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Zusammenfassung

Im Fokus der Betrachtungen fir zukunftige Kommunikationssyteme stehen Mehrantennen-
systeme bestehend sowohl aus mehreren Sende- als auch mehreren Empfangsantennen (Mul-
tiple-Input Multiple-Output, MIMO). MIMO-Systeme ermoglichen durch die Nutzung der
raumlichen Dimension des Funkkanals eine deutliche Steigerung der Ubertragungskapazitit
gegeniiber konventionellen Kommunikationssystemen (mit je einer Sende- und Empfangsan-
tenne) bei gleicher Sendeleistung und Ubertragungsbandbreite. Da das gesamte Potential
von MIMO-Systemen von den Eigenschaften des Funkkanals abhangig ist, setzt die Planung,
Simulation und Errichtung solcher Systeme eine prazise Modellierung des Funkkanals voraus.

Diese Dissertation befasst sich mit der Modellierung von MIMO-Funkkanalen innerhalb von
.Gebduden (Indoor). Zunichst werden die gangigen Kanalmodelle kurz rezensiert. Die Modelle
werden dabei in physikalische und analytische Modelle unterteilt. Basierend auf der doppelt-
richtungsabhingigen Mehrwegeausbreitung beschreiben physikalische Modelle die elektromag-
- netische Wellenausbreitung zwischen dem Sender und Empfanger. Im Gegensatz dazu charak-
-terisieren analytische Modelle die Impulsantworten zwischen allen Sende- und Empfangsan-
‘tennen in einer mathematisch geschlossenen Form. Damit bieten sie eine analytische Basis
fiir den Entwurf von MIMO Ubertragungstechniken.

-Um zu iiberpriifen, inwieweit Modelle die Realitdt nachbilden kénnen, werden diese im All-
gemeinen einer experimentellen Validierung unterzogen. So auch MIMO-Kanalmodelle: Im
zweiten Teil dieser Dissertation werden bekannte analytische Schmalbandmodelle, namlich das
sogenannte Kronecker Modell, das Weichselberger Modell und die virtuelle Kanalreprasenta-
tion (virtual channel representation) mit Messungen einer umfangreichen Messkampagne bei
5.2GHz in den Biiroraumen des Instituts fiir Nachrichtentechnik und Hochfrequenztechnik der
Technischen Universitat Wien verglichen. Im Speziellen werden MIMO-Systeme mit linearen
Antennengruppen in Betracht gezogen, wobei sowohl die Anzahl der Antennenelemente (von
2 x 2 iiber 4 x 4 bis 8 x 8) als auch die Elementabstinde variiert werden.

MIMO Kanéle weisen unterschiedliche Eigenschaften und Aspekte auf, die - wie sich im Rah-
men dieser Arbeit herausgestellt hat - von einer einzigen Metrik alleine nicht erfasst werden
konnen. Folgende vier Metriken werden daher fir die Validierung der genannten Modelle
verwendet: (i) die mittlere Transinformation des MIMO Kanals bei gleichformiger Alloka-
tion der Sendeleistung auf die einzelnen Sendeantennen, als Mafl fiir den Signalgewinn aus
dem raumlichen Multiplex-Verfahren; (ii) das doppelt-richtungsabhdingige Leistungsspektrum,
das Einsicht in die rdumliche Mehrwegeausbreitung gewihrt und das Potential des Kanals
fir Strahlformung widerspiegelt; (iii) ein Diversititsmaf fur die Erfassung der Diversitit des
Kanals; sowie (iv) eine Distanz zwischen Korrelationsmatrizen (CMD), welche Anderungen
der Korrelationen des MIMO-Kanals beschreibt.



Die Validierung zeigt, dass die mittlere Transinformation, das Diversitatsma$l und die Kanal-
Korrelation am besten vom Weichselberger Modell wiedergegeben werden koénnen. Im Gegen-
satz zum Weichselberger Modell, das die mittlere Transinformation des gemessenen Kanals
(bei einem Signal-Rauschleistungsverhaltnis von 20dB) nahezu fehlerfrei nachbildet, zeigt das
Kronecker Modell Abweichungen von bis zu mehr als 10%, insbesondere bei 8 x 8. Hingegen
konnen alle drei Modelle die mittlere Transinformation des gemessenen Kanals fiir ein 2 x 2
System mit weitem Elementabstand hinreichend genau modellieren.

Das doppelt-richtungsabhangige Leistungsspektrum wird von keinem der untersuchten Mod-
elle fiir beliebige Ausbreitungsszenarien und Antennenanzahl genau wiedergegeben. Wahrend
das Weichselberger Modell nur Systeme bis zu 4 x 4 entsprechend prézise modelliert, steigt die
Giite der virtuellen Kanalreprisentation mit zunehmender Anzahl der Antennen (aufgrund
der hoheren Winkelauflésung). Acht Antennen sind scheinbar trotzdem nicht ausreichend.
Da das Kronecker Modell die Unabhangigkeit von Sende- und Empfangsrichtungen erzwingt,
sollte es im Allgemeinen nicht fiir die Modellierung des doppelt-richtungsabhingigen Leis-
tungsspektrums herangezogen werden.



Abstract

Multiple-Input Multiple-Output (MIMO) systems are a promising candidate for future wire-
less communications systems as they provide high data rates by exploiting the spatial domain
under the constraints of limited bandwidth and transmit power. It is the radio propagation
channel that determines crucially the characteristics of the entire MIMO system. Therefore,
accurate modeling of MIMO channels is an important prerequisite for MIMO system design,
simulation, and deployment.

This thesis focuses on MIMO channel models for indoor environments. As a first step, recent
work on indoor MIMO channel model is briefly reviewed. The models are classified into
physical and analytical models. The result of physical modeling is the characterization of the
environment on the basis of double-directional multipath propagation between the location
of the transmit and receive array. Analytical models, ‘on the contrary, describe the impulse
response between all elements of the antenna arrays at transmitter and receiver. These provide
an analytical framework for designing MIMO techniques.

The ultimate test of any model is experimental validation. Consequently, we compare some
popular analytical narrowband models, viz. the so-called Kronecker model, the Weichselberger
model, and the virtual channel representation with measurements. For these investigations,
MIMO systems equipped with uniform linear antenna arrays at both link ends are considered.
Both different numbers of antennas, varying from 2 x 2 to 4 x 4 and 8 x 8, and different
antenna spacings are studied. As the basis for our comparison we take measurements of an
extensive 5.2GHz measurement campaign in the offices of the Institut fiir Nachrichtentechnik
und Hochfrequenztechnik, Technische Universitat Wien, Austria.

In the course of this work it turned out that a single metric or performance measure alone
is not sufficient to verify the suitability of a MIMO channel model. In order to capture the
most important aspects of MIMO channels four different metrics are applied. These metrics
are (i) the average mutual information (with equal transmit power allocation) describing the
spatial multiplexing gain; (ii) the double-directional angular power spectrum, giving insight
into the multipath structure and potential beamforming gain; (iii) a Diversity Measure, de-
scribing the degree of diversity of a channel; and (iv) the Correlation Matriz Distance (CMD)
characterizing the changes in the full channel correlation.

The validation reveals that the Weichselberger model predicts the average mutual information,
the Diversity Measure and the full channel correlation best of all three models, independently
of the antenna number and antenna separation. Regarding average mutual information it
shows an almost perfect match with the measurements at a receive SNR of 20dB, whereas
the Kronecker model tends to underestimate the mutual information up to more than 10%
especially for large arrays (8 x 8). When we lower antenna numbers to 2 X 2 and increase



antenna spacing, all considered models predict mutual information sufficiently well.

Concerning the double-directional angular power spectrum none of the analyzed models-can
reproduce an arbitrary multipath structure accurately, independently of the array size. While
the Weichselberger model can only cope with systems not larger than 4 x 4 sufficiently, the
virtual channel representation improves its performance with increasing antenna numbers due
to improved angular resolution. But 8 x 8 does not seem to be large enough. The Kronecker
model forces the double-directional angular power spectrum to be separable and should, in
general, not be used for modeling the double-directional angular power spectrum.
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Chapter 1
Introduction

The Historical Context

1.1 The Historical Context

Three major revolutions have changed the human society deeply. In the course of the first rev-
olution, the so-called neolithic revolution, human society become sedentary, adopt agriculture
and domesticated animals.

The second revolution was the industrial revolution. It changed the nature of production
fundamentally. Machines replaced tools, steam and other energy sources replaced human or
animal power, and skilled workers were replaced with mostly unskilled workers. The industrial
revolution transformed agricultural economies into industrial ones.

The third revolution, the ongoing information revolution, is symbolized by the coalescence of
the worlds of information technology, communications and media. Catchwords are internet,
multimedia, and wireless access. The storage, transmission, manipulation and accessability of
vast quantities of knowledge or information characterizes this revolution. Thus, information
is an essential economic resource.

Communication technologies play a key role, as they make the transmission and accessability
of information possible. In particular, the introduction of wireless communication systems
has opened new dimensions and new horizons in the field of communications. Communication
has been abstracted from the constraints of physical space - people can be reached anytime,
anyplace. These advantages have attracted people such that the number of mobile subscribers
exceeds the number of fixed-link subscribers in several countries.

1.2 Wireless Communication Technologies

Wireless is evolving, just as the wireline sector evolved from the plain old telephone service to
a much wider range of service options, particularly data services. Wireline data traffic volumes
increased dramatically from one megabyte (MB) per user and month in 1991 to nearly 200MB
per user and month by 1999 [1] due to higher data rates and improved usability. Along with
this, penetration increased and, very important, costs decreased.
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A similar evolution has been already started and is expected to be continued for wireless.
New wireless data technologies-such as WLANs (Wireless Local Area Networks), Beyond
3G (3rd Generation) mobile communication systems, home Audio/Visual networks and fixed
broadband wireless access will be challenged by fairly high-speed data transmission. Qual-
comm forecasts wireless data volumes to exceed 200MB per user and month by the year 2006
[1]. WLAN systems providing short range wireless access for home, public environments, and
enterprise solutions face the competition of wired LANs. Obviously, currently offered peak
data rates of 10Mbit/s are highly inadequate. Beyond 3G mobile communication systems
aim to transmit real-time video and multimedia traffic in highest quality. Although not fully
specified, future wireless systems will be required to support peak data rates of up to 1Gbits/s
[2]. Laptops and PDAs (Personal Digital Assistants) are planned as new devices. All these
systems ask for the highest data rates in indoor environments such as hot-spot areas and
indoor offices.

One of the most promising candidates for fulfilling the increasing demand for higher data
rates with good Quality-of-Service under the constraints of limited bandwidth and restricted
transmit power are so-called MIMO systems. MIMO stands for multiple-input multiple-
output and denotes systems with multiple antennas at both link ends. In fact, the novelty of
MIMO is the exploitation of the spatial domain at both link ends. Communications engineers
have previously exploited all other domains. Traditional single-input single-output (SISO)
systems allow the exploitation of time, frequency, and code. Smart antenna or adaptive
antenna systems, equipped with an antenna array at one link end only [3], allow to exploit
space with some restrictions. More specifically, spatial diversity and beamforming gain (array
gain) at one link end is achievable. For multi-user systems also interference suppression is
possible. An overview of smart antenna techniques can be found in [4, 5, 6, 7, 8]. Aside from
_polarization, the ”full exploitation of space is the final frontier”.

MIMO promises more than spatial diversity or beamforming at both link ends separately. As
pioneering works by [9, 10, 11] showed, it boosts channel capacity compared to SISO channels
by exploiting spatial multiplexing. It enables the transmission ¢f several data streams over
parallel non-interfering virtual sub-channels. Dependent on the underlying radio channel,
the capacity of a MIMO channel potentially grows linearly with the minimum number of
transmit and receive antennas. Capacity limits of various kind of channels are reported in
[11, 12, 13, 14, 15]. Several signal processing algorithms were developed to exploit MIMO
benefits, particularly the extensive group of space-time codes [16, 17, 18, 19, 20, 21]. Overviews
on MIMO in general can be found in [22, 23, 24]. The MIMO radio channel specifies crucially
the characteristics of the entire MIMO system. In other words the propagation conditions
determine what can be gained by MIMO.

Accurate MIMO channel models are a prerequisite for (i) the site-independent design, sim-
ulation, and deployment of MIMO systems, and (ii) the site-specific prediction for MIMO
network planning. First comes the physical, electromagnetic wave propagation. 'Conven-
tional’ models, which had been developed for SISO and smart antenna systems, are no longer
suitable for MIMO systems. Instead, MIMO necessitates the double-directional characteriza-
tion of the physical wave propagation [25, 26, 27, 28]. Extending conventional models to the
MIMO case is not straightforward, since - in addition to the spatial characteristics at both
link ends - also their linkage has to be considered. The final result of physical modeling is
the characterization of the environment on the basis of electromagnetic wave propagation.
If we now specify antennas at both link ends by setting the number of antenna elements,
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their geometrical configuration, and their polarizations, preferably by agreement to reference
configurations, we arrive at analytical MIMO -channel models. These provide an analytical
framework for information theory and signal processing people to design transmit and receive
techniques like space-time codes and to develop MIMO algorithms in general. An extensive
overview of analytical MIMO models that are based on the multivariate complex Gaussian
distribution is presented in [29].

Recent work on MIMO modeling focuses its attention on indoor environments, e.g. as [30,
31, 32, 33, 34], since lead-off MIMO systems will be most probably deployed in indoor en-
vironments. Although indoor propagation is characterized by the same main propagation
mechanisms as outdoor, indoor channels differ significantly from its outdoor counterparts.
Specifics of the much more complex indoor propagation has to be taken into account when
modeling such channels.

The main goal of this thesis is to give an overview of indoor MIMO channel models. An
outline and major contributions follow.

1.3 Outline and Contributions

‘Chapter 2 introduces the MIMO channel and details its relationship to the double-directional
radio propagation. It presents the potentials of MIMO systems, viz. beamforming, spa-
tial diversity and spatial multiplexing. Also, specifics of indoor MIMO channels, as a
consequence of the special geometric constellation in such channels, are discussed.

‘Chapter 3 gives an overview of existing indoor MIMO channel models. The models are cat-
egorized in physical and analytical models. The first group treats the double-directional
propagation between the location of the transmit and receive array independently of the
antenna configuration. The latter describes the impulse response, or equivalently the
transfer function, between the elements of the antenna arrays at both link ends, thereby
capturing both effects, the physical wave propagation and the influence of specific an-
tenna configurations.

In particular, popular analytical models like the Kronecker model, Weichselberger model,
the virtual channel representation and the finite scatterer model will be discussed in de-
tail. The extension of the Saleh-Valenzuela model and Zwick’s model, as a representative
of physical models, and the recently standardized IEEE 802.11n indoor MIMO channel
models are also briefly addressed.

Chapter 4 describes the indoor MIMO measurement campaign at 5.2GHz performed at our
Institute, on which the validation of analytical channel models in Chapter 5 is based on.
It details the used antennas and equipment, the measurement setup, and the measured
scenarios.

A section on data post processing addresses mainly three points. First, it reveals how
mutual electromagnetic coupling between the elements of the receive array was com-
bated. Second, it exhibits the creation of different fading realizations of a MIMO chan-
nel matrix. Third, considerations on the size of the statistical ensemble when using the
measurements for statistical evaluations are presented.
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Chapter 5 validates analytical narrowband MIMO models, specifically the Kronecker model,
the Weichselberger models and the virtual channel representation. Measurements are
compared to Monte-Carlo simulations of these models with parameters extracted from
respective measurements.

As measures of quality (metrics), the mutual information with equal transmit power
allocation, the double-directional angular power spectrum, a diversity metric, and the
Correlation Matrix Distance are used. The models’ performances are studied for 2 x 2,
4 x 4 and 8 x 8 systems for fixed antenna inter-element spacings. Also, MIMO systems
with different antenna spacings when assuming a fixed antenna number are considered.

Chapter 6 summarizes the major results of this thesis and draws some conclusions.

Appendix D addresses an interesting idea, by which Rayleigh fading MIMO channels are
introduced that exhibit higher ergodic capacity than under i.i.d. fading conditions.

1.4 Notation

The following notation will be used throughout the thesis:

. a bold lowercase letters represent vectors
A bold uppercase letters represent matrices
J j=+(-1)
Ok Hermitian transposition (complex conjugate transposition)
(T transposition
(-)* complex conjugation
E{} expectation operator
Ez{} expectation operator with respect to z
o(-) Dirac delta
tr{-} trace operator
Il Ilr Frobenius norm
vec{-} vector operator, stacks the columns of a matrix into a column vector

unvec{-} inverse operator to vec{-}

® Kronecker product

© element-wise (Schur-Hadamard) product
* convolution operator

| -] absolute value

(-y°) inner vector product

det{-} determinant of a matrix

rank{-}  rank of a matrix

log.{-}  logarithm to the base z

max{-}  maximum with respect to =
T

I identity matrix
I, identity matrix of size n x n
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1.5 Abbreviations

- 3G

- APS

- cdf

- CMD
- COST
- CSI

- DoA

- DoD

- GSCM
- IEEE
- 1id.

- LoS

- MIMO
- MISO
- MPC
- MVM
- NLoS
- OFDM
- OLoS
- pdf

- SIMO
- SNR

- Tx

- ULA

- WLAN

Third Generation

Angular Power Spectrum

cumulative density function

Correlation Matrix Distance

European CO-operation in the fields of Scientific and Technical research
Channel State Information
Direction-of-Arrival

Direction-of-Departure

Geometry-based Stochastic Channel Model
Institute of Electrical and Electronics Engineers
independent and identically distributed
Line-of-Sight

Multiple-Input Multiple-Output
Multiple-Input Single-Output

Multipath Component

Minimum Variance Method

Non Line-of-Sight

Orthogonal Frequency Division Multiplexing
Obstructed Line-of-Sight

probability density function

Receive, or Receiver

Single-Input Multiple-Output

Signal to Noise Ratio

Transmit, or Transmitter

Uniform Linear Array

Wireless Local Area Network



Chapter 2

The Indoor MIMO Channel

2.1 Double-directional Radio Propagation

The physical (electromagnetic) wave propagation is the basis for any wireless communica-
tion. Especially in a cluttered indoor environment, the transmitted signal propagates to the
receiver via a number of different propagation paths (multipaths). Possible interactions of
the electromagnetic field with various objects along these multipaths are described by five
basic propagation mechanisms. These are free-space propagation, specular reflection, diffuse
reflection (or scattering), refraction and diffraction [35]. Figure 2.1 illustrates an exemplary
propagation scenario. The LoS (Line-of-Sight) component, propagating directly from the
transmitter to the receiver, experiences free-space loss only. Furthermore, specular and dif-
fuse reflections at different scatterers and at a wall are shown. Throughout this thesis we will
refer to a scatterer as any object, at which a multipath components (MPC) is either reflected,
scattered or diffracted.

In the field of wireless communications, the radio propagation is modeled by the impulse
response of the propagation channel between the locations of the transmitter, rry, and re-
ceiver, rry, as a sum of contributions of individual MPCs. Disregarding polarization, the
dispersion of the channel in delay and angles is described by the double-directional channel
impulse response [25, 26, 27, 28]

L
h (r T TRy T T, ) = O bt (T, TRy, T, QT Qi) - (2.1)
- =1

where 7 is the excess delay, the spatial angle Qpy characterizes the direction-of-departure
(DoD), and gy the direction-of-arrival (DoA) !. A total number of L MPCs above the noise
level contribute to the impulse response.

The contribution of the I-th MPC, denoted by h; (rr«, Trx, 7, Tx, 2rx), reads in case of a
planar wave as '

hy (*Tx, PRx, T, QRx, Q1) = @16 (T — 71) 6 (1) — Q151) 0 (QRx — DR 1) 5 (2.2)

'The spatial angle Q coresponds to a point on the unit sphere. It replaces the spherical azimuth and
elevation angles.
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specular reflection

scatterer receiver

o4

diffuse
reflection

specular
reflections

scatterer

transmitter
scatterer

Figure 2.1: Illustration of radio wave propagation between a transmitter and a receiver.

where a; denotes the complex amplitude, and §(-) is the Dirac delta function. The subscript
(-): indicates the respective wave parameters of the [-th MPC. Arbitrary wave forms can be
modeled by appropriate functions for A; (rrx, rrx, 7, rx, $2Tx). Since Maxwell’s equations are
linear, MPCs with arbitrary wave forms could alternatively also be broken down to a linear
superposition of plane waves.

Until now, we only considered a static environment. However, the positions of the transmitter,
receiver, and scatterer are in general not fixed but vary. For time-variant channels rry, rgy,
T, Q1x, Srx, and L become a function of (absolute) time ¢ such that we can replace (2.1) by
the more general time-variant double-directional channel impulse response

L
h(t,7, Qre, Qrx) = D by (6,7, O, Q) - } (2.3)
=1

Polarization can be included by extending the impulse response to a polarimetric (2 x 2)
matrix [36] whose entries link vertical and horizontal transmit polarizations to vertical and
horizontal receive polarizations,

hVV (ta T, QTX, QRX) hVH (ta T, QTX) QRx)

h’HV (ti T, QTX: QR.x) hrHH (t, T, QTX, QRX) ! (24)

where V and H denote vertical and horizontal polarization?, which are sufficient for the
characterization of the far-field. The contribution of a plane wave MPC reads then as

%For instance, R¥VY (t,7, Q1x, Qrx) is the impulse response that couples vertical transmit polarization into
horizontal receive polarization.
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S——
N,

=]

—

= = =< =<

==

MIMO channel
» transmit antennas m receive antennas

Figure 2.2: Schematic of a MIMO system with n transmit and m receive antennas.

h'[VV (taTa QTXaQRx) h[VH (taT) QTxaQRx) 2.5

RV (7, Qm Q) hETH (2,7, O, ) (2:5)
oV oVH

= [ aéqv a?”{ ] 6 (17— 1) 6 (Qrx — Qrxt) 6 (Vrx — UmRxyt) - (2.6)

Herein, the complex amplitude is also a polarimetric matrix, accounting for pathloss and
depolarization.

We emphasize that the double-directional impulse response describes the ’pure’ propagation
channel and is completely independent of antenna elements, antenna configurations, system
bandwidth or pulse shaping.

2.2 MIMO Channel

In contrast to conventional communication systems with one transmit and one receive an-
tenna, MIMO (Multiple-Input Multiple-Output) systems are equipped with more than one
antenna at both link ends. As a consequence, the MIMO channel has to be described by its
response between all transmit and receive antenna pairs.

Let us consider a MIMO system with n transmit and m receive antennas (Fig. 2.2), denoted
by m X n. A linear, time-variant MIMO channel is then represented by an m x n channel
matrix H(t, 7), with

hll(taT) hl?(taT) o hln(taT)

H(t’ 7-) _ hgl (t, 7') h22 (t, T) s h2n(t, T) ’ (27)

ho1{t,7) hme(t,7) -+ hma(t,T)
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where the h;;(¢,7) denote the time-variant impulse responses between the j-th transmit an-
tenna and i-th-receive antenna. Since (2.7) describes the channel response between the an-
tennas at both link ends, obviously, it depends on the actual antenna configuration and
bandwidth considered.

Given that the MIMO channel is stimulated by the vector valued transmit signal s(t), the
resulting signal y(t) at the m receive antennas can be expressed as

_ / H(t, 7)s(t — 7)dr + n(t). (2.8)

Here, n(t) is the noise and interference signal vector.

On the other hand, a time-invariant MIMO channel is described by a delay-only dependent
channel matrix H(T) such that its input-output relation reads as

= /H(‘r)s(t — 7)dT + n(t) = H(7) *s(¢) + n(¢), (2.9)

where * denotes the convolution operator. If the channel is frequency-flat, i.e. the channel
matrix is non-zero only for 7 = 0, (2.9) simplifies to

y(t) = H(t)s(t) + n(t), (2.10)

or for discrete-time equivalently to

y =Hs+n, (2.11)

when considering one symbol period.

2.2.1 Relationship to Double-directional Propagation

We have just seen two different views on the MIMO channel: whereas the double-directional
impulse response directly characterizes the physical propagation channel, the MIMO channel
matrix describes the response between the antennas at both link ends, given a specific antenna
configuration and bandwidth. For simplicity we will refer (without loss of generality) to time-
invariant channels in the following.

The relationship between both viewpoints, again disregarding polarization, can be written as

/ // rTxargz(aT,QTXaQRx)ng(QTx)ng(QRx)f(T—Tl)dTldQRdeTx- (2.12)

SQrx QRx T

Here, r.(IZ))( denotes the j-th transmit antenna coordinates, while grx(QTx) represents the trans-
mit antenna pattern. The subscript (-)rx denotes the same variables for the receive side. Fur-
ther, f(7) stands for the combined impulse response of both antennas, transmit and receive
filters.
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Figure 2.3: Planar wave impinging from direction €, at two locations r(!) and r(?,

Equation (2.12) indicates that, in general, the double-directional impulse response needs to
be known between all combinations of transmit and receive antennas.

However, under the planar wave and narrowband array assumptions this burden can be mit-
igated. A wave originating from any scatterer to an antenna array can be approximated as
planar if the distance between this scatterer and the respective antenna array is large enough
compared to the inter-element spacing of that array. For MIMO this must hold true at both
link ends.

Now, consider the complex amplitudes of a planar wave at two locations, r{!) and r®, with
a certain bandwidth B and an incidence direction ©; (Fig. 2.3). The narrowband array
assumption expects the bandwith B to be much smaller than the reciprocal of the transmit
time across the antenna array, i.e. the product of array aperture and the bandwidth needs to
be much smaller than the velocity of light3. If this is fulfilled, the complex wave amplitude at
r(?) is the same as at r!), except a phase shift of (k(€;),r® — r(})), where (-,-) denotes the
inner product and k(£2;) is the wave vector associated with direction ©;. This phase shift is
due to the additional propagation distance Az.

As a consequence, for MIMO it suffices to know the double-directional impulse response be-

tween one transmit and one receive antenna only. The rest follows by introducing appropriate

phase shifts. For instance, an MPC given for the antenna coordinates r(T,)( and rg,)(, could be

(J) (1)

extended to the coordinates r, and IRy as

hy (r’(Il‘Z(’ rg))o T, QTx’ QRx) = hl(r’(I‘iv rgi, T, QTx, QRx)e—j(k(QT")’rgg’)‘_rT)) —3{k(QRx); rRx—rg,Z)

(2.13)
To this end, (2.12) can be simplified to

3 As emphasized in [24], the narrowband array assumption does not imply that the channel is frequency-flat
fading.
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Figure 2.4: Planar wave impinging at the elements of a uniform linear array (ULA).
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The above derived relationship could also be written in terms of so-called steering and response
vectors. A response vector is a vector of complex signals over the receive array elements as
a response to a specific impinging DoA. Analogously, a steering vector is a vector of antenna
weights across the transmit array which are necessary to steer into a specific DoD. Steering
and response vectors depend on the DoDs and DoAs of respective waves, the array geometry
‘and, in general, also on the element pattern. Both vectors are fully deterministic, except for
a scalar factor.

As an example, when considering azimuthal plane wave DoAs only, the response vector of a
uniform linear array (ULA) with m identical antennas (c.f. Fig. 2.4) can be expressed as

1
e_J'»u‘

arc(®) = gra(®)- | €7 . (2.15)
Here, the regular antenna configuration with separation d causes a constant phase shift of

u= ? sin ® (2.16)

between consecutive antenna elements, where ) is the wavelength and @ the azimuth DoA.
The antenna signals at the array are identical, expect a phase shift dependent on the direction
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of the impinging wave. But, if the element patterns would differ, an additional (complex)
scaling to each response vector entry due to the different antenna gains for this specific
direction has to be considered in (2.15).

Now, the relationship of (2.14) can also be written in terms of steering and response vectors,
arx and agy,

H(r) = / / / R, r, 7 Qe Q) ame (0L Q) f (7 — 7)dr' dRpndDrs. (2.17)

Qrx Qrx 7

When polarization is also considered, (2.17) reads as

Hr) = [ [ [[EVER D, 7, Qry, Ore)al () (a8)) T (Qry)+

Qrx Orx T/
+hVH(rS[%))ur£§l_))()TlaQTxaQR.x)a’(I‘},{(

RV (D D g o 1D

+ (rTxerxaTa Tx, Rx)aTx( Tx)\&
+h‘HH(r'(I%,Za rg,)(a 7',, QTx; QRx)a_,(er

where a’(T‘;)/Rx and a,(I,HX}Rx denote the steering/response vectors corresponding to the vertical
and horizontal polarization.

2.3 MIMO Potentials

By exploiting the spatial channel domain, MIMO systems support beamforming, spatial di-
versity and spatial multiplezing. The following subsections will discuss these features briefly.
In order to avoid unnecessary complexity, we will focus on the spatial domain and therefore
refer to frequency-flat channels only. Only one user is considered, i.e. we do not deal with
multi-user interference. The only interfering term is the additive noise.

2.3.1 Spatial Multiplexing

The most promising feature of a MIMO channel is its ability to transmit several parallel data
streams without requiring more bandwith or transmit power. The number of multiplexed
streams depends on the spatial properties of the radio environment. It varies from one,
e.g. under Line-of-Sight (LoS) conditions to the minimum of n and m in rich scattering
environments. In fact, pioneering works showed in [9, 10, 11] that capacity of MIMO channels
can be a multiple of conventional SISO channels.

Strictly following the nomenclature of information theory, we will term the upper limit of data
transmission between the channel input and output with arbitrarily small error probability
and for a given transmit power allocation as mutual information. Note that mutual infor-
mation refers to an arbitrary, not necessarily optimally chosen transmit power allocation. In
contrast, channel capacity in Shannon sense will be reserved for maximum mutual information
between the link ends.
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2.3.1.1 Eigenvalue Decomposition

The singular value decomposition applied to an instantaneous (deterministic) MIMO channel
matrix H reads as

H = UDV#, (2.18)

where the left and right singular vectors of the channel matrix H constitute the columns
of the unitary matrices U and V, respectively. The diagonal matrix of the corresponding
singular values? of H, v/, is denoted by D.

Since U and V are unitary matrices, it is obvious that an equivalent representation of the
MIMO signal model can be expressed as

y=Ds+d, . ' (2.19)

Here, y, § and 1 represent transformed receive, transmit and noise vectors, such that y =
Ufly, §=VHg and i = U¥n.

This orthogonal transformation allows for diagonalizing the channel into a set of uncoupled
parallel virtual sub-channels with path gains equal to the elements of D. The number of these
virtual sub-channels is determined by the rank of D which is equal to the rank of the channel
matrix®, rank(D) = rank(H).

2.3.1.2 Mutual Information with Equal Power Allocation

Mutual Information of a Constant (or Deterministic) MIMO Channel

Disregarding the bandwidth, it is well known, that the Shannon capacity of an instantaneous
SISO channel with path gain h, in bits/s/Hz, is given by

C =logy(1+ UIZFX |h|?) = logy(1 + p), (2.20)

noise

where Pty denotes the transmit power, afm-se is the noise power, and p results to the receive

SNR, p= ;fiILth. For high SNR regions, the channel capacity depends logarithmically on

noise

the transmit power.

A generalization of (2.20) to multiple antennas can be derived as follows. Consider a MIMO
channel where the total transmit power Pry is equally spread over the transmit antennas.
Then, the mutual information between the channel input and output with equal power allo-
cation can be calculated as the sum of contributions of all virtual sub-channels with corre-
sponding path gains of v/A; and may be written as

“The columns of U are also the eigenvectors of HH¥ | the columns of V are the eigenvectors of H” H,
and the elements of D are the square-roots of the eigenvalues of HH” (which are the same as the ones of its
Hermitian HY H).

5Please note that the rank of a matrix is generally upper limited by the minimum number of its rows and
columns. In case of a MIMO matrix, a further limitation comes from the underlying channel: there, the rank is
limited by the minimum number of the rows and columns (i.e. the number of receive and transmit antennas),
and the number of scatterers.
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rank(D) ' Pr Pr
I= logy(1 + —=—\;) = log, det(L,, + —>—HH¥), (2.21)
; 2 n07210i86 ' 2 ™ narz'toise

where I, denotes the m x m identity matrix.

Although its total transmit power stays the same as in case of SISO, the MIMO channels
enable much higher mutual information. The more uniform the eigenvalues ); are distributed,
the higher the mutual information. -

In (2.21), the channel matrix H contains the individual path gains (channel gain). However,
a proper normalization of H allows for representing the mutual information in terms of the
average receive SNR p, as it is defined by

p= e S gl (2.22)

O noise i=1 j=1

Specifically, if the average pathloss over all transmit-receive antenna pairs (average SISO
pathloss) is set to unity, i.e.

1 m n

— > > bl =1, (223)

i=1 j=1

then (2.21) can be alternatively formulated as

I = log, det(I, + %HH” ), (2.24)

with H, this time, denoting the normalized MIMO channel matrix. A step-by-step derivation
of the mutual information with equal power allocation can be found in [37)].

Mutual Information of a Fading MIMO Channel

Up to now, only a constant, deterministic channel was considered. However, wireless channels
are in practice not constant, but fade. The different fading realizations of a channel matrix
(channel states) assume values over a continuum. For analytical assessment, channel fading
is usually treated stochastically. The fading channel realizations are modeled as random
realizations of a stochastic matrix, i.e. a matrix whose elements are random variables.

The mutual information, calculated for each channel state, becomes a random variable de-
scribed in terms of its statistics. A common way to represent such statistics is the cumulative
density function (cdf). Figure 2.5 illustrates the mutual information cdf of an exemplary 4 x 4
MIMO fading channel with an average receive SNR of 20dB. Useful measures are the ergodic
(or average) and the outage mutual information. To be precise, there is a slight difference
between the terms ergodic and average. Ergodic refers to the expected value of the mutual
information for stochastically described channel matrices as it can be expressed by

I=Ex {log2 det(Ln + gHHH )} : (2.25)
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Figure 2.5: The mutual information of a fading channel becomes a random variable that is
commonly described by its cumulative density function (cdf): Mutual information cdf of an
exemplary 4 x 4 MIMO fading channel with an average receive SNR of 20dB.

where Ex{-} denotes the expectation with respect to H. On the other hand, if different
channel matrix realizations are considered, we prefer to call the arithmetic mean of the mutual
information the average, which is an estimator for the expectation.

The outage mutual information is defined as the mutual information achieved, or exceeded,
at a given confidence level. For example, if an outage mutual information at a level of 90%
is given as 20 bits/s/Hz, then this means that in 90% of all cases, a mutual information of
at least 20 bits/s/Hz can be guaranteed. Note that the outage values can be easily obtained
from the cdf. Since the cdf plots the probability p for a random variable to be smaller than
a certain value z, its complementary probability (1 — p) determines the confidence level for
the outage value z. For instance, the channel shown in Fig. 2.5 exhibits an outage mutual
information of approximately 19.6 bits/s/Hz at a confidence level on 90%.

Normalization of Fading Channels

For fading channels, it is meaningful to normalize all realizations of the MIMO channel with
the same factor. This captures the effect of fading. The average receive SNR in (2.25) is then
defined by

m n
p= _Prx g S il p (2.26)
2 mn 9

O noise i=1 j=1

The normalization factor has to be determined such that the average pathloss of the fading
channel over all transmit-receive antenna pairs is set to unity, i.e.

1 m n 9
—Eu Y3 gl =1 (2.27)

i=1 j=1
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Things get more complicated when a comparison of different environments (scenarios) is of
interest, e.g. if one wants to compare sets of measured channel matrices taken at different
locations. In this case, there are two ways of normalizing the channels at the individual
locations [38]. The first applies (2.27) to each location separately, thereby normalizing the
different pathlosses out. Since the receive SNR can then be set independently at different
locations, this corresponds to a system with power control. Alternatively, a common normal-
ization factor can be applied to all realizations at all locations. This takes the pathloss of
different locations into account and therefore corresponds to constant transmit power.

2.3.1.3 MIMO Capacity

The channel capacity of a deterministic (instantaneous) flat-fading MIMO channel equals the
maximum mutual information [10],

p H
= 1 t(I,, + —HQH , 2.2
Q:trf?)a}‘).(—_PTx [og2 det(Im + n Q )] (2.28)

where the maximization is performed with respect to the correlation matrix Q = E{ss"} of
the transmit signal, under the power constraint tr{Q} = Prx. An optimum power allocation
over the sub-channels implies perfect channel state information (CSI) at the transmitter (Tx)
and receiver (Rx). Note that perfect CSI assumes the channel matrix H to be known perfectly
and instantaneously at both link ends. As shown in [10], the solution to this maximization
problem is to apply Shannon’s *waterpouring’ or *water-filling’ principle to the different sub-
channels.

For MIMO fading channels capacity has multiple definitions depending on the information
about the channel [13]. When assuming perfect CSI at the transmit (Tx) and receive (Rx)
side (2.28) can be applied to each channel state such that ergodic capacity results simply to

= ' p H
C=E max [log, det(In + ZHQH ]} 2.29
nf, max[log det(t, + £HQHT) (2.29)
However, if perfect CSI is available at the receiver but only average information about the
channel (channel distribution information) at Tx ergodic capacity reads as

p H '
C=, Jmax [EH {1og2 det(In + CHQH )}] : (2.30)
In this case, a closed form solution for the maximization over Q does not exist in general.
There are solutions only for some idealistic channel distributions.. For instance, it is shown in
[10] and [11] that uncorrelated transmit signals with uniformly distributed powers, where Q
equals the identity matrix, are optimum for a MIMO matrix with i.i.d. zero-mean complex
Gaussian entries.

A tutorial on recent work focused on the capacity of MIMO systems under different assump-
tions about channel information available at the transmitter and receiver can be found in
(13].
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2.3.2 Beamforming

Very much like for multiple-input single-output (MISO) or single-input multiple-output (SIMO)
systems, where antenna arrays at one link end (adaptive or smart antennas) enable the focus-

ing of transmit /receive power into a certain angular direction [5, 8], MIMO systems also allow

for beamforming. By choosing appropriate antenna weights, the directional pattern of the

considered array can be modified, i.e. a ’beam’ can be formed, such that paths from desired

directions may enhanced. For MIMO systems, beamforming can be either applied at the Tx

side, the Rx side, or both.

Assuming that no instantaneous CSI is available, the resulting gain (beamforming or array
gain) at one link end is limited by the channel properties and the number of antennas at
the considered array, i.e. to n at Tx and m at Rx. The more directive the channel is, the
higher is its beamforming gain. Thus, the highest beamforming gain is achievable for the
most directive MIMO channel with only one DoD and one DoA, e.g. as under LoS conditions.
Then, the offered total gain is equal to mn.

Note that high directivity at one link end gives rise to high correlations of the respective
antenna signals of a MIMO system (spatial correlations).

2.3.3 Spatial Diversity

Multipath propagation causes the significant problem of fading. An effective method to
combat fading is spatial diversity, also known as antenna diversity. It exploits uncorrelated
multiple copies (replicas) of the transmitted radio signal which are generally, among others,
also spread in the spatial domain. This technique reduces fading and thereby increases the
reliability of the radio link.

For MIMO systems, spatial diversity can be again either exploited at the Tx side, the Rx
side, or both. If its exploited only at one link end, the degree of diversity is limited to the
number of antennas at this link end. In contrast, if diversity is exploited at both link ends, the
maximum achievable degree of diversity is equal to mn. Channel correlation reduces diversity.
The highest possible degree of diversity is offered by spatially white MIMO channels with its
i.i.d. channel coefficients.

2.3.4 Trade-off between Beamforming, Diversity and Multiplexing

As already comprehensively reported in [29, Chapter 6.2], the MIMO channel supports trade-
offs between beamforming, diversity and multiplexing. Indeed, the decision which of these
potentials should be exploited depends on the spatial structure of the underlying radio chan-
nel, see Fig. 2.6. Many scatterers in a broad angular region around the Tx array make the
Tx side ’diverse’, the antenna signals uncorrelated and allow for diversity. In contrast, a
'directive’ channel, i.e. a single strong scatterer or a group of closely-spaced scatterers, may
support beamforming. A directive channel gives rise to high antenna correlation. The same
holds true for the Rx link end. If both, transmit and receive sides are diverse both features, _
Tx-Rx-diversity and multiplexing are possible. In this case the optimal trade-off between
diversity and multiplexing will be determined by system requirements, e.g. desired data rate
and reliability of transmission. ' ’
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Figure 2.6: The extent to which the channel supports beamforming, diversity or multiplexing
depends on the directivity/diversity of both link ends [29, Chapter 6.2].

However, be aware of the fact that the characterization of the MIMO channels at the link ends
only, e.g. like the antenna correlations at both link ends, is not sufficient to determine the
capability of spatial multiplexing exactly. Even if two MIMO channels show the same complex
transmit and receive correlation, the capacity of these channels can differ, depending on the
correlation of channel coefficients other than antenna correlations (’diagonal correlations’, see
Appendix D).

Also note that even in the case of completely uncorrelated antennas at both link ends, the
MIMO channel is not guaranteed to support multiplexing (’keyhole’ phenomenon). We will
discuss this phenomenon in Chapter 3.3.1.5.

In summary, we emphasize that it is the physical wave propagation (radio propagation) that
sets the limits for MIMO systems.

2.4 Specifics of Indoor Channels

Indoor radio propagation as it occurs e.g. in office buildings, shopping malls, and airports
or railway stations is characterized by the same main propagation mechanisms as outdoor
propagation: free-space propagation, specular reflection, diffuse reflection (or scattering),
refraction and diffraction.

But the situation is more complex for indoor environments, where numerous objects may act
as scatterers. Its main specifics result from

e the smaller distances that are covered, and
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e the much larger variability of such environments.

The smaller distances may lead to a smaller delay dispersion, dense multipath propagation
with a much higher number of MPCs, non-planar wave fronts, and more diffuse reflections
from extended scatterers. Numerous measurements showed that MPCs tend to come in
bundles or ’clusters’ [39, 40, 41, 42]. The single MPCs within such clusters can rarely be
resolved. The authors of [43] observed a diffuse, exponentially decaying tail in the measured
power delay profile that could stem from diffuse reflections/scattering of extended objects, or
from multiple reflections/scattering of higher order.

Recall that impinging/departing wave fronts may be approximated as planar only if the far-
field assumption is met. The distance between the scatterers and antenna arrays has to be
large enough compared to the inter-element spacing of the transmit /receive array. Obviously,
this condition is not always fulfilled in indoor environments. For instance, a nearby extended
scatterer may cause diffuse reflection, showing up in an angular and delay spread of the
corresponding MPC. On the other hand, nearby localized ('point’) scatterers induce spherical
wave fronts.

The reasons for the much larger variability of indoor environments are the following. The
propagation within buildings is strongly influenced by the actual scenario, the construction
materials, the building type, as well as the number and type of scatterers involved. Walls and
scatterers made of different materials affect the radio signal differently. Also, the position
and height of the antennas plays an important role. For example, antennas mounted at the
center of the ceiling 'see’ a different propagation channel than antennas mounted on the wall.
Because of the large variability, indoor environments should be further specified as it is done
for outdoor environments. It would be meaningful to agree on a set of canonical or reference
scenarios.

Another specific of indoor environments is that, compared to outdoor, movements of scatterers
and terminals are slower. Consequently, the Doppler shifts are much smaller.

As we will discuss in the next chapter in detail, of course, the specifics of indoor models have
to be taken into account when modeling such channels.



Chapter 3

Review of Existing Indoor Channel
Models

3.1 Overview

The modeling of MIMO radio channels has attracted much attention since recent studies have
demonstrated the impressive channel capacity gain of wireless systems employing multiple
antennas on both link ends.

No doubt, lead-off MIMO techniques will be applied particularly in indoor environments. The
focus on indoor channels can be argued as follows. MIMO systems will have to be equipped
with more than three or four antennas at each link end in order to achieve considerable
capacity gains. Devices for such systems will consume much power that is necessary for
the parallel receive chains and the advanced MIMO signal processing. This, in turn, will
favor devices like laptops, primarily used in indoor environments, which provide sufficient
battery power. Furthermore, MIMO channels need to be tracked when aiming high capacity.
Since indoor channels are changing slowly they can be tracked easily, which makes them
predestined for MIMO applications. As a consequence, recent attempts on MIMO modeling
focus its attention on the modeling of indoor channels, pushed by the development of high
data rate WLAN systems, Beyond 3G mobile communication systems and other activities.

Due to the specifics of indoor channels, models initially developed for outdoor cannot be
applied to indoor one-to-one in general. While some outdoor models need only an appropriate
modification of parameter values, others need some adaption of the modeling approach. But
there are also models that are based on inherent outdoor channel characteristics and therefore
may not be used for indoor purposes at all. An overviews on MIMO channel models, not
necessarily for indoor, can be found e.g. in [44].

A variety of indoor MIMO channel models, mostly based on measurements, have been reported
in the last years. The proposed models can be classified in various ways. One possible
classification is shown in Fig. 3.1.

Herein, we distinguish between physical models and analytical models'. Physical models char-
acterize an environment on the basis of electromagnetic wave propagation by describing the

!One would expect the contrary to ’physical’ to be 'non-physical’. However, for reasons which will become
clear in the sequel, we prefer ’analytical’.

20
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Figure 3.1: Overview of indoor MIMO channel models, with some samples in each category.

double-directional multipath propagation [25, 36] between the location of the transmit ar-
ray and receive array. They explicitly model wave propagation parameters like complex
amplitudes of multipath components, their directions-of-departure, directions-of-arrival, and
delays. More sophisticated models also treat polarization and time variations. Depending
on the chosen complexity, physical models enable an accurate reproduction of radio propa-
gation. As main drawbacks count the measurement and parameter extraction that is usually
very tedious. Obviously, physical models are independent of antenna configurations (direc-
tional antenna pattern, antenna number, array geometry, polarization, mutual coupling) and
system bandwidth. As such they allow to find optimum antenna configurations (including
polarization) for each type of scenario.

In contrast, analytical models describe the impulse response, or equivalently the transfer
function, of the channel between the elements of the antenna arrays at the transmitter and
receiver. These impulse responses are combined in a (delay dependent) channel matrix given
by analytical mathematical expressions. Analytical models are very popular for developing
MIMO algorithms in general, as they allow for reproducing various channel characteristics
by changing only a small number of modeling parameters. Of course, different simplifying
assumptions on the underlying radio propagation are necessary beforechand. The relationship
between physical and analytical models is the same as between wave propagation and the
MIMO channel matrix (Chapter 2.2.1). Starting from a physical model we arrive at analytical
models, if we specify antenna arrays at both link ends by setting antenna elements (i.e. antenna
pattern and bandwidth), their geometrical configuration, and their polarizations, preferably
by agreement to reference configurations. Note that a physical model can be easily converted
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into an analytical model but not vice versa.

Physical models can be ¢lassified as deterministic; geometry-based stochastic and non-geometric
stochastic models. The first determine the physical parameters in a fully deterministic way.
Examples are ray tracing, e.g. [45], and stored measurement data that can be replayed any-
time. The term geometry-based refers to the fact that the modeled impulse response is related
to the geometrical location of scatterers and other interacting objects. Their location is chosen
stochastically in geometry-based stochastic channel models (GSCM). This class of models was
initially introduced independently by [46}, [47], {48], [49] and [50] for outdoor environments.
A fledgeling version of a GSCM for indoor has recently been developed at our Institute [51].
In contrast, non-geometric stochastic models treat physical parameters completely stochas-
tically by assuming proper distribution functions, e.g. as it is done for the extension of the
Saleh-Valenzuela model [52, 30] or the model introduced by Zwick et al. 31].

Analytical models, could be further subdivided into propagation-motivated models and correla-
tion-based models. The first class treats the channel matrix by modeling propagation param-
eters. Examples are the finite scatterer model [53] or the virtual channel representation [54].
As it is obvious from the name, correlation-based models treat the MIMO channel by corre-
lations between channel matrix entries. Popular correlation-based analytical channel models
are the Kronecker model [55, 56, 57, 58] and the Weichselberger model [59, 29).

For the purpose of comparing different MIMO systems based on the same channel conditions,
‘standard’ MIMO channel models were established by different organizations. Standardizing
a physical model means to agree on a channel model, reference environments, and parameter
values for these environments. In principle, also analytical models could be standardized. For
indoor MIMO, the only standardized channel model up to now is the IEEE 802.11n model
[60]. Apart from this, the European research initiative COST 273 [61] is currently working
on standardizing MIMO channel models, including indoor environments. This work is still in
progress and will be finalized in June 2004.

An additional classification can be done by distinction between narrowband and broadband
models. While for narrowband (frequency-flat, memoryless) channels, only the spatial channel
structure is modeled, the latter introduces frequency-selectivity by modeling both the spatial
and temporal channel structure.

Note that the models presented in this chapter are not exclusively indoor models. Particularly
analytical channel models can, with appropriately modified parameters, also be applied to
outdoor environments.

3.2 Physical Models

3.2.1 The Extension of the Saleh-Valenzuela Model

For SISO channels Saleh and Valenzuela observed that, in indoor environments, MPCs tend
to come in bundles or ’clusters’ They developed a stochastic broadband indoor channel
model (the Saleh- Valenzuela model) [39] based on the temporal clustering approach with an
exponential decay for both power of MPCs within a single cluster as well as for the average
cluster power over delay. The cluster arrival process and the MPC arrival process within a
cluster are modeled as Poisson processes with different arrival rates. This model was then
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extended to the spatial domain by including azimuthal DoAs [41, 40].

For the MIMO case, [52, 30] presented a further extension of the Saleh-Valenzuela model.
From experimental data the authors observed clusters as a group of MPCs with similar DoDs,
DoAs, and delays. The proposed narrowband channel model expresses the double-directional
channel impulse response arising from L clusters and K MPCs per cluster as

L

[
—

K-

._4

Brid (oTx — ©1x,1 — Prxkt) 0 (PRx — PRx1 — PRxkt)  (3.1)
k=0

h (‘pra (pTx) =

-
=

Il
o

l

where o1y and pgry are azimuth DoD and DoA. The mean DoD and mean DoA of the [-th
cluster is denoted by ¢rx; and @grx;. For the I-th cluster, @14 and ®ry s are DoD and
DoA of its k-th MPC relative to the respective mean angles, while f; stands for the complex
amplitude.

The directions at both link ends are assumed to be statistically independent of each other,
but follow the same distribution. The cluster centers, i.e. the mean DoDs and mean DoAs of
clusters, are uniformly distributed over [0°...360°) while the angular MPC distribution p(y)
within each cluster follows a Laplacian distribution with an angular standard deviation of o,

plp) = Eelx/—tp/al (3.2)

The complex amplitude of an MPC, By, is modeled by a zero-mean complex Gaussian distri-
bution. For reasons of simplicity, it is assumed that MPCs corresponding to a certain cluster
have the same power.

Note that a straight-forward extension of (3.1) to a broadband model reads as

| Lo1K-1
h(¢rx, PTx,T) = TR Brid (oTx — PTx1 — PTxkt) -
1=0 k=0
-0 (PRx — PRx,t — PRxkt) 6 (T — 71 — Tha) - (3.3)

Herein, 7 denotes delay, whereas the total delay of each MPC can be decomposed into the
delay of the I-th cluster, 7;, and the delay of the k-th MPC arrival within this cluster, 7.

3.2.2 Zwick’s Model

In [31], Zwick et al. introduced a stochastic indoor MIMO model that allows a time-variant,
polarization-dependent broadband description of the multipath channel. Given the time de-
pendent locations of the Tx and Rx arrays, the frequency response between the center elements
of these arrays is expressed as

N(®)
H (¢, f,9Q1x, Qrx) = Z Ty (t)e 7205 (Qry — Q1yu(t)) 6 (Vmx — P (2)) - (3.4)
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Here, each MPC is characterized by its delay 7;(t), direction-of-departure Q21 ;(t), direction-
of-arrival Qgy;(t), and the full polarimetric (2 x 2) transfer matrix I'j(t). The entries of
T'y(¢) include the pathloss and depolarization of all scattering processes of the MPC I. In
sum, a number of N(t) MPCs are generated by a birth and death process. More specific,
the appearance and disappearance of multipath components over time is modeled based on
a marked Poisson process {62, Chapter 16]. After the initialization (birth) of an MPC, its
properties are altered until the MPC disappears (death).

Equation (3.4) is then extended under the planar wave assumption to MIMO, where the
channel between all transmit and receive antenna elements is of interest, by introducing
proper phase shifts of the MPCs. These phase shifts depend on the relative location of the
considered antenna elements with respect to the center element and the direction of the MPC,
c.f. Fig. 2.3.

The modeling of LoS, NLoS (Non Line-of-Sight) or OLoS (Obstructed Line-of-Sight) scenarios
is treated in the same manner, except that the LoS component is added separately in the first
scenario. By this, the transition between LoS and OLoS can be simulated very simply. The
proposed approach enables the modeling of temporal and spatial correlations. The Doppler
behavior of the channel results directly from fluctuating delays. Also, the frequency depen-
dence and small scale fading is caused by coherent superposition of the MPCs and needs no
separate treatment.

Deterministic ray tracing results [45, 63] were used to produce the data sets required for the
statistical evaluation of the parameters of the proposed model. Based upon these results, the
MPC power decay versus relative delay is modeled by a combination of two exponential decay-
ing curves. The variation of the MPC amplitudes around this mean power decay is assumed
" to be Rayleigh distributed. DoDs and DoAs, as they are referred to the interconnection line
“between transmitter and receiver, are treated as Laplacian distributed for small delays. For
-larger delays, a migration to a uniform distribution is assumed. The delays of MPCs are
uniformly distributed with the minimum possible delay given by the distance between both
arrays and a maximum delay depending on the simulated dynamic range.

Nevertheless, it is questionable how well this ray tracing results reflect reality. For instance
the clustering phenomenon, which was observed in several experiments [39, 41, 40, 52], is not
explicitly included.

3.3 Analytical Models

3.3.1 Correlation-based Models
3.3.1.1 Definition and Classification

Various narrowband analytical models are based on the multivariate complez Gaussian distri-
bution [30]. Their common assumption is that the elements of the channel matrix are strictly
correlated Rayleigh-fading. Then, the channel matrix elements follow a joint multivariate
zero-mean complex Gaussian distribution given by

f(h) = mexp {-n"Ry"'h} (3.5)
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with

h = vec (w1}, - (3.6)

where vec{-} is the vector operator stacking the columns of an m x n matrix into one tall,
mn X 1 vector. In (3.5), the mn x mn full (MIMO) channel correlation matriz, e.g. in [57, 58],

Ry = E {vec{H}vec{H}"} (37

describes the spatial behavior of the MIMO channel. Hence, it contains the complex cor-
relations between all channel matrix element pairs?. Note that the zero-mean multivariate
complex Gaussian distribution is completely characterized by its second order statistics only.
In other words, the spatial properties of a MIMO channel are fully captured by its full corre-
lation matrix Ry for such a distribution.

MIMO channels following (3.5) can be modeled by

vec{H} = Ru'/?vec{G}, (3.8)

or equivalently
H = unvec {RHI/Zvec{G}} . (3.9)

Here, (-)!/? denotes any matrix square root fulfilling Rgr'/2 - (Rg'/?)# = Ry, unvec{-} the
inverse operation to vec{-}, and G an m x n random matrix with zero-mean i.i.d. complex
circularly symmetric Gaussian entries, respectively. Thereby, the channel exhibits Rayleigh-
fading at all antenna elements.

A significant drawback of (3.9) is that it requires the parameters of Ry to be fully specified,
ie. (mn)? real valued parameters (for the diagonal entries) and % (mn(mn — 1)) complex
valued parameters. This is equal to a total of mn real parameters. Moreover, a direct
interpretation of the elements of Ry with respect to the physical propagation of the radio
channel is difficult. As a consequence, several simplifying assumptions on the full MIMO
correlation matrix leading to different models were introduced.

Subsequent sections will discuss the narrowband i.i.d. model, the Kronecker model, and the
Weichselberger model. A much more detailed framework about models based on the multi-
variate complex Gaussian distribution can be found in [29, Chapter 5]. There, matrix-valued
eigenbases of the MIMO channels are introduced and their simplifications discussed.

3.3.1.2 The i.i.d. Model

The most simple model for MIMO channels is the i.i.d. model. This idealized model assumes
a random channel matrix with i.i.d. zero-mean complex circularly symmetric Gaussian ele-
ments. Per definition, it describes a spatially white MIMO channel and cannot reproduce
any specific spatial channel properties. According to the central limit theorem, such channels
only occur in rich multipath environments with independent MPCs arriving and departing

2Since we consider zero mean processes only, the correlation and covariance matrices coincide.
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from all directions. Nevertheless, it is often used for analytical assessments in information
theory, e.g. as in finding closed-form solutions of channel capacity. Note that for the i.i.d.
model only one real-valued parameter needs to be specified, i.e. the channel power.

In case of i.i.d. Rayleigh fading, the channel capacity grows asymptotically linearly with the
minimum number of Tx and Rx antennas [10, 11]. Furthermore, it is usually believed that
ergodic capacity is maximized by such channels. However, Appendix D introduces so-called
diagonally correlated channels that provide higher ergodic capacity than i.i.d. channels.

3.3.1.3 The Kronecker Model

The so-called Kronecker model, in various forms and notations, was already used by [55, 56, 57]
for capacity analysis before being proposed by [58] in the course of the EU (European Union)
IST (Information Society Technology) SATURN (Smart Antenna Technology in Universal
bRoadband wireless Networks) project [64]. It approximates the full channel correlation
matrix by the Kronecker product of the transmitter correlation matrix,

Rty = E{H"H)T}, (3.10)

and the receiver correlation matrix (separability assumption),

Rrx = E{HH"}, (3.11)
such that it can be expressed as

1

RE = R

Ry ® RRgx, (312)
where tr{-} denotes the trace of a matrix and ® the Kronecker product. Using the identities
(BT®A)vec{D} = vec{ADB} and (A ® B)(C ® D) = (AC) ® (BD), (3.9) simplifies to the
Kronecker model :

1
Hy,p = ————
kron tr{Rrx}

Herein, G is again a matrix of i.i.d. zero-mean, complex circularly symmetric Gaussian random
variables. Beside simplified analytical treatment or simulation of MIMO systems, (3.13) allows
for independent array optimization at Tx and Rx. Therefore, and because of the simplicity of
this approach, the Kronecker model has become popular. Hence, the model parameters are
the receive and transmit correlation matrices only. For an m x n MIMO channel, it therefore
requires the specification of m? + n? real parameters.

R/2GRIHT (3.13)

Assumptions for a Kronecker Structure

As shown in [65], there is a pair of assumptions necessary and sufficient for a Kronecker
structure of the full channel correlation matrix :

1. The receive antenna correlation between any pair of receive antennas (7, j) given by
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PRx,ij (k) = E{hixhji} (3.14)

has to be independent of the transmit antenna k. Here, (-)* denotes complex conjuga-
tion. In matrix notation, we can now define the receive correlation matrix by

Rpx = E{HH?} = n- (prxj) - (3.15)

Analogously, the transmit antenna correlation between each transmit antenna pair (k, )
given by

prx,k(1) = E{hixhy } (3.16)

has to be independent of the receive antenna . In matrix notation, we can now define
the transmit correlation matrix by

Rrx = E{HTH"} = m - (o) (3.17)
This leads to equal power P, = E{|h;|?} of all channel matrix elements.

2. The correlation coefficient between any pair of channel matrix elements, as given by the
full channel correlation matrix Ry, has to be the product of the corresponding receive
and transmit antenna correlation coefficients normalized by the power of one channel
matrix element: '

. 1
PH; i = E{hikhjl} = Fh * PRx,ij * PTx,kl (3.18)

These assumptions can be equivalently formulated in matrix notation with tr{Rrx} = tr{R1x}
m -n - P, and result in the Kronecker factorization of the MIMO correlation matrix:

1

Re = R

Rty ® Rpx. (3.19)

Implications of the Kronecker Model

To consider the effect of the separability assumption on the DoDs and DoAs of the modeled
MIMO channel, we have to look at the structure of the receive and transmit correlation matrix
for different transmit and receive weights, respectively. Using (3.13), the receive correlation
matrix Rrx,w for beamforming at Tx side, i.e. using specific transmit weights w, is given by

1 1/2 yn\T 2\* 12\ #
Rpxw = E{Honww”H[ 1 = m'E R/’G (Rr/x) ww’ (R’II‘/x) GH (RR/X)

~ 7

—~

X
(3.20)
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where we use X as an abbreviation for the inner part. It is straight-forward to show that
E{GXG"} is always an identity matrix scaled by a complex scalar factor K, if G is a
unit power, independently distributed complex Gaussian random matrix (see Appendix A).
Therefore the receive correlation matrix Rryx w for the transmit weights w is equal to

1

_ 1/2 y2\# _ o1
Rroow = 7y e K1 (Ri?)" = K’ Rax. (3.21)

This means that the structure of the receive correlation matrix does not change if we use
different transmit weights; the receive correlation matrix is only scaled by a complex constant.
Using, for example, a beamforming vector to transmit into an arbitrary but specific direction
leads always to (a scaled version of) the same receive correlation matrix and, therefore, to
(a scaled version of) the same DoA profile. This holds also true for the transmit correlation
matrix and the corresponding DoDs.

—X

transmitter receiver

* Figure 3.2: The Kronecker model enforces all directions-of-departure to be linked to all
directions-of-arrival. The joint DoD-DoA spectrum of a synthesized Kronecker channel is
the product of the average DoD and the average DoA spectra.

Considering the joint DoD-DoA spectrum we can therefore say that the Kronecker model
enforces it to be the product of the DoD and the DoA spectra. In other words (as illustrated in
Fig. 3.2), this means that all directions-of-departure are linked to all directions-of-arrival with
the same pattern, only the total power of the DoAs depends on the chosen DoD, analogously
only the total power of the DoDs depends on the chosen DoA [66].

A physical interpretation of the Kronecker assumption is this: Irrespective of which transmit
weight vector is chosen, the scatterers surrounding the receiver are illuminated by one and
the same power distribution. Therefore, the same DoA spectrum is generated. The same
DOA spectrum means identical receive correlation. (The total receive power may, of course,
vary.) Obviously, this condition is not met in general. Any arbitrary transmit weight vector
does include the case of a single antenna transmitting, which is the previously mentioned As-
sumption 1. Other than stated in [58] and other papers, this condition alone is not sufficient?.

3The problem with [58] is this. In their proof [58, Appendix] the authors presume the relationship they
initially intend to prove. Erroneously, they conclude that Assumption 1 is sufficient for Kronecker separability.
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Both assumptions (Assumption 1 and Assumption 2) have to be fulfilled. The same holds
true for the reverse link.

Deficiencies of the Kronecker Model

As explained before, the main deficiency of the Kronecker model is that it enforces a multipath
structure with a separable joint DoD-DoA spectrum. Multi-bounce interactions are necessary
(but not sufficient), to comply with this condition. Although it is very likely in indoor channels
that single DoDs are linked to single DoAs and vice-versa (single-bounce interactions, c.f. Fig.
3.3), the Kronecker model is not able to reproduce this elementary feature of a MIMO channel.

. .

. ’/’/—’ \ .

. .

. .
transmitter receiver

Figure 3.3: Due its separability assumption, the Kronecker model is not able to reproduce
MIMO channels with single-bounce interactions.

Obviously, this restriction in the multipath structure also affects the diversity order of a
MIMO channel and its capacity. Experimental investigations on the joint DoD-DoA spectrum,
mutual information, diversity order and full channel correlation of the Kronecker model will
be presented in Chapter 5.

3.3.1.4 The Weichselberger Model

The Weichselberger model [59], [29, Chapter 6.4.3], inspired by the deficiency of the Kronecker
model, aims to mitigate the radical simplification of neglecting the spatial structure of the
MIMO channel and describing the MIMO channel by separated link ends, as it is done by
the Kronecker model. A crucial point in the derivation of this model is to understand the
coupling between the transmit and receive eigenmodes for the Kronecker model. Introducing
the eigenvalue decomposition of the receive and transmit correlation matrices,

Rrx = UrxArxUE,, (3.22)
Rrx = UrApU%, (3.23)

into (3.13), the Kronecker model can also be written as
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1 1/2 r1H * Al/20:T
Hyion = ———= - Urx Ay, Ui, GUL, AZSU 3.24
kron tr{R } Rx{rgy ‘URx Tx {2 px YTx ( )
GI

where the columns of the unitary matrices Uty (Ugryx) denote the eigenvectors at the trans-
mitter (receiver) and Aty (ARrx) the diagonal matrix of the corresponding eigenvalues.

The inner part G’ = ngGUfrx still describes an i.i.d. random matrix with the same proper-
ties as G. From (3.24) it can be seen again that, on average, each transmit eigenbasis couples
into all receive eigenbases with the same pattern (profile) and vice versa.

The idea of Weichselberger was to relax this restriction and to allow for any arbitrary coupling
between the transmit and receive eigenbases, i.e. to model the correlation properties at the
transmitter and receiver jointly.

Therefore, the proposed Weichselberger model is

Hweichsel = Ugx (Qweichsel © G) nga (3‘25)

where G, again, is an i.i.d. complex circularly symmetric Gaussian random fading matrix,
the operator @ stands for the element-wise Schur-Hadamard multiplication, and Qyeichsel 1S
defined as the element-wise square root of the power coupling matrix Qyeichsel- The positive
and real-valued elements wyeichsel,ij Of the power coupling matrix determine the average power-
coupling between the i-th and the j-th receive eigenmode.

Following this approach, an alternative representation for (3.25) reads as

m n
T
Hucichsel = 9 O Gikv/@weichsel Ik URx, Uiy (3.26)

=1 k=1

where g denotes the elements of G, and uryx (Urx,) the k-th (I-th) column of Uty (Urx),
or, in other words, the k-th (I-th) eigenvector of the transmit (receive) correlation matrix.

The full MIMO channel correlation matrix results to

m n

RH,weichsel = Z Z Wwyeichsel,lk (uTx,l ® qu,k) (uTx,l ® qu,k)H . (3'27)
=1 k=1

The Weichselberger model parameters are the eigenbases of the transmit and receive corre-
lation matrices, Uy and Ugy, and the coupling matrix, Queichsel: For modeling an m X n
MIMO channel, mn + m(m — 1) + n(n — 1) real parameters have to be specified.

However, for studying the MIMO capacity or mutual information, the transmit and receive
eigenbases need not to be determined. For such studies only the coupling matrix is necessary.
Also, the diversity order is only influenced by the structure of the coupling matrix. In both
cases, the specification of mn real parameters is sufficient.

Assumption of the Weichselberger Model

In order to appreciate the effects of the Weichselberger model assumption, we again look at
the receive correlation matrix, when transmitting with specific weights w,
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' HyrH
RR.x,W = E{HweiChselww Hweichsel} =

= B{Urx(G O Queichsat) (Utx)” ww (Ur4)*(G © Quweichsel)  (Urx) ™} =

~~

X
— UnwUE, (328)

where A,, is a diagonal matrix with its entries depending on w. The proof runs in complete
analogy to the one shown in Appendix A.

According to (3.28), the Weichselberger model requires that the eigenbasis at the receiver is
always the same for any spatial transmit weight w. Again, the same requirement holds for
the reverse link. However, the eigenvalues of the correlation matrices are not restricted and
may vary for different transmit weights. Compared to the Kronecker model the assumption
of the Weichselberger model is much less restrictive since the latter does not include identical
eigenvalues.

Weichselberger et al. also provide a physical interpretation of their modeling assumption:
The receive eigenbasis reflects the spatial structure of the scatterers that are relevant at
the receive array. This structure must not depend on the transmit weights. The receive
eigenvalues reflect how the scatterers are illuminated by the radio waves propagating from
the transmitter. Obviously, this pattern of illumination can change significantly with the
transmit weights, since transmitting in certain directions illuminate only certain scatterers
and leave others ’dark’. The same interpretation holds for the reverse link.

The question whether the assumption of the Weichselberger model is still too restrictive or
not, is studied in Chapter 5. There the performance of the Weichselberger model, with respect
to different metrics, is compared to measurements.

Comparison to the Kronecker Model

If the channel is structured such that the coupling matrix reads as

ARx,1
ueichoe] = —m A2 s A ARxn] (3.29)
weichsel m} Tx,1 Tx,2 --- Rx,n| » .
)\Rx,m

the Kronecker model and the Weichselberger model collapse. Here, Arx i (ARx:i) denotes the
i-th eigenvalue of the transmit (receive) correlation matrix.

In other words, the coupling matrix can be written as the outer product of the receive and
transmit eigenvalue vectors. Hence, the resulting matrix is a rank one matrix.

Structure of Coupling Matrix

In analogy to [54], the structure of Qyeichser influences diversity gain, capacity and beamform-
ing gain experienced on spatially multiplexed channels.

As illustrated in [29, Chapter 6.4.3.4], a diagonally dominated structure of Qyeichser Tepresents
a channel where single transmit eigenvectors couple almost into single receive eigenvectors.
Such a channel offers high ergodic capacity (since it has full channel rank), but less diversity.
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transmitter

: receiver

Figure 3.4: Illustration of the ’pinhole’ phenomenon: Rich scattering environments around
the transmitter and receiver are linked through one ’narrow air pipe’ where all multipath
components merge.

Indeed, a strictly diagonal coupling matrix models a symmetric Rayleigh-fading channel (a
so-called diagonally correlated channel) that exhibits higher ergodic capacity than under i.i.d.
fading conditions. Appendix D demonstrates this surprising result. A uniformly loaded
coupling matrix shows lower ergodic capacity but maximum diversity order. If Queichsel is
dominated by a single element (low rank channel) then a high beamforming gain is possible,
but capacity and diversity order are low.

3.3.1.5 The Pinhole Effect

The ’pinhole’ phenomenon [67] describes channels where the instantaneous channel matrix
realization shows a lower rank than the averaged correlation matrices at the link ends would
suggest.

As an extreme case, the instantaneous channel realization is always of rank one while both,
transmit and receive correlation matrices show full rank [68] (’keyhole’). Of course, an instan-
taneous rank reduction is much more likely than a rank-one channel for each single realization.

A physical explanation of the pinhole phenomenon is provided by the concept of a ‘narrow
air pipe’ where all multipath components from the transmitter merge before they, again, split
up into received multipath components (Fig. 3.4). Such a narrow air pipe could be formed
by a small hole in a metal screen, a waveguide, or cascaded diffractions at edges. Note that
the amplitude statistics of pinhole channels is not Rayleigh anymore. Instead, scattering at
both ’sides’ of the pinhole induce double-Rayleigh fading [69, 70].

Although pinholes have a Kronecker structure on average, the Kronecker MIMO channel
model is not capable of reproducing this effect. An extension of the Kronecker model in order
to adopt pinholes was proposed by [67, 71]. There, the fading matrix G in (3.13) is replaced
by a rank deficient matrix, Gpiphole, such that

Gopinhole = GRxRé/QGTx- (3.30)
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Figure 3.5: Illustration of the virtual channel representation: The spatial structure of the
MIMO channel is modeled in the beamspace by using predefined, orthonormal multipath
directions that can be coupled arbitrarily. Fading of these components is assumed to be
independent.

Here, G« and Ggy represent i.i.d. complex circularly symmetric Gaussian random fading
matrices. The rank of the scatterer correlation matrix Rg limits the instantaneous channel
rank without affecting the receive or transmit correlation.

The occurrence of rank-one keyholes seems to be very rare. The authors of [72] could only ar-
tificially create keyholes in a controlled laboratory environment by using a piece of rectangular
single-mode waveguide.

3.3.2 Propagation-motivated Models
3.3.2.1 Virtual Channel Representation

Initially motivated by the double-directional channel representation [25], the virtual channel
representation artificially partitions the angular range at both link ends into fixed, discrete
directions (’virtual angles’). These directions are determined by the spatial resolution, i.e. the
number of antennas of the considered antenna array. For an n-element array at one link end,
n virtual angles are chosen such that the associated steering/response vectors are orthonormal
to each other. The joint spatial behavior of the MIMO channel is then modeled by specifying
the amplitude coupling between those virtual angles at both link ends (c.f. Fig. 3.5).

To this end, the virtual channel representation [54] can be written as

H,irt = Arx (Qvirt O] G) Agx, (331)

where the columns of the orthonormal matrices Ay and Agryx constitute steering and response
vectors into the directions of the virtual angles. The elements of the positive and real-
valued coupling matrix, Quirt, (’virtual channel coefficients’) represent the amplitude coupling
between the corresponding virtual angles of both link ends. Because it is assumed that the
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fading of the different virtual channel coefficients is independent, G is again modeled by an
ti.d. matrix.

An alternative representation, using the orthonormal steering vectors, ary;, and response
vectors, agxk, iS given by

m n
Hyirt = > tk/@virt k8Rx, 18 > (3.32)
=1 k=1

where g denotes the elements of G, and ,/wyirx the elements of the coupling matrix,
respectively. The full channel correlation matrix of the virtual channel representation results
to

m

n
RH virt = Z Wyirs ik (aTxt ® ARy k) (a72) ® B8Rz k)" (3.33)
=1 k=1

The big advantage of this model is its easy geometrical interpretation. Also, by an appropriate
choose of Qi the level of diversity and multiplexing gain can be specified [54]: The rank
of Qyir¢ determines the multiplexing gain, whereas the level of diversity associated with each
parallel sub-channel is reflected by the number of virtual receive angles that couple with each
virtual transmit angle, and vice versa. '

The model is parametrized by the coupling matrix, only. For an m x n MIMO channel, it
therefore requires the specification of mn real parameters.

Please note that there is a degree of freedom for the virtual channel representation in choosing
unitary matrices Ay and Arx. One steering/response direction can be selected arbitrarily,
the remaining directions result from the orthogonality condition.

Comparison to the Weichselberger Model

Evidently, the Weichselberger model and the virtual channel repfesentation only differ in their
choice of the domain in which they are modeled. While the former is modeled in eigenspace,
the latter is in beamspace (or wavenumber domain). As a consequence, the eigenbasis of
the transmit and receive correlation matrices are replaced by unitary steering and transmit
matrices. The big advantage of modeling in eigenspace is that fading is independent by
definition [59], irrespective of the scatterer distribution. In contrast, fading in beamspace is
correlated if modeled with fixed virtual angles, even when uncorrelated scatterers are assumed.

Deficiencies of the Virtual Channel Representation

As just pointed out, the assumption of uncorrelated fading is problematic due to the predefined
virtual angles. Regardless of the antenna number, hence angular resolution, scatterers lying
between two virtual angles induce correlated fading particularly in the adjacent virtual angles,
because of sidelobe effects. Unfortunately, this important effect is not captured by this model.
The virtual channel representation does not distinguish between scatterers that are separated
by less than the angular resolution.



CHAPTER 3. REVIEW OF EXISTING INDOOR CHANNEL MODELS 35

transmitter receiver

Figure 3.6: Illustration of the finite scatterer model: Prépaga.tion paths between transmitter
and receiver are modeled by modeling its directions-of-departure, directions-of-arrival and
path amplitudes. For broadband, delays can be also included.

3.3.2.2 Finite Scatterer Model

The finite scatterer model [53] treats the double-directional channel by modeling the propa-
gation paths between transmitter and receiver (Fig. 3.6).

In case of narrowband, each multipath is determined by its DoD, DoA and path amplitude.
Let us consider a multipath with a complex gain of s;,e®* departing at the transmitter
from the I-th DoD, @7y, and arriving at the receiver via the k-th DoA, ¢grxx. Further,
let a7x(®Pryx,) denote the corresponding steering and &rx(®Prx) the corresponding response
vector. Then, the contribution of this single path to the channel matrix can be modeled as
Stk8Rx (Prx k) a1x (Pryy) T -

Summing up the contributions from all paths results in a single channel matrix realization,
since the description until now is fully deterministic. If an ensemble of different channel
realizations has to be modeled, fading has to be introduced. One possible way is to add
random-phase terms to each MPC [73], such that the finite scatterer model can be expressed
as

m n .
H = Ap (SO G)AT, = Y gusindra(®ror)ar(®Pry) s (3.34)
=1 k=1

where Agy denotes a matrix whose columns are the response vectors aRx(®Prx,k). Similarly,
the steering vectors arx(®ry,) constitute the columns of Ary. Herein, S is the matrix of
the path amplitudes sy, while G is a random fading matrix with g;; denoting its elements.
Note that the number of DoDs determines the number of columns of S, whereas the number
of DoAs determines the number of rows of S. Correlated fading of components coming from
different scatterers has to be regarded by correlations of the respective elements in G. Else,
different g are modeled as independently distributed.
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Note that (3.34) assumes ideal uncoupled omni-directional antennas at both link ends. Devi-
ations from this ideal assumption can be taken into account by multiplying with appropriate
transformation matrices [74]. A further assumption is that the distance between scatterers
and antenna arrays compared to the inter-element spacing is large enough (far field condition).

In contrast to the virtual channel representation, the finite scatterer model allows for arbitrary
numbers of DoDs and DoAs and also their values can be set arbitrarily. The parameters of
the finite scatterer model are the DoDs, its corresponding DoAs and path amplitudes.

The authors of [75] determine the number of scatterers of the finite scatterer model at the
transmit side and the receive side such that its mutual information complies with measure-
ments ('capacity complying MIMO channel models’).

3.3.3 Line-of-Sight Channels

In the previous subsections, only Rayleigh-fading channels were discussed. A straight-forward
extension, such that an additional LoS component is considered, enables the modeling of
Ricean-fading channels, e.g. as suggested by [76]:

1 K
Hiice = H—KHrayleigh + l-I-_KHLOS ' (3.35)
with the Ricean K-factor K > 0. The stochastic Rayleigh-fading part is introduced by
Hiayleigh- Any analytical model that treats Rayleigh-fading channels can be inserted here.
Further, Hj,qs is a deterministic phase-shift-only MIMO matrix accounting for the LoS com-
ponent. This matrix stimulates the non-zero mean of the channel matrix Hce.

Finally, a note of caution when trying to extract Hy,g from MIMO channel measurements.
Equation (3.35) could mislead one to think that an ensemble of measured MIMO channel
matrices must have non-zero mean. This is not always the case. Indeed, measured Ricean-
fading channels may have zero-mean when the considered ensemble contains spatial channel
realizations. In this case, the phases of the LoS matrix Hy,,g for different spatial realizations
vary due to displacement and may result in Hyic to be zero-mean.

3.3.4 Broadband Extension to Analytical Narrowband Models

One basic idea of extending narrowband MIMO models to broadband is reported in [77].
There, a SISO model introducing the frequency-selectivity is combined with a narrowband
MIMO model capturing the spatial properties of the MIMO channel. The resulting broadband
model can be expressed as

L
H(r) = > Hi5(r — ), (3.36)
=1

where H; is the MIMO channel matrix at delay 7;, accounting for the spatial structure for
the corresponding delay tap.

Applying this idea to the narrowband Kronecker model, its broadband extension [33] can be
written as
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H(r) = 3 ———— (R, )V2G(RL,)T/26[r - (1 - 1)AT], (3.37)

i=1 \/tr{Rg, }

where Ri{x and R’lI‘x are the receive and transmit correlation matrices and G; the random
fading matrix, each for the I-th delay tap. Here, A7 is the time spacing between two neigh-
boring delay taps. In conformity with the assumption that fading of different delay taps is
uncorrelated, the coeflicients of the random fading matrices for different delay taps, Gy, are
modeled as statistically independent.

If the spatial structure of the frequency-selective MIMO channel stays the same over all delay
taps, H; will stay constant and only the total channel power will change according to the
power delay profile. However, for general indoor scenarios, H; will also depend on the delay.
Arbitrary power delay spectra can be modeled by setting appropriate channel powers for the
different delay taps.

Of course, the proposed broadband extension can be applied to any other analytical narrow-
band channel model as well.

3.3.5 Temporal Evolution of Analytical Models

Up to now, we only considered random fading matrices G with zero-mean, i.i.d. complex
circularly symmetric Gaussian entries that provide us different channel realizations accounting
for small-scale fading. However, such a choice for the random matrix does not allow for
treating the temporal evolution of the MIMO channel.

Temporal variation of the channel matrix can be modeled by assigning a Doppler spectrum
to each element of the random fading matrix G [29, Chapter 6.11.1]. This can be done as in
the standard SISO case, see e.g. [78], and independently for each element.

3.4 Standardized Models

3.4.1 The 802.11n Model

A standardization group of IEEE proposes a set of 6 channel models for different indoor
environments applicable to MIMO WLAN systems, covering both LoS and NLoS conditions
[60]. Some of these models are extensions of already existing SISO WLAN channel models
[79, 80].

3.4.1.1 Modeling Philosophy

The basic structure is a tapped-delay line model applying the Kronecker (separability) as-
sumption for the joint spatial channel characterization. It is also assumed that the channel’s
angular and delay domains are separable. In the delay domain, clustering of MPCs is con-
sidered. A number of 2 to 6 clusters, depending on the considered environment, is proposed
within a power delay profile, which is tapped in delays of 10ns.
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The delay as well as the shape of each cluster is predetermined. In the angular domain, only
the horizontal plane (azimuth) is treated. Here, each cluster is assigned a mean direction and
a cluster angular spread; independently at both link ends. The angular shape of a cluster
follows a Laplacian distribution as given by (3.2). In accordance with measurement results,
the proposed angular and delay spreads are correlated. The values for the angular spread are
taken from MISO measurements and vary in a range of 20° to 40°.

For each delay tap predetermined values for the relative power, DoDs, DoD spreads, DoAs and
DoA spreads are listed in a table. In delay a cluster extends over several taps; consequently
the description of one tap results from the summation of contributing clusters.

The basic modeling steps can be summarized as follows.

e A pathloss model determines the absolute channel power. Free space loss (power decay
coefficient of 2) up to a breakpoint distance and a power decay coefficient of 3.5 after
the breakpoint is assumed. The value of the breakpoint distance depends on the actual
environment (channel) considered. Additionally log-normal (Gaussian in dB) shadow
fading with a standard deviation in the range from 3 to 6dB is also included.

The individual tap powers have to be determined such that in total the original power
delay profile is met.

e For a chosen antenna configuration, the complex correlations between antenna pairs at
the transmitter and receiver have to be calculated for each tap, based on the power
angular spectrum of the corresponding tap.

- o Using these correlations, MIMO channel matrices are synthesized by the Kronecker
model (3.13). LoS conditions (Ricean-fading conditions) are modeled as suggested by
(3.35). In this case, Ricean K-factors from a specified table are assigned to the first
delay tap.

Additionally, Doppler shifts due to slowly moving users, moving vehicles, and/or due to
fluorescent lights can be considered.

Furthermore, different antenna polarizations are also treated by assigning cross-polarization
discrimination (XPD) values of 10dB to the LoS and 3dB to the Rayleigh part in (3.35) [76].

3.4.1.2 Shortcomings

Although the proposed channel model reflects some important properties of measured indoor
channels quite well, it has two main shortcomings:

The first one is the Kronecker assumption. Implications of this assumption were already
detailed in Section 3.3.1.3. Please recall that elementary features like single-bounce reflections,
as they will occur e.g. from walls, cannot be modeled by the Kronecker model. The choice of
the Kronecker assumption is particularly unfortunate for indoor MIMO modeling.

As a second point, propagation parameters like the number of clusters or cluster angular
spreads have been taken from evaluations in the angular-delay domain. This might turn out
to be problematic for MIMO modeling as recent investigations [42] showed that the values for
these parameters change significantly when evaluating the joint-angular (DoD-DoA) domain.
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It seems that separability of clusters in the joint-angular power spectrum is better than in the
angular-delay power spectrum as.the number of detected clusters increase. Specifically, a mean
number of about 7 clusters (within a dynamic range of 10dB) was reported in [42] for a rich
scattering indoor office environment. It is evident that, along with this, the cluster angular
spread becomes smaller. Of course, these parameters strongly depend on the considered
environment.

Interestingly enough, only the average mutual information with equal transmit power allo-
cation was used for the validation of the proposed models. This metric reflects only the
‘average’ multiplexing gain of a MIMO channel. But, as we will detail in Chapter 5.3, it does
not capture diversity or beamforming gain sufficiently well.



Chapter 4

Measurements

4.1 Setup

An overview of the measurement setup is shown in Fig. 4.1. We used a vector channel sounder,
a two-dimensional x-y positioning table together with the corresponding controller, a receive
antenna array and a single transmit antenna, respectively.

With a multiplexer at the receiver, the channel sounder was capable of sounding the channel
between a single transmit and eight receive antennas (SIMO) only. Specifically, it measured
the complex transfer function between the transmit and all receive array elements by mul-
tiplexing each receive element consecutively to a single receiver chain. In order to enable
MIMO channel sounding, we mounted the transmit antenna on an x-y positioning table and
measured at different transmit antenna locations. The location of the transmit antenna was
software controlled by the channel sounder via the positioner.

By this, we sounded the double-directional radio channel between a physical receive antenna
array and a virtual transmit array. A big advantage of the chosen setup is that it allows for
any desired transmit antenna configuration. Of course, the channel must be static during one
such MIMO measurement. Furthermore, at the transmit side mutual coupling (74, 81, 82, 83,
84, 85] does not influence the results.

4.1.1 Channel Sounder

The measurements were performed with the wideband vector channel sounder RUSK ATM
of MEDAV company (86, 87|, operating at a center frequency of 5.2GHz.

The measurement principle of the RUSK channel sounder is as follows. Since a sequential
operation in the frequency domain would take too much time, the channel sounder excites all |
frequencies for each transmit/receive antenna pair simultaneously. This is done by taking a
OFDM-like signal with identically powered spectral lines. The phases of these spectral lines
are optimized such that the crest factor of the transmitted signal is minimized. This method
is also known as frequency domain correlation processing. The receive and transmit unit of
the channel sounder were synchronized via optical fiber.

The channel was probed at 193 equi-spaced frequency bins covering 120MHz of measurement
bandwidth within a dynamic range of typically 35dB. This allows for a maximum excess delay

40
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Figure 4.1: Measurement setup.

Figure 4.2: 8-element receive array with 2 dummies.

that can be measured of 193/120MHz = 1.6us and results in a delay resolution in Fourier
sense of 8.3ns. The measurement was repeated automatically 128 times (temporal snaphots)
to facilitate averaging for noise reduction.

Altogether, we got a (128x193x8x200) 4-dimensional complex channel transfer matrix con-
taining the channel coefficients for each temporal snapshot, frequency, receive antenna and
transmit antenna position. Since the measurement of the this 4-dimensional matrix took
about 10 minutes, we conducted the measurements at night to ensure stationarity.

4.1.2 Antennas

At the Rx side, a uniform linear array (ULA) of eight vertically-polarized printed dipoles with
two additional dummy elements was used (see Fig. 4.2). The inter-element spacing between
the dipoles was 0.4 wavelength (0.4lambda) at 5.2GHz!.

Each single antenna had a 3dB beamwidth of about 120°. The measured azimuth antenna

!Please note that in [88] the interelement spacing of the Rx array was erroneously reported as 0.5A.
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Figure 4.4: Transmit antenna.

pattern for the range of —60° to +60° (Fig. 4.3) was almost identical for each antenna. We
fixed the receive array on a wooden tripod at a height of 1.5m.

At the Tx side, a single sleeve antenna, illustrated in Fig. 4.4, was used for the virtual transmit
array. The antenna was vertically polarized and omni-directional in the horizontal plane (Fig.
4.5). The height of the antenna was approximately 1m.

The single Tx antenna was moved to 20 possible x- and 10 possible y-positions on a rectan-
gular grid with A/2 spacing (again, at 5.2GHz), forming a virtual Tx matrix without mutual
coupling. A sketch of the virtual transmit array is given in Fig. 4.6. The gray dots indicate the
transmit antenna position whereas the dotted line shows the movement path. The direction
of the movement is given by the arrow.
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(a) Azimuth pattern. (b) Elevation pattern.

Figure 4.5: Transmit antenna pattern.
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Figure 4.6: Illustration of the virtual transmit array: The transmit antenna was moved along
the dotted line on a rectangular grid with A/2 spacing (gray dots).
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4.2 Scenario

The measurements were conducted in the offices of the Institut fiir Nachrichtentechnik und
Hochfrequenztechnik, at the Technische Universitat Wien. The floor plan of the scenario is
plotted in Fig. 4.8. The transmitter assumed a single fixed location in a hallway (indicated
by a yellow square). The receive array assumed many different locations in several offices
connected to this hallway (red dots). In total, 24 receive positions were measured: 23 of them
were in different office rooms, with no direct Line-of-Sight (NLoS) to the transmitter. One
was in the hallway with direct LoS to the transmitter. In order to capture the whole azimuth
range, we rotated the Rx antenna to three different broadside directions D1, D2 and D3 (c.f.
Fig. 4.8) at each position. These directions were angularly spaced by 120°. Thereby, we get
72 different ’scenarios’, i.e. combinations of Rx positions and directions.

Some office rooms were amply, others sparsely furnished with wooden and metal furniture and
" plants. Typical furnitures were computers, monitors, book shelfs, chairs, tables and heaters.
The doors between the hallway and the rooms, as well as their frames, were also wooden or
glass-filled.

To get a visual impression, Fig. 4.7 shows some exemplary pictures of the measurement
environments. It is noteworthy that at the transmitter, absorber foams were used to avoid
perturbing reflections from the metallic positioning table.

4.3 Data Post Processing

4.3.1 Averaging over Temporal Snaphots

First, we averaged over all 128 temporal snapshots in order to increase the SNR. This leads
to an improved average receive SNR by 10 - log(128) = 21dB theoretically to values up to
50 — 60dB, depending on the considered scenario. However, the dynamic range of the channel
sounder, which was about 40dB, did not allow for such high improvements. Please note that
this averaging neither influences the Signal-to-Interference Ratio (SIR), nor the ratio of the
signal to the third-order intermodulation products.

The outcome of this averaging process is (for each scenario) an 8x200 MIMO matrix at each
frequency bin. )

4.3.2 Receive Array Calibration

At the physical receive array, we face mutual electromagnetic coupling between the antenna
elements. Additionally, unequal length and resistance of the feeder and/or multiplexing switch
can cause different amplifications of the signals for each antenna. Both effects result in.
unacceptable errors when DoA estimation is performed [89]. As a consequence, the receive
array has to be calibrated [89, 90].

A DoA-independent, time-invariant error model that describes the mutual coupling as well as
the different amplifications of the antenna signals is shown in Fig. 4.9. Here, the amplification
of the i-th antenna is denoted by c;;, whereas its mutual coupling into the j-th antenna
element, ¢ # j, is denoted by c;;.
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(e) Rx22D1. (f) Rx26D3.

Figure 4.7: Pictures of some exemplary scenarios of the 5.2GHz measurement campaign.
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Figure 4.8: Floor plan of the 5.2GHz measurement campaign. In total, 72 different scenarios,
i.e. Rx positions and directions, were measured.
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)

ideal antenna array real antenna array

Figure 4.9: Illustration of the mutual coupling error model.

In matrix notation, the erroneous receive vector r’ can be expressed as

r=Cr (4.1)

where C = (Cij)?,j=1 is the coupling matrix. In order to compensate for the errors, a correction
matrix C~! such that

clc=1, (4.2)

where I is the identity matrix, has to be multiplied to the distorted array output. The
corrected MIMO channel matrix for each frequency H(f) can be calculated by

H(f) = C'H'(f). (4.3)

Here, H'(f) is the distorted 8 x 200 MIMO matrix measured at the f-th frequency.

4.3.3 Creation of Spatial Channel Matrix Realizations

The different Tx antenna positions can be used to create different spatial realizations of an
m x n MIMO channel. To give an example: The procedure for an 8x8 MIMO system with a
A/2 spaced virtual ULA in x direction (Fig. 4.6) is as follows [88]. Using all Rx antennas and
selecting 8 adjacent Tx positions in the x direction out of the Tx matrix provides the first
spatial realization. Moving this virtual 8-element Tx ULA was over all possible Tx antenna
positions results in other spatial realizations. When taking the whole 20 x 10 transmit array,
a maximum number of 13 - 10 = 130 spatial realizations of the 8x8 MIMO channel matrix
can be achieved.

4.3.4 On the Size of the Statistical Ensemble

For the (aggregate) statistical evaluation of each measured scenario (e.g. fading statistics, pa-
rameter estimation, estimation of correlation matrices, capacity evaluations), different channel
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realizations describing the same statistics are needed. An important aspect in this respect is
the size of the statistical ensemble.

For narrowband analysis, besides spatial realizations, also the 193 different frequencies can be
used. This is possible because it can be assumed that the wave propagation and therefore the
statistics do not change significantly within a relative bandwidth of about 2.3%. In contrast
to this, only spatial realizations can be used for broadband analysis.

But, which is the correct ensemble size? On the one hand, the chosen realizations should be
sufficient to describe a complete ensemble for each considered scenario. We stress that the
quality of statistical estimates depends on the number of measured statistical realizations -
the more the better. Since the different frequencies are not independent but correlated, it is
advantageous to take as many transmit positions as possible, even for narrowband analysis.
The coherence bandwidth of the different scenarios according to [91] was estimated to be
larger than 5.8MHz [92, page 42]. Therefore, depending on the considered scenario, within
the measurement bandwidth of 120MHz about 20 independent frequency samples can be
expected. Regarding the number of spatial channel realizations, of course, taking all 200
transmit antenna positions would be ideal.

On the other hand, the absence of large-scale fading across the chosen transmit array must
be ensured. The chosen realizations must only contain small-scale fading variations. In other
words, the statistical samples must not span a region which exceeds the stationarity region
of the statistics under consideration. This was checked in two different ways. First, the
.mean channel power for each transmit antenna position, averaged over the frequencies and
Rx antennas, was calculated [93]. It turned out that there are scenarios where the average
power was not constant over the area of the transmit array but varied significantly, indicating
large-scale variations. Second, the DoDs (together with their powers) departing from different
sections of the transmit area were plotted by calculating the Capon’s spectrum (see Chapter
5.3.2) for shifted versions a virtual ULA at the transmit array [88]. In absence of large-fading,
they should stay the same. Again, it turned out that for some scenarios the DoD spectrum
varied significantly.

As a consequence of both analyses, only a subset of 12 x 6 transmit antenna positions may be
used. The evaluations in the following chapters always refer to this subset unless differently
stated.



Chapter 5

Validation of Analytical Channel
Models

The ultimate test of any model is experimental validation. In terms of MIMO channels this
means comparing channel models with channel measurements. In this chapter, some analyti-
cal narrowband channel models reviewed in Chapter 3.3 will be evaluated and compared with
the measurements at our Institute. Specifically, the Kronecker model, the Weichselberger
model and the virtual channel representation will be investigated each for different MIMO
systems. In the first part, given a fixed antenna inter-element spacing, the number of anten-
nas will be varied from 2 x 2 to 4 x 4 and 8 x 8. In the second part, the performance of these
models will be also studied for different antenna spacings, this time with number of antennas
fixed.

The following approach will be used to validate the models: For each scenario we will (i)
extract model parameters from measurement; (ii) generate synthesized channel matrices with
these parameters by Monte-Carlo simulations of the three models; (iii) compare different met-
rics calculated from the synthesized channels with those extracted directly from the respective
measurement.

5.1 Extraction of Model Parameters

In order to extract model parameters from the measurements, different realizations of the
MIMO channel matrix are necessary for each scenario. Recall that besides spatial channel
realizations also frequency realizations can be used for the analysis of narrowband channel
models. The procedure for generating different spatial realizations of a channel matrix was
already described in Chapter 4.3.

The model parameters of the Kronecker model, i.e. the single-sided receive (Rgx) and transmit
correlation matrix (RTy) are estimated by

Rpx = — > H(r)H(r)", (5.1)

49
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Ry = [H(r)”H(r)]TA

2|~
M=

r=1

H(r)"H(r)", (5.2)

Il
2| -
M=

r=1

where N is the number of channel realizations, while H(r) denotes the r-th channel realization.”
It is noteworthy that these estimators are, because of the noise, in principle biased [94].
However, since the measurement SNR was in a range of 30 to 40dB, this bias can be neglected.

Applying the eigenvalue decomposition to the estimated correlation matrices,

Rrx = Ur<ArUE,, and (5.3)
Rrx = UnAgpUE, (5.4)

the estimated power coupling matrix Qweichsel of the Weichselberger model can be obtained
by

N
ﬁweichsel = %Z (ﬁl]{xH(Z)ﬁ'}x) © (ﬂng(Z)ﬁTx) . _ (5'5)

i=1

Analogously, by taking unitary steering/response matrices Ay and ARry instead of the eigen-
basis estimates Uty and URgy, the estimated coupling matrix of the virtual channel represen-
tation §2yi;¢ can be calculated by

N
Qi =+ 3 (ALH()AL) © (AR H() A1) (56)
i=1

For Aty and ARy one steering/response direction was selected towards the broadside direction
of the antenna array.

Table 5.1 summarizes the number of real-valued parameters that have to be specified for
modeling an m X n channel. However, mind the following exception: When only mutual
information is of interest, the number of necessary parameters of the Kronecker model and
the Weichselberger model reduce to m + n and mn, respectively.

5.2 Monte-Carlo Simulations

Using the extracted model parameters from the measurements, channel matrix realizations
according to the Kronecker model

1

v/ tr{Rex}

Hyop = RI2GRYA)T, (5.7)

X
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number of real-valued parameters
| id.d. I e : o1
Kronecker m? + n?
Weichselberger mn+m(m —1) +n(n—1)
virtual channel representation mn
full Ry-model (mn)?

Table 5.1: Number of model parameters of various analytical channel models.

the Weichselberger model
I:Iweichsel = ﬁRx (Qweichsel © G) ﬁ%xa (5'8)
and the virtual channel representation

I:Ivirt = ARx (Qvirt © G) Agx } (59)

are synthesized by introducing different fading realizations of the i.i.d. complex circularly
symmetric Gaussian, unity-variance random fading matrix G. For the different MIMO sys-
tems, the number of realizations was chosen to be equal to the respective number of measured
realizations.

5.3 Metrics for Validation of MIMO Channels

If we want to judge the goodness of a MIMO channel model, we first have to specify ’good’ in
which sense. The quality of a model has to be defined with a view toward a specific channel
property or aspect which we are interested in. Then we need metrics or performance figures
that cover the desired channel aspects. Then, the application of these metrics to measured
and synthesized channels enable a comparison or ranking of the models investigated.

Of course, it would be very helpful and highly advantageous to have a single metric that is
capable of capturing all properties of a MIMO channel. However, this is not possible since
the application of a specific metric implies a reduction of reality to some selected aspects, as
modeling always does. :

In the literature a multitude of metrics or performance figures have been proposed in the
past. Among these were ergodic mutual information, outage mutual information, ergodic
capacity, outage capacity, cdfs of the mutual information, capacity cdfs, eigenvalue statistics,
correlation figures, and angular power spectra. The complexity of the proposed metrics range
from single-number metrics to complex performance measures. Obviously, the more complex
a metric is, the more information it provides. But on the other hand a direct comparison of
two channels based on a complex metric becomes more difficult.

To illustrate this, let us consider metrics covering the offered multiplexing gain of a channel.
No doubt that single-number metrics, e.g. the ergodic mutual information, allow for an easy
comparison of different models. But what about using much more complex metrics e.g. as
the eigenvalue statistics? The eigenvalue statistics plots distributions of the instantaneous
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eigenvalues of the Gramian HH¥”. In order to compare the eigenvalue statistics of two
channels in a quantitative manner we would need a further, separate measure of distance. So
we are back at ’single numbers’.

To summarize, there exists not one metric alone, but several metrics to verify the suitability
of models for different aspects of MIMO systems. Consequently, we will use in the following
four different metrics:

e the mutual information with equal transmit power allocation, since the most promising
aspect of MIMO systems is the capacity increase due to the multiplexing gain offered
by the virtual parallel sub-channels in the spatial domain [10, 11};

e the joint DoD-DoA spectrum, giving insight to the multipath structure and therefore
the potential beamforming gain of a MIMO channel {13];

e a specific Diversity Measure introduced by Ivrlac and Nossek [95] describing the degree
of diversity of a channel [29, Chapter 5.3.8]; and

e the Correlation Matriz Distance (CMD) that characterizes the changes in full spatial
channel correlation matrices, as it was initially proposed by Herdin and Bonek [96] for
a different purpose.

Mind that different metrics can yield different quality rankings of channel models as both,
models and metrics, cover different channel aspects. The suitability of a metric strongly
depends on the relevance of this metric to the MIMO system to be deployed.

5.3.1 A Metric for the Multiplexing Gain

As a metric for the potential multiplexing gain, the average mutual information with equal
transmit power allocation is utilized. This value is calculated for each scenario by using (2.24)
and averaging over all realizations of the respective scenario.

The normalization is done such that for each scenario the average power of the channel matrix
elements h;; is set to unity [38], i.e.

%%%ZZD% =1 (5.10)

Here, h;j(r) is the r-th realization of the corresponding channel matrix element h;;. In fact,
such a normalization characterizes the channel for the case of given or fixed receive SNR.

In the subsequent evaluations, the average receive SNR for each scenario is always set to
20dB.

5.3.2 A Metric for the Multipath Structure

For studying the double-directional multipath structure of a MIMO channel, the joint DoD-
DoA Angular-Power-Spectrum (APS) is calculated using the Capon’s beamformer, also known
as Minimum Variance Method (MVM) (97, 98],
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1
(arx(oTx) ® arx(vrx))” Ry (aTx(11x) ® arx(vrx))

PCapon(SoRXa (PTX) = , ,(5.11)

with the normalized steering vector arx(prx) into direction ¢« and response vector arx(@rx)
from direction @Rgy.

Capon’s beamformer was preferred over the simpler Bartlett beamformer [99, Chapter 9]
because it provides better angular resolution. On the other hand, it is much more robust
and easier to implement than super-resolutional parametric estimation methods like ESPRIT
(100, 101, 102] or SAGE [103, 104]. Also, we want to avoid discussions about the model order
and the reliability of estimations of directions by these methods. The single-sided marginal
spectra (DoD and DoA) are calculated by the one-dimensional Capon’s beamformer expressed
by

1
Ppop,capon(Tx) = — , and (5.12)
oo afl (pr<)RIlarx(p1x)

1
Ppoa,Capon(PRx) = — : (5.13)
SRR afl, (R Rysanx(Prs)

5.3.3 A Metric for the Channel Diversity

As reported in [29, Chapter 5.3.8], the eigenvalues \; of the MIMO channel correlation matrix
Ry describe the average powers of the independently fading matrix-valued eigenmodes of a
MIMO channel that is sufficiently described by its second order moments. Its offered degree of
diversity is determined only by the complete eigenvalue profile. As an example, the eigenvalue
profiles of the measured and synthesized 8 x 8 channels at the representative receive position
Rx20 into direction D1 (Rx20D1) is plotted in Fig. 5.1. Other sample eigenvalue profiles are
- shown in Appendix B.

Even if it can not reflect the whole information of the complete eigenvalue profile, a useful
single-number metric for Rayleigh fading MIMO systems, the so-called Diversity Measure
\I,(RH)7

_ (u{Ru}\’
V(Ra) = (HRHHF) ’ (5:14)

was recently introduced by [95]. Here, tr{-} denotes the trace of a matrix, while || - ||p stands
for the Frobenius norm. It is noteworthy that, since the following matrix identities hold,

K
tr{Ru} =Y M\ and |Rullr=

=1

(5.15)

(5.14) can be equivalently written in terms of the eigenvalues

U(Ry) = izzK:l_Al)? (5.16)
POHEPLEN '
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Figure 5.1: Eigenvalue profiles of 8 x 8 MIMO channels at the example scenario Rx20D1.
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Nice properties of the presented metric are that
o 1 <¥(Ry) < (n-m): it is bounded between 1 and the dimension of Ru.

e If A=) =X =... =2 > Ary1 = ... = 0 then the Diversity Measure becomes
U(Ryg) = L, the number of significant eigenvalues (see Fig. 5.2).

For the example scenario referred in Fig. 5.1, the Diversity Measure of the measured channel is
approximately 10. The respective value for the Weichselberger model, the Kronecker model,
and the virtual channel representation can be calculated as 21, 26 and 31. Evidently, the
more uniform the eigenvalues are distributed the higher the Diversity Measure, as desired.

5.3.4 A Maetric for the Change in the Channel Correlation

In order to characterize the changes in the channel correlation, [96], [92, Chapter 4.4.1]
introduced the Correlation Matriz Distance (CMD),

tr{RHRﬁ}

- U HTRS 5.17
Rellr R (5.17)

demp =1

based on the inner product of two full MIMO correlation matrices ||[Ru|lr and [|Ryl|p.
Initially, the CMD was proposed for analyzing spatial stationarity, as the two correlation
matrices were taken e.g. at different positions or time instants.

The CMD is bounded by zero and unity. It becomes zero if the compared correlation matri-
ces are equal (up to a scaling factor), and unity if they differ to a maximum extent, i.e. if
the spatial structures of both matrices are orthogonal to each other. Using synthetic data,
it was found in [92, Chapter 4.4.1] that a CMD value below 0.2 indicates that the channel
did not change largely, whereas a value of 0.4 or more signals significant changes. Moreover,
changes in the spatial structure leading to CMD values larger than 0.2 show up as a sig-
nificant performance reduction in MIMO transmission schemes using outdated channel side
information.

Based on these findings, we can extend the significance of the CMD to our problem: Equation
(5.17) represents also a proper metric for the experimental validation of channel models. If
||IRH||F and ||Rg||r denote the correlation matrices of the measured and synthesized channel,
the CMD characterizes the difference in spatial channel correlation, or in other words, the
difference between the spatial structure of both channels.

5.4 On the Statistics of the Measured Channels

The investigated channel models assume that the channel is sufficiently described by its second
order moments, covered by the full MIMO correlation matrix Ry only. As a consequence,
measurements used for the evaluations of these models have to fulfill this requirement, too.
In particular, only scenarios where the corresponding MIMO matrices follow a multivariate
zero-mean complex Gaussian distribution may be considered for validation purposes of these
models.
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A necessary condition is that the marginal distributions, i.e. the distributions of the channel
-matrix -elements are also zero-mean complex Gaussian. Or equivalently, their magnitudes
(amplitudes) are Rayleigh distributed. This was checked by plotting the fading statistics for
each scenario [105], keeping in mind that this condition alone is not sufficient.

As a further check, the average mutual information of channels synthesized by using its full
second order description,

H = unvec {f{hﬂvec{G}} , (5.18)

is compared with the average mutual information of the respective measured channels. For
this purpose, Monte-Carlo simulations of (5.18) were performed in analogy to Chapter 5.2.
For convenience, we will call (5.18) simply ’full Rg-model’.

For the different MIMO systems, which were considered in the following, we restricted the set
of scenarios such that only those scenarios were taken into account (a) which were explicitly
Rayleigh fading, and (b) where the average mutual information of the full Ry-model shows
a maximum relative deviation of about 2% with respect to the measurement. We tolerate
a small mismatch since we deal with real measurements where we expect some deviation
from theory. Also, statistical variance had to be considered. In Fig. 5.3, this restricted set
of scenarios is indicated by green arrows. The rest, especially LoS and OLoS scenarios that
experience Ricean-fading are excluded (crosses in Fig. 5.3).

5.5 Variation of Antenna Number

How do the basic analytical channel models perform when considering variable antenna num-
ber, but constant antenna inter-element spacing? This question will be investigated in this
subsection.

The models’ performances will be studied for 2 x 2, 4 x 4 and 8 x 8 systems each for fixed
antenna spacing of 0.5\ at the transmit array and 0.4\ at the receive array.

For the 8 x 8 MIMO channel, the set of samples is formed by 193 frequency times 30 spatial
realizations, resulting in a total number of 5790 different realizations. Similarly, for the
4 x 4 MIMO channel we get 193 - 42 = 8106 realizations, and in case of a 2 x 2 system
193 - 66 = 12738 realizations, respectively. Regarding the quality of these estimations, we
think that the number of realizations (the ensemble size) is appropriate (c.f. Chapter 4.3.3).

5.5.1 Average Mutual Information

In Fig. 5.4, a scatter plot of average mutual information of the synthesized channels vs.
the average mutual information estimated directly from the measurement data in case of
8 x 8 MIMO is shown. For each model, a specific marker corresponds to one of the selected
scenarios. The green diamonds indicate results of the full Ry-model, plotted for the just
mentioned checking purpose. Red crosses represent the Kronecker model, black circles the
Weichselberger model and blue squares the virtual channel representation. The dashed line
corresponds to identity, whereas the dotted lines indicate different levels of relative errors. As
a reference, the average mutual information of an i.i.d. Rayleigh fading channel, resulting to
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Figure 5.4: Average mutual information (for equal transmit power allocation) of synthesized
vs. measured 8 x 8 MIMO channels @ 20dB receive SNR. The antenna inter-element spacings
are 0.5\ at Tx and 0.4\ at Rx.

44.0bits/s/Hz at 20dB receive SNR, is represented by a black dot.

As can be seen, the Kronecker model underestimates the 'true’ mutual information!, i.e. the
points lie below the identity (dashed) line. Moreover, the mismatch increases up to more
than 10% with decreasing mutual information. A more detailed analysis in [106, 107] showed
that scenarios with low mutual information correspond to high channel correlation. Thus, the
Kronecker model, introduced to account for correlation, fails the more the more correlated
the channel is.

The virtual channel representation overestimates the 'measured’ mutual information signifi-
cantly. Because of its fixed and predefined steering/response directions, the virtual channel
representation is not able to reproduce any measured multipath components lying between
fixed steering directions correctly. Instead, it assumes independently fading multipath com-
ponents at the adjacent directions. In the worst case, a multipath component lying between
two fixed DoDs and DoAs is modelled by four equal-powered, independently-fading multipath
components. Thus, it tends to model the MIMO channel with more multipath components
than the underlying channel really has, thereby reducing channel correlation and increasing
the mutual information.

The Weichselberger model fits the measurements best with relative errors within the range
of a few percents.

Monte-Carlo simulations that we have performed with completely synthetic MIMO channels revealed the
following. Although very seldom, the Kronecker model might also overestimate the ’true’ mutual information.
The probability of overestimation decreases with increasing antenna number.
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In analogy to the 8 x 8 case, the average mutual information for 4 x 4 and 2 x 2 MIMO
channels is shown in Fig. 5.5 and Fig. 5.6.

Evidently, the relative model error of the Kronecker model decreases with decreasing antenna
number to a few percent. Although for 2 x 2 channels there exist some exceptional scenarios
where the Kronecker model also overestimates the mutual information, a clear trend goes
with underestimation of the mutual information.

The relative model errors of the virtual channel representation do not change significantly
with the antenna number. The model overestimates mutual information of the measured
channel systematically up to 20%.

The performance of the Weichselberger model does not change significantly, either. It still
reflects the multiplexing gain of the measured channel best.

At this point, we want to mention that the mutual information of the Kronecker model was
already investigated in several publications, e.g. in [108] or [109], where the performance of
the model was found to be satisfactory for a 2x2 and 3x3 system. This is in agreement
with our results. However, as demonstrated above, when the antenna size increases, thereby
improving the angular resolution, the deficiency of the Kronecker model becomes worse.

5.5.2 Joint DoD-DoA Spectrum

Figure 5.7 plots the 8 x 8 Capon spectra evaluated for the example scenario Rx20D1. Rx20D1
(Fig. 5.7 (a)) was chosen because it is a scenario where the weaknesses of all three models
become evident. The upper right plot shows the marginal DoD spectrum, whereas the left
depicts shows the marginal DoA spectrum. What follows from the top to the bottom are the
joint DoD-DoA spectra of the measured channel (’true’ spectrum), the Kronecker model, the
Weichselberger model and the virtual channel representation. The color-bar scales dB values
with red color indicating high power and blue color corresponding to low power. Since our
receive array was limited to 120° field-of-view the DoA spectrum is plotted only in the range
from —60° to +60°. Full 360° field-of-view is treated in [42].

In the measured channel, specific DoDs are clearly linked to specific DoAs such that the
joint APS is not separable into a product of the DoD and the DoA APS. The Kronecker
factorization, however, forces the joint spectrum of the Kronecker model to be separable,
thus introducing artifact paths lying at the intersections of DoD and DoA spectral peaks.
The resulting APS is the rank-one product of the two marginal spectra (c.f. Chapter 3.3.1.3).

In contrast, the Weichselberger model exposes this assumption to be too restrictive. Never-
theless, the Weichselberger model does not render the multipath structure completely correct
either.

The virtual channel representation should, in principle, be able to cope with any arbitrary
DoD-DoA coupling. The joint APS shows that it does not. The reason is again due to its
fixed steering/response directions.

The Capon spectra for 4 x 4 and 2 x 2 channels are plotted in Fig. 5.8 and Fig. 5.9. All three
models suffer from the same types of deficiencies, but, due to the reduced spatial resolution,
these are differently pronounced.

In case of the Kronecker model, decreasing antenna numbers comes along with an improved
performance. The reduced spatial resolution makes a Kronecker coupling of the measured
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Figure 5.7: (a) Measurement scenario Rx20D1. (b) Joint DoD-DoA Capon spectra for 8 x 8
MIMO at scenario Rx20D1: The upper right (left) plot depicts the marginal DoD (DoA)
spectrum. At the right-hand side, what follows from the top to the bottom are the joint
DoD-DoA spectra of the measured channel, the Kronecker model, the Weichselberger model
and the virtual channel representation. .
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Figure 5.8: Joint DoD-DoA Capon spectra for 4 x 4 MIMO at scenario Rx20D1. The ar-
rangements of the single APS follow Fig. 5.7.
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Figure 5.9: Joint DoD-DoA Capon spectra for 2 x 2 MIMO at scenario Rx20D1. The ar-
rangements of the single APS follow Fig. 5.7.
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Figure 5.10: Diversity Measure of synthesized vs. measured 8 x 8 MIMO channels with inter-
element spacings of 0.5\ at Tx and 0.4\ at Rx.

MIMO indoor channels more probable.

The same holds true for the Weichselberger model. Its match of reality gets also better with
reduced antenna number. For the 4 x 4 system, it captures the spatial characteristics of this
channel best of all three models.

On the other hand, the mismatch of the virtual channel representation increases since it now
provides a decreasing number of steering/response directions to describe the underlying radio
channel. In fact, for 2 x 2 it fails completely.

The joint DoD-DoA spectra of 8 x 8, 4 x 4 and 2 x 2 MIMO channels for all selected scenarios
of the measurement campaign at our Institute are plotted in Appendix C.

5.5.3 Diversity Order

Figure 5.10 provides a scatter plot of the Diversity Measure of synthesized channels vs. the
Diversity Measure estimated directly from the measurement data for each scenario in case of
8 x 8 MIMO channels. The blue dashed line indicates, again, the identity (no error), while
the dotted line marks specific levels of relative error.

The synthetic channels either match or overestimate the Diversity Measures of the corre-
sponding measured channels. Although the Weichselberger model (black circles) outperforms
both the Kronecker model (red crosses) and the virtual channel model (blue squares) clearly,
it shows relative errors of up to more than 100%. The worst performing virtual channel
representation overestimates the diversity metric mostly by a factor of three.
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Figure 5.11: Diversity Measure of synthesized vs. measured 4 x 4 MIMO channels with inter-
element spacings of 0.5\ at Tx and 0.4\ at Rx.

The Diversity Measures for 4 x 4 and 2 x 2 MIMO channels can be seen in Fig. 5.11 and
Fig. 5.12. They show the same qualitative behavior as 8 x 8 channels, but decreasing relative
errors with decreasing antenna numbers for all three models. Again, the Weichselberger model
performs best. For the 2 x 2 channel, its match is almost perfect up to some negligible errors
for higher diversity values. Also, the performance of the Kronecker model is quite tolerable
within 10% relative error in this case. In contrast, the virtual channel representation, again,
fails completely, even in the 2 x 2 case. It still overestimates the diversity significantly. The
reason for the poor performance of the virtual channel representation is, again, its fixed,
predefined steering directions. On the other hand, the mismatch of the Kronecker model is
due to its deficiency of introducing artifact multipath components.

Although there is no direct relationship between diversity and spatial multiplexing, the over-
estimation of the diversity order can also be seen in the empirical cumulative density function
(cdf) of the mutual information. The MIMO channel diversity affects the reliability (level of
diversity) of the virtual parallel channel paths which is reflected by the slope of the capacity
or mutual information cdf curve. As an example, the cdf of the mutual information for an
8 x 8 MIMO at Rx16D1 with an SNR of 20dB is plotted in Fig. 5.13.

The slopes of the Kronecker (red), Weichselberger (black) and virtual channel representation
(blue) cdf curves are steeper than the one of the measured channel (green). This pretends
higher reliability for the multiplexing gain. As a consequence, while the Weichselberger model
reflects the average mutual information sufficiently, it does not so for the outage mutual
information.
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Figure 5.12: Diversity Measure of synthesized vs. measured 2 x 2 MIMO channels with inter-
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5.5.4 Correlation Matrix Distance

Figure 5.14 shows the empirical cdf of the CMD between the measured and synthesized 8 x 8
channels. With a mean CMD of 0.18 and a maximum of 0.34, the Weichselberger model
(black) has the smallest deviation from the measurement. Although it renders the measured
channel correlation best, it does not so sufficiently for all scenarios. Under the premise that
a CMD value of 0.4 emphasizes significant deviations, as it was argued in- [92, Chapter 4.4.1],
the modeling of those scenarios that result in a CMD of 0.34 are critical with respect to the
full channel correlation.

The performance of the Kronecker model (red) is slightly poorer. Its mean CMD results as
0.21, whereas its maximum CMD is 0.37. Evidently, the virtual channel representation (blue)
shows the largest deviation from the measured channel correlation. With a mean CMD of
0.36 it is not advisable for modeling correlation of 8 x 8 channels.

The performances of all three models improve with decreasing antenna number, as it is shown
for 4 x 4 channels in Fig. 5.15, and 2 x 2 channels in Fig. 5.16. Note the changing scale of the
horizontal axis. The ranking of the models stays the same and can be listed with decreasing
performance as: Weichselberger model, Kronecker model and virtual channel representation.
In contrast to the virtual channel representation, both the Weichselberger and Kronecker
model are able to reflect the full channel correlation sufficiently well when considering MIMO
systems with 4 x 4 antennas or even less. In these cases, the evaluations exhibit a maximum
CMD value of 0.15.
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Figure 5.15: Empirical cdf of the Correlation Matrix Distance (CMD) between measured and
synthesized 4 x 4 MIMO channels with inter-element spacings of 0.5\ at Tx and 0.4X at Rx.
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5.6 Variation of Antenna Spacing

It is well known that increasing antenna spacing can increase capacity. In [54] it is argued
that increasing antenna separation may not only decorrelate the channel (and thus partially
increase capacity as well) but also can directly contribute to increased capacity by efficiently
increasing the number of parallel sub-channels. Therefore, it is more than likely that antenna
separation of future indoor MIMO systems will not be limited to half-a-wavelength, which is
critical for spatial sampling.

In this subsection we will analyze the models’ performances when increasing inter-element
spacing at both link ends. The limitation at the receive array allows only for the following
evaluations: For 4 x 4 MIMO channels, the antenna spacing can be doubled with respect to
the initial (minimum) antenna spacing, to one A at Tx and 0.8\ at Rx. This reduces the set
of samples to 193 - 36 = 6948 realizations. . '

For 2 x 2 MIMO channels, antenna spacings up to 3.5\ at Tx and 2.8\ at Rx can be set,
thereby providing at least 193 - 30 = 5790 different channel matrix realizations.

Unfortunately, due to our restriction at the receive array, increasing the initial antenna sep-
aration of the 8 x 8 channels is not possible.

It is noteworthy that this time only the the mutual information, the Diversity Measure and
the Correlation Matrix Distance will be used as metrics. Beamforming will not be regarded
since it can not be performed uniquely for antenna spacings larger than half-a-wavelength
" because of the spatial aliasing effect (Shannon’s sampling theorem).

5.6.1 Average Mutual Information

To investigate the effect of increased antenna spacing on the models’ performances let us first
inspect Fig. 5.17. In this figure, the average mutual information of synthesized vs. measured
4 x4 MIMO channels for an antenna spacing of (a) 0.5\ at Tx and 0.4\ at Rx, and (b) one X at
Tx and 0.8 at Rx is shown. The essential effects of increasing antenna separation, viz. spatial
- zooming and spatial aliasing (the latter for antenna spacings larger than half-a-wavelength)
[54] make an increase in mutual information more likely. Of course, this does not mean that
the mutual information of every single scenario has to increase. Although very seldom, it
could happen that increasing antenna separation does not come along with increased mutual
information. In fact, the average mutual information of the measured channels shift to a range
of higher values. The bulk of the measured scenarios exhibit an average mutual information
in a narrow range of 19 to 22bits/s/Hz.

As can be seen, the performance of the virtual channel representation improves significantly
with increased antenna separation. Its relative errors reduce from 20% to about 10% as
a consequence of the improved resolution of the fixed virtual angles. As explained in [54],
more virtual angles couple to the scatterers enabling a better representation of the measured
channel.

Regarding the Weichselberger model, increasing antenna separation does not affect its almost
perfect match of the measurement.

Also the performance of the Kronecker model does not change significantly. Depending on
the underlying physical propagation, the spatial aliasing effect could support a more uniform
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joint APS, which complies with the Kronecker assumption. Evidently, this is not the case.

For 2 x 2 MIMO channels; Fig. 5.18 plots the average mutual information of synthesized vs. -
measured channels for antenna spacings of (a) 0.5\ at Tx and 0.4X at Rx, (b) one X at Tx
and 0.8)\ at Rx, and (c) 3.5) at Tx and 2.8) at Rx.

What changes with increasing antenna separation is again that the errors of the virtual channel
representation decrease. For a spacing of 3.5\ at Tx and 2.8\"at Rx its maximum relative
error reduces to less than 5%.

Note that a 2 x 2 MIMO system with very large antenna spacing could also be modeled as
an i.i.d. channel. In this case the resulting relative error in the average mutual information
would not exceed 10%.

5.6.2 Diversity Order

The impact of antenna separation on the Diversity Measure of measured and synthesized 4 x 4
channels is shown in Fig. 5.19, whereas Figure 5.20 depicts the same investigation for 2 x 2
channels.

In analogy to the mutual information, the diversity of the measured channels increases with
increasing antenna separation.

As can be seen, the antenna separation does not affect the performance of the virtual channel
representation significantly. The virtual channel representation overestimates the Diversity
Measure of the measured channels up to 100% in case of 4 x 4 channels and and up to more
than -50% in case of 2 x 2 channels, independently of the antenna separation. '

Interestingly enough, match of the Weichselberger model and the Kronecker model becomes
slightly poorer with increasing antenna separation.

5.6.3 Correlation Matrix Distance

Lastly, let us investigate the effect of antenna separation on the models’ CMDs. For this
purpose, Fig. 5.21 plots the empirical cdf of the CMD between the measured and synthesized
4 x 4 channels, and Fig. 5.22 shows 2 x 2 channels, respectively.

Evidently, the CMD of both the Weichselberger model and the Kronecker model increases
with increasing antenna separation. The maximum CMD of both models increases to ap-
proximately 0.23 when doubling the initial antenna spacing of 4 x 4 channels. Similarly, the
maximum CMD of 2 x 2 channels increases to about 0.1 for antenna spacings of 3.5\ at Tx and
2.8) at Rx. Nevertheless, their performances are still sufficiently well, as CMD values smaller
than 0.2 indicate only moderate deviations from the measured full channel correlation.

In contrast, there is no clear trend for the CMD of the virtual channel representation when
increasing antenna separation.
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Figure 5.17: Average mutual information of synthesized vs. measured 4 x 4 MIMO channels
for varying antenna spacings. The receive SNR is set to 20dB.
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Chapter 6
Summary and Conclusions

It is the radio channel that limits the capabilities of MIMO systems. Indeed, the benefits of
MIMO, viz. spatial multiplexing, spatial diversity and beamforming, depend all on the struc-
ture of the underlying radio multipath propagation. This thesis has focused on indoor MIMO
channel models, as they are of great importance for the design, simulation, and deployment
of future high data-rate indoor MIMO systems such as WLANSs.

Although radio propagation in indoor environments is characterized by the same propagation

mechanisms as in outdoor, the situation is more complex. The specifics of indoor environ-

ments, where numerous objects may act as scatterers, result from both the smaller distances

that are covered and the much larger variability of such environments. Extending conven-

tional models (SISO or SIMO) to the MIMO case is not straightforward, since, in addition to
" the spatial characteristics at both link ends, also their linkage has to be considered.

Recent work on indoor MIMO modeling was briefly reviewed!. Note that the reported models
were not exclusively indoor models. Models were categorized in physical and analytical models.
The first characterize an environment on the basis of electromagnetic wave propagation by
describing the (polarization dependent) double-directional multipath propagation between the
location of the transmit array and receive array. As main drawbacks count the measurement
and parameter extraction that is usually very tedious. As representatives of physical models,
the extension of the Saleh-Valenzuela model and Zwick’s model were addressed.

In contrast, analytical models describe the impulse response, or equivalently the transfer
function, of the channel between the elements of the antenna arrays at the transmitter and
receiver. These impulse responses are combined in a (delay dependent) channel matrix given
by closed-form mathematical expressions. Analytical models provide an analytical framework
for the design of transmit and receive techniques like space-time codes and the development
of MIMO algorithms in general. They allow for reproducing various channel characteristics
by changing only a limited number of modeling parameters.

The relationship between physical and analytical models is this: Starting from a physical
model we arrive at analytical models, if we specify antenna arrays at both link ends by
setting antenna elements, their geometrical configuration, and their polarizations, preferably
by agreement to reference configurations. We emphasize that a physical model can be easily

'Parts of this will constitute a section of the first deliverable on 'Survey of existing channel models’ of
NEWCOM Department 2, Network of Excellence funded by the EU commission.
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converted into an analytical model but not vice versa.

Various analytical narrowband models are based on the multivariate complex Gaussian distri-
bution. Most popular examples include the i.i.d. model, Kronecker model, the Weichselberger
model, and the virtual channel representation. Their commonness is that the elements of the
channel matrix follow a joint multivariate zero-mean complex Gaussian distribution. Such
channels are sufficiently described by their second order moments, covered by the full MIMO
channel correlation matrix. However, they all rely on various simplifying assumptions regard-
ing the underlying radio propagation. Benefits and shortcomings as consequences of those
assumptions were detailed. Particularly, implications of the Kronecker separability assump-
tion and the Weichselberger assumption were analyzed.

A recent finding about the correlation across the link, so-called 'diagonally correlated chan-
nels’, shook the entrenched view that i.i.d. channels provide maximum ergodic capacity. We
have shown how such channels would have to look like in physical terms (Appendix D).

For the purpose of experimental model validation, the Kronecker model, the Weichselberger
model, and the virtual channel representation were compared with measurements. More spe-
cific, the following approach was used to validate the models: For each scenario (i) model
parameters were extracted from measurement; (ii) synthesized channel matrices were gen-
-erated with these parameters by Monte-Carlo simulations of the three models; (iii) different
metrics calculated from the synthesized channels were compared with those extracted directly
from the respective measurement.

The basis for our comparison was an extensive 5.2GHz measurement campaign in the offices
of the Institut fiir Nachrichtentechnik und Hochfrequenztechnik. Within this campaign, a
20x10 virtual rectangular array with an inter-element spacing of half-a-wavelength was used
.at the transmit side, whereas a directional uniform linear array of 8 printed dipoles, spaced
0.4 wavelength and 3dB field-of-view, formed the receive array. The channel was probed at
193 equi-spaced frequencies over 120MHz of bandwidth. The measurements were used to
create different spatial realizations of 2 x 2, 4 x 4 and 8 x 8 MIMO channels with varying
inter-element spacings by moving a virtual uniform linear array across the whole transmit
array.

Regarding the evaluation of the measurements, a particularly challenging problem was the
proper choice of the statistical sample. The quality of statistical estimates depends on the
number of measured statistical realizations - the more the better. On one hand, these real-
izations have to be sufficiently independent. On the other hand, the statistical samples must
not span a region which exceeds the small-scale region of the statistics under consideration
because this would mean averaging over multiple different statistics. Taking both limitations
into consideration, the size of the used transmit array was reduced to a subset of 12x6. Since
the investigated models assume that the channel is sufficiently described by its second order
moments, measurements used for experimental validation of these models have to fulfill this
requirement, too. Following this condition, only a restricted set of 58 scenarios (out of a total
72 measured scenarios) was considered for the validation. Ignoring these two caveats will
yield misleading results about the measured channels.

In order to judge on the goodness of the models, metrics or performance measures were
needed. Since the application of a specific metric implies a reduction of reality to some specific
aspects, a single metric alone turned out not to be capable of capturing all properties of a
MIMO channel. As a consequence, we used four different metrics covering different aspects
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of MIMO systems to verify the suitability of the considered models: (i) the average mutual
information (with equal transmit power allocation) describing the spatial multiplexing gain;
(ii) the double-directional angular power spectrum, giving insight into the multipath structure
and potential beamforming gain; (iii) a Diversity Measure describing the channel’s diversity
order; and (iv) the Correlation Matriz Distance in order to characterize the changes in the
full channel correlation. We stress that the suitability of a metric strongly depends on the
relevance of this metric to the MIMO system to be deployed.

The validation revealed that the Weichselberger model predicts the average mutual informa-
tion, the Diversity Measure and the full channel correlation best of all three models, although
it does not so sufficiently well in each case. Regarding average mutual information it shows an
almost perfect match with the measurements, whereas the Kronecker model tends to under-
estimate the mutual information up to more than 10% (at a receive SNR of 20dB) especially
for large arrays (8 x 8). The virtual channel representation, suffering from its fixed and
predefined steering/response directions, overestimates the mutual information significantly.
When we lower antenna numbers to 2 x 2 and increase antenna spacing, all considered models
predict mutual information accurately, but the i.i.d. model is not farther off than 10% either.

Concerning the double-directional angular power spectrum none of the considered models can
reproduce an arbitrary multipath structure accurately, independently of the array size. While
. the Weichselberger model can only cope with systems not larger than 4 x 4 sufficiently, the
* virtual channel representation improves its performance with increasing antenna numbers due
to improved angular resolution. But 8 x 8 does not seem to be large enough. The Kronecker-
model forces the double-directional angular power spectrum to be separable and should, in
general indoor environments with interdependent DoDs and DoAs, not be used for modeling
the double-directional angular power spectrum. Exceptions are MIMO systems with low
antenna numbers, e.g. as 2 X 2 or maybe 3 x 3 where the produced error is negligible, because
of the very modest spatial resolution of such a system in first place.

Since the analyzed models are all based upon simplifying assumptions of the full MIMO
correlation matrix, none of them is able to render the full correlation and diversity of the
measured channels, independently of the antenna number and separation. Both the Kronecker
model and the Weichselberger model are able to match the Diversity Measure and the full
channel correlation matrix only for systems not larger than 4 x 4.

A general trend for all three models goes with this: the higher the number of antennas, the
more the models deviate from the measurements.

The validation approach just discussed is the proper one to arrive at models that re-construct
realistic MIMO channels, e.g. channels that are measured. This approach, though, is not the
only one possible. Should one be interested in a single aspect of MIMO only, then models that
contain proper parameters (that can be specified more or less freely) might perform better.
For instance, the virtual channel representation allows for modeling channels with arbitrary
multiplexing orders by choosing appropriate coupling matrices. Similarly, an appropriate
choice of the Weichselberger coupling matrix enables the setting of arbitrary multiplexing
and diversity orders.

Measurements made clear that the way MIMO channel matrices are normalized has a strong
impact on the conclusions one draws. There are two meaningful ways of normalizing ensembles
of measured channel matrices taken at different locations. The first ignores the pathloss at
different locations by normalizing the channel matrix realizations at each location separately.



CHAPTER 6. SUMMARY AND CONCLUSIONS 80

Since the receive SNR can then be set independently at different locations, this corresponds
to a system with power control. Alternatively, a.-common normalization factor can be applied
to all channel matrix realizations at all locations. This preserves the pathloss information
and therefore corresponds to constant transmit power.



Appendix A

Proof of an Identity

Let G be an m x n complex Gaussian random matrix with unity power and independently
distributed elements g;;. For such a matrix

Y = E{GXGH} (A.1)

is always equal to a scaled identity matrix K -I,,. Writing the matrix multiplication element-
wise, the elements of Y become

n n n n
yij =E {Zgik Zxktg}z} =" E{guzug}}- (A.2)

k=1 =1 k=1 1=1

Since the elements of G are independent and identically distributed, the expectation of the
right hand side of (A.2) is non-zero only for ¢ = j and k& = [, and therefore (A.2) simplifies to

E 3 LRy } 1=7
vy = {kgl gk I (A.3)
0 iF# 7

Or equivalently with Py = E{|gi|?}

Y = (Pg : Zxkk> . (A.4)
k=1
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Appendix B
Sample Eigenvalue Profiles

This appendix shows some sample eigenvalue profiles of the MIMO channel correlation matrix.
For each of the chosen scenarios, the profiles are calculated for the measured channel and
respective channels synthesized by the Kronecker model, the Weichselberger model and the
virtual channel representation. Figure captions also include values for the Diversity Measure
of the considered channels. The Diversity Measures of the measured channel, Kronecker
model, Weichselberger model and virtual channel representation are denoted by ¥ ieas, Ykron,
Uiveichsel and Wyiry.
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Figure B.1: Eigenvalue Profile of the 8 x 8 MIMO channel at Rx4D2: Ve = 12.6,
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Figure B.2: Eigenvalue Profile of the 8 x 8 MIMO channel at Rx12D1: Wpe,s = 4.0,
Ykron = 5.8, Wyeichsel = 4.4, Uyirg = 10.8.
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Figure B.3: Eigenvalue Profile of the 8 x 8 MIMO channel at Rx15D1: Weas = 5.8,
\I’kron = 8.6, W weichsel = 7.3, Yyirg = 9.4
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Figure B.5: Eigenvalue Profile of the 4 x 4 MIMO channel at Rx12D1: W¥peas = 4.7,
Pyron = 5.5, Yyeichsel = 9-0, Wyirg = 7.5.
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Figure B.6: Eigenvalue Profile of the 4 x 4 MIMO channel at Rx15D1: ¥Upess = 3.2,
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Figure B.7: Eigenvalue Profile of the 2x2 MIMO channel at Rx4D2: ¥ eas = 3.2, ¥iron = 3.3,
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Appendix C

Joint DoD-DoA Capon spectra

In this appendix the joint DoD-DoA Capon spectra of 8 x 8, 4 x4 and 2x2 MIMO channels are
shown for 58 Rayleigh-fading scenarios of the 5.2GHz measurement campaign at our Institute.
To recap, the complete floor plan of the measurement campaign is again plotted in Fig. C.1.
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Figure C.1: Floor plan of the 5.2GHz measurement campaign. In total, 72 different scenarios,
i.e. Rx positions and directions, were measured.
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The arrangement of the individual sub-plots for each scenario is as follows. The upper right

plot shows the marginal DoD spectrum, the left plot-shows the marginal DoA spectrum. What |
follows from the top to the bottom are the joint DoD-DoA spectra of the measured channel,
the Kronecker model, the Weichselberger model and the virtual channel representation. The
color-bar scales dB values with red color indicating high power and blue color corresponding
to low power. The DoD is plotted in the range from —90° to +90°, whereas the DoA is in
the range from —60° to +60°

C.1 Capon spectra for 8 x 8 MIMO systems
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Figure C.2: Joint 8 x 8 DoD-DoA Capon spectra.
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Figure C.3: Joint 8 x 8 DoD-DoA Capon spectra (cont’d).
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Figure C.4: Joint 8 x 8 DoD-DoA Capon spectra (cont’d).
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Figure C.5: Joint 8 x 8 DoD-DoA Capon spectra (cont’d).

90



APPENDIX C. JOINT DOD-DOA CAPON SPECTRA

DD [ ] DoD [ ]

g8l

5

Rx15D2 g&sg -

Rx15D3

PowerldB]
1
\

measured

11

-50

Power [5g] ] .50

o3
Weichselberger

==

Kronecker

H 455
.70

Rx1601

.70
40

Welchselberger

vmual channel representation
._.50 -40
T

-50

-60

measured

DoA [ °]

- d.%] Kronecker

£5
Power [¢
‘g I 90

Wenchselberger

-70
50 - . 90
35 -65 Kronecker
o - i

Weichselberger

E=1i:

vnrtual channel representation %0

irtual channe! representation

Vi
50
0

Figure C.6: Joint 8 x 8 DoD-DoA Capon spectra (cont’d).
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Figure C.7: Joint 8 x 8 DoD-DoA Capon spectra (cont’d).
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Figure C.8: Joint 8 x 8 DoD-DoA Capon spectra (cont’d).
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Figure C.9: Joint 8 x 8 DoD-DoA Capon spectra (cont’d).
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C.2 Capon spectra for 4 x 4 MIMO systems

Rx1D1

Non-Rayleigh

Power 108

Rx2D1

Non-Rayleigh

)

virtual channel representation

Figure C.10: Joint 4 X 4 DoD-DoA Capon spectra.
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Figure C.11: Joint 4 x 4 DoD-DoA Capon spectra (cont’d).
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Figure C.12: Joint 4 x 4 DoD-DoA Capon spectra (cont’d).
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Figure C.13: Joint 4 x 4 DoD-DoA Capon spectra (cont’d).
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Figure C.14: Joint 4 x 4 DoD-DoA Capon spectra (cont’d).
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Figure C.15: Joint 4 x 4 DoD-DoA Capon spectra (cont’d).
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Figure C.16: Joint 4 x 4 DoD-DoA Capon spectra (cont’d).
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Figure C.17: Joint 4 x 4 DoD-DoA Capon spectra (cont’d).
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C.3 Capon spectra for 2 x 2 MIMO systems
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Figure C.18: Joint 2 x 2 DoD-DoA Capon spectra.
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Figure C.19: Joint 2 x 2 DoD-DoA Capon spectra (cont’d).
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Figure C.20: Joint 2 x 2 DoD-DoA Capon spectra (cont’d).
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Figure C.21: Joint 2 x 2 DoD-DoA Capon spectra (cont’d).
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Figure C.22: Joint 2 x 2 DoD-DoA Capon spectra (cont’d).
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Figure C.23: Joint 2 X 2 DoD-DoA Capon spectra (cont’d).
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Figure C.24: Joint 2 x 2 DoD-DoA Capon spectra (cont’d).
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Figure C.25: Joint 2 x 2 DoD-DoA Capon spectra (cont’d).
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Appendix D

Diagonally Correlated Channels

It is well known that the ergodic MIMO capacity grows asymptotically linearly with the mini-
mum number of transmit and receive antennas in a sufficiently rich multipath environment[10,
11}. For Rayleigh-fading channels, it is usually believed that channel correlations always re-
duce capacity and that therefore i.i.d. channels would yield maximum ergodic capacity. In

case of n antennas at both link ends and narrowband, the ergodic capacity can be expressed

as [10, 11] (c.f. Chapter 2.3.1.3)

Cia = Ent {logydet [1 + §HHH]} . (D.1)

However, by introducing a simple metric for the ergodic MIMO capacity, the most surprising
result of [110, 111] was that ergodic capacity is not maximized under i.i.d. fading conditions.
- After exchanging the expectation and the log, operation (Jensen’s inequality) in (D.1), the
proposed metric can be expressed as

% = det [EH {1 + §HHH}] . | (D.2)

As a beneficial property, the metric allows for analysis of ergodic MIMO capacity as a function
of the correlations between different channel matrix elements. Interestingly enough, channels
with so called diagonal correlations [110] could exhibit higher ergodic capacity than i.i.d.
fading channels. These findings have met skepticism.

This appendix will characterize such channels. In the sequel, we will introduce so-called
diagonally correlated 2 x 2 MIMO channels that exhibit higher ergodic capacity (in strict
Shannon sense) than i.i.d. channels. Further, we will extend this approach to a general n x n
channel. .

D.1 Diagonally Correlated 2 x 2 MIMO Channels’

-D.1.1 Derivation and Modeling

In case of a 2 x 2 MIMO channel the channel matrix reads as
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h11  hio
H= 2 | D.3
[ ha1  hao ] (D-3)

and the full MIMO channel correlation matrix can be expressed as

E{huhi} E{huh3} E{huhbi,} E{huhi}
E{ha1h11} E{h21h};} E{ho1hiy} E{ho1h3,} (D.4)
E{hi2hi1} E{h12h};} E{hi2hiy} E{hi2h3} |’ '
E{haohi;} E{haeh3} E{hazhis} E{haehi,}

The diagonal entries in (D.4) represent the antenna powers, the E{h;;hj;} with i # j # [ the
receive antenna correlations, and the E{h;;h};}, again with ¢ # j # [, the transmit antenna
correlations, respectively. Thus, following [110], we will call the remaining matrix entries
diagonal correlations.

From (D.2) it becomes clear that, in the case of a 2 x 2 MIMO Rayleigh fading channel, the
ergodic channel capacity is maximized if the absolute value |Rg| of the full channel correlation
matrix fulfills

Ry =

1 0
0 1
1

o = = O
—_—_0 O =

0

i.e. if the antenna amplitude correlations are zero, but the magnitudes of the diagonal corre-
lations are equal to unity. We call this type of channels a 2 x 2 diagonally correlated channel.
Thus, the amplitudes of its matrix elements read as

|h11] |h12|]
H| = ; D.6
=] [M ft (D.6)

An illustration of a diagonally correlated 2 x 2 MIMO channel is shown in Fig. D.1. Such a
channel occurs in scenarios where only two, nearly equally-powered, independent Rayleigh-
fading multipath components with orthogonal DoDs and DoAs exist. If a single DoD couples
into a single DoA and vice versa, then the diagonally correlated channel results [112]. Note
that ’orthogonal’ in this sense does not imply right angles, but orthogonality of the corre-
sponding steering/response vectors.

Using the formalism of the finite scatterer model [53] or the approach presented by [54], the
diagonally correlated channel H can be expressed as

H = Ag, (DO G) AT, (D.7)

Here, G is a 2 x 2 1.i.d. fading matrix with zero-mean, complex circularly symmetric Gaussian
entries. The two columns of the unitary matrix ATy (ARx) constitute orthogonal steering
(response) vectors of DoDs (DoAs). The 2 x 2 coupling matrix D is either a diagonal or anti-
diagonal matrix with identical entries, producing the equally-powered, one-to-one coupling
between DoDs and DoAs. Almost identical entries of the coupling matrix D work fine as well.
Note that (D.7) is identical to the virtual channel representation with a diagonal coupling
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Figure D.1: Illustration of a 2 x 2 diagonally correlated channel: Two nearly equally powered,
independent Rayleigh-fading multipath components with orthogonal DoDs and DoAs exist
such that a single DoD couples into a single DoA and vice versa.

matrix. In fact, also the Weichselberger model with a diagonal coupling matrix exhibits
diagonal correlations.

D.1.2 Capacity

A closer look at (D.7) reveals the distribution of the singular values of H. The orthogonal
steering (response) vectors of the unitary matrix A1y (Agrx) constitute the right (left) singular
vectors, except a constant phase term. The magnitudes of the singular values of H, |s;|, are
given by the magnitudes of the complex-Gaussian distributed, non-zero elements of D ©® G.
Hence, |s;| follows a Rayleigh distribution. As a consequence, the eigenvalues \; = |s;|? of
the Gramian HH¥ are Chi-squared distributed with two degrees of freedom.

Before calculating the ergodic capacity, the channel has to be normalized properly. Its nor-
malization to unity average power of each channel matrix coefficient leads to a Rayleigh
parameter for |s;| of unity, too. )

The ergodic capacity of a 2 x 2 diagonally correlated channel is exactly given by [113]

@)
Il

Eq {ibgz (1 + 5332)} =2-E; {log2 (1 + gmz)}
k=1
2 /000 log, (1 + g.’l:2) xe—%dz

= 2log2(e)e%’E1 <%) , (D.8)

where = denotes a random realization of the identically distributed eigenvalues \;, and E;(z)
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Figure D.2: Average capacity of a 2 x 2 i.i.d. and diagonally correlated channel as a function
of the average receive SNR.

tz

is the En-Function [114] for n = 1 that satisfies E1(z) = [;° &5—dt. For the special case of

n = 1, the En-Function can also be expressed in terms of the Exponential Integral Function
Ei(z), i.e. E;(2) = —Ei(-2).

Close scrutiny of (D.8) reveals that the diagonally correlated channel exhibits a higher er-
godic capacity than the corresponding i.i.d. channel. Monte-Carlo simulations with 5 - 10°
realizations for each SNR value were performed to show that this is indeed the case.

Figure D.2 plots the resulting average' 2 x2 MIMO capacity of a diagonally correlated and an
i.i.d. channel as a function of the receive SNR p. Evidently, the diagonally correlated channel
exhibits a higher ergodic capacity. (Of course, both channels have the same channel power.)
The difference is small, but it discusses the general statement that i.i.d. gives maximum
ergodic capacity.

Further, we compared the capacity cdf of a diagonally correlated channel with the one of
an i.i.d. channel at an SNR-level of 20dB. Figure D.3 shows the outcome. Despite the fact
that the diagonally correlated channel (solid line) provides a higher average capacity than the
i.i.d. channel (dashed line), we observe that the slope of its capacity cdf is flatter. Its outage
capacity is lower for outage levels higher than approximately 85%.

D.1.3 Fading Behavior

As already mentioned before, for diagonally correlated channels |hy1| = |hgo| and |hi2| = |ha1].
As a consequence, the channel amplitudes fade in tandem, either in pairs of |hy1| — |hez| (Fig.
D.5) or |h1g| — |ho1| (Fig. D.4), respectively. But these pairs fade Rayleigh independently of
each other.

In case of i.i.d. Rayleigh-fading in contrast, each single channel matrix entry h;; fades inde-
pendently (according to a Rayleigh distribution).

'Please recall that we use the term ergodic only with respect to random variables. When dealing with
realizations of a random variable, the expected value can be estimated by the arithmetic mean or average.
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Figure D.3: Capacity cdf of a 2 x 2 i.i.d. and diagonally correlated channel at 20dB receive
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Figure D.6: Illustration of an n xn diagonally correlated channel: A channel with n orthogonal
DoDs and n orthogonal DoAs such that each single DoD couples with equal power into a single
DoA and vice versa.

An intuitively appealing reason for the capacity increase is as follows. Each of the independent
fading pairs of a diagonally correlated channel provide perfectly separated virtual sub-channels
on their own. This improved separation of the sub-channels result in a higher ergodic capacity.
But, since the degrees of freedom reduces from four to two, diversity in diagonally correlated
channels is lower than for i.i.d., leading to a flatter slope of the cdf, i.e. lower outage capacity
for high outage levels.

D.2 Diagonally Correlated n x n MIMO Channels

The concept of the 2 x 2 diagonally correlated channel can be generalized as follows. Consider
a symmetric n x n MIMO channel with n orthogonal DoDs and n orthogonal DoAs. We call
such a channel diagonally correlated if each single DoD couples into a single DoA and vice
versa. This is illustrated in Fig. D.6.

The analytical modeling stays the same and follows (D.7). Of course, the dimensions of the
unitary steering and response matrices A1y and ARgy, the coupling matrix, and the random
fading matrix G must change to n x n. Further, D is a sparse matrix with only one entry
in each row and column, producing the one-to-one coupling between DoDs and DoAs. The
entries of D have to be identical. Again, almost identical entries work fine as well. The actual
shape of D determines the appearance of the channel matrix and therefore the full channel
correlation matrix. Interestingly enough, the amplitudes of the corresponding channel matrix
entries exhibit a specific symmetry. It can be shown that the rows of these amplitudes have
to be cyclically right- or left- shifted versions of each other.
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As an example for 3 x 3 MIMO, the amplitudes of the channel matrix may result, for a given
choice of D, in

lhii]  |hi2|  |has]
H| = | |hi2| |h1s| [hua] |, (D.9)
|has| |Ru1]  |hi2l
with the corresponding full channel correlation matrix
1 0 0 01 0 0 0 17
010001100
001100010
001100010
Rul=|{10001000T1]|, (D.10)
010001100
010001100
001100010
L1 0 0010 00 1]
or
|ha1]  |hi2]  |has]
IH| = | |hsl| |hu| [|h12| |, (D.11)
lha2] |his| |hail
with
1 0 0 01 0 0 O 17
01 00O011O00
00110O0O0T1PO0
001 10O0O0T10
Rul=|100010001 (D.12)
010001 1O00
0100011O0°0
00110O0O0T1TOQO0
|1 0 001 00 0 1]

However, the eigenvalues \; = |s;|? of the Gramian HH* are still independently identical
Chi-squared distributed with two degrees of freedom, independent of the actual shape of D.
If the channel is normalized to unity average power of each channel matrix coeflicient, the
variance of the Rayleigh distributed |s;| increases linearly with the number of antennas. For
n antennas at both link ends, it equals . Hence, the ergodic capacity of an n x n diagonal
channel with its identically'distributed eigenvalues is exactly given by [113]
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C E{ilogg (1+§z2)}=n-E{log2 (1+§z2)}
k=1
= n/ooo log, (1 + %.’1:2) %e_%dm

= nlog2(e)ell7E1 (%) , (D.13)
where E;(z), again, is the En-Function for n = 1 that satisfies E;(z) = [~ %dt.

Note that in the above expression the capacity grows exactly linearly with the number of
antennas while the capacity of i.i.d. channels grows in n only asymptotically.
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