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Kurzfassung

Die Methode des Forcing mit einer Kategorie von Bedingungen und
Allegorien-Axiome für die algebraische Mengentheorie

Die Methode des Forcing für Unabhängigkeitsbeweise wird in abgewandelter Form
untersucht: Statt einer partiellen Ordnung wird eine Kategorie von Bedingungen
verwendet.

Zunächst wird eine Theorie der C-Namen für eine Kategorie C entwickelt, inklusive
der Definition einer Auswertung von C-Namen und einer Forcing-Relation. Auf
diese Weise können generische Forcing-Erweiterungen und Permutationsmodelle
in einen gemeinsamen Rahmen gestellt werden. Weiters wird gezeigt, daß hinter
C-Namen und Garben bezüglich der dichten Uberdeckung auf C im wesentlichen
dasselbe Konzept steht.

Mit der Freydschen Darstellung kann die Methode des Forcing mit einer Kategorie
von Bedingungen als Kombination von Forcing mit einer partiellen Ordnung P
und der Methode der Permutationsmodelle gesehen werden. Die Darstellung von
Schranken für Grothendieck Topoi, die in diesem Text entwickelt wird, führt zu
mehr Flexiblität in der Auswahl der partiellen Ordnung P.

Abschließend werden Axiome der Algebraischen Mengentheorie im Kontext ab-
strakter Relationen (Allegorien) angegeben. Dieser Zugang erlaubt eine Axioma-
tisierung von Familien von Mengen, die durch Klassen indiziert werden, ohne
den üblichen Fokus auf disjunkte Mengen und führt zu einer verdichteten For-
mulierung der Algebraischen Mengentheorie.
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Abstract

The Method of Forcing with a Category of Conditions and Allegory
Axioms for Algebraic Set Theory

The method of forcing for set theory independence proofs is examined in a modi-
fied version with a category of conditions rather then a partial order of conditions.

A theory of C-names is developed for a category C, including a definition of an
evaluation of C-names and a forcing relation. This way, generic forcing extensions
and permutation models fit into one framework. It is shown that C-names and
•• -sheaves on C are essentially the same concept.

With the Freyd representation, forcing with a category of conditions can be seen
as a combination of conventional forcing on a partial order P and permutation
model method. The representation of prebounds for Grothendieck topoi given in
this text leads to more flexibility to choose the partial order P.

Finally, a set ofaxioms for Algebraic Set Theory is presented, based on the
allegory setting of abstract relations. Axiomising class indexed families of sets,
this approach allows to drop the usual focus on families of disjoint sets and leads
to a more condensed formulation of Algebraic Set Theory.
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Chapter 1

Introduction and Motivation

Independent statements, i.e. statements that are neither provable nor refutable
within a consistent system ofaxioms, have a singular attractive position in math-
ematics.

It is a consequence of KURT GÖDELS revolutionary Incompleteness Theorem that
no consistent system ofaxioms that has enough power of expression to contain the
theory of natural numbers can prove all true1 sentences. It is a further different
challenge to actually prove that a given statement is independent, though.

One major method for such independence proofs in set theory is forcing. Since
its invention by PAUL COHEN (for the famous proof of the independence of the
Continuum Hypothesis in 1963), it has been refined in many directions, e.g. iterate
forcing constructions.
In rough terms, the aim of the technique of forcing is to build, starting with a
ground model of ZFC-set theory, a new model which satisfies a given statement,
thus implying that this statement cannot be disproved within ZFC. (see e.g.
[JecD3]for the meta-mathematical justification).

As the main intermediate step, special sets called P -names are singled out from
the sets of the ground model. Those names are recursively built using elements
of a "partial order of conditions" P which has to be chosen appropriately to the
specific problem that needs to be solved.

In 1971 WILLIAM LAVWERE and MYLES TIERNEY added an alternative view
to this construction. In [Tie72] they reformulated the proof of the consistence

ltrue is meant either in the platonic sense or relative to a ground model on which we will
base our considerations. See [GJ95] for an introduction to the incompleteness phenomenon.
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CHAPTER 1. INTRODUCTION AND MOTIVATION 2

of Continuum Hypothesis into a category theory2 setting. They showed that for
every cardinality /'i" there is a category SL(P) of sheaves (or continuous sets)
over P, in which there are more reals (subsets of N=w) than /'i" and cardinals
are being preserved by the embedding. See also [MLM92] and [MLM94, VI.2].
It was not the centrepiece of their work on sheaf and topos theory, they rather
wanted to "check the usefulness of the axioms"([McL90]) (a variant of) which
now constitute the basis of topos theory.

Later, MICHEAL FOURMAN ([Fou80]) and independently SUSUMU HAYASHI
([Hay8!]) gave the proper justification that this "reformulation of forcing" is
really capable to comply with ZFC-set theory (and not with a weaker theory,
only). Growing understanding of the theory of toposes, especially of the inter-
nallanguage and contributions like [Bun74] or [Sce84] showed that transferring
independence proofs into category theory language is always possible, but it also
showed that there is little hope that mere reformulating of existing proofs that
use a partial order of conditions will add new quality to these proofs.

However, in a category theory setting, it is rather natural to extend the technique
by using a category instead of a partial order as the collection of conditions. In
more technical words, general categories of sheaves SL (C) (or continuous sets)
over a category, also known as Grothendieck toposes, come in. So more interesting
is the question, whether this additional latitude leads to new insights into the
theory of forcing. It is mainly the aim of this thesis to shed some more light on
"forcing with a category of conditions".

Forcing with Categories of Conditions and Partial Orders

Historically, the first obvious challenge was to find out whether in principle such
an extended version of the technique of forcing could yield intrinsic new generality.
To be more precise, the question was if there could be any statement whose
consistency could only be proved by using a category of conditions, i.e. whether
there could be a proof using forcing with a category of conditions that cannot be
rewritten in terms of forcing over a partial order.

PETER FREYD answered this particular question negatively in the article [Fre87]
with the conspicuous title "All topoi are localic or why permutation models pre-
vail". He showed that every Grothendieck topos is equivalent to an exponential
variety in a topos of internal canonical L-sheaves in Cont( G), where G is a topo-

2This might be a proper place to stress that categories in our sense are unrelated to the
Haire category notion of meagre and non-meagre sets.



CHAPTER 1. INTRODUCTION AND MOTIVATION 3

logical group, Cont( G) is the category of sets equipped with a G-continuous action
and equivariant maps between them, and L is a locale in Cont(G). (A locale is
complete partial order with a distributivity condition.)

Bearing in mind that the cumulative hierarchy operates only in the smallest
exponential variety (section 2.2), this means, reformulated in set theory terms,
that for any category C, "forcing with a category of conditions" is equivalent to a
combination Fraenkel-Mostowski permutation model method and (conventional)
forcing with a partial order. See [Bru96] for a survey on Fraenkel-Mostowski-type
models. Section 5.2 contains a brief outline of the theory behind the proof of the
Freyd representation in modern language using classifying topases.

In fact, PETER FREYD showed more than that: the group of automorphisms of
N equipped with the product topology suffices, i.e. only the Basic Fraenkel Model
is needed3. See [Bru90] for the corresponding result obtained independently by
NORBERTBRUNNERdirectly, within set theory setting.

However, even if in principle, in theory, every proof using forcing with a category
of conditions can be reduced to more conventional methods, this does by far not
imply that all has been said. It is well known that forcing over a partial order
can be reduced to the special case when P is a complete boolean algebra, yet
partial orders are still in practice. The reason is that often they arise more direct
from the applications and the corresponding boolean algebras tend to be more
complicated in some case.

So far, ANDREAS BLASS and ANDRE SCEDROVwere the first and only, who
followed PETER FREYDSresult and applied it to concrete examples. In [BS89],
they examined the tapas theory models of [Fre80] in which in the (internal) Axiom
of Choice is false. They explicitly gave a dense subset P of the locale L for
these examples. The proof of the Freyd representation relies on a special object
B E Sh-.-.(C), called a prebound (or progenitor). ANDREASBLASSand ANDRE
SCEDROVtook the most obvious (pre)bound, the sum over all representables for
calculating the partial order P.

Their work was target-oriented for the models Sh-.-.(C)that arise in [Fre80]; they
gave set theoretic generators for these models, but their article they did not aim
at furthering the theory and describing the general case for arbitrary (pre)bounds.

In Chapter 5, a representation for collection of prebounds which we call the
collection of small prebounds is established. Any other prebound contains a

3Cont(G) is then equivalent to Sh.,..,(~"') and to S(ITto], the classifying topos for infinite,
decidable sets.



CHAPTER 1. INTRODUCTION AND MOTIVATION 4

small prebound as a subobject. Applying the Freyd representation, we then give
a dense subset of the locale L corresponding to a small prebound B.

Names and Forcing with a category of conditions

In connection with "forcing with a category of conditions': basically three main
lines can be discerned

(1) Either, one could work directly within the topos theory setting, building a
category S~(C) of sheaves or continuous sets over C, with the category Set
of sets (of the ground model) as basis. If desired, a ZF-set theory model
can be obtained from S~(C) applying the method described in section 2.2
afterwards.

(2) Or, one could transliterate forcing with a category of conditions into forcing
with partial order over a permutation model following the Freyd represen-
tation. A refinement of this line using "smaller prebounds" is presented in
the Chapter 5.

(3) Finally, one could rework the notion of P-names to attain a definition C-
names while still remaining in a set theory setting. Other concepts like filter,
evaluation, forcing relation, etc. have to be adopted as well, naturally.

The latter approach was not mentioned so far, indeed it was not followed by
anyone in literature so far. In Chapter 4 this leak is closed. Moreover we show that
C-names and ,,-sheaves on C constitute different viewpoints on same concept.

Algebraic Set Theory

Whereas axioms like the powerset axiom, the separation axiom, or even the axiom
of choice have their direct counterpart formulation in the categorical setting of
a topos, the replacement axiom seems to be of different nature in this respect.
It is true that for a complete boolean topos £ over Set all ZF-axioms including
the replacement scheme can be interpreted. This construction mainly works by
mimicking the cumulative hierarchy in the topos; the main idea will be reviewed
in section 2.2. Yet still there is no natural reformulation of the replacement axiom
in this setting.

Replacement can either be formalised by an infinite collection ofaxioms like
in usual presentations of a Zermelo Fraenkel set theory, or, alternatively, as one
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single axiûm using classes like in Gödel-Bernays set theûry. In the latter apprûach,
the axiûms declare which classes "small enough" to. be sets. An analûgue ûf the
latter apprûach in the language ûf categûry theûry, knûwn as Algebraic Set Theory,
will be fûllûwed in chapter 6.

Algebraic Set Theûry was mûstly cûntrived in the beginning 1990ties by ANDRÉ
JOYALand IEKE MOERDIJK,who.cûmpiled their wûrk in the bûûk [JM95]. Their
main idea can be sketched as fûllûws. We are given a categûry C with rather weak
cûnstraints, named to. be the categûry ûf classes. Mûstly it will be a regular cat-
egûry but depending ûn the needs ûf later applicatiûns alSo.weaker requirements
might suffice. A set ûfaxiûms then singles ûut a cûllectiûn ûf thûse maps which
are intended to. be small, i.e. which are intended to. have small fibres. In fact,
thûse maps stand fûr families ûf disjûint nûnempty sets indexed by classes.

With the machinery ûf indexed categûries that will be presented in sectiûn 2.3,
the cûllectiûn ûf small maps can be cûnceived as a sûrt ûf "subcategory" ûf the
categûry C, while wûrking internally within C. In this viewpûint, axiûmising small
maps cûmes as a natural apprûach.

On the other hand it seems to. be questiûnable why thûse families ûf sets in-
dexed by classes shûuld be disjûint by definitiûn. This is rather unnatural from
a set theory perspective. CARSTENBUTZ chûse a different apprûach. His article
[Buta3] cûntains a set ûfaxiûms fûr families of subsets of a given class X indexed
by classes.

In this thesis, a set ûfaxioms for general families of sets indexed by classes is pro-
posed. Fûr this aim, small relatiûns instead ûf small maps need to. be cûnsidered.
In fact, in chapter 6, we go.ûne step further and wûrk with allegûries instead ûf
categûries to. axiomise smallness.

Allegûries are an abstract setting fûr relatiûns. They have been explûred first by
ROSANNASUCCICRUCIANIand PETER FREYD the latter who.is also.respûnsible
fûr the name ([KeI76], see also. [FS90]). With few additiûnal cûnstraints, an
allegûry is equivalent to. a categûry ûf relatiûns ûf a regular categûry, thus enabling
us to. cûmpare the set ûfaxiûms given in 6.2.1 with ûther versiûns ûf Algebraic
Set Theory.

We mainly discuss relatiûns to. the variant ûf Algebraic Set Theûry axiûms ûf
ALEX SIMPSONin [Sim99] (see also. [ABSS03] fûr a quite similar set ûfaxiûms).
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1.1 Notation and Prerequisites

6

As the essence of this thesis lies in the intersection of category theory and set
theory, the reader will need some prior knowledge from both of these two fields.

On category theory side, we will require acquaintance with basic concepts like
limits, adjoints, different types of morphisms, etc. which can be found in any
deeper introduction into category theory such as [AHS90] or [Bor94]. Other
concepts like indexed categories, (pre )sheaves or geometric morphisms will be
defined in this text, yet not primarily for the sake of an introduction, but rather
to add a different viewpoint to these concepts.

Introductions into the theory of indexed categories and fibrations, for example, are
mostly structured along the commonplace that they are generalising the category
of families of sets. The relation to internal categories is explored later, if at all.
A converse approach is advocated in section 2.3 where an outline of the concept
of indexed categories starts with internal categories as a source of motivation
for indexed categories. For metamathematical contemplations this viewpoint of
indexed categories as "generalised internal categories" is important, because it
indicates that indexed categories (or fibrations) are categories which are not small
enough to lie within 5, but can be examined from the perspective of an observer
"living in" 5.

On set theory side, the reader should have a basic knowledge on the technique of
forcing, she/he should be acquainted with the concept of P-names for a partial
order P, the definition of dense sets, generic filters, etc. See [Jec03] for a profound
treatment or [Eas05], [ChaO!] for popular introductions.

The words morphism, map and function will be treated as synonyms with the
major exception of section 3.! and chapter 6, where the notion map will be
reserved for morphisms of the category Map(A). The notation for the set of
morphisms from A to B in C is (A, B)c. A partial order is just a category with
one object only.4

For composition of maps we will use traditional functional notation, also called
postfix or left-to-right notation throughout this text, i.e. gof shall be the com-
position of f : A ~ B followed by g : B ~ C.

A generalised element x of an object A on the domain T is a map x : T ~ A.
More briefly, we will occasionally also say x is a T-element or simply an element of
A. Any morphism u : S ~ T to the domain of x acts on x simply by composition

4We will not claim that p ~ q ~ p => p = q for a partial order.
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x . u. Occasionally we will also write u*x for this expression. By the Yoneda-
Lemma, any map h : A - B is uniquely given by a map on elements. To be
more precise: It is given by (set)-maps (hT hEc between T-elements that are
compatible, i.e. u*hs(x) = hT(u*(x)) for any morphism.

A variable set or a presheaf over a category C in 5 is a functor F : Co - 5.
Given a C-morphism f to C E C and an (set-) element x E F(C), we write x. f
for the action of f on x, that is (Ff)(x). This is reminiscent to the one object
case, where a variable set is just a set equipped with a monoid action, and in
fact we will conceive variable sets more as generalised monoid actions than as
functors. Covariant functors G : C - 5 will also occur in this text, to avoid
misinterpretations we will write f * x for the covariant action induced by G.

We could think of F(C) as showing us how F looks like in different worlds C E C,
at different stages or under different conditions. Any set I induces a presheaf c*I
with c*I( C) = I and c*I(J) = id/. These presheaves will be called constant sets;
Especially in Chapter 3 and 5 we will write lower Greek letters a, ß for constant
sets. In general, if h : D - C, we think of D being a stronger condition than e,
or containing more information that C and F( C) is a more definite version of F
than F(D). In compliance with prevalent notation, we also say that D is smaller
than C. The morphism f is a witness for this property. It determines in which
way F(C) is being incorporated F(D), in which way the additional information
of C gives rise to a modification F(D) of F(C), which new elements come in and
which are being identified.

C can fully be embedded in the category of variable sets on C, denoted by [CO, 5],
with C 1---7 yC = (-, C)c and n(C) = SubyC. A subset R of yC corresponds to
a sieve, that is a downwards closed set of morphisms with common domain e.
Here downwards closed means that if fER, then also fog. Occasionally in
Chapter 5 we will need to consider subobjects of yCox .. ,xyCn-I for categories
which do not necessarily contain products. Those subobjects correspond to sets
of tuples (Jo, ... , fn-I) of morphisms fi : D - Ci which again are closed under
composing with morphisms h : E - D. They will be called sieves as well.

A continuous set or a sheaf over a category C is a variable set which "does not vary
too much". In different contexts, a different notion ofvariability is appropriate. In
analogy to topology, continuity depends on a certain structure on C. This struc-
ture used to be called Grothendieck topology, but we will follow [Joh02] to call it a
coverage on C for the analogy to topology cannot be carried over too far. For each
object C a coverage declares whether a set of maps M with common codomain
C is a cover of C. This notion of a cover has to be stable, i.e. if M is a cover
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of C and h : D - C, then the set h*(M) = {g: 3f E M !\ 3r : for = hog}
has to be a cover of D. It suffices to consider only those sets of morphisms that
are closed under compositions from the right. A continuous set has to fulfil the
condition that any x E F( C) can be uniquely recovered by its compatible set of
images x . f where f ranges in a set of maps covering C. See 2.1.1 and [Joh02]
for the precise definition.

The category of continuous sets Sh(C) forms a subcategory of [CO,5], in fact it is
a reflective subcategory with reflector a: [CO,5] - Sh(C). Instead of a notion of
a coverage, a local operator j: n - n or a closure operator on the subobjects or
a itself can be used as a basis of a definition of sheaves; see A.2.6 in the appendix
for details.

The theory on prebounds in section 5.1 will be developed for a general notion of
a coverage, but for the other parts the we will mostly use two coverages, which
are defined as follows:

• M covers C in the dense coverage if for any morphism 9 there is an hEM
and two morphisms T, s such that gOT = h 0 s. The local operator is the
double negation operator -,-,: n - n in this case. We will write Sh.,.,(C)
for the category of -,-,-sheaves, that are sheaves for the dense coverage. For
a partial order P, the sets M which cover apE P in the dense coverage
are the sets which are (pre )dense below p .

• M covers C in the canonical coverage if the colimit of M lC - C is C. Note
that this particular definition of the canonical coverage is only appropriate
if the colimits are stable under pullback in C. All representables yC are
sheaves for the canonical coverage. We will write Shc(C) for the category of
canonical sheaves, that are sheaves for the canonical coverage.

A category C is separated if two morphisms T, s : D - C in C are equal if and
only if there is a set M that covers D such that Vf E M T 0 f = s 0 f. In that
case, there is a canonical inclusion5 'T/A : A ~ a(A).

Suppose A is decidable, i.e. there is a relation =f ç A x A that is complementary
to equality. Then we denote with (A)n the object n-tuples of mutually distinct
elements, i.e.

5To be more precise, the unit TJA of the adjunction a -l L is a monomorphism iff C is separated.



Chapter 2

Spaces, Logic and Meta Theory

Category Theory can be conceived as an abstract setting for mathematical struc-
tures and structure preserving maps, that is the viewpoint which is most popular
among mathematicians today. But categories can also be seen as generalised
partial orders ("partial orders with proofs"), generalised monaids ("monoids with
multiple identities") or generalised graphs ("graphs with an equivalence of pathd').
Motivation can be drawn from any of those germs.

Likewise, the theory on topases has many faces. In the preface of his recent opus
[Joh02] PETER JOHNSTONE counts thirteen of them. We pick two out of the list,
slightly reformulated: "Toposes as models of a theory of sets" and "toposes as
generalised topological spaces".

A topos is a category which, roughly spoken, behaves like the category of sets and
functions Set. In a tapas, one can form products, unions, subobjects {'~ICP(;f)},
where CP(;f) is a formula in some type theoretic language, power objects PA, and
there is an object of truth values n = PI called the subobject classifier. The
difference to prevalent set theory is that the inherent underlying logic is typically
non-classical (though one can of course single out those topases with carry boolean
logic) and that there is only a local element relation Ex ç X x P(X). Thus a
tapas, for its own, or an elementary tapas to be precise, is an embodiment of
intuitionistic higher order type theory. We will later explore the relations to
conventional set theory.

But that is not the way tapas theory did emerge as COLIN McLARTHY keenly
argues in [McL90]. The concept of a tapas was contrived by ALEXANDER

GROTHENDIECK who needed a generalisation of topological spaces for problems
in algebraic geometry.

9
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2.1 Generalised Spaces and Geometric Mor-
phisms

General topology is sometimes known as Point-Set Topology which may indicate
that in other branches of topology like algebraic topology, geometric topology,
and differential topology points do not play such a prominent role. It is rather
the interplay between continuous maps and spaces which makes up topology. In
fact, there is an alternative, more algebraic recasting of the concept of topological
spaces that is not based on sets of points. Point-free Topology, as it is called, has
some advantage in a metamathematical point of view as it is constructive and
the axiom of choice can be avoided in some situations (see [Joh91], [Epp04] for
a discussion). One could think of applications where points are not tangible in a
direct way, too.

The axioms for point-free topology can be obtained by direct transference of
properties of the partial order of open sets in a topological space. In fact, the
collection of all open sets O( X) of a topological space X is a complete lattice
in which arbitrary unions distribute over finite intersections. Sometimes such a
lattice is called a frame. A frame homomorphism X -+ y is then a map preserving
arbitrary unions and finite intersections. Observe that the inverse image f* = f-l

of a continuous map is such a frame homomorphism.

Leaving concrete topological spaces, we define a locale X to be such a frame, and
map of locales X -+ y to be a frame homomorphism y -+ X, or in other words,
the category of locales is the opposite category of the category of frames. Most
topological properties can be reformulated without mentioning points, and even
points can be reintroduced as complete filters in this setting.

Indeed, there is an adjunction between the category of topological spaces and the
category of locales. It restricts to an equivalence between spaces that are sober,
that is a property in between To and Tl, and locales that have enough points,
called spatiallocales. For a definition of the latter condition and an overview on
locale theory see [Joh91] or [PPT04]. See also Table A.3.3 in the appendix for
a condensed picture on representations of locale theory, operations on sublocales
and notions like denseness.

The set-theoretic image f(U) is not an open set unless f is an open continuous
map between topological spaces. Nevertheless, in any case, there exists a canon-
ical map f* in the covariant direction X -+ y that is perfectly defined also in a
point-free setting. This order preserving map, usually called direct or dual image
map, is determined as being the right adjoint to f*. It can be explicated by the
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formula

Every locale gives rise to a category Shc(X) of sheaves (or continuous sets).

11

•

•

Definition 2.1.1. A sheaf or continuous set F on a locale X is a variable set
on X, such that for each family (Ui)iEI of elements of X which is covering, i.e.
Vi Ui = U, the following condition, called the sheaf condition for (Ui)iEI, holds:
For each compatible family (XUJiEI of elements XU; E F(Ui) there is exactly one
element xE U such that xlu; = XU; for all i E J.
Here a family Xu is called compatible if xulw = xvlw for every W such that
W ~ U and W ~ U .

The locale X can be recovered as Subslt:(x)(l) = (1,0), where 0 is the subob-
ject classifier O(U) = {V: V ç U}. See [MLM94, II] for this fact and other
representations of the category of sheaves on a locale.

The locale structure of X is touched only once in this definition, namely when the
family (Ui)iEI is required to cover U. It therefore can be extended to arbitrary
categories equipped with a notion of a coverage.

Definition 2.1.2. A continuous set or sheaf F on a category C with respect to
a notion of a coverage is a variable set on C, such that for each family (Ji)iEI of
morphisms fi : Ci ---+ C in C which is covering, the following condition, called the
sheaf condition for (Ji)iEI, holds:
For each compatible family (Xi)iEI of elements Xi E F(Ci) there is exactly one
element X E U such that X . !ï = Xi for all i E J.
Here a family Xi is called compatible if Xi . h = Xj . k for every h, k such that
fi 0 h = h 0 k.
The category of all continuous sets (or sheaves) will be denoted by Sh(C)

Those categories which arise as Sh(C) for some category C (and some coverage)
are called Grothendieck topos es.

For every morphism f :X ---+ y in the category of locales, the inverse image map
f* uniquely extends to a functor f* : Shc(X) ---+ Shc(Y) that preserves colimits
and finite limits. It is therefore natural to extend this definition to arbitrary
Grothendieck toposes:

Definition 2.1.3. Let £ and F be Grothendieck toposes. A geometric morphism
f : £ ---+ F is given by a functor f* : F ---+ £ that preserves colimits and finite
limits.
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This way, Grothendieck topases can be conceived as generalised spaces and geo-
metric morphisms as generalised continuous maps. The category of locales is a
full subcategory in the category of topases and geometric morphisms.

It is an easy corollary from the Special Adjoint Functor Theorem (see A.2.3 in
the Appendix for a formulation or [Bor94, Th 3.3.4]), that a functor 1* between
Grothendieck topases has a right adjoint (which we call f*) iff it preserves colimits
and finite limits.

So far, we had the generalisation from topological spaces to locales and from
locales to Grothendieck topases. There is one more level of generalisation to
arbitrary topases. An (elementary) tapas is a category that has finite limits
and power objects, see e.g. [Joh02]. Any Grothendieck tapas fulfils these two
conditions; in fact they have been singled out to be powerful enough to build a
sufficiently strong theory that still reflects the major properties of Grothendieck
topases. To extend the notion of a geometric morphism to arbitrary topases, it
is necessary to include the functor f* in the definition.

While we will formulate the general theory for elementary topases in this text
when possible, the major results involve Grothendieck topases only. So the reader
could read Grothendieck tapas whenever tapas is written.

Several classes of geometric morphisms like inclusions, surjections, closed and
open maps, etc. can be introduced for geometric morphisms in direct extension
of the corresponding properties of continuous maps. In section 5.1 we will meet
the notion of localic and bounded geometric morphisms. Those properties of
geometric morphisms get trivial for geometric morphisms Shc(X) ~ Shc(Y), that
is for maps between locales X and y.

2.2 Internal Logic and Cumulative Hierarchy

The proper structure of truth values for classical propositionallogic is a boolean
algebra. For weaker systems, other partial orders may take over this role, like
Heyting algebras for intuitionistic propositional logic; for a very weak proposi-
tional system with conjugations only a lower semilattice suffices. Categories, in
contrast, provide an algebraic framework for systems of typed predicate logic.
The general principle for categories (and partial orders) is: The more conditions
we impose on a category, the more structure it carries, the more logical substance
it can grasp.

In fact, properties of a category itself, of its morphisms can be expressed with
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Partial Orders
Boolean Algebras
Heyting Algebras
Complete Heyting-algebras
= Locales

Classic. Propositional Logic
Intuitionistic Prop. Logic
Higher Order lntuitionistic Logic
Regular Logic (3,!\ only)
Prop. Calculus with !\ only

are to
to
to
to

is to
to
to
to
to

Categories like
Boolean Toposes like
Toposes like
Grothendieck toposes

Boolean Algebra like
Heyting Algebras like
Toposes like
Regular Categories, etc. like
Lower Semilattices like

Figure 2.1: Similarity of concepts: relations between partial orders versus cate-
gories and logical systems versus categories.

logical means. It is therefore said that each category comes with an attached
internal logic.

There are a few different expositions and approaches to the internal logic of
categories. Some authors put more stress on an algebraic view, they introduce
only those operations that are really essential and express others in terms of
them (e.g. [AwoOO]). On the other hand, in the context of indexed categories
which we will briefly overview in 2.3, categoricallogic arises very natural in the
subobject indexed category SJ,bc of a category C. Intersection and union can
be seen as finite products and coproducts in this setting whereas existence and
universal quantifiers arise as indexed coproducts and products, i.e. adjoints to
the substitution functor (see also [Jac99]).

In more elementary terms, for a description of the internal logic we first need a
typed language. There are basic types or sorts X, Y, ... and those types that are
build with type constructors, e.g. X x Y or PX. For the moment, this is just
a language, so all these types are formal expressions only. The language may
also contain some function symbols. They are typed, i.e. information on their
domain and their codomain type is always included. Also relation symbols may
occur in this setting. Function symbols build up terms, which also have to be
typed, understood. As usual, formulas are built recursively. But note that a
formula always comes with a context, that is the sequence xo.Xo, ... Xn-l.Xn-1 of
the types of its variables. In fact for the fulllanguage suitable for toposes we also
need a further level of recursivity: types of the form {x.XI<p(x)}, are allowed,
too, where <p is a formula in a lower level of recursion.
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An interpretation M in a category C is then an assignment of types X to objects
X M of C translating type constructors into their intended meaning, function
symbols f : X -t Y to morphisms fM : XM -t yM of C and relation symbols
R ~ X x Y to relations RM ~ X M X YM. The interpretation of a formula cp is
modelled by the subobject the formula singles out from the interpretation of its
context:

The meaning of {xo.Xo, ... Xn-l,Xn-1 I cp(xo ... xn_d}M is defined recursively,
using generalised elements, for example; see section A.3.1 on page 86 in the
appendix. The general motto from above applies here: The more structure the
category carries, the more logical operations are allowed for formulas cp. In a
tapas, full higher order logic is allowed, for Grothendieck topases also infinite
disjunction V I for a set J.

A sequent cp ~ 'lf; is fulfilled in the interpretation M in C iff the inclusion
{x.Xlcp(x)}M ç {x.XI'lf;(x)}M holds in C. If we consider a theory 1I' as a set of
sequents in some language, this describes a model M of the theory 1I' in C. A
theory 1I' is a geometric theory if only /\, 3, V are involved in building the formulas
for the sequents of 1I' (and not 'V, =}).

The internallogic of a category can now be described as follows: The objects of
the category C themselves serve as types, the morphisms of C as function symbols,
and every valid equation fog = h induces a sequent T ~ f(g(x)) = h(x). In a
tapas, moreover, a typed element relation Ex ~ P(X) x X neatly fits into this
setting. As a conclusion, we may therefore state that a tapas is an embodiment
of a "local set theory" ([BeI88]).

Cumulative Hierarchy and Global Logic

In a complete tapas (over Set), there is also an interpretation of formulas in a global
set-theoretic language. In other words, there is a translation from tapas theory
setting to conventional set-theoretical setting. We construct an interpretation of
the axioms of Zermelo Fraenkel set theory within a boolean Grothendieck tapas
over the base category &t. As it is more appropriate to tapas theory, we will
base our considerations on IZF, i.e. the underlying logic will be intuitionistic.
The boolean case will arise as a corollary.

The interpretation works roughly by mimicking the set-theoretical cumulative
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•

hierarchy within the tapas, and by interpreting unbounded quantifiers by the
infinum resp. supremum of the values in the stages of the hierarchy. This con-
struction (for the general case of IZF with atoms) was first published by M.
Fourman [Fou80] and independently by S. Hayashi [Hay81], thus it is know as
the Fourman- Hayashi interpretation. Details and the proof that the axioms of
IZF are indeed fulfilled can be found there, we only record the basic construction:

Va = 0, Vß = P(lim Va,)
-->

"'<ß

There are more ordinals than objects, thus the sequence of these values stabilises.
So we can define

Note that this construction touches only a part of the tapas.
Let an exponential variety in a tapas £ be a subcategory of £ which is closed
under exponentiation, subobjects and finite limits (and, as a consequence also
under power objects and finite colimits, see [Joh02, C5.4] and [Fre87]). The
Fourman-Hayashi construction only operates within the smallest nontrivial expo-
nential variety, that is the well-founded part of the tapas. If the only nontrivial
exponential variety in a tapas £ is the tapas £ itself, £ is called a well-founded
tapas. In anticipation of chapter 5 we note that the tapas of variable sets or of
continuous sets over a partial order P is always well-founded. It is shown there
that any object in such tapas is a quotient of a subobject of a coproduct of 1 = VI'

Starting with an object W rather then with 0, the hierarchy can be extended to

Va = W, Va+1 = W + P(Va), V6 = W + P(lim Va).
-->

",<6

This way, we obtain the smallest exponential variety containing W, also referred
as the exponential variety generated by W. In Lemma 4.3.1 the hierarchy will
play a key role in the translation of names to continuous sets.
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2.3 Internal and Indexed Categories
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The concept of a conventional &t-based category can easily be extended to the
notion of an internal category in any cartesian base category 5 simply by using
generalised elements instead of conventional set-elements in the definition of a
category. Given two objects of 5, Co and Cl, objects of an internal category CCare
now T-elements 0 E (T, Co), morphislllS are T-elements r E (T, Cl)' Moreover,
the definition has to comply with a change of domains of elements.

Rewritten in other words: an internal category CCin 5 consists of

• a (conventional) category eT for each T with set of objects (T, Co) and set
of morphisms (T, Cd and

• for each map u : S ---7 T to the domain T a functor u* : eT ---7 eS with
(uov)*=v*ou*.

Of course, by the Yoneda-Lemma, this definition can be formulated completely
c

within the category 5 with four maps Cl ~ : Co and m : Cl xCo Cl ---7 Cl
d

satisfying some axiOlllS, but that is not our aim, the introduction of internal
categories rather should lead by analogy to the more general concept of indexed
categories:

An indexed category CCover 5 consists of

• a category eT, for each T and
• for each map u : S ---7 T to the domain T a functor u* : eT ---7 eS with

(uov)*:::::v*ou*.

Every internal category in 5 hence is an indexed category over 5, but the notion
of an indexed category is much more general. In short, indexed categories are
those which are to large to be an internal category. In the category of sets, the
category of sets itself is an indexed category over &t as well as other set models
extending the ground model &t.

In general, every category 5 is an indexed category over itself (also called canon-
ical indexing of 5 and denoted by S): For each domain T, the slice category
5 IT serves as the category 5T, and the functor u * : 5 IT ---7 51 S is defined
by pullback. Let us check that this definition indeed meets with the intuitive
perception of an "element of Ob(5) with domain T". Suppose the base cate-
gory is the category of variable sets on a partial order, for example, then an
object of [PO,5]YP = [PO,5]/yp is a map h : C ---7 yp. This map forces C to be



CHAPTER 2. SPACES, LOGIC AND META THEORY 17

nonempty if q ~ p only, thus C is indeed an object of [PO ,S] "with truth value
p". Likewise, an 2-element (A, B) of Ob(S) is internally represented as the mor-
phism (A + B -+ 2) E S/2. In this way, the elements of ST can be alternatively
considered as families of (disjoint) sets indexed by T.

Every category also induces an indexed category oj elements. For each domain
T, the coslice category T/ S serves as the category ST this time, and the functor
u* : T/ S -+ S/ S is defined by composition of arrows. Put in other words: the
introduction of generalised elements in the notation section 1.1 describes exactly
the indexed category of elements over a category.

In a more succinct form, the definition above delineates an indexed category as a
pseudo-functor SOP -+ Cat. For a pseudo-functor, we require that composition and
identity are only preserved up to a suitable natural isomorphism and Cat is a suffi-
ciently large category of categories. From a foundational point of view, this might
be an unsatisfactory definition, since it involves 2-categoricallanguage (natural
isomorphisms) and a category of categories. Fibrations provide an alternative
setting without these deficiencies.

Given an indexed category C over S, all categories eT can be packed into one
total category TotC equipped with a functor p : TotC -+ S in a way such that
we can recover the categories eT as consisting of those objects that are being
mapped to T by the functor p and of those morphisms that are being mapped to
the identity on T. Such a functor p is called a fibration (with cleavage).

Fibrations can be axiomised in an elementary way without using pseudo-functors
and thus provide a sound base for foundations in a pure category theory setting.
See [Pho92], [Jac99] or [Joh02] for the formal definition of fibrations and more
information on the theory of indexed categories and fibrations.

In the following, however, we will certainly not stick on a severe formalism, we
will use indexed categories and base categories in a rather flexible way.

Indexed categories also provide a framework for general (non-finite) sums and
products which does not depend on the particular category Set. For motivating
the definition of indexed products, consider for h : I -+ 1 the evident functor
h*: Set -+ SetI = Set / I. The functor mapping a family (Ai)iEI of sets to their
sum (respectively to their product) is the left adjoint (respectively right adjoint)
to the functor h*. Thus, in extension to this observation, an indexed category is
said to have indexed sums (respectively indexed products) iff for every u : S -+ T
there is a left adjoint L::u to u* (respectively a right adjoint flu to u*).

Given a geometric morphism 'Y : £. -+ S, the topos £. can be seen as an indexed
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category over S by setting £T = £/'Y*(T). The functor u* : £/'Y*(T) ~ £h*(S)
likewise is defined by pullback.
Moreover, in this framework, 'Y itself can described as "1*(1) = 2::11 where the
sum is the indexed sum over S described in the last paragraph. This is true since
for h : I ~ 1 the left adjoint to h* : £1"1*(1)= £/1 = £ ~ £1"1*(1) is simply
the map £1"1*(1) ~ £ which maps A ~ "1*(1) to A. The sum of "1*(1) ~ "1*(1),
which represents the family (l)jE"Y.(I) is thus "1*(1).

Fact 2.3.1. Suppose'Y : £ ~ S is a geometric morphism between two topases.
We can work then within S as a base category and consider £ as aS-complete
tapas over S. The products are then no longer Set-indexed, but S -indexed. Using
the internal language in S, we can argue in the same way as if £ were a tapas
over S as long as we use constructive arguments, only.

An indexed subcategory lffi of C is given by subcategories ßT ~ eT such that the
indexing functors u* restrict to the subcategories. As mentioned above, the pur-
pose of the canonical indexing over S is to grasp S itself from an inner viewpoint
in S. Suppose a is a map A ~ Co, which may be best considered as a family
(A)iECo this time, we now describe how the full subcategory of S generated by
this family can be conceived as an indexed subcategory of the canonical indexing
~ over S.

Definition 2.3.2. Let ~ be the canonical indexing over a category S. The full
indexed subcategory lF.s(a)of S generated by a, where a is a map A ~ Co, i.e.
an object of SCo=SICo, is defined as follows:
lFs(a)T is the full subcategory of SIT of generated by of all those maps A' ~ T
that arise as u*(a) for some u : T ~ Co.

If S is a tapas, it can be shown that lFs(a) is an internal category (with object
of objects Co), therefore leading to the more common notion of a full internal
subcategory.

Other immediate examples of indexed categories over S include the subobject
indexing f3ubs, which is also an indexed subcategory of the canonical indexing. It
is given by the collection of partial orders (Sub(T))TEs, i.e. (f3ubs)T = Sub(T).
In a topos S this subcategory is by definition of the subobject classifier nagain
a full internal subcategory, the full internal subcategory generated by T : 1 ~ n.
The relational indexing over S describes the category of relations in S. We will
introduce and work with this example in section 6.2.



Chapter 3

Relations, Filters and Classifying
Toposes

3.1 Relations and Allegories

A relation in 'a category C is a subobject R ç A x B or equivalently a span (k, l)
of jointly monic morphisms k : R -+ A and l : R -+ B (the latter definition has
the advantage of not referring to products).

As stated in the beginning, we use traditional functional notation Le the compo-
sition of f : A -+ Band 9 : B -+ C is denoted by gof. Relations will compose in
the same way, this implies that we also have to consider relations in some sense as
acting from right to left. The composition of relations can be expressed in internal
language as SR = {(z, x) : :3y (z, y) ERA (y, x) E S} or, using a diagram,

Figure 3.1: Composition for relations R: A - Band S: B - C

as the image of the morphism T -+ C x A where T is constructed as a pullback.
Thus we need images in C. In fact, for composition it suffices that C possesses

19
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images of spans. The proper setting for relations thus is a regular category or at
least a nearly regular category, where the latter notion should stand for a category
that has pullbacks and (stable) images for spans, but not necessarily a terminal
object 1.

Note that in other texts on relational categories as [FS90, Kaw95] arrows compose
the other way.

A category of relations carries more structure than mere composition. In the
following, this structure is axiomised to provide an abstract setting of relations
called allegories. Allegories are to categories like relations to functions.

Definition 3.1.1. An allegory is a category A together with a binary operation
n (intersection) on arrows with same target and source and a unary operation °
(converse) reversing target and source, subject to the following equations:

• intersection induces a semilattice structure, i. e.
(R n S) nT = Rn (S nT), Rn S = Sn R, Rn R = R

• converse and composition are monotone, i. e.
if R ç Sand R' ç S' then RR' ç SS' and ROç So

• converse is a contravariant involution, i. e. ROO= Rand (SR) ° = ROSo

• modular law TR n S ç T(R nTOS)

where the partial order on A is defined by A ç B iff An B = A. We call the
morphisms in an allegory relations and denote the identity on A with ~A resp.
~ for short.

Examples which do not come from a category of relations include graphs R with
edges labelled by real numbers and equipped with a distinguished ordered set X
of input vertices and a set Y of output vertices. Such a graph R : X -v-+ Y is
intended to model a flow, thus composition SR is defined by serially soldering
the input vertices of R with the output vertices of S, and intersection is given by
parallellinking. Other non-trivial example are given by modular lattices, as they
are exactly one-object allegories with xy = xVy, x n y = xAy and XO = x.

£-valued relations for a locale £ provide an example for an allegory, too. Compo-
sition of two £-valued relations can be visualised as a matrix-product where sum
means supremum and multiplication infinum. The allegory of £-valued relations
roughly corresponds to the category of relations of continuous sets S4:(£).



CHAPTER 3. RELATIONS, FILTERS AND CLASSIFYING TOPOSES 21

A relation R is

• univalent if RRo ç I:::. (that is if k is mono for (l, k) : R '---+ X x Y in a
category C)

• total if ROR ;;2 I:::. (that is if k is regular epi for relations in a category C)
• one-to-one if ROR ç I:::. (that is if l is mono for relations in a category C)
• full if RRo ;;2 I:::. (that is if l is regular epi for relations in a category C)

Maps can be recovered in the abstract setting as total univalent relations. For any
relation we can define its domain dom R = RORn I:::. and its image im R = RRonl:::..
For maps we also set ker f := r f.
Two maps fand g are jointly monic if r f ngOg = ker f nker g = 1:::., in the same
manner we can also define a joint version of univalentness; Rand S are jointly
univalent if RRo n SSO ç 1:::..

The next lemma collects consequences of the axioms of allegories, some of which
follow immediately from the definition. Proofs for the others can be found in
[FS90].

Lemma 3.1.2. Let R, S, T be morphisms in an allegory A. Then

• (RnS)O = RonSo andT(RnS) ç TRnTS as well as (RnS)T ç RTnST.
• The modular law implies R ç RRo R. If F is univalent then

po Rn po S = PO(R n S) and dually RP n SP = (R n S)P .
• The rule RS n T ç (R n TSO) 0 (S n ROT) (D-rule) is equivalent to the

modular law, dom R n S = ROS n ß is an easy consequence. Therefore:
RnS is afunction if I:::. ç ROS, and R,S are (jointly) univalent or RSo ç 1:::..

• For any map f we have
Rr ç S {::}R ç Sf and dually fR ç S {::}R ç rS
The order relation on maps is trivial, i. e. for two maps we have f ç g iff
f =g.
As a consequence f k = gl iff lko ç gOf

Proof. Only few remarks on the second item to complement [FS90]: Set in the
modular law R ~ I:::. and T, S ~ R then R ç RRo R follows. For the second
of the two dual equalities in the item under discussion note that one inclusion is
generally valid, for the other we apply the modular law with S ~ poS. •

In which case an allegory is equivalent to a category of relations of some category?
The answer to this obvious question is not much surprising:
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Lemma 3.1.3. An allegory A is induced by a category of relations iff
for every morphism R there is a jointly monic span k, l of maps (called a tabula-
tion of R) such that R = l 0 kO.

Ry.~
X~y

Figure 3.2: Tabulation of R

In fact, A is then induced by the category of Map(A) which is a nearly regular
category in this case.

If furthermore Map(A) has a terminal object 1 (which we call unit of A) then
M ap(A) also has stable images and hence is regular.

The pullback of fand g corresponds to the tabulation of gOf and for R = lko and
S = tsO

R ç S {::}:li ti = l/\ si = k (i is monic then)

Proof. The proof can be found in [FS90]. Let as for illustration proof give a
direct proof that the tabulation k, l of gOf extends f, g to a pullback diagram.

From lko=gO f we follow by Lemma 3.1.2 that fk = gl, i.e. that the diagram
commutes. For the pullback property, we suppose that k and l are two candidate
maps with fk = gl. We simply define the universal morphism by H := kOk n lOl.
Lemma 3.1.2 makes it easy to check that H is indeed a function; it is moreover
unique because the maps k and l are jointly monic. For the last statement, define
i := tOlnsok and check with Lemma 3.1.2 that i indeed is a map which commutes
as required. _

This proof shows very well the particular flavour of allegory theory: A relation
or morphism that should be proved to exist can be simply defined, it remains to
show that it indeed fulfils the desired conditions, though.

Relations which are smaller than the diagonal should intuitively correspond to
subobjects. These relations are symmetric and idempotent, in fact their intersec-
tion An B is the same as composition A 0 B. Dually, those relations that contain
the diagonal and are symmetric and transitive (and hence idempotent), i.e. equiv-
alence relations, should correspond to quotient objects. In fact in any category,
there is a procedure of formally introducing a class of idempotent morphisms as
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new objects; this way every allegory can be embedded in an allegory in which
every sub-diagonal relation (every equivalence relations) uniquely determines a
subobject (a quotient object) up to isomorphism, see [Joh02] or [FS90].

3.2 Classifying Toposes and Examples

Let 1rbe a geometric theory in a typed language. As sketched in 2.2, the notion of
a model of 1rcan be expounded in any tapas, in fact there is a category Mod(£, 1r)
of 1r-models in a tapas £. For the applications in this thesis, only a vague idea of
a category of models in a tapas is needed; see [Joh02, D] for a detailed treatise
of models and logic in topases.

Definition 3.2.1. A tapas S[1r] is called the classifying tapas Jar the theory 1r if

Geo(£, S[1r]) ~ Mod(£, 1r),

in other words if there is a model U in S[1r] such that any model M in any
Grothendieck tapas £ arises as f*(U) for a unique geometric morphism f.

Let 0 be the theory of one type X only and no sequents or other data. A model
for 0 in £ is just an object X M, a morphism between models is just a normal
morphism in £. So the classifying tapas S[O] for the theory of objects, called the
object classifying tapas, is determined by the property that geometric morphisms
from £ to S[O] uniquely correspond to objects of £. That is the tapas S[O]
contains a universal object G such that any object B in any tapas £ can be
represented as B = XM = JÊ(G) for a unique JB: £ ---t S[O] .

Let II))be the theory of one type, one relation and sequents expressing that the
relation is complementary to equality. A model for II))in £ is thus a decidable
object, a morphism between models is a monomorphism in £.
The classifying tapas S[II))]for the theory IDJis determined by the property that
geometric morphisms from £ to S[IDJ]uniquely correspond to decidable objects of
£.

The theory lD60 of infinite decidable sets (cf. also 3.3.2) additionally contains for
any natural number n a sequent which states that there are more than n different
elements:

T r :Jx:x,#xo!\"'!\X,#Xn-l'

By adding the sequent T r :Jx.x E X to 0 we obtain the theory Q. of inhabited
sets.
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From [Joh02, D3] we take the explicit representations of S[(ll], S[IDl] and S[ITto]
as topases of variable and continuous sets. Let N be the category of natural
numbers and maps between them, i.e. a morphism from n to m is a map from
{Ql,... ,n-l} to {Ql,... ,m-l} and let Nn the subcategory of injective maps between
natural numbers. Then

S[(ll] = [N,S], S[IDl]= [Nn,S] and S[ITto] = SL(Nn°)

For the latter, the category of sheaves on the dense coverage is meant, but in
this special case, the dense coverage is it is equivalent to the so called atomic
coverage: Every nonempty family of morphisms with common domain covers.
The difference between S[(ll] and S[101] is only that the latter is equivalent to
[Nx, S], where Nx is N without the object O.

In S[(ll], the universal model G is defined by n ~ {Ql, ... ,n-l}, which is yl in fact.
And note that yn(k) = {Ql, ... ,k-l}n = yl n, thus yn = Gn.

To the end of this chapter, we sketch an alternative description of S[(ll], which
may contribute to a more comprehensive picture of this tapas. An (ll-expression
on a set R is a formal expression of the form r(xo, ... , Xn-I) where r E Rand
Xi are formal variables (which could be coded as natural numbers, understood).
Any substitution of variables [Xi/Xj] can be carried over to (ll-expressions with
r(xo, ... , Xj, ... , Xn-I) [xdxj] = r(xo, ... , Xi,' .. , Xn-I). For the following, "sub-
stitution" should stand for both replacing variables and adding dummy variables.
Any map h : {Ql,... ,m-l} ---+ {Ql,... ,n-l} induces a substitution transferring an ex-
pression t(zo, ... , Zm-I) into the expression t(Xh(O),' .. , Xh(m-I») with n variables
Xo, ... , Xn-I, some of which are possibly dummy.

These (ll-expressions are different to terms as there is not any substitution other
than variable substitution in general. T~ey are no formulas, because they are not
intended to have any interpretation attaching a truth value to it.

The category :F is defined as follows: objects are sets X of (ll-expressions that
are closed under substitution, equipped with a relation R ç X x X on X which
respects substitution. A morphism between two such pairs (X, R) and (Y, S)
is a function X ---+ Y mapping an (ll-expression in X to a (ll-expression which
is compatible with substitution and moreover moves R-equivalent expressions to
S-equivalent expressions.

Lemma 3.2.2. Suppose V is an infinite set of variables, Yo, YI, ... , is a fixed
infinite sequence of mutually distinct variables in V and the category :F is defined
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as above. Then the assignments

5[0] = [N°, 5]
A

AIR

ç :F
f-7 ({ t(xo, .'.. , Xn-l) : t E A(n), Xi EV}, R)

~ (U,R)

with A(n) = {(t(yo, ... , Yn-d : t(yo, ... , Yn-d EU)}, extend to an equivalence
between :F and 5[0]

The category 5[1Dl]has a similar representation as sets X of O-expressions and
relations, with the only difference that those sets have to be closed under adding
dummy variables only, not necessarily under substitution. As an application,
the geometric morphism l : 5[1Dl]---? 5[0] can be described in a direct way. The
inverse image part of l* is simply the inclusion. The functor l* maps a set A to the
set of those expressions whose substitutes are also in A. There is moreover also a
(not finite limit preserving) left adjoint to l*, which maps every set A to closure
of A under substitution. The universal object G is the set of O-expressions which
are generated by a single variable, only. It has the same description in 5[0] and
in 5[1Dl].

A clone is a set of finite-place operations on a set A which is closed under (general,
not only variable) substitution. Put differently, a clone is the set of term functions
for a universal algebra on A. Every clone is in 5[0]. (but the notion of subobject
for sets of O-expression is much weaker than for clones.)

3.3 Filters and Denseness

A filter in a partial order P can be equivalently seen as an order preserving map
P ---? 2, which preserves intersections "even if P has none", i.e. filteredness is
an extension the notion of preserving intersections. Likewise, a filtered functor
F: C ---? 5 will be designed as an extension of a finite limit preserving functor.

Definition 3.3.1. Let F : C ---? S' be a functor and S' be a 2-valued tapas. Then:

F is filtered <=>

(1) For al E F(Cl) and a2 E F(C2) there need not necessarily exist a unique
(al, a2) but at least an element cE F(D) and two morphisms hand 12 that
transfer c to al resp. a2 and
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(2) if F(h)(a) = h * a = h' * a = F(h')(a) there has to be a (not necessarily
unique) map u and an element c E F(D) that is transfered to a by the
covariant action of F and moreover hou = h' 0 u .

CI ,.,/1 h' 'IL

A,,::::D E~C<"""D
C2'12 h

F is generic <=> it moves the dense coverage on C to the canonical coverage
on 5', i.e. if

for any element a E F( C) and any set of morphisms M which is dense
below C there exists an f : D -+ C in M and an c E F(D) such that
f *c = a.

We call a filtered functor F simply a filter on C if F( C) is either 0 ~ 0 or 1 ~ {0}.

With a combination of (1) and (2), similar conditions on F and can be derived
for any finite diagram. For example, generalising (1), for a finite set of elements
ao, ... , an-l there is an element c and morphisms !ï moving it to ai.

Especially for Lemma 4.2.5 we will see that it is necessary to consider a weaker
version of the notion of generic filtered functors, namely filtered functors which
are generic with respect to a submodel M'. For that property we do no longer
require that an appropriate c E F(D) exists for all dense sets M below C but
only for those dense sets which are in M'.

Lemma 3.3.2. Suppose M' is a countable submodel of the ground model and C
is an object in C E M'. Then there is always an M' -generic filtred functor with
F(C) # 0.

Proof. Starting with C = Co we first choose an infinite sequence of objects
(Cn)nE!\Iand a sequence of morphisms (fn)nE!\I with fi : Cn+! -+ Cn and Cn+! # Cn;
let fm,n be an abbreviation for fm-l 0 ... 0 fn. We choose this sequence in such
a way that fn is always in Mn' which is a dense set below C which did not yet
occur, i.e. which is other than f:n,n(Mm) for all m. There are only countably
many dense sets below C, therefore for any dense M below C, there is an n such
that fà nM = Mn. If such an infinite sequence fi does not exist, then F = YD,
where D is the object at which the construction terminates. Otherwise, set F(D)
consists of all infinite paths through C, starting as a subsequence of fi and ending
at D, they are identified if finite subsequences correspond to the same maps. F is
clearly filtered, but it is also generic. Given any dense set and sequence H. = l1. 0 f'
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where 9.. does not belong to L Then the map g associated to 9.. transfers l' to 9..
and moreover g* M is dense. So it suffices to consider only dense sets below an
object of the form Ci, but for those the condition for being generic is fulfilled by
construction of (fn)nEN. •

As every object in N can be written as a coproduct of 1, it is trivial that filtered
functors on Nap are all of the form n I---t An for some set A. A bit more involved
is the analogous result for AfnCP:

Lemma 3.3.3. The only filtered functors on AfnCP are the functors n I---t (A)n for
a set A. They are generic iff A is infinite (or A = 0).

Proof. Consider the injections Ji : 1 ~ m for i < m. Put together, they induce
a map T: F(m) ---* (A)m. That is true because suppose JI *x = Jk*X, then there
exists a map h : r ---* m with ho JI = ho Jk, but as all morphisms in Am are mono,
this implies that l = k.

For aa, ... , am-I with ai E A = F(I) there is a common extension c E F(n) for
some n with fi * c = al. If all elements (al)l<m are mutually distinct, then, all
injections fi : 1 ~ n have to be distinct, too. They hence factor through the
injections JI : 1 ~ m by a morphism u. Then also u * c is such a common
extension, i.e. an element with JI * (u*c) = alar put differently, u *c is an element
of F(m) such that T(U*C) = (aa, ... , am-I).

It thus remains to show that T is injective. But for c and d with equal image
under T, i.e. with JI * c = al = JI * d for alll < m, there is an element e E F(n)
for some n with fI * e = c and h* e = d. With the same argument as before, it
can assumed ta be in F(m) with JI * e = al and JI 0 Ji = JI. But then fi = id and
c=e=d. The set of all inclusions from m to a bigger n is dense, so for 7i E (A)m
there is acE (A)n for some n > m, thus (A)n is nonempty which suffices to
deduce that A is infinite if it is not empty. •

Every geometric morphism f : E ---* Sh(C) is determined by the behaviour of 1*
at the representables ayC. If we set F(C) = 1*(ayC), then 1* can be recovered
as

J*(X) = J*(limayC) = limJ*(ayC) = limF(C)~ ~ ~

where the colimit is the usual representation of sheaf as colimit of representables.
Both 1* and ay preserve covers and are filtered, thus also F. Conversely, given
such a functor F, it extends to a geometric morphism the with the same formula
as above, see for example [Joh02] for details.
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If P is a partial order, every filtered functor F to S' is a filter, as F preserves 1
and monomorphisrns. The following lemma describes for general categories C in
which case a filtered functor is a functor in terms of the geometric morphism it
induces.

Lemma 3.3.4. A geometric morphism f : S' -+ Sh(C) is an inclusion iff it is
induced by a filter on C.

Proof. We have to check whether the f* is full and faithful. f* is given by
A 1-+ (F-, J)SI. If a S'-function l{J : f*(1) -+ f*(J) really is induced by a map on
C, we obtain this map as a map of I-elements because (FI,1)sl = (1,1)sl = J.
This fact also implies that f* is always faithful. Suppose the F only maps to
{O, I}, then (FG, A )SI is either 0 or A, so there is no doubt that f* is full in this
case.

Conversely, assume that f* is an inclusion, S' then arises as a r-sheaf on C for
some local operator r. The truth object n at G on consists on the one hand of
all r-closed subobjects of yC, Le. of all subobjects of aryG = F(G). On the other
hand n is 2 as S' is supposed to be classically 2-valued, so n(G) ç 2.•

Lemma 3.3.5. Suppose C is a regular category, f,g E CIG, and the incompat-
ibility relation ..1 is defined by g ..1 h if there are no maps /1, h with common
domain other than 0 such that g 0 f1 = h 0 h.
Then

f ..1 g {::} im(J)..l g {::} im(J) ..1 im(g).

As a consequence, a set M of arrows with common codomain G is dense below C
iff the set of all images of these maps is dense in the partial order Sub( G)

Proof. Suppose R is the pullback of im(J) and g. Under this assumption R' is
the pullback of fand g iff the left square in the diagram

is a pullback. Hence f ..1 g, that is R' = 0, if and only if R = 0 (and im(J) ..1 g)
because e' is regular epi as a pullback of a regular epL _



Chapter 4

Names and Forcing with
Categories

In the category theory view on forcing with a partial order P of conditions, the
extended model is built by considering the category S~(P) of continuous sets.
Generalising from a partial order of conditions to a category of conditions is
natural and straightforward in this formulation.

In this section, we examine whether it is also possible to work with a category
C of conditions while still persisting in the prevalent set theory formulation of
the method of forcing with names. So we seek to introduce the notion of a C-
name for a category C in such a way that P-names for a partial order Parise
as a special case. In this chapter, a germane definition of a forcing relation for
C-names and an notion of an evaluation at (a, F) is given, where F is a generic
filtered functor and a E F(C). In succession, it is proved that definable and the
external definition of forcing coincides, and that a statement is true if it can be
forced by some object C. Finally, we show that C-names and sheaves are in fact
just different approaches to the same concept - this is made precise in Theorem
4.3.3.

But we start with C-names where C is a particular example of a éategory, namely
the category .N:nCfJ of natural numbers and injections with point to the opposite
direction. This category also appeared in the definition of the classifying topos
for decidable sets. The model M[(A)n] which is built by evaluating of those names
at the filtered functor n I--t (A)n is the Basic Fraenkel permutation model. This
way, forcing with categories of conditions also encompasses permutation models.

29
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4.1 A Different View on Permutation Models
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Suppose A' is a countable infinite set. Starting from a ground model M, the Basic
Fraenkel Model M(A) is built in two steps. First, atoms are added, see [Bru96,
3.1] for the construction which adds in fact a copy A of A' as the set of atoms.

For a permutation 7r on the set of atoms, the set 7rX is defined by hereditarily
permuting atoms. A set is symmetric if there is a finite set H ç A such that
7rX = X for all 7rwith 7rIH = ilH. The Basic Fraenkel Model M(A) then consists
of those sets X which are hereditarily symmetric, i.e. which are symmetric and
have hereditarily symmetric elements. The smallest set of atoms H such that X
is symmetric is called the support of X. See [Bru96, Bru90] and [BS89, A.1.] for
details on the Basic Fraenkel Model and other permutation models.

Externally, within the ground model, we choose an enumeration of names i 1--+ ai.

The support index is then m = max {i : ai E supp(X)} + 1.

In the following, we introduce the notion of .fI..fn'P-namesbelow a natural number
m, and define the evaluation K[aa, ... , an-I] of a .fI..fn'P-nameK with values in
M(A). Then a name f(X) below m can be assigned to every set X in M(A) with
support index m in a way such that the evaluation of f(X) recovers X.

Definition 4.1.1. Let Nm be the category of natural numbers and injective maps.
Recall that (A)n = {(aa, a!, ... , an-I) : ai i= aj for ii=j}
An .fI..fn'P-nameof rank a below m is a natural numberI k < m or 0,
an .fI..fn'P-nameof rank fi, > a below m is a (nonempty) subset of

{ (~, h): h: m <---+ n and ~ is an.fl..fn'P- name below n with rank À < fi, }

Suppose A is a countable infinite set, K is an.fl..fn'P-name below m. The evaluation
K[aa, ... ,am-I] of K at (aa, ... ,am-I) E (A)m is defined as follows:

K[aa, , am-I] {~[a~, ... , a~_I], where (~, h) E K, g'E(A)n and a~(i)=ai}

k[aa, , am-Il = ak

Suppose now X E M(A), m ~ max {i : ai E supp X} + 1. Then X can be written
as X = X' UHu K where H is a finite set of atoms with all indices smaller than
m, the set K either empty or K = A\{aa, ... , am-I} and X' has no atoms among

1Here we assume a model of natural numbers with 0 E N such that 0 =F 0.
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its elements. Consider the assignment
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~O: Mm ç M(A) ---+ .AfnqJ-namesbelow n
ak 1--+ k
H 1--+ {(k,nm): ak EH}
K 1--+ {(m, /,:+l)} if K is nonempty
X' 1--+ {(~(x), /,~) : x E X', n = max {m, i+l : ai E suppx}}

f(): M(A) ---+ .AfnqJ -names

X 1--+ ~(X) where m = max {i : ai E suppX} + 1

Then ~(X)[ao, ... , am-d = X for such a name ~(X). That statement is clear for
single atoms and finite sets of atoms, but it is also true for the cofinite case for a
nonempty K:

{(m, /,:+l)} [ao,... , am-I] ={m[ao, ... , am-l, a~] : a~ E A, a~ =1= ai for i < m}
={a~: a~ E A,a~ =1= ai for i < m} = K.

Note that f(X) is not the only .AfnqJ-namewhich represents X, though. If (7 is
a permutation on {Ql,... ,m-l} moving H to {Ql,... ,IHI-l}, then for example also
{(O,(7), (1, (7), ... , (IHI- 1, (7)) would be an admissible translation of H. Later
in this chapter, a equivalence relation on names will be defined, and in Theorem
4.3.6 we will see that a properly defined category of names is equivalent to the
category of sets and maps (with fixed support index) of M(A).

As an illustration of the interplay between .AfnqJ-namesand hereditarily symmetric
sets, consider the following set in M(A):

Its support index is 7, the associated name f(X) is hence

{(2, n7), ({(3, n7), 0}, n7) }u
{ ({(i, nn), (j, nn)}, /,~) where n=max{5, i,j}+1 and 5 <i <j }u
{ ({0, (1, n7), (5, n7), (7, /,~)},n7) }
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4.2 Names and Categories
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There are basically two conceptual difficulties we have to overcome when intro-
ducing C-names for a category C. Firstly, in contrast to names on a partial order,
it is now more essential attach the context to a name, i.e. every name has to be
defined below some object C. For a partial order P, a name below pEP is a
name involving only elements of P that are smaller than p. And every P-name
*' can be converted into an equivalent name ~ such that for every element (JL, q)
of *" the name JL is a defined below q.

Secondly, for a general recursive definition of C-names, we first need to identify
starting values, i.e. names of rank O. The only grain on which P-names are usually
developed is the empty set 0. If the ground model is a set theory with atoms,
then the construction of P-names is modified in such a way that, in the outset,
one can choose from a set of atoms rather being restricted to 0 as the only basic
building element.

In the definition of .A!:nqJ-names,starting values are no longer independent from
the objects below which the name of rank 0 defined. Names of rank 0 below n
are natural numbers kEN with k < n in that case. In general, C-names will be
build on a variable set Waf starting values. For P-names, we had W(p) = 0 or
W(p) = ~A(P) = A, for .A!:nqJ-namesW = G, i.e. W(n) = {Ql,... ,n-l}.

Lemma 4.2.1. For a generic filtered functor F and a variable set W of starting
values, there is an equivalence relation

~ on L(W(C) x F(C)) which is generated by (w. h,a) ~ (w,h*a).
CEe

This relation can be made explicit as

(w, a) ~ (v, b) iff there is an h, g, c such that h*c = a, g*c = band woh = vog.

(w, a) ~ (v, a) iff there is an h, c such that h * e = a and w 0 h = v 0 h.

Moreover, (w, a) ~ (v, a) for all generic filteredfunctors F and elements aE F(C)
if the set {h : w . h = v . h} is dense.

Proof. The equivalence relation is build by transfinite induction with two basic
building rules. The first one appears above as the explicit definition of ~, indeed

(w,a) = (w,h*c) = (woh,e) = (vog,e) = (v,g*e) = (v,b)
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if w, v, h, g, a, c, b as above. Alternatively there might exist a À, g', hi such that

(w,a) = (Àoh',a) = (À,h'*a) = (À,g'*b) = (Àog',b) = (v,b).

But if (À, hi * a) = (À, g' * b), then, since F is filtered, we know of the existence
of an element c and morphisms g, f which reduce this rule to the first case. And
a composition of two building rules of the same kind yields nothing new.

If h * c = a, 9 * c = a then there is a c', l such that gl = hl and l * d = c,
which justifies the simplification of the definition of ~ for b = a. Finally, if
{h : w . h = v . h} is dense, the existence of c follows as F preserves covers. _

The expression
L(W(C) x F(C))/~
CEe

is also called the tensor product W 0 F of Wand F. See [MLM94, VII.2] for
more on tensor products of &t-valued functors, [ML98] for a definition in terms
of limits and ends and [Epp02] for a general framework for tensor products.
For the guiding examples of P-names and 4qJ-names, this relation can be reduced
considerably: it is trivial for P-names, i.e. [(w, a)]"" = [(0,0)]"" which can be
identified with 0 and (k, ao, ... , an-d ~ (0, ak), so the set of equivalence classes
can be identified with the set of atoms in that case.

Definition 4.2.2. Let C be a category, W a variable set on C.

A C-name of rank a below C is an element w E W(C) or 0,
a C-name of rank K, > a below C is a (nonempty) subset of

{(,r, h): h: D ---t C and ,r is aC-name below D with rank À < K, }

Any map f : D ---t C transfers a name K below C to a name K . 9 below D by

K . 9 = {(,r . g', hi) : (,r, h) E K and 9 0 hi = h 0 g'}.

Suppose F is a generic filtered functor, K is an C-name below C. The evaluation
K[F, a] of K at a E F(C) and F is defined as follows:

K[F,a] - ((,r[F,a']), where (,r,h) E K, a' E F(D) and h*a' = a}
w[F, a] - [(w, a)]""
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Lemma 4.2.3. Suppose X is a C-name below C, F is a generic filtered functor,
bE F(D) and h a map h: D -? C. Then

(K. h)[F,b] = K. [F, h*b].

Proof. Consider the diagram

C7:a~
Da''? 'b C'

~c~
D'

Unravelling the definition of K . h and of the evaluation, we see that

(~. h)[F,b] = {(~. h',g') : (x,g) E ~,g 0 h' = ho g'}[F,b] =

= {(~. h')[F, c] : (x, g) E~, g' * c = b, cE F(D'), gh' = hg'} =
= {~[F, h' * c] : (x, g) E~, g' * c = b, cE F(D'), gh' = hg'}

where the last line follows by induction hypothesis. On the other hand,

(~)[F,h*b] = {~[F,a']: (x,g) E~, g*a' = h*b, a' E F(D)}.

The functor F is filtered, so for each pair (a', b) such that 9 * a' = h * b there is
always a morphism h' and a morphism g' such that 9 0 h' = hog' and moreover
an element c E F(D') with h' * c = a' and g' * c = b. For names of rank 0, the
lemma follows from the definition of the equivalence relation~. •

The Forcing Relation

In the following, we will introduce a forcing relation C II- cp(J2) in a definable
way. The next lemmas will then relate the forcing relation to evaluation of names
and to truth in the forcing extension. For that, we need to introduce a countable
submodel of the ground model for meta-mathematical justification, just like in
the partial order case. Such a model always exists see e.g. [Kun83]. The main
argument there is that any possible contradiction would involve only finitely many
axioms of ZFC. With Lemma 3.3.2 then a M-generic filtered functor always exists,
while a generic filtered functor need not exist in general.
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Definition 4.2.4. Let K,r, £ be C-names. The forcing relation C If- <p(;£)for
C-names is defined by recursion both on the rank of the involved names and the
complexity of the formula <pas follows:

C If- X ç Y {=} For any (z, g) EX

{r: 3(U, h) E Y 1\ D If- z. r = U. s} covers.

{=} For any (z, g) EX

{f: (f=rog=* (3(U,h)EY 1\ Dlf-z.r=u.s))}

covers.

C If- w = v {=} {f : w . f = v . J} covers.

C If- z EX {=} {f : 3(z, g) E X 1\ D If- z. f = z . r} covers.

C If- <p(z) 1\ 1jJ(z) {=} C If- <p(z) and C If- 1jJ(z)

C If- <p(z) =* 1jJ(z) {=} {f: D ---7 C D If- <p(z. 1) =* D If-1jJ(z' 1)} covers

{=} Vf: D ---7 C D If- <p(z. 1) =* D If-1jJ(z' 1)

C If- '<p(z) {=} there is no f : D ---7 C such that D If- <p(z. 1)

C If- VU: <p(U,z) {=} VU: C If- <p(U,z)

C If- 3U: <p(U,z) {=} {f: D ---7 C : 3U: D If- <p(u,z . 1)} covers

{=} 3U : C If- <p(u,z)

where f, g, h, r, s commute as in the diagram
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Lemma 4.2.5. Suppose K is a C-name below C and M' is countable submodel
of the ground model (which contains the sets defined above). Then the following
statements are equivalent:

(1) C II- <p(K)

(2) <p(K[F, aD holds for every pair (a, F) where F is a M/-generic filtered func-
tor and a E F(C).

Proof. Suppose first that F is a generic filtered functor, a is an element of
F(C) and C II- <p(K). We show that <p(K[F, aD holds, i.e. that (1)=>(2). As F
preserves covers, we know that for every cover (Ji)iEI, there is a fi : D - C and
an element ai E F(D) such that fi * ai = a.

So especially, if C II- K ç rand ;f[F, b] E K[F, a] (for some (;f, g) E K and
9 * b = a) there is an r and an element c E F(D) such that r * c = band
~(1L' h) Er and D II- ;f' r = 1L' s. Using the induction hypothesis with F and a',
we obtain

with hand s as in the diagram above as a consequence of D II- ;f' r = 1L' s. And
indeed, 1L[F,s*c] is in K[F,a] as h* (s*c) = f*c = gor*c = a. (For names of
rank zero, the statement has been already proved in Lemma 4.2.1.)

Likewise, if ell- .£ E K then there is an fand c E F(D) such that f * c = a and
~(;f,g) E K and D II- .£. f =;f' r. Hence

where again ;f[F, r * c] E K[F, a] because 9 * (r * c) = a.

For fixed F and a again we follow from the definition of C II- ~1L: <P(1L,;f)that there
is an J: D - C and acE F(D) with f*c = a and moreover ~1L: D II- <P(1L,;f'J).
By induction this means that <p(1L[F,b], ;f[F, aD holds. In Lemma 4.2.7 it will be
proved that density can be dropped. a Leading over to the converse direction,
we show (1){=}(2) for the remaining logical constructors. The rules for finite
conjugation and the universal quantifier are trivial and negation is a special case
of implication.

So for the implication rule, suppose then that a E F( C), the set

{J: D - C : D II- <P(;f' J) => D II- 'lj;(;f' J)}
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covers and <p(,~[F,aD holds. As F is a generic filter, there is an element b E F(D)
and a map f: D --t C such that f * b = a and D II- <p(~' J) => D II- 'l/J(~' J)
By the induction hypothesis, we thus follow that 'l/J(~' J[F, bD = 'l/J(~[F, aD holds
as desired. Conversely, let f: D --t C be an arbitrary morphism, and suppose
D II- <p(~' J). We know already that this means that <p(~ . f[F, bD for every
bE F(D), but also that 'l/J(~[F, f*bD = 'l/J(~-f[F, bD for <p(~'f[F, bD = <p(~[F, f*bD
and C II- <p(~) => 'l/J(~).

For the remaining part of the proof note that for --,(1)=>--,(2)it suffices to show
that if C does not force <p(~), then there is an h: T --t C such that T II---'cp(~ . h).
That is because once this is true, the first direction (1)=>(2) can be applied to the
formula --'<p(~.h). We know from Lemma 3.3.2 that aM-generic F with an element
bE F(C) exists thus <p(~[F, h * bD and the pair (F, h * c) is a counterexample to
the premise that <p(~[F, aD has to be true for all generic filtred functors F and
elements a E F( C).

Observe that C II-<p(~) iff {f : D --t C: D II-<p(~ . J)} covers (Lemma A.2.8). So
when C does not force <p(~), the set {f : D --t C : D II-<p(~' J)} does not cover
or in other words, there is an h with the property that there is no s such that
D II-<p(~' ho s). But that is precisely the definition of T II---'<p(~' h) .•

Lemma 4.2.6. Suppose K is a C-name below C. Then the following statements
are equivalent:

(1) There are maps (Ji : D --t Ci)i=O n-l and an element b E F(D) such that
fi*b=ai andD II- <p(Ko,Kl, ,Kn-l)

Proof. First note (1)=>(2) is immediate from Lemma 4.2.5 and that the state-
ment of the Lemma can be reduced to the special case with all ai equal because
F is filtered.

Starting with equality, if [(w, a)]~ = w[F, a] = v[F, a] = [(v, a)]~ in the case of
names of rank 0 then there is an h, c such that h * c = a and w 0 h = v 0 h by
Lemma 4.2.1.

Suppose now K[F, a] ç t'[F, a] for downward complete names then for each
(~', g') E K, g' *b' = a there is a (y", h") E r and a d' such that h" * d' = a and
~'[F, b] = JL"[F, c]., i.e. there exists-an h and an l2 such that D II- ~'. h = 1L" .l2'
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Setting Jil = Jill. l2, ri = hand P = hll
0 l2 = loh this statement reformulates to

Define now the set M by

M = {f: ~.f ç ~.f or 3(~,g) E ~,gor = f: V(y",h) E~,

VS1,S2:hoS2=goSl (E If- ~'sl=Y..'S2=}f1..hOS2)}

If there is a d such that f * d = a and f in M, then K .f ç r .f, for else setting
h = P, S2 = id, Si = ri yields a contradiction. So it remains to show that M is
dense. But for any f, if not K .f ç r .f, then, unravelling the definition, there is
an (;,/, l) E K .P and an r such that for all u such that r 0 u = lori and for
all (i, hi) Er we have .(DI If- ;£. r = Ji' s). Then for g = Pl and (Ji, h) E r
we have f 1.. h 0 S2 for else there would be a contradiction.

Suppose ~[F, a] E K[F, a], then there is a pair (;£, h) E K such that h*al = a and
~[F, a] = ;£[F, al] or, equivalently (by induction) such that D If- ;£. [I = ~ . l for
some go [I = land c with [I * c = al. For all f there is a pair (;£1,g) E K 1\ Elf-
~ . f = ;£1. r. Indeed, this pair is given by (x. II 0 f, 1).

Furthering the induction, the case of existence quantifier and conjugation is
straight-forward, for negation note that {f : D If- c,o(;£.1) V D If- .c,o(;£. f)} is
dense, so there exists an al and an f which is an element of this set and f *al = a.
In case D If- .c,o(;£. 1) we are ready, if D If- c,o(;£'1), evaluating at F and al
leads to a contradiction. •

Lemma 4.2.7. Suppose M is a set of morphisms with common codomain C. A
family (;£9)9EM of names is compatible if E If- ;£h'S = ;£g.r for every g, hEM
and r, s as in the diagram

An antichain A is a set of morphisms with common codomain C which are mu-
tually incompatible, so any family indexed by an antichain is compatible.

For any compatible family (;£9)9EM of names with rank> 0 indexed by a dense
set of morphisms M or any family (;£9)9EA of names with rank> 0 indexed by
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an antichain A, there is a name ;f such that D If-';f' 9 = ;fg holds. (pasting
property)

As a consequence,

C If- 3]L : c.p(]L,;f) and 3~ E ]L <=> there is a name]L of rank> 0 : C If- c.p(]L,;f).

Proof. ;f = {(]L, hou) : (y, u) E fA, hEM}. Suppose a E F(D) is fixed, we then
have to show that ;f[g*a] = ;fg[a]. So suppose ]L[b'] E ;f[g*a], then hou*b' = g*a
for some (]L, u) E ;fh. Since F is filtered, there is a r, s such that gor = ho sand
a c with r * c = a and s * c = u * b'. As the family (;f9)9EM is compatible

;fh[U * b'] = fA[s * c] = (;fh .s)[c] = (;fg .r)[c] = ;fg[r * c] = ;fg[a],

so it remains to show that ]L[b'] E fA[u * b'] which follows by definition of the
evaluation. Conversely, if ]L[b'] E ;fg[a] then t * b' = a with (]L, t) E ;fg but also
got * b' = 9 * a which implies that ]LW] E ;f[9 * a].

Suppose that the set {j: D ---+ C : 3YJ: D If- c.p(YJ,;f' J)} covers, then these
YJ amalgamate to a single name]L such that {j: D ---+ C : D If- c.p(]L' f,;f . f)}
covers and hence D If- c.p(]L,;f).•

4.3 Names and Sheaves do Coincide

For an object D E C, D-forced equality (;f "'D ]L <=> D If- ;f = ]L) is an equivalence
relation on the class of C-names below C. Let [;fb denote an equivalence class of

In a category, there might be many isomorphic objects, but they all have the same
generalised elements up to isomorphism. Superficially2 considered, names behave
differently. Some of the elements (;f, J) E K of a name might be redundant.
In the proofs below, occasionally we will find it convenient have such redundant
elements present, for that reason we introduce the following two operations:

The saturation K 8 of a name K below C is defined by

2In the category of names below C as used in Theorem 4.3.6, isomorphic objects have the
same generalised elements.
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The downward completion K d of a name K below C is defined by

40

For a downward complete name K, the definition of K . f can be simplified to
K . f = {(~,r) : (~, h 0 s) E K}. With Lemma 4.2.5 it is immediate that C forces
Ks' Kd and K to be equal, i.e. that Ks "-JeKd "-JeK.
Lemma 4.3.1. Let K, y be a C-names of rank> 0 below C. Then

s(K)(D) = {(~]D,f) : f: D ---? C and D If- ~ E K. J}

defines a variable set s(K) <---+ X' x yC for some x'. It contains

s/(K)(D) = {(~b, f) : (~,f) E K, f: D ---? C}

as a subset and s(K) = S/(Xs). Moreover

s(K) ç s(Y) <=> C If- K ç r,
hence the equivalence class ~]D can be identified with s(~) and as a consequence,
there is an embedding s(K) <---+ Vß x yC where ß is the rank of K.

If.f is downwards closed, then s(.f' h) = s(.f) . h.

Proof. Only the last but one statement need to be commented in detail. Names
of rank 1 are by definition subobjects of V1

WxyC = WxyC. If ß = a + 1, the
embedding is defined by

,,: s(X)
s(X)(D)

([X]D, f)

<---+ V"~l X yC
<---+ (P(V"W)xyC) (D) =

Sub(V"WxyD) x yC(D)
f-t (s(x) <---+ V"wxyD , f)

If ß rather is a limit ordinal, the embedding is defined in the same way, with the
only exception that the elements s(x) are no longer subobjects of a single V"wX¥D
but that there exists an a + 1 < ß such that s(~) <---+ V"W xyD.

For the following, we identify [~band s(~) without further notice. -

Suppose (x, f) E X(D) ç (V{ xyC)(D). Then there is an a such that x is in
V"~l(D) = P(V"W)(D) = Sub(yDxV"W). When x is conceived as a (sub)object in
this way, it will be marked as x.
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For a sheaf X ç (VßwxyC), the associated name to X is defined as

n(X) = {(n(x), J) : (x, f) E X(D), f: D ~ C, DE C}.

41
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Lemma 4.3.2. Suppose X is a continuous set and suppose s(n(x)) = x for all
continuous sets x with lower rank than X.

If D If-£ E n(X) .f then there is an element x and a map f : D ~ C such that
(x, J) E X(D) and D If- n(x) = £. In fact x can be chosen to be s(£).

Proof. First note that D If- £ E n(X) . f can equivalently be replaced by the
expression D If-£ E (n(X) . J)d which in turn implies that

{h: 3(~bh) E n(X).f and E If- £' h = JL} covers

by definition of the forcing relation (set JL = ;f' r there). Again, it does not harm
if we replace n(X) . f by n(X)d . f = {(n(x), h) : (x, f 0 h) E X(E)}, the might
only become bigger. Thus {h : (x, f 0 h) E X(E) and E If- £' h = n(x)} covers.
Note that E If- ~. h = n(x) iff s(£. r) = s(n(x)) = x so we deduce that

{h: (s(£' h), f 0 h) E X(Eh)} = {h : (s(£), f) . hE X(Eh)} covers.

But that is equivalent to (s(£), J) E X(D) as X is a sheaf. _

Theorem 4.3.3. Suppose that W E Sh...,...,(C) is a continuous set such that Sh...,...,(C)
is equal to the exponential variety generated by W. Names form a category up
to "'c-equivalence, i.e. the objects of the category of C-names below Care "'c-
equivalence classes of names, an map between [K]~c and [r]~c is given by (the
equivalence class of) a name L ç r x K such that C If- (L is a map). Then:

The category ofC-names below C is equivalent to the slice category Sh...,...,(C)/yC=
Sh...,...,(C I C). Especially, if C has a terminal object, the category of C -names below
1 is equivalent to Sh...,...,(C), the category of continuous sets on C.

Proof. Rather then establishing the equivalence of the categories directly,
we show that the corresponding allegories of relations are equivalent and ap-
ply Lemma 3.1.3. There is a one-to-one correspondence between subobjects
X '---+ X' x I of X' x I and objects r : X ~ Iof the slice category CI I. Relations
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in C/ I correspond then to relations R in C which are fixed on I, i.e. which satisfy

RçL-- ) X X y( ) (X' x 1) x (Y' x 1)

~XxYxI~

80 it remains to show that: (1) every subobject of yC x X' for some sheaf X'
corresponds to a C-name below C and vice versa in an invertible way (up to "'c)
and (2) relations on names uniquely correspond to relations on subobjects of the
form yC x X' which are fixed on yC, every relation arises that way and that the
composition is preserved.

For C If- X = n(s(K)), we mayassume that K is saturated. In that case,
s/(K) = s(K) and hence

n(s/(~)) ={(n(x),f): (x,f) E s/(~)(D)}

={(n (SI (::)) , f) : (x, f) E ~ } = ~.

Recall that s/(n(X)) ç s(n(X)), therefore

s/(n(X))(D) ={ (s(!:), f) : !: = n(x) , (x, f) E X(D), f : D -t c}
={ (s(n(x)), f), (x, f) E X(D), f : D -t C} = X(D)

implies that X ç s(n(X)). The other inclusion follows with Lemma 4.3.2 because

s(n(X))(D) ={ (s(!:), f) : D If- !: E n(X) . f}
Ç{(s(n(x)), f) : (x, f) E X(D)} = X(D).

Assuming that X is saturated, we know from Lemma 4.3.1 that subobjects of
s(X) correspond to subobjects of X (up to ""'c). For downward complete relations
B ç r x K and Q. ç Q x r we see from the definition of the composition
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that (~ .J) 0 (3 .J) = (~o 3) .f. Next, consider the following reformulations
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s(~ 0 !!:)(D) = {([~,~]D' J) : f: D -+ C and D If- (~,~) E (~o!!:) . f} =

={([~'~]D,f): D If- 3~(~,!!)E~'fand(~,~)E~.J}

= {([~,~]D' f): 3~ D If- (~,~) E ~ . fand D If- (~,~) E ~ . J}

= {([~,~b,f): 3~ D If- ([~>~]D' J) E s(!!:) and ([~,~JD,J) E s(~)}

The latter expression is exactly the definition of the composition of the two rela-
tions s(3) and s(~) in the category of sheaves SlL,..,(C). •

In the topos SlL,..,(P), every object X is a quotient of a subobject of a sum of 1,
i.e. Sh(P) is bounded by 1, a notion which will be further explored in Chapter 5.
As a consequence, Sh(P) itself is also the only exponential variety which contains
1. Therefore:

Corollary 4.3.4. Let P be a partial order. Then:
The category of P-names is equivalent to the category of continuous sets on
Sb.-,., (P).

This chapter started with an adumbration of the relation between .AJ:nCP-namesand
the Basic Fraenkel Model. Having developed the general theory on C-names a
forcing relation, the next goal is to exhibit the equivalence between names and
in a more definite formulation.

Lemma 4.3.5. Suppose a is an invertible morphism. Then

(4.1)

and every .AJ:nCP -name is equivalent to a .AJ:nCP -name which contains only elements
of the form (~, /'~). For such a name X

~ . /,~={ (~. (11" 0 /,~), /,~) : (~, /,~) E ~,

11": k-+kperm., 1I"Im=i1,k=max{l,n}}

Moreover, for a permutation a on {Ql,... ,m-l} and a number l ~ n
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Proof. The first statement follows straight-forward with Lemma 4.2.5.
Suppose K is a name which contains only elements of the form (;£, t,~Jand r. t,~ =
s. t,~. The morphisms r and s can be split as r = a 0 t,~ and s = ß 0 t,~, as in the
diagram:

The equation r . t,~ = s . t,~ then is equivalent to alm = ßlm or 1I"Im = idm for
11" = a-I 0 ß, thus leading to the desired expression of K . t,~ by applying (4.1).

Suppose X has no atoms among its elements. Then consider

~(X). a = {(~(x), (t,~ oa-1
)): x E X', n = max{m,i+1: ai E suppx}}

Introducing all: n ---+ n with t,~ 0 0"-1 = 0"11 0 t,~ = t,~ . 0"11 this reformulates by
(4.1) to

~(X). 0" "'m {(~(x). 0"1,t,~): x E X', n = max{m,i+1: ai E suppx}}
= {(~(O"llx),t,~): x E X', n = max{m,i+1: ai E suppx}}
= {(~(y),t,~): y E O"-lX', n = max{m,i+1: ai E sUPPY}}
= ~(O"-lX)

For the final equation, we note that if X has no atoms among its elements, then
~(X) has only elements of the form (qx), t,~), therefore

~(X) . t,~ ={ (~(x). (11" 0 t,~), t,7) : x E X, n = max{m, i + 1 : ai E suppx},

11" perm. on {Ql,... ,k-1}with 1I"Im = id, k = max{l,n} }

We know that ~(x). (11" 0 t,~) "'k fJc(x)'1I" "'k fJc(1I"-lx) and that k = max{l,n} =
max {l, i + 1 : ai E supp x} = max {l, i + 1 : ai E supp 1I"-lx} thus the expression
above reformulates to

{ (fJc(1I"-lX), t,n : x E X, 11" perm. on {Ql, ... ,k-1}with 1I"Im = id,

k = max{l,i + 1: ai E SUpp1l"-lX} }
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which is equal to fiX) because x E X {::}y=7r-lX E X for any symmetric set X.
The remaining proofs for sets of atoms are straight-forward. _

Theorem 4.3.6. The category of .N:nqJ-'namesbelow m is equivalent to the category
of sets and maps in the Basic Fraenkel Model M(A) with support index ~ m.

Proof. Again, we show that the corresponding allegories of relations are equiva-
lent. It is clear from Lemma 4.2.5 that evaluation at (ao, ... , am-I) preserves
both subobjects and composition of relations. It remains to show that (1)
m If- K = f(K[ao, ... , am-I]) and (2) X ç Y =} m If- ~(X) ç ~(Y)

Suppose we have Q = (bo, ... , bm-l) E (A)m and f = (ao, ... , an-I) where n is the
maximum of {i+ 1 : bj = ad. Choose a permutation (J' on {Ql, ... ,n-1} such that
Q = ((J' 0 ~~) * f = ~~* (J' * f. For any X with support index m we deduce that

As a consequence,

for any name K. As a second application, note X ç Y iff ~(X)[Q] ç ~(Y)[Q] for
all b = (bo, ... , bm-l) E (A)m iff ~(X)[Q] ç ~(Y)[Q] for one b E (A)m. But then
also m If- K = f(K[gJ) and m If- ~(X) ç ~(Y) as desired. _

Corollary 4.3.7. The category of sets and maps in the Basic Fraenkel Model
M(A) with support index ~ m is equivalent to the category Sh...,..,(.N:nqJ1m) and
equivalent to the category of sets with a continuous G-action Cont(G), where
G=Aut(N) is group ofpermutations anN (which arefixed on {41,... ,m-l}) equipped
with the product topology.

Proof. The first equivalence follows from a combination of 4.3.3 and 4.3.6. A
description of the relation to the category of sets with a continuous Aut(N)-action
can be found e.g. in [BS89] or [Bru96]. With that background, it is also clear
that a result similar to Theorem 4.3.6 is also possible for permutation models
other than the Basic Frankel model. For that aim, the category of transitive sets
takes over the role of the category .N:nqJ.See [MLM94, III.9] or [BS89, 3C1] for a
description of this category. _



Chapter 5

Prebounds and Partial Orders in
S[~]

5.1 Describing and Comparing Prebounds

The absence of the axiom of choice in general tapas setting requires a more
discriminating approach when comparing the size of objects. When there is an
inclusion A '-7 B, for two objects A and B of a category, there is no coercion that
there is also an epi or extremal epi morphism B - A anymore. Therefore, in
the order relation below, these two approaches to compare size or cardinality are
combined to a relation we will call subquotient relation. Moreover, cardinality in
this sense will not induce a linear order in general. The guiding analogon will be
rather be the order on a set of functions induced by an order on their codomain.

Subquotient relation and properties

Suppose j is a local operator which corresponds to a notion of a coverage on
[CO, S](c.f. A.2.6). A morphism f is called j-dense if af is extremal epi in Sh(C),
that is if its image is a j-dense subobject. In other words f is dense if whenever
it factors through a subobject, this subobject is j-dense (but not necessarily an
isomorphism like in the definition of extremal epiness).

Definition 5.1.1. Let A and B be two objects in a category E.
A is a subquotient of B, abbreviated A ~ B, ifthere is a total one-to-one relation

46
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R: A "-""t B, i.e. if there is a span

R

;/~
A B.
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R is called a witness for A ~ B.

Suppose £ = [CO, 8] where C is a category equipped with a notion of a coverage.
A is dense in a sub quotient of B, abbreviated A =:;l B, if there is a dense inclusion
into a subquotient of B, or, put differently, if the morphism e in the span above
is only required to be a dense morphism rather than an extremal epi morphism.

In our setting, epiness and denseness of morphisms will be always stable under
pullback. With that provision, both relations on the set of objects of £ are
transitive by composition of spans (which is the same as composition of relations
in this case, of course).

Bounds, Generators, Prebounds

Definition 5.1.2. Let £ be a tapas over 8 (via ,).
A n object B is called bound for £ (over 8) if every object A of £ is a subquotient
of ,*(I) x B.
In a more loose notation, we also write A ~ a . B, i. e. every object has to be
bounded by B with respect to subquotient order up to a constant set.

An object B is called prebound (or progenitor) for £ (over 8) if L Bn 2S a
nEN

bound, that is if there exists a constant set a such that

The introduction of generalised elements comes as a rather natural generalisation
when considering elements on small domains such as 2 (a generalised element is
then a pair), or R '-----+ 1 (one can think of an element relation with truth value
R). In contrast it is more remote to pretend that the identity idx: X --t X fits
into an intuitive conception of the notion of an element of X. Also, in general
there are quite many domains, it would be much more desirable to work with a
set of domains only. Those sets of domains on which generalised elements can
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still identify the properties of the category are called generating sets, and they
are fairly related to prebounds.

Definition 5.1.3. Let C be a category. A set of objects (Si)iEf is generating if
properness of subobjects can be discerned by elements on a domain Si only. That
is in that case, for any proper subobject A there is an element a Es; X that is
not in A. Positively formulated, for any X, the family of all morphisms from all
objects Si to X form an extremal epimorphic family.

There are also weaker and stronger variants of this definition. For a separating
set, the family of all morphisms to X is required to be epic only. On the other
hand, for a dense generating set X has to be the limit of the objects Si, more
precisely the limit of V 1X ~ C where V is the full subcategory of C induced
by the set of objects {(Si) : i E I}. When C = £ is a tapas, all these definitions
coincide. In that case, £ = Shc(V). In fact, this definition is not restricted to
a full subcategory, only. A subcategory V is called a dense subcategory of C if
the limit of V 1X ~ C is X for all objects X E C. In a tapas, again that is
if C = Shc(V), or equivalently if for any given map h : X ~ Do, properness of
subobjects can be discerned by all elements t ED X with D and hot in V. See
also [Bor94, VoU, ChA] and [Joh02] for details and equivalent definitions.

Lemma 5.1.4. Let B an object in a tapas £ with has S-indexed coproducts.
Then:
B is a prebound iff the set of all subobjects of all Bn for nEf::! is a generating set.

Even more, the subcategory B of £ consisting of all subobjects C '---7 Bn for some
n and those morphisms <p which fit into a diagram of the form

is a dense subcategory. In consequence, £ = Shc(B).

Proof. When the category £ has S-coproducts, one can sum up all those objects
(Si)iEf that form the generating family to one object R. The family of morphisms
into A then gives rise to one single extremal epimorphism from R to A. Note
that it depends on A whether one particular Si has to appear in the sum. But
for sure, for any A, the object R is a subobject of some a x LiEf Si, thus LiEf Si
is a bound. If all Si are contained in some Bn, then also LiEf Si ~ Ln anBn for
some an, hence B is aprebound.
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Conversely, the set subobjects of finite powers of prebound always forms a gener-
ating set. To show that elements on the subobjects of Bn can discern properness
of a subobject of A ~ 2:: Bn with witness R, it suffices to show this is true for
elements of R since R -+; A is epi. So for U ç R ç 2:: Bn, there is an inclusion
Bi ç 2:: Bn such that U n Bi ç R n Bi ç Bi where intersection is meant with
respect to that inclusion. So r : Rn Bi ~ R is an element which is in R but not
in U.

Finally we show that B is a generating subcategory of C. For any given map
h : X ~ Do <----7 Bn in £ and a proper subobject R <----7 X, then there is an
element t ED X which is not in R, i.e. the morphism t: D ~ X does not factor
through R, and D is a subobject of some Brn. We enlarge the domain D to
D' = D x im(h 0 t) = {(d, h 0 t(d))ld E D} <----7 BnxBrn = Bn+rn. Then also
t' = to 7r ~~, R, and ho t' is the inclusion of the projection of D x im(h 0 t) to
im(h 0 t) in D, thus a morphism in B .•

This fact immediately implies that the tapas of variable sets on a partial order
is bounded by 1, as the representables yp are subobjects of 1 and they generate.
And this is the only case in which 1 arises as a bound: take subobjects of 1 as
locale L, then the category of sheaves on this locale is equivalent to a given tapas
that is bounded by 1.

In the following, we concentrate on general prebounds on the tapas of variable
sets and the tapas of continuous sets with the final aim to obtain a more direct
description.

Lemma 5.1.5. Let B be a variable set on a separated category C.

Then:

aB is a prebound in Sh(C) {:} Every A E [CO,5] is dense in a subquotient

of LOtG. Bne for some OtG,
GEC

i.e. A ~ LOtG. ßne in [CO, 5]
GEC

{:} Every yC is dense in a subquotient

1 ßne'a some , z.e.

'VC E C ~nG : yC ~ Bne in [CO,5]
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Proof. First note that we only need to show the equivalence for the case that A
is a sheaf, because the unit "lA : A' -+ aA' is monic for separated category C and
thus A' ~ aA' = A. Now,

which we will abbreviate by aK for a moment. Given a span (e, m) : R'---+ AxaK,
pull m back along the unit TJK to obtain another span (e 0 "I', m') : R' '---+ A x K.
Finally, we check that a(eo "I') is simply e, thus epi.

For the second statement, we use the fact that A can be written as a colimit of
representables yC, thus there is an epi morphism from some sum LYC to A,

so A ~ LYC and also A ~ LYC, The relation ~ (dense in a sub quotient
relation) is stable under summing up. •

Theorem 5.1.6. Let B be a variable set on a separated category C.

Then:

aB is a prebound in Sh(C) {:} For every C E C there is a dense set M of

morphisms with common domain C such that

every map f : D -+ C E M comes equipped with

a number nI and an element b(f) ED Bn!,

subject to the condition that

bU) . x = b(n . Y :=;. fox = f 0 Y

(Those elements b(n need not be compatible, we do not claim that b(n 0 g and
b(fg) are equal).

Proof. Let A I be the image of the map b(n : yD -+ Bn!, and R be the sum of
the family of all (A I) lEM. It clearly is a subobject of some L:CEC ŒC . Bne, it
remains to show that there is a dense map to yC. We define it component-wise
as AI -+ yC, [idD] ~ f. This is indeed a map by the condition on the elements
b(n, and put together, this map reaches every f E M, hence it is dense.

Conversely, suppose aB is a prebound and <p : R -+ yC is dense. For a generating
set M of the image of <p, choose, using the axiom of choice in 8, for every f E M
an element b(n that is mapped to f by <p. By definition, these elements b(n have
to be in one Bn!. By applying <p, we notice that desired condition on the elements
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bU) is fulfilled. _

Corollary 5.1.7. Let B be a variable set on a category C. Then:

51

B is a prebound in [CO,5] {::> For every 0 E C there is an element b E Bnc
for some ne which is faithful, that is

b. x = b . y =} x = y.

In other words, there is an inclusion yO '----+ Bnc
induced by b.

In the following, we reformulate the last theorem with the aim to finally obtain
a representation of all small prebounds in terms of morphisms and relations on
them only. Small is meant in the sense that we aim to confine ourselves to a set
of bounds (which we call small bounds), such every other bound contains a small
bound (by subobject inclusion).

Every element b ED Bn corresponds to a morphism b : n x yD ---t B. The
condition on an element bU) occurring in the statement of 5.1.6 reformulates to

for f : D ---t 0 and x, y EE yD. Next, while keeping track of this condition, we
gather all these maps bU)' i.e. we sum up their domains in order to obtain one
single map. So for any variable set B there has to be a map

b: ( L nI x YD) ---t B
f:D-CEMC

CEe

We define those prebounds to be which arise as the image of such map to be small
prebounds. As the map b is then a (regular) epimorphism, we reap the following
representation theorem:
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Theorem 5.1.8. Let B be a variable set on a separated category C. Then:

aB is a prebound in Sh(C) <=> B contains an object of the form

where, for each e, Me is a given dense set
of arrows with domain e and R is a relation
that fulfils the condition that
(I, g, i) R (I, g', i) Vi < ni => fog = fog'.

B is a prebound in [CO, 5] <=> B contains an object of the form

where R fulfils the condition that
(g,i) R (g',i) Vi< ne => 9 = g'.

In the following, for a number ne, we write D ß e for a map f and a number
i < ne, the latter condition on i thus will be considered as implicitly given
whenever it is appropriate.

Comparing Prebounds

We conclude this analysis on prebounds in the category of continuous and variable
sets by giving a description of the subquotient relation BI ~ B2 for two prebounds
BI and B2.

Lemma 5.1.9. Let A, B be two objects in a tapas E, R ç A2, S ç B2 two
relations on it.

Then:
AI R ~ BIS iff there is a relation (0", T) : N ~ A x B such that:

• 0" is epic and
• T(m) S T(n) => O"(m)R O"(n).
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Proof. Given a subquotient relation U between AIR and BIS, we get u,r,N,
by pulling back along the canonical surjections "'R and "'s, see figure. The fact

N
~Ullb~

K L
~Ullb~ ~Ullb\

A U B

Ä/\/s
AIR BIS

Îl\
A I B
Ä ,........\ /s

AIR BIS

that N indeed is a relation and that u( m) R u( n) for any n, m ET N with
r(m) S r(n) follows by a diagram chase. Conversely, let f : N -t I in the right
diagram be the image of "'s 0 r. Then f is the coequaliser of the kernel pair of
"'s 0 r, thus for the existence of the dotted map we only need to show that for
m, n EN: "'s 0 r(m) = "'s 0 r(n) ::::}"'R 0 u(m) = "'R 0 u(n). But that is exactly
a reformulation of the second condition. It is trivial that the dotted arrow above
is an epimorphism. _

Corollary 5.1.10. Let C be a separated category. Then

iff

there is a relation (u, r): N'---+ (L: nc x yc) x (L: kE x YE)
CEC EEC

such that:
(1) For each (f,i) there is a (h,j)

~CD ~ with (f, i) N (h, j)
h,j E

(2) For any (f,i) N (h,j) and (f',i') N (h',j'):
(h,j) S (h',j')::::} (f,i) R (f',i')
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5.2 Localic Morphisms and Partial Orders in
the Topos S[lD6o]

First in this section, some results are collected and established which relate the
concept of a bound and a prebound to properties of geometric morphisms and
classifying toposes.

A geometric morphism f : £ -+ F is called bounded by B if £ is bounded as a
topos over F, i.e. if for any A E £ there is a IE F such that A ~ r(l) x B. And
f is localic if is bounded by 1. In the latter case, £ is the topos of continuous sets
which are constructed within F.

A bound always has global support, that means that B -+ 1 is always epi. That
is because every map from a subobject R of B to 1 trivially factors through the
unique map B -+ 1, thus this map inherits (extremal) epiness from the family of
all morphisms from all subobjects R to 1. In internallanguage, global support
means that the formula ':Jx.x E B' is fulfilled, i.e. that B is (internally) inhabited
(which is classically the same as non-empty, naturally). In other words, every
bound is a model of the theory of inhabited objects.

Lemma 5.2.1. Suppose B is a prebound on F over Sand f : £ -+ F is a
geometric morphism. Then:

f is localic {::}j*(B) is a prebound.

Suppose B is an object, B' = L:N Bn and fB : £ -+ S[(())]and f~, : £ -+ S[Q.] are
the unique geometric morphisms such that f'~/(G) = B' and fÊ(G) = B. Then:

B' is a bound of F over S

{::}B is a prebound of F over S

{::} fB: £ -+ S[(())] is localic

=> f~/: £ -+ S[Q.] is localic

Moreover, if B is a decidable (and infinite) prebound then there is a localic ge-
ometric morphism gB : £ -+ S[IDl] (gk : £ -+ S[Ilt:,]) such that gE( G) = B
(g'~( G) = B).
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Proof. For A E :F we know that A ~ ,* I x L Rn. Thus

Fix X E E, if the geometric morphism f is localic then X ~ f* (A) for some A
and hence also X ~ ,'* I x E(J13)n so f13 is a prebound. Conversely, note that
X ~ ,'*1 x E(J13)n implies X ~ f*(A) for A = ,* I x (ERn). The remaining
equivalences then follow immediately as G is a prebound in S[O]. _

Lemma 5.2.2. Suppose B' and B are two categories equipped with a notion of
a coverage and F : B' -+ B is a full functor which is the identity on objects and
moreover preserves covers. Then the functor

f*: Sh(B) -+ Sh(B')
X~XoF

is full and faithful. Moreover, it is the inverse image part of a geometric mor-
phism.

Proof. Suppose t is a morphism t: X -+ Y for two sheaves X and Y in Sh(B).
Then f*(t) is given by the family (tFC)CEC, But as C = F(C) also tc = tFC and
f* is trivially faithful. (Sc)CEBf is the data for a morphism s : X -+ Y in Sh(B')
iff Sc 0 (XF(J)) = YF(J) 0 SD for all morphisms f : D -+ C in B. As F is full,
also Sc 0 (Xh) = Yh 0 SD for all morphisms h: D -+ C in B', so s is a morphism
in Sh(B), too. Finally, f* trivially preserves colimits and finite limits, thus it is
the inverse image part of a geometric morphism. _

Suppose f :£ -+ :F is a localic geometric morphism. In 2.1.1, we remarked that
for a category Shc(L), the locale L can be obtained as Subsh(L)(l) = (1,0) =
,*(0). Thus when considering E as a tapas over :F as justified in 2.3.1, then E is
equal to the category of internal sheaves in :F on the locale L = f*O in :F.
If moreover :F is a topos of continuous sets Sh(1J), then

(J*O)(D) = (ayD, f*O) = (J*ayD, O)t: = Subt:(J*(ayD)).

This leads directly to the next Lemma:

Lemma 5.2.3. Suppose R is a prebound on E. Then the £ is the category of
internal sheaves in S[O] on the locale L given by n ~ Subt:(Rn). IfE is decidable
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(e.g. Boolean), then £ is the category of internal sheaves in S[JI))] on the locale L'
given by n I---t Sub£((B)n). If moreover B is infinite, then the latter locale also
exhibits £ as the category of internal sheaves in S[IIt,].

Proof. Let f :£ -+ S[O] and g : E -+ S[IDJ] be the localic geometric morphisms
induced by B. Then J*(yn) = J*(Gn) = (J*G)n = Bn holds. In a decidable
category, (G)n is determined as the subobject of Gn such that Cn = (c)n +
V (~).Cn. But this description involves only finite products and sums. Hence it is
preserved by any geometric functor between decidable topases. As a consequence,
L(n) = (J*O)(n) = Sub&(Bn) and L'(n) = (g.O)(n) = Sub£( (B)n) .•

Clearly, in any Grothendieck tapas £, if B is a (pre)bound then also the object
N x B, which is infinite. Therefore in principle, the above result suffices to describe
forcing with a category of conditions in terms of a combination of a Basic Fraenkel
Model and a forcing extension with the partial order L'. (Recall that in Corollary
4.3.7 it was shown that S[IIt,] represents the basic Fraenkel model.)

But working with N x B instead of B has the drawback that the locale L will
be considerably larger and more complicated. We will choose a different infinite
extension of B which will not lie within £ itself anymore but in an extension £'.
The category £ will be contained in £' as an exponential variety. The cumulative
hierarchy and hence the interpretation of a ZF set theory as described in 2.2 is the
same in £' and £. In the following, we construct such a tapas £' which contains
an infinite prebound B' such that Sub£/((B')n) = Sub£(Bn). This might be seen
as the smallest infinite extension B' of B which is feasible in that generality.
Choosing B' infinite here means to ensure that Sub£1 ((B') n) is nonempty for any
nEN.

Recall from Lemma 5.1.4 the dense generating subcategory B which represents a
tapas £ as £ = She(B). The objects of B are all subobjects of C '---+ Bn for some
n and the morphisms are maps cp between them which fit into a diagram of the
form

Next, we introduce a modification B' of B which will then define the tapas £'
as £ = She(B'). Note that the identity is the only endomorphism on the object
B '---+ B2 in B. But there are two morphisms which testify that rlB is in B.
In the category B', the pairs (rlB,rlB2) and (rlB,'T(Ol)) will give rise to different
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endomorphisms, actually.
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Lemma 5.2.4. Suppose B is a prebound in [. Let B' be the category with inclu-
sions C ~ Bn as objects and monomorphisms i :m ~ n E -"In which admit a
morphism <P fitting into

cc-Bn n

~! !i. if.
A~Bm 4

as morphisms. Then B' is a regular category, all morphisms in B' are epi and
those with <p (extremaOepi are the extremal epi morphisms. Moreover, [ is an
exponential variety in [' = Shc(B') and B' is a decidable, infinite prebound in ['
with Sub£/( (B')n) = Sub£(Bn).

Proof. Define in Shc(B) the object B' = ay(B ~ B). The subobjects of
a(y(B ~ B))n correspond to s to (B~B, ... , B~B) in which are closed (for the
canonical coverage, see A.2.7). In the following we write B for B ~ B. Suppose
a morphism of the form

C~Br

!!~
B B ... B

r

!t~1 I ... 1

is in a sieve which represents a subobject of (B)n. If r < n, then at least two of
these morphisms to B are equal and the corresponding subobject is not in (B')n.
If on the other hand, r > n, then the morphisms 1 ~ n factor through r by a
map l : n ~ rand

C~Br r

~! !I. If.
C'~Bn ~

where C' ~ Bn is the image of C ~ Br ~ Bn. The morphism l* from C ~ Br
to C' ~ Bn is an extremal and hence regular epimorphism. If e 0 !ï is an
element of a closed sieve, for e regular epi, then also k Therefore, we can
assume that whenever a sieve is not empty, it contains also morphisms of the
form C ~ Bn to (B, ... , B). Moreover, there are no morphisms which factor
through a C ~ Br for smaller r. In short, the sieves corresponding to subobjects
of (B)n are generated by morphisms from C ~ Bn to (B, ... ,B), thus proving
the equivalence to subobjects of Bn in [.

Lemma 5.2.2 implies that [ can be embedded in [' as full subcategory. The
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inclusion maps X to ay&X. Next, we show that E is a logical subtopos, i.e. that
P(ay&A) is in £ for a A E £ and that it is a power object also in £. Consider
objects A'---+Br (A for short) and E'---+BS (B for short). Then we need to show
that

P&I(ay&A)(E) = Sub&l(ay&A x aY&IE)
= c- closed-Sub[B'o,s](y&Axy&,E) = Sub&(AxE)

= Sub&(Ax ay&E) = P&(A)(E)

Let (g, i) be a pair which represents a morphism from C'---+ Bm to A'---+Br (in
B) and (h, j) be a morphism from C '---+ Bm to E '---+ BS in B'. We mayassume
that m ~ r + s. Else we can reduce to the latter case just like in the proof of
Sub&l( (B')n) = Sub&(Bn) above. Suppose f = (g, h), ip and jp are the canonical
injections from rand s in the coproduct r + sand e is the unique map induced
i and j; moreover l is a map such that eo l = rl and jp = l 0 j (but ip =1= loi in
general) as shown in the diagram

Then in the following sequence of diagrams, the first one commutes in £ by
definition of the product. In consequence, f is a monomorphism and the second
one commutes because l* 0 e* = rlBm. The third one is just a different picture for
the same equation of maps.

AxEe....- Br+s

11 .J
AxEe....- Br+s C~ AxE~ Br+s

ic-_.J~ Dclc--.'1
The latter diagram also represents a regular epic morphism in B'. By construc-
tion, (g, i)o(rlc, l) represents the same morphisms as (g, ip) in B and (h,j)o(rlc, l)
represents the same morphisms as (h, jp) in B' because jp = l 0 j. As the sieve
representing a subobject has to be closed for the canonical coverage, «g,i),(h,j))
is in the sieve iff the span «g, ip), (g, jp) with common domain C '---+ AxE '---+ Br+s
is. Thus subobjects of ay&A x ay&,E in £' correspond to subobjects ofAxE in £,
which proves that P&I(ay&A)(E) = P&(A)(E).
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The object B' = ay(B <---+ B) is decidable just because all morphisrns are epi in
B'. It is infinite iff {a=l} =1= Sub£,((B')n) = Sub£(Bn), which is true for any
nontrivial tapas £'. Finally, B' is a prebound because its subobjects generate, in
fact even a smaller subcategory, namely B' generates. _

Corollary 5.2.5. Suppose B is a prebound on £'. Then £, is equivalent to an ex-
ponential variety of the category of internal sheaves in 8[1D6o] on the localeL given
by n ~ Sub£(Bn). If B is infinite and decidable, £, is as well equivalent to the
category of internal sheaves in 8[ID6o] on the locale L' given by n ~ Sub£( (B)n) .

Towards a Dense Subset of L

Let B be a prebound in a'boolean Grothendieck tapas £, = Sh...,.,(C).Applying the
theory on prebounds and locales established above, the next step is to identify
dense subsets of the locales. The partial orders Pin 8[ID6o] arising that way have
a considerably neater description than the locales L and L' itself, and still E is
equivalent to the category of internal sheaves on P.

But first, observe that there is no need to examine Land L' separately. As
well, by Lemma A.2.7, we consider ,,-closed subobjects in [CO,5] for they are
in one-to-one correspondence with subobjects ofaX in Sh...,.,(C).Therefore:

Fact 5.2.6.

Subsh-.-.(c)((aB)n) = {R E Subsh-.-.(c)(a(Bn)): À not mono =} R. À = a}

= {R E SubICO,S]Bn
: "R = Rand

rp not mono =} R. rp = a} = L'(n)

Sub£, ((B')n) = Subsh-.-.(c)((aB)n) = Subsh-.-.(c)(a(Bn))
= {R E SubICO,S]Bn

: "R = R} = L(n).

It thus suffices to calculate the locale K E 8[(())] which is defined by K(n) =
SubICO,S]Bn. The prebound B is infinite iffor any n there is an element R E K(n)
other than a such that R . À = a for any À which is not a monomorphism. Thus
it is possible to work with the smaller partial order L' iff it is not trivial.

For maintaining clarity, we first do not unravel the whole expression of Theorem
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5.1.8 when calculating the locale K. We rather start with

where (Tk)kEl is a family of objects in a complete tapas E. Then:

Note that for every any quotient map A - AIR there is a retraction in the
category of partial orders as in the diagram

ime

Sub(AI R)~ Sub(A) .
e*

To express a partial order of the form Sub(AI R) in terms of subobjects of A we
could either take only those subobjects that arise as e*(M) or, more appropriate
for our situation, define a congruence U /"oJ V on the partial order with U ~ V
iff e*U ~ e*(V) iff U ~ im(e) 0 e*V. Written in the language of (generalised)
elements, this means that U ~ V iff for any u E U there is a v E V such that
uR v. It is evident that if a subset is dense in Sub(A), its image is also dense in
Sub(AIR).
Continuing the description of K, this implies that

Suppose for a moment that L is an internallocale in a category [C,5]. Then
for h : C ---7 D, the covariant action map L(h) : L(G) ---7 L(D) is a frame
homomorphism, it thus has a left adjoint Lo(h) : L(D) ---7 L(G). So any internal
locale L in [C, 5] is in one-to-one correspondence with a locale Lo in [CO, 5],
or, put differently, there is also a contravariant action on L. If P ç Lo, then
Q(D) = {L(h)(l) : l E peG)} is a subobject of L.

Coming back to the particular context L = K and C = Mn, note that for an
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inclusion like 1 "---7 2, the covariant action multiplies with B as in G ~ G x B for
G ç B whereas the contravariant action is the projection B2 ~ B.
When translating to names or to sets in the Basic Fraenkel Model, the covariant
action of the canonical inclusion /,~: m "---7 n is only implicitly perceivable any-
more: It is just considering a set with support index::; m as a set with support
index::; n. The order of L can be described completely within La. For i: m "---7 n,
G E K(m) and H E K(n), clearly G ::; L(i)(H) <=> La(i)(G) ::; H, that is just
the adjointness property. But also

L(i)(G) ::;H iff for all H' E K(n): (Lo(H')::; G ~ H' ::;H). (5.1)

Next, we identify a dense subset of this locale Ka. Clearly, every inhabited
subobject of ~(Tko x ... X Tkn_J has to include at least one inhabited subobject
of one factor (Tko x ... X Tkn_l)' Collecting these subobjects yields a dense subset
of Ka:

P(n) = (L Sub(no x ... X nn_l))/ ""'R

11£1=n
l£EIn

For abbreviation, let Q(n) be ~ll£l=n Sub(Tko x ... X Tkn_l)' It is time to specify
kEIn

the objects (Tk)kEI. Recall from Theorem 5.1.8 that we examine prebounds B of
the form

(~nc x YC)/R
where R fulfils the condition that (g, i) R (g', i) Vi < ne ~ 9 = g'.

Therefore, we set I = {(C,i): i < ne, CE C} and Tk = yC for k = (C,i). An
element of Q(n) is a subobject S of some (yCo x ... X yCn-i), i.e. sieves on
(Co, ... , Cn-i). If such a subobject S is not empty, then it contains at least
one n-tuple of maps (gj)j=O ..n-i where Ii : D -+ Cj. The sieve generated by
(gj)j=O ..n-i is then smaller than S in Q(n). Let Q'(n) be the set of all sieves
generated by single n-tuples of maps. Then Q'(n) is a dense subset of Q(n). In
fact, Q' is a subobject of Q, as for /, : m -+ n the projection of a sieve generated
by (gj)j=O ..n-i is just the sieve generated by (gL(r))r=O..m-i' We mayassume that
the elements of Q'(n) are tuples of maps (gj)j=O ..n-i with a common domain while
the order in Q'(n) is given by (gj)j=O ..n-i ::;(hj)j=O ..n-i iff there is a morphism l
such that gj = l 0 hj for all j.
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Lemma 5.2.7. Suppose R is given Theorem (5.1.8). The locale Lo then con-
tains a dense subset P' whose n-elements are equivalence classes of n-tuples
(gj, ij)j=O..n-l where gj : C ~ Dj, and [(gj, ij)j=O..n-l]R ~ [(gi, ij)j=O"n-l)]R iff
there is a morphism l such that for all j the relation (gj, ij) R (log;, ij) holds.

Theorem 5.2.8. Suppose C is a separated category, ne is a natural number which
is attached to each object of C. Moreover suppose R is a relation on pairs (g, i)
with g : D ~ C and i < ne, which satisfies the conditions

• If (g, i) R (h, j) then g and h have a common domain D
• If (g, i) R (h, j) then also (g 0 f, i) R (h 0 f, j)
• If(g,i) R (g',i) \fi< ne then g = g'.

Let P be the set consisting of all elements of the form

where F is a finite set of atoms, D and Ca are objects of C, ga : D ~ Ca
morphisms of C and ia < nDa'
equipped with an order structure which is defined in a two step procedure:

if F' ç F and there exists an l: D ~ D' such that for all a E F' the relation
(ga, ia) R (log~, i~) holds.

if either F' ç Fand p ~l p', or F' ;2 F and pli ~l P follows pli ~l p' for any
other pli = ((F', D", (C~)aEFI, (g~)aEFI, (i~)aEFI). Then:

The interpretation of ZF set theory in Sh...,..,(C) is equivalent to the model of pure
sets of a generic extension of the Basic Fraenkel Model with the partial order P.

If R has infinitely many equivalence classes, we might equivalently choose the
partial order Pd ç P consisting of those (F, D, (Ca)aEF, (ga)aEF, (ia)aEF) in P
such that all (ga, ia)aEF are in different equivalence classes.

Proof. The proof is just a combination of the material established above. We ap-
ply the correspondence between Sh...,..,(N:nqJ) and the Basic Fraenkel Model, Corol-
lary 5.2.5 and the definition of the order of L in terms of the order of Lo (equation
5.1). Finally, with Fact 5.2.6, we can choose Pd if Pd(n) is not trivial i.e. if there
are infinitely many equivalence classes. _



Chapter 6

Smallness Axioms and Allegories

6.1 More on Allegories

This section introduces an additional operations on morphisms of an allegory A
which will prove to be helpful to keep the text succinct and legible: Division of
relations.

Definition 6.1.1. Let A be an allegory and Rand S two morphisms.

The division1
~ between Rand S is defined by T ç ~{:}ToS ç R.

Figure 6.1: Division ~ - the diagram semicommutes.

The symmetric division is defined by ~ = ~ n (~) 0, or alternatively by

RT C = {:}ToS C R and TO0 Res- S - -

Evidently, such a division morphism ~ is unique if it exists. The notion of
a division can also be introduced for ordered categories as it only depends on

IThe ordinary division is not symmetric - just as composition is not. Freyd and Scedrov
[FS90] use RIS and R \ S for the right and left version. Our division corresponds their R \ S,
but the equations look similar to RIS simply because we have reversed arrow composition.
Another notational variant is R -;-S as in [Kaw95].

63
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the order on A. In fact, every ordered category and hence every allegory is a
2-category (with no more than one 2-cell between each morphism or I-cell). The
division ~ is then is the same as the right Kan extension of R along 5 in the
2-category A, see also Definition A.2.11 in the appendix.

It might be illuminative to unravel the definition of the division of two relations
Rand 5 in the category Set of sets, in fact it is given by

R
5 = {(y,x): Vz: (x,z) E 5 => (y,z) ER}

in that case. The symmetric division R of Rand 5 is then explicitly given by
S

R
= {(y,x): Vz: (x,z) E 5<=> (y,z) ER}

5
= {(y, x) : {z : (x, z) E 5}= {z : (y, z) ER} }.

For the following, we occasionally will make use of some rules for the division.
These rules are summarised in the next two lemmas.

Lemma 6.1.2. Let R, 5, E, T be relations in an allegory A, f be a map. Then
the following rules can be derived:

• B. °5 e Rand T e TSS - - S

• B. ° ~ e !!:. and .Ji.. = (~)E S - S TS T
R-R f d1- 6-• r - ° an s - sor
"es ERE R

• LJ.-EoS=>EoS=S
• !!:. o!!:. =!!:.R R R

• The division is monotone in the numerator and antimonotone in the de-
nominator.

Proof. Justifications are straight-forward for all items, like ~ e ~° ~° ~ e
~ ° ~ ç ~ for the forth item. _

Lemma 6.1.3. Suppose Rand 5 are two relations in an allegory A that allow
factorisations R= roE and 5=gOoE. Suppose furthermore that the division ~
exists. Then

R = fO ° E 0g
5 E'

Moreover, in that case, ~ ç ~ iff 5 ç R.
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Proof. We apply Lemma 3.1.2 repeatedly. T ç r 0 ~ 0 g <=? foT ç ~ 0 g <=?

foT 0 gOç ~ <=? foTS = foT 0 gO0 E ç E <=? T 5 ç roE = R.
For any T we know that T ç ~ '* T ç ~. If we set T = f we get f ç ~ and
hence 5 ç rE = R. •

One might be tempted to define the union of two relations Rand 5 to be the
supremum of Rand 5 with respect to the order ç straight-away, but mere supre-
mum is not necessarily preserved by composition, this condition has to be included
in the definition.

Definition 6.1.4. Let Rand 5 be two morphisms in an allegory A. The union
of Rand 5, if it exists, is the unique relation that fulfils

R U 5 ç T <=? R ç T and 5 ç T as well as

(RUS)T=RTU5T.

Likewise, the zero relation DBAis the smallest element in the semilattices on the
Homset (A, B)A that satisfy RoDBA = DCA. A distributive allegory is an allegory
equipped with a union operation U and a zero operation DBA.

With presence of a zero relation, disjointness of maps can be expressed by the
condition U2 ° 0 UI = O. Therefore, for any two objects X and Y, the disjoint union
(X + Y, UI, U2) can be introduced, UI, U2 have to be disjoint, monic and jointly
epi maps in this case. Such a disjoint union is a coproduct in A as well as in
Map(A). Together with the morphisms PI ° and P2° as projections it is also the
product of X and Y, the product in A, only, of course.

6.2 Allegory Axioms for Algebraic Set Theory

In this section, the aim is to single out a class (subcategory) of relations S from
an allegory A, just as in Gödel-Bernays set theory a class of sets is singled out
from the entity of classes.

Intuitively, in our approach to Algebraic Set Theory, a relation R : X ---+ I
should be considered as a collection (Xi)iEI = ({x: iRx} )iEI of subsets of X,
not necessarily disjoint nor non-empty nor covering X. Whenever we will feature
axioms or statements in the following, an informal reformulation in terms of
collections will be included, enclosed in brackets {}
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Those axioms will postulate that collections of components with at most one
element ought to be small, the collection of small relations should be closed
with respect to composition and subset, every small relation can be internally
represented and there is also a formulation of a powerset axiom.

So in short, we propose in this chapter a set ofaxioms for families of sets indexed
by classes. This should be put in contrast to prior approaches to Algebraic Set
Theory by axiomising either disjoint families of sets indexed by classes ([JM95],
[Sim99], [ABSSü3], etc.) or families of subsets of a given class X indexed by
classes ([Buta3]).

As presented in section 2.3 the canonical indexed category Cc over a category C
describes, in some sense, the category C itself from the viewpoint of C. But the
component categories Cl = C/ I of Cc model disjoint families of sets. This fact
clashes with our premise to include potentially intersecting sets in some sense.
Working with a different indexed category over C, arbitrary families of sets can
be integrated in the setting of indexed categories.

In the relational indexed category IRe over C, the component 'Rf is no longer the
conventional slice category C/ I, but formulation of slice category of relations.
The objects of 7?./ are relations R : X - I for some X, a morphism between
R : X - I and S : Y - I is a relation T : X - Y satisfying SoT ç R.

If all involved morphisms are maps, then the diagram commutes, thus retaining
the slice category C/ I as a subcategory.

The functor u* is defined by u*(R) = UO Rand u*(T) = T for morphisms, which
is indeed a morphism from u*(R) to u*(S) as uOS 0 T ç ueR. The relational
indexed category ~ is no indexed subcategory of C (unless in trivial cases), be-
cause u*(J) = UO f need not be a map again. Yet in the other direction, there is
an indexed functor ~ ---+ C, the disjointification functor, mapping each relation
(l, k) : R ç I x X to the map l.

The construction of a relational indexed category works also for allegories, i.e.
with the same definition as above, we see that for every allegory A, there is an
indexed category ~A over the category Map(A).
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From a meta-level perspective, there are the following demands on a structure of
smallness:

• S should be an indexed subcategory of IRA

• Suppose that A is an allegory coming from a regular category C. The
structure of smallness should be preserved when applying the disjointifica-
tion functor IRe ~ Cc. Conversely, given a structure of smallness in Cc, the
preimage should give a small structure in IRe

In the latter condition, with structure of smallness in a category C, a subcategory
subject to the axioms of [Sim99] is meant. In Theorem 6.2.7 the comparison to
the mainstream approach ofaxiomising disjoint families of sets indexed by classes
is established, taking into account the considerations on indexed categories from
above.

It is not overbold to argue that the axioms in this chapter presents itself in
a more tidy form than prevalent sets ofaxioms for Algebraic Set Theory. In
fact, especially the Representability and Power Axiom have an inherent relation-
like character which is perceptible in other treatises, too. Some statements that
else would require a different treatment are included in a way within the Union
axiom. Moreover, the following section is a witness that these axioms constitute a
successful solution to the challenge to take arbitrary sets that potentially intersect
as a basis for a formulation of Algebraic Set Theory. From a set theory viewpoint,
renouncing the additional requirement to have disjoint families appears much
more natural.

Opponents would allege that this comes with the cost that these axioms are
formulated in an allegory setting. As such, the theory is weaker, only within
a regular allegory imposing the condition that small relations come from small
maps, it gets equivalent to prevalent axiomisations of small maps in a regular
category. Although it comes not most direct, an integration into an indexed
category setting is well feasible as show above.

Furthering Algebraic Set Theory, a next step is to study universes, that are
objects U together with a bijection U ~ P(U), so that there is a global element
relation on U. This chapter ends with a brief examination on universes in our
relational approach to Algebraic Set Theory.
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The Axioms
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Definition 6.2.1. Let A be an allegory. A class 5 of relations is called class of
small relations if it fulfils the following axioms Al-AS:

Al Subsingleton One-to-one relations are small.

A2 Union Smallness is closed with respect to composition:
{For small families (Si) and (Ry), U Ry is small.}

yESi

A3 Separation Smallness is closed with respect to ç.
A4 Representability For every object X there exists an object

Ps(X) and a small relation 3;: X ~ Ps(X) such that for every
small relation R there exactly one map f allowing the factorisa-
tion R = r 3x.

X~Ps(X)

~~ I/{
{The family (B)BEP,sX is small and for every small family (~)iEI
there is a morphism f : I ~ Ps(X) which represents the family,
i.e. Rï = {x: x E f(i)}}

A5 Power For every X the relation ~ exists and is small.
{(P(B))BEPsX exists and is small}

We will drop the index from 3x whenever it is unambiguous, E is an abbreviation
for (3)°. The relation ~ corresponds to an internal superset relation :2x, but
we will keep the notation ~ to avoid mix-up with with (external) superset in the
allegory A. Recall from the definition of the division that T ç ~ <=> To 3 ç 3.

Applying Lemma 6.1.3 to A4 and A5 tells us that the division ~ of small relations
Rand S exists as soon as ~ exists because ~ = fRo 0 ~ 0 gs for maps fR and fs
representing Rand S respectively. If S is small, then ~ is small, too.

The axioms AI-A2 imply the existence of some additional structure on the sub-
category 5 of small relations. The map X ~ Ps(X) extends to a contravariant
functor on 5, for example. That is because if R is small then there is a map Ps(R)
such that 30 R = Ps(R)O 3. As r is always small, Ps also extends to a covariant
functor on Map(A). We denote this "image map" by fI, so that 3 r = U,)O 3.
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For a small map 9 : X --+ A the ''fibre map" g-l A --+ Ps{X) is simply the
unique representing map of 9 as 9 = g-10 3.

The singleton {} x or ax is the representing map of the identity, internal union
U(X) : PsPs{X) --+ Ps{X) is defined as the representing map of 33 (or in greater
detail 3R.;(x)3x).

Lemma 6.2.2. (Ps, a, U) is a monad in the category of maps Map{A).
This means that a: Id --+ Ps and U: PsPs --+ Ps are natural transformations which
fulfil both the unit law U(X) aR.;X = ~ = U(X){ax), and the associativity law
U(X) (UfX)) = U(X) (U(R.;X)) .

Proof. Let us expound only the proof of naturality of the singleton map, as the
other statements are similar: Apply converse to ay f = f,ax. Because representa-
bles are unique, the equation follows from rayo 3y= axo f,o 3y= axo 3x r,
as aO :3 = ~ by definition of the singleton. _

The internal intersection n would be the representing map of (~) 0, but Ex
=-P(X)

is not small in general, so (~)o need not exist nor be small. The composition
=-P(X)

E3 is a sort of all relation on symmetric small objects. We note that RO R =E

fr 3 <;;;;E3.

In Set, for example, the relation 3E consist of all disjoint pairs of subsets; the
pair of empty subsets is not disjoint, so ~ is not in :3E. But, for example an easy
consequence from the axioms is that hO <;;;;hO 3E iff hO 3 is full.

Discussing Axioms

There are two immediate, but conceptually and meta-mathematically important
implications from the axioms Al and A2.
First, recall that in the motivation in Chapter l, there was the promise that in
Algebraic Set Theory there will be a natural reformulation of the replacement
axiom in categorical, algebraic terms. To reveal the answer to this challenge, the
replacement axiom takes the following form in our setting:

B2.1 Replacement Sr is small for a small relation S.
{for a small family {Si)iEI the image f{Si)iEI is small}

We see that this statement indeed holds as r is one-to-one. On the other hand,
if we multiply with hO from the right for a map h : I --+ J, we obtain
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B2.2 Index Stability r R is small for a small relation R.
{for a small family (Rï)jEJ, the family (Rh(i))iEI is small}

70

•

So from this corollary, we learn that the category of all small relations is indeed
an indexed subcategory in ]RA.

We might state A3 Separation in an equivalent way, that is to require R n S to
be small for a small relation S. This formulation might be closer to the intuition
to separate something small out of large family.

Comparing to [Sim99] there are two implications from the axioms that follow
much more direct in our setting:

Dl Cancellation If gRis a small relation, then also R.

{If the disjoint union (. ~ (Rj)) is small, then (Rj)jEJ is
)Ef- (~) iEI

small itself}

D2 Quotients Re small where e is epi implies that also R small.
{For e : W -71 X if {w : e(w) E RïhEI is small then (Rï)iEI is
small, too.}

Both properties follow very direct from R ç (gOg)R = gO0 (gR) and R ç (Re)eo.
For some related other statements, though, we need that A comes from an nearly
regular category, i.e. that every relation R has a tabulation R = l 0 kO.

Lemma 6.2.3. Let A be an allegory that comes from a nearly regular category.
Then the following statements are valid:

D3 Relational Descent Suppose e epi and eOR small, then R is
small, too.
{Suppose e : 1-71 J is epi and (Re(i»)iEI is small then (Rj)jEJ is
small, too.}

D4 Descent Assume a pullback situation fe' = eg with e epi, g, e'
jointly monic. Then g is small =>f is small.
{For disjoint families we have: Suppose e : I -71 J is epi and
(Re(i»)iEI is small then (Rj)jEJ is small, too.}
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Proof. As eO R is small, there is a map d such that dO3 = eO R. We show, that
edo is a map. It is total as e is epi (~ = eeo ç edOdeO).

For univalentness we need that for every R there is a tabulation R = lko. From
ex = ey follows dx = dy because of unique part in (Power)

With Lemma 3.1.2 this result can be stated as eOe = xyo => dad = xyo. Note
that there need not exist any such x, y if A is not tabular. But when there is a
tabulation for every relation, we can follow eO e ç dOd and so deO is univalent. So
we have found a representing map deO for R = eeoR = (deO)O3. For the descent
axiom for maps we set R = ge'O. •

Comparing to other Approaches to Algebraic Set Theory

Next we explore the relation of the axioms given in this text to other versions of
Algebraic Set Theory. We chose the formulation of ALEX SIMPSON [Sim99] for a
comparison. In that paper, the following axioms for Algebraic Set Theory (there
called classic structure) were proposed:

Definition 6.2.4. Let C be a regular category. S ç C is a class of S-small maps
if it fulfils the axioms of [Sim99, Def 2.4.}, i.e. if

SI Subsingleton monomorphisms are S-small

S2 Union S is a subcategory of C, i.e. S-smallness is closed with
respect to composition.

S3 Pullback stability S is stable under pullback.

S4 Representability (Axiom 1 in [Sim99})
For every object X there is an object Ps(X) and a small relation
3xÇ Ps(X) x X such that, for any small relation R ç A x X
there exists a unique morphism h : A -4 Ps(X) fitting into a
pullback diagram of the form

f. u ~ 3f
(l,k) ! (t,s) t
A x X (h":rlfs(X) x X

(6.1)
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where a relation R ç A x X is S-small if its first component
R - A is S-small.

85 Power (Axiom 2 in [Sim99J)
For every object X, the so called superset relation ;2x is small,
where ;2x<-7 Ps(X) x Ps(X), is defined as the relation satisfying:
any morphism (h, g) : A - Ps(X) x Ps(X) factors through the
subobject ;2x<-7 Ps(X) x Ps(X) if and only if, in the pullback
diagram below, Q <-7 A x X factors through P <-7 A x X.

72

P )3(( ~
(l,k) f U (t,s) . !

_lgxü)
A x X (h:rlfs(X) x x- A x X

(6.2)

Both Representability and Power Axiom call for a reformulation in a relational
setting. To that aim the followinglemma will be helpful:

Lemma 6.2.5. Let R = lko : X "'" A and S = tsO : X "'" B be relations,
h: A - B be a map. Then:

If )8
(l,k) t U (t,s) r
AxX~BxX

is a pullback iff R = hOS

Proof. The diagram commutes iff it commutes projected to the first and to
the second coordinate. It is a pullback iff it is a pullback when it is projected
to the first coordinate. In other words, with tabulations R = lko and S = tsO

,

the diagram just expresses that su = k, luO = hOt with u, l jointly monic. So
hOS = hOtsO= luoso = lko = R.

A-----) B
h

Figure 6.2: Splitting up the diagram for lemma 6.2.5

On the other hand if R = hOS we can define u by u := SOk n tohl and check that
it is indeed a map that is jointly monic with l. •
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Lemma 6.2.6. With allegory notation, the axiom S4 Representability (Axiom 1
in (Sim99]) is equivalent to A4 Representability for the category of relations of C,
i.e. it holds iff
there exists a S-small relation 3x such that for any S-small relation R there exists
a unique morphism h such that R = hO3.

Moreover, the superset relation :2x of (Sim99] is given by~. For categories
of relations, the axiom SS Power (Axiom 2 in (Sim99]) is thus equivalent to AS
Power.

Proof. The first statement gets trivial in presence of Lemma 6.2.5. For the
second, split the morphism (h, g) into (id x g) 0 (h x id) 08. We know that a
morphism f factors through a monomorphism m iff the pullback J*(m) of m
along f is an isomorphism (Lemma A.1.3). 80 (h,g) factors through a subobject
r.p : ~ ~ Ps(X) x Ps(X) iff

((idx g) 0 (h x id) 0 8) * ( r.p) = 8* (hxid*(idxg*(r.p) ))

is an isomorphism. Applying Lemma 6.2.5 twice, we see that this is equivalent to
the statement that 8*(hO~g) is an isomorphism, or, applying Lemma A.1.3 again,
to Ll ç hO~g. Allegory calculus yields the formulation hgOç ~,finally.

The relations P and Q have the representations P = hO 3 and Q = gO 3,
respectively. Therefore Q factors through P iff gO3 ç hO 3 or equivalently iff
hgO 3 ç 3.

Putting these reformulations together, superset relation takes the following form:
~ is the :2-relation iff

for every pair (h, g).

But, in fact, as every relation R arises as hgOfor some pair (h, g), this is nothing
else than the definition of the division~. •

Theorem 6.2.7. Let C be a regular category equipped with a subcategory Sc of
S-small maps. Then the S-small relations fulfil the axioms of smallness Al-AS,
if we define a relation R ~ I x X to be S-small if R ~ I x X -+ I is S-small.

Conversely, let A be a regular allegory equipped with a subcategory SA of small
relations. Then the small maps in Map(A) fulfil the axioms of S-smallness Sl-SS
provided that a relation R : X - I, R = lko is small iff its left tabulation map l
is small.
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Proof. It remains to show A3 Separation and A2 Union for S-small relations
in a category of relations and S3 Pullback stability for small maps in a regular
allegory.

If R ç S holds for two relations (l, k) : R ~ I x X and (t, s) : S ~ I x X,
then there exists a monomorphism i : R ~ S such that ti = l/\ si = k. So SI
and S2 imply that the separation axiom A3 holds for S-small relations. In fact,
a similar argument using the last statement of Lemma 3.1.3 shows that in any
regular allegory, A4 is redundant.

RS
le
P;/PUllb~

R S

/(~y~
Z y X

Figure 6.3: Composition of relations in a regular category

For the composition of relations consider the diagram in figure 6.2. The map
t is S-small by pullback stability, hence lR 0 t is S-small. Now apply Theorem
1.2 (Quotients) of [Sim99]: if foe is S-small and e epi then f is S-small. Since
lRS 0 e = (lR 0 t) the left tabulation lRS is S-small as desired.

Finally, consider a pullback situation hg = fh' with g, h' jointly monic and f
small. From gh'O ç hOf follows that gh'O is small and hence g. •

We did not yet consider the symmetric division in context of the setting of small
relations. In fact for small relations, the symmetric division always exists - it can
be calculated as a composition involving only the representing arrows.

Lemma 6.2.8. Suppose in an allegory A the symmetric division ~ has a factori-
;:)

sation ~ = k 0 lO, not necessarily jointly monic. Then ;:)= t::. and for R = r 3
;:) ;:)

and S = gO 3 the symmetric division can be expressed as R = r g.
S

Proof. For T = ;:)we unfold the definition of the symmetric division.
;:)
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The map k is total, so ~ ç kOk and therefore lO 3 ç kOklo 3 ç kO 3. The same
derivation can be done with l and k reversed, so kO 3 = lO 3. The representability
axiom A4 implies that l = k, as there is no more than one map representing a
relation. So ~ = T = klo = kko C ~ because k is univalent. On the other hand3 -
~ is in ~ and therefore in ~. The general formula for symmetric division follows
from Lemma 6.1.3 and 3.1.2.•

In the final remarks closing the thesis, we present some of the standard axioms
of set theory in a very condensed, not to say in a cryptical form.

For that aim, consider in a formulation of a Gödel- Bernays set theory the allegory
of classes and class-relations, the class of all sets U and the global element relation
3: U ..,...U. The division ~ - if it exists - is then the classs

{ (y, x) : {z : (x, z) E 5} = {z : (y, z) E 3}} = {(y, x) : {z : (x, z) E 5} = y}.

So given a class relation 5, the condition that

3. d'= eXIsts an IS a map
S

is just a reformulation of the statement that for every x the class {z : (x, z) E 5}
is a set. This way, (some of) the axioms of a Gödel-Bernays set theory can be
equivalently reformulatedas:

Extensionality ~ = ~.
3

Replacement 3 is a map where f3r
is a map.

Union 3 is a map.
33

Powerset 3 is a map.
2
3

In fact, these axioms can not only be interpreted in the allegory of classes in
a Gödel-Bernays set theory, but also in the context of the allegory version of
Algebraic Set Theory that has been introduced in this chapter. Define for an
allegory A equipped with a structure S of small relations a universe to be an
object U equipped with an isomorphism map d : U ~ Ps(U). For such a universe
(U, d) in A, the relation do;:, serves as a global element relation ~ on U.

Lemma 6.2.8 exhibits that a relation of the form .3L is a map iff 5 has a factorisa-s
tion r 3, that is iff S is small. Thus, the validity of these five statements follows
from the axioms of smallness.



Appendix A

Tables, Sheets, Formulas

This appendix collects properties, formulas and theorems in general category
theory in a condensed form. Parts of the material below can be found in good
accounts on general category theory, e.g. [AHS90], the remainder is supposed to
be general folklore in category theory. In the scientific community, these basic
facts are assumed to be commonly known and are applied, in some variants,
throughout in the literature. Proofs are mostly exercise-level or can otherwise be
found in either [Bor94, AHS90] or [PPT04] (for Table A.3.3)

A.I General

Table A.1.1. Suppose U : A ~ C is a functor, V ~ C its image.
Then:
U is
faithful

full and faithful
additionally
preserves limits

F~Visa
~ subcategory

~ full subcategory
~ additionally

closed under limits (in C!)
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U reflects
~ monos and epis

monos, epis, limits
and colimits
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Table A.1.2. Suppose C is a category. A morphism e is split epi if there is an
m with e 0 m = id. In that case

a?=a=moe ,

R = equ(id,a) = coeq(id,a) = l~ AJa = l~ AJa
The following implications of variants of epi morphisms f hold:

iso => split => stably regular => stably strong => stably extremal
~ ~ ~

regular => strong => extremal
~
epi

In a tapas, this table reduces to iso => split => epi.

Lemma A.1.3. Suppose f is morphism in a category C and m a monomorphism.
Consider the following diagram:

f

171
~

m

Then: f is an isomorphism iff both the square above is a pullback and there is
such a K which fits into the diagram.
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A.2 Adjunctions

F
Definition A.2.1. An adjunction V : F -l U : 1\, where X 7 A, is defined

tj,ê ~

by one of the items below. They are related by the following equations:

'f}x ?dv and CA ?dllFX UA
fV = Ufo'f}x and gll = CA 0 Fg
for f: FX~A for g: X~UA

Fh ('f}X20 h)1I and Uk = (k 0 CAl)V

for h: Xl ~ X2 for k: Al ~ A2

• Fand U are two functors and there are two natural transformations:
The unit 'f) : Id =? UP and the counit C : Rf =? Id with

id = UcO 'f}u and id = CF 0 F'f}

• U is a functor and for each object X there is a free object FX and an
embedding of generators 'f}x : X ~ U(FX) such that:
For every object A and map 9 : X ~ UA there is an unique extension 911

making the diagram
FX

1

Ig"
V
A

commute .

• F is a functor and for each object A there is a cofree object UA and a
morphism CA : F(UA) ~ A such that:
For every object X and map f : F X ~ A there is an unique extension fV
making the diagram

commute.

• Fand U are two functors and there is a natural bijection
_v: (FX, A) ~ (X, UA) : _II
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• Fand U are two functors and there is a bijection
_v: (FX,A) ~ (X, UA): _/\ with
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iff
yAl

FX jh
~A2

iff FXl~

F(h») fi

FX2--;(

• Fand U are two functors and there is an isomorphism - v : F 1A ~ X 1
U: _/\

• U is a functor and for every X there is an initial object X ~ UF X in
Xl u.

• U is a functor that preserves limits and FX = lim(X 1U ~ A) exists.
+-

Existence and Properties of Adjoints

Theorem A.2.2 (Adjoint Functor Theorem). Suppose C has small homsets,
lower bounds on small diagrams, idempotents split.
Then: C has an initial object<=> there is a set of jointly weakly initial objects in
C.

Suppose C has small homsets, limits on small diagrams, U preserves them.
Then: There is a U -free object (F X, 'TJx)<=> there is a small set of solutions (S, s)
such that for every X ~ UA there is a (s, S) and h with

X~US
\. :U(h)

g~ v
UA

S
I
Ih
V
A
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Theorem A.2.3 (Special Adjoint Functor Theorem). Suppose C has small hom-
sets, subsets and limits. Then:
C has an initial object <= there is a cogenerating set.

Suppose C, 1) have small homsets, subsets and limits; U preserves them.
Then: F -1 U <= there is a cogenerating set.

Lemma A.2.4. Let F -1 U be an adjunction between X and A, and
1),1;

T = UF, G = m, J-L = U CF, 0 = FTlu and K is the comparison functor for
the monad (T, Tl,J-L) (see A.2.10).

Then these properties always hold
CF split epi Uc split epi Tlu split mono FTl split mono

and the following equivalences can be recorded:

c epz iff U faithful Tl mono iff F faithful
iff 1\ preserves epis

c extremal epi iff U conservative Tl extr. mono iff F conservative

c regular epi iff K full faithful Tl split mono iff
c split epi iff U monadic1 TlA split mono iff :lB,A ~ UB

split mono

c split mono iff U full Tl split epi iff F full
c zso iff U full faithful Tl zso iff F full faithful

iff G _-1 I, Ufj=Tl
1),1;

Moreover,

CF mono iff Uc mono iff Tlu epi iff FTl epi

iff the following pairs of morphisms are isos
I;p 1)u

FUF~F U~ UFU
F1) u.

iff Ge = cG iff TlT = TTl
iff Ulim(F) equivalence iff Flim(U) equivalence

lif X has pullbacks.



APPENDIX A. TABLES, SHEETS, FORMULAS

Reflections and Sheaves

Definition A.2.5. Suppose C is a category. A reflection

a
a -1 L: L: !:::; E; L:= La

'1,E:

is given by either

• an adjunction where é is iso, i. e. L is full and faithful
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• a full subcategory L: ~ X and for every X there is a best approximation aX
and an inclusion 'T}x : X ---t aX such that
Every morphism into L: factors uniquely through the best approximation

• an idempotent monad (L, 'T},f1-), where f1- = U éF iso, and L: is the category
of L-algebras (see A.2.10).

Definition A.2.6. Suppose E is a tapas. An inclusion m : L: ---t E is given by
one of the items below. They are related by the following equations:

m* a m* - L

-j
'T}*(aU) = {xJj(x E U)} U(C) {x : ::lM covers C VfE M : x-f E U}U -

J T = {wJjw = w} J 'lS the characteristic map for J ç 0

L: Ej = Sh(C) jR - R for R E SubyC = O(C)

R 'lS a cover of C <=> R E J(C) ç O(C) = SubyC

• a -1 L is a reflection where a preserves finite limits

• j : 0 ---t 0 is a map which satisfies j 0 j = j, ja = j and j 0 A = A(j x j)

• U 1--+ U is a closure operator on Sub(A) and rU = ru
• { if E = [CO, 5]: } a coverage on C

L: = Ej = Sh(C) is called the category of sheaves or s for j (or for the notion of
a coverage on C).
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Lemma A.2.7. The formula

Subsh(c)(aX) = j-closed-Sub(X)

is a shori cut for the following fact:

82

7)u

U~U ~ajU~f 7)jU f
X 7)X X) a

The first square is a pullback iff A is closed; A' = aA and <p = T}A in this case.
We thus obtain jU by pulling aU back along T}.

Lemma A.2.8. Let C be a category equipped with a notion of a coverage and
suppose R ç yC and f*(R) = {s : fs ER}. Then the following statements are
equivalent:

(1) There is an S ç yC which covers and f*(R) covers for all fES

(2) {f: f* R covers} covers

(3) {f: f* R covers} = yC

(4) R covers
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Left and Right Adjoints

Table A.2.9. The following functors appear as right and left adjoints:
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F is the left adjoint

free
(FA, B)
FA---+B

is and F preserves:
colimits

L >

Jl~D3_ ...
direct limit
lim~JC
o
sum L;

coproduct Il
A+B

pushout
coequaliser
quotient
epz

Supremum V
:J

III a po:

= /\ {x: y ::; Ux}

Ax-

F-1U U is the right adjoint

forgetful
(A,UB)
A---+UB

f.

is and U preserves:
limits

L .

~~
DI_D~~D3_ ...

inverse limit
lim
+--

Jc
1

product TI
AxB

pullback
equaliser
subobject
mono

lnfinum /\
V

= V {y : Fy ::;x}

( )A exponential
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Monads and Kan Extensions

84

Definition A.2.10. A monad T on a category C is given by a triple (T, TI,J.L)
with

An algebra for a monad (T, TI,J.L)is given by•
T:C~C
TI: Id ~ T
J.L:T2 ~ T

A=(X,h)
h:TX~X

Try
/-LT ~

T3 ---.... T2 ~ T
T;:' "--...-/

1'/T

J.L0 TTI = il = J.L0 'f}T

J.L0 T J.L= J.L0 PT

/-LX

T2 X --.>0. TX ~ X-- --Th "IX

ho Tlx = il
hoTh=hopx

•

where UT(A) = X is the underlying object of A. For two algebras A = (X, h) and
B = (Y, k), a homomorphism A ~ B is determined by a morphism f between the
underlying objects satisfying

The free algebra pT (X) is given by (TX, J.Lx); it satisfies indeed the universal
property:

X~TX
\. :koTg

g~l'
Y

T2X~TX
I I
I T(koTg) I koTg
l' l'
TY--Yk

in other words FT -1 UT where TIT=TI; eT =h: (TX,J.Lx) ~ (X, h).
ryT,eT

The Eilenberg-Moore comparison functor K is given by

(UB2, UeB2)

lUf
(UB2, UeB2)
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Every algebra has a representation as coequalisers of free algebras given by

85

•
Definition A.2.11 (Kan Extension). Suppose F: B -- C and T: B -- Sare
functors.
The left Kan extension is given by a functor L = lim: C -- S and a natural

-+F
transformation l: T -- LoF such that for any other functor S: C -- Sand
natural transformation é: T -- S 0 F there is a unique /I: L -- S such that
/I Fol = é as in the diagram

B F------) C

•
that is (limT, S) ~ (T, S 0 F) for shori.

-+F

In other words, the functor assigning T to the left Kan extension limT is left
-+F

adjoint to the functor S ~ So F,. the dual concept, a right Kan extension, is then
the right adjoint to - 0 F:

lim -1- 0 F -1lim.
-+F +-F

Kan extensions are special (co)limits:

(limT)(C) = lim(CLF -- B ~ S) and (limT)(C) = lim(FLC -- B ~ S)
+-F +- -+F-+

and conversely limits and adjoints can be expressed as Kan extensions:

F -1U {::}F = limld and limT = limT
+-U +-!.7
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A.3 Logic and Point-free Topology
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Table A.3.! (External Semantics - Generalised Elements). Suppose X, Y, S, T
are objects in a topos [, and generalised elements are defined by

a E?f. A iff a: T -+ X factors through A ~ X.

Then the T-elements of a subobject {xl<p} ~ X are determined by induction on
the complexity of the formula with the following equivalences as building blocks:

• a,b E~ {x,ylf(x) = g(y)} {:} f(a) = g(b)

a E~ {xltrue} {:} a ETX

a E~ {xlfalse} {:} T=O

aE~{xl<p/\'lji} {:} aE~ {xl<p}/\aE~ {xl'lji}

b E~ {yl:3y <p} {:} :3 e: S - T, a Es X :

(a,boe) E:xY {(x, y)I<p(x, y)}

aE~{xl<pv'lji} {:}
:3 Sl~T covering such that

S2-d

aoeE~ {xl<p},aodE~2 {xl'lji}

a E~ {xl<p ~ 'lji} {:} Ve:S-+T:• a 0 e E~ {xl<p(x)} ~ a 0 e E~ {xl'lji(x)}

a E~ {x I-,<p} {:} Ve: S-+T:aoer:J.: {xl<p(x)}

b E~ {yl\fy <p} {:} V e: S -+ T, a Es X :

(a, b 0 e) E:xY {(x, y)I<p(x, y)}
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