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Deutsche Kurzfassung

Die Dissertation widmet sich der Renormormierbarkeit von 1+1 dimensionalen
Quantenfeldtheorien wie das Sine-Gordon—Modell (SG-Modell) und das mas-
selose Thirring Modell.

Die Analyse der Renormierbarkeit des SG-Modells fithren wir anhand der
kausalen Zweipunktgreenfunktion durch. Hierzu betrachten wir die Renormier-
barkeit der kausalen Zweipunktgreenfunktion relativ zu Quantenfluktuationen
um das triviale Vakuum (den trivialen Sektor) und um das solitonische Vakuum
(Solitonsektor).

Im trivialen Sektor berechnen wir die Quantenfluktuationen bis zur zweiten
Ordnung in der dimensionsbehafteten Kopplungskonstante g und fiir alle Ord-
nungen der dimensionslosen Kopplungskonstante 3. Die Summation tiber alle
relevanten Terme zeigt, dass die Theorie unabhéngig von der gewéhlten Renor-
mierungsskala M ist. Die effektive dimensionale Kopplungskonstante stimmt
mit der Masse des SG Feldes {iiberein und kann daher mit der physikalischen
Kopplungskonstante «, identifiziert werden.

Die Callan-Symanzik Gleichung fiir die kausale Zweipunktgreenfunktion
wird aufgstellt und gelost. Wir zeigen hierbei in allen Ordnungen der Storungs-
theorie in den Kopplungskonstanten «, und 3, dass die kausale Zweipunkt-
greenfunktion nur von der renormierten Kopplungskonstante o, und 3 abhéngt.

Bei der Analyse der Renormierbarkeit des SG-Modells fiir Quantenfluktua-
tionen im Soliton Sektor zeigt sich, dass das Modell analog zum trivialen Sektor
in erster Ordung in 3 2 renormierbar ist.

Die Analyse der Renormierbarkeit des SG Modells in allen Ordnungen der
dimensionslosen Kopplung 3 erméglicht, die SG-Quanten fiir 3 nahe des kritis-
chen Punktes 3% = 8, des sogennanten Kosterlitz-Thouless Phaseniiberganges
zu betrachten.

Eine wichtige Folgerung unserer Rechnungen ist, dass kein endlicher Kor-
rekturterm zur Masse des SG-Solitons auftritt und wir damit die Vermutung
von Zamalodchikov et al. bestatigen, dass ein endlicher Term, welcher bei Au-
toren wie Dashen et al. und Faddeev et al. auftritt, nur von der Regularisierungs—
und Renormierungsprozedur abhingt. Auch wird die Moglichkeit das SG-
Modell fiir Quantumfluktuationen um beliebige klassische Losungen nicht st6—
rungstheoretisch zu renormieren betrachtet.

Die Renormierbarkeit des masselosen Thirring Modells fithren wir anhand
der fermionischen Zweipunktgreenfunktion und Zweipunktkorrelationsfunk-
tion in allen Ordnungen der Storungstheorie in der Thirring Kopplungskon-
stante g durch. Es zeigt sich, dass die dynamischen Dimensionen der Thirring
Fermionfelder, aus den Greenfunktionen und Korrelationsfelder durch zwei be-
liebige Paramater parametrisiert werden konnen, anstatt einem, wie in der Ar-
beit vom Klaiber aus dem Jahr 1960. Durch eine entsprechede Wahl eines der
Parameter haben beide Zweipunktfunktionen die dquivalente dynamische Di-
mension mit einem freien Parameter. Das gleiche dynamische Verhalten der
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fermionischen Thirringfelder erlaubt uns dann die beiden kausalen Zweipunk-
tfunktionen durch Renormierung divergenzenfrei zu wahlen.

Die wichtige Konsequenz der Renormierbarkeit des masselosen Thirring Mod-
ell ist die Bosonisierung des massiven Thirring Modells zum SG Modell bei
der Kopplung 3% ~ 87, nahe dem kritischen Punkt des Kosterlitz-Thouless
Phasentiberganges.
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Abstract

This thesis is devoted to the analysis of the renormalisability of 1+1-dimensional
quantum field theories such as the sine-Gordon (S5G) model and the massless
Thirring model.

The analysis of the renormalisation of the SG model is carried out for the ex-
ample of the causal two-point Green function. The renormalisation of the causal
two—point Green function is investigated with respect to quantum fluctuations
of the SG field relative to the trivial vacuum and to the soliton solution. The con-
tributions of quantum fluctuations of the SG field relative to the trivial vacuum
are calculated to first and second order in the dimensional coupling constant
ap and to all orders in the dimensionless coupling constant 3. It is shown that
after the summation of all contributions calculated to first order in a( and to
all orders in 2 and the removal of the ultra—violet cut—off at the normalisation
scale M the causal two—point Green function has the shape of a causal two—point
Green function of the free SG field with mass independent of the normalisation
scale M. The effective dimensional coupling constant obtained in such an ap-
proximation coincides with the mass of the SG field and can be identified with
the physical coupling constant ..

Within the Callan-Symanzik equation approach to the analysis of the renor-
malisability of quantum field theories, the dependence of the causal two—point
Green function only on the coupling constant «, is proved to all orders of per-
turbation theory with respect to dimensional and dimensionless coupling con-
stants.

The analysis of the renormalisability of the SG model to all orders in the di-
mensionless coupling 3 makes possible a consideration of the behaviour of the
SG quanta for coupling constants 3 in the vicinity of the critical point 3% = 8 of
the Kosterlitz-Thouless phase transition. Using the Callan-Symanzik equation
an agreement of our renormalisation procedure with others, used for the analy-
sis of the SG model for 32 ~ 8, is proved to first order in the dimensional and
to all order in the dimensionless coupling constants.

An extension of our analysis to the calculation of the contributions of the
Gaussian fluctuations around the soliton solution, describing a non-trivial vac-
uum in the SG model, has shown that the renormalisation of the SG model due
to quantum fluctuations around a soliton solution runs parallel the renormalisa-
tion of the SG model relative to quantum fluctuations with respect to the trivial
vacuum.

The important consequence of this result is the absence of a finite correction
to the soliton mass. This confirms the assertion of Zamalodchikov et al. on the
dependence of a finite correction to the soliton mass, obtained by Dashen et al.
and Faddeev et al., on the regularisation and renormalisation procedure.

The renormalisability of the massless Thirring model is investigated to all or-
ders of perturbation theory in the Thirring coupling constant g by the example
of the two—point causal Green function of Thirring fermion fields and the two—
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point correlation function of left-right fermion densities. It is shown that the
dynamical dimensions of the Thirring fermion fields, calculated from two—point
causal Green function and two-point correlation function of left-right fermion
densities, can be parameterised by two arbitrary parameters instead of one arbi-
trary parameter that was pointed out by Klaiber in 1960’s.

The dependence of dynamical dimensions on an additional arbitrary pa-
rameter admits the non—perturbative renormalisability of the massless Thirring
model in the sense of the removal of all divergences of correlation functions, cal-
culated to all order of the coupling constant g, by means of the renormalisation
of the wave functions of the Thirring fermion fields. It is shown that that such a
removal is possible if the dynamical dimensions of the Thirring fermion fields,
calculated for different correlation functions, are equal. Having equated the dy-
namical dimensions obtained from different correlation functions, one arrives at
a solution of the massless Thirring model, where all correlation functions of the
massless Thirring model are independent of the ultra—violet cut—off and param-
eterised by one arbitrary parameter.

The main consequence of such a renormalisability of the massless Thirring
model is the bosonization of the massive Thirring model to the SG model with
coupling constants 3% ~ 87 in the vicinity of the critical point of the Kosterlitz—
Thouless phase transition.



Moa’e Pi’ye mire
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Part1

Renormalisability of the
sine—-Gordon Model



Chapter 1

sine—-Gordon model. Introductory
comments

The Lagrangian of the sine-Gordon model in 1+1-dimensional space-time is
given by [1, 2, 3]

L(z,t) = %aﬂﬂ(m)a"ﬁ(m) + % (cos B(z) — 1), (1.1)

where o and (3 are a dimensional and dimensionless coupling constants, respec-
tively. In the region of weak coupling 3% < 1, the Lagrangian £(z), expanded
in powers of 3, takes the form

L) = 3 u(@)00(@) - 3 a0%(@) + 1 @ P 0w) — g a d @)+,

where we have simplified the notation ¥(z!, 2°) as ¥(x!,2°) = ¥(z) and = =
(20, z1) is a 1+1-dimensional vector. The action of the SG model is

S = /dzxﬁ[ﬁ(x)]. (1.3)
The Lagrangian (1.1) is invariant under the discrete symmetry operations

I(z) — 9(2x) = —I(z)

N
Io) = V) = 0)+ 5
with N being integer numbers N = 0, =1, £2, ... The topological current is given
by [1]

(1.4)

Jh(z) = % M9, 0(x). (15)



The topological current is always conserved and defines the topological charge

Q[1,3]

L0y L[ 1 00()
Q = 5 _ood:U J(x) = 27T/_ood:v ol
= %{0@1:00)—19(;51 =—00)} = Ny — No, (1.6)

where N; and N, are integers. The energy of the SG field is determined by

o0 1 (09(z)\? 1 (39(z)\® «
— L - — (1=
E[Y] = /_OO dx <2 < T > + 5 < s + 7 (I —cospi(z))|. (1.7)
According to the Principle of Least Action, the equation of motion of the SG field
is

o

_ 5@(33)5[19] = O¥(x) + = sin ¥ (z) = 0. (1.8)

g

The simplest solutions of (1.8) are constant solutions of the form

YN = 2N7 = const., (1.9)

where N is an integer, defining the Nth vacuum of the theory. They minimize
the energy functional (1.7). The SG model is therefore bounded from below.
Among the solutions of this equation of motion there are the soliton solutions,
which have finite energy and do not change the shape during a motion. We
find a static solution of Eq. (1.8) by multiplying it with 99(x')/0x! and get by
integration

oY 1 0 1
% = :t\/2%(1—c08519(a:1)) = i2\/%sinﬁ (; ) (1.10)

Another integration gives

)
ot — ) = Intan 3 T (1.11)

dv 1
+ =+ —
/\/2;;(1(308519) va

Inverting this equation we obtain the static nontrivial solutions
4
Ie(x!) = 3 arctan exp {£ /o (z' — ()} . (1.12)

These are static soliton solutions, where the sign + defines a soliton and an an-
tisoliton solution, respectively, and z}, can be interpreted as a center of a soliton
and an antisoliton. Choosing x{ = 0 we get

Ig(zt) = % arctan exp { £vaxz'}. (1.13)



The Lorentz boosted solutions take the form

4 Va
Is(zt,2°) = = arctan ex {:l:
(@27 = 3 P \EFT—=

where u is a velocity. Some more complicated solutions, for example, the soliton—
antisoliton g, (z!,2%) and soliton-soliton Jss(x!, 2°) are

sinh /aux/v/1 —u?
wcosh /az!/v1—u?
usinh /o x! /v/1 —u?
cosh auz0/v/1 —u?

For 2° — +oo, i.e. for infinite past and infinite future, the soliton—-antisoliton
and soliton-soliton solutions behave as follows

(z' — umo)} , (1.14)

Dgalzt,z%) = arctan

ﬂss(ml,xo) =

(1.15)

arctan

RIA~ -

0

Olini Iga(zl,20) = Oy(xt,2%) + 9, (at, 29),
Olinj: Dss(zh, %) = Og(xt,20) + V(2! 20). (1.16)

This implies that they can describe soliton—antisoliton and soliton-soliton scat-
tering and that the solution (1.14) indeed describes a soliton [1].

1.1 Semiclassical Quantization of sine-Gordon Solitons

In this chapter we give a cursory outline of a semiclassical quantization by us-
ing the Wentzel-Kramer—Brillouin (WKB) method or saddle point expansion.
This is a well known semiclassical procedure which manifestly relates classical
solutions to their quantum levels. The underlying principle of all semiclassi-
cal quantization procedures is the so—called Correspondence Principle between
classical and quantum mechanical theories [1].

In this approach a quantum field ¥(z) introduces to the classical theory a
shift of classical solutions ¥ (z)

The Lagrangian (1.1) of such a system reads

£la) = 5O 0a(w) + G (cos Boaa) ~ 1)
+ %@Lﬁ(z‘)@“ﬁ(z‘) - % cos B¢ (x) (1 — cos ¥ (x))
g s a(r) (99(r) — sin pi()) (1.18)

where we have used the equation of motion (1.8) for ¥ (x).
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Expanding in powers of the ¥(z)—field and keeping only quadratic terms or
alternatively Gaussian fluctuations we get

£la) = 5O a(w) + 5 (cos flaa) ~ 1)
+ %8Mz9(x)8“19(x) — % cos 3 () 0? (). (1.19)

The action, determined by the Lagrangian (1.19), is

1
SW) = Sial - 5 / A2z 9(x) [aua“ + o cos 51961(@]19@), (1.20)
where we have integrated by parts and dropped the surface term.

For the analysis of the Gaussian fluctuations around a classical solution it
is important to know the spectrum of the operator 0,0 + « cos fq(x). Let

Y.k (x, t) be eigenfunctions of the operator 0,,0" +a cos B9 (x) with eigenvalues
Aw, k)

U (0 + acos B0 ) (o) =MD dale) (2D
In this case the action (1.20) takes the form
S = / d?x L[94]
1
= Sa] - / Pz Z};ﬁw,k(x)x(w,k) D (). (1.22)

The contributions of Gaussian fluctuations to different physical quantities are
defined in terms of the functional determinant, which is equal to the product of
eigenvalues.

Since the contribution of any fluctuation relative to the classical solution or
alternatively a non-trivial vacuum are compared with the contribution of the
trivial vacuum, in the next section we analyse the spectra of the differential op-
erator 0,0" + « cos B () for the solutions Vg (x) = 99 = 0 and Vg (x) = Js(x).

1.1.1 Spectra of the Operator 0,0" + a cos 3Uq(x) for Vg(x) = ¥y = 0,
and V. (z) = Vs(x)

For a trivial vacuum 9.(z) = Y9 = 0, when cos 89 (z) = 1, Eq. (1.21) reduces to
the Klein-Gordon equation

(D + Oé) ﬁw/,k’(fU) = )\(w’, k‘/) ﬁw/,k/(fv). (1.23)
The solutions reads

1 .0 s
Do) = oo WT tikz (1.24)
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where the set {w’, £’} of continuous quantum numbers obey the dispersion rela-
tion
M E) = = +E? +a, (1.25)
where w’ and k' are energy and spatial momentum.
For the static one—soliton solution ¥ (x) = Ys(z) (1.12) the equation (1.21)
reads

(D ta- ﬁ) Joe(z) = Mw, k) Ou k(). (1.26)

The solutions of this equation are adduced in Appendix A.1, Eq. (A.23), they are

_ 1 \/a 1 —iwa®
Yorl@) = =\ 5 ommivant) ©

; 1 . 0 . 1
Jonlz) = 1 k+iyoatanh/ax o—iwa +ik 7 127)
’ 27 VE2 + «

where 9, () and 9, ;(z) describe a bound state (k = iy/a) and a continuous
set of scattering states, respectively. The eigenvalues A(w, k) are defined by

Mw, k) = —w?+ Kk +a. (1.28)

The normalised spatial solutions read

[V 1
) = %cosh(\/axl)

1 k+iyatanhax! .1
Ip(zt) = eFT 1.29
WS m T Vil (29

The completeness and orthogonality of the solutions are proved in Appendix
Al1.
Phase Shift, Levinson’s Theorem and Number of Bound States

The asymptotic behavior of the quantum fluctuations for ! — 400 can be de-
fined as follows

Op(zt) — \/127 exp{ikz! £ % 5(k)}, (1.30)
where §(k) is a phase shift
d(k) = 2arctan %. (1.31)

According to the Levinson theorem, the number of bound states n, caused by
the interaction inducing the phase shift §(k), is equal to

9(0) — d(c0) = nm. (1.32)
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For the phase shift (k) (1.30), induced by the soliton (1.12), we get
5(0) — d(c0) = . (1.33)

This gives n = 1 and agrees well with the existence of the one discrete state
Ip(z), Eq. (1.29) in the soliton sector.



Chapter 2

Renormalisation of the
sine—Gordon Model

In this chapter we discuss the renormalisability of the sine-Gordon model. The
analysis of the renormalisability of the SG model will be performed perturba-
tively with respect to causal two—point Green functions. The quantum correc-
tions are calculated relative to the trivial vacuum (1.9) to second order in the
coupling constant « and to all orders in 32.

We show that the SG model is well-defined not only for 32 < 87 but for
0 < 8% < co. An important application of this result is the Fractional Quantum
Hall Effect (the FQHE) [4, 5] . Indeed, as has been pointed out in [4, 5] the
FQHE is defined by the edge tunnelling of quasi—particles and electrons. In
the bosonised form the Hamiltonian of the interaction of quasi-particles and
electrons has the form of the sine-Gordon interaction [4]

a

Hing(z) = — 7 cos B(x). (2.1)
The parameter 32 is defined by [4]
5 = { 4y for tunneling of quasi — particles 2.2)
- ldn/v for tunneling of electrons '

where v is the filling factor [4]. If the coupling constant 3% obeys the constraint
3% < 8, only quasi—particles can be responsible for the FQHE. The participance
of electrons in the FQHE is prohibited. However, if there is a possibility for the
coupling constant 32 to be greater than 87, i.e. 3% > 8, the participance of
electrons in the FQHE cannot be suppressed. This opens new possibilities for
the dynamics of the FQHE.

2.1 Introduction

In this introduction we briefly give the basic definitions that will be used in our
study of the renormalisability of the SG model.
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The bare Lagrangian of the SG model is given by [6]

(7)) (A2

52

where ag(A?) is the bare coupling constant at an ultra—violet cut-off A. The
renormalised coupling constant a,.(M?) at the renormalisation scale M reads
[6,7,8]

L(x) = %8Mz9(x)8“z9(a;) + ) (cos I (x) — 1), (2.3)

ap(M?) = Z7H (A% 8%, M?)ag(A?), (24)

Z1(A?; 3%, M?) is the renormalisation constant [6]. The renormalised Lagrangian
reads

a 2
L(z) = %%19(1‘)8“19(1‘)4—21 (ﬁ]‘f ) (cos #9(z) — 1), 2.5)

The scalar field ¥(z) and the dimensionless constant 32 are non-renormalisable.
Expanding the cosine in the Lagrangian (2.5) in polynomials of ¥?(z), we iden-
tify the renormalised Lagrangian as

L) = %8Mz9(x)8“19(x) _ %ar(Mz)ﬁz(:r) + Lo (). 2.6)

Lint(x) denotes the interaction part of the renormalised Lagrangian and is de-
fined by

Ling(z) = ap(M?) Z (x)

_1)71 2(n—1) q2n
2] I6; 9" (). (2.7)

Mg

+ (Z) — 1) o (M?)

I
—

n

The renormalised (and normalised) generating functional Z[J] for two-point
Green functions is

/Dﬁ exp {i/d% <.C(JJ) + ﬁ(@ﬂ@)}

_ / Do exp {z / d%% (0,020 0() — p (M?) 792(@)}
X exp {z / d2aj(£int(33) +19(x)J(:v))}, (2.8)

Z[J]

where J(z) is an external source for the free quanta ¥/(z) of the SG model. The
causal two-point Green function —iA(z, y; o, (M?)) of the SG field is defined by

L0 10 g 29)

—iA(z, y; o (M?)) i 6J(x) i 6J(y)

9



The causal two-point Green function of free SG quanta with mass «,(M?) is
given by [6]

2k —ie th(z—y)

—idp (@, s an(M2)) = (O[T (9(2)9(y) ) 0) = / 5o aP) — =i @10
At x = y the Green function —iA (0; a-(M?)) is equal to
2
AR (0; an (M?)) = 417T In [a ?M?)]’ 2.11)

where A is a cut-off in Euclidean 2-dimensional momentum space [6].

2.2 Renormalisability of the sine-Gordon model

We perform the analysis of the renormalisability of the two-dimensional SG
model by following the standard procedure [7]-[13]. For a Feynman diagram
G with L independent loops, I internal boson lines and V5, vertices with 2n
lines (n > 0) the superficial degree of divergence of momentum integrals w(G)
based on dimensional considerations is

w(G@) = 2L —2I. (2.12)
The number of independent loops L is defined by
=T+1-> Vi (2.13)
{n}
Substituting (2.13) into (2.12) gives for the superficial degree
w(G) =2-2> V. (2.14)
{n}

This testifies the complete renormalisability of the SG model.

Feynman diagrams with one vertex diverge logarithmically. All other dia-
grams are convergent [2]. The divergences can be removed by the renormalisa-
tion of the dimensional coupling constant « [6].

2.3 Renormalisation of the causal two-point Green func-
tion of the sine—Gordon model

The causal two—point Green function of the SG field (2.9) reads explicitly
1.6 19

i@y (M) = gz s 2y

/DM )exp{ /d2Z£int(z)}

exp{ / 42z (8u19(z)8“19(z) - ar(MQ)ﬂQ(z)) } (2.15)

X
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It is equal to the vacuum expectation value of the time ordered field product of
D(z)0(y) exp{i [ Lint} [10]

i) = T (0000) exp {i [ @2 L)} )0 216)

where T denotes the time—-ordering operator, while the subscript ¢ expresses the
fact that only connected graphs are taken into account.

As usual we treat the expression (2.16) perturbativley and expand exp{i [ Lint }
in a power series of a, (M %) or equivalently due to Eq. (2.7) in powers of Lip. It
reads, fory =0

—in@0i0,(02) = 3 [ T] @aom@@wo)ch, ()]0
n=0 Y k=1

[e.9]

= Y —ial (@, 050, (M2)). (2.17)

n=0

To second—order in «, (M 2) the renormalised causal two—point Green function
reads

—iA(2,0;0,(M?) = =AY (z,y;0,(M?)) +
—iaAD (2,0, 0, (M) — inD (@, 0; 0, (M) —---. (218)

The term —iA%O) (z,0; o (M?)) in (2.18) corresponds to the two—point Green func-
tion of free SG quanta, Eq. (2.10). The term —z’A;})(a:, 0; . (M?)) proportional
to a,.(M?) contribute, according to the ¢* theory, to the self-energy of the SG
quanta.

In momentum space the terms in the expansion (2.17) reads

—iA" (p; o (M?)) = / A2 ePT (—i) AW (z, 0; 0 (M?))

- 1= [ 2T @@I0) L5 ()0 219

2.3.1 Two-point Green function to first-order in «,.(1/?) and to all Or-
ders in 32

The explicit expression for the first-order correction —iA(" (z,0; o, (M?)) to the
causal two—point Green function (2.15) is given by

—iAP (2,050, (M?)) = i / @2(0|T (9(2)9(0)ini (2) ) 0]

= ia,(M*)Y ((;:L;T F2n=1) / d2z<O|T<z9(;v)z9(0)192”(z))|0>c

n=2
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+ian(M2)(Z1 — 1) Z -1) / &= O (9()9(0)8”"(2) ) 0)e.
n=1

(2.20)
or by using the relation (2.4)

A (@, 0,0, (M) = i / {0 (9()9(0) L (2)) 0)e

_ (M >/ @ ={0/T (9(x) 9(0) 92 ) 0)c

’LO&T _1\nA32n
+ % )le( (2)nﬁ OIT (9(x) 9(0)¥*'(2) ) 0)o.  (221)

Now applying carefully Wick’s theorem we turn the expectation values of the
time-ordered products ¥(z)9(0)9%z) and 9(z)9¥(0)9?"(z) into an expression of
two-point Green functions [10] 1

—iAW (z,0; 0, (M2)) =

1—Z; exp {—% BH—iAF(0; ar(M2))}} ]

X z'ar(M2)/sz{—iAF(a:,z;ar(Mz)}{—iAF(z,O; ar(M?)}. (2.22)

Using Eq. (2.11) the first correction term reads

aT(M2) B2 /8w
1-27; A2

—iAW (2,0;0,(M?)) =

X z'ar(M2)/dzz{—z'AF(a:,z;ar(M2)}{—iAF(z,O;ar(Mz))}. (2.23)

We get by adjusting the renormalisation constant Z; = Z;(A%; 8%, M?) to

A2 B /8m
Z1(N* 3%, M?) = <W> (2.24)
a well-defined result for the first-order correction —iA (1 (z, 0; o, (M?))
L o (M2) B /8m
—iaf) (2,050, (M2)) = iap(M?) [1 - (=5 ]
X /d2z{—z’AF(x,z;ar(M2)} {—iAFp(z,0; 0 (M?))}. (2.25)

'The symmetry factor is given as: For the contraction of ¥(z) and ¥(0) with ¥?(z) there are
2n (2n — 1) possibilities to do this. Two fields at the internal point z contracted to a loop give
(2n — 2)(2n — 3)/2! = (2n — 2)!/(2n — 4)!12! possibilities. The factor 1/2! is due to the fact that
both participants of the loop are non distinguishable. Hence the total symmetry factor reads [10]

2n! 1
on—1 m’

where the symmetry factor 1/(n — 1)! is due to the n — 1 non-distinguishable loops.

12



The renormalisation constant (2.24) corroborates [6].
Thus to first-order in the coupling the renormalised causal two—point Green
function (2.16) reads

—iA(z,0; 0, (M?)) = —iAp(x,0;00(M?)) —iaAY (2, 0; 0, (M?))
Ozr(Mz) B2 /8x
()

X /dzz{—iAF(a:,z;ar(M2)}{—iAF(z,O;ar(Mz))}. (2.26)

= —iAp(z,0; 0 (M?)) +ic, (M?)

In momentum space it has the form?
B
ar(M2) — p?
B2 /8 . .
, 9 o (M?) —i —i
= . (227
e [1 (35 ()~ F a0 — 7 )

Definition of the physical coupling constant o},

—iA(p; n(M?)) =

The effective (or complete) two—point Green function containinig all possible
insertions of self-energy da,.(M?) is represented in momentum space by [10]-
[13]

—1

Afpion (M) = e T (2.28)
Its pole defines the physical mass
aph = ap(M?) + da,.(M?), (2.29)
hence
Ry 0, (M?) = — . (2.30)

Oph — P
Following the general procedure [10]-[13] we consider the expression in

Eq. (2.27) as the approximation to the effective two—point Green function (2.28)
to first-order in the self-energy éa,.(M?). Thus 3

ar(Mz) > B/

o (M?) = — an(M?) [1-( Ve (2.31)

2Feynman rules in momentum space; or simply, by taking the representation Eq. (2.10) and
using the definition for the Dirac —function, the Fourier transformed (2.19) is obtained straight
forward.
*For conventional normal ordering . (M?) = M? the two—point Green function remains un-
changed
A eff 2 —? —?
A% (p;ar(M7)) = o (M?) — p? - Qph —p?’
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The effective two—point Green function in momentum space reads

A (pa,(M?)) =

= o) e . (2.32)
o) () -
M2
This yields the physical mass (2.29)
2
o) (M)
aph = a,(M?) e (2.33)

The relation between the renormalised coupling constant av,.(M?) and the phys-
ical coupling constant a,}, reads

M?\ B?/87 ~ 2
ap(M?) = aph< h) e b 7 (2.34)
p
1 S
+ 8

The effective two—point Green function (2.28, 2.32) is found to first order in
aph by the effective Lagrangian

Care) = 500 0) ~ ) + S EU
- %8Mz9(a;)8”19(x)+%(cosﬁﬁ(x)—1). (2.35)

For higher terms A;fz?) (z; -(M?)) (2.12) we assert that they contribute in
terms of the physical coupling constant o, only

—iA " (2,050, (M?)) = ;—n!/Hdzzk(0|T(19($)19(0)£int(Zk))|0>c
k=1
= —iAM™(z,0;ap,) (for n>2). (2.36)

We proof this assertion to second order in «,.(M?).

2.3.2 Two-point Green function to second-order in «,.(}?) and to all
orders in (3

The second—-order correction —z’Ag) (z,0; o (M?)) to the causal two—point Green
function (2.15) reads

—in? (2,0, 00(M?)) = ;—2, / / d221d% 25 (0T (9 (2)9(0) Ling (21) Ling (22))|0)e.
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(2.37)

Since we have already taken terms proportional to a?(M?) into account when
we calculate the effective two point Green function in Eq. (2.32) we have to sub-
tract them from the expression (2.37). If we denote in momentum space these
terms by —i AT (p; a,.(M?)) they read

—1

—iA) (pa, (M?)) =

Otr(M2) _ p2
2
x i2a2(M?)|1 - Zy exp {—% B{—iAp(0; a,«<M2>)}} ]
" i — (2.38)

ar(M2) —p? ar(MQ) —p?’

while in real space they are identified as ([10]-[13])

LiAT@) (3 0: 00 (M2)) = / / Py {—iAp(x, 20 an(M2))}

X

2
i2a,%(M2) 1 —Z; exp {—% 52{—ZAF(0; ar(MQ))}} ]

X {—iAp(22, 21; 00 (M*)Y {—iAp(21,0; . (M?))}.  (2.39)

Examining all contractions in Eq. (2.37) and subtracting from that the contribu-
tions in Eq. (2.39), thus —iAg) (z,0; o (M?)) 4+ iAF?) (2, 0; . (M?)), we get *

) 2
—in? (2,0, 0, (M?)) = [a,xM?)Zl exp{—%{—z‘AAO;a,«(M?))}}]
X %// d*z1d%2 {—iAp(2, 215 0r (M?))} {—iAF (21, 0; an (M?)) }
X (cosh{—ﬁ2 iAp (21, 20; 0. (M?))} — 1 — %ﬁ4 {—iAF(Zl,Z2;ar(M2))}2)
) 2
— [ar(M2)21 exp {—% {—iAF(O;Oér(M2))}}]
< % / / adz (il p (, 205 00 (M)} {—iAp (22, 0; 0, (M?)))

X (sinh{— B2 iAp(21, 205 ar (M?))} — B2 {—iAp (21, 203 Oér(Mz))}>-
(2.40)

*We have identified in Eq. (2.40)

—iAD (2, 0; 00 (M%) + AT (2,0, 00 (M%) — —iAD (2,05 a0 (M?))
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The calculations are given in Appendix B explicitly. We replace everywhere
o, (M?) by app by means of the renormalisation constant Z; (2.4). This proves
our assertion to second order in the coupling constant. The proof for higher
orders runs equivalently.

2.4 Physical renormalisation of the sine-Gordon model

Thus, using the results obtained above we can formulate a procedure for the
renormalisation of the SG model dealing with physical parameters only. Start-
ing with the Lagrangian (2.3) and performing the renormalisation at the normal-
isation scale M? = a;,), we deal with physical parameters only

Qph = Zl_l(Az;ﬂzaaph) aO(A2)7 (241)

with the renormalisation constant Z; (A?; %, o) being now equal to

A%\ 32 /87
2. ;32 _ (A0
ZAFPram) = (=) (242)
The renormalised Lagrangian is defined by
L) = L @9@)0"() + 22 (cos () — 1
(@) = 5(0u0(2) (:L')Jrﬁ(COSﬁ (z) = 1)
a
+ (Z1—-1) B%h (cos B0 (z) — 1).
(2.43)
From the relation (2.34) at M? = aph follows
a,(aph) = aph. (2.44)

The first-order correction —iA™M (z,0; a,.(apn)), EQ. (2.25), vanishes. Non-trivial
perturbative corrections appear only to second- and higher-orders in ayy,.

One can also show that the results obtained within the physical renormal-
isation of the SG model can be fully reproduced by using the normal-ordered
Lagrangian

L(z) = % 1 0 () 0" (x) —1—% : (cos BO(x) — 1) :. (2.45)

In this case all corrections to the two—point Green function are expressed in
terms of ap), and finite [6, 2, 1].
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2.5 Renormalisation Group approach to the sine-Gordon
model

In this section we discuss the renormalisation group approach to the renormali-
sation of the SG model. We apply the Callan-Symanzik equation to the analysis
of the Fourier transform of the two—point Green function of the SG field.

The Callan-Symanzik equation for the Fourier transform of the two—point
Green function of the SG field —i A(p; o, (M?), 3?) is equal to [14, 9]

0 ~ ) 2 0 X . 2 2\ __
_pa_p"i‘ﬂ(ar(M )76 )W_Q A(paaT(M )75) -

= F(0,p;ar(M?),5%),  (246)
where (o, (M?), 3%) denotes the Gell-Man—Low function [7, 9, 10]

Doy (M?)

M@M

= Blay(M?),5%). (2.47)

The term ~(c,.(M?), %) [9], describing an anomalous dimension of the SG field,
does not appear in the Callan-Symanzik equation due to the non-renormalisability
of the SG quanta ¥(z). The function F (0, p; a.(M?), %) in momentum represen-
tation is given by [14]

F(07p§ar(M2)762) =
= / / d2xd?y 'PT <0\T(ég(y)z9(x)19(0) ot [ d%y £im(y)) 10)e,
(2.48)

where ©%(z) denotes the trace over the energy-momentum tensor for the SG
model, being equal to

O (r) = 8,9(2)8,9(x) — g [%8)\19(96)8)‘19@)—&—%(005 BY(z) —1)]. (2.49)

The trace reads

Ol (z) = —%(cos B9(z) = 1) = 2VI(a)], 2.50)

where V[(x)] is the potential of the SG model. The interaction part Lin(y) of
the sine-Gordon Lagrangian in (2.3) reads

Linly) = 5 (03 Bi@) 1) = = 5 64(0). (251)

This allows us to represent the r.h.s of the Callan-Symanzik equation (2.46) in
the form

F(O,p; ar(M2)>ﬂ2) =
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— / / Py P O[T (2V()]0(@)0(0) e | Py L)) o)

- 2aT(M2)m / / dd?y P O[T (9(2)9(0) ¢!/ dzyﬁim(y))|0>c

0

— 2ar(M2) W

A(p; ar (M?), 5%). (2.52)
Furthers, we take into account that the two—point Green function A (p; o, (M?), 32)

is a Lorentz scalar hence should depend on p?. We change the derivative in
Eq. (2.46) as

d/dp = 2pd/op°. (2.53)

The Callan-Symanzik equation now reads

[ 2% B (%B(QT(M2)vﬁ2) - aT(Mz)) 804,«(M2)

< A% an (M), %) = 0
(2.54)
For the solution of this linear differential equation we look first on the Gell-

Mann-Low function (2.35) with respect to the relation we found in Egs. (2.33)
and (2.34) between the renormalised and physical coupling constant, they read

oy (PN M2\ s
Qph = o (M )( M2 > , ap(M*) :aph<—h) ) (2.55)

where 52 = 3%/(1 + 8%/8n).

The coupling constant «v,.(M?), given by (2.55), satisfy the renormgroup con-
dition a,.(M2) = Z;(M2, M?)a,.(M}), which defines a relation between cou-
pling constants «,.(M?) and «,.(M2) at the normalisation scales M; and Mo, re-
spectively. The renormalisation constant Z; (M2, M?) is equal to Z; (M2, M?) =
(M3 /M) /3.

Now applying the Gell-Mann-Low function on the renormalised coupling
constant «,-(M?) in terms of the renormalisation scale M independent physical
coupling constant ), we have

Doy (M?) B8 52
oM 4r "
Insertion of (2.56) into the Callan-Symanzik equation (2.54) yields

Blar(M?),8%) = M —F—+ ar (M?), (2.56)

9 52 9 < s B
P (1 5) O gy 1A e 0008 = 0. @5

We introduce the dimensionless function D(p?; a.(M?) defined by the relation

A(p*; an(M?), 3%) p* = D(p* an(M?), 5%), (2.58)
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hence depending on the dimensionless variables only
P2 =p?/M?, &= a.(M?)/M>. (2.59)
Furthers, we introduce dimensionless derivatives in (2.54) by
p*0/op* = (v /M?) (M?0/0p%) = p* 0/0p* (2.60)
and
o (M?)8/da, (M?) = a,(M?)9/da, (M?). (2.61)

Hence, the Callan-Symanzik equation becomes

#20 (1- D)) 2 Ipeka o). — 0. @)

op? 8w/ " da,. (M?) o ’ ’ '
where we have differentiated with respect to $? and multiplied afterwards by
7%. The differential equation is an Euler differential equation of first order. The
argument of the dimensionless function D(p?; &, (M?), 3%) has to obey the char-
acteristic differential equation [15]

B2\ dp? da
l-— )= = — 2.63
( 87r) D2 a’ (263
and by direct integration we get the argument to be of the form
& o9 32/8n
C - = (p*)F° /87 (2.64)

where C is an arbitrary integration constant. Therefore the two-point Green
function in momentum space reads

sl

a,(M?) (ﬁ)ﬁh/&r}

A(p2§ar(M2)762) = pg M2

(2.65)

Introducing the running coupling constant «,.(p?) and using the relation given
in Equation (2.55) the solution of the Callan-Symanzik equation for the two-
point Green function in momentum space becomes

~ 2
Mﬁ%mﬂzéng)] (2.66)

This proves that the total renormalised two—point Green function of the SG field
depends on the physical coupling constant o}, only.
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Chapter 3

Renormalisation of the massive
sine—Gordon Model

In this chapter, we analyse the renormalisation of the two—point Green function
for the massive sine-Gordon model (MSG model). We show that the renormal-
isation procedure of the two—point Green function in the SG model, developed
above, can be applied to the renormalisation of the two—point Green function in
the MSG model (the MSG model). We show that the mass operator m329?(z) is
soft and does not violate the renormalisability. In the infrared limit mq — 0 the
physical mass mpy, of the MSG model quanta reduces to our result in Eq. (2.33).

3.1 Introduction

The bare Lagrangian under consideration is given by [16]

« 2
L) = %aw(m)aw(m)—%mg(ﬁ)ﬁ?(agw Oéf)(cosw@)_n,

(3.1)

where a(A?) is the bare coupling constant and m2(A?) denotes the bare squared
mass parameter of the MSG quanta at an ultraviolet cut-off A%2. The renor-
malised Lagrangian at the renormalisation scale M reads

L) = 500(@)0 () — 5 m2(M)0P(x)
+ 00 (c0s 40(a) 1) — S mEO) (2~ 1)9%(0)
(2 —1) ar(ﬁ]‘f) (cos 30(z) — 1)
_ Lo.0@)0m0() - %mef(Mz)ﬁz(x) + 7z arg‘f ) (cos BO(x) — 1),

(3.2)
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with Z; = Z1(A%; 8%, M?) and Z,, = Z,,(A?; 3%, M?) being the renormalisation
constants. They relate bare and renormalised parameters as

my(A%) = Zn(A% 5% M%) mi(A%)

ar(A%) = Zi(A% 5%, M?) ap(A?), (33)
Expanding the cosine in the Lagrangian (3.2) in polynomials of 9?(z), we iden-
tify the renormalised Lagrangian as

L) = 5 [BI@PI) — ()P @] + Laale), G

where m2(M?) = m2(M?) + a,(M?) is the effective mass of the quanta 9(z) of
the MSG model. The two-point Green function generated by the free part in
(3.4) reads

il p (e, s (M) = (O[T (9(2)d(y) ) 0)

2k —ie" k(@ —y)
= / (2n)? T2 (M2) — k% — 0 (5.5)
Atz = y we have
_ 9 - o 1 A?
—iAp(0; A% M, (M) = e In 200 (3.6)

Lint () denotes the interaction part of the renormalised Lagrangian of the MSG
model and is defined by

Lusla) = —5mEO)(Zn = D) + 0,08 3 ) 2)
n=2
+(Z1 — a,(M?) i ﬂﬁﬂn—lm%(m). 3.7)

— (2n)!

The causal two—point Green function of the MSG field is is defined analogously
to that of the SG field, Eq. (2.17)

“itpegin 0) = 300 [ T[0T 00w L ()0
n=0 """ k=1

= > iAW (@, g (M2)). (3.8)
n=0
As in the SG model, —z’AEg) (z,y;m,(M?)) corresponds to the two-point Green
function of free MSG quanta with mass ,.(M?), Eq. (3.5). The next term in
Eq. ( 3.8), —iAg)(az, y;m-(M?)) contributes, according to the ¢* theory, to the
self-energy of the MSG quanta.
Since the analysis of the renormalisability of the MSG model runs equivalent
to that of the SG model, Chapter 2, we adopt the results of Sections 2.3.1 and
2.3.2 and make some replacements.
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3.2 Renormalisation of the causal two—point Green func-
tion of the massive sine-Gordon model

The causal two—point Green function (3.8) to first order—correction reads in mo-
mentum space !

. N —i
—iAW (pyi, (M2)) =

m2(M?) — p?
4o <_5mz<M2> + a,(M?) [1 - (w2 / M2)52/8WD
) i —i (3.9)

P2(07) — ? (A7) —

where dm2(M?) = m2(M?*)(Z,, — 1).
The effective two-point Green function of the MSG in momentum space

—1 —1

—iA (p; i, (M?)) = ROP) Tl R 7 (3.10)
reads
—i A (s, (M) =
= —i |m2(M?) + 5m2(M?) + o (M?) (m2<M2>/M2)52/8”—p2}_ (3.11)

The pole of this effective two—point Green function defines the physical mass,
~ 2
m2, to

ph

32 /8w
iy = mA(M?) + 0m2(M?) + o, (M?) (m2(M2) [ M?) /

. (3.12)
Since the pole in (3.11) does not contain divergences the counter—term dm?(M?)
can be adjusted to zero. Hence, the physical mass for the MSG model becomes

(3.13)

m2 + a,(M2)\ 7/
)

2, = m%<M2>+ar<M2>(

In the soft-boson limit, when m2(M?) — 0, the physical mass of the MSG
model field coincides with oy, (2.33). This agrees with the assertion that the SG
model is not infrared singular [6] and testifies that the operator m2 ¥?(z) is soft.
This is in agreement with the results obtained by [16].

!The calculation of this term runs parallel to that in Eq. (2.21) of the SG model. We have only
to replace the factor a,-(M?) in the first term in Eq. (2.21) by —dmZ(M?) + a.-(M?) and to define
the Green functions using Egs. (3.5) and (3.6).
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For finite m2(M?) and in the perturbative regime m2?(M?) > «,(M?) the
physical mass of the MSG model field is equal to
2 2 32 /81
m, = m200) + (312 (MoBEN)
where we have kept only the leading terms in «,.(M?) expansion.

The second—order correction to the two—point Green function of the MSG
model (3.8) runs completely equivalent to that of the SG model, done in Ap-
pendix B. Therefore we take the results of the SG model, found in Appendix
B for the second-order contributions to the causal two—point Green function of
the MSG model. The second—order contributions are summed up in Eq. (C.6),
Appendix C.

We have shown that (Z,,,—1) vanishes, by setting the counter—term dm?(M?) =
m2(M?)(Z,, — 1) in Eq. (C.5) zero. This implies that the mass parameter m(A?)
is unrenormalisable, i.e. m(A?) = my. In this case the physical mass of the MSG
model field takes in the perturbative regime m?(M?) > «,.(M?) the form

, (3.14)

ma \ B°/8m
i)
Since the physical mass of the MSG model field cannot depend on the normali-
sation scale, we have to set

m2, = mg+ar(M2)( (3.15)

N
@) (3.16)

Oéph = Oé,«(Mz) <M2

It is seen that setting the normalisation scale M = m the renormalised coupling
constant a,(m3) coincides with the physical one, i.e. a,.(md) = app.

3.3 Callan-Symanzik equation approach

In this chapter we apply the renormalisation group analysis to the MSG model.
The Callan-Symanzik equation in momentum space reads [14]

[0+ Blor (M%), 5%) s = 2] Bl (V) ) = PO (04%), 57,
(3.17)
The function F(0, p; a..(M?), 3?) is given by
F(0,p; 0 (M?), 5%)
- / / P d?y P <0|T(é,’i(y)z9(m)19(0) oi [ Py ﬁint(?/)) 0)e. (3.18)

The trace over the energy-momentum tensor © ,,, for the MSG model becomes

Oh(z) = mi¥*(z) — %(cosw(x) —1) = 2V[¥(x)]. (3.19)
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The interaction part Lin(y) of the massive sine-Gordon Lagrangian in (3.1) is

1 «
Lin(y) = — =m0 () + =9

. % (cosfo(a) ~1) = - % Olx).  (320)

This gives
F(0,p; ap(M?), 5°) = //d%d@eﬁ”f O (2V 9 (w))o()a(0) o | 40 L)) o),

- (- miga + 20,V ) Ao, (42, 2, mi). (321

Do, (M?)

The Callan-Symanzik equation (3.1) for the two—point Green function of the
MSG model becomes

9 5 — (Bar02).5%) - 1)

mi 9
2 Om

8ar M2)

- o+ 1} A% or(M?),82,m3) =0, (322
where we have divided by —2. Further, we have taken the Lorentz invariance of

A(p%; a,(M?), 2, m2) into account. The Gell-Mann-Low function 3(c,.(M?), 32)
for the renormalised coupling constant «,.(M?)

M2 B2 /8
2 — -
a,(M*) = apn <m%> (3.23)
is equal to
2 2
Blar(M?), 52 = a2 5 ), (3.24)

oM  Ar

The Callan-Symanzik equation for the two point Green function of the MSG
model reads

0 mé 0
2 9 58, (MY —2 T
P gz — 5(8)ar (M%) 5o~ 2 B

(3.25)
where we have denoted [16]
5(8%) = (5 — 8m)/8r. (3.26)
We introduce the dimensionless function D(p?; a,.(M?), 32, m3) via
Aps o (M?); 62, m) = D(p* (M), 5°,m§) /. (3:27)
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Eq. (3.25) can be simplified by introducing the dimensionless variables

2,2
pmy

t = IR

a = ap(M*)/M?, mi = m/M>. (3.28)

This gives for the two—point function

2 1 mg

A (o 2. 32 — A -0
A(p; o (M?); B2,mG) = D(t,a)tM4. (3.29)
The derivatives becomes
p20/op® = td/ot, mED/OmE = td/ot. (3.30)

Eq. (3.25) reads now

0 o ~ 9y O 1.0 1 0 o Img o
[ta—&ﬁ )Oér(M)%—gta—ga—m%Jrl} D(t; ar) = 0. (331

The final form of the Callan-Symanzik equation is

2 a5

)
ot A

804} D(t;@) = 0. (3.32)

This agrees with the renormalisation group equation obtained by [16].

In order to calculate the Gell-Mann-Low function 25(3%)a to first order in
& and to all orders in 32 we proceed as in the massless case. The characteristic
differential equation [15] for the argument in the dimensionless function D(¢; &)
is given by

dt da
t =20 a (339
The solution is obtained by direct integrations
C = a2, (3.34)

where C' is an arbitrary integration constant. The two—point Green function in
momentum space has a momentum dependence of the form

~ 1 o M2 5(8°) 22 26(82)
2. 2y 92 2y _ ph p mgy
AP ap(M?), 3, m2) = p2p[m% <—m8> <M4 ) | e

Renormalisation at M2 = m3 gives

A% ap(M2), 82,m2) = — D[O"“(pQ)], (3.36)
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where we have introduced the running coupling constant

) P2 25(82)
o (p?) = ap (—) | (337)
p mg

For 6(8%) < 0, i.e. 3% < 8m, the MSG model with quantum fluctuations
around a trivial vacuum, calculated to first order in a,.(M?) and to all order
in 32, is an asymptotically free theory for p> — oco. In turn for §(5%) > 0, i.e.
3% > 8r, the running coupling constant «,.(p?) grows with p?. Of course, due to
a perturbative derivation of the Gell-Mann-Low function (3.24) and the Callan—
Symanzik equation (3.25), the running coupling constant «,(p?) cannot grow
to infinity. The allowed region for momenta p? is restricted by the inequality
o (p?) < mi. This gives

m3 )1/25(/@2>' (338)

P> < m (_
aph
Thus, we have shown that our results on the renormalisation of the MSG model,
carried out for the two—point Green function, agree well with those obtained by
[16].
Moreover the mass term of the MSG model is defined by real m,, which
is unrenormalisable. A non—perturbative proof of this assertion we give in the
section below.

3.4 Non-perturbative renormalisation of the massive sine—
Gordon model

In this section we show that the unrenormalisability of the scale m in the MSG

model can be proved non—perturbativly to all order of dimensional «( and di-

mensionless 3 coupling constants within the path—integral approach.
The generating functional Z,,[J] of Green functions in the MSG model is

Zm|J] = /Dz? exp {i/d2$%a“19($) oM (x) — m?%ﬂ(x)2 + V(z)J(z)

+ % [cos BI(x) — 1] } (3.39)

where J(z) is a source for the SG field ¥¥(x) [6]. Then, we propose to transcribe
the generating funcitonal (3.39) into the form

i P
ZmlJ] = exp{ - Emgfd% 5T iéJ(x)}ZO[J]’ (3.40)

where Zy[J] defines the generating functional of Green functions in the SG model

[6].
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For the renormalisation of Zy[J] follow [6] and expand in powers of oy keep-
ing the terms of all orders, we get 2

z0l7) = [ Do iz% <%>L «

27 (n —p)!p!

[H II /d2xkd2yz] exp{zﬁZﬁ T —15219 w}

k=0 (=0
< exp i / P 5 u0(@)90(x) +9(x) T (x) }. (3.41)

As has been shown in Section 2 perturbatively and in [6] non—perturbatively by
means of the exact calculation of the path integral, the r.h.s. of Eq.(3.41) depends
on the renormalised coupling «.,.(M?) only. This proves that the scale my is
unrenormalisable.

The calculation of the path integral in Eq. (3.41) are performed in Appendix
C.2. The renormalised generating funcitonal of Green functions Z,,[J] of the
MSG model is then defined by

B s i’aT(MQ) e 2. 2
ZnlJ] = 7;(71' 27 > L]:]O/d kd yk]

i/ d2y21 (Ge=prsn) 7w

2 n
+%Z<ln( MP(ay, — ;)% +i0) + In (=M>(yy, — 1) +ZO))
i<k
B e~y
S S (a2 - i0) )
k=11=1

x exp{ /d2 &y [4 /d2 In (—M%(z — 2)% +0) J(21)
+%ﬁz;1n< o )

6(x —y) — Al‘—y,mo]
)

[
x[@/d%zln( *(y — 22)* +10) J(22)

n

H/dgwi = /d2ml...d2xn.
0

1=
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(zk —y)2+i0> }

my
+—pIn -
1 <(yk—y)2+20

(3.42)

One can see that the limit mo — 0 provides no divergences. This confirms our
results obatined in Section 3.
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Chapter 4

Renormalisation of the
sine-Gordon model, caused by
quantum fluctuations around a
soliton

In this chapter we analyse the renormalisability of Gaussian fluctuations around
a soliton. We show that Gaussian fluctuations around a soliton solution are
renormalised like quantum fluctuations around the trivial vacuum and do not
introduce any singularity to the sine-Gordon model at 32 = 8. We calculate the
correction to the soliton mass, caused by Gaussian fluctuations around a soliton.

4.1 Introduction

Following [17, 18, 19] (see also [20]) we treat quantum fluctuations of the SG
field ¥(x) around a soliton solution ¥s(z), Eq. (1.12), by expanding the bare La-
grangian

(7)) (A2)

ﬁQ

around the classical solution (1.13) to order ¥?(x). This gives

L) = %auﬂ(m)a’%?(:v) + (cos () — 1). 1)

L[5 +9)(x) = L[Js(x)]
ap(A?)
2

+ % 0,9 (x)oM I (x) — 92 (z) cos BY,(z). 4.2)

The partition function for quantum fluctuations around a soliton with respect to
quantum fuctuations around the vacuum (1.9) reads

Z = exp{i/d2$£ws(x)]}
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/ DY exp / [; 8,9(x)0"9 ()

+ 5— cos 3Ys(x) cos B (x) — % sin BYs(x) sinﬂﬁ(:c))}/
X / DY exp {2 / &z [5 9,9 ()01 (z) + = ? cos 529’(@}. (4.3)

The partition function for Gaussian fluctuations becomes

7z = exp{i/d%ﬁws(m)]}

x /Dﬁ exp{ - %/d%ﬁ(w) [D+a0 - COS;;%] 19(3;)}
/Dz?' exp /d2x V' (z) {D + ao} ﬁ’(x)}. 4.4

In order to ensure the convergence of the path integral we understand the pa-
rameter o to have an infinitesimal imaginary part aig—40. The partition function
reads formally

Z = exp {i/d% L[Vs(z)] +5Eeff(:r)}
= exp {i/d2$£eﬁ($)}, (4.5)

where we have introduced the effective Lagrangians L.g(x) and 6L.g(x), the
effective correction to the classical part £[Js(z)], Eq. (4.2).
Introducing the notation

07 = exp {i/d2x5ﬁeﬂ[ﬁs(a:)]} 4.6)

for the part of the partition function describing quantum fluctuations, then

Det (I
57 — et(0 + 0402)a0
Der(0 a0 - — 20
0 cosh?(,/agr)

1
11 — I Veo —w?+ k2. 4.7)
w,k U w! k'

Taking both operators U + «p and O + ap — 2a0sech2(, /agx!), discussed in Sec-
tion 1.1.1 and in the Appendix A.1, in their eigen-representation we transfer the
evaluation of the functional determinants to the more convenient form

87 = exp{ - %/d% /dwdk|19k(:v)|2 In(ag — w? + k?)

_%/d% /dw\ﬁb(w)lz In(~w?)

+% / d*x / dw'dk' | (2)|? In(ap — W + K?) } (4.8)
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Inserting the eigenvalue relations A(w’, k') = ap—w?+k"2 (1.25) and \(w) = — w?,

Aw, k) = ap — w? + k? (1.28) and the corresponding eigenfunctions Egs. (1.24)
and (1.27) we arrive at

1 k? tanh?(/ap,
57 — exp{_g/dzx/dwdk: + o tanh*( x) In(ap — o2 + k2)

2 27 k? + o
1 dw dk 1
——/d2$ /_w_ 5 2040 In(—w?)
2m 27 k* 4+ ap cosh®(\/apx)
dw'" dk'
2 2 2
— — In(ap — 4.
/d/%2 n(ag —w? +K2) }, (4.9)
where we have formulated all integrals in a covariant form by inserting
= 2,/ap —_— 4.10
/ 2 k:2 +ag (4.10)
Using further the identities
1 62

(1 — cos Bs(x)) = V[vs(x)] (4.11)

2a0

1
cosh?(\/apzr) 2

and

k% 4 ag tanh?(,/apz) 1 1 — tanh?(\/agz)

k2 + ap k2 + Q)
(&7)) 1
= 1- 412
k2 + ag cosh?(y/agz) (412)
we transcribe the partition function into the form
1 9 9 dwdk 1 9
= S . 22 = (In(—
07 exp{ 4/dxﬁV[19($)]/27T2wk2+a0(n( w?)
dw dk
— In(ag — w? +k:2 /d2 /_w_ In(ag — w? + k%)
dw dk:’
2 G 2 2
/d /_277 - In(ao —w? + )}. (4.13)

By the exact cancellation of the last two terms the partition function arrives at

1 dodk 1
0z = exp{ - Z/d%ﬁQV[ﬁs(ﬂJ)]/E%m
x (In(~w?) — In(ag — w? + k?)) } (4.14)

Now, integrating by parts over w yields

1
2 2
57 — exp{ /d 262V [9a(x / 27Ta0—w2+k:2 } (4.15)
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For our further discussion we pass to the effective Lagrangian 6L.g by the defi-
nition (4.6), it reads

1 dk d 1
San@) = VL@ [ G5t
= S PVIL@H{—iBr0;00)} (@.16)

In order to integrate our last expression in a covariant way we pass to Euclidean
momentum space by making a Wick rotation w — ¢w

_ Lo Adp 2p
ale) = 50V [ E

_ %BQV[ﬁS(:p)] 1y (A—2> , (4.17)

Qg

where A is a momentum cut-off in two—-dimensional Euclidean space.
The total Lagrangian, accounting for Gaussian fluctuations around the soli-
ton solution amounts to

1 [&7)) ﬁ2 A2
- - " 202 il _
Lon(r) = 5004(x)00s(x) + T [1 = 1n(a0)} (cos B0(x) — 1).
(4.18)
For the renormalisation of the divergent factor depending on A
2 2 2 _3?
- (A Y] 2 (LA T
(M52 [1 T (aT(MQ)Zl)] = (M2 (aT(M2)Z1)
2 ST O[T M2 52/877
= a,(M?)Z (%) . (4.19)
we identify to leading order O(/3?) the renormalisation constant Z; by
A%\ B /8m
7 = (W) . (4.20)

This confirms our result found in Eq. (2.24). This result coincides with that in
[6], appearing there to leading order of Gaussian fluctuations. The renormalised
effective Lagrangian reads

) B2 /8
> (cos fs(x) — 1). (4.21)

Oy 2 (679 2
Leg(z) = %8Mz95(x)8“z9s(x)+ (M7) ( (M

32 M2
By introducing the physical coupling constant oy,
2 /8m
o (M?) B/
apn = ap(M?) ( VE > (4.22)
the effective Lagrangian becomes
1
Let() = 50,05(2)9"0,(a) + % (cos 39(z) — 1). (4.23)

This confirms our result given in Eq. (2.35).
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4.2 The soliton mass in terms of the physical coupling

In this section we give the renormalised mass of a soliton solution. We will
calculate the contributions caused by quantum fluctuations fully in a Lorentz
covariant way.

The soliton mass corrected by Gaussian quantum fluctuations reads

M, = / dx (st] —(5»Ceff[19s]> = 8\5/2_+AM (4.24)

The mass correction is given by

AM, = - / A Lo [0 ()]. (4.25)

Taking Eq. (4.16) and the definition of V[Js(x)] (4.11) we get

1 dk dw 1
AM, = —=@& [ dzV[o, S
ﬁ/ﬂlj [Ds ()] 27 2mi g — w2 + k2
dk dw 1
= 2./« — 4.26
/27T27Tza0 w2 + k2 (4.26)

Now, an integration over w yields for the mass correction to the soliton mass due
Gaussian fluctuations the result

“+oo
av, = [ TR a2 @27)

where §(k) is the phase-shift (1.31). Hence, the correction to the soliton mass
does not contain a surface term, — /g /7 [1, 18, 19, 21].

Calculating the mass correction (4.26) in a Lorentz covariant way we get with
Eq. (4.17) for the soliton mass

_ 8y/ag(A?)  ag(A?) NS
M, =25 el (ao( A2)>. (4.28)

The renormalised soliton mass is

M, — 8var(M®)Zy /o (M?) Z, 1n< A? )

32 on a, (M) Z;
8 - M?2 2 A2
LAt (i Goem)) e

It reads to leading order O(/3?)

B2 /167
M, = 8\/04r 1/2 <Oz7« )) ) (4.30)

A2
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Substituting (4.20) into (4.30), we have

M, — 8/ (M?) <aT(M2)>52/1677 @)

32 M2
and finally in terms of the physical coupling constant (4.22) the soliton mass
8,/
M, = ;;ph . 4.32)

The mass of a soliton M depends on the physical coupling constant a,,. Hence,
the contribution of Gaussian fluctuations around a soliton solution is absorbed
by the renormalised coupling constant o, and no singularities of the sine-
Gordon model appear at 3% = 8.

This result confirms the assertion by Zamolodchikov et al. [22], that the sin-
gularity of the SG model induced by the finite correction —, /a1, /7 to the soliton
mass, caused by Gaussian fluctuations around a soliton solution, is completely
due to the regularisation and renormalisation procedure. This has been corrob-
orated in [6].

We have obtained that the soliton mass M, does not depend on the normali-
sation scale M. This testifies that the soliton mass M, is an observable quantity.

4.2.1 Dominance of Gaussian quantum fluctuations around a soliton.
Is this a strong or a weak coupling interaction?

Contributions of quantum fluctuations around a soliton are calculated under
the assumption of the dominant role of Gaussian fluctuations. In this section
we analyse the criteria for the validity of the dominance of Gaussian fluctu-
ations. The Lagrangian, describing the fluctuations around a soliton solution
Is(z) (1.12), is

L) = %auﬁs(:c)aws(m) + % (cos B (x) — 1)

+ %8u19(x)8“19(x) - % cos B9s(x) (1 — cos B9(z))
+ % sin 395(z) (89(x) — sin BI(x)), (4.33)

where we have used the equation of motion (1.8) for ¥s(z), and ¥(z) is a field
fluctuating around a soliton Js(z).

Expanding in powers of ¢ and keeping the terms of order of O(9*(z)) inclu-
sively we get

L) = L] ~ 5 9() (O + o cos B9.(x) D(a)

4 é o B sin B0 (x) 95 () + i a3 cos Bu(@) 9M@) ...,  (434)
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where L[J4(x)] is defined by the first two terms in Eq. (4.33). We have also
omitted a contribution of a total divergence proportional to 9,,(¢(x)0"d(x)) ~
09?(x).

The dominance of Gaussian fluctuations is determined by the inequalities
[23]

|(OY(z) + « cos fs(x))d(z)| > % a 2| sin B0s(z) 9% (z)),
|(OY(z) + a cos fs(x))d(z)| > 1—12 a %] cos s (x) 93 (x)],  (4.35)

where ¥(x) are the eigenfunctions of the operator (0 + « cos 8s(z)) given by
Eq.(1.27) with eigenvalues \(w, k) = —w? and A(w, k) = a—w?+k? for the bound
and scattering states, respectively. These inequalities mean that the contribution
of the quadratic terms, calculated for the eigenfunctions of the operator (O +
a cos 394(z)), should be much greater than the contributions of the terms of the
third and fourth powers of the ¥—field.

Using the eigenvalues of the operator ([0 + « cos 89s(x)) the inequalities
(4.35) can be transcribed into the form

W > 0 |sin 0:(2) ()],

o= w? K] 3 £ 0 |sin 004(a) ()],

W 3 o 0 6P cos B0(r) ()],

o — w? + K2 > % o B | cos B9(x) 0%(z). (4.36)

It is obvious that in the whole region of variation of the eigenvalues, these in-
equalities can be fulfilled for 8 = 0 only.

This means that the calculation of the contribution of Gaussian fluctuations
to the soliton mass is to full extent perturbative and related to the weak coupling
limit. One can conclude that the Gaussian approximation for the calculation
of quantum fluctuations around a soliton is not valid in the non—perturbative
regions of the parameter 3. Therefore it is not possible to extend the results,
obtained by means of Gaussian fluctuations, for the coupling constant 3 ~ 1 and
B > 1. All results, obtained in the Gaussian approximation must be understood
perturbatively for 3 < 1 only.
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Chapter 5

Comparison to the
Korepin-Faddeev approach

5.1 Introduction

We calculate in this chapter the quantum contribution to Gaussian order by fol-
lowing the approach given in the manuscript of Faddeev and Korepin [19]. By
using this alternative approach we rederive our former result (4.27). We show
that the finite term —m /7 appears due to a different regularisation procedure.
The procedure in [19] for the calculation of quantum contributions to Gaussian

order
1/Jaet HHG! = exp{~1/2trmn H A"}
- exp{ —PAM( — t’)} (.1)
is based on the determination of the derivative
d -1 _ 2 1 d 1 d
i g = /d a:{H 1 %HO}, (5.2)

acting on a parameter ¢ connecting two arbitrary Lorentz frames. This deriva-
tive simplifies the logarithmic expression to expressions depending on the Green
functions R = H~' and Ry = H; ' of the underlying operators Hy = [ + m?
and H = O+ m? — 2m?2sech®max. Hence,

d d d
—trinHH;' = [ da{R-—H — Ro——Ho}. 5.3
o / R 0 5350 (5.3)
We formulate the Green functions Ry and R for the homogeneous differential
equations Hypy) = 0 and Hty = 0 for Feynman boundary conditions. The con-
tribution AM to the soliton mass generated by quantum fluctuations can be
obtained finally, after some calculations by integrating over ¢ and we get

2BAM" —t) = trin HH, . (5.4)
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5.1.1 Solutions and Green functions to the Gaussian operators H, and
H

The differential operators under considerations are

2 2
HO - 8__a_+m2

0x0%  9x1? (5:5)

and
9? 0? 2 2m?

_ _ __2mm 5.6
0x0%  9x1? " cosh? ma! (56)

The eigenvalue equation for Hy is given in Eq. (1.23) with m? = « and the cor-
responding off-shell dispersion relation in Eq. (1.25), A(w, k) = —w? + k? + m?.
The eigenvalue equation for H is given in Eq. (1.26) with the off-shell dispersion
relation in (1.28).

Solutions for Hyy) = 0: The solutions to the equation Hoox = 0 for quantum
fluctuations in the trivial sector we obtain by setting the eigenvalue equation
(1.23)

0? 0? 9
[W T o2 +m” | Yor(z) = AMw, k) Yor(x), (5.7)
on-shell
Mw, k) = —?+k2+m? = 0. (5.8)
with the solutions for w
w = fwg, (5.9)

where
wr = VEZ+m2 (5.10)

We use Feynman boundary conditions assuming that the mass m contains an
infinitesimal imaginary part —ie
m? — m? — ie (5.11)
and
w = £VEZ+m?2 Fic = w F ie (5.12)

The solutions v (z) for positive frequencies we denote by ¢, (z) and those for
negative frequencies by 1, (z). They behave as

1 0 p— 0 . —
Yop(@) = for(ah)e TR e €T o Yo(w) =0
. 0 0
Yop(@) = gon(a) e TR T ETT lim (@) = 0. (5.13)
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The Jost functions for(z') and gox(z!) belong to the eigenvalue k satisfying the
equations [19]

9?2 9?2
T2 for(z') = K for(zh), —ngf(wl) = k% gow(a"). (5.14)
They read
. 1 - 1
xr = € X = € . .
for@') = KT go(at) = ek (5.15)

In our further calculations we drop the explicit notation (5.11) and understand
the mass m to contain implicitly the additional infinitesimal imaginary contri-
bution —ie.

5.1.2 Green function R, of the operator H:

Using the solutions (5.13) we construct the Green function R, of H satisfying
Feynman boundary conditions as

dk  _
o Vor(@2) Vi (1) /Wor, 9 > af

Ro(za|z1) = 0 (5.16)
o Ui (2) Vg (1) /Wor, 2] > 9,
with the Wronskian
WOk = —ink. (517)

The prove that Ry is indeed the Green function of Hy, is given in Appendix D.1.

5.1.3 Solutions for Hy) = 0:

The eigenvalue equation for quantum fluctuations i (z, t) around the SG soli-
ton, Eq. (1.21), reads

02 o2 . 2m?

020% 91 cosh? mz

¢k($) = )‘(wak) ﬂ)k(-r)> (5.18)

where A(w, k) = —w? + k% + m%  We set this eigenvalue equation on-shell
M wy, k) = 0. Using Feynman boundary conditions the solutions ¢4 (z) of Hiy, =
0 read for negative frequencies

Ur(@) = fulal)e rt’

k + im tanh ma! e—iwkﬂfo + ikt

5.19
k—im ’ 6.19)
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where the Jost functions f;(z') behave as [19]

im fo@) = R dm o fu@l) = a(k) R (5.20)

zl——00 xl—+o00

The solutions )y (z) for positive frequencies read

0
Ui(x) = gulah)eTHRT
_ k—wm ta.nh ma! e+iwk330 _ z'k:mI’ (5.21)
k—wm
with the asymptotic behavior of the Jost funtions gy (z!)
Jim ge(z') = a(k) ekt lim ge(zh) = etk (5.22)
The (asymptotic) amplitude a(k) is given by
k +1im
= ) 2
alh) = 623)

The wave function for the zero mode wy, = lim,_,¢ € = 0 (see Eq. 1.22) reads

_ 1 _vmm o€’ (5.24)
/27 cosh ma?! ' '

The spatial part of Eq. (5.18) fulfills the eigenvalue equation

Ug (x)

[ H? 2m?
9212 cosh? ma!

| vE@) = B of@). (5.25)

5.1.4 Green function R of the operator H :

Expressing the Green function R as a combination of negative and positive—
frequency solutions 1/);; and 7, , Egs. (6.19) and (5.21), we have

S (2) O )/ Wi+ 9 () 5 (@) Wo, 28> a2

R(wo|z1) = "
5 Ui (@2) iy (@) /Wi + g (22) Uy (@1)/Wo, - @} > b,
(5.26)
with Wronskians
Wi = —2iwpa(k), Wy = —2e (5.27)

The prove that R is indeed the Green function to H is given in Appendix D.1.
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5.2 The one-loop mass correction AM

In this section we derive the quantum correction AM to the soliton mass caused
by Gaussian fluctuations (see Eq. (4.7)) by following the procedure used in [19].
The quantum correction by Gaussian fluctuations read

H Det(O 2
Dety/HO _ et(d + m?2) i
" Det <D +m? — _ 27 )
cosh? mz1

= exp{— 1/2trlnHH0_1}
- exp{ —PAM( — t’)}. (5.28)
Hence the mass contribution is given by
AM = —i/2 / de'ln HH; (5.29)

We follow [19] and differentiate the exponent with respect to the Lorentz pa-
rameter o connecting two arbitrary Lorentz frames (z°, #!) and (y°, y') (see the
definition in Eq. (F.4))

d d
e trln H Hy' = /d2a: { ml/linx %(Dz +v(z)) H ! (2'|x)

- zhinw%(ﬂ e >>H0—1<m'|x>}, (5.30)

where the potentials are given by vg = m? and v = m?—2m?sech?ma'. Eq. (5.30)

is derived in Appendix D.2. In terms of the Green functions R(z|z) = H ~!(z|z)
and Ry(z,|z) = H_l(:r, |z), Egs. (5.16) and (5.26), we have

dyIndet HH,! //d% lim d,H(z) R(z'|z)
tl

— //d2a: lim d,Ho(x ) Ro(a'|x)
o ' —x
t//
_ / / d2x2—1[)k_($) d,Hjf (x) /Wy
t T
t//
n /t / 2 () dy HYE () Wo
t// dk
_ /tl/d%%wgk(a:)d@Hoka(:U)/Wom (5.31)

where we have abbreviated the derivative d/dy- with d.- Further we simplify
the notation of ¥ (x) as 1(x) = 1. We rewrite (5.31) with Hyy, = 0, Hyy = 0 and
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Hoor, = 0 by using the differentials with respect to ¢

2 2
0? 0?
Hig = (W_ oul? +v> Uy, doHYT = —Hdud  (5.32)
for the soliton sector and
0? 0?
Ho%rk = <W e —I—vo> ka, dy,Hy wark = —Hy d¢wark, (5.33)

for the trivial sector. This gives
dyIndet HH,' = / / d*z —W Lap Hdh
t/
tll
_ //d2x Wity Hd,bg + //dtd:c% Wo_kl Yo Hodpthgy
t t
Yoy dk 0?
_ 2 N -1~ (9 9 +
/t//d 2o Wit <a - (%12 +0) gt
2 1
/ﬂ/deO % (5, 2o _a 2+ v)dov]

dk 92
/t’/d2 Wor Yok (a 02 ppi? +”0) - (5.34)

Integration by parts over z° and 2° gives in Appendix D.2.2

1

dk < -
dylndet HHy ' = — / da' = (W Gao dpt — W v, dao dois } |

1

- / dot {Wg g B, i } (t, , (5.35)
where (a D0 b) = a(0,0b) — (Oy0a)b. In Appendix D.2.3 we evaluate the d, and
getin Eq. (D.34)

1 (t” _ t/)
21 cosh g

Indet HH;" / dz' dk zwk{ O g %‘W&}- (5.36)

If we introduce the spectral density p(k), Eq. (5.36) reads
(t” N t,)
cosh ¢

In 3 parametrisation [19], with & = msinh3 and dk = mcosh3d8 =
wrdf = Vk? 4+ m?2dp, it becomes

(t” _ t/)
cosh

Indet HH,!

/dk iV k2 4+ m?p(k). (5.37)

Indet HH,! / d im cosh 3 p(B), (5.38)
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where the spectral density p(3) fulfills

1 1
d =——/[d = -1 .39
[asot) =~ [ a5 (539)
Eq. (5.38) reads
. "o gl
Indet HHy' = -2 " —7) / dB. (5.40)
m cosh
Therefore, using Eq. (5.29)
AM®#" —t') =1/2i Indet HH,! (5.41)
the quantum contribution to the soliton mass reads in 3 parametrisation
AM = - / dg. (5.42)
2m
In k parametrisation we get for the spectral density
_ 1 1 LI o
p(/ﬂ) = % dx @¢k ka - ka ¢0k =
1 L [k —imk+ imtanhma! k — im tanh ma*
= — [ dx , . . -1
2 k+im k—1im k—im
_ 1 o] k? + m? tanh? ma! _
27 k2 + m?
1 . om? -1 1 m 2
o v k2 4+ m?2 cosh2 mal o o2 k?2+m?2 m
1 m
= ———0—. 5.43
7 k% +m? (5.43)
Integration over the spectral parameter k gives
1 [T m
== dk ———
1 00
= —— arctanE ‘ = —1 (5.44)
™ m l—oo

This confirms relation (1.33). Hence, the continuum spectrum in the soliton sec-
tor is shifted down by one mode with respect to the continuum spectrum of the

vacuum sector.
In k parametrisation we obtain the mass correction

m 1
AM = —— [ dk ——
27T/ VEZ +m?’
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where we have used Egs. (5.37) and (5.41). This can be rewritten to
dk:
AM = 3 V k2 + m2
dk:
= 3 V k2 + m2 arctan (5.46)

k’

and with the definition of the phase shift (1.31), the quantum correction AM
(5.46) reads

1 [dk
AM = = | —VE2+m? M (5.47)
2] 27 dk

This result for the mass correction of the SG soliton due to Gaussian fluc-
tuations confirms our result found in Eq. (4.27). In [19] Eq. (5.47) is modified
by changing from the energy momentum cut-off to mode number cut-off. This
change gives the additional finite term —/a /7 to (5.47).

In Chapter 4 we have performed our calculation in a Lorentz covariant form
in continuous space-time within the mode number cut-off regularisation. In
[24] we confirm within the mode number cut-off regularisation our continuous
space-time approach.
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Chapter 6

On the non-renormalisability of
the sine-Gordon model with
respect to quantum fluctuations
around non-trivial classical
solutions

In this chapter we discuss the renormalisability of the SG model, caused by
quantum fluctuations around non-trivial solutions ¥.(z). We perform the dis-
cussion to all orders of dimensional and dimensionless coupling constants within
the path—-integral approach. We show that the generating functional of Green
function of quantum fluctuations around non-trivial solutions () depends
on the ultra—violet cut-off. This implies a non-renormalisability of the quantum
field theory of quantum fluctuations around non-trivial solutions ¥ ().

Below we perform the discussion on the renormalisabilty of the SG model
caused by quantum fluctuations around soliton—antisoliton and soliton-soliton
solutions ¥ (x) (1.15).

The generating functional of fluctuations ¥/(z) around soliton-antisoliton and
soliton—soliton solutions ¥ (x) reads

Z[)]) = / DY exp {z / &2z [% 09 () 0"V ()
n %8u19(x)8“19(x) n % (cos B(u(x) + O(x)) — 1)
+ ag sin Ba(x) 9(z) + 19(3:)J(x)] } 6.1)

where J(x) is an external source of a fluctuating field ¥(z). The external source
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obeys the constraint [6]

/ d*z J(z) = 0. (6.2)

The term proportional to ¥(z) one can also unify with the external source defin-
ing a new external source J(z)

J(x) = J(z) + ap sin fIq (), (6.3)

which does not violate the constraint (6.2) due to the anti-symmetry of the
soliton—antisoliton and soliton-soliton solutions with respect to the transfor-

mations ! — —z! and 2° — —20. Indeed, the soliton—-antisoliton solution

Vsa(x!, 2°) (see Eq.(1.15) ) changes sign under time revearsal z° — — 2, whereas
the soliton—soliton solution ¥ss(z!, %) (see Eq.(1.15)) is anti-symmetric with re-
spect to the parity transformation x! — — z1.

For the regularisation and renormalisation of the generating functional of
Green functions we expand the r.h.s. of Eq.(6.1) in powers of cosf (Jq(z) +
Y(z)). This yields

Z[J] = exp {i/dzx%(‘)uﬂd(a:)a“ﬂd(x)}
/Dﬁ ;;—n' (%)n}j)/dzaji cos B (Va1 (z;) + 9(z;))

exp {i / e % 0,9(2)9"9(x) — % W) + 0@ T}, (64

where  is an infrared cut-off, which should be taken in the limit x4 — 0. The
product [T, [ d?x; cos B (Va(x;) + 9(x;)) means

- d?x; cos B (9 (i) + 0(xs) ) = [ d®xy...d%z,
1/ )+ i) = [ dn
x cos B (Ja(z1) +I(x1)) ... cos B (Vi (wn) + I(xn)). (6.5)

Using the exponential representation for the cosine—function, the r.h.s. of Eq.(6.4)
can be transcribed into the form

21) = exp{i / g - 5 Ouda ()" () }
/W ZZH. <62> 2 (—L;)!p! [ﬁ n_p/d2wkd2yl]

n=0 p=0

X exp{zﬂz a(xg) +9(zg)) Zﬁ a(yr) +19(yl))}

k=1 =1

X exp {z / &z % 0,9(x)0"9(z) — % P2 0% (z) + ﬁ(m)j(x)}. (6.6)
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The terms depending on the classical solution 9(x) can be written in front of
the path integral. This gives

20) = exp i / d2mlaui9c1($)8“19cl(x)}
XiZ( ) 5 = p)ipl . [f[oﬁ/d%kd?yz]

n=0 p=0

exp {i 63 Ba(or) - Hfﬂd(yz))} [0 exp {83 0(x) 16y 9w}
= =1 k=1 =1

k=1
exp {z / d*x % 0,9 (x)0"d(x) — % p? 9% () + ﬁ(x)j(x)} (6.7)

Integrating over the fluctuating field 9(x) we obtain

Z[J] = exp {i/d%%auﬁd(x)(?“z?d(x)}

0o n n -1 p n—p
X%g (B_g> 2% (n—p)p! LE[O pin /dzmkd%ﬂ]
exp {182 Paten) — 3 v} exp { L [ oy T A - ) T)
k=1 =

p p n—p
R RO SN ED SINVETIN) O ERLED 9 DI

1 =1 k=1 I=1

(6.8)
The causal two—point function is
Alx —y;p) = — - In (—,uQ(a: —y)?+ 1'0) ., AOyjp) = ia In <A—z> . (6.9)
47 47 W

The term in the exponent, proportional to ./, can be rewritten as
P n—p _
exp {i6 [ (3" A=y~ Y Al - i) )}
k=1 =1
A o
= exp zﬁ/dzyln - H

k=11=1

xp —y;p)? +i0y =
(I;/l—y)2—|—z'0 )J(y)}

— exp {4i (2p —n) 1n(—u2)/d2yf(y)
/d2y 1n<ﬁﬁp Tk Y i;(?)J(y)}. (6.10)

k=11=1
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It is seen that the dependence on the infrared cut-off vanishes due to the con-
straint (6.2). In the terms, which do not contain the external sources

p n—p
oo { = 5% Ao
n—p n—p
+%Zﬂ2( Z Z Az, — Tryip) + Y > Alay, — SUZQ%M)) }7 (6.11)

k1=1ko=1 l1=11l=1

the dependence on the infrared cut—off vanishes due to the relation

) 14 1
ﬁw?p@—n) 1n<—u2>—5i i6%p? In(—p >—§4i i(n — ) n(—p?)
2
2
_ - 57 (—n? + 2pn) In(—pi2), (612)

only for n = 2p. This gives

Z[J] = exp {z’/d%%@uﬂcl(a:)a”ﬂcl(a:)}

E() G I f oo

k=0 [=0
n

X exp {zﬁ( Yalxg) — 1901(311)) }
. k=1 =1
X exp {% /d233 d%y j(éU)A(ff —Y; u)j(y)

+zﬂ/d2y< Alzg —ys ZAyz yu) ()
+zﬂ2(zn:A(xl — T p) + ZA(M - yk;ﬂ))

1<k l<k:
1
+522n62 — i3 kzllz;A Ty — Yp; b } (6.13)

Replacing the bare coupling ag(A?) as
ag(A?) = Z1(A% 3%, M?) on (M?), (6.14)

where the renormalisation constant is equal to

Z1(A% 3%, M?) = (—) (6.15)



and M is the renormalisation scale, we obtain the following expression for the
generating functional of Green functions

210 =exp {i [ 25 0,0a(@)0"0u(w)}

S (4[]

@—Z)ﬁ v (X—Z)ﬁ /87] exp {16( 3 6(0) - 3 o)) )
k=1

k=1

X

X exp {% /d2x d*y J(z)In (_M2(33 —y)’+ i0) )
dzyzl (H) J)

- ﬁ—; (ln (—p2(zk — 2;)* +10) + In (—p® (yx, — y;)* + i0) )

4
i<k
—ﬁ—z ZH:ZH:IH(— 2ap — )2—1—1'0)} (6.16)
. HATE — Yk . .
k=11=1
The dependence on the infrared cut—off 1 is cancelled due to the relation
g 2, B oy B 2
Kl — = — — = 0. a7
oy 2nIn(—p )—1—47r n(n —1)In(—p*) — " ZIn(—p?) = 0 (6.17)

Thus, we arrive at the following expression for the generating functional of
Green functions

207) = exp (i / iz L 3 Ouda ()" D)}
S () [fL ]
X exp {iﬁ<zn:19cl(fﬂk) - zn:ﬁcl(yk))}

k=1

X exp { /dzmd2yJ( Jn(—M?(z — y)? + i0)J (y)

— /d%cﬂyJ (%)f(y)

w2 f d2ykz:11 e

+ﬁ_22n:(1 (=M (xx — 25)* +i0) + In(—M>(yp — y;)* + i0
o n Tk — X i n Yk — Yj) +Z))
j<k
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2 n n
_& SN (- MA(w — i) + iO)}, (6.18)

k=11=1

where the term, proportional to In(M?/u?), vanishes due to the constraint (6.2).
This gives

ZlJ] = eXp{ /d 33[ auﬂcl(x)auﬁcl(fv)]}
Sk () [T o]
X exp {iﬂ(iﬁcl(xk) — Zn:ﬂcl(yk))}

k=1 k=1

X exp {8% /d23: d%y j(év)ln(—MQ(fU —y)%+ zO)j(y)

/d%yZl —”””k_ )T

1 (yr —
52 .
+=> (1n (=M2(z), — ;)% +i0) + In(—M2(y — ;)% + iO))
<k
— = DY (=M — )+ iO)}. (6.19)
k=1 1=1

The rh.s. of Eq. (6.19) depends on the ultra—violet cut-off A in the form of

(7)) (A2)
52

sin ¥ () (6.20)

which is included in the source .J () (6.3) and appears in the definition of corre-
lation functions of the fields of quantum flcutuations around soliton—antisoliton
and soliton-soliton solutions. This means that quantum fluctuations around
soliton—-antisoliton and soliton—soliton solutions in the SG model are defined by
a non-renormalisable theory.

Since the result can be valid for any classical solution ¥ (z), the results ob-
tained above can make a hint to quantum field theory of quantum fluctuations
around classical solutions of sine-Gordon model equation of motion are non—
renormalisable. This can be possibly illustrated by using the mathematical rep-
resentation

~ « 2
ZlJ] = exp{%/d% sinﬁd(:v)ﬁs(iv)} Z[J],

(6.21)
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where Z[J] is given by

2] = / D9 exp i / pe [%8M19C1(x)19cl(a:) + % 9,0(2)9" 0 (x)

+% (cos B((Ver(z) +V(x)) — 1) + ﬁ(g;)J(:c)] }

(6.22)

which corresponds to the generating functional for Green functions of quantum
fluctuations around the trivial vacuum.
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Chapter 7

Conclusion for the sine-Gordon
model

We have investigated the renormalisability of the sine-Gordon model. We have
analysed the renormalisability of the two—point Green function to second order
in a and to all orders in 3?. We have shown that the divergences appearing in
the sine-Gordon model can be removed by the renormalisation of the dimen-
sional coupling constant a(A?). We remind that the coupling constant 32 has
not to be renormalised. This agrees well with a possible interpretation of the
coupling constant 32 as & [2, 25]. The perturbation theory is developed with re-
spect to the renormalised dimensional coupling constant a,.(M?) depending on
the normalisation scale M and the dimensionless coupling constant 32. Quan-
tum fluctuations relative to the trivial vacuum calculated to first order in a,.(M?)
and to arbitrary order in 32 form a physical coupling constant a,y, after the re-
moval of divergences. The physical coupling constant «, is finite and does
not depend on the normalisation scale /. We have argued that the total renor-
malised two—point Green function depends on the physical coupling constant
aph only. In order to illustrate this assertion (i) we have calculated the correction
to the two—point Green function to second order in a,.(M?) and to all orders in 32
and (ii) we have solved the Callan-Symanzik equation for the two-point Green
function with the Gell-Mann-Low function, defined to all orders in «,.(M?) and
3%. We have found that the two-point Green function of the sine-Gordon field

depends on the running coupling constant a,.(p?) = apn(p®/apn)? /57, where
3 = 3%/(1+ (3?/87) < 1 for any (2.

We have analysed the renormalisation of the two-point Green function of the
massive sine-Gordon model. We have shown that the mass operator m29?(z) is
soft. In the infrared limit my — 0 the physical mass of the MSG model quanta
reduces to our result (2.33). For m% > a,(M?) we have shown that the mass
parameter mg is unrenormalisable. The physical coupling constant o, has been
calculated to first order in «,.(M?) and to all orders in 52. This has allowed
to calculate the Gell-Mann-Low function and to derive the Callan-Symanzik
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equation for the two—point Green function. We have shown that the Callan—
Symanzik equation reduces to the form used by [16] to the same order in per-
turbation theory. Solving this equation we have calculated the running coupling
constant and found that for 3? < 87 the massive sine-Gordon model with quan-
tum fluctuations around a trivial vacuum, calculated to first order in a,.(M?)
and to all orders in 32, is asymptotically free for infinitely large momenta. In
turn, for 32 > 87 the running coupling constant ;. (p?) grows with p?. But since
a(p?) has been calculated perturbatively for m2 > «,.(M?), the running cou-
pling constant should obey the constraint m3 > «,.(p?). This restricts the region
of the allowed momenta p? < m%(m%/aph)l/25(ﬂ2) with 6(3%) = (8% — 8n) /87
[16]. All these results do not contradict those obtained by [16]. We discuss the
renormazability of the massive sine-Gordon model non—perturbativly for quan-
tum fluctuations around a vacuum. We confirm result that the mass parameter
mg does not introduce any divergences.

In addition to the analysis of the renormalisability of the sine-Gordon model
with respect to quantum fluctuations relative to the trivial vacuum, we have
analysed the renormalisability of the sine-Gordon model with respect to quan-
tum fluctuations around a soliton. Following [17, 18] and [19] we have taken
into account only Gaussian fluctuations.

For the calculation of the effective Lagrangian, induced by Gaussian fluctu-
ations, we have used the path-integral approach and integrated over the field
¥(z), fluctuating around a soliton. This has allowed to express the effective La-
grangian in terms of a functional determinant. For the calculation of the con-
tribution of the functional determinant we have used the eigenfunctions and
eigenvalues of the differential operator, describing the evolution of the field
Y(z). We have shown that the renormalised effective Lagrangian, induced by
Gaussian fluctuations around a soliton, coincides to leading order in 52 with
the renormalised Lagrangian of the SG model, caused by quantum fluctuations
around the trivial vacuum to first order in oy and to second order in 5%. After
the removal of divergences the soliton mass is equal to the mass of a soliton,
calculated without quantum corrections, up to the replacement ag — app. This
implies that Gaussian fluctuations around a soliton do not produce any quan-
tum corrections to the soliton mass. Hence, no non—perturbative singularities
of the sine~-Gordon model at 32 = 87 can be induced by Gaussian fluctuations
around a soliton.

We compare our continuous space—time approach to Gaussian fluctuations
around soliton with that of Faddeev et al. [19]. We derive our result for the mass
correction to the soliton induced by Gaussian fluctuations within the formal-
ism of [19]. The finite term appearing in [19] is due to a different regularisation
scheme. In [19] and also in [18] the mass correction were obtained by summa-
tion over on-shell energy momenta, while in our approach we stay manifestly
Lorentz covariant through our calculations from the beginning. The summa-
tion over the quantum numbers is calculated in a completely covariant way. We
confirm our continuous space—-time regularisation scheme within the discretised
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regularisation approach [24].

The renormalisation of the sine—-Gordon model, which was carried out before
1979 in [26]-[29], has been discussed well by Amit et al.. After 1980, as has been
pointed out by Nandori et al. [30], the main results on the renormalisation of
the sine—-Gordon model in two dimensions have been obtained in [31]-[38]. In
these papers the sine-Gordon model has been investigated at finite temperature
in connection with the XY model and the existence of phase transitions.

Unlike [16, 26]-[38] our results can be applied to the analysis of the FQHE
(the Fractional Quantum Hall Effect) [4, 5]. As has been shown in [25], the mas-
sive Thirring model, which can describe one-dimensional edge fermions [4, 5],
bosonises to the sine—-Gordon model for 32 > 8. According to [25], for 32 > 87
the sine-Gordon system produces mainly solitons, which can play an important
role in the FQHE [39].

Finally, we consider the renormalisability of the sine-Gordon model with
respect to quantum fluctuations around any nontrivial classical solution. We
show, that quantum fluctuations around any classical solution in the sG model
are defined by a nonrenormalisable theory.
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Part 11

Renormalisibility of the Massless
Thirring Model
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Chapter 8

On the renormalisation of the
Thirring model

8.1 Introduction

The massless Thirring model [40] is an exactly solvable quantum field theo-
retic model of fermions with a non-trivial four-fermion interaction in 1 + 1-
dimensional space-time defined by the Lagrangian invariant under the chiral
group Uy (1) x Ua(1)

Lon(a) = @) (@) — 5 9 D (@) P (o), )

where 9(x) is a massless Dirac fermion field and g is a dimensionless coupling
constant that can be both positive and negative.

A solution of the Thirring model assumes the development of a procedure
for the calculation of any correlation function [41]-[52]. As has been shown
by Hagen [43] and Klaiber [44], the correlation functions of massless Thirring
fermion fields can be parameterised by one arbitrary parameter. In Hagen’s no-
tation this parameter is {. Below we show that the correlation functions in the
massless Thirring model can be parameterised by two parameters . This con-
firms the results obtained by Harada et al. [53] (see also [54, 58]) for the chiral
Schwinger model. In our notation these parameters are £ and 7. The region
of variation of these parameters is restricted by the condition for the norms of
the wave functions of the states related to the components of the fermion vector
current to be positive. For j = 1 the parameter ¢ is equal to Hagen’s parameter
¢ = ¢. The parameters £ and 7) we use for the analysis of the non—perturbative
renormalisability of the massless Thirring model in the sense that a dependence
of any correlation function on the ultra-violet cut-off A can be removed by the
renormalisation of the wave function of Thirring fermion fields only. We show
that the independence of any correlation function of an ultra—violet cut—off exists
only if the dynamical dimensions of Thirring fermion fields, calculated from dif-
ferent correlation functions, are equal. The dynamical dimensions of the known
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solutions for causal Green functions and left-right correlation functions of the
massless Thirring model are different [41]-[52]. The existence of different dy-
namical dimensions of Thirring fermion fields obtained from different correla-
tion functions has been regarded by Jackiw as a problem of 1+1-dimensional
quantum field theories [47]. We show that the determinant Det (i + A), where
A, is an external vector field, can be parameterised by two parameters. For this
aim we calculate the vacuum expectation value of the vector current and show
that the ambiguous parameterisation of the determinant Det(id + A) is fully
caused by the regularisation procedure [53]-[58]. We analyse the constraints on
the parameters ¢ and 7 imposed by the positive definiteness of the norms of
the wave functions of the states related to the components of the vector fermion
current. We show that the positive definiteness of these norms does not pro-
hibit the possibility for the dynamical dimensions of massless Thirring fermion
fields to be equal. According to the equivalence of the massive Thirring model
to the sine-Gordon model [2], the constraints on the parameters 7 and £ together
with the requirement of the non—perturbative renormalisability of the massless
Thirring model lead to the strongly coupled sine-Gordon field with the cou-
pling constant 3? ~ 8. The behaviour and renormalisability of the sine-Gordon
model for the coupling constants 32 ~ 87 has been investigated in [16, 24, 32]-
[36, 59].

8.2 Generating functional of correlation functions

The generating functional of vacuum expectation values of products of massless
Thirring fermion fields, i.e. correlation functions, is defined by

Znla. ) = [ DD expi [ [H@)in0,u(e) - 5 990 e()i)

(@) (@) + T(xb(a)). (82)
It can be represented also as follows
7l o g2a 0 0 4. 7 F
Znl3.0) = e {59 [ da NPTl LR PR

where we have denoted
204 00) = [Depdexp i [ o [0 0,0() + Han (@) A0
(@) (@) + T(@)(a)) (8.4)

The functional Z%Og [A; J, J] is a generating functional of vacuum expectation val-
ues of products of massless fermion fields of the massless Schwinger model cou-

pled to an external vector field A, (z) [60]. The integration over fermion fields
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can be carried out explicitly and we get

Z%B [A; J,J] = Det(id + A) exp {z // d?x d*y J(x) G(z,y)a J(y)}, (8.5)

where G(z,y)4 is the two—point causal fermion Green function obeying the
equation

i (s~ i A (@))Cla)a = — 3P — ). ©6)

As has been shown in the Appendix E.1, the functional determinant Det (i 4 A)
can be parameterised by two parameters

Det(id + A) = exp{%// d*xd*y A, (z) DM (x — y) A,,(y)}, (8.7)
where we have denoted
3 n oo 0
WY (e — S ws@n. .y L 2 o
DW (x —y) —g"o (z —y) x Oa, (%VA(;U Y ). (8.8)

Here ¢ and 7] are two parameters, g*” is the metric tensor and A(x — y; u1) is the
causal two—point Green function of a free massless (pseudo)scalar field

iNw —y;p) = % In[—p*(x — y)* +i0]. (8.9)
It obeys the equation (, A(z — y; 1) = 6 (x — y), where 1 is an infrared cut-off.,
The appearance of two parameters is caused by the dependence of the de-
terminant Det(z’é + fl) on the regularisation procedure [53]-[58]. In Appendix
E.4 we find a constraint for these parameters imposed by the positive definite-
ness of the norms of the wave functions of the states related to the components
of the fermion vector current. The parameters ¢ and 7 are related to Hagen’s
parameter £ as E=¢andn = 1.
The solution of the equation (8.6) is equal to

Gla.y)a = Golz —)
cexp { —i(g"7 —e9%) [ A - s - Al - s As()
(8.10)

where %7 is the antisymmetric tensor defined by £°! = 1 and Gy(z — y) is the
Green function of a free massless fermion field

. 9 L M@=y
¥y .
Go(z —y) = iv e Al —y;p) = or w— g2 —i0 (8.11)

satisfying the equation i749,Go(z — y) = — 6@ (z — y).
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Any correlation function of the massless Thirring fermion fields can be de-
fined by functional derivatives of the generating functional (8.3) and calculated
in terms of the two—point Green functions G(z,y) 4 and A(x — y; ). Below we
calculate the causal two—point Green function G(z,y) and the correlation func-
tion C(z, y) of the left-right fermion densities defined by

Glay) = (0TI = § 57 s Znld |
e - (s e
- % (ix)<1_2 )Zéjix)%&fiy)(l—; )iéj(s(y)ZTh[J’J]‘J:j:O’

(8.12)

where T is the time-ordering operator. The main aim of the investigation of
these correlation functions is the calculation of the dynamical dimensions of the
massless Thirring fermion fields and the analysis of the possibility to make them
equal [47].

8.3 Two-point causal Green function G(z, y)

In terms of the generating functional (8.2) the two—point Green function G(z, y)
is defined by

1 0 0
= - — Z
G(z,) i 0J(z) 0J(y ™l J]‘J:J:O
- ev{5a [ 5 )
B 29 8A,(2) 6AH(z)
X {3 d?21d%29 Ax(21) DM (21 — 20) A (zQ)}G(;U y)A‘ .
2 v " a=0
(8.13)
The calculation of (8.13) reduces to the calculation of the path integral
_ 1 ’Y“(‘T — 2 m
{
- 3 g// d2z1d zouy(21) DM (21 — 22) uy(22) + \/E(ga — B )
5 0
[ A =z ) = Aly =z us() |- (8.14)
Symbolically (8.14) can be written as
I e C 2
G(z,y) = Sr p— _ZO/Duexp{ §uu(1+gD) uy +
VGO (Dg — Aty — /G 0Dy — Ay) M u,,}. (8.15)
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The integration over u can be carried out by quadratic extension. This yields

1 nv
x exp{ - —g((‘)mA — YA )(m) (T A, — VA,
1
Z x — oY po v(o%F — oY
(@A, — DIA,) e (1+gD)aﬁ€ (020, — BYA,) } (8.16)

For the subsequent calculation we have to construct the matrix (1 + gD)~!. The
matrix (1 4+ ¢gD) has the following elements

(L4 gDy (,2) = (1+€2) g 6P (@ —2) - iaiaim—z;u). (8.17)

The elements of the matrix (1 + gD)~! we define as (see Appendix E.2)

(1 4+ 0D) Naul29) = Ager 62z ) + B A(

The matrices (1 + gD) and (1 + gD)~! should obey the condition

z—yip).  (818)

[ 204 gDy @ (1 + D) D) = 6P —y) (819)
This gives
<a+yDrwwuw>=1jZ%$”u—w
+4 1 O L AG—ym). (8.20)

(D) (it e-n) o

Using (8.20) we obtain (see Appendix E.3)

1 " 1 weo
) g (%Aw - ayAy) ( ) (O Ay, — ail//Ay)

" 1+ gD

=-——iL——hA®u%ﬂA@—ywm
+ (€ - n)
z Y el 1 vio*r Y
L g(OmA, — OUA)e (1 . gD)aﬁe (O, — BYA,)
= = [ZA(O lu) A(ﬂj‘ - Y ﬂ)}a (821)
1+5—
where iA(0; 1) is equal to

, 1 A?
iAO0:p) = == m(p). (8.22)
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Thus, the two—point Green function reads

L ™z =y dwdgy(g) iA0; 1) —iA(z — y; 1))
_ L Y@y o 7 ’
G(z,y) o (;U—y)Q—iOe
A2 M@=y 2 2 4i0]
8 “A2(g — (@) (9)
= AG(djy(9); Az, Ay), (8:23)

where d,,(g) is the dynamical dimension of the Thirring fermion field defined
by [47]
g’ Ui
dip(9) = — . (8.24)
Yy 472 9 : 4
(1+ed)(1+¢-n2)

™

Now we are proceeding to the calculation of the correlation function C(z, y).

8.4 Two—point correlation function C(z,y)

According to Eq.(8.12), the two—point correlation function C(z,y) of the left—
right fermion densities is defined by

Cley) = % ) (1—75)1 5§ 1 6 (1+’y5)1 ) J7j]‘

6J(x)\ 2 JidJ(@)idJ(y)\ 2 JidJ(y) Zn
i 5 5

= o { §g/d2z 5A() 5Au(z)}

X exp{%//d2z1d2zg Ax(z1) D (% —Z2)A¢(z2)}

< wfewaa (S50 e (D)) 8.29

This reduces to the calculation of the path integral

1 1
C =—
() 472 (x —y)? —i0
x [ D*u exp{ - %uu(l + gD)"uy, —2/90u(Ag — Ay) e u,,}
1 1

472 (z —y)2 —i0

) xz e 1 v [ aT
. eXp{mg(&“Am_asz)gu <1+9D)a55ﬁ (Q,Ax—@}jAy)}. (8.26)
The result is
Clay) = L L 8wy A0 0) — iA@ — y; )

A2 (z —y)? —i0
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A2 1 —2d,;
- _ A=)+ (rp)?
P @y M@y il

= N’ C(dgy2(9); Az, Ay). (8.27)

The dynamical dimension d - is equal to

g 1
dige2(g) = —=— —. (8.28)
() 27 1 +£%

For £ and 7, restricted only by the constraint caused by the positive definiteness
of the norms of the wave functions of the states related to the components of
the fermion vector current, the dynamical dimensions of the massless Thirring
model, calculated for the two—point causal Green function (8.24) and the correla-
tion function of the left-right fermion densities (8.28), are not equal. According
to Jackiw [47], this is a problem of quantum field theories in 1+1-dimensional
space-time. However, equating d;,2(g) and dy,,(g9) we get the constraint on
the parameter 7

7= %T(Hf%). (8.29)

As has been shown in Appendix E.4, the constraint on the region of variation
of parameters ¢ and 7, imposed by the positive definiteness of the norms of the
wave functions of the states related to the components of the vector current, does
not prevent from the equality of dynamical dimensions d ;,,2(9) = dy,,(9)-

This indicates that the massless Thirring model is renormalisable. The de-
pendence on the ultra—violet cut-off A can be removed by the renormalisation of
the wave functions of Thirring fermion fields for both the 2n—point Green func-
tions G(z1, ..., Tn; Y1, ..., Yn) and the 2n—point correlation functions C(z1, ..., Tn;
Y1, ..., Yn) Of the left-right fermion densities, the cut-off dependent parts of which
are proportional to (A2)~54(9) and (A2)_2"d<w)2(g), respectively. Such a de-
pendence can be proved by direct calculations. The dynamical dimension of the
Thirring fermion fields is equal to dy(g9) = djy)2(9) defined by Eq.(8.28). We
have to emphasize that, according to Jackiw [47], the dynamical dimension of
the operator : 9 (z1) ... ¥ (xn)Y(y1) - .. ¥(yn) :, where : ... : stands for normal or-
dering, should differ from 2nd,(g). This means that the dynamical dimensions
of the Thirring fermion fields are nondistributive [47]. However, the nondistribu-
tive property of the dynamical dimensions of the Thirring fermion fields does
not influence the renormalisability of the massless Thirring model.

8.5 Non-perturbative renormalisation

According to the standard procedure of renormalisation in quantum field theory
[8] the renormalisability of the massless Thirring model should be understood
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as a possibility to remove all ultra—violet divergences by renormalisation of the
wave function of the massless Thirring fermion field +/(z) and the coupling con-
stant g.

Let us rewrite the Lagrangian (8.1) in terms of bare quantities

Lrn(x) = o(x)iy"dupo(x) — %90 Yo ()" tho ()0 (@) yutbo (), (8.30)

where 1g(7), 1o(z) are bare fermionic field operators and gy is the bare coupling
constant.

The renormalised Lagrangian £(x) of the massless Thirring model should
then read [8]

Lrufa) = G 0u(@) — 5 g B v(@)d () (o)

HZ = 1) Pa)in () — 5 9 (Zn — 1) Dl p(a) bl )

= Z0@N () — 59 7 B @@, (63D

where Z; and Z; are the renormalisation constants of the coupling constant and
the wave function of the fermion field.

The renormalised fermionic field operator ¢)(z) and the coupling constant g
are related to bare quantities by the relations [8]

dole) = 2" 0(),
g = Z1Zy%g. (8.32)
For the correlation functions of massless Thirring fermions the renormalisability
of the massless Thirring model means the possibility to replace the ultra—-violet
cut-off A by a finite scale M by means of the renormalisation constants Z; and
Zs.

According to the general theory of renormalisation [8], the renormalisation
constants Z; and Z3 depend on the renormalised quantities g, the infrared scale
1, the ultra—violet scale A and the finite scale M. As has been shown above
the Green functions and left-right fermion density correlation functions do not
depend on the infrared cut-off. Therefore, we can omit it. This defines the renor-
malisation constants as follows

Zl = Zl(g7MaA)a
Zy = Zy(g. M:A). (8.33)

For the analysis of the feasibility of the replacement A — M it is convenient to
introduce the following notations

GOzy, .. xniy1, .. yn) = A" G(O)(d(djw)(go);/\xl, s Az Ay, Ay,
C(O)(.Tl, ey T Yl .. ,yn) = Azn C(O)(d(,l[)w)2 (90)7 AJI]_, s 7A$na Ayl7 s 7Ayn)
(8.34)
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The transition to a finite scale M changes the functions (8.34) as follows

G(O)(mlv"' 7$n;y17"'7yn) =

—2ndgy) (9)
= (M) M™ GO (d g (90); My, ..., Mzp; Myy,..., Myy),
C(O)(xla ey Ty Y1, - 7yn)

A\ e (9)
=\ 7 M3 C(O)(d(d;w)z(go);Mxl, ooy Mzxp; Myy, ..., Myy).

(8.35)

The renormalised correlation functions are related to the bare ones by the rela-
tions [8]:

G(T)(ajl,...,xn;yl,...,yn) = Z{"G(O)(ajl,...,xn;yl,...,yn)

A\~ 2 (9)
= 72" 45 M GONd 5 (Z125%g); Man, ..., Man; Mys, ..., My,),
C(r)(xh‘”7$n;y17"'7yn) :Z2_2n0(0)(x17”‘7xn;y17"'7yn)

—4nd(gy)2(9)
= Z, " <—) M2" CO(d 2 (2125 %g); My, ..., Mag; My, ..., Mys).

M
(8.36)
Renormalisability demands the relations
G (zy, .. Tns Y1,y Yn) = M G(’")(d(d;w)(g);Mxl, ooy Mazp; Myy, ..., Myy),
CONxy, .o sty yn) = M C(T)(d(u;w)g(g); Mzy,...,Mxp; My,..., My,),
(8.37)

which impose constraints on the dynamical dimensions and renormalisation
constants

dgpy(9) = digy)(Z1257°9),
digp2(9) = dugy2(Z1257°9) (8.38)
and
A\ 2wy (9) A\ 242 (9)
2y = Z' (37 — 1. (839)

The constraints (8.38) on the dynamical dimensions are fulfilled only if the renor-
malisation constants are related by

Z, = Z2. (8.40)
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The important consequence of this relation is that the coupling constant g of the
massless Thirring model is unrenormalised, i.e.

Jgo = 9. (8.41)

The unrenormalisability of the coupling constant, gy = g, is not a new result and
it has been obtained in [61, 62] for the massive Thirring model.
The unrenormalisability of the coupling constant, g9 = g, implies also that
the Gell-Mann-Low g-function, defined by [8]
dg

should vanish, since g is equal to g9, which does not depend on M, i.e. (g, M) =
0.

The constraint (8.39) is fulfilled for d;,)(9) = d(py)2(9) only. In this case
the dependence of the 2n—point causal Green functions and the 2n—point cor-
relation functions of left-right fermion densities on the ultra—violet cut—off A
can be simultaneously removed by renormalisation of the wave function of the
massless Thirring fermion fields. This means the massless Thirring model is
non-perturbative renormalisable.

8.6 Conclusion

We have found the most general expressions for the causal two—-point Green
function and the two—point correlation function of left-right fermion densities
with dynamical dimensions parameterised by two parameters. The variation of
these parameters is restricted by the positive definiteness of the norms of the
wave functions of the states related to the components of the fermion vector
current (see E.4).

Our expressions incorporate those obtained by Hagen, Klaiber and within
the path—integral approach [43]-[52]. Indeed, for Hagen’s parameterisation of
the functional determinant with the parameters ¢ = ¢ and 7 = 1 the dynamical
dimensions d () and d(;,,2(g) take the form

dle) = 5 1 dgupls) = —& —1g. 643)
op\d) = 59 9IN(~_ . 9\ @y)2\J) = 7o g >
For § = 1 we get
2
g° 1 g 1
dygy(9) = . dgge(g) = — . (8.44)
Yy 272 | i g @) 27 1 4 g
m m

These are the dynamical dimensions of the Green functions and correlation func-
tions of left-right fermion densities obtained by Klaiber [44] and within the
path—integral approach [45]-[52].
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We have shown that the dynamical dimensions d,,(g) and d,2(g) can be

made equal. This fixes the parameter 7 in terms of the parameter £ and gives the
dynamical dimension of the massless Thirring fermion fields to

1
A5ul0) = dgupl) = dule) =~ g (8.45)
™

As has been pointed out by Jackiw [47], the inequality of dynamical dimensions
of fermion fields obtained from different correlation functions is a problem of
1+1-dimensional quantum field theories. The equality of the dynamical dimen-
sions dy,,(g) and d(;,,)2(g) is not suppressed by the positive definiteness of the
norms of the wave functions of the states related to the components of the vec-
tor currents. The positive definiteness of the norms of the wave functions of
these states imposes some constraints on the variation of the parameters 7 and
¢, demanding the parameter 1 + £ g/7 to be negative, i.e. 1 + £ g/m < 0.

This makes the massless Thirring model renormalisable in the sense that the
dependence of correlation functions of Thirring fermion fields on the ultra-violet
cut-off can be removed by renormalisation of the wave function of Thirring
fermion fields only. We have corroborated this assertion within the standard
renormalisation procedure.

The removal of divergences of the massless Thirring model by the renormal-
isation of the wave function of the Thirring fermion fields has been analysed
by Marino and Swieca [68] within the Mandelstam representation of massless
Thirring fermion fields [63]. The divergences of the correlation functions were
mapped into electrostatic (self-interaction) divergences of an associated system
of point-like charges and removed by the renormalisation of the wave function.

¢From the constraint —g (1 + £ g/7) > 0 there follows that the coupling con-
stant 52 of the sine-Gordon model is of order 3? ~ 8r. The behaviour and
renormalisability of the sine~-Gordon model for the coupling constants 32 ~ 87
has been investigated in [16, 24, 32]-[36, 59].

We would like to accentuate that the dynamical dimensions of the massless
Thirring fermion fields are nondistributive [47], but this property does not influ-
ence the renormalisability of the massless Thirring model discussed above.
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Appendix A

Calculations to Chapter 1

A.1 Gaussian fluctuations

To solve the eigenvalue problem given by

0? 0? 20
_ - )Y, = \Nw, k)Y, , Al
where
Mw, k) = =2+ 4+ (A.2)
we make the ansatz [69]
-
Dorp(z) = e W g (ah). (A.3)
This gives
82
<w2 + EWERS o 4 2asech? /ot ) Ip(zt) = — Nw, k) O (zh). (A4)
By a change of variables
¢ = tanhvaz!, —-1<¢<1. (A.5)

we arrive at

{a(l — 52)i [(1 — 52)% + Mw, k) + w? — a +2a(1 — 52)} 91(&) = 0. (A.6)

e e
A division by a(1 — £2) yields
d 9 d Mw, k) +w? —a B
{d_g[(l s )d—J AR ey ) }ﬁk(g) = 0. (A7)
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This is a special case of the Legendre differential equation [70, 71]

2
{d%[(l—&?)%] +A = “Tfigg)}ﬁk(g) =0, (A.8)
with ) )
N =1(l+1) = 2, m2:1—M:—k— (A9)
[0 [0

Since this is a Sturm-Liouville problem we get an orthogonal set of eigenfunc-
tions with real eigenvalues. In order to get square integrable functions corre-
sponding to bound states, the hypergeometric functions have to become poly-
nomials. These are the associated Legendre polynomials

(1 _ 52)m/2 dHm
2l d{“‘m

M) = (-1 (A.10)

with [ = 1 the condition for m reads
0<m<l = m = 0,L. (A.11)
This gives the polynomials
Fi(§) = 1. Pl =& Pl = (1-¢). (A12)

The constant solution P{ () can be dropped. For the normalisable solutions the
eigenvalues read
m® = — kg /o =0, 1. (A.13)

For kg = 0 we have the eigenfunction
PY(z') = N} tanh /az! (A.14)

and for k; = iy/a the corresponding eigenfunctions depending on the variable

z! reads ' '
Pf\/a(ml) = Nl“/asech\/axl, (A.15)

N and N f\/a denote the corresponding norms. The Pf\/a(a:) is the so called zero
mode which is the partial derivative of the soliton solution (1.12) with respect to
o

d 4
Lo = 22 arct 1_ .1
= (z%) Gz arctan exp va(x' — z4)
4 i/
= 3 sechyv/a(z! — ) o Pl‘/_(az:1 —zp). (A.16)

Therefore, it shifts Js(z!) and is not a real bound state. It corresponds to the
translation invariance of the theory. We will denote k; in our further calculations
as k1 — ko = iy/a. We denote the normalised solution (A.15) as

(zl) = wgm. (A.17)
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For the scattering states the solutions read

o 1 £+ 17™2 1-¢
Pm¢) = T [6—1] F(—z,l+1,1—m,T>, (A.18)

(see [71]). This gives with the relation for the eigenvalue k&

m? = —k*/a = m = ik/Va (A.19)

and with [ =1 (I = —2 gives the same solutions)

£-1

for the scattering solutions depending on x

PIRVE(g) = NIRVE [ﬂ]ﬁ F<_1, 2, 1—z‘k/\/a;1—;£>, (A.20)

i o 7 o k ) tanh L .|
ia
For the normalised scattering solutions we write
1 k+iyatanh Vaz! il
(') = W A22
SN A T (a.22)

Since the solution in (A.14) is the limit £ = 0 of (A.21) [70] we have only one
discrete mode (A.17).
The set of eigensolutions to the stability operator of the soliton ¥

The normalised complete set of solutions (A.3) to the eigenvalue equation (A.1)
read

1 Va1 i
Q9w - = vy - W T
#(2) V2or V2 cosh(yax!) ¢
Joplz) = - FHivotanh varl —iwa®+ika' (A.23)
’ 27 VE? + «

A.11 Completeness and orthogonality of the eigensolutions of the
stability operator

Since, the underlying differential operator is hermitian the eigensolutions form
a complete orthogonal set of solutions normalised to the Dirac delta function.
The solutions (A.23) form a complete set

“+00
/ ke duo 7% ('Y ()

—00

+ 05, (@) w(z) = 6(2" — ') §(a" — a0). (A.24)
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The proof of completeness is easily performed. The integration over w gives
immediately the Dirac delta function. For the k integration we have

52 —zl) = /+Oo dk ez'k:(xl — '

N oo 2T

todk ik p(pl —
+ va (tanhv/az' — tanh vaz') / an W ik(z —a”)
oo 2T K2+«

Cdk 1 eik(xl —2')
o 2T K2+«
1 1
L Ve , (A.25)
2 cosh(y/az'') cosh y/ax!

+ a (tanh /a2 tanh/az' —1) /

we see, that the last three lines have to vanish. After integration over £ and
using elementary trigonometric properties we have

Sz — ) — Ve (tanh Vaz! — tanh Vaz'' — tanh Vaz'! tanh ozt + 1)

2
1 1
ek (gl Ve
x exp{—vak (z" —2")} + 2 cosh(vaz'") cosh yaz!

= o=t —zh). (A.26)

The scattering solutions are normalised to the Dirac delta function
+oo
/ &’z 0 o (2) pw(@) = (k' —k)S(w —w). (A.27)

Again the w integration gives immediately the delta function. For the k integra-
tion we obtain

+Ood119*1191_1 *1d191191d*1°°
a6 = e (G k) = k) )|

= 5K — k). (A.28)
The discrete eigenfunction 1 ,,(x) is normalised to unity

+o0o

/ da' 9 (zY) 9p(z)) = 1. (A.29)
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Appendix B

Calculations to Chapter 2

B.1 Calculations to Equation (2.38)

The second—order quantum corrections —iAg) (z; . (M?)), Eq. (2.38), to the causal
two-point Green function —iA(z; a..(M?)) (2.16) reads

—in® (2, 0; a, (M2)) = —% / / P22 (0|T<19(;U)19(0)£int(z1)Emt(zg))|0>C

———//d2z1d2z2 0]T<19 2(zl))|0>c
oy X // Py O (000 ) ) ) 0,

R 2n)!
1) n1+ng 52 (n1+n2)

M2 73 (—
RPN T Z Z 2n2 2711)

no=1n1=1

v / / P 2125 (0T (9()D(0)9°"(22)07"(22) ) 0. (B.1)

For the calculations below we introduce the notation —Z'Agz_ (z,0; a,(M?)) de-
noting the three terms in Eq. (B.1), respectively. Hence,

—iAD (2, 0;0,(M?)) = —iAD (2,00, (M?))
—iAR) (2,05 00 (M?)) —iAD (2,0;0,(M?)).  (B2)

The diagrams generated by the expression (B.1) are characterized by the
number of their internal lines between the two vertices at z; and z2. Hence they
define two classes. We call them briefly odd—class and even—class.

Before we pass to the evaluation of all possible contractions in (B.1) we should
discuss briefly the symmetry factors.
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B.1.1 Symmetry factors

The symmetry factor X for a diagram with two external legs [; and /5 at  and 0
and two vertices V3, and V3, with 2n; and 2n; legs A1 and A3 at z; and 2, we
obtain as follows:

There exists an overall symmetry factor 2! since interchanging the two ver-
tices does not affect the topology of the diagram, hence ¥ o 2!. The contraction
of [ with \; yields a factor 2n; and the contraction of I with \; gives the factor
(2ny — 1), therefore ¥ o 2!(2n;)(2n; —1). Now, a diagram with 2k contractions
between \; and Az gives a factor (2n; — 2)!/(2n; — 2 — 2k)! at V5, and a factor
(2n2)!/(2ng — 2k)! at Vay,. Since 2k contractions cannot be distinguished a factor
1/2k! has be taken into account. This gives

(2711 - 2)' 2712! L
(2n1 — 2 — 2k)! (2ng — 2k)! 2k!

Generally, two legs at a vertex with 2n free legs yields a factor 2n!/(2n —2)!2!
if they are contracted to a loop. A factor 1/m! has to be taken into account, if 2m
legs are contracted to form loops.

Applying this consideration to the remaining (2n; — 2 — 2k) legs at V5,,, and
to the remaining (2ny — 2k) legs at V5, we obtain finally the symmetry factor

Y ox 21(2n1)(2n; — 1)

(B.3)

S o o 2n1! 2n9! L
T (201 — 2 - 2k)! (2ng — 2k)! 2k!
(2n1 — 2 — 2k)! 1 (2ny —2k)! 1
2mi—l=k  (n; —1—k)l 2k (ny—k)!
1 1 1

2k! (nqg — 1 — k)12m—1-k (ny — k)1 2n2—k"

This symmetry factor corresponds to diagrams belonging to the even—class with
2k internal lines.

For odd—class diagrams with 2k 4 1 internal lines we proceed equivalently
and obtain the symmetry factor

S _ o 2n1! 219! 1
T 2n = 1= (2k+ 1) (2n2 — 1 — (2k + 1))! (2k + 1)!
(2n; — 1 — (2k 4+ 1))! 1 (2n3 — 1 — (2k 4 1))! 1
2m—1-k (ng —1—k)! n2—1-k (ng —1—k)!
1 1
= 2!12nq!2ns! (B.5)

2k + 1)l (n1 — 1 — k)1 2m—1-F (ny — 1 — k)l 2n2—1-F"

B.1.2 Calculations to Equation (B.1)

Performing the contractions in the first term —iAg)l (z,0; - (M?)) in Eq. (B.1) we
get the contribution

—ap(M?) //d221d222 {—iAp(z, 295 0 (M?)}
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X {—iAp(z2, 21500 (M*)} {—iAp (21,0, (M%)}, (B.6)

This diagrams belongs to the odd—class. It has to be neglected in the summation
(B.13) due to Eq. (2.39).

For the second term —z’Ag)Q (7,0; - (M?)) in Eq. (B.1)) we have two topo-
logical different diagrams. The first one, belonging to the odd—class gives the
contraction

2a%<M2>(O"”%2))§ / / 2 ad 2 {—iDp(, 22 0n (M)}

X {—iAF (22, 21; 0 (M?)} {=iAp (21,0 0 (M?)) . (B.7)

This contribution we drop in the summation (B.13) due to Eq. (2.39) too. The
next diagram generated by the second term of Eq. (B.1)) contributes

1a2(M?)Z) K (—1)np2 2!
2 32 ZQn-?(n—Q)@

x //d2z1d222 {(iAp (2, 225 0, (M?))}
x {—i2Ap(22, 21; (M) }2 {—iAF(21,0; . (M?))}

{~iAF (050 (M?))}" 2

n=2

2
= — % az(M2)ﬁ2 71 exp {—% {—iAp(0; Oér(M2))}}

X //d2zld2z2{—iAF(x,zg;ar(M2))}

x {—iAp (22, 21; 0 (M?))}? {—ifr(a1.0; a,(M?))}

= Lz (SN [] ey (it 20,00)

x {—iAp (22, 2150, (M?))}? {=iAp (21, 05 0, (M?)) . (B.8)

This term we have to take into account. For the proof of our assertion in Sec-
tion 2.3.2 we expand the factor (ary /M2)5*/87 to order O((av, /M?)P*/47) it reads
(i /M2)P* /87 = (o, /M2)P* /47 — ... Thus

82
— %a%(M2)52<%> o // d? 2 d? 20 {—iAp(z, 295 0 (M?))}

X {—iAp(z2, 215 0n (M)} {=iAp(21,0; 0. (M?))} —---. (B.9)
Now, we arrive at the more involved third term —z’Agl (z,0; - (M?)) of Eq. (B.1).

The first representation of the odd—class that with one internal line gives the con-
traction

82
—cy?(Mz)(OéT](\?gQ))47r //d2zld2z2 {—iAp(x, 205 0 (M?))}
X {=iAp(22, 21500 (M?)} {=iA R (21, 0; . (M?)) }. (B.10)
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This contribution is already taken into account in Eq. (2.39) and is therefore ne-
glected in the summation (B.13). The contractions of any odd—class diagram
with 2k + 1 internal lines reads

a7 (M?)
-

) 2
7} exp {—%{—ZAF(O; ar(MQ))}}

X // A*21d% 20 {—iAF (2, 22; 0 (M?))}

{—if2Ap(z2, 215 0 (M?)) }2F 1
2k 1 1)!

{—iAp(21,0; (M%)}, (B.11)

while the contractions of any even—class diagram with 2k > 0 internal lines be-
comes

2 2 2 2 %
+0"”(§f ) 72 (ax‘f )> //d2z1d2zg{—iAp(x,zg;aT(Mz))}

" {—i8°Ar (22, 215 0 (M?)) }2F
2k)!

{—iAp(21,0;0 (M%)}, (B.12)

The summation of all odd- and even—class diagrams given in Eqgs. (B.9),
(B.11) (for £ > 1) and (B.12) gives

9 2
A (@,0:00 (M) = [axM?)Zl exp{—%{—iAF(o;ar(M2))}}]

X %//d221d222{—iAF(x,Zl;ar(Mz))} {—iAp(z1,0; ap(M?))}

X (cosh{—ﬁ2 iAp(21, 200 (M?)} — 1 — %54 {—iAF(ZLZz;Oér(M2))}2>
, 2

— [ar(M2)21 exp {—% {—iAR(0; ar(M2))}}]

” % / / P21z {~iBp (2, 215 0, (M)} {~ip (22, 0; ar (M?))}

X <sinh{— B2 iAp(z1, 205 (M)} — B2 {—iAp (21, 22 Oér(Mz))}>-
(B.13)
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Appendix C

Calculations to Chapter 3

C.1 Calculations to Equation (3.8)

The second—-order quantum corrections —iAg) (z; M, (M?)) to the causal two—
point Green function —iA(z; o (M?)) , Eq. (3.8) of the MSG model reads

—iA® (¢, 0; a, (M) = —% / / 1%z O (9()9(0) L (1) Lin (22) ) 0)e,
(1)

where the interaction Lagrangian is given in Eq. (3.2). However, rewriting the
interaction Lagrangian to the form

5211 1) 192n( ) (CZ)

1 (o]
Ling(z) = §5M192( )+ Zioy (M Z

with the definition dM = —m2(M?) + a,-(M?), Eq. (C.1) becomes

—iA? )(a: 0; o (M?))

_ 1o / [ 1z (2 (9(2)9(0)0%e2) %) ) ).

15Mar(M2 Zy & (—1)n
2 32 Z (2n)!

x / / &2y d% 2 <0\T(19(;5)19(0)192"(22)%(,21))\o>c

n1 +n2 ﬁ2(n1 +nz2)

1 ar M2 7Z?
B Z Z 2n2 2711)
X / / P 21d? 2 <O\T(19(x)ﬁ(0)192"2(z2)192”1(22)> 10).. (C.3)

n=1
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The first term in Eq. (C.3) corresponding to (B.7) has to be dropped due to
Eq. (3.11). Because this term was already taken into account when we derive
the effective two—point function (3.11).

The relevant contribution of the second term in Eq. (C.1) corresponding to
the (B.8) reads

~Loma (M2)ﬂ2 //d2zld222{ i p(x, z05m7 (M)}

2
x {— ZAF@Q,ZL 2(M?)Y? {=iAp(z1,0;m2(M?))}

_ % { — sm2(M?) +ar(Mz)}ar(M2)52<mz]\(4J\;—’2)>§_i

« / / 22 d%z {—iAp (x, 2032 (M)}
X {—iAp (22, 215 0r (M)} {=iA p(z1, 0;m2 (M?))}. (C4)

Since this expression is a well-defined one the counter—term can be set zero, as
done in Eq. (3.13). Hence, this contribution is of order O((m2/M 2)62/4m)

' 2
— Lz (Te0D) )" [ @adan it o)

2
X {—iAp(2zg, z1; M2 (M)} {—iAp(21,0;m2(M?))} —---.  (C.5)

Continuing for the third term in Eq. (C.1) completely in the way as for the
third term of Eq. (B.1) the summation of all odd—-and even—class diagrams yields

9 2
IO} (@, 05, (M) = [a,«Mz)Zl exp {—% {—z’AF<0;mT<M2)>}}]

X %//d2Z1d2z2{_iAF($azl§mr(M2))}{—iAF(zl,O;T?LT(MQ))}

X (cosh{—ﬁ2 iAF(Zl,ZQ;mr(M2))} —1- %54 {—iAF(21722;mr(M2))}2)
2

2
— [ar(MQ)Zl exp {—% {—iAFR(0; mr(MQ))}}

X %// d*21d% 2 {—iAp (2, 21; My (M?)) } {—iAF (22,0570, (M?)) }

X <sinh{—ﬁ2 iAR(21, 205 (M?))} — B2 {—iAp(z1, Zz;ﬁlr(Mz))})
(C.6)
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C.2 Calculations to Section 3.4

In this section we derive the partition function Z,, (3.41) for fluctuations of the
MSG field.

i 56
ZmlJ] = exp{ - §m%/d2xmm}2[ﬂ, (C.7)

we derive first Z[.J], the partition function of the SG model by following [6]. It
reads

n=0 p=0

p n—p P n—p
. [H Il [ d@l] o {16300 — 83 0
k=1 =1

k=0 1=0

X exp {z / d’z % 0,9 (x)0M I (x) — %;ﬂ 92(z) + 9(z)J (2) }, (C.8)

where p is an infrared regulator. The constant exp{—ia(/beta?} we put into the
measure. The source J(z) obeys the constraint [6]

/ d*x J(x) = 0. (C.9)

We perform the path integration over the field ¥ by making a quadratic exten-
sion, which can be represented in the following symbolic form

D n—p
—DP? + 207 +28) Ok —28)
k=1 =1
p n—p 2
= (D9 + ()T + Y 183 1))
k=1 =1

P n-p _,
— (AR [T+BY =8> 1], (C.10)
k=1 =1
where the notation 1; means the Dirac delta function 15, = §(zx). The causal
two—point function are [6]

. - . A2
Alw—yip) = — (2~ g +i0), AOp) = - In (?> 1)

where A is an ultra-violet cut-off in two-dimensional Euclidean space. Path
integration over ¥ gives

X X (7)) " 1 in d
20 =35 (%) g |11
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p n—p
i [ @y(3 A=) = Y A - i) J)
k=1 =1
p n—p
—iB” > > Alwk — i)
k=1 1=1
52 p p n—p n—p
+ 17( DO Alwky —wros ) + D> Alyy, — le;:u))}‘
ki1 kp=1 h=1lp=1

(C.12)

It is seen that the dependence on the infrared cut-off vanishes due to the con-
straint (C.9). In the terms, which do not contain the external sources

p n—p
exp { — i ZZ (wx — yis 1)

n—p n—p

262< Z Z (why = Thoi i) + Y > Alyy, — yzQ;u)) } (C.13)

k1=1ko=1 l1=112=1

the dependence on the infrared cut—off vanishes due to the relation

i — ) (%) — 52 i (%) — 2L i~ p)? In( )

24m 24m
2
= — g—ﬂ (2p* — 2pn — p* — n* + 2pn — p?) In(—p?)
3 2 2
=~ % (—=n” + 2pn) In(—p?), (C.14)

for n = 2p only [6]. We rewrite the partition function Z,,[.J], Eq. (C.7), to

/Duexp /dza;u2( ) + imo/d%u(w)%}Z[ﬂ.

(C.15)
This gives explicitly
_ o—ian/f? _L
ZmlJ] ’ nz:()pz%( ) 2" (n —p)!p!
T d*x), d? Duexpy — = [ d*zu?(z)
LHO g / K yz] / p / }
X exp { 5 /d% Py (J(z) + imou(z)) Az — y; 1) (J(y) + imou(y))
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k=1 =1
p n—p
— i) > Al — i )
k=1 1[=1
62 p p n—p n—p
i (DD Al —ai) + Y Al —aim) }-
k1=1ko=1 l1=112=1

(C.16)

We make a quadratic extension of the terms depending on u
i o9 1 . . . ,
—5u + 3 (J +imou) A (J + imou) + zﬁ(Zk:A - XZ:A) (J +imou), (C.17)

in symbolic form

oo i)

b [moad vimos (Y a-SA)5 cas)

k l

where D'? = 1 + m2A. Path integration over u yields
exp{ + % /d2xd2y [imO/szlA(x —z13p)J(21)

p n—p

+ imaﬁ( D A, —mp) =Y Ay, —; u))]
k’l ll

) -1

x |0 —y) +m3A( - yip)|

X [imo/d222A(y — 2oy 1) J (22)
p n—p

+ z’maﬂ( D A(wk, —yip) = Y Ay, —v; u))] : (C.19)
k2 l2

where we have written only those factors of Eq. (C.16), which are integrated.
The inverse of F'(x — y), where
F(z—y) = 8(z —y) + miA(x —y; p) (C.20)
we find as

F_l(y —z) = 0(x—vy)— m%A(w —; (mg + ,u2)1/2). (C.21)
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The relation holds

/d2y Flx—y)F ' (y—2) = 6z —2). (C.22)

This gives the expression (C.19)

exp{ + % /d2xd2y [imo/d%lﬁ(ﬂ? — z151)J (21)
n—p

+ z’moﬂ<zp:A($k1 — @) = ) Al - x;”)ﬂ

k1 131

X |0(@ — y) = mBA( — ys (md + 1))

X [imo/dzng(y — Z2;N)J(22)
P n—p

+ imaﬁ( D Alwg, —yim) = Y Ay, — v u))] - (C.23)
ko lo

Now let us discuss the dependence of this factor on the infrared cut—off . In-
serting the two—point Green functions (C.11) yields

exp{ 3 /d2 d?y [47T /d2zlln( 1P (z — 21)? +10) J(z1)
P
+ %5(%111 (—/ﬁ(g;kl —x) —HO Zln 2(y, — 2)? + i0) )}

X [(5($ —y) — e In (—p?(z — y)* +i0) } -

+T_;5(Zln *(zk, —y)* +10) Zln W2y, — )? +10) )], (C24)

and introducing the renormalisation scale M [6], the infrared cut-off depen-
dence reads explicitly

2

exp{ B /d%d2 [47T/d221 {ha( M2($—Z1)2—|—2'0)—|—1n (%)}J(zl)
+T_7Sﬁ1 < M2 2p— nHH (xg, — ) —|—ZO>

iy yll—a: 2440
,u2
Ty (1)

X [5(3: —y) — mEA(x — y; (md + M2)1/2)]
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X [T—;/d%z {ln (—MQ(y_z2)2+z'O) —|—1n<]\'u42)}J(22)

mo 2p n L n—p .rk — 33‘ —|—ZO
+—0In < - - >
4m ( 1,:21 1;1 (yi, — x)? +140
2

+ —5(2p —n)ln ( ]‘\22)] (C.25)

We see by taking the constraint (C.9) and taking relation p = n/2 (C.14) [6] into
account that the dependence on the infrared cut-off vanishes. Hence the mass
term m( does not violate the renormalisability of the MSG model.

Performing the infrared limit ;1 — 0 we get

exp{ 3 /an:d2 [471/d221 In (—M?(z — 21)? +i0) J(21)
L p T, —x)° +1i0
+—ﬁln<Hll_1[ (yr, — )? —I—ZON
X [5(m—y)—m0A(x—y;mo)}

X [Tﬂ /d2zgln( M2(y—22)2+1'0) J(z2)
iy T, —x)° + 10
+—ﬁln<Hl;I o HO)} (C26)

Finally, by inserting (C.26) into (C.16) we obtain for the renormalised partition
function Z,,,[J] of the MSG

210 = i <% a,«2(gf)>2n Lli[l /d2l‘kd2yk]

n=0

3 [ ()
i En: (10 (=222 (@ —2;)? +10) + In (=M2(ye = ;) +10) )

4 £
i<k

zn:Zm M2 (2 — ) +i0)}

k=1 I=1
X exp{ 3 /d2 d*y [47T/d2211n( MQ(x—zl)2+iO) J(z1)
+ 10
521 <yk—a: —1—10)}
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X [5(35 —y) —mgA(x — y;mo)]

X [@ /d222 In (—M?(y — 22)% 4 i0) J(22)

47
mo (), — y)? +i0
*Eﬁm((yk—y)uwﬂ

(C.27)
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Appendix D

Calculations to Chapter 5

D.1 Calculations to Section 5.1
To prove that R, in Eq. (5.16) is indeed the Green function to Hy, i.e. is

92 H?
+ m?

W - 8:1:12 R0($2,t2|$1,t1) = 5(.%(1) — .rg) 5(1‘% — .r%) (Dl)

we integrate Eq. (D.1) over 2 in the interval [z — ¢, 20 + ¢] with e — 0

290+e
OuRo(walar) | |+ 2e(k® +m?) Ro(walr1) = 8w} —}), (D.2)
IEl—E
where we have used
0? 9
— — Ro(z2|z1) = k” Ro(xa|z1). (D.3)
oxt

Since the second term on the Lh.s. of Eq. (D.2) goes to zero for ¢ — 0 we have

20+e dk . _
OugRoaalen) [y = = [ G iwnviglab oD v (o ) W
xl—e
_ % + 1,0 — 1,0 W,
27rZwkwok(xlvml)wok(x%ml)/ 0k
1 (dk 1l o1 1 fdk 1 o1
= 5/%&]{:(1‘2 $1)+§/%e Z]{?($2 xl) — 5(1;%_:1:%) (D.4)

This proves Eq. (D.1).

The proof that R in Eq. (5.26) is indeed the Green function to H runs equiv-
alently. Integrating over the basic relation between R and H

R(wa|z1) = 6(af — 9) 0(a — a3), (D.5)

2 2,  2m?
S — m _— —_—
0202  9g1? cosh? mz!
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over xJ in the infinitesimal interval [z — ¢, 20 4 ¢] with ¢ — 0. This means

tite 2 2
%M@@mmﬂt6+%@—HnﬁW@Mmm):&@—m%(D@

1—

where we have used Eq. (5.25). Neglecting on the Lh.s. the second term propor-
tional to € and inserting the Wronskians! (5.27) we have explicitly

0
zi+e

89531%(:1:2@1)

Try—€

= - 61/’5@%7%(1)) 1#3(%%7%(1))/”/0 - 61/’3@%733(1))1/16(%%7%?)/14/0

dk
—i—/%{— iwg ¥y, (23, 29) Vi (1, 23) /Wi — dwg ) (3, 29) zp;(g;},g;(l))/wk}

dk 1
B / or oy Vi (@3 20) U (o) g (e, a7) v (e, 2)

B / dk k —im k + imtanhma} k — im tanh ma} eik(m% — )

- %k—i—im k—1im k—1im
1 mm

27 cosh mx% cosh ma:]]LL
B /d_k k + imtanh mzd k — im tanh ma] eik‘(x% — )
27 k+1im k—1im
1 m

2 cosh mx% cosh mx%
= 0(xy — 7). (D.7)

This confirms R to be the Green function of H, satisfying Feynman boundary
conditions.

D.2 Calculations to Section 5.2

D.2.1 Calculations to Equation (5.30)
We consider in this section the expression d trln H = tr (1/H d,H)
detrin H = trd,InH

dk 1
::/%mﬁ%m@. (D.8)

The operator 1/H we can write as

1 fd 1,

'The Wronskians are defined at 2§ = x3 to give a continuous Green function R at this point.
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1

= [y G 1K) s 1)
= /d2x’d2y’ ‘a:'> G(2'|y) <y" (D.9)
And analog only for the operator d,H
"
d@H — d /% ‘]{:// k//) <k//‘
_ 2 1 32 1 dk” " " " " " " "
=, [y ) AW ()
— d /d2 ”d2y”|l‘”> |y )< //| . (Dlo)

Now we use a picture where changes of Lorentz systems with ¢ modify the
eigenvalues of H, A\(k) — A(k, ¢) and the wave functions (x|k)

Aot = dy [ SN = [ 5F ) doAGh) (h
_ / d%”d%”% ") (2" | ") dyp (e + 0(y") (K | o) (o]
_ / d%”d@”éi?: |2 (& | K'Y doo(y”) (K" | ") ("]
[y ) s - s o
- / @2 |2y dyv(a”) (2" (D.11)

The differential operator (O, + v(y")) is Hermitian. Inserting Eqs. (D.9) and
(D.11) into Eq. (D.8) we arrive at

detrin H = trd,InH
— [y " (k2 Gl (o | ) dpo(a) (2| R)
= /d2x’d2 " <k| > (2'|z")d,v(2") <a:"| k>
= /d2x’d2x”G(x’|a:”) dyv(z")6(z" — 2")
= / a2/ G (2|2 d v (a), (D.12)
setting «’ = = we read finally for the expression (D.8)
dotrin H = /dza: G(x|x) dyv(w)

= lim [ d*zd, (O, +v(z)) G(2'|z), (D.13)

' —x
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where the differential operator (O, + v(z)) = (9%/0%2° — 8?/0%z! + v(x)) ef-
fects only the argument x on the r.h.s of lim,/_,, G(z|z") = G(x|z). The potential
v(x) reads v(x!) = m? — 2m%sech?mx!. Changing to a co-moving system with
coordinates (y°,y') the derivative d,v(z) of the potential with respect to the pa-
rameter ¢ (see Definition in Eq. (F.4)) reads

dov(z') = dyv(z' =y' coshp + 3" sinh ). (D.14)
We are allowed to express the derivative d,v(z') = d,v(y',y°) in terms of
(y',4°) only
d dy' d  dy® d o d 4 d
4 _ (dy d  dy” dy _ D.1
dp (dgp dy! + dp dyo) (y dy! ty dy 0) (D15

Hence, the derivative d, in Eq. (D.8) has to be understood in the form (D.15)
only. Using the relation Hvy = 0, Eq. (D.8), reads

dotrinH = lim [ dzd, (0, +v(z)) G(@'|z),,

dk 0? 0?
_ _ |2 — _ +
= /d v [ oot (@) <8x02 PERS v(w)) 1} / Wi, (D.16)
where W, is the Wronskian given in Eq. (5.27).

D.2.2 Calculations to Equation (5.34)

Integrating in Eq. (5.34) by parts over ¢t and z yields

. ) ddt oy
d,Indet HHy"' = /t//d2 —Wk dxo(zpk o —87kd<pzpk)

v dk d ddyuf Yy
2 w1 eV _
* /t//d 2o Wi dat (ka Ox! Ox! ‘pwk)
0? 0?
2
/t,/dac—W doti (W al2+v>¢k
ad 0
//d2513 WO 1/}0 801/}0 wO @1/}0)
4 iE
dd ¢ owg
2 ¥ _ T¥o
/t’/d xWO 1/’0 Ot ox! @wo)
/ﬂ/d% Wy tdg (8 R —1—0)1[)0
4 d 8d w oy,
2, OF 1 eYor _ 9ok +
/t//d x WOk: 420 (%k D0 00 ds@%k)
dk 1 d _Odyyd, oWy,
- /ﬂ/dzﬂ’j o WOklw (%k ;3:1% O T dw¢$c)

o 0? _
/t//d2 WOk d¢¢0k <8$02 B Oxl? +UO>¢Ok (D-17)
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Using the homogeneous differential equation Hv = 0 and due to Eq. (D.21) this
expression simplifies

t// d =
2 - + 2 -1 - +
S—/t//da:—Wk dxl( wldwk)Jr/t//deO @(% amldwo)

/ / d%— W' = (%k O daty,) = 0, (D.18)
t/
where (a@xlb) =a(0,b) — (0z1a)bto
_ _ _0dyyt 37,0
1 2., eV k:
dyIndet HH; ' = /t//d 5 Wil (zpk o (pzpk)
¢ d ddyy Oy
_ 2 1@ e%o _ 9%y
/t/ o g <¢0 90 020 WO)
d _0dyyd, oy,
2 1 eYor _ 9Pk
/t/ / &z WOk ey <¢0k T~ s dwzp&). (D.19)
With the notation 8:,:0 defined via (CLEIO b) = a(0,0b) — (O,0a)b we arrive at
dndet HH;' = — [ dot 2 {W‘1¢‘5 dot — Witve Brodyut V|
© 0o - o E Yk Y20 Qo Ok Yok Y2 So¥ok f |,
t”
- / dot {Wg g ,0 du }( (D.20)

Calculations to Equation (D.18)

We calculate in this subsection the spatial surface-term S (D.18)

d - ¢’ d -
2., 1 - 2 -1 -
S = /t//d = Wil (zpk 01 d<p1/1,j) +/t//d e W' (zpo 01 dwg)

d o
L / &%z WO,; - (%k 8.1 d@zp&) — 0. (D.21)

The first term reads

[ g (v vt |7,

v dk Ciora® +ikp! d oz — ikl 1) [
:/ dwO—Wkla(k)<e iwpx” + tkx @dw{ezwkx 1kx })‘

— 00

" dk . 0 a1 2 . 0 .1 00
_ / d$02_ Wk—l a(k)(e iwgr” + ke’ O Jiwga” — ik )dw{iwkxo —ikxo}‘

v T dx! —o0
t// dk 0o
= / dz® Py W, ta(k) (—2ik)d¢{iwkac0 - zkxl}‘
t/ Y5 — 0o
vy dk d o0
+ / da® = Wt alk) — dw{iwkxo - z/ml}( : (D.22)
t —00
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By using the dependence of the coordinates (z, t) on the parameter ¢, see Eq. (F.4)
the derivatives with respect to ¢ read dz'/dp = 2° and dz°/dp = 2!, yielding

/t/ da” ;lfr Wit (v B auf) | = /t,t da” ;lf_ Wi a(k) (~2ik) {iwna' }|

(D.23)
For the third term in Eq. (D.21) we get
v dk d < v dk: o0
2 -1 — +) _ 0 -1 ; ; 1
_ /tl/d 2 Worl = (V5 O i) = —/t/ dr® 2 Wik (~2ik) {iwpa' }| .
(D.24)
Hence by inserting the Wronskians W, = —2iwya(k) and Wy, = —2iw, we can

see that the sum of the first and third term of Eq. (D.21) vanish. For the second
term we use W = —2¢ and get

t”

/ﬂt”dgcowgl (v Bnaug)|” = [ @ wi (w5 B0 ) |7 =0
(D.25)

D.2.3 Calculations to Equation (5.35)

Eq. (6.35) is given by

dk - - 1"
dyIndet HHy ' = — / da' = (W Gao sl — Wol v, Gao dyti } |
- / dot {Wg g B, o } (t, . (D.26)
Using for the differential d, = d/dy Eq. (D.15) we get [19]
-z d 5 dT,ZJ
_ o @ 1 %N+ _ vy
Vi Oo0 (y dy! Ty dy? )wk coshgo Vr Oa dy"

1 dwk ) N Ld o
B {coshgp Vi + wk 20 d—yo Yy —tanhpy d—ylﬂ)k ] }7 (D.27)

where we have used

_2 d 1
Yy Og0 9" ol AR P ) mo (3" cosh ¢ + y' sinh ) — d T {Uns
_ d
— Uy 8zo tanhgoy d—ylwl—:

]. _ = 0 d + e 1 d N
= m ¢k 8330 iy d—yl 1/% - T/Jk axo tanh py d—yld)’f

2V e d 1 B .
- m i G0 d—yl %—: cosh © © Vi dyl ¢k (h 0,0 tanh ¢ yl d—ylw: (D.28)
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The expression inside the curly bracket in Eq. (D.27) cancels due to time-independence
[19]. For Eq. (D.26) follows

1 det HH' =
do

dk .’1}'0 1,-2 d !
/d l o cosh ¢ {W’f Yy, Oao F%—: - Wy, ¢0k 20 7 1‘/’%}‘

0 t//
da? Wyt D.29
+/ o coshg@{ Yo 9 zod 1¢0} ( )
Changing the derivatives as
d 4+ 1 d 1 iwkxo
Yk = cosh ¢ dz! gra) e
1
_ + 4
= iwtanh oy + cosh d:Ul zpk , (D.30)

the second term in Eq. (D.29) containing the derivative d/dz"' can be dropped as
can be seen by inserting into Eq. (D.29)

dk 1 o d 1 o d
1 Gk -1,-3 @ .+ dat -1,-3 ¢ +
/dx 27 cosh ¢ Wi ¥y, a0 dx TV +/ v cosh ¢ Wo " o Oa0 dmlwo
dk 1

1 1 1
= da' 2i0 — dot 2¢ — g — U
coshg@/ S or —2iwa(k) 3 d:Ul Uit coshgo/ v T Yo dx! Yo

1 d 1 1 1 d 1 1
S T R T SN Sy R
cosh ¢ / T el (0) 2 cosh? ma! * cosh T 0t 2 cosh? mart

(D.31)
Inserting the first term in Eq. (D.30) into Eq. (D.29) gives
Indet HHy ' =
dk t ) , 1-F ¢
= /da:l or dp coshZ 5 sinh ¢ jwy, {Wk L 00 P — 0k1¢0k 20 1/1%}
l t . _l o t”
+/dx COSh2(psmhgoe{W0 Py 040 ngf} y
dk (t”—t’) -
_ —/da:l oot o ek { Wi B wif = Wi, B0 05
B D (i P R
/ e {W5tvg da0 v} (D.32)
and with the Wronskians (5.17) and (5.27) we arrive at
Indet HH; ' =
L@ =t o
da' dk § —— ;- o
~ i cosh ¢ / { (k) ¥y 0 xo Vi~ Yor Oa0 ka}
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1(t" =1t L (=
* 2 cosh ¢ /dﬂlj {1/)0 Oa0 ¢6r}
1 t” t - 1 - ~
T or (cosh (p) /dml dk icor {m Ur U — Yo T/J(J)rk}
L =) / da' e by v} (D.33)

cosh ¢
For ¢ — 0 the discrete mode does not contribute, hence the expression (5.35)
becomes

1 (t// _ t/)

Indet HH,*! on cosh g

/ dzt dk zwk{ G )z/;k et — z/;gkz/;gk}. (D.34)

D.3 Comparing the eigensolutions 1.22 for the soliton sec-
tor with those in the manuscript [19]

In order to simplify the comparison with [19] we redefine our solutions (1.27) by

1 T 1 —iwz® 1 —iwz®
Dou _ iwr” g 1 oW
00 () oY 27 cosh /az! ¢ o ofz’)e ’
1 k+i+y/atanhyazr! _; .0 + ikt 11 1 —iwz®
19 w = —_— = — 19 .
k ( ) 2 \/m € o0 wh k( )e
(D.35)
with w;, = VA2 + « . The functions 9 (z) and 9y (z) are defined as
1
g(el) — [T/
o) 27 cosh \/ax!
1 - 1y Jikx!
Ip(z') = (k+ivatanhaz')e™™ | (D.36)
Using these solutions the Green function reads
dk dw 1/w?
/ — v gk —k,ﬂ w /
Glolz) / or 2 Uke®) o k(@)
1 dw , 1
+ - / = Yo (@) _—wgﬁOw(ﬂfl)
dk dw 1/w? 00
_ 9 k (2 fw (@™ — ™)
/271271 k) w2+k2+a kl@)e
(0 0
+ o / =) — L go(at) eiw(@” =), (D.37)

Integration over w and taking Feynman boundary conditions into account o —
o — i€ gives

G(z|z") =
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i /02 . 0 /0
/ dk 0% (a) Zr Z’Z (2 e~ 1wk (@’ — 2) 20 > 20

/dk’l?k( ) i/wk 19 ( ) —iwk(l‘lo — I‘O) l,/O > 3:‘0
) _ o) o—€(a® —2)

o (@

_’_793(1,1) 9 (.73/1) e—ﬁ(xlo — JJO) /0

—4ie

(D.38)

In order to compare with [19] we introduce the parameter S by k = \/asinh 3,
Wi = \/E cosh # and dk = \/a coshdp. This gives for the Green function (D.38)

acosh)2 3 47Tzla(ﬁ) 95(2") o—tmcosh B(z° — ) 0o g
_ OzCOSh>2 5} 47Tzla(5) Up(a") e—tmcosh A" —2°) 2V >z
J5(") —Lre Jo(z") e_e(xo —a") 20> /0
) d5(xh) _im Do(a') o—€(@ — ) y
(D.39)

where the amplitude a(f) is given by a(5) = (sinh 5 + 7)/(sinh 5 — 7). Using
cosh? 8 = (sinh 3 + i)(sinh 3 — i) and the definition of the Wronskian Wy =
—4micosh fa(f) in [19] and Wz = —4me

a(f) 1 _ (sinhfB+14)/(sinh B —i) 1
acosh? 3 —4mia(B) ~  afsinh B +i)(sinh 3 — 1) Wﬁ
1 1

- a(sinh 3 — )2 Wy’ (D40)

This allows us to introduce the negative frequency solutions z/_Jﬁ_ (x) and the

positive frequency solutions zﬁg(a:) The negative frequency solution is related
to Uj(x), corresponding to the complex conjugate function in Eq. (D.36) in 3
parametrisation

N e :
1% () = m ol a cosh x
_ Vasinh 8 — i y/a tanh /az! o~V acosh Bz® — i\/asinh Bz! (D.41)
Va(sinh 8 — i) o
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while the positive frequency solutions are related to ¥ g(x), Eq. (D.36) in 3 parametri-
sation by

_ Ig(zt) —i 0
+ _ B im cosh Sz
Vg () Va(sinh 3 — 1) ¢

Vasinh 8 + i y/a tanh y/az! oiv/a cosh Bz + iy/asinh ﬁfcl'

B Va(sinh 8 — 1) (D42)
The discrete mode reads
0
VE(x) = Po(x!) eT T, (D.43)
0

Now, the solutions 1[_)5_ (z) and 1/7; (x) are related to those given in the manuscript
[19] ¥4 (z) and wg(a:) Egs. (5.19) and (5.21) by the identification /o — m and

xr — —XI.
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Appendix E

Calculations to the Thirring
Model

E.1 Onthe parameterisation of the functional determinant

The result of the calculation of the functional determinant Det(id + A) is re-
lated to the vacuum expectation value (j*(z)) of the vector current j*(z) =

P(z)y*p(z). Using (8.4), the vacuum expectation value of the vector current
can be defined by

)

- _ ! 4 7 7 B
@) = iyl A J]‘j:J:O _
1) A

where D*(z — y) is given by (8.7) and parameterised by two parameters ¢ and
7. Hence, the calculation of the vacuum expectation value of the vector current
should show how many parameters one can use for the parameterisation of the
Green function D" (z: — y) or the functional determinant Det(id+ A). According
to Hagen [43], (j#(z)) can be determined by

(jH(z)) = limtr{iG(x,y)A’y“expi /ydz”(aA,,(z)+b75A5l,(z))},(E.2)

—
y—z T

where a and b are parameters and AY(z) = —c"#Ag(z). The fermion Green
function G(y, x) 4 is given by (8.10). The requirement of covariance relates the
parameters a and b. This provides the parameterisation of the functional deter-
minant Det (id + A) by one parameter. In Hagen’s notation this is the parameter
I3

In order to show that the functional determinant Det (i + A) can be param-
eterised by two parameters we propose to define the vacuum expectation value
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of the vector current (E.2) as follows

y
(7#(x)) = lim tr{z’G(w,y)Afy“ exp z/ dz" (aA,,(z) +bv° As,(2)
Yy—x "
g 0 g 0
2 —t; ds/dzt——A —t; ) Asp(t
te / P g g M = i) Ag(0) + dy 0 31, D~ 1) s )}
(E.3)

where c and d are additional parameters and A(z — ¢; 1) is determined by (8.9).
Under the gauge transformation 4, — A/, = A, + 0, ¢ the third term in Eq. (E.3)
behaves like the first one, whereas the fourth one is gauge invariant. The expo-
nent of Eq. (E.3) has the most general form constrained by dimensional consid-
erations and gauge invariance.

The vacuum expectation value of the vector current can be transcribed into
the form

H()y = fim T Yo _~aﬂ_a65/2iA_.
() = lim 5 s e (<ile™ — e [ P2 (A - wi)

Yy
<= A= s s P exp i [z (ad,(e) + b A (2
o 0 o 0
2, ¥ Y g 5 2, Y Y 1.
+c/d g g A B As() + /dtatuatﬁA(z t,u)A55(t))}. (E.4)

For the calculation of the rh.s. of Eq. (E.4) we apply the spatial-point-slitting
technique. We set y° = 2% and y! = 2! + ¢, taking the limit ¢ — 0. This gives

_1: Li 1 . af _ _aB.5 _6_6 2 .

= llmo 5 :Fetr{fy [1 + Ze(g ey ) s d zA(x z,/L)A@(z)]
H 1 :I: ) A T + b 5A xXT + d2 _—A xr — U A

X7y |: ’LE(CL 1( ) Y 51( ) c t It 9tﬁ ( L ﬂ) ﬁ(t)

0 0
+dy /d t@tl (%BA(Q: t; [L)A5B(t)):|}

_ : g : ? . 1p af 1u _ap 2 .
_:Fll—r% e +ll—r>% 2me {16(29 g hzete )8331 &ro‘/d 2A@ =z n)As(2)
Fie (2agl“A1(x) + 2be Ay () + 2cg™ / d>t %%A(m —t; ) Ap(t)
&
o 0
1p 2 _ 4

2de / Pt g 5y 1) A5a(0)] (E5)
Taking the symmetric limit we get

1 o 0

10 = | — (gt g®P L lrgaB 2 —

) = 3o e o [ A - s As(2)
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ot! Otg

Fdetn / d2t % 8? Alz — M)Aw(t))}. (E.6)

o 0
—i—(agl“Al(x) + be't Asy (x) + cgt / d*t ———A(z — t; u) Ag(t)

The components of the current are equal to

G = e g [ A= Ay
—EA51(33) d/d2 %%A( t; ) Asp(t),
G = o [ 2 AG - zn)Au)
L) - £ [ %%A( EwAst).  (E)

Using As,, = —¢,, AV and OA(z — y; 1) = 6@ (2 — y) the zero component can be
transcribed into the form

P@) = oo @86 =z - 1o [P = 202
+§ A0+ & / d%%%A( b ) Ay (1)
-2 d?t%%m b ) A () =
_ _% %% /szA(a; C AL + %Ao(x)
s ) - S [ %%A( £ i) Au(t) =
_ 1:%‘20 82 P2 A — 2 ) A (2) + “d%lAO(x). (E.8)
Comparing the time component with the spatial one, given by
) = g [ A sA) + A, E9

we obtain that the covariance of the vacuum expectation value of the vector

current takes place forc = —dand b+ d + 1 = a only.
Thus, the vacuum expectation value of the vector current is

(@) = gm—ga% - [ @286 -zm4,0
- / d2y D (z — y) A, (1), (E.10)
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where 7} and ¢ are parameters related to the parameters a, b, cand d as £ = a and
7 = 1 — c¢. The vacuum expectation value of the vector current, given by (E. 10),

supports the possibility to parametrise the functional determinant Det(i0 + A)
as well as the Green function D" (z — y) by two parameters (8.8).

E.2 Calculation to Equation (8.18)

The inverse (1 + gD)~! of the matrix
o AN g 0 0
1+ gDy (@,2) = (14€2) 6@ (@ —2) =72 =LA@ —2p). E1D
T T 0y 024
has to obey the condition
/dQZ (1+gD)(,2)((1 + D) Nav(z,9) = ¢4, 8P (z —y). (E.12)

Making the ansatz for the elements of the inverse matrix (1 + gD) ! as

(1+9D) Nav(z,y) = Agar 6P (2 — )+B£82VA(z—y;p). (E.13)

By introducing the notation
A= (1+53), B =2 (E.14)
7r ™

we have for the product in Eq. (E.12)

/d% (1+ gD)* (2, 2)((1 + gD) Maw (2.7)

9 0
— AAg" + AB | d?26@(z — 2) — " Az — 4
gy + / 26\ (x Z)az“azy (z—y; )
~ 0 0
“BA [ d®26D (2 — ) — —— Az — 2
/d 207 (z —y; p) Dz, Do (x — 2 1)

—BB/d2zi 0 Az — z; p) 09 Az —y; ).

1, D 0z, 02
~ -9 9 o 0
= AAg' + AB— " A(z — BA 7 Az —vy;
gy, + Jz, Do (z—y;p) — Jz, Do (x—yip)
~ 0 0
—BB——A(z—y;p) = g* 5§Dz —vy). E.1
5z, 07 (z—y;p) = g5, 6z ~y) (E.15)

Hence, the coefficients of the inverse matrix are fixed as

A=A"' AB-BA-BB = 0. (E.16)
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Using Eq. (E.14) they read

= 1 ~ g n 1
A= __ __ E.17
144 Tl1+4(E-n1+6L (E17)

Thus the matrix (1 + gD)~!is
1

((1+9D)_l)au(zay) = 7‘99041/5(2)('2_%#)
L+&-
A L2 9 Ny (®18)

TATTL(e— 11l 00 0

E.3 Calculations to Equation (8.21)

Calculation of the first term

The first term in Eq. (8.21) reads

7 1
b go(A, —Ay) 114D (A, —Ay)

i 0 ~
= -3 g// d?z1d? 29 5o (A(;U —z1;0) — Ay — zl;,u)) [Aga,, 5(2)(,21 — 293 14)

(E.19)

~ 0 0 )
B Az — 20ip1) | 5 Az — 2230) — Aly — 22341) ).
B g (=1 Z%M)} 8%( (z = z05p) — Aly zmt))

Integrating over z7 and afterwards partial integration over z; yields for the first
term in Eq. (E.19) to become

1 2, O P
5 g/d A (A(w 215 1) — Ay zl,u)) A Gew
0

x (A(:z:—21;u)—A(y—zl;u))

8le/
_i 2 . 0 oy . \\5 9 0 .
59 [ @z 52 (8 = 210 - Aly - 21:0) B e INCE
0
X(?Zg,, (A(‘T - Zg,/,t) - A<y - Z27H)>

_ bt a0 0 ) — Ay — 2
= 2gA/al z1( 1)8zf‘821a<A($ 213 1) — Ay zl,,u))

x (A(:r —zi50) — Ay — zl;u))

—%gg//d2z1d222 (_1)3 o0 9 (A(m—zl;u)—A(y—Zﬁﬂ))

02§ 0214

g 0
X 8—2582—1,,A(21 - zwt)(A(éU — 225 ) — Ay — ZQHM)). (E.20)
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Using OA(x —y; u) = 6(z —y), we have

1
1+gD

= %gﬁz [AO; 1) — Az —y; )] + %gé? [AO; ) = Alz —y;p)]. - (E21)

i
) go(As — Ay) Az — Ay)

Inserting the coefficients given in Eq. (E.16) we arrive at

1

—— (A, — A
1+gD8( v)

)
- Ega(Az - Ay)

_ ig[A(O;M)_A(x—y;M)]<1+g§+1+3(§—77)>

g m [AO; 1) — Al — g )], (E22)

ke

Calculation of the second term

1
——=¢
1+gD

) 9 _
= %g// d?z1d? 2 —(A(m — 215 1) Ay — zl))sm {Aga,, 5(2)(21 — 29)

)
598(Az_Ay)5 8(Az_Ay)

0z]
5 0 9 . vé 0 . )
+Ba—zf‘a—zlle(z1 _ZQﬂP’)] € a—zg(A(.f—Zg,,U,) _A(y_ZQ,,U,)) (E23)
Using the formulas
e = Mg gy (E.24)

we have

i 2 oy A2 (A(r — oy ) — Ay — 210 g7 6@ (21 —
50 [ Eadn g (A —ai ~ My —2:0)g 580~ )

0
= AA(r = 20: 1) — Ay — 2o
azg( (. —22;1) — Ay zwt))
~ 0 0o 0 av
+Bﬁ(A($—leu)—A(y—zl%ﬂ))@@A(zl—Z%M)g g"°
1 1 071
0
@<A(w—zz;u)—A(y—z2;p))
2
~ 0 0 0 a v
+BW(A($—21;M) —A(y—zl;ﬂ))@@A(Zl —22;M)(—9 697 )
1 1 071
0
8_23 (A(ﬂf — 25 1) — Ay — 22 ,U’))v (E.25)
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integrating partially we get

- %g/d%l A ((5($ —21)— 0y — z1)> (A(m —z1; 1) — Ay — zgu))

_B (5(:1; ) — oy — zl)> (A(w ~p) — Ay — ZQ;N))

+ B (5 —21) = by — 21)) Al — 22:) (8 = 22) = 3y — ). (E:26)

Since the last two terms cancel we have

1
1+gD

[A0; 1) — Az — y; p)].

(E.27)

7 .
Ega(Ax—Ay)s e0(Az —Ay) = —iyg

1+ 4¢

Summing both terms in Eqgs. (E.22) and (E.27) gives for the argument in the
exponent of the causal two—point Green function (8.16)

. 1 1 ‘ '
v <1+%<5—ﬁ> ) 1+g5> (A0 ) = Al — g5 )]
— Zﬁ n 1 [A(O )—A(l‘— . )] (E28)
N 7T1+%(§__77)1+%£_ ) M Yi )] .

The argument in the exponent of the correlation function (8.23) reads

[A0; 1) — Az — y; p)]. (E.29)

2097 af

E.4 Constraints on the parameters ¢ and 7} from the norms
of the wave functions of the states related to the com-
ponents of the vector current

The dependence of the functional determinant Det(id + A) on two parameters
leads to the dependence of the two—point correlation function (0| T (5% ()" (y))|0)
on these parameters. Following Johnson [41] we get for the vacuum expectation

value (0|T(j*(x)j"(y))|0)

OTG@F a0 = -1 1 0 0\
(O]T (5" (z)5" (¥))]0) - (14—5%)(1—1—(5——77)%) 9z, 9, (x —y; 1)
- Z ! 909" 63 (z — y).

(E.30)
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This gives the following vacuum expectation values

O @) = -2 e (11 e (52) DD —y)
[ 2
0l @) W)0) = —ﬁ( T 1 7 (52) DD —y),
T (L E-m =) T
(E.31)
where D*)(z — y) are the Wightman functions given by
D) (g — y) = / (;F]‘)“ 20 (k)5 (k2) e Fik - (1 = ¥) (E.32)

We have taken into account that
Alw —y;p) = i0(2" —y°) DD (z —y) +i0(y° —2°) DO (z —y).  (E3D)

According to Wightman and Streater [64] and Coleman [65], we can define the
wave functions of the states

%) = / &1 h(z) °(2)[0),
I / &1 h(z) (2)|0), (E34)

where h(z) is the test function from the Schwartz class h(z) € S(R ?) [64].
The norms of the states (E.34) are equal to [64, 65]

°; bk 1°) // Pady I (x) (017 (@)1 ()|0) h(y) =
d2k‘ -
(1+5;)( +E-n) / 2m (K0)*0(k")d (k) [ (k)[*,

(2m)?
(j'shlhi gty =

BN

N |3

1
(1+ed)(1+E-n2)

™

x / / dxd?y b (x) (0[5 ()5 (9)]0) h(y) =
1 Ak

(1+5%)(1+(5—ﬁ>%)/<2”)22

m (K°)20(k°)S (k) [(k)I?,

BN

(E.35)

where h(k) is the Fourier transform of the test function h(x). Since the norms of
the states (E.34) should be positive, we get the constraint

ﬁ(l+€%>(1+(g—ﬁ)%) > 0. (E.36)
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This assumes that 77 # 0. For 7, constrained by the requirement of the renormal-
isability of the massless Thirring model (8.30), the inequality (8.36) reduces to
the form

_yg (1 +53) > 0. (E.37)
T
This inequality is fulfilled for
g>0,1+5%<0 : g<0,1+£%>0. (E.38)

Using the vacuum expectation value of the two—point correlation function of the
vector currents (E.30) we can calculate the Schwinger term, defining the equal-
time commutator. For the equal-time commutator [j°(z), j! (y)],0—,0 We get

, . 0 o1
[7°(@), 5 Wlao=ye = —ciggi! —y') =
n 1 .0
= - ot —yt)
(e 1+ E-n2) 2
(E.39)
with the Schwinger term c equal to
=1 ! . (E.40)

T £9 9
(+eD)(rE-n7)

Due to the constraint (E.37) the Schwinger term is always positive. For /) = 1 our
expression (E.40) for the equal-time commutator coincides with that obtained by
Hagen [43].

Using (E.40) we can analyse the Bjorken-Johnson-Low (BJL) limit for the
Fourier transform of the two—point correlation function of the vector currents
[66, 67]. Following [67], we consider the Fourier transform

To(q) =i / @10 (AT (G, (2)7, (0))|B). (E.41)

where ¢ = (¢°, ¢') and |A) and | B) are quantum states [67]. In our case these are
vacuum states |A) = |B) = |0). This gives

Tolq) =i / @82 (O[T (4, (2)7, (0))]0)- (E42)

According to the BJL theorem [66, 67], in the limit ¢° — oo the r.h.s of Eq. (E.41)
behaves as follows [67]

Tl = -~ /+°° e =14 01,(0,2), 1, (0)]]0)

—igtat . . 1
_W/—oo do'e " <0|[30.7u(07$1),]u(0)]|0>+O(W)
(E.43)
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For the time-space component of the two—point correlation function we get
0.1 | R s I 1\
Tnldha) = =5 dze (0[[70(0,27), 1 (0)]|0)
oo
i oo

J —iq-x . . 1
_W\/_OO d:rle ql 1<0H80]0(07«T1),j1(0)”0> +O<W>
(E.44)

Using (E.39) for the BJL limit of Ty (¢°, ¢') we obtain

—

1
() (@)

For 7 = 1 this reproduces the result which can be obtained using Hagen’s so-
lution [43]. One can show that due to conservation of the vector current the
term proportional to 1/¢3 vanishes. The asymptotic behaviour of the Fourier
transform of the two—point correlation function of the vector currents places no
additional constraints on the parameters ¢ and 7.

The inequality (E.36) leads to the following interesting consequences. Ac-
cording to Coleman [2], the coupling constant 32 of the sine-Gordon model is
related to the coupling constant g of the Thirring model as

To1(q% ¢")

L]
RS

+ O(L). (E.45)

q (¢°)3

g1 i 1 g 1
m

Hence, for the constraint (E.38) the coupling constant 32 is of order 3 ~ 8.
The behaviour and renormalisability of the sine-Gordon model for the coupling
constants 32 ~ 87 has been investigated in [24].
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Appendix F

Definitions

Metric tensor:

Quabla operator:
O = 9,0".

/=]

yt = 2! coshp — 2" sinh ¢, 0 = a:ocoshgo—xlsinhgo

ot =y cosh ¢ + y" sinh v, 20 = ¢ cosh ¢ + y'sinh ©,

Notation for integrals

Lorentz transformation

1 0

with velocity parameter v, v = tanh ¢.

e—Tensor

0 1 0 —1
Ew} = < -1 0 > EHV = < 1 0 > = guagaﬁgﬁl/ = _gwj

v_A A _pv VA av
el = g g™ + g"’g ena™ =gl

~v—Matrices

0 1 0 -1 1 0
0 _ 1_ 5_ 0.1 _
re(io) =) ree(o Y

Relations for v Matrices
VA A =2g" A+ =0

YA = ey, APy =g ey
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Useful trace formulas in Minkowski space

tr {'ya'yﬁ} = 2¢°8
tr{y2y%y7} =22
{12977} = 2(g7797° — 79" + g79")
tr{1°977"} = —2 (9797 + eg?)
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