

Technische Universität Wien

DIPLOMARBEIT

GenEdit – A Generic Editor and Tools for
Questionnaires

Thema

Ausgeführt am Institut für

Institut für Softwaretechnik und Interaktive Systeme
der Technischen Universität Wien

unter der Anleitung von

durch

Martina Osztovits

Name

Langeg. 33
7162 Tadten

Anschrift

Datum Unterschrift (Student)

a.o. Univ. Prof. Silvia Miksch

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

1

Abstract
The objective of this master thesis is to design and develop a generic editor for questionnaires
together with some useful add-on tools suitable for many different applications. This generic
editor should be able to manage any questionnaires which collect time-oriented, highly
structured data regardless of a specific problem. Hence, the questionnaires have to be
generated during run-time on demand using various configuration files for the start-up of a
specific application. The implementation aims at being as general as possible to be useful for
as many problems as possible.
Finally, the generic editor is demonstrated on the case of questionnaires used during a clinical
trial which takes place at the Department of Child and Adolescent Neuropsychiatry at the
Medical University of Vienna. This psychotherapeutic study analyses alternative therapeutic
processes of anorectic girls by collecting a huge amount of highly structured time-oriented
data through questionnaires. The generic editor should simplify the management of the
questionnaires as well as the collection the data necessary for this study.

Kurzfassung
Im Rahmen dieser Diplomarbeit soll ein generischer Editor für Fragebögen entwickelt
werden. Zusätzliche Werkzeuge sollen einen Überblick über die, während der Arbeit mit dem
generischen Editor erfassten zeitorientierten und strukturierten Daten, ermöglichen. Da der
Editor mit Fragebögen verschiedenster Problemstellungen arbeiten können soll, ist es
notwendig, dass die spezifische Anwendung, und auch die Fragebögen und deren Antworten
aufgrund verschiedenster Konfigurationsfiles zur Laufzeit erzeugt werden. Es wird darauf
abgezielt die Implementation so allgemein wie möglich zu halten, damit das Programm für
möglichst viele Aufgabenstellungen eingesetzt werden kann.
Schließlich wird der Einsatz des entwickelten Programms am Fall von Fragebögen, die
während einer klinischen Studie der Kinder- und Jugendpsychiatrie der Medizinischen
Universität Wien an magersüchtige Mädchen gerichtet werden, gezeigt. Ziel ist es eine
einfachere Eingabemöglichkeit, der, während dieser Studie gesammelten zeitorientierten,
strukturierten Daten, und eine einfache Verwaltungsmöglichkeit der Fragebögen, zu
ermöglichen.

2

Acknowledgements
This thesis is dedicated to my children, Amanda, Helene, Sebastian, and Sabrina. They taught
me that it is vital to live my own life.
Special thanks to Klaus Hinum for his support and supervision and to Silvia Miksch, my
supervisor.
I would like to thank my parents, my husband, and my friends for their patience and support. I
am especially grateful to Bernd Dupal, who shared his experience in object oriented
programming with me.
Many thanks also to Peter Votruba for his advices in Java Programming, especially for his
very valuable information about TableLayout, JTables and creating executable JAR files.
Thanks to all, who contribute their knowledge by publicizing their ideas in the World Wide
Web and especially to all the developers of free software and tools.
Special thanks to Herman Suppan for his advices and worldly wisdoms.

Contact Information
Martina Osztovits
Langeg. 33
7162 Tadten
Österreich

E-Mail: m.osz@gmx.at

3

Contents

Overview .. 7

I. PROBLEM ANALYSIS 8

1 Problem Description and Goal ... 8

2 Concepts and Definitions .. 8
2.1 Structural vs. Measurement Data vs. Parameter Sources 9

2.1.1 Parameter Source 9
2.1.2 Structural Data 9

2.1.2.1 Form Group 9
2.1.2.2 Form or Questionnaire 10
2.1.2.3 Parameter, Question 10
2.1.2.4 Allowed Values 10

2.1.3 Measurement Data 10
2.1.3.1 Answer Set Information 11
2.1.3.2 Answer Details 11

II. DESIGN AND IMPLEMENTATION 12

3 Structural Data ..12

4 Measurement Data .. 13

5 Data Source .. 14
5.1 EER of the Data Source 14

5.1.1 The Form Group 15
5.1.2 The Form or Parameter Group 15
5.1.3 Parameter 16
5.1.4 Allowed Value 16
5.1.5 Additional Field 17
5.1.6 Allowed for Additional Fields 17
5.1.7 Parameter Source 18
5.1.8 Measurement 18

6 Required Functionality ... 19
6.1 Design of Forms 19
6.2 Maintenance of Parameter Sources 20
6.3 Recording Parameter Sets and Parameters 20
6.4 Quick Recording of Head Values without Opening an Record 20
6.5 Extras 20
6.6 Descriptive Statistical Data 20

7 Design Tradeoffs.. 21
7.1 Database vs. XML file format 21
7.2 Single User vs. Multiple User 22
7.3 Mutual Exclusiveness for Design and Record Data tasks 22
7.4 User Management 23
7.5 Programming Language and Tools Used 23

7.5.1 Consideration for Choosing an XML parser 24
7.5.2 Consideration for Choosing an API for XML processing 24
7.5.3 Document Validation 25
7.5.4 The User Interface 25

8 Packages Structure and Class Implementations... 26
8.1 GenericEditor class 27

4

8.2 Configuration and Profile 28
8.2.1 The Default Time Granularity and How to Change It 30

8.3 Data Model 30
8.3.1 The Overall Data Administration Class – TDataAdmin 31

8.3.1.1 Ensuring Mutual Exclusiveness 33
8.3.2 The Data Administration Class for Form Group Specific Data – TAData 33
8.3.3 Internal Administration of Hierarchical Data 34

8.3.3.1 The Records – RecordData 34
8.3.3.2 The Tables – TableData 35

8.3.4 TableDataIterator 37
8.3.5 A Comparator for Records 38
8.3.6 Additional Head Fields 39
8.3.7 Templates for Setting up the Conversions from Internal to Displayed Representation 40
8.3.8 The value package 41

8.4 Input – Output – physical Data Storage 42
8.4.1 The Storage Manager Concept for Tables 42

8.4.1.1 Abstract Storage Manager 43
8.4.1.2 Storage Managers for Parameter Sources 45
8.4.1.3 Storage Managers for Measurement Data 46
8.4.1.4 The Storage Manager for Forms 48

8.4.2 The Importer 48
8.4.3 The Exporter 49
8.4.4 The GenEdit Print Utility 50
8.4.5 Helper Methods for IO Access 51

8.5 The User Interface 53
8.5.1 The Main Window 53
8.5.2 The Record Data Window 55

8.5.2.1 The Date Spinner 57
8.5.2.2 The Custom ListCellRenderer 58

8.5.3 The Design Form Window 58
8.5.4 The Parameter Source Maintenance Window 61
8.5.5 The Filter / Search Dialog 62
8.5.6 Export Dialog 65

8.5.6.1 Common Export Options 65
8.5.6.2 Export Dialog 66
8.5.6.3 Dialog for Exporting and Starting an External Program 67
8.5.6.4 Export Chooser 68
8.5.6.5 The Modified File Chooser 69

8.5.7 Import Dialog 70
8.5.8 Table Sorter 71

8.6 The Custom Event of the Generic Editor 72
8.6.1 Data Change Event 73
8.6.2 Data Change Listener 73

8.7 Utilities 73

III. DEMONSTRATION OF THE TOOL AND CONCLUSION 74

9 Illustration for a clinical trial about anorectic g irls ... 74
9.1 Getting Started 74

9.1.1 Setting up the Configuration File 74
9.1.2 The Parameters of the Configuration File 74
9.1.3 The Default Configuration File in German 78
9.1.4 The English Configuration File Used for this Documentation 79
9.1.5 The Language Specific Translations 80

9.2 The Command Line Parameters 81
9.3 Starting the Program 81
9.4 Using the Generic Editor 82

9.4.1 Recording Data 82
9.4.1.1 Create a New Record 84
9.4.1.2 Select an Existing Record 84
9.4.1.3 Entering Answers 84

5

9.4.1.4 Searching for a Record / Specifying Values of Head Fields without Opening the Record 84
9.4.1.5 Save the Answers 85
9.4.1.6 Resetting the Answers 85
9.4.1.7 Deleting the Answers 85
9.4.1.8 Printing the Answers 85
9.4.1.9 Close a Record / Work with another Record 85
9.4.1.10 Sorting the Answers 85
9.4.1.11 Navigation through the Records 85
9.4.1.12 The Shortcuts and Icons for the Tasks 85

9.4.2 Designing Forms 86
9.4.2.1 Creating a new Form 88
9.4.2.2 Opening an Existing Form 88
9.4.2.3 Specifying the Form’s Parameters and the Questions 88
9.4.2.4 Searching for a Form / Specifying Values of Head Fields without Opening the Record 90
9.4.2.5 Save the Form 90
9.4.2.6 Resetting the Form 90
9.4.2.7 Copying a Form 90
9.4.2.8 Deleting the Form 90
9.4.2.9 Printing the Form 90
9.4.2.10 Previewing the Form 90
9.4.2.11 Close a Record / Work with Another Record 91
9.4.2.12 Navigation through the Records 91
9.4.2.13 Sorting the Forms 91
9.4.2.14 Deleting All Answers to a Form 91
9.4.2.15 The Shortcuts and Icons for the Tasks 91

9.4.3 Maintaining Parameter Sources 92
9.4.3.1 Creating a New Parameter Source 93
9.4.3.2 Delete 93
9.4.3.3 Saving Changes 94
9.4.3.4 Reset 94
9.4.3.5 Close 94
9.4.3.6 Delete All Answers of a Parameter Source 94
9.4.3.7 The Shortcuts and Icons for the Tasks 94

9.4.4 Extras 94
9.4.4.1 Exporting Data 94
9.4.4.2 Importing Data 98
9.4.4.3 Exporting and Automatically Start of an External Program 98

9.4.5 Searching / Filtering the Data 100
9.4.5.1 The Fields of the Filter Table 101
9.4.5.2 Assigning Values to Head Fields 101
9.4.5.3 Saving the table 101
9.4.5.4 Closing the Search/Filter Dialog 101
9.4.5.5 The Shortcuts and Icons for the Tasks 102

10 Future perspectives ... 102
10.1 User Management 102
10.2 Database Management System 102
10.3 Multi User 102
10.4 XML Document Validation 102
10.5 Profile Settings 102

11 Summary ..103

IV. APPENDIX 104

1 Definitions .. 104
1.1 Anorexia nervosa 104
1.2 EER 104
1.3 Parser 104
1.4 Singleton 104

6

2 The File Formats.. 105
2.1 Conflation 105
2.2 CSV (= CSV – multiple row) 105
2.3 CSV – single row 106
2.4 A Single AnswerFile 106
2.5 Multiple AnswerFiles in the AnswerDir subdirecotry 106
2.6 XML File Format for Forms 107
2.7 XML File Format for Parameter Sources 107

V. TABLES OF 107

1 Figures .. 107

2 Tables.. 108

3 Codes and Example Files .. 109

VI. BIBLIOGRAPHY 110

Literature... 110

Internet Resources .. 111

7

Overview
This thesis is divided into three parts. Part I covers the problem analysis, which includes not
only a detailed description of the problem and the goal, but also analyzes the data involved.
Part II deals with design and implementation issues. It covers in detail the package structure
and the classes, the underlying data model and the user interface. Part III demonstrates the
application which has been implemented within the framework of this thesis with
questionnaires designed for a clinical study about anorectic girls. It focuses on setting up the
Generic Editor for a specific task and on user interface details. Furthermore, it covers future
perspectives, especially proposals for enhancements.

8

I. Problem Analysis

1 Problem Description and Goal
The purpose of this thesis is to develop a generic editor for questionnaires. It is generic in the
sense that the questionnaires are not hard coded. Instead, the questionnaire definitions will be
loaded during the program start. While the main field of operation is for questionnaires which
are used during a study about anorectic girls at the Department of Child and Adolescent
Neuropsychiatry at the Medical University of Vienna, the generic editor is designed
sufficiently general to cover questionnaires for virtually any field of operation.
The generic editor has to cover three main tasks, which are:

• Maintenance of questionnaires
• Maintenance of parameter sources (i.e. repliers of questionnaires)
• Maintenance of answers

Regarding its use during our study about anorectic girls, it is a tool, which records the data
needed in the in2vis project. In2vis is short for Interactive Information Visualization. The
in2vis project aims at exploring and supporting human reasoning processes and takes place at
the Institute of Software Technology and Interactive Systems. On 1st of July 2004 a team
headed by Silvia Miksch started the in2vis project. During the in2vis project some tools were
developed which aim at visualizing huge amounts of abstract, but highly structured data. One
of these tools is Gravi++, which was developed by Klaus Hinum. In his thesis he proposes an
interactive Information Visualization called Gravi++, which aims in visualizing highly
structured, temporal, categorical data. “It integrates a spring-based core visualization to
display the multidimensional data set.” [Hinum 2006 p.3] Further details on Gravi++ can be
found in [Hinum 2005] and [Hinum 2006].
Even before the in2vis project, during the LinkVis project a tool was created which aimed at
evaluating and visualizing psychotherapeutic processes. Both projects use a common data
source, called the Conflation file format (see chapter IV.2.1 for information on the Conflation
file format). Further details on the LinkVis project can be found in [Herzog 2004].
Furthermore, Stardinates were developed in 2003 by Monika Lanzenberger (see also
[Lanzenberger 2003 1], [Lanzenberger 2003 2] and [Lanzenberger 2003 3]). “The Stardinates
are a novel interactive Information Visualization (InfoVis) technique which aims at
visualizing highly structured data. They represent some Gestalt principles very well,
especially the principles of Closure and ’Prägnanz’. As a consequence, Stardinates form very
distinct and memorable patterns which make abstraction and aggregation much easier”
[Lanzenberger 2003 1]. Stardinates, LinkVis, and Gravi++ use common file formats. A main
aim of the generic editor is to be able to read the existing file formats and export the data in
the Conflation File Format, so that Gravi++ is capable of visualizing the recorded data.

Another aspect is that master data and variable master data of patients are conceptually
handled the same way as ordinary questionnaires. Furthermore, there is a special focus that it
is easy to enhance the editor.

2 Concepts and Definitions
We will now introduce the important concepts, which will be used throughout the rest of this
thesis. The data concept introduced in [Herzog 2004] is enhanced by form groups. This is
necessary to able to cover time-oriented data, not time-dependent data and data which
requires additional information conceptually the same way.

9

2.1 Structural vs. Measurement Data vs. Parameter S ources
It is important to distinguish between structural and measurement data and parameter sources.
This concept can also be found in [Herzog 2004]. According to his thesis, the data can be
divided into two parts, on the one hand the master data, which describe the questions and
questionnaires in detail and on the other hand the measurement data, which are the answers to
these questions.
I want to stretch this concept and categorize the data in three parts, which are structural data,
measurement data, and parameter sources. This is necessary to be able to treat all the
parameters which are collected for each parameter source conceptually the same way and also
to provide maintenance of parameter sources.

2.1.1 Parameter Source
As in [Herzog 2004], a parameter source keeps information about the source of measured
values. This can be for example a person answering a questionnaire, but it is not restricted to
this. In order to keep the program as general as possible, the program only stores a unique
identifier for each parameter source. The kind of the parameter source needed for a concrete
application is specified in the application’s profile. The profile configures the generic editor
for a concrete application. For example, in the context of our study about anorectic girls, the
parameter sources would be patients. The parameter source maintenance keeps only track of
the parameter source ids. All other data which would normally be recorded to describe a
parameter source are treated like all other parameters and are therefore, measurement data.
E.g. the name of a patient is treated like any other measurement data and is not closely
associated with the parameter source entity, i.e. it is not an attribute of the parameter source
entity.

2.1.2 Structural Data
Structural data are all data which are necessary for keeping track of the structure of a
questionnaire. Especially, these are the identifier of the form, optionally a description of the
form and the number of parameters of the form and the details for each parameter which
belong to this form. These data are likely to be set up only once and are not likely to be
changed once they are set up. They reflect the structure of the form.

2.1.2.1 Form Group
A form group is a group of questionnaires, which have certain properties in common or which
are arbitrarily grouped together by the user. But there is one restriction in arbitrarily grouping
questionnaires: The questionnaires have to be similar in:

• Time-dependence and time granularity
• Requirement of the same additional information

To group forms into distinct form groups is merely of interest when recording answers. The
definition of questionnaires does not depend on the form group the form belongs to. However,
the problem is how to uniquely identify an answer (or measurement) set. E.g. master data is
not time dependent. Therefore, the parameter source id and the form id are sufficient for
identifying an answer set within a form group that contains non time dependent data. Other
data is time dependent, e.g. questionnaires which are answered multiple times during a
therapy. These answer sets require additionally, a time field to uniquely identify an answer
set. Furthermore, it might be necessary to specify further key values for identifying an answer
set uniquely – e.g. a parameter source flag to store whether the questionnaire has been
answered by the patient, his father, his mother, or his therapist. And it might be useful to be
able to specify further non – key values- e.g. for categorizing the answer sets. An example
would be the qualitative time, which categorizes each answer into different qualitative times,
e.g. pre for previous to the therapy, post for posterior to the therapy etc.

10

The number of form groups and the detailed specifications of each form group are set up
during a configuration process. This ensures that the generic editor can be used in different
fields of operation.

2.1.2.2 Form or Questionnaire
A form consists of a set of questions, which belong together. Each form is uniquely identified
within a form group by its form identifier.
Furthermore, a description of the form can be specified.

2.1.2.3 Parameter, Question
A parameter is a criterion, which the user wants to observe. It is identified within a form by its
parameter-id, also called question-id.
Besides the parameter-id, there is a number of other structural information necessary:

• Parameter text: the formulation of the question
• Data type of the answers
• Minimum value: optionally
• Maximum value: optionally
• Mean value: optionally

2.1.2.4 Allowed Values
In addition to specifying a minimum or a maximum value, the user can also restrict the data
range of a question by specifying a list of allowed values. Each allowed value has the
following fields:

• Id: The actually allowed value. It is unique within each parameter (question) and a key
field.

• Description: optionally a description for each value.

2.1.3 Measurement Data
During the life time of the application, the most common task is to collect values to the
parameters set up in the design phase. The values collected are the measurement data of the
program. These data are also called “measurement data” in [Herzog 2004, p.16]. Considering
the special case of patient data as described in [Herzog 2004, p.16], it is necessary to
distinguish time oriented data (which is recorded frequently) and static data:

“The operative data consist of answers of the questionnaires and information about the
patients. The information about the patients are more static and don't change every period.
The answers of the questionnaires will be recorded frequently. The frequency of the data
recording depends on the demands of the researcher.” [Herzog 2004, p.16]
Time oriented data are collected multiple times for each patient, whilst static data is usually
collected only once. For the editor this means that it must capable of either keeping the
information when the record was recorded as a key field or omitting the date information. So
it is necessary to divide measurement data into different groups which are called form groups.
Further information on form groups can be found in section I.2.1.2.1.

Furthermore, one has to distinguish between measurement set information and collection of
measurement details.

11

2.1.3.1 Answer Set Information
Similar to the form definition, some information is needed to identify a set of measurement
values which belong together and possibly categorize or describe them. During this work, I
call these information head fields. There are some head fields which are necessary to uniquely
identify an answer set record. These are key fields to the answer set record. The number and
kind of head fields which are necessary, depend on the form group. It is also possible to
introduce additional key fields. Optionally, it should be possible to somehow describe or
categorize each answer set. For this purpose the user of the application can introduce
additional non-key head fields for a form group.
In the case of static data (e.g. master data of a patient), one needs the following key fields

• “Parameter Source Id” which specifies the parameter source (e.g. the patient’s id).
This is actually a reference.

• “Form Id” which specifies the form used. This, too, is actually a reference to the form
definition

In order to be able to collect time oriented data, the following field is necessary
• “date of recording”

Under some circumstances it is necessary to keep track of additional key fields. E.g. for our
study about anorectic girls, each questionnaire can be either answered by a therapist, the
mother, the father or the patient. So, one must be able to set up an additional key field called
“Parameter Source Flag”. It additionally stores for each patient who answered the
questionnaire (child, mother, father etc).

In order to be able to somehow categorize or describe each record, the program should be
capable of defining further additional head fields which do not belong to the key of the
record. In the case of our studies about anorectic girls, this can be for example a qualitative
timestamp, which categorizes each measurement date into

• pre previous to the therapy
• kat 1 first measurement during the therapy
• kat 2 second measurement during the therapy
• kat 3 third measurement during the therapy
• kat 4 fourth measurement during the therapy
• post after the therapy

Such a categorization of data is convenient, e.g., to be able to better compare recorded data of
different parameter sources or of different forms. First of all, the measurement dates need not
be the same although they would belong to the same qualitative time category. Vise versa
there can be measurements originated by different parameter sources which took place at the
same date, but do not belong to the same category, e.g. a patient who has already finished the
therapy and a patient who has not yet started the therapy answered one and the same
questionnaire at the same date.

2.1.3.2 Answer Details
The answer details are the concrete measured values of parameters. It has one key which is
the “parameter-id”, also called question-id, which is a reference to the parameter definition
and a non-key field keeping the recorded value, which is the concrete measured value.

12

II. Design and Implementation

3 Structural Data
The current version of the program stores the structural data of the forms in single XML files.
The name and the location of the files are to be specified in the application’s profile. The
details of the file format used for storing the form’s structural information can be found in the
appendix. The following details are needed and have a natural hierarchical structure, which is
nearly directly mapped into the tags and attributes of the XML file. Details about the
hierarchical structure can be found in the EER of the data source (see section 5.1). The format
is the nearly the same which was already used by LinkVis (see [Herzog 2004]). However, it
has been enhanced by an additional field to be able to keep a description of the form in
addition to its form-id. Following the necessary information is listed.

• Form-id: must be unique
• Form description
• The questions:

o The question-id
o Optionally, the question-text
o The data type of the answers: allowed values are: integer, float and string. The

default value is integer.
o Optionally, the allowed minimum value
o Optionally, the allowed mean value: according to [Herzog 2004] this is a

normal value. In future releases it might be used as default value during the
recording of values. In the current version, it is only specifiable, but not used
anywhere else in the program.

o Optionally, the allowed maximum value
o Optionally, a display-as information field: this field is new and specifies how

the answer field should be displayed during the recording data of this form.
Allowed values are: “radiobuttons”, “combobox” or “textfield”.

o Optionally, a list of allowed values:
� The value: It must be unique for each question.
� Optionally, a description of the value

Structural data can be edited during a design process, which can be started at any time –
unless it is blocked by another open window (e.g. if already a recording of measurement data
takes place for the same form group). Following, a part of an XML file keeping structural
information is listed:

<parameter_group count="1" description="" id="ASW">
<parameter data_type="integer" display_as="" id="1" max_value="4"
mean_value="" min_value="1" name="Wenn sich Widerst ände auftun, finde ich
Mittel und Wege, mich durchzusetzen">
<allowed_values>
<allowed value="1"/>
<allowed value="2"/>
<allowed value="3"/>
<allowed value="4"/>
</allowed_values>
</parameter>
</parameter_group>

Code 3-1 Example of Parameter Definition

In the example of Code 3-1 a parameter group with one question (count=”1”) is identified. Its
id is “ASW”, the description is empty. The question allows only integer answers within the

13

range 1 to 4 (min_value and max_value). Its normal value is undefined. The question name,
which will be displayed during the recording of measurement data, is: “Wenn sich
Widerstände auftun, finde ich Mittel und Wege, mich durchzusetzten”. Furthermore, it
defines a list of allowed values which are 1, 2, 3, and 4.

4 Measurement Data
Currently, there are two options for storing measurement data. The first one is to use a single
AnswerFile – one for each of the form groups. The other is to use a directory structure, which
is common to the one used in former tools. Details to the format of the Answer file can be
found in the appendix IV.2.4. It merely wraps another tag around the answer sets.
The directory method uses a single answer file for each of the answer sets. It is created in a
subdirectory of the answer directory, which is specified in the profile. The subdirectories
name is the replier-id (normalized to not contain characters invalid for the operating system or
leading to a malformed URL). The file name is the concatenated the replier-id, the form-id,
and the date in format DDMMYYYY. Of course, again the replier-id and the form-id must
not contain any characters invalid for the operating system and need normalization. Should
some values lead to duplicate filenames, the program tries to append an underscore followed
by a number.

Each answer set has a hierarchical structure:

• The form-id of the form to which the questions belong
• The parameter source id
• Depending on the form group: a date
• Depending on the form group: additional head values
• The answers to the questions:

o The question-id
o The value

Both file formats reflect this hierarchical structure. Because the first solution stores the data in
a single file, the advantages of it are, that there is no need to check for characters in form-ids
or replier-ids which lead to for a specific operating system invalid file or directory name or
malformed URL and that it is easy to save a backup copy of a single file. The file name used
is set up during the configuration process (in section 8.2), so the user is responsible of
choosing a valid filename. The disadvantage is that the file can get huge in a short time and
might exceed the maximum allowed file size of an operating system. Furthermore, it is more
difficult to include or exclude answers from being loaded by the editor. On the contrary, the
directory structure solution provides an easy way for including or excluding answers – they
simple need to be moved somewhere else in the file system and won’t be read any more
during the initialization process of the program. But, some values for parameter sources or
form ids might lead to invalid filenames or to duplicate filenames. In order to prevent
problems regarding this issue, the generic editor, normalizes the filename, by removing all the
invalid characters for a specific operating system. Should this lead to an empty string, the
directory for the replier is hard coded to “EMPTY” and all files of such parameter sources
will go in this subdirectory. Should this conversion lead to a duplicate filename the generic
editor tries to add an underscore followed by a number. If the program does not succeed after
100 tries, the user is asked to specify a unique filename. Following is an example of a part of
an answer file:

14

<linkvis_data_records parameter_group_id="TEST" par ameter_source_id="0"
day="21" month="11" year="2006">
 <parameter id="1" value="5"/>
 <parameter id="2" value="6"/>
</linkvis_data_records>

Code 4-1 Example of Measurement Data

The example in Code 4-1 shows a single answer to the form with id “Test”
(parameter_group_id). It was answered by the parameter source with the id “0” on 21st of
November 2006 (day, month, year). The answer to question “1” was “5” and the answer to
question “2” was “6”. There is no need to store further information on the parameter
definition in the answer file, because the parameter_group_id and the id (of the parameter)
refer uniquely to the parameter definition and it is clear from the location of the answer file,
which form group the answered form belongs to. The location (subdirectory) of each form
group’s answer files, when using the answer directory storage method for this form group, has
been set up during the configuration process. Details about the configuration process can be
found in section 8.2.

5 Data Source
The above concepts lead to a couple of tables. Each table can have simple records, or records,
which are references to other tables. The following tables are necessary.

• Form group table
• Form table: keeps information about the available forms
• Question table: keeps the question detail information
• Allowed values table: keeps the values, which are allowed for the questions
• Parameter source table: keeps the available parameter sources
• Measurement table: keeps the available measurements

Depending on the form group, the kind and number of the answer set information varies. The
goal is that the record data process does not need to know about its form group.

5.1 EER of the Data Source
Following, an entity relationship model (see Figure 5-1) is used to provide a high-level
description of the conceptual data model. Obviously, the analyses of the needed data sources
lead to nearly the same EER, which can be found in [Herzog 2004 p. 44].

15

Figure 5-1 EER of the Data Source. The available data is grouped into different entities.

The entities themselves are similar to those described in [Herzog 2004]. Actually there is no
change for the structural data, besides there can be multiple form entities, because forms are
now a sub entity of form group.

5.1.1 The Form Group
The form group collects forms. Form is a synonym for parameter group as defined in [Herzog
2004]. Table 5-1 lists properties of the form group entity.

Entity form_group
Field Key Data Type Description

id Primary String Identifier of the form group
Table 5-1 Form Group Entity. The form group entity keeps track of the form groups.

5.1.2 The Form or Parameter Group
Again as in [Herzog 2004 p.47]: “The parameter group collects one or more parameters. The
parameter group is a synonym of the questionnaire and the parameter is a synonym of a

16

question.” This entity stays nearly the same and in [Herzog 2004], however an additional
form group identifier is needed:

Entity parameter_group
Field Key Data Type Description

form group Primary String Identifier of the form group
id Primary String Identifier of the parameter group
description String A description of the parameter group.

Table 5-2 Parameter Group Entity. The parameter group entity keeps track of the forms.

Again, the id is often referred to as parameter-group-id (or form-id). This entity was enhanced
by a description for each form. Table 5-2 lists the properties of the parameter group entity.

5.1.3 Parameter
Table 5-3 lists the properties of the parameter entity:

Entity parameter
Field Key Data Type Description

id Primary String Identifier of the parameter
group_id Primary String Identifier of the parameter group
form group Primary String Identifier of the form group
display_as String The way how data entry should be

possible, when recording
measurement values

data_type String Data type of the parameter
min Depends on the data

type, therefore, stored as
String

Allowed minimum

max Depends on the data
type, therefore, stored as
String

Allowed maximum

mean Depends on the data
type, therefore, stored as
String

The normal value

Table 5-3 Parameter Entity. The parameter entity keeps track of the properties of a single parameter.

There is a difference to [Herzog 2004], which is, that the min, max and mean values are
stored as strings instead of as decimals. This is necessary to be able to define minimum,
mean, and maximum values for other data types than numbers, too. Everything else stayed the
same than in [Herzog 2004], besides, that Herzog missed out the mean value in his table.

5.1.4 Allowed Value
This entity keeps track of the values allowed for a particular parameter. The allowed values
need not be specified. If there are not any allowed values defined and no min and no max
value defined (see section 5.1.3 about parameter) than all parameters of the specified data
type are allowed.
The properties of this entity stay the same than in [Herzog 2004], besides, the data type of the
value, and an additional field, which can be used to store a text description of the meaning of
a parameter value (e.g. 1 = easy, 2 = medium, 3 = difficult for a question like: “Do you think,
it easy to read?”) Table 5-4 lists the properties of the properties of the allowed_value entity.

17

Entity allowed_value
Field Key Data Type Description

form group Primary String Identifier of the form group
group_id Primary String Identifier of the parameter group
param_id Primary String Identifier of the parameter
value Depends on the data type,

therefore, stored as String
One of the allowed values

description String A description of the value
Table 5-4 Allowed Values Entity. The allowed value entity keeps track of the allowed values

5.1.5 Additional Field
This entity defines the additional fields, which are needed for a particular form group. The
fields defined in this entity enhance the number of necessary (key and non-key) fields of the
measurement entity. It is comparable to a parameter definition (see section 5.1.3), but on the
contrary to a parameter definition, it defines an attribute to a measurement set rather than to
single measurement value. Therefore, it defines the same attributes than a parameter
definition. The properties of the additional field entity are listed in Table 5-5:

Entity additional_field
Field Key Data Type Description

id Primary String Identifier of the additional field
form group Primary String Identifier of the form group
field name String A description of the field
is_key Boolean Whether, it is a key field to

measurement sets of this form group
data_type String Data type of the parameter
display_as String The way how data entry should be

possible, when recording
measurement values

Min Depends on data type,
therefore, stored as
String

Allowed minimum

Max Depends on data type,
therefore, stored as
String

Allowed maximum

Mean Depends on data type,
therefore, stored as
String

The normal value

Table 5-5 Additional Field Entity. Additional field s are used during the loading process to keep track of
additional head fields. These are only used to set up the answer set table

5.1.6 Allowed for Additional Fields
Defines allowed values, if any restrictions of the data range are needed for an additional field.
It has the same function than the allowed value entity (see 5.1.4). Its properties can be found
in Table 5-6

Entity allowed_for_additional
Field Key Data Type Description

form group Primary String Identifier of the form group

18

additional_field Primary String Identifier of the parameter
Value Depends on data type,

therefore, stored as String
One of the allowed values

Description String A description of the value
Table 5-6 Allowed for Additional Entity. This entity keeps the values allowed for each additional field

5.1.7 Parameter Source
Unlike in [Herzog 2004], the entity parameter source only keeps track of the parameter source
ids. If there is further key information necessary for the measurement entity than the further
key fields have to be defined in the profile (see section 8.2). The properties of this entity are
listed in Table 5-7:

Entity parameter_source
Field Key Data Type Description

id Primary String Identifier of the parameter source
Table 5-7 Parameter Source Entity. The parameter source entity keeps a list of available parameter

sources

Nevertheless, the parameter sources are stored separately to avoid insert, update or delete
anomalies. An insert anomaly would be the need to keep at least one pseudo measurement in
order to create a new parameter source. A delete anomaly would occur, if all measurement
data for a parameter source table would be deleted, than also the parameter source id would be
lost. An update anomaly could occur, if there is a need to update a single attribute which is
dependent on the parameter source id multiple times, because it is stored with a number of
records. The update anomaly can still occur, but only if the user designs the questionnaires
badly. So the user is responsible for designing the questionnaires carefully.

5.1.8 Measurement
The measurement entity keeps hierarchical information. It keeps all records which are
available for each person and each form and also the detailed values of all the other necessary
parameters. Depending on the additional fields, it might have one or more additional (key)
fields (see section 5.1.5). In the case of our study about anorectic girls the
parameter_source_flag is such an additional key field. It does no longer belong to the
parameter source entity, but instead became an attribute of the measurement. Furthermore,
non time dependent parameters (e.g. the master record of a patient) do not require a date key
field. The detailed definition of the measurement entity for a given form group is, therefore,
unknown until the profile (see section 8.2) is read. Table 5-8 show the general outline of
measurement entity:

Entity Measurement
Field Key Data Type Description

form group Primary String Identifier of the form group
group_id Primary String Identifier of the parameter group
param_id Primary String Identifier of the parameter
source_id Primary String Identifier of the parameter source

19

Entity Measurement
Field Key Data Type Description

additional_key 1 Primary Depends on the data
type definition of the
additional field in
the additional key
entity, therefore,
stored as String

… …

additional_key n Primary Depends on the data
type definition of the
additional field in
the additional key
entity, therefore,
stored as String

additional_nonkey 1 Depends on the data
type definition of the
additional field in
the additional key
entity, therefore,
stored as String

…

additional_nonkey 1 Depends on the data
type definition of the
additional field in
the additional key
entity, therefore,
stored as String

date Date The date of the measurement

description String A description of the value
Table 5-8 Measurement Entity. The measurement entity keeps the actual measurement values and refers

to the structural data as well as to the parameter source.

6 Required Functionality
Three main functionalities are needed, which are the design of forms, the maintenance of
parameter sources, and the recording of values. Additionally, the program comes with some
extra functionality for exporting and importing data and displays some descriptive statistical
data.

6.1 Design of Forms
The user is provided with options to:

• Create a new form: The user can either create a new form from scratch or copy from
an existing form. Copying from an existing form will also copy all its questions,
including their allowed values.

• Open an existing form
• Edit the form and question definitions. This includes also the creation and deletion of

questions.

20

• Save a form
• Print a form
• Preview the recording mode using the form he currently designs.
• Delete a form

All these functions require that a list of available forms is dynamically created by reading the
form definition from the data source. A design trade-off is that the form definitions are read
from the data source only at program start up and are kept in an internal data structure
afterwards. This has the advantage that the time demanding read from the physical storage is
done only once. So, the performance is improved.

6.2 Maintenance of Parameter Sources
This only requires maintaining the parameter source ids, because all other information to
parameter sources is to be handled conceptually the same than answers to questionnaires.
E.g., the name of the patient would be a parameter which is answered by and recorded for this
patient. So, the user can set up a form group keeping all static data (or master data) of a
patient and a form which contains the patient’s name as one of the questions. The answers to
forms of this form group do not require a date field which is part of the key, because it stores
static data.

6.3 Recording Parameter Sets and Parameters
The program enables the user to add, check and delete answer values. The answers to
parameters form an n:m relation between the parameter sources and the parameter.
Additionally, the interest is rather on answers to a specific form than to single questions.
Therefore, it, again, makes sense to use the form to group the questions to be answered
together. The record data window reflects this n:m relation.

6.4 Quick Recording of Head Values without Opening an Record
Sometimes it is useful to be able to quickly specify non – key head values for each record.
Therefore, the user is provided with this functionality by displaying a list of all records
without their details. The user can than key in all the non – key head values which are not
explicitly read-only in this list, without explicitly selecting and opening the record for editing.
This is a useful facility, so it has been implemented in a general way in order to be able to use
it for each kind of hierarchical data. Therefore, the same functionality can be used during the
recording of data as well as during the design of forms. An example of the use of this facility
can be found in III.9.4.5.2.

6.5 Extras
Extras provides import and export facilities. The generic editor is able to import two different
CSV formats and to export to the following file formats:

• The Conflation file format (see IV.2.1)
• CSV format multiple rows (see IV.2.2)
• The AnswerFile format: this has been implemented for convenience to be able to

migrate from an AnswerDir setup to an AnswerFile setup. (see IV.2.4)
Furthermore, it is possible to export to a data format specified in the profile and start the
program specified in the profile thereafter. This feature was required to ease the data
analyzing for the clinical personal, which is done with Gravi++.

6.6 Descriptive Statistical Data
Some basic descriptive statistical data is calculated and displayed at program start up. These
include the number of available parameter sources, the number of available form groups, the

21

number of forms of each group, the number of answers of each group and the last changes of
each of them. The parameter source maintenance also displays the number of available
answer for each parameter source. Similarly, the design of forms, displays the number of
answers available for a form. A screen shot of the start window can be found in III.9.3.

7 Design Tradeoffs

7.1 Database vs. XML file format
There is a trade-off between using XML files, flat file formats or databases as data sources.

Database Management Systems: “A DBMS is a complex set of software programs that
control the organization, storage and retrieval of data in a database” [WWW-2]. They have
the following advantages/disadvantages, though not all DBMS must have all the features
listed below.
Advantages:

• Concurrency - DBMS provide various tools and techniques to deal with concurrency,
e.g. transaction management and locking.

• Backup and Replication: DBMS usually provide backup and replication tools.
• Rule Enforcement: Most DBMS provide facilities to set up rules, which must be

fulfilled by the attributes or records stored.
• Security: One can easily define access rights.
• Computation: Some common computations requested on attributes such as counting,

summing, averaging, sorting, grouping, cross-referencing are provided by the DBMS,
therefore, a computer application which uses a DBMS, does not need to implement
these from scratch.

• Change and Access Logging: Logging services keep a record of access occurrences
and changes.

• Automated optimization: If there are frequently occurring usage patterns or requests,
some DBMS can adjust themselves to improve the speed of those interactions. In
some cases the DBMS will merely provide tools to monitor performance, allowing a
human expert to make the necessary adjustments after reviewing the statistics
collected.

• Meta-data Repository: Meta-data e.g. descriptions of attributes or rules.
• Modeling Tool: A DBMS can also act as a modeling tool.

Disadvantages:

• Installation: A database management must be set up at the user site.
• Configuration : The database management system requires a complex configuration
• Maintenance: An expert is needed at the user site to maintain the DBMS
• Data Inclusion/Exclusion: There is no easy way to include/exclude data � Directory

Storage manager for Answers (see section 8.4.1.3.)

A set of XML Files:
These have the following advantages:

• They are readable and editable by a simple Editor
• Existing data are available in XML file format
• Data Inclusion/Exclusion: is depending on the organization of the XML files

relatively easy
• Still they provide a hierarchical structure.

22

• Robustness (compared to simple text files): In XML each datum is marked up with
what it means. Therefore, it is robust against flipping around information. (see also
[Harold 2002])

• Extensibility: One can easily provide additional information by simple adding an extra
element. (see also [Harold 2002])

• Ease-of-Use: There are already a couple of XML parsers available. The parser shields
from a lot of details, which are irrelevant for an application (see also [Harold 2002]),
e.g.:

o Encoding
o Line separation character(s)
o The way how reserved characters are escaped
o Byte order of the underlying system

• No installation needed, if the default API of JAVA is used.
• Allows document validation by parser.

Disadvantages:

• Poor performance compared to DBMS
• All DBMS tools and mechanisms are missing. So these issues are to be programmed

in the application, if needed.

A set of flat file formats, e.g. of CSV format:

Advantage:

• They are readable and editable by a simple Editor

Disadvantages:

• They don’t provide any hierarchical structure
• They are not as robust, extensible and easy to use than XML files.

Former works led to existing data sources, which are in XML format. A main focus of this
work is to be able to work with the existing data sources. Therefore, the current version of the
generic editor uses a set of XML files, which are described in more detail in chapter IV.2. In
order to be able to easily enhance the application, the objects providing data accesses have
been bundled and encapsulated. For implementation details see section 8.4.1.
However, the use of XML files means that there have to be some compromises regarding
concurrency.

7.2 Single User vs. Multiple User
The current version of the program is a single-user program, which means that only one user
can work with the program at a time. In order to ease the program implementation, it has been
dispensed with multi-user tasks, because the current application has to deal with XML files.
Further releases, might work with a database management system, which makes it much
easier to deal with concurrency. Because the database management system already provides
mechanism for dealing with concurrency, there is no need to implement such mechanisms
from scratch in the application. So, multiple user support is a future issue and not within the
scope of this thesis.

7.3 Mutual Exclusiveness for Design and Record Data tasks
In order to prevent data inconsistencies and to avoid the need of locking on a record basis,
some tasks may not be started at the same time. For example the design process for a certain

23

form group must not be run at the same time as the recording of data for the same form group.
The ensure this they have been made mutual exclusive by an easy locking mechanism. The
instance of the TDataAdmin class takes care about the locks. Table 7-1 completely lists which
tasks exclude which other task:

Excludes
Parameter

Source
Maintenance

Design for form
group k

Recording of
measurements

for form group k
Export/Import

Parameter
Source

Maintenance
Yes No Yes Yes

Design for form
group i

No i = k i = k Yes

Recording of
measurements

for form group i
Yes i = k i = k Yes

Export/Import Yes Yes Yes Yes
Table 7-1 Mutual Exclusiveness. We list which tasks exclude each other.

The maintenance of parameter sources can be run at the same time as any form design,
because they do not interfere. The parameter source maintenance as well as any design
process prohibits a recording of data for the same form group. Of course, the user is allowed
to open more design windows for different form groups and he is allowed to record data for
one form group while designing forms for another form group. Before any of the windows is
opened the program ensures, that it is not locked by any other window. If it can be opened, it
locks the data according to the scheme of Table 7-1 and thereafter the window is displayed.
When closed, the data are released again. Of course, there must not be more than one instance
of those classes which implement one of the tasks mentioned above. So they are Singletons in
this sense. Detailed information about the Singleton design pattern can be found in [Gamma
1995 pp.127].

7.4 User Management
The current version of the generic editor is a single user version. It has been dispensed with
user management tasks, because the tool’s main field of operation is during a special clinical
study. During this study only one or two users are going to enter the data and design forms
etc. Those users are well trained in both the maintenance tasks and the recording of
measurement data. Therefore, it was not necessary to implement a user handling in this
version of the program. Further releases might well need to deal with user management,
because it could be possible, that the “parameter sources” key in their answers themselves
instead of filling in a paper-questionnaire, which has to be inputted by somebody else. Of
course it would not be desirable that the parameter sources are also allowed to change
structural data or maintain parameter sources or look at other than their own answers. This is
a future issue and not the scope of this thesis.

7.5 Programming Language and Tools Used
The generic editor was developed in Java, release 1.5. It uses one of the provided standard
XML APIs and the parser which comes with Java 1.5. Among other advantages of Java, Java
was chosen, because it is an object-oriented, high-level programming language which
includes xml support and is platform independent. Further information on advantages of Java
compared to other programming languages can be found in [WWW-22], [WWW-23], and
[WWW-24]. One of the advantages of Java is also that it is free and that there are free tools

24

and utilities available. E.g. Eclipse UML Free (see [WWW-25]) is an integrated development
environment, which was used during the development process and for creating the UML
diagrams in this thesis. The Toad Data Modeler (see [WWW-26]), a free database modeler,
was used for creating the EER diagram.
There are a couple of Java XML APIs and parser available, the following section analyzes
some of them and explains the decision made.

7.5.1 Consideration for Choosing an XML parser
Choosing a parser library requires looking at many aspects. Parsers differ in how many
features they implement, their costs, the APIs they implement, how correct and how fast they
work. [Harold 2002] divides parsers into three categories:”

• Fully validating parsers
• Parsers that do not validate, but do read the external DTD subset and external DTD

parameter entity references in order to supply entity replacement and assign attribute
types

• Parsers that read only the internal DTD subset and do not validate.” [Harold 2002]

There is a variety of parsers available, but the Xerces parser is bundled with the JDK 1.5
distribution. It supports both DOM and SAX. Because it is of advantage to be able to work
with standard parsers and APIs (see section 7.5.2), Xerces was the parser of choice for the
generic editor. Furthermore, Xerces is a validating parser with a very good conformance to
XML 1.0. [Harold 2002]. The Definition of XML 1.0 can be found at [WWW-4].

7.5.2 Consideration for Choosing an API for XML pro cessing
According to [Harold 2002] one of the most important decisions at the start of an XML
project is choosing an application programming interface (API). [Harold 2002] states that
while it is possible to swap in an alternative, if a specific parser causes troubles, often without
recompilation the code, changes to the API may well involve redesigning and rebuilding the
entire application from scratch. There is a variety of APIs for processing XML documents
available. According to [Harold 2002] “there are two major standard APIs for processing
XML documents with Java – the simple API for XML (SAX) and the Document Object
Model (DOM) … In addition there are a host of other, somewhat idiosyncratic APIs including
JDOM, dom4j, ElectricXML, and XMLPULL. Finally, each specific parser generally has a
native API that it exposes below the level of the standard API. … However, picking such an
API for XML limits your choice of parser, and indeed may even tie you to one particular
version of the parser, since parser vendors tend not to worry a great deal about maintaining
naïve compatibility between releases.” [Harold 2002].
Following, we will only consider SAX and DOM, as JAXP bundles them and some factory
classes and the TrAX XSLT API together. Furthermore, JAXP is a standard part of Java 1.4
and later and there is a big advantage in using standard packages: There is no need to install
any further software in addition to the JAVA runtime environment at the user’s site.

• SAX: SAX is short for Simple API for XML. It is event-driven. “The SAX classes and
interfaces model the parser, the stream from which the document is read, and the client
application receiving data from the parser. However, no class models the XML
document itself. Instead the parser feeds content to the client application through a
callback interface … This makes SAX very fast and very memory efficient (since it
doesn’t need to store the entire document in memory).” [Harold 2002].
The drawback is that it is event-driven and that it does not read the whole document at
once.

• DOM: DOM is short for Document Object Model. Unlike SAX it can be used to read
and write documents. It represents each XML document as a Document object and the

25

Document object’s methods allow searching and updating the XML document.
Therefore, DOM is much more convenient than SAX when random access to widely
separated parts of the original document is required. The drawback is that it is quite
memory intensive compared to SAX and “not nearly as well suited to streaming
applications.” [Harold 2002]

The application uses Dom for reading the XML documents into an internal structure, because
DOM reads the entire document at once and because it easy to extract the required
information and because an event-driven API like SAX was not convenient. SAX did not
prove to be an option, because it does not read the whole XML file at once. It rather reads
from top to bottom and signals the host program whenever it detects something of interest. So
the host program would need to keep a stack of all interesting occurrences and build an
internal data structure out of these afterwards. This is obviously more complicated than using
DOM, which reads all tags, values, and attributes into a tree like structure, which can be
investigated by the host program much easier.
However, the current version of the generic editor does not use DOM for writing XML files.
It proved to be faster to use standard IO mechanisms to write the XML files rather than
building a DOM tree and serializing it to disk by using DOM functions. In particular
serializing the DOM structure to disk caused problems with large amounts of data when
writing the Conflation file format. The drawback of this approach is that the program has to
take care of writing well-formed and correctly encoded XML files rather than leaving this to
DOM.

7.5.3 Document Validation
The current release does not perform any document validation. Of course it makes some
assumptions about the content of the XML files, but these are currently not checked through
an XML specific validation. Most of the current parsers support a validation against DTD
only, if any. Xerces also supports a validation against Schema. Nevertheless, the current
release does neither use DTD nor Schema validation.

7.5.4 The User Interface
The user interface classes make extensive use of SWING classes. According to [Loy 2002 p.
1], it is part of a larger family of Java products known as the Java Foundation Classes (JFC).
[Loy 2002 p.2] defines JFC as follows: ”The FC (Foundation Classes) is a suite of libraries
designed to assist programmers in creating enterprise applications with Java.” The JFC
consists of:

• AWT = Abstract Windows Toolkit
• Accessibility: support for users which have trouble with traditional user interfaces
• 2DAPI
• Drag and Drop
• Swing

Swing is not a replacement for AWT. It is actually built on top of the core AWT libraries.
However, AWT provided only a minimum amount of functionality necessary to create a
windowing application. Furthermore, in the contrary to AWT components, which are heavy-
weight components, SWING components are light-weight components. While AWT
components rely on native widgets, SWING components are written entirely in Java and have
a consistent Look and Feel across platforms. Following, we list the most important Swing
features:

• Pluggable Look-and-Feels: The look and feel can be changed during runtime.
• Lightweight Components: These are not dependent on native peers to render

themselves.
• A lot of additional components and features.

26

Further details on Swing can be found in [Loy 2002].

Most of the generic editor’s user interface classes use JTables and some TableLayout, to place
the components. Details about TableLayout can be found at [WWW-11]. During the program
development I used the hints on JTables which can be found at [WWW-12] to [WWW-18].
Regarding AWT’s layout manager I used [Zukowski 1997] as my main source of information.

8 Packages Structure and Class Implementations
The base package name of the generic editor’s classes is at.ac.tuwien.e9025248.genedit. This
package name follows the java naming convention: It starts with the reversely read name of
the university’s domain, followed by my user id, followed by the project name.
The classes were divided into some sub packages, which reflect their use. This resulted in the
following package structure, listed in Table 8-1:

Package Name Package Description
at.ac.tuwien.e9025248.genedit Keeps the main class
at.ac.tuwien.e9025248.genedit.configuration Keeps all configuration details
at.ac.tuwien.e9025248.genedit.dataAdmin Keeps all data administration issues of the

internal data structure
at.ac.tuwien.e9025248.genedit.dataAdmin.value A package for keeping and converting from

internal representation to displayed
graphical user interface elements.

at.ac.tuwien.e9025248.genedit.genEditEvents Defines two classes for progressing data
change events

at.ac.tuwien.e9025248.genedit.io All physical storage issues
at.ac.tuwien.e9025248.genedit.ui Windows and UI elements
at.ac.tuwien.e9025248.genedit.util Keeps a small class with some useful static

methods.
Table 8-1 Package Structure. We split the classes into different packages.

The packages were carefully designed in a modular way, to make extensions or modification
easy and to keep local changes local without the need of changing anything globally. We
emphasized data encapsulation and modular design. Figure 8-1 shows the overall packages in
an UML diagram.

27

at.ac.tuwien.e9025248.genedit.configuration
at.ac.tuwien.e9025248.genedit.dataAdmin

at.ac.tuwien.e9025248.genedit

at.ac.tuwien.e9025248.genedit.uiat.ac.tuwien.e9025248.genedit.util

«access»
«import»

«access»

«access»
«access»

«import»

Figure 8-1 Package Structure. The packages depend and access each other.

The Generic Editor class (see chapter 8.1), which implements the main method, is the only
class, which resides in at.ac.tuwien.e9025248.genedit.

8.1 GenericEditor class
The GenericEditor class implements the main method. This method is called at program
startup. The program start up performs the following tasks.

1. The profile is read for configuring the generic editor
2. The language specific translations are read.

If there is an error in steps (1) or (2), an error message will be displayed and the
application will be closed again.

3. The parameter sources are loaded.
4. The forms of each form group are loaded.
5. The answers for each group of forms are loaded. If there are parameter-sources not yet

defined through step 3, they will be automatically created during the loading process
of the answers.

6. The main menu is displayed.

Upon a successful program startup all the necessary data is loaded into the internal data
structures, which are implemented by the TableData class and the RecordData class. Figure
8-2 shows the UML diagram of the GenericEditor class.

28

configuration::ConfigInfo

util::utils

dataAdmin::TDataAdmin

ui::TMainMenu

+ main(in args: String[])

- loadConfigFile(in filename: String): String

GenericEditor

«access»

«access» «access»

«import»

«access»

«import»

Figure 8-2 UML of the GenericEditor class. We depict the dependencies of the GenericEditor class.

8.2 Configuration and Profile
The configuration tasks are performed by the classes in the configuration package. In this
package there are three classes. While the classes ExportFileFormat and UIConstants merely
define some user interface layout and export file format standards in static variables, it is the
task of the ConfigInfo class to read the profile and the language file and to provide the
application with this information. After the configuration process the details listed in Table
8-2 can be accessed by the rest of the program by accessing ConfigInfo’s static methods or
variables.

Name of the variable or method Description
ERRORLOG The filename of the error log file
HISTORY The filename of the history file
ResourceFile The path to the file containing the language

specific translations of menu entries, error
messages etc.

title Title of the Application
numFormFiles The number of form groups (equal to the

number of form definition files)
FormFiles A String array which keeps the path to the

form information
FormIds A String array keeping the Name of the Form

group, e.g. "Questionnaire"
SingleForm A Boolean Array which keeps track of

whether a form group is for not-time
dependent data (single) or for time dependent
data.

ShortCut An array keeping the shortcuts for starting
the record data task of each form group

AnswerFile An array with the filenames, if the answers to
a specific group of questionnaires are stored
in a single file. It is an alternative to
specifying an AnswerDir for a specific form
group

29

Name of the variable or method Description
AnswerDir The subdirectory of PersDir for each form

group, if the answers to a specific group of
questionnaires are stored in subdirectories of
PersDir. It is an alternative to specifying an
AnswerFile

AddOnHeadFields An array of arrays of AddOnHeadFields, The
class AddOnHeadField keeps track of
additional fields needed for recording the
values of the parameter sets. The first
dimension is for each form group, while the
second dimension of the array is for each
additional head field for within a form group.

PersonDir The Directory containing the answers of
specific persons. It must be specified, if any
questionnaire group uses the AnswerDir
option.

PersonFile The file used to keep the available persons, if
it is not available, it will be created through
reading the subdirectories of PersDir.
PersonFile is given precedence over
PersonDir!

PersonType The type of the replier, e.g. patient.
PersonShortCut The shortcut to the parameter source

maintenance
ExternalName The displayed name of an external program
ExternalCmd External program to start after export through

a special menu option
ExternalFile The file to export to before starting the

external program
ExternalFileFormat The file format to write for the external

program
lastChanged The data of the last changes to the

configuration file (=profile).
getLastChanged() Returns the date of the profile as a String for

displaying.
loadResourceFile(String rscFile) Loads the language file
loadConfigFile(String FileName) Loads the profile (configuration file)
getLanguageSpecificName(int index) Returns a String for a language specific

translation.
Table 8-2 ConfigInfo Methods. We list the methods of the ConfigInfo class

Nearly all other classes make use of the ConfigInfo’s getLanguageSpecificName() method.
Some other variables are only used during the program initialization. E.g. the
AdditionalHeadFields are read in and stored in AdditionalHeadFields, but once the internal
data tables are set up, they are of no further use. So, they simple provide – together with the
SingleForm array - the information for setting up the answer set tables for each form group.
Figure 8-3 depicts the UML diagram of the classes of configuration package.

30

+ ConflationFormat: String

+ CSVFormatSingleRow: String

+ CSVFormatMultiRows: String

+ AnswerFileFormat: String

ExportFileFormat

+ borderSize: double

+ fill: double

+ preferred: double

+ horizontalGap: double

+ verticalGap: double

UIConstants

+ ERRORLOG: String

+ HISTORY: String

+ ResourceFile: String

- LanguageSpecificName: String[]

+ title: String

+ numFormFiles: int

+ FormFiles: String[]

+ FormIds: String[]

+ SingleForm: boolean[]

+ ShortCut: char[]

+ AnswerFile: String[]

+ AnswerDir: String[]

+ addOnHeadFields: TAddOnHeadField

+ PersonDir: String

+ PersonFile: String

+ PersonType: String

+ PersonShortCut: char

+ ExternalName: String

+ ExternalCmd: String

+ ExternalFile: String

+ ExternalFileFormat: String

- lastChanged: Date

+ getLastChanged(): String

+ loadResourceFile(in rscFile: String): String

+ loadConfigFile(in FileName: String): String

- loadNodes(in profileDoc: Node): String

- loadQuestionaireGroups(in groupNode: Node): String

- loadGroup(in group: Node, in index: int): String

+ getLanguageSpecificName(in index: int): String

ConfigInfo

Figure 8-3 UML of the configuration package’s classes. We depict the dependencies of the configuration

classes

8.2.1 The Default Time Granularity and How to Chang e It
Besides recording non-time dependent measurement data, it is also possible use another than
the default time granularity for the measurement data of a form group. The default time
granularity for measurement data is in the current release the day, i.e. there can be a different
measurement for every parameter source and every form every day. The easiest way to
achieve this is to define a form group to keep non-time dependent data and set up additional
key fields with date data types. E.g. datatype = “date:0:YYYY”. This colon separated string
specifies, that a field 0 is defined, with data type date, which keeps the year. Further fields can
be defined for date field 0 keeping the month, the day, the hour, the minute etc. All fields with
the same identifying number are combined together for displaying in the record data window,
as long as they consecutively and have the same value in iskey. If iskey = “true”, a field
belongs to the key fields of measurement records of the form group they are defined for.

8.3 Data Model
All internal data administration classes reside in the package
at.ac.tuwien.e9025248.genedit.dataAdmin. It consists of a couple classes for data
administration and a sub-package for converting the internal string values to their graphical
user interface representations. The following chapters describe the classes of the dataAdmin
package in detail.

31

8.3.1 The Overall Data Administration Class – TData Admin
Regarding the internal data structures, the TDataAdmin class implements all data handling
issues. It not only keeps the required structural and measurement data, it also keeps track of
making data access mutual exclusive and it provides the rest of the application with some
final static variables for accessing the data and for consistent naming. Therefore, other classes
access these variables instead of using hard-coded strings for common terms. This leads to an
easy to maintain program, because such terms need to be changed only in TDataAdmin, while
the rest of the classes need not be touched, in case changes should become necessary in the
future.

The TDataAdmin class is a singleton, in the sense that there may only be one copy of the data
administration object. Details about the singleton design pattern can be found in [Gamma
1995] pp. 127, a short definition can be found in the appendix (see IV.1.4.). The TDataAdmin
keeps another singleton, which is the parameter source table and an array of TAData objects
(see section 8.3.2) and it provides functionality for various queries against the data.
Figure 8-4 UML of TDataAdmin shows the UML diagram of the TDataAdmin class. The
UML diagram shows only package internal dependences, because of the size of the diagram.
Further to the depicted dependences, the TDataAdmin class also uses
configuration.ConfigInfo and io.AbstractStorageManager

32

Figure 8-4 UML of
TDataAdmin
We depict the

dependencies of the
TDataAdmin class.

TableData

RecordData

+ INTEGER: String

+ REAL: String

+ STRING: String

+ DATE: String

+ BLOCKEXCLUSIVE: int

+ DEMANDEXCLUSIVE: int

+ BLOCK: int

+ DEMAND: int

+ ANSWERSETFORMIDCOL: int

+ ANSWERSETPARAMETERSOURCEIDCOL: int

+ FORMIDCOL: int

+ FORMDESCRIPTIONCOL: int

+ FORMNUMQUESTIONSCOL: int

+ QUESTIONIDCOL: int

+ QUESTIONTEXTCOL: int

+ QUESTIONDATATYPECOL: int

+ QUESTIONDISPLAYCOL: int

+ QUESTIONMINCOL: int

+ QUESTIONMEANCOL: int

+ QUESTIONMAXCOL: int

+ ALLOWEDIDCOL: int

+ ALLOWEDDESCRIPTIONCOL: int

+ FormName: String[]

+ FormDescription: String[]

+ FormDatatype: String[]

+ FormdisplayAs: String[]

+ FormReadOnly: boolean[]

+ AllowedDatatypes: String[]

+ AllowedDisplays: String[]

+ QUESTIONDATATYPE: String[]

+ QPARAMETERDISPLAY: String[]

+ ALLOWEDPARAMETER: String[]

+ QUESTIONFIELDNAME: String[]

+ QUESTIONFIELDESCRIPTION: String[]

+ QUESTIONFIELDREADONLY: boolean[]

+ ALLOWEDFIELDNAME: String[]

+ ALLOWEDFIELDESCRIPTION: String[]

+ ALLOWEDFIELDREADONLY: boolean[]

+ ALLOWEDDISPLAYAS: String[]

+ ANSWERLASTKEYFIELD: int

+ ANSWERNAME: String[]

+ ANSWERDESCRIPTION: String[]

+ ANSWERDATATYPE: String[]

+ ANSWERDISPLAYAS: String[]

+ ANSWERREADONLY: boolean[]

+ ANSWERIDCOL: int

+ ANSWERVALUECOL: int

- PARAMETERSOURCENAME: String[]

- instance: TDataAdmin

+ block_i(in i: int, in d: int, in b: int): boolean

+ block_all(in d: int, in b: int): boolean

+ release_i(in i: int, in b: int)

+ release_all(in b: int)

+ getInstance(in numFormGroups: int): TDataAdmin

+ getNumRepliers(): int

+ getNumForms(in formgroupIndex: int): int

+ getParameterSourceTable(): TableData

+ getFormTable(in formgroupIndex: int): TableData

+ getForm(in formgroupIndex: int, in FormId: String): TableData

+ getActualMinValueInAnswers(in formGroupIndex: int, in formId: String, in questionId: String): String

+ getActualMaxValueInAnswers(in formGroupIndex: int, in formId: String, in questionId: String): String

+ loadForms(in formgroupIndex: int, in fname: String): String

+ getAllAvailAbleForms(in formGroupIndex: int): String[]

+ getAllAvailAbleParameterSources(): String[]

+ hasAnswers(in id: String): boolean

+ deleteAnswersOfParameterSource(in id: String)

+ removeFormsSetForDeletion(in formGroupIndex: int)

+ removeUpdFlagsForForms(in formGroupIndex: int)

+ deleteParameterSource(in id: String)

+ addParameterSource(in id: String, in loadingfromFile: boolean)

+ saveTable(in table: TableData, in desk: Container): String

+ getAnswerTable(in formGroupIndex: int): TableData

+ loadPersons(in PersDir: String, in PersFile: String): String

+ isAnswerValid(in formGroupIndex: int, in FormId: String, in answer: String[]): String

+ isAnswerSetValid(in formGroupIndex: int, in answerset: String[]): String

+ isParameterSourceAvailable(in replierid: String): boolean

+ getParameterSourceTemplate(): ValueTemplate

+ getFieldParams(in formGroupIndex: int): String[]

+ PersonsToString(): String

+ loadAnswers(in formGroupIndex: int): String

TDataAdmin

TAData

ValueTemplate

 + aData

*

«import»

«access»

«import»

«import»

«import»

«access»

«access»

33

8.3.1.1 Ensuring Mutual Exclusiveness
In order to ensure mutual exclusiveness of some tasks (see also mutual exclusiveness in
chapter 7.3) the TDataAdmin class keeps track of which form group is currently in use by the
private integer array named block. Four methods are provided to block or release the data (see
Table 8-3):

Method Description
block_i() Blocks form group i
block_all() Blocks all form groups
release_i() Releases form group i
release_all() Releases all form groups

Table 8-3 Mutual Exclusiveness. We list the methods ensuring mutual exclusiveness

All these method provide synchronized access to the block array. Furthermore, the
TDataAdmin class defines four final static integers for blocking or demanding the data. Each
of the methods mentioned in Table 8-3 works in a similar way. First they check whether they
can block the data by checking the current value(s) of the block array against the demanded
value and if successful – they thereafter block the data by incrementing the value(s) of the
block array by the block value passed as a parameter.

8.3.2 The Data Administration Class for Form Group Specific Data –
TAData

While there is only one parameter source table for all form groups, there has to be a form
table and a measurement table for each of the form groups. The TAData class implements an
object which keeps track of the data needed for a single form group. The TDataAdmin class
keeps references to the instances of TAData objects for each form group (for details see
section 8.3.1). The main task of the TAData class is to set up the form table and the
measurement (set) table according to the information found in the profile, especially in the
two-dimensional AddOnHeadField array and the single array, which informs about time
dependence. This task is performed during object creation only. After having set up the
measurement table, the number and type of additional head fields and whether they belong to
the index of the measurement (set) table or not, is completely transparent to the rest of the
application. At the time all the measurement (set) tables have been set up, the two-
dimensional AddOnHeadField table is no longer used, because all the structural and
measurement data is thereafter solely accessed by using the TableData (see section 8.3.3.2)
and RecordData (see section 8.3.3.1) classes.
Figure 8-5 shows the UML diagram of the TAData class. The UML diagram shows only
package internal dependences, because of the size of the diagram. Further to the depicted
dependences, the TAData class also uses configuration.ConfigInfo and
io.AbstractStorageManager.

34

RecordData

ValueTemplate

TableData

TDataAdmin

+ ANSWERSETLASTKEYFIELD: int

+ getInstance(in MainData: TDataAdmin, in formGroupIndex: int): TAData

+ getForm(in FormId: String): RecordData

+ getQuestion(in Form: TableData, in QuestionId: String): RecordData

+ isMinEmpty(in question: RecordData): boolean

+ isMaxEmpty(in question: RecordData): boolean

+ isNumeric(in question: RecordData): boolean

+ getMinValue(in question: RecordData): String

+ getMaxValue(in question: RecordData): String

+ getActualMinValueInAnswers(in formId: String, in questionId: String): String

+ getActualMaxValueInAnswers(in formId: String, in questionId: String): String

+ getFieldParams(): String[]

+ getNumForms(): int

+ getAllAvailAbleForms(): String[]

+ getNumAnswerSets(): int

+ getFormTable(): TableData

+ getAnswerTable(): TableData

+ hasAnswers(in id: String): boolean

+ AnswersAvailable(in value: String, in field: int): boolean

+ NumAnswersAvailable(in value: String, in field: int): int

+ loadForm(in fname: String): String

+ loadAnswers(in PersIds: String[]): String

+ saveAnswerTable(): String

+ deleteAnswersOfReplier(in id: String)

+ deleteAnswersToForm(in id: String)

+ deleteAnswersWithFieldEquals(in id: String, in field: int)

+ saveFormTable(): String

+ getAnswerSetTemplate(): ValueTemplate

+ getFormTemplate(): ValueTemplate

+ getDefaultConflateKeys(): int[]

TAData

«import»

«import»

«import»

«import»

«access»

«import»

- aData

*

«import»

- myAData

{order}

*

Figure 8-5 UML of TAData. We depict the dependencies of the TAData class.

8.3.3 Internal Administration of Hierarchical Data
Both structural and measurement data have a hierarchical structure. We developed a unified
internal representation for hierarchical data. Similar to database systems we use the concept of
tables. A table is a set of values that are organized in rows and columns. “The columns are
identified by name, and the rows are identified by the values appearing in a particular column
subset which has been identified as candidate key” (see [WWW-3]). In our implementation
the rows are kept in a list of RecordData. The TableData class keeps the structural
information about the data and the content information of each field, e.g. the name of the
columns etc. - and keeps a list of records (rows), whilst the instances of the RecordData class
represents the rows of the table, which can again have a hierarchical structure, i.e. be of type
TableData. Therefore, the implementation is split into two classes: The RecordData class and
the TableData class.

8.3.3.1 The Records – RecordData
RecordData is the class representing the table records. Because TableData (see section
8.3.3.2) extends RecordData, each record can again be a sub table. A record keeps track of the
values of a table row. It knows the table it belongs to, which is called the records ancestor. On

35

changes the hasbeenupdated flag is set, similarly, on delete requests, the setForDeletion flag is
set. Upon having successfully physically stored the record or deleted the record the
hasbeenupdated flag will be reset or the record will be deleted.
In order to notify other objects listening to changes of the data, RecordData keeps track of a
Vector of dataChangeListeners. In the current release only the instance of the TMainMenu
class registers itself as dataChangeListener (see section 8.6.2) to the RecordData objects.
Figure 8-6 UML of RecordData shows the UML diagram of the RecordData class.

«interface»
at::ac::tuwien::e9025248::genedit::genEditEvents::D ataChangeListener

at::ac::tuwien::e9025248::genedit::genEditEvents::D ataChangeEvent

at::ac::tuwien::e9025248::genedit::util::utils

TableData

+ RecordData(in Ancestor: TableData, in Value: String[])

+ CopyRecord(): RecordData

+ updateRecord(in value: String[])

+ addDataChangeListener(in l: DataChangeListener)

+ removeDataChangeListener(in l: DataChangeListener)

+ getAncestor(): TableData

+ getValue(): String[]

+ setValue(in Value: String[], in loadingFromFile: boolean)

+ setValue(in field: int, in Value: String)

+ getValue(in i: int): String

+ setHasBeenUpdated(in upd: boolean)

+ getHasBeenUpdated(): boolean

+ setforDeletion(in upd: boolean)

+ isSetforDeletion(): boolean

+ fieldContentEquals(in fieldindex: int, in value: String): boolean

+ toString(): String

RecordData

«import»

«import»«import»

«access»

«access»

«import»

Figure 8-6 UML of RecordData. We depict the dependencies of the RecordData class.

8.3.3.2 The Tables – TableData
TableData keeps structural information and possibly value information, because it extends
RecordData (see section 8.3.3.1) and a list of records. The root table, which is also the root of
some hierarchical data (e.g. a form or a parameter (set) table) does not contain any values and
does not have an ancestor table. Table 8-4 TableData Fields lists the information, TableData
keeps track of:

Name Description
name An array of field names

36

Name Description
description An array of field descriptions
datatype An array of the field’s data types
displayAs An array which keeps information about how

to display each field in the record data user
interface

readOnly An array, which keeps track whether a field
is read only

lastKeyField The index of the last key field
StorageManager A list of Storage Managers (see 8.4.1)

Table 8-4 TableData Fields. We list the properties a table has to keep track of.

A couple of methods provide - besides the usual getter and setter methods - functionality for:

• Browsing through the tables records
• Copying an record
• Sorting the records by means of a Comparator (see section 8.3.5)
• Inserting, updating and deleting records
• Searching for records
• Verifying whether the table contains a specific record

Figure 8-7 shows the UML diagram of the TableData class.

37

at::ac::tuwien::e9025248::genedit::io::AbstractStorageManager

at::ac::tuwien::e9025248::genedit::util::utils

RecordData

+ TableData(in Ancestor: TableData, in Value: String[], in Name: String[], in Description: String[], in Datatype: String[], in displayAs: String[], in ReadOnly: boolean[], in lastKeyField: int)

+ CopyRecord(): RecordData

+ getCurrRecord(): int

+ getNumFields(): int

+ getLastChanged(): String

+ setLastChanged(in date: Date)

+ setDataSource(in DataSource: String)

+ getDataSource(): String

+ getName(): String[]

+ getDescription(): String[]

+ getlastKeyField(): int

+ getDatatype(): String[]

+ getDisplayAs(): String[]

+ setDatatype(in Datatype: String[])

+ setDisplayAs(in displayAs: String[])

+ isReadOnly(): boolean[]

+ isReadOnly(in index: int): boolean

+ addStorageManager(in StorageManager: AbstractStorageManager)

+ getStorageManager(): AbstractStorageManager[]

+ sortRecord(in comp: Comparator)

+ insertRecord(in value: String[], in loadingFromFile: boolean)

+ updateRecord(in index: int, in value: String[])

+ insert_updateRecord(in rec: TableData, in loadingFromFile: boolean): RecordData

+ insert_updateRecord(in value: String[], in loadingFromFile: boolean)

+ insertRecord(in rec: TableData, in loadingFromFile: boolean)

+ getKeyValues(in rec: RecordData): String[]

+ removeRecord(in keys: String[], in loadingFromFile: boolean)

+ removeRecord(in rec: RecordData, in loadingFromFile: boolean)

+ removeRecord(in index: int, in loadingFromFile: boolean)

+ getRecord(in keys: String[]): RecordData

+ getRecord(in keys: String[], in updindex: boolean): RecordData

+ getAllValuesOfFieldI(in index: int): String[]

+ selectDistintAllValuesOfFieldI(in index: int): HashSet

+ getRecord(in i: int): RecordData

+ getRecord(in i: int, in updindex: boolean): RecordData

+ getNumRecords(): int

+ setAllowedValues(in index: int, in allowedValue: String[])

+ getAllowedValue(in index: int): String[]

+ setAllowedDescription(in index: int, in description: String[])

+ isAllowedValue(in index: int, in Value: String): boolean

+ hasAllowedValues(in index: int): boolean

+ setAddionalXMLFlags(in index: int, in val: String, in flag: String)

+ setAdditionalValues(in index: int, in val1: String, in val2: String)

+ getAdditionalXMLFlags(in index: int, in val: String): String

+ getAdditionalValues(in index: int, in val: String): String

+ isRecord(in Keys: String[]): boolean

+ removeAllRecordsSetForDeletion()

+ removeAllRecords()

+ removeUpdateFlags()

+ getFirstRecord(): RecordData

+ getLastRecord(): RecordData

+ getNextRecord(): RecordData

+ getPreviousRecord(): RecordData

+ removeStorageManager(in Manager: AbstractStorageManager)

+ hasRecord(in field: int, in value: String): boolean

+ toString(): String

TableData

«import»«import»

«access»

«access»
«access» «access»

Figure 8-7 UML of TableData. We depict the dependencies of the TableData class.

8.3.4 TableDataIterator
The class TableDataIterator implements the Iterator interface for generic access to the data.
“An Iterator abstracts the traversal algorithm and shields clients from the internal structure of
the objects they traverse.” [Gamma 1995 p.70] Therefore, an Iterator helps us gain flexibility
and reusability. Further details on the Iterator pattern can be found in [Gamma 1995, pp. 70].

38

Details and Examples about using an Iterator and implementing a custom Iterator in Java can
be found in [Darwin 2005 pp.196 and pp. 214].
In the current release, the TableDataIterator is used only in the Exporter class as well as in the
TAData class. It is of use everywhere, where there is a need to traverse all records of a table.
Future releases might enhance the use of the TableDataIterator by removing calls to
TableData’s getRecord(k) everywhere, where a complete transversal of all records is needed,
e.g. in the storage managers (see section 8.4.1.). The TableDataIterator implements Java’s
standard interface: java.util.Iterator. Figure 8-8 depicts the UML diagram of the
TableDataIterator class.

TableData

+ TableDataIterator(in table: TableData)

+ hasNext(): boolean

+ next(): Object

+ remove()

TableDataIterator

«interface»
java::util::Iterator

«import»

Figure 8-8 UML TableDataIterator. We depict the dependencies of the TableDataIterator class.

8.3.5 A Comparator for Records
The FieldComparator class provides functionality for comparing the values of records. For
this purpose it implements the java.util.Comparator interface, which is a Java standard
interface. It may use a template to convert the values of each record to possibly combined
values (e.g. a Date possibly consists of more than one value field, because it for example
consists of fields for a day, a month and a year). The purpose of the template is to provide a
unique conversion between internal and external representation for all compared records.
Some tables are simple enough to not require such a template, because they have only fields
which can be compared without the need of a conversion from internal to external
representation.
A FieldComparator object needs to know, in what sequence to compare the field values in any
case. Therefore, it is compulsory to specify the sequence in the constructor.
Finally, the FieldComparator implements the inherited abstract compare() method. First of all,
it checks, whether the objects to compare are both of type RecordData, than it either uses
simple comparison of fields without using any template, or complex comparison by using a
template for converting the internal representation to an external representation. If a
conversion takes place the compareTo() method of the class, implementing the internal to
external conversion is used. This class inherits from AbstractValue and can be either a SValue
or a DateValue in the current release. Figure 8-9 depicts the UML diagram of the
FieldComparator.

39

value::SValue

value::AbstractValue

RecordData

+ FieldComparator(in fieldSequence: int[])

+ FieldComparator(in template: AbstractValue[], in fieldSequence: int[])

+ compare(in arg0: Object, in arg1: Object): int

FieldComparator

value::DateValue

«interface»
java::util::Comparator

«access»

«import» «import»

 - template

*

«access» «access»

«access»

Figure 8-9 UML of FieldComparator. We depict the dependencies of the FieldComparator class.

8.3.6 Additional Head Fields
Additional head fields are read into an object of class TAddOnHeadField. There is one object
for each additional field of each form group. Therefore, the ConfigInfo class keeps references
to these objects in a two-dimensional array (one index for the form group, one index for the
additional field). An additional head field consists of a name, a description, an XMLFlag to
store it, a data type, information on how it wants to be displayed, and whether it belongs to
the keys of the measurement sets of the form group it belongs to or not. It can have a list of
allowed values, together with descriptions of each allowed value. Furthermore, each allowed
value can be stored also through additional XML flags and by in the profile pre-configured
values (see also section 8.2 about Configuration and Profile and chapter III.9.1.2 for the
parameters of the configuration file). Additional XML flags and according values can be
useful, if one wants to store a certain value in different ways. E.g., in the case of our study
about anorectic girls, it can be used to provide information on how to sort the qualitative time
stamps in the answer file. Figure 8-10 shows the UML diagram of the TAddOnHeadField
class.

40

+ TAddOnHeadField(in name: String, in XMLFlag: String, in isKey: boolean)

+ TAddOnHeadField(in name: String, in description: String, in XMLFlag: String, in dataType: String, in isKey: boolean, in displayAs: String)

+ setNumAllowedValues(in numAllowedValues: int)

+ getXMLFlag(): String

+ getdataType(): String

+ getName(): String

+ isKey(): boolean

+ getDescription(): String

+ getDisplayAs(): String

+ getAllowedValues(): String[]

+ getAllowedDescriptions(): String[]

+ getAdditionalXMLFlags(): String[][]

+ getAdditionalValues(): String[][]

+ loadAllowedValues(in allowedvalue: Node)

+ loadAddXML(in indexAllowed: int, in xmln: Node)

TAddOnHeadField

at::ac::tuwien::e9025248::genedit::io::XML_Helper

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

 + addOnHeadFields{order}
*

«access»

«access»

«import»
«access»

Figure 8-10 UML of TAddOnHeadField. We depict the dependencies of the TAddOnHeadField class.

8.3.7 Templates for Setting up the Conversions from Internal to Displayed
Representation

The class ValueTemplate provides a template for setting up conversions from internal to
external representations of field values. It maps the indices of the internal value string array of
the RecordData to an external representation. E.g., a date field is represented externally as one
field, while it is stored in RecordData by using possibly more than one field, e.g., one for the
day, one for the month and one for the year. Therefore, it is useful to use a template for setting
up this mapping. Then the mapping needs only be created once and can be reused anywhere
in the application. Figure 8-11 depicts the UML diagram of the ValueTemplate class.

41

value::AbstractValue

TableData+ ValueTemplate(in table: TableData)

+ getTemplate(): AbstractValue[]

+ getNumFields(): int

+ getNumKeyFields(): int

ValueTemplate

 - template

*

«import»«import»

«import»

Figure 8-11 UML of ValueTemplate. We depict the dependencies of the ValueTemplate class.

8.3.8 The value package
The value package consists of classes for providing the external representation of any String
array. This can be for example the value array of a RecordData object. An abstract super class
ensures that the classes of this package need to implement common methods. See Table 8-5
for details:

Method Description
updateFields() Updates the values of the fields of the String

array mapped to by the currently displayed
value of the according graphical user
interface component

updateFields(String) Updates the values of the fields of the String
array mapped to by the value of the String

updateDisplay() Updates the displayed value, by the values of
the fields of the String array mapped to

Table 8-5 Common Methods of All Objects of the value Package. We list the common methods of all
classes of the value package.

In the current release there are only two classes available, which concretely implement such a
mapping. These are SValue for Strings and DateValue for dates. All sub-classes of
AbstractValue have to implement the compareTo() method, which they inherit from the
AbstractValue class. The AbstractValue class forces its sub-classes to implement the
Comparable interface. This is where there is another advantage of using a SValue instead of a
normal Sting value, because the SValue uses another comparison algorithm, which is to first
sort numerically, then alphanumerically, and to have number values always before
alphanumeric values.

42

Figure 8-12 depicts the UML diagram of the value package’s classes

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::ui::TDateSpinner

at::ac::tuwien::e9025248::genedit::dataAdmin::Field Comparator

at::ac::tuwien::e9025248::genedit::dataAdmin::Value Template

- SValue

+ compareTo(in o: Object): int

+ toString(): String

- SValue

SValue

+ AbstractValue(in toUpdate: String[], in component: JComponent)

+ AbstractValue(in toUpdate: String[])

+ AbstractValue()

+ updateFields()

+ updateFields(in newvalue: String)

+ updateDisplay()

+ setupdatedByComponent(in updatedByComponent: JComponent)

+ getUpdatesFields(): int[]

+ getNumFieldsForUpdate(): int

AbstractValue

+ DATESEP: String

+ HOURSEP: String

+ DateValue(in toUpdate: String[])

+ DateValue(in toUpdate: String[], in template: DateValue)

+ addDateField(in index: int, in format: String)

+ compareTo(in o: Object): int

+ getDateFormat(): String

+ setupEmptyJComponent(in dim: Dimension): TDateSpinner

+ toString(): String

+ updateFields()

+ updateFields(in DateString: String)

+ updateDisplay()

DateValue

«import»

«import»

 - template

*

 - template*

«access»
«access» «access»

Figure 8-12 UML of value Package’s Classes. We depict the dependencies of the value package’s classes.

8.4 Input – Output – physical Data Storage
Following, we will look in detail at the way the tables are stored physically.

8.4.1 The Storage Manager Concept for Tables
Matters of physically storing the data have been detached from the internal representation.
Instead, storage managers are responsible for the task of physically storing the tables.

43

8.4.1.1 Abstract Storage Manager
The AbstractStorageManager class forces a common interface for all Storage Managers. All
sub-classes of AbstractStorageManager need to implement the inherited abstract methods (see
Table 8-6):

Method Description
loadTable(TableData) To load the table from the physical storage

into the internal representation.
storeTable(TableData) To store the table physically.

Table 8-6 Public Methods of AbstractStorageManager. We list the common methods of the storage
managers.

A concrete storage manager can register itself as storage manager of a table. After registration
of at least one storage manager, the table uses all of its registered storage managers to store
the table physically. Therefore, each storing process requires three steps:

• Setting a record for update or deletion (added records are set to be updated)
• Physically storing the table by all its storage managers
• Removing the records set for deletion and removing all the update flags.

Figure 8-13 depicts the UML diagram of the AbstractStorageManager class. The storage
managers for measurement data inherit form AbstractXMLAnswerManager and are not
included in this figure.

44

XML_Helper

+ err: String

- ANSWERTABLEROOTTAG: String
- ANSWERTABLERECORDTAG: String

+ XMLStorageManagerAnswers(in MainData: TDataAdmin, in formGroupIndex: int, in XMLFile: String, in FieldTags: String[])

+ loadTable(in table: TableData): String

+ storeTable(in table: TableData): String

XMLStorageManagerAnswers

AbstractStorageManager

ANSWERTABLERECORDTAG: String

ANSWERRECORDTAG: String
ANSWERPARAMETER: String[]

+ AbstractXMLAnswerManager(in MainData: TDataAdmin, in formGroupIndex: int, in headtags: String[])

AbstractXMLAnswerManager

+ err: String

+ DirectoryStorageManagerAnswers(in MainData: TDataAdmin, in formGroupIndex: int, in DirName: String, in PersonIds: String[], in headtags: String[])

+ loadTable(in table: TableData): String

+ storeTable(in table: TableData): String

DirectoryStorageManagerAnswers

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

«access»

«import»

«import»

«import»

Figure 8-13 UML of the Storage Manager Classes. We depict the dependencies of the storage manager

classes.

45

8.4.1.2 Storage Managers for Parameter Sources
In the current release there are two storage managers available for parameter sources. The first
one is needed only once, at the first start up of the program, and only if there is data from
former applications available. It is the DirectoryStorageManagerReplier. It reads the available
parameter sources from the PersDir (see section 8.2): These are all subdirectories which have
a numerical name. After having completed, the XMLStorageManagerReplier is used to store
the parameter source table and the DirectoryStorageManagerReplier is removed from the list
of the parameter source table’s storage managers. During all further start ups, only the
XMLStorageManagerReplier is used to read in the available parameter sources. There is only
one exception and that is if the PersDir has been moved to somewhere else, in this case the
DirectoryStorageManagerReplier is used again to read the additional parameter sources from
the new directory. Details on the XML file format the XMLStorageManagerReplier uses can
be found in the appendix (see chapter IV.2.7). Figure 8-14 depicts the UML diagram of the
XMLStorageManagerReplier class and Figure 8-15 of the DirectoryStorageManagerReplier.

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

XML_Helper

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

+ err: String

+ XMLStorageManagerReplier(in XMLFile: String)

+ loadTable(in table: TableData): String

+ storeTable(in table: TableData): String

XMLStorageManagerReplier

AbstractStorageManager

«access»

«import»

«access»

«access»

«import»

Figure 8-14 UML of XMLStorageManagerReplier. We depict the dependencies of the

XMLStorageManagerReplier class.

46

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

at::ac::tuwien::e9025248::genedit::util::utils

AbstractStorageManager

+ DirectoryStorageManagerReplier(in DirName: String)

+ loadTable(in table: TableData): String

+ storeTable(in table: TableData): String

DirectoryStorageManagerReplier

«access»

«import»

«access»

«import»

Figure 8-15 UML of DirectoryStorageManagerReplier. We depict the dependencies of the

DirectoryStorageManagerReplier class.

8.4.1.3 Storage Managers for Measurement Data
There are also two storage managers available for measurement data, the
DirectoryStorageManagerAnswers and the XMLStorageManagerAnswers.
The DirectoryStorageManagerAnswers reads and stores each measurement set in a separate
file. The location of the file is in the subdirectory AnswerDir (see section 8.2), which is a
subdirectory of the parameter source’s directory, which is in turn a subdirectory of the
PersDir (see section 8.2). The filename consists of the parameter source id, the form id and
the date, possibly followed by an underscore and a number, if the same file name was already
used to store another measurement set. Duplicate filename can occur, because the filename, as
well as the directory name need to be normalized, in the sense that all characters, which could
offend the local file system or which would lead to a malformed URL are removed. E.g.:

Parameter source Form-Id Date ⇒⇒⇒⇒ Filename

x? t 01.12.2006 ⇒ xt01122006.xml
x *t 01.12.2006 ⇒ xt01122006.xml
* §§ 01.12.2006 ⇒ EMPTY01122006.xml

47

Of course, removing characters can also lead to an empty subdirectory for a parameter source.
To avoid this, all empty parameter source subdirectories are replaced by “EMPTY”.
Similarly, an empty concatenation of a normalized form id with a normalized parameter
source id is also replaced by “EMPTY”. Details on the XML file format the
DirectoryStorageManagerAnswers uses can be found in the appendix (see chapter IV.2.5).
On the contrary, the XMLStorageManagerAnswers stores all measurement sets of a form
group into a single file. The filename is determined by the AnswerFile variable of the
ConfigInfo class (see section 8.2). There is only one difference in the file format used that is,
that all measurement sets are wrapped by another XML tag for providing a single root tag.
This is required by the XML standard. Details of the XML format can be found in [WWW-4]
and [WWW-5]. Details on the XML file format the XMLStorageManagerAnswers uses can
be found in the appendix (see chapter IV.2.4). An XML tutorial can be found at [WWW-10].
So the XMLStorageManagerAnswers and the DirectoryStorageManagerAnswers have some
functionality in common: Therefore, they have a common abstract super class, which is the
AbstractXMLAnswerManager.
Figure 8-16 and Figure 8-17 UML of XMLStorageManagerAnswers depicts the UML
diagram of the answer storage manager. Further dependences which are not included in the
figure are the use of the utils.util and configuration.ConfigInfo classes.

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::util::utils

XML_Helper

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

+ err: String

+ DirectoryStorageManagerAnswers(in MainData: TDataAdmin, in formGroupIndex: int, in DirName: String, in PersonIds: String[], in headtags: String[])

+ loadTable(in table: TableData): String
+ storeTable(in table: TableData): String

DirectoryStorageManagerAnswers

AbstractXMLAnswerManager

«access»

«import»

«access»

«access» «import»

Figure 8-16 UML of DirectoryStorageManagerAnswers. We depict the dependencies of the

DirectoryStorageManagerAnswers class.

48

XML_Helper

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

AbstractXMLAnswerManager

+ err: String

- ANSWERTABLEROOTTAG: String

- ANSWERTABLERECORDTAG: String

+ XMLStorageManagerAnswers(in MainData: TDataAdmin, in formGroupIndex: int, in XMLFile: String, in FieldTags: String[])

+ loadTable(in table: TableData): String

+ storeTable(in table: TableData): String

XMLStorageManagerAnswers

«import»

«access»

«access» «import»

«access»

Figure 8-17 UML of XMLStorageManagerAnswers. We depict the dependencies of the

XMLStorageManagerAnswers class.

During the loading process the measurement data is checked for:

• Existence of the parameter source
• Existence of the form
• Existence of the question within the read form
• Validity of the value (→ required data type of the answer, within a possibly defined

range, value is allowed, if there is a list of allowed values for a specific question)
If any measurement sets with unknown parameter sources are read, these parameter sources
will automatically be created in the parameter source table and the parameter source table will
be stored physically upon the completion of the loading process. If there are any other
problems detected, the application displays a warning message.

8.4.1.4 The Storage Manager for Forms
In the current release only one storage manager is implemented for storing forms. It is the
XMLStorageManagerForms. The filename is determined by the profile (see section 8.2). The
format is the same as used in related programs. Details of the format can be found in the
appendix (see chapter IV.2.6).

8.4.2 The Importer
The importer is capable of importing measurement data in two different CSV file formats.
Details about the formats can be found in the appendix (see chapter IV.2.2 and chapter IV.2.3
respectively). During the import process the measurement data is checked for:

• Existence of the parameter source
• Existence of the form

49

• Existence of the question within the read form
• Validity of the value (→ required data type of the answer, within a possibly defined

range, value is allowed, if there is a list of allowed values for a specific question)
If any measurement sets with unknown parameter sources are read, these parameter sources
will be automatically created in the parameter source table and the parameter source table will
be stored physically upon completion of the import. If there are any other problems detected,
the application displays a warning message. Figure 8-18 depicts the UML diagram of the
Importer class.

+ DECISIONFORALL: int

+ ASKUSER: int

- OVERWRITE: int

- IGNORE: int

- IGNORESILENTLY: int

+ Importer(in data: TDataAdmin, in formGroupIndex: int, in desk: JFrame)

+ importFromCSVFileMultiRows(in fn: String, in OverWrite: int): String

+ importFromCSVFileSingleRow(in fn: String, in OverWrite: int): String

Importer

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

«access»

«import»

«access»

«access» «import»

«import»

Figure 8-18 UML of the Importer. We depict the dependencies of the Importer class.

8.4.3 The Exporter
The Exporter is capable of exporting the measurement data to different file formats. These are
the Conflation file format, the CSV-format multiple row and the AnswerFile format. It is
possible to export only a subset of all records. For this purpose the exporter is provided with a
list of indices, which conform to the filter settings. Furthermore, the Exporter is capable of
scaling the measurement values. Both scaling and filtering is not supported with the

50

AnswerFile format, because it is only for being able to migrate measurement data stored in a
directory structure to a single answer file (one for each form group). Further details about the
exporter can be found in chapter III.9.4.4.1.
Figure 8-19 depicts the UML diagram of the Exporter class.

at::ac::tuwien::e9025248::genedit::dataAdmin::TADat a

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

XMLStorageManagerAnswers

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

XML_Helper

+ CONFLATION_FORMAT: int

+ CSV_FORMAT: int

- extension: String[]

- ANSWERPARAMS: String[]

- CALCULATEDYNAMICALLY: int

- DONTSCALE: int

- DONTEXPORT: int

- NODECISIONYET: int

- title: String

- quest: String

- title_noscale: String

- quest_noscale: String

+ Exporter(in MainData: TDataAdmin, in formGroupIndex: int, in scale: boolean, in scaledMin: Double, in scaledMa...

+ exportToConflationFile(in fn: String): String

+ exportToCSVFile(in fn: String): String

+ exportAnswerFile(in fn: String): String

Exporter

«import»

«access» «import»«access»

«access»

«access»«import»

«import»

«import»

Figure 8-19 UML of Exporter. We depict the dependencies of the Exporter class.

8.4.4 The GenEdit Print Utility
The class GenEditPrintUtility provides functionality to print a Vector of a Vector of graphical
components. The first Vector keeps track of the lines, the second Vector of the Components
of this line. A head is added at the beginning of each page, and a footer, which shows the page

51

number information at the end of each page. The lines are automatically split into pages. For
each page, a JFrame, which covers the header, the components to be printed and the footer, is
created. The core of the print utility is a modification of the Marty Hall’s simple PrintUtility,
which was downloaded from [WWW-6]. Marty Hall's utility was modified so that:

• It prints a couple of JComponents, which are retrieved from a Vector called
LinesToPrint.

• It creates pages (JFrames), which contain these lines
• The page breaks are calculated according to the height of the lines.
• The printing process is starting in an own thread.
• It is restricted to printing JComponents which are placed in a JFrame. Top-level user

interface windows cannot be placed in a JFrame. Therefore, one can't use JApplet,
JFrame, JDialog or JWindow as a component in a line. Should such Components exist
in a line the utility skips them quietly.

It is used from the record data window, to print a questionnaire together with its values and
from the design form window to print empty forms. It is called from the record data window
only. Still the user can print empty forms from the design window. For this purpose a record
data window is created in preview mode by the design form window. Figure 8-20 depicts the
UML diagram of the GenEditPrintUtility class.

at::ac::tuwien::e9025248::genedit::configuration::U IConstants

- gapy: double

- gapx: double

- preferred: double

- fill: double

+ GenEditPrintUtility(in LinesToBePrinted: Vector, in columns: int, in keys: String[], in others: String[])

+ run()

+ print(in g: Graphics, in pageFormat: PageFormat, in pageIndex: int): int

+ disableDoubleBuffering(in c: Component)

+ enableDoubleBuffering(in c: Component)

GenEditPrintUtility

at::ac::tuwien::e9025248::genedit::util::utils

«access»

«access»

Figure 8-20 UML of GenEditPrintUtility. We depict t he dependencies of the GenEditPrintUtility class.

8.4.5 Helper Methods for IO Access
Some static methods are provided by the class XML_Helper for file input and output, most of
them for reading and writing XML Files. These are listed in Table 8-7:

52

Method Description
closeFile(PrintWriter) Closes the PrintWriter
closeTag(PrintWriter, boolean) Closes the tag, if the boolean argument is

true, there is still some text to come
createEmptyFile(String) Creates an empty file with the given filename
getAttribValue(Node, String) Extracts the value of the given argument and

returns it.
makeValidArgument(String) Replaces all invalid characters from a string

and ensures correct ISO-8859-1 encoding
openXMLFile(String) Opens an XML File for Reading
openXMLFileForWriting(String) Opens an XML File for writing by using

standard IO methods
openXMLforStoring() Creates an empty DOM structure for output

(no longer used)
serializeDOMtoFile(Document, String) Serializes a DOM Document to disk (no

longer used)
writeArgument(PrintWriter, String, String) Writes an Argument using standard IO

methods
writeClosingTag(PrintWriter, int, String) Writes the closing tag
writeTagAndArguments(PrintWriter, int,
String, String[], String[])

Writes a tag together with arguments and
values

writeXMLHeader() Writes the XML header information
Table 8-7 Methods for I/O Access. We list the helper methods for I/O access.

These static methods are used at many places in the code. Figure 8-21 UML of XML_Helper
depicts the UML diagram of the XML_Helper class.

+ errorMessage: String

+ openXMLforStoring(): DocumentBuilder

+ serializeDOMtoFile(in doc: Document, in filename: String): String

+ openXMLFile(in FileName: String): Node

+ getAttribValue(in n: Node, in id: String): String

+ openXMLFileForWriting(in filename: String): PrintWriter

+ createEmptyFile(in filename: String): boolean

+ closeFile(in pw: PrintWriter)

- writeXMLHeader(in pw: PrintWriter)

+ writeTagAndArguments(in pw: PrintWriter, in intent: int, in tag: String, in flag: String[], in value: String[])

+ writeTag(in pw: PrintWriter, in intent: int, in tag: String)

+ writeArgument(in pw: PrintWriter, in argument: String, in value: String)

+ closeTag(in pw: PrintWriter, in withText: boolean)

+ writeClosingTag(in pw: PrintWriter, in intent: int, in tag: String)

- makeValidArgument(in value: String): String

XML_Helper

at::ac::tuwien::e9025248::genedit::util::utils

«access»

Figure 8-21 UML of XML_Helper. We depict the dependencies of the XML_Helper class.

53

8.5 The User Interface
All user interface classes reside in at.ac.tuwien.e9025248.genedit.ui. All classes implementing
user interface windows have one or more inner classes for event handling of the menu actions.
These inner classes inherit from AbstractAction. The AbstractAction class is in turn an
abstract implementation of the Action interface. “An action allows the programmer to bundle
a commonly used procedure and its bound properties (such as its name and an image to
represent it) into a single class. This construct comes in handy if an application needs to call
upon a particular function from multiple sources.” [Loy 2002 p. 41]
This is particularly useful, because nearly all the actions of each window can be invoked
either from the menu or from a toolbar. So, if an action has to be disabled for some reason, the
action itself can be disabled and the menu and the toolbar objects are automatically notified.
Further details about actions can be found in [Loy 2002].
On the contrary, each window listens to actions which are triggered by single elements by
implementing the ActionListener interface. In order to react to the closing of a window and to
be able to ask the user, if he wants to store the changes he made, another inner class is used in
most of the user interface classes.

8.5.1 The Main Window
The main menu is displayed at program startup, to be able to assign a root window to error
messages, which might need to be displayed during the program startup. Once the profile is
completely read, the main window is updated, so that the main window’s menus reflect the
form groups and the title of the window reflects the purpose of the concrete application. The
content pane of the main menu is used to display some basic descriptive statistics about the
stored data. The fields for displaying them are also created immediately after the profile (see
section 8.2) has been read, because the number of fields necessary is evident at that time. The
values of the fields are updated each time further information is available. The class
implementing the main window is called TMainMenu. Table 8-8 describes the main windows
public methods in detail.

Method Description
allowMouseEvents() Allows mouse events
blockMouseEvents() Blocks mouse events
BuildMainMenu() Builds the main menu according to the

profile
clearStatus() Clears the text displayed in the status field,

which is displayed at the bottom of the
window

displayStatus(String) Displays the given string in the status field
enableActions(Boolean) Depending on the Boolean value, the actions

are either enabled or disabled
setMainData(TDataAdmin) Provides the application with the main data
showMessageWindow(String, String, int) Displays a given warning or error message,

with a given title, the type of the window
depends on the int argument

showWindow() Displays the main window
updateInfoField(int, String) Displays the given String in the info field

with index int → the info fields display the
statistical values.

Table 8-8 Public Methods of TMainMenu. We describe the public methods of the TMainMenu class.

Figure 8-22 depicts the UML diagram of the TMainMenu class.

54

TReplierAdmin

StartExternalDialog

TDesignFormWindow

SingleRecordDataWindow

- serialVersionUID: long

- instance: TMainMenu

+ showWindow()

+ showMessageWindow(in message: String, in title: String, in mtype: int)

+ closeDown()

+ getInstance(): TMainMenu

+ setMainData(in DataAdmin: TDataAdmin)

+ displayStatus(in text: String)

+ clearStatus()

+ BuildMainMenu()

+ blockMouseEvents()

+ allowMouseEvents()

+ addListeners()

+ enableActions(in enable: boolean)

+ updateInfoField(in i: int, in val: String)

+ tableDataChanged(in e: DataChangeEvent)

+ run()

StreamGobbler

- serialVersionUID: long

+ MainMenuAction(in text: String)

+ MainMenuAction(in text: String, in accelerator: int)

+ MainMenuAction(in text: String, in icon: Icon)

+ MainMenuAction(in text: String, in icon: Icon, in description: String, in accelerator: int)

+ actionPerformed(in e: ActionEvent)

+ setActionCommand(in i: int)

+ setActionCommand(in ac: String)

MainMenuAction

TMainMenu

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::configuration::U IConstants

ExportDialog

ImportDialog

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

at::ac::tuwien::e9025248::genedit::io::Importer

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::io::Exporter

at::ac::tuwien::e9025248::genedit::genEditEvents::D ataChangeEvent

«access»

«import»

«import»

«access»

«access»

«import»

«access»

«import»

«access»

«import»

«import»

«access»
«import»

«import»

«access»

«access»

«import»

«access»

«import»

Figure 8-22 UML of TMainMenu. We depict the dependencies of the TMainMenu class.

Following, there are some notes to some of the methods:
The methods allowMouseEvents() and blockMouseEvents() work as follows: First a non-
opaque JPanel is created. Then an empty mouse listener is associated with it and the glass
pane of the window is set to this JPanel (see Code 8-1)

55

// for blocking mouse events overwrite the glass pa ne by glass
 glass = new JPanel(new GridLayout(0,1));
 glass.setOpaque(false);
 glass.addMouseListener(new MouseAdapter() {});
 glass.addMouseMotionListener(new MouseMotionAdapte r() {});
 myDesc.setGlassPane(glass);

Code 8-1 Blocking Mouse Events. We list an example code for blocking mouse events.

Thereafter, mouse events can be blocked by setting the JPanel glass visible, and allowed by
setting the JPanel glass invisible again. This works, because mouse events are sent to the top
component, if components are positioned on top of each other, and because the glass pane is
the first component in the container, meaning that it will be painted last and therefore, be top.
So, if the top component has registered mouse listeners, the events are not sent to the covered
components. In order to block mouse events one simple needs to create a new JPanel to use as
the glass pane. This panel will listen for all mouse events and do nothing with them. Once the
glass pane is made visible, none of the main window’s actions can be started by mouse clicks.
Further details on blocking mouse events this way can be found in [Loy 2002 pp. 231]. In
addition to blocking the mouse events, also all actions are disabled during the data loading
process. This is necessary to ensure that the data has been loaded completely, before starting
to work with the application.

Once the data loading process has completed the user can trigger action for

• Recording measurement data
• Designing forms
• Maintenance of parameter sources and
• Importing or exporting data

Most of the user actions in the main window lead to opening of other windows, in which the
work is done. Exceptions are the export and import facilities. If the user selects one of these, a
dialog is started for choosing the options. Once the dialog is closed, and if the user chose the
approve button, the instance of the TMainMenu class invokes the actual import or export
process and possibly starts an external program (depending on the action chosen). Regarding
the start of the external program, I used the hints found on [WWW-19] to get it working.
According to JDK’s Javadoc, problems might occur on some platforms: “The Runtime.exec
methods may not work well for special processes on certain native platforms, such as native
windowing processes, daemon processes, Win16/DOS processes on Win32, or shell scripts.
The created subprocess does not have its own terminal or console. All its standard io (i.e.
stdin, stdout, stderr) operations will be redirected to the parent process through three streams
(Process.getOutputStream(), Process.getInputStream(), Process.getErrorStream()). The parent
process uses these streams to feed input to and get output from the subprocess. Because some
native platforms only provide limited buffer size for standard input and output streams, failure
to promptly write the input stream or read the output stream of the subprocess may cause the
subprocess to block, and even deadlock.” (see [WWW-20]). The solution to this problem is to
empty the standard error and the standard output stream at best at once as can be found in
[WWW-19]. The TMainMenu’s inner class StreamGlobbler is responsible for emptying the
I/O streams as described above.

8.5.2 The Record Data Window
The windows for recording measurement data are implemented by the
SingleRecordDataWindow class. There is exactly one record data window for each of the
form groups, so the record data window is an oligoton is this sense. The record data window
is opened upon user request, if the data is not blocked by any other window: Each instance of

56

the SingleRecordDataWindow checks whether the recording of measurement data of the
selected form group is blocked and if it is not, it displays the record data window. The data is
released again, if the window is closed.
The layout of the window reflects the n:m relation of measurements to parameter sources and
to parameters, meaning that each parameter can be measured many times and that each
parameter source can answer many times. Furthermore, the layout of each record data window
reflects the layout of the measurement table of the selected form group. It at least allows the
selection of a parameter source and a form to record data for these. Depending on the layout
of the according measurement table, it can also display a date field, and additional key fields
for selecting a measurement set. The user first has to specify all the key values, because they
are necessary to uniquely identify a measurement set, thereafter he can start recording the data
by pressing the button right to the key fields.
Afterwards, the questions are loaded from the form table of the selected group and the
recording process is started. The user can now specify all the non key head values and all the
values of the parameters, but is no longer allowed to change the key values, because this
would lead to specifying another measurement set. In case the specified measurement set did
not exist, it is finally created by selecting the save action.
The user can only indicate that he wants to work with another record, by choosing one of the
following actions:

• New selection = close
• Search
• First, previous, next or last record.

Searching is covered in detail in chapter 8.5.5.
Table 8-9 lists the public methods of the SingleRecordDataWindow class.

Method Description
getInstance(int, TDataAdmin, String) Returns an instance of the

SingleRecordDataWindow class, there can
be only one instance per form group (the int
argument)

preview(int, TDataAdmin, String) Previews a record data window. It is used for
previewing the edit mode during the design
process. If in preview mode, the user cannot
enter anything in the displayed fields

print() Prints the questionnaire
showWindow() Tries to block the data and if successful,

displays the record data window
propertyChange(PropertyChangeEvent) For noticing property changes of

JFormattedTextFields
actionPerformed(ActionEvent) Implements the actionPerformed method to

react to non-menu actions.
Table 8-9 Public Methods of SingleRecordDataWindow. We describe the public methods of the

SingleRecordDataWindow

Figure 8-23 depicts the UML diagram of the record data window.

57

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

- reactToPropertyChange: boolean

- reactToActionPerformed: boolean

+ getInstance(in formGroupIndex: int, in MainData: TDataAdmin, in title: String): SingleRecordDataWindow

+ preView(in formGroupIndex: int, in MainData: TDataAdmin, in FormId: String): SingleRecordDataWindow

+ actionPerformed(in e: ActionEvent)

+ showWindow(): int

+ print()

+ propertyChange(in arg0: PropertyChangeEvent)

- serialVersionUID: long

+ FileAction(in text: String)

+ FileAction(in text: String, in icon: Icon)

+ FileAction(in text: String, in icon: Icon, in description: String, in accelerator: int)

+ actionPerformed(in e: ActionEvent)

+ setActionCommand(in i: int)

FileAction

+ windowClosing(in e: WindowEvent)

WindowCloser

SingleRecordDataWindow

at::ac::tuwien::e9025248::genedit::dataAdmin::Value Template

TDateSpinner

at::ac::tuwien::e9025248::genedit::dataAdmin::value ::SValue

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::dataAdmin::value::AbstractValue

at::ac::tuwien::e9025248::genedit::configuration::U IConstants

at::ac::tuwien::e9025248::genedit::dataAdmin::Field Comparator

at::ac::tuwien::e9025248::genedit::dataAdmin::value ::DateValue

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

FilterDialog

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

CustomListCellRenderer

«access»

«access»

 - instance
{order}*

«access»

«import»

«import»

«access»

«import»

«import»

 - fieldValue

*
«import»

«access»

«import»
«access»

«access»

«access»

«import»

«import»

«access»

«access»

Figure 8-23 UML of SingleRecordDataWindow. We depict the dependencies of the

SingleRecordDataWindow class.

8.5.2.1 The Date Spinner
For displaying dates a custom date spinner is used. It is set up according to the date formats
specified. The default time granularity is the day, this means that the date spinner displays the
day, the month and the year and its step is the day. The user can modify the time granularity
be specifying additional key head fields. So the date spinner is flexible enough to cover all
allowed date formats (but the separators between the date elements are fixed: “/” for dates, “:”
for time). Figure 8-24 depicts the UML diagram of the TDateSpinner class.

58

- serialVersionUID: long

+ TDateSpinner(in startDate: Date, in minDate: Date, in maxDate: Date, in format: String)

TDateSpinner

javax::swing::JSpinner

Figure 8-24 UML of TDateSpinner. We depict the dependencies of the TDateSpinner class.

8.5.2.2 The Custom ListCellRenderer
In order to be able to provide tool tips for each item of a JCombobox a custom
ListCellRenderer, which inherits from JLabel and implements the ListCellRenderer interface
is implemented in class CustomListCellRenderer. Tool tips per item are used in combo boxes
in the record data window, if there is a description to a specific allowed value available. The
description is i.e. the meaning of a certain value, e.g., 1 = very good, 2 = good, 3 = average, 4
= bad. The descriptions to allowed values are set up during the design process. Figure 8-25
UML of the CustomListCellRenderer depicts the UML diagram of the
CustomListCellRenderer. The implementation of the class used the solution found at [WWW-
27].

+ CustomListCellRenderer(in allowed: String[], in descr: String[])

+ getListCellRendererComponent(in list: JList, in value: Object, in index: int, in isSelected: boolean, in cellHasFocus: boolean): Component

CustomListCellRenderer

«interface»
javax::swing::ListCellRenderer

javax::swing::JLabel

Figure 8-25 UML of the CustomListCellRenderer. We depict the dependencies of the

CustomListCellRenderer class.

8.5.3 The Design Form Window
The TDesignFormWindow class implements the design process. Again, there can be only one
design window for each form group. So the TDesignFormWindow is an oligoton is this sense.
The start of the design process works similar to the record data process. First, it is checked
whether the data can be blocked, and afterwards the design window is displayed upon
success. The data is released again on window closing.
Each form has only one key field, which is the form-id, which is unique within a form group.
So it is sufficient to key in a (possibly new) form-id to start the design process. Once the
design process has been started, it is possible to add questions, change the questions’
properties and add allowed values etc. Similar to the record data process the user cannot

59

change the form-id as long as he is in the design mode. The question details are displayed in a
JTable with a custom TableModel, which is an instance of the class TFormModel. The
allowed values are only displayed upon request and in a window of their own. Again a JTable
is used to display the allowed values. Its TableModel is implemented by the class
TAllowedModel. Both TableModels are implemented as inner classes of the
TDesignFormWindow class, because they are only used there.
In total, the design form window reflects the hierarchical structure of the form definitions.
To indicate that he wants to work with another record, the user has the same options as
described in the recording data section (compare section 8.5.2):

• New selection = close
• Search
• First, previous, next or last record.

Searching is covered in detail in section 8.5.5.
Table 8-10 lists the public methods of the TDesignFormWindow class along with a
description.

Method Description
getInstance(int, TDataAdmin, String) Returns an instance of the

TDesignFormWindow class. There can be
only one instance per form group.

showWindow() Tries to block the data and displays the
design window upon success.

Table 8-10 Public Methods of TDesignFormWindow. We describe the public methods of the
TDesignFormWindow.

Figure 8-26 depicts the UML diagram of the TDesignFormWindow. It only shows the
dependences within the ui package, because the diagram is too big for displaying all the
dependences of the project.

60

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

- instance: TDesignFormWindow

+ getInstance(in formGroupIndex: int, in MainData: TDataAdmin, in title: String): TDesignFormWindow

+ run()
+ showWindow(): int

+ actionPerformed(in e: ActionEvent)
+ itemStateChanged(in e: ItemEvent)

+ propertyChange(in arg0: PropertyChangeEvent)

- serialVersionUID: long

+ DesignAction(in text: String, in icon: Icon)
+ DesignAction(in text: String)

+ DesignAction(in text: String, in icon: Icon, in description: String, in accelerator: int)
+ DesignAction(in text: String, in description: String, in accelerator: int)

+ setActionCommand(in i: int)
+ actionPerformed(in e: ActionEvent)

DesignAction

- serialVersionUID: long

+ TFormModel()

+ getRowCount(): int
+ getColumnCount(): int

+ getValueAt(in r: int, in c: int): Object
+ getColumnName(in c: int): String

+ getColumnClass(in c: int): Class
+ getColumnName(): String[]

+ isCellEditable(in r: int, in c: int): boolean
+ setValueAt(in aValue: Object, in rowIndex: int, in colIndex: int)

+ getDatatype(in QuestionId: String): String
+ getMin(in QuestionId: String): String

+ getMax(in QuestionId: String): String
+ pasteRow(in above: boolean)

+ moveRow(in up: boolean)
+ cutRow()

+ copyRow()
+ removeRow()

+ removeRow(in index: int)
+ addRow(in row: Object, in above: boolean)

+ addRow(in above: boolean)
+ getRow(in r: int): Object

TFormModel

- serialVersionUID: long

+ TAllowedModel()

+ getRowCount(): int
+ getColumnCount(): int

+ getValueAt(in r: int, in c: int): Object
+ getColumnName(in c: int): String

+ isCellEditable(in r: int, in c: int): boolean
+ setValueAt(in aValue: Object, in rowIndex: int, in colIndex: int)

+ getColumnClass(in c: int): Class
+ isValValid(in aValue: Object, in colIndex: int): boolean

+ valueChanged(in e: ListSelectionEvent)

TAllowedModel

- serialVersionUID: long
+ OK_OPTION: int

+ CANCEL_OPTION: int

+ CopyFormDialog()
+ getOption(): int

+ getNewFormId(): String
+ actionPerformed(in e: ActionEvent)

CopyFormDialog

+ windowClosing(in e: WindowEvent)

WindowCloser

TDesignFormWindow

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

FilterDialog

at::ac::tuwien::e9025248::genedit::dataAdmin::Field Comparator

at::ac::tuwien::e9025248::genedit::configuration::U IConstants

SingleRecordDataWindow

 - instance

{order}

*

«import»

«access»

«import»

«import»

«access»

«import»

«access»

«import»

«import»

«access»

«import»

«access»

Figure 8-26 UML of TDesignFormWindow. We depict the dependencies of the TDesignFormWindow

class.

61

8.5.4 The Parameter Source Maintenance Window
The parameter source maintenance process is implemented by the TReplierAdmin class. It is
simple compared to TDesignFormWindow or SingleRecordDataWindow, because the
parameter sources do not have a hierarchical structure. So, in contrary to the record data
window and the design form window, all the available parameter sources are loaded in a
table, which displays all the available parameter sources together with the number of answers
already given. The table is implemented as sortable JTable with a custom TableModel, which
is implemented in the inner class TPersModel. The class TableSorter enhances JTable and
allows sorting of the table contents. For information on the Table Sorter see section 8.5.8.
Table 8-11 lists the public methods of the TReplierAdmin class:

Method Description
getInstance(int, TDataAdmin,String) Returns an instance of the TReplierAdmin

class. There can be only one instance.
showWindow() Tries to block the data and displays the

parameter source maintenance window upon
success.

Table 8-11 Public Methods of TReplierAdmin. We describe the public methods of the TReplierAdmin
class.

Figure 8-27 depicts the UML diagram of the TReplierAdmin class.

62

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::configuration::U IConstants

TableSorter

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

- serialVersionUID: long
- instance: TReplierAdmin

+ ReplierId: String

+ getInstance(in MainData: TDataAdmin): TReplierAdmin
+ showWindow(): int

+ run()

- serialVersionUID: long

+ myAction(in text: String, in icon: Icon)
+ myAction(in text: String)

+ myAction(in text: String, in icon: Icon, in description: String, in accelerator: int)
+ myAction(in text: String, in description: String, in accelerator: char)

+ actionPerformed(in e: ActionEvent)
+ setActionCommand(in i: int)

+ setActionCommand(in ac: String)

myAction

- serialVersionUID: long

+ TPersModel(in MainData: TDataAdmin)

+ getRowCount(): int

+ getColumnCount(): int
+ getValueAt(in r: int, in c: int): Object

+ getValueOfRow(in r: int): Object[]
+ setValueAt(in aValue: Object, in rowIndex: int, in colIndex: int)

+ updRowFor(in ReplierId: String)
+ getColumnName(in c: int): String

+ isCellEditable(in r: int, in c: int): boolean
+ getColumnClass(in c: int): Class

+ valueChanged(in e: ListSelectionEvent)
+ getDataFromReplierTable()

+ saveData(): String
+ createNewRow()

TPersModel

+ windowClosing(in e: WindowEvent)

WindowCloser

TReplierAdmin

«access»

«access»

«access»

«import»

«access»

«import»

Figure 8-27 UML of TReplierAdmin. We depict the dependencies of the TReplierAdmin class.

8.5.5 The Filter / Search Dialog
All filter and search dialogs are implemented solely by the FilterDialog class. Its constructor
takes an option argument for selecting whether the purpose of the instance is to search, and
select a single record, or to filter and provide a list of indices of the records which conform to
the filter criteria. Another argument is used for specifying the purpose of the table. The
current release defines and supports:

• FilterDialog.ANSWERTABLE
• FilterDialog.FORMTABLE and
• FilterDialog.PARAMETERSOURCETABLE.

Of course it also needs a link to the data source and to know the form group, if filtering or
searching is set up for a form table or an answer table. The filter dialog is displayed upon user
request from the design form window, from the record data window and from the export
dialogs. Obviously, the purpose of the filter dialog is searching for records and selecting a
single record, if triggered from the design form window or the record data window. Whilst the

63

purpose is filtering the data in order to export only a subset of the data, if started from one of
the export dialogs.
The filter window displays two JTables. One of them displays all the records which conform
to the filter criteria; the other one displays the filter criteria.
It supports two filter views, an advanced filter and a simple filter. Both have custom table
models, which are implemented by inner classes, which inherit from another inner class, the
AbstractFilterModel. The AbstractFilterModel ensures that both concrete filter models
implement some functionality, which is used during the filtering process. So it is transparent
during the actual filtering process, whether a simple or an advanced filter model is used.
The filtering is started on the fly as soon as there are changes to the filter criteria. This is done
by listing to TableModelEvents.
Additionally, the filter dialog allows assigning values to the records’ additional head fields,
which do not belong to the key fields without the need of opening a record explicitly.

Figure 8-28 depicts the UML diagram of the FilterDialog class. The figure misses out the
public static variables and method for the inner classes WindowCloser and myAction,
because of the available space. However, these have the same tasks than in the other classes,
which implement ui windows.

64
Figure 8-28 UML of FilterDialog. We depict the dependencies of the FilterDialog class.

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

at::ac::tuwien::e9025248::genedit::dataAdmin::Value Template

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

TableSorter

at::ac::tuwien::e9025248::genedit::dataAdmin::value ::DateValue

+ ANSWERTABLE: int

+ FORMTABLE: int

+ PARAMETERSOURCETABLE: int

- serialVersionUID: long

+ FilterDialog(in MainData: TDataAdmin, in formGroupIndex: int, in select: boolean, in TableType: int)

+ showDialog()

+ tableChanged(in e: TableModelEvent)

+ getSelectedRecord(): int

+ getFilteredIndeces(): ArrayList

myAction

- serialVersionUID: long

+ TAnswerSetModel()

+ getRowCount(): int

+ getColumnCount(): int

+ getValueAt(in r: int, in c: int): Object

+ getColumnName(in c: int): String

+ getColumnName(): String[]

+ getColumnClass(in c: int): Class

+ isCellEditable(in r: int, in c: int): boolean

+ setValueAt(in aValue: Object, in rowIndex: int, in colIndex: int)

+ valueChanged(in e: ListSelectionEvent)

+ removeRows(in r: ArrayList)

+ getRow(in r: int): Object

TAnswerSetModel

+ reset()

+ getNext(): String[]

+ hasNext(): boolean

+ getLineInformation(): String

+ isComparator(): boolean

+ hasData(): boolean

+ addRow()

+ removeRows()

+ removeAllRows()

+ getColumnName(in c: int): String

+ getFieldId(in FieldName: String): int

+ getColumnCount(): int

+ isCellEditable(in r: int, in c: int): boolean

AbstractFilterModel

- serialVersionUID: long

+ SimpleFilterModel()

+ reset()

+ getNext(): String[]

+ hasNext(): boolean

+ getLineInformation(): String

+ isComparator(): boolean

+ hasData(): boolean

+ getValueAt(in r: int, in c: int): Object

+ getRowCount(): int

+ removeRows()

+ removeAllRows()

+ setValueAt(in aValue: Object, in rowIndex: int, in colIndex: int)

SimpleFilterModel

- serialVersionUID: long

+ AdvancedFilterModel()

+ reset()

+ getNext(): String[]

+ hasNext(): boolean

+ getLineInformation(): String

+ isComparator(): boolean

+ hasData(): boolean

+ getValueAt(in r: int, in c: int): Object

+ getRowCount(): int

+ addRow()

+ removeRows()

+ removeAllRows()

+ getRow(in r: int): String[]

+ setValueAt(in aValue: Object, in rowIndex: int, in colIndex: int)

+ doSetValueAt(in aValue: Object, in rowIndex: int, in colIndex: int)

AdvancedFilterModel

WindowCloser

FilterDialog

at::ac::tuwien::e9025248::genedit::dataAdmin::value ::SValue

at::ac::tuwien::e9025248::genedit::dataAdmin::value::AbstractValue

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

at::ac::tuwien::e9025248::genedit::configuration::U IConstants

«access»

«import»

«access»

«access»

«access»

«import»

«access»

«import»

«access»

«import»

«import»

«import»

65

8.5.6 Export Dialog
There are two dialogs, which lead to an export of measurement data after the user clicked the
approve button. Both of them behave similar, so the common methods and variables have
been bundled together in another class called CommonExportOptions. The export dialogs
only display the dialog and provide the host object (in our case the main window) with the
selected export options. All the work of exporting (and program starting) is triggered by the
main window upon approve. Therefore, the export dialogs lock the data. However the data is
released by the main window after finishing the export.

8.5.6.1 Common Export Options
The class CommonExportOption provides functionality which is common for the standard
export dialog (see section 8.5.6.2), and for the dialog which starts an external program after
the export (see section 8.5.6.3).
Table 8-12 lists the public methods of the CommonExportOption class. They merely call the
methods with the same name in their instance of the ExportChooser class:

Method Description
doFilter() Whether the user ticked the filter option
doScale() Whether the user ticked the scale option
getConflateOver() Returns the indices of the fields to conflate

over
getFilteredIndeces() Returns the indices of the records which

conform to the filter criteria.
getMax() The desired maximum for scaling
getMin() The desired minimum for scaling
Table 8-12 Public Methods of the CommonExportOption. We describe the public methods common to all

export classes.

Figure 8-29 depicts the UML diagram of the CommonExportOption class.

66

+ SHOWSCALE: int

+ SHOWCONFLATION: int

+ ExportChooser(in MainData: TDataAdmin, in formGroupIndex: int)

+ getConflateOver(): int[]

+ doScale(): boolean

+ doFilter(): boolean

+ getMin(): Double

+ getMax(): Double

+ getFilteredIndeces(): ArrayList

+ showFields(in option: int)

+ hideFields(in option: int)

+ actionPerformed(in e: ActionEvent)

+ propertyChange(in e: PropertyChangeEvent)

+ valueChanged(in arg0: ListSelectionEvent)

ExportChooser

- serialVersionUID: long

+ getInstance(in MainData: TDataAdmin, in formGroupIndex: int): ExportDialog

+ showWindow(in win: JFrame, in title: String): int

+ getSelectedFile(): File

+ getFileFilter(): FileFilter

+ actionPerformed(in e: ActionEvent)

+ propertyChange(in e: PropertyChangeEvent)

+ SimpleFileFilter(in exts: String[], in descr: String)

+ accept(in f: File): boolean

+ getDescription(): String

SimpleFileFilter

ExportDialog

+ APPROVEOPTION: int

+ CANCELOPTION: int

+ getInstance(in MainData: TDataAdmin, in formGroupIndex: int): StartExternalDialog

+ showWindow(in win: JFrame, in title: String): int

+ actionPerformed(in e: ActionEvent)

StartExternalDialog

+ CommonExportOption()

+ getConflateOver(): int[]

+ doScale(): boolean

+ doFilter(): boolean

+ getMin(): Double

+ getMax(): Double

+ getFilteredIndeces(): ArrayList

CommonExportOption

«import»

 - instance

{order}

*

«import»

 - instance

{order}

*

«import»

Figure 8-29 UML of CommonExportOption. We depict the dependencies of the CommonExportOption

class.

8.5.6.2 Export Dialog
The ExportDialog inherits from CommonExportOptions. A JDialog with a
GenEditFileChooser is displayed. The file chooser allows selecting the format and the file to
export to. If the format is changed the file chooser’s accessory needs to be updated
accordingly. This is done by calling hideFields(int) or showFields(int) of the instance of the
ExportChooser class, which is used as the file chooser’s accessory. Further to the inherited

67

public methods, it only provides methods for instantiating and displaying the window. Figure
8-30 depicts the UML diagram of the ExportDialog class.

GenEditFileChooser

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

CommonExportOption

- serialVersionUID: long

- instance: ExportDialog

+ getInstance(in MainData: TDataAdmin, in formGroupIndex: int): ExportDialog

+ showWindow(in win: JFrame, in title: String): int

+ getSelectedFile(): File

+ getFileFilter(): FileFilter

+ actionPerformed(in e: ActionEvent)

+ propertyChange(in e: PropertyChangeEvent)

+ SimpleFileFilter(in exts: String[], in descr: String)

+ accept(in f: File): boolean

+ getDescription(): String

SimpleFileFilter

ExportDialog

 - instance

{order}

*

«import»
«access»

«import»

«import»

«access»

«import»

Figure 8-30 UML of ExportDialog. We depict the dependencies of the ExportDialog class.

8.5.6.3 Dialog for Exporting and Starting an Extern al Program
The class StartExternalDialog implements a dialog for exporting and starting an external
program. It works similar the ExportDialog, but it does not require a file chooser. Instead the
export file and the file format were defined in the profile. It has a button for starting the
external program additionally to an Export button. Everything else works the same as in the
ExportDialog, because it too uses an instance of the ExportChooser class for selecting the
other export options (everything else besides file name and file format). Further to the
inherited public methods it only provides methods for instantiating and displaying the
window. Figure 8-31 depicts the UML diagram of the StartExternalDialog class.

68

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

+ APPROVEOPTION: int

+ CANCELOPTION: int

- instance: StartExternalDialog

+ getInstance(in MainData: TDataAdmin, in formGroupIndex: int): StartExternalDialog

+ showWindow(in win: JFrame, in title: String): int

+ actionPerformed(in e: ActionEvent)

StartExternalDialog

CommonExportOption

 - instance

{order}
*

«access»

«import»

«import»

Figure 8-31 UML of StartExternalDialog. We depict the dependencies of the StartExternalDialog class.

8.5.6.4 Export Chooser
The class ExportChooser implements the accessories used in both of the export dialogs, the
standard export dialog (see section 8.5.6.2) and for the dialog which starts an external
program after the export (see section 8.5.6.3). It provides data format specific options.
Depending on the chosen file format it displays options for scaling (not for AnswerFile
format) or conflating values (conflation file format only). Its public methods are used to
return the selected options and values. Table 8-13 lists the public methods of the
ExportChooser:

Method Description
doFilter() Whether the user ticked the filter option
doScale() Whether the user ticked the scale option
getConflateOver() Returns the indices of the fields to conflate

over
getFilteredIndeces() Returns the indices of the records which

conform to the filter criteria.
getMax() The desired maximum for scaling
getMin() The desired minimum for scaling
hideFields() Hides the fields for options which are not

available for certain file formats.
showFields() Displays the fields for options which are

needed for certain file formats.
Table 8-13 Public Methods of the ExportChooser. We describe the public methods used to choose the

various export options.

69

Figure 8-32 depicts the UML diagram of the ExportChooser class.

at::ac::tuwien::e9025248::genedit::configuration::U IConstants

FilterDialog

at::ac::tuwien::e9025248::genedit::util::utils

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

+ SHOWSCALE: int

+ SHOWCONFLATION: int

+ ExportChooser(in MainData: TDataAdmin, in formGroupIndex: int)

+ getConflateOver(): int[]

+ doScale(): boolean

+ doFilter(): boolean

+ getMin(): Double

+ getMax(): Double

+ getFilteredIndeces(): ArrayList

+ showFields(in option: int)

+ hideFields(in option: int)

+ actionPerformed(in e: ActionEvent)

+ propertyChange(in e: PropertyChangeEvent)

+ valueChanged(in arg0: ListSelectionEvent)

ExportChooser

at::ac::tuwien::e9025248::genedit::dataAdmin::Table Data

«import»

«access»

«access»

«import»

«import»

«access»

Figure 8-32 UML of ExportChooser. We depict the dependencies of the ExportChooser class.

8.5.6.5 The Modified File Chooser
Wherever a file chooser is needed, a modified file chooser is used. It is implemented by the
class GenEditFileChooser. This version of JFileChooser simply makes createDialog a public
method. The JFileChooser behaves like this: When the user clicks on the approve button
(Open or Save) or the Cancel button, an action event is fired. Unfortunately, if the user clicks
on the close-dialog icon in the title bar, an event is not fired. In order to listen for this event, it
is necessary to add a window event listener to the dialog. This means that
JFileChooser.showDialog() cannot be used because it creates the dialog internally. The

70

workaround is to override the createDialog() method to make it public and then call it to
create the dialog. The idea to modify the behavior of the JFileChooser like this can be found
in [WWW-8]. Figure 8-33 depicts the UML diagram of the GenEditFileChooser class.

- serialVersionUID: long

+ createDialog(in parent: Component): JDialog

GenEditFileChooser

javax::swing::JDialogjavax::swing::JFileChooser

«import»

Figure 8-33 UML of GenEditFileChooser. We depict the dependencies of the GenEditFileChooser class.

8.5.7 Import Dialog
The import dialog only displays the dialog and provides the host object (in our case the main
window) with the selected export options. All the work of importing is triggered by the main
window upon approve. Therefore, the import dialog locks the data, but it is released by the
main window after finishing the import. The ImportDialog uses the GenEditFileChooser (see
section 8.5.6.5) for selecting the file to import. Figure 8-34 depicts the UML diagram of the
ImportDialog class.

71

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

at::ac::tuwien::e9025248::genedit::dataAdmin::TData Admin

GenEditFileChooser

- instance: ImportDialog

+ getInstance(in MainData: TDataAdmin, in formGroupIndex: int): ImportDialog

+ actionPerformed(in e: ActionEvent)

+ showWindow(in win: JFrame, in title: String): int

+ getSelectedFile(): File

+ getFileFilter(): FileFilter

+ SimpleFileFilter(in exts: String[], in descr: String)

+ accept(in f: File): boolean

+ getDescription(): String

SimpleFileFilter

ImportDialog

«access»

«access»

«import»

«import»

«import»

 - instance

{order}

*

«import»

Figure 8-34 UML of ImportDialog. We depict the dependencies of the ImportDialog class.

8.5.8 Table Sorter
We downloaded the TableSorter class from [WWW-7] at 3rd of May 2006. It was
implemented by Philip Milne, Brendon McLean, Dan van Enckevort and Parwinder Sekhon.
The release used in this application is: 2.0 02/27/04.
The following description of the TableSorter class is from the documentation of the
downloaded class: “TableSorter is a decorator for TableModels; adding sorting functionality
to a supplied TableModel. TableSorter does not store or copy the data in its TableModel;
instead it maintains a map from the row indexes of the view to the row indexes of the model.
As requests are made of the sorter (like getValueAt(row, col)) they are passed to the
underlying model after the row numbers have been translated via the internal mapping array.
This way, the TableSorter appears to hold another copy of the table with the rows in a
different order.
TableSorter registers itself as a listener to the underlying model, just as the JTable itself
would. Events received from the model are examined, sometimes manipulated (typically
widened), and then passed on to the TableSorter's listeners (typically the JTable). If a change

72

to the model has invalidated the order of TableSorter's rows, a note of this is made and the
sorter will resort the rows the next time a value is requested.

• When the tableHeader property is set, either by using the setTableHeader() method or
the two argument constructor, the table header may be used as a complete UI for
TableSorter. The default renderer of the tableHeader is decorated with a renderer that
indicates the sorting status of each column. In addition, a mouse listener is installed
with the following behavior:

• Mouse-click: Clears the sorting status of all other columns and advances the sorting
status of that column through three values: {NOT_SORTED, ASCENDING,
DESCENDING} (then back to NOT_SORTED again).

• SHIFT-mouse-click: Clears the sorting status of all other columns and cycles the
sorting status of the column through the same three values, in the opposite order:
{NOT_SORTED, DESCENDING, ASCENDING}.

• CONTROL-mouse-click and CONTROL-SHIFT-mouse-click: as above except that
the changes to the column do not cancel the statuses of columns that are already
sorting - giving a way to initiate a compound sort.”

8.6 The Custom Event of the Generic Editor
There is one custom event implemented. In the current release the instance of the
TMainWindow is the only object listening to it. The technique implemented is described in
detail in [WWW-9]. This article describes in detail when and how to make a Java class
observable. Basically, the observer pattern (see [Gamma 1995]) is implemented.

Figure 8-35 depicts the UML diagram of the custom events.

+ tableDataChanged(in e: DataChangeEvent)

«interface»
DataChangeListener

- serialVersionUID: long

+ DataChangeEvent(in source: RecordData)

DataChangeEvent

at::ac::tuwien::e9025248::genedit::dataAdmin::Recor dData

«interface»
java::util::EventListener

«import»

«import»«import»

«import»

Figure 8-35 UML of the Custom Event. We depict the dependencies of the classes implementing custom

event which indicates data changes.

73

8.6.1 Data Change Event
The DataChangeEvent is fired whenever there are changes to a record or table. The
DataChangeEvent class inherits from java.util.EventObject.

8.6.2 Data Change Listener
The Data Change Listener is an interface which inherits from java.util.EventListener

8.7 Utilities
The class utils provides the application with a couple of static utility methods, which can be
used anywhere in the program. Figure 8-36 depicts the UML diagram of this class.

at::ac::tuwien::e9025248::genedit::configuration::C onfigInfo

+ convertToPosiviteInt(in s: String): int

+ parseDate(in StrDate: String, in dateFormat: String): Date

+ DateToString(in d: Date, in format: String): String

+ isFlagSet(in value: int, in flag: int): boolean

+ setFlag(in value: int, in flag: int): int

+ deleteFlag(in value: int, in flag: int): int

+ writeToHistory(in msg: String)

+ writeToErrorLog(in msg: String)

+ writeToErrorAndHistory(in msg: String)

+ RedirectStdErr(in filename: String)

+ RedirectStOut(in filename: String)

+ compareFieldValue(in datatype: String, in val0: String, in val1: String): int

+ conformsWithDatatype(in datatype: String, in value: String): boolean

+ isNullValue(in value: String): boolean

+ displayErrorMessage(in desk: Component, in title: String, in msg: String)

+ composeInvalidDataErrorMessage(in singleErr: String, in newAs: String[]): String

+ composeValueString(in values: String[]): String

+ initializeStringArray(in s: String[])

+ addToErr(in singleErr: String, in err: String): String

+ containsEmpty(in combo: JComboBox): boolean

+ normalizeFileName(in fname: String): String

utils

«access» «access»

Figure 8-36 UML of utils. We depict the dependencies of the utils class.

74

III. Demonstration of the tool and Conclusion

9 Illustration for a clinical trial about anorectic girls
Although the editor is designed to be able to work with all kind of questionnaires, its main
field of operation will be for clinical data.

9.1 Getting Started
Before starting the generic editor the first time, the configuration file must be adapted to the
special requirements of each application. The generic editor is language-independent. It can
be set up to run in basically every language, provided a specific language file is supplied. All
error messages which pertain to errors occurring before loading the language file are in
English.

9.1.1 Setting up the Configuration File
The configuration file uses a lot of parameters to configure the appearance of the application.
The Generic Editor won’t run without specifying the configuration file as a parameter to the
program. One specific parameter specifies where to find the language translations. Should
there be an error during the loading process of the configuration file or the language file the
application will stop and display an according error message. In the current release the profile
has to be edited by means of a text editor.

9.1.2 The Parameters of the Configuration File
The following table lists the various parameters and tags used by the configuration file. The
file is in XML file format. The default configuration file is AnorexieGermanProfile.xml. For
this thesis the Generic Editor is configured with the AnorexieEnglishProfile.xml
configuration file to have the same languages in the user handbook and the application. Still,
the questionnaires are in German as the form definitions (especially the question texts) have
not been translated. Table 9-1 lists the tags of the profile and there parameters and explains
their use.

Tag Explanation Parameters
editor_profile The outermost tag which states

that this xml file contains a
profile for the editor

title The title of the application
specified in the language which
is used during the application1

Questionnaire_Groups This section specifies the
different types of questionnaires
which can be used in the specific
application. The parameter count
is mandatory and specifies the
number of groups used during
the application

1 translate, if setting up the Editor for a new Language

75

Tag Explanation Parameters
group This subsection of

Questionnaire_Groups specifies
the options of a specific type of
questionnaires

id …is a subsection of group and
specifies the id of the group in
the language used during the
application. 2 It should be unique
for the users to be able to
distinguish the questionnaire
groups. Examples for ids would
be “Questionnaire” or “Master
file data”

path …is a subsection of group and
specifies the location of the xml
file defining the questionnaire.

answer_dir …is a subsection of group and
specifies the subdirectory used
within Person_Dir to store the
answers for a specific replier
given at a specific time.

answer_file …is a subsection of group and
an alternative to answer_dir.
Only one of these two tags is
allowed to be set for a specific
group. If answer_file is set than
all the answers to questionnaires
of this groups are stored in a
single file rather than in the
directory structure below
Person_Dir.

single …is a subsection of group and
specifies whether there is only
one set of answers allowed per
replier (when set to true, i.e.
static data are recorded) or
whether there can be multiple
answer sets given at different
times (when set to false, i.e. time
dependent data are recorded)

ShortCut …is a subsection of group and
specifies the shortcut which
starts the answering modus for
the selected questionnaire group

2 translate, if setting up the Editor for a new Language

76

Tag Explanation Parameters
addon_head_fields …is a subsection of group and

specifies whether there are
additional head fields for
questionnaires of this group. A
head field is a field which
specifies a characteristic specific
to the whole questionnaire, e.g. a
qualitative time description
about when the questions of the
questionnaire had been posed.

count: the number of
additional head fields

field …is a subsection of
addon_head_fields. It specifies a
single head field

name: the name of the
field
xml_flag: the
xml_flag: used to
store it.
description: for
display only
data_type:
keyfield: if true, it is
part of the key

allowed_values …is a subsection of field and
lists the allowed_values. It is
empty, if any value is allowed.

count: the number of
allowed fields.

allowed the values which can be entered value

additional_xml …is a subsection of allowed and
specifies a mapping to one or
more different xml_flags used to
store the same data.

flag: the xml_flag
value: the value
description: for
display only
data_type

Person_Dir As a subsection of the
editor_profile it specifies the
directory where the answers of
specific repliers can be found.
The Person_Dir is optional, it
must be used, in case of
questionnaire groups, which
keep the answers in a
subdirectory of the Person_Dir.

77

Tag Explanation Parameters
Person_File As a subsection of the

editor_profile it specifies the file,
which should keep the ids of the
available repliers. This tag is
mandatory and has precedence
before the directory structure
under Person_Dir: If the
Person_File exists, all available
ids are read from the
Person_File. If it does not exist,
the Person_Dir is searched for
available Replier-Ids and the
Person_File is created according
to the subdirectories of
Person_Dir.

Person_Type … specifies, what kind of replier
answers the question of the
specific application, e.g. Patients

language As a subsection of the
editor_profile, it specifies the
name of the language used in a
specific application. This is also
the name of the language
resource file.

external_file … specifies a default export file
for exporting the data

format
can be “Conflation”,
“CSV” or
“AnswerFile”

external_cmd …a command which will be
executed automatically after
exporting the data to the file
specified in external_file, when a
special submenu option of the
Extra Menu is chosen. The name
of the submenu is either the one
specified by the parameter name
or the command name without
the complete path (if one was
specified)

name
The name to display
in the menu

Table 9-1 Tags and Parameters of the Profile. We describe the tags and the attributes of the profile.

78

9.1.3 The Default Configuration File in German
The default configuration file is AnorexieGermanProfile.xml (see Code 9-1). It can be found
below:

<?xml version="1.0" encoding="ISO-8859-1"?>
<editor_profile>
<title>Anorexie</title>
<Questionnaire_Groups count = "3">
 <group>
 <id>Fragebogen</id>
 <path>C:\Dokumente und Einstellungen\Martina\Eige ne
Dateien\Diplom_Miksch\data_fuer_eingabetool2\parame ter_master_data.xml</pa
th>
 <answer_dir>.</answer_dir>
 <single>false</single>
 <ShortCut>F</ShortCut>
 <addon_head_fields count = "2">
 <field name= "Qualitativer Zeitpunkt" xml_flag=" kat"
description="Qualitativen Zeitpunt wählen" displaya s = "combobox">
 <allowed_values count="7">
 <allowed value="pre" count_addon_flags="1">
 <additional_xml flag="katnr" value="100"/>
 </allowed>
 <allowed value="kat1" count_addon_flags="1">
 <additional_xml flag="katnr" value="200"/>
 </allowed>
 <allowed value="kat2" count_addon_flags="1">
 <additional_xml flag="katnr" value="300"/>
 </allowed>
 <allowed value="kat3" count_addon_flags="1">
 <additional_xml flag="katnr" value="400"/>
 </allowed>
 <allowed value="kat4" count_addon_flags="1">
 <additional_xml flag="katnr" value="500"/>
 </allowed>
 <allowed value="post" count_addon_flags="1">
 <additional_xml flag="katnr" value="600"/>
 </allowed>
 <allowed value="eval2" count_addon_flags="1">
 <additional_xml flag="katnr" value="700"/>
 </allowed>
 </allowed_values>
 </field>
 <field name="Beantwortet von:" xml_flag="paramet er_source_flag"
keyfield ="true" displayas="combobox">
 <allowed_values count="3">
 <allowed value="C" description = "Child"/>
 <allowed value="M" description = "Mother"/>
 <allowed value="F" description = "Father"/>
 </allowed_values>
 </field>
 </addon_head_fields>
 </group>
 <group>
 <id>Variable Stammdaten</id>
 <path>C:\Dokumente und Einstellungen\Martina\Eige ne
Dateien\Diplom_Miksch\data_fuer_eingabetool2\variab le_stammdaten_master_da
ta.xml</path>
 <answer_file>..\var_masterfile.xml</answer_file>
 <single>false</single>

79

 <ShortCut>V</ShortCut>
 </group>
 <group>
 <id>Stammdaten</id>
 <path>C:\Dokumente_und_Einstellungen\Martina\Eige ne
Dateien\Diplom_Miksch\data_fuer_eingabetool2\stammd aten_master_data.xml</p
ath>
 <answer_file>person_masterdata.xml</answer_file>
 <single>true</single>
 <ShortCut>S</ShortCut>
 </group>
</Questionnaire_Groups>
<Person_Dir>C:\Dokumente und Einstellungen\Martina\ Eigene
Dateien\Diplom_Miksch\data_fuer_eingabetool2\data_r ecords\</Person_Dir>
<Person_File>person.xml</Person_File>
<Person_Type>Patient</Person_Type>
<Person_ShortCut>P</Person_ShortCut>
<language>german</language>
<external_cmd name="Gravi++">C:\Dokumente und Einst ellungen\Martina\Eigene
Dateien\Diplom_Miksch\data_fuer_eingabetool2\mybatc h.bat</external_cmd>
<external_file format="Conflation">C:\Dokumente und
Einstellungen\Martina\Eigene
Dateien\Diplom_Miksch\data_fuer_eingabetool2\gravio utput.xml</external_fil
e>
</editor_profile>

Code 9-1 Default Configuration File. We list the default profile.

9.1.4 The English Configuration File Used for this Documentation
The English configuration file used for this thesis is AnorexieEnglishProfile.xml. It can be
found in Code 9-2:

<?xml version="1.0" encoding="ISO-8859-1"?>
<editor_profile>
<title>Anorexia</title>
<Questionnaire_Groups count = "3">
 <group>
 <id>Questionnaire</id>

 <path>G:\Dokumente_und_Einstellungen\martina\Diplo m_Miksch\data_fuer_ein
gabetool2\parameter_master_data.xml</path>
 <answer_dir>.</answer_dir>
 <single>false</single>
 <ShortCut>F</ShortCut>
 <addon_head_fields count = "2">
 <field name= "Qualitative Timestamp" xml_flag="k at" keyfield =
"false">
 <allowed_values count="6">
 <allowed value="pre" count_addon_flags="1">
 <additional_xml flag="katnr" value="100"/>
 </allowed>
 <allowed value="kat1" count_addon_flags="1">
 <additional_xml flag="katnr" value="200"/>
 </allowed>
 <allowed value="kat2" count_addon_flags="1">
 <additional_xml flag="katnr" value="300"/>
 </allowed>
 <allowed value="kat3" count_addon_flags="1">
 <additional_xml flag="katnr" value="400"/>
 </allowed>
 <allowed value="kat4" count_addon_flags="1">

80

 <additional_xml flag="katnr" value="500"/>
 </allowed>
 <allowed value="post" count_addon_flags="1">
 <additional_xml flag="katnr" value="600"/>
 </allowed>
 </allowed_values>
 </field>
 <field name="Replied by:" xml_flag="parameter_so urce_flag">
 <allowed_values count="3" keyfield = "true">
 <allowed value="C" description = "Child"/>
 <allowed value="M" description = "Mother"/>
 <allowed value="F" description = "Father"/>
 </allowed_values>
 </field>
 </addon_head_fields>
 </group>
 <group>
 <id>Variable Master File</id>

 <path>G:\Dokumente_und_Einstellungen\martina\Diplo m_Miksch\data_fuer_ein
gabetool2\variable_stammdaten_master_data.xml</path >
 <answer_file>var_masterfile.xml</answer_file>
 <single>false</single>
 <ShortCut>V</ShortCut>
 </group>
 <group>
 <id>Master File</id>
 <path>G:\Dokumente_und_Einstellungen\martina\Diplo m_Miksch\data_fuer_ein
gabetool2\stammdaten_master_data.xml</path>
 <answer_file>person_masterdata.xml</answer_file>
 <single>true</single>
 <ShortCut>S</ShortCut>
 </group>
</Questionnaire_Groups>
<Person_Dir>G:\Dokumente_und_Einstellungen\martina\ Diplom_Miksch\data_fuer
_eingabetool2\data_records\</Person_Dir>
<Person_File>person.xml</Person_File>
<Person_Type>Patient</Person_Type>
<Person_ShortCut>P</Person_ShortCut>
<language>english</language>
<external_cmd name="Gravi++">C:\Dokumente und Einst ellungen\Martina\Eigene
Dateien\Diplom_Miksch\data_fuer_eingabetool2\mybatc h.bat</external_cmd>
<external_file format="Conflation">C:\Dokumente und
Einstellungen\Martina\Eigene
Dateien\Diplom_Miksch\data_fuer_eingabetool2\gravio utput.xml</external_fil
e>
</editor_profile>

Code 9-2 English Profile. We list the English profile used during this thesis.

9.1.5 The Language Specific Translations
The language specific translations of the program’s menu entries, error messages and captions
are found in a file relative to the root of the program installation in a subdirectory called
resources. Its name is composed out of the content of the <language> settings in the
configuration file. E.g. if it states <language>english</language> in the configuration file,
than the file for the language specific translations is

{programroot}\resources\english.xml,
where {programroot} directory the Generic Editor is installed in.

81

9.2 The Command Line Parameters
The Generic Editor knows two command line parameters. The first is compulsory and
specifies the location of the configuration file. The second disables the redirection of the
outputs sent to STDERR to error.log and the outputs sent to STDOUT to history. The user can
optionally choose this option by specifying 1 as a second command line parameter. This is an
example showing how to invoke the program with redirected outputs:

java -jar GenericEditor.jar .\AnorexieGermanProfile .xml

The following demonstrates how to configure the program for sending its messages to the
console instead.

java -jar GenericEditor.jar .\AnorexieGermanProfile .xml 1

9.3 Starting the Program
It is recommended to create a batch file for invoking the Generic Editor. The default batch file
is: GenEdit.bat
The start up of the program is done in six steps:

1. The profile is read for configuring the generic editor.
2. The language specific translations are read.

If there is an error in steps (1) or (2) an error message will be displayed and the
application will be closed again.

3. The parameter sources are loaded.
4. The forms of each form group are loaded.
5. The answers for each group of forms are loaded. If there are parameter-sources not yet

defined through step 3, they will be automatically created during the loading process
of the answers.

6. The main menu is displayed.
Following is the GenEdit.bat file, which has been used for creating this documentation:

java -jar GenericEditor.jar .\AnorexieGermanProfile .xml 1

Figure 9-1 depicts an example of a start up screen. It additionally displays basic descriptive
statistics about the available parameter sources, forms and answers for each group.

Figure 9-1 Main Window. We give an example of the main window.

82

Once the main window is displayed and the loading of the data is complete the user can start
to work with the Generic Editor.

9.4 Using the Generic Editor
The Generic Editor supports four different tasks:

1. The recording of measurement data.
2. The design of forms
3. The maintenance of parameter sources
4. Export and Import of the measurement data.

The first three tasks reflect the fact that there are three basic things necessary to collect values
for parameters:

1. Structural data: the definitions of the parameters. The parameters are grouped together
in forms. The structural data is defined by task 2, the design of the forms.

2. Sources for the parameters. These are for example persons replying to a questionnaire.
The parameter sources are defined by task 3, the maintenance of parameter sources.

3. Measurement data: These are the values of a parameter given by a parameter source
(at a certain time). Measurement data are recorded by task 1.

9.4.1 Recording Data
The most frequent task is to record measurement data, which is to record the values to
parameters of a certain form for an existing parameter source. These values are originated by
a parameter source at a certain specifiable time. Some measurement data – e.g. master data -
are not time-oriented and do not require specifying the time.
The first step is to select the group of questionnaires. The available groups of questionnaires
are defined in the profile. Figure 9-2 shows the selection for the AnorexieEnglishProfile.xml

Figure 9-2 Selection of the Form Group. Before the recording of parameter values can be started the user

has to select the form group first.

If there are no parameter sources available or no forms defined for the selected form group,
the program will display an error message instead of opening the record data window. It
prompts the user to first define at least one parameter source or at least one form for this form
group respectively.

83

Figure 9-3 shows, how the record data window looks like for questionnaires when using the
AnorexieEnglishProfile.xml.

Figure 9-3 Record Data Window. We give an example of a record data window.

After the record data window is displayed, the user can perform various tasks:

• File
o New Selection = Close: Closes the current Selection.
o Search: Opens the search/filter window and enables the user to select a record

or assign values of head fields without explicitly opening the record.
o Save: Saves the answers of the current questionnaire.
o Reset: Resets the answers of the current questionnaire through reloading the

answers
o Delete: Deletes currently displayed answers
o Print: Prints the displayed questionnaire.

• Navigation
o First Record
o Previous Record
o Next Record

84

o Last Record
• Sort by

o Form Id
o Parameter Source Id (in the case of the AnorexieEnglishProfile.xml these are

Patient Ids.

After starting the record data window, the user can select the record he wants to work with.
He can either select an existing record or create a new one.

9.4.1.1 Create a New Record
In order to create a new record the user needs to specify all the key parameters to these
records. The key parameters consist of the form-id, the parameter source id, the date (if the
form belongs to a form group which is time oriented) and possibly further key values as
defined in the profile. After selecting the desired values, they user has to confirm his selection
by clicking the button at the right of these fields or by pressing the enter key. Then the user
can start keying in the answers given by the parameter source. For further information on this
topic please read section 9.4.1.3.

9.4.1.2 Select an Existing Record
There are a couple of possibilities for selecting an existing record:

1. The user can enter the key values directly as described in section 9.4.1.1.
2. The user can search for an existing record by using the Search/Filter utility. The

Search/Filter utility can be started either by choosing search from the file menu, or by
clicking the magnifier or by using a shortcut. For further information on searching
look at section 9.4.5.

3. The user can navigate trough the records by choosing First Record, Previous Record,
Next Record or Last Record either from the Navigation menu or by clicking the icons
at the bottom of the screen. It might be useful to ensure that the records are sorting in
some way before using the navigation. For information about sorting look at section
9.4.1.10.

9.4.1.3 Entering Answers
After selection of a record the user can enter the answers. The component used for entering an
answer can be either a text field or a combo box or a group of radio buttons. Which one is
used, depends on the settings specified in the form definition and on heuristics. Please look
into section 9.4.2 for further information on this topic.

9.4.1.4 Searching for a Record / Specifying Values of Head Fields without
Opening the Record

In order to search for a record the user has to select the Search utility. The Record Data task
as well as the Design task as well as the Export task use a common Search/Filter Dialog.
Therefore, the Search/Filter Dialog is described in a section of its own. See section 9.4.5 for
further information on this topic.

85

9.4.1.5 Save the Answers
The user can save changes at any time by choosing the Save action. If the user selects any
task, which could result in closing the current record, the user will be prompted, whether he
wants to save his changes, if there are any. The following actions result in closing the current
record:

• First Record
• Previous Record
• Next Record
• Last Record
• New Selection / Close
• Search

Furthermore, the user is prompted to save his changes before sorting the records.

9.4.1.6 Resetting the Answers
In order to reset the entered answers to the last saved values, the user can select the Reset
action.

9.4.1.7 Deleting the Answers
The answers currently displayed can be deleted by selecting the Delete action. The whole
answer set will deleted. Afterwards, no record is displayed and the user can continue by
selecting another record.

9.4.1.8 Printing the Answers
The questionnaire currently displayed is printed by selecting the Print action.

9.4.1.9 Close a Record / Work with another Record
In order to work with another record the user can select Close or New Selection. Both are
equivalent and result in the start situation.

9.4.1.10 Sorting the Answers
The answers can be sorted by using the Sort by: actions. The user can choose whether to
primary sort by the form-id or the parameter source id. All other head fields are used for sub
sorting the records. E.g., if the user chooses to primary sort for the form-id, the records are
also sub sorted by the replier-id, the date etc.

9.4.1.11 Navigation through the Records
The user can navigate through the records by choosing first, previous, next or last record
either from the menu or by clicking the according buttons on the bottom of the screen. The
user can determine the sequence of the records by sorting them first. For further information
on sorting the answers see section 9.4.1.10.

9.4.1.12 The Shortcuts and Icons for the Tasks
The shortcuts and icons for the tasks can be found in Table 9-2. META is short for the META
key used by a specific platform. In the case of Windows XP this would be the CTRL key.

Task Shortcut Icon

New Selection/Close META-F4

86

Task Shortcut Icon

Search META-F

Save META-S

Reset META-Z

Delete META-D

Print META-P

First Record META-7

Previous Record META-4

Next Record META-6

Last Record META-1

Table 9-2 Shortcuts in the Record Data Window. We list the actions, shortcuts and icons used in the
record data window.

9.4.2 Designing Forms
Before any measurement data can be recorded, the user needs to define the forms, for which
measurement data is to be recorded.
The first step is to select the group of questionnaires. The available groups of questionnaires
are defined in the profile. Figure 9-4 shows the selection for the AnorexieEnglishProfile.xml.

Figure 9-4 Selection of the Form Group for Designing Forms. The user has to select for which form group

he wants to start the design form process.

87

Figure 9-5 shows how the Design Form Window looks like:

Figure 9-5 Design Form Window. We give an example of a design form window.

After the design window is displayed, the user either needs to select an existing form, which
he wants to modify or enter a new unique form-id for creating a new form.
Once a form-id has been chosen, the user can perform various tasks on the form. If there are
already answers available for a form, the program prohibits the user to change some structural
information, as long as the user does not enable changes explicitly.

The following tasks can be performed during the design process:

• File
o New Selection
o Search
o Save
o Reset
o Copy
o Delete
o Print
o Preview

• Edit
o New

� above
� below

o Delete
o Cut
o Copy

88

o Paste
� above
� below

o Move
� up
� down

o Allowed Answers
• Navigation

o First
o Previous
o Next
o Last

• Sort By:
o Form-Id
o Description

• Extras
o Delete Answers

9.4.2.1 Creating a new Form
A new form will be created automatically, if the user enters a new Form-Id in the combo box
Form-ID. After entering a new form-id an empty Form will be displayed. Thereafter, the user
can add questions etc.

9.4.2.2 Opening an Existing Form
The user can either select the Form-Id from the List in the Combo Box Form-ID or enter it
manually. Furthermore, he can choose a record by searching for it or by navigating through
the records by selecting one of the navigation actions. After selecting an existing form-id the
system checks for answers to this form. The number of answers which exist for a selected
form is displayed in the information field Replies. If there are answers to a form, some form
properties can only be changed, if the user enables changing explicitly. The following
changes are still possible without enabling changes explicitly, even if answers exist:

• Change of the question text
• Change of the way the answers can be entered
• Definition of minimum, maximum and mean values. The minimum and the maximum

values are the minimum allowed and the maximum allowed values. So if the user
specifies a new minimum or a new maximum value, the program checks whether the
new minimum or maximum conforms to the existing data.

• Deletion of all allowed values. This is equal to allowing every value of the specified
data type

9.4.2.3 Specifying the Form’s Parameters and the Qu estions
After selection of a form the user can enter a description to the form and the questions.

9.4.2.3.1 Questions and Question’s Properties
Questions can be added by choosing Add Above or Add Below either from the Edit Menu or
by using the buttons or shortcuts.
Both actions will result in a new row in the question table where one can specify the
parameters to be used for a question. The program will automatically assign a unique numeric
question id to each new question. The question id can be overwritten and may also be a string,
but it must be unique within a form. Also all other fields will contain default values for a new
question.

89

From left to right the user can specify:
• The question id
• The question text
• The data type of the answer: This can be:

o Integer (the default)
o Float
o String

• The way how the entries of the answers to a question can be done. This can be:
o Empty -> the program uses a heuristic for displaying
o Text field: a text field is displayed in any case
o A group of radio buttons: radio buttons are displayed, if there are either

allowed values for this question, or the data type of the answers is integer and
the user specified a minimum and a maximum allowed value. If none of the
above is applicable, the program will display a text field.

o A combo box. Also the combo box will only be displayed, if there are allowed
values defined or the data type of the question is integer and there is a
minimum as well as a maximum allowed value defined. In any other
circumstance a text field will be displayed instead.

• The minimum allowed value: This is the minimum value which may be entered by the
user when recording answers to this question.

• The maximum allowed value: This is the maximum value which may be entered by
the user when recording answers to this question.

• The mean value: The mean value defines a normal value for the answers. In the
current version of the program it is only defined and stored but not used when
recording answers. It could be used as a default value in future releases.

9.4.2.3.2 Defining allowed values for a questions
In order to define allowed values the user has to choose Edit/Allowed Values first. This will
open another window, which displays and keeps track of the defined values of the marked
question. To define allowed values, the user can thereafter use:
Edit/Add: to add a new allowed value
Edit/Remove: to delete the marked allowed value
Edit/Remove All: to remove all allowed values, which means allowing any value of the

data type chosen for this question.

9.4.2.3.3 Moving a question

The marked question can be moved up or down by choosing the actions Edit/Move Up or
Edit/Move Down. The sequence of the questions in the design window determines the
sequence of the questions when recording answers for a particular form and the sequence of
the answers when importing data using the “single row” CSV format. For further information
on importing data refer to section 9.4.4.2.

9.4.2.3.4 Cut, Copy, Paste and Delete of Questions
Both Cut and Delete will remove a question from the form definition. In the contrary to
Delete, Cut will keep a copy of the question in a temporary question. Copy too makes a copy
of the currently marked question. Once there is a copy of a question available, the user can
paste the question either above or below a currently marked question.

90

9.4.2.4 Searching for a Form / Specifying Values of Head Fields without
Opening the Record

In order to search for a form the user has to select the Search utility either from the File Menu
or by clicking the magnifier. The record data task as well as the design task as well as the
export task use a common filter dialog. Therefore, the filter dialog is described in a section of
its own. See section 9.4.5 for further information on searching and filtering data.

9.4.2.5 Save the Form
The user can save changes at any time by choosing Save from the File Menu, or by clicking
the disk. If the user selects any task, which could result in closing the current form, the user
will be asked, whether he wants to save his changes, if there are any. The following tasks
result in closing the current form:

• First Record
• Previous Record
• Next Record
• Last Record
• New Selection / Close
• Search

Furthermore, the user is prompted to save his changes before sorting the records.

9.4.2.6 Resetting the Form
In order to reset the form to the last saved definition, the user can select Reset from the File
menu or click the reset button.

9.4.2.7 Copying a Form
The user is enabled to quickly set up similar questionnaires by copying an existing form to a
new form. In order to copy a form the user has to select the Copy action. All questions of the
form including their allowed values will be copied to the new form if the user specifies a new
unique form-id upon request.

9.4.2.8 Deleting the Form
The form currently displayed can be deleted by selecting Delete from the File menu. This will
delete the form completely and results in the start situation. If there are answers available for
the form the user will be asked, whether he wants to delete these answers, too. If he declines,
the form will not be deleted.

9.4.2.9 Printing the Form
The form currently displayed is printed by selecting Print from the File menu or by clicking
the Print button. Printing the form will lead to a printout of an empty form, which can be used
as paper questionnaire.

9.4.2.10 Previewing the Form
One can preview the way how the form is displayed when recording answers for it by
choosing the Preview action. The user has to store the form before running the preview. None
of the actions available when recording data can be used in the preview mode.

91

9.4.2.11 Close a Record / Work with Another Record
In order to work with another record the user can select File/Close or File/New Selection.
Both are equivalent and result in the start situation.

9.4.2.12 Navigation through the Records
The user can navigate through the records by choosing first, previous, next or last record
either from the menu or by clicking the according buttons at the bottom of the screen. The
user can determine the sequence of the records by sorting them first. For further information
on sorting the forms see section 9.4.2.13.

9.4.2.13 Sorting the Forms
The forms can be sorted by using the Sort by: Menu. The user can choose whether to primary
sort by the form id or by the form description. All other form head fields are used for sub
sorting the records. E.g. if the user chooses to primary sort by the form id, the records are also
sub sorted by the form description and the number of questions.

9.4.2.14 Deleting All Answers to a Form
For convenience the user is provided with an option to delete all answers to a form. This
action can be either started by selecting the Delete all Answers action explicitly or implicitly
when the user decides to delete a form, for which there are still answers available. In the
second case the system asks, whether the user wants to delete all the answers to a form and
will only delete the answers and the form, if the user agrees.

9.4.2.15 The Shortcuts and Icons for the Tasks
Table 9-3 lists the shortcuts and icons for the design form task. META is short for the META
key used by a specific platform. In the case of Windows XP this would be the CTRL key.

Task Shortcut Icon

New Selection/Close META-F4

Search META-F

Save META-S

Reset META-Z

Copy META-Y

Delete META-D

Print META-P

Preview META-L

First Record META-7

Previous Record META-4

92

Task Shortcut Icon

Next Record META-6

Last Record META-1

New above META-+

New below META-I

Delete META-Del

Cut META-B

Copy (question) META-K

Paste above META-M

Paste below META-J

Move up META-8

Move down META-2

Allowed Value META-O

Add (allowed value) META-1

Remove (allowed value) META-BS

Remove all (allowed values) META-2

Delete Answer META-R

Table 9-3 Action of the Design Form Window. We list the actions, shortcuts and icons used in the design
form window.

9.4.3 Maintaining Parameter Sources
The parameter sources are the sources of the values to the parameters. These can be for
example the sources of the answers to questionnaires.
The type of the source is specified in the profile. In the case of the
AnorexieEnglishProfile.xml the parameter sources are patients who participate at a clinical
study about Anorexia.
In order to record data for a certain parameter source, the parameter source must be available.
This means it must be created before being able to record data for a certain parameter source.
In the contrary to recording answers or designing forms, the maintenance of parameter
sources requires only a single table, because the program does not record any details to a
parameter source besides its id. Further information on parameter sources are handled
conceptually like ordinary questionnaires. Therefore, the user has to design one or more forms
for keeping track of the master data to a parameter source instead of directly entering them
during the maintenance of parameter sources.

93

After selecting the maintenance of Parameter Source Ids - in the case of our
AnorexieEnglishProfile.xml (see Code 9-2) these are patients – the following window is
displayed (see Figure 9-6):

Figure 9-6 Parameter Source Maintenance Window. We give an example of the parameter source

maintenance window.

The window displays a table of all available parameter sources – in our case patients –
together with the number of answers available for each patient.

Now the following actions are possible:

• Patient
o New
o Delete
o Save
o Reset
o Close

• Extras
o Delete Answers

9.4.3.1 Creating a New Parameter Source
A new parameter source can be created by choosing the new action either from the parameter
source menu or by using the shortcut or by clicking the new button

9.4.3.2 Delete
An existing parameter source can be deleted by marking it and choosing the delete action
either from the parameter source menu or by using the shortcut or by clicking the delete
button.

94

9.4.3.3 Saving Changes
Changes to the parameter source table are saved by demand through choosing the save action
either from the parameter source menu or by using the shortcut or by clicking the save button.
Furthermore, the user will be asked whether he wants to save his changes, if the parameter
source maintenance window is closing.

9.4.3.4 Reset
The parameter source table can be reloaded from the disk by choosing the reset action either
from the parameter source menu or by using the shortcut or by clicking the reset button.

9.4.3.5 Close
The parameter source maintenance window can be closed by choosing the close action either
from the parameter source menu or by using the shortcut or by clicking the close button.

9.4.3.6 Delete All Answers of a Parameter Source
The user has the option to delete all answers which exist for the marked parameter source by
choosing the delete answers action from the extras menu.

9.4.3.7 The Shortcuts and Icons for the Tasks
Table 9-4 lists the shortcuts and Icons of the Parameter Source maintenance:

Task Shortcut Icon

Close META-F4

New META-+

Delete META-D

Reset META-Z

Save META-S

Delete Answer META-R

Table 9-4 Shortcuts of the Actions in the Parameter Source Maintenance Window. We list the actions,
shortcuts and icons used in the parameter source maintenance window.

9.4.4 Extras
The Extras menu covers Import and Export facilities only in this version. Depending on the
profile there can be a third option available that is export to a file defined in the profile and
start of a program which is also defined in the profile. The Export and Import option will only
export and import answers.

9.4.4.1 Exporting Data
In order to export data the user has to select the Export menu from the Extras menu. Each
Export menu has a submenu to enable the user to select the desired group of questionnaires
for which he intents to export the data. So the export requires two steps:

1. selection of the group of questionnaires (see Figure 9-7)
2. define the required parameters

95

Figure 9-7 Selection of the Form Group for Export. Before an export can be started the form group has to

be selected.

9.4.4.1.1 Defining the desired parameters
After selecting the group of questionnaires a window like the following will be displayed. The
details of the window depend on the profile (see section 9.1.2 for details on the configuration
options). Figure 9-8 is an example of an export dialog.

96

Figure 9-8 Export Dialog. We give an example of an export dialog.

In order to export data the user has to specify:

• The file to export to
• The format of the exported file. In the current version the following formats are

available:
o Conflation. The conflation file format is defined in chapter IV.2.1.
o CSV: The CSV format is defined in chapter IV.2.2 and is equal to the multiple

row CSV file format used in the Import file chooser
o AnswerFile: This option is available for convenience. It makes it possible to

migrate the answer data from a directory structure to a single file. See chapter
IV.2.4 for details on the AnswerFile format.

• If the Conflation format is chosen the user has to select the field(s) to conflate over.
• If the export format is not AnswerFile, the user can also:

o Scale the data for the export.
o Filter the data and only export a subset of the data which conforms to the filter

criteria
The export is started by clicking the export button. If the selected file already exists, the
user needs to confirm that he wants to overwrite the existing file.

9.4.4.1.2 Scaling the data

By ticking the scale checkbox and specifying a desired minimum and maximum, the user can
scale the data for the export. The scale function uses a linear function, which maps a defined
minimum to the chosen minimum and a defined maximum to the chosen maximum. The
following algorithm is used:

97

• Answers to question which have a defined allowed minimum and a defined allowed
maximum: Here the defined minimum and the defined maximum are equal to the
allowed minimum and the allowed maximum defined during the form definition
process

• Answers to question with open scales. If either the allowed minimum or the allowed
maximum is defined for this question this side is considered the defined minimum or
maximum respectively. The other one (or both, if none exists in the question
definition) are calculated dynamically upon user request. Should such question exist
the program will display an option panel, so that the user can choose between:

o Calculate the minimum or maximum dynamically. In this case it might happen
that there are not enough data available for calculating a minimum or
maximum or a minimum which differs from the maximum and vice versa. In
this case another option panel will be displayed which enables the user to
choose between:

� Don’t scale the answers
� Don’t export the answers

o Don’t scale the answers to these questions
o Don’t export these answers

These options can be chosen only once and are valid during the whole export
afterwards. So the user cannot choose not to export the answers of one question, to
export non scaled data for another question and to calculate the existing minimums
and maximums dynamically for a third question.
However, there is a drawback in calculating the existing minimum and maximum
dynamically, which is that it might be that the scaled data of exports done at different
times cannot be compared to each other. This is because there might be answers
added, changed or deleted in the meanwhile and this can lead to different calculated
minimums and maximums at each export time.

98

9.4.4.2 Importing Data
The answer data can be imported by choosing the file format (file filter) and the file to import.
The import utility knows the following file formats:

• CSV - single row
• CSV – multiple row

For details on the supported file formats please look at chapter IV.2. Should there be answers
to a non-existing parameter source the parameter source is created automatically. The system
checks for invalid answer values and displays an error message, if necessary.
Figure 9-9 shows an import dialog:

Figure 9-9 Import of Answers. We give an example of an import dialog.

9.4.4.3 Exporting and Automatically Start of an Ext ernal Program
This option is only available, if the user specifies an external program and an external file in
the profile (see section 9.1.2). It is pretty much the same than exporting the data to the file
specified in the profile in the format specified in the profile. If the user does not specify the
format in the profile it defaults to the multiple row CSV format. The name of the option is
either determined by the parameter name to the external program in the profile, or, in case it is
not specified, by the name of the called program without the path.
Therefore, this option does not require a file chooser. It uses the settings in the profile instead.
The export as well as the external program will be started upon user request. Figure 9-10 is an
example of a search/filter dialog.

99

Figure 9-10 Export and Start of Gravi++ Dialog. We give an example of a dialog for exporting the data to
the a file specified in the profile and start of an external program.

100

9.4.5 Searching / Filtering the Data
In order to be able to search for records or filter the data, the user can choose the search utility
when recording data, as well as when exporting data, as well as when designing forms. There
is only one search/filter utility which is configured by parameters to be capable to filter
different tables and react slightly different when used for filtering than for searching.
Figure 9-11 is an example of a search/filter dialog:

Figure 9-11 Search and Filter Dialog. We give an example of a search and filter dialog.

The table displayed depends on the parameters passed to the search/filter utility. In our
example it is an answer table. The following actions are possible:

• Filter
o Add
o Remove
o Remove All
o Save
o Open

• View
o Simple Filter
o Advanced Filter

In the simple filter view the user merely needs to specify the filter criteria in the filter table
on the right side. It is limited to up to three criteria. Choosing Filter/Add has no effect.
Filter/Remove will remove the last criteria. Filter/Remove all will remove all filter criteria.

101

In the advanced filter view the user can specify as many filter criteria as he needs. A new
filter criteria is added by choosing the add action. The marked filter criteria can be removed
by choosing the remove action. All Filter criteria can be removed be choosing the Remove All
action. In the advanced filter view each line of the filter table can contain only either a criteria
or a conjunction. The advantage of the advanced filter criteria is that the user can specify any
Boolean expression without the need of parenthesis, because the advanced filter uses postfix
notation. Trailing conjunctions need not be specified as missing trailing conjunctions
automatically default to AND.

Filtering is performed on the fly, each time there are changes to the filter criteria.

9.4.5.1 The Fields of the Filter Table
There are four fields in the filter table at the right side of the window.

• Conjunction: AND or OR can be selected from a list
• Field: Allows the selection of any of the head fields of the answer table or * for all

fields. While there are some default head fields, the profile can define further fields.
• Comparator: This can be any of:

o == Exactly the same value, or all values, if Value equals *
o != Not the specified value, or none, if Value equals *
o ~~ The value matches the pattern specified in the Value field through a

regular expression. (e.g., .* matches all)
o !~ Does not match the expression specified in the value field
o < Is smaller than the expression specified in the value field
o <= Is smaller than or equal to the expression specified in the value field
o > Is bigger than the expression specified in the value field
o >= Is bigger than or equal to the expression specified in the value field

9.4.5.2 Assigning Values to Head Fields
The user can assign values to all non key fields, which are not explicitly set read only. E.g., in
the answer table of form group “questionnaire” the user can assign values to the field
qualitative time in the answer table, which displayed at the left side.

9.4.5.3 Saving the table
The table can be saved by choosing the save action. If there are changes to the displayed table,
the user will be asked, whether he wants to store the changes, whenever the window is closed
or new data is going to be loaded.

9.4.5.4 Closing the Search/Filter Dialog
The filter dialog is closed, if the user selects the close action. If the purpose was to filter the
data (which is true when called from, e.g., the export dialog), all the displayed data are
available for the specified action (e.g. exporting). If the filter dialog was used to search for a
record, the marked record will be displayed after closing the search/filter dialog. E.g., the
selected form will be displayed in the design window or the selected answer set will be
displayed in the record data window.

102

9.4.5.5 The Shortcuts and Icons for the Tasks
Table 9-5 lists the shortcuts and the icons of the search and filter dialog. META is short for
the META key used by a specific platform. In the case of Windows XP this would be the
CTRL key.

Task Shortcut Icon

Add META-+

Remove META--

Remove All META-Del

Save META-S

Open META-ENTER

Table 9-5 Shortcuts of the Filter and Search Dialog. We list the actions, shortcuts, and icons of the search
and filter dialog.

10 Future perspectives

10.1 User Management
Future releases could require a user management to be able to define different user types:

• Administrative users for designing forms
• Normal users for recording data

In the case of our study about anorectic girls it might then be possible to let the patient fill in
the questionnaire directly instead of needing a paper version and having somebody else
recording the parameters for the application.

10.2 Database Management System
In order to improve the performance of the program with huge amounts of data, it is worth
considering moving its storage layer to a DBMS instead of a set of XML files in the future.

10.3 Multi User
If the application uses a DBMS instead of a set of XML files, if can be considered to allow
multiple user at a time.

10.4 XML Document Validation
If future releases do not come with a DBMS support, it should at least be considered to use
one of the various automatic methods of XML Document validation.

10.5 Profile Settings
A future release should consider a menu option for defining the application specific profile.
This might ease the set up of the program for a specific application and avoids errors in the
profile according to manually editing the profile.

103

11 Summary
In this thesis a generic editor was developed which is capable of designing forms and
recording data for a variety of different applications. The first part of this thesis focuses on
problem analysis and concepts. The second part covers design and implementation details.
Design trade-offs and implementation issues are explained in details and UML diagrams are
used in order to depict the structure and use of the developed Java classes. Finally, the third
part demonstrates how to set up the generic editor for a specific application, namely our study
of Anorexia nervosa.
The current release is in use at the Department of Child and Adolescent Neuropsychiatry at
the Medical University of Vienna. This psychotherapeutic study analyses alternative
therapeutic processes of anorectic girls by collecting a huge amount of highly structured time-
oriented data through questionnaires. The generic editor could simplify the management of
the questionnaires as well as the collection of the data necessary for this study and is able to
invoke Gravi++ to make analyzing the data easier for the clinical personal.

104

IV. Appendix

1 Definitions

1.1 Anorexia nervosa
From [WWW-21] “Anorexia nervosa is a psychiatric diagnosis that describes an eating
disorder characterized by low body weight and body image distortion. Individuals with
anorexia often control body weight by voluntary starvation, purging, vomiting, excessive
exercise, or other weight control measures, such as diet pills or diuretic drugs. It primarily
affects young adolescent girls in the Western world and has one of the highest mortality rates
of any psychiatric condition, with approximately 10% of people diagnosed with the condition
eventually dying due to related factors. Anorexia nervosa is a complex condition, involving
psychological, neurobiological, and sociological components.”

1.2 EER
From [WWW-1]: “In computer science, an entity-relationship model (ERM) is a model
providing a high-level description of a conceptual data model. Data modeling provides a
graphical notation for representing such data models in the form of entity-relationship
diagrams (ERD). The first stage of information system design uses these models to describe
information needs or the type of information that is to be stored in a database during the
requirements analysis. The data modeling technique can be used to describe any ontology (i.e.
an overview and classifications of used terms and their relationships) for a certain universe of
discourse (i.e. area of interest). In the case of the design of an information system that is based
on a database, the conceptual data model is, at a later stage (usually called logical design),
mapped to a logical data model, such as the relational model…“

1.3 Parser
From [Harold 2002]: “A parser is a software library that knows how to read XML documents
and handles all the markup it finds”.

1.4 Singleton
A singleton is an object oriented design pattern, which ensures that a class has only one
instance, and a global point of access is provided for it. Details of the singleton pattern can be
found in [Gamma 1995] pp. 127.

105

2 The File Formats

2.1 Conflation
The conflation file format is described in detail in [Herzog 2004]. It is a format which
conflates multiple records to groups in order to be able to evaluate the data with Gravi++.
This is an example of a conflation file: the field qualitative timestamp was used as conflation
fields. So all records with the same qualitative timestamp and the same parameter source id
and the same form id are grouped together:

<?xml version="1.0" encoding="ISO-8859-1"?>
<linkvis_conflation_data_set>
 <data_record parameter_source_id="0" parameter_sou rce_flag="C"
till_day="01" from_day="01" from_month="01" till_mo nth="01"
from_year="1970" till_year="1970" rowid="0 C kat1" label="kat1">
 <parameter group_id="B-IKS" day="15" month="12" y ear="2006" id="1"
value="1.5"/>
 </data_record>
 <data_record parameter_source_id="*" parameter_sou rce_flag="C"
till_day="01" from_day="01" from_month="01" till_mo nth="01"
from_year="1990" till_year="1990" rowid="* C kat3" label="kat3">
 <parameter group_id="B-IKS" day="15" month="12" y ear="2006" id="1"
value="3.0"/>
 </data_record>
</linkvis_conflation_data_set>

2.2 CSV (= CSV – multiple row)
The format has a row for each question of an answer set. Furthermore, it has a title line, which
depends on the number of additional head fields as defined in the profile. For convenience
there is also a question column when importing the data, in order to be able to import the data,
which has been exported, without changing anything in the file. But when importing data the
question column is ignored.
This is an example:

Form-ID;Patient;Day;Month;Year;Beantwortet von:;Qua litativer
Zeitpunkt;Question-ID;Question;Value
"BF-S";"0";"3";"9";"2002";"C";"kat2";"1";"aufgeschl ossen";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"2";"guter Din ge";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"3";"antriebsl os";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"4";"anfällig" ;6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"5";"zielstreb ig";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"6";"ernst";6. 0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"7";"einfallsa rm";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"8";"empfindli ch";3.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"9";"pessimist isch";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"10";"sorglos" ;3.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"11";"zerschla gen";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"12";"liebesfä hig";3.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"13";"schuldig ";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"14";"erschöpf t";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"15";"lebensmü de";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"16";"gut";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"17";"fröhlich ";3.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"18";"geliebt" ;6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"19";"träge";3 .0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"20";"verschlo ssen";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"21";"lebendig ";0.0

106

"BF-S";"0";"3";"9";"2002";"C";"kat2";"22";"temperam entvoll";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"23";"aufmerks am";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"24";"verzweif elt";0.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"25";"zufriede n";3.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"26";"ängstlic h";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"27";"kraftvol l";6.0
"BF-S";"0";"3";"9";"2002";"C";"kat2";"28";"ausgegli chen";6.0

2.3 CSV – single row
This format has a column for each head field of an answer set followed by the answers to the
questions of the according questionnaire. So there is only one row per answer set. It does not
have a header line, because the number of questions and the question-ids vary, if the form
changes.
This is an example:

1;ASW;31;10;2006;C;;1;2;3;4;1;2;3;4;1;2
1;ASW;31;10;2006;M;pre;4;2;3;4;1;2;3;4;1;2
1;ASW;30;10;2006;C;;5;2;3;4;1;2;3;4;1;2
1;ASW;29;10;2006;C;;0;2;3;4;1;2;3;4;1;2
1;ASW;28;10;2006;C;;0;;;4;1;2;3;4;1;2
1;ASW;27;10;2006;C;;test;;;4;1;2;3;4;1;2

2.4 A Single AnswerFile
This file format is similar to the directory structure format for answers. In contrary to the
directory structure format the AnswerFile format keeps all the answers of to question groups
in a single file – whilst the Directory structure format has a file for each set of answers. A set
of answers are all answers to a form together with all the head values necessary to identify an
answer set record non-ambiguously for a certain form group.
In order to keep all answer sets in a single file an additional root tag has been specified. This
is an example of an answer file.

<genedit_data_records>
<linkvis_data_records parameter_group_id="TEST" par ameter_source_id="*"
day="21" month="11" year="2006">
 <parameter id="1" value="2"/>
 <parameter id="2" value="3"/>
</linkvis_data_records>
<linkvis_data_records parameter_group_id="TEST" par ameter_source_id="0"
day="21" month="11" year="2006">
 <parameter id="1" value="5"/>
 <parameter id="2" value="6"/>
</linkvis_data_records>
<linkvis_data_records parameter_group_id="TEST" par ameter_source_id="11"
day="21" month="11" year="2006">
 <parameter id="1" value="-1"/>
 <parameter id="2" value="30"/>
</linkvis_data_records>
</genedit_data_records>

2.5 Multiple AnswerFiles in the AnswerDir subdireco try
This is an example of a single record in a single file.

<linkvis_data_records parameter_group_id="TEST" par ameter_source_id="*"
day="21" month="11" year="2006">
 <parameter id="1" value="2"/>
 <parameter id="2" value="3"/>
</linkvis_data_records>

107

2.6 XML File Format for Forms
This is an example of an XML file format for forms:

<?xml version="1.0" encoding="ISO-8859-1"?>
<linkvis_parameter_master_data>
<parameter_group count="2" description="" id="ASW">
<parameter data_type="integer" display_as="" id="1" max_value="4"
mean_value="" min_value="1" name="Wenn sich Widerst ände auftun, finde ich
Mittel und Wege, mich durchzusetzen">
<allowed_values>
<allowed value="1"/>
<allowed value="2"/>
<allowed value="3"/>
<allowed value="4"/>
</allowed_values>
</parameter>
<parameter data_type="integer" display_as="" id="2" max_value="4"
mean_value="" min_value="1" name="Die Lösung schwie riger Probleme gelingt
mir immer, wenn ich mich darum bemühe">
<allowed_values>
<allowed value="1"/>
<allowed value="2"/>
<allowed value="3"/>
<allowed value="4"/>
</allowed_values>
</parameter>
</parameter_group>
<linkvis_parameter_master_data>

2.7 XML File Format for Parameter Sources
This is an example of an XML file format for parameter sources:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Parameter_Source_Master_File Pers_Dir_Source="C:\D okumente und
Einstellungen\Martina\Eigene
Dateien\Diplom_Miksch\data_fuer_eingabetool2\data_r ecords\">
 <Replier id="10"/>
 <Replier id="12"/>
</Parameter_Source_Master_File>

V. Tables of

1 Figures
Figure 5-1 EER of the Data Source.. 15
Figure 8-1 Package Structure ... 27
Figure 8-2 UML of the GenericEditor class... 28
Figure 8-3 UML of the configuration package’s classes ... 30
Figure 8-4 UML of TDataAdmin... 32
Figure 8-5 UML of TAData ... 34
Figure 8-6 UML of RecordData... 35
Figure 8-7 UML of TableData ... 37
Figure 8-8 UML TableDataIterator.. 38
Figure 8-9 UML of FieldComparator... 39
Figure 8-10 UML of TAddOnHeadField ... 40
Figure 8-11 UML of ValueTemplate ... 41
Figure 8-12 UML of value Package’s Classes ... 42

108

Figure 8-13 UML of the Storage Manager Classes.. 44
Figure 8-14 UML of XMLStorageManagerReplier... 45
Figure 8-15 UML of DirectoryStorageManagerReplier .. 46
Figure 8-16 UML of DirectoryStorageManagerAnswers .. 47
Figure 8-17 UML of XMLStorageManagerAnswers... 48
Figure 8-18 UML of the Importer. ... 49
Figure 8-19 UML of Exporter. ... 50
Figure 8-20 UML of GenEditPrintUtility .. 51
Figure 8-21 UML of XML_Helper .. 52
Figure 8-22 UML of TMainMenu.. 54
Figure 8-23 UML of SingleRecordDataWindow... 57
Figure 8-24 UML of TDateSpinner ... 58
Figure 8-25 UML of the CustomListCellRenderer .. 58
Figure 8-26 UML of TDesignFormWindow.. 60
Figure 8-27 UML of TReplierAdmin... 62
Figure 8-28 UML of FilterDialog .. 64
Figure 8-29 UML of CommonExportOption... 66
Figure 8-30 UML of ExportDialog .. 67
Figure 8-31 UML of StartExternalDialog.. 68
Figure 8-32 UML of ExportChooser.. 69
Figure 8-33 UML of GenEditFileChooser ... 70
Figure 8-34 UML of ImportDialog .. 71
Figure 8-35 UML of the custom Event .. 72
Figure 8-36 UML of utils ... 73
Figure 9-1 Main Window... 81
Figure 9-2 Selection of the Form Group. ... 82
Figure 9-3 Record Data Window ... 83
Figure 9-4 Selection of the Form Group for Designing Forms.. 86
Figure 9-5 Design Form Window .. 87
Figure 9-6 Parameter Source Maintenance Window ... 93
Figure 9-7 Selection of the Form Group for Export... 95
Figure 9-8 Export Dialog ... 96
Figure 9-9 Import of Answers.. 98
Figure 9-10 Export and Start of Gravi++ Dialog ... 99
Figure 9-11 Search and Filter Dialog... 100

2 Tables
Table 5-1 Form Group Entity... 15
Table 5-2 Parameter Group Entity ... 16
Table 5-3 Parameter Entity .. 16
Table 5-4 Allowed Values Entity... 17
Table 5-5 Additional Field Entity .. 17
Table 5-6 Allowed for Additional Entity ... 18
Table 5-7 Parameter Source Entity .. 18
Table 5-8 Measurement Entity... 19
Table 7-1 Mutual Exclusiveness .. 23
Table 8-1 Package Structure .. 26
Table 8-2 ConfigInfo Methods... 29
Table 8-3 Mutual Exclusiveness .. 33
Table 8-4 TableData Fields .. 36
Table 8-5 Common Methods of All Objects of the value Package..41

109

Table 8-6 Public Methods of AbstractStorageManager... 43
Table 8-7 Methods for I/O Access ... 52
Table 8-8 Public Methods of TMainMenu... 53
Table 8-9 Public Methods of SingleRecordDataWindow.. 56
Table 8-10 Public Methods of TDesignFormWindow... 59
Table 8-11 Public Methods of TReplierAdmin.. 61
Table 8-12 Public Methods of the CommonExportOption.. 65
Table 8-13 Public Methods of the ExportChooser... 68
Table 9-1 Tags and Parameters of the Profile .. 77
Table 9-2 Shortcuts in the Record Data Window .. 86
Table 9-3 Action of the Design Form Window.. 92
Table 9-4 Shortcuts of the Actions in the Parameter Source Maintenance Window............... 94
Table 9-5 Shortcuts of the Filter and Search Dialog.. 102

3 Codes and Example Files
Code 3-1 Example of Parameter Definition... 12
Code 4-1 Example of Measurement Data .. 14
Code 8-1 Blocking Mouse Events.. 55
Code 9-1 Default Configuration File ... 79
Code 9-2 English Profile .. 80

110

VI. Bibliography

Literature
[Harold 2002] Elliote, Harold, Processing XML with Java: A Guide to SAX, DOM, JDOM,

JAXP, and TrAX, Addison-Wesley Professional; 1st edition 2002
[Gamma 1995] Erich, Gamma et. al., Design Patterns: Elements of Reusable Object-Oriented

software, Addison-Wesley, 1995, 32nd Printing April 2005
[Darwin 2005] Ian, Darwin, Java Kochbuch, O’Reilly Verlag GmbH & Co KG 2nd Edition

2005, 1st Edition 2002, German translation of Java Cookbook 2nd Edition, O’Reilly Media,
Inc.

[Loy 2002] Marc, Loy et. al., Java Swing, O’Reilly Media, Inc. Sebastopol, 2nd Edition 2002,
1st Edition 1998.

[Dirk 2005] Louis, Dirk et. al., Java 5, Praxis der objektorientierten Programmierung
(Kompendium), Markt und Technik, München/Germany, 2005

[Zukowski 1997] John, Zukowski, Java AWT Reference, O’Reilly and Associates, Inc.,
Sebastopol, 1st Edition 1997

 [Herzog 2004] Herzog, Herbert, Multiple View Framework for Exploring Highly Structured
Data, Master Thesis, Vienna University of Technology, Vienna, October 2004
retrieved at: http://ieg.ifs.tuwien.ac.at/projects/linkvis/linkvis-papers.html on 11.12.2006

[Hinum 2005] Klaus, Hinum et. al. Gravi++: Interactive Information Visualization of Highly
Structured Temporal Data; Talk: Workshop IDAMAP 2005 Intelligent Data Analysis in
Medicine and Pharmacology (IDAMAP 2005), Aberdeen, Schottland; 07-24-2005; in:
Workshop IDAMAP 2005 Intelligent Data Analysis in Medicine and Pharmacology,
(2005), 67 - 72
retrieved at: http://publik.tuwien.ac.at/files/pub-inf_2884.pdf on 11.12.2006

[Hinum 2006] Klaus, Hinum, Gravi++ - An Interactive Information Visualization
for High Dimensional, Temporal Data., PhD thesis, Institute of Software Technology and

Interactive Systems, Vienna University of Technology, Vienna, Austria, 2006
[Lanzenberger 2003 1] Monika, Lanzenberger, The Stardinates - Visualizing Highly

Structured Data, in Proceedings of the Seventh International Conference on Information
Visualization (IV'03), 2003

[Lanzenberger 2003 2] Monika, Lanzenberger, The Interactive Stardinates - An Information
Visualization Technique Applied in a Multiple View System, PhD thesis, Institute of
Software Technology and Interactive Systems, Vienna University of Technology, Vienna,
Austria, 2003
retrieved at: http://www.ub.tuwien.ac.at/diss/AC03933379.pdf on: 12.12.2006

[Lanzenberger 2003 3] Monika, Lanzenberger, et. al., Exploring Highly Structured Data A
Comparative Study of Stardinates and Parallel Coordinates, in Proceedings of the Ninth
International Conference on Information Visualization, 2005

111

Internet Resources

Reference URL Last time

retrieved:
YYYY.MM.DD

[WWW-1] http://en.wikipedia.org/wiki/Entity_relationship 2006.12.05
[WWW-2] http://en.wikipedia.org/wiki/Database_system#Features_

and_Abilities
2006.12.06

[WWW-3] http://en.wikipedia.org/wiki/Table_(database) 2006.12.16
[WWW-4] http://www.w3.org/TR/REC-xml/ 2006.12.17
[WWW-5] http://www.w3schools.com/xml/xml_whatis.asp 2006.12.17
[WWW-6] http://www.apl.jhu.edu/~hall/java/Swing-Tutorial/Swing-

Tutorial-Printing.html
2006.07.16

[WWW-7] http://java.sun.com/docs/books/tutorial/uiswing/compone
nts/example-1dot4/TableSorter.java

2006.05.03

[WWW-8] http://javaalmanac.com/egs/javax.swing.filechooser/Don
eEvent.html?l

2006.07.24

[WWW-9] http://www.javaworld.com/javaworld/jw-09-1998/jw-09-
techniques.html?page=1

2006.12.18

[WWW-10] http://www.roseindia.net/search/showtutorials.php?id=64
88

2006.12.19

[WWW-11] https://tablelayout.dev.java.net/ 2006.12.19
[WWW-12] http://java.sun.com/docs/books/tutorial/uiswing/compone

nts/table.html
2006.12.19

[WWW-13] http://www.exampledepot.com/egs/javax.swing.table/pkg
.html

2006.12.19

[WWW-14] http://www.esus.com/javaindex/j2se/jdk1.2/javaxswing/e
ditableatomiccontrols/jtable/jtable.html

2006.12.19

[WWW-15] http://lists.xcf.berkeley.edu/lists/advanced-java/2000-
March/027249.html

2006.12.19

[WWW-16] http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4
206341

2006.12.19

[WWW-17] http://forum.java.sun.com/thread.jspa?threadID=677570
&messageID=3953435

2006.12.19

[WWW-18] http://forum.java.sun.com/thread.jspa?threadID=343633
&messageID=1417436

2006.12.19

[WWW-19] http://www.javaworld.com/javaworld/jw-12-2000/jw-
1229-traps.html

2006.12.19

[WWW-20] http://java.sun.com/j2se/1.3/docs/api/java/lang/Process.ht
ml

2006.12.19

[WWW-21] http://en.wikipedia.org/wiki/Anorexia_nervosa 2006.12.22
[WWW-22] http://arizonacommunity.com/articles/java_32001.shtml 2007.01.13
[WWW-23] http://www.deepveininsomnia.com/COMJavaAandD.php 2007.01.13
[WWW-24] http://www2.gsu.edu/~matknk/java/reg97.htm 2007.01.13
[WWW-25] http://www.eclipseuml.com/ 2007.01.13
[WWW-26] http://www.toadsoft.com/toaddm/toad_data_modeler.htm 2007.01.13
[WWW-27] http://www.jguru.com/faq/view.jsp?EID=121069 2007.02.07

