
DISSERTATION

Interface Design for

Hardware-in-the-Loop Simulation of

Real-Time Systems

ausgeführt zum Zwecke der Erlangung des
akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von

O.Univ.-Prof. Dr. Hermann Kopetz
und

Dr. Wilfried Elmenreich
als verantwortlich mitwirkendem Universitätsassistenten

Institut für Technische Informatik 182

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Martin Schlager
Matr. - Nr. 9725343
2641 Schottwien 103

Wien, im September 2007 .

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Interface Design for

Hardware-in-the-Loop Simulation of

Real-Time Systems

Abstract

Hardware-in-the-Loop (HiL) simulation is a testing technique in which the envi-
ronment of an (embedded) System-Under-Test (SUT) is simulated by an assigned
HiL simulator. Thereby, the SUT interacts with the HiL simulator via the SUT’s
interface with its environment. The interaction between the SUT and the HiL si-
mulator takes place in real time and is constrained by the temporal properties of
the SUT. In the case where the SUT is a distributed system, consisting of several
nearly-independent computers interacting with their environment in a collaborative
way, the set-up of an HiL simulation is a non-trivial task requiring well-designed
linking interfaces of the HiL simulator to enable predictable test runs.

This thesis proposes an approach towards the temporal decoupling of environ-
mental simulation of the HiL simulator and the SUT, by using a time-triggered
connection system acting as a temporal firewall. Using such an approach, it can be
guaranteed that information flow between the HiL simulator and the SUT (and vice
versa) is bound to a priori known latency and jitter. Furthermore, timing violati-
ons of an HiL simulation can be deterministically diagnosed and actions, avoiding
detrimental consequences of such timing violations, can be initiated.

In contrast to traditional solutions to interfacing between the SUT and the HiL si-
mulator, the presented approach allows temporal laxity of the HiL simulator, i. e., the
execution of the simulation model (e. g., a Matlab/Simulink model) is individual-
ly performed by assigned components of a distributed HiL simulator while different
components of the same HiL simulator are responsible for timely interfacing with the
SUT.

The actual physical coupling of the SUT and the HiL simulator is established via
an arbitrary transducer interface. This interface can be implemented using a physical
transducer, a (standardized) digital transducer interface, or a so-called Smart Virtual
Transducer (SVT) that mimics the behavior of a physical transducer. The thesis
provides an outline of a generic HiL simulation framework, based on SVTs. The
proposed framework is exemplarily applied to the verification of integrated systems.

i

ii

Schnittstellendesign für die

Hardware-in-the-Loop Simulation von

Echtzeitsystemen

Kurzfassung

Hardware-in-the-Loop (HiL) Simulation ist ein Testverfahren, bei der die Prozes-
sumgebung eines zu testenden Systems (System-Under-Test (SUT)) durch einen HiL
Simulator ersetzt wird. Dabei interagiert das SUT mit dem HiL Simulator über die-
selbe Schnittstelle des SUTs, über welche das SUT mit der Umgebung interagieren
würde. Diese Interaktion zwischen dem SUT und dem HiL Simulator findet in Echt-
zeit statt und hängt von den temporalen Eigenschaften des SUTs ab. Der Aufbau
einer HiL Simulation erfordert daher einen sorgfältigen Entwurf der Schnittstellen,
um vorhersagbare Testabläufe zu ermöglichen. Dies ist insbesondere dann der Fall,
wenn es sich beim SUT um ein verteiltes System handelt, das sich aus mehreren von-
einander (nahezu) unabhängigen, mit ihrer Umgebung interagierenden Computern
zusammensetzt.

Diese Arbeit stellt einen Ansatz zur zeitlichen Entkopplung von Umgebungs-
simulation und SUT mittels zeitgesteuertem Adaptersystem (Connection System)
und kontrollfehlerfreien Schnittstellen (Temporal Firewall) vor. Dadurch kann ga-
rantiert werden, dass der Informationsfluss von der Umgebungssimulation des HiL
Simulators zum SUT (und vice versa) durch vorab bekannte Wartezeiten (Latencies)
und Schwankungen (Jitter) bestimmt ist. Weiters können Zeitüberschreitungen (Ti-
ming Violations) einer HiL Simulation diagnostiziert, und negative Konsequenzen
solcher Zeitüberschreitungen vermieden werden.

Im Vergleich zu traditionellen Lösungen vereinfacht der vorgestellte Ansatz die
zeitlich korrekte Ausführung eines Simulationsmodells. So kann beispielsweise die
(Schwankungen unterworfene) Berechnung eines Matlab/Simulink Modells auf einer
Komponente eines verteilten HiL Simulators ausgeführt werden, während weitere
Komponenten für die zeitgerechte Interaktion mit dem SUT verantwortlich sind.

Die tatsächliche physikalische Anbindung des SUTs an den HiL Simulator kann
über verschiedene Messwandlerschnittstellen (Transducer Interfaces) aufgebaut wer-
den. Diese Schnittstellen können in Form eines physikalisch existierenden Messwand-
lers, einer (standardisierten) digitalen Messwandlerschnittstelle, oder einer so ge-
nannten Smart Virtual Transducer (SVT) Komponente realisiert werden. Diese Ar-
beit stellt ein – auf der Verwendung von SVTs basierendes – HiL Simulationssystem,
sowie die Verifikation von integrierten Systemen unter Verwendung dieses Simulati-
onssystems vor.

iii

iv

Danksagung

Ich möchte mich bei meinem Betreuer und Institutsvorstand O.Univ.Prof. Dr.
Hermann Kopetz bedanken, der mir ermöglichte, diese Arbeit im äußerst interes-
santen Arbeitsfeld des Instituts für technische Informatik der TU Wien zu verfassen
und mir in ausgesprochen konstruktiver Arbeitsatmosphäre mit vielen wertvollen
Anregungen zur Seite stand.

Ein großes Dankeschön möchte ich insbesondere auch meinem Kollegen, Wilfried
Elmenreich, aussprechen, der durch wichtige Ideen, zahlreiche Diskussionen und kri-
tische inhaltliche Auseinandersetzung mit dem Thema einen wesentlichen Einfluss
auf die vorliegende Arbeit hatte. Außerdem möchte ich mich bei meinem zweiten
Begutachter, Univ.Prof. Dr. Johann Blieberger, für wertvolle Anregungen und Tipps
zur vorliegenden Arbeit bedanken.

Danken möchte ich auch zahlreichen Kollegen am Institut, die durch sehr gute
Gespräche und freundschaftliche Unterstützung zum Resultat dieser Arbeit beigetra-
gen haben. Namentlich bedanken möchte ich mich besonders bei Roman Obermaisser
für die exzellente Zusammenarbeit im Bereich der Validierung integrierter Systeme.
Weiters danke ich Gerhard Burger, Florian Skopik und Michael Wihsböck für die Im-
plementierung der Case Studies, sowie Wilfried Elmenreich, Marlene Kritz, Ingomar
Wenzel und Martina Sebastian für das gründliche Korrekturlesen der Arbeit. Bei Ma-
ria Ochsenreiter möchte ich mich für die großartige organisatorische Unterstützung
im Laufe der Jahre sehr herzlich bedanken.

Mein Dank gilt weiters der Österreichischen Akademie der Wissenschaften, die
diese Arbeit im Rahmen eines einjährigen Dissertationsstipendiums (DOC) großzügig
unterstützte, sowie meinen Vorgesetzten und Kollegen in der Firma TTTech Com-
putertechnik AG, namentlich Judith Sattlberger, Stefan Poledna, Tibor Gajdoš und
Georg Stöger, die mir insbesondere im Zuge der Fertigstellung dieser Arbeit mit
einem Höchstmaß an Flexibilität entgegengekommen sind.

Bei meinen Großeltern, meinen Eltern, Waltraud und Franz, und meinen Ge-
schwistern, Thomas und Nicole, möchte ich mich an dieser Stelle ganz besonders
bedanken. Sie haben mir durch ihre Liebe über Jahrzehnte ermöglicht, die Grundla-
ge für diese Arbeit zu schaffen und standen mir stets unterstützend zur Seite. Weiters
möchte ich Ingomar Wenzel, Jacek Ratzinger, Daniela Woditschka, Barbara Huber,
Gerhard Krizovsky, Alexander Rudolf, Bernhard Rumpler und Natascha Vecsera
meinen Dank für eine großartige Zeit, schöne gemeinsame Hobbys und langjährige
freundschaftliche Verbundenheit aussprechen.

v

vi

Diese Arbeit ist meinem Großvater, August Spanring, gewidmet.

vii

viii

Contents

1 Introduction 1

1.1 Motivation and Objectives . 1
1.2 Related Work . 3
1.3 Contribution . 4
1.4 Structure of the Thesis . 5

2 Basic Terms and Concepts 7

2.1 Real-Time Systems . 7
2.1.1 Classification of Real-Time Systems 8
2.1.2 Model of Time . 10
2.1.3 Messages . 11
2.1.4 Characterization of Information Content 11
2.1.5 Distributed Systems . 13

2.2 Interfaces . 18
2.2.1 Interface State . 19
2.2.2 Interface Types . 20
2.2.3 High-Level versus Low-Level Interface Issues 21
2.2.4 Temporal Firewall . 22
2.2.5 Connection System . 23

2.3 Simulation . 23
2.3.1 Classification of Simulation . 25
2.3.2 HiL Simulation . 27
2.3.3 Validation and Verification . 27

2.4 Smart Transducer (ST) . 31
2.4.1 Smart Transducer Interface (STI) 32
2.4.2 TTP/A – Principles of Operation 33

2.5 Chapter Summary . 35

3 HiL Simulation 37

3.1 Structure and Constituting Elements 37

ix

3.1.1 Elements of an HiL Simulator 37

3.1.2 Open-Loop versus Closed-Loop HiL Simulation 40

3.1.3 Developing an HiL Simulation 40

3.1.4 Multirate HiL Simulation . 41

3.1.5 Coupling of HiL Simulator and SUT 42

3.1.6 An Example . 43

3.2 Requirements . 46

3.2.1 Technical Requirements . 47

3.2.2 Economic Requirements . 50

3.3 Existing Solutions . 51

3.3.1 DSP Builder (Altera) . 51

3.3.2 LabVIEW (NI) . 52

3.3.3 Pi Autosim (Pi Technology) . 53

3.3.4 RTDS Simulator (RTDS Technologies) 54

3.3.5 RT-LAB (Opal-RT) . 55

3.3.6 rtX Simulator (ADI) . 56

3.3.7 Simulator Mid-/Full-Size (dSpace) 57

3.3.8 Tanto2 Test (Hitex) . 57

3.3.9 xPC Target (MathWorks) . 58

3.3.10 Comparing the Existing Solutions 59

3.4 Chapter Summary . 61

4 Interface Design for HiL Simulation 63

4.1 Rationale . 63

4.1.1 Deterministic Interaction . 63

4.1.2 Distributed HiL Simulator . 64

4.1.3 Arbitrary Transducer Interfaces 66

4.1.4 Monitoring . 69

4.2 Architecture . 70

4.2.1 Structure of HiL Simulator . 71

4.2.2 HiL Simulator Node Interaction 72

4.2.3 Backend Simulation Component (BSC) 73

4.2.4 Frontend Simulation Component (FSC) 73

4.3 Smart Virtual Transducer (SVT) . 75

4.3.1 Structure . 75

4.3.2 Interfaces . 76

4.3.3 Types of SVTs . 77

x

4.3.4 Prototypical Realization . 78
4.4 Revising the Rationale . 78

4.4.1 Deterministic Interaction . 78
4.4.2 Distributed HiL Simulation System 79
4.4.3 Arbitrary Transducer Interfaces 79
4.4.4 Monitoring and Configuration 80

4.5 Chapter Summary . 80

5 Testing of an Integrated System 83

5.1 Integrated Architecture . 83
5.1.1 System Structure . 84
5.1.2 Communication Network . 84
5.1.3 Node Computers . 85
5.1.4 Environment . 86

5.2 X-in-the-Loop Testing . 86
5.2.1 Model-in-the-Loop (MiL) . 86
5.2.2 Software-in-the-Loop (SiL) . 87
5.2.3 Hardware-in-the-Loop (HiL) . 88

5.3 Virtual Integration . 88
5.3.1 Structure of Virtual Integration Framework 89
5.3.2 Inputs to the Virtual Integration Framework 90
5.3.3 Simulation on Virtual Integration Platform 92

5.4 HiL Testing . 95
5.4.1 HiL Simulation Framework . 95
5.4.2 HiL Simulation with an Integrated System-Under-Test (ISUT) 96
5.4.3 Exemplary Application . 97

5.5 Chapter Summary . 99

6 Case Studies 101

6.1 Digital Smart Transducer Gateway . 101
6.1.1 Problem Statement . 101
6.1.2 Elements . 103
6.1.3 Implementation . 104
6.1.4 Conclusion . 108

6.2 Control Path Simulation . 109
6.2.1 Problem Statement . 109
6.2.2 Elements . 111
6.2.3 Implementation . 111

xi

6.2.4 Conclusion . 113
6.3 Rear Parking System . 114

6.3.1 Problem Statement . 114
6.3.2 Elements . 115
6.3.3 Implementation . 116
6.3.4 Conclusion . 117

6.4 Chapter Summary . 117

7 Conclusion 119

7.1 HiL Simulation Framework . 119
7.2 Smart Virtual Transducer . 120
7.3 Outlook . 120

List of Acronyms 121

Bibliography 125

List of Publications 139

Curriculum Vitae 141

xii

List of Figures

2.1 Real-time system . 8

2.2 Sparse time base . 11

2.3 Multi-cluster system . 16

2.4 Cluster . 17

2.5 Node . 17

2.6 Interaction of a real-time computer system with the environment . . . 18

2.7 Connection system with two boundary lines 23

2.8 Smart Transducer (Atmel 4433 microcontroller and Sharp IR distance
sensor, scale in cm) . 32

3.1 Basic elements of an HiL simulation system 38

3.2 Basic building blocks of an HiL simulator 38

3.3 Open-loop versus closed-loop HiL simulation 40

3.4 Multirate HiL simulation . 42

3.5 Charging and discharging a capacitor (C) 44

3.6 Voltage characteristic (UC(t)) of capacitor (C) 45

3.7 Exemplary HiL simulator setup . 45

3.8 Voltage characteristic (UC(t)) of capacitor (C) with different switching
times . 46

4.1 Integration of different HiL simulators 65

4.2 Physical coupling across transducer interface 67

4.3 Connection of a (legacy) I/O board . 68

4.4 Configuration . 70

4.5 Post simulation analysis . 70

4.6 Distributed HiL simulator . 72

4.7 Types of gateway Backend Simulation Components (BSCs) 74

4.8 Types of Frontend Simulation Components (FSCs) 74

4.9 Elements of an SVT . 76

4.10 Block diagram and prototype of an SVT with D/A converter 78

xiii

5.1 Distributed system in the Dependable Embedded COmponents and
Systems (DECOS) system architecture 84

5.2 V-model . 87
5.3 System model of the simulated real-time system 88
5.4 Model-based integration on virtual integration platform 90
5.5 Simulation framework . 93
5.6 HiL simulation with an integrated system 97
5.7 Exemplary integrated system with HiL simulation 98

6.1 Rear distance measurement system . 101
6.2 HiL simulation of rear distance measurement system 104
6.3 Physical setup of rear distance measurement system 105
6.4 Simulation block . 105
6.5 System model block . 106
6.6 Vehicle dynamics block . 106
6.7 Distortion block . 107
6.8 Simulated distances: max acceleration 2 m2

s and 10 m2

s 107
6.9 Simulated disturbances: dependent and independent 107
6.10 Control path simulation system . 109
6.11 HiL simulation of control path system 111
6.12 Step response without controller (set value = setpoint value) 113
6.13 Step response with PI controller . 114
6.14 Distance measurement with an ultra-sonic sensor 115
6.15 HiL simulation of rear parking system 115
6.16 Physical setup of rear parking system 116

xiv

List of Tables

2.1 Message classification [JKK+02] . 12

3.1 Comparison of HiL simulation products 60

6.1 Cluster schedule . 112

xv

xvi

Chapter 1

Introduction

Within the last decades, major advances in the semiconductor industry [EKRZ04,
Fro04] have enabled the widespread application of embedded real-time systems.
These systems have become an immanent part of our daily lives and can be found
in many different domains such as the manufacturing, aerospace, automotive, rail-
way, and consumer electronics markets. At present, embedded real-time systems
contribute to a significant share of the innovations within these markets.

Hardware-in-the-Loop (HiL) simulation is a commonly used technique for validat-
ing embedded real-time systems prior to their actual deployment. An HiL simulation
is an operational configuration of a System-Under-Test (SUT) and its respective en-
vironment. The SUT is (part of) a real-time system and can be a single embedded
controller or a distributed system.

The application of HiL simulation as a validation technique of an embedded
real-time system thrives on the fact that HiL simulation is closer to reality than
any other simulation technique (e. g., Software-in-the-Loop (SiL)). HiL simulation
makes it possible to test the system in rare but potentially hazardous situations
without building costly prototypes and without endangering humans or the natural
environment.

The construction of sophisticated HiL simulation systems is particularly relevant
for embedded real-time systems that are used for safety-related tasks, e. g., fly-by-
wire. Safety-related real-time systems must guarantee correct behavior in the pres-
ence of faults – even if the occurrence of these faults is very unlikely. The aerospace
industry is an important innovation driver for safety-related real-time systems. These
systems have been used in airborne equipment for many years. Recently, the auto-
motive industry has also started employing safety-related systems.

1.1 Motivation and Objectives

The development of a safety-related real-time system involves verification and vali-
dation techniques ensuring sufficient trust in the reliability of the system. As part of

1

1.1 Motivation and Objectives 1 Introduction

validation, dynamic testing aims to remove errors within a system prior to its final
deployment.

However, it is often difficult to test a real-time computer system performing
control tasks in its natural environment because the conditions of the environment
circumvent an accurate observation of the real-time systems interfaces. Furthermore,
it may be very costly or even impossible to establish certain test conditions in the
physical process environment of the real-time computer system.

Real-time simulation of the environment of a real-time computer system through
a computer program as discussed within this thesis allows the observation and sys-
tematic modification of many relevant parameters. HiL simulation includes the ac-
tual physical real-time computer system and a simulation of the environment (of
this real-time computer system). Thereby, an HiL simulator executes a model in
real time which represents the behavior of the environment (i. e., traces of significant
state changes at the interface between the environment and the real-time computer
system). The interaction between the real-time computer system and the environ-
mental simulation is constrained by properties of the real-time system, as well as by
physical properties of the employed hardware.

HiL simulation is an approach that has been introduced by the aerospace and
defense industries in the 1950s [NBAR04]. At this time, the high cost of HiL technol-
ogy hindered its widespread use. During the past decades, accessibility of powerful
computing resources to virtually every engineer and decreasing prices of simulation
hardware led to adoption of HiL simulation to further domains such as industrial
control applications or automotive systems.

Our aim is to introduce an HiL simulation framework that offers an instrument
for the construction of predictable, cost effective, component based HiL simulators
that can be applied in different industrial domains. A high potential for cost re-
duction through improved simulation and test techniques exists particularly in the
automotive industry, which is due to large production quantity and enormous cost
implications of recalls. Furthermore, decreasing development cycles, i. e., shorter
time-to-market, and stringent cost limitations within this industry require novel de-
velopment approaches in order to stay competitive [VDA03].

As outlined in [SEW06], the benefits of HiL simulation for the development of
real-time systems can be summarized as follows:

• Testing of early system prototypes in a simulated environment becomes possi-
ble.

• An artificial environmental situation can be constructed that is in line with a
defined test scenario.

• Effective monitoring is possible because control values from the SUT are re-
ceived by the environment simulator. These control values can be further
processed or recorded.

• Once a simulation is set-up, it is possible to perform a large number of tests
without significant cost implications.

2

1 Introduction 1.2 Related Work

• It is possible to develop a real-time system and to perform tests, even if the
environment, i.e., the controlled object, is not accessible during development.

• It is possible to test the behavior of a real-time system in hazardous situations.
In the real environment it could be very costly (e. g., crash test) or not even
feasible/acceptable (e. g., emergency actions of an aircraft during flight) to
guide the system into such situations.

• HiL simulation supports regression testing, i. e., different versions of a real-
time system can be tested using the same test conditions in order to uncover
regression bugs.

1.2 Related Work

This thesis builds on two main areas of research: real-time systems and simulation.
Both areas have been well covered within the scientific literature. Thus, a huge
number of both, theoretical as well as application oriented publications is available.

A comprehensive summary on concepts regarding the design and analysis of real-
time systems can be found in [Kop97, Liu00, Lap04]. With regard to dependable
real-time systems, a fundamental study on the concepts of dependability is presented
in [Lap92, ALRL04]. A system architecture for the construction of large depend-
able real-time systems is given by the Time-Triggered Architecture (TTA) [KB03].
The design of interfaces for real-time systems is tackled in [Krü97, KFMN99, KS03]
and extensively discussed in the EU funded project Dependable Systems of Systems
(DSoS) [AFI+00, JKK+02].

General concepts of simulation are comprehensively summarized in [Law06].
In [BCNN01] emphasis is put on discrete system simulation. Even the subarea of
(real-time) HiL simulation and its application is very well covered in both, academia
and industry, e. g., in [NI03, NBAR04, WLD+05, BSS05].

However, up to now there is a lack of research particularly focusing on interface
design for HiL simulation. Current approaches largely target at improving the signal
quality during an HiL simulation. For example various interfacing schemes for HiL
simulation of power electronics applications are presented in [MFL+05].

In order to increase signal accuracy during an HiL simulation, a dual time
step simulation method is proposed in [LGDL06, GLH06]. Thereby, a Field Pro-
grammable Gate Array (FPGA) is used with very small time steps for handling a
switching circuit while the remaining simulation is executed by a conventional pro-
cessor at a much larger time step. In [Jim05] an approach is presented that uses
an averaging method to improve accurate acquisition of signals whilst generating
realistic and fast feedback signals.

The HiL simulation methods mentioned in the previous paragraphs as well as
commercially available products such as the dSpace Simulator1 or the Opal RT-

1http://www.dspace.com

3

1.3 Contribution 1 Introduction

LAB2 aim to improve the accuracy of the coupling between the simulator and the
SUT by providing fast devices (FPGAs).

Furthermore, many HiL simulation approaches focus on testing a single controller
and only few solutions exist that explicitly target at HiL testing of a large distributed
real-time system. In chapter 3, section 3.3 an analysis of commercially available HiL
simulators is provided.

Simulation of the environment of a time-triggered real-time system is addressed
through the implementation of a distributed discrete time environment simulator as
outlined in [Sch95], and by research on cluster simulation [FRB97, Gal99]. In [Sch95],
the need for interface tests is mentioned with respect to interfaces used for the cou-
pling between the environment simulator and the SUT. Such tests require well
specified interfaces.

1.3 Contribution

This thesis outlines the structure and the constituting elements of an HiL simulation
framework placing particular emphasis on predictable interaction between the HiL
simulator and the SUT. Thus, a distinction between components of an HiL simulator
performing a simulation of the environment of an SUT, and components that are
being used to couple the HiL simulator and the SUT, is drawn.

The thesis elaborates on different approaches for establishing the physical cou-
pling between SUT and HiL. Thereby, the new concept of a Smart Virtual Transducer
(SVT) and the prototype implementation of an SVT are shown. An SVT is a hard-
ware/software component employed to replace a physical sensor or actuator of the
SUT. An SVT supports predictable interactions between an HiL simulator and an
SUT via an arbitrary transducer interface.

Furthermore, the thesis outlines a possible application of the HiL simulation
framework to large integrated systems. Therefore, it is exemplarily demonstrated
how an HiL simulation can be used as part of an X-in-the-Loop testing process
that encompasses Model-in-the-Loop (MiL), SiL, and HiL. Moreover, a simulation
framework for virtual integration of an integrated system as part of SiL tests is
presented.

In the presented HiL simulation framework, the execution of the simulation model
(e. g., a Matlab/Simulink model) is individually performed by assigned components
of a distributed HiL simulator while different components of the same HiL simulator
are responsible for timely interfacing with the SUT. As an advantageous result of
this separation, the execution of the simulation model is temporally decoupled from
precise instants of interaction with the SUT as long as bound maximum execution
times of single simulation steps are guaranteed.

The thesis presents a distributed HiL simulator that is (1) based on a time-
triggered communication and process model and that (2) involves a strict separation
of the execution of the simulation model and the interaction between this simulation

2http://www.opal-rt.com

4

1 Introduction 1.4 Structure of the Thesis

model and the SUT. The benefits of this approach are given as follows:

• The cognitive complexity of a simulation model (i. e., the amount of cognitive
resources that are needed to understand the model [RS07]) is reduced by a
decreased number of system variables and their dependencies. This is achieved
by the introduction of loosely coupled HiL simulator components that interact
across well-specified interfaces.

• It is possible to implement the HiL simulation model with discrete simulation
methods that are in accordance to the non-blocking simple task (S task) [Kop97]
execution scheme.

• Based on the concept of a temporal firewall [KN97], temporal laxity of the
HiL simulator is facilitated. Temporal laxity of the HiL simulator means that
jitter of a single simulation step does not influence the predictable instants of
interaction between the HiL simulator and the SUT as long as the execution of a
single simulation step is constrained by an upper-bound Worst Case Execution
Time (WCET).

1.4 Structure of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2 comprises an investigation on the basic terms and concepts that con-
stitute the fundamentals of this thesis. Chapter 2 is partitioned into four
subsections focusing on the relevant entities of real-time systems, interfaces,
simulation, and Smart Transducers (STs), respectively.

Chapter 3 outlines the structure and basic elements of an HiL simulation system.
Furthermore, requirements of an HiL simulation system including a distributed
real-time system are described and existing HiL solutions and their respective
possible applications are discussed.

Chapter 4 covers the essential part of this thesis which is the interface design for
an HiL simulation. Within this chapter, an HiL simulation framework is intro-
duced that offers a stable intermediate interface between SUT and HiL simula-
tor. The concept of an SVT is outlined in detail which is used as an interfacing
scheme for arbitrary transducer interfaces.

Chapter 5 deals with the application of the proposed HiL simulation framework for
X-in-the-Loop testing of an integrated system. In this chapter X-in-the-Loop
testing of an integrated system is explained that can be performed based on a –
in context of this thesis developed – virtual integration platform. The HiL sim-
ulation framework is employed as a final pre-deployment step and exemplified
within this chapter.

5

1.4 Structure of the Thesis 1 Introduction

Chapter 6 describes three different case study setups. The first setup includes the
realization of a digital ST gateway. The other case studies encompass HiL
simulators based on SVTs that support (a) the simulation of a control path
and (b) the development of a driver assistance system prototype.

Chapter 7 concludes the thesis by providing a summary of the main results and a
discussion on potential future research work.

6

Chapter 2

Basic Terms and Concepts

2.1 Real-Time Systems

Throughout the past decades, many concepts and terms related to real-time systems
have been introduced. In the literature, several definitions can be found that are
tailored to the specific needs of a particular research area of interest. In the following
section, we focus on fundamental concepts and the related taxonomy that is used
throughout this thesis.

According to IEEE standard glossaries [IEE89, IEE90] a system can be defined as
a collection of components organized to accomplish a specific function or set of func-
tions. A more detailed definition can be found in [Lap92, ALRL04], where a system
is regarded to be an entity that interacts/interferes with other entities, i. e., other
systems. The set of these ”other entities” that a system interacts/interferes with,
is called the environment of the system. The environment may include hardware-
software entities, humans, and the physical world with its natural phenomena. The
system produces on the one hand output information that influence properties of the
environment and measures on the other hand input information that is produced by
the environment.

The definition of the term system in the context of real-time systems additionally
requires the incorporation of the notion of time. The conceptual model developed in
the EU funded project DSoS defines system as an entity that is capable of interacting
with its environment and may be sensitive to the progression of time [JKK+02]. By
”sensitive to the progression of time” is meant that the reaction of the system may
depend on the progression of time, i. e., a given input pattern may result, due to the
progression of time, in different output patterns.

Furthermore, in [JKK+02], the decomposition of a system into interacting com-
ponents, that may themselves consist of interacting components, is being high-
lighted. The recursive process of decomposing a system into interacting components
is stopped as soon as any further internal structure of an atomic component [ALRL04]
is of no relevance or cannot be discerned for the current analysis.

With respect to the above given definitions, a real-time system is a system that

7

2.1 Real-Time Systems 2 Basic Terms and Concepts

Figure 2.1: Real-time system

performs an action, e. g., the execution of a software task, the actuation of a brake in
a car, or the visualization of data on a display unit, within an a priori defined time
interval, i. e., before the expiration of a deadline. In accordance to the description
given in [Kop97], the basic building blocks of a real-time system are: the real-time
computer system, the controlled object, and the operator (refer to figure 2.1). The
controlled object and the operator are regarded as the environment of the real-time
computer system.

The service of a real-time computer system is a type of operation that has a pub-
lished specification of interface and behavior [AUT06a], involving a contract between
the real-time system’s capability and its environment. In accordance to the DSoS
conceptual model [JKK+02], behavior is defined as traces of activity at system inter-
faces which are sequences of (perhaps timestamped) send and receive operations of
the system.

The service of a real-time computer system is provided to its environment via
transducers, i. e., sensors and actuators that transform a physical stimulus into a
signal and vice versa. The interaction of the real-time computer system with its
environment, i. e., with the controlled object and with the operator, is bound to
time intervals that are predetermined by the environment. Thus, the correct system
behavior of a real-time computer system not only depends on the logical results of
the computation (space/value domain), but also on the physical instants at which
these results are produced (time domain) [Kop97].

An application is a software (or program) that is specified to the solution of a
problem of an end user requiring information processing for its solution [AUT06a].
An application consists of a set of functions, i. e., tasks, actions or activities that must
be accomplished to achieve a desired outcome [AUT06a]. We call an application that
is executed as part of a real-time computer system a real-time application.

2.1.1 Classification of Real-Time Systems

Real-time systems can be classified in several ways. Kopetz [Kop97] draws a dis-
tinction between properties outside the real-time computer system (e. g., hard real-
time versus soft real-time) and properties inside the real-time computer system

8

2 Basic Terms and Concepts 2.1 Real-Time Systems

(e. g., guaranteed-response versus best-effort). In the following paragraphs we in-
vestigate a subset of these classifications.

Hard Real-Time Systems versus Soft Real-Time Systems

In the case that timing constraints given by the environment are not met, the per-
formance of a real-time system may be degraded, or may even fail completely. Thus,
we have to distinguish between:

• soft real-time systems where the usefulness of the results of the real-time system
is degraded but not void if one or more (soft) deadlines are missed,

• firm real-time systems where the usefulness of the results of the real-time sys-
tem is null as soon as a (firm) deadline is missed, and

• hard real-time systems where a catastrophe (e. g., plane crash) could be the
result of a missed (hard) deadline [Kop97, Lap04].

A real-time system that has at least one firm deadline is called a firm real-time
system. If the real-time system has at least one hard deadline, it is called hard
real-time system or safety-critical real-time system.

Guaranteed-Response versus Best-Effort

When designing a real-time system, assumptions about the required computational
resources have to be made. The load hypothesis [Kop97] states that these assumptions
must be fulfilled by the real-time system in order to guarantee system response even
in a peak-load scenario. Furthermore, a fault hypothesis [Kop04] is required, that
defines the type and number of faults which the real-time system must be able to
tolerate.

Depending on compliance with the load- and the fault-hypotheses, a distinction
between two kinds of real-time system designs can be made:

System design with guaranteed response behavior: In case it is possible to
argue that a real-time system design fully complies with the load- and the
fault-hypotheses without any probabilistic arguments, the real-time system has
a guaranteed response behavior. Careful planning and extensive analysis is
required for such a system.

Best-effort system design: In the case where compliance with the load- and the
fault-hypotheses is argued in terms of probabilistic arguments (e. g., , extensive
tests) the real-time system has a best-effort behavior. In rare-event scenarios,
the response of the real-time system may not comply to the load- and to the
fault-hypotheses.

9

2.1 Real-Time Systems 2 Basic Terms and Concepts

The differentiation between guaranteed response and best-effort relates to prop-
erties of the real-time computer system. The differentiation between hard- and soft
real-time systems relates to requirements of the process environment of the real-time
computer system. In order to validate a hard real-time system, a real-time com-
puter system with a guaranteed response is required. At present, most soft real-time
systems are designed in line with a best-effort system design.

Event-Triggered versus Time-Triggered Systems

All actions of a real-time computer system, e. g., task activation, or start of message
transmission must be triggered in order to happen. A trigger is an event that causes
the start of an action [Kop97]. With respect to the triggering mechanism, event-
triggered and time-triggered real-time computer systems can be distinguished from
each other.

Event-triggered: In an event-triggered real-time computer system, all system ac-
tions are triggered by the occurrences of events within the environment or
within the real-time computer system [Kop93].

Time-triggered: In a time-triggered real-time computer system, all system actions
are triggered by the progression of physical time [Kop93].

Real-time systems that follow the event-triggered paradigm require less effort dur-
ing the planning and design phase, and usually offer more flexibility towards system
alterations. In contrast, time-triggered systems provide predictable temporal behav-
ior and composable system design, consequently being superior within the domain
of safety-critical real-time systems.

2.1.2 Model of Time

The progression of time plays a key role in the operation of real-time systems. Ac-
cording to the Newtonian model that is adopted by most real-time applications,
real-time is an infinite set of instants on a directed time line that goes from past to
future [KS03]. An instant is a cut of the time line. A section of the time line between
two instants is called duration or interval. An event is an occurrence that happens
at an instance, e. g., sending a message, operating on a transducer, or activating a
task.

In a dense time base [Kop92, Kop97], between any two instants there is at least a
further instant. Due to the imprecision of physical clocks, slight deviations of clocks
of different observers are unavoidable. Hence, it is impossible to guarantee that
timestamps of two observers that watch the same event will equal. In a distributed
real-time system correct ordering of two events can consequently not be guaranteed
in case these two events occur within an interval that is smaller than the precision
of the physical clocks.

Given a sparse time base [Kop92, Kop97], the occurrence of events is restricted to
active intervals that are separated by intervals of silence (refer to figure 2.2). Events

10

2 Basic Terms and Concepts 2.1 Real-Time Systems

happening during a given active interval are considered to happen at the same time.
Of course, only events that are within the sphere of control of the real-time computer
system can be restricted to occur in active intervals. External events, i. e., events
that are not within the sphere of control of the real-time computer system, are based
on a dense time base [JKK+02].

Figure 2.2: Sparse time base

2.1.3 Messages

The exchange of information within a real-time computer system is usually based
on messages that are passed between interacting computing nodes of a distributed
system (refer to section 2.1.5). Thereby, a message is a data structure that is formed
for the purpose of communication among computer systems [JKK+02]. Even though
the interaction between a (real-time) computer system and its environment may
involve other approaches than message passing (e. g., direct analog signals), it is
often possible to abstract the interaction between the real-time computer system
and its environment to be solely based on the exchange of messages. Especially in
the case where an ST system (refer to section 2.4) is employed, specific properties
of the interaction between the real-time computer system and its environment are
encapsulated within the ST system.

Based on application specific input/output assertions, i. e., claims regarding ac-
ceptance of a message for a certain application, messages can be classified into dif-
ferent categories (refer to table 2.1).

Regarding the timely delivery of messages, the message transmission interval
has to be considered. The message transmission interval starts at the message send
instant, i. e., the instant when the sender starts to send a message, and ends at the
message receive instant, i. e., the instant when the receiver fully received the message.

2.1.4 Characterization of Information Content

The fundamental difference between the state of the environment and the repre-
sentation of the state of the environment within the real-time computer system is
addressed by the concept of real-time entities and real-time images [Kop97, KB03].

Real-Time Entity

The dynamics of a real-time application is represented by a set of state variables, or
real-time entities. A real-time entity represents a property of the environment that

11

2.1 Real-Time Systems 2 Basic Terms and Concepts

Attribute Explanation Antonym
valid A message is valid if its checksum and con-

tents are in agreement.
invalid

checked A message is checked at source (or, in short,
checked) if it passes the output assertion.

not checked

permitted A message is permitted with respect to a re-
ceiver if it passes the input assertion of that
receiver. The input assertion should verify,
at least, that the message is valid.

not permitted

timely A message is timely if it is in agreement with
the temporal specification.

untimely

value-correct A message is value-correct if it is in agree-
ment with the value specification.

not value-correct

correct A message is correct if it is both timely and
value-correct.

incorrect

insidious A message is insidious if it is permitted but
incorrect.

not insidious

Table 2.1: Message classification [JKK+02]

is relevant to the real-time application, e. g., the state of a valve that controls the
flow of liquid in a pipe. A real-time entity has static attributes, like e. g., the name
or a maximum update rate, that do not change over time and dynamic attributes,
like e. g., the value set or the rate of change at a particular instant, that change as
time progresses.

A real-time entity can have a discrete value set (discrete real-time entity) or a
continuous value set (continuous real-time entity). The state of a discrete real-time
entity is undefined during a state change and can thus be captured only during stable
intervals, i. e., during intervals in which the state does not change. An example for
a discrete real-time entity that is given in [Kop97] is a garage door with the defined
states ”open” and ”closed” and many undefined intermediate states during a state
change from ”open” to ”closed” or vice versa. Contrary to discrete real-time entities,
the value set of a continuous real-time entity is always defined.

State Observation of Real-Time Images

A real-time image is the representation of a real-time entity within the real-time
computer system at a particular instant, e. g., the digital representation of the current
state of a valve. A real-time image is acquired by a state observation that captures
the state of a real-time entity at the instant tobs. Thus, a state observation is a triple,
consisting of (a) the name of the real-time entity that is observed, (b) the captured
value of the real-time entity, and (c) the time of observation (tobs):

State Observation =< Name, V alue, tobs >

A discrete real-time entity can only be observed during intervals in which the

12

2 Basic Terms and Concepts 2.1 Real-Time Systems

state of the real-time entity is not changing. A continuous real-time entity can be
observed at any instant.

Temporal Accuracy

A real-time image is invalidated by the progression of real-time and thus associated
with a temporal accuracy interval dacc which is determined by the physical properties
of the real-time entity. A real-time image is temporally accurate at instant t when
the following condition holds:

|t − tobs| < dacc

For instance, the temporal accuracy interval of the state of a valve (real-time
entity) could be 10 msec for a given application. This would imply that the observed
state of the valve (real-time image) is temporally accurate if it has been observed
within the last 10 msec, otherwise it is not temporally accurate.

In contrast to a real-time image, a state observation provides a statement regard-
ing the value of a given real-time entity at a certain instant and thus remains valid
forever.

Event Observation

An event observation captures the occurrence of an event, i. e., a significant change
of state of the observed entity, and can be represented by a triple, consisting of (a)
the name of the observed event, (b) the attributes of the event, and (c) the time at
which the observed event occurred (tevent):

Event Observation =< Name, Attributes, tevent >

State versus Event Messages

The interaction with the environment of a real-time computer system and the real-
time computer system can either be accomplished by periodic (time-triggered) ex-
change of state messages, i. e., messages that contain state observations or by non-
periodic (event-triggered) event messages, i. e., messages that contain event observa-
tions.

2.1.5 Distributed Systems

A distributed system is a collection of independent computers that appears to its
user as a single coherent system [TS01]. In a distributed system, (system) com-
ponents, i. e., hardware-software units with behavior and state, are located at net-
worked computers and communicate and coordinate their actions only by message
passing [CDK05].

13

2.1 Real-Time Systems 2 Basic Terms and Concepts

Properties of Distributed Systems

Several properties are related to distributed systems and these properties have a
significant influence on a distributed system to be useful for a certain purpose. In
the following paragraphs, a briefly outline of these properties is given.

Heterogeneity: A distributed system can be built-up by a set of heterogeneous
elements with respect to the employed hardware (e. g., different instruction
sets or data representations), the network (e. g., different communication pro-
tocols), and the software (e. g., different operating systems). To cope with het-
erogeneity, a common approach is to introduce a vertical (middleware) layer
that provides a programming abstraction and masks the heterogeneity of the
underlying technologies.

Openness: The openness of a distributed computer system determines whether the
system can be extended by new resource-sharing services. Openness is achieved
by publishing the key interfaces of the system in such a way that it can be
constructed from heterogeneous hardware and software from different vendors.

Composability: The integration of subsystems to cooperate in a distributed system
requires that properties that have been established at subsystem level are not
invalidated by the integration of these subsystems. Composability with respect
to a certain property of a subsystem means that this property is still valid even
after integrating the subsystem into the distributed system, i. e., the system
properties follow from the subsystem properties [Kop97].

Scalability: A distributed system that is in use over many years or even decades
must be open to changes and must not constrain the extensibility of the system
in terms of its processing and communication capacity. A system is said to be
scalable if it remains effective, even when there is a significant increase in the
number of resources and the number of users [CDK05]. It is important to
mention that in case the scale of a scalable system increases, the system and
the application software does not need to be changed.

Dependability: The dependability of a (distributed) computer system can be de-
fined as the trustworthiness of this computer system such that reliance can
justifiably be placed on the service it delivers [Lap92]. The attributes of de-
pendability are availability, i. e., the readiness for correct service, reliability,
i. e., the continuity of correct service, safety, i. e., the absence of catastrophic
consequences on the environment, integrity, i. e., the absence of improper sys-
tem alterations, and maintainability, i. e., the ability to undergo modifications
and repairs [ALRL04].

Security: The attributes of security are availability, integrity, and confidentiality,
i. e., the absence of unauthorized disclosure of information [ALRL04].

Concurrency: When several processes exist on a single computer, these processes
are said to be executed concurrently. If a computer has more than one pro-
cessor, these processes can be executed simultaneously (in parallel), otherwise

14

2 Basic Terms and Concepts 2.1 Real-Time Systems

the execution of these processes must be interleaved. In a distributed system,
many computers exist – thus parallel execution naturally exists in such a sys-
tem. It follows, that synchronization of operations is vital in order to preserve
data consistency among different subsystems of a distributed system.

Transparency: Transparency of a distributed system can be defined as the con-
cealment from the user and the application programmer of the separation of
components in a distributed system, so that the system is perceived as a whole
rather than as a collection of independent components [CDK05].

Advantages of Distributed Systems

From the view of the environment of a real-time system it makes little difference
whether the real-time computer system is set up as a distributed or as a monolithic
system as long as the load- and the fault-hypotheses are fulfilled. Only the physical
interface, i. e., the behavior of the transducers interacting with the environment are
relevant to the environment. However, for the implementation of a hard real-time
computer system, the distributed approach is favored for several reasons [Kop97]:

• Using a distributed approach it is possible to establish the property of compos-
ability by exactly specifying the message interface of all participating network
nodes in the value and the time domain. Therefore, a distributed system of-
fers a constructive approach for building and validating systems built out of
heterogeneous subsystems (probably originating from different vendors).

• A distributed system can be designed to be fully scalable. In order to increase
the processing power of a distributed system, new nodes can be added within
the capacity of the communication channel. In case the capacity of the com-
munication channel is not sufficient, a new cluster can be added and connected
to the system via a gateway node.

• Hard real-time systems require a very high system reliability. In the literature a
mean-time-to-failure of better than 109 hours for ultra high dependable systems
is mentioned [SWH95]. Such a high system reliability can only be achieved with
a distributed solution because single hardware units have failure rates that are
lower by orders of magnitude. Only with a distributed approach it is possible
to define physically separated error containment regions and thus to achieve
fault-tolerance by replicating nodes.

Distributed real-time systems have been adopted by automotive and aerospace
industries. For instance, in modern cars up to 80 controllers are connected by up
to five different bus systems [Bro05]. Recent trends aim at integrating applica-
tion subsystems by different vendors into a single distributed system architecture.
Thereby, several initiatives and research projects (e. g., AUTomotive Open System
ARchitecture (AUTOSAR) [AUT06b], Integrated Modular Avionics (IMA) [ARI91],

15

2.1 Real-Time Systems 2 Basic Terms and Concepts

Dependable Embedded COmponents and Systems (DECOS) [OPHES06]) in the au-
tomotive, avionic and related domains are concerned with a systematic, domain ori-
ented process to bundle different application subsystems within the same hardware.
These approaches target at increased interoperability, a reduction of the number of
Electronic Control Units (ECUs), cables and connectors, and an increase in reliability
of the overall system.

Structure of a Distributed Real-Time Computer System

A distributed real-time computer system is composed of smaller entities. For the
description of a real-time computer system and its entities we use a terminology that
is widely adopted for distributed real-time systems and employed for the TTA [KB03].

The basic building block of a distributed real-time computer system is a cluster
that can interact with other clusters via a so-called Gateway Interface (GWI) [Krü97].
Physically, a GWI is set up by a dedicated gateway node that is part of both clusters
and that exchanges messages between these clusters. As depicted in figure 2.3, a real-
time computer system can consist of several clusters (multi-cluster system). However,
a real-time computer system can also comprise of only a single cluster (single-cluster
system).

Figure 2.3: Multi-cluster system

Each cluster consists of a set of nodes that communicate across a message based
interface, i. e., the Logical Line Interface (LLI) (refer to figure 2.4). A node is a self
contained computer with its own hardware (e. g., processor, memory) and software
(e. g., application programs, operating system), which performs a set of well-defined
functions within the real-time computer system [Kop97].

Each node consists of a host subsystem executing the node local application and
a communication subsystem performing the exchange of messages between the re-
spective node and the other nodes of the cluster via the LLI (refer to figure 2.5).
The host subsystem and the communication subsystem can be implemented on sep-
arate hardware units like for instance in realizations of the Time-Triggered Protocol
(TTP) [TTA02] or FlexRay [FX05] in order to enable temporal decoupling of the
execution of application tasks and message transmission. For low-cost fieldbus ap-
plications, the host subsystem and the communication subsystem can be imple-
mented on the same hardware, i. e., the same micro controller, like for example in
TTP/A [OMG03] or Local Interconnect Network (LIN) [Wen02].

16

2 Basic Terms and Concepts 2.1 Real-Time Systems

Figure 2.4: Cluster

Figure 2.5: Node

The interaction between the host subsystem and the communication subsystem
takes place via the Communication Network Interface (CNI). A node operates on
the environment – particularly on the controlled object – via the Controlled Object
Interface (COI) [KFMN99]. Such interaction is established via transducers that are
connected to the node. From the perspective of the environment, the COI hides
details of the real-time computer system and vice versa (refer to figure 2.6).

For the interaction of a distributed computer system with its environment, only
the properties that are defined at the COI are relevant. For an actual physical
process like e. g., the control of liquid flow in a pipe, it makes no difference, whether
the transducers that act upon the physical process are controlled by one or multiple
nodes of a distributed real-time system as long as the properties of the COI are
fulfilled.

17

2.2 Interfaces 2 Basic Terms and Concepts

Figure 2.6: Interaction of a real-time computer system with the environment

2.2 Interfaces

According to [JKK+02] an interface is a point of interaction between a system and its
environment where the environment is everything other than the system. In [Mil98]
the term communication interface is regarded as a structural element at which the
interaction between a (component) system and its environment takes place through
the exchange of information.

An interface shall provide understandable abstractions, i. e., essential properties
of the interacting component systems [KN97], without neglecting any relevant aspect
that could influence these interactions and thereby:

• provide a proper point of interaction between subsystems when partitioning a
larger system into smaller subunits in order to reduce the cognitive complexity
of the whole system (divide and conquer),

• enable timely information flow between subsystems without introducing addi-
tional dependencies between these subsystems,

• hide internal details of the implementation of subsystems, and

• inhibit error propagation among subsystems [Kop99b].

18

2 Basic Terms and Concepts 2.2 Interfaces

The characterization of an interface between two subsystems of a real-time system
can be given by its:

• syntactic specification which is concerned with the structure and semantics of
the data that crosses the interface, its

• temporal specification which is concerned with the temporal constraints that
must be satisfied by control signals and data that cross the interface (e. g., in-
stant, phase, and frequency of a given message), and its

• meta-level specification that provides a conceptual model of the interface,
i. e., the interface model that describes the functional intent a user has in
mind regarding the information that is passed between the interfacing subsys-
tems [JKK+02, KN97].

An interface can either be an input interface, an output interface, or both, i. e., a
bi-directional interface. An input interface consumes information from the environ-
ment of a system, an output interface provides information to the environment of
a system. An example of an XML interface specification for a distributed fieldbus
application is given in [EPS04]. This specification includes the syntactic, the tempo-
ral, and the meta-level description of the interfaces between the nodes of the fieldbus
application.

2.2.1 Interface State

An interface (partially) represents the state of a system. In the following section, we
investigate the notion of state and elaborate on the basic terminology regarding the
state of an interface.

In [Pet02], different concepts of state have been identified throughout several en-
gineering disciplines. Basically, these definitions can be divided into the following two
different views: First, the state of a system can be regarded to comprise of informa-
tion determining possible future behavior of this system thereby decoupling the past
from the future. This ”forward-looking view” is commonly in line with abstract sys-
tem theory, used by system modelers. Second, the state of a system can be regarded
as the total information of a system up to a given instance. This ”backward-looking
view” is typically favored by system implementors and corresponds to a physical
system view.

The state of a distributed real-time system is always a snapshot at a given instant
and thus inseparable from the concept of time. The presence of a sparse time base
(refer to section 2.1.2) enables a precise characterization of the state of a distributed
real-time system because an agreed system wide notion of a certain instant can be
established which is a fundamental prerequisite for the definition of the system state.

In [JKK+02], a differentiation between abstract state, stored state and declared
state is given. Thereby, the abstract state of a system at a given instant is a notional
attribute of the system that is sufficient to determine its potential behavior. In con-
trast, the stored state of a system at a given instant is the total information explicitly

19

2.2 Interfaces 2 Basic Terms and Concepts

stored by the system (in state variables) up to the given instant. The declared state of
a system at a given instant is defined as the value assigned to a declared data struc-
ture that can be accessed via an interface and that records all the stored state that is
relevant to (i. e., that can influence) the future essential behavior of the system.

Based on the previous definitions, the state of an interface can be defined as
follows [JKK+02]:

Abstract interface state: The abstract interface state at a given instant is defined
as the abstract state of a system as viewed from a particular interface of this
system. The abstract interface state is a notional attribute of an interface, that
is sufficient to explain future behavior of a system across this interface.

Stored interface state: The stored interface state at a given instant is defined as
the stored state of a system that is relevant to future behavior at a particular
interface. The stored interface state together with a definition of the system is
sufficient to explain the behavior of the system across this interface. The stored
interface state can be made explicitly available to an interfacing system or it
can be hidden behind the interface of the system.

Declared interface state: The declared interface state at a given instant is defined
as the value assigned to a declared data structure that can be accessed via an
interface and that records all the stored state that is relevant to (i. e., that can
influence) the future essential behavior of the system at the given instant.

The semantics of the interface state is defined by a conceptual interface model
which relates the meaning of the chunks of information (i. e., the syntactical interface
specification) to the user’s conceptual world [KS03].

2.2.2 Interface Types

In order to decrease the cognitive complexity of the system structure, separate inter-
faces can be defined for unrelated system functions [Kop02]. Usually it makes sense
to distinguish between the Real-Time Service (RS) interface, the Diagnostic and
Management (DM) interface, and the Configuration and Planning (CP) interface.

Real-Time Service (RS) interface: During operation of a real-time system, the
RS interface [EHK01] provides the real-time services (of a real-time system
component) to its users. Thus, the RS interface is the most important interface
for the service users and should be kept small and understandable. The RS
interface is also called Linking Interface (LIF) [KS03] because it establishes a
link between different system components that interact via the RS interface.
We can distinguish between a Service Providing Linking Interface (SPLIF),
i. e., the part of the RS interface that offers a certain service to its users and a
Service Requesting Linking Interface (SRLIF), i. e., the part of the RS interface
that requests services from other system components [KS03].

20

2 Basic Terms and Concepts 2.2 Interfaces

Diagnostic and Management (DM) interface: The DM interface [JKK+02],
also referred to as Diagnostic and Maintenance interface [EHK01], is present
during system operation. The purpose of the DM interface is to provide a com-
munication channel to the internals of a system component without disturbing
the real-time service across the RS interface. The DM interface can be used
for diagnostic purposes, e. g., fault diagnosis, or for setting internal parameters
of a component at runtime.

Configuration and Planning (CP) interface: The CP interface [EHK01] is a
non-time-critical interface that is required during the integration or reconfig-
uration phase of a system component. The off-line parameterization of the
connection of different system components (e. g., static communication sched-
ule) is handled via the CP interface.

2.2.3 High-Level versus Low-Level Interface Issues

We can distinguish between high-level interface issues that are related to semantic,
pragmatic and temporal aspects of an interface, and low-level interface issues related
to transport and representation of information [JKK+02]. Real-time aspects are
important on both levels and there is an interdependence between high-level and
low-level interface issues regarding real-time aspects, i. e., low-level real-time issues
regarding the timing of information transport influence high-level temporal issues.

High-Level Interface Issues

The following high-level interface issues have been identified in [JKK+02]:

Naming: Naming means to associate identifiers to entities within a defined context
and to use the identifiers to access the entities [RP93]. Proper naming of
entities at an interface has a major influence on the understandability of the
interface, i. e., the possibility to establish a correct link between the names and
concepts which a human has in mind.

Interaction styles: Component systems can interact in different styles, e. g., by
request-reply interaction of a client-server model, by publish/subscribe inter-
action, by multipeer interaction, or by data passing via a repository.

Dependability attributes: Besides functional attributes, a system may include
dependability attributes like timing or delivery guarantees that are part of the
interface.

State persistence: If a component system periodically reaches a ground state,
i. e., a state where no tasks of the component system are active and no message
of the component system is in transit, this ground state can be used as a reinte-
gration point for the component system after a failure. For such reintegration a
persistent state is required, i. e., the declared interface state of the component
systems linking interface.

21

2.2 Interfaces 2 Basic Terms and Concepts

Low-Level Interface Issues

Low-level interface issues discussed in [JKK+02] relate to data representation of
messages that are exchanged via the interface (e. g., byte order), timing (i. e., timing
of a unidirectional message send and receive operation across the interface), and flow
control which can be further classified into explicit flow control and implicit flow
control.

In explicit flow control, the receiver controls the speed of information flow by
sending an acknowledgment message to the sender upon successful arrival of a mes-
sage. Thereby, the receiver explicitly signals to the sender its ability to receive further
messages. In contrast, implicit flow control involves a priori defining at what rate
and at which instants messages will be transmitted between sender and receiver. In
implicit flow control, the sender implicitly expects that the receiver is able to accept
a message as long as the instant of transmitting this message is in accordance with
a statically defined schedule. This schedule is available at both, sender and receiver.

2.2.4 Temporal Firewall

A temporal firewall is a unidirectional data-sharing interface with state-data seman-
tics where at least one of the interfacing subsystems accesses the temporal firewall
according to an a priori known time-triggered schedule and where at all points in
time the information contained in the temporal firewall is temporally accurate for at
least dacc time units into the future [KN97].

To ensure proper information flow between sender and receiver of a time-triggered
system (refer to section 2.1.1), the sender (producer) of information must provide
temporally accurate real-time images of a real-time entity and must assure that
the temporal accuracy of these real-time images is maintained, even immediately
before the point of update of the real-time image. The receiver (consumer) of the
information must sample the real-time image contained in the temporal firewall and
ensure that the accessed information is temporally accurate at its time of use.

For component systems acting as both, sender and receiver (bidirectional com-
munication), the RS interface consists of two separate firewalls, an input firewall and
an output firewall. Temporal firewalls can be used at the CNI, at the COI, and at
the GWI of a distributed real-time computer system (refer to section 2.1.5).

A temporal firewall introduces structure into a system by stable properties and
thereby simplifies the cognitive complexity of the system. These stable properties
constitute important preconditions at the input firewall and postconditions at the
output firewall in order to validate a component system. Furthermore, a temporal
firewall is free of control signals, i. e., there is no possibility of control-error propa-
gation across a temporal firewall. A data error can only propagate from sender to
receiver. In a temporal firewall it is impossible for data error to propagate back from
receiver to sender.

22

2 Basic Terms and Concepts 2.3 Simulation

2.2.5 Connection System

The cases where two or more real-time component systems are connected, agreement
among the RS interfaces of the component systems is required with consideration of
their shared set of concepts and their notion of time. In presence of such agreement,
i. e., if matching properties of the RS interfaces of the connected components exist,
the connection of these interfaces is called boundary line [JKK+02]. In the case
of a property mismatch, i. e., disagreement among the interfaces in at least one of
their properties, a connection system must be placed between the interfaces of the
connected components [JKK+02]. As shown in figure 2.7, a connection system has (at
least) two boundary lines in order to connect two systems with property mismatches
at their respective interfaces.

Figure 2.7: Connection system with two boundary lines

A connection system can be regarded as a component system translating interac-
tion requests (resp. responses) from system A into requests (resp. responses) that are
understood by system B and vice versa. The duration that is required for perform-
ing such a translation must be limited in order to guarantee deterministic real-time
behavior of the resulting system, i. e., a system of systems consisting of system A,
system B, and the connection system.

2.3 Simulation

Most definitions of simulation found within the literature include the concept of a
simulation model or model in short, i. e., a proper abstraction of one or more real-
world entities. In [IEE89], a model is defined as an approximation, representation,
or idealization of selected aspects of the structure, behavior, operation, or other char-
acteristics of a real-world process, concept, or system.

The execution of the model for the purpose of conducting experiments with this
model is generally referred to as simulation. Furthermore, the development of the
model may be included to be part of simulation like in [Sha75], where simulation
is regarded to be the process of designing a model of a real system and conducting
experiments with this model, or in [IEE89], where simulation is defined as the process
of developing or using a model that behaves or operates like a given system when
provided a set of controlled inputs.

Within the scope of this thesis, we focus on the real-time execution of a model.

23

2.3 Simulation 2 Basic Terms and Concepts

Thus, we define simulation as the imitation of the operation of a real-world process
or system over time [BCNN01], i. e., the execution of a model by a simulator. A
simulator is a computer program that is executed on one or more processors and can
execute a model to generate its behavior [Clo98].

Overall, the purpose of simulation is to draw inferences concerning the operation
characteristics of the real system [BCNN01] in order to understand the behavior of
the system or to evaluate strategies for the operation of the system [Sha75]. With
simulation it is possible to abstract from real-time and/or space in order to point
out interactions that would otherwise not be apparent due to their separation in space
and/or time in the real system [Gal99]. For instance, a simulation could show the
effects of inflating an airbag during a crash test or a fast chemical reaction in a
very slow motion and would allow the user of this simulation to step forward and
backward to study each intermediate step of the simulation.

Simulation of a physical process through the execution of a simulation model on
a computer involves various concepts of time: First, the physical process itself is
time consuming within its real physical environment. For example, the interval ”of
interest” while observing a chemical reaction could be 115 seconds. We call this time
physical time since it relates to the physical process. Second, the simulation model
must include means to represent the physical time (e. g., with an integer variable
representing seconds of the physical time). We call the representation of physical
time within the simulation model simulation time. Third, execution of the simulation
model on a computer is time consuming (e. g., three seconds for the simulation of
the chemical reaction on a given computer). We refer to time, measuring execution
of the simulation, as the wall clock time.

Physical time: The physical time is the (real-)time of the physical process being
simulated.

Simulation time: The simulation time represents the physical time within the sim-
ulation.

Wall clock time: The wall clock time is the (real-)time of the computer executing
the simulation model.

In a (simple) computer simulation that involves only one computer and does not
require real-time interaction with an external system during the simulation, it is
possible to abstract from physical time and to manipulate the simulation time and
thereby accelerate, decelerate or even rewind simulation time. Hence, it is possible
to simulate a physical process at a different pace than the predetermined physical
time.

However, a simulation may include interaction with an external system, i. e., with
parts of the real-world. We will use the term real-time simulation to denote a simula-
tion interacting with parts of the real-world. In a real-time simulation, the simulation
model is intended to be used as part of a real-world system and it is therefore impos-
sible to abstract from physical time. Hence, in a real-time simulation, physical time,

24

2 Basic Terms and Concepts 2.3 Simulation

simulation time, and wall clock time all refer to real-time and it is therefore point-
less to distinguish between these different notions of time. Real-time proceeds from
past to future according to the Newtonian model (refer to section 2.1.2) and may be
synchronized to a worldwide standard (e. g., Temps Atomique Internationale (TAI),
Universal Time Coordinated (UTC)).

40 years ago, real-time simulation had already been mentioned within the lit-
erature [SS66] and since then has meant a simulation that must meet the timing
constraints given by the (real-time) behavior of the real-world [Jim05]. A real-time
simulator must therefore not only interact with its environment in terms of the
value domain, i. e., deliver value-correct information, but also in the time domain,
i. e., exchange information in agreement with a temporal specification.

In many cases there is a need for fast simulators processing complex simulation
models in very short intervals in order to fulfill the temporal requirements of a real-
time simulation. To enable fast computing, powerful distributed simulators can be
employed. However, real-time simulation must not be confused with the term fast
simulation. A real-time simulator must consume its input and produce its output at
certain instants. Both, early and late consumption/provision of this input/output
would invalidate the simulation run.

It should be mentioned that there is a difference in the taxonomy of emulation
and simulation. In [IEE89], emulate is defined, to represent a system by a model that
accepts the same inputs and produces the same outputs as the system represented.
An example of an emulator would be the imitation of a game console on a desktop
computer. A system A emulates another system B, if the behavior (i. e., the traces
of activity at the systems interface) of system A are exactly the same as for system
B – both in the functional and in the temporal domain. The aim of emulation is
to resemble system boundaries of the emulated system. To the contrary, system A
simulates another system B, if it executes a model that is a mathematical approxima-
tion (best representation) of the internal mechanisms of system B. Thus, simulation
is concerned with interactions in the sphere of the simulated system.

Drawing a clear distinction between simulation and emulation, related to HiL, can
be difficult. It is for example unclear whether the device mimicing the environment
of the SUT, i. e., producing input information for the SUT and consuming output
information from the SUT, should be called environment emulator (because it accepts
the same inputs and produces the same outputs as the system represented [IEE89])
or environment simulator (because it is a device that performs simulation [IEE89] of
the environment).

In line with most literature, the term simulation will preferentially be used
throughout this thesis. The term emulation will only be used in cases where the
term simulation would definitely be inappropriate.

2.3.1 Classification of Simulation

Within this section, a classification of different simulation approaches is discussed
with respect to their type, distribution and domain as outlined in [Gal99].

25

2.3 Simulation 2 Basic Terms and Concepts

Simulation Type: We can distinguish between discrete and continuous simula-
tions. In a discrete simulation, the state variables of the simulation model
change solely at discrete instants. In a continuous simulation, these state vari-
ables change continuously over time [BCNN01]. A discrete simulation is based
on a sparse time base, whereas a continuous simulation is based on a dense
time base (refer to section 2.1.2). A discrete simulation can be mathemati-
cally described by difference equations, while a continuous simulation can be
mathematically described by differential equations.

Discrete simulations can be further classified into discrete time and discrete
event simulations [Gal99]. A simulator that is based on a discrete time sim-
ulation, increments an internal timer tick by tick and triggers events as soon
as their activation time equals the value of the internal timer. In contrast to
a discrete time simulation, where simulation time advances from tick to tick,
in a discrete event simulation the simulation time advances progressively from
event time to event time.

Simulation Distribution: We distinguish between central (monolithic) and dis-
tributed simulations. In a central simulation a single processor is used to se-
quentially carry out the execution of the simulation model whereas in a dis-
tributed simulation the simulation model is distributed over multiple processors
that are able to execute parts of the simulation model in parallel.

The main advantage of a distributed simulation is in the performance gain of the
distributed simulation compared to a central simulation. However, cognitive
complexity during setup of a distributed simulation is in general higher than
cognitive complexity of a central simulation. An example for an approach
to distributed real-time simulation, tackling the effective decomposition of a
(distributed) simulation model, is presented by the distributed time-triggered
simulation scheme [Kim04].

Simulation Domain: We can distinguish between network simulation, protocol
simulation, environmental simulation, and cluster simulation:

• Network simulation is concerned with the simulation of properties of a
given communication network, e. g., performance issues or topology.

• Protocol simulation targets at the evaluation of features of the used com-
munication protocol. An approach to simulate the real-time communica-
tion protocol TTP can be found in [Gri01]. Furthermore, multi cluster
clock synchronization in a TTP network has been investigated through
simulation in [Han04].

• Environmental simulation deals with the simulation of the physical en-
vironment of a real-time system. In [Sch95] a distributed discrete time
environment simulator for a time-triggered real-time system is presented.

• Cluster simulation [Gal99], sometimes labeled as the ”rest-of-the-bus sim-
ulation” [FRB97], refers to an approach, where a dedicated device, the
so-called cluster simulator, emulates the behavior of one or more nodes of
a distributed real-time system.

26

2 Basic Terms and Concepts 2.3 Simulation

Simulation Software

The selection of appropriate simulation software plays a crucial role in the devel-
opment of a simulation. Many simulation languages, containing elements able to
generate simulation models, exist. A comprehensive analysis of simulation languages
can be found in [Gal99] and in [BCNN01].

A wide range of simulation packages extending existing simulation languages are
available. An overview of commercial simulation packages is presented in [Ell00]. An
attempt for an open source solution is targeted by the OpenSML project which is
based on the Simulation Modeling Language (SML) [Kil01, Wie02].

As an example for a specialized solution for the simulation of distributed real-
time systems it is worth mentioning TrueTime [HCÅ03, AHC05], which is a toolbox
based on Matlab/Simulink. TrueTime has been developed since 1999, is available
as freeware, and offers several features for the simulation of real-time kernels and
network protocols (e. g., support for wireless networks in its latest version [AHCÅ05]).
Overall, a comprehensive investigation on a large number of simulation languages
and simulation packages is necessary to identify which simulation software is most
suitable for a given purpose. In order to aid the selection of adequate simulation
software amongst a large range of available solutions, selection methodologies are
investigated in [NP99].

2.3.2 HiL Simulation

HiL simulation is a technique where parts of the real system are replaced by a simula-
tion. Thereby, real and simulated components of a (real-time) system are combined
into an operational configuration in order to simulate and test the dynamic behavior
of the real components, i. e., the SUT [Cra05]. The SUT is implemented on actual
hardware while the remaining (simulated) systems, involved in the simulation and
testing procedure, are represented by a real-time simulation [Jim05]. The output
provided by the simulation is converted (e. g., by D/A modules) and supplied as in-
puts to the SUT. The output of the SUT is converted (e. g., by A/D modules) and
supplied as input to the simulation [Woj99].

HiL simulation is regarded to be a standard method for testing an embedded
controller before its deployment [NI03]. Compared to SiL simulation, HiL simulation
offers increased realism with respect to the behavior of the simulation because access
to hardware features not available in an SiL simulation is provided.

Chapter 3 provides a more detailed investigation on HiL simulation and places
further emphasis on HiL simulation of distributed real-time systems.

2.3.3 Validation and Verification

HiL simulation supports the validation of a real-time system, i. e., the confirmation
by examination and through provision of objective evidence that the requirements for
a specific intended use or application have been fulfilled [ISO 9000] [Vee06]. Hence,

27

2.3 Simulation 2 Basic Terms and Concepts

validation checks that the product design satisfies or fits the intended usage, i. e., the
right product has been built [Wik07c]. Validation is carried out by dynamic testing
in which the SUT is executed under specified conditions, the results of this exe-
cution are observed or recorded, and an evaluation is made of some aspects of the
system [IEE90]. We can distinguish between black box testing and white box testing.
Black box testing relates to testing without reference to the internal structure of the
system, whereas white box testing is based on an analysis of the internal structure
of the system [Vee06].

Verification is the confirmation by examination and through provision of ob-
jective evidence that specified requirements have been fulfilled (ISO 9000) [Vee06].
Thus, verification ensures that the final product satisfies or matches the original
design, i. e., that the product has been built correctly (according to its specifica-
tion) [Wik07c]. Verification can be done by static testing, where the sanity of a
code, algorithm, or document is checked by syntax checking, manually reading of the
code or document, reviews, inspections and walkthroughs [Wik07b].

In order to validate a given system (i. e., to perform dynamic tests on this system),
a set of test cases is required. Each test case includes input values, execution pre-
conditions, expected results, and execution postconditions [Vee06]. The test coverage,
expressed as a percentage, indicates to which degree an anticipated real-world sce-
nario is covered by the corresponding test scenario [Sch92]. Although it is desirable
to maximize the test coverage (ideally up to 100 percent), this is often aggravated
by limitations like the difficulty to provide realistic test data or to have omniscient
knowledge about a systems environment.

It is usually impractical or even impossible to test a system using every possible
input combination. Thus, potential test input patterns have to be selected based on
criteria of the actual test process. Subsequently, test input congruent to these input
patterns has to be generated [Pal00]. For test input generation we can either employ
a probabilistic test technique, where test sets are based on a random distribution
of the input field, or a deterministic test technique, where test sets are determined
through a selective choice [AFI+00].

Validating a Distributed Real-time System

In a distributed system, multiple loci of control exist because of physically separate
processors executing programs independently of each other. Furthermore, a dis-
tributed real-time system must not only be congruent to its functional, but also to
its temporal specification. In [Sch92] a comprehensive survey on the influence of dis-
tributedness and the influence of real-time related to testing of distributed real-time
systems can be found. In general, several peculiarities occur, like increased cognitive
complexity, accompanied by difficulties of observation, monitoring and control of the
system during a test run.

Several issues mentioned within the literature need to be tackled in order to
adequately validate a distributed real-time system. Of particular relevance are the
properties of reproducibility, representativity, and observability [Sch92, Kop97, Pal00].

28

2 Basic Terms and Concepts 2.3 Simulation

Reproducibility (Controllability): The property of reproducibility or controlla-
bility of a certain test run is fulfilled if several independent executions of the
test run consistently produce the same test results. In order to ensure repro-
ducibility, it may be necessary to (partially) manually control system execution
during a test run.

Representativity (Test Coverage): The selection of test input patterns, the de-
sign of test cases and actual test execution must be representative of expected
lifetime operational conditions. Failing to produce a test coverage of 100 per-
cent suggests the possibility that some rare event has not been considered which
in turn leads to inappropriate system behavior.

Observability (Probe Effect): All inputs and outputs of a system must be avail-
able to the test engineer. In the case where a system imposes different be-
havior as a consequence of being observed during the test, a so-called probe
effect [Gai86] has occurred. Preventing the occurrence of probe effects is an
important prerequisite in the design of a test environment enabling represen-
tative test runs.

In [Kop97] several techniques promoting a better system structure and thereby
facilitating system testing, have been proposed and are as follows:

• partitioning the system into composable subsystems which can then each be
tested in isolation,

• establishment of a static temporal control structure which is independent of
input data and can be tested in isolation,

• reduction of the size of input space by using a sparse time base,

• output of the internal state of a node while it is in ground state in order to
improve observability, and

• provision of replica determinism in software in order to improve reproducibility
of test runs.

Time-triggered systems allow for the above mentioned techniques because of their
architectural properties that lead to deterministic behavior. Because of these archi-
tectural properties, time-triggered systems are in general easier to test than event-
triggered systems [Kop97].

X-In-the-loop Testing

Apart from HiL simulation, the literature has covered some more ’in-the-loop’ tech-
niques. These techniques are generally referred to as X-in-the-loop [BSS05].

29

2.3 Simulation 2 Basic Terms and Concepts

Model-in-the-Loop (MiL): MiL denotes a technique where the model of a spec-
ified function is checked with a simulated system model. Thus, both, the
system as well as the environment exist as a model. The application of MiL
is relevant in cases where the embedded software development follows a model
based approach [LTH03, ZSL+04], and where model based tests are part of the
integrated development environment.

Software-in-the-Loop (SiL): Using SiL, executable code is tested in a simulated
(software) environment. Executable code may be automatically generated from
a model. Furthermore, the test environment from MiL tests may be appropriate
to subsequent SiL tests.

Processor-in-the-Loop (PiL): The term PiL [ZLD+04] is used for a technique
where the processor of the target hardware is used for testing the executable
code. This processor is mounted on a specific evaluation hardware board. PiL
bridges the gap between SiL and HiL.

Hardware-in-the-Loop (HiL): With HiL, executable code is tested on the target
hardware whilst the environment of the target hardware is simulated. The
target hardware used for an HiL simulation can either comprise a single node
or a distributed system, consisting of several nodes.

In contrast to X-in-the-loop, rapid prototyping is an approach where executable
code of a system is tested on prototype hardware. This prototype hardware does not
necessarily contain the same hardware elements (e. g., processor, memory, I/O) as
the target system. Furthermore, this prototype hardware is tested in the real system
environment, e. g., in a real car, instead of a simulated environment.

It should be mentioned that the application of X-in-the-loop simulation tech-
niques for the validation of a system requires that the applied simulation model is
sufficiently similar to the real system behavior. Thus, the validation of the simulation
model is crucial in order to produce a model that closely resembles true system be-
havior, thereby maximizing credibility of the model with respect to decision makers
throughout the system validation process [BCNN01].

Certification of Real-Time Systems

Certification is the legal recognition by the certification authority that a product, ser-
vice, organization or person complies with the requirements, and includes activities
of technically checking the product, service, organization or person as well as a for-
mal recognition of compliance with the applicable regulations [IMA05]. Certification
requires the development of a safety case which is a documented body of evidence
that provides a convincing and valid argument that a system is adequately safe for a
given application in a given environment [BB98]. Hard real-time systems that are
employed in safety-critical domains, like for instance the aerospace, automotive, or
space domains, must usually be certified to comply to an accredited standard.

Currently, the Radio Technical Commission for Aeronautics (RTCA) standards
DO178-B [RTC92] and RTCA DO254 [RTC00] are relevant for the certification of

30

2 Basic Terms and Concepts 2.4 Smart Transducer (ST)

airborne systems in order to get approval by the Federal Aviation Administration
(FAA). In the automotive area there are a couple of standards and guidelines, such
as the Motor Industry Software Reliability Association (MISRA) guidelines [MIS04]
or concrete instantiations of the (generic) International Electrotechnical Commission
(IEC) 61508 standard [IEC05]. The objectives of these standards share, despite
substantial differences, a principle support towards the development of safe soft-
ware/hardware systems by providing a framework defining the so called ”best prac-
tices” for the development of such systems.

The potential role of HiL simulation with respect to a certification procedure
relates to the software testing process. The DO178-B standard specifies the soft-
ware testing process in detail and points out that the testing process targets at
two objectives [RTC92]: first it shall be demonstrated that the software satisfies its
requirements, second it shall be demonstrated that unacceptable errors have been
removed. In order to reach these objectives, it may be necessary to involve a high
fidelity simulation of the target computer environment [RTC92].

However, in case a simulator (resp. emulator) is used throughout the test pro-
cess, this simulator (resp. emulator) must be qualified and differences between the
simulation and the real environment must be considered. Thereby, the test coverage
of a test run with an HiL simulation directly relates to the model coverage of the
simulation model. In [Bal97] several guidelines for the verification and validation of
simulation models are presented that aim at giving accreditation of the accuracy of
a simulation model.

2.4 Smart Transducer (ST)

As stated earlier, the interaction between a real-time computer system with its en-
vironment via the COI is established via transducers. A transducer is a device that
converts energy from one form to another in order to measure a physical quantity
or to transfer information [ATI01]. Thus, the term transducer subsumes the terms
sensor and actuator, i. e., any transducer in operation is functioning at any given
moment either as a sensor or as an actuator [BV99].

A sensor is a device that captures a real-time entity of the controlled object,
e. g., thermal, electromagnetic, mechanical, chemical, or optical properties of the
controlled object. Thereby, a sensor responds to a physical stimulus by producing
a signal, usually electrical [ATI01]. In contrast, an actuator operates on a real-time
entity by imposing a condition on the real-time entity, i. e., an actuator produces a
physical stimulus.

A Smart Transducer (ST) is the integration of an analog or digital transducer ele-
ment with a local microcontroller and the respective interface circuitry [KHE01]. The
microcontroller is used to transform raw transducer signals to a digital representation
and vice versa. Furthermore, it is possible to perform checks on the physical trans-
ducers as well as a calibration of the transducer signal. An ST includes a message
based communication interface that is used to exchange the digital representation of
transducer signals with its users.

31

2.4 Smart Transducer (ST) 2 Basic Terms and Concepts

Figure 2.8 depicts an ST consisting of an Atmel 4433 microcontroller functioning
as the processing and communication unit and a Sharp infrared (IR) distance sensor
functioning as the physical transducer element.

Figure 2.8: Smart Transducer (Atmel 4433 microcontroller and Sharp IR distance
sensor, scale in cm)

2.4.1 Smart Transducer Interface (STI)

A (digital) Smart Transducer Interface (STI) supports plug-and-play configuration,
monitoring, and communication of digital transducer data via a shared communica-
tion channel. However, it keeps the internal complexity of ST hardware and software,
as well as internal sensor failure modes hidden from the user [Kop99a].

The interconnection of ST nodes is enabled through a fieldbus. The aim of fieldbus
technology has been to replace the 4-20mA analogue standard being in use since
the 1970s. Using the 4-20mA standard, a unified way for interfacing a transducer
exists. Compared to the 4-20mA standard, a fieldbus targets at reduced wiring
and lining, easier debugging and maintenance, increased performance by providing
a digital interface and the possibility to build networks of (smart) transducers. At
present, several different fieldbuses are available. Amongst many others, renowned
fieldbus examples are the Controller Area Network (CAN) and the Local Interconnect
Network (LIN) within the automotive domain, as well as the Process Field Bus
(PROFIBUS) within the factory automation domain.

From the perspective of an end-user, the availability of one world wide accepted
fieldbus standard would be desirable. However, suppliers would fail to benefit from
such a standard as they would loose their competitive edge by missing out a differ-
entiation across the market [Pin95]. Nevertheless, a couple of fieldbus solutions have
been employed successfully in industry, several standards exist and substantial effort
has been made to unite these standards. A clear move towards a single interoperable

32

2 Basic Terms and Concepts 2.4 Smart Transducer (ST)

fieldbus standard has been undertaken by joining forces of two large fieldbus groups,
the Interoperable Systems Project and the Flux Information Processus or Factory
Instrumentation Protocol to form the Fieldbus Foundation in 1994. The Fieldbus
Foundation is a non-profit organization consisting of more than 350 suppliers and
end users of process control and manufacturing automation products. The Field-
bus Foundation contributed to fieldbus standards development of the IEC and the
Instrumentation Society of America (ISA).

After more than one decade of struggles between various national fieldbus stan-
dards, the IEC worked out the IEC 61158 standard in 2000 [Fel02]. The IEC 61158
standard is based on eight existing fieldbus solutions (Foundation Fieldbus, Con-
trolNet, Ethernet/IP, Profibus, SwiftNet, WorldFIP, Interbus, and P-NET). Three
years earlier, in September 1997, IEEE 1451.2 was approved. IEEE 1451.2 defines
interfaces for an ST, i. e., a digital interface and communication protocol for the
connection of transducers and a microcontroller [EP03].

In response to a call for a proposal of a novel STI standard by the Object Manage-
ment Group (OMG) in December 2000, members of the DSoS project in cooperation
with European and US companies and the NextTTA project produced a new stan-
dard that is based on the DSoS conceptual model [JKK+02]. This standard has
been adopted by the OMG in January 2002 and includes a time-triggered transport
service for the interconnection of STs as well as an interface to a Common Object
Request Broker Architecture (CORBA) environment [OMG03]. An implementation
of the STI including the time-triggered transport service has been realized in the
time-triggered fieldbus protocol TTP/A [EO02].

2.4.2 TTP/A – Principles of Operation

A fieldbus that should be used as part of an embedded real-time system must adhere
to several requirements [KEM00, EK05]:

Real-time capability: The temporal predictability of periodic real-time commu-
nication must be guaranteed, including low latency and minimal jitter. At the
same time, high data efficiency must be provided.

Dependability: Although a fieldbus is not designed for the use as the backbone of
a safety-related system, it must have an adequate level of dependability and a
high error-detection coverage in order to keep maintenance costs low.

On-line diagnostics: It should be possible to parameterize, calibrate, and diagnose
an ST node – ideally during runtime and without influencing other ST nodes.

Extensibility: The connection of new ST nodes must be supported in order to
allow an integration of new features. Furthermore, support for reconfiguration,
exchange, and removal of STs during the lifetime of a system is necessary.

Low complexity and low cost: In order to make the use of the fieldbus econom-
ically feasible, low cost microcontroller nodes must be supported through low

33

2.4 Smart Transducer (ST) 2 Basic Terms and Concepts

protocol complexity and the fieldbus solution must aim at reducing wiring and
installation costs.

The OMG STI implementation of the time-triggered protocol TTP/A aims at
these requirements. TTP/A supports a two-level design approach, offers three inter-
face types (i. e., an RS interface, an DM interface, and an CP interface as presented
in section 2.2.2), and provides automatic configuration of ST nodes [EP03]. The
two-level design approach helps in reducing the overall system complexity by sepa-
rating the transducer implementation from interaction issues with other transducers.
The provision of separate interfaces for the RS, DM, and CP aims at a clean separa-
tion of functionality in order to achieve a better understandability of the STI. The
automatic configuration is supported by so-called cluster configuration descriptions
comprising the communication schedule of the cluster, descriptions of participating
nodes, and properties for the configuration of the fieldbus (e. g., baud rate).

In the following section, we summarize the key principles of the TTP/A protocol,
i. e., the principles of communication, the concepts of a distributed interface file
system, and the TTP/A round types, as outlined in [KHE01, EHK01].

Time-Triggered Communication

The TTP/A protocol supports up to 255 nodes all sharing a common data bus.
TTP/A is a time-triggered master slave protocol, where a single node acts as the
master. The master periodically initiates communication and execution activities by
triggering one of eight pre-configured rounds. This is done by sending a particular
eight bit pattern, a so-called fireworks byte, on the idle bus. After that, each node
sends and receives messages and executes application tasks according to a predefined
round schedule.

The nodes of a TTP/A cluster arbitrate the shared bus according to a Time
Division Multiple Access (TDMA) scheme, i. e., a node is only allowed to send a
message at a given instant and each node has knowledge about the instants when
messages from other nodes are to be received. Each message consists of one or
more bytes that are transmitted in the Universal Asynchronous Receiver Transmitter
(UART) format within a slot of a TDMA round.

The common time base required for a TDMA bus access scheme, is provided by
the master node. Therefore, the arrival event of the fireworks byte is used for starting
a common time-base at each node. Furthermore, synchronization slots during a round
can be used for re-synchronization during a round.

Interface File System

All actions within a TTP/A cluster, i. e., communication and task execution, are
organized in a distributed file system that is called the Interface File System (IFS).
The IFS is structured in a record-oriented format and provides a shared name space
for all messages that are exchanged within a TTP/A cluster. Both, the nodes static

34

2 Basic Terms and Concepts 2.5 Chapter Summary

configuration and dynamic data elements are included in the IFS. The TTP/A
protocol provides a unified mechanism to access each file entry within the IFS.

The IFS allows three file operations, read, write, and execute. Read/write are
atomic operations that read/write a record from/into a file of the IFS. Execute
initiates the execution of a file of the IFS. Four different file types in the IFS can
be distinguished: read-only documentation files that contain the documentation of a
node, input-output files that are used to store data during runtime, Round Descriptor
List (RODL) files, and special command files that contain executable code.

Each TTP/A node contains at least three files, a RODL file describing the TDMA
schedule of the node, a configuration file including at least the name of the node,
and a documentation file comprising at least the series and serial number of the
node. The name of the node is used for addressing a node in a master slave round.
The series number defines the type of the node, while the serial number is used to
differentiate between nodes of the same type.

Round Types

As mentioned earlier, a TTP/A round is initiated by a fireworks byte which is sent
by the master. After the transmission of the fireworks byte, data frames are sent by
nodes of the TTP/A cluster congruent to the specification of the round. The round
can either be a multipartner round or a master-slave round.

A multipartner round is used for the periodic exchange of real-time images and
consists of a configuration dependent number of slots with an assigned sender node
for each slot. The configuration of a multipartner round, i. e., which node of the
TTP/A cluster must send data in which slot, is specified in a RODL. The RODL
must be configured prior to the initiation of the corresponding multipartner round.
Configuration of the RODL is possible at design time and at runtime (during a
master-slave round).

A master-slave round is used to establish a connection between the master node
and a slave node for operating on the local IFS of the slave node. The slave node
is addressed by its name. The operation performed by the slave node is specified in
a frame sent by the master node. Thus, a master-slave round can be dynamically
initiated during runtime and there is no need for any pre-configured schedule at the
slave node.

Typically, multipartner and master slave rounds are interleaved, thereby sup-
porting diagnosis and maintenance services concurrent to real-time services. The
implementation of master-slave rounds can be omitted in ultra low cost TTP/A.

2.5 Chapter Summary

A real-time system performs actions within a priori defined time intervals. Missing
a deadline within a real-time system leads to degradation or failure of the delivered
service which can have catastrophic consequences. A service is an operation that

35

2.5 Chapter Summary 2 Basic Terms and Concepts

has a published specification of interface and behavior [AUT06a]. Behavior in this
context is defined as traces of activity at system interfaces which are sequences of
(perhaps timestamped) send and receive operations of the system [JKK+02]. A real-
time system consists of the real-time computer system, the controlled object, and the
operator. The controlled object and the operator are regarded as the environment.
The interaction between a real-time computer system and its environment is estab-
lished across the Controlled Object Interface (COI). Physically, the COI is realized
by transducers, i. e., sensors and actuators that transform a physical stimulus into a
signal and vice versa.

The aim of an interface is to provide understandable abstractions of interacting
component systems. An interface can be characterized by its syntactic, temporal,
and meta-level specifications. An interface represents (part of) the state of a system.
In order to separate unrelated system functions, three types of interfaces can be
distinguished in the context of real-time systems: Real-Time Service (RS) interface,
Diagnostic and Management (DM) interface, and Configuration and Planning (CP)
interface. An important interface concept for time-triggered systems is the concept
of a temporal firewall that is based on decoupled communication and that prevents
control signal propagation across an interface. Translation of interaction requests
between different systems is supported by the concept of a connection system which
resolves property mismatches of these systems.

Simulation is the execution of a (simulation) model for the purpose of conducting
experiments with the model, thereby imitating the operation of a real-world process
or system over time. Real-time simulation denotes a simulation where the simulation
time needs to be kept synchronous with real-time. HiL simulation is a technique
where part of a real system, i. e., the SUT is implemented on actual hardware while
the remaining part is represented by a real-time simulation. HiL simulation is used for
dynamic testing, i. e., validating an SUT under specified conditions. Key properties
for testing an embedded real-time system are: reproducibility, representativity, and
observability.

In order to overcome restrictions and to cope with the diversity of different
transducers, fieldbus technology introduced the concept of a Smart Transducer (ST),
i. e., the integration of an analog or digital transducer element with a local microcon-
troller and the respective interface circuitry. In January 2002, a new standard was
adopted by the Object Management Group (OMG) that includes a time-triggered
transport service for the interconnection of STs as well as an interface to a CORBA
environment. An implementation of this OMG STI standard, including the time-
triggered transport service has been realized in the time-triggered fieldbus protocol
TTP/A.

36

Chapter 3

HiL Simulation

As briefly outlined in section 2.3, HiL simulation is a technique, where physical
parts of a real system are substituted by a simulation. Within this chapter we
investigate the basic elements of an HiL simulation as well as the structure of a
typical HiL simulation system. Furthermore, we discuss requirements imposed on an
HiL simulation and investigate existing HiL simulators.

3.1 Structure and Constituting Elements

An HiL simulation system consists of two major building blocks (refer to figure 3.1):

System-Under-Test (SUT): The SUT is typically part of an embedded real-time
computer system. It can be only a single microcontroller, but it can also be
a distributed network of communicating nodes. The SUT interacts with its
environment, i. e., the operator and the controlled object, across the COI. In
case the SUT is part of a larger (distributed) system, it exhibits an LLI enabling
the interaction with the surrounding system.

HiL Simulator: The aim of an HiL simulator is to perform experiments with an
SUT. Hence, it substitutes the environment or parts of the environment of the
SUT. In case the SUT is part of a larger computer system, aiming to interact
with this larger computer system, the HiL simulator may provide means for
cluster simulation, thereby emulating the LLI of the SUT. In that case, the
HiL simulator executes simulation models of both, the environment of the SUT
as well as the non-available larger computer system.

3.1.1 Elements of an HiL Simulator

An HiL simulator is constrained by temporal and functional properties of the SUT.
The development of the SUT is typically independent of the development of the HiL
simulator. Thus, the interfaces of an HiL simulator, relevant to the interaction with

37

3.1 Structure and Constituting Elements 3 HiL Simulation

Figure 3.1: Basic elements of an HiL simulation system

the SUT, must be in line with the set of concepts and the notion of time of the SUT’s
interfaces. In case of property mismatches, a connection system (refer to 2.2.5) is
required.

An HiL simulator involves the simulation of the environment of the SUT. The
simulation of the environment includes a simulation of the controlled object and (if
applicable) inputs of an operator. In the case where the SUT is part of a distributed
system and the operation of the SUT relies on the presence of non-available parts of
this distributed system, an HiL simulator additionally involves the simulation of these
non-available parts (cluster). Hence, the basic building blocks of an HiL simulator
are (refer to figure 3.2):

Environment simulator: The environment simulator is responsible for the sim-
ulation of the environment of the SUT (i. e., the controlled object and the
operator).

Cluster simulator: In case the SUT is part of a distributed system, the cluster
simulator is responsible for the simulation of missing nodes of this distributed
system.

Figure 3.2: Basic building blocks of an HiL simulator

Physically, an environment simulator and a cluster simulator can be built upon
the same hardware elements. The purpose of environment simulator and cluster

38

3 HiL Simulation 3.1 Structure and Constituting Elements

simulator is to substitute ”all missing parts around the SUT” (i. e., the controlled
object, the operator, and missing nodes of a distributed system whereof the SUT is
a part). For example, in an automotive windscreen wiper application as SUT, the
windscreen wiper application would be executed on a node that connects to other
nodes (e. g., via CAN). For the HiL simulation we want to solely test the single node
that runs the windscreen wiper application. Therefore, we must develop an envi-
ronmental simulation, e. g., a simulation of the actuator that drives the windscreen
wipers and a sensor that captures weather conditions. Furthermore, we must develop
a cluster simulation to provide the windscreen wiper node with relevant information,
such as car speed or relevant operator commands. In a real system (i. e., after the
windscreen wiper node is installed in a car) such information would be provided via
other nodes (i. e., CAN messages).

Although environmental simulation and cluster simulation could be combined to
establish a single simulation model, we feel that a conceptual separation of these
parts is necessary. Such separation is motivated by the following considerations:

• As outlined in section 2.1, there is a clear distinction between the COI and the
LLI of a distributed real-time system. Nodes of a real-time computer system
interact with other nodes of this system via the LLI. The interaction of the
real-time computer system with its environment, i. e., a controlled object and
an operator, happens across the COI. In case, one or several nodes of a real-
time computer system (i. e., the SUT) are included in an HiL simulation, the
environment simulator of this HiL simulation connects to the COI of the SUT
and the cluster simulator connects to the LLI of the SUT.

• A conceptual separation of environment simulator and cluster simulator allows
a clear distinction between the real-time computer system’s internal behavior
(even if this system is not yet fully available) and the environment of this real-
time computer system. Thus, a clear distinction is made between parts that are
under control of the real-time computer system and parts that are not within
the sphere of control of the real-time computer system. Although messages
received by the SUT from other nodes of the real-time computer system are
outside the sphere of control of the SUT, it is usually possible for a system
developer to calibrate the general behavior of a real-time computer system.
However, it is usually impossible to alter the behavior of the environment of
the real-time computer system.

An HiL simulator can either be a centralized system or a distributed system.
Typically, one or several interconnected processing units are employed for executing
the environmental simulation model and (optionally) the cluster simulation model.
Furthermore, dedicated HW boards are used for the interconnection of the processing
units of the HiL simulator and the SUT.

As mentioned in [Cra05], an HiL simulator does not only provide interfaces to
the SUT. An HiL simulator also comprises interfaces to a human operator and to a
postsimulation-analysis platform. The interactive Human Machine Interface (HMI) is
used for injecting manual signals, e. g., for fault-injection experiments. The interface

39

3.1 Structure and Constituting Elements 3 HiL Simulation

to a postsimulation-analysis platform is required to capture signals that are imposed
on the SUT as well as corresponding signals that are received from the SUT.

3.1.2 Open-Loop versus Closed-Loop HiL Simulation

An HiL simulation can be classified into either open-loop HiL simulation or closed-
loop HiL simulation. As depicted in figure 3.3, the difference between these variants
is that in an open-loop HiL simulation, the HiL simulator provides predefined simu-
lation data to the SUT while in a closed-loop HiL simulation, the calculation of the
simulation data depends on previous output of the SUT.

Figure 3.3: Open-loop versus closed-loop HiL simulation

In an open-loop HiL simulation, the calculation of simulation data by the HiL
simulator is independent of the previous output data of the SUT. Hence, the dy-
namic behavior of the SUT cannot be observed. In an open-loop HiL simulation, the
required set of predefined input values is typically calculated offline. However, the
actual HiL simulation is still operated in real time. The output values of the SUT are
recorded for postsimulation analysis. Open-loop HiL simulation is a useful approach
for testing low-level input/output drivers, for unit testing, and to some extend for
integration testing [NBAR04].

In a closed-loop HiL simulation, previous output of the SUT directly influences
the calculation of subsequent input data. Thus, the simulation data must be calcu-
lated by the HiL simulator during runtime, i. e., in real time. In a closed-loop HiL
simulation, the controller feedback loop is preserved. Hence, a complete environ-
ment model with appropriate feedback response by the HiL simulator is required. A
closed-loop HiL simulation is applicable for system level testing.

3.1.3 Developing an HiL Simulation

Before developing an HiL simulation, an interface specification of the SUT, including
functional and temporal aspects, must be available. Regarding the physical setup of

40

3 HiL Simulation 3.1 Structure and Constituting Elements

the HiL simulation, overall, two aspects should be considered [NI03]:

• Hardware able to receive and generate signals to and from the SUT has to be
selected. In commercial solutions, dedicated hardware boards are offered that
consist of a set of input and output channels, supporting a variety of signals.
Refer to section 3.3 for a closer analysis of (commercially) available solutions.

• A suitable processing system carrying out the calculation of the simulation
model has to be chosen. The processing system is also used for recording of
postsimulation-analysis values and for the interaction with an operator. The
processing system can be constructed as a centralized system or as a distributed
system.

In case of a closed-loop HiL simulation, a simulation model has to be developed
that is then to be executed on the processing system. The possible level of detail of
this simulation model depends on the capabilities of the processing system.

In order to display parameters of an HiL simulation during a simulation run, a
dedicated HMI computer is used. This HMI computer is usually also used for the
development of the simulation model. Furthermore, postsimulation analysis of data
that has been recorded during an HiL simulation is typically conducted by the HMI
computer.

3.1.4 Multirate HiL Simulation

A classical HiL simulation would involve processing hardware that executes an HiL
simulation model and that instruments digital and analog I/O channels. These dig-
ital and analog I/O channels are connected to the SUT and send/receive control
signals (either analog or digital signals) to/from the SUT. The rate for the recurring
execution of simulation steps depends on the temporal requirements of the SUT. The
I/O channels that connect to the SUT are updated each time, the simulation model
finishes an execution step, i. e., after each step of the simulation model.

HiL simulation with SUTs that exhibit fast feedback loops in the nanosecond
range limit the capabilities of the simulation model and require fast hardware solu-
tions (e. g., based on FPGAs). If the processing hardware cannot timely complete
execution steps of the simulation model, it is necessary to chose a larger rate. How-
ever, increasing the rate lowers the accuracy of simulated signals.

In [GLH06, LGDL06], a dual time step simulation, involving two separate sim-
ulators which operate at different rates, is introduced. Thus, a separation between
the fast simulation of power converters and the comparably slower simulation of
the remaining network is achieved, thereby allowing the latter to execute regular
algorithms. The interaction between the two simulators is established by controlled
voltage and current sources.

In consensus with the idea of a dual time step simulation, discussed in [GLH06,
LGDL06], we propose a multirate HiL simulation. A multirate HiL simulation is
based on a distributed HiL simulator consisting of Backend Simulation Components

41

3.1 Structure and Constituting Elements 3 HiL Simulation

(BSCs) and Frontend Simulation Components (FSCs) (refer to figure 3.4). Each of
these components uses an individual rate for the execution of the simulation model
and the interaction with the SUT.

• BSCs execute parts of the simulation model that are independent of low level
interconnection details regarding the coupling between the SUT and the HiL
simulator.

• FSCs control the interaction between the HiL simulator and the SUT.

Figure 3.4: Multirate HiL simulation

The example of the automotive windscreen wiper mentioned earlier would for
instance require the simulation of weather conditions. These weather conditions
would be simulated by BSCs. FSCs would be responsible for the simulation of the
step response of sensors and actuators (e. g., read in the Pulse-Width Modulation
(PWM) control signal of the windscreen wiper motor controller). Typically, BSCs
use a much larger rate than FSCs.

FSCs interact with the SUT via control signals and observations of the behavior
of the SUT. A sparse time base (refer to section 2.1.2) is a fundamental prerequisite
in order to guarantee consistent ordering of the instants of these interactions. Hence,
each component of the multirate HiL simulator (i. e., FSCs and BSCs) must be
synchronized to a common (global) sparse time base that is agreed among these
components.

3.1.5 Coupling of HiL Simulator and SUT

The interaction between the HiL simulator and the SUT is an essential aspect for
any HiL simulation. This interaction highly depends on the functional and temporal
requirements of the actual SUT’s interfaces. Thus, it is impossible to define a uni-
versal solution for the coupling of an HiL simulator and an arbitrary SUT. However,
a structured development approach and the availability of generic components that

42

3 HiL Simulation 3.1 Structure and Constituting Elements

can be tailored to establish the coupling between an HiL simulator and a specific
SUT are desirable to enable a faster development of an HiL simulator.

The proposed distinction between BSCs and FSCs for multirate simulation men-
tioned above, enables a conceptual separation between those parts of an HiL simu-
lator which are independent from the physical realization of the SUT (i. e., BSCs)
and those parts that directly connect to the SUT and therefore depend on the phys-
ical realization of the SUT (i. e., FSCs). Besides the ability of supporting different
rates through a multirate HiL simulation, the separation between BSCs and FSCs
leads to a separation of concerns regarding the coupling of an HiL simulator and the
corresponding SUT.

An FSC requires periodic updates of simulation values that are provided by one
or more BSCs. Based on these simulation values, the FSC determines the control
signal that is to be provided to the SUT. Both, the control logic that calculates the
required physical signal based on the simulation value, as well as the physical wiring,
are part of the FSC. Thus, a change in the interface specification of the SUT directly
affects an FSC, but not necessarily the BSCs as long as the FSC can be provided
with all relevant simulation values in time.

Capturing of the SUT’s output signals is also in the responsibility of the FSCs.
Due to different rates between FSCs and BSCs, it is necessary to pre-process the
signals from the SUT at the FSCs. In [MFL+05] a method calculating the average
of signals throughout a single simulation step of the respective BSC is proposed.

The availability of separate FSCs in an HiL simulation is particularly advanta-
geous when it comes to incremental testing of a distributed real-time system. Starting
with a single node, a stepwise inclusion of nodes of the distributed system in the HiL
simulation is required. At each step, the environment model of the real-time system
is simulated (by BSCs) and the coupling between this simulation and the actual
SUT is established with FSCs. With separate FSCs it is possible to scale the HiL
simulation from a small SUT (single node) up to a complete distributed system by
adding additional FSCs as required.

In chapter 4 we elaborate on a concept enabling the setup of a scalable, determin-
istic network of BSCs and FSCs with respect to the temporal dependencies between
these components.

3.1.6 An Example

We consider an SUT whose aim is to control a simple circuitry as depicted in fig-
ure 3.5. This circuitry consists of a battery, a capacitor (C), two resistors (R1, R2)
and a switch. If the switch is on, the capacitor is charged and the voltage of the
capacitor (UC) asymptotically approaches the target voltage (U∞). If the switch
is off, the capacitor is discharged through R2. The instants of opening/closing the
switch determine the voltage characteristic of the capacitor (UC(t)).

With this example we can see that considering time as the determining factor of
a real-time system is indispensable for achieving desired system behavior. It follows
that an HiL simulator must absolutely adhere to the temporal specification of the

43

3.1 Structure and Constituting Elements 3 HiL Simulation

SUT’s interfaces to enable correct simulation results. Even small deviations with
respects to the instants of interaction (between HiL simulator and SUT) might have
a big (negative) impact on a particular HiL simulation run.

Figure 3.5: Charging and discharging a capacitor (C)

The voltage characteristic of the capacitor during the charging phase (switch on)
is given through:

UC(t)charging = U0 + (U∞ − U0) ∗ (1− e−k∗t)

where U0 is the voltage of the capacitor at t = 0 (i. e., instant where charging
starts),

U∞ =
R2

R1 + R2
∗ UBattery

and

k =
R1 + R2

C ∗ R1 ∗R2
.

As soon as the switch is turned off, the voltage characteristic of the capacitor is
given through:

UC(t)discharging = U0 ∗ (e−k∗t)

where U0 is the voltage of the capacitor at t = 0 (i. e., instant where discharging
starts) and

k =
1

R2 ∗ C
.

Figure 3.6 shows the voltage characteristic (UC(t)) of the capacitor (C) for ex-
emplary values (UBattery = 12V,R1 = 3kΩ, R2 = 1kΩ, C = 0, 5µF) given that the

44

3 HiL Simulation 3.1 Structure and Constituting Elements

capacitor has an initial charge of zero and the switch is turned on for 2ms (charging)
and then turned off (discharging).

Figure 3.6: Voltage characteristic (UC(t)) of capacitor (C)

The setup of a distributed HiL simulator for this example involves a BSC and
two FSCs. The BSC simulates the entity that turns on/off the switch and thereby
controls the voltage characteristic of the capacitor (BSC Voltage Characteristic).
The FSCs that are connected to the SUT provide the control signal for the switch
(FSC Switch) and capture the voltage at the capacitor UC (FSC Voltage). Figure 3.7
depicts an exemplary setup of the HiL simulator.

Figure 3.7: Exemplary HiL simulator setup

The rate of the FSCs can be higher than the rate of the BSC (multirate simu-
lation). In any case, the correct timing, i. e., precise instants of interaction between
the FSCs and the circuitry, is an essential property of the HiL simulation.

For example, in the case of fast switching rates, it is possible to keep the voltage
(UC) at a certain level, i. e., between two thresholds (high, low). The precision of

45

3.2 Requirements 3 HiL Simulation

the switching instants determine the precision of these thresholds. In figure 3.8, the
voltage level of the circuitry is exemplarily given for three different switching rates.
Each sample is carried out for 2,4ms. In sample A, the switch is on for 0,2ms, then
off for 0,1ms, then on again, etc. In sample B, the switch is equally on/off for 0,2ms.
In sample C, the switch is equally on/off for 0,05ms.

Figure 3.8: Voltage characteristic (UC(t)) of capacitor (C) with different switching
times

Different instants of turning the switch on/off in the samples (A,B,C) lead to
different voltage levels of the circuitry. It follows that any deviation with respect
to the instants of turning the switch on/off (e. g., through temporally inaccurate
interaction between the HiL simulator and the SUT) would lead to a deviating voltage
level of the capacitor. Hence, temporally inaccurate interaction, which can be caused
by sources of indeterminism of the HiL simulator, potentially invalidate the whole
simulation run.

3.2 Requirements

In the previous section we discussed the basic constituting elements of an HiL simula-
tion. In practice, the actual setup of an HiL simulation depends on several technical
and economic considerations. Thus, before investigating various forms of available
solutions of HiL simulation, it is important to first elaborate on requirements im-
posed on an HiL simulation. Based on these requirements, a proper solution for an
HiL simulation can then be either selected (if already available) or has to be newly
developed.

46

3 HiL Simulation 3.2 Requirements

In [Ecc00], a characterization of simulator requirements is summarized. Although
this characterization focuses on general simulators, most parts can also be applied
to the specific field of HiL simulation. Based on the discussion in [Ecc00] regarding
the characterization of requirements for general simulators, the following questions
have to be answered before starting the development of an HiL simulator:

• What is the intended use of the HiL simulation? The purpose of an HiL
simulation could be to explore different design alternatives of the SUT. Or
the HiL simulation could focus on analyzing specific properties of the actual
design of the SUT, e. g., performance, fault-tolerance. However, the purpose
of the HiL simulation could also be to present the capabilities of the SUT to
(potential) customers.

• What level of detail is required for the HiL simulation? The level of detail
is given by the scope and the resolution of the HiL simulation. To define the
scope of an HiL simulation, it is necessary to know what part of the real world
is to be included in the HiL simulation. The resolution refers to the extend to
which the simulation should represent the real world, i. e., the granularity of
the HiL simulation?

• What is the fidelity of the HiL simulation? Fidelity can be defined as the
accuracy with which a simulator represents the real-world system or systems it
represents [Ecc00]. Fidelity must not be confused with the level of detail of an
HiL simulation. A simulation with a high level of detail does not necessarily
answer the right questions. A smaller and better understood simulation may
be closer to reality as far as the user of the HiL simulation is concerned.

• How can the data for an HiL simulation be obtained? Accurate and useful
information about the environment of the SUT has to be generated through
the execution of a simulation model. Obtaining such data is often a non-trivial
process because it requires detailed knowledge or difficult measurements about
the physical phenomena relevant within the environment of an SUT.

As soon as these questions have been answered, a closer look at the technical and
economic constraints of the desirable solution is necessary. In the following section,
we discuss several technical and economic requirements, that must be considered for
an HiL simulator aiming to test a real-time system.

3.2.1 Technical Requirements

We have identified four requirements relating to technical properties of the HiL sim-
ulator. These are:

• the ability for real-time execution of the simulation model,

• the reproducibility and observability of simulation results,

47

3.2 Requirements 3 HiL Simulation

• the availability of mechanisms for monitoring and data logging, and

• the provision of sufficiently high signal quality for the coupling of the HiL
simulator and the SUT.

Real-time Capability

The HiL simulator must be able to execute the simulation model in real time. Thus,
it is necessary that the HiL simulator interacts with the SUT congruent to the SUT’s
temporal interface specification. Thereby, an acceptable trade-off between execution
speed and level of detail of the simulation model must be found to achieve real-time
capability of the HiL simulator.

We distinguish between the following two approaches for the construction of a
real-time HiL simulator:

• The first approach involves a soft real-time system implementing an HiL sim-
ulator that is able to detect and report deadline violations during a simulation
run. The cause for deadline violations (i. e., temporal requirements of the SUT
are not met) can be a temporally unpredictable behavior of the simulation
model’s execution. In case a deadline violation occurs during a simulation run,
the cause of this deadline violation has to be identified and the HiL simulator
has to be improved respectively (e. g., performance improvements, or re-design
of the communication schedule). After that, the simulation run has to be re-
peated.

• If it is not acceptable to miss a deadline during the simulation run, the sec-
ond approach is to use a hard real-time system for the realization of the HiL
simulator. With such an approach, real-time behavior can be guaranteed by
design. However, the second approach requires more effort during the develop-
ment of the (hard real-time) HiL simulator. Therefore, it is only useful in cases
where either the execution of the SUT is a safety-related process (e. g., because
equipment is involved that imposes a risk on the execution of the SUT), or a
single simulation run is expensive in terms of computing resources or time and
repeating the simulation run is not acceptable from an economic point of view.

Reproducibility and Observability

An HiL simulation must exhibit properties of reproducibility and observability. As
outlined in section 2.3, reproducibility means that multiple executions of an HiL
simulation always lead to the same results. To achieve reproducibility, the execution
of the simulation model by the HiL simulator and the interaction between the HiL
simulator and the SUT must be deterministic.

From a philosophical point of view, determinism is the proposition that every
event is causally entailed by an unbroken chain of prior occurrences [Wik07a]. The
definition of determinism as given in [Hoe04] states that the world is deterministic if

48

3 HiL Simulation 3.2 Requirements

and only if, given a specified way things are at a time t, the way things go thereafter
is fixed as a matter of natural law.

According to the ongoing rich and capacious philosophical reflections on deter-
minism (refer to [Hoe03]) it is virtually impossible to decide whether our natural
world is deterministic or not. It is not even possible to know whether this is a de-
cidable question. It follows that a ”pragmatic” application of the term determinism
requires a rather simplified view of the world and its natural laws.

Although the concept of determinism is indeed subject to controversial philo-
sophical reflections, we think it is at least helpful to start with a domain specific
definition of determinism with respect to an HiL simulator. This will help us to
point out the intention of this thesis’ contribution. In this sense, we argue that an
HiL simulator behaves deterministically if, given a defined initial state q0(t0) of this
HiL simulator at t0(now), a sequence of inputs ai(ti) at sparse real-time instants ti
will always produce the same sequence of outputs bj(tj) at the same future sparse
real-time instants tj [KESHO07]1.

In order to establish the property of observability, any probe effect (refer to
section 2.3) must be avoided. The HiL simulation must not disturb the natural
behavior of the SUT, i. e., there must be no difference between the behavior of the
SUT during an HiL simulation and the behavior of the SUT within its physical
environment. Within the related literature, the term intrusive is used in cases where
a real-time system is altered for monitoring purposes (e. g., when an additional SW
monitoring function is added) [Sma04]. An observable HiL simulation run requires
non-intrusive system design.

Monitoring and Data Logging

An HiL simulation must provide mechanisms for monitoring the behavior of the SUT.
Furthermore, means for logging the information that has been exchanged between
the HiL simulator and the SUT, are required (i. e., signals that have been provided
to the SUT and signals that are received by the SUT). As mentioned above, it is
desirable that monitoring of the SUT’s behavior is done in a non-intrusive way in
order to preserve the property of observability.

On-line monitoring makes it possible to observe the behavior of the SUT during
a simulation run. In the case where the HiL simulator allows user interaction, it is
even possible that a human operator interactively alters parameters of a simulation
during a simulation run. Logging the exchanged information between HiL simulator
and SUT is required for postsimulation analysis purposes.

Signal Quality

The quality of signals (e. g., sampling rate, accuracy) provided by an HiL simulator
must be in line with the SUT’s interface specification. Furthermore, an HiL simulator

1This definition of deterministic behavior of an HiL simulator analogously follows the definition
of TMR-deterministic behavior of a computational system as given in [KESHO07].

49

3.2 Requirements 3 HiL Simulation

must be able to sample signals from the SUT at an update rate that is high enough
to capture all significant state changes of the SUT’s output interfaces.

Hardware used for the FSCs must be able to accurately and deterministically
generate application dependent signals, for example:

• waveforms (variable reluctance sensor, simulated load/vibration),

• counters (pulse, pulse-width-modulated), and

• digital signals [NI03].

3.2.2 Economic Requirements

Apart from technical considerations regarding an HiL simulation setup, economic
feasibility of a given approach is a crucial criteria, which can be measured in terms
of

• cost for the required hardware and software and

• development time.

Cost for HiL Simulation

An HiL simulator requires specific hardware components that are capable of interfac-
ing a certain SUT. Several commercial suppliers provide general purpose off-the-shelf
as well as customer specific hardware boards that can be used for an HiL simulation
(refer to section 3.3).

Besides the hardware cost, also the cost for software has to be taken into consid-
eration. For the development and execution of an HiL simulation, several different
software solutions are required. Software that is used for the development of the
simulation model, software for the execution of this simulation model (e. g., oper-
ating system, middleware, low-level drivers), software for user interaction during a
simulation run, and software for postsimulation analysis.

The cost of hardware and software for an HiL simulation can be quite high.
In [Cra05], a reference to a statement of an Infineon Technologies marketing man-
ager states that the cost for each hardware-in-the-loop box or chassis for automotive
systems comes at up to $50,000. Nevertheless, there are also various examples of low
cost solutions like for instance the real-time simulation platform VTB-RT [FBMD06].

Development Time for HiL Simulation

As mentioned in [BSS05], HiL simulation targets at automation and optimization of
the test process, thus, allowing to preserve the quality of embedded software products
in spite of decreasing development cycle times. Nevertheless, the development of an

50

3 HiL Simulation 3.3 Existing Solutions

HiL simulation typically requires a non-negligible amount of development time which
contributes to the overall cost for setting up an HiL simulation.

Therefore, it is desirable for any HiL solution that the development of the sim-
ulation model, the execution of the simulation model, the user interaction, and the
postsimulation analysis are supported by preexisting software components that can
be configured for a specific HiL simulation. Furthermore, it is necessary that small
changes in the SUT do not require a complete re-design of the HiL simulation. More-
over, flexibility and scalability of the development software is required to support
stepwise implementation of an SUT, starting from a virtual system and targeting at
a fully implemented system.

3.3 Existing Solutions

Within this section we present a selection of commercially used HiL simulation prod-
ucts. Therefore, we briefly investigate both, a mixture of multi-purpose solutions
provided by well established vendors, and special purpose solutions from small com-
panies. For each of the selected products we give a short profile of the vendor, the
core features of the product(s), and the proposed solution for coupling of HiL simu-
lator and SUT. The following information mainly originates from the respective web
pages and was captured in October 2006 (without any claim regarding completeness
or correctness of the given information).

3.3.1 DSP Builder (Altera)

Altera Corporation

Altera Corporation2 was founded in 1983 and has its headquarter in San Jose, Califor-
nia. Altera is a large supplier of System-On-a-Programmable-Chip (SOPC) solutions
with approximately 14.000 customers worldwide and an annual revenue of 1.12 billion
dollars in 2005. The spectrum of Altera’s target audience includes customers from
the automotive, aerospace, broadcast (i. e., digital television), consumer electronics,
and medical domains.

Features of DSP Builder

DSP Builder [DSP06] aims at shortening Digital Signal Processing (DSP) system
design in Altera programmable logic devices (PLDs). DSP Builder integrates high-
level algorithm and hardware description language development tools.

DSP Builder offers an HiL block that can be used within a Matlab/Simulink
model in order to co-simulate a Quartus II software design with a physical FPGA
board (Quartus II is a development environment for SOPC design). Thereby, the
contents and function of the FPGA is defined by creating and compiling a Quartus II

2http://www.altera.com

51

3.3 Existing Solutions 3 HiL Simulation

project. HiL simulation with the DSP Builder is used because of the ability to
perform faster simulation and richer instrumentation when testing an DSP system
design.

Coupling

The development workstation is used as the HiL simulator. The Altera FPGA in-
cludes the DSP system design and is regarded as the SUT. The interaction between
the HiL simulator (i. e., the development computer) and the SUT (i. e., the FPGA)
takes place via a Joint Test Action Group (JTAG) boundary scan interface. The
widely accepted JTAG boundary scan standard is an IEEE standard (1149.1) that
has been created for testing digital systems [SD02]. JTAG particularly addresses
the testing of boards with high-density surface mount parts. It is also possible to
implement built-in self-test functions based on JTAG ports.

With the JTAG boundary scan, test data is shifted along a serial scan path into
so-called boundary cells (input- and output cells). Input data is provided to input
cells via the Test Data Input (TDI) line, output data is received from output cells via
the serial Test Data Output (TDO) line. The timing of this interaction (i. e., shifting
data to / from boundary cells) is controlled by the Test ClocK (TCK) input of the
test interface. This clock is independently from any system clock. Therefore, the
HiL simulator has full control over the timing of the test-run.

The proposed architecture targets at testing single FPGA boards. Distributed
SUTs are not supported by this approach.

3.3.2 LabVIEW (NI)

National Instruments (NI)

NI3 was founded in 1976. Headquartered in Austin, Texas, NI operates worldwide
and has currently more than 3,900 employees. NI offers computer-based solutions for
embedded design, industrial control, test, and measurement that combine commer-
cial off-the-shelf technologies with innovative software and hardware. NI targets at
customers from automotive, aerospace, electronics, semiconductor, life sciences, and
telecom industries.

Features of LabVIEW

The software product LabVIEW from NI provides a graphical development environ-
ment for signal acquisition, measurement analysis, and data presentation. Further-
more, the LabVIEW Simulation Interface Toolkit allows to interface with Simulink.

NI also provides embedded hardware for test, measurement, and control. This
hardware is based on the PCI eXtensions for Instrumentation (PXI) specification,
a standard for measurement and automation applications. PXI is maintained by

3http://www.ni.com

52

3 HiL Simulation 3.3 Existing Solutions

the PXI Systems Alliance (PXISA). Typically, a PXI system consists of a chassis,
controller, and I/O modules.

Coupling

Different I/O solutions are available from NI, including analog and digital I/O, CAN,
PWM, dynamic signals, motion control, image acquisition. Furthermore, it is pos-
sible to use FPGA modules and program them with LabVIEW for customized and
fast I/O signals.

An HiL simulation system based on NI components involves either one or more
ECUs (i. e., the SUT) that are connected to the HiL simulator. The HiL simulator
is a single device that is tailored to a certain SUT by involving application spe-
cific processor boards and I/O boards. The interconnection of processor and I/O
boards is based on the PXI standard combining the high-speed Peripheral Compo-
nent Interconnect (PCI) bus with additional timing and synchronization features.

3.3.3 Pi Autosim (Pi Technology)

Pi Technology

Pi Technology4 was founded in 1994 and recently employs 120 engineers. Pi Tech-
nology has its headquarter in Cambridge, England, and satellite offices in the US
and in Germany. Pi Technology is focused on the development of electronic auto-
motive systems and provides product development, engineering services, specialized
test equipment, and consultancy for these systems. Customers of Pi Technology are
vehicle manufacturers and Tier 1 Suppliers in the automotive domain.

Features of Pi Autosim

Pi Autosim is an HiL simulator for testing of automotive ECUs. Pi AutoSim consists
of two components – the I/O system and the user interface. The I/O system simulates
the environment of the automotive application (e. g., an engine, a braking system,
or even a complete vehicle) and therefore consists of dedicated I/O cards and the
respective software model. The user interface is executed on a Windows desktop
PC and provides a graphical test environment for monitoring and user interaction.
The Pi AutoSim user interface PC is connected to the I/O system via an Ethernet
network connection.

Coupling

The hardware architecture of the Pi HiL simulator is that of a PC with an extended
ISA bus, offering fifteen slots for I/O cards. Pi Technology provides different I/O
cards, including I/O cards that are specifically tailored to automotive purposes.

4http://www.pitechnology.com

53

3.3 Existing Solutions 3 HiL Simulation

These I/O cards provide support for digital, PWM, and voltage signals as well as
some more specialized items such as a programmable waveform generator and a
fast event capture board. In addition, Pi Technology provides hardware support for
specific interfaces that are found in automotive applications. A dedicated Master
Card controls and synchronizes all I/O functions.

3.3.4 RTDS Simulator (RTDS Technologies)

RTDS Technologies

RTDS Technologies5 was founded in 1994 and is located in Manitoba, Canada. The
company is primarily engaged in manufacturing, marketing, servicing and continuing
development of the Real Time Digital Simulator (RTDS) that is in use by the power
industry. RTDS Technologies targets at customers in the power industry, including
manufacturers of protective relays, controllers, and power electronic systems.

Features of RTDS Simulator

The product RTDS Simulator is used for HiL simulation of electromagnetic transient
power systems such as protection equipment and control equipment. RTDS Simulator
comprises computer hardware and software – both offered by RTDS Technologies.

The corresponding software, RSCAD Software Suite, provides the HMI of the
RTDS Simulator and is designed to allow the user to prepare and run the simulation,
and to analyze its output. Furthermore, several power and control system component
models are available to create simulation cases.

Coupling

The RTDS Simulator builds upon a customizable parallel processing hardware ar-
chitecture and is assembled in modular hardware units, called racks. The specific
composition of an RTDS Simulator depends on the processing and I/O requirements
of the intended application. RTDS Technologies offers a range of processing cards,
e. g., the Giga Processor Card containing two IBM PowerPC 750GX RISC proces-
sors or the Triple Processor Card with three Analog Devices ADSP21062 (SHARC)
Digital Signal Processors. The processing cards include digital and analog I/O. Fur-
thermore, separate I/O cards are available that extend the number and capabilities
of the existing I/O channels of the simulator. For instance, the Digital Input and
Output Card offers 24 digital input and 24 digital output channels.

A common communications backplane links all cards that are installed in one
rack. Communication between these cards can be done in parallel. For the com-
munication between different racks, a dedicated Inter-Rack Communication card is
offered. An Inter-Rack Communication card can connect a rack with up to six further
racks by providing six 660 MBit/s full duplex serial communication channels.

5http://www.rtds.com

54

3 HiL Simulation 3.3 Existing Solutions

3.3.5 RT-LAB (Opal-RT)

Opal-RT Technologies

Opal-RT Technologies6 was founded in 1997 with its headquarter in Ann Arbor,
Michigan. Opal-RT Technologies provides software, hardware, and related services
for real-time simulation, control system development and HiL testing. Opal-RT Tech-
nologies has expertise in distributed hard-real-time simulation, providing its solutions
to manufacturers of automotive, aerospace, defense, mechatronic and electrical sys-
tems.

Features of RT-LAB

RT-LAB is a (tool supported) distributed real-time simulation platform based on a
network of run-time targets. RT-LAB supports HiL simulation and rapid prototyp-
ing. Furthermore, RT-LAB allows to convert Matlab/Simulink or SystemBuild7

models to real-time simulations via Real-Time Workshop or Autocode.

Coupling

Opal-RT offers different specialized hardware solutions for interfacing between the
real-time simulation and an SUT. The product portfolio includes hardware for test-
ing powertrain applications (RT-LAB TestDrive), PC104 systems (RT-LAB PC104
Rapid Prototyping Controller), power electronics systems (RT-LAB Electric Drive
Simulator), high power electric applications (RT-LAB Electrical Engineering Simu-
lator), and avionics hardware components (RT-LAB TestFlight). Furthermore, the
product RT-LAB DriveLab is offered for educational purposes.

RT-LAB supports a distributed target configuration, involving a network of RT-
LAB PCs that execute a (distributed) simulation model. Each RT-LAB PC interfaces
its I/O boards via the PCI bus. Multirate simulation is possible by using FPGA I/O
boards that execute assigned parts of the simulation model. The communication
between the different RT-LAB PCs can be established via FireWire or INFINIBAND.
As presented in [BAD05], a FireWire (800Mbit/s single duplex) connection is used
to connect up to 4 computers.

Firewire, also known as IEEE 1394 standard, allows fast data exchange between
computers and peripheral devices. As of today, Firewire is mainly used for the trans-
fer of digital images and videos and to connect to external storage devices. Firewire
supports both, isochronous and asynchronous data transmission. Isochronous trans-
fers offer guaranteed transmission intervals to send real-time data. The synchroniza-
tion of devices in isochronous mode is handled by the root node (which is the device
with the highest node ID). Up to 80% of bandwidth can be reserved to one or more
isochronous channels. According to [BAD05], a firewire connection between RT-LAB
PCs enables model time steps as low as 30 to 60 µs.

6http://www.opal-rt.com
7MatrixX SystemBuild is part of LabVIEW

55

3.3 Existing Solutions 3 HiL Simulation

For a larger number of interconnected computers or a higher amount of signal
exchanges, the use of INFINIBAND (10 Gbit/s full duplex) is proposed. The IN-
FINIBAND protocol is a popular public standard and supports copper cables and
(optional) optical fiber cables. When using INFINIBAND, up to three computers can
be connected by two adapters since each adapter has two full-duplex point-to-point
links. All computers can communicate at the same time because of the point-to-point
communication of INFINIBAND. In case the number of RT-LAB PCs exceeds three,
INFINIBAND non-blocking switches must be used.

3.3.6 rtX Simulator (ADI)

Applied Dynamics International (ADI)

ADI8 has been a supplier of HiL simulation solutions since 1957. ADI’s product line
includes Commercial-Off-The-Shelf (COTS) computer processors, industry standard
interface devices, and software applications. Main focus of ADI is on designing and
testing embedded control systems. Products of ADI have been in use by automotive,
aerospace, and defense industries as well as by some more domains like chemical
processing, robotics, power generation, and medical applications.

Features of rtX Simulator

The ADI rtX simulator is a standards-based open-architecture solution for HiL sim-
ulation, featuring Intel Pentium or AMD Opteron processors and supporting a range
of PCI, CompactPCI, PXI and Industry Pack I/O solutions. The RTS computer
platform, offered by ADI, provides multi-processor real-time simulation with an ex-
tensive array of I/O interfaces. RTS uses an operating system from ADI, which is
called RTexec. In [ADI05], a distributed HiL simulation with an RTS VME-based
real-time simulation computer and an rtX PC-based real-time computer is presented.

Coupling

As discussed in [ADI05], a distributed HiL simulator, assembled with ADI’s products,
includes master-slave clock synchronization. Master-slave clock synchronization is
implemented by a clock master node sending an IRIG-B clock signal to its slave
nodes. The clock master node further controls the start of a simulation by sending a
triggered start signal to its slave nodes. The communication between the simulator
nodes takes either place via emulated electronic interfaces, i. e., by exchange of data
visible at the interfaces of the SUT, or via virtual interfaces, i. e., by exchange of data
that is part of the simulation model and therefore not visible at the SUT’s interfaces.
Ethernet or SCRAMNet is used to implement the virtual interfaces.

8http://www.adi.com

56

3 HiL Simulation 3.3 Existing Solutions

3.3.7 Simulator Mid-/Full-Size (dSpace)

dSPACE

dSPACE9 was founded in 1988. Its headquarter is located in Paderborn, Germany.
dSPACE offers engineering tools for developing and testing mechatronics control
systems. dSPACE has a significant market share regarding HiL simulation systems
with 12.000 systems in use worldwide. The main application field of dSPACE is
within automotive industry. However, products from dSPACE are also employed in
aerospace industry, education, and research.

Features of dSPACE Simulators

dSPACE offers two simulator products, Simulator Mid-Size and Simulator Full-Size.
Both can be equipped with a range of modular I/O boards and processor boards,
tailoring them to a certain HiL simulation system. Faults and errors in a dSPACE
HiL system, can be simulated within the simulation model and/or with the help of
a dedicated failure insertion unit that inserts electrical failures on ECU inputs and
outputs.

The code for dSPACE simulator products is automatically generated from
Matlab/Simulink. Thereby, the dSPACE’s Real-Time Interface integrates Mat-
lab/Simulink and offers additional Simulink blocks, connecting simulation models
to I/O hardware. Furthermore, dSPACE offers real-time models that can be used for
simulation on dSPACE simulators (e. g., simulation of powertrain or vehicle dynam-
ics) and an HMI software solution (ControlDesk) to visualize relevant information
and interactively change parameters during an HiL simulation.

Coupling

From an architectural point of view, an HiL simulation setup with dSpace compo-
nents involves one HiL simulator and one or more ECUs that are connected to the
HiL simulator (i. e., the SUT). Physically, the HiL simulator is a single device which
can be tailored to the SUT’s requirements by adding processors and I/O cards. Inter-
nally, the proprietary PHS bus (or PHS++ in newer devices) is used to interconnect
different dSpace cards.

3.3.8 Tanto2 Test (Hitex)

Hitex

Hitex10 was founded in 1976 in Karlsruhe, Germany, and is currently present in Eu-
rope, the US, and Asia. Since 2003, Hitex belongs to Infineon Technologies AG. Hitex
offers analysis and test software for embedded systems design, including automated

9http://www.dspace.com
10http://www.hitex.de

57

3.3 Existing Solutions 3 HiL Simulation

tests, in-circuit-emulators, simulators, debuggers, evaluation units, and analysis tools
for automotive applications. Products of Hitex are used by customers from automo-
tive, aerospace, consumer electronics, and semiconductor industries.

Features of Tanto2 Test

Hitex offers a product called Tessy which can be used to automate unit tests of
embedded software. The purpose of Tessy is to provide input parameters, execute
tests and evaluate results, as well as to manage test data, document test results, and
state the test coverage. Tanto2 Test, an extension module to Tessy, is offered for HiL
testing. Tanto2 Test generates and captures dynamic signals and signal sequences
with sampling frequencies of up to 200 MHz.

Coupling

Tanto2 Test provides the physical interface to an SUT. A standard PC, running
Tessy, generates and captures target hardware signals. A Tanto2 Test hardware
board is connected to the PC via an Ethernet or an USB 2.0 interface. Tanto2 Test
targets at testing single ECUs.

3.3.9 xPC Target (MathWorks)

The MathWorks

The MathWorks11 was founded in 1984. With its headquarter in Natick, Mas-
sachusetts, The MathWorks is represented worldwide and currently employs more
than 1,400 people. The MathWorks provides software for technical computing and
model-based design, supporting customers from diverse domains, including aerospace
and defense, automotive, biotech, pharmaceutical and medical, communications,
computers and office equipment, electronics, financial services, industrial automa-
tion and machinery, and semiconductors.

Features of xPC Target

In order to perform real-time HiL simulation, the MathWorks offers xPC Target
which is based on Matlab/Simulink. With xPC Target it is possible to connect a
simulation model to physical systems and to execute it in real time on PC-compatible
hardware. The simulation model can be developed with Matlab/Simulink and with
Stateflow. Stateflow is an interactive design and simulation tool for event-driven sys-
tems that is integrated into Matlab/Simulink. xPC offers I/O interface blocks that
can be added to a Matlab/Simulink or Stateflow model. The MathWorks addition-
ally offer code generators (i. e., Real-Time Workshop and Stateflow Coder) which can
automatically generate code from a Matlab/Simulink and Stateflow model.

11http://www.mathworks.com

58

3 HiL Simulation 3.3 Existing Solutions

When using xPC Target, the simulation model is developed on a host PC running
a Microsoft Windows operating system. The execution of this simulation model is
performed by a target PC that can be any PC with Intel or AMD 32-bit processors,
e. g., a desktop computer, an industrial computer such as xPC TargetBox, PC/104,
PC/104+, CompactPCI, all-in-one embedded PC, or any other PC-compatible form
factor.

Coupling

The host PC can be regarded as the development and HMI computer. The coupling
between host PC and target PC can either be a serial RS232 connection or a TCP/IP
network connection. The coupling between the target PC and the SUT is established
via I/O boards that are inserted into the target PC. xPC Target supports ISA, PCI,
PC/104, PC/104+, and CompactPCI I/O hardware boards. Thus, the HiL simulator
is a single device, consisting of the target PC and several I/O boards.

3.3.10 Comparing the Existing Solutions

The HiL simulation systems presented in this section range from simple simulators,
targeting at testing single ECUs, to complex simulators, capable of testing large
distributed real-time systems. The HiL simulators offered from Altera and Hitex are
examples for comparably simple solutions, where a single hardware target is directly
connected to a standard PC. Several vendors offer solutions for more complex HiL
simulators. Regarding such complex HiL simulators, we can basically distinguish
between two styles:

• The first style is based on a modular, component based, monolithic HiL sim-
ulator, where a single device is configured to offer all required interfaces for a
particular SUT. The proposed HiL simulators from dSpace, The MathWorks,
NI, and Pi Technology follow such approach.

• The second style is based on a distributed HiL simulator, executing a dis-
tributed simulation model. Distributed HiL simulators are offered by ADI,
Opal-RT, and RTDS.

In table 3.1, the discussed HiL simulation products are compared with respect
to size of the SUT, structure of the HiL simulator, and employed approach for the
interconnection of FSCs (which are typically specialized I/O boards).

Throughout this thesis we particularly focus on a distributed HiL simulation
that involves a collection of tightly synchronized simulator components (i. e., FSCs
and BSCs). The interplay between these components depends on timing properties
(latency, jitter) of the selected communication mechanism.

In commercially available products, a common approach to interconnect simula-
tor components is to use a cascaded master slave topology. The master synchronizes

59

3.3 Existing Solutions 3 HiL Simulation

P
ro

d
u
ct

V
en

d
or

S
u
p
p
orted

S
U

T
S
tru

ctu
re

of
S
im

u
lator

F
S
C

In
tercon

n
ection

D
SP

B
uilder

A
ltera

C
orporation

Single
F
P

G
A

board
M

onolithic
(sim

ple)
JT

A
G

L
abV

IE
W

N
ational

Instrum
ents

D
istributed

SU
T

M
onolithic

(m
odular)

P
X

I
P

i
A

utosim
P

i
T
echnology

Single
E

C
U

M
onolithic

(m
odular)

ISA
R
T

D
S

Sim
ulator

R
T

D
S

T
echnologies

Single
P
ow

er
System

E
quipm

ent
D

istributed
Interrack

com
m

unication
backplane

R
T

-L
A

B
O

pal-R
T

T
echnologies

D
istributed

SU
T

D
istributed

F
ireW

ire,
IN

F
IN

IB
A

N
D

rtX
Sim

ulator
A

pplied
D

ynam
ics

In-
ternational

D
istributed

SU
T

D
istributed

E
thernet,

SC
R

A
M

net

Sim
ulator

M
id-/Full-Size

dSpace
D

istributed
SU

T
M

onolithic
(m

odular)
P

H
S,

P
H

S+
+

T
anto2

T
est

H
itex

Single
E

C
U

M
onolithic

(sim
ple)

E
thernet,

U
SB

2.0
xP

C
T
arget

T
he

M
athW

orks
Single

H
W

T
arget

M
onolithic

(m
odular)

P
C

I,
P

C
/104,

P
C

/104+
,

ISA
,
C

om
pactP

C
I

T
able

3.1:
C

om
parison

of
H

iL
sim

ulation
products

60

3 HiL Simulation 3.4 Chapter Summary

its slaves by providing a clock signal (e. g., IRIG-B clock signal in ADI rtX Sim-
ulator). Each slave is connected to the master via a separate line (e. g., Ethernet
or SCRAMnet with ADI rtX Simulator, FireWire or INFINIBAND with Opal-RT
RT-LAB).

Regarding scalability, a single communication channel, shared by all simulation
components, is advantageous. However, bus arbitration of a single channel might
introduce unacceptable jitter during a simulation run. The solution we propose in
chapter 4 is based on a time-triggered network which offers predictable communica-
tion with small latencies and virtually no jitter.

3.4 Chapter Summary

An HiL simulation system consists of a System-Under-Test (SUT) and an HiL simu-
lator. The SUT is typically (part of) a real-time computer system, i. e., a single ECU
or a distributed system. An HiL simulator consists of an environment simulator and
(optionally) a cluster simulator. An environment simulator interacts with the SUT
across the COI, thereby simulating the physical environment of the SUT. A cluster
simulator interacts with the SUT across the LLI, thereby simulating the behavior of
missing nodes of the SUT. We can distinguish between open-loop HiL simulation, in
which the HiL simulator provides static simulation data to the SUT, and closed-loop
HiL simulation, in which the HiL simulator dynamically produces simulation data
based on feedback from the SUT.

A distributed HiL simulator consists of BSCs, which are independent of low level
details regarding the physical interconnection between HiL simulator and SUT, and
FSCs which are in charge of controlling the interaction between HiL simulator and
SUT. In a multirate HiL simulation, these components use different rates for the
execution of a distributed simulation model.

Before starting to realize an HiL simulation system, several questions must be
answered, including the intended use, level of detail, and fidelity of an HiL simulation,
as well as the availability of data for the simulation. After that, the technical and eco-
nomic requirements have to be captured in detail. Four basic technical requirements
are: the ability of real-time execution of the simulation model, the reproducibility and
observability of simulation results, the availability of mechanisms for monitoring and
data logging, and the provision of sufficiently high signal quality. From an economic
point of view, low cost of HiL simulator components and short development time of
an HiL simulation system are required.

Existing HiL simulator systems range from simple HiL simulators, aiming at
testing single ECUs, to complex solutions, capable of testing distributed systems.
Complex simulators are either based on a modular, component based, monolithic
HiL simulator or on a distributed HiL simulator.

61

3.4 Chapter Summary 3 HiL Simulation

62

Chapter 4

Interface Design for HiL
Simulation

In this chapter, we present an HiL simulation system framework, focusing on de-
terministic interaction between the HiL simulator and the SUT. We start with the
rationale of this framework and investigate the proposed solution in detail. After
that, we outline the concept of a Smart Virtual Transducer (SVT) that is employed
to emulate an arbitrary transducer interface during an HiL simulation run. This
chapter is concluded by revising the rationale with respect to the proposed approach.

4.1 Rationale

We propose a scalable, component-based, deterministic HiL simulation system frame-
work based on the TTA. The HiL simulation system framework particularly targets
at:

• the ability to provide deterministic interaction between the HiL simulator and
the SUT,

• support for a distributed HiL simulator, consisting of several BSCs and FSCs,

• support of arbitrary transducer interfaces, and

• mechanisms for monitoring, on-line configuration, and data logging.

4.1.1 Deterministic Interaction

As discussed in section 3.2.1, an HiL simulator is said to behave deterministically, if
a defined initial state q0(t0) of the HiL simulator at t0(now) and a sequence of input
symbols ai(ti) at sparse real-time instants ti will always produce the same sequence
of output symbols bj(tj) at the same future sparse real-time instants tj [KESHO07].
Hence, the behavior of the HiL simulator is causally determined by past behavior of
HiL simulator and SUT.

63

4.1 Rationale 4 Interface Design for HiL Simulation

The behavior of the HiL simulator (resp. the SUT) is defined by traces of its
declared state. The declared state is a declared data structure that can be accessed via
an interface and that records all the stored state that is relevant to the future essential
behavior of the system [JKK+02] (refer to section 2.2). Deterministic interaction
must not to be confused with ideal resemblance of an HiL simulation with the real
environment of the SUT, i. e., deterministic interaction between HiL simulator and
SUT does not necessarily mean high accuracy of the simulation.

Deterministic interaction between HiL simulator and SUT is a prerequisite for
reproducible simulation runs, thereby relating to the functional (i. e., message value
or signal level) as well as to the temporal domain (i. e., instant of interaction). In
the course of the thesis we are concerned with temporally deterministic interaction
(i. e., no probabilistic element with respect to the instants of interaction).

If an HiL simulator is designed for deterministic interaction with a particular
SUT, it can be guaranteed that a set of inputs, provided by the SUT to the HiL
simulator at defined instants, always causes the same set of outputs from the HiL
simulator to the SUT at the same instants.

Deterministic interaction requires that messages exchanged between HiL simula-
tor and SUT are discrete in both, time and value domains. Furthermore, HIL and
SUT must be synchronized in order that the resulting state is unaffected by the in-
stant when a message is exchanged as long as this instant lies within a defined update
interval. This property can be achieved by implementing clock synchronization and
establishing a sparse time base. Thereby, the update interval is represented by the
active interval.

Additionally, the HiL simulator must provide timely execution of the simulation
model. If this cannot be guaranteed a priori (e. g., due to unpredictable behavior of
the employed HiL simulator hardware, operating system, . . .), error detection must
be put in place to detect late delivery of simulation values. Based on diagnostic
information, the validity of a simulation run can then be checked.

4.1.2 Distributed HiL Simulator

An HiL simulator can either be built as a monolithic or as a distributed system.
In our approach a distributed HiL simulator is employed, i. e., the HiL simulator is
based on a distributed system consisting of a number of interacting nodes. As a
special case, a distributed HiL simulator can be reduced to a monolithic HiL simula-
tor by being realized on just one single node. An HiL simulation system framework
that supports the construction of a distributed HiL simulator allows for: indepen-
dent development of components, scalability, flexibility, complexity management, and
support for multirate simulation.

Independent Development of Components

As depicted in figure 4.1, subsystems of a distributed real-time system can be in-
dividually tested by an assigned HiL simulator. After assembling the distributed

64

4 Interface Design for HiL Simulation 4.1 Rationale

real-time system through the integration of subsystems, it is desirable that the exist-
ing HiL simulators that have been in use to test the subsystems, can be reused to test
the overall system. Two additional components marked with X in figure 4.1 point
out that the integrated HiL simulator may extend the functionality of its subparts
by additional functions required for system-level tests. A distributed HiL simulator
eases reuse of its components within a larger HiL simulator.

Figure 4.1: Integration of different HiL simulators

Scalability

Typically, the development of an SUT starts with a small subset of basic functions.
The SUT is extended as soon as these basic functions are available. Testing a par-
ticular SUT with an HiL simulator only requires to cover the available parts of the
SUT prototype. Hence, the possibility of a stepwise development of the HiL simu-
lator is beneficial, providing the most important features at an early development
stage and allowing enhancements at further development stages. In order to achieve

65

4.1 Rationale 4 Interface Design for HiL Simulation

a scalable architecture, a distributed HiL simulator is required that can be extended
by components adding processing power or additional transducer interfaces.

Flexibility

The nodes of a distributed SUT are not necessarily located in close proximity. A part
of these nodes could for instance be mounted on a physical test bench, located in a
different laboratory than the rest of the SUT. A distributed HiL simulator allows
to design an application specific number of FSCs which can be mounted in close
proximity to the nodes of the SUT.

Complexity Management

The cognitive complexity of a large system with many interactions within this sys-
tem can only be reduced by the introduction of structure and hierarchies [Sim96].
Thus, a set of well-specified components that interact across their linking interfaces
contributes to reducing the complexity of the HiL simulation system. A systematic
separation of BSCs and FSCs helps focusing either on the system level view of the
environmental simulation, or on specific physical details (e. g., accuracy of a certain
PWM signal).

Support for Multirate HiL Simulation

As discussed in section 3.1, multirate HiL simulation involves a number of simulation
components, executing parts of a distributed simulation model at different scan rates.

A distributed HiL simulator that implements a multirate HiL simulation is able
to combine open-loop and closed-loop HiL simulation. An example of such a com-
bination would be an HiL simulator that involves fast FSCs and comparably slow
BSCs. Each node is equipped with its own local processing unit that operates at a
defined rate. The simulation model of this HiL simulator is executed by the BSCs in
a closed loop, i. e., the feedback of the SUT is captured and processed by the BSCs in
order to calculate new simulation values. Each FSC implements an open-loop simu-
lation, i. e., an FSC provides a set of simulation values and/or records the feedback
of the SUT.

Due to the fast rate of an FSC, the feedback of the SUT is recorded and a fused
value (e. g., the average) is sent to the BSCs for further processing. An FSC receives
the simulation data from the BSCs (at a slower rate) and interpolates the simulation
data. Hence, the feedback of the SUT does not directly influence the provision of
data by the FSC.

4.1.3 Arbitrary Transducer Interfaces

An HiL simulator must support the application of a wide range of transducer inter-
faces. As depicted in figure 4.2, the physical coupling between an HiL simulator and

66

4 Interface Design for HiL Simulation 4.1 Rationale

the SUT is defined by the COI. The COI consists of a set of specific interfaces that
correspond to each transducer attached to the SUT.

Figure 4.2: Physical coupling across transducer interface

Examples for the interaction across a transducer specific interface are: captur-
ing/setting an analog signal, measuring the amount of time between two consecutive
interrupts that are raised by an external device, or reading/writing a message in
accordance to a well defined digital interfacing scheme. The latter applies in case
the SUT interacts with a network of transducers (fieldbus) and the SUT indirectly
accesses the relevant information from a particular transducer by the exchange of
(fieldbus-)messages.

A systematic approach for the support of a large range of transducer interfaces
reveals the following requirements:

• The modular construction of an HiL simulator with configurable, re-usable
FSCs shall be supported.

• An open solution for the emulation of transducer specific interfaces is required.

• A well defined LLI for the interconnection of HiL simulator components shall
be available.

Configurable, Re-usable FSCs

An FSC establishes the physical link between the HiL simulator and the SUT. Hence,
it provides the physical connection (i. e., cable(s)) as well as the emulation of the
transducer behavior in the functional and temporal domains. Each transducer emu-
lation must be tailored to the properties of the SUT’s COI.

The effort to develop a transducer emulation for each single transducer within
an HiL simulation can be reduced by the provision of reusable (generic) FSCs, each
supporting a class of transducers. From an architectural viewpoint, the construc-
tion of an HiL simulator with modular, loosely coupled components, which can be
individually adjusted to a certain SUT, supports reuse.

67

4.1 Rationale 4 Interface Design for HiL Simulation

Openness

The construction of an HiL simulator involves the development of multiple FSCs. As
mentioned above, the reuse of existing configurable components helps to decrease the
effort of developing these FSCs. Nevertheless, the great range of different existing
transducer interfaces as well as the continuing development of new transducers (with
new interfaces) calls for a solution supporting the development of new transducer
emulations. It follows that FSCs must be open to new implementations of transducer
emulations.

Interconnection of HiL Simulator Components

The integration of HiL simulator components (i. e., FSCs and BSCs) shall be guided
by a standardized LLI specification. Reuse of FSCs from different HiL simulators
shall be made possible by a consistent interaction scheme for the communication
between FSCs (and BSCs).

An important property for the LLI specification is that of composability. It shall
be possible to guarantee that the integration of different simulator components does
not invalidate any properties of these simulator components. Furthermore, it shall
be possible to integrate existing solutions (e. g., a commercially available FPGA I/O
board). With a standardized LLI specification, two possible solutions exist for such
integration:

• Either the (legacy) device that is used during the HiL simulation can be ex-
tended to be in line with the LLI specification, or

• a connection system is developed eliminating property mismatches between the
device and the rest of the HiL simulator (refer to figure 4.3).

Figure 4.3: Connection of a (legacy) I/O board

68

4 Interface Design for HiL Simulation 4.1 Rationale

4.1.4 Monitoring

Typically, the user of an HiL simulation is concerned about input data from the
HiL simulator and output data from the SUT. Hence, a mechanism is required that
provides this data, or parts thereof, to the user. The level of detail of the relevant
data depends on the actual HiL simulation. A user may not be interested in all data
produced during an HiL simulation run. For instance, it may be sufficient to access
every tenth measurement of a temperature value, or to capture only a fraction of all
available variables of a simulation model.

Monitoring of simulation data requires that this data is represented through vari-
ables of the simulation model. Thus, monitoring of an HiL simulation is equivalent
to monitoring relevant variables of the HiL simulation model.

A mechanism for monitoring an HiL simulation shall enable observability (refer
to section 2.3). In order to provide the property of observability, a communication
infrastructure that links components of a distributed HiL simulator and supports
monitoring without probe effect is desirable.

Furthermore, support to access variables not explicitly visible on the shared com-
munication medium (i. e., variables that are not exchanged between components of
the HiL simulator) shall be possible in order to monitor and configure component
internal parameters.

Monitoring of an HiL simulation is concerned with two aspects which are elabo-
rated in the following:

• First, it shall be possible for the user to access relevant data during a simulation
run and to configure an HiL simulation run based on this data.

• Second, systematic capturing and recording of simulation data for the purpose
of post simulation analysis shall be supported.

Run-time Configuration of HiL Simulation

As depicted in figure 4.4, run-time configuration of an HiL simulation requires that
the HiL simulator captures and provides relevant simulation variables on-line, i. e., in
real time. These variables are visualized on an HMI computer. The user reads these
variables and modifies certain configuration parameters of the simulation. After that,
the HiL simulator receives the altered parameters through the HMI computer.

Capturing relevant simulation variables, providing these variables to the user, and
on-line configuring the simulation model by the user, happens in real time. Typically,
the HMI computer is implemented as a soft real-time system.

Capturing of Data for Post Simulation Analysis

In order to enable post simulation analysis, it shall be possible to capture and store
a set of relevant state observations during an HiL simulation run. These state ob-
servations include input variables, provided to the SUT by the HiL simulator, and

69

4.2 Architecture 4 Interface Design for HiL Simulation

Figure 4.4: Configuration

output variables from the SUT, that are captured by the HiL simulator. After an
HiL simulation run is finished, stored data is used for off-line post simulation analysis
(refer to figure 4.5).

Figure 4.5: Post simulation analysis

Capturing variables during an HiL simulation run for the purpose of post sim-
ulation analysis requires a mechanism that deterministically captures and stores all
state observations of interest. The set of relevant state observations is defined a
priori, i. e., before the start of an HiL simulation run.

4.2 Architecture

Within this section we outline an HiL simulator based on the TTA that follows
the rationale given in section 4.1. Starting from a top-level view, we elaborate the
purpose of the involved components in detail.

70

4 Interface Design for HiL Simulation 4.2 Architecture

4.2.1 Structure of HiL Simulator

The proposed solution is based on the TTA consisting of nodes that interact via a
shared communication medium. We have chosen the time-triggered fieldbus protocol
TTP/A that implements this interaction via a single bus line. TTP/A offers real-
time capability, means for on-line diagnostics, extensibility, as well as low complexity
and cost (refer to section 2.4).

Due to the selection of a time-triggered communication and execution scheme,
all events within the HiL simulator (i. e., message transmissions, task execution) are
triggered according to a global sparse time base. The time-triggered communication
and execution scheme is a fundamental pre-requisite in order to establish determinism
of the HiL simulator with respect to the execution of the simulation model and the
interaction with the SUT.

TTP/A is a master slave protocol. Hence, a master node as well as a set of
slave nodes is required to execute the simulation model and to physically interact
with the SUT. We distinguish between nodes that physically implement the COI
(e. g., via a 4-15mA interface, a fieldbus, direct I/O, or a real transducer) and nodes
that execute part of a distributed simulation model but that do not directly interact
with the SUT.

Following this separation, each HiL simulator involves three different elements:

Master: A master node is required in a TTP/A network in order to initiate the
transmission of messages as well as the execution of time-triggered tasks at
each node. Furthermore, the master node synchronizes its time-base to the
time-base of the SUT.

Backend Simulation Component (BSC): A BSC is used to execute part of a
distributed simulation model. A BSC has a digital interface to the TTP/A
network and can (optionally) have a second digital gateway interface in or-
der to connect to an external system and to extend the HiL simulator by a
single (powerful) simulation computer or even a cluster of simulation comput-
ers performing computation-intensive calculations. Furthermore, the gateway
interface supports adding an HMI computer for monitoring or run-time config-
uration of the HiL simulator.

Frontend Simulation Component (FSC): An FSC controls the physical inter-
connection between the HiL simulator and the SUT. Each FSC consists of a
digital interface to the TTP/A network and a second interface that resembles
the COI of the SUT. This second interface is either a digital fieldbus interface,
an arbitrary transducer interface (e. g., direct I/O), or a physical transducer
(e. g., a potentiometer that connects to a servo).

Figure 4.6 depicts the basic elements of the HiL simulator. We distinguish be-
tween a BSC without a second interface which we call basic BSC, and a BSC with a
gateway interface which we call gateway BSC. Furthermore, we differentiate between
an FSC used to connect to a fieldbus (fieldbus FSC), an FSC directly interfacing the

71

4.2 Architecture 4 Interface Design for HiL Simulation

SUT through a transducer specific interface (virtual transducer FSC), and an FSC
controlling a real transducer which is used to interact with a transducer of the SUT
(real transducer FSC).

Figure 4.6: Distributed HiL simulator

An HiL simulator can be assembled as a multicluster system consisting of sev-
eral TTP/A networks that interact via TTP/A gateways. Although the conceptual
framework presented within this thesis does not restrict the setup of such a multi-
cluster HiL system, we do not explicitly focus on multicluster HiL simulators within
the thesis.

4.2.2 HiL Simulator Node Interaction

As mentioned above, the interaction of the HiL simulator nodes is based on TTP/A.
TTP/A allows for a total number of 255 nodes within the same cluster. The TTP/A
master node maintains the cluster wide time-base and periodically synchronizes the
time-bases of its slaves (i. e., the BSCs and FSCs). The master node synchronizes
its own time base to the time base of the SUT. If such synchronization between
SUT and HiL simulator is not possible, deterministic interaction between SUT and
HiL simulator as outlined in section 4.1 cannot be guaranteed because an instant,
significant within both systems, cannot be precisely defined.

As outlined in section 2.4, the nodes of a TTP/A cluster share the bus according
to a TDMA scheme. The master node periodically initiates one of 8 pre-configured
rounds. Each round specifies an interaction pattern associating a particular time-slot
to a node allowing this node to broadcast a message. TTP/A supports two round
types: multipartner rounds and master-slave rounds. This concept is very beneficial
for the construction of an HiL simulator because it supports both, periodic real-time
communication for a given simulation run as well as sporadic communication with
a particular node of the HiL simulator in order to enable monitoring and run-time
configuration of this simulation run.

The employment of a time-triggered protocol within the HiL simulator enables
predictability regarding communication between simulator components. Moreover,

72

4 Interface Design for HiL Simulation 4.2 Architecture

due to the concept of a temporal firewall (refer to section 2.2) cognitive complexity is
reduced because of temporal decoupling of simulation model execution at the BSCs
and interaction with the SUT at the FSCs. Hence, it is not necessary to restrain
execution of the simulation model at the BSCs to produce a certain simulation result
at a precise instant. It is sufficient to ensure that the execution of a simulation step
finishes within a given interval (i. e., the interval from start of execution of a single
simulation step at a BSC until the instant of transmitting the simulation result to the
FSC(s)) which allows for temporal laxity of the HiL simulator. Additionally, timing
violations of a simulation step can be deterministically diagnosed for the purpose of
repeating the simulation.

4.2.3 Backend Simulation Component (BSC)

We distinguish between two different types of BSCs:

• Simple BSC

• Gateway BSC

For the physical realization of a simple BSC, any node can be used that comprises
a TTP/A network interface. For instance, a TTP/A node as depicted in figure 2.8 can
be deployed for the implementation of a simple BSC, consisting of a small embedded
micro controller (without a physical transducer element).

A gateway BSC has two interfaces, a TTP/A network interface and an additional
gateway interface. The purpose of a gateway BSC is twofold: On the one hand, it
enables the extension of limited computational performance of its embedded micro
controller through a high performance simulation computer (figure 4.7 a)) or even
a cluster of simulation computers (figure 4.7 b)). On the other hand, a gateway
BSC provides means to establish a connection between the HiL simulator and an
HMI computer (figure 4.7 c)). Hence, a gateway BSC allows to forward output of
a simulation run to a database on an HMI computer and to configure a simula-
tion at runtime. We have shown the realization of a gateway BSC in [Sch03]. In
this work, the gateway BSC was physically implemented on a TTP/A master node
communicating with a Linux-based PC across an RS232 serial line.

4.2.4 Frontend Simulation Component (FSC)

An FSC is used to connect the HiL simulator to the SUT. Hence, each FSC comprises
a TTP/A network interface and an interface that emulates the COI of the SUT.
Regarding the latter we distinguish between the following three types of FSCs:

• Fieldbus FSC

• Virtual Transducer FSC

• Real Transducer FSC

73

4.2 Architecture 4 Interface Design for HiL Simulation

Figure 4.7: Types of gateway BSCs

Figure 4.8: Types of FSCs

Figure 4.8 depicts the three types of FSCs. In figure 4.8 a), the SUT accesses its
transducers via a digital transducer network interface (fieldbus). Thereby, a fieldbus
FSC implements a gateway emulating the smart transducers of the SUT not present
in the HiL simulation system. If the interface between SUT and transducers is a
predictable digital real-time network, the reproducibility of simulation runs can be
guaranteed on the basis of a timing analysis. Thus, this approach is preferable
over the variant shown in figure 4.8 b), however it requires that the SUT has an
appropriate transducer network interface, thus is less flexible than b).

In figure 4.8 b), we assume that the interfaces to the physical sensors or actuators
are provided by a virtual transducer FSC. For the realization of a virtual transducer
FSC we employ SVTs as is explained in section 4.3. The X over the transducers of
the SUT indicates, that these are not present in the HiL simulation system. In many
cases, the virtual transducer FSC has to generate or consume analog signals (in the

74

4 Interface Design for HiL Simulation 4.3 Smart Virtual Transducer (SVT)

value and/or the time domain), which affects the reproducibility of a test run. On
the other hand, this approach affords minimal intervention with the SUT and thus
avoids probe effects at the SUT.

There are many different examples of transducer-specific interfacing schemes like
for instance the range of an analog signal representing the measurement of an infrared
sensor, the response behavior of an ultrasonic sensor, or a PWM signal for an elec-
trical motor. For the coupling via transducer-specific interfaces, different approaches
can be found within the literature, ranging from simple solutions to generic recon-
figurable devices like for instance the PXI-7831R FPGA I/O board from National
Instruments [NI03].

Approaches a) and b) are usually chosen, when the physical transducer is not
available or a certain test scenario cannot be established by interfacing the trans-
ducer. For example, if a fault injection campaign involves transducers to exhibit a
particular erroneous behavior, the use of real transducers is problematic.

Figure 4.8 c) depicts a configuration, where the SUT physically keeps its transduc-
ers. In the case of a sensor, a real transducer FSC drives an actuator that physically
interacts with the sensor of the SUT. In the case of an actuator, a real transducer
FSC measures the actions of the actuator via a sensor that is connected to the HiL
simulator. The benefit of interfacing the SUT via a physical transducer is that a
simulation model of the physical transducer is not necessary. Thus, the coupling via
the physical transducer is the preferred approach if it is infeasible (technically or
economically) to set up a sufficiently accurate simulation model of the transducer.
In [Gom01], an HiL simulator for an aerospace application (autopilot) is described
that physically interfaces the SUT via an elevator servo. Instead of modeling the
internal physical behavior of the elevator servo, the deflection of the physical servo
is read from a feedback potentiometer.

4.3 Smart Virtual Transducer (SVT)

As mentioned in section 4.2, an SVT is used to realize a virtual transducer FSC. The
concept of an SVT has been published in [SEW06]. In this section we summarize the
structure, the interfaces, and the classification of an SVT. Furthermore, we show a
prototypical realization of an SVT and outline the benefits of the SVT concept.

4.3.1 Structure

The concept of an SVT is closely related to the concept of an ST as described in
section 2.4. In contrast to an ST, an SVT does not contain a physical sensor or
actuator element. Instead, an SVT is used to emulate a sensor or actuator ele-
ment. Thus, an SVT consists of a processing unit, a communication interface, and a
transducer-specific interface (refer to figure 4.9).

The purpose of an SVT is either to emulate the behavior of a physical sensor or
to emulate the behavior of a physical actuator. Thus, an SVT implements either a

75

4.3 Smart Virtual Transducer (SVT) 4 Interface Design for HiL Simulation

Figure 4.9: Elements of an SVT

virtual sensor or a virtual actuator. An SVT emulating a sensor is provided with
simulation data by BSCs (refer to figure 4.6), an SVT emulating an actuator provides
actuator data to BSCs.

An SVT consists of the following to parts:

SVT logic with communication interface: The digital communication inter-
face is used for the exchange of messages between an SVT and the rest of
the HiL simulation system according to the time-triggered interaction scheme
of the OMG STI [OMG03].

Virtual transducer with VT interface: The virtual transducer interface of the
virtual transducer resembles the interface between the SUT and a particular
transducer. Particularly in the case of a time-dependent sensor (e. g., ultrasonic
sensor), the timeliness of the virtual transducer response is important.

4.3.2 Interfaces

Interaction between SVT and SUT takes place via the virtual transducer interface.
Thereby, a request from the target system to perform a sensor reading of a virtual
sensor or to set a virtual actuator are not under control of the SVT. Such a request
can, e. g., be to read a D/A value (virtual IR sensor), to measure the delay of a
response (virtual ultrasonic sensor), or to set a PWM signal (virtual PWM actuator).

Regarding the occurrence of requests from the target system, we distinguish be-
tween two different cases:

Controlled access: The HiL simulation system has a priori knowledge about the
instants when the SUT reads its sensors or updates its actuators. In order
to achieve this, the design of the SUT has to be known to the extend of the
timing of all possible task activations of tasks that access the transducers. A
time-triggered communication and process model of the SUT is a prerequisite

76

4 Interface Design for HiL Simulation 4.3 Smart Virtual Transducer (SVT)

for controlled access. With controlled access, the SVTs of the HiL simulator
provide new sensor values of the virtual sensors at a priori defined instants,
i. e., immediately before the SUT reads its sensors. Furthermore, the SVTs of
the HiL simulator know a priori the instants of reading actuator control values
from the SUT.

Arbitrary access: The SUT is treated as a black box and it is assumed that the
SUT can access a virtual transducer at any point in time. Therefore, the SVTs
have to provide valid sensor values at any instant and, respectively, have to log
new actuator settings instantly. With arbitrary access, the BSCs of the HiL
simulator recurrently send updated simulation values to the FSCs (i. e., the
SVTs) and it is in the responsibility of the SVTs to respond to requests of the
SUT. Furthermore, SVTs recurrently send to the BSCs the last valid actuator
control values that have been received from the SUT.

While a controlled access eases the design of the SVT and supports replicable
results at least in the time domain, the arbitrary access scheme is more flexible
since it supports any SUT without requiring knowledge about its internal timing.
However, we must take assumptions on the maximum change rate of the environment
variables consumed and manipulated by the SUT, since the SVT must be fast enough
to keep up with changes in the environment. The environment variables must be
communicated to the SVTs at least with the Nyquist rate [Nyq28].

4.3.3 Types of SVTs

We distinguish between two types of SVTs, namely sensor SVTs that mimic the
behavior of a sensor and actuator SVTs that mimic the behavior of an actuator.

Physical sensor devices can offer sensor data in the value and/or in the time
domain. Both kinds of sensors can be emulated by a sensor SVT. An example of a
sensor that delivers sensor data in the value domain is an infrared distance sensor.
The processing unit that interfaces the infrared distance sensor receives an analog
signal from the sensor reflecting the measured distance. An example of a sensor that
delivers sensor data in the time domain is an ultrasonic sensor. An ultrasonic sensor
is triggered by a processing unit to send an ultrasonic ping. As soon as this acoustic
signal is echoed back to the sensor, the sensor informs the processing unit about
the reception of the ping. The processing unit calculates the time from sending the
signal until the reception of the signal in order to get a distance measurement.

Similar to sensor devices, physical actuator devices require distinguishing between
value and time domain. There are many different devices that are controlled by the
setting of an analog value (e. g., LEDs, simple electric motors). A time-dependent
actuator SVT is for instance used in the case of a PWM signal that drives an actuator.

77

4.4 Revising the Rationale 4 Interface Design for HiL Simulation

Figure 4.10: Block diagram and prototype of an SVT with D/A converter

4.3.4 Prototypical Realization

As depicted in figure 4.10, an SVT consists of a processor core, memory, a UART, as
well as digital and analog I/O. The prototype given in figure 4.10 includes an Atmel
ATmega168 micro controller [Atm04] and an Analog Devices 8-Bit digital-analog
converter (AD5330) [AD00].

The ATmega168 is a low-power 8-bit microcontroller that is based on a RISC ar-
chitecture. According to [Atm04], the ATmega168 achieves close to 1 MIPS per MHz.
The ATmega168 offers 16 Kbytes of in-system programmable flash, 512 bytes EEP-
ROM, as well as 1Kbyte SRAM. It operates on 23 general purpose I/O lines and 32
general purpose working registers. The ATmega168 involves three timers / counters
with compare modes, internal and external interrupts, serial programmable USART,
a byte oriented 2-wire serial interface, an SPI serial port and a programmable watch-
dog timer.

The AD5330 is an 8-bit digital-analog converter that operates from a 2.5 V to
5.5 V supply. According to [AD00], the power consumption is only 115 µA at 3 V
or 80 nA in power down mode. The AD5330 offers a double-buffered parallel input
logic and an output range of 0 - Vref .

4.4 Revising the Rationale

In this section we revise the rationale for a generic distributed HiL simulation frame-
work as given in section 4.1 with respect to the proposed solution discussed in sec-
tions 4.2 and 4.3. Thus, we discuss properties of the HiL simulation framework with
respect to the ability to establish deterministic interaction between the HiL simula-
tion system and the SUT. Furthermore, we show that the proposed solution supports
a scalable distributed HiL simulator interfacing an SUT across arbitrary transducer
interfaces and offering means for monitoring and on-line configuration.

4.4.1 Deterministic Interaction

As mentioned earlier, reproducibility of a simulation run requires deterministic inter-
action between the HiL simulator and the SUT. Therefore, the HiL simulator must

78

4 Interface Design for HiL Simulation 4.4 Revising the Rationale

share a common time base with the SUT and both, the SUT and the HiL simula-
tor must not exhibit intrinsic sources of indeterminism, e. g., by suffering from race
conditions.

The presented HiL simulator shares its existing global time base with the SUT.
Regarding the HiL simulator, deterministic behavior can be established due to the
usage of a time-triggered communication and execution scheme. Deterministic con-
struction of the SUT lies outside the sphere of control of the HiL simulator and
requires a deterministic architecture. In case a time-triggered architecture is used
for the SUT, sources of indeterminism can be avoided by design.

4.4.2 Distributed HiL Simulation System

An HiL simulator as outlined in section 4.2, consists of nearly-independent node
computers (i. e., FSCs, BSCs) that are precisely specified at the level of their linking
interfaces [KS03]. Time-triggered communication between the simulation compo-
nents enables composability which is an important prerequisite for the simultaneous
development of these components.

Furthermore, the presented approach is scalable in the sense that a given HiL
simulator can be extended by further BSCs or FSCs. Due to the property of com-
posability, it is possible to integrate several HiL simulators to form one single (large)
HiL simulator. In the case of a large number of employed components that reaches
beyond the limitations of TTP/A (max 255 nodes), a multi-cluster HiL simulator
can be set-up, establishing the interaction between different clusters via gateways.

The nodes of an HiL simulator are physically interconnected via a digital serial in-
terface, thereby supporting the application of HiL simulation to an SUT with remote
transducers. Furthermore, our approach aims at complexity reduction regarding the
set-up of a simulation for large distributed real-time systems. Each node of the
HiL simulator implements a well-defined self-contained function, like for instance the
interaction with one particular transducer or the execution of a particular part of
the simulation model. Hence, an HiL simulator can be constructed out of modular
components on the basis of well-defined interfaces.

Our proposed approach involves multiple hardware components, each consisting
of a CPU, memory, and physical I/O. Thus, a multirate HiL simulation can be
realized (refer to section 3.1) targeting at fast interaction with a particular physical
transducer (by an FSC) while at the same time supporting a comparably slower and
potentially resource intensive calculation of the simulation model (by a BSC).

4.4.3 Arbitrary Transducer Interfaces

The proposed concept of an SVT as outlined in section 4.3 supports the interaction
of an HiL simulator with the SUT across an arbitrary transducer interface. Thereby,
the concept of SVT supports the separation of concerns and thus leads to a reduction
of the cognitive complexity when setting up an HiL simulation system. The simula-
tion model, executed at the BSCs, is decoupled from the specific SVT elements that

79

4.5 Chapter Summary 4 Interface Design for HiL Simulation

interact with the SUT. Thus, it is not necessary to include the behavior of a par-
ticular transducer element in those parts of the simulation model that are executed
at the BSCs. Changes of transducer elements (e. g., upgrade of a transducer to a
newer model) do not directly influence the BSCs because the behavior models of the
transducers are confined by the SVTs.

The SVT approach supports reusability by the provision of configurable FSCs.
Since the implementation of an SVT mainly depends on the transducer that is re-
placed, an SVT can be reused in other applications whenever the same kind of
transducer is employed. Although features like the frequency of the update value
and smoothing parameters depend on the control environment, these functions can
be generically implemented and parametrized for a particular application.

The approach is open to any kind of ”black box”, i. e., any transducer-specific
interface can be implemented on an SVT. Thus, integration tests, both open loop
and closed loop, of a wide variety of SUT configurations can be performed with this
approach. Furthermore, it is possible to use an SVT as a connection system that
resolves property mismatches between a given simulation model and a particular
legacy I/O board (as depicted in figure 4.3).

4.4.4 Monitoring and Configuration

As discussed in section 4.1, an HiL simulator should offer means for monitoring
and run-time configuration. Neither monitoring nor run-time configuration must
introduce a probe effect on the real-time behavior of the HiL simulator. Our proposed
approach targets at these requirements and supports non-intrusive monitoring as well
as a mechanism for run-time configuration that does not interfere with the real-time
interaction of the HiL simulator components.

For observing the behavior of the HiL simulation system we propose to use a
gateway BSC [Sch03] that captures relevant real-time images (i. e., simulation data)
transmitted across the LLI and forwards these real-time images to an HMI computer.
Alternatively, a BSC can store transmitted data during a simulation run.

On-line configuration of the HiL simulator is based on the concept of master-
slave rounds of the TTP/A protocol. Thereby, the master reads/writes a particular
element of the IFS of each TTP/A node. Master-slave rounds are triggered by the
master between multi-partner rounds. Hence, we propose the realization of a gateway
BSC that connects to an HMI computer and that forwards requests of the operator
directly to the relevant simulation component via the master node. Physically, a
gateway BSC can also be directly implemented at the master node.

4.5 Chapter Summary

In this chapter we investigated the rationale for a scalable, component-based, deter-
ministic HiL simulation system framework based on the TTA. A major requirement
of such a framework lies in deterministic interaction between HiL simulator and SUT

80

4 Interface Design for HiL Simulation 4.5 Chapter Summary

across well-specified interfaces. A distributed HiL simulator enables parallel devel-
opment, scalability, complexity management, and multirate simulation. An HiL
simulator shall provide support for arbitrary transducer interfaces, mechanisms for
monitoring, run-time configuration, and data logging.

The proposed HiL simulation framework involves a set of Backend Simulation
Components (BSCs) and Frontend Simulation Components (FSCs). An FSC controls
the physical interconnection between the HiL simulator and the SUT and consists of a
digital interface to the TTP/A network and a second interface that resembles the COI
of the SUT. This second interface is either a digital fieldbus interface (fieldbus FSC),
an arbitrary transducer interface (virtual transducer FSC), or a physical transducer
(real transducer FSC). A BSC is used to execute part of a distributed simulation
model. It has a digital interface to the TTP/A network (simple BSC) and (optionally)
a second digital gateway interface to connect to an external system (gateway BSC).
A virtual transducer FSC can be realized by an SVT, which emulates a physical
sensor or actuator element. An SVT consists of a processing unit, a communication
interface, and a transducer specific interface.

In the proposed HiL simulation framework, the time base of the HiL simulator
is synchronized to the time base of the SUT which is a prerequisite for deterministic
interaction between the HiL simulator and the SUT. The presented concept supports
composable construction of a distributed HiL simulator based on nearly-independent
FSCs and BSCs. The HiL simulator supports non-intrusive monitoring and on-line
configuration enabling simulation runs without probe effect on the SUT.

81

4.5 Chapter Summary 4 Interface Design for HiL Simulation

82

Chapter 5

Testing of an Integrated System

In the previous chapter, we discussed the constituting elements of a novel HiL sim-
ulation framework based on time-triggered execution and communication. In this
chapter we present the adoption of this framework for the purpose of testing inte-
grated systems. Furthermore, we investigate a stepwise X-in-the-Loop simulation
process including MiL, SiL, and HiL simulation. As part of SiL testing, we present
a pre-validation framework for virtual integration of integrated systems. Substantial
parts of the chapter origin from [SOE07, OS07].

5.1 Integrated Architecture

The increasing number of electronic functions in the automotive, aerospace, or in-
dustrial control domains requires bundling and seamless integration of application
subsystems from different vendors on the same hardware platform. A study of A.D.
Little [BE05], for instance, states that currently about 70 ECUs are used in cars
and in the next decade, a significant reduction to about 20 ECUs is expected. Ap-
plication subsystems may have different levels of criticality and must be temporally
and spatially protected against each other in order to avoid the development of each
module on the shared hardware according to the highest safety requirements.

Targeting at these challenges, so-called integrated architectures are developed
that provide means to handle the complexity of distributed applications while sup-
porting efficient integration of functions into the shared hardware. The DECOS
integrated architecture [KOPS04, OPHES06] is an example for an integrated sys-
tem architecture which builds upon the validated architectural services of a time-
triggered core architecture. DECOS is an integrated project within the Sixth
Framework Program of the European Commission and targets at a European
cross-industry approach for integrating multiple application subsystems within a
single, distributed computer system. Other well-known integrated architectures
are AUTOSAR [AUT06b] (in the automotive domain) and IMA [ARI91] (in the
aerospace domain).

83

5.1 Integrated Architecture 5 Testing of an Integrated System

5.1.1 System Structure

Many large applications (e. g., in the automotive or aerospace domains) consist of
a number of nearly independent application subsystems, each of them providing a
major part of the overall application. We call such an application subsystem a Dis-
tributed Application Subsystem (DAS). In the automotive domain, the powertrain
subsystem, the comfort subsystem, and the multimedia subsystem are examples for
DASs. Examples of DASs in a present-day avionic application are the cabin pres-
surization system, the fly-by-wire system, and the in-flight entertainment system. A
DAS is composed of smaller functional elements called jobs. A job is the basic unit of
work that employs the communication system for exchanging information with other
jobs, thus working towards a collective goal [KOPS04].

Figure 5.1: Distributed system in the DECOS system architecture

In an integrated architecture a single distributed computer system serves as the
execution platform for multiple DASs. As depicted in figure 5.1, each node computer
of the distributed computer system contains jobs of one or more DASs. Likewise, the
communication network that interconnects the node computers serves the transport
of messages between jobs of more than one DAS.

In the following, we discuss the structural elements of the DECOS architecture
(i. e., network, nodes, environment), because this system architecture is used for the
construction of the framework for SiL and HiL simulation.

5.1.2 Communication Network

Physically, the real-time computer system in the DECOS architecture consists of a
set of nodes that are interconnected by a Time-Triggered Backbone Network (TTBN).

84

5 Testing of an Integrated System 5.1 Integrated Architecture

Prototype implementations of the DECOS architecture are available with different
time-triggered communication protocols used for the TTBN (e. g., TTP [TTA02],
FlexRay [FX05]). The rationale behind choosing a time-triggered communication
protocol is in the requirements with respect to predictability and fault-tolerance
in safety-critical applications [Rus01] and the suitability for ultra-dependable sys-
tems [SWH95]. Time-triggered communication protocols are characterized by a guar-
anteed message transport with low jitter, error containment between node computers,
and a fault-tolerant distributed global clock service.

5.1.3 Node Computers

A node computer provides an execution environment for multiple collocated jobs
of one or more DASs as shown in figure 5.1. Each job implements a part of the
application functionality and is within the responsibility of a single organizational
entity (e. g., a specific supplier).

The allocation of computational resources (e. g., memory, CPU time) to jobs
occurs using a partitioning operating system with support for fault isolation and
modular certification [SHW+06, HPOES05]. The partitioning operating system im-
plements mechanisms for spatial and temporal partitioning in order to encapsulate
the individual jobs. The scheduling of jobs needs to ensure that a timing failure
of a job, such as a worst-case execution time violation, does not affect the CPU
time available to other jobs. In analogy, the spatial partitioning mechanisms of the
partitioning operating system enforce memory protection between jobs (e. g., with a
memory management unit).

The interaction with other jobs occurs through the services provided by the
DECOS middleware. The DECOS middleware offers high-level architectural ser-
vices, which serve as a baseline for the development of applications. These services
constitute the interface for the jobs to the underlying platform. Among the high-
level services are gateway services, virtual network services, encapsulation services,
and error detection services. On top of the time-triggered physical network, different
kinds of virtual networks are established as overlay networks [OP05] and each type
of virtual network can exhibit multiple instantiations. The access point of a job to
the virtual network is denoted as a port.

Gateway services selectively redirect messages between virtual networks and re-
solve differences with respect to operational properties and naming. The encapsu-
lation services control the visibility of exchanged messages and ensure spatial and
temporal partitioning for virtual networks in order to obtain error containment.

Below the DECOS middleware, each node computer in figure 5.1 contains the
communication controller. The communication controller executes a time-triggered
communication protocol (i. e., the TTBN) as required for accessing the network. It
provides so-called core architectural services (i. e., time-triggered transport of mes-
sages, fault-tolerant clock synchronization, strong fault isolation), which are used
as the basis for the implementation of the high-level architectural services in the
DECOS middleware.

85

5.2 X-in-the-Loop Testing 5 Testing of an Integrated System

The rationale for distinguishing between the core architectural services and the
high-level architectural services is the ability to exploit existing time-triggered com-
munication protocols (e. g., TTP) for the construction of an integrated architec-
ture. TTP is a prominent candidate for it has been demonstrated by formal analy-
sis [Rus02] and experiments [ASBT03] that TTP is appropriate for the implementa-
tion of applications in the highest criticality class in the aerospace domain according
to RTCA DO-178 B Level A.

5.1.4 Environment

The coupling of an integrated system with its environment is established via trans-
ducers. Transducers can either be connected directly to the integrated system or
interfaced via a fieldbus. The latter approach simplifies the installation from a log-
ical and a physical point of view and is extendable but might introduce increased
latency of sensory information and actuator control values because the latency of
the fieldbus (i. e., the time that is required for capturing, processing, and sending a
sensor value to the integrated system via the fieldbus) adds to the total signal path.

Every job has access to its relevant transducers, either directly via the controlled
object interface or via a virtual network of known temporal properties. Hence, an
HiL test procedure requires finding adequate interfaces between the HiL simulator
and the integrated system.

5.2 X-in-the-Loop Testing

The verification of an integrated system starts with module tests (refer to figure 5.2).
Module tests relate to the process of verifying jobs (or even smaller elements like
tasks). In a further step, single DASs are tested, including jobs of the DAS and
virtual networks that connect these jobs. After that, system tests are performed
with multiple DASs.

In the case of model-based development of the integrated system based on Mat-
lab/Simulink models, first tests are performed in the Matlab/Simulink environ-
ment. Hence, an MiL simulation of jobs or even of whole DASs is done in Mat-
lab/Simulink. Focusing on the temporal interrelationship of different jobs and DASs,
SiL tests are conducted after MiL tests have shown a sufficient degree of maturity of
the DASs. As a final verification step, HiL tests are conducted.

In the following, we discuss X-in-the-loop techniques, namely MiL, SiL, and HiL
with respect to their application to integrated systems.

5.2.1 Model-in-the-Loop (MiL)

MiL corresponds to the process of testing a single computational unit, i. e., a job or
parts thereof, with a simulated system model. A job can be tested by an MiL test as
soon as a functional model of the job is available. Typically, an MiL test is directly

86

5 Testing of an Integrated System 5.2 X-in-the-Loop Testing

Figure 5.2: V-model

conducted within the development environment, e. g., within Matlab/Simulink.
MiL tests can easily be set-up by defining certain input test cases that are pro-
vided to the model of a job in the model-based environment. Timing properties are
usually neglected in an MiL test.

5.2.2 Software-in-the-Loop (SiL)

SiL testing is a pre-validation technique, where executable code is tested in a sim-
ulated (software) environment that is usually implemented on a desktop computer.
In the automotive domain, the ambition to virtually integrate software modules on a
simulated platform led to the notion of virtual integration platforms. In [GFL+02], it
is proposed that the integration should take place on a virtual platform that consists
of models of the hardware and software components that constitute the building blocks
of the overall model of the distributed function and architecture.

In order to analyse the behavior of correlating DASs of an integrated architecture
by an SiL, we propose the use of a simulation framework as presented in [OS07].
Such a simulation framework combines (1) a simulation of virtual networks, (2)
a simulation of time-triggered partitioning operating systems, (3) an environmental
simulation, and (4) application code created from models of application functionality.

Using this simulation framework, developers can determine whether application
subsystems operate correctly in the integrated architecture. The aim of the simula-
tion framework is to guarantee the temporal ordering of events during the simulation.
However, the simulation framework does not support real-time execution of the SiL
test. Both, the SUT and the environment of the SUT are simulated. The simulation
of an integrated system can be executed on a single desktop computer as discussed
in [OS07].

87

5.3 Virtual Integration 5 Testing of an Integrated System

5.2.3 Hardware-in-the-Loop (HiL)

HiL tests allow to observe the actual influence of the hardware characteristics of the
SUT including the physical behavior (timing!) of hardware signals and execution
of the SUT in real time. Thus, testing with an HiL simulation is closer to the real
application than a pure software simulation.

HiL tests of an integrated system must preserve the prerequisites for achieving
reproducible test results (refer to chapter 4). Hence, we focus on deterministic inter-
action between an HiL simulator and an integrated system at the physical interface
of this integrated system. This allows for non-intrusive (black box) tests. We call an
integrated system that is tested by an HiL simulation an Integrated System-Under-
Test (ISUT).

5.3 Virtual Integration

As mentioned in section 5.2, virtual integration deals with SiL simulation for the
purpose of pre-validating an integrated system. A virtual integration framework for
an integrated system involves:

• A framework implementation enabling developers to simulate the behav-
ior of application subsystems that share computational and communicational
resources with other application subsystems based on time-triggered schedules.

• The combination of virtual integration with environmental simula-
tion in order to support environmental simulation in the absence of the physical
environment for testing real-time applications by means of simulation.

• Tool-support for virtual integration on the framework implementa-
tion that starts with a model based development of the application behavior,
the environment, and the DECOS execution platform. These models (in our
case study we used Matlab/Simulink) are automatically transformed into in-
put for simulation tools.

Figure 5.3: System model of the simulated real-time system

88

5 Testing of an Integrated System 5.3 Virtual Integration

5.3.1 Structure of Virtual Integration Framework

The framework implementation of the virtual integration platform supports the sim-
ulation of a distributed computer system, complying to the DECOS architecture,
along with the environment. As depicted in Figure 5.3, the simulated distributed
computer system consists of a set of simulated nodes, each hosting jobs of one or
more DASs. The simulated TTBN is a substitute for a physical network intercon-
necting these nodes. The simulation of the environment allows jobs to interact with
(simulated) sensors and actuators.

Time-Triggered Backbone Network

This part of the virtual integration platform simulates a network with a time-
triggered communication protocol (e. g., TTP [TTA02] or FlexRay [FX05]). The
TTBN executes TDMA and divides time into slots that are statically assigned to the
nodes. A particular slot is used by one node to broadcast a message, while all other
nodes receive the message. A periodically recurring sequence of slots that enables
each node to send a message is called a communication round.

The simulated TTBN provides to the simulated nodes a time-triggered message
transport service, which performs periodic exchanges of state messages at predefined
global points in time. At each simulated node, the interface to the TTBN is a
memory element. The memory element contains outgoing state messages that are
written by the application in the simulated node and read by the simulated TTBN
prior to broadcasting them. In addition, the memory element contains incoming
state messages that are read by the application in the simulated node and updated
by the simulated TTBN with state messages received from other nodes.

In a physical TTBN, this memory element would be provided by a communication
controller at each node, e. g., TTP controller C2NF [TTC06] or FlexRay Controller
MFR4200 [Fre05]. This memory element, which is called CNI in TTP and Controller
Host Interface (CHI) in FlexRay, is provided by most time-triggered communica-
tion protocols with syntactic differences of state messages (e. g., header format) and
protocol-specific constraints (e. g., only one message sent by a node per communica-
tion round in TTP [TTA02], same size for all state messages in FlexRay [FX05]).

Simulated Node

A simulated node contains partitions, each of which is an encapsulated execution
space within a node with a priori assigned computational resources (e. g., CPU,
memory). Partitions are the target of job allocation and each job is always assigned
in its entirety onto a partition, i. e., a job is never fragmented onto multiple partitions.

A simulated node also contains the DECOS middleware for the implementation
of the generic architectural services (i. e., virtual networks, gateways). The DECOS
middleware maps the memory element provided by the TTBN to ports that serve
as the access points to the virtual networks. In order to enable jobs of a DAS to
exchange information, the middleware layer provides to each job one or more state

89

5.3 Virtual Integration 5 Testing of an Integrated System

ports and event ports. A state port contains a state variable that is accessed by the
DECOS middleware at a priori specified global points in time. The state variable is
either written by the DECOS middleware (data received from a virtual network and
destined to an input state port) or read by the DECOS middleware (data from an
output state port and destined to a virtual network). An event port, on the other
hand, contains a message queue into which messages that are received from a virtual
network are inserted by the DECOS middleware in case of an input event port. For
an output event port, the DECOS middleware retrieves messages from the queue
and sends them via the corresponding virtual network.

Environment

Environmental simulation resembles the physical surrounding of an integrated sys-
tem. In a real system, a transducer would manage a set of real-time entities of the
environment (e. g., speed of a motor). Each time a simulated node interacts with the
environmental simulation during virtual integration, it accesses a real-time entity of
a simulated transducer element.

5.3.2 Inputs to the Virtual Integration Framework

The virtual integration platform takes as an input three simulation models (refer
to figure 5.4): (1) a simulation model of the application, (2) a simulation model of
the distributed execution platform, and (3) a simulation model of the environment.
Using code generation tools, we produce for each model a set of software modules
that can be executed within the simulation framework. The simulation framework
provides feedback to the designer concerning the behavior of the application on a
given virtual integration platform which is defined via the models of the execution
platform and the environment.

Figure 5.4: Model-based integration on virtual integration platform

Simulation Model of Application

The simulation model of the application decomposes the overall system (e. g., on-
board electronic system of a car). For specifying this model, a suitable formalism can
be selected that fits to the respective application domain (e. g., Matlab/Simulink).

90

5 Testing of an Integrated System 5.3 Virtual Integration

The simulation model of the application defines for each job a corresponding data
transformation. Such a data transformation takes as an input the messages that
are provided to the job, the information acquired from the sensors (i. e., at the
interface to the environment), and the internal state of the job. The outputs of
the transformation are messages generated by the job, information for the actuators
(i. e., to the environment), and updates of the internal state of the job.

Distributed Execution Platform

The model for the distributed execution platform (virtual integration platform) de-
scribes the distributed platform, on which DASs shall be executed. The distributed
execution platform encompasses the following three parts:

Partitions of Execution Environment: The simulation framework supports a
time-triggered operating system, which associates each partition to a period-
ically recurring time slice. Consequently, a partition is characterized by the
temporal attributes of the time slice (i. e., start and period of invocation, du-
ration of execution), as well as by the spatial attributes (i. e., location of the
partition expressed as a particular node and processor within the node).

Virtual Networks and Gateways: As part of the platform model, the configura-
tion of the virtual networks and gateways is defined. The configuration of the
virtual networks provides information on the types of available virtual networks
along with the control paradigm (i. e., time-triggered or event-triggered), and
the communication topology (e. g., broadcast, point-to-point). Also, for each
virtual network the mapping to the underlying TTBN is specified by reserving
TDMA slots at the time-triggered physical network. For the virtual gateways,
the platform model defines which messages shall be redirected between virtual
networks.

Time-Triggered Backbone Network (TTBN): The third part of the platform
model captures the physical network of the platform. In particular, the TDMA
scheme of the TTBN is laid down. In conjunction with the virtual network con-
figuration, this TDMA scheme determines the temporal properties (i. e., band-
width, latencies) of the virtual networks.

Environment Model

The model of the environment is derived from an analysis of the natural environ-
ment and the used sensors/actuators. In analogy to the application model, a proper
formalism has to be selected to specify the environment model. In our work we used
Matlab/Simulink for modeling the environment of the integrated system.

91

5.3 Virtual Integration 5 Testing of an Integrated System

5.3.3 Simulation on Virtual Integration Platform

Using automatic code generation, the application-, platform-, and environment mod-
els are transformed into code that can be executed on a Linux-based PC in con-
junction with a simulation engine. The Real-Time Workshop processes the Mat-
lab/Simulink models for the application and the environment, thus producing soft-
ware modules for jobs and transducers. For the platform, we use code generation
tools that have been introduced in previous work [OH06, HHBC06] for the deploy-
ment on a physical target system.

We denote a task, which executes generated code of the simulation model, as
a runnable. The simulation framework employs three types of runnables: a TTBN
runnable for simulating a physical time-triggered network, node runnables for the
simulated nodes, and transducer runnables for simulating the environment (refer to
figure 5.4).

The purpose of the simulation engine is the establishment of a binding between
the runnables (refer to figure 5.5). The simulation engine synchronizes the execution
of the runnables by enforcing a time-triggered action lattice for the computational ac-
tivities of the simulated nodes, the communication activities of the simulated TTBN,
and the state changes in the environment. In addition, the simulation engine pro-
vides mechanisms for the information exchange between runnables. The interaction
between runnables takes place via the following shared memory regions:

• Communication Network Interface (CNI): The CNI links the node
runnables of the simulation framework. In a real system, the CNI would be
realized as a dual ported memory that is accessible by both, the application of
the node and the communication controller (refer to figure 5.6).

• Controlled Object Interface (COI): The COI represents the interface be-
tween the integrated system and its environment. In a real system this interface
would be realized through the physical interaction of transducers with their en-
vironment.

• Simulation System Interface (SSI): The SSI is used for the interaction
between transducer runnables. The SSI is used to exchange messages not being
visible at the COI.

In the following, fundamental properties of simulation engine and runnables are
outlined, including their respective interfaces.

Simulation Engine

The simulation engine manages the activation of runnables at pre-defined instants.
Hence, it provides a (logical) simulation time that emulates a physical clock. Based
on the progression of the simulation time (i. e., increment of an internal counter
variable), the simulation engine processes a deterministic, round-based schedule. The

92

5 Testing of an Integrated System 5.3 Virtual Integration

Figure 5.5: Simulation framework

smallest entity of this schedule is a slot. Within each slot the simulation engine can
activate either one or several runnables.

The activation of the involved runnables is realized with semaphores whereas a
pair of semaphores is related to each runnable. Hence, the simulation engine starts
a certain runnable by performing a V operation on the first semaphore and waits for
the runnable to finish by performing a P operation on the second semaphore.

Runnables are statically linked with the simulation engine. Thus, the identifier of
a certain runnable, i. e., the pair of semaphores, as well as the instants of activation
of this runnable are defined within the simulation engine. The dynamic behavior of
the runnable is given within the particular runnable, and is therefore not part of the
simulation engine.

TTBN Runnable

The TTBN runnable emulates a physical TTBN that connects the nodes of an inte-
grated architecture. Hence, the TTBN runnable enables the interaction of node
runnables across the CNI. Therefore, it operates on the CNI and periodically
(i. e., each time it is activated by the simulation engine) updates the CNI according
to a statically defined Message Descriptor List (MEDL).

In order to better explain the purpose of the TTBN runnable it should be men-
tioned that each node runnable has access to a particular region of the CNI (i. e., a
particular shared memory region). Each node runnable can read/write messages
from/to this CNI region. Each time, the TTBN runnable is activated, it copies mes-
sages that have been written to a certain CNI regions by a node to all other CNI
regions of all other nodes.

93

5.3 Virtual Integration 5 Testing of an Integrated System

In a real (i. e., non-simulated) integrated system, this task would be performed
by communication controllers that send messages from a particular node, receive
messages from all other nodes, and perform the respective CNI read/write operations.

Node Runnables

As depicted in figure 5.5, the simulation framework involves a set of node runnables
that correspond to the application behavior of the integrated system. Each node
runnable represents the dynamic behavior of an integrated node. Hence, each node
runnable consists of a set of jobs that are executed according to a time-triggered
schedule. The deterministic activation of jobs by a node corresponds to the activation
of partitions by a time-triggered partitioning operating system.

As explained in the previous subsection, the interaction between different node
runnables happens across the CNI. Furthermore, the interaction between node
runnables and the environment is realized via the COI. The COI is realized as a
separate shared memory region. This shared memory region consists of messages
that reflect information exchanged with transducers. For instance, the current ana-
log value of an infra-red distance sensor would be stored within an integer variable
distance analog as part of the COI. The involved transducer runnables (refer to the
next subsection) are responsible to periodically update the COI.

We propose the development of the dynamic behavior of node runnables with
Matlab/Simulink. After a Matlab/Simulink model has been realized, it is possible
to perform preliminary tests within Matlab/Simulink. After that, C code of the
model is automatically generated with the Real-Time Workshop Embedded Coder
and this C code is included in the node runnable.

The simulation framework provides wrapper code that basically performs three
steps each time a node runnable is activated by the simulation engine:

• Read input: All required input data from CNI and COI is read by the node
runnable. This input data is used to set the input variables of the Mat-
lab/Simulink model.

• Execute model: One step of the Matlab/Simulink model is executed by
calling the respective function that is provided by the automatically generated
code.

• Write output: The output variables of the Matlab/Simulink model are read
and this data is written to the according CNI and COI regions.

The integration step that links a particular node runnable wrapper to the Mat-
lab/Simulink model has to be taken only once. If the respective Matlab/Simulink
model is modified (e. g., for calibration purposes), the node runnable is automatically
updated after generating code for this updated model.

94

5 Testing of an Integrated System 5.4 HiL Testing

Transducer Runnables

The environment of the integrated system is simulated by the use of transducer
runnables. Each transducer runnable maintains a set of real-time entities of the envi-
ronment. The interaction between the node runnables and the transducer runnables
takes place via the COI.

Interaction between different transducer runnables takes place across the SSI –
again a separate shared memory region. The SSI is used to exchange messages of a
distributed environmental simulation which are not visible at the COI. For example,
a simple application could involve two transducer runnables. We assume that the
first transducer runnable models the dynamic behavior of an electric motor that is
turned on and off by a node runnable. A second transducer runnable models a sensor
capturing the current speed of the electric motor and providing speed information
to another node runnable. In such an application, a value representing the current
speed of the electric motor is written to the SSI by the first transducer runnable.
This value is read and further processed by the second transducer runnable.

The structure of a transducer runnable is quite similar to the structure of a node
runnable. Hence, each time a transducer runnable is activated data is read from the
COI and from the SSI, a transducer model is executed, and data is written to the COI
and to the SSI. As for the development of node runnables, we propose a model based
approach (with Matlab/Simulink) for the development of the transducer runnables.
The simulation framework therefore provides wrapper code for the involvement of
automatically generated code of transducer models.

5.4 HiL Testing

In the following we discuss the applicability of the HiL simulation framework as pre-
sented in chapter 4 for conducting HiL tests with an integrated system. It should be
mentioned that due to its generic interaction mechanism (i. e., support of arbitrary
transducer interfaces) the simulation framework is well-suited to support HiL testing
of a large range of integrated systems. In the following we investigate the particulari-
ties of an integrated architecture with respect to an HiL simulation. Furthermore, we
present the application of the HiL simulation framework to an exemplary automotive
system.

5.4.1 HiL Simulation Framework

As with SiL simulation, HiL simulation of an integrated system involves a simulation
of the environment of the integrated system. Thus, the environmental simulation
model from the SiL simulation can be reused when setting up an HiL simulation
system. In contrast to an SiL simulation, an HiL simulation involves the real-time
execution of this environment model. Thus, the WCET of the execution of a simu-
lation step of the environment model must be considered.

Based on the general definition of an HiL simulation system as outlined in sec-

95

5.4 HiL Testing 5 Testing of an Integrated System

tion 3.1, an HiL simulation system for an integrated system consists of the following
two building blocks:

Integrated System-Under-Test (ISUT): The ISUT is either an integrated sys-
tem as depicted in figure 5.1 or a part thereof. The ISUT interacts with its
environment across the COI.

HiL Simulator: The aim of the HiL simulator is to substitute the environment or
parts of the environment of the ISUT. The interfaces of an HiL simulator that
are relevant for the interaction with the ISUT must resemble the interfaces of
the ISUT in the temporal and functional domains. The HiL simulator executes
a simulation model of the process under control of the ISUT and a model of
the transducers. The input and output from these models is exchanges with
the ISUT across the COI.

The COI, linking the ISUT and the HiL simulator, can either be a standardized
digital transducer interface or an arbitrary transducer-specific interface (e. g., an
analog interface). Deterministic interaction between the HiL simulator and the ISUT
across the COI is an essential aspect for any kind of interface.

By applying the HiL simulation framework according to the architectural descrip-
tion given in section 4.2, we involve a distributed HiL simulator consisting of a set
of FSCs, a set of BSCs, and a master node. The master node is part of the HiL
simulator, i. e., it triggers the individual BSCs and FSCs according to a pre-defined
schedule. Furthermore, the master is a (passive) member of the ISUT, i. e., it syn-
chronizes its time-base with the time-base of the ISUT. Hence, the master establishes
synchronism between the ISUT and the HiL simulator without effecting the ISUT’s
execution.

As depicted in figure 5.6, the interaction of nodes of an integrated system with
their environment is realized via an arbitrary transducer interface. This interaction
includes value/time-dependent analog and/or digital direct I/O as well as standard-
ized fieldbus interfaces. An FSC connects to nodes of the integrated system for the
purpose of interacting with these nodes across a particular transducer interface. FSCs
and BSCs collectively execute the distributed simulation model of the environment
of the integrated system.

5.4.2 HiL Simulation with an ISUT

HiL simulation of an integrated system supports incremental testing. Starting with
a single integrated node, a stepwise inclusion of jobs of the integrated system in the
HiL simulation is possible. At each step, the environment model of the real-time
system is simulated (by BSCs) and the coupling between this simulation and the
actual ISUT is established with FSCs. With separate FSCs it is possible to scale the
HiL simulation from a small ISUT (e. g., a single integrated node with only one job)
up to a complete integrated system by adding additional FSCs as required.

96

5 Testing of an Integrated System 5.4 HiL Testing

Figure 5.6: HiL simulation with an integrated system

Regarding the HiL simulation system for an integrated system, we can establish
deterministic behavior due to the usage of a time-triggered communication and exe-
cution scheme. Furthermore, an ISUT that is based on the DECOS integrated archi-
tecture builds on a time-triggered architecture that avoids sources of indeterminism
by design. Hence, a distributed environmental simulation system as described above,
based on time-triggered communication, supports the construction of an HiL simu-
lation system with guaranteed deterministic interaction between the HiL simulator
and the ISUT.

5.4.3 Exemplary Application

In the following, we discuss HiL simulation with an exemplary (integrated) automo-
tive system.

Exemplary Application Using the Integrated Architecture

The example used to point out the HiL simulation framework includes two automo-
tive DASs (which are part of a larger automotive electronic system):

• Multimedia DAS: Car drivers are no longer satisfied with cars being simple
means of transportation. For this reason, today’s luxury cars contain multi-

97

5.4 HiL Testing 5 Testing of an Integrated System

Figure 5.7: Exemplary integrated system with HiL simulation

media functionality such as DVD players, high-end audio systems, and GPS
navigation systems. In addition, voice control and hands-free speaker phones
relieve the driver of concentrating on multimedia devices instead of traffic.

• Park assist DAS: This DAS implements a parking aid with ultra-sonic sen-
sors. In case a threshold for a minimum distance is exceeded, the DAS produces
an acoustic alarm signal. Therefore, the park assist DAS encompasses four jobs
reading inputs from ultra-sonic distance sensors. In addition, the DAS contains
an obstacle detector job, which reads the distance measurements from the four
other jobs and determines whether an alarm signal should be produced. In this
case, the acoustic alarm signal is transferred via a gateway to the speaker jobs
of the multimedia DAS.

Figure 5.7 depicts a possible implementation of these DASs using the DECOS
architecture. Each node computer hosts multiple jobs, which can belong to different
DASs (such as the multimedia or park assistant DAS).

HiL Elements for Exemplary Application

We assume that the above described example involves two kinds of transducers,
namely ultra-sonic sensors for distance measurement of the park assist DAS and
loudspeakers of the multimedia DAS. Hence, the interaction between the HiL simu-
lator and the ISUT across the COI involves SVTs that emulate the behavior of an
ultra-sonic sensor as well as SVTs that capture and process the signals provided by
the audio system jobs of the ISUT.

As depicted in figure 5.7, the setup of the HiL simulation system additionally
involves an FSC receiving the actual vehicle speed from the ISUT. Furthermore, a
master node is required that controls operation of the involved SVTs and synchronizes
the time-base of the HiL simulator to the time-base of the ISUT.

98

5 Testing of an Integrated System 5.5 Chapter Summary

5.5 Chapter Summary

Integrated architectures (e. g., DECOS [KOPS04, OPHES06], AUTOSAR [AUT06b],
IMA [ARI91]) provide means to handle cognitive complexity of large integrated sys-
tems by supporting efficient integration of functions. Thereby, mixed criticality ap-
plication subsystems from different vendors are seamlessly integrated on top of the
same hardware.

According to the terminology of the DECOS project, an integrated system con-
sists of Distributed Application Subsystems (DASs) that are composed of jobs. A
job is the basic unit of work that employs the communication system for exchanging
information with other jobs, thus working towards a collective goal [KOPS04]. Node
computers provide the execution environment for multiple collocated jobs of one or
more DASs. The physical interconnection between node computers is established
by a Time-Triggered Backbone Network (TTBN). Integrated systems interact with
their environment via transducers that are either connected directly to the integrated
system or are accessed via a fieldbus.

X-in-the-Loop testing of an integrated system involves MiL, SiL, and HiL based
testing. SiL tests can be performed by a virtual integration platform including the
simulation of networks, operating systems, and the environment as well as application
code created from models of the application functionality.

As soon as SiL tests are accomplished, HiL testing follows as a final pre-validation
step. The HiL simulation framework presented in chapter 4 provides a generic inter-
facing mechanism by treating the Integrated System-Under-Test (ISUT) as a black
box that is interfaced at the transducer level.

99

5.5 Chapter Summary 5 Testing of an Integrated System

100

Chapter 6

Case Studies

During the work on this thesis, three different case studies have been set up. In this
chapter the problem statement of each case study is briefly discussed. Additionally,
essential elements are outlined with respect to the previously established terminology.
Furthermore, the case studies implementations are described. Substantial parts of
this chapter have been published in [Sch03, EPS04, ES04, SWE06, SEW06].

6.1 Digital Smart Transducer Gateway

6.1.1 Problem Statement

Rear distance measurement systems can be used in cars to aid the driver when
backing into a parking space. In the course of this case study, a prototype of such
a system has been developed, comprising three infra-red (IR) distance sensors, a
display, and a sensor fusion controller (refer to figure 6.1).

Figure 6.1: Rear distance measurement system

The development of the rear distance measurement system has been guided by
the following development steps [ES04]:

• First, information about the process is gathered in order to formalize the pro-
cess model.

101

6.1 Digital Smart Transducer Gateway 6 Case Studies

• Second, the process and the physical transducers are modeled.

• Third, the real-time computer system is implemented and parameterized,
e. g., calibration of sensor fusion algorithm.

• Fourth, HiL tests are applied in order to pre-validate the real-time computer
system.

• Fifth, the system is connected to real transducers and tested in its physical
environment.

The purpose of the case study has been to exemplify the first, second, third, and
fourth development step. In the following we investigate on these development steps.

Process Environment

The distance measurement system is embodied in a car. Thus, the confidence of
distance values received from the sensors depend on their conformance with the
physical characteristics of a car. For instance, a vehicle is bound to a maximum
acceleration value (positive/negative).

For the case study, a basic time continuous system is considered with state vari-
ables (t, v, s, a), standing for time, velocity, space, and acceleration. Disruptive
factors of the process environment like vibration, temperature, or ambient light have
been neglected. Furthermore, the model has been discretized in order to allow dis-
crete HiL simulation.

Assuming equably acceleration, the resulting formulas to model the physical pro-
cess environment (i. e., movement of the vehicle) are as follows:

v =
s

t
→ vk =

sk − sk−1

tk − tk−1
(k = 1, 2, 3, . . .)

∆v = at; s =
at2

2
→ |sk − sk−1| = |

v2
k − v2

k−1

2a
|

In the case study, the movement of the vehicle is based on the measured value
of one IR sensor. Thereby, the measurement values of an IR sensor together with
a confidence value are provided to the HiL simulator. The HiL simulator filters the
distance value and calculates the position of the vehicle according to its physical
model.

Process and Sensors

Besides implementing the process environment (i. e., the vehicle and its movement),
the process itself as well as simulation models for the emulated sensors have to be
considered. The process of the case study application is defined as follows:

102

6 Case Studies 6.1 Digital Smart Transducer Gateway

• (1) Distance measurements are taken by three sensor nodes at nearly the same
time.

• (2) Each sensor node calculates a value defining the confidence in the distance
measurement.

• (3) All distance and confidence values are transmitted to a fusion node.

• (4) The fusion node processes the values, calculates an improved distance value
and sends this value to a display node.

• (5) The distance value is displayed on a seven-segment display.

Implementation and Calibration

During HiL simulation, the fusion node of the case study executes either (1) a con-
fidence weighted average algorithm or (2) a sensor selection algorithm for fusing the
sensor measurements [Elm02]. Based on the experiments during the HiL simulation
one of these fusion algorithms is to be selected for the final implementation.

The formula for the confidence weighted average algorithm is given by

x =

∑n
i=1 xi · 1

V[Si]∑n
i=1

1
V[Si]

where n is the number of sensor measurements (three in our case), xi represents
the measured values, and V[Si] is the estimated variance for measurement Si. The
values of the variance are derived from the confidence values of the sensor measure-
ments.

Sensor selection means that the biggest and the smallest sensor measurement are
eliminated and only the mean value is kept. Thereby, sensor selection adds fault
tolerance to the fusion system.

HiL Simulation

The SUT of the case study includes the master node that implements the fusion algo-
rithm (i. e., the master node and the fusion node are realized on the same hardware),
one IR sensor node, and the display node. The HiL simulation is used to calibrate
the sensor fusion algorithm and to pre-validate the application. The HiL simulation
is based on a Matlab/Simulink model executed on a low-cost desktop computer.

6.1.2 Elements

Figure 6.2 depicts the elements of the HiL simulation of the rear distance measure-
ment system. The SUT consists of a combined master/fusion node, an IR sensor
node, and a display node. The HiL simulator is realized by two components. First a
TTP/A node acts as a combined fieldbus FSC and gateway BSC (refer to section 4.2).

103

6.1 Digital Smart Transducer Gateway 6 Case Studies

Second, a desktop computer executes a Matlab/Simulink model representing the
environment of the SUT. The combined fieldbus FSC and gateway BSC node, or
gateway node in short, is part of the HiL simulator.

Figure 6.2: HiL simulation of rear distance measurement system

The purpose of the gateway node is to send simulated distance measurement
values on the TTP/A bus at the same instants at which these values would be sent
by physical IR sensor nodes. Hence, the gateway node implements the functionality
of a fieldbus FSC. At the same time, the gateway node realizes the functionality
of a gateway BSC, by providing an interface to the desktop computer executing the
environmental simulation.

6.1.3 Implementation

As depicted in figure 6.3, the physical case study setup of the rear distance measure-
ment system consists of a TTP/A cluster comprising a master(=fusion) node, an IR
sensor node, a display node, a fieldbus FSC/gateway BSC node (gateway node), and
the programmer. The programmer is used for downloading application code to the
TTP/A nodes and is not further discussed in this thesis.

The gateway node is realized with an Atmel ATMega128 microchip. The gate-
way node is connected to the TTP/A cluster via its TTP/A interface and to the
simulation host via its UART (RS232).

The filter application is executed on the TTP/A master node (an Atmel
AT90S8515 microchip). The display is controlled by a TTP/A slave node (an Atmel
AT90S4433 microchip). The IR smart transducer is based on an Atmel AT90S4433
microchip together with a Sharp GP2D12 IR sensor. The environmental simulation
is executed on a Linux (kernel 2.6.2) based Intel i686 desktop computer.

The environmental simulation has been modeled with Matlab/Simulink. Fig-
ure 6.4 shows the top-level view of the main simulation blocks, i. e., the System Model
block and the Measurement Model block. The System Model block consists of two
further blocks: Weighted Average Dist and Vehicle Dynamics (refer to figure 6.5).

At each simulation step, the first block which is called Weighted Average Dist

104

6 Case Studies 6.1 Digital Smart Transducer Gateway

Figure 6.3: Physical setup of rear distance measurement system

Figure 6.4: Simulation block

processes the five most recent sensor measurements of the physical IR sensor and
calculates a weighted average in order to provide the second block with smoothed val-
ues. The second block called Vehicle Dynamics is provided with current (smoothed)
sensor measurements. It calculates an approximation of the current position by com-
bining on the one hand its knowledge of the physical characteristics of the car and
on the other hand the sensor measurements of the physical IR sensor. Figure 6.6
depicts the internal view (implementation) of the Vehicle Dynamics block.

In the case study, the predicted (distance, confidence) pair of the system model

105

6.1 Digital Smart Transducer Gateway 6 Case Studies

Figure 6.5: System model block

Figure 6.6: Vehicle dynamics block

block has been used as an input to the Measurement Model block. The Measurement
Model block adds normally distributed random noise to the simulated IR sensor
measurements.

Figure 6.7 depicts the internal view of a sensor measurement model. The precision
of an IR sensor is assumed to be composed of two parts. The first part is a random
disturbance value that does not depend on the current distance. The second part
is a random disturbance value that depends on the distance value, i. e., this value
increases when the distance value increases.

After realizing the simulation model and assembling the physical parts of the
SUT, measurements have been taken to parameterize the implementation.

Figure 6.8 depicts a scenario, where the environment simulator processed the
same input data with different values for maximum acceleration of the vehicle. The
small line which shows fast changes of the distance values represents the actual
measurements of the physically existing IR sensor. The other line shows the distance
values of one simulated IR sensor which slowly follows the physical sensor (according
to the vehicle model). The maximum acceleration for the vehicle model has been

106

6 Case Studies 6.1 Digital Smart Transducer Gateway

Figure 6.7: Distortion block

2 m2

s , and 10 m2

s respectively. We can see that the thick line follows the smaller line
faster when faster acceleration is allowed.

Figure 6.8: Simulated distances: max acceleration 2 m2

s and 10 m2

s

Furthermore, several test runs have been performed in order to show the dif-
ferences between dependent and independent disturbances of the measurements.
Thereby, gaussian normally distributed random disturbances have been assumed.
Figure 6.9 depicts two scenarios: In the left subpicture, the disturbance depends on
the distance value (larger distance values imply greater disturbances), while in the
right subpicture, the disturbance is constant (and does not depend on the distance
value).

Figure 6.9: Simulated disturbances: dependent and independent

The results of the test-runs were compared by applying the same set of sensor

107

6.1 Digital Smart Transducer Gateway 6 Case Studies

input data to the confidence weighted average algorithm and to the sensor selection
algorithm. By matching the outputs (i. e., the fused distance measurements), it
turned out that the confidence weighted average algorithm delivers better results –
especially in the case of fast movement of the obstacle.

This is on the one hand due to better performance of the confidence weighted
average algorithm in case of non-faulty sensors. On the other hand, the environ-
mental simulation process does not allow fast changes of the simulated IR sensor
measurements. Thus, the real IR sensor is marked faulty for a short period because
both simulated IR sensors deliver values lying close together but being worse then
the measurement of the real sensor.

6.1.4 Conclusion

The aim of the case study has been to exemplarily show the application of the HiL
simulation framework to the calibration and testing of a rear distance measurement
system.

The case study involves a soft real-time environmental simulation that is executed
on a low-cost desktop computer and a gateway node that operates as a connection
system between the environmental simulation and the SUT. The gateway node
combines the functionality of a fieldbus FSC and a gateway BSC by providing a
digital TTP/A transducer interface to the SUT and a second RS232 serial interface
for connecting to the desktop computer.

Within the case study, the following features of the HiL simulation framework
concept have experimentally been shown:

• The execution of the environmental simulation is done in soft real-time by a
low-cost desktop computer. The gateway node requests simulation data from
the environmental simulation and it is in the responsibility of the gateway node
to timely interact with the SUT. Thus, temporal decoupling of the execution
of the environmental simulation model from the timely interaction between the
environmental simulation and the SUT has been realized.

• The model of the environmental simulation was developed with the graphi-
cal modeling and simulation tool Matlab/Simulink. Matlab/Simulink is a
widely adopted tool that allows for easy development and modification of a
simulation model. Matlab/Simulink allows for model based (soft) real-time
simulation and interaction with a physical target. Hence, graphical user inter-
face blocks like the Scope block can be used during a simulation to visualize
the characteristics of this simulation. Furthermore, the environment of Mat-
lab/Simulink enables monitoring and recording of simulation data which is
captured by the gateway node. The features of Matlab/Simulink have been
used in the case study to implement the functionality of an HMI computer.

108

6 Case Studies 6.2 Control Path Simulation

6.2 Control Path Simulation

6.2.1 Problem Statement

The idea behind the control path simulation case study is the development of a dis-
tributed control application for a heating installation [SWE06]. Within this case
study, the heating element (i. e., the controlled object) is not available during devel-
opment of the control application and must therefore be replaced by a simulation.

As depicted in figure 6.10, the distributed control application of the case study
setup consists of a control node that contains a PI controller and two analog sensor
interfaces, one for the actual value and one for the setpoint value. The first sensor
interface is identical to the interface of an LM335Z temperature sensor from National
Semiconductor. The other sensor interface is connected to a potentiometer that gives
the setpoint value. The display node receives the actual value, the set value and the
setpoint value from the network and displays these values at a 7-segment display.
Another node acts as the TTP/A master. The actual target system would also have
an actuator (heating element) with a TTP/A interface. In the case study setup this
node is omitted and replaced by an HiL simulation.

Figure 6.10: Control path simulation system

The TTP/A network is used to broadcast the actual value (8 bit), the setpoint
value (8 bit) and the set value (16 bit) by the control node. The display node
receives all three values, the gateway of the simulation requires only the set value.
The communication bandwidth is 19.200 bit/sec; the cycle time of the cluster is
16,25ms.

The HiL simulator is part of the physical TTP/A network, i. e., it is implemented
on a node with a TTP/A network interface, an Atmel AVR Atmega168 micro con-
troller and an AD5330 digital/analog converter from Analog Devices. The purpose
of the HiL simulator is to simulate a simple control path whereas the set value from
the TTP/A bus acts as an input to the control path. The resulting value is converted
into an analog signal which is forwarded to the control node. Within the case study

109

6.2 Control Path Simulation 6 Case Studies

setup, an SVT node has been used for the HiL simulator implementation.

The case study involves the simulation of the heating element and the controller
(including calibration of the controller).

Model of the Heating Element

We assume that the heating element is in accordance with a first order delay element
(PT1 element), i. e., the heating element is represented through a proportional control
path with a first order differential equation that gives the delay action. A charac-
teristic of the control path for the heating element is a comparably slow response to
changing inputs (set values).

The step response of the control path is given by:

ActualV alue = SetV alue ∗ ks ∗ (1− e
−t
Ts)

where ks stands for a constant describing the amplification of a specific heating
element, t stands for time, and Ts for a time constant. In a discrete system as
implemented within the case study, time is represented through discrete recuring
instants i with period p. Hence, the equation given above can be transformed as
follows:

ActualV alue = SetV alue ∗ ks ∗ (1− e
−i

1
p ∗Ts)

After selecting concrete values for amplification ks = 1, time constant Ts = 1sec,
and period p = 0.1sec, the equation for the heating element is given as:

ActualV alue = SetV alue ∗ 1 ∗ (1− e
−i
1

0.1 ∗1)

which can be reduced to

ActualV alue = SetV alue ∗ (1− e
−i
10).

Model of the Controller

The controller providing the set value (u) of the heating element implements a PI
controller. The algorithm of the PI controller is described through the following
discrete formula:

un = un−1 + kr ∗ (en − en−1 +
10

Tn + en
)

with kr representing amplification, en standing for control deviation, and Tn

giving the reset time.

110

6 Case Studies 6.2 Control Path Simulation

6.2.2 Elements

As depicted in figure 6.11, the HiL simulation system of the control path case study
involves three TTP/A nodes representing the SUT, namely a TTP/A master node, a
control node executing the PI controller, and a display node that outputs the actual
value, the set value and the setpoint value. Furthermore, the following three elements
of the HiL simulator are part of the HiL simulation system:

Fieldbus FSC: The purpose of the fieldbus FSC is to capture the set value that is
broadcasted on the TTP/A bus.

Basic BSC: The basic BSC provides the (PT1) control path simulation, i. e., it
simulates the heating element.

Virtual Transducer FSC: The virtual transducer FSC generates an analog signal,
thereby emulating the signal of an LM335Z temperature sensor.

Figure 6.11: HiL simulation of control path system

The analog signal of the virtual transducer FSC is provided to the control node.
Therewith, the loop between the PI controller and the PT1 control path simulation
is closed.

6.2.3 Implementation

The implementation of the control path simulation case study is based on a TTP/A
cluster design that defines the instants of sending/receiving messages and executing
tasks. As outlined in section 2.4, the communication schedule of a TTP/A cluster
is based on rounds that are subdivided into slots. It is possible to send a one-byte
message in each of these slots. As shown in table 6.1, the master initiates a round
by broadcasting the Fireworks Byte (FW). After that, each node either starts to
execute (Ex), to send (Sd), or to receive (Rv) individual messages. The controller

111

6.2 Control Path Simulation 6 Case Studies

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4
Master FW
Controller Exe Sd AV Sd SPV
HiL Sim
Display Rv AV Rv SPV

Slot 5 Slot 6 Slot 7 Slot 8 Slot 9
Master
Controller Sd SV l Sd SV h
HiL Sim Rv SV l Rv SV h Exe
Display Rv SV l Rv SV h Exe

Table 6.1: Cluster schedule

node provides the actual value (AV, 8bit, slot 3), the setpoint value (SPV, 8bit, slot
4), and the set value (SV, 16bit, slots 5 and 6).

In the following we investigate on the employed elements that have been used for
the implementation of the case study.

Master Node

The master node has been implemented on an Atmel ATMega128, an 8bit RISC
processor with 128 kBytes in-system flash, 4 kBytes EEPROM, and 4 kBytes SRAM.
The ATMega128 includes 4 timers/counters, an USART, a programmable watchdog
timer, Analog Digital Converters (ADCs), and an Serial Peripheral Interface (SPI)
port.

The purpose of the master node is to initiate TTP/A rounds by sending the
fireworks byte at the beginning of each round. Hence, the master node is regarded
as the real-time clock source.

Controller Node

The PI controller node has been implemented on an Atmel ATMega128. The con-
troller node receives the actual value and the setpoint value across its COI (i. e., via
physical I/O ports), calculates the set value, and broadcasts this value.

Display Node

The display node has been implemented on an Atmel ATMega168, an 8bit RISC
processor with 16 kBytes in-system flash, 512 bytes EEPROM, and 1 kByte SRAM.
Furthermore, the ATMega168 offers 3 timers/counters, an USART, a 10bit ADC, a
programmable watchdog, and an SPI port.

As depicted in figure 6.10, the display node is used for the purpose of visualizing
the actual value, the setpoint value, and the set value. The display node controls
8 digits on 7-segment displays and updates the respective values according to the
messages it receives from the controller node.

112

6 Case Studies 6.2 Control Path Simulation

HiL Simulator Node

Within the case study, the elements of the HiL simulator have been implemented on
a single SVT node that is based on an Atmel ATMega168 micro controller.

The HiL simulator node receives the set value from the controller node and cal-
culates the actual value based on the set value (PT1 control path). The actual
value is converted into an analog signal that corresponds to the analog signal of an
LM335Z temperature sensor. This analog signal is provided to the controller node
via a physical wire connecting the output of the HiL simulation node to the controller
node.

A Velleman HPS5 oscilloscope has been used to visualize the step response of the
control path. In figures 6.12 and 6.13, the step response has been captured which is
based on a fast increase (from 0 to 128) of the setpoint value.

The step response given in figure 6.12 shows the control path when no controller
is used, i. e., when the set value equals the setpoint value. Figure 6.13 depicts the
step response of the control path when using a PI controller as discussed above.

Figure 6.12: Step response without controller (set value = setpoint value)

6.2.4 Conclusion

The purpose of the control path simulation case study has been to demonstrate the
capability of interaction between an SUT and an HiL simulator across an analog
transducer interface (i. e., the interface of an LM335Z temperature sensor). In con-
trast to the previous case study (rear distance measurement), the simulation of the
control path is executed on a simple BSC. This simple BSC receives its input values
from a fieldbus FSC and provides its output values to a virtual transducer FSC.

The case study setup demonstrates the ability to calibrate a PI controller based on
an HiL simulation setup that already employs the physical target hardware although
the controlled object is not yet available.

113

6.3 Rear Parking System 6 Case Studies

Figure 6.13: Step response with PI controller

Within the control path case study, the HiL simulator is fully integrated in the
SUT. Hence, it is automatically synchronized to the real-time clock source provided
by the master node. Nevertheless, the HiL simulation does not introduce any probe
effect on the SUT. The HiL simulator node passively listens to the transmitted
messages but does not send any message by itself.

6.3 Rear Parking System

6.3.1 Problem Statement

The idea of the rear parking system case study is to set up an HiL simulation of
a driver assistance system (similar to the digital smart transducer gateway case
study). The driver assistance system consists of infra-red and ultra-sonic distance
measurement sensors as well as a display and a haptic steering wheel indicating
approaching obstacles when backing the car.

The rear parking system case study augments the digital smart transducer gate-
way case study by involving time-dependent sensors (ultra sonic sensors). Further-
more, the interaction between a distributed HiL simulator and the SUT is realized
through SVTs (i. e., virtual transducer FSCs).

The case study includes the simulation of a Polaroid 6500 series sonar ranging
transducer [Wir97] by an SVT (ultrasonic SVT). A Polaroid 6500 ultra-sonic trans-
ducer can be instrumented to operate in single-echo mode. In this mode of operation
the INIT input of the transducer is set to high in order to start the transmission of an
acoustic signal (16 pulses at 49.4 kHz with 400 volt amplitude). As soon as the echo
of this acoustic signal has been received back, the ECHO output of the transducer is
set to high. The interval between INIT high and ECHO high is proportional to the
distance to the measured object (refer to figure 6.14).

Each ultrasonic SVT is periodically provided with the actual distance value from

114

6 Case Studies 6.3 Rear Parking System

Figure 6.14: Distance measurement with an ultra-sonic sensor

a BSC. Regarding the physical interconnection to the SUT, an SVT offers an INIT
and an ECHO port (digital I/O of the SVT). The ultrasonic SVT polls the INIT
input with high frequency. As soon as the input is set to high, a timer is set in
accordance with the current distance value. This timer is used to set the ECHO
signal of the SVT to high after a specified amount of time.

6.3.2 Elements

Figure 6.15 depicts the elements of the rear parking system case study. The SUT
consists of a master node (Master), a node that controls the motor of the haptic
steering wheel (Motor), three nodes that are connected to infra-red distance sensors
(IR0, IR1, IR2), two nodes that are connected to ultra-sonic distance sensors (US0,
US1), and a node that controlls a display (Display).

Figure 6.15: HiL simulation of rear parking system

The HiL simulator comprises six SVTs that simulate the motor, the infra-red sen-
sors, and the ultra-sonic sensors, respectively. Furthermore, the master node (Sim-
Master) acts as a gateway BSC that connects the SVTs to a desktop computer. This
desktop computer executes the simulation of the environment of the SUT, i. e., the
movement of the vehicle towards an obstacle.

115

6.3 Rear Parking System 6 Case Studies

6.3.3 Implementation

Figure 6.16 shows a picture of the physical setup of the rear parking system case study
with two separate TTP/A clusters (i. e., SUT cluster and HiL simulator cluster).

Figure 6.16: Physical setup of rear parking system

The SUT consists of a TTP/A master node, five sensor nodes (IR0, IR1, IR2,
US0, US1) and two actuator/display nodes (Motor, Display). These nodes are inter-
connected via TTP/A. The sensor nodes can interface both digital sensors (digital
input ports) and analog sensors (built in A/D converter). The sensor nodes capture
distance measurements in the range of 10cm to 200cm and send these measurements
as TTP/A messages to the master node. The master node fuses the individual mea-
surements and sends messages to the motor node and to the display node.

The HiL simulator consists of six SVTs, each of them simulating a dedicated
sensor/actuator (SimMotor, SimIR0, . . .). The SVTs that simulate infra-red sensors
are connected to the IR sensor nodes of the SUT via an analog interface. The
measured distance of an IR sensor is represented through the voltage level of the IR
sensor. The SVTs that simulate ultra-sonic sensors are connected to the ultra-sonic
sensor nodes of the SUT via a digital interface (as described above, the ultra-sonic
sensor is initiated and sends back a signal after an interval whose length depends on
the measured distance of the sensor). The SVT that simulates the motor accepts a
digital (PWM) signal from the motor control node of the SUT.

The master node of the HiL simulator additionally acts as a gateway BSC es-
tablishing a connecting to a desktop computer via the serial (RS232) interface (in
figure 6.16, the master node is not connected to the desktop computer).

116

6 Case Studies 6.4 Chapter Summary

6.3.4 Conclusion

In contrast to the previous case studies, the rear parking system case study involves
a time-dependent ultra sonic sensor. Furthermore, the interaction between the HiL
simulator and the SUT is realized through SVTs (i. e., virtual transducer FSCs),
including both, analog and digital physical interfaces.

6.4 Chapter Summary

In this chapter three different case studies have been presented, each of them focusing
on a particular aspect of the previously discussed HiL simulation concepts. For
each of these case studies, the respective problem statement, major elements, and
implementation have been discussed.

The digital smart transducer gateway case study involves the prototype of a rear
distance measurement system in a car. The process model for this system has been
formalized and the process as well as the physical transducers have been modeled.
After that, the system (i. e., the SUT) has been implemented and parameterized
and HiL tests have been applied. The HiL simulator of this case study includes
a combined fieldbus FSC and gateway BSC which connects the SUT to a desktop
computer. The desktop computer is part of the HiL simulation and executes a
Matlab/Simulink model representing the environment of the SUT.

The control path simulation case study implements a distributed control applica-
tion for a heating installation. This application consists of a control node containing
a PI controller and two analog sensor interfaces for the actual value and the setpoint
value, respectively. The HiL simulator of this case study has been implemented
on a single hardware node representing a fieldbus FSC, a basic BSC, and a virtual
transducer FSC. The control path simulation case study demonstrates the ability of
interfacing an SUT across an analog transducer interface.

The rear parking system case study extends the digital smart transducer gateway
case study by (1) adding time-dependent (ultra-sonic) distance measurement sensors
and (2) realizing the interaction between the SUT and the HiL simulator through
SVTs. The HiL simulator of this case study includes SVTs for the simulation of a
motor, ultra-sonic sensors, and infra-red sensors. Furthermore, the HiL simulator
involves a gateway BSC connecting the SVTs to a desktop computer.

117

6.4 Chapter Summary 6 Case Studies

118

Chapter 7

Conclusion

The thesis provides a systematic approach for the predictable real-time interaction
between an Hardware-in-the-Loop (HiL) simulator and a System-Under-Test (SUT).
With such an approach, it can be guaranteed that the information flow from the
environmental simulation of the HiL simulator to the SUT (and vice versa) is bound
to a priori known latency and jitter. The prototypically implemented concept of a
Smart Virtual Transducer (SVT) facilitates the interaction between an HiL simulator
and an SUT across a wide range of different transducer interfaces. The concept can
be exploited in the future for modular, cost-efficient HiL simulator implementations.

7.1 HiL Simulation Framework

Within this thesis, a scalable, component-based, deterministic HiL simulation frame-
work has been presented. Based on this framework, it is possible to construct a
distributed HiL simulator combining the functionality of an environment simulator
and (optionally) a cluster simulator.

The proposed HiL simulation framework involves a set of Backend Simulation
Components (BSCs) and Frontend Simulation Components (FSCs). An FSC con-
trols the physical interconnection between the HiL simulator and the SUT, thereby
consisting of one digital interface to a TTP/A network and another interface re-
sembling the Controlled Object Interface (COI) of the SUT. The second interface
is either a digital fieldbus interface, an arbitrary transducer interface, or a physical
transducer. A BSC is, in terms of physical interconnection between the HiL simula-
tor and the SUT, independent of low level details and is used to execute part of a
distributed simulation model. It has a digital interface to the TTP/A network and
optionally a second digital gateway interface connecting to an external system.

An essential requirement of the HiL simulation framework has been to estab-
lish predictable and precise instants with respect to the interaction between the HiL
simulator and the SUT. This interaction depends on the progression of a synchro-
nized sparse (real-)time and is described through well-specified interfaces (both in
the temporal and functional domain).

119

7.2 Smart Virtual Transducer 7 Conclusion

A distributed HiL simulator, assembled according to the presented framework,
allows for parallel development, scalability, complexity management, and multirate
simulation. Apart from supporting arbitrary transducer interfaces at the COI of the
SUT, the HiL simulator can be implemented to provide mechanisms for monitoring,
run-time configuration, and data logging.

7.2 Smart Virtual Transducer

Within the thesis, the new concept of an SVT and the prototype implementation
of an SVT component have been shown. An SVT is used as a connection system
to interconnecting an HiL simulator and an SUT across an arbitrary transducer
interface. Thereby, an SVT mimics the behavior of a physical transducer (i. e., sensor
or actuator) during an HiL simulation run. An SVT consists of a processing unit, a
communication interface, and a transducer-specific interface. Contrary to a Smart
Transducer (ST), an SVT does not contain a physical sensor or actuator element.

An SVT offers two interfaces, the Object Management Group (OMG) Smart
Transducer Interface (STI) network interface and a virtual transducer interface. The
interaction between the SVT and the SUT takes place via the virtual transducer
interface. A sensor SVT emulates a sensor, an actuator SVT emulates an actuator.
This emulation can be done in the value (e. g., infrared sensor, Light Emitting Diode
(LED)) or in the time domain (e. g., ultrasonic sensor, Pulse-Width Modulation
(PWM) controlled motor).

The concept of SVT leads to a reduction of the cognitive complexity when setting
up an HiL simulation system. In particular, the simulation model (which is executed
at the BSCs) is decoupled from the SVT elements interacting with the SUT (temporal
laxity). The low-level behavior of a particular transducer element is covered using
the parts of the simulation model, which are executed at the BSCs. Potential changes
of the low-level properties of transducer elements (e. g., upgrade of a transducer to
a newer model) do not directly influence the BSC because simulation models of the
transducers are confined by the SVTs.

Furthermore, the SVT approach supports reusability by the provision of config-
urable FSCs. Since the implementation of an SVT mainly depends on the transducer
that is replaced, an SVT can be reused in other applications whenever the same kind
of transducer is employed. Features such as frequency of update values and smooth-
ing parameters depend on the control environment. However, for a given application
these functions can be implemented and parametrized generically.

7.3 Outlook

The presented HiL simulation framework builds upon well established concepts of
the Time-Triggered Architecture (TTA) and makes use of the time-triggered fieldbus
protocol TTP/A in order to deterministically interconnect a network of simulation
components. Based on these concepts, most prerequisites for the exploitation of the

120

7 Conclusion

HiL simulation framework are already fulfilled, such as the existence of a communi-
cation infrastructure for predictable message transmission, a sparse global timebase,
or the concept of a temporal firewall along with precisely defined interfaces.

Nevertheless, in the area of the HiL simulation framework, several future advance-
ments are conceivable. Such advancements should built on the exemplarily outlined
application of the HiL simulation framework for the validation of (large) integrated
real-time systems in safety-related fields (e. g., aerospace, automotive, medical, or
industrial control) and could be categorized into (a) future work regarding the im-
plementation of simulation framework elements and (b) future work with respect to
simulation tools guiding a developer through design and deployment phases.

The realization of simulation framework elements involves the implementation
of a library of generic SVT components that can be readily configured for specific
transducer elements. Furthermore, the utilization of a time-triggered protocol with
higher bandwidth (e. g., Time-Triggered Protocol (TTP), FlexRay) can be used to
allow faster interaction between components of the HiL simulator (thereby allowing
faster simulation steps). Future work on simulation tools will lead to a comprehensive
tool-chain towards the development of an HiL simulation combining tools for design-
ing and executing simulation models (including Worst Case Execution Time (WCET)
analysis), configuring the HiL simulator, and monitoring/managing simulation out-
puts.

121

7.3 Outlook

122

List of Acronyms

ADC Analog Digital Converter

AUTOSAR AUTomotive Open System ARchitecture

BSC Backend Simulation Component

CAN Controller Area Network

CHI Controller Host Interface

CNI Communication Network Interface

COI Controlled Object Interface

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-The-Shelf

CP Configuration and Planning

DAC Digital Analog Converter

DAS Distributed Application Subsystem

DECOS Dependable Embedded COmponents and Systems

DSP Digital Signal Processing

DM Diagnostic and Management

DSoS Dependable Systems of Systems

ECU Electronic Control Unit

FAA Federal Aviation Administration

FPGA Field Programmable Gate Array

FSC Frontend Simulation Component

GWI Gateway Interface

HiL Hardware-in-the-Loop

123

7.3 Outlook

HMI Human Machine Interface

IEC International Electrotechnical Commission

IFS Interface File System

IMA Integrated Modular Avionics

ISA Instrumentation Society of America

ISUT Integrated System-Under-Test

JTAG Joint Test Action Group

LED Light Emitting Diode

LIF Linking Interface

LIN Local Interconnect Network

LLI Logical Line Interface

MEDL Message Descriptor List

MiL Model-in-the-Loop

MISRA Motor Industry Software Reliability Association

OMG Object Management Group

PCI Peripheral Component Interconnect

PiL Processor-in-the-Loop

PROFIBUS Process Field Bus

PWM Pulse-Width Modulation

PXI PCI eXtensions for Instrumentation

RODL Round Descriptor List

RS Real-Time Service

RTCA Radio Technical Commission for Aeronautics

SiL Software-in-the-Loop

SOPC System-On-a-Programmable-Chip

SPI Serial Peripheral Interface

SPLIF Service Providing Linking Interface

SRLIF Service Requesting Linking Interface

124

7 Conclusion

SSI Simulation System Interface

ST Smart Transducer

STI Smart Transducer Interface

SUT System-Under-Test

SVT Smart Virtual Transducer

TAI Temps Atomique Internationale

TCK Test ClocK

TDI Test Data Input

TDMA Time Division Multiple Access

TDO Test Data Output

TTA Time-Triggered Architecture

TTBN Time-Triggered Backbone Network

TTP Time-Triggered Protocol

UART Universal Asynchronous Receiver Transmitter

UTC Universal Time Coordinated

WCET Worst Case Execution Time

125

7.3 Outlook

126

Bibliography

[AD00] Analog Devices. Data Sheet of AD5330/AD5331/AD5340/AD5341, 2000.

[ADI05] Applied Dynamics International. Distributed HIL Simulation, 2005. Avail-
able at http://www.adi.com.

[AFI+00] J. Arlat, J.C. Fabre, V. Issarny, M. Kaâniche, K. Kanoun, C. Kloukinas,
B. Marre, E. Marsden, D. Powel, A. Romanovsky, P. Thévenod-Fosse,
H. Waeselynck, I. Welch, I. Zakkiudin, and A. Zarras. Dependable systems
of systems (DSoS), State of the art survey, Deliverable BC2. Research
Report 00353, University of Newcastle upon Tyne, April 2000. Available
at http://rogue.ncl.ac.uk.

[AHC05] M. Andersson, D. Henriksson, and A. Cervin. TrueTime 1.3—Reference
Manual, June 2005. Available at http://www.control.lth.se.

[AHCÅ05] M. Andersson, D. Henriksson, A. Cervin, and K.E. Årzén. Simulation
of wireless networked control systems. In Proceedings of the 44th IEEE
Conference on Decision and Control and European Control Conference
(ECC’05), Seville, Spain, December 2005.

[ALRL04] A. Avižienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, January–March 2004.

[ARI91] Aeronautical Radio Incorporated (ARINC), Annapolis, MD, USA. AR-
INC Specification 651: Design Guide for Integrated Modular Avionics,
November 1991.

[ASBT03] A. Ademaj, H. Sivencrona, G. Bauer, and J. Torin. Evaluation of fault
handling of the time-triggered architecture with bus and star topology. In
Proceedings of the International Conference on Dependable Systems and
Networks, pages 123–132, 2003.

[ATI01] ATIS Committee T1A1, American National Standards Institute, Inc.
Telecom glossary 2000, February 2001.

[Atm04] Atmel Corporation. Data sheet of ATmega48, ATmega88, and AT-
mega168, 2004.

[AUT06a] AUTOSAR GbR. AUTOSAR – Glossary V2.0.1, June 2006.

127

BIBLIOGRAPHY

[AUT06b] AUTOSAR GbR. AUTOSAR – Technical Overview V2.0.1, June 2006.

[BAD05] J. Bélanger, S. Abourida, and C. Dufour. Real-time digital simulation and
control laboratory for distributed power electronic generation and distri-
bution. In Proceedings of the Huntsville Simulation Conference (HSC’05),
Huntsville, AL, USA, October 2005.

[Bal97] O. Balci. Verification, validation and accreditation of simulation models.
In Proceedings of the 1997 Winter Simulation Conference, pages 135–141,
Atlanta, GA, USA, December 1997.

[BB98] P. Bishop and R. Bloomfield. A methodology for safety case develop-
ment. In Proceedings of the Sixth Safety-critical Systems Symposium on
Industrial Perspectives of Safety-critical Systems, Birmingham, UK, 1998.

[BCNN01] J. Banks, J.S. Carson, B.L. Nelson, and D.M. Nicol. Discrete-Event
System Simulation. Prentice Hall, Upper Saddle River, NJ, USA, 2001.

[BE05] W. Bernhart and H.P. Erl. Markt- und Technologiestudie Leistungselek-
tronik Automotive, A.D.Little, September 2005.

[Bro05] M. Broy. Automotive software and systems engineering. In Proceedings
of the 3rd ACM and IEEE International Conference on Formal Methods
and Models for Co-Design (MEMOCODE’05), Verona, Italy, July 2005.

[BSS05] T. Bäro, E. Sax, and S. Schmerler. Erhöhung der Testtiefe durch HiL-
Testing. In Proceedings der Jahrestagung der ASIM/GI-Fachgruppe 4.5.5
Simulation technischer Systeme, pages 4–13, Berlin, Germany, March
2005.

[BV99] I.J. Busch-Vishniac. Electromechanical Sensors and Actuators. Springer,
1999.

[CDK05] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design (4th Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005.

[Clo98] D.J. Cloud. Applied Modeling and Simulation. McGraw-Hill Primis Cus-
tom Pub., 1998.

[Cra05] R. Cravotta. Mixing the real with the virtual. EDN, pages 57–62, May
2005.

[DSP06] Altera Corporation. DSP Builder – User Guide, April 2006.

[Ecc00] D.S. Eccles. Building simulators for aerospace applications: processes,
techniques, choices and pitfalls. In Aerospace Conference Proceedings,
IEEE, pages 517–527. IEEE, March 2000.

[EHK01] W. Elmenreich, W. Haidinger, and H. Kopetz. Interface design for smart
transducers. In IEEE Instrumentation and Measurement Technology Con-
ference (IMTC), volume 3, pages 1642–1647, May 2001.

128

BIBLIOGRAPHY

[EK05] W. Elmenreich and S.V. Krywult. A comparison of fieldbus protocols:
LIN 1.3, LIN 2.0, and TTP/A. In 10th IEEE International Conference on
Emerging Technologies and Factory Automation, Catania, Italy, Septem-
ber 2005.

[EKRZ04] D. Edenfeld, A.B. Kahng, M. Rodgers, and Y. Zorian. 2003 technol-
ogy roadmap for semiconductors. Computer, IEEE Computer Society,
37(1):47–56, January 2004.

[Ell00] M. Elliott. Simulation buyer’s guide. Technical report, Institute of In-
dustrial Engineers (IIE), 25 Technology Park, Norcross, GA 30092, USA,
May 2000.

[Elm02] W. Elmenreich. Sensor Fusion in Time-Triggered Systems. PhD thesis,
Technische Universität Wien, Institut für Technische Informatik, Treitl-
strasse 3/3/182-1, 1040 Vienna, Austria, 2002.

[EO02] W. Elmenreich and R. Obermaisser. A standardized smart transducer
interface. In Proceedings of the IEEE International Symposium on Indus-
trial Electronics (ISIE’02), July 2002.

[EP03] W. Elmenreich and S. Pitzek. Smart transducers – principles, communi-
cations, and configuration. In Proceedings of the 7th IEEE International
Conference on Intelligent Engineering Systems, volume 2, pages 510–515,
Assuit – Luxor, Egypt, March 2003.

[EPS04] W. Elmenreich, S. Pitzek, and M. Schlager. Modeling distributed embed-
ded applications on an interface file system. In Proceedings of the Seventh
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, pages 175–182, May 2004.

[ES04] W. Elmenreich and M. Schlager. Simulation-based development of embed-
ded sensor fusion applications. In Proceedings of the 2nd IEEE Interna-
tional Conference on Computational Cybernetics, pages 147–153, Septem-
ber 2004.

[FBMD06] H.P. Figueroa, J.L. Bastos, A. Monti, and R. Dougal. A modular real-
time simulation platform based on the virtual test bed. In Proceedings of
the IEEE International Symposium on Industrial Electronics (ISIE’06),
pages 1537–1541, Montréal, Canada, July 2006.

[Fel02] M. Felser. The fieldbus standard: History and structure. In Technol-
ogy Leadership Day 2002. MICROSWISS Network, HTA Luzern, October
2002.

[FRB97] W. Fleisch, T. Ringler, and R. Belschner. Simulation of application soft-
ware for a TTP real-time subsystem. In Europaen Simulation Multicon-
ference (ESM), Istanbul, Turkey, June 1997.

[Fre05] Freescale Semiconductor. MFR4200 Datasheet FlexRay Communication
Controllers, August 2005.

129

BIBLIOGRAPHY

[Fro04] Frost & Sullivan, 2400 Geng Road, Suite 201, Palo Alto, CA 94303-3331,
US. Strategic Analysis of European Semiconductor Market for Passenger
Cars, April 2004.

[FX05] FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors
Corporation, Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and
Volkswagen AG. FlexRay Requirements Specification Version 2.1, Decem-
ber 2005.

[Gai86] J. Gait. A probe effect in concurrent programs. Software Practice and
Experience, 16(3):225–233, March 1986.

[Gal99] T. Galla. Cluster Simulation in Time-Triggered Real-Time Systems. PhD
thesis, Technische Universität Wien, Institut für Technische Informatik,
Treitlstrasse 3/3/182-1, 1040 Vienna, Austria, 1999.

[GFL+02] P. Giusto, A. Ferrari, L. Lavagno, J.-Y. Brunel, E. Fourgeau, and
A. Sangiovanni-Vincentelli. Automotive virtual integration platforms:
why’s, what’s, and how’s. In Proceedings of the IEEE International Con-
ference on Computer Design: VLSI in Computers and Processors, pages
370–378, September 2002.

[GLH06] S. Gilbert and H. Le-Huy. A comparative study on real-time simulation
methods for PWM power converters. In Proceedings of the IEEE Interna-
tional Symposium on Industrial Electronics (ISIE’06), pages 2571–2578,
Montréal, Canada, July 2006.

[Gom01] M. Gomez. Hardware-in-the-loop simulation, November 2001. Embed-
ded Systems Programming, CMP Media LLC, 600 Harrison Street, San
Franzisco, CA, 94107.

[Gri01] P. Grillinger. Simulation model of TTP/C protocol. In Proceedings of the
23rd International Autumn Colloquium – Advanced Simulation of Systems
(ASIS’01), Velke Losiny, Czech republic, September 2001.

[Han04] A. Hanzlik. Investigation of Fault-Tolerant Multi-Cluster Clock Synchro-
nization Strategies by Means of Simulation. PhD thesis, Technische Uni-
versität Wien, Institut für Technische Informatik, Treitlstrasse 3/3/182-1,
1040 Vienna, Austria, 2004.

[HCÅ03] D. Henriksson, A. Cervin, and K.E. Årzén. TrueTime: Real-time control
system simulation with MATLAB/Simulink. In Proceedings of the Nordic
MATLAB Conference, Copenhagen, Denmark, October 2003.

[HHBC06] W. Herzner, B. Huber, A. Balogh, and G. Csertan. The DECOS tool-
chain: Model-based development of distributed embedded safety-critical
real-time systems. DECOS/ERCIM Workshop on Dependable Embedded
Systems at SAFECOMP, Gdansk, Poland, September 2006.

[Hoe03] C. Hoefer. ”Causal Determinism” — Stanford Encyclopedia of Philoso-
phy, 2003.

130

BIBLIOGRAPHY

[Hoe04] C. Hoefer. Causality and determinism: Tension, or outright conflict?
Revista de Filosof́ıa, 29(2):99–115, November 2004.

[HPOES05] B. Huber, P. Peti, R. Obermaisser, and C. El-Salloum. Using RTAI/-
LXRT for partitioning in a prototype implementation of the DECOS ar-
chitecture. In Proceedings of the Third International Workshop on Intel-
ligent Solutions in Embedded Systems, May 2005.

[IEC05] International Electrotechnical Commission (IEC) SC65A/WG14, IEC,
Geneva, Switzerland. Functional safety and IEC 61508, September 2005.

[IEE89] IEEE Standards Board. IEEE standard glossary of modeling and simu-
lation terminology. Technical Report IEEE Std 610.3-1989, The Institute
of Electrical and Electronics Engineers, Inc 345 East 47th Street, New
York, NY 10017, USA, 1989.

[IEE90] IEEE Standards Board. IEEE standard glossary of software engineering
terminology. Technical Report IEEE Std 610.12-1990, The Institute of
Electrical and Electronics Engineers, Inc 345 East 47th Street, New York,
NY 10017, USA, 1990.

[IMA05] Radio Technical Commission for Aeronautics (RTCA) Inc., WG60/SC200
Plenary. Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations (Rev M+), April 2005.

[Jim05] H.P.F. Jimenez. Novel Interface Based on the Gating Signal Averaging
Method for Accurate Hardware-In-The-Loop Testing of Digital Controllers
for Power Electronics Applications. PhD thesis, University of South Car-
olina, College of Engineering and Information Technology, Department of
Electrical Engineering, Swearingen Engineering Center, 301 South Main
Street, Columbia, SC 29208, USA, 2005.

[JKK+02] C. Jones, M.-O. Killijian, H. Kopetz, E. Marsden, N. Moffat, D. Pow-
ell, B. Randell, A. Romanovsky, R. Stroud, and V. Issarny. Final ver-
sion of the DSoS conceptual model. Research Report 54/2002, DSoS
Project (IST-1999-11585), October 2002. Deliverable CSDA1, available
at http://www.vmars.tuwien.ac.at.

[KB03] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceedings
of the IEEE, 91(1):112 – 126, January 2003.

[KEM00] H. Kopetz, W. Elmenreich, and C. Mack. A comparison of LIN and
TTP/A. In 3rd IEEE International Workshop on Factory Communication
Systems (WFCS’00), pages 99–107, Porto, Portugal, September 2000.

[KESHO07] H. Kopetz, C. El-Salloum, B. Huber, and R. Obermaisser. Periodic
finite-state machines. In Proceedings of the 10th IEEE International Sym-
posium on Object and Component-Oriented Real-Time Distributed Com-
puting (ISORC’07), Santorini Island, Greece, May 2007.

131

BIBLIOGRAPHY

[KFMN99] H. Kopetz, E. Fuchs, D. Millinger, and R. Nossal. An interface as a
design object. 2nd IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’99), 2-5 May 1999, May 1999.

[KHE01] H. Kopetz, M. Holzmann, and W. Elmenreich. A universal smart trans-
ducer interface: TTP/A. International Journal of Computer System Sci-
ence & Engineering, 16(2):71–77, March 2001.

[Kil01] R.A. Kilgore. Open source simulation modeling language (SML). In
Proceedings of the 2001 Winter Simulation Conference, pages 607–613,
Washington, DC, USA, 2001.

[Kim04] K.H. Kim. The distributed time-triggered simulation scheme: Core prin-
ciples and supporting execution engine. Real-Time Systems, 26(1):9–28,
2004.

[KN97] H. Kopetz and R. Nossal. Temporal firewalls in large distributed real-time
systems. In Proceedings of the 6th IEEE Computer Society Workshop on
Future Trends of Distributed Computing Systems, pages 310–315, Tunis,
Tunesia, October 1997.

[Kop92] H. Kopetz. Sparse time versus dense time in distributed real-time sys-
tems. In Proceedings of the 12th International Conference on Distributed
Computing Systems, Yokohama, Japan, June 1992.

[Kop93] H. Kopetz. Should responsive systems be event-triggered or time-
triggered? Institute of Electronics, Information, and Communications
Engineers Transactions on Information and Systems, E76-D(11):1325–
1332, 1993.

[Kop97] H. Kopetz. Real-Time Systems, Design Principles for Distributed Em-
bedded Applications. Kluwer Academic Publishers, Boston, Dordrecht,
London, 1997.

[Kop99a] H. Kopetz. Do current technology trends enforce a paradigm shift in
the industrial automation market? 7th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA’99), at
Barcelona, Spain, 18-22 October 1999, October 1999.

[Kop99b] H. Kopetz. Elementary versus composite interfaces in distributed real-
time systems. ISADS’99, March 1999, Tokyo, Japan, March 1999.

[Kop02] H. Kopetz. Time-triggered real-time computing. IFAC World Congress,
IFAC Press, July 2002.

[Kop04] H. Kopetz. On the fault hypothesis for a safety-critical real-time system.
In Proceedings of the 23rd IEEE International Symposium on Reliable
Distributed Systems (SRDS’04), Florianpolis, Brazil, October 2004.

132

BIBLIOGRAPHY

[KOPS04] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri. From a federated to an
integrated architecture for dependable embedded real-time systems. Tech-
nical Report 22/2004, Technische Universität Wien, Institut für Technis-
che Informatik, Treitlstrasse 1-3/182-1, 1040 Vienna, Austria, 2004.

[Krü97] A. Krüger. Interface Design for Time-Triggered Real-Time System Archi-
tectures. PhD thesis, Technische Universität Wien, Institut für Technische
Informatik, Treitlstrasse 3/3/182-1, 1040 Vienna, Austria, 1997.

[KS03] H. Kopetz and N. Suri. Compositional Design of RT Systems: A Concep-
tual Basis for Specification of Linking Interfaces. 6th IEEE International
Symposium on Object-Oriented Real-Time Computing (ISORC’03), May
2003.

[Lap92] J.C. Laprie. Dependability: Basic Concepts and Terminology. Springer-
Verlag, 1992.

[Lap04] P.A. Laplante. Real-Time Systems Design and Analysis. IEEE Press,
2004.

[Law06] A.M. Law. Simulation Modeling and Analysis (Fourth Edition). McGraw-
Hill, 2006.

[LGDL06] P. Le-Huy, S. Guérette, L.A. Dessaint, and H. Le-Huy. Dual-step real-
time simulation of power electronic converters using an FPGA. In Pro-
ceedings of the IEEE International Symposium on Industrial Electronics
(ISIE’06), pages 1548–1553, Montréal, Canada, July 2006.

[Liu00] J.W.S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ,
USA, 2000. ISBN 0-13-099651-3.

[LTH03] D. Lamberson, N.P. Teske, and J.K. Hedrick. A Model-Based Approach
to the Implementation of Automotive Embedded Control Systems. In
Proceedings of the IEEE Intelligent Transportation Systems, volume 1,
pages 655–659, October 2003.

[MFL+05] A. Monti, H. Figueroa, S Lentijo, X. Wu, and R. Dougal. Interface issues
in hardware-in-the-loop simulation. In Proceedings of the Electric Ship
Technologies Symposium, pages 39–45. IEEE, July 2005.

[Mil98] D. Millinger. Design and Implementation of a Communication Network
Interface for a Fault-Tolerance Layer. PhD thesis, Technische Universität
Wien, Institut für Technische Informatik, Treitlstrasse 3/3/182-1, 1040
Vienna, Austria, 1998.

[MIS04] The Motor Industry Software Reliability Association (MISRA). MISRA-
C:2004 Guidlines for the use of the C language in critical systems, Octo-
ber 2004.

133

BIBLIOGRAPHY

[NBAR04] S. Nabi, M. Balike, J. Allen, and K. Rzemien. An overview of hardware-in-
the-loop testing systems at Visteon. SAE technical paper series, SAE In-
ternational, 400 Commonwealth Drive, Warrendale, PA 15096-0001 USA,
March 2004.

[NI03] National Instruments Corporation, 11500 North Mopac Expressway,
Austin, TX 78759-3504, USA. LabVIEW FPGA in Hardware-in-the-Loop
Simulation Applications, July 2003.

[NP99] J. Nikoukaran and R. Paul. Software selection for simulation in manufac-
turing: a review. Simulation Practice and Theory, 7(1):1–14, 1999.

[Nyq28] H. Nyquist. Certain topics in telegraph transmission theory. Transactions
of the A.I.E.E., 47:617–644, February 1928.

[OH06] R. Obermaisser and B. Huber. Model-based design of the communication
system in an integrated architecture. In Proceedings of the 18th Inter-
national Conference on Parallel and Distributed Computing and Systems
(PDCS’06), pages 96–107, Dallas, TX, USA, November 2006.

[OMG03] OMG. Smart Transducers Interface V1.0. Available Specification docu-
ment number formal/2003-01-01, Object Management Group, Needham,
MA, USA, January 2003. available at http://doc.omg.org/formal/2003-
01-01.

[OP05] R. Obermaisser and P. Peti. Realization of virtual networks in the DECOS
integrated architecture. In Proceedings of the Workshop on Parallel and
Distributed Real-Time Systems 2006 (WPDRTS). IEEE, April 2005.

[OPHES06] R. Obermaisser, P. Peti, B. Huber, and C. El-Salloum. DECOS: An
integrated time-triggered architecture. e&i journal (Journal of the Aus-
trian professional institution for electrical and information engineering),
3, March 2006.

[OS07] R. Obermaisser and M. Schlager. A simulation framework for virtual
integration of integrated systems. In Proceedings of the IEEE Interna-
tional Conference on ”Computer as a tool” EUROCON, Warsaw, Poland,
September 2007.

[Pal00] R. Pallierer. Validation of Distributed Algorithms in Time-Triggered Sys-
tems by Simulation. PhD thesis, Technische Universität Wien, Institut
für Technische Informatik, Treitlstrasse 3/3/182-1, 1040 Vienna, Austria,
2000.

[Pet02] P. Peti. The concepts behind time, state, component, and interface – a
literature survey. Technical Report 53/2002, Technische Universität Wien,
Institut für Technische Informatik, Treitlstrasse 1-3/182-1, 1040 Vienna,
Austria, 2002.

[Pin95] J.J. Pinto. A neutral instrumentation vendor’s perspective. In ISA Pro-
ceedings ’94 and Intech July ’95, July 1995.

134

BIBLIOGRAPHY

[RP93] S. Radia and J. Pachl. Coherence in naming in distributed computing
environments. In Proceedings of the 13th International Conference on
Distributed Computing Systems, pages 83–92, Pittsburgh, PA, USA, May
1993.

[RS07] B. Rumpler and M. Schlager. Segmentation and conceptual chunking in
embedded real-time system design. In Proceedings of the ERCIM/DECOS
Workshop on ”Dependable Embedded Systems” at the 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA
2007) and the 10th EUROMICRO Conference on Digital Systems Design
(DSD 2007), Lübeck, Germany, August 2007.

[RTC92] Radio Technical Commission for Aeronautics (RTCA) Inc., SC167, RTCA
Secretariat, 1140 Connecticut Avenue, N.W., Suite 1020, Washington, DC
20036. DO-178B/ED-12B Software Considerations in Airborne Systems
and Equipment Certification, December 1992.

[RTC00] Radio Technical Commission for Aeronautics (RTCA) Inc., SC180, RTCA
Secretariat, 1140 Connecticut Avenue, N.W., Suite 1020, Washington,
DC 20036. DO-254 Design Assurance Guidance for Airborne Electronic
Hardware, April 2000.

[Rus01] J. Rushby. A comparison of bus architectures for safety-critical embedded
systems. Technical report, Computer Science Laboratory, SRI Interna-
tional, September 2001.

[Rus02] J. Rushby. An overview of formal verification for the time-triggered archi-
tecture. In Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 2469 of Lecture Notes in Computer Science, pages 83–105, Old-
enburg, Germany, September 2002. Springer-Verlag.

[Sch92] W. Schütz. The Testability of Distributed Real-Time Systems. PhD thesis,
Technische Universität Wien, Institut für Technische Informatik, Treitl-
strasse 3/3/182-1, 1040 Vienna, Austria, 1992.

[Sch95] W. Schütz. Testing distributed real-time systems: An overview. Techni-
cal Report 12/1995, Technische Universität Wien, Institut für Technische
Informatik, Treitlstrasse 1-3/182-1, 1040 Vienna, Austria, 1995.

[Sch03] M. Schlager. A simulation architecture for time-triggered transducer net-
works. In Proceedings of the First Workshop on Intelligent Solutions for
Embedded Systems (WISES’03), pages 39–49, Vienna, Austria, June 2003.

[SD02] D. Stang and R. Dandapani. An implementation of IEEE 1149.1 to avoid
timing violations and other practical in-compliance improvements. In
Proceedings of the IEEE International Test Conference, Baltimore, MD,
USA, October 2002.

135

BIBLIOGRAPHY

[SEW06] M. Schlager, W. Elmenreich, and I. Wenzel. Interface design for hardware-
in-the-loop simulation. In Proceedings of the IEEE International Sym-
posium on Industrial Electronics (ISIE’06), pages 1554–1559, Montréal,
Canada, July 2006.

[Sha75] R.E. Shannon. Systems Simulation: The art and science. Prentice Hall,
Englewood Cliffs, New Jersey, 1975.

[SHW+06] M. Schlager, W. Herzner, A. Wolf, O. Gründonner, M. Rosenblattl, and
E. Erkinger. Encapsulating application subsystems using the DECOS core
OS. In Proceedings of the 25th International Conference on Computer
Safety, Security and Reliability (SAFECOMP), pages 386–397, Gdansk,
Poland, September 2006.

[Sim96] H.A. Simon. The Sciences of the Artificial. MIT Press, 1996.

[Sma04] I. Smaili. Monitoring and debugging of real-time systems: A survey. Tech-
nical Report 17/2004, Technische Universität Wien, Institut für Technis-
che Informatik, Treitlstrasse 1-3/182-1, 1040 Vienna, Austria, 2004.

[SOE07] M. Schlager, R. Obermaisser, and W. Elmenreich. A framework for
hardware-in-the-loop testing of an integrated architecture. In Proceedings
of the 5th IFIP Workshop of Software Technologies for Future Embedded
& Ubiquitous Systems (SEUS), Santorini Island, Greece, May 2007.

[SS66] A.P. Sage and S.L. Smith. Real-time digital simulation for systems control.
In Proceedings of the IEEE, pages 1802–1812, December 1966.

[SWE06] F. Skopik, M. Wihsböck, and W. Elmenreich. Anbindung einer Regel-
streckensimulation an ein zu prüfendes System mittels eines Smart In-
verted Transducers. Technical Report 2/2006, Technische Universität
Wien, Institut für Technische Informatik, Treitlstrasse 1-3/182-1, 1040
Vienna, Austria, 2006.

[SWH95] N. Suri, C.J. Walter, and M.M. Hugue. Advances In Ultra-Dependable
Distributed Systems, chapter 1. IEEE Computer Society Press, 10662
Los Vaqueros Circle, P.O. Box 3014, Los Alamitos, CA 90720-1264, USA,
1995.

[TS01] A.S. Tanenbaum and M.V. Steen. Distributed Systems: Principles and
Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[TTA02] TTA Group. Specification of the Time-Triggered Protocol TTP/C.
Technical report, TTA Group, Schönbrunner Straße 7, A-1040 Vi-
enna, Austria, July 2002. Specification edition 1.0.0, Available at
http://www.ttpforum.org.

[TTC06] TTChip Entwicklungsgesellschaft mbH, Schönbrunner Strasse 7, A-1040
Vienna, Austria. AS8202NF TTP-C2NF Communication Controller,
Data Sheet, Rev.1.6, July 2006.

136

BIBLIOGRAPHY

[VDA03] Verband der Automobilindustrie (VDA). HAWK2015 – Herausforderung
Automobile Wertschöpfungskette, 2003.

[Vee06] E. Veenendaal. Standard glossary of terms used in software test-
ing. Technical report, Glossary Working Party, American Software
Testing Qualifications Board, Inc. (ASTQB), June 2006. Available at
http://www.astqb.org.

[Wen02] H.C. Wense. LIN specification package. Technical report, Motorola
GmbH, Audi AG, BMW AG, DaimlerChrysler AG, Volcano Commu-
nications Technologies AB, Volkswagen AG, Volvo Car Corporation,
Schatzbogen 7, 81829 Munich, Germany, December 2002. Revision 1.3.

[Wie02] T. Wiedemann. Next generation simulation environments founded on
open source software and XML-based standard interfaces. In Proceedings
of the 2002 Winter Simulation Conference, pages 623–628, 2002.

[Wik07a] Wikipedia. Determinism — Wikipedia, The Free Encyclopedia, July 2007.

[Wik07b] Wikipedia. Static testing — Wikipedia, The Free Encyclopedia, July
2007.

[Wik07c] Wikipedia. Verification and Validation — Wikipedia, The Free Encyclo-
pedia, July 2007.

[Wir97] B. Wirz. Technical specifications for 600 series instrument grade electro-
static transducer. Available at http://controls.ae.gatech.edu, 1997.

[WLD+05] X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci. Design and
implementation of a power-hardware-in-the-loop interface: A nonlinear
load case study. In Applied Power Electronics Conference and Exposition
(APEC’05), pages 1332–1338. IEEE, March 2005.

[Woj99] G. Wojciech. Hardware-in-the-loop simulation and its application in con-
trol education. In 29th ASEE/IEEE Frontiers in Education Conference,
pages 12b6–7–12b6–12, San Juan, Puerto Rico, November 1999. IEEE.

[ZLD+04] J. Zhenhua, R. Leonard, R. Dougal, H. Figueroa, and A. Monti.
Processor-in-the-loop simulation, real-time hardware-in-the-loop test-
ing, and hardware validation of a digitally-controlled, fuel-cell powered
battery-charging station. In IEEE 35th Annual Power Electronics Spe-
cialists Conference, pages 2251–2257, June 2004.

[ZSL+04] C. Zavala, P. Sanketi, D. Lamberson, A.R. Girard, and J.K. Hedrick.
Model-Based Real-Time Embedded Control Software for Automotive
Torque Management. In Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, Le Royal Meridien,
King Edward, Toronto, Canada, May 2004.

137

BIBLIOGRAPHY

138

List of Publications

[1] M. Schlager. A simulation architecture for time-triggered transducer networks.
In Proceedings of the First Workshop on Intelligent Solutions for Embedded Sys-
tems (WISES’03), pages 39–49, Vienna, Austria, June 2003.

[2] M. Jakovljevic, M. Schlager, M. Plankensteiner, and S. Poledna. A path to
mature safety-relevant automotive electronic solutions. Automotive Electronics,
1, March 2004.

[3] W. Elmenreich, S. Pitzek, and M. Schlager. Modeling distributed embedded
applications on an interface file system. In Proceedings of the Seventh IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing,
pages 175–182, May 2004.

[4] W. Elmenreich and M. Schlager. Simulation-based development of embedded
sensor fusion applications. In Proceedings of the 2nd IEEE International Con-
ference on Computational Cybernetics, pages 147–153, September 2004.

[5] T. Losert, W. Elmenreich, and M. Schlager. Semi-automatic compensation of
the propagation-delay in fault-tolerant systems. In Proceedings of the Third
IASTED International Conference on Communications, Internet, and Informa-
tion Technology (CIIT 2004), pages 455–460, St. Thomas, VI, USA, November
2004. ISBN 0-88986-445-4.

[6] M. Schlager, M. Plankensteiner, and T. Albrecht. Zukunft bringt integrierte
Architekturlösungen. Elektronik Automotive, pages 78–81, January 2005.

[7] T. Losert, M. Schlager, and W. Elmenreich. Fault-tolerant compensation of the
propagation delay for hard real-time systems. International Journal of Advanced
Computational Intelligence & Intelligent Informatics (JACIII), July 2005.

[8] M. Schlager, E. Erkinger, W. Elmenreich, and T. Losert. Benefits and implica-
tions of the DECOS encapsulation approach. In Proceedings of the 8th Inter-
national IEEE Conference on Intelligent Transportation Systems, pages 13–18,
Vienna, Austria, September 2005.

[9] I. Wenzel, R. Kirner, M. Schlager, B. Rieder, and B. Huber. Impact of depend-
able software development guidlines on timing analysis. In Proceedings of the
IEEE International Conference on ”Computer as a tool” EUROCON, Belgrade,
Serbia & Montenegro, November 2005.

139

LIST OF PUBLICATIONS

[10] M. Schlager, W. Elmenreich, and I. Wenzel. Interface design for hardware-
in-the-loop simulation. Proceedings of the IEEE International Symposium on
Industrial Electronics (ISIE06), pages 1554–1559, July 2006.

[11] M. Schlager, W. Herzner, A. Wolf, O. Gründonner, M. Rosenblattl, and
E. Erkinger. Encapsulating application subsystems using the DECOS Core OS.
In Proceedings of the 25th International Conference on Computer Safety, Secu-
rity and Reliability (SAFECOMP), pages 386–397, Gdansk, Poland, September
2006.

[12] W. Herzner, M. Schlager, T. Le Sergent, B. Huber, S. Islam, N. Suri, and
A. Balogh. From model-based design to deployment of integrated, embedded,
real-time systems: The DECOS tool-chain. In Proceedings of the international
DECOS Workshop at the Mikroelektroniktagung 2006, Vienna, Austria, October
2006.

[13] M. Schlager, R. Obermaisser, and W. Elmenreich. A framework for hardware-
in-the-loop testing of an integrated architecture. In Proceedings of the 5th IFIP
Workshop of Software Technologies for Future Embedded & Ubiquitous Systems
(SEUS), Santorini Island, Greece, May 2007.

[14] H. Eriksson, J. Vinter, B. Leiner, and M. Schlager. Towards a DECOS fault
injection platform for time-triggered systems. In Proceedings of the 5th IEEE
International Conference on Industrial Informatics (INDIN), Vienna, Austria,
July 2007.

[15] B. Rumpler and M. Schlager. Segmentation and conceptual chunking in embed-
ded real-time system design. In Proceedings of the ERCIM/DECOS Workshop
on ”Dependable Embedded Systems” at the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA 2007) and the 10th
EUROMICRO Conference on Digital Systems Design (DSD 2007), Lübeck, Ger-
many, August 2007.

[16] R. Obermaisser and M. Schlager. A simulation framework for virtual integration
of integrated systems. In Proceedings of the IEEE International Conference on
”Computer as a tool” EUROCON, Warsaw, Poland, September 2007.

[17] W. Herzner, R. Schlick, M. Schlager, B. Leiner, B. Huber, A. Balogh, G. Csertan,
A. LeGuennec, Th. LeSergent, N. Suri, and S. Islam. Model-based development
of distributed embedded real-time systems with the DECOS tool-chain. In Pro-
ceedings of the SAE AeroTech Congress & Exhibition, Los Angeles, CA, USA,
September 2007.

[18] J. Vinter, H. Eriksson, A. Ademaj, B. Leiner, and M. Schlager. Experimental
evaluation of the DECOS fault-tolerant communication layer. In Proceedings of
the 26th International Conference on Computer Safety, Reliability and Security
(SAFECOMP), Nuremberg, Germany, September 2007.

[19] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A comparison of par-
titioning operating systems for integrated systems. In Proceedings of the 26th
International Conference on Computer Safety, Reliability and Security (SAFE-
COMP), Nuremberg, Germany, September 2007.

140

Curriculum Vitae

Martin Schlager

March 4th , 1978 Born in Vienna, Austria

September 1984 – Elementary School in
June 1988 Schottwien

September 1988 – Comprehensive Secondary School (”AHS”) in
May 1996 Neunkirchen

October 1996 – Military Service in
May 1997 Mautern and Wr. Neustadt

October 1997 – Studies of Computer Science at the
May 2002 Vienna University of Technology

Graduation with distinction
June 6th , 2002 Master’s Degree (”Dipl.-Ing.”)

September 2004 – Studies of Computer Science Management at the
March 2005 Vienna University of Technology

Graduation with distinction
April 5th , 2005 Master’s Degree (”Mag.rer.soc.oec.”)

June 2002 – R&D Consulting and Project Coordination at
ongoing TTTech Computertechnik AG, Vienna

September 2002 – PhD Studies at the
ongoing Institute of Computer Engineering,

Vienna University of Technology, supported by the
Austrian Academy of Sciences (DOC program)

