bar, and triangular

arrangements, is investigated for lateral distances as found in lyriform organs.

Lyriform organs are generally highly developed slit arrangements with variations in slit

width, shape of the slits’ centerline, orientation and length of the individual slits. The

influence of these variations on the directional responses of the arrangements is investigated

via planar slit formations based on actual lyriform organs of the spiders Cupiennius salei

and the bird spider Aphonopelma. For the case of the organ HS8 located on the tibia of

C. salei the accuracy of the predictions of the slit deformation of the planar FE model is

assessed by comparison with measurements obtained by white light interferometry.

Finally we extend the FE models to the third dimension and use structural models to study

the influence of the cross section and the stiffness of the membranes as well as the material

parameters of the slits’ filling on the slit deformation. In addition three dimensional shells

explore different three dimensional shapes of the regions of cuticle in which the slits are

situated, especially global and local curvature effects. Series of numerical experiments use

flat and cylindrical regions some of which contain local features in the form of dimples and

ridges onto which single slits and generic arrangements of slits were placed.

A section of this thesis is devoted on how slits might be arranged in bio-inspired micro

strain sensors.
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Chapter 1

Introduction

In arthropods the exoskeleton not only provides structural support to the animal’s body

and holds all vital organs. It also functions as the interface of the organism to the en-

vironment. In principle arthropods have two ways of receiving mechanical stimuli from

their environment. The first is to use sensory hairs on the outside of the exoskeleton, such

as trichobothria, which are extremely sensitive airflow sensors (Humphrey et al., 2003),

and tactile hairs (Dechant et al., 2001). The second way is to employ sensors within the

exoskeleton which provide information on the local strains, the main representatives being

the campaniform sensilla of insects and the slit sensilla of arachnids. The latter represent

a highly developed system of sensors for monitoring the effects of various mechanical loads

that act on the exoskeleton, such as hemolymph pressure, vibrations of the substrate, and

muscle activity; for reviews see Barth (2002a) and French et al. (2002).

Our study is based on the arachnid Cupiennius salei (Ctenidae; Lachmuth et al. (1985))

which is a large Central American nocturnal hunting spider (Fig. 1.1). This spider was

chosen because it is rich in slit sense organs (15 so called lyriform organs on each of the

eight walking legs), has large size (leg span about the size of a palm), and is easy to handle

and breed under laboratory conditions.

Arthropod strain sensitive sensors have been studied by a number of authors. The majority

of them concentrated on the ultra structure and intra- or extracellular measurements of

the organs’ response to loads, but only a few of them evaluated strains at the locations of
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Figure 1.1: Adult female central American hunting spider Cupiennius salei in resting position.

the sensilla or their deformation under stimulus relevant loads. In such a work Cocatre-

Zilgen and Delcomyn (1999) developed an analytical model for predicting the physiological

response of campaniform sensilla on the tibia of the cockroach Periplaneta americana

based on analytically calculated strains in a tube representing the tibia. Detailed planar

FE models of the trochanter of Periplaneta americana were used by Flannigan (1998),

Kaliyamoorthy et al. (2001), and Kaliyamoorthy et al. (2005). There the strains at the

positions of some sensilla were evaluated for loads pertinent to walking and climbing.

Skordos et al. (2002) studied aspects of the deformation behavior of campaniform sensilla

of insects by the FE method. They used models in 2D and 3D employing circular openings

representing the campaniform sensilla.



3

Aside from theoretical investigations measurements on composites with holes that ap-

proximate the fiber architecture of insect cuticle in the vicinity of pore canals were con-

ducted by Chen et al. (2002) and Chen and Fan (2004). One attempt of fabricating

biomimetic strain-sensing microstructures inspired by campaniform sensilla is found in

literature. There Wicaksono et al. (2005) conducted optical measurements on the defor-

mation of a Si membrane-in-recess structure.

To the knowledge of the authors no FE or analytical models of arachnid slit sensilla have

been reported in the literature. The present study may be seen as the continuation of a line

of work initiated by Barth and Wadepuhl (1975) and Barth et al. (1984) with photoelastic

experimental investigations of polymer disks into which arrangements of slits were cut. A

different type of experiments were carried out by Blickhan and Barth (1985) and Brüssel

(1987), who used strain gauges for measuring strains in the exoskeleton of C. salei and the

bird spider Aphonopelma at the positions of lyriform organs on the walking legs during

walking and jumping.

Individual sensory slits in arachnids are narrow, with aspect ratios (slit length l/slit width

w) of up to 100 (Barth, 1981). Their shape suggests that methods developed for evaluating

crack opening distances in fracture mechanics may be used to analyze the displacements

of the slits’ faces under load. In part of the present study the analytical approximations

developed by Kachanov and co-workers (Kachanov, 1994; Gorbatikh and Kachanov, 2000)

are applied, which provide solutions for the displacements of the faces of two or more

interacting cracks. Kachanov’s approach is assessed by comparing the results obtained

for arrays of five non-staggered, equally spaced, parallel cracks of equal length to Finite

Element (FE) solutions. It is found that the analytical model is limited to the description

of arrangements of slits separated laterally by at least one half of their length (Hößl et al.,

2005, 2006). Finite Element modeling, while posing higher computational requirements,

is not subject to such limitations and, accordingly, suitable for studying the compressive

slit face displacements (D) of closely spaced arrangements of slits which are typical of

arachnid lyriform organs. In addition, FE analysis allows a wide variety of slit shapes to

be considered. The present work utilizes this flexibility of the FE method for studying the

directional response of single slits and planar arrangements of slits subjected to uniform far-

field loads (Hößl et al., 2007a,b). Details of individual slits are investigated with structural

models in 3D representing their morphology. To study the effect of various stiffening
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elements on the slit face deformation of single slits and on the interaction effects in slit

arrangements ridges and spherical caps (“dimples”) are employed in planar and cylindrical

shells, where the latter may be viewed as highly idealized models of spider tibia (Hößl

et al., 2007c).

Simultaneously, electrophysiological measurements at the organ HS10 (Gingl et al., 2006)

located on the metatarsus and on organ HS8 on the tibia under stimulus relevant loads

were performed within the same project as the present work. Stains were introduced into

the somata by glass electrodes previously used for the measurements and the dendrites

were traced back to the slits. Also within the same research project experimental studies

of spider slit sensilla were carried out, in which the deformations of the slit faces were

measured under stimulus relevant loads by using white light interferometry (Hößl et al.,

2007b; Schaber and Barth, in prep.). In addition serial sectioning of some organs provided

insight into the 3D morphology of the different slits in the organs (Müllan, 2005) (see

Chapter 2.1).

Although the main focus of the present study is on biomechanical aspects and aims towards

a deeper understanding of the intriguing mechanics of close parallel arrays of slit sensilla,

it should be mentioned that quantitative predictions on the complex deformation patterns

of such arrangements form a valuable basis for the design of “biologically inspired” or

biomimetic strain sensors for engineering applications.
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Chapter 2

Biological background

2.1 Slit sensilla

Slit sensilla occur in most orders of arachnids (Barth and Libera, 1970; Barth and Stagl,

1976; Barth and Wadepuhl, 1975). Cupiennius salei has some 3300 sensory slits in its ex-

oskeleton (Barth and Libera, 1970). About 86 % of these slits are found on the extremities,

i.e. the legs and pedipalps, where they are embedded in stiff, sclerotized exocuticle. The

96 slits found on the opisthosoma (excluding petiolus) are exceptional in being surrounded

by soft cuticle.

Some examples of arachnid slit sensilla are shown in Fig. 2.1. Depending on the lateral

spacing of the individual slits, S, slit sensilla can be subdivided into three types (Barth

and Libera 1970): isolated slits (distance to the closest neighboring slit S ' 1.5 l), loose

groups (S ' 0.25 l), and compound or lyriform organs (side-by-side arrangements of up to

30 closely spaced slits with nearest neighbor distances of S /10 µm).

Figure 2.2 presents SEM images of representatives of the three types of slit sensilla found

in C. salei. Approximately half of the slits present in this spider are either single slits

or belong to loose groups. The other half form a total of 144 lyriform organs, which are

situated only on the appendages (134 on the legs and pedipalps, 10 on the spinnerets and

chelicerae). Lyriform organs are typically found on the lateral aspects of the extremities,
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Figure 2.1: Different slit arrangements found in the spider Cupiennius salei, the scorpion
Androctonus australis, the whip spider Admetus pumilio, and the harvestman Amilenus aurantia-

cus. a single slit, b group of single slits (scorpion trochanter), c group of single slits (whip spider
trochanter), d group of single slits (harvestman coxa), e group of single slits (harvestman femur),
f lyriform organ (whip spider trochanter), and g lyriform organ (spider trochanter). From Barth
and Stagl (1976).

Figure 2.2: SEM images of slit sense organs of C. salei. a Single slits on the sternum, b loose
grouping on the petiolus, and c lyriform organ HS2 on the trochanter. From Müllan (2005).
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Figure 2.3: Slit sense organs of Cupiennius salei. a lyriform organ VS5 on the tibia, and b

lyriform organ HS1 on the coxa (Müllan, 2005), c anterior (VS series of organs) and posterior
sides (HS series of organs) of each leg of C. salei showing the different arrays and positions of the
lyriform organs; scale bars pertain to leg and enlarged lyriform organs of the VS and HS series,
respectively (Barth and Libera, 1970).



8 CHAPTER 2. BIOLOGICAL BACKGROUND

Figure 2.4: Schematic drawing of the mid section of a single slit cut in transverse direction.
The orientations of the lamellae are indicated as lines in the exo- and mesocuticula. Only one of
the two dendritic tips (dt) ends in the coupling cylinder (cc) of the outer membrane (see details).
Inside the slit there is receptor lymph. tu tubular body of the dendrite ending at the inner
membrane; M.i. inner membrane (modified from Barth (2002a)).

are oriented roughly parallel to the latters’ long axes, and, with a few exceptions, lie on

the proximal side of joints (see Fig. 2.3c). Individual slits within lyriform organs usually

are more or less straight but can also be C-shaped or S-shaped (Fig. 2.3a and b).

The slits have lengths l of up to 150 µm and widths w0 of 1 to 2 µm; their aspect ratios

l/w0 reach values of up to 100. They are covered on the outside by an inwards bulged,

trough-shaped membrane that is approximately 0.25 µm thick (see Fig. 2.4). The dendrite
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Figure 2.5: 3D reconstruction of the lyriform organ HS8 of C. salei. a with and b without
cuticula. 1, 2, and 3 indicate cross sections. Color code: green cuticula; yellow extracellular
cavity; blue outer membrane; red inner membrane; orange slit (Müllan, 2005).

tip of a bipolar sensory cell is attached to this covering membrane by a special structure,

the coupling cylinder (see detail Fig. 2.4), and ends in its interior. Only compressive defor-
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mations of the cuticle, which may result from different kinds of loadings, elicit a response of

the dendrite (Barth, 1972a,b). There is also an inner membrane which, in contrast to the

morphologically homogeneous (probably resilin-like) outer membrane, consists of fibrous

material. Inside the slits there is receptor lymph rich in sodium ions (Rick et al., 1976;

French et al., 2002). A special feature of slit sensilla is the presence of a second dendrite

that ends close to the inner membrane, but is not directly coupled to it mechanically (see

detail in Fig. 2.4). The role of this dendrite is still in doubt (Barth, 1971; French et al.,

2002). More proximally the extracellular cavity opens including the soma of the dendrites.

Details of the shapes of individual slits can be obtained by serial sectioning which provides

the basis for three-dimensional visualization with software tools such as Amira (TGS Inc.,

San Diego, CA). In such a study Müllan (2005) recently demonstrated that in lyriform

organs the slits fully penetrate the cuticle within a few micrometers of their tips and, as a

consequence, can be well represented by openings cut into disks or shells (see Fig. 2.5).

2.2 Cuticle - a natural composite shell

Exoskeletons are typical of arthropods and a number of studies have been performed on

their material parameters (Neville, 1975; Hepburn, 1976; Chapman, 1999; Vincent and

Wegst, 2004). In flying insects or fast moving arthropods weight is an important factor.

Using chitin, a polysaccharide closely related to cellulose, as the fibrous component em-

bedded in a protein matrix a light and stiff composite shell is obtained. In insect cuticle

a hundred or more different proteins are present (Chapman, 1999). The stiffness of the

cuticle is controlled by cross-linking the protein molecules, referred to as tanning or scle-

rotization, so that they form a stiff matrix, and by interaction of the proteins with chitin

(Vincent, 2002a). Wigglesworth (1988) proposed that lipids, together with the sclerotized

proteins, play a significant role in cuticle hardening. In the mandibles and other especially

hard parts of insect cuticle heavy metals, e.g. zinc, manganese or occasionally iron, are

present in relatively large amounts of up to 1% of the dry weight of the cuticle (Chapman,

1999). In aquatic arthropods, e.g. crustacea, for which weight plays a lesser role, calcium

carbonates (calcite, vaterite, hydroxyapatite) are added to the composite and dominate the

mechanical parameters. In the cuticle of Cancer pagurus the mineral crystals are arranged

in rows parallel to the pore canals (Stevenson, 1985).
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Figure 2.6: Light microscope image of a cross section of the cuticle of the tarsus of C. salei

(staining according to Gomori-Halmi). Ex exocuticle; Me mesocuticle; En endocuticle; Su sub-
cuticle; Ba basal membrane; Bl blood cells (Barth, 1969).

Measurements of the material parameters of mineralized organic cuticles are rare, but it

has been shown that cuticles containing calcium carbonate or calcium phosphate can have

outstanding mechanical properties (Currey et al., 1982).

The exoskeleton of arachnids is composed of different zones: epi-, exo-, meso-, endo-, and

subcuticle (order distal to proximal) (Barth, 1969). They are defined by staining according

to Mallory (Romeis, 1968) or Gomori-Halmi (Aldehydfuchsin according to Gomori (Romeis,

1968) and counterstaining according to Halmi (Adam and Czihak, 1964)) (Fig. 2.6). In C.

salei the epicuticle is about 0.5 µm thick with corrugations of about 3 nm. It is composed

of an outer dense layer, two lipid layers and a cement layer (Barth, 1969). The exocuticle

dominates the stiffness of the integument where the stimulus uptake is found. The meso-

and endocuticle cannot be distinguished clearly but are approximately ten times thicker

than epi- and exocuticula. The subcuticle, which is the grainy innermost zone, is the

latest secreted part on the cuticle. The thickness and the presence of the individual zones
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Figure 2.7: Microstructure of the cuticle. a monodomain helicoidal crystalline structure in the
spider legs (Barth, 1973; Vincent, 2002b). b SEM image of a cross section of the big single slit
on the tarsus of C. salei. The different lamellae are visible as sequences of dark and light bands.
M.a. outer membrane; M.i. inner membrane (Barth, 1972a).

depend on the position on the exoskeleton. For example, articular membranes and the

opisthosoma lack an exocuticle, and different thicknesses of the zones are found in different

leg segments in the walking legs of C. salei (Barth, 1973). During moulting all the proteins

not sclerotized in the cuticle are digested and re-used for building the new cuticle. Only the

exuviae, which correspond to the stiff and highly tanned exocuticle, are left after ecdysis.

2.2.1 Microstructure of cuticle

Neville et al. (1976) studied the fiber diameter of chitin in 8 orders of insects, one crus-

tacean, and one arachnid and found that the extreme values for the diameter of the micro

fibers are 2.3 and 3.5 nm. These authors conclude that the above variations are due to the
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inherent errors of the measurements and that the diameter of the crystallites is constant

and has a value close to 2.8 nm. The length of the micro fibers is reported to range from

approximately 24 to 730 nm (Neville, 1998). Vincent (2002b) claims that they are up to

1000 nm long depending on their degree of polymerization. In Vincent and Wegst (2004)

a micro fiber length of 300 nm is reported. According to Filshie (1982) and Ker (1977)

most micro fibers are about 360 nm long. For the opisthosoma of C. salei Barth (1973)

reports a minimum micro fiber diameter of 3.5 nm, a fiber length of up to 1500 nm, and a

minimum aspect ratio (length/diameter) of the fibers of 100.

Sheets reinforced by uni-directional micro fibers lie parallel to the surface in flat cuti-

cle (Barth, 1970). The in-plane fiber orientations in the exocuticle change continuously

through the thickness and, accordingly, match after a number of layers (Fig. 2.7a) (Barth,

1973, 2002a). The stiffness relevant part of the cuticle, the exocuticle, is about 10 µm

thick in the walking legs of C. salei and consists of approximately 2000 layers of aligned

micro fibers (Fig. 2.7b). From the engineering point of view the exocuticle forms a lami-

nate consisting of many sublaminates, which are referred to as lamellae. In Fig. 2.7b the

thickness of a single lamella corresponds to the distance between two neighboring darker

regions. The lamellar thickness increases continuously and regularly from the outside to

the inside in all exocuticles found in C. salei (Barth, 1973). Close to slit sense organs the

laminae are no longer parallel to the cuticle’s surface. In the transition zone between the

exocuticle and the outer membrane of the slit the orientation of the most distal layer is

tangential to the inwards bulged membrane. The angle between the planes of the fiber

layers and the surface of the cuticle increases with the depth of the slit (see Fig. 2.7b

and Fig. 2.8a and b). The lamellae that are connected to the fibrous inner membrane are

aligned with the direction of the tangent at the edge of the inner membrane. This avoids

stress concentrations in the transition zone between the membranes and the lamellae. The

majority of the lamellae are not connected to one of the two membranes and end at the

inner surface of the slit or at the surface of the extracellular cavity (Fig. 2.7b).

2.2.2 Effective mechanical properties of cuticle

Fiber reinforced composites, a group of materials that includes arthropod cuticle, consist

of stiff fibers that give the material stiffness and strength and a typically more compli-
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Figure 2.8: Alignment of the lamellae in the exocuticle close to a slit of C. salei. The upper
third of the slit is distally shifted and the outer membrane is removed for a better understanding.
a lateral and b longitudinal cross section of the slit. The tangent of the membranes and the
lamellae is the same at their transition to avoid stress concentrations (Müllan, 2005).

ant matrix that transfers loads between the fibers and prevents buckling of the fibers

in deformation. Depending on the fiber orientations and arrangements fiber reinforced

composites in most cases show anisotropic overall stiffness and strength. This also holds

true for laminated composites which are built up from a number of layers or laminae. In

such materials the in-plane stiffnesses and strengths typically are markedly higher than

the corresponding out-of-plane properties. In contrast to many man-made composites the

variability of the mechanical properties of arthropod cuticle is enormous, because natural

composites are subjected to fewer “producibility constraints” and, accordingly, can make

full use of their inherent tailorability. The mechanical behavior of such inhomogeneous

materials is described in terms of effective moduli, i.e., material parameters that pertain

to an energetically equivalent homogeneous medium at a sufficient large length scale.

As stated by lamination theory (see e.g. Jones (1999)) a minimum of 3 layers of appropriate
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orientation are necessary for a layered material to be quasi-isotropic under in-plane loading.

Because there are at least 7 layers for the thinnest lamellae in the exocuticle of C. salei,

the latter can be treated as macroscopically isotropic for in-plane loading (Barth, 1973).

2.2.2.1 Constituent properties of cuticle

In the literature a wide range of stiffness values for the chitin nanofibers can be found, but,

to the authors’ knowledge, the stiffness has never been actually measured. Vincent and

Wegst (2004) estimated a value of at least 150 GPa, based on observations of cellulose in

the cell walls of plants, which has a stiffness of about 130 GPa. The difference is explained

by extra bonding in the chitin crystallites that tends to stiffen chitin further. Ker (1977)

suggests a Young’s modulus of at least 100 GPa and Currey (1970) of about 44 GPa. The

influence of hydration on the mechanical properties of the micro fibers is marked. For

the mesosternum of the coleopteran Pachynoda sinuata Hepburn and Ball (1973) report a

difference in Young’s modulus of a factor of approximately 4.6 between dry and wet micro

fibers. Hepburn and Levy (1975) claim that the Young’s modulus of the micro fibers in

the meropodite of the crustacean Scylla serrata is 1095 MPa for dry and 330 MPa for

wet micro fibers. For the protein matrix the stiffness values are reported to range from

approximately 1 kPa to some 1 GPa, depending on the degree of sclerotization (Vincent,

1998).

According to the water content of the integument and the volume fractions of chitin and

protein different Young’s moduli of the cuticle can be obtained. Equal weight fractions

(dry) of the constituents and a water content of about 40-75% are present in soft cuticle

whereas hard cuticle contains 15-30% by weight fraction of chitin and only 12% of water

(Vincent and Wegst, 2004). In contrast Neville et al. (1976) claim that the fiber volume

fraction is approximately 21% for dry rubberlike cuticle of the prealar arm (arm for at-

taching the wings) of the locust Schistocerca gregaria. Barth (1973), Hillerton (1980), and

Neville (1975) report micro fiber volume fractions ranging from 10 to 50%.
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Figure 2.9: Determination of the proportionality limit in σ − ε diagrams of biomaterials by a
line parallel to the linear portion of the measured curve drawn at an offset of 0.02% of ε.

2.2.2.2 Effective Young’s modulus of cuticle

In analogy to the definition of the yield stress σ02 for metals in biomaterials the elastic

deformation does not exhibit a clearly defined limit. Therefore the offset method is used

to determine the stress at the proportionality limit. A line parallel to the straight portion

of the stress-strain (σ − ε) curve is drawn at the offset position of 0.02% on the strain

axis (Fig. 2.9) and the intersection point is defined as the stress of the proportionality

limit. The slope of the initial straight portion of the stress-strain curve is taken to be the

Young’s modulus. Alternatively, nanoindentation testing can be used to determine the

Young’s modulus. Song et al. (2004) reported stiffness values measured by both methods

for the forewings of Cicada, that are in good agreement, even though the indentation was

performed in the usually more compliant out-of-plane direction.

In some insects the Young’s modulus of the cuticle can be actively controlled. The blood-

sucking bug Rhodnius drops the pH value of the cuticle from 7 to below 6 and thereby

increases the charge density in the cuticular protein. As a consequence, the cuticular

water content increases from about 26 to 31%, which is claimed to reduce the stiffness

of the cuticle from 250 to 10 MPa and increases its extensibility from 10% to more than

100% (Reynolds, 1975)1). In contrast, the measurements of Smith et al. (2000) show

1) From the point of view of material mechanics the reported stiffness change by a factor of 25 is
remarkable.
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that the stiffness of the wings of the desert locust is not very strongly affected by the

relative humidity of the surrounding air. The Young’s modulus increases from 13.5 GPa

to 16.5 GPa when the relative humidity changes from 75% to 40%. In addition to the

comments on the measurements performed by Song et al. (2004) in the above paragraph

this behavior may be another indication that the micro fiber volume fraction in the wings

is relatively low. On the other hand this may also indicate that the stiffness of the matrix

must be higher than 1 GPa. A similar behavior is reported by Barbakadze et al. (2006)

where the influence of desiccation on the Young’s modulus of the cuticle of the head-to-

neck articulation of the beetle Pachnoda marginata was investigated. When the water

content decreases by ≈ 15 to 20% of the cuticle mass the Young’s modulus increases

from 1.5 to 7.5 GPa. Another change in the material parameters happens in the locust

extensible intersegmental membrane, where the fiber volume fraction is low and the stiffness

is controlled by hormones (Tychsen and Vincent, 1976).

In Table 2.1 examples of effective Young’s moduli for different biomaterials are given.

2.2.2.3 Effective tensile strength and strain at failure of cuticle

Strength values for chitin found in the literature range from 2.2 MPa (Joffe et al., 1975)

to 569 MPa (Herzog, 1926) and 570 MPa (Currey, 1970), respectively. No strength data

is available in the literature for the matrix because the proteins are difficult to isolate

(Wainwright et al., 1982).

The tensile strength of hydrated locust cuticle is given as 60-200 MPa, which is about

1-5 % of the stiffness (2-6 GPa), by Vincent and Wegst (2004). Jensen and Weis-Fogh

(1962) report a tensile strength of 95 MPa for the tibia of the desert locust Schistocerca.

Hepburn and Ball (1973) claim that the tensile strength in the elytron of the Coleopteran

Pachnoda is 69 MPa. In the membranes of the forewing of Cicada (Homoptera, Cicadidae)

the measured tensile strength is 29 MPa (Young’s modulus 3.7 GPa) and in the veins along

the venation of the wings 52 MPa (Young’s modulus 1.9 GPa), respectively (Song et al.,

2004). Hillerton (1979) reports an ultimate tensile strength of 22 MPa for the extensible

cuticle of Rhodnius. In hydrated locust cuticle the strain at failure is up to 5% (Vincent

and Wegst, 2004).
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Table 2.1: Examples of effective Young’s moduli reported for some biomaterials; the lower part
gives values for different types of cuticle.

Material Young’s Reference

modulus

Locust intersegmental membrane 1 kPa Vincent and Wegst (2004)

Pregnant locust intersegmental

membrane
200 kPa Vogel (2003)

Protein polymer resilin 1 MPa Vincent and Wegst (2004)

Protein polymer resilin 1,2 MPa Gosline (1980)

Dragonfly tendon, mainly resilin 1,8 MPa Vogel (2003)

Dragonfly ligament, mainly resilin 2,2 MPa Weis-Fogh (1961); Vincent (1980)

Protein polymer abductin 4 MPa Alexander (1966)

Calliphora vomitoria well tanned

puparium
250 MPa Vincent and Hillerton (1979)

Dragonfly wing membrane 1,5 GPa Kreuz et al. (1998)

Cicada wing veins 1,9 GPa Song et al. (2004)

Dragonfly dry wing veins 2,9 GPa Kreuz et al. (1998)

Cicada wing membranes 3,7 GPa Song et al. (2004)

Spruce wood (secondary cell wall) 16,1 GPa Gindl and Gupta (2002)

Bone (compacta, large mammal) 18 GPa Vogel (2003)

Locust tibial flexor apodeme 20 GPa Ker (1977)

Bone (dried compacta, cow) 20.3–27.6 GPa Hengsberger et al. (2003)

Trochus niloticus inner nacreous

layer
92 GPa Bruet et al. (2005)

Drosophila melanogaster cuticle

(puparium, adult in vivo)
4,37 MPa Kohane et al. (2002)

Rhodnius abdominal cuticle 60 MPa Reynolds (1975)

Desert locust cuticle (hind femur) 1.205 GPa Hepburn (1975)

Desert locust cuticle (tibia) 1.8 GPa Ker (1977)

Desert locust cuticle (hind tibia) 4.6 GPa Katz and Gosline (1994)

Dragonfly dry cuticle (abdominal

tergite)
4.7 GPa Kreuz et al. (1998)

Desert locust cuticle (hind tibia) 9.5 GPa Jensen and Weis-Fogh (1962)

Locust cuticle (apodeme;

mainly chitin)
11 GPa Ker (1977)

Cupiennius salei cuticle (tibia) 18 GPa Blickhan and Barth (1985)

Cassida viridis cuticle (elytron) 23 GPa Krzelj (1969)
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2.2.2.4 Effective Poisson’s ratio of cuticle

Values for the Poisson’s ratio of arthropod cuticle are rare in the literature and no major

studies appear to have examined this parameter. In Combes and Daniel (2003) a Finite

Element analysis of the flexural stiffness in hawkmoth and dragonfly wings is performed

using a Poisson’s ratio of 0.49, and it is reported that the influence of a Poisson’s ratio of

0.3 on the results is negligible. Kesel et al. (1998) used a Poisson’s ratio of 0.25 for Finite

Element analysis of a dragonfly’s forewing without commenting their choice. Flannigan

(1998) compared the cuticle of insects to a more frequently studied fibrous material, wood,

and estimated a Poisson’s ratio of 0.3, which was used in his planar Finite Element models

of a cockroach tibia. Cocatre-Zilgen and Delcomyn (1999) followed a similar approach for

estimating the Poisson’s ratio of 0.3 used in their analytical models of a cockroach tibia.

These estimates are, however, doubtful because the microstructures of wood and cuticle

are different. In Finite Element models of strain sensitive campaniform sensilla present

in insect cuticle Skordos et al. (2002) used an in-plane Poisson’s ratio of 0.077 and and

out-of-plane Poisson’s ratio of 0.31 in accordance to measurements of a composite with

eight layers of uni-directional oriented glass fibers of fiber volume fraction of 69%. The

cuticle, which is rather stiff, may also be compared to bone (compacta) with a Poisson’s

ratio ranging between 0.13 and 0.3 (Vincent, 1982).

As Fig. 2.10 shows, using Poisson’s ratios close to 0.5 is unrealistic for layered fibrous

materials such as cuticle, and the anisotropy of this laminate must be accounted for in

non-planar analyses. High Poisson’s ratios may, however, well be appropriate for soft

tissues or for the proteinaceous matrix of cuticle.

2.2.2.5 Micromechanical assessment of the stiffness of cuticle

The exact mechanical properties of the transversely isotropic spider cuticle including

Young’s and shear moduli and the Poisson numbers in the in- and out-of-plane direction

are necessary for the Finite Element (FE) models of the slits. They have to be estimated

because to the knowledge of the authors they have never been actually measured with the

exception of the in-plane Young’s modulus. In continuum micromechanics (Böhm, 2004)

the effective properties of inhomogeneous materials are estimated from the constituent



20 CHAPTER 2. BIOLOGICAL BACKGROUND

E [GPa] ν [-]

E in-plane E out of plane

ν in-plane

ν out of plane

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50
 0

 0.1

 0.2

 0.3

 0.4

 0.5

chitin volume fraction [%]

GPa18

35

Figure 2.10: Estimates of the effective material parameters Young’s modulus (E ) and the
Poisson’s ratio (ν) depending on the chitin volume fraction of a composite with planar random
fibers assuming perfect interface between the matrix and the fibers. The constituent data are
listed in Table 2.2.

properties using continuum mechanics. Huang (2001) proposed a laminate analogy model

for composites with planar random reinforcements that uses a Mori-Tanaka approach (Mori

and Tanaka, 1973) to account for fiber length effects, which is valid for perfect interfaces

between the fibers and the matrix. This model can be used to assess the dependence of

the effective elastic behavior of cuticle on parameters such as chitin volume fraction. Ex-

ploratory analysis can give an idea on how the effective Young’s modulus and the effective

Table 2.2: Material parameters of the constituents for rough estimates of the effective mate-
rial parameters of a protein-chitin composite with planar random fiber orientation and perfect
interface.

property matrix reinforcement

aspect ratio - 120

Young’s modulus 1 GPa 150 GPa

Poisson’s ratio 0.45 0.3
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Poisson’s ratio change as functions of the chitin volume fraction (Fig. 2.10) and of the ma-

terial properties of chitin and the proteinaceous matrix. The material parameters of the

constituents used for estimating the effective material parameters are listed in Table 2.2;

the Young’s moduli of the constituents given there are well within the range of values

reported in the literature (Currey, 1970; Ker, 1977; Vincent, 1998; Vincent and Wegst,

2004). The differences between the in-plane and out-of-plane effective material parameters

increase with increasing chitin volume fraction, which is typical for composites with high

elastic contrast. The out-of-plane and especially the in-plane Poisson’s ratios decrease

markedly with increasing fiber volume fraction.

From the point of view of continuum micromechanics of composites the following changes

tend to make cuticle more compliant:

• decrease of the stiffness of the micro fibers by increasing their water content (Hepburn,

1976),

• decrease of the stiffness of the matrix by changing the amount of sclerotization,

• decrease of the aspect ratio of the micro fibers, and

• decrease of the chitin volume fraction.

In addition, from a meso- or macromechanical point of view an increase of the out-of-plane

component of the fiber orientations tends to reduce the in-plane stiffness and to increase

the out-of-plane stiffness, e.g. waviness of the lamellae in the opisthosoma of C. salei

(Barth, 1973).

For an in-plane Young’s modulus of 18 GPa, which is in line with Blickhan & Barth’s

(1985) estimate the stiffness of the cuticle of the tibia of C. salei, a fiber volume fraction

of approximately 35% is required with the constituent properties listed in Table 2.2. This

chitin volume fraction is well within the range of 10-50% which is reported by Barth

(1973), Hillerton (1980), and Neville (1975). The corresponding in-plane Poisson’s ratio is

approximately 0.13.

Due to the limited information available on the mechanical properties of the chitinous fibers

and protein matrix micromechanical methods can only provide estimates on the effective
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mechanical properties of the cuticle. Accordingly, assumptions are required in selecting

material data sets for modeling. Table 2.3 lists the effective material parameters used for

cuticle in the present work, with EA and ET standing for the out-of-plane (axial) and

in-plane (transversal) Young’s moduli, GA for the out-of-plane shear modulus and νA and

νT for the out-of-plane and in-plane Poisson numbers, respectively. Simulations showed

that the value of the in-plane Poisson number does not appreciably influence the numerical

predictions for the deformation patterns of plane stress models of slits for which out-of-

plane deformations do not have an influence on the slit face deformations. This allowed a

value of νT = 0.3, which is in line with previous studies in the literature, to be used for

the plane stress analyses reported in Chapters 4 and 4.2. For three-dimensional shell and

continuum models the use of transversely isotropic material properties typical for spider

cuticle, of course, is necessary.

Table 2.3: Effective material properties used in the FE models. Values for transversely isotropic
material behavior according to estimates (Huang, 2001) and for the isotropic behavior in agree-
ment with Blickhan and Barth (1985) (ET) and Vincent (1982) and Flannigan (1998) (νT). EA

out-of-plane (axial) Young’s modulus; ET in-plane (transversal) Young’s modulus; GA the out-
of-plane shear modulus; νA out-of-plane Poisson number; νT in-plane Poisson number.

model type EA ET GA νA νT

planar - 18 GPa - - 0.3

3D 4.9 GPa 18 GPa 690 MPa 0.33 0.13

2.2.2.6 Material behavior of cuticle

All stress-strain curves for chitinous composite materials found in the literature (Hepburn,

1975, 1976; Hepburn and Ball, 1973; Hepburn and Roberts, 1975; Hillerton and Purslow,

1981; Joffe et al., 1975; Ker, 1977; Neville, 1975; Smith et al., 2000; Song et al., 2004;

Vincent, 1980; Vincent and Hillerton, 1979; Weis-Fogh, 1961) are non-linear, but for small

strains of less than 0.02% the material behaves linearly elastic. Joffe and Hepburn (1973)

reported linear elastic behavior under small loads and small rates of strain, but indicated

that the viscous properties must be accounted for when evaluating tensile tests. Jensen

and Weis-Fogh (1962) showed that the cuticle of the locust tibia performs similarly in
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tension and deformation for small loads. In modeling work presented in the literature

Vincent (1998) assumed a linear elastic material model and Hillerton et al. (1982) used

a linear elastic ideally plastic material model for the fibrous cuticle without commenting

their choice.
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Chapter 3

Methods

3.1 Analytical approach

3.1.1 On the problem of crack interaction

One of the motivations for obtaining analytical solutions for calculating the stress intensity

factors (SIFs) of closely spaced cracks is to estimate the effective elastic properties of elastic

solids containing many cracks or fields of microcracks (Kachanov, 1987, 1994). Another

benefit of this solution is that the crack face displacements of interacting cracks can be

estimated (Gorbatikh and Kachanov, 2000).

In Chapter 3.1.3 Kachanov’s method (Kachanov, 1987, 1994) for approximating the crack

face displacements of interacting cracks is presented. Li et al. (2003) and Benveniste et al.

(1989) expanded on this idea and improved the results in terms of application to problems

of more closely spaced slits (see Chapter 3.1.4).

Gross (1982), Horii and Nemat-Nasser (2000), and Nishioka et al. (1997) presented alter-

native analytical descriptions for the problem of interacting cracks.
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3.1.2 Stress fields generated by cracks

In linear elastic fracture mechanics the stress fields generated by a loaded crack can be

represented as superposition of the fields produced by the tensile (mode I), shear (mode

II) and antiplane (mode III) contributions to the load. For an isolated crack in an infinite

medium these modes are decoupled, which means that a given mode of loading produces a

crack opening displacement D of the same mode only. The normalized, i.e. dimensionless,

Figure 3.1: Single isolated crack under unit tensile (mode I) loading p in y-direction.

stress field of a crack, occupying the interval [−l/2, l/2] of the x -axis (Fig. 3.1), under mode

I loading is depicted in Fig. 3.2 where the stress singularities are obvious. The formulae

used to evaluate the normalized stress field can be found in Appendix A. Note that in the

vicinity of the crack the region of negative (compressive) stress σyy is bigger than the region

of positive (tensile) stress σyy. An isolated single crack under mode I loading generates an

extended “shadow” and a relatively small “amplification” zone. This becomes important

in crack interaction and explains that shielding in a stack of parallel cracks has a longer

range than the amplification in collinear cracks. Accordingly, a stack of parallel cracks is

the most sensitive array in terms of crack interaction. Therefore it was chosen for assessing

the accuracy of Kachanov’s method.
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Figure 3.2: Mode I normalized standard stress field generated by a single isolated crack under
unit loading p in y-direction. a and a’ stress component in x -direction σxx/p, b and b’ stress field
of the shear component σxy/p, c and c’ stress component in y-direction σyy/p. Note that in the
vicinity of the crack the area of negative σyy/p (shielding) is larger than the area of positive σyy/p
(amplification). Therefore interactions effects are more pronounced in stacks of cracks compared
to collinear arrangements.
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3.1.3 Kachanov’s method

A method proposed by Kachanov (Kachanov, 1994; Gorbatikh and Kachanov, 2000) allows

to obtain approximate solutions for the crack face displacements (D) of an arbitrary number

of traction-free interacting cracks in an infinitely extended linear elastic solid that is loaded

by known far field tractions T
∞.

Figure 3.3: Basic idea of stress superposition (Kachanov, 1994): problem of a disk containing
N cracks that is loaded by tractions T

∞ is transformed into a crack-free disk loaded by T
∞ plus

N subproblems involving one crack each which is loaded by unknown tractions ti(ξi) on its faces.

In this approach arrangements of N cracks in an infinite disk under load are described

by a superposition technique. The latter combines a crack-free solid subjected to far field

tractions T
∞ with N subproblems, each of which involves one crack that is loaded by

unknown traction distributions ti(ξi) acting on the crack faces (Fig. 3.3). For calculating

the stress intensity factors (SIFs) at the crack tips describing the stress amplification and,

on their basis, the displacements of the crack faces, the tractions ti(ξi) along each crack

are required. Each of these tractions ti(ξi) can be decomposed into contributions due to

the applied far field traction T
∞ and to the traction distribution ∆tji(ξi) induced at crack
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Figure 3.4: Example of two interacting collinear cracks. a The tractions along the crack faces
can be decomposed into the far field traction p0 and tractions due to interaction ∆p21 and ∆p12.
b For determining the interaction terms of the tractions only the average tractions p0 + 〈∆p21〉
and p0 + 〈∆p12〉 are used. Note that the shear tractions induced at the faces of one crack when
the other crack is loaded by normal tractions were not taken into account.

i by each of the other cracks j loaded by tj(ξj),

ti(ξi) =

{
pi(ξi)

τi(ξi)

}
= H(ωi) T

∞ +
∑

j 6=i

∆tji(ξi) , (3.1)

where pi(ξi) and τi(ξi) are the normal and shear components of the traction vector ti(ξi).

The tensor H(ωi) rotates the coordinate system into alignment with the crack and ξi is

the position along crack i.
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The key approximation in Kachanov’s method is to evaluate the interaction terms ∆tji(ξi)

from the average traction acting on crack j, 〈tj〉, instead of the actual nonuniform traction

tj(ξj) (Fig. 3.4). This allows Eq. (3.1) to be written as

ti(ξi) = H(ωi) T
∞ +

∑

j 6=i

〈tj〉σji(ξi) , (3.2)

where σji(ξi) stands for the normalized, i.e dimensionless, stress field at the faces of crack

i that is generated when crack j is subjected to a uniform unit traction (compare Ap-

pendix A). By evaluating averages of the ti(ξi) from Eq. (3.2) a system of linear equations

is obtained for the average tractions acting on the cracks,

〈ti〉 = t
∞
i +

∑

j 6=i

〈tj〉Λji , (3.3)

or, rewritten,

{
〈pi〉
〈τi〉

}
=

{
p∞i

τ∞
i

}
+
∑

j 6=i

{
〈pj〉
〈τj〉

} [
Λpp

ji Λpτ
ji

Λτp
ji Λττ

ji

]
, (3.4)

with

Λmn
ji =

1

li

∫ li/2

−li/2

σmn
ji (ξi) dξi . (3.5)

The scalars Λmn
ji (i, j = 1, 2, ..., N ; j 6= i; m, n = p, τ) are the interaction coefficients due

to unit intensity tractions. They describe the attenuation of the average normal and

tangential tractions between interacting cracks. For example Λpp
ji is the attenuation of the

normal component p of the stress and Λpτ
ji is the attenuation of the shear component τ of

the stress at the site of crack j due to the normal load p of crack i. Furthermore Λτp
ji is

the attenuation of the normal component p of the stress and Λττ
ji is the attenuation of the

shear component τ of the stress at the site of crack j due to the shear load τ of crack i.

The formulae for calculating σmn
ji (ξi) are given in Appendix A. Solving the system of linear

equations (Eq. 3.4) results in the average tractions 〈ti〉 for all N cracks.
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The stress intensity factors at the crack tips can be evaluated from standard expressions,

KI(±l/2)

KII(±l/2)

}
=

1√
πli/2

∫ li/2

−li/2

√
li/2 ± ξ

li/2 ∓ ξ

{
pi(ξ)

τi(ξ)

}
dξ , (3.6)

where li/2 is the half length of crack i.

Finally, the solutions for the average tractions, Eq. (3.4), and the SIFs, Eq. (3.6), can be

used to generate approximate expressions for the displacements of the crack faces. For

this purpose the actual crack opening deformation along the length of the crack, D(ξ) =

u+(ξ) − u−(ξ), is approximated by an ellipse that is enriched by quadratic functions,

Dn(ξ) =
2l

E

(
an + bn

ξ

l
+ cn

ξ2

l2

)√
1 − 4

ξ2

l2
(3.7)

and

Dτ (ξ) =
2l

E

(
aτ + bτ

ξ

l
+ cτ

ξ2

l2

)√
1 − 4

ξ2

l2
. (3.8)

The above expressions for the crack face opening displacements, Dn(ξ) and Dτ (ξ), pertain

to crack opening modes I and II, respectively, and to plane stress conditions. E stands for

the Young’s modulus of the disk’s material. The coefficients an, bn and cn of the quadratic

polynomial are chosen to match the mode I stress intensity factor and the average tractions

on the crack faces and result as

an = 2〈p〉 − KI(l/2) + KI(−l/2)

2
√

πl/2
(3.9)

bn =
KI(l/2) − KI(−l/2)√

πl/2
(3.10)

cn = 4
KI(l/2) + KI(−l/2)√

πl/2
− 8〈p〉 , (3.11)

where 〈p〉 is the normal component of the average traction. Analogous expressions hold for

aτ , bτ and cτ , where 〈p〉 is replaced by the shear component of the average traction, 〈τ〉.
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3.1.4 Enhancements of Kachanov’s method

Two approaches to extending the range of applicability of Kachanov’s approximations to

more closely spaced cracks appear feasible, improving the evaluation of the interaction

terms in Eq. (3.1) and using more accurate approximations for the face deformations.

Note that Kachnov’s method is limited to the description of the interaction effects between

straight cracks, so that interactions between C- and S-shaped cracks cannot be investigated.

3.1.4.1 Improving the evaluation of the interaction terms

Li et al. (2003) improved the accuracy of the interaction terms in Kachanov’s method by

decomposing the tractions acting on the cracks into linear and non-linear components. For

evaluating the induced stresses at the crack faces of the other cracks they use the traction

average and the first (linear) component of the decomposition. Benveniste et al. (1989)

proposed the use of Legendre polynomials for describing the distribution of the crack face

tractions to better approximate the effects of the crack tip singularities.

3.1.4.2 Using more accurate approximations for the face deformations

Kachanov describes the crack face displacement as an ellipse that is enriched by quadratic

functions. In order to improve the accuracy of these approximations for the face deforma-

tions D the elliptical shape for the opened crack may be enriched by functions other than

quadratic polynomials.

3.2 Finite Element method

The Finite Element method1) (FEM) originated from the need to solve complex bound-

ary value problems on domains of complex shape involving partial differential equations.

One of the essential characteristics of the FE method is the discretization (“meshing”) of

1) For detailed mathematical description see e.g. Rammerstorfer (2003).
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a continuous domain into a set of discrete irregularly shaped sub-domains called Finite

Elements for which simple local approximations (“shape functions”) of the unknown so-

lution are used. The response of the elements is expressed in terms of the nodal degrees

of freedom (DOF) which are coefficients for the shape functions and must be determined

to obtain an approximation solution. Each DOF corresponds to a value of an unknown

function or functions, describing e.g. the mechanical, the acoustic, the electrostatic, the

electromagnetic, the fluid mechanical, or the thermal behavior of the domain, at a set of

nodal points that typically are vertices of the Finite Elements. In the case of mechanical

continuum elements the DOF of the elements are the displacement components at the

nodes. The response of the continuous domain is then considered to be approximated by

that of the discrete model obtained by connecting or assembling the collection of all sub-

domains or Finite Elements, giving rise to a system of algebraic equations. In this manner

approximations for displacements, strains, and stresses of mechanical problems, for which

no exact analytical solution are available, can be derived. Compared to other numerical

engineering approaches, such as Finite Difference, Finite Volume, and Fourier Transform

methods, the main advantage of the FEM is its flexibility with respect to both the problem

geometry and the incorporation of different material models.

In general, the FE solutions converge to the exact solution of the problem when the mesh

density is increased. The practical limits of accuracy of the FE method are typically posed

by computational requirements, which limit the number of degrees of freedom (DOF) and

thus the fineness of the mesh.

In the present work the Finite Element program ABAQUS (ABAQUS Inc., Pawtucket, RI)

was used to study the face displacements of slit sensilla.

3.2.1 Planar FE models

For the planar FE models of slit sensilla plane stress kinematics were used. As discussed in

Chapter 2.2, the cuticle was modeled as an (in-plane) isotropic, linear elastic material with

a Poisson number ν = 0.3 and a Young’s modulus of Er = 18 GPa, compare Table 2.3.

The length of the largest crack/slit in each of the studied arrays is l0. Unless stated

otherwise the Finite Element models used for studying cracks/slits were square regions of
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Figure 3.5: Boundary conditions used for planar 2D models of slit sensilla. The disks of size
400 l0×400 l0 were loaded by uniform far-field strains in the x -direction and the edges at y=const
were left free to deform, resulting in a uni-axial stress state and a biaxial strain state.

size 400 l0 × 400 l0 and thickness tr = 0.1 l0. At the centers of the models the cracks/slits

were located, which accordingly closely approximate cracks or slits in infinite disks. Note

that a homogeneous isotropic in-plane material behavior is an approximation. In the strict

sense both a varying thickness of the cuticle and the change in orientation of the laminae

not parallel to the surface close to the slits would have to be modeled.

Loading was applied in the form of prescribed uniform far-field uni-axial compressive (or,

for the investigation of cracks tensile) in-plane strains acting in the x -direction. In the
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y-direction the disks were left free to deform (see Fig. 3.5), resulting in an uni-axial overall

stress state and, due to the Poisson effect, in a biaxial overall strain state. Note that the

thickness of such models does not influence the results when the applied strains or stresses

are given. Applied forces, however, must be scaled by a factor t/tr, where t is the actual

thickness of the disk.

For studying slit arrangements by planar FE models the membranes and the fluid contained

in arachnid sensory slits were assumed to have negligible influence on their quasi-static de-

formation behavior1). Simulations were limited to the small strain regime, with maximum

local strains of 1.2×10−4 (= 120 µε), so that all analyses are linear. Accordingly, the super-

position principle can be used to evaluate the responses to multi-axial loads from uni-axial

load cases. The models do not have an intrinsic absolute length scale, which means that

the results can be scaled to any slit size, including that actually found in nature.

Unless stated otherwise the relative face displacements are evaluated as the change in

distance (D) between two opposite points at the faces of a slit in the undeformed state,

D = w0 − w (Fig. 3.6). For the configurations studied here, the differences between D

and the change of the width of the slit, D̃ = w0 − w̃ (as defined in Fig. 3.6), evaluated

at the center of the slits (Dc) or at the positions of the dendrites (Dd), remain small at

(D − D̃)/D̃ / 8.2 × 10−3. This is due to the fact that the slits were mostly compressed

rather than sheared under the in-plane loads considered. Accordingly there is no noticeable

difference between plotting our diagrams in terms of D̃ or D.

3.2.1.1 Planar FE models for assessing Kachanov’s method

When the FE method is used for modeling problems from linear elastic fracture mechanics

(LEFM) a difficulty arises. The polynomial interpolation functions used for standard Fi-

nite Elements cannot represent the singular crack tip stress and the strain fields predicted

by LEFM. Many researchers investigated this problem and developed special finite element

formulations that incorporate singular interpolation functions (e.g. Byskov (1970); Tracey

(1971); Tong et al. (1973); Atluri et al. (1974); Benzley (1974); Papaioannou et al. (1974)).

Such elements are, however, not accessible in most commercial FE programs. In the mid

1) The associated effects were studied in detail, however, with three-dimensional models, see Chapter 5.1.
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Figure 3.6: Evaluation of slit face displacements. Either the change in distance between two

opposite points I and II, D = w0 − w, or the change in slit width D̃ = w0 − w̃ can be evaluated.
Undeformed states I and II; deformed states I’ and II’.

seventies Henshell and Shaw (1975) and Barsoum (1977) independently developed the so

called quarter point elements. They showed that the proper crack tip opening displace-

ment, stress, and strain field around a crack tip can be obtained from standard quadratic

isoparametric quadrilateral Finite Elements. When one element edge is collapsed and the

midside nodes on the neighboring edges are moved to the quarter points (Fig. 3.7) a 1/
√

r

singularity is introduced into the mapping between the element’s parametric coordinate

space and Cartesian space.

In the FE models for assessing Kachanov’s method tensile reference strains εa,r = −5.56×
10−5 (= −55.6 µε) were applied at the models’ boundaries in the x -direction that corre-

spond to an applied tensile reference far field stress of σa,r = 1 MPa. The results obtained

Table 3.1: Difference in mid-crack face opening displacement (∆Dc = (Dc,qp − Dc)/Dc,qp in
percent) in a stack of five cracks (S/l0 = 0.125) between a model with a two way biased mesh seed
along the crack faces (Dc; 40 nodes with a bias ratio of 8) and a similar model but incorporating
quarterpoint elements at the crack tips (Dc,qp).

crack1 and 5 2 and 4 3

Dc/Dcc 0.5875 0.4536 0.0911

Dc,qp/Dcc 0.5871 0.4366 0.0925

∆Dc -0.07 % -3.9 % 1.5 %
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Figure 3.7: A triangular quarter point element is generated by collapsing an eight node quadri-
lateral element after Barsoum (1977).

for a single crack can be compared to the exact analytical solution of the mid-crack face

opening displacement of a single isolated crack Dcc (Hahn, 1976).

The models were meshed with 6-noded triangular plane stress elements. In a convergence

study, performed at lateral spacings of S/l0 = 0.125 and S/l0 = 0.5 (Fig. 3.8), we increased

the number of nodes along the crack faces in a two way biased mesh (bias ratio 8) and added

quarter point elements at the crack tips. In Figure 3.9 the results obtained for a stack of five

cracks at lateral spacings of S/l0 = 0.125, which is more sensitive to a change in element

size and element number, are shown. When increasing the number of elements along the

crack faces from 40 to 120 only a small difference in mid-crack opening displacement, Dc,

is noticeable, i.e., even the coarsest of the meshes employed is fully satisfactory. The

influence of the quarter point elements on the mid-crack face deformations also remains

small (Table 3.1).

It may be noted that, although according to electro-physiological investigations deforma-

tion of the slits normal to their long axes represents the adequate stimulus (Barth, 1972a,b),

within linear theory the results obtained for crack opening can be directly transformed to

describe compressive loading of the slits.
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Figure 3.8: Deformed FE quarter models (two symmetry axes) of five non-staggered cracks
spaced at a half of their length (S = 0.5 l0). a A two-way biased mesh with 40 nodes, b with
60 nodes, and c with 80 nodes and a bias ratio of 8 along the crack faces with plane stress
elements. Quarter-point elements were employed in the mesh depicted in b to account for the
stress singularities at the crack tips. The deformations are scaled up by a factor of 2.1 × 103.

3.2.1.2 Planar FE models for studying slit sensilla

Unless stated otherwise slits are of “capped rectangular” shape, i.e., a rectangular central

region is closed off by semicircular caps with diameters that equal the width of the slit.

All models were meshed with 6-noded triangular plane stress elements. Note that the

constant thickness of the elements is a good assumption for the far-field of the models

but not necessarily for the vicinity of the slits, where the cuticle tends to have a different

thickness. The meshes were strongly refined in the vicinity of the slits (Fig. 3.5) and

a convergence study was carried out in a stack of five similar slits at a lateral distance

S/l0 = 0.02 to ensure a sufficiently fine discretization. In this study the results for stacks

of five slits are insensitive to a change in element length that was held constant along the
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Figure 3.9: Results of a convergence study on a stack of five cracks at lateral spacings of
S/l0 = 0.125 in terms of relative mid-crack face opening distance Dc/Dcc. The number of nodes
along the crack faces was increased and the bias ratio of the two way biased mesh was held
constant at 8.

slits faces between ℓedge/l0 = 0.008 and 0.001 (Fig. 3.10). Accordingly, coarse meshes with

edge lengths of the elements along the slits faces of ℓedge/l0 = 0.004 were chosen to achieve

less CPU intense results.

In view of the models’ scaling properties the results on slit face displacements are nor-

malized with respect to a reference configuration. This takes the form of a single slit of

aspect ratio l0/w0 = 100 situated at the center of a square disk subjected to a uni-axial

compressive far-field strain εa,r = 2.5× 10−5 (= 25 µε) which acts normal to the slit faces.

The corresponding compressive far-field stress is σa,r = 4.5 × 105 Pa. The above far-field

strain is well within the range of physiological values (Blickhan and Barth, 1985; Brüssel,

1987). For this configuration the slit face displacements at the slits’ center assume a value

of Dsc = 5.034 × 10−5 l0 under the above conditions. Therefore, an actual slit of length

l0 = 100 µm is compressed by 5.034 nm. Taking the shielding effects of the slits in lyriform
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Figure 3.10: Results of a convergence study of the model of a stack of five slits at a lateral
spacing of S/l0 = 0.02 in terms of slit face displacements (D). The edge lengths of the elements
along the slits faces ℓedge/l0 were decreased from 0.008 to 0.001.

organs into account this is in good agreement with the measured slit deformation of about

3 nm for the largest slit in lyriform organ HS8 on the tibia of the bird spider Aphonopelma

(Blickhan, 1983). For convenience, the above parameters describing the reference slit under

uni-axial deformation in normal direction are also listed in Table B.1 in Appendix B. In

the models for studying the directional responses of the organs the boundary conditions

(see Fig. 3.5) were held constant and the slit arrays were rotated accordingly.

Additional models for studying boundary effects took the form of circular disks with di-

ameter 8.66 l0, thickness 0.2 l0, aspect ratio l0/w0 = 15, and lateral spacing between the

slits S/l0 = 0.33 (Fig. 3.11a). They correspond to the conditions used in the experimen-

tal study of Barth et al. (1984). Among others, loads oriented parallel to the slits were

introduced into the disks over an angle of approximately 70◦ (Fig. 3.11b). Since we used

square models within our study we loaded a square disk with an edge length similar to

the diameter of the circular disks by distributed loads acting on subregions of the straight
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Figure 3.11: Study of the boundary effects on the deformation of the slits in an oblique bar
formation with l0/w0 = 15, S/l0 = 0.05, and λ/l0 = 0.4. a Undeformed and b deformed FE
models of a circular disk with geometry and loading closely approaching the ones used in the
experimental study of (Barth et al., 1984). c Slits in a square disk of similar size (diameters in
a, b, e equal side lengths in c, d, f) to the circular disk in a, open up under loading conditions
analogous to the one used in b. d Square disk loaded by homogeneous strains at the edges shows
deformation of the slits. e Deformed circular and f square disks subjected to loading normal to
the slits show similar slit deformations. The displacements are scaled up by factors of 2× 103 (b
to d) and 2 × 102 (e and f), respectively.
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edges that correspond to the 70◦ angle range in the circular disks (Fig. 3.11c). Under these

loading conditions both the experiments of Barth et al. (1984) and the present FE analysis

show that the slits in an oblique bar formation loaded at Φ = 0◦ open up (Figs. b and c).

In contrast, square models of the same size (Fig. 3.11c) subjected to uniformly distributed

uni-axial strains along the edges predict that the slits are compressed for a load angle

of Φ = 0◦ (Fig. 3.11d). Evidently, for such “longitudinal” loads there is a marked effect

of the boundary conditions on the slit face displacements. For normal loads (Φ = 90◦),

which are biologically more relevant, however, the difference in the slit face displacements

obtained for the above types of boundary conditions amounts to only 3%. The boundary

conditions corresponding to actual spider sensory organs are unknown. They can, however,

be approximated by three-dimensional shell models, e.g. of segments of spider legs, and

incorporated into local shell or plane stress models.

3.2.2 3D FE models

In the present thesis we employed two kinds of three-dimensional FE models: (i) three-

dimensional structural models to model the slits’ morphology (shape and stiffness of the

membranes and filling of the slits) and (ii) three-dimensional shell models that explore the

effects of the three-dimensional shape of the cuticle at the site of the organs on the slit

deformations.

In the Finite Element models the cuticle was treated as a transversely isotropic elastic

material with the effective material parameters given in Table 2.3. Unless stated otherwise

the deformations were evaluated in the mid-plane at the centers of the slits and all analyses

were performed with geometrically linear models.

3.2.2.1 3D FE structural models

Unless stated otherwise quarter models of the slit arrangements were employed, which

make use of the mirror symmetries of the arrangements with respect to the xz - and yz -

planes (Fig. 3.12). Therefore, these models are restricted to far-field loads acting normally

or tangentially to the slits. All 3D structural models for studying the influence of the
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Figure 3.12: Three dimensional Finite Element quarter model of a single slit making use of its
mirror symmetry. Continuum elements were used in the vicinity of the slit embedded in an outer
region meshed with shell elements. Both membranes were meshed with shell elements.

cross sections of the membranes and of the fluid present inside the slits on the slit face

deformation were square disks of size 40 mm × 40 mm at the centers of which single

slits of length l = 100 µm and width b = 1 µm were located as in most of the planar FE

models introduced in Chapter 3.2.1.2. The disks were 10 µm thick, which corresponds

to the thickness of the exocuticle of the tibiae of C. salei. Both the outer and inner

slit membranes were assumed to be 0.25 µm thick and to show a linear elastic isotropic

material behavior with a Young’s modulus of 1.5 MPa and a Poisson’s ratio of 0.3. The

same material behavior was used for the coupling cylinder with diameter 0.3 µm, length

0.25 µm, and thickness 0.125 µm with a ring at the inner rim of inner diameter 0.24 µm

necessary to fix the dendrite (geometrical proportions as in Fig. 3.13a). The coupling

cylinder was positioned at the center of the outer membranes according to fine structural

studies of the long single slit on the tarsus of C. salei (Barth, 1971).

In order to study the influence of the shape of the outer membrane on the deformation of

the coupling cylinders of single isolated slits membranes of low curvature (circular sector

with radius 0.707 µm and height 0.3 µm), of semi-circular cross section, and with a dimple

of diameter 0.8 µm (Fig. 3.13b) and height 0.1 µm in a semi-circular cross section were used

(Fig. 3.14a). These models were suggested by SEM images of organ HS9 (Barth and Stagl,

1976) and by images of semi-thin slices of the organ HS8 (Fig. 3.13c) both positioned on the

tibia of C. salei. Because the mechanical properties of the slits’ contents are unknown both
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Figure 3.13: a Cross section of the long single slit on the tarsus of C. salei at the location of
the dendrite (Barth, 1971). b Slit of lyriform organ HS8 on the tibia of C. salei cut in a plane
parallel to the surface showing the additional dimple in the outer membrane at the location of
the dendrite (Müllan, 2005). c Semi-thin slice of lyriform organ HS8 on the tibia of C. salei cut
laterally to the longitudinal axes of the slits close to the location of the dendrite of the shortest slit
in the arrangement (Müllan, 2005). cc coupling cylinder; dt dendritic tip; M.o. outer membrane.

highly compressible (gas-like) and weakly compressible (liquid-like; Bulk modulus 2.2 GPa)

behaviors were modeled with hydrostatic fluid elements. In these models the analyses were

geometrically nonlinear and the results were compared to the results of the deformations

of the outer membranes in the organ HS8 of C. salei measured interferometrically under

biologically relevant loads. In the models considering the slits’ contents membranes of

semi-circular cross sections were incorporated without taking the coupling cylinders into

account (Fig. 3.15). Both membranes were modeled as impermeable, i.e. the volumes of

the slits are closed and deformation of the slit faces increases the pressure inside the slits.

Under compressive far-field loads acting normally to the longitudinal axis of the slits the

effect of the stiffness of the membranes on the mid-length deformation of the slit was

studied in square models of stacks of five equal parallel capped rectangular slits with length
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Figure 3.14: Detail of a model for studying different cross sections of the outer membrane, i.e.
low curvature, semi-circular cross section, and a dimple in a semi-circular cross section, of a single
isolated slit.

l = 100 µm, width b = 1 µm, and lateral spacings of S/l = 0.02 (Fig. 3.16). Semi-circular

linear elastic isotropic membranes of thickness 0.25 µm were assumed and the coupling

cylinders were not considered. The slit face deformations were normalized with respect to

a reference slit face displacement Dsc = 5.034 nm, which pertains to the center of a single

isolated slit of length l = 100 µm and width b = 1 µm without outer and inner membrane

and subjected to far-field strains of εa = 2.5 × 10−5 in analogy to the planar studies and

Appendix B.
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Figure 3.15: Detail of a quarter model of a single slit used to study the influence of the slit
filling.

In all 3D FE models described in the present section the exocuticle in the vicinity of the

slits was discretized by continuum elements that were embedded in a square region meshed

with 6-noded triangular shell elements using shell to solid element coupling (Fig. 3.12).

The models for investigating the influence of different cross sections of the membranes

on the deformation of the coupling cylinder (models of single slits) and the influence of

the stiffness of the membranes on the mid-length slit deformation (models of stacks of

five similar parallel slits) were meshed with 10-noded tetrahedral continuum elements in

the vicinity of the slits. The membranes were discretized by combinations of 8-noded

rectangular and 6-noded triangular shell elements. In the models accounting for the fluid

present inside the slits elements with linear interpolation functions were used at the inner

faces of the slits and for the elements of the membranes in order to ensure compatibility

with the finite elements used for hydrostatic modeling of the fluid. Therefore the models

of the disks were meshed with 8-noded brick continuum elements close to the slits and the

membranes were meshed with 4-noded rectangular shell elements.
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Figure 3.16: Detail of a model of a quarter of a disk for studying the influence of the stiffness
of the membranes on the slit deformation in a stack of five similar parallel slits at a neighboring
distance of S = 0.02 l0.

A convergence study was performed for the continuum model of a single slit filled with

fluid using linear elements. The results presented in Table 3.2 show that the solution of

this problem does not fully converge even when a fine mesh (element edge length along

the slit faces of ℓedge/l = 0.002; element edge length over the thickness of the cuticle of

ℓedge/l = 0.05) is used. To obtain results in reasonable time we used meshes with an

element edge length along the slit faces of ℓedge/l = 0.004 and an element edge length over

the thickness of the cuticle of ℓedge/l = 0.05 (D2
c in Table 3.2).

All models were loaded by a prescribed compressive far-field strain of εa = 2.5 × 10−5

(=25 µε) acting on the edges parallel to the y-direction as described in Chapter 3.2.1.2.

This strain value is well within the range of physiological values (Blickhan and Barth, 1985;

Brüssel, 1987). The outer edges parallel to the x -direction were allowed to deform freely
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Table 3.2: Difference in mid-slit face displacement (∆Di
c = (Di+1

c − D3
c )/D

3
c in percent) and

in mid-slit out-of-plane deformation of the outer membrane (∆ui
z = (ui+1

z − u3
z)/u

3
z in percent)

in a single slit filled with fluid between a model with a coarse mesh D1
c (element edge length

along the slit faces of ℓedge/l = 0.004; element edge length in thickness (z -)direction of the cuticle
of ℓedge/l = 0.1), a fine mesh D3

c (element edge length along the slit faces of ℓedge/l = 0.002;
element edge length in thickness (z -)direction of the cuticle of ℓedge/l = 0.05), and a mesh with
intermediate fineness D2

c (element edge length along the slit faces of ℓedge/l = 0.004; element edge
length in thickness (z -)direction of the cuticle of ℓedge/l = 0.05).

D1
c D2

c D3
c ∆D1

c ∆D2
c

0.8169 nm 0.884 nm 0.926 nm -11.8% -4.5%

u1
z u2

z u3
z ∆u1

z ∆u2
z

3.823 nm 3.811 nm 3.8453 nm -0.6% -0.89%

in the in-plane and out-of-plane directions (coordinates as in Fig. 3.12). Since the amount

of slit deformation remains small contact of the membranes and the inner faces of the slits

did not have to be considered.

3.2.2.2 3D FE shell models

For studying the relevance of the three-dimensional shapes of the cuticular regions sur-

rounding the slits (global and local curvature effects) on the slit face displacements single

slits were incorporated at the centers of planar square disks of size 10 mm × 10 mm into

different local geometrical features in the form of bumps and ridges (Figs. 3.17b and c) that

are frequently seen in SEM images (Figs. 3.18a and b). Analogous studies were carried out

on slits parallel to the axis of cylinders of diameter 5 mm (Fig. 3.19b and c). The thickness

of the models being 10 µm in both cases. From SEM images of lyriform organ HS8 of the

spider C. salei, that was fractured along the longest slit of the organ (Fig. 3.20a and b),

we know that this sensillum is situated on a ridge that has a height of approximately 45

µm and a width of 160 µm (Müllan, 2005). Accordingly, the bumps in the models took the

form of spherical caps of radius 100 µm (Figs. 3.17b and Fig. 3.19b), the cross sections of

the ridges were circular segments of radius 100 µm (Figs. 3.17c), both of height 45 µm, and

in the cylindrical models ridges of similar geometry were arranged to run circumferentially

around the cylinder, forming stiffening rings (Fig. 3.19c). For studying the principal effects
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Figure 3.17: Single isolated slits modeled in a a flat disc, b a spherical bump, and c a ridge-like
structure.

of three-dimensional shapes of the cuticle at the site of the organs on the slit deformation

bumps and rings were located in the middle of the cylinders. The latter configuration is

similar to the stiffening ring on the trochanter of C. salei where the organ HS2 is located

(Fig. 3.18b). To account for the effect of the slit length we modeled single slits of length
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Figure 3.18: SEM images of a a single slit positioned on a spherical bump on the coxa and b

lyriform organ HS2 located on a stiffening ring on the trochanter of C. salei (Müllan, 2005). The
arrows point to the location of the sensilla.

l = 186 µm, corresponding to the arc length of the openings (projected length 160 µm, see

Fig. 3.20c) in the spherical bumps, the ridges, and the rings, in smooth planar disks or

smooth cylinders. The ratio of slit length vs. diameter of the modeled cylinder is 0.037

which is smaller than the value of approximately 0.09 found for the longest slit of the organ

HS8 of C. salei. Accordingly, higher slit face deformations are expected in the spider leg

for slits located in bumps or rings under similar boundary conditions.

The planar disks were loaded by compressive far-field strains of εa = 2.5 × 10−5 (=25 µε)

acting on the edges parallel to the y-direction and the edges parallel to the x -direction were

allowed to deform freely in y- and z-direction (Fig 3.17). In addition all edges were allowed

to rotate freely. The half models of the cylinders were free to deform in the axial direction

and symmetry boundary conditions (no displacements in z-direction and no rotations about

the x- and y-axes) were applied in the section plane (xy). In this plane a tensile far-field

displacement of 100 µm was applied in the x -direction (Fig 3.19) so that the maximum

strains in the models are ε = 5 × 10−3 and all analyses are linear. This load case results

in an ovalization of the cylinder and therefore in bending moments at the location of the

slits in contrast to the in-plane uni-axial stress loading of planar discs.

Additional models were used to compare interaction effects between the slits modeled in

disks under in-plane loads and bending moments. The models were smooth planar disks
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Figure 3.19: Model of a single slit incorporated in cylinders. a Single slit in a smooth cylinder,
b single slit in a spherical bump, and c single slit in a ring-like structure.
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c

Figure 3.20: SEM images of lyriform organ HS8 on the posterior side of the tibia of the spider
C. salei in isometric (a) and frontal view (b) (Müllan, 2005). c Cross section of the models of
spherical bumps and ridges.

and disks incorporating a diagonal ridge of circular cross section with a radius of 100 µm

and a height of 45 µm. The size of the models was 4 mm × 4 mm and their thickness

10 µm (Fig. 3.21b). At the center of the disk a slit formation based on lyriform organ HS8

of C. salei (projected length 160 µm, see Fig. 3.20c), oriented at an angle of −5◦ relative

to the x -axis (similar to the organ’s orientation at the distal end of the tibia of the walking

leg) (Figs. 3.21a and b), was positioned.

The latter models were loaded as described before by compressive far-field strains of εa =

2.5 × 10−5 (=25 µε) acting in the x -direction. In addition bending moments My were

introduced into the disks as rotations of the edges parallel to the y-axis of 0.001 radians

(= 0.057◦) about the y-axis of the disks (Fig. 3.21b) so that the maximum local strains in

the models are 5 × 10−5.
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Figure 3.21: Arrangement of slits based on lyriform organ HS8 of C. salei modeled in a a
planar disks under planar uni-axial loads and b a planar plate under bending loads.

For comparison we performed simulations of similar setups with a linear elastic isotropic

material using a Young’s modulus of 18 GPa and a Poisson number of 0.3. All shell models

were meshed with 6-noded triangular shell elements and the analyses were materially linear

and geometrically nonlinear. The element edge length along the slit faces was chosen in

accordance to the convergence study presented in Fig. 3.10 as ℓedge/l0 = 0.004.
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Chapter 4

Planar models

4.1 Results

4.1.1 Analytical models using Kachanov’s method

4.1.1.1 Comparisons between analytical and FE models

Because of the approximations involved in Kachanov’s method, the degree of accuracy

of the predicted crack opening distances must be known to assess their usefulness in the

present context. Gorbatikh and Kachanov (2000) examined the accuracy of the predictions

for the SIFs and the stress fields for three specific arrangements of straight cracks, viz. two

non-staggered parallel cracks, two staggered parallel cracks, and two cracks positioned at

an angle to each other. Non-staggered parallel cracks of equal length l0 were found to be

the worst case scenario in terms of crack interaction. For such configurations errors in

the SIFs are reported as 7% for a lateral spacing of S/l0 = 0.5 and 30% for S/l0 = 0.25,

respectively.

The accuracy of the crack opening displacements, D, obtained by Kachanov’s approach

can be assessed by comparing its results to FE predictions for arrangements of five non-

staggered, uniformly spaced, parallel cracks of equal length (Fig. 4.2a). The errors of the
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Figure 4.1: Error in Kachanov’s approximation (Dc,K) for the crack opening distances with
respect to FE results (Dc,FE), (Dc,K − Dc,FE)/Dc,FE, for the case of five non-staggered parallel
uniformly spaced cracks as functions of the lateral distances of the cracks, S. Kachanov’s method
predicts smaller crack Ds than the FEM. Ranges for different spacings occurring in slit sensilla
are referred to as I (single slits), II (loose groups), and III (lyriform organs).

opening Ds at the centers of the cracks, Dc, calculated according to Kachanov are shown in

Fig. 4.1 as functions of the distance S between neighboring cracks. Evidently, Kachanov’s

method can be used for studying arrays of cracks with lateral spacings S/l0 ' 0.5, i.e.,

in the present context of slit sensilla, for isolated slits and for loose groups of slits. For

spacings S/l0 / 0.25, however, the approximations for the crack D given in section 3.1.3

break down.

Alternatively, on the one hand an enhanced Kachanov’s method (see Chapter 3.1.1) or, on

the other hand, Finite Element analyses can be used to study arrangements of slits with

spacings as close as those found in lyriform organs. Even though some effort has to be put

into meshing and the requirements on computational power are higher than for Kachanov’s

method, Finite Element models can easily handle slits of a wide range of shapes, of finite

width, and of arbitrary distributions. They also provide the capability of modeling slits in

non-planar regions of the cuticle. Accordingly, the most promising route for studying the



4.1. RESULTS 55

Figure 4.2: Basic patterns of planar models examined by Kachanov’s method and geometrical
parameters of arrays of five cracks. a Non-staggered array of five parallel slits, b oblique bar
arrangement of five parallel cracks, and c triangular arrangement of five parallel cracks.

crack opening distances of slits in lyriform organs appears to be the use of Finite Element

models rather than extended versions of Kachanov’s theory.

4.1.1.2 Results of the analytical models

As a step towards understanding the functioning of the slit sense organs of arachnids the

effects of a number of geometrical parameters on the crack opening distances in generic

groupings of five parallel cracks (Fig. 4.2) were studied by Kachanov’s method. The param-

eters of primary interest are the lateral spacing between neighboring cracks, S, the amount

of longitudinal staggering of the cracks, λ, and the difference in length between neighbor-

ing cracks, ∆l. For all models the geometrical parameters are normalized to the length of

the longest crack which is held constant at l0. The results for the opening distances, D,

are normalized with respect to a reference configuration, which is the mid-length opening

distance of an isolated crack Dcc/l0 = 11.21 × 10−5 under mode I unit loading, σa,r = 1

MPa, in an infinite medium (Hahn, 1976). Uniaxial loading, i.e. uni-axial stress, in the

direction transverse to the cracks is considered. For convenience, the above parameters of

the reference configuration are also listed in Table B.2.

In this section by convention positive values of Dc/Dcc correspond to the opening displace-

ment of the faces of a given crack.
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Figure 4.3: Parametric study of the relevance of the main geometrical parameters on the crack
opening distances in groups of 5 cracks. a and b: Shielding effects change nonlinearly as the
distance between slits, S, increases. c and d: Increasing the longitudinal shifts λ between cracks
results in a transition from shielding to amplifying effects within the array of cracks (lateral
spacing of S/l0 = 0.5). e and f : Changing the lengths of the cracks within an arrangement by
increments ∆l increases the range of inputs that elicit a response (S/l0 = 0.5). b, d, and f show
the normalized Ds at the centers (Dc/Dcc) of the cracks as functions of the varied parameters.
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Figure 4.4: SEM images of (a) lyriform organ VS3 on the patella and (b) lyriform organ HS8
at the distal end of the tibia of C. salei (Müllan, 2005).

The results of the parameter studies are summarized in Fig. 4.3. Two examples of lyri-

form organs are shown in Fig. 4.4 to illustrate actual configurations. In the oblique bar

arrangement VS3 of C. salei (Fig. 4.4a) a gradation of the slit lengths of l0, 0.96 l0, 0.8 l0,

0.64 l0, 0.54 l0, 0.48 l0, and 0.32 l0 and a longitudinal shift between the slits of λ/l0 = 0.29,

0.24, 0.24, 0.18, 0.11, and 0.01 is found. Organ HS8, which is depicted in Fig. 4.4b, is of

triangular shape and has a gradation of the slit lengths of l0, 0.87 l0, 0.62 l0, 0.38 l0, 0.27 l0,

and 0.2 l0 and a longitudinal shift between the slits of λ/l0 = 0.16, 0.14, 0.1, 0.04, and 0.02.

The values of D predicted for arrays of parallel cracks of equal length l0 and transverse

spacings of S/l0 = 0.5, 0.75, 1, and 3 are depicted in Fig. 4.3a. Note that at the inner

cracks at S/l0 = 0.5 the shapes of the curves of the deformations along the crack faces of

the inner cracks are no longer ellipses which is the effect of the enrichment of the ellipti-

cal shape approximating the crack face displacements by quadratic functions (Eq. 3.7 in

Chapter 3.1.3). In Fig. 4.3b the normalized opening distances at the centers of the cracks

are plotted as functions of S/l0. Figure 4.3c shows the crack face opening displacements

obtained for staggered parallel cracks of equal length l0 and spacing S/l0 = 0.5, the longi-

tudinal shifts taking values of λ/l0 = 0, 0.25, 0.5, and 1. The dependence of the relative

center opening displacements on λ/l0 for such configurations is presented in Fig. 4.3d.

The effects of decreasing crack lengths introduced via constant length decrements ∆l into

symmetrical loose groupings are visualized in Fig. 4.3e, where the crack Ds predicted for

∆l/l0 = 0, 0.05, 0.1, and 0.25 are shown for S/l0 = 0.5. Figure 4.3f depicts the variation

of Dc/Dcc as functions of ∆l/l0 for arrangements of this type. Note that the left side in

Figs. 4.3b, d, and f pertains to an arrangement of five parallel straight cracks at S/l0 = 0.5,

λ/l0 = 0, and ∆l/l0 = 0.
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4.1.2 Planar FE models of generic slit arrays

The shapes of individual slits and the arrangements of multiple slits covered by the present

work are shown in Fig. 4.5 together with the geometrical parameters used to describe

them. They are all based on the diversity of slit sensilla actually occurring in arachnids

(see Chapter 4.2.2 and Barth (2002a)).

In a first step towards understanding the working principles of slit sense organs we evaluated

the slit face displacements of idealized slit arrangements (Fig. 4.5) at the slits’ centers, Dc,

which do not necessarily coincide with the displacements at the locations of the dendrites

in actual slit sensilla (see Chapter 4.2.2).

4.1.2.1 Deformation of a single slit subjected to a normal uni-axial load

A study of important geometrical parameters of isolated slits, i.e., aspect ratio, shape,

centerline geometry, slit length, and orientation of the slit with respect to the uni-axial

loads, is carried out in order to identify their influence on the face displacements of the slits.

The effects of the aspect ratio are of special interest, because the campaniform sensilla of

insects are typically circular to elliptical with aspect ratios l0/w0 rarely exceeding 3 (Barth,

1981), whereas arachnid slit sensilla are much more elongated.

Figure 4.6a depicts the relative slit face displacements predicted for capped rectangular

slits and ellipses of length l0 with aspect ratios ranging from l0/w0 = 1 to 100 under the

action of normal uni-axial stresses. The increase of Dc/Dsc to 1.5 (by 50%) obtained for

l0/w0 = 1 is mainly a consequence of the area of such circular openings in the cuticle,

which is about eighty times larger than that of a slit with l0/w0 = 100 (Fig. 4.6a’).

In Fig. 4.6a and 4.6a’ it is difficult to distinguish the predictions for Dc/Dsc pertaining

to capped rectangular slits and to ellipses. Therefore, the normalized difference in the

relative face displacements, ∆Dc/Dsc = (Dc,slit−Dc,ell)/Dsc, is plotted in Fig. 4.6b, and the

difference between the areas of capped rectangles and ellipses of equal length l0, ∆A/l20 =

(Aslit−Aell)/l
2
0, normalized by the area of a square of size l0×l0, is plotted versus the aspect

ratio l0/w0 in Fig. 4.6b’. The capped rectangles give rise to higher face displacements for

all nontrivial aspect ratios. This behavior is largely due to the larger area of the capped
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Figure 4.5: Basic patterns of planar models examined by FE analysis and geometrical parame-
ters of a single slit and of arrangements of five slits. a Slit geometry, b ”capped rectangular” and
elliptical slits, c C-shaped and S-shaped slit geometries, d orientation of a single slit relative to a
uni-axial reference compressive load εa,r, e non-staggered array of five parallel slits, f oblique bar
arrangement of five parallel slits, g triangular arrangement of five parallel slits, h heart shaped
arrangement of five parallel slits, and i fan arrangement of five slits.
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Figure 4.6: Parametric study of the influence of the principal geometrical parameters of a
single slit on the normalized relative slit face displacements at mid-length. a Dependence of
Dc/Dsc on the slits’ aspect ratio l0/w0, a’ normalized area of “capped rectangular” and elliptical
slits, and b variation of the normalized difference between the relative face displacements of
”capped rectangular” and elliptical slits as function of l0/w0, b’ normalized difference in area
between capped rectangles and ellipses of given the aspect ratio, plotted versus l0/w0 (peak at
2) c dependence of Dc/Dsc on the amplitude parameter B/l0 describing C-shaped and S-shaped
slit geometries (insets correspond to fixed distances lp = l0 between the endpoints, and to fixed
slit length l = l0, respectively, for B/l0 = 0.4), and d dependence of Dc/Dsc on the orientation
angle Φ of the uni-axial far-field stress. Note that a to c correspond to Φ = 90◦.
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rectangles (Aslit) compared to ellipses (Aell) of equal aspect ratio. The maximum difference

in ∆A/l20 is only 0.053 (=5.3%) of the area of a square of size l0 × l0. It is reached at an

aspect ratio of l0/w0 = 2, whereas the maximum of ∆Dc/Dsc ≈ 0.026 (=2.6%) is predicted

for l0/w0 ≈ 2.5. Note that for the aspect ratio of l0/w0 = 1 both the capped rectangular

and the elliptical slits degenerate into circles of diameter l0.

The relative face displacements of slits with straight, C-shaped and S-shaped geometries

under normal loadings are compared in Fig. 4.6c. For the latter two cases the centerlines

of the slits are half and full periods, respectively, of sine waves of amplitude B/l0 (see

Fig. 4.5c). Two sets of results are plotted in Fig. 4.6c, in one of which the integrated

length of the slits’ midline, l, is set to l0 (green and grey lines), whereas in the other the

distance between the slits’ endpoints, i.e. their projected length lp, is maintained at l0

(dark red and blue lines). The predictions show that, among the geometries examined,

straight slits give rise to the largest relative face displacements under normal compressive

loading. When the distance lp between the endpoints in C- and S-shaped slits is held

constant, the slit faces of the C-shaped slit deform similarly to those of a straight slit. In

S-shaped slits increasing B/l0 causes the center region of the slit to rotate progressively,

so that the relative slit face deformation Dc/Dsc decreases quickly (the local load angle

progressively deviates from 90◦ in the center region). For both C-shaped and S-shaped slits

the values of Dc/Dsc decrease with increasing values of B/l0 when the integrated length

of the slits is held at l = l0, because the projected lengths of the slits facing the load are

reduced. For configurations with B ' 0.28 l0 S-shaped slits of length l = l0 show negative

values of Dc/Dsc, i.e. such slits open up at mid-length when subjected to compressive

normal loads. Figure 4.6d which gives the directional dependence of slit deformation of a

single slit which will be discussed in Chapter 4.2.2.2.

In contrast to Fig. 4.6 the changes in Dc (∆Dc) are evaluated and plotted as functions of

the relative changes in the geometrical parameters varying in slit sensilla, viz. slit length l,

aspect ratio l/w0, orientation Φ, and shape parameter B in C- and S-shaped slits (Fig. 4.5a-

c) in a single diagram (Fig. 4.7) to allow a direct comparison of the sensitivities to such

changes. The limits of the relative changes to geometrical parameters are presented in

Table 4.1.
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Figure 4.7: Parametric study of the change in relative slit face displacement ∆Dc/Dsc as
function of changes in the principal geometrical parameters of a single slit, viz. slit length l,
aspect ratio l/w0, orientation Φ, and amplitude parameter B in C- and S-shaped slits.

Table 4.1: Relative change of parameters in single slits as used in Fig. 4.7

Parameter 0% 100%

l l = 1 l = 0

l/w0 l/w0 = 100 l/w0 = 1

B B/l = 0 B/l = 0.45

Φ Φ = 90◦ Φ = 0◦

4.1.2.2 Deformation of arrays of five parallel slits under a uni-axial normal

load

The influence of selected geometrical parameters on the response of arrays of mechani-

cally interacting slits was studied for three generic arrangements consisting of five parallel

slits each, a non-staggered array (Fig. 4.5e), an oblique bar arrangement (Fig. 4.5f), and

a triangular arrangement (Fig. 4.5g) (see Barth et al. (1984)). For the latter two ar-

rangements the lateral spacing between neighboring slits was set to S/l0 = 0.04, which
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Figure 4.8: Deformed configurations of three FE models subjected to uni-axial compressive
loading at Φ = 90◦. a Stack of five parallel slits with aspect ratios l0/w0 = 100 and lateral
spacings S/l0 = 0.02. Due to bending of the “ligaments” (cuticular material between slits), the
outer slits are strongly compressed whereas the inner slits expand (displacement scaling factor
2 × 104). b Oblique bar array in the deformed state at lateral spacings S/l0 = 0.04. Using a
lateral shift λ/l0 = 0.35 gives rise to similar mid slit face deformations Dsc for all of the slits
(displacement scaling factor 5×103). c Triangular arrangement of slits spaced at S/l0 = 0.04 with
a linear gradation in slit length ∆l/l0 = 0.225 . Considerable shielding is evident (displacement
scaling factor 1.5 × 104). Positions of maximum slit face displacement are indicated by orange
diamond shaped symbols.
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Table 4.2: Change of parameters in a stack of five slits

Parameter 0% 100%

S S/l = 0.02 S/l = 3

∆l ∆l/l = 0 ∆l/l = 0.2

λ λ/l = 0 λ/l = 3

corresponds to spacings found in real lyriform organs. This lateral spacing gives rise to

thin “ligaments” (cuticular material between neighboring slits) with a width of 0.03 l0 each.

Uni-axial stresses acting normal to the slits (Φ = 90◦) were applied. Figure 4.8 shows the

corresponding deformed configurations, the displacements being multiplied by factors of

2 × 104, 5 × 103, and 1.5 × 104 for visualization. The orange diamond shaped symbols

indicate the positions of maximum slit face displacements.

Lateral spacing. The effects of the lateral spacing between neighboring slits, S, were in-

vestigated for an array of five non-staggered slits of equal length l0. Figure 4.9a (left:

overview, right: detail plot for low values of S/l0) shows that interaction effects essentially

vanish for S/l0 ' 3, where the difference in Dc of the neighboring slits is smaller than

3% of the maximum slit face displacements of the outer slits. For closely spaced slits with

S/l0 / 0.1, i.e. in the range found in lyriform organs, the inner slits of the arrays show very

small or even negative relative face displacements. Bending of the “ligaments” between

slits, especially of the outermost ones, is prominent in this regime.

Longitudinal shift. Oblique bar formations were studied by FE simulations of five closely

arranged parallel slits, in which the lateral spacings were kept fixed at S/l0 = 0.04, whereas

the longitudinal shift between neighboring slits, λ/l0 (Fig. 4.5f), was varied. As is evident

from Fig. 4.9b the relative slit face displacements significantly exceed those of a single slit

for the range 0.25 / λ/l0 / 2.5. Note that the values for λ found in lyriform organs,

e.g. 0.25 / λ/l0 / 0.33 in organ VS3 of C. salei, fall into this range. A maximum

magnification factor of Dc/Dsc ≈ 4.25 is predicted for the center slit at λ/l0 ≈ 0.85. Dc

decreases rapidly as λ approaches l0 (i.e. λ/l0 = 1). For λ/l0 = 0.34 the face displacements

of all slits are nearly equal (Fig. 4.9b) with an amplification factor of Dc/Dsc ≈ 1.5.
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Figure 4.9: Parametric study of the influence of the principal geometrical parameters of arrays of
five parallel slits on the normalized relative slit face displacements at mid-length (Φ = 90◦). Note
difference in scaling of both x -axes in left and right panels, respectively. a As lateral spacings S/l0
between slits are reduced shielding effects increase and the inner slits open up (Dc/Dsc negative)
for S/l0 ≤ 0.07 due to bending of the cuticular “ligaments” between slits (see also Fig. 4.8a). b

Increasing the longitudinal shift λ/l0 between slits from 0 to 0.85 while maintaining S/l0 = 0.04
causes Dc/Dsc to increase rapidly to a maximum. At λ/l0 ≈ 0.34 the relative face displacements
of all slits take nearly identical values. c Changing the length of the slits by ∆l/l0 in triangular
arrangements with lateral spacings of S/l0 = 0.04 results in marked shielding of the shorter slits
2, 3, 4 and 5. For ∆l/l0 ' 0.09 the longest slit behaves similarly to a single slit (Dc/Dsc = 1).
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Figure 4.10: Parametric study of the change in relative slit face displacement ∆Dc/Dsc as
function of the changes in principal geometrical parameters of stacks of five parallel slits, viz.
lateral distance S in parallel, gradation ∆l in triangular, and longitudinal shift λ in oblique bar
formations. See Table 4.2 for ranges of geometrical parameters.
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Length gradation. The lengths of the slits in symmetric triangular arrays can be described

by the length gradation ∆l/l0 (Fig. 4.5g). For the studied lateral spacing of S/l0 = 0.04

marked shielding effects are present for ∆l/l0 ' 0.1 (see Fig. 4.8c and Fig. 4.9c). Typically,

slit length gradations found in natural lyriform organs such as organ HS8 vary throughout

the organ from ∆l/l0 ≈ 0.08 to 0.3. It is interesting to note that for the above value of

S the mid-length relative face displacement of slit2 is negative throughout the range of

∆l/l0 ' 0.1, i.e., the slit opens up under compressive uni-axial stresses acting at an angle

of Φ = 90◦ (for the definition of Φ see Fig. 4.5d).

Alternatively, the results of the previous parametric study can be plotted as function of the

change of each parameter describing generic arrays of slits, i.e. S, λ, and ∆l/l0 (Fig. 4.10).

The ranges of variation of the geometrical parameters are listed in Table 4.2.

4.1.2.3 Dependence of the deformation of a single slit on the direction of

uni-axial loads

Uni-axial far-field stresses were applied to single slits of straight, C-shaped and S-shaped

geometries in directions varied by increments of 5◦ of the in-plane angle Φ. A value of

B/l0 = 0.25 was chosen for the shape parameter of the curved slits (Fig. 4.5c), which lies

within the range observed in real C- and S-shaped slits (Fig. 2.3b). The integrated lengths

of the slits’ centerlines were set to l = l0 in each case.

Figure 4.6d shows the dependence of Dc of a straight slit of capped rectangle shape on the

orientation angle Φ of the compressive uni-axial far-field strain as defined in Fig. 4.5d. In

Fig. 4.11 the predicted relative slit face displacements at mid-length are presented in the

form of a polar diagram. The maxima of Dc for both the straight and the C-shaped slits

occur at load directions that are perpendicular to the slits’ long axes, i.e. Φ = 90◦. The C-

shaped slit displays a lower sensitivity at all loading angles, the maximum value of Dc/Dsc

reaching a value of about 0.85. For the S-shaped slit with B/l0 = 0.25 the maximum face

displacements are predicted to occur for uni-axial stresses oriented at Φ ≈ 140◦ from the

slit axis and their absolute values are comparable to those predicted for the C-shaped slit,

i.e., they are also smaller than those of the straight slit.
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Figure 4.11: Directional sensitivity to uni-axial compressive far-field loads of straight, C-shaped
and S-shaped slits having the same length l0 and an amplitude parameter of B/l0 = 0.25. The
maximum of Dc for the straight and C-shaped slits is found at Φ = 90◦. The S-shaped slit is
predicted to be most sensitive to loads acting at Φ = 140◦.

4.1.2.4 Dependence of the deformation of fan-type arrangements of five slits

on the direction of uni-axial loads

The influence of the direction of far-field uni-axial compressive stresses was studied for fan-

type arrays of five slits of aspect ratio l0/w0 = 100 each, the total angles α subtended by

the arrangements being 45◦, 90◦, and 180◦, respectively. The slits were arranged radially at

angular increments of α/4 and their “inner” tips were positioned at a radius of R = 0.35 l0.

This value of R was chosen on the basis of an actual lyriform organ on the chelicerae of

the spider Cupiennius salei (Barth and Libera, 1970). For details of the configurations see

Fig. 4.5i.

In a fan-type array with α = 45◦ considerable shielding is present for the inner slits

(Fig. 4.12a), so that for them Dc does not exceed 0.25 Dsc. The maximum value of Dc

for the outermost slits was found to reach approximately 0.8 Dsc for this arrangement.

Increasing the angle α subtended by the slits changes the directional sensitivity of the

outermost slits, 5 and 1, and reduces the shielding of the inner slits (Fig. 4.12b). Fans with

α = 180◦ are well suited for sensing uni-axial loads acting in any direction (Fig. 4.12c), with

predicted values of Dc exceeding 0.65 Dsc for all orientations. The sensitivity at Φ = 0◦ is
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Figure 4.12: Effects on the directional sensitivity of varying the subtended angle α and the
radial position of the slits’ ends R within fan-shaped arrangements of five slits. a The inner slits
are shielded at α = 45◦ and R = 0.35 l0 (R see Fig. 4.5i). b Shielding effects decrease when α is
increased to 90◦. c At α = 180◦ at least one slit is sensitive to any loading direction. d Shielding
of the outer slits is only slightly increased by shifting the slits radially to R = 0.85 l0 at α = 180◦.
The envelopes of the responses are shown as bold solid lines.

about 20% lower than at Φ = 90◦.

A second fan-type arrangement with α = 180◦ and R = 0.85 l0 is inspired by a lyriform

organ on the trochanter of the whip spider Admetus pumilio (Barth and Stagl, 1976).

Figure 4.12d shows the relative face displacements at mid-length predicted for this set
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of parameters, the results being slightly more isotropic compared to those obtained for

R = 0.35 l0 (Fig. 4.12c).

To relate the positions of the dendrites (red filled circular markers in Fig. 4.13) to the

slit face deformations, the latter are plotted along the slits in Fig. 4.13a for the fan-type

arrangement with R = 0.35 l0 and α = 90◦ subjected to uni-axial far-field stresses acting

at angles of Φ = 90◦ and Φ = 120◦. The maxima of the Dc are not at the slits’ centers and

the slit face displacements are skewed towards the outer ends of the slits. This effect is a

consequence of the geometrical arrangement of the slits. The values for the load direction

in Fig. 4.13 are chosen either to match the load direction a single slit is most sensitive to

(Φ = 90◦) or to check if the location of the maximum slit face displacement changes when

the load angles are altered (Φ = 120◦).

4.1.2.5 Dependence of the deformation of arrays of five parallel slits on the

direction of uni-axial loads

All results in this section pertain to parallel slits with transverse spacings of S = 0.04 l0,

which is well within the range found in arachnid lyriform organs.

Figure 4.14a shows the predicted directional sensitivities of the relative face displacements

at mid-length of five slits making up an oblique bar formation with a longitudinal shift

of λ = 0.34 l0. This value of λ is special because the Dc of all slits coincide at Φ = 90◦

(Fig. 4.9b). The largest deformations occur in the center slit at an angle of Φ ≈ 80◦, where

Dc/Dsc reaches a value of approximately 1.6, i.e., there is considerable amplification. The

shapes of the curves of the slit face deformations along the slits are symmetric for the

inner slits and are skewed for the outermost ones (Fig. 4.13b). Note that the left part of

Fig. 4.13b (Φ = 90◦) describes the same situation as Fig. 4.8b.

The predicted response of a heart shaped array (Fig. 4.5h) to uni-axial compressive loads

of different orientations is depicted in Fig. 4.14b, which pertains to a longitudinal shift

of λ/l0 = 0.15 and slit lengths of 0.4 l0, 0.6 l0, l0, 0.6 l0, and again 0.4 l0 (compare (Barth

et al., 1984)). The highest sensitivity is predicted to occur under normal loading, Φ = 90◦,

but strong side lobes (slit1, 2, 4, and 5) are present at angles of Φ = 60◦ and Φ = 120◦,

indicating multi-directional sensitivity. Figure 4.15 depicts the deformed FE model of the
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Figure 4.13: Slit face deformations D along the slits. a Fan-like arrangement with R = 0.35 l0
and α = 90◦. The deformations along the faces are skewed for both loading directions, Φ = 90◦

and Φ = 120◦. b Oblique bar array with S = 0.04 l0 and λ = 0.34 l0. Symmetric slit face
deformations are evident for the inner slits and skewed shapes for the outermost slits at load
directions Φ = 90◦ and Φ = 120◦. c Heart shaped array with S = 0.04 l0, λ = 0.4 l0 and
∆l = 0.2 l0. The slit face deformations are skewed due to the lateral shift of the slits. At
Φ = 120◦ slits 1 and 2 show negative values of Dc/Dsc, i.e. they open up. Approximate positions
of the dendrites are indicated by red filled circles.
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heart shaped arrangement under loading perpendicular to the slits’ long axes, Φ = 90◦,

corresponding to Fig. 4.13c. It shows that the maximum slit face displacements (orange

diamond shaped symbols in Fig. 4.15) are shifted to one end with the exception of the

center slit. The positions of the maximum face displacements of slits 1 to 5 at Φ = 135◦

are similar to those predicted for Φ = 90◦, but the values of Dc are different (Fig. 4.13c),

which means that the sensitivities of the slits are different under different load directions.

For a symmetric triangular array with a linear gradation of the slit lengths of ∆l/l0 = 0.15

the relative face displacements at mid-length, Dc, of the longest slit closely approach those

of a single slit (Fig. 4.14c). The shorter slits show similar directional responses of the

relative face displacements, but are strongly shielded, as is evident from the detail view in

Fig. 4.14c. Note that no data is given for slit 2, which widens under compressive loading

and, accordingly, shows negative values of Dc/Dsc.

4.1.3 Planar FE models of slit arrays imitating lyriform organs

Note that the load angle Φ is measured relative to the longitudinal axis of slit1 in each

arrangement. In the combination of the organs HS8/HS9 the reference slit is slit1 of

HS8. In the figures the slit configurations are depicted for loadings acting under Φ = 0◦

(Fig. 4.5d).

4.1.3.1 A special case: The measured and simulated deformation of organ

HS8

In Barth and Libera (1970) it is shown that lyriform organs may be positioned in close

neighborhood so that interaction effects between the organs may be encountered. On the

anterior face of the tibia of C. salei two triangular lyriform organs, HS8 and HS9, are found

in close proximity (Fig. 4.16a). The orientations of the two organs differ by approximately

26◦ and their distance from each other is approximately the size of the longest slit in

the arrangements. Therefore, in agreement with Chapter 4.1.1 interaction effects are to be

expected between the organs. When the organ HS8 is considered in isolation the interaction

effects between HS8 and HS9 are obvious and pertain only to the amplitudes of Dd/Dsc
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Figure 4.14: Directional sensitivities of three arrangements of five parallel slits with S/l0 = 0.04.
a An oblique bar formation with λ/l0 = 0.34 is most sensitive to loads offset by some 10◦ from the
normal direction. b For a heart shaped formation with λ/l0 = 0.4 and ∆l/l0 = 0.2 the relative
face displacements Dc vanish only for Φ = 0◦, so that the array is sensitive to loads acting at
directions between Φ = 10◦ and 170◦. c A triangular arrangement of slits with a linear gradation
in slit length of ∆l/l0 = 0.15 is sensitive mainly to loads acting in the normal direction. The
outer slits are markedly more sensitive than the inner ones. The envelopes of the responses are
shown as bold solid lines. Note the different scaling of the axes in c.

of the slits 1 to 3 (Figs. 4.17a and a’). According to simulations using planar FE models

the slits are most sensitive to uni-directional loads acting at angles between approximately

Φ = 60◦ and 135◦. The amplitude ranges of both arrangements overlap as shown in

Figs. 4.16b and c and cannot clearly be separated.
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Figure 4.15: Deformed FE model of a heart shaped array with S/l0 = 0.04, λ/l0 = 0.4, Φ = 90◦

and ∆l/l0 = 0.2. This arrangement results in maximum slit deformations that are not at the slits’
mid-length positions. The displacements are scaled up by a factor of 104. Positions of maximum
slit face displacement are indicated by orange diamond shaped symbols.

Because organ HS8 is easily accessible to measurements and can be stimulated under

controlled conditions results of interferometric measurements can be compared to FE data.

Figure 4.18a shows the measured changes in slit width Dd in µm plotted against the

deflection angle of the metatarsus in degrees for the seven slits composing the organ HS8.

In Fig. 4.18b and b’ examples of white light interferometric images are given. At a lateral

force of 4 mN, which corresponds to a deflection of the metatarsus by Θ = 3.8◦, the longest

slit (slit1) is compressed by approximately 860 nm (≈39 %). When the load is further

increased to 10 mN, which corresponds to a deflection angle Θ of 9.3◦, even the shortest

slit (slit7) in the arrangement is deformed by approximately 80 nm. For a deflection angle

of 0.01◦ where the material behavior of the cuticle is linear and the deformation curves

are in the linear regime, the sum of the slit deformations evaluated at the location of the

dendrites is approximately 7.4 nm (Fig. 4.18a). With an estimated width of the organ of

≈ 100 µm this gives a strain of 7.4×10−5 (=74 µε). In the planar FE model of HS8 loaded

by far field strains of εa,r = 2.5 × 10−5 comparable strains at the location of the organ of

approximately 4.49× 10−5 (=44.9 µε) occur. Under uni-axial loads at Φ ≈ 111◦ the model

of the organ is most sensitive in resolving the amplitude of a load (Fig. 4.17a). When the

results of the simulations evaluated at Φ ≈ 111◦ were scaled to the strains measured by
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a

b

c HS8

Triangular

HS9

Figure 4.16: Directional sensitivities of two neighboring lyriform organs, HS8 and HS9 on the
tibia of C. salei. a Models of the organs. Orientation and neighboring distance taken from SEM
images. Red filled circles indicate locations of dendrites. b Directional responses of the slits of
organ HS8 and c of organ HS9.

white light interferometry and to a slit length l0 = 120 µm, i.e. to the length of the longest

slit in HS8, as shown in Appendix B, the deformation of slit1 becomes approximately 2.75

nm. This is close to the value of 2.9 nm (difference 5%) measured in the actual organ

(Fig. 4.19b). In addition, in the measurements and in the simulations the orderings of the

slits in terms of magnitude of slit deformation are very similar to the ordering in slit length

(Figs. 4.19a and b). This shows that the models used for FE analysis are well suited to

estimating the deformations of real lyriform organs.

In Fig. 4.18b the deflection angle of the metatarsus closely approaches a linear dependence

on the applied force. The measured slit face displacements evaluated at the deflection
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a

a’ HS8 isolated

HS8 with HS9 present

Figure 4.17: Comparison of the interaction effects of the organ HS9 on the organ HS8. a

Response of the organ HS8 when the organ HS9 is present and b directional response when the
organ HS8 is isolated.

angles (all below 1◦) of the metatarsus corresponding to the threshold stimulus amplitudes

eliciting an impulse response of the sensory cells measured electrophysiologically by Barth

and Bohnenberger (1978) are ≈1.7 nm for slit2, ≈14 nm for slit3, ≈37 nm for slit4, ≈43

nm for slit5, and ≈10 nm for slit6 (see solid black circles in the detail of Fig. 4.18a).

Surprisingly, the sensitivity of slit6 is higher than that of slit5.

White light interferometric measurements on the deformations of the slits were performed

by C. Schaber in collaboration with S. Gorb and Prof. E. Arzt of the Max Planck In-
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c c’

b

a

Figure 4.18: a Arrangement of the leg for white light interferometric examination of the de-
formation of lyriform organ HS8 and simultaneous force measurements. The angle between tibia
(Ti) and metatarsus (Me) Θ is kept at 130◦ in the dorsoventral plane. A steel rod (Sr) waxed to
the metatarsus dorsally serves to deflect it laterally against the fixed tibia. Yellow arrow points
to location of lyriform organ HS8 on the posterior aspect of the tibia, which was scanned with
the white light interferometer. b Measured slit deformation at the location of the dendrites Dd

of the slits (white arrowheads in c and c’); experimental results are given as symbols, the lines
are quadratic regression curves. Interferometry images in the undeformed (c) and deformed con-
figuration at a deflection angle of the metatarsus of 8.5◦ (c’). The black dots in the detail of b

indicate the deflection angles Θ for the electrophysiologically measured threshold stimulus am-
plitudes of the slits by Barth and Bohnenberger (1978). The color code pertains to the distance
in out-of-plane direction at the position of the organ (Hößl et al., 2007b).
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stitute for Metals Research in Stuttgart, Germany. The setup for the measurements is

depicted in Fig. 4.18a and more detailed information on the soft- and hardware used in

the measurements is given in Hößl et al. (2007b) and Schaber and Barth (in prep.).

Figure 4.19: Absolute slit face displacements of the slits of organ HS8 in nm at a deflection
angle of the metatarsus of 0.01◦ according to the interferometric (IF) measurement (a) and FE
analysis (b) at Φ = 111◦, εa,r = 4.5 × 10−5, and l0 = 120µm (compare Fig.4.16).

4.1.3.2 Directional dependence of the deformation of natural slit patterns

other than that of lyriform organ HS8

The mechanical responses of some basic simplified slit formations, e.g. oblique bar, tri-

angular, and fan-like arrangements, were studied in Chapter 4.1.2. We now investigated

models of lyriform organs showing the same basic arrangements of slits but also took the

morphological details of the natural geometry into account. For the geometrical parameters

describing the tested slit arrays see Fig. 4.5.

Oblique bar formations. In oblique bar formations the face deformations of the individual

slits are very similar provided the slits are of equal length (Barth et al., 1984). A slightly

simplified natural arrangement and a more realistic planar geometry based on the organ

VS3 are shown in Figs. 4.20a and b, respectively. The organ was modeled with straight

slits of equal width at longitudinal shifts of λ/l0 = 0, -0.29, -0.62, -0.86, -1.04, -1.15, and
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Oblique bar

ba

b’a’

VS3

Figure 4.20: Directional sensitivity to uni-axial compressive far-field loads of two arrangements
of slits based on organ VS3 on the patella of C. salei. a Simple model and b detailed model of
the organ with the corresponding mechanical responses to loads from different directions (a’, b’).

-1.16 (Fig. 4.20a) and with slightly curved slits of varying widths at λ/l0 = 0, -0.3, -0.64,

-0.9, -1.1, -1.2, and -1.22 (Fig. 4.20b) corresponding to SEM images of VS3. The slit

face displacements of individual slits show noticeable sensitivity to the changes in aspect

ratio and shape of the centerline of the slits (Chapter 4.1.2.1). This indicates that minor

variations in the longitudinal and lateral shift between the slits considerably influence the

face deformations of the slits. Figures 4.20a’ and b’ compare the responses of corresponding

arrangements. In contrast to findings presented in Chapter 4.1.2.5 where all five parallel

slits of equal length respond to similar ranges of loads, in Fig. 4.20a’ slit1 to slit3 and

slit4 to slit6, respectively, show similar amplitudes of Dd/Dsc. When the morphology of

the organ is modeled in more detail, i.e. C-shaped slits of varying width are used as

depicted in Fig. 4.20b’, slit4 to slit6 are no longer adjusted to similar load levels but the

response is more evenly distributed in the range of the deformation amplitudes the entire
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Figure 4.21: Von Mises stresses in the vicinity of slit formations based on organ VS3 under
loads acting normally to their longitudinal direction (Φ = 90◦). Slit formation in a as depicted
in Fig. 4.20a and in b as depicted in Fig. 4.20b.

organ responds to. The similarities in the directional response are more clear when the

equivalent stresses in the models are compared (Figs. 4.21 a and b). Small differences are

mostly seen in the maximum stresses close to the tips of the slits in the modeled organs.

In both arrays slit7 shows only small deformations, i.e. in real organs it sends signals

to the central nervous system under very high load amplitudes only. This was expected

because slit7 is arranged almost symmetrically (λ = 0.01) relative to its neighbor, slit6,

and therefore heavily shielded (compare Figs. 4.21 a and b) similarly to the smallest slit in

a symmetric triangular arrangement of five parallel slits at lateral distances between the

slits of S/l0 = 0.04 (Chapter 4.1.2.5).

Dendrite position. To relate the positions of the dendrites to the positions of the maximum

slit face displacements, the deformations of the slit faces D(x)/Dsc were plotted along the

slits in Figs. 4.22a and b for the slit arrangement shown in Fig. 4.20b. In Fig. 4.22a the load

direction is normal (Φ = 90◦) to the longest slit, slit1, in the arrangement, which is similar

to the load direction a single isolated slit is most sensitive to. In addition, in Fig. 4.22a’

the results for Φ = 60◦ are plotted to show the dependence of the deformation along the
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Figure 4.22: Slit face deformations D(x) along the slits. a, a’ Arrangements based on organ
VS3 (Fig. 4.20b). Deformation maxima along the faces are close to the slits’ midpoints for both
loading directions, Φ = 90◦ and Φ = 60◦. b, b’ Model based on organ VS4 (Fig. 4.23b). In slit2
the deformation increases but simultaneously decreases in slit1 when the load direction changes
from Φ = 90◦ to Φ = 60◦. Note positions of the dendrites (red filled circles).

slits on the load direction. The amplitudes of D(x)/Dsc change in a similar way in all slits

and the positions of the maximum slit face deformations are shifted. For example, in slit2

of the model based on VS3 the distance between the center of the slit and the location of

the maximum slit face displacement changes from −0.11 l0 to −0.19 l0 (= 8 % of l0) when

the load direction changes from Φ = 90◦ to 60◦ (Figs. 4.22a and a’) which is due to the

changed interaction effects when the load is rotated. Here a change in loading direction

affects the amount in slit face displacement but not the results in terms of detection of

different load levels. Similar changes are expected when the slit deformations along the

slit faces are plotted for the model shown in Fig. 4.20a.
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b

a

Triangular
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Figure 4.23: Directional mechanical sensitivity of slits arranged like in lyriform organ VS4 of
C. salei. a 2D model and b mechanical response of slits to uni-axial compressive far-field loads.

Triangular slit arrangements. In triangular slit arrangements a longitudinal shift λ/l0 (see

Fig. 4.5f) is required to move the shorter slits out of the shielding zone of the outer longer

slit. In real slit formations the slits indeed show a conspicuous tendency to be slightly

shifted longitudinally as exemplified by the triangular arrangement VS4 (Fig. 4.23a). Here

the length of slit1 is l0 and that of slit2 is 0.84 l0 which in combination with a longitudinal

shift of λ/l0 = 0.14 moves the left tip of slit2 out of the shadow of slit1 by a distance

of 0.06 l0. Close to Φ = 90◦ the amplitude ranges of the deformations of the individual

slits are more or less evenly distributed over the entire range of the organ’s mechanical

sensitivity (Fig. 4.23b).

The slits are most sensitive to uni-axial loads acting in directions between Φ = 60◦ and

105◦. In contrast to the model based on organ VS3, in the model of VS4 the amount of

change in the slit face deformations along the slits is different in each slit when Φ is altered.
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a
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Figure 4.24: Comparison of models based on the organ VS5 of a C. salei and b the bird spider
Aphonopelma. a’ The slit face deformation of the smaller slit is 1/3 of the value for the longer slit
at Φ = 90◦. b’ Slits1, 2, and 3 on the one hand and slits4, 6, and 7 on the other hand measure
similar load levels at Φ = 90◦ (black circles). The curves are evaluated at the locations of the
dendrites (red filled circles).

Thus D(x)/Dsc strongly increases in slit2 and decreases in slit1 when the load direction

changes from Φ = 90◦ to 60◦. The change in positions of the maximum displacements along

the slits between the load directions of Φ = 90◦ and 60◦ measures less than approximately

2 % (Figs. 4.22b and b’) which is smaller than in VS3. In arrangement VS4 even a small

change in the load direction of a uni-axial stress influences the Dds of the slits.

In a model representing organ VS5 of C. salei (Fig. 4.24a) at Φ = 90◦ the slit face deforma-

tion at the dendrite of the longer slit is roughly three times the value of that of the shorter

slit (Fig. 4.24a’). In the bird spider Aphonopelma sp. this organ has similar orientation

and is located at the same position on the tibia. However, in contrast to that of C. salei it

consists of some 8 slits that are arranged in a triangular pattern (Fig. 4.24b). According

to the value for the slit deformations evaluated at Φ = 90◦ the slits can be collected in two
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b

Fan−likea

Figure 4.25: Model of a hybrid fan-like triangular slit pattern based on a lyriform organ on the
chelicera of C. salei. a 2D model of the slits and b directional sensitivity to uni-axial compressive
far-field loads.

groups (slit1, 2, and 3 versus slit4, 6, and 7) which show a ratio of slit face deformations

of 1/3 (Dd/Dsc ≈ 0.39 and Dd/Dsc ≈ 0.13 in Fig. 4.24b’), which is similar to VS5 in C.

salei.

Fan-like slit patterns. Amplification and shielding effects determine the deformations in

the model of a fan-like slit pattern based on a lyriform organ on the chelicera of C. salei

(Fig. 4.25a). Accordingly, the Dd/Dsc value of the longest slit is 1.2 at a load direction

of Φ = 90◦ and that of the smaller slits is less than 0.16 at Φ between approximately 80◦

and 150◦ (Fig. 4.25b). This slit pattern is very directional for low or moderate loads, but

approaches omni-directionality at high loads. Loads between Φ = 15◦ and 30◦ are only

resolved at high amplitudes (Dd/Dsc = 0.055), which is in contrast to the idealized fan-like

slit arrangements presented in Chapter 4.1.2.4 and may be due to the graded slit lengths

in the lyriform organ on the chelicera.
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Figure 4.26: Interaction effects between the slits of a loose group and organ HS3 a on the coxa
of C. salei. b Directional sensitivity of the organ HS3 and c of the slits belonging to the loose
group. The overall response is approximately uni-directional with the exception of slit1 in HS3.
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Figure 4.27: Von Mises stresses in MPa in the vicinity of lyriform organ HS3 of C. salei loaded
by uni-directional stresses at Φ = 90◦. a Loose group of slits in close neighborhood of HS3 and
b isolated slit sensillum HS3. Note that in the isolated organ the maximum stress concentration
factor (SCF) is 19 and therefore lower than in an isolated slit of aspect ratio 100 (SCF=21.9)
and in the entire arrangement including the loose group (SCF=31). The white arrows point to
the regions of high stresses.

4.1.3.3 Interactions between a lyriform organ and a closely positioned group

of slits

At the beginning of this section we investigated two interacting lyriform organs. Now we

ask for the interaction effects between a lyriform organ and a loose group of slits. Due

to its closeness the loose group of slits found next to the triangular lyriform organ HS3

of C. salei interacts with this organ (see Fig. 4.26; closest longitudinal distance between

the organ and the slits of the loose group 0.3 l0; closest lateral distance 0.6 l0). Here the

working range of the lyriform organ is supplemented by the working range of the loose

group of slits close to it. The maximum slit face deformation in the loose group, in slit13,

is approximately 3.5 times larger than that of the longest slit, slit1, of the lyriform organ

due to interaction effects, i.e. amplification of the slit face displacements, between the



4.1. RESULTS 87

Figure 4.28: Comparison of the interaction effects of the loose group of slits on the slit arrange-
ment based on the organ HS3 (compare Figs. 4.26a and b). a Directional response of the slits
of HS3 when the loose group is present. b Slit1 shows omnidirectionality when the organ HS3 is
isolated. The directional sensitivities of slit1, slit2, and slit8 change as well as the thresholds for
all slits.

slits. This is also reflected in the maximum stress concentration factor of approximately

29 (SCF=local maximum stress/far field stress), compare ≈21.9 for a single isolated slit

of aspect ratio 100, in the vicinity of the ends of the slits which is evident in fringe plots

of the Von Mises stresses (Fig. 4.27a). Here regions with high stresses are colored red and

regions of low stresses are colored blue. As load levels increase, at first the slits of the loose

group respond (Fig. 4.26c), followed by the slits of the lyriform organ (Fig. 4.26b). The

response of this arrangement is highly directional due to the slits of the loose group, i.e.
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the highest sensitivities of the slits of the loose group are found at load directions close

to 90◦. At high loads a fine resolution of the load direction between Φ = 60◦ and 120◦

can be obtained by the organ HS3. At Φ = 90◦ slit1 is shielded by the other slits in the

arrangement (compare Fig. 4.27b) similar to findings in the organ VS5 of the bird spider

(Figs. 4.24b and b’). Slit1 in HS3, in contrast to the remaining slits of the organ, is most

sensitive at Φ ≈ 10◦ which is in principle similar to findings for the organs HS8 and HS9

(Figs. 4.16b and c). A somehow different “wiring”, i.e. slit1 may operate as a trigger for

the onset of the load, may also be indicated by electrophysiological measurements of the

stimulus amplitudes of the slits of the organ HS8 of C. salei (Barth and Bohnenberger,

1978), where it was difficult to measure the activity of slit1 because of it’s high sensitivity.

The interaction between the loose group and the lyriform organ is clearly seen when com-

paring the response of the lyriform organ (slit1 to slit11) in the presence (Fig. 4.27a and

Fig. 4.28a) and absence (Fig. 4.27b and Fig. 4.28b) of the loose group (slit12 to slit27).

The amplitudes of Dd/Dsc, the directions of maximum sensitivity, and also the order of

the slits in terms of maximum mechanical sensitivity in the slit pattern change when the

organ is studied without the loose group. Remarkably, slit1 has a more omnidirectional

response when the organ HS3 is isolated because it is not shielded by the slits of the loose

group close to Φ = 90◦. Note that the stress concentration factors (SCF=local maximum

stress/far field stress) evaluated at the ends of the slits strongly depend on the interaction

effects between the slits, i.e. there is a maximum SCF≈29 (slit13) for the formation de-

picted in Fig. 4.27a and a maximum SCF≈17 (slit1) for the isolated lyriform organ shown

in Fig. 4.27b.
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4.2 Discussion

The normalized results presented in the figures of this chapter can be adapted to any

configuration by scaling with appropriate values of l0, the far field strain εa, or the far-field

stress σa for cracks or slits, on which D depends linearly. An example of this procedure is

presented in Appendix B.

4.2.1 Analytical models using Kachanov’s method

4.2.1.1 Lateral crack spacing

Kachanov’s method predicts that in arrangements of five parallel cracks with increasing

lateral crack spacing S/l0 starting from 0.5 shielding and amplification rapidly decrease

(Figs. 4.3a and 4.3b). The effects of crack interaction are fairly small at S/l0 = 1.5 and the

Dc of a non-interacting single crack given e.g. in Hahn (1976) is closely approximated at

S/l0 = 3. These results support the idea that interaction effects play no appreciable role in

the mechanical response of isolated slits as defined in section 2.2, but must be accounted

for when studying loose groups of slits.

4.2.1.2 Oblique bar arrangements

According to experimental studies arrays of longitudinally staggered slits like those in

Fig. 4.4a, which are referred to as oblique bar formations by Barth et al. (1984), give rise

to geometrically similar distributions of the face deformations in all slits. It was proposed

that such arrangements can be interpreted as potentially allowing an improvement of the

signal-to-noise ratio by central nervous convergence of the signals (Barth et al., 1984).

Applying Kachanov’s method to arrays of five parallel cracks of equal length it was found

that geometrical similarity of the Ds of the individual cracks can be closely approached

by staggering them by a constant distance of λ/l0 = 0.5 (Figs. 4.3c and 4.3d). For shifts

smaller or larger than 0.5 l0 the Ds of the three inner slits remain similar, but those of the

two outermost slits clearly differ. For arrangements of five parallel slits with lateral spacings
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of S/l0 = 0.5, when λ/l0 exceeds a value of approximately 0.35, the maximum Ds in all slits

exceed the exact result for a single crack (Hahn, 1976), i.e., there is amplification. Sensilla

that approximate this type of arrangement can indeed be found in arachnids (Fig. 2.1e).

It is interesting to note that some spider lyriform organs, like the lyriform organ VS3 on

the patella of the walking leg of C. salei, (Fig. 4.4a), are superficially similar to the above

oblique bar formation. However, according to scanning micrographs the neighboring slits of

VS3 are shifted longitudinally by about 0.35 l0, differ in slit length, and vary slightly in their

orientation and the position of the slits’ dendritic endings. Accordingly, the configuration

differs significantly from the one predicted under the assumption of maximum redundancy

(all cracks show similar values of opening displacements) by Kachanov’s approach. These

differences may be due to the much closer transverse spacing of the slits in VS3, or may

reflect somewhat different “design goals”.

4.2.1.3 Triangular and “bell shaped” arrangements

When the lengths of neighboring slits within an array differ by a constant increment ∆l,

the longest crack shows the largest and the shortest crack the smallest Ds, respectively

(Figs. 4.3e and 4.3f). Accordingly, if sensors sensitive to a given range of face displacements

are placed in the slits, a triangular arrangements of slits can respond to a considerably

larger range of inputs than an individual slit. For arrays of five parallel slits with lateral

spacings of S = 0.5 l0 this effect becomes marked for ∆l ' 0.15. The predicted opening

distances agree well with experimental observations on more closely spaced slits in model

systems (Barth et al., 1984).

When Kachanov’s method was used for identifying symmetrical triangular arrangements

of five parallel slits with Dcs that correlate with electrophysiologically measured threshold

stimulus amplitudes of spider lyriform organ HS8 (Fig. 4.4b) (Barth and Bohnenberger,

1978), a sequence of crack lengths of l0, 0.9 l0, 0.56 l0, 0.3 l0, and 0.18 l0 was obtained

(Fig. 4.29a). Here the first two slits are of almost equal length on account of the shielding

effect, whereas the lengths of the subsequent slits decrease more and more rapidly. Skewed

triangular arrangements of slits can be obtained by shifting the slits longitudinally. The

resulting sequences of opening distances at the slits’ centers do not change appreciably
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Figure 4.29: Arrangements of cracks with lateral spacings S/l0 = 0.5 (where l0 is the length
of the longest crack in the array) as simplified models of triangular arrangements of slits. (a)
Symmetric arrangement giving non-linear gradation of crack Ds, (b) arrangement with all cracks
aligned at the right ends and (c) intermediate geometry giving maximum crack Ds similar to (a).
(d) Bar diagrams of the normalized Ds at the centers (Dc/Dcc) of the five cracks of arrangements
(a), (b), and (c).

(Fig. 4.29d). However, the positions of the maximum Ds within the individual slits are

shifted (Figs. 4.29b and 4.29c).

The above sequence of slit lengths leads to “bell shaped” sensilla. Even though the above

models employ a lateral spacing of S = 0.5 l0 the outlines of the arrangements are in good

qualitative agreement with that of the lyriform organ HS8 of C. salei (Fig. 4.4b).
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4.2.2 Planar FE models of generic slit arrays

Even though the models discussed in the present chapter are geometrically relatively simple

planar arrangements of slits and the exact 3D morphology of the slits and of the cuticle

surrounding them are not taken into account, characteristic features can be investigated

and valuable conclusions can be drawn from the results obtained. The main features found

are in good agreement with expectations derived from the biological view and discussed

in the following. In addition the results clearly demonstrate the potential of different slit

arrangements with respect to engineering applications to strain sensors.

4.2.2.1 Dendrite positions in arachnid lyriform organs

In arrangements of slits that are not symmetric about the transverse axis, like the arrays

shown in Fig. 4.5f and h, the locations of the maximum slit face displacements in general

do not coincide with the mid-length positions (Fig. 4.13). To be consistent throughout this

chapter we decided to compare the slit face displacements at the slits’ centers by default,

exceptions being explicitly marked. Checking the load direction dependent locations of

the maximum values of D, however, provides important information towards explaining

the configurations of real lyriform organs. The discussion of the results obtained for slit

face displacements at the actual site of the dendrites in lyriform organs is presented in

Chapter 4.2.3.

The dendrites’ locations in a fan-type arrangement (see red filled circular markers in

Fig. 4.13) on the chelicerae of C. salei with α ≈ 90◦ (see Barth and Libera (1970)) are

close to the positions of the calculated maximum slit face displacements in the simplified

FE models (Fig. 4.13a and b), provided only slits with marked compressive face displace-

ments are considered. In the lyriform organ VS3 on the patella of C. salei (see schematic

drawing in Barth and Libera (1970) and SEM images in Müllan (2005)), where the slits

are arranged in an oblique bar pattern, however, the dendrites are not located at the po-

sitions of the maximum slit face displacements predicted by the present simplified model

(Fig. 4.13b). For the largest slit in organ VS3 the difference in position is approximately

0.29 l0 for Φ = 120◦, which is probably due to the gradation of the slit lengths (l0, 0.94 l0,

0.823 l0, 0.642 l0, 0.531 l0, 0.447 l0, 0.314 l0) and the different orientations (0◦, 4.5◦, 11◦, 14◦,
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14◦, 15◦, 14◦) of the slits found in organ VS3. This lyriform organ appears to combine

aspects of the geometry and deformation of oblique bar and triangular arrays. In a heart

shaped array such as the lyriform organ HS2 on the trochanter of C. salei, the dendrites

are not located at the mid-lengths of the slits, either, but are shifted proximally (towards

the left in Fig. 4.5h) (Barth and Libera, 1970). These locations are close to the positions

of the calculated maximum slit face displacements, with the exception of the center slit in

the corresponding model (Fig. 4.13c).

The above examples indicate that the positions of the maximum slit face displacements

depend on the loading direction. They do not necessarily coincide with the locations of

the dendrites, although they are mostly close to them, which is in agreement with Barth

et al. (1984). Possibly, the sites of the dendritic endings are related to the function of

the organ, e.g. measuring the load direction or extending the stimulus amplitude ranges.

Changing the positions of the dendrites may provide a further way of tuning the response

of slit sensilla, in addition to adapting the lengths and orientations of the slits.

4.2.2.2 Single slits

Sensilla consisting of single, noninteracting slits are best suited for detecting compressive

uni-axial stresses that act normal to the slits’ axes (Barth et al., 1984). The primary

geometrical parameter for adjusting the slit face displacements is the slits’ length l, which

(under the assumption of linear material behavior) linearly scales D and, consequently Dc.

Changing the aspect ratio of straight slits, l0/w0, from 20 to 100 decreases Dc/Dsc from

1.026 to 1 (Fig. 4.6b). Remarkably, in this context the aspect ratio of slits plays a minor

role at best.

Slits of capped rectangular shape form larger holes in the cuticle compared to elliptical

openings of the same length and aspect ratio (Fig. 4.6b’). The normalized difference in

area, ∆A/l20 = (Aslit−Aell)/l
2
0, has its maximum at l0/w0 = 2. Evaluating the difference in

slit face deformations gives a maximum value of Dc/Dsc ≈ 2.6% that occurs at l0/w0 ≈ 2.5

(Fig. 4.6b). This shows that the response is a nonlinear function of the slit area and is also

influenced by the slit shape, though to a lesser extent. The latter effect is negligible at the

high aspect ratios typically pertinent to arachnid slit sensilla. The campaniform sensilla
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of insects, however, which have evolved low aspect ratios of l0/w0 ≈ 2 to 3 (Barth, 1981),

tend to be elliptical, which may indicate selection for openings of smaller area that weaken

the cuticle to a lesser extent than openings of capped rectangular shape on the basis of

similar aspect ratios.

Curved slit geometries, such as C-shaped and S-shaped slits lead to a reduction in the

relative slit face displacements under loads acting at Φ = 90◦ for equal slit lengths, because

the projected slit lengths lp decrease with increasing B (Fig. 4.6c). In the case of a C-

shaped slit with B = 0.25 l0 the decrease in Dc amounts to some 15%. The maximum

sensitivity of C-shaped slits to uni-axial stresses, like that of straight slits, is predicted to

occur at normal orientation. For S-shaped slits, in contrast, the direction of maximum

sensitivity depends on the shape parameter B. For example, for B = 0.25 l0 S-shaped slits

are most sensitive to uni-axial loads acting at Φ = 140◦ (Fig. 4.11), and their maximum

sensitivity is about 13% smaller than that of a straight slit of equal length. Apparently,

a given orientation of the maximum mechanical sensitivity of a single slit can be either

achieved by orienting a straight slit normal to the load direction or by using a suitable

value for B/l0 for an S-shaped slit. Due to their lower sensitivity, S-shaped slits are less

efficient in terms of slit area compared to straight ones and, accordingly, are rarely found.

Examples of C-shaped and S-shaped slits occur e.g. within lyriform organ HS1 on the coxa

of Cupiennius salei (Fig. 2.3b).

4.2.2.3 Arrangements of five slits

A striking feature of arachnid slit sensilla is the occurrence of a rich variety of arrays

of mechanically interacting slits referred to as lyriform organs. By changing the lateral

distances S between slits, by offsetting them longitudinally by λ, or by grading their

lengths by ∆l, considerable amplification or shielding of the relative face displacements of

the individual slits can be achieved. Furthermore, by varying the geometrical parameters

characterizing the arrangements widely differing or nearly equal responses of the individual

slits can be produced, as well as a wide range of intermediate behaviors Barth et al.

(1984). In the present study the Finite Element Method allowed us to evaluate on a

quantitative basis the effect of geometrical parameters on the deformation behavior of

different slit arrangements. This opens up the possibility of parametric studies explaining
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the evolutionary adjustments of the arrangement geometries towards fulfilling a measuring

task such as sensing load directions with different sensitivities in different directions.

Under the assumption that the membranes at the outside and the bottom of the slits as

well as the liquid within the slits do not markedly influence their behavior, non-staggered

arrays of parallel slits tend to show marked bending of the cuticular ligaments between the

outermost slits, which leads to dilatation of the inner slits for lateral spacings S/l0 / 0.1.

In many lyriform organs the ligaments are shortened by staggering the individual slits

and/or by a gradation of the slit lengths, so that ligament bending plays a lesser role.

If the purpose of organ VS3 on the patella, which is of the oblique bar configuration, is to

measure similar levels of loads with all slits in the arrangement to increase the signal-to-

noise ratio, the evolutionary strategy would be to increase the length of the smaller slits

so that all slits in the array have the same length l0.

Arrangements with cascades of widely differing mechanical responses of the individual

slits, e.g., organs of triangular type, appear to be aimed at maximizing the range of loads

strengths that can be detected. As is shown in 4.9c shielding is the dominant interaction

effect in triangular arrangements, which is the reason why slit 2 in the simplified model is

never compressed. From electrophysiologically measured response thresholds and stimulus

amplitude ranges of the lyriform organ HS8 on the tibia of spiders (Barth and Bohnen-

berger, 1978) we know, however, that all slits in this triangular formation are compressed

and active. A closer inspection shows that in organ HS8 the first two slits are longitudinally

shifted by λ ≈ 0.2 l0, which decreases the shielding effects on slit 2. Nonlinear gradations

of slit lengths and longitudinal shifts between slits are, in fact, common in lyriform or-

gans and are an important means of controlling shielding effects and thus the sensitivity

of individual slits.

Lyriform organs of fan-like or heart shaped configurations achieve directional sensitivity

over a wide range of loading angles. The former type of arrangement is essentially omnidi-

rectional, whereas the latter appears to be more suitable for confined spaces and to cases

where loads acting in parallel to the slits, i.e. at Φ = 0◦, are of minor or no importance.

Spider legs may be viewed as cylindrical shells with stiffened ends. As suggested by the

location of lyriform organs strains caused by loads that are transferred by the articular
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condyles between the leg segments are typically measured close to the condyles or at the

stiffening rings along the circumference of the leg. In the latter case the stiffening rings are

made more compliant by slits running parallel to the leg’s longitudinal axis concentrating

the strains at the positions of the slits. As a consequence, a higher sensitivity to changes

of the segment’s cross section, i.e. its ovalization, can be achieved. If strains have to be

measured close to the condyles, at locations where there is no interruption of a stiffening

ring by the slits (and no strain concentration due to this effect), the omnidirectionality of

fan-like slit arrangements can be used to advantage. Accordingly, the “choice” between

these types of organ depends on the given location and the configuration of the exoskeleton

at this location. Remarkably, under uni-directional loads, fan-like arrays of slits are also

suitable for measuring different load levels similar to triangular slit arrangements.

In technical applications strain gauges are employed in rosette arrangements of three gauges

at angles of 45◦, 60◦, or 120◦ in order to measure all in-plane components of the strain tensor

at a given position. Slits, in contrast to typical usage of strain gauges, noticeably influence

the strain fields in their vicinity and thus give rise to shielding or amplification effects. Fan-

type arrangements of slits as shown in Figs. 4.12c and 4.12d with α = 180◦, corresponding

to 45◦ rosette of strain gauges, appear to be well suited for analogous measurements. Even

more potential in technical applications might lie in the development of bio-inspired strain

sensors for micro and nano devices.

4.2.3 Planar FE models of slit arrays imitating lyriform organs

4.2.3.1 Comparing models with properties of original lyriform organ HS8

A comparison between the results of the simulations, the interferometric measurements

of the slits’ face displacements of the organ HS8 of C. salei, and the electrophysiological

results presented by Barth and Bohnenberger (1978) shows a number of important agree-

ments underlining the significance of the FE models. (i) In the simulations the amount of

maximum slit deformation found in the organ in the longest slit, slit1, is in good agree-

ment with the interferometrically measured value (only 5 % difference). (ii) In addition

the order of the slits in terms of threshold stimulus amplitudes eliciting action potentials
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corresponds to the order of the magnitudes of slit face displacements (Fig. 4.19).

The threshold stimulus amplitudes reported in the latter work correspond to slit face dis-

placements of ≈ 43 nm (slit4) or less. For the most sensitive slit analyzed electrophysiolog-

ically in HS8, slit2, the physiologically effective threshold stimulus amplitude corresponds

to a slit deformation of approximately 1.7 nm. This is close to 3 nm which was estimated

for slit1 by Blickhan (1983) for natural loads resulting in strains of 1.4 × 10−5 (=14µε)

at the location of the organ during slow locomotion measured in live spiders. In our FE-

simulations we found a slit face deformation of 1.7 nm of slit2 (Dsc = 8.6 nm) at Φ ≈ 111◦

for an applied uni-axial far field strain of 1.8 × 10−5 (=18 µε) which is also well within

the range measured by Blickhan and Barth (1985). According to recent micromechanical

studies (Schaber and Barth, in prep.) on spider trichobothria, which are sensors respond-

ing to airflow, the deflection of the hair shaft at the site of stimulus transduction is about

6 nm/◦ at a physiologically effective threshold hair deflection of 0.01◦ (Barth and Höller,

1999). The value found for spiders is very similar to those pertinent to insects (Gnatzy

and Tautz, 1980; Thurm, 1982). The larger values now found for the slit sensilla may well

be explained by the fact that the coupling cylinder “gears” down the deformation of the

slits (Barth, 2002a).

Blickhan (1986) reported a nonlinear and hysteretic relationship between the force applied

at the tip of the metatarsus and its angle of deflection (maximum angle approximately

20◦), whereas Fig. 4.18 shows a linear response. This difference is probably due to the

visco-elastic material behavior of the cuticle and the fact that Blickhan (1986) used cyclic

loads whereas the measurements underlying Fig. 4.18 were quasistatic. The present FE

models pertain to the small deflection part of Fig. 4.18, in which the deflection angles Θ

are less than 1◦, where nonlinear effects play a negligible role in the measurements.

4.2.3.2 Simple, generalized and more realistic slit patterns

Generalized patterns. The generalized patterns of lyriform slit sense organs are: (i) oblique

bar formation with slits of equal length that are laterally shifted and are sensitive to the

same amplitude and directional range of loads and with the potential to increase the signal

to noise ratio by central nervous convergence of the nervous signals of the individual slits;
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(ii) triangular patterns with slits of different length with the potential of considerably

increasing the amplitude range of a single slit; (iii) heart shaped or fan-like arrangements

with the potential of sensing the load direction on the basis of varying patterns of the slits

active in the array (Barth et al., 1984).

Realistic patterns. Morphologically, organ VS3 of C. salei is a hybrid between an oblique

bar and a triangular formation. Slits 1 to 3 mechanically respond to the same range of load

amplitudes whereas the remaining shorter slits gradually increase the organ’s mechanical

working range (Fig. 4.20b). Remarkably, the interaction effects of slit7 are limited to slit6

in this arrangement (Fig. 4.30), i.e. when slit7 is removed only slit6 increases its slit face

displacement.

For slits spaced as closely as in actual lyriform organs (S/l0 = 0.04) symmetric triangular

arrangements cannot be used to measure different evenly distributed ranges of loads be-

cause the shorter slits are strongly shielded by the longest slit (compare Chapter 4.1.2.5).

Such arrangements may only be used when they are designed for an extremely high range

of sensitivity to loads of two orders of magnitude (Hößl et al., 2007a). However, a longitu-

dinal shift between the largest slit and its neighbor is a prominent feature of most arachnid

lyriform organs. Organ VS4 represents such an arrangement and its intrinsic asymmetry

(Fig. 4.23a). At Φ = 90◦ the difference in magnitude of load necessary for stimulating

further slits decreases with increasing load level (Fig. 4.23b).

Another triangular lyriform organ, organ VS5, consists of only two slits in C. salei (Fig. 4.24a)

and of eight slits in the bird spider Aphonopelma (Fig. 4.24b). Again, the symmetry of the

arrangement has to be broken so that the shorter slits are deformed (Fig. 4.24a’). From

in vivo measurements of the strains occurring at the location of lyriform organ VS5 of

Aphonopelma during locomotion (Blickhan and Barth, 1985) we know that it is stimulated

during the stem phase, i.e., when the body is lifted, and therefore possibly measures the

increasing hemolymph pressure (up to 50 kPa (Blickhan and Barth, 1985)) used to extend

the legs at the tibia-metatarsus joint.

Interestingly, the organs of both spiders are sensitive in two load ranges (Dd/Dsc = 0.76

and Dd/Dsc = 0.27 in C. salei ; Dd/Dsc ≈ 0.39 and Dd/Dsc ≈ 0.13 in Aphonopelma) at

Φ = 90◦ with a ratio of slit face deformation of roughly 1/3. Remarkably, a triangular
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Oblique bar VS3

Figure 4.30: Interaction effects of the smallest slit, slit7, on the remaining slits in the models
based on organ VS3. Model (a), response (a’) and displacements along the slit faces (a”) of the
original model (seven slits). When slit7 is removed in the model (b) the directional sensitivity
(b’) and the amount slit face deformation along the faces (b”) of slit6 change.

formation can also be used to measure similar load ranges with different slits of different

length. This characteristic was so far thought to be typical only for oblique bar formations
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(compare Chapter 4.1.2.5) (Barth et al., 1984) and demonstrates the tailorability of the

organs’ responses by adjusting the slit length, the angular offset between the slits and

the location of the dendrites. There is, however, a difference in the maximum slit face

displacements and in the stress concentration factors at the tips of the slits (Table 4.3).

Due to shielding effects in the triangular formation VS5 of Aphonopelma sp. (Fig. 4.24b’)

the maximum of Dd/Dsc is approximately 0.7 (SCF=15.6) compared to approximately

Dd/Dsc = 1.25 (SCF=23) in the oblique bar formation VS3 of C. salei (Fig. 4.20b’), where

the slit face displacements of slit1 to 3 are amplified.

A possible conclusion is that in regions not critical in terms of failure of the cuticle an

oblique bar formation is better suited to extracting the load amplitude. In contrast, trian-

gular formations are suited for positioning on ring-like stiffening structures, such as those

present at the location of lyriform organ VS5, which is oriented perpendicularly to the

circumferential direction (90◦). In the latter case the deformations concentrate at the lo-

cation of the organ when the cross sections of the legs change from circular to oval due to

the loads transferred at the joints or due to the increased hemolymph pressure inside the

legs.

As shown in Barth et al. (1984) and in Chapter 4.1.2.4 simplified fan-like slit arrangements

consisting of five slits of equal length l0 subtending total angles of 45◦, 90◦, and 180◦ have

omnidirectional sensitivity to uni-directional stresses. In contrast the model of an actual

lyriform organ studied here consists of 9 slits of graded lengths (l/l0=1, 0.61, 0.49, 0.36,

0.25, 0.22, 0.18, 0.17, and 0.13) subtending a total angle of 58◦. Although the models differ

in geometry some similarities can be found: (i) at Φ = 90◦ slit1 dominates the response;

(ii) the direction of the highest sensitivities of the inner slits are between the ones of the

first and the last slit in the arrangement; and (iii) the directional response of the last slit

in the arrangement, slit9, has its maximum at Φ = 150◦ similar to slit5 in the simplified

formation that subtends an angle of 45◦. The lyriform organ studied in the present work is

positioned closely to the joint of the fang and the basal segment of the chelicera, oriented

perpendicularly to the longitudinal axis of the latter. Here it may be used to detect the

onset of the contact with prey (slit1 responds) and the direction of the much higher loads

needed to manipulate it is determined by the remaining slits (slits2 to 9). Similar finding

were reported by Noah et al. (2004) for the activity of the proximal group of campaniform

sensilla oriented perpendicularly to the leg axis on the tibia of the cockroach. Here the
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sensilla respond to the onset of the body weight at the beginning of the stance phase but

the sensillum discharges were prolonged and could encode the level of load when increases

were sustained.

Location within stiffening ring. For example, at the distal ends of the tibiae of the walking

legs of C. salei stiffening rings increase the resistance to buckling and to changes of the

cross section of the segment. Along the circumference of the ring there are 4 triangular

lyriform organs, VS4, VS5, HS8, and HS9, subdividing it into four different sections. The

ring thereby becomes more compliant at the positions of the organs where the deformations

concentrate when the cross section of the tibia changes. Organs HS8 and VS4 are located

at comparable positions on the front- and backsides of the legs and have similar sizes and

outlines (compare Fig. 4.16a and Fig. 4.23a). From electrophysiological measurements we

know that HS8 is stimulated when the metatarsus is moved in an anterior direction (Barth

and Bohnenberger, 1978) by which the cross section of the tibia ovalizes. This effect is

described in Chapter 5.1.4 in more detail. Similar deformations occur at the position of

VS4 (Dd,max/Dsc ≈ 0.6) when the metatarsus is moved backwards.

4.2.3.3 Mechanical interaction between lyriform organs and nearby slit arrays

Lyriform organs and groups of slits. In Chapters 4.1.1 and 4.1.2 we concentrated on

different types of slit arrangements analyzing slit interaction either in loose groups or in

lyriform organs. In addition, interactions between loose groups and lyriform organs and

between neighboring lyriform organs can be expected if their neighboring distance is less

than three times the length of the longest slit in the arrangement (compare Chapter 4.1.1).

Examples found on the walking legs of C. salei are the triangular lyriform organ HS3 and

a loose group, the triangular lyriform organ VS1 and a loose group on the trochanter, the

triangular lyriform organs HS6 and HS7 on the patella, the triangular lyriform organs HS8

and HS9 on the tibia, and two fan-like triangular lyriform organs on the chelicera (Barth

and Libera, 1970).

Slit arrangements involved. Note that in most of the above cases triangular formations

are involved. The different geometrical arrangements of the slits may result from potential

differences in the load introduction. The principle behind the close neighborhood appears
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to be to increase the overall working range in a particular area of the exoskeleton (Fig. 4.16

and Fig. 4.26). The working range of a slit pattern, e.g. range and number of distinguish-

able load levels and range of load directions, can be increased by adapting slit length, slit

orientation and/or the number of slits.

Distinguishable load levels. In contrast to the anterior side of the distal end of the tibia

at the position where the organ VS4 is located at the posterior side for some reason (may

be to achieve some information for different behavioral purposes) extending the range of

distinguishable load levels appears to be required. This can be achieved by using lyriform

organ HS9 located close to (lateral distance approximately the length of the longest slit

in HS9) and therefore interacting with organ HS8, which is similar in size to VS4. The

amplitude ranges of HS8 and HS9 cannot be clearly separated, which may imply that the

information from both organs is integrated in the spider’s brain to determine the amplitude

of the load. This can be best achieved at loading directions of Φ ≈ 111◦ where in both

organs the slits deform in the order of their length. Remarkably, in the simulations using

planar FE models loaded by uni-axial stresses we found that Dd/Dsc is roughly 0.6 at

Φ ≈ 111◦ for both arrangements, VS4 and the combination of HS8 and HS9, respectively.

In these formations a small change in the orientation of the uni-directional load of a few

degrees drastically changes the amount of slit deformation. This suggests that the load

direction is more or less constant at the locations of these organs.

Extension of the range of distinguishable load levels. On the trochanter of C. salei, where

there is a flat region of the cuticular exoskeleton, the load ranges that can be detected by the

organ HS3 can be extended by those of a loose group from Dd/Dsc = 0.6 to Dd/Dsc = 2.2

(Fig. 4.26). Similar to HS8 and VS4, the lyriform organ HS3 has its opponent VS1 on the

anterior side of the trochanter. Note that, although extending over a larger area, a loose

group has the advantage that the slit face displacements are less sensitive to changes of

the geometrical arrangement of the slits, i.e. slit position, slit orientation, and slit length.

Extension of the range of load directions. Instead of a single large organ two closely

neighboring fan-like triangular formations can also be used to detect loads in different

directions as on the chelicera of C. salei close to the joint of the fang, where two organs of

similar geometry are located in close neighborhood (closest distance 0.4 l0). One is oriented

parallel to the longitudinal direction of the chelicera and the other one perpendicular to
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it (Barth and Libera, 1970), which will result in a more omnidirectional response of the

compound that may be used to control the clamping and releasing of the captured prey.

Similarities are found on the tibia of the cockroach, where the longitudinal axes of two

groups of campaniform sensilla are perpendicular (Zill and Moran, 1981). Here the sensilla

are used to control the extension (proximal group perpendicular to the leg axis activated)

and the flexion (distal group parallel to the leg axis activated) of the hind leg of the

cockroach.

4.2.3.4 Dendrite positions

In models imitating lyriform organs the maxima of the slit face displacements typically are

not found at the mid-length of the slits due to the skewed (non symmetric) slit patterns

and the gradations in slit length (Fig. 4.22). In general, when the direction of a uni-

directional load is altered the positions of the deformation maxima along the slits change,

which was also found in generic slit arrangements (compare Chapters 4.1.2.4 and 4.1.2.5).

For slit1 in the organ VS3 the difference between dendrite position and maximum face

displacement is approximately 0.18 l0 for Φ = 90◦ and 0.22 l0 for Φ = 60◦. This is less

than the value of 0.29 l0 estimated in Chapter 4.2.2.1 on the basis of a generic oblique bar

formation consisting of five perfectly parallel slits of equal length. Even larger differences

between the positions of the dendrites and the maximum face displacements were found

for the triangular formation VS4. For Φ = 90◦ and Φ = 60◦ the shift of the dendrite from

the position of maximum face displacement in slit1 is approximately 0.37 l0. Therefore,

in agreement with Chapter 4.2.2.1 and Barth et al. (1984) also in the models based on

real lyriform organs the positions of the dendrites are not always at the exact locations

of the maximum slit face displacements but close to them, which may indicate that they

are designed for maximum sensitivity to loads in a certain range of directions. May be the

exact dendrite position indicates the actual load direction under natural conditions.

4.2.3.5 Stress concentrations associated with slit arrangements

Slits represent openings in the cuticle that give rise to local stress concentrations at

their tips, that can be described by the stress concentration factor (SCF=local maximum
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Table 4.3: Stress concentration factors (SCF) at the tips of the slits for single slits/ellipses and
slit arrangements studied within the present work.

geometry/slit arrangement load direction SCF

Φ in deg

single isolated slit (aspect ratio =100) 90 21.9

single isolated slit (aspect ratio =2.5) 90 4.2

single isolated ellipse (aspect ratio =2.5) 90 5.96

VS3 (straight slits) 95 20.7

VS3 (detailed model) 95 23

VS4 100 19.5

VS5 (C. salei) 80 15.9

VS5 (Aphonopelma sp.) 45 15.6

HS3 (isolated) 10 17.3

HS3 with neighboring loose group 90 29.3

HS8/HS9 145 25.9

stress/far field stress) (Peterson, 1974). The stress concentrations can be best visualized

in fringe plots of the stresses in the vicinity of the slit arrangements. Similar to fracture

mechanical investigations in (Hößl et al., 2006) where the stress intensity factors (SIF) de-

scribing the intensity of the stress singularity at the crack tips are correlated to the crack

face opening displacements here the stress concentration factors at the ends of the slits are

connected to the slit face displacements. Accordingly, fringe plots of the stresses can be

used to find the slits with the highest deformations. When slits are embedded in regions

of low stresses then they are shielded by other slits in the arrangement.

In the planar models a single isolated capped rectangular slit with an aspect ratio of 100

has a SCF of approximately 21.9. When the aspect ratio decreases to 2.5 then the SCF

decreases to 4.2 which is close to that of a circular opening (SCF=3). In contrast, for

ellipses with aspect ratios of 2.5, as found in strain sensitive campaniform sensilla in the

cuticle of insects, a SCF of approximately 6 is found, i.e. the stress concentrations at their

ends are higher than in capped rectangular slits with parallel faces and rounded ends as

found in arachnids.

High stress concentration factors are present when amplification effects determine the slit
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Figure 4.31: Details of lyriform organs VS5 and HS8 on the tibia and of organ HS10 on the
metatarsus of the spider C. salei. a SEM image of organ HS10 fractured perpendicularly to its
slits (a’). b SEM image of organ VS5 fractured along its longest slit (b’). b” Semi-thin slice
along one of the two slits of VS5. b”’ Semi-thin slice normal to the slits longitudinal axes of VS5
and c of HS8 close to the location of the dendrite of the smallest slit in the arrangement (Müllan,
2005). The black arrows in a and b point to the location where the pictures a’ and b’ where
taken. Ex exocuticle; Me mesocuticle; M.o. outer membrane; M.i. inner membrane.
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face displacements between the slits in lyriform organs. For example in the formation

HS3, which closely neighbors a loose group of slits (maximum Dd/Dsc ≈ 2.2), the SCF is

approximately 29. It may be noted that in this arrangement the highest value of the SCF

is found within the arrangements studied in the present work (see Table 4.3). In contrast

when HS3 is isolated a maximum value of Dd/Dsc ≈ 0.7 is obtained and the SCF decreases

to approximately 17, which is lower than that of a single isolated slit of aspect ratio 100

(SCF≈22). The stress concentrations in the exocuticle most probably are the reason for

the increased fiber volume fraction in the vicinity of the slits which is known from the SEM

images of the organ HS10 fractured normal to the slits (Fig. 4.31a and a’) and organ VS5

that was fractured along its longest slit (Fig. 4.31b and b’) (Müllan, 2005). In addition the

exocuticle is thickened in regions where stress concentrations are present. For example, in

the vicinity of organ VS5 (SCF≈16) the exocuticle is approximately 25 µm thick at one

end of the slits (Fig. 4.31b”) and 13 µm close to the center as seen in a section normal

to its longitudinal axis (Fig. 4.31b”’). In a section normal to the longitudinal axis of the

organ HS8 (SCF≈26) close to the location of the dendrite of the smallest slit the exocuticle

is approximately 16 µm thick (Fig. 4.31c), whereas its average thickness in about 10 µm.

Note that an increase of the stiffness by increasing the fiber volume fraction and/or the

thickness of the cuticle in the vicinity of the slits typically decrease the sensitivity of the

slits.

4.2.4 On determining the direction of a uni-directional load

In color reception the spectral absorption curves of the short, medium and long wavelength

pigments in human cone and rod cells are similar to Gauss curves when the wavelength

of monochromatic light is varied. Typically the maximum absorption is ≈420 nm for the

short, ≈534 nm for the medium, and ≈564 nm for the long wavelength pigments. The

correlation between the amount of absorption of a single photoreceptor cell and the actual

wavelength of the light is not unambiguous because of Gaussian shape of curve. To clearly

determine the wavelength a number of different cells, e.g. three in mammals, are needed.

In slit sensilla a similar principle may be used for determining the direction of a load. For

a better understanding the results for the directional sensitivity to uni-directional loads of

a fan-like array depicted in Fig. 4.12c (R = 0.35 l0 and α = 180◦) and those for a heart
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Figure 4.32: Plot of the slit face displacements over the load angle Φ of a heart shaped and a
fan-like array (R = 0.35 l0 and α = 180◦), shown in Fig. 4.13c and Fig. 4.12c, respectively. When
the signals of several slits sensitive to loads in different directions are available the direction of a
load can be determined unambiguously.

shaped arrangement shown in Fig. 4.13c were plotted in terms of slit face displacements

over the load angle Φ in Fig. 4.32a and b. If only one slit is considered, e.g. slit3 in the

heart shaped arrangement shown in Fig. 4.32a, a given value of the slit face displacement,

say Dc/Dsc = 1, results in two possible load directions, namely 65◦ and 115◦. When the

remaining slits of the array are added into the considerations, however the load direction

can be uniquely evaluated. The slit face deformations are more evenly distributed in the

fan-like arrangement (Fig. 4.32b) which may, accordingly, be better suited to determining

the direction of a load.

The sensory signal that must be processed by the spider, of course, also depends on the

characteristics of the transduction system consisting of dendritic endings, coupling cylinder,

outer and inner membrane, as well as the fluid filling of the slits. Provided the transfer

functions of this system are known, the results given in Chapters 4.1.2 and 4.1.3 can be

used to predict the physiological signal of planar slit sensilla in the small strain regime.

The actual extraction of the load direction and, possibly, of the orientation and principals

of the strain tensor, from such signals poses an inverse problem that is more difficult to

solve than the “direct” problem of determining the slit face deformations for given far-field
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strains.

Sensing the direction of a load may be important, e.g. on the chelicera where a wide range

of loads occur during the capturing and manipulation of prey. The fan-like lyriform organs

situated close to the fangs may be intended in this manner. A further example where the

direction of a load may change is on the leg segments that are strongly rotated during

locomotion and where the forces acting on the condyli change their directions accordingly,

e.g. the heart shaped lyriform organ HS2 on the trochanter of C. salei (Fig. 3.18b).



109

Chapter 5

3D models

5.1 Results

In the following sections by convention positive values of D, Dc, and Dc/Dsc correspond

to a reduction of the width, w0, of a given slit.

5.1.1 Effect of shape of the membranes of a single slit without

filling subjected to normal uni-axial loads

In the models the deformations were evaluated at 5 points on the membrane and the

coupling cylinder (see details in Fig. 5.1a to c). Although a geometrically nonlinear analysis

was performed all points considered show linear local displacement responses. The curves

are similar for the three shapes of the membranes, low curvature, semi-circular, and semi-

circular with dimple, considered. The only exceptions with respect to the latter point are

the curves describing the displacements in z-direction of the coupling cylinder and the

curve describing the deformation of the coupling cylinder at the upper rim proper at point

2 in x -direction the slopes of which depend considerably on the configuration (Fig. 5.1d and

d’). They are highest for the membrane of low curvature and lowest for the semi-circular

membrane with the dimple. No local geometrically nonlinear
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Figure 5.1: Different cross sections of the outer membrane of a single slit. a low curvature cross
section, b semi-circular cross section, and c a dimple in a semi-circular cross section. The points
for which the deformations were evaluated are marked as 1 to 5. d Results for the deformations
of the slit faces and the coupling cylinder D in x - and y-directions and d’ for the displacements
in z -direction, uz, evaluated at the points 1 to 5 as functions of the far-field strain εa applied in
y-direction (Φ = 90◦).
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Figure 5.2: Undeformed and deformed shapes of the coupling cylinders in membranes with
low curvature, semi-circular cross section, and semi-circular cross section with a dimple. The
y-direction pertains to the longitudinal axis of the slit, the x- axis is perpendicular to it. The
displacements are scaled up by a factor of 15.

effects of the three types of membranes were encountered for the moderate load levels

considered.

Under an applied far-field strain in x -direction (Φ = 90◦) of εa = 2.5 × 10−5 the change

in diameter of the coupling cylinder at point 2 in x -direction is approximately 1.57 nm for

the membrane with low curvature, 0.5 nm for the semi-circular membrane, and 0.13 nm

for the case where a dimple is incorporated in the semi-circular membrane at the location

of the dendrite (Fig. 5.1d). Because we are considering quarter models taking advantage

of mirror symmetries with respect to the x = 0 and y = 0 planes, the y-displacements

of points 1,2, and 4 as well as the x-displacements of points 3 and 5 are zero. The pre-

dicted deformed shapes of the coupling cylinders are quite complex (Fig. 5.2; note that

displacements are scaled up by a factor of 15). The cross sections of the outer rims change

considerably from circular to elliptical. The inner rims show only small deformations. This

is in agreement with the results of experiments on polymer models of a semi-circular mem-



112 CHAPTER 5. 3D MODELS

Figure 5.3: Influence of the relative Young’s modulus Em/Ec (membranes/cuticle; Ec = 18
GPa) on the slit deformation of a single slit (point 1 in Fig. 5.1b) and on the change in diameter
of a coupling cylinder incorporated in a semi-circular membrane (point 2 in Fig. 5.1b) loaded
perpendicularly to its longitudinal axis (at Φ = 90◦).

brane incorporating a coupling cylinder performed by Barth (1972b). Slits with membranes

of low curvature lead to stronger local deformations of the coupling cylinders under uni-

axial loading at Φ = 90◦ compared to slits with membranes of semi-circular cross sections

or semi-circular cross sections and dimples at the location of the dendrites. When more

compliant (Young’s modulus Em = 1.5 kPa) or stiffer (Em = 150 MPa) membranes and

coupling cylinders were used similar results were achieved (Fig. 5.3). When the Young’s

modulus of the membranes is increased to that of the cuticle (Ec = 18 GPa) the slit de-

formation decreases to approximately 1.7 nm and the upper rim deforms by 0.17 nm only.

Note that even for Em = 150 MPa the in-plane stiffness of the membrane is approximately

1/5000 that of the cuticle due to its small thickness.

5.1.2 Fluid filled single slit subjected to normal uni-axial loads

Figure 5.5 depicts the results of the geometrically nonlinear simulations of the deforma-

tions at points located at the slit faces (point 1) and on the membranes (points 2 and

3). The assumptions made are an inner membrane which is impermeable to the slit’s con-
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Figure 5.4: Model of a single slit used to study the influence of the fluid filling the slit. a Quarter
model incorporating the points where the deformations u were evaluated (compare Fig. 5.5). b

Results for the slit face deformations Dc at point 1 and b’ the displacements uz at the points 2
and 3 for highly compressible and nearly incompressible fluids present inside the slit as a function
of the far-field strain εa.

Figure 5.5: Deformation of a single isolated slit considering a nearly incompressible slit filling.
a Undeformed and b deformed shape of the outer membrane. The displacements are scaled up
by a factor of 30.
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tents (filling) and a nearly incompressible (“liquid”) or highly compressible (“gas”) fluid,

respectively, filling the slit. When a gas is chosen as filling, point 1 shows a deformation of

Dc ≈ 5 nm under an applied far-field strain of εa = 2.5 × 10−5 in the direction normal to

the slit. This value is similar to that predicted for a slit without a filling (Dsc = 5.034 nm

for l = 100 µm and εa = 2.5× 10−5), and 5 times larger than for a fluid filled slit (left part

in Fig. 5.5b). It is also close to corresponding results for an “empty” single slit of length

100 µm and width 1 µm previously modeled in a planar disk (see Appendix B). Outer

and inner membrane (points 2 and 3) bulge inwards (uz ≈ 1.5 nm) when a gas filled slit is

compressed under a far-field strain of εa = 2.5×10−5 (Fig. 5.5b’). In contrast, in the liquid

filled slit with an impermeable inner membrane only the inner membrane bulges inwards

by uz ≈ 4.2 nm (point 2) whereas the center of the outer membrane is pushed towards the

outside of the slit by approximately 3.6 nm (point 3) (Fig. 5.4). This means that the outer

membrane is still bulged inwards but it is flattened at its center.

5.1.3 Effect of membrane stiffness in a stack of five slits subjected

to normal uni-axial loads

We evaluated the slit face deformations Dc of a non-staggered array of five identical and

“empty” slits of aspect ratio l/w0 = 100 (Fig. 5.6a) and 20 (smaller l, same w) (Fig. 5.6b)

at the centers of the slits in the direction normal to the slit faces and relative to the

deformation of single isolated slits Dsc of aspect ratio 100 and 20. The left end of the

diagram shown in Fig. 5.6a’ (vanishing Em) corresponds to the results of a similar slit

configuration cut into a planar disk presented in Chapter 4.1.2.2, i.e. the inner slits (slit2

to slit4) open up under compressive in-plane stresses. When Em is increased to more than,

say, 10 MPa (compare the Young’s modulus of exocuticle, Ec = 18 GPa) all slits approach

a similar level of normalized slit face deformation of approximately 0.22. Note that the

thickness of the membranes is 0.25 µm in contrast to the ≈ 10µm thick exocuticle. When

the stiffness of the membranes increases then the slit face deformations Dc of slit1 and 5

decrease but those of slit2 to 4 increase (Fig. 5.6a’). For slits of a reduced aspect ratio of 20

the results of the slit deformation are independent of the stiffness of the membranes in the

range between 0 and at least 18 MPa (Fig. 5.6b’). Here the bending of the cuticular material

between the slits (“ligaments”) is much less pronounced compared to the configurations
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Figure 5.6: Influence of the stiffness of the membranes (Em) of semi-circular cross section on
the relative slit deformation in a stack of five similar parallel slits when their width w0 and their
neighboring distances of S = w0 are held constant. Quarter models for slits of aspect ratio
l/w0 = 100 (a) and 20 (b). a’ and b’ dependence of the relative center slit face displacement
Dc/Dsc on Em.

with l/w0 = 100.

5.1.4 Embedding of slits in disks and cylinders three-dimensionally

curved at the site of the slit

Embedding of slits in planar disks. The largest slit face deformation of Dc = 9.65 nm is

found for a single isolated slit modeled in a transversely isotropic planar disk (type a in
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type a typetype

d

a b c

b c

Figure 5.7: Comparison of a single isolated slit modeled in a a flat disc, b a spherical bump,
and c a ridge-like structure. d Results of the slit deformation at the center of the slits, Dc, for
isotropic and transverse isotropic material laws.

Fig. 5.7d). When the transversely isotropic material was used in the model of a bump in

the planar disk (type b in Fig. 5.7d) the slit is compressed by Dc = 9.46 nm which is only

2% less. In contrast, when an isotropic material behavior (see Table 2.3) was used for the

model incorporating a bump the difference increased to approximately 2.3 nm. The slits

dilated when they were located on a ridge parallel to the loading direction in a planar disk

(type c in Fig. 5.7d) because the center region of the disks deformed in positive z -direction

under uni-axial in-plane deformations for both material laws due to bending introduced by

the slight assymetry of the configuration (ridge is located on one side of the disk only).

Note that the difference in slit face deformation of a single slit modeled in an isotropic

and a transversely isotropic planar disk remains very small at 3%. This is due to the fact

that in-plane deformations are mainly determined by the in-plane Young’s modulus which

is similar in both models.
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a b c

type a type b type c

Figure 5.8: Dependence of the slit deformation of a single slit incorporated in isotropic and
transverse isotropic cylinders. a Single slit in a smooth cylinder, b single slit in a spherical bump,
and c single slit in a ring-like structure. d Bar diagram of the slit face displacements Dc in nm.

Embedding of slits in ovalizing cylinders. Slits in cylinders without local surface features

were not deformed because they were placed in the reference plane where no deformations

occur under bending (type a in Fig. 5.8d). Therefore, such configurations are not found on

the walking legs of C. salei. When the slits are positioned on bumps or ridges the amount

of deformation increases as the height and therefore the distances between the reference

plane of the shells and the centers of the bumps or the ridges increase. Accordingly, a single

slit positioned on a bump of height 45 µm deforms by Dc = 3.2 nm in a disk with isotropic

and by Dc = 1.4 nm in disk with transversely isotropic material behavior, respectively

(type b in Fig. 5.8d). This is due to combined in-plane and out-of-plane deformations in

the disks with transversely isotropic material behavior with an elastic contrast of ≈ 3.7

between the in- and out-of-plane directions (Table 2.3). The largest deformation of a single
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Figure 5.9: Bar diagrams of the slit face deformations in a slit arrangement based on lyriform
organ HS8 of C. salei modeled in a a planar disk under planar uni-axial strains (εa = 2.5× 10−5)
and b a plate under bending (rotations of the horizontal edges of 0.057◦). c values measured for
organ HS8 in a live spider using white light interferometry as described in Chapter 4.1.3 using a
deflection of the metatarsus by Θ = 0.01◦ as a stimulus Hößl et al. (2007b), d results for a planar
slit arrangement in an isotropic disc, and e slit face deformations of the slits in a 3D shell for
isotropic and in e’ for a transversely isotropic material behavior.
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slit of Dc = 8.3 nm occurs when the slit is positioned parallel to the axis of the cylinder (in

meridional direction) in a ring-like structure with transversely isotropic material behavior,

that is subjected to an ovalizing displacement of 100 µm (type c in Fig. 5.8d). The

difference in slit deformation between a slit positioned in a spherical bump and in a ring-

like structure is 2.2 nm for the isotropic and 6.8 nm for the transversely isotropic material

law. Among the three configurations investigated a slit positioned in a ring-like structure

has the highest sensitivity to ovalizing loads for both isotropic and transversely isotropic

material laws.

5.1.5 Slit interaction under bending loads

On the posterior side on the tibia of C. salei the lyriform organ HS8 is located. Interfero-

metric measurements of the slit deformations in HS8 positioned on a stiffening ring show

that the cuticle at the site of HS8 moves towards the center of the tibia (Fig. 4.18c) which

indicates that the tibia is ovalized due to the transferred loads at the tibia-metatarsus joint.

Therefore bending moments are induced at the site of the organ that is located on a ring-

like structure. To show the differences in slit interaction between planar (in-plane loads)

and three-dimensional models (bending loads) we compare the slit face deformations of a

slit array based on lyriform organ HS8 of C. salei (Figs. 5.9 a and b) exposed to uni-axial

stresses (Fig. 5.9d) and to bending moments (Figs. 5.9e and e’) to the results of the white

light interferometric measurements of the slit deformations in HS8 that is stimulated by

a lateral deflection of the metatarsus by Θ = 0.01◦ (Fig. 5.9c, compare Fig. 4.18b). All

results were evaluated at the locations of the dendrites.

In the planar model slit2, the second longest slit in the arrangement, shows the largest

deformation (Fig. 5.9d). The load level slit1 is sensitive to is similar to that of slit3 in

this case. In contrast, when the slits are located on a ridge, like organ HS8, slit1 deforms

most by approximately 3.5 nm if an isotropic material and 4.8 nm if a transversely isotropic

material behavior for the disk is used, respectively (Figs. 5.9e and e’). The difference in the

slit face deformation of slit1 between isotropic and transversely isotropic material models

amounts to 1.3 nm (= 27%). Furthermore, the order of the smaller slits in terms of amount

of slit deformation changes when the material law is altered.
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5.2 Discussion

In studies of the mechanical behavior of single slits and arrangements of slits in planar

regimes we concentrated on the influence of the geometrical parameters describing slits

and slit arrangements on the deformation of the slits (Chapter 4.1.1, Chapter 4.1.2, and

Chapter 4.1.3). In this chapter we concentrate on the influence of (i) three-dimensional

details of the slits such as deformation of the coupling cylinder, deformation of the mem-

branes covering the slits under consideration of the slits’ contents, and effects of shape and

stiffness of the membranes covering the slits on the slit deformation as well as influences of

(ii) the three-dimensional shapes of the cuticle at the site of the slits, i.e. spherical bumps

or ridges and rings of circular cross section on the slit face deformations.

It is interesting to note that in the three-dimensional shell models studied in Chapter 5.1

a transversely isotropic material behavior as present in the cuticle increases the sensitivity

of the slits located on dimples in planar disks and on rings in cylindrical shells compared

to an isotropic one. Accordingly, similar slit face deformations are achieved when a slit is

positioned on a ring with height 45 µm and width 160 µm in a cylindrical shell of diameter

5 mm with isotropic material behavior and when it is located on a ring with height 30 µm

and width 107 µm in a similar cylindrical shell but with transversely isotropic material

behavior.

5.2.1 Details of slits and stimulus transformation

In TEM images of the cross sections of the slits in lyriform organs of C. salei flat mem-

branes, as well as membranes of semi-circular cross section and of semi-circular cross section

with an additional dimple at the site of the dendrites are frequently seen (Fig.3.13 a to

c) (Barth, 1971, 1972b; Müllan, 2005). The lateral deformation of the dendritic tip in the

outer membrane is thought to be important in terms of stimulus transformation because

the dendrite is free to move normally to the surface of the cuticle (Barth, 1972a). In the

simulations the smallest lateral deformation of the coupling cylinder is found for a semi-

circular membrane that contains an additional dimple, i.e. in a configuration with high

curvature which is in contrast to Barth (1972a) where it is concluded that the bending mo-
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ments at the center of the membranes of high curvature are higher compared to flat ones

favoring the deformation of the coupling cylinder. In the models the change in diameter of

the coupling cylinder is approximately 0.13 nm and 1/38th of the amount of slit deforma-

tion at the center of the slit (≈ 5 nm). In contrast, for a flat membrane the deformations

of the coupling cylinder are scaled down by a factor of 3.2 only. This indicates that the

deformation at the locations of the dendrite in long slits, where semi-circular cross sections

with additional dimples are found, is reduced to protect the sensory terminals from me-

chanical damage by overstimulation as in spider tactile hair (Barth et al., 2004). To adjust

the sensitivity of the single slit considered five possibilities seem feasible: (i) changing the

length l of the slits, (ii) changing the orientation of the slit relative to a uni-axial load-

ing Φ, (iii) changing the position of the location of the dendritic ends along the slit faces

(compare Chapter 4.2.2.1), (iv) changing the Young’s modulus of the membranes, and (v)

changing the curvature of the membranes. When the cross section of the outer membrane

changes from flat to semi-circular with a dimple the deformation at the site of the dendrite

is reduced by 1.44 nm. A similar reduction of the slit deformation can also be achieved by

decreasing the length of the slit from 100 µm to 71 µm, by rotating the slit by Φ = 32◦, by

shifting the position of the dendrite by 35 µm towards one end of the 100 µm long slit, or

by increasing the Young’s modulus of the membranes to approximately 18 GPa. Therefore

changing the orientation and length of the slit and the curvature of the outer membrane

are the most efficient ways to reduce the sensitivity of the slit.

Direct measurements of slit face deformations of organ HS8 in C. salei using white light

interferometry under biologically relevant loads (Fig. 4.18b) (Schaber and Barth, in prep.)

show that when the metatarsus is subjected to a lateral force of approximately 10 mN, some

slits were compressed by about 50%. Under these conditions the outer membranes bulge

inwards towards the extracellular space. Under the assumption of an impermeable lower

membrane such an inward bulging was only found in models with compressible fluid inside

the slits. When nearly incompressible liquid was used for the slit’s contents the outer

membrane was flattened and pushed towards the outside of the slit. In actual lyriform

organs no evidence for “gaseous” contents of the slits was found. Therefore, we may

conclude that the lower membrane is permeable and the fluid has sufficiently low viscosity

to flow rapidly into the extracellular cavity. Note that this combination can also act as a

frequency dependent damper of the slit deformation under dynamic loads of the cuticle.
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The model of a stack of five equal slits is an idealized configuration with regard to shape of

the slits (straight slits of constant width), arrangement of the slits (parallel), cross section of

the trough-shaped membranes (semi-circular), material properties of the disk (transversely

isotropic, but not accounting for the orientation of the chitin layers close to the slits

(Barth, 1971)), and slit contents (no filling). In this model the stiffness of the membranes,

which are usually more compliant than the exocuticle according to electronmicroscopical

analysis, mainly influences the deformation of the slits when the aspect ratio of the cuticular

ligaments between the slits approaches 100 (Figs. 5.6a, a’). When the aspect ratio decreases

to 20 the effect of the stiffness of the membranes is negligible (Figs. 5.6b, b’). In actual

lyriform organs of C. salei the highest aspect ratios of the cuticular ligaments are found in

the organ HS6 (Müllan, 2005), viz. 60, which is markedly smaller than 100. In addition, the

widths of the cuticular ligaments are not constant along the slits and therefore their effective

aspect ratio is less than 60 and the slits’ filling may also stabilize cuticular ligaments. This

may indicate that bending of the ligaments plays a minor role in actual lyriform organs.

5.2.2 Embedding of the organs and slit deformation

As seen in micrographs single slits are mostly located in planar cuticle in C. salei. In

contrast in the cylindrical leg segments, e.g. close to the tibia-metatarsus joints on the

walking legs of C. salei, ring-like structures are interrupted by slits that are oriented parallel

to the legs longitudinal axes. FE models assuming a transverse isotropic material behavior

show that in planar configurations a single slit modeled in flat disks under uni-axial stresses

and in three-dimensional configurations a single slit dividing a stiffening ring of an ovalizing

cylindrical shell are the most sensitive configurations in terms of slit face deformation.

When a spherical dimple was used then the sensitivity of the slit was approximately 2% in

the planar and approximately 35% in the three-dimensional configuration. Although the

difference is small in planar configurations this, however, shows that the sensitivity of the

slits can be controlled by placing surface features in the cuticle.

According to FE models imitating the embedding and the slit arrangement of lyriform

organ HS8 of C. salei the interaction effects between neighboring slits differ depending

on whether the arrangement is subjected to bending moments as indicated in the tibia or

to uni-axial in-plane loads in planar discs. In the planar arrangement slit1 shows lower
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sensitivity than slit2 (Fig. 5.9d). In contrast, in the arrangement modeled in a transversely

isotropic disk which is subjected to bending moments the order in slit sensitivity is similar

to the order in terms of slit length (Fig. 5.9e’). In the latter configuration the order of the

slits in terms of their sensitivity changed when the isotropic in contrast to the transversely

isotropic material law was used in the FE models (see Fig. 5.9e), due to the different in-

plane and out-of-plane material properties (Table 2.3). When the results were compared

to measurements on organ HS8 using white light interferometry (Fig. 5.9c) (Hößl et al.,

2007b; Schaber and Barth, in prep.) evaluated for a deflection angle of the metatarsus

Θ = 0.01◦ similarities in the sequence of slit sensitivity and the order of the slits in terms

of magnitude of slit face deformations are found only for the model of HS8 located on a

ridge and using a transversely isotropic material law typical for spider cuticle (Fig. 5.9e’).

The results of the planar FE models imitating actual lyriform organs presented in Chap-

ter 4.1.3 gave an insight to the performance characteristics of lyriform organs but in some

cases either the role of the smaller slits in the arrangements remains unclear because they

showed very small deformations or the order in terms of slit deformations in the arrange-

ments differed from that of their length. In those cases and especially for organs where

ovalizing of leg segments is to be expected, e.g. the tibia of C. salei, the three-dimensional

shape of the cuticle at the site of the organs has to be considered in the simulations to

increase the accuracy of the predictions for the directional sensitivity of the organs.

Note that in the FE model (Fig. 5.9b) slit1 is compressed by approximately 4.8 nm when

the plates with transversely isotropic material behavior are loaded by a rotation of 0.018◦

along the edges in x -direction (Fig. 5.9b). The slit face deformation for slit1 in lyriform

organ HS8 of C. salei determined at the physiological threshold stimulus amplitude Hößl

et al. (2007a) of ≈ 1.7 nm corresponds to a rotational displacement of 0.006◦ only, which

illustrates the high sensitivity of the organ.



124

Chapter 6

Designing strain sensors based on

arachnid slit sensilla

From an engineering point of view some of the possible design goals of strain sensors are:

• Sensitivity to uni-axial and/or multi-axial loads,

• resolution of the strain tensor and of the values and directions of the principal normal

strains and their change (proprioceptor),

• measuring of the directions of uni-axial loads and of their changes,

• frequency sensitivity in the case of periodic stimuli, and

• maximizing the signal-to-noise ratio.

Most commonly strains in objects have been measured by strain gauges. Isolated strain

gauges are used to measure the value of a direct strain component and rosette arrangements

are employed to measure the strain tensor and the direction of the principal normal strains.

Invented by Edward E. Simmons in 1938, the most common type of strain gauge consists of

an insulating flexible backing which supports a metallic foil pattern. The gauge is attached

to the object by a suitable adhesive and as the object is deformed, the foil is deformed,

causing its electrical resistance to change. This change is easily measured and related to
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the strain. Strain gauges may be damaged because of shock (overloading), heavy surges

in current, chemical or moisture ingress, mis-handling, vibration, or internal component

malfunctioning. In contrast to strain gauges sensors designed in analogy to lyriform organs

have several advantages:

• A single sensor can be tailored in terms of directional sensitivity and redundancy of

the measured load level, where in contrast, several strain gauges would be necessary,

• sensors can be downsized to a few microns (the size of the smallest “classical” strain

gauges is in the range of mm), and

• the handling of changes in temperature is less critical than in strain gauges.

However, when sensors based on lyriform organs, i.e. consisting of arrangements of slits,

are integrated into objects they decrease the local stiffness (in contrast to strain gauges

which increase the stiffness) and tend to cause stress concentrations, which may be strength

relevant. This has to be taken into account in the design of the structures1). In arachnid

slit sensilla there tends to be some thickening of the cuticle in the vicinity of the organs and

some increase of the volume fraction of the fibers, which may be responses to this problem.

Such difficulties do not occur when the slits are integrated into bridge-like structures that

are attached to the location where the deformations have to be measured (such bridges,

however, increase the local stiffness and make the sensor more directional). In addition,

sensors with open slits may be subject to contamination by small particles or dirt.

To our knowledge only one attempt of manufacturing biomimetic strain sensors has been

reported in the literature (Wicaksono et al., 2005), taking the morphology of campaniform

sensilla of insects as a starting point. There the authors fabricated combinations of blind-

hole and membrane structural features as membrane-in-recess microstructures from Si-

based materials and characterized their strain-sensing properties by optical measurements

using interference patterns. They report that the blind-hole structure concentrates the

strain on its edge and the membrane further amplifies the strains which can be used for

developing a new type of sensor.

1) Because the sensitivity of a slit and the strength of the stress concentrations at its tips are intimately
connected (compare Chapter 4.2.3.5), trade-offs between strength and sensitivity may have to be made,
where e.g. increasing the thickness of the substrate decreases the sensitivity of the sensor.
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In man-made sensors a number of ways for transducing the stimulus into an electrical

signal appear feasible in principle, among them

• Ionic liquid-swollen Nafion (Teflon-based polymer) membranes (Bennett and Leo,

2003) covering the slits that generate electrical charge (ion exchange) between the

electrodes attached to their surfaces in response to mechanical strain,

• measurement of the slit face deformations by Microelectromechanical devices that

change their capacity when the slit faces are compressed or dilated, or

• optical measurement of the deformations of the slit faces or of a membrane covering

the slit.

Note that the slits may actually be filled by a solid material that is considerably softer

than the substrate. With decreasing stiffness contrast between substrate and filler the slit

face displacements, but also the stress concentrations in the arrangement, decrease. If a

particulate or fluid filling is used, obviously membranes are required for covering the slits.

Membranes may also be employed in signal transduction (as is the case in arachnids) or as

protection against contamination. Such membranes, however, have to be markedly more

compliant than the substrate, so that their stiffness does not dominate the deformation of

the slits, and they require a high fatigue life (high number of load cycles like the natural

case). As is typical for Microelectromechanical Systems (MEMS) small sensors of complex

shape like those based on the slit sensilla may be manufactured by modified semiconductor

fabrication technology.

In the models described in the preceding sections the displacements are due to uni-axial

loads acting in different directions Φ. In contrast, for sensor applications the inverse

problem of determining the load direction and level from the slit deformations has to be

solved.

For the design of the sensors some principles can be derived according to our findings de-

scribed in the Chapters 4.1.1, 4.1.2, 4.1.3, and 5.1. The governing parameter for adjusting

the slit deformation for a given load level is the length of the slits. The slits’ aspect ratios

can be changed within a wide range (20 to 100) without markedly influencing the slit de-

formation. When a single slit is to respond to a load in a given direction its orientation
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should be adjusted so that its axis is oriented normal to the load direction rather than

using slits of S-shaped centerlines as shown in Chapter 4.1.2.1. In arrangements of parallel

slits the slit deformations are most sensitive to a change in the parameters lateral distance

(shielding effects) and longitudinal shift (amplification effects) between the slits. In princi-

ple, the following slit patterns can be used in dependence on the design goals. (i) Oblique

bar arrangements with slits of equal length that are laterally shifted and are sensitive to

the same amplitude and directional range of loads and with the potential to increase the

signal to noise ratio by convergence of the signals of the individual slits; (ii) triangular

patterns with slits of different length with the potential of considerably increasing the am-

plitude range of a single slit; (iii) heart shaped or fan-like configurations with the potential

of sensing the load direction on the basis of varying patterns of the slits active in the array

(Barth et al., 1984).

For sensing in-plane strains planar substrates for the sensors are an obvious choice. When

bending moments have to be resolved slits positioned on ridges are suggested and in sit-

uations of limited space dimples are recommended for increasing the distance between

the slits and the neutral axis of the structure (=reference plane in shell-like structures).

Provided the sensors are used in the linear elastic regime of the substrate the stress con-

centration factor at the ends of the slits will remain essentially the same for a wide range

of substrates.
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Chapter 7

Conclusions

We employed an analytical approach, Kachanov’s method, and the Finite Element (FE)

method to study some biomechanical aspects of lyriform organs of arachnids. The main goal

of the present study lies in elucidating the principal biomechanical features of these organs.

In addition, the results may serve as the quantitative basis for designing bio-inspired micro

sensors. In planar models the results are presented relative to the deformation of a reference

configuration, i.e. a single isolated crack or slit, and can be scaled to any crack or slit size

and load amplitude as long as linear behavior can be assumed. The three-dimensional

models, on the one hand, describe details of the actual slit geometries and, on the other

hand, study the effects of the slits’ position in generic spatially curved cuticular regions.

There the results are presented in terms of absolute values.

Studies of single isolated slits incorporated into planar FE models show that their face

deformations are mainly influenced by their length and their orientation relative to the

direction of uni-directional loads, but are insensitive to aspect ratios (slit length/slit width)

ranging between 20 and 100. On the basis of similar aspect ratios ellipse-like openings as

found in strain sensitive campaniform sensilla in the cuticle of insects produce higher stress

concentrations at their ends than capped rectangular slits.

Kachanov’s approximations applied to crack-like slits show that interaction effects between

the slits, namely shielding and amplification of the slit face deformations, are most promi-

nent in a stack of similar slits which is chosen to assess the accuracy of this approach by the
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FE method. Although limited to lateral spacings between the slits of S/l0 ≥ 0.5 Kachanov’s

method shows that interaction effects vanish for S/l0 ≥ 3 and strongly increase when the

neighbor distances decrease. Accordingly, interactions between loose groups and lyriform

organs and between neighboring lyriform organs can be expected when their neighboring

distance is less than three times the length of the longest slit in the arrangement. For

spacings found in lyriform organs (S/l0 ≈ 0.02) FE models of generic planar arrangements

of parallel slits, i.e. stack, oblique bar, triangular, and fan-like configurations, show that

amplification and shielding effects are strongly influenced by the closest neighbor distance

between the slits. Accordingly, skewed triangular lyriform organs are typically found in

arachnids in which the shorter slits are longitudinally shifted out of the “shadow” of the

longest slit in the organ.

Further studies center on planar FE models of slits based on lyriform organs of the spiders

Cupiennius salei and the bird spider Aphonopelma. For the triangular slit sensillum HS8 on

the posterior side of the tibia of C. salei comparisons with measurements performed with

white light interferometry show good agreement with the simulated slit face displacements.

The directional sensitivity of a single isolated slit can be related to a figure-eight shape when

the slit face deformation is plotted against load angle in a polar plot. Similar responses

are reported for the directional sensitivity of arthropod mechanoreceptive hairs (Dechant

et al., 2006). Depending on the geometry of the arrangement different sensitivities of

the individual slits with regard to loads acting in different directions can be achieved,

which can be used to extract the direction of loads. Arrangements with cascades of widely

differing mechanical responses of the individual slits increase the range of load levels that

can be detected compared to a single isolated slit. When the responses of the realistic

slit arrangements are compared to those of generic arrangements of five slits it is found

that lyriform organs are often combinations of the generic formations. We show that

even small geometrical variations in the slit arrangement can have a major impact on

the interaction effects and, as a consequence, also on the slit deformation. Furthermore,

the stress concentrations in the vicinity of the slit arrangements are influenced by the

interaction effects between the slits in the arrangements. The locations of the dendrites

are investigated and it is found that in the models they are not necessarily positioned at

the exact locations of the maximum slit face displacement at a given load angle, but close

to it. Provided the transfer functions describing the transduction process are known, the



130 CHAPTER 7. CONCLUSIONS

above results allow the prediction of the sensory output generated by planar arrangements

of slits in the small strain regime.

Finally investigations on three-dimensional details of the slits’ morphology, i.e. stiffnesses

and shapes of the membranes and the fluid filling of the slit, and the embedding of the

organs, i.e. sensilla located on elevations in the cuticle, are presented. Unexpected local

effects are observed in a stack of five parallel slits with aspect ratio (slit length/slit width)

of 100 at S/l0 = 0.02, where the inner slits open up under compressive uni-axial loads,

which is the consequence of the bending of the material between the slits. It is shown that

the stiffness of the membranes influences the bending of the cuticular ligaments as the as-

pect ratio of the material between the slits and the amount of the Young’s modulus of the

membranes increases. When the curvature of the membrane is increased the deformation

of the coupling cylinder compressing the dendrite is decreased, which indicates that the

deformations at the locations of the dendrites may be reduced to protect the sensory ter-

minals from mechanical damage by overstimulation in analogy to a mechanism observed in

spider tactile hairs (Barth et al., 2004). In three-dimensional shell models of the shell-like

cuticle that use a transversely isotropic material behavior single slits show the largest face

deformations when they are located in meridional orientation on a stiffening ring of an

ovalizing cylinder or when they are positioned in flat planar regions under in-plane load-

ing. Detailed three-dimensional FE analyses show – as was also found by interferometric

measurements (Schaber and Barth, in prep.) – that the outer membrane bulges towards

the inside under compressive loading when the fluid filling of the slit can move across the

inner membrane or when this filling is highly compressible.

Promising fields for future studies are refined models of details of the slits’ morphology and

of realistically shaped cuticular regions containing slit sensilla. Investigations of details of

slit morphology may, for example, study the effects of variations of the thickness of the

cuticle, of local values of the volume fraction of chitin fibers, and of the orientation of

the lamellae (Fig. 2.8) in the vicinity of the slits. Studies of larger cuticular regions with

embedded slit sensilla may, for example, target simplified shell models of leg segments.

Provided suitable material data can be obtained modeling the nonlinear behavior of slit

sensilla also is of considerable interest.
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Expressions for calculating the stress

field generated by a crack

Plane stress solutions for the normalized, dimensionless, plane stress fields generated by

uniform tractions acting on an isolated crack in an infinite 2D medium can be obtained by

the complex variable method (Willmore, 1949; Muskhelishvili, 1975; Kachanov, 1994).

The crack is defined to occupy the interval [−l/2, l/2] of the x -axis (see Fig. 3.1).

Components of the stress tensor under normal loading p in y-direction

σxx/p = I2 − 8y2I4 + 8y4I6

σxy/p = 2 (−yI3 + xyI4 + 4y3I5 − 4xy3I6) (A.1)

σyy/p = I2 + 4y2I4 − 8y4I6

Components of the stress tensor under in-plane shear loading τ

σxx/τ = 2 (3yI3 − 3xyI4 − 4y3I5 + 4xy3I6)

σxy/τ = I2 − 8y2I4 + 8y4I6 (A.2)

σyy/τ = 2 (−yI3 + xyI4 + 4y3I5 − 4xy3I6)
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where the following definitions are used
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δ = κ + 2
√

η̺

and p, τ are the applied far field normal and shear stress, respectively.
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Example for adapting the normalized

results of the planar models

Within the linear regime of the material and assuming small deformations the face dis-

placements at any point along a given slit, D∗
slit(x), can be evaluated as a function of the

slit length l0 and the far-field strain εa as

D∗
slit(x) =

D(x)

Dsc

· Dsc

l0
· l0 ·

εa

εa,r

(B.1)

The value for D(x)/Dsc depends on the geometrical configuration and is obtained from one

of the diagrams in Figs. 4.6, 4.9, 4.11, 4.12, 4.13, and 4.14 for the required aspect ratio

l0/w0. The “reference values” for the single slit under normal loading, Dsc/l0 and εa,r, are

taken from Table B.1. In case the far-field stress σa is given rather than the far-field strain,

the relationship

D∗
slit(x) =

D(x)

Dsc
· Dsc

l0
· l0 ·

Er

E
· σa

σa,r
(B.2)

must be used, in which the quotient Er/E accounts for the effects of the Young’s modulus.

For evaluating D∗
crack(ξ) (ξ defined in analogy to Chapter 3.1.3) for cracks Eqs. B.1 and B.2
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have to be rewritten; the reference values for a single isolated crack under normal loading

are listed in Table B.2

D∗
crack(ξ) =

D(ξ)

Dcc

· Dcc

l0
· l0 ·

εa

εa,r

(B.3)

D∗
crack(ξ) =

D(ξ)

Dcc
· Dcc

l0
· l0 ·

Er

E
· σa

σa,r
(B.4)

The opening displacements scale linearly with the crack/slit length in Eqs. B.1 to B.4.

For example at the mid-length position (D∗(ξ = 1/2 l0) = Dc) of the central slit (slit3)

in the oblique bar formation (Fig. 4.9f) in a disc with Young’s modulus E = 17 GPa,

with a length of l0 = 100 µm, a width of w0 = 1 µm, a lateral spacing of S/l0 = 0.04,

and a longitudinal shift of λ/l0 = 0.85, which is loaded by a compressive far-field stress of

σ = −500 kPa, this procedure gives

Dc = 4.2 · 5.034 × 10−5 · 100 × 10−6 · 18 × 109

17 × 109
· −500 × 103

−0.45 × 106
m = 24.9 nm

where D(x)/Dsc = Dc/Dsc ≈ 4.2 is taken from Fig. 4.9b.

Table B.1: Reference values for a single slit of aspect ratio l0/w0 = 100 subjected to a uni-axial
normal compressive strain.

εa,r σa,r Er Dsc/l0
−2.5 × 10−5 −0.45 MPa 18 GPa 5.034 × 10−5

Table B.2: Reference values for a single crack subjected to a uni-axial tensile traction.

εa,r σa,r Er Dcc/l0
5.56 × 10−5 1 MPa 18 GPa 11.21 × 10−5
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Thurm, U. (1982). Grundzüge der Transduktionsmechanismen in Sinneszellen. Mechano-

elektrische Transduktion. In: W. Hoppe, W. Lohmann, H. Markl and H. Ziegler (eds.),

Biophysik, pp. 681–696. Springer, Berlin.

Tong, P., Pian, T. H. H. and Lasry, S. J. (1973). A hybrid-element approach to crack

problems in plane elasticity. Int. J. Num. Meth. Eng. 7, pp. 1031–1036.

Tracey, D. M. (1971). Finite elements for determination of crack tip elastic stress intensity

factors. Eng. Fract. Mech. 3, pp. 255–265.

Tychsen, P. H. and Vincent, J. F. V. (1976). Correlated changes in the mechanical prop-

erties of the intersegmental membrane and bonding between the proteins in the female

adult locust. J. Insect Physiol. 22, pp. 115–125.

Vincent, J. F. V. (1980). Insect cuticle: a paradigm for natural composites. In: J. F. V.

Vincent and J. D. Currey (eds.), The Mechanical Properties of Biological Materials,

volume XXXIV, pp. 183–210. Soc. Exp. Biol. Symp.

Vincent, J. F. V. (1982). Structural Biomaterials. The MacMillan Press Ltd., London.

Vincent, J. F. V. (1998). The cuticle as an exoskeleton. In: W. H. Frederick and L. Michael

(eds.), Microscopic Anatomy of Invertebrates: Insecta: 11A, pp. 139–149. John Wiley &

Sons Inc.

Vincent, J. F. V. (2002a). Arthropod cuticle: a natural composite shell system. Composites

Part A 33, pp. 1311–1315.

Vincent, J. F. V. (2002b). Survival of the cheapest. Materials Today 12, pp. 28–41.

Vincent, J. F. V. and Hillerton, J. E. (1979). The tanning of insect cuticle - a critical

review and a revised mechanism. J. Insect Physiol. 25, pp. 653–658.



BIBLIOGRAPHY 145

Vincent, J. F. V. and Wegst, U. G. K. (2004). Design and mechanical properties of insect

cuticle. Arthropod Struct. Dev. 33, pp. 187–199.

Vogel, S. (2003). Comparative Biomechanics: Life’s Physical World. Princeton University

Press, Princeton and Oxford.

Wainwright, S. A., Biggs, W. D., Currey, J. D. and Gosline, J. M. (1982). Mechanical

Design in Organisms. Princeton University Press, Princeton, New Jersey.

Weis-Fogh, T. (1961). Molecular interpretation of the elasticity of resilin, a rubbery-like

protein. J. Mol. Biol. 3, pp. 648–667.

Wicaksono, D. H. B., Pandraud, G., Vincent, J. F. V. and French, P. J. (2005). Early

stages fabrication and optical characterisation of new micromachined silicon strain-

sensing structures inspired from the campaniform sensillum of insects. J. Micromech.

Microeng. 15, pp. 72–81.

Wigglesworth, V. B. (1988). The source of lipids and polyphenols for the insect cuticle.

The role of the fat body, oenocytes and oenocytoids . Tissue Cell 20, pp. 919–932.

Willmore, T. J. (1949). The distribution of stress in the neighbourhood of a crack. Quart.

J. Mech. Appl. Math. 2(1), pp. 53–63.

Zill, S. and Moran, D. T. (1981). The exoskeleton and insect proprioception. I. Responses

of tibial campaniform sensilla to external and muscle-generated forces in the american

cockroach, Periplaneta americana. J. Exp. Biol. 91(1), pp. 1–24.



Curriculum Vitae

Name : Bernhard Hößl
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1990 – 1995 Graduation at “Höhere Technische Bundeslehranstalt”,

Eisenstadt, Austria.

1999 Exchange student at University of North Carolina at Char-

lotte, NC, USA.

Professional Development

Sept. 02 – June 03 Engineer at the department of vehicle dynamics at Audi AG,

Ingolstadt, Germany.


