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Diagnosis and Maintenance in an Integrated
Time-Triggered Architecture

The use of electronics in automotive and avionic industry accounts for numerous improve-
ments with respect to system safety, fuel economy, passenger comfort, and system costs. In
last years, however, the development of effective diagnostic systems stayed behind the recent
increase of electronic systems in modern means of transportation. In combination with shrin-
king geometries this issue has lead to a dramatic increase of transient system failures that
cannot be traced. This so called trouble-not-identified phenomenon is a significant problem
with major economic implications due to false maintenance actions resulting in increased
warranty costs and decreased customer satisfaction.

In this thesis we look at diagnosis in the context of integrated architectures, since integra-
ted architectures, as already partly deployed in avionics, promise massive cost savings due to
the multiplexing of hardware resources among different application subsystems. Furthermo-
re, the resulting reduction of wiring and connectors results in dependability improvements.
For this reason, integrated architectures are gaining more and more momentum also in the
automotive domain in order to resolve the pending “one function - one control unit” problem.

In order to cope with industry demands on diagnosis, as part of this thesis a framework
is introduced for error detection and subsequent identification of the field replaceable units
causing system malfunction. Such a framework provides generic diagnostic services to be
parameterized according to the developer’s needs and thus avoids costly redesign of individual
diagnostic solutions at application level.

Based on industrial requirements, a maintenance-oriented fault model is presented. This
fault model takes the component-based nature of today’s distributed embedded systems into
account. According to this model each experienced failure is classified with respect to the
field replaceable units of the system and stops the recursion of the fault-error-failure chain
at a level suitable for maintenance. The pivotal strategy of the diagnostic architecture is the
establishment of a holistic view on the system by operating on the distributed state esta-
blished via the underlying core services. To capture the characteristics of the fault-induced
distributed state changes in the value, space, and time domain, we introduce the concept
of out-of-norm assertions in order to discriminate between different types of faults that are
affecting the operation of the distributed system. In the introduced framework, for the spe-
cification of the diagnostic mechanisms timed automata are used.

For the transport of diagnostic information a dedicated virtual network is established.
The key advantage of such an encapsulated network dedicated to diagnosis is the fact that
real-time traffic is not compromised in any way and no probe effects can be introduced.
Based on the maintenance-oriented fault model this diagnostic information is then processed
to determine the health status of the field replaceable units of the system. The result supports
the service technician in the decision process whether a field replaceable unit remains in the
system or will be replaced.

The proposed methods are implemented and evaluated in a prototype setup of the in-
tegrated time-triggered architecture. In this prototype setup the feasibility of the proposed
architecture is investigated. Furthermore, fault injection campaigns have been carried out,
to analyze the effects of faults on the distributed state of state time-triggered core network
and to validate claims of the diagnostic architecture.
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Diagnose und Wartung in einer integrierten
zeitgesteuerten Architektur

Der Einsatz von Elektronik in der Automobil- und Flugzeugindustrie hat zu zahlreichen In-
novationen im Bereich der Sicherheit, der Antriebstechnik, des Passagierkomforts sowie zu
einer Reduktion der Systemkosten geführt. In den letzten Jahren hat allerdings die Entwick-
lung effizienter on-board Diagnosesysteme dem technischen Fortschritt auf anderen Gebieten
nicht Stand gehalten. Mit dem Anstieg von transienten Fehlerraten von IC’s aufgrund der
höheren Integration hat diese Entwicklung zu einer signifikanten Erhöhung von nicht repro-
duzierbaren Fehlern mit weit reichenden wirtschaftlichen Konsequenzen geführt.

In Rahmen dieser Arbeit wird Diagnose im Kontext von integrierten Architekturen un-
tersucht, da integrierte Architekturen, wie bereits teilweise in der Flugzeugindustrie einge-
setzt, massive Kosteneinsparungen durch das Multiplexen von Hardware Ressourcen zwi-
schen den verschiedenen Applikationssubsystemen erlauben. Weiters ermöglicht die Reduk-
tion von Steckern und Kabelverbindungen eine erhebliche Verbesserung in Hinblick auf die
Zuverlässigkeit des Systems. Aus diesem Grund gewinnen integrierte Systemarchitekturen
auch in der Automobilindustrie immer mehr an Bedeutung, insbesondere um das vorherr-
schende “eine Funktion - ein Knoten” Problem zu lösen.

Um den industriellen Diagnoseanforderungen zu genügen, wird als Teil dieser Arbeit ei-
ne Rahmenumgebung vorgestellt, welche die online Fehlererkennung und Identifikation der
im Feld austauschbaren Systemkomponenten unterstützt. Es werden generische Diagnose-
services zur Verfügung gestellt, die nach den Anforderungen der Entwickler parametrisiert
werden können. So wird ein aufwendiges und kostenintensives Re-design von individuellen
Diagnoselösungen auf Applikationsebene vermieden.

Ein zentrales Element der Arbeit ist die Definition eines wartungsorientierten Fehlermo-
dells. Dieses Fehlermodell berücksichtigt die typische Komponentenstruktur heutiger verteil-
ter eingebetteter Systeme. Nach diesem Modell wird jeder aufgetretene Fehler nach den aus-
tauschbaren Einheiten des Systems klassifiziert. Damit wird die Rekursion der “Fault-Error-
Failure” Kette auf einer für die Wartung passenden Ebene gestoppt. Die Schlüsselstrategie
der vorgestellten Diagnosearchitektur ist die Operation auf dem verteilten Zustand des Sy-
stems. Um die Charakteristik von fehlerinduzierten Zustandsänderungen in Wert, Zeit, und
Raum einzufangen, wird das Konzept der Out-of-Norm Assertions eingeführt, um zwischen
den verschiedenen Fehlerklassen zu unterscheiden. Für die Spezifikation der Diagnosemecha-
nismen werden Zeit-Automaten benutzt.

Zum Transport der Diagnosenachrichten wird ein der Diagnose a priori zugeordnetes vir-
tuelles Netzwerk verwendet. Der Hauptvorteil eines solchen gekapselten Netzwerkes besteht
darin, dass andere Echtzeitnachrichten nicht beeinflusst werden und somit kein “Probe Ef-
fekt” entstehen kann. Die Diagnoseinformationen werden anschließend nach dem wartungs-
orientierten Fehlermodell verarbeitet, um den Zustand der austauschbaren Systemkompo-
nenten festzustellen. Das Resultat des Analyseprozesses dient dem Wartungstechniker im
Entscheidungsprozess, ob eine Systemkomponente getauscht werden muss.

Die entwickelten Methoden wurden im Rahmen eines Prototyps der integrierten zeit-
gesteuerten Architektur implementiert und evaluiert. In diesem Prototypenaufbau wurde
die Durchführbarkeit der vorgeschlagenen Architektur untersucht. Weiters wurden Fehler-
einstreuungsexperimente ausgeführt, um die Effekte von Fehlern auf den verteilten Zustand
des unterliegenden zeitgesteuerten Systems zu analysieren und Behauptungen der Diagno-
searchitektur zu validieren.
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Chapter 1

Introduction

There is a significant trend in the automotive and avionics industry to increase the
number of electronic devices in order to provide a functionality that goes beyond
common mechanic/hydraulic systems. The reduction of cost, increased safety and re-
liability, reduced complexity, and enhanced quality of control are among the primary
objectives of replacing conventional subsystems with electronic ones. Fly-by-wire air-
planes like the Boeing 777/787 or the Airbus A320/330/340/380 series aircrafts show
impressively the benefits and capabilities of state-of-the-art electronic devices and ar-
chitectures [MS03]. Also in the automotive domain without the use of electronics in
modern cars many features like anti-lock braking, stability programs, airbags, cruise
control, intelligent motor management and many more would be impossible. With
decreasing hardware costs and increased reliability of electronic devices this trend
will continue even more in the future. For example, in the automotive domain it is
estimated that more than 80% of all innovations now stem from electronics [LH02].
According to [Ber02] in the 2001 model year, electronics accounted for 19 percent
of a mid-sized vehicle’s cost, while the cost of the electronics in luxury vehicles can
amount to more than 23 percent of the total manufacturing costs [LHD99, LH02].

However, despite all the benefits it is important to state that with the increasing
use of electronic devices in transportation systems the likelihood of malfunctions and
thus the numbers of defective electronic components will also increase.

Originally developed to provide simple open/short circuit and abnormal voltage
level detection mechanisms, electronic diagnosis evolved into an integral part of every
automobile. All modern cars are equipped with On-Board Diagnosis (OBD) systems
(OBD-II in USA or EOBD in Europe). OBD, originally developed to continuously
monitor the emissions of a car, provides now almost complete engine diagnosis and
also monitors parts of the chassis, body electronics, and the control network of the
vehicle [OM02].

However, the development of effective diagnostic systems has stayed behind the
recent increase of electronic systems in modern cars. One reason for the diagnos-
tic deficiencies of modern OBD systems is the fact that diagnosis is often treated
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1 Introduction

as add-on to communication systems rather than an integral part of the architec-
ture [SSW00]. Consequently, the problem of the identification of faulty Electronic
Control Units (ECUs) is one of the predominant challenges that needs to be solved.

Though the breakdown logs of the ECUs inform the service technician about
detected errors within the system, they do not assist the technician adequately in
the identification process [Bar01]. Thus, fully functional units are replaced, or even
worse, faulty ECUs remain unchanged in the system. These diagnostic deficiencies
will become more and more obvious when X-by-wire solutions will be subject to
mass production [Bre01]. Since a mechanic at a service station is no specialist in
automobile electronics, the diagnostic system of the car must provide all necessary
information that allows maintenance of faulty components. For this reason it must
be possible in modern automotive electronic architectures to trace an entry in a
breakdown log back to its source. If this is not possible, as a consequence, fully
operational units will be replaced by mistake.

Many deployed OBD systems analyze the internal state of a component
(e.g., plausibility checks) by applying embedded assertions in the application soft-
ware in order to identify component errors. Assertions are a powerful and accepted
mechanism in helping in the detection of application errors. However, such asser-
tions operate in general only on the internal state of components. The inability to
trace correlated failures of the nodes of a distributed system makes diagnosis prone to
misjudgement about transient faults affecting the system. These so-called cannot du-
plicate failures frequently result in the replacement of operational Field Replaceable
Units (FRUs) [TAP02, MRS+02, Scu98]. As a consequence, these spurious failures
have a lasting effect on the customer’s trust in the product and the reputation of the
manufacturer.

In contrast to permanent component failures that have been massively reduced by
improvements of the manufacturing process [PMH98], transient failures in electronic
systems impose a serious problem to electronic system designers and manufactur-
ers. The primary cause for the significant increase of soft error rates are shrinking
geometries, lower power voltages and higher frequencies [Con02]. Furthermore, the
likelihood of transient failures is also growing due to semiconductor process varia-
tions and manufacturing residuals. Consequently, what is required in distributed
embedded systems, is a diagnostic subsystem with detection mechanisms focussing
on transient failures. In particular, from a maintenance perspective, the most im-
portant diagnostic objective is the discrimination between transient failures induced
from external and internal faults to put an end to unnecessary component replace-
ments.

Today, in the automotive domain we find electronic system architectures that
cannot be classified as either completely federated nor integrated. Typically, elec-
tronic systems in the car do not provide mechanisms to share an ECU among multiple
applications and thus adhere to the federated systems design principle. However, for
economic reasons, distributed application subsystems share typically the same com-
munication infrastructure (e.g., a CAN network for the interconnection of the comfort
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electronics in a car). However, this system design has the significant drawback of
increased complexity. Since reasoning of the behavior of a particular application
requires the understanding of all other applications participating in the communi-
cation, this design makes it hard to comprehend the emerging interdependencies
between applications. Furthermore, in case of failure, missing error containment
capabilities make system integration and diagnosis a challenging and cost intensive
task. Since integration responsibilities cannot easily be assigned, even the launch
of new car models can be delayed. The “1 Function - 1 ECU” design philosophy
that is characteristic for this system design approach leads to a dramatic increase
of the numbers of ECUs due to the increased functionality of today’s cars required
by the expectations of the customers. For example, luxury cars can have more than
70 ECUs [Dei02]. Since such a high number imposes problems with respect to ar-
chitecture complexity, wiring, mounting, resource duplication and many others, a
reduction of the number of ECUs is of great interest.

Integrated architectures as already partly deployed in avionics [Aer91], promise
also massive cost savings by addressing problems the automotive industry is cur-
rently facing. Integrated architectures are characterized by the possibility to share
components among multiple applications. In addition, integrated systems permit an
optimal interplay of application subsystems, reliability improvements with respect
to wiring and connectors, and overcome limitations for spare components and re-
dundancy management. An ideal future system architecture would thus combine the
complexity management advantages of the federated approach, but would also real-
ize the functional integration and hardware benefits of an integrated system [Ham03,
p. 32]. The challenge is to devise an integrated architecture that provides a framework
with generic architectural services for integrating multiple application subsystems
within a single, distributed computer system, while retaining the error containment
and complexity management benefits of federated systems.

1.1 Objectives and Contribution of the Thesis

The main objective of this thesis is to devise generic diagnostic architectural services
as part of a certifiable integrated architecture suitable for both ultra-dependable
applications and those having less stringent dependability requirements in favor of
increased flexibility. In the following, we will identify the primary objectives and
contributions of the thesis.

Integrated Solution

The DECOS architecture, as being developed in the course of the Sixth European
Framework Programme, is designed to combine the benefits of the federated and in-
tegrated system design. The DECOS architecture [KOPS04] offers a framework for
the development of distributed embedded real-time systems integrating multiple ap-
plications with different levels of criticality and different requirements concerning the
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underlying platform. Any time-triggered architecture that provides four basic ser-
vices, i.e. predictable message transport, fault-tolerant clock synchronization, strong
fault isolation, and consistent diagnosis of failing nodes, can be used as the core
architecture for a DECOS integrated system. Based on these core services, high-
level services are realized that are specific to an encapsulated application subsystem
(e.g., brake-by-wire subsystem) and facilitate the development of applications by
providing a stable interface to commonly used functionality thus reducing the com-
plexity of application development. The encapsulation of application subsystems also
facilitates independent development and system integration.

As part of the design of this integrated system architecture, a diagnostic in-
frastructure is devised that in contrast to many addendum solutions deployed today
allows evolving beyond “best guess maintenance”. Our solution provides a frame-
work for both systemic and application-specific diagnosis. While systemic diagnosis
focusses on the assessment of the health status of the underlying platform (e.g., phys-
ical components, connectors), application-specific diagnosis aims at revealing appli-
cation inherent faults such as software and actuator/sensor faults. Since the DECOS
architecture sharply separates application from architecture level, the systemic checks
can be deployed independently from a particular application. By precisely defining
the interface state of the applications, applications diagnosis can be handled in a
generic manner outside the application functionality, as required by today’s indus-
trial demand for intellectual property protection (i.e. no modification of the applica-
tion source code). This way only the application inherent complexity must be dealt
with during application development but no additional complexity is introduced by
the diagnostic subsystem.

A dedicated virtual network, i.e. an overlay network on top of the time-triggered
physical core network, is used for the transport of diagnostic information. This way
no interference with the real-time services or a probe effect due to hardware failures
(e.g., loose contacts) can be introduced that might mislead the analysis process. Fur-
thermore, such a pure virtual solution has also the benefit of keeping the associated
costs to a minimum.

Another important fact is, that the proposed diagnostic solution does not re-
strict the choices of implementation of the analysis subsystem. Either a central or a
distributed solution can be realized.

A Fault Model for Maintenance

In order to tackle prevalent maintenance problems a maintenance-oriented fault
model needs to be devised that takes the component-based nature of distributed
systems into account. According to this model each experienced failure is classified
according to the FRUs of the system. In integrated architectures, a one to one map-
ping between applications and physical components is no longer feasible. This has to
be taken into account in a maintenance-oriented fault model that establishes a basis
for a better understanding of the diagnostic problems of modern distributed systems
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and introduces a maintenance-specific fault classification. Consequently, the model
stops the recursion of the fault-error-failure chain at a level suitable for maintenance.
According to this model, the diagnostic analysis algorithms of the integrated archi-
tecture can assess the health state of each FRU and determine whether a change of
a particular FRU can eliminate an experienced problem. The maintenance-oriented
fault model is based on related literature, field data, and discussions with industrial
partners.

Furthermore, this model forms also the conceptual foundation for the validation
of the diagnostic mechanisms, e.g., by means of fault injection experiments. By
injecting representative faults for every devised fault class (e.g., Electromagnetic
Interference (EMI) for external transient faults) the accuracy of the detection and
analysis mechanisms can be evaluated.

Improved Accuracy of Diagnosis

Currently, industry has significant problems detecting and identifying electronic de-
vices that cause system failures in electronic systems. This so called Trouble Not
Identified (TNI) phenomenon is an increasing problem in automotive and avionic
electronics with major economic implications [TAP02]. The lack of information pro-
vided by currently deployed OBD systems often results in unnecessary replacements
of working components [MRS+02, TE01].

By operating on the distributed state of the system instead of the component
local state correlation of detected failures is possible and thus an improved accuracy
of the assessment process can be achieved. The exploitation of the knowledge of the
physical and functional structure of the integrated system allows a finer granularity
of the analysis that would not be possible in a federated computer system. By
overcoming the “1 Function - 1 ECU” design, a discrimination between hardware and
software is feasible. Furthermore, the strong fault isolation capabilities of the time-
triggered core architecture simplify to answer the question which part of the system
is to blame for the experienced malfunction. In combination with the availability of
a global sparse time base, a correlation of failures based on their timestamps can be
detected. The inclusion of the temporal, spatial and value domain ultimately helps
to answer the question of the mechanics at the service station whether to remove a
FRU or to leave it in the system.

Advanced Maintenance Strategies

In both avionics and in the automotive domain manufacturers envisage a shift from
traditional corrective to preventive maintenance strategies to reduce costs and to pro-
vide optimal availability of the systems. As a prerequisite for the realization of pre-
ventive maintenance strategies, diagnostic mechanism are needed to judge about the
health status of each replaceable part of the system. If advanced maintenance tech-
niques like Condition-Based Maintenance (CBM) are envisaged, then new assessment
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techniques for the condition of electronic devices need to be identified [PP01, TS01].
In order to adopt CBM for electronic systems suitable indicators for degradation or
wearout must be identified and analyzed to detect deviations from sound operation.
Since the increase of the transient failure rate is an acknowledged indicator for pre-
mature electronic component wearout [Con02], the integrated diagnostic architecture
must be designed to continuously monitor the distributed state of the system, and
thus detect and record any transient anomaly. This is especially important in case
of fault-tolerant systems, where a level of redundancy must be maintained to ensure
safe operation even in the case of failure (according to the fault hypothesis). Con-
sequently, monitoring of the deployed fault-tolerance mechanisms is mandatory and
a replacement of defective parts by the service technician must be enabled without
making the owner of the system insecure, i.e. keep the user’s trust in the product.

1.2 Structure of the Thesis

The thesis is structured as follows. In Chapter 2 an elaboration on the concepts
of time, state, component, interface and dependability is presented. Related work
in the field of diagnosis and maintenance is presented in Chapter 3. Both avionics
and automotive diagnosis and maintenance techniques are discussed, in particular
the OSEK and ARINC strategies. Furthermore, the increase of the transient failure
rate of electronic devices and its consequences are subject to investigation. In addi-
tion, the related work section covers an overview on prevalent analysis techniques.
The DECOS integrated architecture is presented in Chapter 4. We first discuss the
structure of the architecture, core and high-level services, and detailed component
structure. In addition, we present the design flow and the underlying dependability
model including the fault hypothesis for the integrated DECOS architecture. The
integrated diagnostic architecture is introduced in Chapter 5. We elaborate on the
maintenance-oriented fault model, introduce out-of-norm assertions as the primary
diagnostic mechanism operating on the distributed state, and discuss the virtual di-
agnostic network and analysis subsystem. In Chapter 6 a prototype implementation
of the DECOS architecture is presented. We describe the prototype platform and the
implementation choices. For the implementation the time-triggered protocol (TTP)
is deployed as the time-triggered core architecture. Furthermore, we show how the
different detection and analysis techniques are realized and discuss the performance
of some of the implemented analysis algorithms. In Chapter 7 we present selected
results from fault injection campaigns. Finally, the thesis is concluded in Chapter 8.
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Chapter 2

Basic Concepts

The concepts of time, state, component, interface and dependability are fundamental
in the design of dependable embedded real-time systems. This chapter elaborates on
the close relationship between these concepts that constitute the conceptual founda-
tion of this thesis.

First, we discuss the concept of time, since time must be treated as first-order
quantity in the design of a real-time system. The following section provides an
overview of the meaning of state and the close relationship between time and the
concept of state. Furthermore, we elaborate on the difference between system com-
ponents and software components as the building blocks of dependable distributed
systems. Since both components interact with the environment via interfaces the sub-
sequent part discusses software and messages interfaces. This chapter is concluded
by presenting the concepts of dependability.

2.1 Time

Whitrow [Whi90] notes that our actual experience of time can be analyzed in terms
of two fundamental relations: simultaneity and temporal order (or precedence). In
respect of these, any event is judged to be either simultaneous with or else either
earlier than or later than any other event [Whi90, p. 207]. Russell defined (in 1914)
an instant as a set of events, any two of which are simultaneous and there is no other
event which is simultaneous with them all. The existence of so defined instants was
assumed. An event is said to be at a particular instant when it is a member of the set
defining that instant. Temporal order of instants is then defined by stipulating that
one is earlier than another if there is some event at the former that is earlier than
some event at the latter. If neither instant is earlier than the other, then they are
simultaneous (identical). The continuum of real time can be modeled by a directed
timeline [Wie14, Rus36] consisting of an infinite set T of instants with the following
properties [Whi90]:
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1. T is a simply ordered set, that is, if p and q are any two instants, than either
p is simultaneous with q, or p precedes q, or q precedes p, and these relations
are mutually exclusive. Furthermore, if p precedes q and q precedes another
instant r, then p precedes r, and q is said to be between p and r.

2. T is a dense set. This means, that, if p precedes r, there is at least one q which
is between p and r.

3. T satisfies Dedekind’s postulate, namely if T1 and T2 are any two non-empty
parts of T such, that every instant of T belongs either to T1 or T2 and every
instant of T1 precedes every instant of T2, then there is at least one instant t
such that any instant earlier than t belongs to T1 and any instant later that t
belongs to T2.

This prevalent mathematical picture of “standard time”, namely that of a set of
instants with a temporal precedence order < satisfying certain obvious conditions,
can also be found in [vB83]. These conditions are:

1. Transitivity

2. Irreflexivity

3. Linearity

4. Eternity (∀x∃y : y < x,∀x∃y : x < y)

5. Density (∀x, y : x < y → ∃z : x < z < y)

The most obvious models that satisfy these axioms are the rational numbers Q and
the real numbers R. These sets are dense, i.e. for any two numbers there is another
number that lies between them. When replacing density by discreteness the integers
Z are the standard model of time [Mat88].

The abstract mathematical idea of time as a geometrical locus – the so-called
spatialization of time – is one of the most fundamental concepts of modern science.
Its psychological origin lies in our intuitive conception of time as one-dimensional.
Our idea of time is thus directly linked with the fact that the process of thinking has
the form of a linear sequence [Whi90]. This linear sequence consists of discrete acts
of attention. Consequently, in the first instance, time is more naturally associated
with counting, and hence with numbers, than with the linear continuum of geometry.
The peculiarly close relation between time and counting has been emphasized both
by philosophers of time and by philosophers of mathematics [AriCE].

An essential difference between concurrent models of computation is their model-
ing of time [Lee01]. Some models are very explicit by taking time to be a real number
that advances uniformly, and placing events on a time line or evolving continuous
signals along the time line. In other models time is taken to be discrete, while other
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models, even more abstract, take time to be merely a constraint imposed by causal-
ity [Lee01]. In the context of real-time systems a time model based on Newtonian
time seems to be the best choice [Kop97].

Since a behavior, i.e. the temporal sequence of send operations of a system in rela-
tion to its previous receive operations, and any internal state that it retains [GIJ+02,
p. 83] can only be associated with a system if some notion of time is taken into
account [Kop97] and time is also important for the introduction of the concept of a
failure, organizing further definitions around a directed timeline that extends from
the past into the future is justified [Kop97]: A cut of the timeline is an instant. Any
occurrence that happens at an instant is called an event. Information that describes
an event is called event information. Event information is non-idempotent and re-
quires exactly-once semantics when transmitted to a consumer. The present instant,
now, is a very special instant that separates the past from the future An interval on
the timeline is defined by two instants, the start event and the terminating event of
the interval. Any property of an object that remains valid during a finite duration is
called a state attribute and the corresponding information state information. State
information is idempotent and requires at-least-once semantics when transmitted to
a consumer. A change of state is an event. An observation is an event that records
the state of an object at a particular instant, the point of observation. An event
observation can be expressed by the atomic triple 〈name, value, time〉.

Sparse Time Base

If the time-base of a distributed system is dense (the events are allowed to occur at
any instant of the timeline), then it is in general not possible to generate a consistent
temporal order on the basis of the time-stamps [Kop97]. Due to the impossibility of
synchronizing clocks perfectly and the denseness property of real time, there is always
the possibility that a single event is time-stamped by two clocks with a difference
of one tick. By introducing the concept of a sparse time base this problem can be
solved [Kop92]. In the sparse time model the continuum of time is partitioned into an

�

�

� �

�

Figure 2.1: Sparse Time Base

infinite sequence of alternating durations of activity (π) and silence (∆) as shown in
Figure 2.1. Thereby, the occurrence of significant events is restricted to the activity
intervals of a globally synchronized action lattice. In this time model, the costly
execution of agreement protocols can be avoided, since every action is delayed until
the next lattice point of the action lattice [Kop92].
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2.2 State

The notion of state is widely used in computer science, but when it comes to the
exact definition of state, difficulties arise. Depending on the context of the scientist
the definition varies. For example software engineers tend to describe the state of
a system using the variables of the objects; system theoreticians try to explain the
state of a system independently of its context.

2.2.1 The Concept of State

In system theory, the notion of state is fundamental for the investigation of complex
systems. In abstract system theory, the notion of state is introduced in order to sep-
arate the past from the future (decoupling). The idea is that if one knows what state
the system is in, he could with assurance ascertain what the output will be [MT89,
p. 45]. Hence, the state embodies all past history of the given system [MT89, p. 45].
Apparently, this definition of state by Mesarovic and Takahara is only meaningful,
if the notion of past and future (time) is relevant for the considered system.

Other system theoreticians are in agreement with the above presented definition
expressed in terms of time. For instance, Zadeh states informally that the notion
of state of a system at any given time is the information needed to determine the
behavior of the system from that time on [Zad69, p. 3].

By contrast, in the field of software engineering and object oriented programming
languages the notion of state is closely related to the attributes of an object. In the
Java programming language tutorial the state of an object is described as everything
that the software object knows [CWH00]. This is consistent with the view of Szyper-
ski, who explains in the context of Java that all state resides in the attributes of
classes [Szy98, p. 219]. He further argues that a software component (e.g., a library)
can make part of its state observable by exporting variables or inspection functions.

In the context of theoretical computer science Clarke defines the state as a snap-
shot or instantaneous description of the system that captures the values of the vari-
ables at a particular instant of time [CGP99, p. 13].

Another definition of the state of a system can be found in the DSoS (Dependable
Systems of Systems) conceptual model. The model uses the concept of an internal
data structure that synthesizes all cumulative effects of all receive operations at all
input interfaces between the startup of the system and this given instant [GIJ+02,
p. 85].

The declared state is the state of a subsystem, which is considered as relevant by
the system designer for the future behavior of the subsystem (forward view). The
interface state contains the history of the component that is relevant for the future
behavior of the component as seen from this interface. Interface state is defined
between the intervals of activity on the sparse time base [Kop92]. Interface state is
a subset of the state of the component and should be accessible from the interface.
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Figure 2.2: The Concept of Ground State

2.2.2 Ground State

The ground state of a node in a distributed system at a given level of abstraction
is defined as a state where no task is active and where all communication channels
are flushed, i.e. there are no messages in transit [AKC90, p. 1]. Consider a node
that contains a number of concurrently executing tasks that exchange messages with
each other and with the environment of the node. If a level of abstraction that
considers the execution of a task as an atomic action is chosen, and the executions
of the tasks are asynchronous, then the situation depicted in the upper section of
Figure 2.2 can arise; at every point in real time, there is at least one active task, thus,
implying that there is no point in real time when the ground state can be defined.
In the lower part of Figure 2.2, there is an instant where no task is active and all
the communication channels are empty, i.e. where the system is in the ground state.
If a system is in the ground state, then the internal state is contained in its data
structures and the program counter. The reintegration after a failure is simplified
if a system periodically visits a ground state that can be used as a reintegration
point [Kop97].

2.3 Component

A standard problem solving technique is the division of complex systems into nearly-
independent subsystems [Sim96]. This intuitive approach to manage complexity can
be found in many engineering disciplines, where large systems are assembled from
prefabricated components with known and validated properties. A component is
regarded as a self-contained subsystem that can be used as a building block in the
design of a larger system. An example of such components is the engine, gearbox,
or wheel suspension in an automobile. The component can have a complex inter-
nal structure that is neither visible, nor of concern, to the user of the component.
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An ideal component should maintain its encapsulation when used in a larger con-
text [KS03a].

One of the most apparent problems in the domain of computer systems relates
to constructive design of large systems out of independently developed pre-validated
components. In the following we investigate two different types of components and
their definitions, namely system components and software components. At first var-
ious definitions of software components are presented. Most of these definitions are
stated in the field of Component-Based Software Engineering (CBSE), which is con-
cerned with the rapid assembly of software systems from pre-built components of
independent vendors. The second part gives insight into the concepts of system com-
ponents. A system component is a self-contained composite HW/SW subsystem that
can be used as a building block in the design of a larger system. In contrast to soft-
ware components, system components are time-aware and thus allow a meaningful
definition of state.

2.3.1 Software Component

In Component-Based Software Engineering (CBSE), which is concerned with the
rapid assembly of systems from components [BW98], the opaque implementation of
functionality is a fundamental idea that allows third-party composition. A compo-
nent implements one or more interfaces that are imposed upon it, which reflects
that the component satisfies certain obligations, so called contracts [HHG90, Hol92].
These contractual obligations ensure that independently developed components obey
certain rules so that components interact (or cannot interact) in predictable ways,
and can be deployed into standard build-time and run-time environments. A
component-based system is based upon a small number of distinct component types,
each of which plays a specialized role in a system and is described by an inter-
face [BBBCD00]. CBSE usually sees a component as a replacement (reusable) unit
like a commercial off-the-shelf commodity. The components with certified properties
provide the basis for predicting the properties of systems built from components.

Various definitions of component in the context of CBSE can be found [KJH00].
Microsoft, for instance, defines a component as a piece of software, which is offering
a service [WK94]. As defined by the OMG, a component is the minimal piece of
functionality in a system or subsystem that can be removed without affecting the in-
tegrity of the system or subsystem [Was95]. Cuipke and Schmidt [CS96] concentrate
on the context-independence of a component and D’Souza [DW99] defines compo-
nents as reusable parts of software that can be adapted but not modified. Herzum
and Sims [HS00] emphasize the autonomous deployment and collaboration of com-
ponents. Wijnstra describes components as units containing reusable functionality
with explicit interfaces [Wij01, p. 27].

Szyperski [Szy98] defines software components as binary units of independent
production, acquisition, and deployment that interact to form a functioning sys-
tem [Szy98, preface]. Insisting on independence and binary form is essential to allow
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for multiple independent vendors and robust integration. Furthermore, Szyperski
identifies three major forces in the field of CBSE: the OMG (corporate enterprise
perspective) with CORBA-based standards, Microsoft (desktop perspective) with
COM-based standards and Sun (Internet perspective) with Java-based standards.
From an economic point of view Szyperski remarks that, compared with specific so-
lutions to specific problems, components need to be carefully generalized to enable
reuse in a variety of contexts. Solving a general problem rather than a specific one
takes more work. Components are thus viable only if the investment in their cre-
ation is returned as a result of their deployment. In traditional software engineering
processes, module development and testing is followed by systems integration and
testing. This approach leaves room for errors that are merely a result of composition
and which are not apparent at the level of individual components, but which should
be detected during systems integration and testing. With third-party integration,
the situation becomes more difficult, as integration testing of modules from different
sources needs to be addressed. The resulting problem in an open market of indepen-
dent component developers is the fact that the set of possible combinations is not
even known to any one of the involved parties. Szyperski also addresses component
safety as an important issue, namely that a component must not violate system-wide
rules.

Kruchten’s definition, though stated in the context of software component design,
is a more general one. He defines a component as a non-trivial, nearly independent,
and replaceable part of a system that fulfills a clear function in the context of a well-
defined architecture. A component conforms to and provides the physical realization
of a set of interfaces [Kru98, p. 1]. In a closer examination the properties of the
definition are explained. The author states that a component is substitutable for any
other component that realizes the same interfaces. Logical and physical cohesiveness
of a component denotes a meaningful structural and/or behavioral part of a larger
system. Furthermore a component represents a fundamental building block out of
which systems can be designed and composed. Conformity of a component to a given
interface means that it satisfies the contract specified by that interface and may be
substituted in any context wherein that interface applies.

2.3.2 System Component

In contrast to the view of software engineering Kopetz defines a system component
as a self-contained composite hardware/softwares subsystem that can be used as a
building block in the design of a larger system [KS03a, p. 3]. In the context of
embedded real-time systems a complete node seems to be the best choice for a com-
ponent [Kop98], since the component-behavior can then be specified in the domains
of value and time. Thus, a component is considered to be a self-contained computa-
tional element with its own hardware (processor, memory, communication interface,
and interface to the controlled object) and software (application programs, operating
system), which interacts with its environment by exchanging messages across Linking
Interfaces (LIFs).
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In order to bring the advantages of component-based software engineering to
embedded systems, the special domain characteristics of embedded systems have to
be taken into account [MSZ01]. An ideal component should be an autonomous unit
that maintains its encapsulation. Kopetz proposes various properties of such an ideal
component, namely [Kop00]:

A unit of service provision: A component must be a unit of service provision
by offering services to the component’s environment across a real-time service
interface. In a distributed real-time system, the service consists of the timely
processing and provision of the requested information.

A unit for validation: The validation of the proper operation of a component in
the value domain and in the temporal domain must be possible in isolation. The
preconditions for the correct operation of the component, both in the domains
of time and value, must be precisely specified in the interface specifications.

A unit of error containment: All errors that occur inside a component must be
detected before the consequences of these errors propagate across a component’s
interface. Otherwise, a defective component can falsify the operation of other
components by the provision of corrupted output data across the component
interface.

A unit for reuse: A component should be a unit for reuse. This requires that
the component has standardized interfaces to support the integration of the
component in various system contexts.

A unit of design and maintenance: A component should be a unit of design and
maintenance. It is well known that system structures evolve along organiza-
tion structures. If the work output of an organizational group is a nearly
autonomous subsystem with well-specified interfaces, then the management of
this group is simplified. The error containment boundaries around a compo-
nent reduce the possibility of unforeseen consequences of software maintenance
actions.

According to Kopetz an architecture is said to be composable with respect to
a specified property if the system integration will not invalidate this property once
the property has been established at the subsystem level [Kop97, p. 34]. Examples
of such properties in the context of distributed real-time systems are timeliness and
testability. The components are characterized by their physical parameters and the
services they provide across well-specified interfaces. In a composable architecture,
this integration should proceed without unintended side effects. From the point of
view of the analysis of a composable architecture, it is reasonable to distinguish
between the two service classes of an integrated distributed control system [Kop01,
p. 227]: prior services and emerging services. A prior service of a component is the
specified service that has been developed independently from the system it will be
deployed. Prior services can be validated at component level and thus be available
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prior to the integration of the component into an integrated control system. In
contrast to emerging services that result from the integration of components into a
system. Such an integration generates new services that are more than the sum of
the prior services.

In a distributed system, a given set of components compositionally realize emer-
gent services by exchanging messages across LIFs. The emergent services refer to
those properties of the system of components that are not explicitly properties of
the components themselves, but come into existence by the interactions among the
components across LIFs. Therefore, the communication system plays a central role
in determining the composability of distributed computer architecture. For an ar-
chitecture to be composable, it must adhere to the principles with respect to the
real-time service interface as introduced in [KO02].

2.4 Interface

Usually an interface is referred to as a common boundary between two subsystems.
Since architecture design is primarily interface design, the most important phase
in the design of large system architecture is the layout and placement of the inter-
faces [Kop97, p. 77]. A correctly designed interface provides understandable abstrac-
tions, which capture the essential properties of the interfacing subsystems and hide
irrelevant details (control, temporal, functional, and data properties).

2.4.1 Software Interfaces

In software engineering, interface abstraction provides a mechanism to control the
dependencies that arise between modules in a program or system [BBBCD00]. The
theory is that information hiding makes modules substitutable (for example, with
new versions of a component), and hence makes systems easier to change, at least
insofar as module substitution is concerned. Bachmann et al. [BBBCD00] emphasize
the importance to distinguish between abstract interfaces (those that are described
independently of any implementation) and bound interfaces (those that are associ-
ated with an implementation) for certification, composition, and system analysis.

The idea of an interface contract has become prominent in CBSE research litera-
ture. A contract, as introduced in [HHG90] and extended in [Hol92], is a descriptive
formal (or semiformal) language by which clauses in a programming context may
be written to explicitly specify interactions among groups of objects (participants).
These interface contracts are between two or more parties, which often negotiate
the details of a contract before becoming signatories. Contracts prescribe norma-
tive and measurable behaviors on all signatories and can not be changed unless the
changes are agreed to by all signatories. A component contract specifies a pattern of
interaction rooted on that component. The contract specifies the services provided
by a component and the obligations of clients and the environment needed by a
component to provide these services. Contracts shift the focus from specification of
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Figure 2.3: The Four Contract Levels

components to specification of patterns of interactions, and the mutual obligations
of participants in these interactions.

Beugnard et al. [BJPW99] identifies four levels of contracts in the software compo-
nent world (functional versus extra-functional properties). The first level, syntactic
contracts, is required simply to make the system work (interface definition language,
usual programming languages). The second level, behavioral contracts, improves
the level of confidence in a sequential context (pre- and postconditions). The third
level, synchronization contracts, improves confidence in distributed or concurrency
contexts. The fourth level, quality-of-service contracts, quantifies quality of service
and is usually negotiable. This model is depicted in Figure 2.3.

This is in agreement with the view of Brown and Wallnau. They state that
many researches in CBSE suggest that components should implement two interface
types: A functional one that reflects the component’s role in the system, and an
extrafunctional one that reflects the component model imposed by some underlying
component framework [BW98, p. 40]. Nevertheless the majority of commercial off
the shelf software components are specified only with functional attributes in their
interfaces [BRO+02]. Brahnmath et al. address the issue of interface classification
by proposing a quality of service catalog for heterogeneous software components.
By introducing a QoS metric that addresses functional and non-functional require-
ments, system developers are able to validate and verify the claims of the component
developer.

Szyperski describes interfaces as the means by which components connect [Szy98,
p. 40]. One can consider the interface of a component to define the component’s
access points [Szy98, p. 34]. The required interfaces of a component will specify
what deployment environment (context dependencies) will be needed such that the
component will function according to its specification. He further argues that a useful
way to view interface specifications is as contracts between a client of an interface
and a provider of an implementation of the interface. The contract states what the
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client needs to do to use the interface [Szy98, p. 43]. It also states what the provider
has to implement to meet the services promised by the interface, and which non-
functional requirements (e.g., time, resources) must not be neglected. However it is
important that a contract does not overspecify a situation.

Kruchten defines an interface as a collection of operations that are used to specify
a service of a component [Kru98, p. 1]. An interface focuses upon the behavior,
not the structure, of a given service while offering no implementation for any of its
operations. In the scope of software engineering an interface defines a service that is
implemented by a class or a component. As such, an interface spans the logical and
physical boundaries of a system. One or more classes (which are likely a part of some
component subsystem) may provide a logical implementation of a given interface; one
or more components may provide a physical packaging that conforms to that same
interface.

Wijnstra identifies several important interface characteristics. Interfaces provide
access points to clearly defined functionality for use by other components [Wij01,
p. 27]. The components must implement interfaces in their entirety (no optional
methods), the interfaces should be stable but the implementation can be flexible.
Also the same interface may be implemented by multiple components. Wijnstra
emphasizes the close relation to components by indicating two types of interfaces,
namely:

Provided Interface: the component guarantees that it will implement the func-
tionality associated with the interface

Required Interface: the component accesses functionality through this interface
and relies on the functionality to be implemented outside the component.

The basic idea in the approach presented by Ran and Xu is the belief that just
as components are structured as compositions of lower level components, interfaces
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must be structured as composition of lower level interfaces [RX97, p. 31]. Their ap-
proach is justified by the observation that interface elements are not structured or
abstracted but are simply propagated as such through component aggregation hi-
erarchies in contrast to the common practice of constructing larger components by
aggregating smaller ones (i.e. granularity mismatch). Usually large software com-
ponents have interfaces that correspond to different aspects of system design [RX97,
p. 32], like configuration, management, operation, monitoring and reliability. These
different service categories are used in different domains of interaction. Ran and Xu
argue that this separation is often lost at the later stages of design and is rarely used
for structuring interfaces, and as a consequence partition component interface de-
scriptions by domains of interaction in which the component may participate. This
hides possible interactions between domains from the interface and provides several
benefits, namely separation of concern, reuse, and controlled propagation of change
(see Figure 2.4 for an overview).

2.4.2 Message Interfaces

In the context of dependable systems the DSoS conceptual model [GIJ+02] defines
an interface as a point of interaction between a system and its environment. At
the physical level, for instance, an interface can exist as a single line (a serial port)
or a set of lines (a parallel interface). An interface can be an output interface or
an input interface or both, i.e. a bi-directional interface: An output interface is an
interface of a system at which information is produced for the environment of the
system. A system without an output interface is meaningless, since it cannot deliver
information to its environment and, therefore, has no effect on the environment. An
input interface is an interface at which information is consumed from the environment
of the system. It is possible to have systems without an input interface (e.g., a clock
that produces periodic signals without an explicit input).

In distributed computer systems, the components interact by the exchange of
messages across service interfaces to realize the emergent services. A service interface
that is provided to link components together is called a LIF. Based on the analysis
of the interactions between a component and its environment four different types of
component interfaces as depicted in Figure 2.5 can be defined [KS03a]:

The Service Providing Linking Interface (SPLIF): Fundamentally, a compo-
nent must be a unit of service provision. The service is offered to the component
environment across a service providing linking interface (SPLIF). SPLIF is the
primary interface of a component.

The Service Requesting Linking Interface (SRLIF): In order to meet its
specification, a component may request services from other components. The
corresponding interface is the service requesting linking interface (SRLIF). A
user of the SPLIF may not be aware that a component requests the services of
other components via SRLIFs to achieve its objectives. Thus, the SRLIF s are
not visible to the user of a component service.
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The Configuration and Planning (CP) Interface: This is analogous to a
global resource manager used to configure – initial and subsequent – com-
ponents to provide the stipulated services in a specified environment.

The Diagnostic and Management (DM) Interface: The DM interface pro-
vides selective access to the (operational) internals of the component for mon-
itoring and diagnostic purposes. Since the DM interface is not exposed during
normal component operation, the DM view is not relevant for the user of a
component. The DM interface can be used to parameterize a component in
order to optimize it for the given task.

Message Interface Specification

The partitioning of the system structure into components with interaction among
small and stable linking interfaces serves the purpose of coping with complexity.
This design principle of partitioning the system along well-specified interfaces is un-
derpinned by several studies. For example, Lutz stresses the fact that a major source
for the occurrence of the critical anomalies (i.e. anomalies leading to subsequent sys-
tem failures) involve interface specifications, because of an inadequate understanding
of the interface [Lut93].

In the context of distributed real-time systems we distinguish between opera-
tional and meta-level specification of linking interfaces of components [KS03a]. The
operational interface specification includes the syntactic and temporal specification,
whereas the meta-level interface specification defines the according semantics.

The syntactic specification defines the structure and name of the data elements
exchanged via the interface. Thus, the concept of syntax is used to construct struc-
tured information from basic information units (e.g., an “integer” consists of 16 bits,
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where a bit represents the basic information unit). As an example consider the OMG
Interface Definition Language (IDL), which constitutes a key part in the interoper-
ability concept of CORBA [OMG02]. The IDL provides a syntactic description of
how a service provided by an object supporting this interface is accessed.

The temporal specification determines the temporal sequence of message ex-
changes. In order to guarantee temporal error detection a priori knowledge about
temporal constraints must be available. In case of time-triggered systems, this in-
formation about message send and receive instants is existing at design time. In
contrast, in many non safety-critical applications the temporal specification includes
probabilistic assumptions. Consider for example event-triggered systems, where nor-
mally the specification of the inter-arrival times of messages are described by prob-
ability distributions [Kle75]. The use of probabilistic specifications complicates a
sound diagnostic concept because of the lack of sharp boundaries between correct
and incorrect behavior of components.

The semantic specification assigns a meaning to each structured information.
Depending on the context and deviating understanding of underlying concepts, dif-
ferent conceptual models (i.e. a set of well-defined concepts and their interrelation-
ships [Kop97]) exist. The semantic specification ideally assures that the meaning
of the structured information in all involved components is in agreement with the
user’s intent. A fundamental prerequisite for a complete semantic specification is
the existence of an ontology, i.e. a specification of a representational vocabulary for
a shared domain of discourse [Gru93]. The absence of such an ontology in the ap-
plication domain leads to a mismatch of the conceptual models and subsequently
to imprecise specifications. Furthermore the explanations for design rationales are
usually tailored to a particular audience and involve many implicit decisions that
complicates a thorough understanding [Eas93].

According to [KS03b] it is impossible to provide a meaningful operational and
meta-level LIF specification of a component processing inputs from the natural en-
vironment without considering the context-of-use of the component in a particular
application environment. Consequently, an understanding of the interface specifica-
tion is only possible with knowledge from the application domain and the underlying
conceptual model (the application designer and component designer need to have the
same understanding of concepts, i.e. a common ontology).

As a result many interface specifications lack precision in the semantic domain.
With the use of formal methods the introduced ambiguities and fuzziness can be
significantly reduced but not removed. Therefore, a complete formalization of the
environment would be necessary.

2.5 Dependability

Dependability of a computing system is defined as the ability to deliver service that
can justifiably be trusted [ALR01].
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Figure 2.6: Elementary Fault Classes

2.5.1 Fault, Error, Failure

The terminology of fault, error and failure is used according to the definitions found
in Laprie [Lap92]. A failure is an event that occurs when the delivered service
deviates from correct service. An error is part of the system state that may cause
a subsequent failure. A fault is the adjudged or hypothesized cause of an error.
As stated in [ALR01] the concept of a fault is introduced to stop recursion. The
adjudged cause varies upon the chosen viewpoint (e.g., developer, semiconductor
physicist, maintenance engineer). A fault is called active when it produces an error,
otherwise it is called dormant.

The elementary fault classes as illustrated in Figure 2.6 are the phase of cre-
ation or occurrence, system boundaries, domain, phenomenological cause, intent and
persistence. According to their activation reproducibility faults are categorized into
solid (hard) or elusive (soft) faults. By combining the elementary fault classes the
three combined fault classes design faults, physical faults and interaction faults can
be derived.

2.5.2 Fault-Tolerance

Fault-tolerance comprises all methods and techniques intended to preserve the deliv-
ery of correct service, i.e. consistent with its specification, in the presence of active
faults. Four techniques exists that need to be utilized in order to develop dependable
computer systems [Lap92]:

Fault prevention Methods and techniques in order to prevent the occurrence or
introduction of faults. This is also known as fault-intolerance [Avi75] or fault
avoidance [RLT78].
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Fault tolerance Methods and techniques aimed at delivering correct service in spite
of faults.

Fault removal Methods and techniques in order to reduce the number or severity
of faults.

Fault forecasting Methods and techniques aimed at evaluating and modeling the
present number, the future incidence, and the likely consequences of faults.

In [Pol95b, Pol95a] a distinction between application-specific fault-tolerance and
systematic fault-tolerance is made. Application-specific fault-tolerance subsumes
methods that use reasonable checks to detect errors and state estimations for contin-
ued operation despite of faults. These reasonable or plausibility checks are based on
profound application knowledge and are used to judge about the correct operation
of a component. Systematic fault-tolerance is based on replication of components,
where divergence among replicas is used as a criterion for fault-detection. A key
advantage of systemic fault-tolerance is the fact, that no application knowledge or
assumptions about the controlled object is needed.

In [Bau01] the systemic transparent fault-tolerance techniques used in the Time-
Triggered Architecture (TTA) are described. Here, fault-tolerance mechanisms are
handled at system-level and validated once and for all, relieving application de-
signers from increasing the inherent application complexity by including systemic
mechanisms.

2.5.3 Fault and Error Containment

In any fault-tolerant architecture it is important to distinguish clearly between fault
containment and error containment [Kop03]. Fault containment is concerned with
limiting the immediate impact of a single fault to a defined region, while error con-
tainment tries to avoid the propagation of the consequences of a fault, the error.
It must be avoided that an error in one fault-containment region propagates into
another fault-containment region that has not been directly affected by the original
fault.

The 10−9 Challenge

Emerging X-by-wire applications require ultra-high dependability in the order of
10−9 failures/h (115.000 years) or lower. Today’s technology cannot support the
manufacturing of electronic devices with failure rates low enough to meet the re-
liability requirements. Thus the reliability of an ultra-dependable system must be
higher than the reliability of each of its components. This can only be achieved by
utilizing fault-tolerant strategies that enable the continued operation of the system
in the presence of component failures [BCV91]. Since systems can only be tested
to a dependability in the order of 10−4 failures/h a combination of experimental
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evidence and formal reasoning using a reliability model is needed to construct the
safety argument. The safety argument is a documented body of evidence in order to
convince experts in the field that the provided system as a whole is safe to deploy in
a given environment [BB98].

The justification for building ultra-reliable systems from replicated resources rests
on an assumption of failure independence among redundant units. For this reason the
independence of Fault Containment Regions (FCRs) (i.e. subsystems that share one
or more common resources and may be affected by a single fault) is of critical impor-
tance. Thus any dependence of FCR failures must be reflected in the dependability
model. Independence of FCRs can be compromised by

• Shared physical resources (hardware, power supply, time base, etc.)

• External faults (EMI, heat, shock, spatial proximity)

• Design [KBJ00]

• Flow of erroneous messages

If complex systems constructed from components with interdependencies are mod-
eled, the reliability model can become extremely complex and the analysis in-
tractable [BCV91].

Fault Containment

The notion of a FCR is introduced in order to delimit the immediate impact of a
single fault to a defined subsystem of the overall system [LH94]. A FCR is defined as
the set of subsystems that share one or more common resources and may be affected
by a single fault. Since the immediate consequences of a fault in any one of the shared
resources in an FCR may impact all subsystems of the FCR, the subsystems of an
FCR cannot be considered to be independent of each other [KJ00]. The following
shared resources that can be impacted by a fault are considered:

• Computing Hardware

• Power Supply

• Timing Source

• Clock Synchronization Service

• Physical Space

For example, if two subsystems depend on a single timing source, e.g., a single
oscillator or a single clock synchronization algorithm, then these two subsystems are
not considered to be independent and therefore belong to the same FCR. Since this
definition of independence allows that two FCRs can share the same design, e.g., the
same software, design faults in the software or the hardware are not part of this
fault-model.
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Figure 2.7: FCRs and ECRs in the Time-Triggered Architecture

Error Containment

An error that is caused by a fault in the sending FCR can propagate to another
FCR via a message failure, i.e. a sent message that deviates from the specification.
A message failure can be a message value failure or a message timing failure [Cri91].
A message value failure implies that a message is either invalid or that the data
structure contained in a valid message is semantically incorrect. A message timing
failure implies that the message send instant or the message receive instant are not
in agreement with the specification. In order to avoid error propagation by way
of a sent message error-detection mechanisms that are in different FCRs than the
message sender are needed, i.e. an Error Containment Region (ECR) requires at least
two independent FCRs. Otherwise, the error detection mechanism may be impacted
by the same fault that caused the message failure.

For example in the TTA [KB03], timing failure detection is performed by a central
guardian, while value failure detection is in the responsibility of the host computer
(e.g., using a Triple Modular Redundancy (TMR) configuration). Since fault in-
jection experiments have shown that for ultra-dependable applications restrictions
concerning the failure modes of ECUs are unjustified [ASBT03], independent central
guardians [BKS03] are needed for achieving fault isolation in case of arbitrary ECU
failure modes. In the TTA each central guardian is an autonomous unit that has a
priori knowledge of all intended message send and receive instants [KBS05]. Each
of the two replicated channels has its own independent guardian. Figure 2.7 depicts
the FCRs and ECRs in the TTA.
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Chapter 3

Related Work

This chapter presents related work in the context of diagnosis and maintenance.
At first we elaborate on error and anomaly detection followed by a summary of
today’s prevalent maintenance strategies, namely time-based and condition-based
maintenance. Furthermore, an overview on automotive and avionic infrastructures
for diagnosis and maintenance is given. In particular, today’s automotive electronic
architectures are discussed as well as prevalent diagnostic strategies including the
OSEK/VDX network management approach. In the context of avionics represen-
tative design guide lines, such as ARINC 624, for on-board maintenance systems
are presented. Moreover, the diagnostic infrastructure of the Boeing 777 is briefly
introduced. In order to understand the relevant factors for the increasing ratio of
fault-not-found phenomena industry is currently facing, the changes in the design of
IC’s and accompanying impacts with respect to maintenance are discussed. Examples
from automotive and avionic industry illustrate the need for an accurate diagnostic
solution to reduce the number of avoidable component replacements. Furthermore,
the Heinrich pyramid and related models are presented. The chapter is concluded
with a review on existing analysis techniques, such as threshold-based techniques,
probabilistic networks and model-based diagnostic algorithms.

3.1 Error and Anomaly Detection

3.1.1 Error Detection using Assertions

Assertions are boolean expressions that test the state of an executing program. Typ-
ically assertions have a form similar to

if not ASSERTION then ERROR

where ASSERTION is a predicate on the program state and ERROR indicates that
an error condition is triggered.
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According to [Hoa00] assertions were first proposed by Turing and rediscovered
by Floyd in order to assign meanings to programs [Flo67]. This lead consequently
to the use of assertion for formal reasoning about the correctness of sequential pro-
grams [Hoa69]. Assertions provide a logical basis for proofs of the properties of a
program. Hoare introduced the so-called Hoare triple P{Q}R to make general as-
sertions about the values of relevant state variables. The precondition P expresses
the values before, while the postcondition R expresses the values after the execution
of program Q. The final assertion R implies the desired property. More information
on reasoning for sequential programs using the Hoare logic can be found in [Apt81].

In addition to verification, assertions are also a powerful and acknowledged mech-
anism to improve the reliability of software [AAS79]. So-called executable asser-
tions are embedded into the code and provide automatic runtime detection of er-
rors [Hoa00, MN88, Ros92].

The effectiveness of these embedded assertions depends heavily on the context
of use [Hil99]. Though assertions are a very useful technique in detecting and di-
agnosing problems, the execution of software assertions decreases efficiency [VM94].
In addition blind checking (i.e. including as many checks as possible into the soft-
ware) introduces more software and thus more possible sources of software faults.
For this reason a more systematic approach, namely the design-by-contract software
engineering technique for object-oriented design, is proposed in [Mey92].

3.1.2 Anomaly Detection

The phenomenon of system anomalies is subject to intensive research in many do-
mains. This section gives a brief overview about prevalent definitions of the concept
of anomaly.

Brotherton et al. [BJ01, p. 3113] define anomalies in the context of aerospace sys-
tems as off-nominal operations that have never been anticipated nor ever encountered
before.

In the context of embedded systems Maxion et al. [MT02] define the task of
an anomaly detector to quantitatively decide on the distance between normal and
abnormal behavior of a component based on a similarity or distance metric. The
actual interpretation of the reference behavior and deployed similarity metric are
usually application specific.

Anomaly detection is often based on a specific application model (e.g., jet engine),
in order to compute the difference between variable values and the model-estimated
outputs. The results are used to determine whether these differences indicate an
anomaly compared to nominal test case [JW02].

During spacecraft missions each occurring system anomaly is reported for fur-
ther analysis and assessment. A so-called ISA (Incident/Surprise/Anomaly) report
is filled out by the operator at mission control at the time of occurrence. Later this
report is extended by the analysis and concluded by the description of a possible
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corrective action. In contrast to a defect report, an ISA is written whenever the
behavior of the system differs from the expected (i.e. required) behavior. The impor-
tance of this ISA lies in the provision of valuable information to the requirements
engineer by capturing the gaps between the specified and implemented requirements
and the user’s expectation [LM01].

3.1.3 Comparative Evaluation

Assertions are a powerful and accepted mechanism facilitating in the detection of
value errors. In particular, assertions are used in software engineering to ensure cor-
rectness and safety requirements. Recent studies revealed that the detection coverage
of executable assertions is fairly high [Hil00].

However, a prerequisite for the deployment of bivalent assertions is the ability to
indisputably demarcate between correct and incorrect system states at the time of
occurrence. System anomalies can be described in terms of a deviation from the ex-
pected nominal system behavior. However, the construction of a similarity metric is
a complex task and is based on profound knowledge about the application. In many
application domains, it is difficult to devise metrics and thresholds. For instance, an
unusual code path due to an unanticipated combination of circumstances can cause
unexpected behavior [LM01]. For this reason it is necessary to devise a classification
scheme that refrains from the traditional correct/incorrect classification. This diag-
nostic strategy allows to cope with system anomalies that cannot be judged as being
correct or incorrect at the time of occurrence.

3.2 Preventive vs. Corrective Maintenance

Today two well established maintenance approaches can be found [PP01]:

Time-Based Maintenance (TBM): This is the predominant maintenance type
in the automotive industry. Time-Based Maintenance (TBM) is carried out
in regular time intervals suggested by the equipment manufacturer. After a
specified time period or milage (e.g., 2 years or 50.000 km), the car owner has
to bring his car to the service station to check for problems or wearout symp-
toms (e.g., motor oil, brake pads). The main disadvantage of this maintenance
method is either too early or too late maintenance.

Condition-Based Maintenance (CBM): CBM optimizes the intervals between
preventive maintenance checks by monitoring the condition of the equipment.
This method has two advantages. Firstly, savings in maintenance can be
achieved, if the maintenance intervals for CBM are longer compared to TBM.
Secondly, if the maintenance intervals are shorter, component failures and asso-
ciated consequences can be avoided. Thus not only costs are reduced but also
the confidence of the customer in its car is increased. One major drawback of
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CBM is the additional complexity and functionality needed for the condition
assessment process.

TBM is increasingly being replaced by CBM, to reduce costs and to improve
reliability and system performance [TS01]. Originally introduced in the avionics
domain, this new paradigm is more and more accepted in the automotive industry.
Besides the reduction of cost of ownership (service only what is needed) the possibility
of collecting accurate field data (engineering feedback) is one of the major benefits
from this maintenance approach [Dei02].

In [GF03] methods for forecasting of short-term part demand are investigated.
Such spare parts, though low in demand, are often critical in operation and the un-
availability can lead to expensive down time. For example it is estimated that an
aircraft operator can incur more than 50.000 USD for each hour if a plane is on the
ground. In the avionic domain three categories of component maintenance strate-
gies can be identified [GF03]: hard-time, on-condition, and condition-monitoring.
While hard-time can be compared to the previously introduced TBM scheme, on-
condition maintenance requires that the part under inspection to be periodically
checked against some appropriate physical standard to determine whether it can con-
tinue in service. On-condition maintenance is a preventive maintenance technique.
Finally, condition-monitoring requires the continuous eventuation of the respective
part to judge about the need for corrective procedures.

However, CBM has also some downsides like increased complexity and the need to
continuously monitor and assess the state of the components of the system. This is a
challenging task in the design and engineering process of new components. According
to [WCRV00] the implementation of CBM requires

• Knowledge about component failures, deterioration, and criticality

• Suitable indicators for the status and degradation of components

• Diagnostic tools to measure these indicators

• Assessment tools to reliably interpret measurements

For example in machinery vibration, thermal, and lubricant analysis are good indi-
cators for possible defective conditions [Sta97]. In [PK03] a case study for wear and
debris analysis is presented.

In order to adopt CBM for electronic systems suitable indicators for degradation
or wearout must be identified and analyzed to detect deviations from sound oper-
ation. Consider for instance the wearout of brake pads in an automotive braking
system [Rei03]. On a disc braking system, once the driver pushes the braking pedal,
the fluid from the master cylinder is forced into a caliper where it presses against a
piston. As a result the piston squeezes two brake pads against the rotor forcing the
car to decelerate. Condition-based maintenance can here be used to judge the condi-
tion of the braking pads by measuring the distance the brake pads need to overcome
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before having contact with the rotor. Similar to this example, suitable indicators
for electronic wearout need to be identified. A promising indication of premature
electronic wearout is the increase in the transient failure rate of a component. In the
Section 3.5, this important issue is discussed in detail.

3.3 Automotive Diagnosis and Maintenance

All modern cars are equipped with on-board diagnosis systems. However, the devel-
opment of effective diagnostic systems stayed behind the recent increase of electronic
systems in modern cars. One reason for the diagnostic deficiencies of modern OBD
systems is the fact that diagnosis is often treated as add-on to communication sys-
tems rather than an integral part of the architecture [SSW00]. Consequently the
problem of the identification of faulty ECUs is one of the predominant challenges
that needs to be solved.

Today’s economic pressure in the automotive industry forces the introduction of
new car models in decreasing intervals. In recent years the vehicle development cycle
was reduced from four to two years to cope with market demands [Bar01]. As a
consequence of the reduced vehicle deployment cycle the technical documentation is
insufficient to resolve a significant number of vehicle problems (impact in the first
2 years). These technological and business realities underpin the need for effective
diagnosis methods because it takes six months on average for the service technicians
at the garages to gain experience with a new car (often due to insufficient technical
documentation). In addition, emerging X-by-wire solutions will have a lasting effect
on the mechanics work, since computer diagnostic will become a standard part of
the job [LH02, Bre01].

Since a mechanic at a service station is no specialist in automobile electronics,
the diagnostic system of the car must provide all necessary information, that allow
maintenance of faulty components. For this reason it must be possible in modern
automotive electronic architectures to track an entry in a breakdown log back to
its source. If this is not possible, as a consequence, fully operational units will be
replaced by mistake.

The primary goal of every car manufacturer is overall consumer satisfaction. A
car worth 50.000 Euro that is disabled by the malfunction of an undetected 50 Cent
connector or ECU is thus not tolerable. An automobile manufacturer will only be
able to bind its customers, if the cost of ownership and the time to repair can be
kept low.

3.3.1 Automotive Infrastructure

To give an impression of the complexity and the amount of electronics in today’s
luxury cars take for example the electronic infrastructure of a luxury car depicted
in Figure 3.1. The distributed ECUs of each federated cluster of the car are in-
terconnected via communication networks with different protocols (e.g., Controller

29



3.3 Automotive Diagnosis and Maintenance 3 Related Work

Rain Sensor

Sliding RoofPark Distance
Control

Tire Pressure
Control Wiper Module

Air Condition
Control

HeatingLights

Keyless EntryAlarm System

Federated
Multimedia

System

Federated
Comfort 1

Cluster

Federated
Comfort 2

Cluster

Federated
Passive Safety

Cluster

Federated
Powertrain

Cluster

Damper
Control

Engine 1

Engine 2

Turbo
Charger

Cruise
Control

Antilock
Braking

Electronic
Stability
Control

Transmisson
Control

Yawrate/
Lateral
Sensor

Parking Brake

Central
Gateway

Passenger
Seat

Door
Passenger

A-Pillar
Right

B-Pillar
Left

Steering
Column

Door
Driver

A-Pillar
Left

B-Pillar
Left

Center of
Car

Driver
Seat

Amplifier

CD Charger

DVD Charger

Instruments

Radio

Naviagtion

Phone

Video

Door
(Driver Front)

Door
(Driver Back)

Seat
(Driver Front)

Seat
(Driver Back)

Door
(Passenger

Front)

Door
(Passenger

Back)

Seat
(Passenger

Front)

Seat
(Passenger

Back)

Trailer
CouplingDeck Lid

Diagnosis
Access

Figure 3.1: The Electronic Infrastructure of a Luxury Car [Dei02]

Area Network (CAN) [Bos91], Local Interconnect Network (LIN) [Fle03]), physical
layers, bandwidths (10 kbps–500 kbps), and dependability requirements. Multiple
federated clusters are connected via a central gateway allowing data exchange and
access to the OBD systems of each ECU. The comfort clusters as well as the pow-
ertrain cluster are typically implemented via the CAN protocol. The multimedia
cluster is frequently based on a protocol with support for streaming audio and video
(e.g., MOST [MOS02]), while the passive safety clusters either use CAN or vendor-
specific communication protocols such as byteflight [BG00]. Each of these clusters
consists of components designed according to the “1 Function – 1 ECU” principle
in order to simplify system integration and ensure intellectual property protection.
Consequently, additional ECUs need to be added to the clusters in order to improve
the functionality of the car. For instance, the Volkswagen Phaeton can have up to
61 ECUs, the BMW 7 up to 75 ECUs depending on the customers requested extra
equipment [HR02, Dei02]. However, this trend of increasing the number of ECUs
is coming to its limits, because systems are becoming too complex and too costly
with the current practice of having each ECU dedicated to a single function. With
an average cost of 30-50 Euros per ECU this high number of ECUs bears significant
potential for cost reduction [POT+05].

System Integration

During system integration significant efforts are caused by unanticipated interactions
between subsystems provided by different vendors. The sharing of communication
resources in today’s cars across different subsystems (e.g., systems based on the CAN
protocol) makes it hard to fully test the functionality of a subsystem in isolation as
it will be integrated in the car. As a consequence, there is the need for a compre-
hensive integration test by the car manufacturer to determine possible mutual inter-
ference of subsystems. In contrast, a system architecture with rigorous operational
interface specification [KS03a] and error containment can avoid the introduction of
mutual interference during system integration. Such a temporally composable ar-
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chitecture [KO02] exhibits the benefit of dramatically decreasing integration costs,
because the validity of test certificates from suppliers is not invalidated during system
integration.

Complexity Control

Each subsystem (e.g., engine control, brake assistant) possesses a functional com-
plexity that is inherent to the application. The functional complexity of a subsystem
when implemented on a target system is dramatically increased in case the archi-
tecture does not prevent unintended architecture-induced side effects at the commu-
nication system. Since federated systems employ a dedicated computer system for
each subsystem, the complexity of the system is lower compared to the integrated
systems approach. The absence of interactions and dependencies between subsys-
tems reduces the cognitive complexity to a manageable level. In today’s cars we do
not find a totally federated architecture nor an integrated one. In fact, the economic
pressure in the automotive industry requires system designers to utilize the avail-
able communication resources for more than one subsystem without protecting the
resources from mutual interference. For a deeper understanding consider an exem-
plary scenario with two subsystems. If the two subsystems share a common CAN
bus, then both subsystems must be analyzed and understood in order to reason about
the correct behavior of any of the two subsystems. Since the message transmissions
of one subsystem can delay message transmission of the other subsystem, arguments
concerning the correct temporal behavior must be based on an analysis of both sub-
systems. In a totally federated system, on the other hand, unintended side effects are
ruled out, because the two subsystems are assigned to separate computer systems.

3.3.2 Diagnostic Infrastructure

Figure 3.2 shows the diagnostic infrastructure of today. Each ECU deployed in
a car typically has a diagnostic subsystem that analyzes the functionality of the
constituting parts (e.g., via Built-In Self Test (BIST)) or performs application specific
plausibility checks, i.e. assertions, to detect errors.

Once the OBD system of the car detects a violation of the specification of an ECU,
a breakdown log entry is written, and in case of a high severity, the driver is informed
via the Malfunction Indicator Light (MIL). In case of an error, current diagnostic
systems provide a so called freeze frame function, that records the condition of the
vehicle when a failure occurs. The freeze frame provides important information for
the failure cause analysis. The breakdown-log typically stores data on the type of
fault, the state of the system, the priority, the environmental conditions, a timestamp,
and information on the milage of the car. Depending on the type of inspection
(e.g., garage, factory inspection, development) different parts of the breakdown log
entry are analyzed.

In maintenance mode the ECUs are accessed using dedicated protocols like ISO-
9141, J1850 or the CAN based KWP 2000 [Wal02]. At the service station the me-
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Figure 3.2: Automotive Diagnostic Infrastructure

chanic uses a diagnostic testing device (e.g., VAG tester) to receive information about
pending problems. Since most mechanic are no specialists in automotive electronics,
the service technician depends on the accuracy of the diagnostic information pro-
vided by the OBD. At the garage only a specific testing device code (including a
short human readable textual description) and a Diagnostics Trouble Code (DTC)
are read and interpreted. A DTC provides additional background information on
the failure, for example an 8 bit value describing prevalent faults. Based on this
information the mechanic must be able to decide which part of the system caused
the failure and needs to be replaced to restore full functionality.

The dashed line in Figure 3.2 indicates the cut between current available tech-
nology and advanced services that are subject of current research. Future trends like
tele-diagnosis, tele-service and tele-programming offer new possibilities in the collec-
tion of diagnostic information and customer service [Dei02]. The ultimate goal is to
shorten the delay between the occurrence of a failure and the definition of corrective
action.

Tele-service is used to automatically inform the dealer about wearout and tear
of the car via a telephone network (GSM, UMTS). The service call is then inspected
by the service advisor who supervises the needed services, checks the availability of
the parts to be replaced and makes the necessary appointments.

The vision of tele-diagnosis is to send detailed diagnostic information of the car to
a diagnostic authority that processes and analyzes the collected data. Thus not only
malfunctions of components are reported (like OBD) but also valuable information
of data from vehicles on the road can be collected and analyzed in order to enhance
diagnostic procedures [MRS+02]. However, data privacy issues have to be clarified
by the legislator.
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Tele-programming is supposed to allow the programming of the car electronics
either to correct software faults or to extend the functionality of the car. For more
detailed information on telematics technology trends refer to [JM02] and [Lan02].

3.3.3 Role of Diagnosis

Three related diagnostic tasks can be identified in advanced automotive system,
namely fault detection, identification of faulty Fault Containment Regions (FCRs)
and fault identification within a FCR, which will be discussed in the following.

Failure Detection

Failure detection is the identification of a deviation of the provided service from the
intended specification of a component of the system. Failure detection is the minimal
function that any OBD system of a vehicle must perform [AM02].

One of the most important parameters in the design of failure detection is the
sensitivity of the analysis algorithms [OM02]. By designing the algorithms too sen-
sitive the likelihood of faulty classification of operational components will increase
significantly. Unnecessary MIL activations will have a lasting effect on the user’s
trust into his car [Ber02]. For this reason setting the scope of the analysis parame-
ters is a tradeoff between the frequency of faulty detection and detection of faulty
nodes.

During the factory inspection process the situation is different. The required
level of diagnosis is far more sensitive than the diagnostics functions adopted for
market conditions. For this reason it is necessary to develop diagnosis systems that
can change the malfunction detection sensitivity by means of a diagnostic scan tool.
According to [OM02] this is an effective weapon in the phenomenon investigation for
defects with minimal repeatability.

Identification of faulty FCRs

This service of a diagnostic system provides a determination of the exact location of
the fault within the system, i.e. which FCR deviates from its intended function.

Barkai [Bar01] provides some interesting numbers that underpin the current prob-
lems of diagnostic services in automotive communication systems. He states that in
more than 20% of MIL activations, the OBD did not provide sufficient data to iden-
tify a root cause and were dismissed as No Fault Found (NFF). Furthermore Original
Equipment Manufacturer (OEM) studies show alarmingly high rates of incorrect ini-
tial diagnosis of electrical problems, in some cases exceeding 50%.

This numbers point out the lack of current communication systems to provide
assistance in the fault isolation process. As a consequence the car repairman chooses
the simplest solution and changes all components that can be responsible for the

33



3.3 Automotive Diagnosis and Maintenance 3 Related Work

CC

Host

CC

Host

CC

Host

Host

CC

Host

CC

Host

ID: 4

ID: 1

ID: 5 ID: 6

ID: 2 ID: 3

CAN Bus
ID: 5

CC

Figure 3.3: Diagnostic Deficiencies of CAN: Masquerading

malfunction [MRS+02]. This procedure of throwing away operational components
dramatically increase the costs of a car either for the user (costs of ownership) or the
manufacturer (warranty repair costs).

To illustrate one of the diagnostic deficiencies of the widely used CAN [Bos91]
communication protocol, consider the following example. Due to a transient (or
permanent) fault a node forges the ID of a message. This phenomenon, also called
masquerading, is not prevented by CAN protocol mechanisms. Masquerading is
defined as the sending or receiving of messages using the identity of another principal
without authority [CDK94, p. 480]. Consequently, even an external observer cannot
identify the faulty sender. Figure 3.3 depicts this scenario. The faulty node with ID
1 sends a message to all other nodes and it pretends to be node with ID 5. Such a
forged message ID can have a significant impact on the application. Once the failure
is detected and an entry is written into the breakdown log the service technician at
the garage will most likely change the node with ID 5 that caused the receiving node
to fail due to an incorrect message. Hence the faulty node remains undetected and
unchanged.

Fault Identification within the FCR

After the faulty FCR within the system has been identified, the fault identification
process classifies the fault and determines the root cause. Fault identification is
mostly an offline activity due to high complexity and effort required. In automotive
applications fault identification is typically applied to returned parts or for warranty
analysis [AM02] by the OEM. Studies of the ECUs used in automotive applications
underpin the so-called Pareto-principle, i.e. a phenomenon that can have many the-
oretical causes has in reality only a few [PMH98]. Recent studies show that the
components with the highest failure rate are Printed Circuit Boards (PCBs) and
micro-controllers followed by analog ICs and ASICs (the higher the integration, the
more likely the component is subject to fail). Resistors, transistors and diodes have
the lowest failure rates. More detailed information on ECU failures and component
failures can be found in [WWS99].
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3.3.4 OSEK/VDX

OSEK (Open Systems and the Corresponding Interfaces for Automotive Electronic)
is a joint project in the German automotive industry aiming at an industry stan-
dard for distributed control systems in cars. When the French automotive industry
joined the consortium, the VDX-approach (Vehicle Distributed eXecutive) has been
included into the standard. The OSEK/VDX architecture comprises:

• Communication

• Network Management

• Operating System

• OSEKtime Operating System

• OSEKtime Communication (FTCOM)

In the remainder of this section we will focus on the Network Management
(NM) [OSE03]. The OSEK Network Management defines a set of services for the
network management of the nodes deployed in a distributed control network within a
vehicle. Among these services are interfaces to the application, algorithms for node
monitoring, OSEK internal interfaces (e.g., with the OSEK Communication stan-
dard), an algorithm for transition into sleep mode and the Network Management
protocol data unit.

Since the scope of this thesis lies on diagnosis we will only consider parts of the
standard relevant to this topic. Node monitoring in the scope of OSEK/VDX is
used to inform the application about the status of the nodes on the network. The
NM offers two alternative mechanisms for network monitoring that will be discussed
next.

Direct Network Management Concept

OSEK supports direct node monitoring by dedicated NM communication. In the
OSEK scheme every node of the network actively monitors each other node. Based
on the proposed diagnostic algorithm, every node broadcasts periodically diagnostic
NM messages as a life sign in a logical ring topology. The communication sequence in
this logical ring is independent of the actual in-vehicle network structure. Therefore
each node is assigned a logical successor. OSEK distinguishes two types of messages.
Alive messages are used to register new senders to the logical ring. A ring message
is responsible for the synchronized running of the logical ring. It will be passed from
one node to another (successor) node. During operation a time-out on a ring message
will be interpreted as a node failure. A node is also classified as faulty, if the NM
messages sent by the node indicates an erroneous state (i.e. the node declares itself as
faulty). However, the identification of the exact cause for a node failure is not part of
the NM. The implementation of this diagnosis scheme requires several timing values
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Parameter Definition Validity
TTyp Typical interval between two ring messages global

on the bus
TMax Maximum time interval between two ring messages global
TTx Delay to repeat the transmission request local

Table 3.1: Network Management Timing Parameters

to be respected as listed in Table 3.1. Based on the values of monitoring counters
(with a specific threshold), the nodes of the system are considered operational or
not.

Indirect Network Management

In case direct monitoring cannot be applied, OSEK introduces indirect monitoring
mechanisms. Indirect network management uses monitoring of periodic application
messages to determine the health status of the control units connected to the network.
This monitoring scheme makes no use of dedicated NM messages. However, the use
of this technique is limited to nodes that periodically send messages in the course of
normal operation.

In this case, a node emitting such a periodical message is monitored by one
or more other nodes receiving that message. Nodes whose normal functionality is
limited to receiving must send a dedicated periodic message in order to be monitored.

In the optional extended configuration management the status of the participating
nodes are determined by the use of counters with a specific threshold indicating the
malfunction of a node.

3.4 Avionic Diagnosis and Maintenance

This section gives a short overview on the maintenance strategies and implementa-
tions of on-board maintenance solutions onboard commercial aircrafts, in particular
on the basis of the Boeing 777 by-wire plane [Yeh98].

3.4.1 On-bard Maintenance System

In order to reduce “best guess, shotgun maintenance” [SKSS94] in avionics, aircraft
manufacturers provide on-board maintenance solutions following the design guide-
lines of documents like ARINC 624 [Aer93]. According to [Aer96] approximately
50% of all equipment removals are reported as NFF, i.e. electronic equipment re-
moved from an aircraft during maintenance troubleshooting, which, when returned to
the manufacturer, is tested and found to work correctly.
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ARINC 624 As for any diagnosis and maintenance system, ARINC 624 empha-
sizes, that unreliable diagnosis is worse than no diagnosis. ARINC 624 provides
design guidelines for an Onboard-Maintenance System (OMS) for state-of-the-art
aircrafts. Thereby, the main objectives of an OMS is to serve as the tool for consoli-
dation and correlation of all Built-In Test Equipment (BITE) results for centralized
access and display:

• Cost-effective and user friendly means of airplane maintenance

• Reduction of shotgun maintenance

• Simplification of maintenance procedures

• Elimination/reduction of ground support equipment

• Provision of an Airplane Condition Monitoring System (ACMS) for the moni-
toring of performance trends

A key aspect of ARINC 624 is the reduction of efforts required by maintenance per-
sonal by automating ground tests and minimizing the need for operator interactions.
To ease maintenance, the OMS should also provide an overview about the installed
Line Replaceable Units (LRUs) onboard the aircraft. Furthermore, the OMS al-
lows ground personal to correlate reported system anomalies by the aircraft crew
with BITE records in the system. For this reason, for each entry in the database
contextual information is stored, such as

• Failure indication or flight deck effect, if any

• Flight phase and flight leg

• Time and date

• Flight number and city pair or route number

• Airplane identification

• Airplane flight parameters to support the pilot report and/or troubleshooting,
e.g., altitude, airspeed etc.

Since airlines typically require large amounts of maintenance documentation, the
OMS should provide an interface to allow accessing an electronic library system. This
way the maintenance engineer has access to relevant information for maintenance
activities for each deployed LRU onboard an aircraft.

ACMS As part of the OMS, the Airplane Condition Monitoring System (ACMS)
monitors and records selected airplane data related to aircraft maintenance,
performance, and troubleshooting. The main goal of the ACMS is the detec-
tion and analysis of potential malfunctions (cf. CBM) in order to allow timely
maintenance actions resulting in quick turn-around of the aircraft.
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The ACMS is required to collect data over a specified period of time refer-
enced to a specific event. This way trend reports can be generated for either
engineering feedback or anomaly analysis.

Another fundamental function of the ACMS is also providing access to the
current health status of fault-tolerant subsystems (e.g., the fly-by-wire system)
of the aircraft. This way the redundancy status can be assessed by the service
technicians, and maintenance activities scheduled before the minimum redun-
dancy level is reached.

Scrubbing Since fly-by-wire applications require ultra-high dependability fault-
tolerant strategies need to be utilized that enable the continued operation of the
system in the presence of component failures. So-called “scrubbing-techniques”

Time

Reliability

1
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t0=0 t1

∆s

Figure 3.4: Scrubbing Techniques

are used to validate the functionality of fault-tolerance mechanisms in speci-
fied time intervals. Figure 3.4 illustrates the basic concept of this approach.
The reliability of electronics components decreases with time. At time t0 the
component is assumed to be fully functional. At time t1 the proper function of
fault-tolerance mechanisms is validated again and therefore the component is
supposed to have the same reliability as at instant t0. The likelihood of unde-
tected components that are stuck at-good-failure, i.e. the component works as
specified as long as no failure occurs, depends on the time interval ∆s. Scrub-
bing is closely related to CBM techniques. However, the system is tested in a
special maintenance mode and never in operational mode. Intentionally gener-
ated faults are used to examine the specified behavior of all components in the
case of a malfunction.

Case Study - The OMS for the Boeing 777 The Central Maintenance Com-
puter (CMC) as part of the Boeing 777 OMS assists in the analysis of flight deck
effects and crew complaints from the arriving flight, and diagnoses the reasons behind
these symptoms [Ram92]. A key mechanism is the identification of the responsible
Line Replaceable Module (LRM) causing the system malfunction. For electronic
equipment it is no longer possible to perform simple visual inspection. Thus, it is
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necessary to assist the service technician in order to prevent shot-gun maintenance,
i.e. the replacing of LRM and hoping that the fault is eliminated. The 777 OMS
heavily exploits BITE, on the one hand to eliminate the problem of equipment re-
movals in order to gain access, and on the other hand to allow correlation of electronic
failures with flight deck effects. A key functionality of the CMC is to suppress sec-
ondary symptoms that may mislead the analysis process. For more information on
the user interface of the CMC refer to [VB94]. The CMC analysis is based on a
model-based algorithm which encodes the cause-effect relationship. The model de-
fines fault conditions, associated symptoms and repair actions for each LRU on the
aircraft [Fel94].

3.4.2 ARINC 653

The ARINC 653 specification [Aer03] as part of the Integrated Modular Avionics
(IMA) [Aer91] defines a general-purpose APplication EXecutive (APEX) interface
between the operating system of an avionics computer resource and the application
software.

Health Monitor

ARINC 653 proposes so-called Health Monitors (HMs) in order to monitor and report
hardware and software faults (e.g., application and operating system). The main
purpose of a HM is fault isolation and prevention of error propagation. The HM are
contained within the following software elements:

Operating System Typically, HM are functions of the operating system, where a
HM predefined configuration table defines the appropriate response to exhibited
failures.

Application Partitions In case faults are system specific and determined from the
logic or calculation, application partitions are used to pass either the detected
faults to the operating system or to an appropriate system partition.

System Partitions These partitions can be used by the system integrators as error
handlers. The advantage of this approach is that responses to detected faults
do not have to be based purely on a look up table and the implementation is
outside the operating system.

Error Detection

In conformance with the specification, errors are detected by several elements:

Hardware Typical hardware errors are memory protection violations, overflows,
zero divide, timer interrupts or I/O erros.

39



3.5 Setting the Focus on Transients 3 Related Work

Core Software At the core software level ARINC distinguishes between configura-
tion faults and deadline violations.

Application Application specific errors comprise sensor failures or discrepancies in
multiple redundant outputs.

However, the exact list of detected errors and the location of the error detection
mechanisms is implementation specific.

3.5 Setting the Focus on Transients

The increasing rate of transient failures in electronic systems implies consequences
to system designers and manufacturers. The so-called Trouble Not Identified (TNI)
phenomenon (also known as Cannot Duplicate (CND) or No Fault Found (NFF)
problem) is probably the most discussed maintenance problem currently affecting
both avionics and automotive industry. The following section is devoted to identify
reasons for this increase of transients in electronic systems and analyzes the complex
interrelationships causing TNI and related phenomena.

3.5.1 The Trouble Not Identified Phenomenon and its Implications

The TNI phenomenon is characterized by the fact that the source of a transient
system malfunction cannot be easily identified. Today many used architectures are
providing limited and ineffective diagnostic services not allowing the detection of
any single anomaly within the system. Due to insufficient fault isolation and limited
control of error propagation the identification of faulty components becomes often
intractable. Thus, the classification of the experienced failure modes becomes a very
difficult, if not impossible task. However, this determination whether the fault source
originates from internal or external disturbances is the first step to tackle the TNI
phenomenon. To illustrate the difficulties of the identification of such faults consider
the following example taken from [TAP02, p. 642]:

One aspect of the intermittent problem was that when two components
are soldered together and a crack develops in the solder connection, for
whatever reason, and then the unit experiences expansion and contraction
due to changes in temperatures, the connection may be closed at some
times and open at other times.

This example indicates that these transients can result due to complex environmental
condition that cannot be easily reproduced at the time of maintenance.
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Figure 3.5: The TNI Phenomenon

Automotive Domain

The TNI phenomenon is an increasing problem in automotive electronics causing
major economic implications. As depicted in Figure 3.5, once a customer is informed
by the OBD system of the car about a malfunction (e.g., by the illumination of a
MIL), he informs the car dealer about the failure. However, not all transient failures
will be recognized by the customer. These undetected failures impose even more a
serious threat to the safety of the system. Usually the mechanics at the service station
get limited and unprecise information about the location, symptoms and possible
failure cause [TAP02]. This lack of information of why the TNI occurred often results
in unnecessary replacements of working components [MRS+02, TE01, Bar01]. Even
worse, in many cases the component causing the anomaly in the systems remains
unchanged.

Example 1: Ford Ignition Modules In [TAP02] a case study from a Ford ig-
nition module is presented. In 1984 on average 40% of the ignition modules would
fail within five years or 50000 miles. The main problem was the fact that many of
the modules did not exhibit a failure mode when they were returned. That is, the
electronic modules were removed from the car, but passed the tests at the manufac-
turer. However, Ford identified several failure mechanisms that could cause inter-
mittent faults, including substrate cracks, cracked solder, cracked resistors, shorted
leadframes, leadframes unsoldered from housing and others.

The most interesting discovery of the Ford analysis was the lack of feedback from
the experienced failure modes, i.e. the lack of support from the used architecture to
identify faulty components and to provide field data to the engineers.
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Another problem is the identification of the fault source by the module manu-
facturer (warranty analysis). Visual inspection exposed to be often inappropriate,
because microscopic failures can be difficult, if not impossible, to detect, especially if
the location of the failure is unknown. As investigated by Ford, it is likely to occur
that a module could pass the tests but fail in the field [TAP02].

Example 2: Cruise Control Modules A recent study about failure modes
of cruise control units revealed that the intermittent nature of the majority of
component failures makes it difficult for the vehicle engineers to identify the fault
source [KHTP99]. In fact, more than 96% of the failed cruise control modules re-
moved from the vehicles passed bench tests. The inability to replicate real-world
conditions in order to expose the fault during laboratory tests is a prevalent problem
with electronic control units.

The reason for this phenomenon is twofold. Firstly, the lack of architecture
support for the detection and identification of faulty components has a significant
impact in the percentage of unidentified component failures. Secondly, the inability
to duplicate the actual conditions that caused the failures in the laboratory is a cause
of a high CND rate.

Avionics Domain

With the increasing use of electronic devices in avionics (e.g., fly-by-wire applications)
the likelihood of a malfunction of an electronic component will also increase. Though
reliability was subject to tremendous improvements during the last decades, transient
failures reduce potential benefits. This is also recognized by James Pierce, former
president of ARINC (quote taken from [Uni03]):

Despite significant improvements in mean time between failures of current
avionics and the introduction of more comprehensive and accurate built-
in test, the No Fault Found (NFF) ratio stubbornly hovers in the 50%
area. This in effect halves the potential benefit of the technical advances
made in avionics.

According to [Uni03, Mah00] the NFF ratio is dramatically increasing. As stated,
50 to 60% of all in-flight avionics of commercial and military aircraft failures cannot
be duplicated at ground. Since it is estimated that 30% of all avionics problems
that are repaired are caused by component internal transient type defects, it can be
concluded that the overall-rate of this type of failure is the number-one failure mode
for electronic systems. This is reflected by the fact, that several depot LRU repair
stations are reporting NFF rates over 90%.

These numbers are validated by a field study of Boeing, Texas Instruments and
General Dynamics cited in [PR92], that reveals that 21 to 70% (depending on the
type of system) of all failures could not be duplicated. Similar, the ROLM analysis
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Failure Cause Percentage
Parts 22%
No-defect-found 20%
Manufacturing defects 15%
Induced 12%
Wearout 9%
Design deficiencies 9%
Software 9%
System Management 4%

Table 3.2: Failure cause distribution of electronic systems in military aircraft

as cited in [Ram92] identified that 53% of boxes removed from the airplane are later
found to be re-tested OK or cannot duplicate the fault. As a consequence, Boeing
introduced an integrated systems approach for maintenance in its 777 airplane to
reduce the no-fault found ratio [Ram92].

Dylis et al. [DP02] offer an interesting statistic from the Reliability Analysis
Center (RAC) from the Department of Defense (DoD) regarding the failure cause
distribution of electronic systems in military aircraft. The statistic reveals that
78% of failures originate from non-component causes with the distribution listed in
Table 3.2.

Built-In Test Built-In Tests (BITs) are designed to identify operational conditions
of electronic devices and facilitate automatic detection of wearout and breakage and
has become an approved means of providing diagnostic support [GS02]. Despite the
benefits of BITs there are still diagnostic deficiencies regarding the capabilities of
identifying faults with minimal repeatability.

In [PDN+01] an example from the avionic domain is presented that underpins
the fact that spurious fault detection is unacceptably high. The BIT of the Airbus
A320 from Lufthansa had a daily average of 2000 error logs. Around 70 of these
logs corresponded to faults reported by pilots, while another 70 pilot reports had no
corresponding entry. Only two of the LRUs replaced every day, were found to have
faults that correlated with the fault indicated by the BIT logs.

This example shows that fault detection is often incomplete and fault isolation
inaccurate due to insufficient support of the underlying architecture. In combination
with the ubiquitous tendency to treat testing of systems as a low priority task this
results in a high rate of soft failures. The inability to reproduce the field environment
responsible for the CND failures of the system is a determinant for the limited service
possibilities of the ground service crews [PDN+01].
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3.5.2 Shift in Technology

Due to significant improvements of the IC industry during the last decades, the
permanent failure rates of ICs is continually improving. The following section in-
vestigates this development and elaborates on the fact that the shift of technology
also leads to a shift of the experienced failure modes of microelectronics. Various
influence factors are considered and explanations for the latest developments are pro-
vided. At first, we describe the different phases of the predominant reliability model
of electronic devices – the bathtub curve. In the second part the impact of emerging
technology on the experienced failure modes is presented.

The Bathtub Curve

As depicted in Figure 3.6 the reliability of electronic components can be illustrated
by the bathtub curve [DoD98, p. 5-28]. The bathtub curve is divided into three dis-
tinct phases, the infant mortality, the useful life, and the wearout phase. According
to [Pec01] infant mortality failures are typically due to mistakes made during the
manufacturing process. Thus, improved manufacturing can significantly reduce the
incidence of such failures (i.e. fault avoidance).

Based on field data from the automotive industry Pauli and Meyna [PMH98,
PM98] provide some very interesting facts on the failure rates during the period
of infant mortality and useful life of the bathtub curve. In contrast to wearout
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Figure 3.7: Time-dependent hazard rate h(t) of an ECU (taken from [PMH98,
p. 1014])

failures that affect the entire population, infant mortality failures tend to affect only
a subpopulation of the shipped product [Pec01].

Figure 3.7 depicts the time-dependent failure rate of an ECU used in automotive
applications. The reliability curve visualizes that the average failure rate of an ECU
in the useful life period is very high. Reported failure frequencies are 50 out of 1
Million ECUs in 1 year. Harsh operating conditions with increased stress factors
like temperature, shock and vibration, humidity, contaminants and radiation are
affecting the reliability significantly [WWS99, IEE99]. The Pareto plot in Figure 3.8
shows the main reasons for ECU failure in the automotive domain.

Recent studies of ECUs used in automotive applications show that the parts of
the components with the highest failure rates are PCBs and microcontrollers followed
by analog ICs and ASICs (the higher the integration, the more likely the component
is subject to fail). Resistors, transistors and diodes have the lowest failure rates (see
also Figure 3.9). Capacitors are an exception since these components are more likely
to be affected by aging processes and thus having a higher failure rate due to wearout
than other discrete electronic elements. More detailed information on ECU failures
an component failures can be found in [WWS99].

Failure mechanisms due to accumulation of incremental damage beyond the en-
durance of the material are termed wearout mechanisms [Ram01]. Early and prema-
ture wear-out failures are caused by the displacement of the mean and variability due
to manufacturing, assembly, handling, and misapplication [Pec01]. Unfortunately,
the wearout period is not covered by the study, since the manufacturers are only in-
terested in field data during the warranty period of the product [PMH98]. Wearout
due to the continuous use and stress of components is a natural phenomenon. Con-
sider for instance the break pads of a car. According to the time of operation and
operating conditions the abrasion of the pads is more or less advanced. The same is
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true for the profile of a tire (e.g., on the landing gear of an airplane). For many non
electronic devices there exists the possibility of visual assessment of the condition of
the equipment. Suitable indicators can be measured (e.g., depth of the remaining
profile of a tire) and appropriate action can be taken by the service mechanics.

The question raises, whether we can find suitable indicators in the domain of
electronic devices that allow to effectively and undoubtedly assess the condition of
electronic devices. If advanced maintenance techniques like CBM are envisaged, then
such indicators need to be identified.

A suitable indicator for wearout of electronic devices is the increase of transient
failures in the system [Con02, BCGG97]. In fact, these spurious failures need to be
analyzed to distinguish between random external transient disturbances (e.g., EMI)
originating from outside the system and transient failures caused by internal faults
(e.g., solder joint cracks, loose contacts).

A promising approach to monitor the condition of electronic circuits is presented
in [MPG02, Goo00]. The purpose of so-called prognostic cells is to predict circuit
failure. Such prognostic monitors are located on the same chip but are subjected to
accelerated conditions to increase the rate of degradation relative to the companion
functional circuit. This ensures that the monitor will fail before the main circuit.
These prognostic monitors experience the same manufacturing process and the same
environmental parameters. For this reason it its expected that the damage rate is the
same for both circuits. Thus, this approach remedies the deficiencies of conventional
off-line tests.

Impact of Emerging Technology on the Experienced Failure Modes

The tremendous improvements in the reliability of semiconductor devices is reflected
in Pecht’s Law. It suggests that semiconductor device reliability in terms of time-
to-failure is doubling every fourteen months based on activation energy trends of
semiconductor devices [MPG02].
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This numbers are underpinned by Romanchik [Rom00] who states that in 1993
the failure rate for surface mount microprocessors in General Motor’s engine control
modules was nearly 450 parts per million (ppm). By 1997, that number hast dropped
to less than 15 ppm. Based on these facts one can be misguided to believe that the
reliability of modern microelectronics is in the magnitude needed to build dependable
systems.

The types and causes of failures for electronics have changed over the years.
Failure analysis in recent years has revealed that some failure causes may have been
reduced by improvements in technology but due to the higher level of complexity
and downsizing other failure classes have emerged [PR92].

According to Constantinescu [Con02] the primary cause for the significant in-
crease of soft error rates are shrinking geometries, lower power voltages and higher
frequencies. These result in higher sensitivity to neutron and alpha particles, and
consequently have an impact on dependability by increasing the transient failure
rates. Furthermore, due to semiconductor process variations and manufacturing
residuals the likelihood of reoccurring permanent faults leading to transient failures
is growing. The shrinking of geometries in semiconductor design has also significant
impact on future design processes, such as nanometer design [LC02].

It can be summarized that the tremendous improvements made by the IC industry
with respect to permanent failure are extenuated by increasing transient failure rates
due to side effects of decreasing geometries of semiconductor technology. However,
the statistics reveal little quantitative information on the transient failure rates of
components.

3.5.3 Lasting Consequences on Business Realities

Electronic problems are not a phenomenon of low-cost or cheap cars. Quite on the
contrary, luxury and high-end cars are primary affected by tricky electronic problems.
Considering the complexity and amount of electronics in today’s luxury cars this fact
is no surprise.

Leadership in technical innovation is the prevalent claim of automotive manu-
factures in order to ensure customer loyalty and to differentiate the own products
qualitatively from the competitors. However, the public discussion regarding the de-
creasing reliability of car’s electronics in newspaper and non-scientific magazines has
serious consequences of the customers opinion in the car manufacturer (e.g., [EW03]).
The long term established cooperate image of luxury car manufacturers experiences
lasting damage. This unwanted attention and accompanying image problems re-
sults in significant monetary expenses, either due to high warranty costs and/or the
subsequent loss of customers.

However, it is important to note that all automotive manufacturers offering high-
end technology are affected by this problem. In addition, the problem will delay the
series production of emerging technologies, such as X-by-wire functionality. Ironi-
cally, these new technologies offer the possibility to introduce new electronic archi-
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Figure 3.10: The Heinrich Pyramid

tectures into the car, that can significantly reduce the ratio of TNI problems by
offering dependable error detection and isolation services (e.g., the Time-Triggered
Architecture [KB03]).

3.6 The Heinrich Pyramid and Related Models

As a result of his studies on safety fundamentals, Heinrich proposed the so-called
Heinrich Pyramid as the basis for his theory of accident causation [Hei50]. As de-
picted in Figure 3.10 for every major (fatal) injury there are 29 minor injuries and
300 no-injury accidents. This model proposes that the accumulation of accidents
with low severity over time will cause incidents with higher severity in the future.

An adopted version of this model tailored to the avionic domain is presented
in [Ran01]. The air safety information model as illustrated in Figure 3.11 identifies
four types of possible occurrences: significant accidents, incidents, aircraft defects,
and unreported occurrences. It is important to note, that the more serious the inci-
dent has been, the more information on this incident is available. From an economic
point of view it is understandable, that a thorough investigation of incidents imply-
ing no consequences for the passengers or the aircraft at all, is not performed. This
is in contrast to accidents causing (fatal) injuries or severe damage to the aircraft.

The main objective of the investigation of aircraft accidents and incidents is the
determination of the root cause in order to prevent future similar occurrences. It is
important, to identify whether a human error or a failure of a technical subsystem
caused the accident or incident. In case the latter applies, aircrafts of the same type
are also affected by the imminent danger of experiencing the same problems.

It can be concluded that in the avionic domain the peak of the pyramid is covered
very well, whereas the amount of available information of the other layers of the model
are decreasingly covered.

With the increasing use of electronic systems in the avionics and automotive do-
main it is important to focus on the identification of anomalies in the fundament of
the pyramid. By applying the air safety information model pyramid to electronic
systems it can be assumed that the increasing rate of system anomalies is a suitable
indicator to forthcoming component failure. The increasing number of TNI phenom-
ena as elaborated on in Section 3.5 emphasize the need for diagnostic infrastructures
that take system anomalies into account in order to shrink the upper layers of the
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Figure 3.11: Air Safety Information Model based on the Heinrich Pyramid

pyramid (excluding human errors). Therefore, a diagnostic infrastructure must take
these system anomalies into account.

3.7 Analysis Techniques

Numerous analysis techniques for diagnosis can be found in the literature. In the
following we will briefly discuss prevalent analysis techniques, in particular threshold-
based algorithms, probabilistic networks, and model-based diagnosis methods.

3.7.1 Threshold-Based Techniques

In the following we describe the basic principles and rationale behind threshold-based
analysis algorithms and describe architectures relying on this analysis techniques.

Alpha-Counter

The rationale for the α-count mechanism is to decide on the point in time when
keeping a system component on-line is no longer beneficial [BCGG97]. The algo-
rithm is partly based on the observation that intermittent (transient internal) faults
exhibit a relatively high occurrence rate after their first appearance. The α-count is a
threshold-based fault classification mechanism designed to identify permanent faulty
components from components affected by external transient faults. The main idea
of the algorithm is to keep track of every fault occurrence in each component. When
the α-counter value exceeds a given threshold value, the component is diagnosed as
affected by a permanent/intermittent fault. Depending on the expected frequency of
permanent, intermittent and transient faults the values assigned to the parameters
of the algorithm are set.

In [BCGG97] the basic algorithm is defined as follows. Let J
(L)
i indicate the L-th

judgment on a component ui: then J
(L)
i = 0 means that the error detection mecha-

nisms deployed at component ui has detected no violation of the specification, while
J

(L)
i = 1 denotes that the error detection mechanisms has detected a failure. The

α-count algorithm associates a score αi to each component ui to record information
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about experienced failures affecting the component and allow judgment about the
health status. αi is initialized to 0 and accounts for the pertinent L-th judgment the
following way:

aL
i =

{
a

(L−1)
i ·K if J

(L)
i = 0

a
(L−1)
i + 1 if J

(L)
i = 1

0 ≤ K ≤ 1

In case aL
i exceeds an a priori defined threshold value αT , the component ui is judged

as being permanent faulty. The outcome of the α-count mechanism heavily depends
on the parameters K and αT .

In [GCB98] an improved version of the α-count mechanism with two instead of
only one threshold value is presented resulting in better performance of the algorithm.
Such a two level threshold scheme is depicted in Figure 3.12. Two thresholds, TP and
TR are used. While the first one specifies when a node is considered to be faulty (no
longer classified as transient faulty, but permanent), the threshold value TR defines
when a faulty node is declared healthy again. This way, nodes analyzed as faulty
during the first analysis process can be classified as healthy again, provided that no
more errors of the component are detected. Consequently, the most important design
parameters of the algorithm are the penalty threshold TP and the reward threshold
TR. Furthermore, a reintegration penalty value, denoted c in Figure 3.12, can be
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parameterized. A comprehensive overview on the different design choices for the
parameter settings can be found in [BCGG00]. The exact values of these parameters
is application specific and depends on the application field, field data, and experience
of the system designer.

Architectures using Threshold-Based Analysis Techniques

Multicomputer Architecture for Fault-Tolerance The Multicomputer Archi-
tecture for Fault-Tolerance (MAFT) is designed to comply to the performance re-
quirements in the avionics domain (e.g., flight control system) [KWFT88].

A MAFT system consists of several node computers connected by a broadcast
bus network. Each node is partitioned into two separate processors, namely the
operations controller and the applications processor. The operations controller is
designed to handle the vast majority of the system’s executive functions, for instance,
communication and synchronization, data voting, error detection, task scheduling,
and system reconfiguration.

Diagnosis in MAFT. The operations controller of a node continuously monitors
the messages of all other nodes of the MAFT system. Once an error is detected
by the error detection mechanisms of the operations controller, a correspond-
ing error message is generated (up to 31 error flags). In addition, a penalty
counting mechanism is used to assess the condition of each node of the system.
Whenever an error is detected, a penalty weight, unique to the triggered detec-
tion mechanisms, is added to the error counter. The weight of the penalty is
determined by the application designer and is intended to reflect the criticality
of the error. This penalty count mechanism is also used to communicate the
overall health of the node.

By exchanging this information periodically, Byzantine agreement on the error
counters is guaranteed. Afterwards the counters are updated and compared to
a predefined exclusion threshold. In case the value exceeds the given threshold,
the operations controllers will propose to exclude the faulty node from the
system. Similarly, by exchanging this information, Byzantine agreement on
the operational state of each node is achieved.

In the MAFT architecture, excluded nodes remain functional but will not be
included into the computational activities of the other nodes. Therefore, in
case the node was excluded due to a transient fault, the node will not accrue
penalties as soon as the nodes exhibits correct behavior. At predefined points
in time (master period), the counter will be decremented for a specific value
(or zero in case for permanent exclusion from the system). When the nodes fall
below a given threshold, the operations controller decide via the same sequence
on inclusion.

A faulty detection mechanism is identified by the fact that the generated error
report differs from the consensus. In order to accelerate the detections of faults
within the detection mechanism, self-test mechanisms are used.
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Generic Upgradable Architecture for Real-Time Dependable Sys-
tems Generic Upgradable Architecture for Real-Time Dependable Systems
(GUARDS) [PABD+99] is designed for ultra-dependable real-time systems. The
design rationale sets emphasis on design for validation, reuse of pre-validated com-
ponents and support of software modules with different criticalities.

Fault Classes. GUARDS is designed to tolerate permanent and transient physical
faults and should provide tolerance of software design faults. The architecture
distinguishes between temporary external physical faults (also called transients)
and temporary internal faults (also called intermittents). The latter are treated
as either permanent or transient faults according to their rate of recurrence.

Mechanisms. The collection of error reports generated during the interactive con-
sistency and consolidation exchanges forms the first step in the diagnosis
process in GUARDS. Subsequently, the messages are filtered to assess the crit-
icality of the detected errors and to determine further action if necessary.

The filtering of the information is done by applying the previously introduced
α-count mechanism [BCGG97]. In GUARDS a distributed version of the α-
count assessment method is used to allow diagnosis of channels, i.e. a shared
multi-processor system built from commercial off-the-shelf components. Once
a channel is diagnosed to be faulty and consequently excluded from the system,
the channel is isolated and reset. A self-test is used to determine whether a
transient or permanent fault is affecting the channel. In case of a permanent
fault the channel is shut down and subject to maintenance.

3.7.2 Probabilistic Networks

Probabilistic networks [CDLS99, Cha91] are gaining increasing popularity for di-
agnostic applications. Especially, in traditional artificial intelligence domains like
medicine the use of probabilistic or Bayesian networks has a long history as the data
structure of choice for expert systems. See for instance [KJ03] for a recent med-
ical application of Bayesian networks for an analysis of infertility data. Due to its
universal nature the use of probabilistic networks is not limited to particular applica-
tion domains. For instance, in [SJK00] a Bayesian network approach is implemented
to help in troubleshooting printer problems. Similarly, in [PDT03] a system is de-
scribed that allows the diagnosis of field replaceable units on the basis of Bayesian
networks and inference. A survey about algorithms for Bayesian inference can be
found in [GH02].

Bayes’ Theorem

Bayes’s Theorem is defined as

P (T |E) =
P (E|T )× P (T )

P (E)
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Figure 3.13: Bayesian Inference [CDLS99]

where T stands for theory and E for evidence. Since E is equivalent to (E ∧ T ) ∨
(E ∧¬T ) and the two disjuncts are mutually exclusive, we can write P (E) = P (E ∧
T ) + P (E ∧ ¬T ). This way we get the following version of the Bayes’ Theorem:

P (T | E) =
P (E | T )× P (T )

P (E | T )× P (T ) + P (E | ¬T )× P (¬T )

The generalized version of the theorem, where the probability of a particular theory
Tk out of a collection of alternatives T1, T2, . . . , Tn is

P (Tk | E) =
P (E | Tk)× P (Tk)∑n
i=0 P (E | Ti)× P (Ti)

and is typically applied when evaluating a theory in relation to a number of com-
petitors (Note, that the competitors must be mutually exclusive).

As depicted in Figure 3.13 Bayesian inference can be graphically represented by
a directed arrow indicating the cause and effect relationship [CDLS99].

Bayesian Networks

As stated in [CDLS99] the main idea of a graphical model is to allow experts to
concentrate on building up the qualitative structure of a problem before beginning
to address issues of quantitative specification. In graphical probability models nodes
represent random variables, and arcs represent conditional independence assump-
tions [Mur01]. One can distinguish two fundamental graphical models, namely undi-
rected (also known as Markov networks) and directed ones (Bayesian networks). In
directed graphical models, an edge from one node Xi to another node Xk can be
informally interpreted as indicating that Xi causes Xk.

Formally, a Bayesian network for a set of random variables X = X1, . . . , Xn

consist of [Hec95]:

1. a network structure S that encodes a set of conditional independence assertions
about variables in X

2. a set P of local probability distributions associated with each variable
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Figure 3.14: Bayesian Network Example

Together, both S and P define the joint probability distribution for X. The network
structure S is a directed acyclic graph, where the nodes in S are in one-to-one
correspondence with the variables X. Given the network structure S, the joint
probability distribution for X is given by

P (X) =
n∏

i=1

P (Xi | Pai)

where each Xi denotes both the variable and its corresponding node and Pai denotes
the parents of node Xi in S and the variables corresponding to those parents.

According to [DvdG00] the design of a probabilistic network involves three tasks:
the identification of variables of importance, the definition of the relationship between
theses variables expressed in a graphical structure, and finally, to obtain the prob-
abilities that are required for its quantitative part. This probabilistic information
typically comes from statistical data (e.g., field data), literature, or human experts
in the application domain [DvdG00].

An exemplary Bayesian network is depicted in Figure 3.14. This network consist
of five nodes (X = X1, X2, X3, X4, X5). X1 and X2 are both causing X3, which
itself shows the symptoms X4 and X5 with the probabilities given in the following
(e.g., derived from field data):

P (X1) = 0.05 P (X2) = 0.2

P (X3 | X1 ∧X2) = 0.95
P (X3 | ¬X1 ∧X2) = 0.62
P (X3 | X1 ∧ ¬X2) = 0.29
P (X3 | ¬X1 ∧ ¬X2) = 0.01

P (X4 | X3) = 0.55 P (X4 | ¬X3) = 0.05
P (X5 | X3) = 0.47 P (X5 | ¬X3) = 0.34

In a Bayesian network if one wants to know the probability of a node Xi, only
the parent nodes (i.e. the causes) are of interest. For the calculation, all possible
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combinations of the values of the parent nodes need to be stated. For example, if
one needs to know the probability of P (X3) then we need to calculate the probability
of each case that can lead to node X3 and add the probabilities:

P (X1 ∧X2 ∧X3) = P (X3 | X1 ∧X2)× P (X1)× P (X2)
P (¬X1 ∧X2 ∧X3) = P (X3 | ¬X1 ∧X2)× P (¬X1)× P (X2)
P (X1 ∧ ¬X2 ∧X3) = P (X3 | X1 ∧ ¬X2)× P (X1)× P (¬X2)
P (¬X1 ∧ ¬X2 ∧X3) = P (X3 | ¬X1 ∧ ¬X2)× P (¬X1)× P (¬X2)

Then P (X3) is just the sum:

P (X3) = 0.95× 0.05× 0.2 + 0.62× 0.95× 0.2 + 0.29× 0.05× 0.8 + 0.01× 0.95× 0.8

3.7.3 Model-Based Diagnosis

In order to determine that the behavior of a component deviates from the specified
one, either a priori knowledge or redundancy is necessary. In case of model-based
techniques, the use of analytical redundancy is the main idea to detect and diagnose
component failures [CW84]. Measurements from different senors are compared an-
alytically on the basis of a mathematical model describing their relationship. The
differences are called residuals. In an ideal scenario the residuals are zero. However,
in practice both noise and faults result in deviations from zero. By the use of statis-
tical analysis, it is possible to decide wich residuals can be considered as normal and
which residuals are due to a fault. Finally, by analyzing the patterns derived from
the residuals a failure cause analysis is made possible. Figure 3.15 depicts these three
stages of model-based diagnosis, residual generation, statistical testing, and logical
analysis [Ger88].

Model Statistical 
Testing

Decision 
MakingSensor 

Measurements Residuals InferenceDecision 
Statistics

Figure 3.15: Model-Based Diagnosis Stages

The advantage of the model-based approach is the fact that the used models can
be directly devised from the design of a new device. Furthermore the models are
considered to be task independent, i.e. the same model can be used for diagnosis and
other tasks such as simulation. For this reason, model-based diagnosis is gaining a
lot of industrial interest. For example, in [SC97] the model-based diagnosis approach
of the Fiat car company for automotive repair is described.

In [GCF+95] a model-based diagnostic algorithm for an automotive engine system
is presented. The work is motivated by environmental regulations that require on-
board detection of malfunctions that may affect the vehicle’s emission performance.
For this reason the introduced diagnostic algorithm aims to detect and diagnose faults
affecting two actuators (i.e. the fuel injectors and exhaust gas recirculation valve)
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and the four sensors of the engine (i.e. the throttle position, the manifold pressure,
the engine speed, and the exhaust oxygen). The model-based method continually
compares the measured values of the system input/outputs to the respective math-
ematically modeled values to determine wether the system is functioning properly.
For this purpose parity equations, derived from the input-output equations of the
monitored system, are employed. Each of the parity equations returns a residual that
becomes nonzero in case of faults and disturbances. In order to tolerate noise and
modeling errors, the residuals are tested against nonzero threshold values. For fault
detection a single residual is typically sufficient, however, for determining the source
a set of residuals are required. Other examples for model-based diagnosis in the
context of automotive engines are presented in [Nyb02] and [CWGW04]. In [Nyb02]
the author discusses a diagnosis solution for the air-intake system of an engine, while
in [CWGW04] a model-based monitoring solution for an electronic throttle control
system is introduced.

For an excellent introduction and more detailed information on model-based de-
tection and analysis techniques see [Ger88] and [PW03].
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Chapter 4

System Model: The DECOS
Integrated Architecture

Depending on the physical structuring of large distributed safety-critical real-time
systems, one can distinguish federated and integrated system architectures. In a
federated system, each application subsystem has its own dedicated computer system,
while an integrated system is characterized by the integration of multiple application
subsystems within a single distributed computer system. Federated systems have
been preferred for ultra-dependable applications due to the natural separation of
application subsystems, which facilitates fault-isolation and complexity management.
Integrated systems, on the other hand, promise massive cost savings through the
reduction of resource duplication. In addition, integrated systems permit an optimal
interplay of application subsystems, reliability improvements with respect to wiring
and connectors, and overcome limitations for spare components and redundancy
management.

There is a steady increase in electronics in automotive systems in order to meet
the customer’s expectation of a car’s functionality. Cars are no longer simple means
of transportation but rather need to convince customers with respect to design,
performance, driving behavior, safety, infotainment, comfort, maintenance, and cost.
In particular during the last decade, electronic systems have resulted in tremendous
improvements in passive and active safety, fuel efficiency, comfort, and on-board
entertainment. In combination with a “1 Function - 1 ECU” design philosophy that
is characteristic for federated architectures, these new functionalities have led to
electronic systems with large numbers of ECUs and a heterogeneity of communication
networks.

However, in order to satisfy the industrial demands on performance, dependability
and cost with respect to a large variety of different car platforms, the current state-of-
the-art system development methodology is heavily imposed to be reviewed, because
of

• the strong competition among the carmakers;
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• the requirement to continuously improve comfort functionality with stringent
time-to-market constraints;

• the introduction of by-wire vehicle control and those functions introduced fol-
lowing normative pressure (e.g., fuel consumptions);

• a demand of greater versatility of the vehicle, conceived in a new view about
modularity and standardization.

In particular, a low number of ECUs offers significant benefits with respect to ar-
chitecture complexity, wiring, mounting, hardware cost and many others. Thus, a
reduction of the number of ECUs is of great interest.

In the following section we present the DECOS (Dependable Embedded Compo-
nents and System) integrated architecture for dependable embedded control systems,
as developed in the European Sixth Framework Programme [KOPS04]. This inte-
grated architecture is based on a time-triggered core architecture and a set of high-
level services that support the execution of newly developed and legacy applications
across standardized technology-invariant interfaces. Rigorous encapsulation guar-
antees the independent development, seamless integration, and operation without
unintended mutual interference of the different application subsystems. The inte-
grated architecture offers an environment to combine both safety-critical and non
safety-critical subsystems within a single distributed computer system. The archi-
tecture exploits the encapsulation services to guarantee that software faults cannot
propagate from non safety-critical subsystems into subsystems of higher criticality.

4.1 Physical and Functional Structuring

Until now, the introduction of structure and hierarchical relationships represents the
only promising approach for understanding complex systems with large numbers of
parts and interactions between these parts [Sim96, chap. 8]. This insight applies
to all technical systems and in particular to the mastering of large, complex real-
time computer systems. The complexity of a large real-time computer system can
only be managed, if the overall system can be decomposed into nearly-independent
subsystems with linking interfaces that are precisely specified in the value and time
domain [KS03a]. Near-independence is the ability of a subsystem to serve its purpose
independently from the detailed structure of other subsystems, i.e. only based on the
specification of the linking interfaces of the subsystems.

As a consequence, in the DECOS architecture, one can distinguish between phys-
ical and functional structuring of the integrated system. While physical structuring
is concerned with hardware entities such as components and wiring, the functional
structuring provides rules and guidelines for grouping the distributed applications
in such a way that an optimal interplay of the constituting functional entities is
guaranteed.
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4.1.1 Functional System Structuring

For the provision of application services at the controlled object interface, the real-
time computer system is divided into a set of nearly-independent subsystems, each
providing a part of the computer system’s overall functionality. We denote such a
subsystem as a Distributed Application Subsystem (DAS), since the implementation
of the corresponding functionality will most likely involve multiple components that
are interconnected by an underlying communication system. The implementation as
a distributed system is a prerequisite for establishing fault-tolerance by redundantly
performing computations at separate components that fail independently. Further-
more, a distributed solution becomes a necessity, when the resource requirements of
the application providing the subsystem’s functionality exceed the available resources
of a single component.

In analogy to the structuring of the overall system, we further decompose each
DAS into smaller units called jobs. A job is the basic unit of work that employs
the communication system for exchanging information with other jobs, thus working
towards a collective goal. The interface between a job and the communication system
is denoted as a port. Depending on the data direction, one can distinguish input ports
and output ports. A job employs input ports for exploiting the services of other jobs,
while output ports enable a job to provide its own services. Every job has access to
its relevant transducers, either directly via the controlled object interface or via a
communication system with known temporal properties.

Automotive Examples

In order to cope with complexity today’s automotive systems are typically split up
into several domains. The powertrain domain includes all necessary functionality
for engine, transmission, and active safety (e.g., ESP, ABS) management. The com-
fort/body domain covers the interior of a car (e.g., seats, doors), the passive safety
domain the airbag control, and the infotainment domain the telematics and in-car
entertainment systems. By using the concept of DASs this domain structuring can
be reduced to smaller subsystems that have a solely a functional coherence, and not
also a physical one (e.g., sharing the same CAN bus for economic reasons). In the
following we describe two examples that form DASs.

• Steer-by Wire DAS. With steer-by-wire [Hei03] the transmission of the wheel
rotation to a steering movement of the front wheel is performed with the help
of electronically controlled actuators at the front axle. The main advantages in
comparison with conventional steering systems are improvements with respect
to crashworthiness, weight, and interior design.

In by-wire applications, a deterministic behavior of all safety-related message
transmissions must be guaranteed even at peak-load. Time-triggered commu-
nication protocols can provide this deterministic behavior. In addition to hard
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real-time performance they support temporal composability and dependabil-
ity. As a consequence, time-triggered architectures are widely accepted as the
computing infrastructure for future by-wire cars [HT98].

• Brake-by-wire DAS. Brake-by-wire [Bre01] is a DAS that controls the brak-
ing of the car. In addition, it improves the braking functionality of conventional
anti-lock braking systems. Brake-by-wire systems remedy deficiencies of con-
ventional hydraulic braking systems, such as aging of braking fluids, difficulties
routing of pipes, the inconvenient feedback during ABS braking. Brake-by-wire
systems incorporate brake power assist, vehicle stability enhancement control,
parking brake control, and tunable pedal feel.

Avionics Examples

To show that the concept of a DAS can be used in any type of system, we describe
in the following some examples of DASs in avionics.

• Cabin Pressure System. The purpose of the cabin pressurization subsystem
is to control the cabin pressure to the required value depending on the aircraft
altitude by regulating the flow of air from the cabin. In long-range passenger
aircraft, the system regulates the cabin pressure, so that a cabin altitude of
about 8000 feet is never exceeded. In case of an unintended decompression, the
control system must ensure, that oxygen masks deploy to provide the passengers
with oxygen while the pilot initiates an emergency descent [MS03].

• Primary Flight Control. The primary flight control system controls the yaw,
pitch, and roll rate of an aircraft. Typically, the roll control is invoked by using
the right and left ailerons, yaw control by means of two or three rudder sec-
tions, and pitch control by powering four elevator sections [MS02]. Fly-by-wire
aircraft deploy an ultra-dependable computer systems instead of a conventional
hydraulic/mechanic system as the primary flight control system [Col99]. How-
ever, all modern civil aircraft using fly-by-wire systems employ in addition some
form of direct mechanical link as a back-up system. The primary-flight control
system must provide a dependability of 10−9 failures per hour [SWH95].

• In-flight Entertainment. As the typical passenger profile changed over the
years, a sophisticated in-flight entertainment system deployed on an aircraft is
an important aspect for a successful business. Entertainment systems intended
for avionics use are fundamentally different from the equipment used for home
entertainment. For example, the entertainment equipment needs to withstand
aircraft temperature changes, air pressure changes, and vibration. In addi-
tion, electromagnetic susceptibility and power quality cannot be compared to
those deployed for home use [Lee98]. State-of-the art in-flight entertainment
systems comprises digital media servers and several hundred interconnected
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seat electronic boxes [LK00]. Despite the wiring complexity, high-end enter-
tainment systems, such as currently deployed on the 777 aircraft, incorporate
about 250.000 lines of code [Bax97].

• Flight Data Recording. The flight data recording subsystem is mandatory
on every commercial aircraft of a certain size. Such a system has demanding
requirements with respect to shock, fire, and long-term immersion in seawater.
A flight data recording subsystem comprises its own sensors and wiring to
perform its intended functionality. Modern aircraft have a flight data recording
subsystem that is capable of recording more than 80 parameters [MS03].

4.1.2 Physical System Structuring

During the development of an integrated system the functional elements must be
mapped to the physical building blocks of the platform. These building blocks are
clusters, physical networks, components and partitions. A cluster is a distributed
computer system that consists of a set of components interconnected by a physical
network. A component is a self-contained computational element with its own hard-
ware (processor, memory, communication interface, and interface to the controlled
object) and software (application programs, operating system) [KS03a], which inter-
acts with its environment by exchanging messages across LIFs. The behavior of a
component can be specified in the domains of value and time. Components are the
target of job allocation and provide encapsulated execution environments denoted
as partitions for jobs. Each partition prevents temporal interference (e.g., stealing
processor time) and spatial interference [Rus99] (e.g., overwriting data structures)
between jobs. In the DECOS architecture, a component can host multiple partitions
and host jobs that can belong to different DASs.

4.1.3 Namespace of the Integrated Architecture

Following this structuring of the DECOS architecture, the namespace of the inte-
grated architecture consists of a part reflecting the physical structure and a part
reflecting the functional structure of the system:

idcluster.idcomponent︸ ︷︷ ︸
physical structure

: idsubsystem.idDAS.idjob︸ ︷︷ ︸
functional structure

The physical part identifies the cluster (idcluster) and the component (idcomponent) of
the integrated architecture, while the functional part following the colon identifies
the subsystem (idsubsystem), the DAS (idDAS), and the job (idjob), where id is the
numerical identification of a structuring element. The identification is statically
assigned by the system integrator at design time. Table 4.1 exemplifies the introduced
notation. For convenience, it is possible to omit either the physical or the functional
part if not needed by the specification. For example, by describing only functional
aspects of the safety-critical subsystem, one can abstract from the physical allocation
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Notation Meaning
:0.3.4 job 4 of DAS 3 of subsystem 0 (abstracting from physical structure)
0.2:0.3.4 job 4 of DAS 3 of subsystem 0, in component 2 of cluster 0
:0.1.* all jobs of DAS 1 of subsystem 0 (abstracting from physical structure)
:0.1 DAS 1 of subsystem 0 (abstracting from physical structure)
:0.*.* all jobs of all DAS of subsystem 0 (abstracting from physical structure)
0.3: component 3 of cluster 0 (abstracting from functional structure)
0.*: all components of cluster 0 (abstracting from functional structure)

Table 4.1: Examples for the introduced notation of the namespace

(i.e. writing only :idsubsystem.idDAS.idjob). However, within the part wildcards (*) are
used to express that a particular id is not of interest, but all elements are referred to.
For example, :idsubsystem.idDAS.* addresses all jobs of a particular DAS of a particular
subsystem.

Based on this namespace, we also introduce a source-based namespace for mes-
sage. m(idcluster.idcomponent:idsubsystem.idDAS.idjob) identifies the message that is pro-
duced by job idjob of DAS :idsubsystem.idDAS in component :idcluster.idcomponent.

4.1.4 Architectural Services

Generic architectural services separate the application functionality from the under-
lying platform technology in order to facilitate reuse and reduce design complexity.
This strategy corresponds to the concept of platform-based design [SV02], which
proposes the introduction of abstraction layers, which facilitate refinements into sub-
sequent abstraction layers in the design flow.

The DECOS architectural services depicted in Figure 4.1 are such an abstrac-
tion layer. The specification of the architectural services hides the details of the
underlying platform, while providing all information required for ensuring the func-
tional and meta-functional (dependability, timeliness) requirements in the design of
a safety-critical real-time application. The architectural services serve as a validated
stable baseline that reduces application development efforts and facilitates reuse, be-
cause applications build on an architectural service interface that can be established
on top of numerous platform technologies.

In order to maximize the number of platforms and applications that can be cov-
ered, the DECOS architectural service interface distinguishes a minimal set of core
services and an open-ended number of high-level services that build on top of the
core services. The core services include predictable time-triggered message transport,
fault tolerant clock synchronization, strong fault isolation, and consistent diagnosis
of failing components through a membership service. The small number of core
services eases a thorough validation (e.g., permitting a formal verification), which
is crucial for preventing common mode failures as all high-level services and conse-
quently all applications build on the core services. Any architecture that provides
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Figure 4.1: The DECOS Integrated System Architecture

these core services can be used as a core architecture [Rus01b] for the DECOS in-
tegrated distributed architecture. An example of a suitable core architecture is the
Time-Triggered Architecture (TTA) [KB03].

Based on the core services, the DECOS integrated architecture realizes high-level
architectural services, which are DAS-specific and constitute the interface for the
jobs to the underlying platform. Among the high-level services are virtual network
services and encapsulation services. On top of the time-triggered physical network,
different kinds of virtual networks can be established and each type of virtual net-
work can exhibit multiple instantiations (see Figure 4.1). The encapsulation services
ensure spatial and temporal partitioning for virtual networks in order to obtain error
containment and control the visibility of exchanged messages.

4.2 Core Services

The core services are centric to the architecture, since high-level services build on top
of these core services. These core services include a time-triggered transport service,
clock synchronization, fault isolation, and consistent component diagnosis.
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Deterministic and Timely Transport of Messages

The purpose of this service is the transport of state messages from the Communica-
tion Network Interface (CNI) of the sending component to the CNIs of the receiving
components. The fault-tolerant transport service is offered by a time-triggered com-
munication service that is available via the temporal firewall interface [KN97], which
eliminates control error propagation by design and minimizes coupling between com-
ponents. The timely transport of messages with minimal latency and jitter is crucial
for the achievement of control stability in real-time applications. While control algo-
rithms can be designed to compensate a known delay, delay jitter (i.e. the difference
between the maximum and minimum value of delay) brings an additional uncertainty
into a control loop that has an adverse effect on the quality of control [KK90].

Fault-Tolerant Clock Synchronization

Due to clock drifts, the clock times in an ensemble of clocks will drift apart, if clocks
are not periodically resynchronized. Clock synchronization is concerned with bring-
ing the values of clocks in close relation with respect to each other. The clock syn-
chronization is a fundamental service in a time-triggered system, since all activities
are controlled by the progression of time [KO87].

Strong Fault Isolation

Although a Fault Containment Region (FCR) can demarcate the immediate im-
pact of a fault, fault effects manifested as erroneous data can propagate across FCR
boundaries. For this reason, the system must also provide error containment [LH94]
as introduced in Section 2.5.3. To avoid error propagation by the flow of erroneous
messages the error detection mechanisms must be part of different FCRs than the
message sender. Otherwise, the error detection service can be affected by the same
fault that caused the message failure. The set of FCRs that perform error contain-
ment is denoted as an ECR [Kop03]. In the DECOS architecture a component is
considered to be a FCR with respect to hardware faults. An ECR must consist of
at least two independent FCRs. In the DECOS architecture, an ECR is constructed
via a component and one of the replicated central guardians.

Consistent Diagnosis of Failing Nodes

The component-level membership service provides consistent information about the
operational state (correct or faulty) of nodes [Cri91]. The membership service is
based on the a priori knowledge about the points in time of the time-triggered mes-
sage exchanges. In a time-triggered system the periodic message send times are the
membership points of the sender [Kop97]. Every receiver knows a priori when a
message of a sender is supposed to arrive, and interprets the arrival of the message
as a life sign at the membership point of the sender. From the arrival of the expected
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messages at two consecutive membership points, it can be concluded that a node was
operational during the interval delimited by these membership points [BP00].

4.3 High Level Services

Based on the core services, high-level services are constructed that can be exploited
by all deployed applications running on a DECOS system. The high-level services
are the encapsulation service, the virtual networks service, the gateway service, the
fault-tolerance service, and the diagnosis and maintenance service.

4.3.1 Encapsulation Service

The encapsulation service is responsible for spatial and temporal error contain-
ment [Rus99] at the component-level. The component-level error containment occurs
in two phases:

• Error Containment between the Safety-Critical and the Non Safety-
Critical Subsystem. As depicted in Figure 4.1, the overall system comprises
a safety-critical and a non safety-critical subsystem. The encapsulation ser-
vice statically allocates component resources (i.e. memory and processor) to
these two subsystems. Such a statically defined allocation facilitates certifica-
tion [RTC99]. Furthermore, control and information flow may occur only from
the safety-critical subsystem to the non safety-critical subsystem, but not the
other way around.

• Error Containment between Jobs at each Subsystem. The encapsula-
tion service manages the access of each job to component resources. The high-
level encapsulation service ensures that each job executes within a protected
partition within the respective subsystem and restricts interactions between
jobs to the ports. Thus, the high-level encapsulation service ensures error con-
tainment between jobs. The encapsulation service is also the key mechanism
for Intellectual Property (IP) protection.

4.3.2 Virtual Network Service

A virtual network is an overlay network that is established on top of a physical net-
work. In the DECOS integrated system architecture, we provide virtual networks
on top of the time-triggered core communication service of the base architecture.
To achieve the advantages of the federated approach in an integrated architecture,
we propose the provision of a dedicated virtual network for each DAS in order to
exchange messages between the jobs of the DAS. Each virtual network is tailored
to the requirements of the respective DAS via the provided functionality, the oper-
ational properties, the namespace, and the dependability properties. Furthermore,
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Figure 4.2: Virtual Network Service

each virtual network is encapsulated so that communication activities in other virtual
networks are neither visible nor have any effect (e.g., performance penalty) on the
exchange of messages in the virtual network. Consequently, virtual networks extrap-
olate the idea of component-level error containment to the network level [OPK05b].

Figure 4.2 depicts the realization of virtual networks in the DECOS architecture.
The available bandwidth of each time-triggered frame disseminated via the core
network is split up according to the hosted DASs and respective jobs of a component.
This way, the timely exchange of messages is guaranteed and the exclusive use of the
bandwidth precludes any interference between virtual networks. In case of time-
triggered virtual networks a state message interface is used, while for even-triggered
virtual networks a queueing interface is deployed.

Time-Triggered Virtual Networks

Time-triggered virtual networks interconnect the jobs of the safety-critical DASs.
The virtual networks for the safety-critical DASs are strictly time-triggered, because
of the respective advantages of the time-triggered control paradigm (e.g., with re-
spect to predictability, error detection, fault-tolerance, replica determinism [Kop95,
Rus01a]). Of course, time-triggered virtual networks can also be employed for the
non safety-critical subsystem relying on state information A time-triggered virtual
network is designed for the periodic exchange of state messages. The self-contained
nature and idempotence of state messages eases the establishment of state synchro-
nization, which does not depend on exactly-once processing guarantees.

Event-Triggered Virtual Networks

In analogy to time-triggered virtual networks, event-triggered virtual networks are
the communication infrastructure for DASs with jobs communicating via event-
triggered ports. An event-triggered virtual network enables each job of a DAS to
disseminate event messages that are being received by the other jobs in the DAS.
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An event-triggered virtual network is designed for the sporadic exchange of event
messages, combining event semantics with external control. While in time-triggered
virtual networks a state interface is used, in event-triggered virtual networks queues
are used as the interface to the network.

Interface Specification

The operational specification of a DAS in the integrated DECOS architecture occurs
at three levels:

• Port Specification. A port is dedicated to the transmission or reception of
message instances of a single message. Each port has a statically defined data
direction, thus forming either an input port or an output port. The port specifi-
cation captures the syntactic and temporal properties of the message instances
of the received or the sent message. Only those temporal properties are part of
the port specification, which are defined for the port in isolation,i.e. indepen-
dently from other ports (i.e. local constraints).

• Link Specification. The link of a job consists of the ports provided to the job.
The link specification contains the respective port specifications and additional
temporal properties that can be defined only with respect to multiple ports
of the job (i.e. global constraints). An example for the additional temporal
properties would be a statement for the latency between the reception of a
request message at an input port and the transmission of the corresponding
reply message at an output port of the job.

• Virtual Network Specification. The virtual network specification consists
of all link specifications in the DAS and those temporal properties that can be
defined only with respect to ports of more than one job.

4.3.3 Gateway Service

Even with a strict separation of DASs, the integrated DECOS architecture would
already permit a considerable reduction in the numbers of components and wiring
through the sharing of components and networks among DASs. However, controlled
interactions between DASs are required for unleashing the full advantages of the
integrated approach.

On the one hand, the quality of control of a real-time computer system can be im-
proved when different control functions are coordinated to achieve a tactic behavior.
In the automotive industry, an example of the coordination of different application
subsystems for improving the quality of service with respect to passenger safety is the
passive safety mechanism (Pre-Safe) of the Mercedes S-class [Bir03]. The Pre-Safe
system tensions seat-belts, realigns seats to a safer position, and closes an open sun

67



4.3 High Level Services 4 System Model

roof when sensors detect possibly hazardous situations. The system correlates infor-
mation of existing car dynamics sensors in order to determine hazardous situations
such as skidding, emergency braking, or avoidance maneuvers.

Secondly, in a large real-time computer system, different DASs will typically
depend on the same or similar sensory inputs and computations. By adapting en-
capsulation to allow for the exporting and importing of information between DASs,
one DAS can use services (e.g., acquisition of sensory information or computations)
in the other DASs and does not need to provide the services on its own. For exam-
ple, in an automotive system the speed sensors from the factory installed Antilock
Braking System (ABS) can be exploited to estimate the car’s heading for the navi-
gation system during periods of GPS unavailability [CG02]. The redundant sensors
can be eliminated in one of the DASs leading to reduced resource consumption and
hardware cost. Alternatively, redundancy can be exploited to improve the reliability
of the sensory information. Even sensory information from different physical entities
can be exploited by sensor fusion [Elm02].

Consequently, a gateway in the DECOS architecture offers two key funcational-
ities [OPK05a], namely property transformation and encapsulation. In general, the
semantic and operational properties of the input ports at one virtual network can
be different to the semantic and operational properties of the output ports at the
other virtual network. The resulting property mismatch, i.e. a disagreement among
connected interfaces in one or more of their properties, is resolved by the gateway
by performing transformations on the information passing through the gateway.

Secondly, in general, only a fraction of the information exchanged at one virtual
network will be required by jobs interconnected via the gateway. By restricting the
redirection through the gateway to the information actually required by the jobs
of the other DAS controlled export and import of information can be established.
This way, the gateway not only improves resource efficiency by saving bandwidth of
unnecessary messages, but also facilitates complexity control.

Central to the construction of a gateway is the gateway repository, i.e. a real-
time database storing the message contents from the two virtual networks to be
interconnected via the gateway. The gateway repository needs to ensure temporal
accuracy [Kop97] of the stored state messages and manages respective queues in
case of event messages. For a more detailed analysis about gateways in the DECOS
architecture refer to [OPK05a].

In addition to the interconnection of virtual networks, the presented integrated
architecture offers architectural gateway services for interacting with the environment
via physical gateways. In general, the interaction of the computer system with the
controlled object and the human operator can occur either via a direct connection
to sensors and actuators or via a fieldbus network. The latter approach simplifies
the installation – both from a logical and a physical point of view – at the expense
of increased latency of sensory information and actuator control values. Since the
prevalent low-cost fieldbus protocol in the automotive domain is LIN [Fle03], the
proposed architecture supports physical LIN gateways, each acting as a master for
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Figure 4.3: Physical and Virtual Gateways in an Automotive Application

the slaves of the physical LIN bus. Figure 4.3, which exemplifies the role of hidden
gateways in the functional structure of the future automotive architecture, depicts
two of these LIN gateways for the interconnection of the interior DAS with the LIN
fieldbusses located at the front doors [POT+05]. The driver door job and passenger
door job exchange information with the actuators and sensors in the doors in order
to control door locks, window lifters, mirrors, and anti-puddle lighting.

In addition, Figure 4.3 also contains virtual gateways for the interconnection
of virtual networks. The interior DAS constructs real-time images capturing the
state of the passenger compartment of the vehicle (e.g., status of the doors, seats,
lighting, climate control) that are also important to other DASs. For example, the
driver’s weight as measured at a seat is an important parameter for the passive safety
DAS in order adapt air bags to different passengers (e.g., children). The current
temperature inside and outside the car, which is captured by the climate control
subsystem, is another example for a real-time entity that is significant beyond the
interior DAS. Temperature measurements are an essential input for physical models
of sensors in other DASs (e.g., powertrain DAS) and permit to improve the precision
and plausibility of sensory information. Adversely, other DASs need to be able to
control body electronics in the interior DAS. In hazardous situations, e.g., after the
detection of a potential crash as indicated by yaw rate and lateral acceleration sensors
(e.g., during skidding and emergency braking), the vehicle dynamics DAS causes the
tensioning of seat-belts, and realigning of seats to a safer positions.

4.3.4 Fault-Tolerance Service

An application service can be implemented by a group of redundant jobs at indepen-
dent components in order to ensure that the application service remains available
despite the occurrence of component failures. If the number and types of component
failures are covered by the underlying failure mode assumptions, the group will mask
failures of its members [Cri91].

A common approach for masking component failures is N-modular redundancy
(NMR) [RLT78, Avi75, LA90, Sch90]. N replicas receive the same requests and pro-
vide the same service. The output of all replicas is provided to a voting mechanism,
which selects one of the results (e.g., based on majority) or transforms the results to
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a single one (average voter). The most frequently used N-modular configuration is
triple-modular redundancy (TMR). By employing three replicated jobs and a voter,
a single consistent value failure in one of the constituting jobs can be tolerated. Note
that the assignments of jobs to components must ensure that jobs fail independently.

The major strength of group masking is the ability to handle component fail-
ures systematically at the architecture level, i.e. transparently to the application.
A requirement for this systematic fault-tolerance is the support for replica deter-
minism [Pol95b], both by the architecture and the application. The purpose of the
fault-tolerance services of the architecture is the provision of mechanisms required for
managing the redundant groups of replicas in a way that masks component failures
and makes the group functionally indistinguishable from a single replica.

4.3.5 Diagnosis and Maintenance Service

The high-level diagnostic service is responsible for establishing diagnostic information
exceeding the component-level granularity of the core diagnostic service and will be
discussed in detail in the following Chapter 5.

4.4 Component Structure

In the DECOS component model as depicted in Figure 4.4 we distinguish between
two kinds of structuring, horizontal and vertical structuring. The vertical structuring

70



4 System Model 4.4 Component Structure

of the component provides two subsystems within a component. The safety-critical
subsystem is an encapsulated execution environment for ultra-dependable applica-
tions. The non safety-critical subsystem offers an environment for those applications
having less stringent dependability requirements. For these applications, emphasis
lies on low-cost, flexibility, and resource efficiency. The safety-critical and non safety-
critical subsystems are established by means of spatial and temporal inner-component
partitioning [Rus99].

The software in the communication controller and connector units is triggered
solely by the progression of real-time on the sparse time base [Kop92]. This trig-
gering mechanism is the key element for ensuring determinism of the architectural
services, which is a prerequisite for the determinism of the overall system and thus
for fault-tolerance through active redundancy and exact voting. In addition, the
consistent distributed state induced by the sparse time base simplifies state recovery
and diagnosis.

The vertical and horizontal structuring of a component is primarily driven by
certification concerns. Since support for modular certification [Rus01c] is a major
requirement for integrated architectures, the strict separation of the architectural
services from applications as well as the separation of different DAS and jobs is also
maintained at the component level. This separation of the certification efforts allows
for the construction of independent safety arguments [BB98] for different DASs.

As depicted in Figure 4.4 the interconnection between the communication con-
troller and the application computers occurs via connector units, which control the
application computers access to the state message interface provided by the com-
munication controller. The primary purpose of a connector unit is the allocation of
network resources within a component that is vertically structured into two or more
subsystems. The connector unit ensures that each subsystem obtains a predefined
share of the overall network resources, thus enabling each subsystem to exchange
messages with guaranteed temporal properties (maximum latency and latency jitter
of message transmissions, minimum bandwidth) and data integrity.

The DECOS architecture does not restrict the choice of implementations of a
particular component. Although the provision of separate processors (or processor
cores) for each partition has significant advantages with respect to certification, a
solution with only one processor shared among the jobs is also an alternative choice
as long as the operating system providing the partitioning can be certified up to the
highest criticality class [RTC92].

In the DECOS component model we distinguish between three types of connector
units (see Figure 4.4). The Basic Connector Unit (BCU) performs the primary
allocation of the physical network resources, as required for the separation of the
safety-critical and non safety-critical subsystems of a component.

The Saftey-Critical Connector Unit (SCU) allocates network resources to the
jobs of the safety-critical subsystem and realizes the safety-critical high-level services
(e.g., voting functionality). In analogy to the BCU, simplicity of the safety-critical
connector unit is of major concern in order to control certification efforts.
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The Complex Connector Unit (XCU) performs the allocation of network resources
for the non safety-critical subsystem of a component. Like the SCU, the XCU does
not directly access the communication controller, but builds on top of the BCU.
This way, the XCU is not involved in the fault isolation and error containment be-
tween the safety-critical and non safety-critical subsystem of a component, as this
separation is performed by the underlying BCU. Therefore, the XCU and the non
safety-critical subsystems of a component need not be certified to the highest criti-
cality levels and the XCU can provide increased functionality at the cost of increased
complexity. In contrast to the SCU, the XCU can support the time-triggered and
the event-triggered control paradigm. The event-triggered paradigm facilitates the
establishment of cost-effective solutions for the non safety-critical subsystems. In this
domain, the high flexibility and resource efficiency of event message ports outweigh
the lower predictability and increased complexity resulting from the event-triggered
control paradigm with its imprecise temporal specifications (e.g., probabilistic queu-
ing models). Furthermore, legacy applications following the event-triggered paradigm
can be reused without involving redevelopment efforts. This legacy integration helps
in leveraging investments in existing software and lays ground for evolving systems.

For a more detailed description (e.g., constituting hardware elements and software
modules) and an analysis of this model with respect to certifyability, encapsulation
and independent development aspects refer to [KOPS04].

4.5 Design Flow

The design flow of automotive distributed systems can be decomposed into three
phases, the requirement analysis, the subsystem design, and the system integration
phase [GFL+02] (see also Figure 4.5). As described in [RH04, SW04] an ECU-
centric design process prevails in the automotive industry. Such a bottom up process,
however, bears significant drawbacks such as resource duplications, local instead of
global quality-of-service optimization, and exponential growth in terms of system
integration costs. Furthermore, the number of the deployed ECUs steadily increases
to satisfy recent market trends and the customer’s demand for new functionality.

The DECOS architecture, by contrast, also supports a top-down design approach.
During the requirement analysis the system integrator captures the requirements of
the overall system (i.e. the car electronics) and decomposes the system into nearly-
independent subsystems (i.e. DASs). The requirement analysis provides the foun-
dation for all later design stages. Here, the overall functionality of the system is
specified and subsystems are identified to enable an independent development of
DASs. As depicted in Figure 4.5 the result of this design phase is a set of DASs that
comprise the electronic infrastructure of the car.

The structuring of the overall application functionality into DASs is guided by
the following principles:

1. Functional Coherence. A DAS should provide a meaningful application
service (e.g., brake-by-wire service of a car) to its users at the controlled object
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interface. By associating with a DAS an application service that is relevant in
the actual application context, the mental effort in understanding the various
application services is reduced. An application service can be analyzed by
solely considering the jobs of the DAS, the interactions to the controlled object
and the gateways to other DASs (inter-DAS interfaces). In particular, it is
not necessary to possess knowledge about the internal behavior of DASs, other
than the one providing the application service that is of interest.

2. Common Criticality. In general, the realization of safety-critical services is
fundamentally different from the design of non safety-critical services. While
the first incorporate fault-tolerance functionality and focus on maximum sim-
plicity to facilitate validation and certification, the latter are usually charac-
terized by a larger amount of functionality and the requirement of flexibility
and resource efficiency. The integrated architecture takes this difference into
account by distinguishing between safety-critical and non safety-critical DASs
along with dedicated architectural services.

3. Infrastructure Requirements. A DAS possesses common requirements for
the underlying infrastructure. A single virtual network is employed for exchang-
ing message within the DAS. Consequently, common requirements (e.g., with
respect to dependability, bandwidth and latency requirements, flexibility) are
a prerequisite for deciding on a particular virtual network protocol (e.g., time-
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triggered or event-triggered) and a corresponding configuration (e.g., band-
width).

Whenever significant differences in the above aspects are present, such as missing
functional coherence or differences with respect to the infrastructure requirements,
a DAS is split into smaller DASs for resolving these mismatches.

This divide and conquer principle can only be realized if the dependencies be-
tween DASs are made explicit in order to avoid hidden interactions (e.g., via the
controlled object) that may prevent a seamless system integration. These DASs are
then assigned and independently developed by different vendors. In general, each
vendor may also depend on subcontractors to deliver the subsystem.

In order to ensure correct system integration the specification of inter-DAS rela-
tionships is of high importance. Inter-DAS interfaces as indicated in Figure 4.5 are
used to specify common information within DASs (e.g., sensor information), possible
interrelationships via the controlled object, and meta-functional aspects. This way,
resources can be shared among DASs, thus avoiding resource duplication by elimi-
nating sensors or using redundant sensory information to improve dependability.

The DAS design is typically performed by different vendors with expert knowledge
in particular application domains (e.g., infotainment, braking systems). Independent
development of a DAS allows to adopt the benefits of the federated systems design
approach to be incorporated into the integrated systems design approach.

Finally, the system integrator needs to unify the separately developed subsys-
tems into the overall system. System integration unites the separately developed
subsystems into the overall system. An integrated system approach must provide so-
lutions that reduce integration time and efforts (and consequently reduce integration
costs). Smooth system integration is only possible, if the inter-DAS interfaces have
been precisely specified and all vendors have performed implementations adhering
to these interface specifications. During system integrations three main tasks need
to be performed by the system integrator: the physical allocation of the jobs (of
all DASs) to partitions taking dependability and resource constraints into account,
the configuration of the virtual communication networks, and the realization of the
virtual and physical gateways in order to provide emerging services.

4.6 Dependability

This section describes the fault hypothesis of the integrated system architecture.
The fault hypothesis states the assumptions about the units of failure, the failure
modes and the failure frequencies that a fault-tolerant system must tolerate. The
units of failure are denoted as Fault Containment Regions (FCRs) [Kop03]. A FCR
is considered as a subsystem that shares one or more common resources that can
be jointly affected by a single fault. Consequently, a FCR is the delimiter of the
immediate impact of a fault. In the integrated system architecture, we perform a
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differentiation of FCRs for hardware and software faults. The distinction of hardware
and software faults is part of the fault discrimination introduced in [ALR01].

4.6.1 Hardware Fault Model

A hardware fault hits physical resources, such as mechanical or electronic parts.
Hardware faults originate either from development or from conditions that occur
during operation. Hardware design faults and production defects belong to the first
class. The second class includes physical deterioration (i.e. aging) and external in-
terference through physical phenomena (e.g., lightning stroke).

For hardware faults, we regard a component, i.e. a complete node computer con-
stituting a hardware/software unit, as a FCR. Since a component contains shared
physical resources (e.g., processor, memory, power supply, oscillator), a single physi-
cal fault hitting any of these resources is likely to jointly affect several or all of the jobs
within the component. Furthermore, we assume that hardware diversity mechanism
are applied to prevent common mode failures [KBJ00] due to developmental hardware
faults (e.g., replicated production defects, hardware errata). This approach is widely
accepted for safety-critical applications, e.g., in the avionic domain [Yeh98, BT93].

The failure mode of a hardware FCR is assumed to be arbitrary. The failure
frequency in case of permanent hardware failures is in the order of 100 FIT [PMH98].
In case of transient failures a significantly higher failure frequency in the order of
1000-10000 hours is assumed.

The fault hypothesis assumes that only a single hardware FCR becomes faulty
within a bounded interval of time. Further, a new component may become faulty
only after the previously faulty one (if any) either has shut down or operates correctly
again.

4.6.2 Software Fault Model

For software faults, we regard a job as a FCR. If a job is replicated along multiple
components as part of a fault-tolerance concept, the FCR includes all physically dis-
tributed replicas of the job. Replicated jobs cannot be assumed to fail independently,
since all replicas of a job are based on the same programs and use the same input
data. An example of an FCR consisting of replicated instances of a job is depicted
in Figure 4.6.

The failure mode of a job is a violation of the port specification in either the
time or value domain. In case of a failure in the value domain, the content of a
message does not conform to its specification, while in case of a timing failure, the
send instant of the message is incorrect.

The role of jobs as software FCRs holds also in case of software diversity. When
software diversity is applied for addressing common mode failures, replicas are neces-
sarily different and ideally employ different specifications in addition to separate im-
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plementations. Consequently, we denote these diverse replicas as separate jobs. Nev-
ertheless, the decision of regarding these jobs as different software FCRs depends on
the independence of the diverse software version. Practical analyses [ALS88, LPS01]
of software diversity have demonstrated that diverse implementation exhibit corre-
lation.

The identification of FCRs for the proposed integrated system architecture
demonstrates the differences in the boundaries of the immediate impact of differ-
ent types of faults. As depicted in Figure 4.6, the expansion of FCRs for hardware
and software faults proceeds along two dimensions. In case of replicated jobs, soft-
ware faults hit multiple components and affect well-delimited subsystems of these
components, namely the partitions housing the replicated instances of the job. The
FCR for hardware faults, on the other hand, expand within a component and we
assume that hardware faults are delimited by a component. This assumption is jus-
tified in case of hardware diversity and if precautions are taken to avoid common
mode failures (e.g., due to spatial proximity, common ground).

4.6.3 Distinction between Heisenbugs and Transient Hardware
Faults

Gray [Gra86] divided software faults into Bohrbugs and Heisenbugs. Bohrbugs are
design errors in the software that cause reproducible failures (e.g., a logic error in a
program). In contrast to Bohrbugs, which can be identified during testing, Heisen-
bugs are design errors in the software that seem to generate quasi-random failures.
An example for a Heisenbug is a synchronization error that causes the occasional
violation of an integrity condition.

From a phenomenological point of view, a failure that is caused by a Heisenbug
cannot be distinguished from a failure caused by a transient hardware malfunction.
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Experience shows that it is much more difficult to find and eliminate Heisenbugs
than it is to eliminate Bohrbugs from a large software system.

TMR as the primary fault-tolerance mechanism of the integrated architecture
(see Section 4.3) is designed to handle both transient hardware faults and Heisen-
bugs. The latter under the assumption that the replicas will not exhibit correlated
Heisenbugs at the same time.

From a diagnostic point of view a discrimination of failures with respect to the
originating fault is significant, i.e. whether the failure was caused by a Heisenbug or
a transient hardware fault. The replacement of a component with a component of
the same type will be ineffective for removing a Heisenbug. Here, only an update
of the deployed software will eliminate the spurious malfunctions permanently. For
this reason, diagnostic mechanisms operating on the distributed state are needed
in order to reveal correlated failures. In addition, statistical field data of a large
population (e.g., car model) will provide valuable input that allows to determine
whether software shows correlated failures as a consequence of undiscovered software
faults, i.e. Heisenbugs.
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Chapter 5

Diagnosis Model: An Integrated
Diagnostic Architecture

In accordance with the differentiation of FCRs for hardware and software faults in-
troduced in Section 4.6, we introduce a fault model that identifies a component as the
FRU with respect to hardware faults and a job as the FRU for software faults under
the assumption that the architectural services are free of design faults. In addition,
the integrated diagnostic services of the architecture support the maintenance engi-
neer in the identification of faulty connectors (replacement of FRU vs. replacement
of connectors). In order to cope with industry demands on diagnosis, the

• detection and subsequent

• identification of the FRU(s) causing malfunction

must be supported by the system architecture. In particular, the system needs to
support the maintenance engineer by providing a health status indication for each
FRU that acts as a foundation for the decision process whether a FRU remains
in the system or will be replaced. This online analysis of the gathered diagnostic
information is mandatory for future generations of computer systems to reduce the
numbers of cannot duplicate failures, i.e. failures that cannot be reproduced at the
service station.

5.1 Requirements for an Integrated Solution

An integrated diagnostic architecture, i.e. the provision of generic architectural ser-
vices as part of the architecture, has many advantages in comparison with isolated
diagnostic subsystems at every component. The access to information that is typ-
ically hidden from the applications can be exploited for lowering the probability of
wrong recommended maintenance actions. In order to tackle diagnostic problems
that industry is currently facing, an integrated solution must satisfy the following
requirements:
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• Service Technician Assistance. As already stated in Section 3.3 diagnostic
deficiencies of deployed architectures complicate the job of the service techni-
cian to remove only those components that are causing the system malfunction.
Since a mechanic at a service station is no specialist in electronics, the diag-
nostic system must provide all necessary information that allows maintenance
of faulty components. If this is not possible, fully operational units will be
replaced by mistake. This is especially important when X-by-wire solutions
will be subject to mass production, since computer diagnostic will become a
standard part of the job [LH02, Bre01].

• Focus on Transients. The types and causes of failures for electronics have
changed over the years (see Section 3.5). Failure analysis in recent years has
revealed that some failure causes may have been reduced by improvements
in technology but due to the higher level of complexity and downsizing other
failure classes have emerged [PR92].

The increase of transient failures in combination with software design faults
due to the growth of software complexity of modern electronic systems leads
to substantial difficulties in diagnosing electronic problems (commonly referred
to as TNI, CND or NFF failures) [TAP02, MRS+02, Bar01].

• Detection of Correlated Errors. Diagnostic systems operating on only the
local internal component states preclude the possibility to detect and analyze
correlated failures or system anomalies. An integrated diagnostic architecture
must thus provide means to establish a holistic view on the system by oper-
ating on the distributed state. This includes also context information such as
environmental parameters (e.g., temperature) that can give important hints in
the identification of spurious anomalies. For example, a software bug in the
electronic management unit of the fuel pump of a luxury car caused the car to
stall in case the fuel tank was below 1/3 full. By correlating the information
of the fuel pump unit in case of an engine failure with the distributed state of
the related ECUs, the fault can be traced or at least valuable information that
helps to trace the malfunction can be provided to the maintenance engineer.
Consequently, a pivotal property of any diagnostic infrastructure must be the
recording of the state of the system at the time of occurrence of a behavior
deviating from the expected service. Such an on-the-fly analysis is vital, since
many faults are not active at the service station, which renders comprehen-
sion through the service technician impossible. Furthermore, the operation on
the distributed state has the significant advantage of allowing an independent
assessment of the services of independent FCRs.

• Reduction of Complexity. Typically more than 50% of the code deployed
in an automotive ECU is specific to diagnosis [PBC+02]. By realizing a sub-
stantial fraction of this overhead by the use of generic architectural services,
significant economic benefits during system design can be expected. Further-
more, since diagnosis plays an integral role during the design flow, developers
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are forced to deal with maintenance issues from the beginning on, resulting in
a more structured developmental process instead of ad-hoc solutions.

• Assessment of Fault-Tolerance Mechanisms. Fault-tolerance mechanisms
are required to achieve the necessary degree of dependability for the deploy-
ment of electronic systems in safety-critical environments. In order to reduce
application complexity and certification efforts, fault-tolerance mechanisms are
in the best case provided by the architecture and exploited transparently to the
application [Bau01]. However, from a diagnostic point of view, this strategy
has far reaching implications. It is impossible to detect inconsistency of the
fault-tolerant replicas at application level. Consequently, architectural diagnos-
tic services need to monitor the health state of the fault-tolerance mechanisms.
Furthermore, the diagnostic subsystem must provide means to support the in-
spection of fault-tolerance mechanisms – also known as scrubbing techniques
– to validate the functionality of fault-tolerance mechanisms in specified time
intervals (cf. [Aer93]).

• Support for Condition-Based Maintenance. TBM is increasingly be-
ing replaced by CBM, to reduce costs and to improve reliability and system
performance [TS01]. As already introduced to the avionics domain, this new
paradigm is becoming more and more accepted in the automotive industry.
Besides the reduction of cost of ownership (service only what is needed) the
possibility of collecting accurate field data (i.e. engineering feedback) is one of
the major benefits from this maintenance approach. In addition, the customer
trust in the car will be increased, since component replacements can be per-
formed by the service technicians before the owner of the car is informed by
the car’s OBD system. In order to adopt CBM for electronic systems suitable
indicators for degradation or wearout must be identified and analyzed to detect
deviations from sound operation.

• Certification Support. In case diagnosis is part of the application every
change of the diagnostic code will cause a recertification of the application
software in case of ultra-dependable applications. When handling diagnostics
at the architectural level, a recertification of the application is rendered obsolete
in case of changes of the diagnostic subsystem.

• Avoidance of the Probe Effect. Any diagnostic subsystem must avoid
the introduction of probe effects [Gai86] that may forge the outcome of the
diagnostic subsystem. This is especially important in case of real-time systems,
where the diagnostic messages must not compromise the real-time traffic in any
way. In addition, the diagnostic subsystem is required to sustain the reliability
level of the system. Any additional hardware (e.g., wiring, connectors) may be
subject to failures that would not be existent without the diagnostic subsystem.

• Intellectual Property Protection. Diagnosis is often equated with reveal-
ing of internal information. An integrated approach allows the realization of
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advanced diagnostic strategies without revealing any internals of the applica-
tion by solely operating on the interface state of the linking interfaces. Conse-
quently, applications of different vendors can be joined without changing the
source code. All that is needed are precise interface specifications that allows
the discrimination of the behavior with the intended service.

• Identification of Rare Failures. During product development and testing
low quality issues are relatively easy to identify because they are uncovered with
smaller sample size. The problem of current normal vehicle testing process is
the identification of statistically very unlikely occurring incidents, that become
only identifiable after high volume production [GW02]. Since an extensive
vehicle level test with larger test fleets is impractical given current economic
and time constraints, continuous online diagnosis can reduce the probability of
undetected (design) flaws.

• Legal Issues. [Bre01] addresses an emerging problem introduced by new tech-
nology in the automotive industry. With the use of X-by-wire applications in
automotive systems legal issues in case of an accident need to be clarified. The
question “who is to blame” in a lawsuit can only be answered, if a record-
ing device like the flight data recorder (black box) in the avionic’s domain is
used. The recording of all communication activities within the safety-critical
system forms the basis to determine whether a human failure, a technical fail-
ure or a combination of both caused the accident. These investigations are also
necessary for claiming compensation from the insurance company.

5.2 Overview and Strategy

An architecture with integrated support for diagnosis provides the necessary prereq-
uisites to allow the effective detection, identification and classification of experienced
errors. The model of the diagnostic architecture as illustrated in Figure 5.1 can be
divided into two main parts, the acquisition of diagnostic information via a dedicated
virtual diagnostic network and the subsequent analysis located in a dedicated diag-
nostic DAS in order to determine the nature of an experienced fault with respect to
a maintenance-oriented fault model.

The pivotal strategy of the diagnostic architecture is the establishment of a holis-
tic view on the system by operating on the distributed state. In combination with
the inter-component and inner-component error containment mechanisms provided
by the basic and high-level services, this strategy allows to trace correlated system
anomalies back to the FRU responsible for the experienced system behavior. As
depicted in Figure 5.2 one can classify diagnostic solutions according to the deployed
detection and analysis mechanisms. While prevalent component local solutions have
less stringent requirements with respect to the underlying platform, global solutions
allow a more accurate determination of the required maintenance action. Further-
more, diagnostic mechanisms at architecture level have access to all relevant interface
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Figure 5.1: Overview of the Diagnostic Infrastructure

state variables of the distributed system, while at application level certain state vari-
ables are inaccessible and thus precluded from analysis. In contrast to the internal
component states, the distributed state can be independently checked by the diag-
nostic architectural services. Such a detection is thus much more trustworthy than
any internal check that cannot be independently verified. Consequently, this strat-
egy provides the foundation for solving prevalent diagnostic problems, in contrast to
diagnostic systems operating only on the local internal state (e.g., like most OBD
system currently deployed in the automotive industry).

The diagnostic framework decouples architecture level diagnosis from application
level diagnosis to reduce the efforts of the application developers. Generic mecha-
nisms parameterized by the application developers eliminate the need for the deploy-
ment of proprietary solutions. The systematic diagnosis techniques (e.g., identifica-
tion of component hardware failures) are independent of a particular application and
need not be covered by the respective application diagnosis strategy (e.g., plausibil-
ity checks). In addition, a revalidation of the systemic diagnosis mechanisms by the
manufacturer is rendered obsolete if the coverage of the deployed mechanisms has
been validated and can be reproduced deterministically.

From a service technician’s point of view, the diagnostic solution can ultimately be
reduced to the question whether a FRU should be replaced or remain in the system.
In the integrated diagnostic architecture the analysis subsystem, i.e. the diagnostic
DAS, provides a trust level for each component, that acts as the foundation for the
decision of the maintenance engineer on the replacement.

In the following we will discuss the constituting elements of the diagnostic archi-
tecture of the DECOS integrated system. In Section 5.3 the maintenance-oriented
fault model that forms the conceptual foundation is introduced. All deployed mecha-
nisms of the diagnostic architecture are based on this model. An extensive suitability
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analysis for this model is presented in Section 5.4. The concept of an Out-of-Norm
Assertion (ONA) as the primary diagnostic mechanism is introduced in Section 5.5.
For the transport of diagnostic messages a so-called virtual diagnostic network is
used that is scope of Section 5.6. The specification and execution of ONAs is pre-
sented in Section 5.7. The realization of the detection techniques at component level
is discussed in Section 5.8. Finally, the determination of the correct maintenance
action is elaborated on in Section 5.9.

5.3 The Maintenance-Oriented Fault Model

The purpose of a model is to develop a reduced representation of the world, that
helps in understanding the problem domain [Kop97]. Related fault models presented
in [Cri91, Lap92, Pow92, WLS97] are developed for the purpose of fault tolerance. A
fault model for maintenance, however, aims at allowing a determination whether a
particular fault affecting the system will require a replacement of a FRU. Thus, a fault
classification is necessary, that allows deducing the adequate maintenance strategy
from tracing back the fault-error-failure chain. In case of integrated architectures
such a fault classification needs to include both component hardware and software
module faults, since in integrated architectures a component is shared among multiple
software modules.

In the following we elaborate on the constituting elements of the maintenance-
oriented fault model we consider important in the context of the DECOS architecture.

5.3.1 Unit of Replacement

There exists a strong relationship in the DECOS architecture between the fault
hypothesis (i.e. the fault model for fault-tolerance aspects) and the fault model for
maintenance. While in the fault hypothesis the FCRs are identified, i.e. the hardware
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units limiting the immediate impact of a fault to the system [LH94] of the system, in
the maintenance-oriented fault model the FRUs with respect to hardware faults are
stated. Typically, there will be a congruence, since maintenance of faulty components
is also a key aspect in establishing the required level of dependability in a faul-tolerant
system.

Hence, in the DECOS architecture we consider a component as the FCR/FRU
for hardware faults and a job as the FCR/FRU for software design faults.

5.3.2 Fault Classification

In the fault hypothesis the statements about the faults at system level are defined
that may occur if a FCR exhibits a failure (system level). In case of a maintenance-
oriented fault model on the other hand, a classification of the faults affecting a FRU
needs to be specified (FRU level). Thus, the two models classify faults at different
levels in the fault-error-failure chain [Lap92] as illustrated in 5.3.

Fault-ToleranceMaintenance

Fault Error Failure Fault Error Failure ….

at System Levelat FRU Level

Replacement Strategy
Which FRU to replace?

Reaction to Failures 
(e.g. Recovery, Error Masking)

Figure 5.3: The Fault-Error-Failure Chain

As stated in [ALR01] the concept of fault is introduced to stop the recursion of the
“fault-error-failure” chain. From a maintenance point of view, we are only interested
in categorizing the type of fault of the experienced failure into classes that allow a
determination whether a replacement is the correct maintenance strategy. Thus, by
reversing the fault-error-failure chain [Lap92], it must be possible for the diagnostic
subsystem to determine whether a change of a FRU can eliminate the experienced
problem, or if a replacement (i.e. change of hardware or update of software) will
prove to be ineffective. On the basis of the maintenance-oriented fault model a
corresponding maintenance action for each fault class needs to be stated.

Consequently, we stop the recursion at FRU level. In the context of the DECOS
architecture in case of hardware faults the FRU is considered to be complete node
computer, while for software faults the FRU is considered to be a job. The fault
classification for each FRU needs to be derived by analyzing the prevalent types of
faults affecting the given FRU.

Consider for instance a crack in a PCB. Such a crack may originate from wear-out
of the material due to environmental (external) stress, such as vibration (e.g., rough
roads), shock (e.g., chuckholes, hard landings) and changes in temperature (i.e. ex-
pansion and contraction). Depending on operational conditions this crack may cause
the component to fail transiently. From a maintenance point of view (at the service
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station) the first level cause due to mechanical stress is not of interest. In analogy
the exact element of the FRU that is subject to failure is of limited interest for a
service technician. By taking a maintenance-oriented view the most important fact
we are interested in is that the hardware fault can only be eliminated by replacement
of the FRU. The analysis, which part of the FRU caused the malfunction is in the
scope of the inspection of faulty nodes at the OEM (and not part of the maintenance
action at the service station).

5.3.3 The Component Fault Model

The model takes the component-based nature of today’s distributed systems into
account by considering a component as a FRU for hardware faults. Consequently,
we devise the following fault classes as illustrated in Figure 5.4.

Faults that originate outside the component boundaries are denoted as external
faults. We discriminate between non destructive and destructive external faults. Ef-
fects of non destructive external faults can be eliminated by restarting the affected
component and applying subsequent state synchronization. Thus, non destructive
external faults are characterized by having no permanent effect on the functional-
ity of the component. An example for an such a non-destructive external fault is
EMI [KWS00]. By contrast, destructive external faults are characterized by the fact
that even after a restart the state of the component remains corrupted (e.g., phys-
ically damaged ECU after a car crash). So-called borderline faults are the class of
faults that cannot be judged to be external or internal with respect to the component
boundary. An example for such a fault is a connector fault (a connector consist of two
parts, one attached to the component, the other attached to the cable loom). Since
this class is responsible for a significant number of system failures [SMM00], we ex-
tend the boundary classification of faults as introduced by Laprie [ALR01] by adding
the class of borderline faults. Finally, internal faults cover those faults that originate
from within the FRU boundary (e.g., crack in the PCB). In contrast to external
faults, these faults can only be eliminated by a replacement of the component.
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In the remainder of this thesis we refer to external faults as being non destruc-
tive, since from a maintenance perspective, destructive external faults can always be
classified as internal by following the fault-error-failure chain.

5.3.4 The Job Fault Model

In the context of integrated architectures, such as the DECOS architecture, a fur-
ther differentiation of component internal faults is possible. While in architectures
with the “1 Function - 1 ECU” design philosophy such a differentiation is futile, in
integrated architectures such a finer granularity is important for the discrimination
between software faults and hardware faults.

The increasing complexity of software deployed in embedded systems requires
the online diagnostic services of an architecture to provide means for identifying
software design faults. An empirical study, although based on field data from the
telecommunication industry, identified that only a small number of software modules
is causing the majority of software related failures during operation [FO00]. If we
act on the assumption, that a similar distribution of software faults is also feasible
for the automotive/avionic domain, then a correlation of field data gathered by the
online diagnostic services of a representative population provides a solid foundation
for the identification of software design faults.

As depicted in Figure 5.5 we discriminate for each job between job inherent, job
borderline, and job external faults. Job external faults are faults affecting the in-
ternals of a component but do not origin within the boundaries of the job. In case
multiple job external faults can be observed in one component, a component inter-
nal hardware fault can be assumed. Similar to the borderline faults at component
level, job borderline faults are faults affecting the connectors, i.e. the ports of the
jobs. Consider for example event-triggered jobs and ports accordingly. In case the
jobs are operating as specified in term of sending messages according to an a priori
defined probability distribution, there still might be the case where queue overflows
occur (i.e. messages are lost). In this case a false configuration of the respective
virtual network service is causing system malfunction. Job borderline faults are thus
configuration faults. Finally, the class of job inherent faults are those faults that
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are originating from within the job. The class of job inherent faults can be further
decomposed into software design faults and sensor/actuator faults. In the DECOS
architecture each job is considered to have exclusive access to its sensors and ac-
tuators. Since, in general, one cannot differentiate by observing only the interface
state whether a malfunction of the I/O hardware or a software design faults is caus-
ing unspecified job behavior, a differentiation of these two types is only possible by
including job internal information into the assessment process.

Figure 5.6 gives an overview of the introduced maintenance-oriented fault model
and relates the introduced fault model to the terms introduced in [Lap92, ALR01].
The system boundaries are refined into component and job boundaries as the FRUs
for hardware and software faults.

5.3.5 Assumptions behind the Fault Model

In order to allow the online diagnostic mechanisms to determine the type of fault that
is affecting a particular FRU it is important to make quantitative statements about
the underlying failure rates for both transient and permanent faults. By taking into
account the studies and numbers presented in Section 3.5 the following assumptions
are made for the DECOS maintenance-oriented fault model:

• Transient Hardware Failure Rate. The transient failure rate of a
FRU with respect to hardware faults is assumed to be in the order of
100.000 FIT, i.e. about 1 year.

• Duration of Transient Hardware Failures. The duration of a transient
hardware FRU failure can be assumed to be in the order of tens of milliseconds.
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For example in [HT98], the transient outage-time of an automotive steering
system can be estimated as less than 50 ms.

The time-triggered core physical architecture ensures that transient failures
longer than the length of a slot of the Time Division Multiple Access (TDMA)
round can be detected by other FRUs.

In current automotive OBD systems, transient failures that are lasting for more
than 500 ms are recorded. Failures with a significant shorter duration cannot
be detected,

• Duration of Correlated Transient Hardware Failures. Correlated FRU
failures, i.e. a fault affecting more than one FRU at the same time, are assumed
to be experienced within a bounded interval of time. According to the ISO 7637
standard [ISO95] the duration of an EMI burst is in the order of 10 ms.

• Wearout Indicator. In the DECOS model we regard increase of transient
failures of a FRU as a suitable indicator for wearout of the electronic de-
vice [Con02].

• Permanent Hardware Failure Rate. The permanent failure rate of a FRU
with respect to hardware faults is considered to be in the order of 100 FIT,
i.e. about 1000 years [PMH98].

• Software Faults Distribution. We assume that safety-critical jobs are cer-
tified to the necessary degree and thus free of software design faults. In case
of non safety-critical jobs, we assume that a minority of the deployed soft-
ware FRUs is causing the majority of software related failures during opera-
tion [FO00].

5.4 Suitability Analysis of the Maintenance-Oriented
Fault Model

The following section is devoted to underpinning the suitability of the introduced
maintenance-oriented fault model to differentiate faults experienced in real-world
systems. We present an analysis that covers examples from literature for both the
component and job classification.

5.4.1 Component Fault Model

Internal

In the following we will discuss component internal fault sources on the basis of
representative examples found in literature.
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Printed Circuit Board The PCB interconnects the constituting hardware ele-
ments of a node.

• Design. A typical design fault with respect to PCB is an erroneous layout.
Consider for example faulty spacing between wires or incorrect placing of elec-
trical elements on the PCB.

• Manufacturing. Manufacturing faults include all faults originating from the
technical process of creating the PCB. Here, solder mask problems, defective
vias or wrong assembly are among the typical faults. Also soldering related
faults, such as defective solder connections, shorts or loose contacts fall into
this category.

• Operational. Environmental stress factors (e.g., vibration, shock, humidity,
chemicals) can lead to subsequent failure of electronic devices. Continuous
exposure to these factors can result in cracks in the PCB due to wear-out of
the board or over-stress resulting from thermal cycling or shock. The PCB is
the primary source of component failure in case the ECU is exposed to stress
conditions [WWS99].

Discrete Elements According to field studies [PMH98, WWS99] resistors diodes
and transistors have the lowest failure rates. Capacitors are an exception since these
elements are more affected by aging processes and thus having a higher failure rate
due to wearout that other discrete electronic elements.

Quartz Since measurement of time in computer systems is based on frequency
of oscillation of a quartz crystal, the correct functionality of these elements is of
paramount importance. In case the system relies on precise timing information,
environmental influences and wearout can have a significant impact on the drift of
the clock. Consider for example systems where components are synchronized in order
to achieve a consistent global timing information. Here, a defective quartz can cause
a component failure due to loss of synchronization. As indicated in [WWS99] the
failure rate cannot be neglected. During operation the quartz can be influenced
by many factors. Low power supply, thermal cycling and mechanical damage due to
shock and vibration are probably the most common causes for permanent or transient
faults [Sch95].

Integrated Circuits As indicated by the failure rates provided in [PMH98] the
higher the integration of the electronic elements, the higher the likelihood of failure.
Therefore, integrated circuits are causing a significant number of component fail-
ures. In the following we will identify possible design, manufacturing and operational
faults. An excellent overview on semiconductor faults can be found in [GAM+02].

• Design. The reliability of electronic devices was subject to significant improve-
ments in the last decades. However, the downsizing of semiconductor features
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has lead to decrease in the gate oxide thicknesses and the distance between
metallization, resulting in higher electric fields across the gate and possibility
of failure, such as gate oxide breakdown and hot carrier damage [MPG02].

Due to the increasing level of complexity of modern integrated circuits the
likelihood of design faults is non-negligible. For example Lev and Chao [LC02]
state that, in nanometer design, wiring delay accounts for the vast majority
of overall delay. The downsizing causes that the delay is shifting from gates
to wires. By 90 nm, wiring delay will account for some 75% of the overall
delay. Thus, the shrinking of geometries in semiconductor design has signifi-
cant impact on future design processes. Besides wiring delay, cross coupling
effects originating from incorrect design can result in transient failures during
operation.

• Manufacturing. Due to semiconductor process variations such as intra-chip
variances or mask alignment and manufacturing residuals the likelihood of re-
occurring permanent faults leading to transient failures is growing [Con02]. For
example consider a short of metal lines caused by an unexposed photo resist
or a solid-state particle deposited on the metal layer before metal lithography.

Failures of system components caused by these effects of manufacturing short-
comings can cause significant trouble for the maintenance engineer. Con-
sider for instance process variations that cause temperature dependent fail-
ures (e.g., at windshield wiper control unit). Due to defective mask alignment
(adjudged fault) the IC shows temperature dependent failures. Thus, if the
temperature lies within the range between −20◦ and −10◦ Celsius the chip
exhibits unspecified behavior. As soon as the customer brings his car to the
service station, the experienced failure cannot be reproduced because of the
different temperature. Since process variations can affect only a batch, these
faults are hard to identify and and can lead to major maintenance problems.
This is also an example of a fault that is made active due to environmental
influences.

• Operational. According to Constantinescu [Con02] the primary cause for the
significant increase of soft error rates are shrinking geometries, lower power
voltages and higher frequencies. These result in higher sensitivity to neutron
and alpha particles, and consequently have an impact on dependability by
increasing the transient failure rates [GAM+02].

Another significant source of failure is variability in power supply and temper-
ature effects. As stated in [Won99] temperature has strong influence on the
properties of semiconductor materials. On the device level, mainly degradation
and breakdown of oxides are the main cause of failure.

Borderline

Wiring and connector problems account for a significant proportion of electronic
system failures. Several studies document the significant proportion of connector
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and wiring failures in distributed embedded systems. Field data cited by Swingler
et al. [SMM00] indicate that more than 30% of electrical failures are attributed to
connection problems. Considering, that a luxury car can have up to 400 connectors
this number underpins the potential for failures due to connectors in the automotive
domain. In the avionic domain, Galler and Slenski identify interconnection problems
as the major cause of aircraft electrical equipment failures [GS91] with a percentage of
36%. These numbers are underpinned by a study of the US Air Force reporting that
43% of mishaps related to electrical systems were due to connectors and wirings [SS01,
For95].

The reliability of the interconnection system is of great importance for the cor-
rect operation of an electronic system. The physical interface between the electronic
control units (i.e. the components) and the interconnection system remains one of
the weakest links in terms of reliability, implying potentially catastrophic conse-
quences [McB93].

According to Tanner [Tan93] several issues concerning the reliability of connectors
can be identified:

• Terminals backing out of housing. This frequent problem, both affecting war-
ranty claims and production, can be reduced with the use of secondary locking
features.

• Terminals damaged on production line. Bent pins or damaged tabs are the
most common form for of terminal damage. These damages can result from
harness assembly, transit, or during installation.

• Partially mated connectors. With excessive connector mating force a poorly
designed connector latch causes malfunction.

• Breakdown of contact at crimp. Poor crimping of the contact at the manufac-
turing stage can significantly influence the quality of the interconnection.

• Failure of contact due to operational conditions. In contrast to the hitherto
presented problem sources, the last one is a consequence of operational con-
ditions rather than improper design or assembly. Due to environmental stress
(e.g., thermal, shock, vibration) the male and female parts of a connector can
move relative to each other leading to gradual increase of the contact resis-
tance. This phenomenon is termed fretting wear and is defined as wear caused
by small repetitive motion in an apparently stationary situation [vDvM96]. Es-
pecially in combination with corrosion it is very likely that such a connection
is responsible for transient anomalies in the system. Kimseng [KHTP99] for
instance notices, that pin and socket type interconnects between the upper and
lower housings are particularly vulnerable to small relative displacements due
to the vibrations and thermal cycling of the automotive environment.

A significant problem regarding connector and wiring failures is the fact that
the failure analysis or the testing procedure may itself be a corrective action for
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the source of the failure (e.g., such as when resetting a connector or when applying
wipe to a connector electrical pad) [PR92]. The same is pointed out by [KHTP99],
who states that analysis and repair is often difficult due to the possibility that any
evidence of failure is inadvertently destroyed during extraction or inspection.

External

In the following we will discuss the most important external faults that have an im-
pact on the functionality of the DECOS components. The class of external faults
covers external influences such as cosmic radiation, temperature, EMI, shock, vibra-
tion, and humidity, only to name a few [IEE99]. An extensive list of environmental
factors having impact on the reliability of a component can be found in [DoD98,
p. 7-129].

Cosmic Radiation In aerospace transient disturbances of components are fre-
quently caused by Single Event Upsets (SEUs) originating from cosmic radiation.
According to [Ram01] such radiation induced failures in avionics are caused by ura-
nium and thorium contaminants, and secondary cosmic rays. Among the conse-
quences of radiation are aging effects (wearout), embrittlement of materials, and
overstress soft errors in electronic hardware.

In [Nor96a] Single Event Upsets (SEUs) caused by cosmic rays in avionics are in-
vestigated. Based on the experimental evidence from measured in-flight occurrences
of SEUs fault rates in dependence of the flight altitude are evaluated and the sources
of such incidents identified. However, SEU are not restricted to higher altitudes as
shown in [Nor96b].

Electromagnetic Interference EMI imposes a serious threat to the intended
function of electronic systems deployed in various application environments. In the
following we will give a short overview of EMI related problems in the avionic and
automotive domain.

One major source of EMI in the avionic domain is the effect of lightning on
aircrafts. Besides severe effects on the aircraft skin (e.g., melting, deformation due
to pressure waves), damage in externally mounted materials and vaporization of
conductors, a serious consequence of lightning for the electronic equipment are the
electric and magnetic fields. In [Pod90] a 16.5% failure rate of electronic equipment of
commercial airlines due to lightning strokes is reported. Since modern aircraft highly
depend on the correct functionality of the electronic flight control system standards
exist, to provide necessary aircraft protection [Pod90].

According to Ladkin [Lad97] there are no reports so far of interference with
electronic flight control on the Airbus 320/330/340 or the Boeing B777 caused by
EMI. However, in military aircraft some incidents are documented. For instance,
five crashes of Blackhawks helicopters shortly after their introduction into service
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were found to be due to EMI from very strong radar and radio transmitters with the
electronic flight control systems [Lad97].

An additional problem in avionics is the increasing numbers and use of Portable
Electronic Devices (PEDs) onboard an airplane [LXR+02]. However, Boeing has
not been able to find a definite correlation between PEDs and the reported airplane
anomalies [Don00].

Similarly, in the automotive domain the increasing use of electronics makes cars
more susceptible to problems originating from EMI, and thus makes it a major
consideration in vehicle electrical system design [Nob94]. For example in [Ber02]
serious effects of EMI are mentioned, namely the unexpected shut off of car engines on
highway overpasses. Another example for transient disturbances generated by EMI is
noise of the ignition system of a car [Nob92]. The UK based Motor Industry Software
Reliability Association (MISRA) consortium has released guidelines for dealing with
EMI in automotive environments [MNW98]. The guidelines consider interference
effects on various aspects of processing, for example communication lines, digital
and analogue inputs, corruption of memory and loss of control of the processor.
Similar impacts of EMI have been studied in [PKOP99]. An interesting study of
EMI levels in urban areas can be found [GSOS01]. The measurement results are
compared against the requirements of the automotive industries in order to ensure
correct functionality of on-board electronics.

A study on effects of electromagnetic interference on controller-computer upsets
and system stability revealed that controllers are more susceptible to these unwanted
noises due to shrinking device size, lower switching energy, and higher speed opera-
tions [KWS00]. Typically, these external faults are likely to be transient and cause
primary functional error modes in digital systems.

Environmental Stress Factors Transport vehicles, such as cars and airplanes,
are usually exposed to harsh environmental conditions [Fle01]. Especially, climatic
and mechanical stress decreases the lifetime of electronic equipment. For example,
humidity, extreme temperature and moisture in combination with stress factors such
as shock and vibration results in increasing wearout rates [WBC00, WWS99].

Just to give an impression, in the automotive industry temperatures can reach
up to 200◦C on the engine or even 800◦C at the exhaustion system. Similar, the
vibration and shock levels can reach up to 50g [Won99]. For example in the cabin
the vibration is usually in the magnitude of 10g, under the hood 20g and wheel or
engine mounted devices experience up to 40g.

Thermal cycling, continuous vibration and shocks and environmental conditions
like salt spray, dust or gravel that weaken the protection mechanisms (e.g., sealing,
housing) are a serious threat to the reliability of of electronic devices deployed in
electronic architectures.

Due to continuous exposure to environmental stress, external faults can be trans-
formed into internal component hardware faults (e.g., continuous shock causes crack

93



5.4 Suitability Analysis 5 Diagnosis Model

in PCB). Such an accumulation of incremental damage beyond the endurance of the
material is termed wear-out fault [Ram01].

Wiring Wiring related problems are posing a serious threat to safety-critical sys-
tems. It is an acknowledged fact that every densely wired system is vulnerable to
consequences of wiring problems. For instance Swissair 111 and TWA 800 have
crashed because of faulty wiring [FH01].

According to [SS01] the aging process of wiring can be understood as degraded
performance due to accumulated damage from long-term exposure. This includes
damages resulting primarily from operational conditions, such as damages from chem-
ical, thermal, electrical, and mechanical stress. Besides these stresses induced by the
operational environment damages also originate from installation and maintenance
practices. Such wiring failures frequently appear as broken conductors and damaged
insulation which can be disrupt electrical signals and/or lead to arcing, that may
have fatal consequences.

One approach of improving the safety of today’s airplanes is to provide mecha-
nisms that allow a better detection of the tiny anomalies caused by defective cabling.
These diagnostic mechanisms need to monitor the wires not only during mainte-
nance but rather during the operation of the plane. According to [FH01] a single
arc fault may last only 1.25 ms, and a series of events may last 20-30 ms. However,
these spurious failures must be distinguished from transient failures induced by the
environment (e.g., jet engine ignition).

5.4.2 Job Fault Model

Inherent

The class of job inherent faults as introduced in 5.3.4 is divided into software faults
and transducer (i.e. sensors and actuators) faults. In the following we will discuss why
such a classification is feasible for today’s distributed embedded real-time systems.

Software Faults Although automatic code generation tools such as TargetLink
from dSpace or the Real-Time Workshop for Matlab/Simulink are increasingly
becoming accepted in industry [WP99] in order to reduce software implementation
faults [MIS98] and speed up development, the increasing complexity of applications
leads to an increased probability of software design faults. In particular, Heisenbugs
remain frequently undetected and can only be identified by a fleet analysis during full
operation of the product. For example, a software bug in an electronic management
unit of the fuel pump caused some cars to stall if the fuel tank was below one third full.
The resulting recalls not only impose a serious financial burden for the manufacturer
but also have a significant impact on the reputation of the products.

In [Web92] the support of integrated diagnostics for software is underpinned by
the provision of statistics indicating that 17% of the efforts associated with software
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maintenance are for correcting faults. Furthermore, 54% of the efforts associated with
software support require an integrated set of diagnostic tools and techniques. The
importance for the detection of software faults during system operation is stressed by
stating the fact that despite all efforts to reduce software faults during development,
there will still be latent software faults during testing and deployment (at least for
non safety-critical systems). The issue of faults that can only be identified during
operation is also raised in [GW02] in the context of the automotive domain. During
product development and testing low quality issues are relatively easy to identify
because they are uncovered with smaller sample size. The problem of current vehicle
testing process is the identification of statistically very unlikely occurring incidents
that become only identifiable after high volume production.

A recent study of software faults revealed that only a small number of soft-
ware modules contain most of the faults discovered during pre-release testing [FO00]
supporting the results of [Ada84]. However, the discovery of these faults during pre-
release testing is a very challenging task. In case of software faults detected during
operation a distribution according to the 20-80 rule has been identified, indicating
that 20% of the software modules are causing 80% of the software related failures
during operation.

Transducer Faults Sensors and actuators are the linkage between the controlling
computer system and the controlled object. In the DECOS architecture each job is
considered to have exclusive access to its sensors and actuators (e.g., electromechan-
ical brake, window lifter, wheel speed sensor). An overview of sensors currently
deployed in automotive industry can be found in [Fle01, Bos02]. For the avionics
domain the reader is referred to [MS03]. In the automotive domain the expected life-
time of sensors is assumed to be in the order of the lifetime of the car. For example
in [Par01] the lifetime of automotive pressure sensors is specified between 10 and 15
years.

One approach to the highly application-specific diagnosis of job inherent faults
is model-based diagnosis [PW03]. Based on a diagnostic model the application pro-
grammer transforms a model into application-specific assertions that are checked at
run time. In [Nyb02] an example for model-based diagnosis in the automotive do-
main is presented. The author presents a diagnosis solution for the air-intake system
of an automotive engine.

Borderline

The configuration of a distributed embedded real-time system is typically tool sup-
ported in order to minimize the possibility of faulty configurations (for instance
see [Pol04]). The class of borderline faults comprises those faults that emerge by
deriving the configuration parameters on the basis of a communication model that
is based on assumptions that do not hold in reality.
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Consider for example an event-triggered legacy application. Temporal correct-
ness of such an application can depend on temporal properties, such as bandwidth
guarantees, bounds on communication latencies, and predefined message orderings.
Furthermore, knowledge about the temporal behavior of communication activities is
essential for the dimensioning of message buffers as required to tolerate temporary
imbalances of message interarrival and service times [Kle75]. If a subset of the as-
sumptions of a legacy subsystem was made implicitly and not described in technical
documentation, then determining a valid configuration is complicated. With incom-
plete knowledge about the assumptions that have been made by legacy applications
concerning the underlying architecture, finding a consistent configuration becomes a
non-trivial and error-prone activity. We denote any misconfiguration of the architec-
tural services that results from incomplete knowledge about legacy applications as a
borderline fault.

External

A job external fault can be mapped onto a component internal hardware fault. In
case of a one-to-one mapping between jobs and components as in federated systems,
this differentiation is obsolete. However, in the context of an integrated architecture
such a differentiation is important to determine whether a component internal fault
is a job inherent fault.

5.5 Out-of-Norm Assertions

In the following section we will introduce Out-of-Norm Assertions (ONAs) as a
generic mechanism operating on the consistent distributed state induced by a sparse
time base for the encoding of fault patterns in the value, time and space domain.
Besides supporting the detection of a violation of a component’s service specifica-
tion, ONAs establish means for the detection of system irregularities that cannot be
forced into a bivalent assessment scheme at the time of occurrence. ONAs correlate
spurious states in value, space and time in order to allow component assessment.

5.5.1 Distributed State

This section discusses the notion of state in distributed systems and the consequences
of faults on the distributed state. We start by elaborating on the component state
and express the role of the interface state as the part of the component state that is
visible to all other components of the system. Furthermore, we exploit the concept
of the sparse time base in order to reach a consistent distributed state. Finally, we
introduce the concept of fault patterns on the distributed state to model and analyze
the effects of faults. The concept of ONA is based on the notion of state as introduced
in Section 2.2.
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Component State

The definition of a system component as introduced in Section 2.3, i.e. the insepa-
rability of the software from its executing hardware, provides the ability to observe
and describe the behavior of the component in relation to physical time. A compo-
nent possesses a physical clock, the ticks of which trigger the progression from one
processing step to the successive one. As a result of each processing step, a com-
ponent will deterministically update its internal variables – based on the program
code, the inputs, and the values of the internal variables before the processing step.
We denote this component as time-aware, since the underlying conceptual model of
a component incorporates the notion of physical time.

At startup, a component has not processed any inputs and the values of the
internal variables of the component equal the initialization values. Consequently, at
this point in time, the future outputs of a deterministic component depend solely
on the program code and the initialization values. These static data structures of a
component are usually denoted as the initialization state. The history state, on the
other hand, incorporates the dynamic data structures that change over time [Kop97].
If we do not wish to perform this differentiation, we simply speak of the state of the
component at a particular point in time.

In distributed computer systems, the components interact by the exchange of
messages across service interfaces to realize emerging services. Based on the analysis
of the interactions between a component and its environment a strict separation of
concerns at the interface level [RX97] helps to reduce complexity by enforcing a more
structured design. A service interface that is provided to link components together
is called a LIF [KS03a]. One can further distinguish between the Service Providing
Linking Interface (SPLIF) and the Service Requesting Linking Interface (SRLIF) of
a real-time communication LIF. While the SPLIF offers the service of the component
to all other components of the distributed system, the SRLIF requests services from
other components.

Formally, we can formulate the component state Scomponent of a component A at
time t as following:

SA
component(t) =

(⋃
i

SAi

interface(t)

)
∪ SA

internal(t) (5.1)

where SAi

interface(t) denotes the interface state of component A (either an SPLIF or
an SRLIF) at time t with respect to interface i, i ∈ {1, 2, . . . , n} and n ∈ N. The
internal state SA

internal(t) of component A denotes the part of the state that is not
made explicit through interfaces (e.g., temporary results, registers, program counter).

Interface State

Components are interconnected with other components by means of exchanging mes-
sages across LIFs to realize emerging services. LIFs can be specified at two levels: the
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operational level incorporates syntactic and temporal aspects, while the meta-level
denotes the semantics [KS03a]:

1. Syntactic Specification. The syntactic specification defines the structure
and name of the data elements exchanged via the interface. Thus, the concept
of syntax is used to construct structured information from basic information
units.

2. Temporal Specification. The temporal specification determines the tempo-
ral sequence of message exchanges.

3. Meta-Level Specification. The semantic specification assigns a meaning to
the structured information.

The specification of LIFs is a statement about the messages that arrive at SRLIFs
and depart from SPLIFs. If the messages produced by a component comply to its
specification at the two levels, a component is correct. Otherwise, the component
exhibits a message failure and the component is denoted as faulty. Associated with
such a message failure is an incorrect interface state, which is the state of a component
as viewed from a particular interface [GIJ+02]. In contrast to the internal state,
the interface state is accessible to other components in the distributed system. As
depicted in Figure 5.7 the interface state of each component is encoded into messages
and transferred via the communication system. Thereby a replication of the interface
state is performed. Note, that the internal component state remains hidden.

• Interface State of SPLIFs. While intermediate computational results (in
general) only effect the internal state variables (i.e. the internal state) of a
component, the final computational results are made available via the SPLIFs.
Thus, the information from private, internal state variables is propagated into
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the component’s interface state containing the set of state variables that are
explicitly exported by a component allowing access by other components. In
other words, the interface state of a component are those state variables that
are transported to other components by exploiting the communication service.

• Interface State of SRLIFs. By exploiting the SRLIF, a component adapts
its state variables with the state variables of the sending component. This
way, a component acquires access to foreign state, which functions as input for
subsequent computations – in the same way as the history of the component.
By processing the interface state of an SRLIF the synchronized state of the
sending component is propagated to the state of the receiving component and
thus determines future behavior of the component provided via the SPLIF.

Due to the importance of the interface state concept, we also introduce the
notion of visible component state, which consists solely of the interface state of a
component (i.e. omitting the internal state). Formally, the visible component state
SA

component,visible(t) of a component A at time t is defined as follows:

SA
component,visible(t) =

(⋃
i

SAi

interface(t)

)
(5.2)

Distributed State

If the time base in a distributed system is dense (the events are allowed to occur at
any instant of the timeline), then it is in general not possible to generate a consistent
temporal order on the basis of the time-stamps [Kop97]. Due to the impossibility
of synchronizing clocks perfectly and the denseness property of real time, there is
always the possibility that a single event is time-stamped by two clocks with a dif-
ference of one tick. By introducing the concept of a sparse time base the ordering
of events can be restored without execution of agreement protocols only based on
timestamps [Kop92]. In the sparse time model the continuum of time is partitioned
into an infinite sequence of alternating durations of activity (π) and silence (∆).
Thereby, the occurrence of significant events is restricted to the activity intervals of
a globally synchronized action lattice.

The activity intervals of the sparse time base form a synchronized system-wide
action lattice. The interval of silence (∆) on the sparse time base is a system wide
consistent dividing line between the past and the future and the interval when the
state of the distributed system can be defined. This consistent dividing line between
the past and the future is illustrated in Figure 5.8.

At any point in time t, where t is an instant on the sparse time base corresponding
to an interval of silence ∆, the union of the visible state of each component is denoted
as the distributed state. During the interval of activity π the distributed state is
undefined. The state of a distributed system Sdistributed(t) at time t can thus be
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Figure 5.8: Sparse Time Base

devised as:

Sdistributed(t) =

(⋃
A

SA
component,visible(t)

)
(5.3)

where SA
component,visible(t) denotes the visible state of a component A at time t.

Adversely, the component state SA
component,visible(t) in a component A of the dis-

tributed system includes part of the distributed state Sdistributed(t). Through the
exchange of information via the communication system, in each component a local
manifestation of a part of the distributed state occurs. The part depends on the
communication relationships between the components. This local manifestation of
the distributed state will be exploited in Section 5.5.2 for capturing certain types of
diagnostic evidence, which function as an indicator for the occurrence of faults.

Consequences of Faults on the Distributed State

When a fault hits one or more constituting parts of the distributed system, a change
of state can occur that leads to an unintended state denoted as an error [Lap92].
Depending on the type of fault (e.g., internal or external fault, software or hard-
ware fault), the unintended state will exhibit a characteristic manifestation in time,
value and space. To capture the characteristics of the fault-induced distributed state
changes, we introduce the concept of fault pattern. A fault pattern is the set of state
variables that has been identified as subject to fault-induced state changes along with
corresponding properties in value, space, and time. Different types of faults show
different fault patterns on the distributed state.

• Value Dimension. The value dimension denotes a subset of the value domain
of the selected state variables. This subset of the value domain is characteristic
to the fault covered by the fault pattern.

• Time Dimension. The time dimension covers the persistence of the change
in state. The time dimension makes statements about points in time, the
durations, and the variability of the points in time and the variability of the
durations of fault-induced state changes. Additional indicators on the time
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dimension are the time between successive fault-induced state changes and the
frequency of state changes.

• Space Dimension. The space dimension specifies the locality and spatial
expansion of the observable state changes. For example, the space dimension
can encode whether a fault affects a single or multiple components and the
physical proximity of the components hosting the changed state variables.

An important input for deriving fault patterns is the fault hypothesis. The
fault hypothesis expresses the statements about the considered FCRs, the failure
modes, the temporal properties, the failure frequency and the error detection la-
tency [Kop04]. In case the fault hypothesis states that a FCR with respect to soft-
ware and hardware faults is a component, then a distinction between hardware and
software faults is only possible by including the spatial dimension into the fault
patterns.

Another example may be a fault hypothesis that states that the software has to
be free of design faults (as required in some safety-critical systems). In this case only
hardware faults need to be considered in case of component failure.

In the following we exemplify some typical fault patterns, which are summarized
in Figure 5.9.

• Wearout fault pattern: A wearout failure is defined as a failure due to
monotonic accumulation of incremental damage beyond the endurance of the
material [Ram01]. Such a wearout failure will exhibit a fault pattern typical
for intermittent type faults [Lap92]. This type of fault affects only a single
component (space dimension) and reoccurs repeatedly at the same location at
higher rates with decreasing intervals [Con02].

• Massive transient disturbances fault pattern: Massive transient distur-
bances (e.g., due to EMI) are an example for the class of faults typically affect-
ing multiple components at the same time. EMI causes correlated effects on
the entire system that usually cause no physical damage to hardware [KWS00].

• Connector Fault: A connector failure may occur at an arbitrary point in
time. Characteristic for the connector fault is the space and value dimension.
A connector fault is assumed to affect only one component at a time and
manifests itself as a message omission on a channel.
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Figure 5.10: State Space

Deriving Fault Patterns

Typically, defective control units are returned to the OEM for warranty analy-
sis [AM02]. Although this off-line analysis is not in the scope of the DECOS in-
tegrated diagnostic architecture, the information gained through off-line analysis has
a major impact on the design of the fault patterns. An optimization of the patterns
in order to support the identification of those faults that have been identified to
cause the majority of failures is of paramount importance to the effectiveness of the
deployed diagnostic mechanisms. Studies of faults affecting ECUs used in automo-
tive applications underpin the so-called Pareto-principle, i.e. a phenomenon that can
have many theoretical causes has in reality only a few [PMH98].

In order to derive the fault patterns for prevalent fault types causing the majority
of system failures, a thorough analysis of field data (provided by industry) and fault
injection techniques is necessary. Statistics on the types of faults affecting products
in operation will help to derive those fault patterns that will help to identify the
faults that will most likely affect the system (e.g., car, aircraft) during operation.

5.5.2 Definition of Out-of-Norm Assertions

The specification of a component describes the services that are offered via the LIFs
to other components. Thus, it is possible to decide whether a component adheres to
its specification or exhibits a behavior deviating from the intended service. In general
the specification is a statement about services not about state. Since the provision
of a correct service by a component implies a correct SPLIF interface state, the
behavior of a component with respect to its service specification can only be checked
by continuously evaluating the interface state. An interface state error is thus an
indication of an upcoming failure of the respective service of a component.

In contrast to an interface state error, that is a definitive violation of the spec-
ification – since an interface state error corresponds to a component failure – an
anomaly is an interface state that can only be judged as correct or incorrect at time
of occurrence by the omniscient observer, but not by the computer system (e.g., due
to missing a priori knowledge or redundancy to decide on the correctness). Only by
continuously evaluating such anomalies over time, a (definite) classification of the
experienced behavior, i.e. a judgement whether the intended service is provided, can
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be derived. Figure 5.10 shows this consideration. While incorrect interface states
are perceived as failures of the respective component, anomalies are a deviation from
the expected, regular interface states and require further assessment over time.

We define an Out-of-Norm Assertion (ONA) as a predicate on the distributed
system state that encodes a fault pattern in the value, time and space domain as intro-
duced in Section 5.5.1. ONAs are deterministically triggered, whenever all symptoms
of a particular fault pattern are detected on the distributed state. A symptom is a
set of interface state variables of a particular component that are monitored to de-
tect deviations from the LIF specification. An ONA will likely be composed of more
than one symptom, each operating on the interface state of different components.
As depicted in Figure 5.11 ONAs can be hierarchically structured. This allows for
the exploitation of identified symptoms for the implementation of different ONAs.

In contrast to conventional error detection techniques, ONAs do not provide a
definite classification whether a component is correct or incorrect in case only a sub-
set of the specified symptoms fire. In this case, we speak of an anomaly, i.e. we
cannot ascribe the behavior of the component to a specific fault pattern. In order
to decide on the correctness of a component, an assessment over time is necessary.
The repeated evaluation of evidence gathered by ONAs provides the foundation for
the analysis process that ultimately decides whether a component is correct. ONAs
are gathering evidence in order to decide on a particular pattern affecting the state
of the system. This process can be compared with a gathering evidence of different
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diagnostic techniques in medicine (e.g., temperature measurement, computer tomog-
raphy, x-ray). In case sufficient evidence is gathered, a suspicion for a particular
disease is confirmed or falsified.

Note, although an ONA fires deterministically, i.e. evaluates to either T or F,
the fault pattern encoded in the ONA may only be derived in a probabilistic manner
(e.g., from field data). For example, a connector failure can be detected by monitoring
the communication channel in a distributed system. In case of replicated channels, a
transient failure of one channel can be represented by a connector fault pattern. Since
connector failures account for a significant portion of communication faults [SM99],
it follows that a message omission failure on one channel is likely due to a connector
fault (e.g., loose contacts). However, there will be message omission failures resulting
also from other faults, although with a significantly lower probability.

By interpreting the information of all components of the system, correlated fail-
ures can be identified that allow to distinguish between external and internal faults.
For example, while transient external faults (e.g., due to EMI) randomly effect com-
ponents, intermittent type faults occur repeatedly at the same component at a higher
rate [Con02] (e.g., solder joint cracks). This distinction is especially useful in case of
integrated architectures such as IMA [Aer91], where components are shared among
multiple applications. Here, the determination of experienced failures to a particular
application or to a set of applications is important to decide whether a software or
hardware fault is active.

The evaluation process performed by the diagnostic subsystem is illustrated in
Figure 5.12. The evaluation process is based on a consistent notion of state, which
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is provided through the action lattice of the sparse time base. The arrows in Fig-
ure 5.12 indicate the assessment trajectories. At first both arrows show component
conformance with the specification, i.e. correct interface states. As time progresses
arrow A exhibits an increasing confidence for a violation of the specification, while
arrow B indicates a component behavior in accordance with the specified service.

Classification of Symptoms: Self- vs. Cross-Checking

If a component evaluates its own symptoms, we denote this process as self-checking.
However, when the component is affected by a fault, it cannot be assumed that
the error detection mechanisms within this component are unaffected by this fault.
Thus, there is always the possibility that the judgement of a faulty component on
its correctness is misleading.

In contrast, the interface state is revealed to other components via the exchange
of messages through the communication system and can be checked independently
by all other nodes. We denote this type of checking of symptoms with respect to
specification conformity as cross-checking. The validity of such symptoms that can be
tested by other components is more trustworthy than the results of checks performed
by the node under inspection. This concept conforms to the established architectural
principle in safety-critical architectures of mutual error detection [Kop03].
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As stated before, the interface state is transferred to all receiving components
via the communication service (i.e. the interface state is encoded into messages), it
follows that detection techniques on the interface state at the receiving component
are a mechanism to assess the correctness of the sending component. As illustrated
in Figure 5.13, component B is able to apply error detection on the interface state
with respect to the specification of component A.

Consequently, by applying ONAs we introduce symptoms as constraints on the
interface state to assess the condition of a system component. Fundamental to this
concept is the fact that the interface state of the sending node (Component A) is
mapped onto the interface state of the receiving node (Component B) as indicated
in Figure 5.14. As depicted, a fault in component A causes an error in the interface
state of the LIF. Subsequently, this error causes a message failure (e.g., timing failure,
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value failure). Consequently, a failure of the sender manifests itself as an error in
the interface state of the receiver (with respect to the specification of the sending
node). In case the interface error with respect to the specification of component
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A remains undetected, the error propagates to the state of component B and can
lead to a consequent failure of component B. For that reason error containment
mechanisms must ensure that interface errors cannot propagate to affect the service
of the component [LH94].

5.6 The Virtual Diagnostic Network

By exploiting the high-level virtual network service [OPK05b], a so-called virtual
diagnostic network is established for the transport of diagnostic messages. Since
only elementary interfaces [Kop99a] are used for the construction of virtual networks,
no back-propagation of the diagnostic dissemination service to any safety-critical
DAS is possible. An interface is called elementary, if the information flow and the
interface control information are both unidirectional, i.e. the information producing
subsystem can perform its information dissemination function without depending
on any control signals from the information consuming subsystem. Otherwise the
diagnostic subsystem would be elevated to a safety-critical subsystem that must be
validated to a dependability of the highest criticality class.

5.6.1 Properties of the Virtual Diagnostic Network

In the following we discuss how the virtual solution for the dissemination of diagnostic
information satisfies the requirements listed in Section 5.1.
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Access to the Dissemination Service

In order to allow accurate diagnosis, all physical and functional entities of the inte-
grated embedded system need to have access to the diagnostic dissemination service.
This is guaranteed in the DECOS architecture, since all jobs (of all DASs) can access
the virtual diagnostic network. Furthermore, all high-level services (e.g., hidden gate-
way service, fault-tolerance mechanisms) may disseminate diagnostic information via
the virtual network whenever a symptom is detected.

Alternatively, one can compare the access to the virtual diagnostic network with
a diagnostic gateway hosted at each component. Such a gateway implements a
diagnostic firewall that restricts the type of information to be disseminated on the
virtual network in such a way, that only data of diagnostic relevance (i.e. a symptom)
is transmitted on this network.

Elimination of the Probe Effect

A purely virtual solution for the dissemination of diagnostic information has two
main advantages. At first, real-time traffic is not compromised in any way, since the
bandwidth for the exchange of diagnostic information is fixed a priori at design time.
This way a deterministic message exchange for all non-diagnostic DASs is guaranteed.
Secondly, the purely virtual solution ensures that no additional hardware faults are
introduced due to wiring or connector problems. Consequently, no probe effect can
be introduced [Gai86] and no additional errors can be introduced into the system.

Since, the virtual diagnostic network is like any other virtual network in the
DECOS architecture an encapsulated communication service, a fault affecting this
network cannot propagate to another virtual network [OPK05b, Obe04]. Even more,
ensured by the construction of the virtual network service, no monopolization of
the available bandwidth is possible. Thus, no jobs with a babbling idiot failure can
negatively effect the dissemination of other messages within such an encapsulated
network.

By contrast, consider the widely deployed Controller Area Network (CAN) proto-
col. Here, the dissemination of additional diagnostic messages may either cause the
delay of real-time messages or, in case of low priority message, may exhibit substan-
tial delay. Since the CAN standard [Bos91] does not provide a global time base, and
no time stamping is available, such a delay renders detection of correlated failures
difficult.

No Additional Hardware

Since the diagnostic dissemination service is a purely virtual solution, no additional
hardware that may decrease system reliability due to connector and wiring faults
is introduced. In addition, this virtual solution meets also the tight cost demands
imposed by industry.
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Figure 5.15: The Virtual Diagnostic Network

Referring to the previous CAN example, without such a virtual solution a possible
alternative would be the deployment of a parallel diagnostic CAN network that will
circumvent the highlighted problems, but will be highly unlikely due to economic
constraints of the automotive industry. In addition, the additional hardware of a
further network also increases the potential of wiring and connector faults that may
decrease the accuracy of the analysis algorithms.

The idea of a second physical diagnostic network has been realized in the ISTORE
project, where besides a primary data network, a dedicated diagnostic network for
the dissemination of diagnostic information has been realized [BOK+99]. A physical
CAN network is used for the dissemination of data from environmental monitoring
sensors (e.g., temperature, fan RPM).

5.6.2 The Structure of the Virtual Diagnostic Network

The structure of the virtual diagnostic network is depicted in Figure 5.15. As illus-
trated, the virtual diagnostic network allows the dissemination of

• Job internal symptoms from jobs of the safety-critical subsystem (e.g., brake-
by-wire DAS)

• Job internal symptoms from jobs of the non safety-critical subsystem (e.g., com-
fort DAS).

• Systemic and application-specific symptoms gathered by the architectural ser-
vices (Architecture Level Diagnosis (ALD)) following the cross-checking prin-
ciple

In accordance with [OPK05b], we deploy a virtual event-triggered communication
service for diagnostic messages of non safety-critical jobs and the dissemination of
architecture level diagnostic messages. Due to the typically event-triggered nature of
diagnosis (we are only interested in state changes that indicate interface specification
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Figure 5.16: The Diagnostic Message Format

violations) a communication service tailored to this type of communication is needed.
The advantage of using an event-triggered virtual network is the better utilization of
available resources, since diagnostic messages are typically only sporadically trans-
mitted.

For the dissemination of job internal information of jobs from the safety-critical
subsystem we utilize a virtual time-triggered communication service. This is neces-
sary, since the DECOS architecture does not support event-triggered communication
services for safety-critical subsystems by design [KOPS04]. This way, the SCU of a
component needs not to provide any additional communication services for diagnosis.
However, note that state information can be converted to event information in case
an analysis algorithm operates on event semantics.

The third channel, reserved for ALD is the most important one. This channel
transports the diagnostic messages constructed by the high-level diagnostic services
following the cross-checking principle. One can see the diagnostic symptoms similar
to event-triggered jobs that push diagnostic messages in case of an event of relevance
to the virtual diagnostic network. At the receiver side, the analysis job(s) of the
diagnostic DAS fetch the incoming messages from the respective input ports. Since
this information is much more trustworthy than the job internal information (the
interface state is revealed to all other components in the system and can thus be
cross-checked; see also Section 5.5.2), more bandwidth is reserved for the ALD than
for the other two information sources.

5.6.3 The Diagnostic Message Format

As described, the available information at each component for the purpose of diag-
nosis needs to be transferred to the analysis subsystem in order to allow judgment
about the nature of possible faults affecting the system. In order to allow this ex-
change of information a diagnostic message format needs to be defined that includes
information, about the time, space, and value domain in accordance with Section 5.5.
Since the analysis process operates on the global system state it must be possible to
encode not only value and time information into the message, but also include the
space dimension (e.g., for the discrimination between hardware and software faults).
Furthermore, in order to assess the health status of nodes the inclusion of data val-
ues into the diagnostic frame for subsequent analysis must be possible (e.g., a sensor
value, the clock state correction term). In addition, the diagnostic frame format as
depicted in Figure 5.16 is not limited to one specific type that may not be applica-
ble in all domains. Consequently, different types can be specified using the message
type field to allow a flexible design of the messages (i.e. extensibility). Furthermore,
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Field Name Semantics
Message Type The message type field contains the type of the diagnostic

message. It allows a flexible definition of diagnostic messages.
Symptom ID Each symptom is identified by an unique identification.
Time Domain This field includes a timestamp that allows tracing of

correlated failures/anomalies.
Space Domain This field encodes the space information, i.e. cluster,

component, subsystem, DAS, and job information. The space
information allows including physical and functional information
into the analysis process.

Value Domain The value domain field allows the inclusion of particular
values of interface state variables at the moment of the
execution of the detection mechanism into the analysis process.

Table 5.1: Diagnostic Message Format

bandwidth is in general seen as a scarce resource. As a consequence, the efficient use
of available bandwidth is of importance. Depending on the type of diagnostic mes-
sage (in combination with a particular symptom ID), not all data fields (time, space,
value) need to be transferred. For example, in case of a boolean check, no value
field needs to be transmitted. The design of the diagnostic message with detailed
explanation of each message field is depicted in Table 5.1.

5.7 Specification and Execution of Out-of-Norm Asser-
tions

Since ONAs encode fault patterns on the distributed state of the system, methods
that allow capturing of the value, time, and space domain are needed. For this reason
we use timed automata for both the specification of symptoms (i.e. component/job
local checks on the interface state) and the consecutive analysis process.

A timed automaton [AD94], i.e. a state transition graph annotated with timing
constraints, has an intuitive syntax and semantic that makes it especially interesting
in the specification and design of diagnostic algorithms. Furthermore, using timed-
automata as the specification method has also the significant advantage of having a
representation that can easily be transformed into a machine executable form.

As depicted in Figure 5.11 an ONA consist typically of a number of symptoms
defined on the interface state of a component (or port state of a job). This infor-
mation is then combined over time in order to analyze the type of fault affecting
the given system. In the following we specify a timed symptom/analysis automaton
formally and present examples illustrating this concept on the basis of the DECOS
architecture.
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Figure 5.17: A Timed Symptom/Analysis Automaton

5.7.1 The Timed Symptom/Analysis Automaton

Since the timed automata used for the specification of ONAs need to be executable,
we restrict timed automata defined by [AD94] to be nonzeno (i.e. there is no infinite
sequence of transitions without any progression of time in between), deterministic
and require that the invariant of each location is complementary to the guards of all
outgoing edges, i.e. an edge must be taken as soon as possible. In the following we
extend the definition by [AD94] to be suitable for our purposes.

Guards and Actions. In order to formally define the timed symptom/analysis
automaton, we specify what constraints are allowed as the enabling conditions called
guards of a timed automaton. We define the set Φ(X, V,M) : (X, V,M) 7→ (T, F) of
guards for a set of clocks X, variables V , and messages M via the following grammar:

ϕ := x ◦ c | x ◦ v | x ◦m | v ◦ c | v ◦m | v ◦ v′ | m ◦m′ | av(m) | ¬ϕ | ϕ1 ∧ ϕ2,

where x is a clock in X, c is a constant in N, v and v′ are variables in V , m and
m′ are messages in M . ◦ is a binary relation (≤, <, =). av(m) tests whether a
message m is available at the respective input port (only needed for event-triggered
communication).

The set of actions Λ(X, V,M) : (X, V,M) 7→ (X, V,M) is defined via the follow-
ing grammar:

λ :=
x := c | x := m | v := c | v := m | v := v′ | m := c | m := v | m := m′ |
mdiag! | m? | λ1;λ2,

where x is a clock in X, c is a constant in N, v is a variable in V , and m is a message in
M . mdiag! ∈ M is a diagnostic message to be disseminated via the virtual diagnostic
network, and m? reads message m from the respective input port. Note, that in case
of event-triggered communication m? is consuming, in contrast to av(m).
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Definition of the Syntax. A timed symptom/analysis automaton A is a tuple
〈L,L0, X, V, M, I, E〉, where

• L is a finite set of locations,

• L0 ∈ L is the initial location,

• X is a finite set of clocks,

• V is a finite set of variables,

• M is a finite set of messages,

• I is a mapping that assigns to each location an invariant as a constraint in
Φ(X, V,M) (I : L 7→ Φ(X, V,M)),

• E ⊆ L × Φ(X, V,M) × Λ(X, V,M) × L is a set of transitions. A transition
〈s1, ϕ, λ, s2〉 represents an edge from location s1 to location s2 with guard ϕ.
The guard is a constraint of clocks X, variables V and messages M and deter-
mines when the transition is enabled. The action λ is a set of assignment and
message operations to be performed. Figure 5.17 depicts an example automa-
ton.

5.7.2 Symptom Specification

As defined in Section 5.5, symptoms are the local manifestation of fault patterns at
a single component defined via ONAs. In the integrated architecture we distinguish
between symptoms that are specified in the context of the functional and physical
structure. While the first ones are application-specific and generated by monitoring
all incoming and outgoing messages at the ports of jobs, the latter are system-specific
and generated by the core and higher-level services for the detection of hardware
failures.

• Application-specific Symptoms. An application-specific symptom detector
monitors the behavior of the job at one or more ports of a link of the respec-
tive virtual network [OPK05b]. Whenever it detects a violation of the link
specification, the symptom detector sends a diagnostic message to the analysis
subsystem via the virtual diagnostic network.

• Systemic Symptoms. Systemic symptom detectors monitor the interface
state of the component instead of the port state of the jobs hosted on the
component. These hardware checks include for example the state of the mem-
bership, the clock correction term, or the health state of the connection to the
physical network (e.g., message reception on all replicated physical channels).

By correlating the information from both, application-specific and systemic symp-
toms a finer differentiation between hardware and software faults is possible, thus
overcoming today’s ECU centered diagnosis schemes.

112



5 Diagnosis Model 5.7 Specification and Execution

s0 s110 ϕ¬=I

11,λϕ

!, 33 diagm=λϕ

)( 321 ϕϕ ∨¬=I

22 ,λϕ

Figure 5.18: Systemic Symptom Detection

Systemic Symptom Specification

Typically, systemic symptoms are checks on interface state variables of components
in order to determine correctness of the underlying physical time-triggered com-
munication system or component hardware. Consequently, the guards of systemic
symptoms are defined on the CNI of the deployed communication controller mapping
relevant interface state variables to be externally readable. Once defined systemic
symptoms that proofed to be a good choice in the field can be reused unmodified in
future systems that deploy the same platform (i.e. core network architecture). This
way expensive and time consuming revalidation of systemic symptom detection is
not necessary. Since the major computational overhead needed for analysis is shifted
to the diagnostic DAS, the node local check can be kept simple and the overhead
reduced to a minimum.

Systemic symptoms heavily exploit the slot-based nature of time-triggered com-
munication systems for the performed checks. The regularity (i.e. the a priori knowl-
edge of the message sending instants) of the communication systems simplifies the
construction of symptoms, since actions in the timed automaton are triggered by
the progression of real-time. Thus, systemic symptom detection is executed either
in any slot, or once during the TDMA round depending on the type of check to be
performed.

A schematic symptom detector is depicted in Figure 5.18. Since the progression
of the automaton is triggered by the progression of real-time the guard ϕ1 restricts
the points when the transition from location s0 to s1 can be taken to slot granularity.
The invariants I0 and I1 force to take a transition to be taken whenever a guard is
enabled. The guards ϕ2 and ϕ3 are encoding checks on the interface state variables
of the component to detect deviations from the interface specification such as the
reception of messages on all replicated channels. Typically, the guards ϕ2 and ϕ3

are complementary, i.e. ϕ2 = ¬ϕ3. In case guard ϕ3 is enabled, a corresponding
diagnostic message mdiag! is constructed and disseminated via the virtual diagnostic
network (i.e. λ3 = mdiag!).

For some real-world examples for systemic symptoms on the basis of the DECOS
system refer to Section 6.3.
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Application-Specific Symptom Specification

While systemic symptoms are checks on interface state variables of a component,
application-specific symptoms are evaluated against the port state of the jobs hosted
on a component. Thus, the guards are defined of the content of messages. In contrast
to systemic symptoms, application-specific symptoms highly depend on the applica-
tion context and need thus be devised by the application developers. Only the deep
understanding on the dynamics of the application and relations between the different
jobs allows defining meaningful symptoms.

One has to differentiate between time-triggered and event-triggered application-
specific symptoms as depicted in Figure 5.19. In case of time-triggered symptoms
the guard ϕ1 enabling the evaluation of the port state variables are solely triggered
by the progression of time ϕ1 := x = SLOT, where x ∈ X and SLOT denotes
the length of a TDMA slot of the corresponding cluster schedule. By contrast, in
case of event-triggered jobs, the enabling condition, i.e. the guard ϕ1 depends on
the availability of a message ϕ1 := av(m). The action λ1 then reads the respective
incoming/outgoing message λ1 := m? for further analysis encoded in the outgoing
transitions from location s1. In analogy to the systemic symptom detector, once a
violation of the port specification is detected by enabling guard ϕ3 a corresponding
diagnostic message mdiag! is generated and disseminated. In case ϕ2 evaluates to T
no violation has been detected and the execution of the automaton starts over again.

Automotive Example

Today many cars are equipped with cruise control functionality. Cruise control en-
ables the automatic sustaining of the car’s speed despite variations in uphill and
downhill grade of the road. Adaptive Cruise Control (ACC) is further improvement
of this automotive functionality allowing reaction to changing traffic situations in
order to improve driving comfort and to reduce the number of crashes [Jon01, LS04].

The ACC ECU processes radar information in order to determine whether the
clearance between the vehicle and the forward vehicle is within the limits. If the
threshold is violated then control signals to the engine control ECU as well as the
brake control ECU are sent. As a consequence the brakes of the car are applied and
the vehicle is slowed down (with a maximal brake force of 25% of the available brake
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Figure 5.20: Adaptive Cruise Control - Error Detection at the Receiver

power). Whenever the radar indicates that the forward vehicle is no longer in the
vehicle’s path, the vehicle resumes to the driver’s intended cruising speed. This way
the ACC allows reaction to changing traffic environments by adapting the vehicle’s
speed accordingly. According to [Jon01] an ACC systems consists of:

• The ACC or Headway ECU: The functionality of this ECU is to determine
control signals for the engine control ECU and brake control ECU on the in-
formation provided by the radar module.

• Engine Control ECU: This ECU processes the information from the ACC ECU
and adapts the engine’s throttle accordingly.

• Brake Control ECU: This ECU decelerates the vehicle whenever a request from
the ACC ECU is received.

• Instrument Cluster: This subsystem informs the driver about the state of the
ACC system and forwards input from the driver to the ACC ECU and engine
control ECU.

Today’s ACC systems employ a CAN communication infrastructure, although
future systems will most likely be implemented on top of a time-triggered architec-
ture [LS04]. In order to improve system reliability a periodic communication sched-
ule is implemented. In this configuration, each node is required to send a message
periodically (e.g., every 30 ms) as a life-sign and to disseminate updated sensory in-
formation. In case a timing violation of the interface specification repeatedly occurs,
the ACC service is shut down to preclude any hazardous situation due to possible
system malfunctions. In contrast to a time-triggered communication system, a loss of
a message does not imply a failing sender, but can also result from bus inaccessibility
times due to the dynamical resolving of contention. Consequently, a shutdown of a
service typically requires more than one missing message at the receiver.
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Figure 5.20 illustrates a symptom detector that checks for this timing violation at
the brake control ECU. Every period Tperiod the timed automaton checks whether a
message from the ACC ECU has been sent. In case no message is available (¬av(m))
at the respective input queue, the timed automaton checks whether a violation of the
maximum number of consecutive messages failures specified in Tmax has occurred. If
n, storing the number of consecutive missing messages, is smaller or equal to Tmax

a diagnostic message is sent to indicate this out-of-norm behavior. By contrast, in
case n > Tmax, a diagnostic message is sent indicating a system failure.

5.7.3 Analysis Specification

In analogy to the specification of symptoms, for the encoding of analysis algorithms
as introduced in Section 3.7 also timed automata are used. This flexible way of
defining the analysis algorithms allows combining different analysis techniques to
improve the overall performance of the analysis process.

A simple α-count scheme is depicted in Figure 5.21. The transition from location
s0 is taken whenever a diagnostic message of relevance for this ONA is available at
the input port, formally ϕ1 = av(mdiag). Once a message is available at the port,
the action λ1 initializes the variables for the analysis process (e.g., resetting the α-
counter) and sets clock (xi ∈ X) variables to the respective initialization values. This
is an important step in order to include timing information, i.e. the length of the
interval between two consecutive message reception indicating the same symptom,
into the analysis process. For taking an edge from state s1, one of the following
guards need to be enabled:

• ϕ1: in case the α-counter value is below the defined threshold Tα and the time
between two consecutive message receptions is also smaller than an a priori
defined threshold value Γα a transition to state s2 is made as soon as a further
diagnostic message is available av(mdiag).

• ϕ2: in case the α-counter value is below the defined threshold Tα but the
threshold value Γα for two consecutive message receptions is exceeded, the
transition to state s3 is taken.

• ϕ3: in case the α-counter value is α = 0, the transition to state s5 is taken
and the fault pattern discarded. After updating the statistics of the analysis
process λ8, the automaton starts over again by progressing to state s0.

• ϕ4: in case the α-counter value is greater or equals the threshold Tα, a fault
pattern has been detected and the transition to state s4 is taken. After updating
the statistics of the analysis process λ7, the automaton starts over again by
progressing to state s0.

The most important difference between the diagnostic strategy of the DECOS
integrated architecture and the prevalent diagnosis scheme found in the majority of
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Figure 5.21: Timed Analysis Automaton

deployed systems is the fact, that in DECOS correlated information is rigorously
exploited to improve the accuracy of the analysis process and consequently put an
end to unnecessary replacement actions at the service station. The availability of the
global time base simplifies the identification and analysis of correlated effects on the
distributed state significantly.

As depicted in Figure 5.22 the timed analysis automaton specified in Figure 5.21
can be refined to allow including information about correlated symptoms into the
analysis process by exploiting the availability of a global time base. The timestamps
of the messages (i.e. the instant in time the symptom has been detected) is used to
check whether other diagnostic messages indicate the same problem. In order to com-
pensate for small variances, we do not check for a particular instant in time, but for
a small interval of time [−∆

2 ,+∆
2 ], where ∆ can be set individually (e.g., slotlength,

TDMA round length). Instead of increasing the α-counter just by one, a weighted
increment allows the inclusion of correlated information in the analysis process.

As shown in Figure 5.22 location s1 has four outgoing edges in analogy to the
automaton specified in Figure 5.21. Once a diagnostic message mdiag is available
av(mdiag) and both the α-counter threshold and timing constraint are not violated
the automaton progresses to location s2. Location s2 has three outgoing edges for
the following possibilities:

• New message. In case the timestamp of the diagnostic message is greater
than the correlation timestamp mdiag > tcorr + ∆

2 , the counter value new is
incremented and the timestamp for possible correlated messages updated ac-
cording to to the timestamp of the received message tcorr := mdiag.timestamp.
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Figure 5.22: Correlation of Information

• Correlated message. If the timestamp of the received diagnostic message
mdiag.timestamp is within the interval [tcorr − ∆

2 , tcorr + ∆
2 ], guard ϕ2 evaluates

to true the transition to location s3 is taken. The action λ2 increments the
counter value correlation.

• Old message. In case ϕ6 is enabled, an message with an timestamp mdiag <
tcorr − ∆

2 is received. This message provides diagnostic information that is
already outdated. The old counter is updated accordingly and the automaton
progresses either to location s6 or s2 depending on the availability of other
messages. Note, that delivery of outdated information can be a result of the
use of an event-triggered virtual network service (e.g., peak load scenario).

In case no more messages are available ¬av(mdiag), the α-counter value is incremented
and all associated variables set to their initial values. The updated α-counter value
is set to α = α + new + old + correlation · Ψcorr, where Ψcorr is the a priori defined
weighting factor (the higher the value of Ψcorr, the more impact correlated detections
have on the α-counter). By using weighted increase values, correlation in different
domains can be taken into account. For example, information about nodes having
physical proximity can be used for analysis of external faults (e.g., correlated node
faults in case of heavy EMI).

For exemplary analysis automata as part of ONA definition on the basis of the
DECOS system refer to Section 6.4.
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clocks X
variables V
messages M
current location s

T = Tactivation − n
while ( T < Tactivation )

while (∃ 〈s1, ϕ, λ, s2〉 ∈ E with ϕ = T ∧ s = s1)
(X, V,M) := Λ(X, V,M) //execute action
s := s2 //new location

end
T = T + 1 //advance time
∀x ∈ X : x = x + 1

end

Figure 5.23: Execution Step (n ticks) of the Timed Automaton A

5.7.4 Execution of the Timed Automata

The timed symptom detection/analyisis automata are executed on the action lattice
of the sparse time base. In the silence interval with respect to the communication
services both the timed automata for symptom detection and analysis as part of
an ONA are executed. See also Figure 5.24 for a graphical representation of the
execution scheme. The algorithm is presented in Figure 5.23 and works as follows:

1. The time variable is set to the beginning of the last interval of activity of the
sparse time base with respect to the action lattice for virtual network service
T = Tactivation − n, where Tactivation, is the actual global time. n denotes the
number of ticks elapsed during on interval of silence and activity.

2. As long as the simulation time T is smaller than the actual time Tactivation, the
execution continues. In case this condition does not hold, the execution of this
automaton is terminated for this activation cycle.

3. A transition is taken whenever a guard ϕ is enabled. In case no guard evaluates
to T, the following step (4) is skipped.

4. If a transition is taken, all corresponding actions λ are executed (e.g., updating
of variables, message reception) and the current location is updated.

5. Both the global simulation time T and local clock variables X are increased by
1. Continue with step 2.
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Figure 5.24: Timed Automata Execution on the Sparse Time Base

5.8 Detection at Component Level

The connector unit implements the high-level services of the DECOS architecture
as introduced in Section 4.3. In accordance with the high-level services a connector
unit can be subdivided into a set of layers, each implementing a particular service
(see Figure 5.25). The allocation and virtual network layers establish the subdivision
of network resources, the gateway layer allows the controlled import and export of
information between DASs, the fault-tolerance layer implements voting strategies in
order to tolerate failures in the value domain, and the message classification layer
monitors all incoming and outgoing messages of jobs. Finally, the API layer as
part of the application middleware allows dissemination of job internal diagnostic
information that can be included into the analysis process to improve the accuracy
of the assessment algorithms. In the following we discuss the layers of a connector
unit in detail, thereby focussing on symptom detection at each layer. We describe
the type of diagnostic information that can collected at each layer and can help in
the identification of faults affecting the system. Furthermore, we discuss how the
automata for symptom detection are executed and the detailed model of the virtual
diagnostic network at component level.
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Figure 5.25: Layers of a Connector Unit of a DECOS Component

5.8.1 The Allocation and Virtual Network Layer

The BCU splits the available bandwidth of the underlying time-triggered core net-
work between the safety-critical and non safety-critical subsystem of a component.
Furthermore, status information of relevance is updated by the allocation layer
(e.g., global time, membership vector). The allocation layer now recursively splits
this remaining bandwidth between the virtual networks of the subsystem a particular
component has access to. While the underlying allocation layer is shared between all
jobs of a subsystem hosted on the component, regardless of the DAS these jobs be-
long to, the virtual network layer and all higher layers comprise a dedicated instance
of architectural services for each DAS with jobs hosted on the component.

The task of the virtual network layer is the establishment of a virtual com-
munication infrastructure according to the control paradigm of the respective
DAS [OPK05b]. Depending on the employed paradigm (event-triggered vs. time-
triggered) the interface to the upper layers are either queues for messages with event
semantics or a temporal firewall interface [KN97] for messages with state semantics.
Queues support exactly-once processing of messages while memory elements storing
state messages are overwritten whenever a more recent version arrives. The dimen-
sioning of the queues depends on the parameters derived from a communication
model that implements the assumptions about interarrival and service times. Since
the temporal specification is probabilistic (e.g., message consumption/production
rate [Kle75]) and typically described by asymptotic probability distributions, a clas-
sification of message according to a bivalent logic is hardly achievable.
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However, in case these assumptions do not hold in reality, queue overflows will
occur, that may cause jobs to fail. This non conformance with the temporal speci-
fication represents valuable information for the developers of the system. Sporadic
system failures resulting from misleading assumptions about the rates of message in
an event-triggered network fall into the class of Heisenbugs [Gra86]. Thus, queue
overflows are important engineering feedback for the dimensioning of the deployed
queues and fall into the class of job borderline faults according to the maintenance-
oriented fault model introduced in Section 5.3. As a consequence, systemic symptom
detectors at the virtual network layer are defined on the interface state variables of
the virtual network service.

From a diagnostic point of view time-triggered communication is much better di-
agnosable due to its deterministic nature and a priori defined communication sched-
ule. By contrast, the flexibility of event-triggered communication comes with the
price that symptoms are defined on a probabilistic communication model. By ex-
ploiting the underlying time-triggered core network, the error detection capabilities
for event-triggered communication can be increased (i.e. the availability of a global
time base allows monitoring of adherence to the temporal specification). However,
for circumventing the result of [FLP85] not only the communication system must
be monitored, but also the execution environment to judge whether a particular
event-triggered jobs has also failed. Since the DECOS architecture decouples the
communication system from the execution system of the jobs, such a diagnosis is
possible.

5.8.2 Gateway Layer

The gateway layer realizes the architectural gateway services and performs the redi-
rection of messages between virtual networks with the necessary property trans-
formations. The controlled export and import of information between the DASs
allows tactic coordination and an optimal usage of available resources (e.g., sensor
data) [OPK05a].

The gateway layer also supports forwarding of diagnostic messages of physical
clusters attached to the DECOS system. For instance, if a LIN fieldbus is connected
to a DECOS component, the diagnostic information about the health status of this
external physical fieldbus can be included into the analysis process. However, note
that such a physical gateway needs to provide error containment capabilities in order
to retain the encapsulation properties of the virtual diagnostic network.

Central to the gateway is the gateway repository, i.e. a real-time database, that
decouples the two virtual networks. In [OP05] the specification and execution of
virtual gateways is described in detail. Like for diagnosis a specification method as
an extension to deterministic timed automata is proposed. This similarity is due
to the fact, that one can see the diagnostic services hosted on the components as a
gateway service to the diagnostic DAS.
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5.8.3 Fault-Tolerance Layer

The task of the fault tolerance layer is mainly voting on replicated messages from
different jobs hosted on physically separated components. In case of diverging repli-
cated messages, a corresponding diagnostic message is constructed and forwarded to
the analysis DAS indicating the violation of the port state specification. In case of
X-by-wire systems the condition monitoring of the fault-tolerance mechanisms is of
great significance and required by maintenance guidelines like ARINC 624 [Aer93].

Monitoring of fault-tolerance mechanisms cannot be done at job level in case of
transparent fault-tolerance techniques [Bau01], since a faulty interface state is not
forwarded to the jobs but discarded at the fault-tolerance layer. Consequently, this
information must be captured by systemic diagnostic checks at lower layers.

For example consider a fault-tolerant steer-by-wire system [Hei03]. Such a system
typically consists of three redundant actuators, mechanically voting on the input of
the redundant ECUs and thereby controlling the axle of the front wheels. The
redundant ECUs compute the actual steering angle based on the commands of the
driver and the car dynamics subsystem of the car. In case of a component failure
the system does not provide a degraded service mode. However, the driver needs to
be informed by a corresponding MIL activation and the defective component needs
to be replaced at the service station as soon as possible.

By continuously monitoring the state of replicated units condition-based main-
tenance strategies can be realized. In case a component shows indication for prema-
ture wear-out (e.g., increase of the transient failure rate) the service technician can
change the component preventively, thus not only keep the safety level of the system
to the optimum but also maintain the driver’s trust into the computer system of the
car [Ber02].

5.8.4 Message Classification Layer

The task of the message classification layer is to check whether an incoming or
outgoing message of a job conforms to its interface specification. Consequently, the
message classification layer monitors all incoming and outgoing messages in order
to reveal any out-of-norm behavior specified by the symptoms of ONAs indicating
potential software or hardware faults (e.g., sensor faults).

In case such an untimely or value-incorrect message has been detected [GIJ+02],
a corresponding diagnostic message is forwarded by the virtual diagnostic network
to the diagnostic DAS for subsequent analysis. Note, that the message classification
layer does not modify or delete any message. This is in the scope of the application
jobs only, since otherwise diagnosis would be elevated to the highest criticality class.

5.8.5 Application Programming Interface (API) Layer

The API layer as part of the application middleware establishes the data structures
and the function calls via which the application accesses the architectural services.
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For example, the virtual network layer offers a generic event-triggered communication
service. In case a job expects a CAN [Bos91] specific interface, the generic service is
accessed through a middleware that maps the generic interface onto a CAN specific
one that can be accessed by native CAN function calls.

In order to allow the dissemination of job internal information that has been
decided not to make available at the interface state for complexity or intellectual
property considerations, the diagnostic dissemination service is required to provide
a dedicated channel that allows the transferring of such information to the analysis
DAS. The deployed API middleware provides access to this virtual diagnostic network
for the dissemination of job internal information by providing a dedicated function
call (e.g., send private diag msg(t diagmsg internal info)).

As depicted in Figure 5.26, a job can utilize the diagnostic function call of the
API provided by the application middleware in order to send job internal diagnostic
information. Job internal information can be important when discriminating between
job inherent faults according to the maintenance-oriented fault model as introduced
in Section 5.3. For example, in case a sensor provides self-test functionality, this
information can be read by the job and forwarded to the diagnostic subsystem to
indicate potential sensor failures.

5.9 Analysis – Determining the Maintenance Action

In the following we discuss the structure of the deployed diagnostic DAS where the
analysis algorithms are executed in order to determine the correct replacement strat-
egy. Furthermore, we discuss how this strategy allows solving of prevalent diagnostic
problems.

5.9.1 Diagnostic DAS

The analysis of the gathered diagnostic information (i.e. symptoms) is shifted into
a designated DAS - the diagnostic DAS - to ensure that the diagnostic subsystem
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cannot interfere with jobs of other DASs and to not restrict the choice of implemen-
tations (e.g., central diagnostic component vs. distributed solution). In the following
we briefly discuss the structure of the diagnostic DAS and a key strategy for the
implementation of analysis algorithms to allow both a centralized and distributed
implementation.

Structure of the Diagnostic DAS

In analogy to the DAS concept introduced in Section 4.1, the diagnostic DAS com-
prises one or more jobs. In case a distributed solution is favored the jobs are in-
terconnected by a virtual network to allow dissemination of results and subsequent
voting on the derived analysis. A distributed solution has the advantage of being
more robust with respect to failures affecting the components hosting the jobs of the
diagnostic DAS at the cost of increased complexity due to the need of agreement
between the replicas. This system structure is depicted in Figure 5.27. A gateway

Analysis
Job

Analysis
Job

Analysis
Job

Analysis
Job

Analysis
Job

Analysis
Job

Gate-
way

Diagnostic DAS

Virtual 
Diagnostic 

Network
virtual network

Figure 5.27: The Diagnostic DAS

forwards the information of the virtual diagnostic network to the job(s) of the diag-
nostic DAS. By exploiting the high-level services for the realization of the diagnostic
DAS, a certification for ultra-dependability is not needed, since it can be guaranteed
that there are no interdependencies between the diagnosis subsystem and the other
applications.

Ground State

By executing the analysis algorithms as part of the ONA specification (see Sec-
tion 5.7) in order to identify a possible fault pattern affecting the system, one has
to consider that the result of the analysis needs to be stored permanently in non
volatile memory to:

• Allow continuous analysis for more than one cycle of operation

• Be robust in case of a transient failure affecting the node hosting one or more
jobs of the diagnostic DAS.
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Consequently, the jobs need to be designed to periodically reach a ground state
(e.g., every 1000 TDMA rounds) where a temporary result of the analysis compu-
tations is stored in non volatile memory. After a restart, either for a new cycle of
operation or in case of a transient failure, this information serves as the initialization
state of the job [Kop97]. Based on this data structure storing the latest judgment of
the diagnostic DAS on the health state of the system, the new h-state is dynamically
updated and made permanent once again the ground state is reached. However, one
has to be aware, that at least to separated memory regions need to be available,
since a failure might prevent a job to finish updating the information stored in the
non volatile memory. This strategy has three significant advantages:

• Robustness against transient failures. In case a a transient hits the com-
ponent hosting diagnostic jobs only the update of the health state of the system
from the last ground state to the actual point in time is lost.

• Facilitating a distributed solution. Since at ground state a reduction of
information is established, in case of a distributed solution, this information
exchange between the jobs of the analysis DAS only requires a small fraction
of the available bandwidth.

• Optimal use of resources. In present day automotive systems non volatile
memory is a scarce resource. With the introduced strategy, the amount of
information that needs to be stored can be limited.
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5.9.2 Determining the Replacement Strategy

The fault model introduced in Section 5.3 serves as the basis for the assessment
process. The diagnostic subsystem executes algorithms on the gathered diagnostic
information in order to assess the condition of each FRU. The evaluation process
performed by the diagnostic DAS is illustrated in Figure 5.28. The evaluation process
is based on a consistent notion of state, which is provided through the action lattice
of the sparse time base established by the core services of the integrated architecture.
The arrows in Figure 5.28 indicate the LRU assessment trajectories. At first both
arrows show conformance with the LRU specification. As time progresses arrow A
exhibits an increasing confidence for a violation of the specification, while arrow B
indicates a LRU behavior in accordance with the specified service.

The introduced integrated architecture provides a finer granularity of diagnostic
information than federated systems. The assessment process exploits this knowledge
about the functional and physical structure of the integrated architecture. The de-
composition of the overall system into DASs with respective jobs is a key element for
a more precise differentiation of experienced faults. By including the three dimen-
sions of time, value, and space into the judgment process, a discrimination into the
fault classes identified by the maintenance-oriented fault model is possible.

As a result of the diagnostic judgement process, a trust level for each FRU of
the system is determined that forms the basis for decision-making process of the
maintenance engineer. Figure 5.29 summarizes the maintenance actions for each
fault class: As stated, we distinguish between component internal, borderline and
external faults. Component internal faults are further categorized into job inherent,
job borderline, and job external faults. The maintenance actions for each fault
class that is discriminated by the diagnostic services of the DECOS architecture are
summarized in the following

• Component External. In the proposed model we consider the persistence of
external faults as transient. Consequently, in case of component external faults
no maintenance action has be to taken.

• Component Borderline. Borderline faults require a closer inspection by
the service technicians. Connector problems, are difficult to trace, since the
inspection itself can be the corrective action [KHTP99]. In case of connectors
showing wearout phenomena such as fretting or corrosion, a replacement will
be necessary.

• Component Internal/Job External Component internal faults such as a
crack in the PCB or a defective processor require the replacement of the com-
ponent (i.e. the ECU in the automotive domain or a LRM in avionics).

• Job Borderline. Job borderline faults require the update of the configuration
data of the virtual network service of the DAS.
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Figure 5.29: Determining the Maintenance Action for each Fault Class

• Job Inherent. Sensor/actuator faults require further inspection by the ser-
vice technician in order to decide whether part replacement due to wear-out
(e.g., change of brake pads) or a replacement of the transducer is necessary.

Software faults identified by the diagnostic system requires an update of the
job software in case this identification has also been acknowledged by the OEM
and a corrected version of the job has been distributed to the service station.
In case no update is available, this field data will be forwarded to the OEM
in order to allow a correlation of the field data provided by a representative
number of products to allow the identification of possible software design faults
(i.e. fleet analysis as engineering feedback).

5.9.3 Applying Out-of-Norm Assertions for Solving Prevalent Di-
agnostic Problems

ONAs can help to solve existing diagnostic problems of distributed embedded real-
time systems. Among the most important problems are:

Reduction of the TNI phenomenon

The task of system diagnosis is to assess the operational state of a system. In case
of a distributed system, diagnosis must operate on the distributed state to diagnose
correlated errors and to indisputably judge about the functional correctness of the
constituting parts of the systems, i.e. the components. In case the diagnosis sub-
system operates on the local states, only those errors can be traced, that can be
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classified without knowledge about other components. For instance, in the auto-
motive domain the OBD systems tend to analyze local information in contrast to
global information to assess the health condition of each ECU. In combination with
a system architecture that provides only limited control of error propagation, such
a diagnostic subsystem rather provides hints about possible faults than an exact
identification of the component that needs to be replaced.

Consider for example transient internal versus transient external faults. Both
types of faults are frequently causing spurious component failures in distributed em-
bedded real-time systems. While an ONA covering transient internal faults restricts
the space domain to only one FRU with respect to hardware faults, an ONA for the
detection of transient external faults needs to cover multiple FRUs. This way the spa-
tial proximity is taken into account, as a prerequisite for any analysis process. Since
the symptoms of an ONA can be verified by multiple components by cross-checking
the respective interface state, misleading error messages of faulty components can be
identified and precluded from any further assessment.

Condition-Based Maintenance

TBM is increasingly being replaced by CBM, to reduce costs and to improve relia-
bility and system performance [TS01]. Originally introduced to the avionics domain,
this new paradigm is more and more accepted in the automotive industry. Besides
the reduction of cost of ownership (service only what is needed) the possibility of
collecting accurate field data (i.e. engineering feedback) is one of the major benefits
from this maintenance approach. In addition, the customer trust in the car [Ber02]
will be increased, since component replacements can be performed by the service
technicians before the owner of the car is informed by the car’s OBD system.
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In order to adopt CBM for electronic systems suitable indicators for degradation
or wearout must be identified and analyzed to detect deviations from sound opera-
tion. For example in machinery vibration, thermal, and lubricant analysis are good
indicators for possible defective conditions [Sta97]. One of these indicators in the
electronic domain is the increasing rate of transient failures [Con02].

ONAs can be deployed to detect deviations of components that indicate future
component failure and transient errors resulting from intermittent type faults. The
symptoms of ONAs are suited to detect those system states that are correct but at
the verve of become incorrect in the near future. The continuous analysis of the
acquired information by the ONAs allows for preventive measures at an early stage.

A wearout fault affects only a single FRU with respect to hardware faults and
reoccurs repeatedly at the same location at higher rates with decreasing inter-
vals [Con02]. Consequently, the time domain is of great significance in the identifica-
tion of wearout phenomenons in order to realize CBM, whereas the spatial dimension
is usually restricted to one FRU (see also the wearout fault pattern in Figure 5.9).

Consider for example clock synchronization. In case the correction term of the
clock synchronization algorithm is larger than Π/2, where Π denotes the precision,
the node raises a clock synchronization error and is excluded from the set of opera-
tional components. ONAs allow to detect such a drift (e.g., due to wear-out effects
or rapid temperature change) at an early stage. In case the correction term is at the
upper or lower limit of the correct range [−Π/2,Π/2] a value anomaly with respect
to the quartz has been identified. The evaluation process to identify wearout phe-
nomenons is performed by the diagnostic subsystem and is illustrated in Figure 5.30.

The arrow in Figure 5.30 indicates this wearout phenomenon, i.e. the increasing
drift rate of the quartz. At first the rate of the quartz is in conformance with
its specification, but as time progresses, the quartz frequency drifts away from the
specified frequency. This can be made obvious by measuring the clock correction
term in case the system supports a global time base through clock synchronization.
As soon as the correction term value is at the borders of the synchronization interval,
an ONA is raised (i.e. this is a correct state). If the ONA fires repeatedly within an
a priori defined interval, the diagnostic subsystem can conclude that the component
will fail in the near future and indicate the maintenance engineer to change the
component in time.

Exploiting the Three Dimensions

Integrated architecture provide a finer granularity of diagnostic information than
federated systems. The decomposition of the overall system into DAS with respective
jobs is a key element for a more precise differentiation of experienced faults. By
including the three dimensions of time, value, and space into the judgment process,
a discrimination into internal hardware faults, external hardware faults and software
faults is possible.

130



5 Diagnosis Model 5.9 Analysis

Jobs of the safety-
critical DAS

Jobs of the non
safety-critical DASs

Component 1 Component 2

Component 3 Component 4

TIME

SPACE

VALUE

Figure 5.31: Judgment According to the Three Dimensions: Time, Value and Space

For instance, consider the system depicted in Figure 5.31. In case a job inherent
fault hits the jobs A1, A2, and A3 of the non safety-critical DAS A, the fault effects
only the DAS A, since the error containment mechanisms of the architecture ensure
that this fault cannot propagate to other DASs. In contrast, in case an internal
component fault hits a component hosting multiple jobs of different DASs, it is very
likely that the impact of this fault is not limited by DAS borders. An internal
component hardware fault will cause multiple jobs hosted on one component to fail
(e.g., the jobs A3, C1, C2, and S2 on component 2 in Figure 5.31).

The recognition of correlated job failures is also important in the detection of
faults affecting architecture supported fault-tolerance mechanisms, such as TMR
mechanisms. This fault-tolerance mechanism is characterized by the replication of
identical jobs on three different components in order to tolerate single hardware
faults. In case the jobs S1, S2, and S3 are forming a TMR system, the spatial di-
mension of an ONA covering deviations in the services of the three replicas spreads
across components 1, 2, and 3 (since a component is the FCR with respect to hard-
ware faults). In case one of the replicated safety-critical jobs fails, an analysis if
correlated failures of jobs of other DAS executed at the same time on the same com-
ponent exist will supply evidence whether a an internal hardware fault effects the
component.

In addition, for the differentiation whether transient failures are caused by envi-
ronmental influences or internal faults, techniques such as the α-count mechanisms
can be utilized [BCGG97]. By interpreting the detected failures in the time and
space domain, a determination between external and internal component faults is
possible, since transient component internal faults tend to occur at a higher rate
compared to transient component external faults and occur repeatedly at the same
location [Con02]. This discrimination is of paramount importance since internal
component faults can only be eliminated by repair, while a replacement of a compo-
nent due to an external component fault will only increase the fault-not-found ratio
(i.e. the component will be retested OK at bench tests).
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Chapter 6

Implementation of the DECOS
Architecture and the Diagnostic
Services

In the following we demonstrate how the introduced concepts have been implemented
in a prototype setup of the DECOS integrated architecture. We first discuss the hard-
ware and software setup of the prototype and the design rationale for the deployed
DASs. Furthermore, we briefly describe the jobs for each DAS and the corresponding
configuration of the virtual network service.

In this chapter we also elaborate on the framework provided by the DECOS
architectural services to integrate diagnosis as a central part of the architecture.
The use of timed automata for the specification of ONAs allows automatic code
generation of both the symptom detectors and analysis algorithms with precisely
defined execution semantics. Based on the introduced maintenance-oriented fault
model we exemplify the use of the provided framework for the specification and
execution of systemic and application-specific symptoms. In particular, we elaborate
on the information provided by the TTP controller that can be used for the detection
of systemic failures. In addition, we discuss the design and implementation of the
analysis job.

Since the DECOS architecture, as part of the Sixth European Framework Pro-
gramme, is still under development, the validation of the high level services like the
virtual network and inner-component partitioning mechanisms is still in progress.
For preliminary performance measurements of the used analysis algorithms we as-
sume that the exploited high level services are free of design faults. Based on this
assumption we are able to discuss the performance of selected out-of-norm analysis
algorithms or determining the faulty FRU according to the maintenance-oriented
fault model. The presented results primarily show the feasibility of the chosen strat-
egy, of operating on the distributed state instead of the node local state, to improve
the accuracy of the online diagnostic solution.
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Figure 6.1: The DECOS Prototype Cluster

6.1 The DECOS Architecture Prototype Setup

Our prototype implementation of the DECOS architecture consists of a cluster of
five components using TTP/C [Kop99b] as the time-triggered core communication
service. Each component hosts a safety-critical and a non safety-critical subsystem
with multiple DASs and corresponding jobs. The prototype cluster is depicted in
Figure 6.1.

6.1.1 Hardware Setup

For the implementation of a DECOS component according to the model presented
in Section 4.4, we employ distinct hardware elements for the BCU, the safety-critical
subsystem, and the non safety-critical subsystem (i.e. one node computer for each
SCU/XCU and respective applications). Since we share the same computational
resources between the secondary connector unit (i.e. SCU and XCU) and the en-
capsulated execution environment of the jobs, the need for inner-component error
containment by means of temporal and spatial partitioning is raised in order to pro-
tect architectural services from job interference on the one hand, and interference
between jobs on the other hand.

The interconnection between the BCU and the secondary connector units is re-
alized using time-triggered Ethernet. At a priori defined points in time, an Ethernet
message containing the state information that is disseminated on the core network
is transferred from the BCU to the secondary connector units and vice versa.
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Basic Connector Unit

In our prototype implementation we deploy the TTTech1 monitoring node [TTT02a]
as the basic connector unit establishing the time-triggered core communication ser-
vice (see Figure 6.3). The TTP monitoring nodes are based on the TTP-C2 con-
troller (AS8202). They are equipped with the Freescale embedded PowerPC proces-
sor MPC855T.

In integrated architectures a physical component is shared among multiple jobs.
Therefore, it is important to decouple the capability of a node to transmit messages
on the physical time-triggered core network from the functionality of the hosted jobs.
In case only a minority of jobs (i.e. software modules) hosted in their respective par-
titions fail, it still must be possible for other jobs to utilize the architectural services
and to communicate via their dedicated virtual network. Note, that according to the
DECOS fault hypothesis, the complete node computer is considered to be a FCR
with respect to hardware faults [KOPS04].

In the DECOS architecture the decoupling is realized via the BCU. The BCU
guarantees message exchange via the core network by not relying on the information
provided by the secondary connector units. Such a decoupling is only possible in
case a state message interface is provided [Kop97].
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Figure 6.2: The Independence of the Core Communication System from the Appli-
cations

This independence of the time-triggered core communication system from the
jobs facilitates a decoupling of the TDMA schedule of the core network from the
schedule required by the applications. This means, that the TDMA communication
schedule (i.e. the cluster cycle) of the physical time-triggered core network can be
significantly shorter than the application requirements in order to provide higher
bandwidths. The latency, however, is still limited by the TDMA schedule required
by the high level services in order to provide the virtual network service for each
DAS. For instance consider Figure 6.2. Here, the available bandwidth for the virtual
network service is quadrupled transparently to the applications.

Secondary Connector Units and Application Computers

For the secondary connector units we use the Soekris Engineering2 net4521 em-
bedded system as our target computer. This compact computer (depicted in Fig-

1http://www.tttech.com
2http://www.soekris.com
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Figure 6.3: A Prototype DECOS Component

ure 6.3) is based on a 133 Mhz 486 class ElanSC520 processor from AMD. It has
two 10/100 Mbit Ethernet ports, up to 64 Mbyte SDRAM main memory and uses
a CompactFlash module for program and data storage. Furthermore, it has two
PC-Card/Cardbus adapters which allow an easy extension of the system.

6.1.2 Software Setup

Both, the BCU and the secondary connector units use the embedded real-time Linux
variant Real-Time Application Interface (RTAI) [BBD+00, RTA00] as their operating
system. While in the BCU only kernel modules are used, in the secondary connector
units the partitioning capabilities of the RTAI/LXRT extension are heavily utilized.

The software configuration used for the prototype implementation combines the
ADEOS3 hardware abstraction layer with a real-time application interface for making
Linux suitable for hard real-time applications. In the prototype setup we use RTAI
v3.1 on a Linux 2.6.9 kernel (including the real-time RTnet Ethernet driver suite).
RTAI introduces a real-time scheduler, which runs the conventional Linux operating
system kernel as the idle task, i.e. non real-time Linux only executes when there are no
real-time tasks to run and the real-time kernel is inactive. The conventional Linux
kernel is modified to prevent it from blocking or redirecting hardware interrupts.
Hence, Linux cannot add latency to the interrupt response time of the real-time
system. RTAI performs these modifications by replacing the corresponding code in
the Linux kernel with calls to functions in the real-time hardware abstraction layer.
This mechanism offers the possibility for software emulation of interrupt control
hardware. When an interrupt occurs, the real-time kernel intercepts the interrupt
and runs its own dispatcher, which invokes the corresponding real-time handler. In
order to prevent temporal fault propagation from the Linux kernel to the real-time
kernel, the real-time kernel is never blocked by the Linux side.

3http://www.adeos.org
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Linux Real-Time (LXRT) is an extension of RTAI that enables the development of
hard-real time programs running in user space instead of kernel space. Furthermore,
LXRT eases the communication between hard real-time and non real-time processes,
which can be utilized for monitoring and debugging of the hard-real time processes,
without affecting their real-time behavior.

Temporal and Spatial Partitioning using RTAI/LXRT

As elaborated in [Rus99], the purpose of partitioning is to ensure that the execution
of a job hosted in one partition is not affected by a job in another partition. Thus,
partitioning has to inhibit the propagation of software failures between jobs. Since in
DECOS a job is regarded as FCR for software faults (according to the fault hypothesis
introduced in Section 4.6) and the secondary connector units and jobs share the same
computational resources, means must be deployed that establish temporal and spatial
partitioning in our prototype implementation.

• Spatial Partitioning. Spatial partitioning needs to prevent jobs from over-
writing memory elements of other jobs and preventing jobs in interfering in
the access of devices [Rus99]. Unlike to real-time applications using the RTAI
Application Programming Interface (API), which are realized as Linux ker-
nel modules and executed in supervisor mode, real-time applications utilizing
the LXRT extension of RTAI retain in user mode. Since LXRT allows the
execution of hard real-time jobs in user mode, it preserves the memory pro-
tection mechanisms of the Linux operating system and provides support for
spatial partitioning (i.e. memory access is protected by Memory Management
Unit (MMU) tables in user mode). Furthermore, since jobs in DECOS have
exclusive access to I/O, explicit synchronization mechanisms for protecting de-
vices are not required.

• Temporal Partitioning. The purpose of temporal partitioning on the other
hand is the retention of a correct schedule even in the case of faulty jobs
holding a shared resource (e.g., the processor). Since we favor predictability and
simplicity to flexibility and better support for sporadic tasks, in the prototype
implementation a static job schedule that is generated off-line during the system
integration phase. Similar considerations as presented in [LKYZ00] have to be
taken into account when developing a feasible schedule. The job schedule is
synchronized to the TDMA schedule of the underlying core communication
service. It forms the basis of our execution environment and consists of a
list of jobs together with their execution times that are to be executed in the
respective TDMA slot. See Figure 6.4 for a sample schedule. Since RTAI
lacks the possibility to specify a deadline or a maximum execution time until a
real-time process has to have finished its execution, we have developed a time-
triggered dispatcher extending the RTAI/LXRT functionality that activates
high-level services and jobs according to a static timetable and ensures that
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Figure 6.4: BCU Interconnection Schedule for Node 0 of the Cluster

their assigned execution times are not exceeded. For a detailed discussion of
the time-triggered dispatcher see [HPOS05].

Like error containment at network level is a prerequisite for precise diagnosis, inner
component error containment by means of partitioning is important not only to allow
independent development of jobs and DASs, but also to identify those jobs that are
responsible in case of failure.

6.1.3 Hierarchical Network - Interconnection Scheme

As stated, the DECOS architecture supports the decoupling between the communi-
cation system and the applications via the establishment of connector units. In fact,
the BCU of one component exchanges information with other components regardless
of the temporal accuracy of the data stored in the state message interface.

In order to forward the information received from other components, the BCU
sends the respective data to the secondary connector units. In the prototype im-
plementation the BCU and the XCU/SCU of a component are interconnected by
a time-triggered Ethernet link. This way a hierarchical time-triggered network is
realized that significantly reduces the complexity and due to the static nature allows
simplified error detection. An exemplary interconnection schedule for component 0
of the DECOS prototype cluster is presented in Figure 6.5. In each TDMA slot of
the underlying time-triggered protocol (i.e. TTP/C in the prototype implementation)
the data of the last TDMA slot is transferred to the secondary connector units. Each
connector unit has a dedicated slot in which the data of the applications associated
with the respective connector units is sent back to the BCU for dissemination on the
time-triggered core network.

In the implementation the data and control/status areas of the core communica-
tion controller (i.e. the TTP C2 controller [TTT02b]) are mapped into the respective
data structure of the secondary connector units by the allocation layer. All higher
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Figure 6.5: Hierarchical Networks: Interconnection Schedule for Node 0 of the Clus-
ter

layers as introduced in Section 5.8 operate on and update the elements of this central
data structure.

6.1.4 Automotive Example

In order to show the suitability of the DECOS architecture for automotive applica-
tions [POT+05], in the prototype setup a hypothetical automotive infrastructure is
realized with the following DASs, respective jobs, and virtual networks:

• Drive-by-wire DAS. The drive-by-wire DAS employs a time-triggered virtual
network that interconnects the jobs controlling the gear box, the engine, the
brakes, and sensing the input values from the steering wheel, and pedals of the
car.

• Comfort DAS. The jobs of the comfort DAS control the passenger com-
partment of the car and communicate via an event-triggered virtual network.
Among the services provided by the jobs of this DAS are the air conditioning,
passenger and driver door functionality, the sliding roof, and trunk lid control.
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• Navigation DAS. The navigation DAS is an example for a non safety-critical
DAS that is implemented via a time-triggered virtual networks. The state
semantics of the time-triggered virtual network is especially useful for the dis-
semination of the Global Positioning System (GPS) data.

• Lights DAS. This DAS is semi-virtual, i.e. it interconnects a virtual network
with a physical one. While the actual controlling of the exterior car lights
(including adaptive forward lighting) is realized via CAN nodes, a part of the
functionality of the network is realized via event-triggered jobs. This DAS
is used to demonstrate the seamless integration of physical fieldbusses into a
DECOS cluster.

Naturally, this system structure calls for the exchange of information between the
DASs, e.g., the steering angle is forwarded to the lights DAS for the adaptive forward
lighting. Therefore, the high-level gateway service is heavily exploited.

In the prototype setup a maximum of six jobs and the respective high level
services are hosted on each physical DECOS component. According to the schedule
discussed in Section 6.1.2, three jobs are executed in each subsystem (safety-critical
and non safety-critical).

From a diagnostic perspective, the virtual diagnostic network and the deploy-
ment of the diagnostic DAS are of special interest. As described in Section 5.6 the
virtual diagnostic network comprises the ALD channel and the channels for the trans-
portation of job internal symptoms (i.e. diagnostic information not accessible via the
interface state due to IP issues). Since the implementation of the virtual network
service in case of event-triggered communication allows fragmentation of messages,
the system designer has the choice between short latencies of the diagnostic mes-
sages or scarce allocation of available bandwidth. This tradeoff has been solved in
our prototype setup by allocating the majority of the bandwidth reserved for diagno-
sis to ALD, since this information results from applying the cross-checking principle
introduced in Section 5.5.2.

As a result of this design seven virtual networks are realized in the prototype
cluster and the following identifications are used in the prototype implementation:

#define NETWORK_CAN_COMFORT 0 // event-triggered VN
#define NETWORK_AVDN_NSC 1 // event-triggered VN (diagnosis)
#define NETWORK_PVDN_NSC 2 // event-triggered VN (diagnosis)
#define NETWORK_PVDN_SC 3 // time-triggered VN (diagnosis)
#define NETWORK_CAN_LIGHTS 4 // event-triggered VN
#define NETWORK_TT_NAVIGATION 5 // time-triggered VN
#define NETWORK_TT_BYWIRE 6 // time-triggered VN

6.1.5 Implementation of the Virtual Network Service

Since the communication in the DECOS cluster – not only for diagnostic purposes –
relies on the virtual network service, we will elaborately briefly on the realization of
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Figure 6.6: Implementation of the Virtual Network Service

this service in the prototype implementation.

According to the concepts introduced in Section 4.3.2, each DAS has a virtual
network as the communication infrastructure tailored to the requirements of the ap-
plication domain as depicted in Figure 6.6. Each virtual network specification in the
DECOS cluster contains the name of the network, provides information of whether
the network adheres to either the event-triggered or time-triggered paradigm, and
has a specified number of corresponding links.

typedef struct vn_struct {
char *name;
enum vn_paradigm paradigm;
int number_of_links;
t_link link[MAX_LINKS_PER_VN];

} t_vn;

A link is the interface for each job to the virtual network service. Such a link contains
information about the job it belongs to, the physical component and subsystem the
job is hosted on, the number of ports comprising the link, and references to each
port.

typedef struct link_struct {
t_job *job; // the job the link belongs to
unsigned short component; // the component and subsystem
unsigned short subsystem; // at which the link is located
int number_of_ports; // number of ports in the link
t_port port[MAX_PORTS_PER_LINK];

} t_link;

Depending on the paradigm of the virtual network (event-triggered vs. time-
triggered), the port is either realized as a queue or a state variable. Furthermore,
each port has a direction (i.e. input or output), and in case of an event-triggered port
an indication whether an overflow has occurred. Besides these configuration data,
each t port data structure contains additional information for the packet service.
The packet service provides message fragmentation functionality to allow effective
use of available bandwidth.
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typedef struct port_struct {
int q_len; // ==1 for TT communication, >=1 for ET
int msg_len; // max. length of the message in bytes
enum direction dir; // data direction
enum vn_paradigm paradigm; // ET or TT
t_msg_descr *msg; // reference to msg information structure
t_port_buffer *buf;
struct link_struct *link; // backward reference to the link
unsigned char overflow; // 1 == overflow
struct vn_struct *vn; // the virtual network the port belongs to
...
// Information for the packet service
...

} t_port;

Each job of the DECOS cluster can easily access the corresponding virtual net-
work by connecting to its link during the initialization phase at startup. By calling
the fetch link() function, the connection to the virtual network is established. For
example, the following code snippet shows how a job establishes the access to the
virtual network with the identification NETWORK CAN COMFORT.

static t_link *Link2CAN_COMFORT;
...
if ((Link2CAN_COMFORT = fetch_link(NETWORK_CAN_COMFORT,JOB0)) == NULL) {

rtai_print_to_screen("Error fetching NETWORK_CAN_COMFORT link\n!");
return -1;

}

The second parameter specifies the identification of the job that wants to access its
link. fetch link() catches the shared memory region that maps the interface of
the virtual network service in the user space where the LXRT task can access its
encapsulated communication resources.

In case of an event-triggered job, the job can now send a message whenever a
change in an interface state variable occurs. Therefore, the job sets the length of the
message and updates the content of the message according to the new values.

t_message ET_msg;
...
CAN_msg.len = 4;
ET_msg.data[0] = sensor1_16(); // Temperature sensor measuring
ET_msg.data[1] = sensor1_8(); // the outside temperature
ET_msg.data[2] = sensor2_16(); // Temperature sensor measuring
ET_msg.data[3] = sensor2_8(); // the passenger compartment temperature
...
sndEtMessage(&(Link2CAN_COMFORT->port[0]), (t_message*) &ET_msg);
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Once the message is constructed, the job calls sndEtMessage() with the parameters
t port *port for specifying the output port and t message *msg for providing a
pointer to the outgoing message. In analogy, a job may received messages by calling
the rcvEtMessage(..) function with according parameters such as the input port.

In case of a time-triggered virtual network instead of accessing the queue, a state
variable is periodically updated or read respectively according to the TDMA schedule
of the virtual time-triggered network.

6.2 The Diagnostic Framework

In order to integrate diagnosis into the development process, a framework that sup-
ports both, the application developers and system designers is needed. Such a frame-
work also forces the developers to precisely specify the diagnostic checks and to treat
diagnosis not as an addendum but as an integral part of all development phases.
By applying a framework, additional design faults can be avoided by providing the
possibility to automatically transform the symptom detectors and analysis automata
comprising the ONAs specifications into executable code that can be executed as part
of the high-level services. Figure 6.7 gives an overview on the proposed framework.
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Figure 6.7: The Diagnostic Framework

6.2.1 Specification of Out-of-Norm Assertions

As proposed in Section 5.7 for the specification of the diagnostic checks timed au-
tomata are used. By constraining the types of automata that can be used for specifi-
cation to the subclass of deterministic and nonzeno timed automata (cf. Section 5.7),
it is assured that these automata can automatically be compiled into an executable
version and executed as part of the diagnostic middleware. By using a tool with
graphical user interface like the frontend for the Uppaal model checker [PL00] the
specification of diagnostic checks is simplified.

6.2.2 Code Generation

Based on a formally expressed specification, executable code according to target
platform specific parameters can be generated. A compiler can then transform these
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specifications into executable code. For example, a formal specification for timed
automata expressed in XML is presented in [OP05] in the context of gateways. In
order to allow execution of the diagnostic automata introduced in this thesis accord-
ing to the semantics as defined in Section 5.7.4, the variables used in the definition
of guards and actions of the specified automata need to be replaced by respective
port state variables. All specified receive or send operations need to be parameter-
ized according to the configuration of the virtual networks as a result of the cluster
configuration activities. Furthermore, the compiler needs to substitute all timing
parameters expressed in standard physical units (e.g., seconds, ms, µs) with macro-
ticks according to the schedule of the time-trigged core communication protocol.
Automatic code generation has the significant advantage of avoiding coding errors
that can significantly affect the diagnostic results during operation. In addition, once
defined diagnostic mechanisms, i.e. symptoms and ONAs, can be reused.

6.2.3 Deployment and Execution

During the initialization phase of the DECOS cluster, the diagnostic middleware
processes the cluster configuration data structures and determines the allocation
of jobs to the physical components. According to the cluster configuration, the
diagnostic middleware connects to the virtual diagnostic networks and connects to
the respective ports of the jobs hosted on each component. This is necessary to allow
monitoring of all incoming and outgoing messages at the virtual network interface.

As depicted in Figure 6.8 the diagnostic middleware executing the symptom de-
tectors is scheduled according to the TDMA schedule of the underlying time-triggered
core network (see also Section 6.1.2). At the beginning of each TDMA round the
diagnostic checks are executed. This is sufficient, since each physical component is
allowed to send only once during a TDMA round on the TTP core communication
network.

The interconnection between the BCU and secondary connector units basically
mirrors the CNI of the underlying time-triggered communication controller (in this
case the TTP C2 controller [TTT02a, TTT02b]) into the memory of the secondary
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connector units. In our prototype implementation, this data structure is called
exchange and stores for each slot of the TDMA schedule the following information:

struct slot_type{
unsigned char status[CNI_STATUS]; // Status Area
unsigned char ctrl[CNI_CTRL]; // Control Area
unsigned char ch0[CNI_CH0]; // Data Channel0
unsigned char ch1[CNI_CH1]; // Data Channel1

};

The diagnostic middleware has not only full access to all relevant status information
of the underlying time-triggered core network stored in the exchange data structure,
but also to the data structures of all other high-level services (e.g., the virtual network
data structures as introduced in Section 6.1.5).

In Section 5.8 the layers of a DECOS component have been described. Emphasis
has been set on the types of diagnostic checks that can be performed at each layer.
As depicted in Figure 6.9 the timed automata are executed in each silence interval
(denoted S) of the virtual network service. This ensures that a system wide consistent
view on the interface state of each component/job has been established and thus
guarantees location transparency of the deployed checks. Whenever a violation of
an interface specification has been detected, a corresponding diagnostic message is
constructed and pushed into the outgoing port (i.e. queue) of the virtual diagnostic
network.

Systemic Symptom Execution

As indicated in Figure 6.10 the systemic symptom detector is independent of any job-
specific application logic. This enables reuse of the specified checks in a large variety
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of systems in case the symptom has proven in the field to provide valuable diagnostic
information. Systemic diagnostic checks do not need to include any knowledge about
the physical or functional structure of the system. This is solely encoded into the
ONA processing the information provided by symptoms.

The timed automata encoding the symptoms are executed on the action lattice
of the sparse time base according to the algorithm introduced in Section 5.7.4. As
long as a transition can be taken, the timed automata for symptom detection are
executed, otherwise the execution is stopped until the next interval of silence. This
way correlated symptom detection is ensured and there is no need for the execution
of explicit agreement protocols on symptoms. Furthermore, for the analysis process
we can exploit this property of the sparse time base and can be sure that messages
with different timestamps encode different diagnostic events. The only exception
might arise for faults affecting the state for an interval of time that is longer than
the respective interval on sparse time base (e.g., heavy EMI disturbances).

Furthermore, the location transparency property allows deploying the symptoms
at different physical locations. Since symptoms are defined on the interface state
(i.e. on the content of messages) and the interface state is exchanged via broadcast
communication to all communication partners, the cross-checking principle can be
realized for a majority of diagnostic checks. This way, not only trustworthy informa-
tion is generated, but also available resources can be used very efficient.

For systemic checks, the exchange data structure is of central interest, since it
provides the controller information of the underlying TTP cluster. In case a hardware
failure has been detected by the controller, an entry in the respective control register
is performed. The value of this control register (e.g., the clock state correction term,
frame status field) can now easily be accessed by the symptom detector to check for
out-of-norm values.
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Application-Specific Symptom Execution

The job-specific symptom detectors are hosted at the message classification layer.
The diagnostic checks (e.g., plausibility checks for sensor values) are evaluated against
the messages traversing the input and output ports of a particular job. Once a mes-
sage violates the port specification of the sending or receiving job a corresponding
diagnostic message is constructed and transferred via the virtual diagnostic network.
Similar to the systemic symptom detection the timed automata encoding applica-
tion specific diagnostic checks are executed on a sparse time base provided via the
underlying core time-triggered network. In contrast to systemic checks that are pe-
riodically executed, the execution of symptoms for event-triggered jobs depends on
the availability of messages in the ports (i.e. the queues).

As already stated, during system startup the diagnostic services determine which
jobs are running on each physical component. According to the configuration data
for each hosted job on the component the diagnostic middleware processes the
t application check data structure that contains for each job one or more cor-
responding function pointers that implement the application-specific symptom de-
tector.

t_application_check execute_symptoms[MAX_APP_SYM] = {
{JOB0_COMFORT,job0_comfort_no1}, // "Air Condition Front"
{JOB0_COMFORT,job0_comfort_no2},
{JOB0_COMFORT,job0_comfort_no3},
...
{JOB5_BYWIRE,job5_bywire_no1}, // "Gas/Brake Sensor 0"
{JOB5_BYWIRE,job5_bywire_no2},
{JOB6_BYWIRE,job6_bywire_no1}, // "Steering Sensor 0"
{JOB6_BYWIRE,job6_bywire_no2}

};

For instance, the function job0 comfort no1 contains the code of a symptom detec-
tor specified as a timed automaton for the monitoring of a temperature sensor value.
The structure of such a typical check for an output port of an event-triggered job is
as follows:

void job0_comfort_no1(t_port *port, t_diag_msg *diag_msg,....) {
t_message *SourceMessage;
char *pSourceArea;
...
wr_pos = port->buf->wr_pos;
rd_pos = port->buf->rd_pos;
...
// Check for new messages in the queue
if (last_wr_pos != wr_pos)) { //av(m)?

while (rd_pos != wr_pos) { // read all messages (non consuming)
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pSourceArea = ((char*) &(port->buf->msg)) +
(rd_pos*(port->msg_len+ETSERVICE_HDR_SIZE));

SourceMessage = (t_message*) (pSourceArea);
...
// Check on message content
if ((SourceMessage->data[0] < ...) ... ){

// construct diagnostic message
diag_msg->len = 7;
diag_msg->data[0] = TYPE_APP;
diag_msg->data[1] = APPSYM_SENSOR_AT_THRESHOLD;
...
diag_msg->data[6] = SourceMessage->data[0];

}
rd_pos++; // updating read pos; no effect on VN service!
if (rd_pos>=port->q_len) rd_pos=0; // limited queue size

}
last_wr_pos = wr_pos; // update last position

}
}

Note, that in case no message is available, the execution of the automaton is sus-
pended. This also applies in case additional timing constraints (like monitoring of
minimum interarrival times between messages) are specified.

6.3 Implementation of the Symptoms

In the following we describe specification and implementation of the deployed
symptom detectors for the identification of faults according to the maintenance-
oriented fault model introduced in Section 5.3. We show how these systemic and
application-specific checks are realized in the prototype system. For each class of the
maintenance-oriented fault model we exemplify the timed automaton encoding the
assertion on the interface state on the basis of a real-world example. Especially, we
elaborate on the information provided by the TTP C2 controller that can be used
for accurate diagnosis of hardware failures.

6.3.1 Job-Inherent Faults

The monitoring of the interface state of applications is important to detect job-
inherent faults, i.e. software faults or faults induced due to faulty sensors or actuators
connected to the job. In the following we demonstrate how the job-inherent symptom
detection is realized in the DECOS architecture on the basis of both a time-triggered
and an even-trigged job example.
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Figure 6.11: Steering Wheel and Pedals

Time-Triggered Job

In the prototype setup the drive-by-wire DAS consists of a number of time-trigged
jobs providing basic car functionality, such as engine, brake and steering control. For
simulating the driver’s input a Logitech WingMan Formula GP USB steering wheel
with corresponding pedals has been connected to one of the Soekris nodes (using a
D-Link USB DUB-C2 card). As depicted in Figure 6.11 the human interface device
provides the following input values:

• Both the brake pedal force and gas pedal force can be directly read via the USB
interface. For simplicity each value has a resolution of 255 steps. Consequently
a two byte message is needed for sending the current pedal forces.

• As for the pedal values, the steering wheel angle is discretized into a byte value,
allowing a resolution of 127 steps for each driving direction. In addition, the
user can activate six different buttons on the steering wheel. In the prototype
setup two buttons are used for the gearshifts (up and down), for the turn
signals, and for temperature control (see also Figure 6.11). A one byte variable
(of type unsigned char) is used for the encoding of this state information.

In our prototype setup one job measures the pedal forces applied by the driver to
each pedal and updates the relevant interface state variables that are periodically
disseminated on the virtual time-triggered network of the by-wire DAS. In analogy,
another job determines the steering wheel angle and status information of each button
of the steering wheel and distributes this information periodically.

In the diagnostic framework of the prototype system the diagnostic middleware
executes periodically (at TDMA slot or round granularity) the symptom detection
mechanisms. For each job one or more symptoms are defined in a function which is
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called through a function pointer. A typical symptom detector for a time-triggered
job in pseudo-code notation looks as follows

void job5_bywire_symptom1(t_port *port, ...., t_diag_msg *msg) {
...
// read port state variables
state_variable = port->buf;
...
// check values of the port state variables
if (state_variable == ...) {

...
}
...
// Construct diagnostic message if necessary
if (something_wrong) {

msg->data[0] = TYPE_APPLICATION;
msg->data[1] = APPLICATION_SYMPTOM;
msg->data[2] = GLOBAL_TIME1;
msg->data[3] = GLOBAL_TIME2;
msg->data[4] = NETWORK_TT_BYWIRE;
msg->data[5] = JOB5;
msg->data[6] = state_variable;

}
}

Since in most driving situations, either the brake or the gas pedal is exclusively
pressed, a symptom indicating possible sensor malfunction monitors simultaneous
operation of both pedals. In case the brake pedal value is pressed, then the applied
gas pedal force must not exceed a predefined threshold value and vice versa. Oth-
erwise a job-inherent symptom is detected and a corresponding diagnostic message
as described in Table 6.1 is forwarded to the diagnostic DAS that can correlate this
information with other job-inherent failure messages originating from the same job
or from the component hosting the job to trace correlated failures and update the
frequency of occurrence. The corresponding timed automaton for the specification
of this symptom is shown in Figure 6.12. By transforming the timed automata into
executable code, the variable names have to be replaced by statements that read
the respective state variables (job5 data[0] and job5 data[1]) and the threshold
values TBrake and TGas defined accordingly.

if ((job5_data[0] > GAS_LIMIT) && (job5_data[1] > BRAKE_LIMIT)) {
// construct diagnostic message
....

}

In analogy to the symptom detectors defined for the pedal values, similar checks
can be performed for evaluating the plausibility of the steering wheel angle and
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Figure 6.12: Timed Automaton for Symptom: Both Pedals Pressed

Field Name Semantics
Message Type This field is set to TYPE APPLICATION in order to

differentiate the message from systemic symptoms.
Symptom ID The unique symptom ID is set to APPSYM BOTH PEDALS PRESSED
Time Domain This field includes timestamp of the global time base.
Space Domain The DAS value of set to NETWORK TT BYWIRE and the

job indication field to JOB5.
Value Domain Values of the measured brake pedal and gas pedal force.

Table 6.1: Diagnostic Message for Out-of-Norm Pedal Forces

button values. Many cars of today offer a multifunction steering wheel with cruise
control, audio, and multifunction onboard computer functions. By assigning each of
the available buttons of the Logitech steering wheel a specific functionality such a
multifunction steering wheel is realized in the prototype setup. From a diagnostic
perspective some combinations of simultaneous pressed buttons do not make any
sense, and thus are classified as out-of-norm and once detected forwarded to the di-
agnostic DAS. In the prototype implementation two switches alters the gearshift, two
buttons implement blinker functionality, and two buttons are used for temperature
adjustment. The automaton for the button specific checks is depicted in Figure 6.13.
Every TDMA slot the state values are evaluated against the guards of the timed au-
tomaton and in case one of the guards ϕ3, ϕ4 or ϕ5 are enabled a diagnostic message
is created (see action λ). For a detailed layout of the fields of the diagnostic message
refer to Table 6.2. The corresponding executable version of this symptom detector
is as follows:

// both gear buttons simultaneously
if ((job6_data[1] & 0x03) == 0x03) {

msg->data[1] = APPSYM_BOTH_GEARS_PRESSED;
...
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Figure 6.13: Timed Automaton for Symptom: Out-of-Norm Buttons

Field Name Semantics
Message Type This field is set to TYPE APPLICATION in order to

differentiate the message from systemic symptoms.
Symptom ID The unique symptom ID is set to APPSYM BOTH GEARS PRESSED,

APPSYM BOTH BLINKER PRESSED, APPSYM BOTH TEMP PRESSED,
or APPSYM ALL BUTTONS PRESSED, depending on the
detected out-of-norm condition.

Time Domain This field includes timestamp of the global time base.
Space Domain The DAS value of set to NETWORK TT BYWIRE and the

job indication field to JOB6.
Value Domain The status of the steering wheel buttons.

Table 6.2: Diagnostic Message for Out-of-Norm Multifunction Steering Wheel Inputs

}
// both blinker buttons simultaneously
if ((job6_data[1] & 0x0C) == 0x0C) {

msg->data[1] = APPSYM_BOTH_BLINKER_PRESSED;
...

}
// both temperature buttons simultaneously
if ((job6_data[1] & 0x30) == 0x30) {

msg->data[1] = APPSYM_BOTH_TEMP_PRESSED;
...

}

A nice example for monitoring the compliance of measured sensor values with
physics laws is the observation of the changes of the steering wheel angle that is
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sampled each TDMA slot of the virtual time-triggered network. In case the changes
in the steering wheel angle are highly unlikely or impossible according to the under-
lying physics model a symptom has been detected. The timed automaton for this
diagnostic check is shown in Figure 6.14. Γ denotes the maximum value that the
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Figure 6.14: Timed Automaton for Symptom: Out-of-Norm Steering Wheel Angle

steering wheel angle can change between tow consecutive updates according to the
a priori defined TDMA schedule of the time-triggered virtual network.

Event-Triggered Job

In contrast to time-triggered jobs that act according to state semantics, event-
triggered jobs only update the values of the interface state variables in case of value
changes. In our prototype implementation of the DECOS architecture, the comfort
DAS consists of a number of event-triggered jobs providing comfort functionality to
the passengers of a car. For example, “Job0” of the comfort DAS regulates the air
condition system. Whenever a change in temperature in the passenger compartment
is measured, a message is sent on the virtual event-triggered network of the com-
fort DAS. Since the temperature is also relevant for jobs of other DASs the value is
also exported by means of a virtual gateway. Besides distributing the temperature
changes the job processes the driver’s steering wheel button commands with respect
to the air condition system.

According to the event-triggered symptom detector introduced in Section 5.7 the
main difference between monitoring of time-triggered and event-triggered jobs is the
fact that progress of the timed automaton is not solely controlled by progression of
real-time but depends on the availability of messages sent (in the respective queues)
by the event-triggered job under investigation. Such a typical symptom detector for
an event-triggered job in pseudo-code notation looks as follows:
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Figure 6.15: Out-of-Norm Measurement of a Temperature Sensor

void job0_comfort_symptom1(t_port *port, ...., t_diag_msg *msg) {
...
// read port state variables if message available
while (avail(port)) {

// read queue
et_variable = port->buf;
...
// check values of the port state variables
if (et_variable == ...) {

...
}
...
// Construct diagnostic message if necessary
if (something_wrong) {

msg->data[0] = TYPE_APPLICATION;
msg->data[1] = APPLICATION_SYMPTOM;
msg->data[2] = GLOBAL_TIME1;
msg->data[3] = GLOBAL_TIME2;
msg->data[4] = NETWORK_COMFORT;
msg->data[5] = JOB0;
msg->data[6] = et_variable;

}
}

}

Consider for instance the measurement curve of a temperature sensor (specified to
measure the temperature in the range −30◦ to +80◦ Celsius) as depicted in Fig-
ure 6.15. The context of use of this senor is the passenger area of a car. Typically,
the temperature in the car will be between −10◦ and 50◦ Celsius, depending on
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Field Name Semantics
Message Type This field is set to TYPE APPLICATION.
Symptom ID The unique symptom ID is set to APPSYM SENSOR RAPID CHANGE

or APPSYM SENSOR AT THRESHOLD.
Time Domain This field includes timestamp of the global time base.
Space Domain The DAS value of set to NETWORK COMFORT and the

job indication field to JOB0.
Value Domain Value of the measured temperature.

Table 6.3: Diagnostic Message for a Out-of-Norm Temperature Measurement

the season of the year. Though the measurement value at t = 11 lies within the
specified range, the peak represents an anomaly, since it is unlikely that the tem-
perature in the passenger area increases and decreases about 7 degrees Celsius in 2
seconds. Consequently, two application-specific symptom detectors for monitoring
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msg->data[1] = APPSYM_SENSOR_RAPID_CHANGE;

// Threshold check

Figure 6.16: Job-inherent Symptom Detection

the port state variables of the event-triggered job controlling the air condition system
as depicted in Figure 6.16 are defined. The timed automata on the right hand side
implements an algorithm for the evaluating whether the measured car temperature
is in the range of the sensor specification (i.e. the limits of the measurement curve).
On the left hand of Figure 6.16 a timed automaton is shown, that compares the
difference of two consecutive measurements against the threshold value Tchange. In
case the difference exceeds the threshold value and the time difference between the
two measurements is smaller than Tmax, an unlikely rapid change in the tempera-
ture value has been detected. For both checks a diagnostic message as specified in
Table 6.3 is used.

6.3.2 Job Borderline Faults

In general, the underlying communication model in case of event-triggered jobs
is a probabilistic one and specified by means of message service and interarrival
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times [Kle75]. This imprecise temporal specification makes error detection in event-
triggered communication tricky. In the DECOS diagnostic architecture we provide
a solution to error detection for event-triggered jobs by exploiting the global time
base of the underlying synchronous core system in order to judge about the compli-
ance of jobs with respect to their interface specification of the event-triggered virtual
network.

Since control on the sending and receiving instants is under the sphere of control
of the jobs and not the communication system, the diagnostic service monitoring the
virtual network service provides detection mechanisms to be parameterized according
to the communication model behind the application. This allows not only to detect
deviations from the specification, but also to gather facts whether the underlying
assumptions behind the communication model hold in reality (i.e. engineering feed-
back). For instance, unanticipated customer behavior may impose serious problems
to the functionality of the system.

Extending the notion of behavior from [GIJ+02], we denote a job’s behavior as
the sequence of send and receive operations. The behavior of a job is denoted as
correct, if it is in accordance with the jobs interface specification. Otherwise we
speak of a job failure (i.e. a behavior violating the interface specification) and denote
the respective job as faulty. In case of imprecise temporal interface specifications,
however, such a demarcation between correct and faulty behavior proves to be diffi-
cult. While in a time-triggered communication system the precise temporal interface
specification with a priori knowledge about the global points in time of message ex-
changes allows to definitely distinguish between correct and faulty temporal behavior,
the imprecise interface specification of an event-triggered system complicates failure
detection. When the temporal behavior of a job is determined by its inputs from
the environment, an underlying model of the environment is necessary to evaluate
correct job behaviors. For example, consider a user interface job in an automotive
application that sends a message to a window lifter job whenever certain buttons are
pressed. The ability to detect a faulty user interface job requires assumptions about
the frequency and timing for pressing the button. Repeatedly sent messages within
a short interval of time might represent a failure of the user interface job, or simply
constitute an unanticipated customer behavior (e.g., playing with the window lifter
button). Although an omniscient observer can always demarcate between correct
and faulty behavior, from within the system the available redundancy and a priori
knowledge constrain the ability for performing a definitive classification. In order to
handle imprecise temporal interface specifications with limited a priori knowledge,
we introduced the concept of an ONA in Section 5.5. A job’s behavior is denoted as
out-of-norm, if it cannot be classified definitively as correct or faulty at the point in
time of occurrence. Out-of-norm behavior represents an improbable behavior that
probabilistically represents a failure.

Detection of Bursts. A burst in case of event-triggered communication is the
sending of a high number of messages in a short interval of time. A high frequency
of bursts can be an indicator for misleading assumptions behind the communication
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model or possible sensor failures (e.g., debouncing problems at a button). Whenever
a new message is available at the respective port, the timestamp of this message is
used by the symptom detector to determine whether the last n (e.g., n = 5) messages
have been received in the interval [t1, t2 = t1+∆]. If this is the case an error message
is forwarded and the data structures set to the initial values. Otherwise, the oldest
message is discarded, the data structure storing the last n−1 timestamps is updated.

Detection of a Violation of the Interarrival Times Specification. The mini-
mum interarrival time between two messages specifies the amount of time that has to
elapse between two receive operations messages. By defining and complying with the
minimum interarrival times a possible bus overload situation or starvation of jobs can
be avoided. Figure 6.17 depicts the automaton implementing this symptom detector.
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Figure 6.17: Job Borderline Faults: Symptom Detection in case of a Violation of the
Interarrival Time Specification

In case a new message is available (av(m)), the difference in the timestamps of the
last message and this new message calculated. In case this value is larger than the
a priori specified threshold Tint (e.g., 200 ms), a corresponding diagnostic message is
generated and the timestamp of the last received updated (tlastmsg = tnow).

Detection of Queue Overflows. The queue status at the input ports of all event-
triggered jobs need to be monitored to detect queue overflows at the virtual network
service. The virtual network service continuously updates the queue status of the
ports of all jobs according to the issued send and receive operations. In contrast to
the other symptom detectors for job borderline faults, this job is not triggered by the
send and receive operations of a job, but is periodically executed each TDMA slot in
accordance with the virtual network service. The assertion simply checks whether a
queue overflow has occurred and forwards this information to the diagnostic DAS.
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Null Frame No traffic on the channel 0 0 0 0

Invalid Frame Coding error, wrong length 0 0 0 1

Incorrect Frame CRC failed, C-state disagreement 0 0 1 0

Other Error Mode change permission violated 0 0 1 1

Tentative Frame C-state/CRC without own membership OK 0 1 0 0

Correct Frame C-state/CRC with own membership OK 1 0 0 0

Frame Status Description

Code

3 2 1 0

Figure 6.18: TTP/C Message Status Field

6.3.3 Component Borderline Faults

The electrical interconnection system typically consists of wiring, connectors, relays,
circuit breakers, power distribution panels, and generators. Wiring plays a central
role in any distributed system environment, since it provides the infrastructure for
exchanging the data between components. Like any other part of the system, the
electrical interconnection system is exposed to environmental stress as well as assem-
bly and design faults. Considering that a typical middle class car has about 40 ECUs
and approximately 800 wires [POT+05], the likelihood of connector problems is very
realistic. In fact, recent studies [SM99, SMM00] indicate that 30% of electrical fail-
ures can be attributed to connector problems. Wiring problems, especially connector
problems, are difficult to detect, since the inspection itself can be the corrective ac-
tion (e.g., loose contacts). For this reason, it is important to provide means for the
detection of connector failures.

As depicted in Figure 6.18 the TTP/C controller determines the frame status
for each received frame. Depending on this message status field, the application can
read or discard the received message. This so-called Error Indication Field allows
an analysis of the status of the communication channels. The TTP/C controller
compares the frames from both channels and declares the received frame as correct
as long as one frame is correct. This strategy is suitable for application transparent
fault-tolerance, however, an integrated diagnostic solution must take the information
from both channels into account to enable an investigation of possible physical faults
of the replicated channels or bus drivers. In TTP/C we can use the frame status
information as described in the following for the detection of borderline failures.
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Figure 6.19: TTP/C Protocol Errors

Parameter Invalid Frame
Description A frame that is syntactical invalid, i.e. coding rules

(e.g., coding or expected length) are violated.

Indicator An invalid frame indicates either a faulty receiver, a faulty
sender or a cabling defect. Additional information of other
nodes is needed to decide on the origin. For example, in
case all other nodes of the cluster perceive the frame as cor-
rect, then the receiver or the cabling/connector is faulty.
In contrast to a null frame, a signal on the bus can be re-
ceived (i.e. there are signal edges on the bus that cannot be
decoded).

Sampling Every TDMA slot in case N- or X-frames are received. The
message status field of both channels needs to be analyzed
for more accurate diagnostic evaluation.

Parameter Null Frame
Description No activity is observed on any of the channels during a node

slot.

Indicator A null frame indicates either a faulty receiver, a faulty sender
(or no sender at all) or a cabling defect. Additional infor-
mation of other nodes is needed to decide on the origin. For
example, in case all other nodes of the cluster perceive the
frame as correct, then the receiver or the cabling/connector
is faulty. In contrast to an invalid frame, no signal on the
bus can be received.

Sampling Every TDMA slot. The message status field of both chan-
nels needs to be analyzed for more accurate diagnostic eval-
uation.
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Parameter Incorrect Frame
Description A syntactically valid frame (coding and size correct) for

which all CRC checks have failed at the receiver.

Indicator An incorrect frame indicates rather a transmission fault than
an systematic connector fault. For this reason an incorrect
frame indicates with higher probability a faulty encoding or
decoding unit or an erroneous C-state of the sender/receiver
(e.g., hardware fault of the CRC unit).

Sampling Every TDMA slot. The message status field of both chan-
nels needs to be analyzed for more accurate diagnostic eval-
uation.

Parameter Tentative Frame
Description A frame that is correct after the second CRC check. This

means the first successor during the acknowledgment con-
siders the controller faulty.

Indicator Indicates a possible incoming link failure.

Sampling Every TDMA slot. The message status field of both chan-
nels needs to be analyzed for more accurate diagnostic eval-
uation.

Parameter Correct Frame
Description A valid frame which passed the CRC check and all additional

semantic checks at the receiver.

Indicator No diagnostic information.

Sampling Every TDMA slot.

Besides the frame status field, the CNI of the C2 controller also provides
controller registers indicating the relationship of the counter registers with respect
to the TTP/C protocol errors as illustrated in Figure 6.19. This includes the agreed
slots counter, the failed slots counter, the failed frame counter for channel 0 and 1,
and the null frame counter for channel 0 and 1 that are described in the following:

• Agreed Slots Counter. A counter that counts in each TDMA round the
number of nodes that have sent at least one correct frame. It is reset in the
own slot.

• Failed Slots Counter. A counter that counts in each TDMA round the
number of nodes sending at least one failed frame but no correct frame. This
counter is reset in the nodes own slot, after the clique avoidance has been
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Figure 6.20: Symptom for Component Borderline Faults

performed.

• Failed Frame Counter Ch0/Ch1. Number of failed frames (invalid or incor-
rect frame) on channel 0/1 during the last TDMA round. The counter is reset
at the start of the controller’s own node slot (like the agreed slots counter).

• Null Frame Counter Ch0/Ch1. Number of empty slots (i.e. no activity is
observed on any of the channels during a node slot) on channel 0/1 during the
last TDMA round. The counter is reset at the start of controller’s own node
slot.

In Figure 6.20 a timed automaton is depicted that performs a check on the frame
status of each physical channel. The timed automaton performs the check on the
status of the network in each TDMA slot (using clock variable c) according to the
cluster schedule of the core network. Whenever, a new TTP frame is received and the
exchange data structure updated accordingly, the execution of the timed automaton
progresses and the frame status is evaluated. In case the frame status of channel 0 or
1 is other than correct, a corresponding diagnostic message as described in Table 6.4
is constructed and forwarded to the virtual diagnostic network. This send operation
is specified using m(type,symptom#,u.c:)! in the automaton.

By replacing the generic check ϕ3 stated in Figure 6.20 with a macro providing
access to the respective registers of the physical communication controller the timed
automaton can be executed on the target platform. In our prototype implementation
this is realized by accessing the corresponding values in the exchange data structure
using

frame_status_channel0 = (exchange->slot[index].ch0[1] & 0x000F);
frame_status_channel1 = (exchange->slot[index].ch1[1] & 0x000F);

All other C2 controller registers can easily be accessed according to the register layout
of the C2 controller [TTT02b], since there exists a one-to-one mapping between the

160



6 Implementation of the DECOS Architecture 6.3 Symptom Detection

Field Name Semantics
Message Type This field is set to TYPE SYSTEMIC in order to

differentiate the message from job-specific symptoms.
Symptom ID The unique symptom ID is set to SYM CORRECT CH[0/1],

SYM NULLFRAME CH[0/1], SYM INVALID CH[0/1],
SYM INCORRECT CH[0/1], SYM OTHER CH[0/1],
SYM TENTATIVE CH[0/1] or SYM UNKNOWN CH[0/1].

Time Domain This field includes timestamp of the global time base.
Space Domain This field contains the identification of the physical cluster

and component.
Table 6.4: Diagnostic Message for for a Component Borderline Symptom

memory-mapped I/O addresses of the C2 controller and the layout of the data in the
exchange data structure.

6.3.4 Component Internal Faults

Similar to the previous example for the detection of component borderline failures,
we present a timed automaton that monitors a component in order to detect
component internal faults. In time-triggered communication systems the correct
functionality of the time service of each component is of paramount importance for
the functionality of the cluster. In the timed automaton as shown in Figure 6.21
we monitor the value of the clock state correction term as our symptom in order
to reason about the health status of the quartz. In case the correction term of the
clock synchronization algorithm is close to Π/2, where Π denotes the precision, the
symptom fires and a corresponding diagnostic message is forwarded to the diagnostic
subsystem. This way unexpected quartz drifts (i.e. due to wearout effects or rapid
temperature change [Sch96]) can be detected at an early stage. Note that although
this check represents an internal one and is not based on the cross-checking principle,
a node sending such information is still operating according to its specification.
Consequently, this information supports condition-based maintenance for DECOS
components by providing diagnostic information about possible future component
failures. The TTP C2 controller provides the following controller registers that can
be used for accurate diagnosis of the core communication system. In addition to
the clock state correction term field, the measured time difference field provides
important information on the arrival time of the frame within the receive window.
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Parameter Clock State Correction Term
Description This signed term is calculated by the clock synchronization

algorithm and given in units of C2 controller microticks. If
the absolute value of the total correction term is larger than
Π
2 , the node raises a synchronization error.

Indicator In combination with the Measured Time Difference
Ch0/Ch1 field, this parameter contains information regard-
ing the quality and operation of the quartz. In case this
value is larger than Π

2 , the node raises a synchronization er-
ror. Therefore, a continuous evaluation of the correction
term can detect spontaneous deviations from normal be-
havior due to transient faults (e.g., EMI) or environmental
stress conditions (e.g., temperature). Furthermore, steadily
increasing drift rates can be used to predict wearout and
subsequent failure of the timing subsystem of the node.

Sampling Every TDMA slot (in case the CS flag is set to 1).

Parameter Measured Time Difference Ch0/Ch1
Description This field holds the arrival time of the frame within the re-

ceive window, i.e. the time difference between the expected
arrival time of the frame and the real arrival time of the
frame on channel 0/1. A negative value states that the ac-
tual receipt of the corresponding frame occurred earlier than
expected. This indicates that the receiving controller’s clock
is running lower than the sender’s clock (a positive value in-
dicates the opposite). This field is only valid in case the
received frame was valid and the frames from the sender are
used for clock synchronization (i.e. the SYF flag is set for
this slot).

Indicator By continuously monitoring of this information a systematic
timing problem of the node can be identified in contrast to
transient disturbances. In case the drift rate increases over
time, this information can be used to predict future timing
failures resulting from wearout of the quartz.

Sampling Every TDMA slot in case the SYF flag is set.

6.3.5 Component External Faults

As discussed in Section 3.5, a suitable indicator for wearout of electronic devices is
the increase of transient failures in the system. Based on this reasoning, we exploit
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Figure 6.21: Symptom for Component Internal Faults

the membership service of TTP [BP00, KGR91] as in indicator for both transient
internal and transient external faults. The question whether the component was
affected by a transient fault source or an internal one can only be answered by
continuously monitor the operational state of the physical component. According to
the results presented in [Con02], transient internal failures tend to occur at a higher
frequency and affect the same physical entity. By taking these facts into account, the
membership service provides a consistent system wide view on the operational state
of the components in the cluster. In addition, by analyzing the restart rate of the
components, important statistical data can be collected that serves as engineering
feedback also for the design of fault-tolerance mechanisms and strategies. This way
the transient failure rate of electronic devices in the field can be determined and the
resources optimized accordingly.

In the TTP C2 controller CNI the following status registers are provided for
reading membership information. For each component of the distributed system a
bit in the membership vector is reserved and either set to 1 when the node operates
according to its specification, or 0 in case the majority of the nodes in the cluster
consistently declare the node as faulty. Note, that typically before the detection of
a membership loss, a diagnostic message indicating a null frame detection is sent.

Parameter Membership Flags (Vector)
Description A vector that has a unique flag assigned to each member

node. If this flag is set, the member node was operational at
its last membership recognition point, otherwise it was not
operational.

Indicator The membership provides a consistent view on the opera-
tional state of the nodes of the system.

Sampling Every TDMA slot.

163



6.4 Analysis 6 Implementation of the DECOS Architecture

Parameter Membership Failure Counter
Description This counter is used to count the number of successive mem-

bership failures.

Indicator The counter is incremented each TDMA round in case it has
a cleared membership bit. If the node remains non opera-
tional for Maximum Membership Failure Count number of
TDMA rounds, the controller switches into freeze. In case
the maximum counter is set to 0, the number of successive
membership failures is not bounded. When the node is oper-
ational again (the membership is set to 1), the membership
failure counter is not decremented, but reset to 0.

Sampling Every TDMA round.

6.4 Implementation of the Analysis Algorithms

In the following we describe the realization of the diagnostic DAS in the prototype
setup. For evaluating the introduced concepts we decided to implement a centralized
analysis DAS with only one job that is considered not to be subject to any faults.
However, the design of the analysis data structures and algorithms can easily be
extended to a distributed solution. At first, we discuss the basic execution scheme of
the analysis job as elaborated on in Section 5.7 and the implemented data structures
for keeping track of the experienced failures or anomalies (for both, functional and
physical entities of the cluster). The data structures are used to model the system
structure according to the maintenance-oriented fault model and thus, allow storing
valuable statistical information for both, fault analysis for maintenance purposes,
and engineering feedback for the continuous improvement of the system design. By
storing the information of the data structures in persistent memory, the analysis
algorithm can operate using history information on the health state of the cluster
in every new cycle of operation. On the basis of exemplary analysis algorithms we
demonstrate how the specified timed automata for analysis are implemented and
executed by the analysis job.

6.4.1 Design of the Analysis Job

As depicted in Figure 6.22 the schedule for the component hosting the analysis job
is different from the other components in the cluster, since the analysis job is the
only non safety-critical application that is executed by the component. Figure 6.23
shows this schedule. Within the 10 ms TDMA round the analysis job is scheduled
three times, one slot is reserved for the execution of the high-level services, and one
for the execution of standard Linux as a background task.
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Figure 6.22: The Analysis Job

The LXRT task implementing the analysis job can be decomposed into four
subtasks that are executed by every task activation of the time-triggered dispatcher.

1. Read messages from virtual diagnostic network. All incoming diagnostic
messages – on all three channels – are pulled from the incoming ports of the
links of the analysis job.

2. Copy messages into corresponding ONA analysis data structure. De-
pending on the header information of the diagnostic message, a copy of the
message is pushed into the queue of each ONA analysis automaton that oper-
ates on this information. Such a copy operation is necessary for implement-
ing the cross-checking principle. Note, that for every specified ONA there is
a dedicated queue for buffering all incoming systemic or application-specific
symptoms that are associated with this ONA. By calling the av(m) function
as part of the specification of the timed analysis automaton, the availability of
a message can be tested (av(m) returns the type of the symptom). This mes-
sage is then finally pulled out of the queue and processed by the automaton
whenever the action m? is executed.

Furthermore, the 16 bit timestamp that is included in every diagnostic mes-
sage derived from the TTP/C global time is extended to 32 bit, since for some
analysis algorithms, the timing resolution of 16 bit is not sufficient. For ex-
ample, in case of a 10 ms TDMA round schedule and a macrotick of 5µsec,
the horizon is approximately 330 ms or 33 TDMA rounds. By extending this
time field to 32 bit, with the same configuration, the horizon is 358 minutes or
nearly 6 hours. The 32 bit time field can be extended to the 64 bit time stan-
dard defined by the OMG [OMG03], however, such an extension would require
additional bandwidth on the time-triggered core network, while a synchronized
32 bit node local time is supported by the used TTP hardware.
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Figure 6.23: The Schedule of the Analysis Job

3. Execution of the timed analysis automata. The analysis job executes
the timed automata for the ONA analysis according to the execution model
presented in Section 5.7.4. By sequentially calling the respective functions
implementing the analysis algorithms like in the following code snippet, each
timed automaton will be executed as long as a transition is enabled or the
simulation time equals the actual global time:

analysis_ONA_COMP_0_BORDERLINE_CH0_TA();
analysis_ONA_COMP_0_BORDERLINE_CH1_TA();
...
analysis_ONA_JOB_5_BYWIRE_TA();
...

4. Update of data structures. As a result of the execution of the timed au-
tomata, the data structures containing the health status information of the
functional (i.e. DASs and jobs) and physical entities (i.e. components and clus-
ters) are updated. In addition to determining the trust level of each entity of
the system, statistics for engineering feedback are also stored and processed.

6.4.2 Analysis Data Structures

Both, Figure 6.24 and Figure 6.25 are designed according to the maintenance-oriented
fault model. All ONA analysis algorithms have private internal data structures,
however, the result is stored in the global analysis data structure in order to allow:

• Hierarchical ONA analysis. As introduced in Section 5.5 the construction of
hierarchical ONAs is crucial for a reuse of already thoroughly tested and verified
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checks in order to efficiently make use of available resources. Furthermore, by
defining an ONA that operates on the results of other ONAs, results of multiple
different analysis processes can be included into a global assessment process to
determine the health state of the system.

• Exploitation of the knowledge about the functional and physical sys-
tem structure. As already stated, integrated architectures are designed to
overcome the “1 Function - 1 ECU” limitation of currently deployed feder-
ated systems. From a diagnostic point of view this property of integrated
architectures is crucial, since the knowledge about the functional (i.e. jobs and
respective DASs) and the physical system structure (i.e. components, core net-
work topology) provides the possibility to distinguish between hardware and
software faults affecting the cluster. For a detailed discussion of the main idea
refer to Section 5.9.3.

• Reduced representation. By storing the results of the individual ONAs
analysis algorithms in a common data structure, not only the possibility for
a hierarchical analysis is provided, but also a reduced representation of the
global health state can be derived. This reduced information captures the major
results of the analysis up to a specific point in time, i.e. a ground state (i.e. every
1000 TDMA rounds), and is either stored permanently in a persistent memory
to cope with possible faults affecting the component hosting the analysis DAS
or disseminated in case of distributed analysis solution.

This reduced representation is also important when the diagnostic DAS is ac-
cessed by the service technician. Here, a detailed analysis of the system state
is of limited help. By contrast, a trust level for every FRU serves as the basis
for determining the correct maintenance action.

Component Analysis

As depicted in Figure 6.24 the data structure TD decos component for each compo-
nent captures diagnostic information about the hosted jobs and corresponding DASs
as well as hardware-specific information of the time-triggered core network. For each
hosted job a TD job data structure captures among meta-information (such as the
name of the job) the counter values for job-inherent, job-borderline and job-external
faults:

typedef struct a_job {
char job_name[NAME_LENGTH];
enum vn_paradigm paradigm;
// inherent
unsigned int inherent_counter;
...
// borderline
unsigned int borderline_counter;
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Figure 6.24: Conceptual Model of the Data Structure for Component Analysis

unsigned int borderline_anomaly_counter;
unsigned int send_counter;
unsigned int send_anomaly_counter;
unsigned int receive_counter;
unsigned int receive_anomaly_counter;
// external
unsigned int external_counter;
...

} TD_job;

In analogy, information about the DAS structure is available for incorporating infor-
mation about the functional space dimension into the analysis process. Therefore,
knowledge about the jobs of the DASs hosted on a component according to the cluster
schedule is stored in the TD DAS data structure:

typedef struct a_DAS {
char DAS_name[NAME_LENGTH];
unsigned int number_of_jobs;
TD_job job[MAX_NUMBER_JOBS_COMP];

} TD_DAS;

Finally, the component data structure TD decos component combines all diagnostic
information to allow a health state assessment according to the analysis concepts
introduced in Section 5.9.
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Figure 6.25: Conceptual Model of the Data Structure for Cluster Analysis

typedef struct a_component {
TD_DAS DAS[NUMBER_OF_DAS];
unsigned int number_of_DAS;
// internal
unsigned int internal_counter;
unsigned int internal_anomaly_counter;
...
// borderline
unsigned int ch0_counter;
unsigned int ch0_anomaly_counter;
unsigned int ch1_counter;
unsigned int ch1_anomaly_counter;
unsigned int borderline_counter;
unsigned int borderline_anomaly_counter;
...
// external
unsigned int external_counter;
unsigned int external_anomaly_counter;
unsigned int number_of_restarts;
...
// high-level-services
...
// core-services
...

} TD_decos_component;
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Figure 6.26: Out-of-Norm Analysis: Timed Automaton for the Determination of
Component Borderline Faults

Cluster Analysis

In analogy to the component data structure, the cluster data structure
TD decos cluster as shown in Figure 6.25 unites the diagnostic information for
each component in the system for a cluster wide assessment. This cluster data struc-
ture is crucial for the deployment of hierarchical ONAs as introduced in Section 5.5.
For a detailed example see also Section 6.4.5.

6.4.3 Determination of Component Borderline Faults

In the following we discuss the implementation of the analysis algorithms for de-
termining component borderline faults based on the symptoms introduced in Sec-
tion 6.3.3. For showing the feasibility of the diagnostic framework we employ a
simple threshold based analysis scheme as introduced in Section 3.7. However, in
contrast to typical analysis algorithms processing only node local information, the
timed analysis automaton as shown in Figure 6.26 for the systemic diagnosis of
borderline failures correlates information from other components of the cluster to
indisputably judge whether a failure has occurred. In case no correlated symptoms
have been detected the increase of the α-counter value is marginal. By contrast,
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once a correlated information is detected, fcorr is increased and the α-counter up-
dated accordingly. To emphasize the importance of such correlated information, the
weighting factor Ψcorr is multiplied with fcorr and then added to the α-counter value.

Since in our prototype implementation a core communication network with two
replicated channels is used, for each component two ONAs for the determination of
borderline faults are required (i.e. one for each channel).

Symptom Forwarding and Message Decoding

Once the symptoms that are associated with the ONA are received on the virtual
diagnostic network, the symptoms are processed and forwarded to the respective
ONA queue. This is a prerequisite for executing the timed automaton that imple-
ments the analysis algorithm. The following code snippet shows how symptoms for
identifying component borderline failures are processed. Note, that the message field
dmsg.data[6] contains the identification of the component that is assumed to be
faulty by the node that sent the message.

while (rcvEtMessage(&(Link2ALD->port[i]), &dmsg)==ET_OK){
if (dmsg.data[0] == TYPE_SYM) {

switch(dmsg.data[1]) {
case SYM_NULLFRAME_CH0:

// Which component is faulty? -> read value field
switch(dmsg.data[6]) {

case 0: target_queue = ONA_COMP_0_BORDERLINE_CH0; break;
case 1: target_queue = ONA_COMP_1_BORDERLINE_CH0; break;
case 2: target_queue = ONA_COMP_2_BORDERLINE_CH0; break;
case 3: target_queue = ONA_COMP_3_BORDERLINE_CH0; break;

}
case SYM_NULLFRAME_CH1:

// Which component is faulty? -> read value field
switch(dmsg.data[6]) {

case 0: target_queue = ONA_COMP_0_BORDERLINE_CH1; break;
case 1: target_queue = ONA_COMP_1_BORDERLINE_CH1; break;
case 2: target_queue = ONA_COMP_2_BORDERLINE_CH1; break;
case 3: target_queue = ONA_COMP_3_BORDERLINE_CH1; break;

}
// put message into respective ONA queue
...
// update meta-information
ONA[target_queue].wr_pos++;
if (ONA[target_queue].wr_pos >= DIAG_MSG_PER_ONA) {

ONA[target_queue].wr_pos = 0;
}
...

171



6.4 Analysis 6 Implementation of the DECOS Architecture

Definition of Thresholds and Weighting Factors

Every threshold-based analysis technique depends on the setting of the parameters
that determine the behavior of the algorithm, in particular the

• penalty weighting factors (Ψnew,Ψold,Ψcorr,Ψpermanent,Ψα−init)

• α-counter threshold (Tα), and

• timing parameters (Γα,∆).

As shown in Figure 6.26 the threshold value Tα determines when a fault pat-
tern is detected and stored in the previously introduced analysis data structures
(update(stats)). The parameter Γα defines the length of the interval between de-
creasing the α-counter value in case no symptom message is received. The constant
∆ is used for specifying the time window during which correlated information with
respect to the previously received symptoms is processed. Whenever a symptom
with a timestamp is received that strengthens the belief in the correctness of the
previously received symptom(s), fcorr is increased. fcorr is multiplied by the weight-
ing factor Ψcorr before adding to the α-counter value. In case Ψcorr is set to a larger
value than Ψnew or Ψold, correlated information leads to a significant increases of
the α-counter value. After processing all incoming symptoms the α-counter value is
updated according to the transition enabled by guard ϕ16 and action λ16:

α = α + (new ·Ψnew) + (old ·Ψold) + (fcorr ·Ψcorr)

where, new holds the number of newly received messages (with future timestamp),
old holds the number of received messages with outdated timestamp (due to possi-
ble delays introduced by the event-triggered virtual network service), and fcorr the
number of correlated messages.

Implementation of the Timed State Machine

The transformation of the automaton described in Figure 6.26 into executable code
is straightforward. In the following we discuss relevant implementation details of the
implemented state machine as executed by the analysis job.

Global Time. Since the progression of the execution trace of the automaton im-
plementing the analysis algorithm depends on the progression of real-time, all local
clock variables are synchronized with the global time provided by the underlying
time-triggered core network. As already stated, the 16 bit global time provided by
TTP is extended to a node local 32 bit time field to implement timing constraints
exceeding 16 bit (or approximately 330ms in the used schedule and TTP cluster
configuration). The 32 bit timestamp is derived from the exchange data structure
(see Section 6.2) as follows
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#define GLOBAL_TIME32
(exchange->slot[nComponent].ctrl[14] << 24) + \
(exchange->slot[nComponent].ctrl[15] << 16) + \
(exchange->slot[nComponent].status[0] << 8) + \
exchange->slot[nComponent].status[1])

Thereby, the TTP specific time fields are made available for the LXRT analysis
job. Of particular interest with respect to the progression of real-time is state
CHECK TIME STAMP, where the following timing analysis is performed:

• In case ϕ10 := (timecorr−∆
2 ) < m(type,symptom#,u.∗:).timestamp < (timecorr+ ∆

2 )
is enabled, a correlated diagnostic message has been detected and the correla-
tion factor fcorr is increased. This condition shows how a holistic view on the
distributed state of the integrated system can be exploited for a more accurate
diagnosis of experienced failures.

• In case ϕ11 := m(type,symptom#,u.∗:).timestamp ≥ (timecorr + ∆
2 ) evaluates to

T, a message with a new symptom has arrived. As a consequence the new
counter is increased and the variable holding the reference timestamp timecorr

is updated accordingly.

• In case ϕ12 := m(type,symptom#,u.∗:).timestamp ≤ (timecorr − ∆
2 ) a message with

an outdated timestamp has arrived. This condition might fire, due to possi-
ble message delays at the virtual event-triggered network. If the guard ϕ12

evaluates to T, the old counter is increased and later added to the α-counter
value.

Although a node local 32 bit timestamp is used in the implementation, a time overflow
might occur. This has to be taken into account when transforming the guards into
executable code.

Event Semantics. The use of event semantics for encoding diagnostic information
has the advantage of effective usage of the available bandwidth for diagnosis. Since
only changes in interface state variables are distributed, a failure is active as long as
no message is received, stating that a correct state of the variable has been restored.
Whenever no confirmation messages arrive, a permanent failure is assumed. This
issue has to be taken into account when implementing the analysis algorithm.

Therefore, the variable OKcount holds the number of received messages indicat-
ing that the status of the channel is correct. If the message data field contains the
symptom SYM CORRECT CH0/1 the variable OKcount is incremented, otherwise decre-
mented (see also the transitions ϕ6, λ6 and ϕ19, λ19 in Figure 6.26). In the correct
case OKcount equals the number of components in the system. Consequently, the
function av(m) needs to return the symptom value for implementing this strategy.
As depicted in the timed automaton, in case the value of OKcount is smaller than the
number of the deployed physical components, there are two possible transitions:
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• If OKcount ≥ n
2 +1 evaluates to T, then the majority of the nodes in the cluster

have confirmed that the channel status is correct again. In case OKcount does
not equal the number of components, the counter is increased over time. In
the implementation every 5 · Γα time units, OKcount is incremented by one to
compensate for missing “OK messages”.

• If OKcount < n
2 + 1 evaluates to T, then only a minority of the nodes in the

cluster have confirmed that the physical connection to the time-triggered core
network has been reestablished. In this case a permanent failure has been
detected and the α-counter value is increased by Ψpermanent every Γα time
units as long as either the missing “OK messages” arrive or the threshold Tα

is exceeded.

Exceeding the Threshold Tα. In case the α-counter value exceeds Tα, the global
analysis data structure is updated accordingly. For example, in case α-counter for
channel 0 of component 2 exceeds Tα, the following code

cluster.component[2].ch0_counter++;
cluster.component[2].borderline_counter++;

is executed. Then, the timed automaton is reset and the execution starts over again.
Reoccurring overstepping of the threshold then results in additional ONA firing and
thus strengthen the belief in the previous analysis results. However, alternative
strategies can be implemented. For example, after exceeding the threshold Tα the
component can be declared as permanent faulty and scheduled for maintenance ac-
tion.

Decrease of the α-counter. In case α ≤ 0 the fault pattern for a channel fault
is discarded. Since the diagnostic architecture follows the record any single anomaly
design principle, the anomaly counters for the respective component are increased:

cluster.component[2].ch0_anomaly_counter++;
cluster.component[2].borderline_anomaly_counter++;

Subsequently, the timed automaton is reset and the execution starts over again by
initializing the automaton data structures.

Parameter Settings

In the implementation of the threshold-based analysis algorithm depicted in Fig-
ure 6.26 the following values for the parameters are used:

#define INIT_ALPHA_VALUE 20
#define T_ALPHA 300
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Figure 6.27: Out-of-Norm Analysis: Alpha Counter for Different Faults

#define GAMMA_ALPHA 0x5B8D80 // (*5musec = 30 Seconds)
#define DELTA 0x0007D0 // one TDMA round [-3E8,+3E8]
#define PSI_CORR 30
#define PSI_NEW 2
#define PSI_OLD 5
#define PSI_PERMANENT 50

GAMMA ALPHA is set to 0x5B8D80 that equals an interval of 30 seconds. In case no
further symptom is received within 30 seconds, the α-counter value is decreased by
one. Messages with a timestamp differing no more than one TDMA round (or DELTA
= 0x7D0 macroticks) are assumed to be correlated. This opens the time window
[t-3E8,t+3E8] for processing correlated information. A single symptom increases
the α-counter value only by 2 as defined in NEW FACTOR, whereas any additional
correlated symptom message increases the α-counter value by 30 corresponding to
CORR WEIGHT FACTOR. The parameter INIT ALPHA VALUE defines the penalty for the
first occurrence of a symptom, and PSI PERMANENT increases the α-counter value by
50 every GAMMA ALPHA time units in case a permanent channel failure is detected.

Results

Figure 6.27 depicts the measurement results of three experiments analyzing the per-
formance of the implemented α-counter strategy. On the basis of three chosen rep-
resentative fault types, namely
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• Permanent internal channel failure (denoted as “Permanent Failure”)

• Transient internal channel failure (denoted as “Exceeding Threshold”)

• Transient external channel failure (denoted as “Below Threshold”)

we describe the measurement curves of the α-counter values in more detail. The x-
axis of the diagram presented in Figure 6.27 shows the progression of time. Each time
unit corresponds to Γα, i.e. the time that has to elapse without an error messages to
decrease the value of the α-counter. The y-axis represents the value of the α-counter.

Interpretation of the Results

Permanent internal channel failure. As depicted, once a permanent chan-
nel failure occurs, the value of the α-counter is increased by Ψpermanent every Γα

macroticks. Since no message with symptom SYM CORRECT CH0/1 is received, indi-
cating that the physical link is successfully established again, and the majority of the
components in the cluster support this view (OKcount < n

2 + 1), an increase of the
α-counter value exceeding Tα is the result. Consequently, the channel is declared as
being permanent faulty and a corresponding entry into the diagnostic data structures
is written.

Transient internal channel failure. In today’s automotive bus systems the ma-
jority of recorded problems are due to communication problems on the CAN bus.
Consequently, the diagnosis of communication blackouts on the deployed bus systems
is of critical importance. Since transient internal channel failures require maintenance
action such as inspection of the cable loom or change of a defective ECU, accurate
diagnosis is vital to keep warranty costs low. The following points as highlighted
in Figure 6.27 are of special interest. At t = 23 a channel failure is detected and
processed, resulting in an increase of Ψα−init of the α-counter value. Since correlated
failure messages confirm this channel failure, the term new · Ψnew + fcorr · Ψcorr is
added to the value of the α-counter. As depicted, the continuous detection of symp-
toms indicating a potential internal channel failure causes that the fault pattern is
never discarded. In fact, the reoccurring correlated symptom detections result in an
increase of the α-counter value beyond Tα as time progresses.

Transient external channel failure. According to the maintenance-oriented
fault model, transient external faults are falling into the category of faults where
no maintenance action is required to restore the intended functionality. Whenever,
the first diagnostic message with a symptom that is relevant for the analysis of com-
ponent borderline faults is processed the α-counter is increased according to Ψα−init.
The curve presented in Figure 6.27 shows this increase in the beginning, due to an
unconfirmed symptom message. Whenever the α-counter value, that decreases over
time, is 0 again, the fault pattern is discarded and the timed automaton reset after
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Figure 6.28: Out-of-Norm Analysis: Timed Automaton for the Determination of Job
Inherent Faults

writing an entry into the analysis data structures. Then the execution of the timed
automaton restarts in state “initial symptom message”. The second increase of the
α-counter value at time t = 50 is much higher, since in this case the channel failure is
confirmed by all other nodes on the cluster. In contrast to the single failure messages
at time t = 75 and t = 100, where only Ψnew is added to the α-counter value having
only a marginal impact on the outcome of the analysis result. Note, that although
the ONA never fires, i.e. the threshold Tα is never exceeded by the α-counter value,
every entry made into the analysis data structures whenever the fault pattern is dis-
carded is an indication for an anomaly. This data can provide important feedback
when analyzing a large population of maintenance records.

6.4.4 Determination of Job-Inherent Faults

Similar to the previous example, the analysis of job-inherent faults is realized using a
threshold-based analysis algorithm. In contrast to systemic diagnosis, however, the
diagnosis of job-inherent faults depends on profound knowledge on the application
and must be specified by the application designer.

The implemented analysis algorithm for the analysis of job-inherent faults,
i.e. these are either faults affecting the controlled sensor or actuator or software
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design faults, is depicted in Figure 6.28 and similar to the algorithm presented in
Section 6.4.3. For the analysis the following information can be used to improve the
accuracy of the analysis process:

• Symptoms Generated by the Message Classification Layer. The mes-
sage classification layer as introduced in Section 5.8 realizes the cross-checking
principle at application level. Even executed at the same component, the mes-
sage classification provides means to independently monitor the output of a job
under the DECOS fault hypothesis (cf. Section 4.6) which states that jobs are
the FCR with respect to software faults. Similar to Section 6.4.3, correlated
symptoms have a significant impact on the α-counter value. The main differ-
ence is the fact that for the analysis two α-counter values are used, namely
αsensor and αsoftware for determining the most likely fault source.

• Private Symptom Messages. Although not designed according to the cross-
checking principle, job internal private diagnostic messages encoding symptoms
not made public at the interface for IP issues can be effective revealing faults
affecting the attached I/O. Since not all control registers of the transducer
are mapped into the port state of the job and thus made available for cross-
checking, this internal information provides additional information confirming
or falsifying a fault analysis hypothesis. Depending on the type of provided
information, either αsensor or αsoftware is increased.

• Plausibility Checks. Interface state variables of other jobs can be used for a
plausibility analysis. For example, interface state variables that are read from
the environment, either by a replicated sensor, or a sensor type that allows
deducing a wrong/contradicting measurement, can be used for improving the
result of the analysis process. This implies that not only diagnostic messages
from the virtual diagnostic network but all other messages of the system can be
used as input. As a consequence, the analysis job needs ports to the respective
virtual networks. In the depicted automaton, after receiving a symptom, the
belief in this provided information is strengthened or weakened by a plausibility
analysis where possible. Such a typical check is performed by guard ϕ12. In
case of an event-triggered virtual network, a message must be available at
the respective input port (in case of a time-triggered virtual network the guard
evaluates always to T). Subsequently, the value of the message of the input port
of the respective job is evaluated in oder to determine whether the symptom
is a strong indication for a software or a transducer fault. Furthermore, the
values can be used for gathering statistical data as required for engineering
feedback.

In case of a detected or discarded fault pattern the TD job data structure is updated
accordingly for a DAS-wide analysis to determine whether the fault/anomaly affects
only one job or more jobs at the same time.
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Figure 6.29: Diagnosis of Event-Triggered Virtual Networks: Faulty Sender vs. Faulty
Receiver

6.4.5 Determination of Job Borderline Faults

Event-triggered virtual networks are frequently used as the communication in-
frastructure for non safety-critical jobs as used to provide comfort functionality in
automotive systems. As discussed in detail in Section 5.4.2, the impreciseness of
the temporal LIF specification due to the underlying probabilistic communication
models makes a definite classification of a job difficult. The lack of temporal rigidity
in the interface specification makes it hard to judge whether a job conforms to the
specification and thus diagnosis of event-triggered systems is prone to misjudgement.
Although interarrival and service times can be specified, the limits are not hard and
thus a missed deadline is no more than an anomaly and cannot be judged as an in-
disputable failure. However, the accurate diagnosis of the communication activities
of event-triggered jobs is vital to

• identify configuration faults (i.e. analyze whether the underlying communica-
tion model holds in reality), and

• to identify reoccurring job failures as a good indication of software faults or a
defective sensor/actuator connected to the job.

In the DECOS diagnostic architecture we exploit the architectural services to
improve the accuracy of the diagnosis for event-triggered jobs significantly. Although
we cannot ignore the impossibility result of [FLP85], by operating on the global state
of the system we can include the three dimensions of time, space, and value to judge
about the correct functionality of each job:

• Space Domain. The inclusion of the space domain into the analysis process
allows determining the limits with respect to the functional and physical entities
of the fault. In the physical space domain we distinguish between component-
local or cluster-wide (i.e. a fault affecting more than one component). In the
functional space domain we distinguish between job-local or DAS-wide (i.e. a
fault affecting more than one job within the respective DAS). See also Fig-
ure 5.2.
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Figure 6.30: Hierarchical Out-of-Norm Assertions

• Time Domain. By exploiting the global time for timestamping of symptoms,
a possible correlation of diagnostic events can be identified and processed.

• Value Domain. Depending on the type of symptom (e.g., queue overflow,
single burst) different analysis strategies can be implemented. For example a
queue overflow can lead to a more significant increase of the α-counter value
than a single burst. Additionally, information provided by the operating system
can be used to judge about the computational progress of a job.

In the prototype setup, for evaluating the correctness of either the underlying
communication model behind the parametrization of the virtual network service and
the correctness of the job software the following symptoms are processed by the
analysis algorithm:

• Queue overflows at the input ports of a receiving job

• Queue overflows at the output ports of a sending job

• Burst anomalies at the output ports of a sending job
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Figure 6.31: Out-of-Norm Analysis: Timed Automata for Job Borderline Fault
Analysis

As depicted in Figure 6.29 the goal of the implemented analysis algorithm is the
determination whether the sender or the receiver is faulty. This information is then
correlated via the use of a hierarchical ONA to check for correlations in the space do-
main as previously discussed. This hierarchy of ONAs as shown in Figure 6.30 allows
a determination whether a fault is delimited by physical or functional borders. The
key advantage is that this way once defined ONAs can be used for multiple analysis
processes and information from various sources can be correlated for operation on
the distributed state of the system. As depicted in Figure 6.30 for each job an ONA
with corresponding symptoms evaluates whether a job violates its (probabilistic) in-
terface specification. Although we restrict the symptoms in the implementation to
queue overflow detections and bursts, inclusion of interarrival and service time vio-
lations is straightforward. The result of this continuous evaluation process leads to
a corresponding update of the cluster data structure TD decos cluster. Concur-
rently to this evaluation process that combines the diagnostic information for each
job (i.e. job-local) a hierarchical ONA combines all results to check for correlations
in the space domain (physical vs. functional) to improve the accuracy of the analysis.

The timed automata for the analysis of job borderline faults as depicted in Fig-
ure 6.31 implements a basic α-counter strategy. For each job with sending and
receiving functionality two automata are needed. The reason for being able to
keep each of the automata very simple is the possibility of deploying hierarchical
ONAs. The Ψα value for increasing the α-counter depends on the type of symptom.
While an overflow is a definite failure, a single burst is just an anomaly. Conse-
quently, the α-counter value is increased with a higher value in case of overflows.
Whenever the α-counter threshold value Tα is exceeded, the cluster data structure
TD decos cluster is updated. For instance, if job 0 of the CAN COMFORT DAS hosted
on component 0 misses to consume the messages at the respective input ports of its
link, the receive counter and borderline counter are updated:
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cluster.component[0].DAS[CAN_COMFORT].job[0].receive_counter++;
cluster.component[0].DAS[CAN_COMFORT].job[0].borderline_counter++;

In analogy the send counter is updated accordingly. Similar to previously described
examples, the parameter Γα defines the length of the interval between decreasing the
α-counter value in case no further symptom message is received. In case the α-counter
value is decreased to 0, the fault pattern for the job is discarded. Nevertheless a
corresponding update of the anomaly counter of the job in the cluster data structure
TD decos cluster is made.

In case the analysis process has revealed a job software or borderline (i.e. configu-
ration) fault, this information can then be correlated at the OEM with data gathered
from a significant population of cars to identify design faults. This fleet analysis pro-
vides data for the improvement of the quality of the deployed hardware and software
and also helps in minimizing warranty costs.

Parameter Settings

In the prototype implementation the following constants for the α-counter have been
defined:

#define INIT_ALPHA_VALUE_SEND 20
#define INIT_ALPHA_VALUE_RECEIVE 20
#define T_ALPHA 120
#define GAMMA_ALPHA 0x5B8D80
#define PSI_ALPHA_SEND 20
#define PSI_ALPHA_BURST 3
#define PSI_ALPHA_RECEIVE 5

Both, INIT ALPHA VALUE SEND and INIT ALPHA VALUE RECEIVE are used to increase
the α-counter value after the first occurrence of a corresponding symptom (i.e. queue
overflow at the input or output port). T ALPHA defines the threshold and GAMMA ALPHA
the length of the time interval, after which the α-counter is decreased in case no fur-
ther symptom is received at the input port of the analysis job. The penalty value
PSI ALPHA SEND is added to the value of the α-counter of a queue overflow at a sender.
In case a burst is detected a smaller value defined in PSI ALPHA BURST is added to the
counter, since a burst is typically no definite violation of the temporal interface spec-
ification but rather an anomaly. In analogy, the penalty value PSI ALPHA RECEIVE
is added to the value of the α-counter of a queue overflow at the receiver. This value
is smaller compared to the value of PSI ALPHA SEND, since PSI ALPHA RECEIVE will
be typically added multiple times (i.e. for every input port of the job).

Results

Figure 6.32 depicts an exemplary measurement curve for the α-counter value of a
faulty sender. Each time the queue overflows, the penalty value is added to the
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Figure 6.32: Out-of-Norm Analysis: Faulty Sender

Out-of-Norm Analysis for ET Job (Receiver)

0

20

40

60

80

100

120

140

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Time

A
lp

ha
 C

ou
nt

er

Figure 6.33: Out-of-Norm Analysis: Faulty Receiver

current α-counter value. In case a burst is detected, the α-counter value is increased
by Ψα−burst (see for instance t = 12, t = 15 or t = 72).

On the other hand, Figure 6.33 shows an exemplary measurement curve for the
out-of-norm analysis of a faulty receiver. The increase of the α-counter value depends
on how many other event-triggered jobs send messages to the input port of the
receiving job at the interval of job inactivity. The more queue overflows, the higher
the increase of the α-counter value.
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Interpretation of the Results

In comparison with diagnostic solutions for physical CAN systems, the diagnostic
services operating on a virtual event-triggered network allow tracing of the job re-
sponsible for causing a violation of the interface specification. The lack of a global
time base in physical CAN systems makes an analysis of correlated fault effects dif-
ficult. Furthermore, the sending of diagnostic messages with high priority can itself
be the reason for delaying application messages resulting in violations of temporal
interface specifications. In case of a low priority the sending of diagnostic messages
without a globally synchronized timestamp can mislead the analysis process and
subsequently lead to wrong maintenance actions. In addition, the limited error con-
tainment properties of CAN makes tracing the real fault source a difficult and error
prone task.
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Chapter 7

Selected Experiments and
Results

In this chapter we present selected experiments to investigate the effects of fault-
induced state changes on the distributed state of the core communication system in
order to define fault patterns for diagnosis of systemic system failures. In particular,
numerous fault injection experiments have been carried out to analyze the effects of
external, internal, and borderline faults in order to identify systemic symptoms that
allow for accurate diagnosis. Furthermore, the independence assumption for the im-
plementation choices of the core time-triggered communication system of the DECOS
architecture with respect to diagnosis is investigated. We thereby determine the type
of information provided by the protocol mechanisms and communication controller
that proves to be meaningful for maintenance purposes and then extrapolate this re-
sult to define generic systemic symptoms for time-triggered communication systems.
In addition, the fault injection experiments demonstrate the benefits of deploying a
dedicated virtual network not only for the transport of diagnostic information, but
also as a key mechanism of a fault injection infrastructure whenever a system wide
view on the effects of faults is required.

At first we describe the setup of the used fault injection framework. We have ex-
ecuted two fault injection campaigns according to the component fault classes of the
maintenance-oriented fault model introduced in Section 5.3. One campaign uses an
EMI disturbance generator for injecting internal/external component faults, the sec-
ond campaign utilizes both, the EMI disturbance generator and TTTech disturbance
node, for injecting fault representatives of the component borderline fault class.

7.1 Overview of the Fault Injection Framework

In the course of the fault injection campaigns we target only fault classes with re-
spect to the component boundary, i.e. component internal, component external, and
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Figure 7.1: Setup of the Hardware Fault Injection Experiments

borderline faults. For this reason, a time-triggered cluster as the core communica-
tion system of the DECOS architecture is used. In the setup of the fault injection
framework as depicted in Figure 7.1 we employ a TTP MPC555 cluster consisting of
four nodes [TTT04a]. In the framework we utilize two hardware fault injection de-
vices [HTI97], an EMI disturbance generator and a bus disturbance generator. While
the latter is used to emulate borderline faults, the EMI generator is used to simulate
both internal and external component faults. For a more detailed description of the
fault injection setup refer to [Pau05]. During the fault injection campaigns the target
system has only been exposed to radiated energy and not to power supply induced
EMI.

One dedicated node in combination with a personal computer is responsible for
triggering the experiments. Like in the DECOS architecture we employ a virtual
diagnostic network, i.e. an overlay network on top of the core time-triggered network,
for the dissemination of relevant information. This way, monitoring of the distributed
state of the system is possible. Once the result of an experiment is transferred to the
PC and stored in the database, the cluster is restarted for the following experiments
to preclude any side effects of previous experiments.

Since we are not interested in testing the hardware for EMI susceptibility, but
only interested in the effects EMI is causing on the distributed state of the system,
it is intentional to make the device under investigation more susceptible to EMI.
Therefore, a non automotive qualified version of the TTP nodes is used. By using the
automotive qualified version of the hardware (by-wire-box), less effects are expected
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Figure 7.2: The NSG 1025 Fast Transient/Burst Generator

in comparison with the version of the cluster for development.

7.1.1 Cluster Description

In the framework we use a TTP-Development Cluster based on four TTP-Powernodes
mounted in a rack and with one TTP-Monitoring Node for downloading configura-
tion data (i.e. the cluster schedule) and application code [TTT04a]. Each TTP-
Powernode [TTT04b] is equipped with the TTP C2 controller AS8202NF (C2NF)
and uses a Freescale MPC555 processor for the execution of application tasks. TTP-
OS is used as the operating system [TTP05]. In addition to TTP, a broad variety
of interfaces is supported: ISO 9141 (suitable for TTP/A, LIN, and ISO-K), CAN,
digital I/O, and analog inputs. In the fault injection setup a bus topology is used.

7.1.2 The NSG 1025 Fast Transient/Burst Generator

The NSG 1025 fast transient/burst generator as depicted in Figure 7.2 is manufac-
tured by Schaffner Instruments is used as an EMI-disturbance generator in our fault
injection framework. The generator is designed for the use in lab and field-testing
due to its capability of producing different types of disturbance signals. In particular,
the ability to control the triggering of the EMI disturbances by software makes the
system especially useful for lab testing, whenever a large number of experiments is
required. Once the type of disturbances and parameters (i.e. the amplitude and fre-
quency) has been selected, the fault injection campaign can be run automatically. All
types of disturbances can be controlled using the trigger/gate port of the generator
at TTL-voltage, thus the generator can be controlled using a standard output port
of a node. Whenever no signal is provided, the generator transmits no disturbances.

A variety of probes of different shape and size can be used for the transmis-
sion of the disturbance signal. In addition, an oscilloscope can be connected to the
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Figure 7.3: The Different Types of Probes of the EMI Testing Device (small (S),
medium (M), and large (L))

EMI-device for monitoring purposes. This feature simplifies the development of the
triggering software as it allows direct monitoring of the generated disturbance signals.
The EMI-generator can generate the following type of disturbance signals:

• Single pulses. In single mode the EMI-disturbance generator produces fast
transient pulses with a rise-time of 5ns, duration of 50ns and amplitudes from
225V to 4.4kV. Although the manual specifies 4.4kV as the maximum voltage,
the generator can be adjusted to higher voltages up to 5.02kV.

• Repeated single pulses (50Hz). The form of the repeated pulses is the
same as in single mode and the repetition-frequency of 50Hz is fixed. The
amplitude can be selected either by choosing one of the pre-defined IEC-levels
or continuously by using the potentiometer (e.g., for validation according to
technical standards).

• Burst disturbances. By setting the EMI-generator to burst mode, burst
disturbances of variable amplitude with a duration of 15ms that are repeated
every 300ms are transmitted continuously.

At burst mode the generation of disturbances using small values for period
is permitted, but can bear problems as the generator pauses for 300ms before
beginning the transmission of a new burst. If the value for period is smaller than
this, the EMI-generator may not generate the full number of bursts requested.
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Figure 7.4: The TTP-Disturbance Node

7.1.3 The TTTech TTP-Disturbances Node

The TTP-Disturbance Node [TTT05] (as illustrated in Figure 7.4) can be used to
examine the system behavior of a TTP system that is subject to fault induced state
changes. The node can be used in a running system (e.g., onboard a car) or with a
test setup in the laboratory. This way the laboratory experiments can be replicated
onboard the target system. In the test setup the disturbance node is used to study the
effects of faults on system behavior, in particular to produce borderline faults. A key
advantage of the disturbance node is the reproducibility of the test cases, since the
triggering of the experiments can be synchronized with the TDMA cluster scheme.
The disturbance node is easily configured using XML description files and can be
triggered directly by the analysis node via the output port pins. The disturbance
node can be used to inject a variety of classes of faults, thus allowing analyzing the
behavior at the physical, logical, and application layer. For instance the following
faults can be injected:

• Loss of transmissions

• Short-circuits to VCC and ground

• Mismatched termination of bus wires

• Noise burst

• Loss of specific data (reproducible experiments possible)

• Wrong Cyclic Redundancy Code (CRC)
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7.2 Analysis of Component External Failures using Elec-
tromagnetic Interference (EMI)

The use of EMI is widely accepted as a solid fault injection technique for analyzing
the effects of non destructive external faults on electronic devices. The following
campaign investigates the fault induced state changes of the TTP cluster under EMI
in order to define diagnostic mechanisms.

7.2.1 Hypotheses

The first hypothesis is a statement about the restart rate (also component member-
ship) for diagnosis. As elaborated on in Section 3.5 the restart rate of a component is
frequently considered as a suitable indication whether a transient internal or external
fault is affecting a component. The experiments will determine the restart rates of
the nodes of the cluster when exposed to EMI, as a non destructive external fault
injection technique, and give valuable information on how to use the restart rate for
analysis. Furthermore, on the basis of the restart rate of the nodes, a fault pattern
can be defined, which is a prerequisite for the definition of the symptoms and the
parametrization of the subsequent analysis algorithms.

Hypothesis 1 A single restart of a TTP MPC555 node (PN212) is justifiably con-
sidered as an effective symptom for the identification of external component faults.

Subclaim 1 When a node is exposed to EMI, Invalid Frames are detected on the
network for the duration of the fault injection.

Subclaim 2 When a node is exposed to EMI, Incorrect Frames are detected on the
network for the duration of the fault injection.

Subclaim 3 When a node is exposed to EMI, Null Frames are detected on the net-
work for the duration of the fault injection.

Subclaim 4 When a node exhibits a crash failure due to EMI, it reintegrates into
the cluster within a bounded interval of time.

The detection of correlated node failures is crucial in reducing the fault-not-found
ratio in today’s embedded systems. The second hypothesis states that in the DECOS
architecture such correlated failures due to EMI can be identified and forwarded for
subsequent analysis. Note, that correlated node failures are not within the single
fault hypothesis [Kop04]. It is expected that by using a bus topology with local
guardians, the effects of EMI induced state changes in a component may physically
propagate on the bus and cause adjacent nodes to fail. This hypothesis is thus
a statement of investigating physical effects on the bus, not error propagation via
insidious messages.
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Figure 7.5: Setup for the EMI Fault Injection Experiments for Analyzing Component
Failures

Hypothesis 2 In case of fail-silent node failures of two nodes, a correlation of these
multiple node failures due to the effects of EMI can be identified by the diagnostic
subsystem on the basis of diagnostic messages sent on the virtual diagnostic network
indicating the frame status of the nodes.

The DECOS architecture is designed to be independent from the core commu-
nication network, as long as the core services are provided. The third hypothesis
evaluates whether this assumption holds in case of EMI. If this is not the case, then
for other choices for the underlying time-triggered core network, such as FlexRay
or Time-Triggered Ethernet, adapted detection strategies need to be devised and
implemented.

Hypothesis 3 The DECOS diagnostic services are independent from the implemen-
tation technology of the underlying time-triggered core communication system.

7.2.2 Experimental Setup

As illustrated in Figure 7.5 the EMI testing device is used for evaluating the effects
of component external faults on the state of the distributed system. For this reason
the probe is directly placed on one node of the cluster. The experiments are executed
using different probe types, EMI disturbance modes, and voltage levels.

7.2.3 Results

Table 7.1 shows the results of a total of 80,000 EMI fault injection experiments
targeting the C2 controller. The type field denotes whether a random single pulse
(SPRand) or if a single pulse at the sending slot (SPSlot) of the node under inves-
tigation has been injected. For these experiments the small probe has been used
(see Figure 7.3). For both types, SPRand and SPSlot, voltage levels of 2000 and
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Type Probe Position Voltage # of Experiments
SPRand2S S C2 2000 10000 / 10000
SPRand4S S C2 4000 10000 / 10000
SPSlot2S S C2 2000 10000 / 10000
SPSlot4S S C2 4000 10000 / 10000
Type Membership Loss Restart Rate Null Frames

SPRand2S 486 / 959 1,0 / 0,40 486 / 959
SPRand4S 752 / 6274 1,0 / 0,84 752 / 6274
SPSlot2S 5672 / 6206 1,0 / 0,89 5672 / 6206
SPSlot4S 1062 / 9988 1,0 / 0,74 1062 / 9988

Table 7.1: Results of 80,000 EMI Experiments (Target: C2 controller, Mode: Single)

Type Probe Position Voltage # of Experiments
SPSlot4L L Node 4000 5000
SPRand4L L Node 4000 5000

Type Membership Loss Restart Rate Null Frames
SPSlot4L 502 0,51 502
SPRand4L 298 0,21 298
Table 7.2: Results of 10,000 EMI Experiments (Target: Node, Mode: Single)

4000 Volts have been investigated. As expected, the higher the voltage used in the
EMI experiments, the more likely the node failed. It is worth recognizing, that only
Correct or Null Frames have been received by all other nodes in the cluster. Fur-
thermore, the restart rate (i.e. the rate the node restarted itself after a failure) has
always been 100% when using the hardware watchdog of the MPC555. Without the
explicit use of the hardware watchdog a restart rate significantly below 100% has
been recorded (numbers listed in table: “MPC555 watchdog/controller only”).

Table 7.2 presents the results of a total of 10,000 experiments using a probe
targeting the complete TTP node (with disabled MPC555 watchdog). Both, random
single pulses and single pulses at the sending slot of the node under investigation
have been injected with a voltage level of 4000 Volts. When executing the SPSlot4L
using the large probe, 101 failures (i.e. 10 simultaneous and 91 single failures) of
the node next to the node under analysis have been detected due to propagation of
the EMI fault effects on the bus system. In case of the SPRand4L campaign 327
failures (i.e. 28 simultaneous and 299 single failures) have been detected. Similar to
the results of Table 7.1, the node always failed in a fail-silence way (i.e. sending out
either Correct Frames or Null Frames).

Table 7.3 lists the results of 10,000 fault injection experiments (Burst4L) targeting
the complete node using the large (L) probe for injecting 2 ms EMI bursts in the slot
of the node under investigation (i.e. node 3). In contrast to previous campaigns, the
burst mode causes not only failures of the node (and restarts after a lost membership),
but also channel failures resulting in Invalid and Incorrect Frames. As shown, node 0
monitored 6444 Null Frames on both channels, 9 Invalid frames (wrong encoding) on
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Type Probe Position Voltage
Burst4L L Node 4000
Node # Null Frames Invalid Frames Incor. Frames

0 / Channel 0 6444 9 12
0 / Channel 1 6444 29 12
1 / Channel 0 6442 12 12
1 / Channel 1 6442 9 12
2 / Channel 0 6357 19 13
2 / Channel 1 6382 26 13

Table 7.3: Results of 10,000 EMI Experiments (Target: Node, Mode: Burst)

channel 0 and 29 Invalid Frames on channel 1, and 12 Incorrect Frames (i.e. incorrect
CRC) on both channels. Node 1 monitored 6442 Null Frames on both channels, 12
Invalid Frames on channel 0 and 9 Invalid Frames on channel 1, and 12 Incorrect
Frames on both channels. Finally, node 2 monitored 6357 Null Frames on channel 0
and 6238 Null Frames on channel 1, 19 Invalid Frames on channel 0 and 26 Invalid
Frames on channel 1, and 13 Incorrect Frames on both channels. Since node 2 is
next to node 3 in the bus configuration of the fault injection experiments, it can be
concluded that the effects of the EMI disturbances have propagated.

7.2.4 Interpretation and Discussion

In the following we discuss the results derived from the above presented fault injection
campaign:

• Hypothesis 1 has not been falsified.

Subclaim 1 has not been falsified. A total of 37 Incorrect Frames (i.e. wrong
CRC) has been consistently detected on both channels of the TTP cluster when
bursts are randomly injected.

Subclaim 2 has not been falsified. A total of 104 Invalid Frames (i.e. wrong
encoding) has been detected when bursts are randomly injected. In contrast to
the Incorrect Frames, the number of detected Invalid Frames per channel was
different.

Subclaim 3 has not been falsified. A total of 100,000 EMI experiments has
revealed that in approximately 40% of all runs, the node under investigation
crashed in a fail silent way, i.e. Null Frames have been consistently detected on
the bus by all other nodes in the cluster.

Subclaim 4 has not been falsified. The restart rate presented in Table 7.1 and
Table 7.2 shows that whenever a node has exhibited a crash failure, the node
restarted and reintegrated into the cluster (including the virtual diagnostic net-
work) within 130 ms to 3490 ms. This large variation in time can be explained
due to the mechanisms triggering the restart of node. When built-in mecha-
nisms of the TTP protocol trigger the restart, the blackout time of a node is
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relatively small. However, in case of a host failure, then the blackout time of
the node is significantly longer. This is due to the fact, that the automatically
generated code of the used TTP tools prohibits a user defined setting of the
MPC555 watchdog configuration registers. Since the watchdog can only be
configured at startup (and this is performed by non user modifiable tool gen-
erated code), the watchdog is automatically set to the maximum delay value.
The experiments have shown that there are likely scenarios in which the node
does not restart after an EMI fault when the hardware watchdog provided by
the MPC555 is disabled. However, when in addition to the built-in mechanisms
the hardware watchdog of the MPC555 is enabled, a restart rate of 100% has
been investigated.

Whenever a node fails to restart after a non-destructive transient external
fault, the node will be classified as being permanent faulty by the analysis
process, although a restart of the affected node during the next cycle of oper-
ation (e.g., shutting the engine off and on again in a car), such a node will be
operating as specified again. Consequently, for maximum availability of nodes
and to minimize the possibility of declaring functional nodes as being perma-
nently faulty, a strategy should be implemented of restarting nodes whenever,
either the host or the communication controller of the node fails. Note that in
the used TTP cluster, only the host can reset the communication controller,
but the communication controller cannot reset the host, whenever a lost mem-
bership is detected. Although this way the application may enter a safe state,
we believe that a never-give-up strategy of immediately restarting the node
would be a better choice. Otherwise, not only the system is operating in a
degraded service mode (e.g., only two nodes of a TMR system are operating),
but also prone to misjudgement by the diagnostic services.

It is obvious that such a strategy requires a new system design strategy, since
the interface state needs to be periodically transmitted on the network to al-
low fast state re-synchronization. This strategy of state-aware system design,
has the drawback of requiring additional bandwidth for the dissemination of
interface state information. However, with emerging technologies such as Time-
Triggered Ethernet [Kop05] today’s bandwidth problems are significantly ex-
tenuated.

As a result of the experiments it can be concluded that in the majority of the
experiments a node perturbed by EMI fails in a fail-silent way, i.e. whenever
the node under investigation was disturbed by the injected fault, the node
failed to send a frame in its assigned slot, i.e. a Null Frame was detected
due to a transient hardware failure. Subsequently, the node is classified as
non operational since the node loses its membership. This has always been
consistently detected by all nodes in the cluster. Thus, the experiments have
shown, that the inclusion of the restart rate is justifiably considered in literature
(e.g., [BCGG97, BCGG00]) as an effective symptom that should be used as
input for analysis algorithms.
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• Hypothesis 2 has not been falsified.

Results of the fault injection experiments described in Table 7.2 indicate that
by using a bus topology with local guardians, the effects of EMI induced state
changes in a component may physically propagate on the bus and cause adja-
cent nodes to fail. A total of 38 correlated node failures has been detected out
of a total of 10,000 experiments.

In these cases the correlated loss of the membership of two nodes within the
cluster has been consistently detected by the remaining operational nodes. Via
timestamping of the diagnostic messages encoding the membership loss (i.e. als
recognized via Null Frames as the frame status on both physical channels), the
analysis subsystem can easily deduce such a correlation of a fault causing dual
node failures. In the setup a 16 bit timestamp provided by the TTP/C global
time service is used. Therefore, the virtual diagnostic network is required to
transport this information to the analysis node before the occurrence of an
overflow to allow for a meaningful detection of correlated fault effects. No
violation of this timing assumption has been detected during the experiments.

As a result, in case of a bus topology spatial proximity information between
nodes should be encoded into the analysis algorithms to exploit this knowledge
for improving the accuracy of the result in case of correlated node failures.
When using a star topology, this problem should be solved, since a star config-
uration is superior in handling EMI faults. However, additional fault injection
campaigns are necessary to validate this claim.

• Hypothesis 3 has not been falsified.

Since the vast majority of the injected faults have resulted in crash failures,
it can be concluded that a binary information (i.e. the node is operational or
not) about the functionality of a node is sufficient as input in order to classify
the experienced failures according to the maintenance-oriented fault model.
In TTP, such a binary classification is provided by the membership service
(i.e. providing a consistent cluster wide view on the operational status of each
node in the cluster). In case no membership service is provided by the core
technology, the cross-checked frame status indicating missing sending activity
(i.e. a Null Frame in TTP) is an alternative choice. This independence of the
core communication controller is important, since the DECOS architecture is
designed to be suitable for a variety of underlying time-triggered core networks.
This way the same or very similar symptoms can be used also in the case of
using other time-triggered core communication system such as Time-Triggered
Ethernet [Kop05] or FlexRay [Fle04]. As derived from the experiments the
membership information or the restart of a node (especially when applying
an according never-give-up strategy of continuously restarting non operational
nodes) is a reproducible symptom valid for any time-triggered core architecture.
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7.3 Analysis of Component Borderline Failures using
Electromagnetic Interference (EMI) and the Distur-
bance Node

This campaign aims at investigating the behavior of the TTP cluster under borderline
faults generated by the disturbance node and by the EMI disturbance generator.
The experiments are used to inject borderline faults according to the maintenance-
oriented fault model and monitor the fault induced interface state changes of the TTP
cluster. Depending on the results of this fault injection campaign, systemic symptoms
for the detection and analysis of component borderline faults can be devised.

7.3.1 Hypotheses

The possibility to identify symptoms that allow discrimination between component
and bus/connector failures is a prerequisite for applying the maintenance-oriented
fault model. Therefore, different fault patterns need to be identified that allow
definition of symptoms for the different fault classes. The first hypothesis states that
using the frame status information provided by TTP C2 controller as part of the
PN212 node allows for discrimination between component and bus/connector faults.
Furthermore, the result will determine whether a binary classification of the frame
status is sufficient for the analysis of borderline faults or whether a finer granularity
is required.

Hypothesis 1 The value of the frame status field provided by the TTP/C controller
of the deployed TTP PN212 cluster allows distinguishing between component inter-
nal/external faults and borderline faults.

Identification of the exact location of a failure is an important step in keeping
associated maintenance/warranty costs low. Whenever, the location cannot be de-
termined, there is always the possibility of changing fully operational parts of the
system. The following hypothesis states that in our setup employing a bus topology
the location (affected node) of the failure can be identified.

Hypothesis 2 When using the TTP PN212 cluster with a bus topology, the exact
location of a borderline (bus) failure can be determined on the basis of the frame
status information distributed on the virtual diagnostic network.

Since bandwidth is typically considered in industry as a scarce resource, the
transport of diagnostic information on only one channel is an alternative option in
order to save bandwidth.

Hypothesis 3 The transport of diagnostic information via a virtual diagnostic net-
work on top of only one physical channel of the TTP cluster allows detection of all
injected borderline faults.
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Figure 7.6: Setup for the Borderline Fault Injection Experiments

7.3.2 Experimental Setup

As illustrated in Figure 7.6 the disturbance node is used to simulate component
borderline faults. The disturbance node can be inserted into the bus between any
two TTP nodes, since for fault injection no modifications of the cluster schedule
are required (i.e. in the used configuration, the disturbance node does not actively
generate valid TTP frames).

In addition, for analyzing the effects of heavy EMI disturbances on the bus a
similar configuration like in the previously described EMI injection campaigns has
been used. In this configuration the probe of the EMI testing device is placed on the
bus to affect more than one node (depending on the time interval specified for the
injection campaign).

7.3.3 Results

Table 7.4 shows the results of the EMI experiments targeting the bus of the TTP
cluster. In order to strengthen the effects of the EMI on the bus, the twisted pair
wire has been split up to allow a higher failure rate. For these 13000 experiments the
voltage has been set to 500 Volts and the L probe has been used to disturb channel
1 (bus line TTH) with 15 ms bursts. In the first column the node of the cluster that
is observing either an Invalid Frame or Null Frame on the respective channel 0 or
1 is listed. For each row the “accused node” entry contains the node of the cluster
that is suspected to be faulty. The data indicates that perturbing a channel of the
bus using the EMI probe causes a significant number of Invalid Frames on channel
1. Null Frames are only received when the node fails to operate and restarts (i.e. is
losing its membership).

During the fault injection campaign using the disturbance node as shown in
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Type Probe Position Voltage # of Experiments
Burst0.5L L (15 ms) Channel 1 500 13000
Node # Channel Accused Node Invalid Frames Null Frames/ML

0 0 1 0 5
0 1 1 93 5
0 0 2 0 6
0 1 2 48 6
0 0 3 0 24
0 1 3 1908 24
1 0 0 0 0
1 1 0 213 0
1 0 2 0 2
1 1 2 58 2
1 0 3 0 24
1 1 3 1936 24
2 0 0 0 0
2 1 0 689 0
2 0 1 0 1
2 1 1 417 1
2 0 3 0 24
2 1 3 1997 24
3 0 0 0 0
3 1 0 1975 0
3 0 1 0 5
3 1 1 1961 5
3 0 2 0 6
3 1 2 1889 6

Table 7.4: Results of EMI Experiments (Target: Bus, Mode: Burst (15 ms))

Type Busline TTL Busline TTH # of Exp. Time Detected Frames
DN1 GND GND 1000 40 ms Invalid (Correct)
DN2 VCC VCC 1000 40 ms Invalid
DN3 GND VCC 1000 40 ms Null (Invalid)
DN4 VCC GND 1000 40 ms Invalid
DN5 GND - 1000 40 ms Invalid
DN6 VCC - 1000 40 ms Invalid
DN7 - GND 1000 40 ms Invalid
DN8 - VCC 1000 40 ms Null (Invalid)

Table 7.5: The Fault Injection Experiments using the Disturbance Node

Figure 7.7 a total of 8000 experiments has been investigated to analyze the effects
of short circuits on the bus of the cluster. Table 7.5 lists the eight different types
of experiments that have been executed. Each of the eight configurations of short
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Figure 7.7: Fault Injection using the Disturbance Node

Node # Accused Node Invalid Frames Null Frames Correct Frames
0 1 0 1000 1000
0 2 0 1000 1000
0 3 0 1000 1000
1 0 2000 1000 1000
1 2 0 1000 1000
1 3 0 1000 1000
2 0 2000 1000 1000
2 1 0 1000 1000
2 3 0 1000 1000
3 0 2000 1000 1000
3 1 0 1000 1000
3 2 0 1000 1000

Table 7.6: Results for Campaign DN3 and DN8

circuits to GND and VCC lasted for 40 ms starting at the beginning of the slot of
node 0 on channel 0. For each type a total of 1000 experiments has been injected
and analyzed.

During the runs DN2, DN4, DN5, DN6, and DN7 the nodes monitor Invalid
Frames for the duration of 4 TDMA rounds (a TDMA round has been configured to
10 ms).

In Table 7.6 the results for the fault injection campaign DN3 are presented (the
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Node # Accused Node Invalid Frames Null Frames Correct Frames
0 1 1000 0 1000
0 2 1000 0 1000
0 3 1000 0 1000
1 0 1000 0 1000
1 2 1000 0 1000
1 3 1000 0 1000
2 0 1000 0 1000
2 1 1315 0 1315
2 3 1000 0 1000
3 0 1000 0 1000
3 1 1000 0 1000
3 2 1000 0 1000

Table 7.7: Results for Campaign DN1

experiments for campaign DN8 showed the same results). In all 1000 experiments all
nodes of the cluster detect in slot of node 0 (in which the fault injection starts) an
Invalid Frame. Then, for 3 TDMA rounds Null Frames are consistently monitored
and again an Invalid Frame is sent at the end of the experiment. The reason for
the two Invalid Frames at the beginning and end of the experiment is due to the
truncation of the frame disseminated by node 0 by the disturbance node.

Table 7.7 presents the results of campaign DN1. The results are similar compared
to the results of the campaigns DN2, DN4, DN5, DN6, and DN7. However, besides
monitoring Invalid Frames, node 2 detects also Correct Frames during fault injection
due to characteristics of the used physical layer. For a more detailed discussion refer
to [Pau05].

7.3.4 Interpretation and Discussion

By interpreting the previously described results of the fault injection campaign the
following results have been determined:

• Hypothesis 1 has not been falsified.

As the results of the fault injection experiments presented in Table 7.4 and 7.5
have revealed, by monitoring the frame status field of both physical channels,
a discrimination between component and bus/borderline failures is possible.

While EMI faults affecting the node typically result in the failure of the node
and thus to the detection of Null Frames on the bus with subsequent member-
ship loss, when disturbing the bus using the disturbance node, typically Invalid
Frames are detected. A similar fault pattern can be investigated when using
the EMI device to perturb the bus. In most cases the EMI causes the detection
of Invalid Frame types. Furthermore, borderline faults affect only one channel

200



7 Selected Experiments and Results 7.3 Analysis of Component Borderline Failures

Channel A (TTH)

Slot 0Channel A (TTL) Slot 3Slot 2Slot 1

Figure 7.8: A Short Circuit injected on Channel A of the TTP Bus.

of the core communication system, while node failures manifest themselves via
Null Frames on both channels.

This fact, that in case of hardware problems using a bus topology, Invalid
Frames are significantly more likely detected compared with the results of the
EMI campaign targeting the node allows defining the occurrence of Invalid
Frames as a good choice for symptoms of borderline/bus faults.

Consequently, the experiments have revealed that a binary classification scheme
is not sufficient for the discrimination between fault classes according to the
maintenance-oriented fault model. TTP provides a classification scheme for
frames that discriminates between Null, Incorrect, Invalid, Tentative and Cor-
rect frames (see also Section 6.3). For the DECOS independence assumption
with respect to the underlying time-triggered core architecture, this results
implicates that an abstract interface, onto the hardware-specific controller reg-
isters of TTP, Time-Triggered Ethernet or FlexRay can be mapped, needs to
be defined. The results of the experiments suggest to provide at least a message
classification that allows to discriminate between correct frames, frames with
wrong CRC, frames with wrong encoding, and null frames.

• Hypothesis 2 has been falsified.

In our fault injection setup using a bus topology the exact location of a short
circuit cannot be traced, since the bus is disturbed for the duration of the fault
injection. Figure 7.8 shows an oscilloscope screenshot illustrating an exemplary
scenario, where only Invalid Frames are received due to a short injected via the
disturbance node. During the fault injection time interval, the frames sent by
all nodes on channel A are affected. Pinpointing the node responsible for this
failure is impossible.
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Figure 7.9: A Bus Failure on Channel A dividing the Cluster.

Note, that the results are only valid for the employed physical layer of the TTP
cluster used in the fault injection framework. In case of point-to-point connec-
tions, as used in a star topology with a central bus guardian, a significantly
better detection capability is expected. However, additional fault injection
campaigns are necessary to validate this claim.

• Hypothesis 3 has been falsified.

Although sending different non safety-critical messages in a node’s slot per
channel allows for doubling the available bandwidth, in case of diagnosis this
strategy is problematic. Once the channel fails, no more diagnostic information
can be distributed and processed. The results of the experiments listed in
Table 7.4, and Table 7.5 indicate that this situation can occur.

Figure 7.9 shows such a scenario where channel A of the bus is divided into two
parts by a fault induced by the disturbance node. Here, node 0 and 1 would
classify node 2 and 3 as faulty and vice versa. In case only one channel is used,
insufficient information would be available at the analysis subsystem. In case of
a central diagnostic solution, one part of the system would therefore be classified
as being permanently faulty. For this reason both channels should be used
for the dissemination of diagnostic information. In order to save bandwidth
alternative strategies, such as forwarding of symptoms regarding channel A on
channel B and vice versa are possible. In addition, by splitting the remaining
messages between the outgoing queues of the event-triggered overlay network
and thus decrease the average load per channel, the latency can also be reduced.
However, such a strategy has the penalty of increased complexity and requires
additional processor time.
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Chapter 8

Conclusion

The main contribution of this thesis is the development of diagnostic architectural
services as part of an integrated time-triggered architecture in order to tackle preva-
lent maintenance problems industry is currently facing. The DECOS architecture, as
developed in a research project within the Sixth European Framework Programme,
aims at unifying the respective benefits of federated and integrated architectures.
On top of stable and validated core services that include a time-triggered transport
service, clock synchronization, fault isolation, and consistent component diagnosis, a
set of high-level services such as the virtual networks service or the gateway service
facilitates application development. As part of these high-level services, the diagnos-
tic and maintenance service aims at reducing service times and associated warranty
costs.

In accordance with hardware trends, emphasis has been set on the detection and
analysis of transients. Since transients last, by definition, only for a short interval of
time, typical BISTs that are scheduled periodically are not sufficient. Consequently,
only by continually evaluating the interface state of the constituting physical and
functional elements of the integrated system, all failures and anomalies can be de-
tected and analyzed. This is a prerequisite to enable the diagnostic services to
discriminate between transients resulting from internal and external fault sources.
While the latter require no maintenance actions, system internal faults can only be
corrected by replacement. Such a discrimination is possible by including the fre-
quency and correlated effects of experienced failures into the analysis process. In
combination with the error containment properties of the DECOS architecture and
the inclusion of knowledge about the system structure, accurate diagnostic services
can be realized.

The Maintenance-Oriented Fault Model

As part of the conceptual design we have introduced a maintenance-oriented fault
model that establishes the conceptual foundation of the diagnostic services of the
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DECOS integrated architecture. The fault model takes the component-based na-
ture of today’s distributed embedded systems into account stops the recursion of
the fault-error-failure chain at a level suitable for maintenance. According to this
model each experienced failure is classified with respect to the field replaceable units
of the system. The fault model also reflects the physical and functional entities of
the system to allow classification between hardware and software faults. For com-
ponents we discriminate between external, borderline, and internal faults, while for
jobs (i.e. software modules) a classification of faults into external, borderline, and
inherent (software vs. attached I/O) is realized. By applying the fault model dur-
ing the design of the deployed diagnostic mechanisms, it is ensured that only those
checks are realized that help in answering the question whether a particular FRU
needs to be replaced.

The presented fault model is also very useful for defining the test cases for vali-
dation purposes using fault injection techniques. Thereby, each test case relates to
one of the specified fault classes. The fault injection campaigns as part of this thesis
were designed after these considerations.

Operation on the Distributed State

In the context of diagnosis, integrated architectures exceed comparable federated
systems by the possibility to operate on the distributed state to reveal correlated
failures. By taking the physical and functional structure of an integrated system
into account a more accurate reasoning about the nature of a fault affecting the
system in case of failure is possible. Since integrated architectures, such as the DE-
COS architecture, overcome the prevalent “1 Function - 1 ECU” design philosophy,
a discrimination between software and hardware faults is feasible. In combination
with the inter-component and inner-component error containment mechanisms pro-
vided by the basic and high-level services, this strategy allows to trace correlated
system anomalies back to the FCR responsible for the experienced system behavior.
In contrast to the internal component states, the distributed state can be indepen-
dently checked. Such a detection is thus much more trustworthy than any internal
check that cannot be verified. Consequently, this strategy provides the foundation
for solving prevalent diagnostic problems by taking a holistic view, in contrast to
diagnostic systems operating only on the local internal state (e.g., like most OBD
system currently deployed in the automotive industry).

We introduced Out-of-Norm Assertions (ONAs) as the primary diagnostic mech-
anism following these principles that are operating on the distributed state to detect
correlated malfunctions. ONAs take the characteristics of faults in the time, value
and space domain into account in order to discriminate between different types of
faults according to the maintenance-oriented fault model that are affecting the op-
eration of the distributed system. Since ONAs are specified on the interface state,
mutual error detection of interface state variables is performed. The key concept be-
hind the cross-checking principle is that a failure of the sender manifests itself as an
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error in the interface state of the receiver (with respect to the interface specification
of the sender).

When shifting to time-triggered architectures, existing event-triggered legacy ap-
plication will not be replaced instantly. ONAs can also be employed, if the specifica-
tion includes imprecise temporal specifications such as probabilistic timing assump-
tions used for event-triggered communication. Consider for instance the specification
of inter-arrival times of messages in event-triggered communication systems. Nor-
mally, this information is expressed via probability distributions, thus a sharp line
that allows a classification into correct and incorrect cannot be simply drawn. By
introducing the concept of ONAs we provide a mechanism that allows to classify
such system anomalies in case of insufficient interface specifications over time.

The implementation of the ONA concept in the prototype DECOS cluster has
shown promising results. In particular, the inclusion of the time and space domain
besides value information has proved to be important for accurate diagnosis. As
supported by fault injection data, the use of timing information allows for detection of
correlated failures. In addition, when taking taking space information, i.e. knowledge
about the physical and functional structure of the system, into account, the detection
of software faults as required in integrated architectures is possible.

Diagnostic and Maintenance Services for an Integrated
Time-Triggered Architecture

In order to integrate diagnosis into the development process, a framework supporting
the definition of the diagnostic services has been introduced. Such a framework
also encourages the developers to precisely specify the diagnostic checks early in
the design and to treat diagnosis not as an addendum but as an integral part of
all development phases. Due to the framework, design faults can be avoided by
automatically transforming the ONA specifications into executable code that can be
executed as part of the high-level services.

To support separation of concerns, systemic diagnosis is decoupled from appli-
cation level diagnosis. This way the efforts of both, the system and application
designers, can be reduced. The application-specific diagnostic services can be pa-
rameterized according to the knowledge of the application developers. By contrast,
the systematic diagnostic techniques (e.g., identification of component hardware fail-
ures) are independent of a particular application context and need not be covered
by the respective application-specific diagnosis strategy (e.g., plausibility checks). In
addition, a revalidation of the systemic diagnosis mechanisms by the OEM is not
necessary if the coverage of the deployed mechanisms has been validated and can be
reproduced deterministically.

In the framework timed automata are used for the specification of ONAs, which
proved to be a solid and powerful mechanism. Furthermore, the transformation of
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timed automata into executable code is straightforward. In the prototype imple-
mentation for each of the fault class of the maintenance-oriented fault model we
have provided an example showing the feasibility of using the proposed specification
method. In particular, we specified and implemented application specific symptoms
for time-triggered and event-triggered jobs and systemic symptoms for component
external, internal and borderline faults.

Extensive fault-injection experiments have been carried out to investigate to
which extent the DECOS diagnostic services allow abstraction from the target plat-
form (e.g., TTP, FlexRay, Time-Triggered Ethernet). The campaigns have revealed
which of the provided TTP-specific controller information can be used for the spec-
ification of systemic symptoms. As a result it can be summarized that a restart
of a node is a suitable indicator for the detection of internal/external component
failures. In combination with algorithms that process the frequency of this failure
mode as their input, a judgment on the type of fault affecting the node is possible.
In combination with frame status information provided by all nodes of the cluster, a
classification according to the maintenance-oriented fault model is realistic.

Preclusion of Probe Effects via Encapsulation of the Di-
agnostic Services

Integrated architectures promise substantial technical and economic benefits in the
development of distributed embedded real-time systems. However, the benefits of
integrated architectures can easily be extenuated by increasing the complexity of the
system. In particular, with respect to diagnosis and maintenance some challenges
emerge. The higher the integration, the more easily services will interfere without an
error containment strategy. In the context of the diagnosis it is therefore important
that the diagnostic services are not the reason for any failure. In particular, archi-
tectural means must be realized to ensure that no probe effect will be introduced
given the economic constraints imposed by industry.

A necessary part of an integrated diagnostic infrastructure is the continuous mon-
itoring and subsequent dissemination of diagnostic information to allow tracing of
experienced failures back to the origin. Such a dissemination must not introduce
any additional temporal uncertainty in the communication system that negatively
affects the real-time traffic. In this thesis we propose a virtual diagnostic network
on top of the core time-triggered physical network. The a priori assigned bandwidth
guarantees independence of temporal behavior from the communication activities of
other virtual networks. By exploiting the virtual network high-level service of the
DECOS architecture no additional wiring and contact points are introduced. Thus,
not only a cost effective solution from an economic point of view is realized, but
also no additional faults can be introduced by the diagnostic services itself. This
way the introduction of a probe effect is precluded by design. Extensive fault injec-
tion campaigns targeting the DECOS core communication network have shown that
transport of diagnostic information via a dedicated event-triggered virtual diagnostic
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network is robust and reliable. Furthermore, the reserved bandwidth for diagnosis
can be parameterized according to the system constraints.

In order to facilitate certification of the DECOS architecture, the diagnostic ser-
vices are not part of the safety-critical subsystem and are only deployed in the non
safety-critical part of the system. Since only elementary interfaces are used for the
sending of diagnostic messages on the virtual diagnostic network, no back-pressure
flow control can negatively affect any application. Furthermore, by realizing the
analysis jobs in an encapsulated diagnostic DAS, the temporal and spatial parti-
tioning services, i.e. inner-component error containment services, provided by the
DECOS architecture ensure that the effects a software design fault of an analysis
job cannot propagate at the partition boundary and negatively affect jobs of other
DASs.
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