

MASTERARBEIT

Integrating QoS in Web service based Business Process

Development Scenarios

Thema

Ausgeführt am Institut für

Informationssysteme

der Technischen Universität Wien

unter der Anleitung von Univ . -Prof . Mag. Dr . Schahram Dustdar und Univ . -

Ass . Dip l . - Ing . (FH) Flor ian Rosenberg

durch

Christian Enzi

Name

Urbangasse 6/3/25, 1170 Wien

Anschrift

 Datum Unterschrift (Student)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

 ii

Erklärung
Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt und die aus anderen Quellen entnommenen Stellen als solche gekennzeichnet

habe.

Wien, am 06.Juli 2007

Christian Enzi

 iii

Abstract
The scope of this master thesis is the integration of Quality of Service (QoS) in Web

service based business process development scenarios.

QoS comprises many different categories, ranging from secure and reliable

messaging, as well as performance and dependability related aspects of Web services

(such as throughput, response time or availability). Web service based business

process development involves two composition techniques of the current Web

services stack, namely choreography and orchestration. The engineering of Web

service based business processes represents a top-down modeling approach of Web

services in which private executable business processes are derived from a global

choreography description. An integration of the above mentioned QoS aspects

throughout the choreography and orchestration layer has not been considered yet. This

work will focus on such an integration effort. On the one hand the consideration of

QoS aspects at the choreography description layer will be revealed by the use of

Service Level Agreements (SLAs). On the other hand the mapping of QoS aspects of

the choreography description layer to the orchestration layer will be analyzed in

detail. For these purposes a policy for the QoS domain will be defined allowing Web

service policies to be derived from the QoS obligations stated in SLAs. Subsequently

an integration of these policies throughout the orchestration layer will be revealed.

Finally an implementation along with a use case will be provided as a proof of

concept.

 iv

Zusammenfassung
Inhalt dieser Magisterarbeit ist die Integration von Dienstgüte (Quality of Service,

kurz QoS) innerhalb des Entwicklungsprozesses von Web service basierten

Geschäftsprozessen.

Der Begriff Dienstgüte umfasst eine Vielzahl von Kategorien. Auf der einen Seite

wird Dienstgüte mit einem sicheren und zuverlässigen Nachrichtenaustausch

assoziiert, auf der anderen Seite werden damit Leistungs- und

Zuverlässigkeitsindikatoren (wie z.B. Antwortzeiten, Durchsatzraten oder

Verfügbarkeit) von Web services definiert.

Die Entwicklung von Web service basierten Geschäftsprozessen umfasst einen

Modellierungsprozess in welchem ausführbare Geschäftsprozesse aus einem globalen

Modell abgebildet werden. Bei diesem Entwicklungsprozess von Web services

kommen die zwei Kompositionstechniken Choreographie und Orchestrierung zum

Einsatz welche jeweils eine verschiedene Modellierungsebene darstellen. Auf

Choreographie-Ebene werden die Interaktionen aller Teilnehmer aus globaler Sicht

betrachtet und in einem Modell (Choreographie) beschrieben. Hingegen werden auf

Orchestrierungs-Ebene die Interaktionen des einzelnen Teilnehmers betrachtet und

daraus ausführbare Geschäftsprozesse (BPEL Prozesse) erstellt. Aufgrund des

unterschiedlichen Abstraktionsgrades beider Kompositionstechniken lassen sich aus

einer Choreographie entsprechende BPEL Prozesse abbilden. Die Einbindung von

Aspekten der Dienstgüte in den zuvor beschriebenen Modellierungsebenen stellt einen

bis dato nicht berücksichtigten Ansatz dar.

Im Rahmen dieser Magisterarbeit wird der Fokus auf solch eine Integration von

Dienstgüte gelegt. Die Berücksichtigung von Dienstgüte auf Choreographie-Ebene

wird hierbei durch die Verwendung von Dienstgütevereinbarungen (Service Level

Agreements, kurz SLAs) erzielt. In weiterer Folge wird gezeigt wie sich Aspekte der

Dienstgüte von der Choreographie-Ebene auf die Orchestrierungs-Ebene abbilden

lassen. Zu diesem Zweck wird eine Richtlinie (Policy) für die Dienstgüte von Web

services definiert. Dadurch lassen sich aus den in Dienstgütevereinbarungen

festgelegten Verpflichtungen entsprechende Web service Richtlinien ableiten. Daran

anschliessend erfolgt eine Analyse in welcher Form derartige Richtlinien auf

Orchestrierungs-Ebene eingebunden werden können. Abschliessend wird eine

 v

Implementierung vorgestellt welche durch die Umsetzung eines Anwendungsfalles

die Durchführbarkeit der vorgestellten Ansätze demonstiert.

 vi

Table of Contents

1 Introduction..1
1.1 Problem Definition...3
1.2 Organization of this thesis ...4

2 Basic Concepts...5
2.1 WS-CDL ..5

2.1.1 Collaborations ..5
2.1.2 Activities ..6

2.2 WS-BPEL ..9
2.2.1 Relationships..10
2.2.2 Activities ..10

2.3 Service Level Agreements ...12
2.3.1 WSLA ..12

2.3.1.1 Service Definition ..14
2.3.1.2 SLA parameter ...15
2.3.1.3 Metric...15
2.3.1.4 Service Level Objectives ...16

2.3.2 WS-Agreement ..17
2.4 Policies...18

2.4.1 WS-Policy ..18
2.5 Quality of Service Definitions ...21

2.5.1 QoS aspects of the Web services stack ..21
2.5.2 QoS attributes of the QoS model ...22

2.5.2.1 Performance ...23
2.5.2.2 Dependability...23

3 Web service based business process development ..24
3.1 BPEL Transformation..24

3.1.1 Endpoint Projection ...25
3.1.2 Relevance Mapping Algorithm..26
3.1.3 Mapping Rules ...29
3.1.4 Attribute Mapping..32

3.2 WSDL Transformation ..33
4 QoS Integration..35

4.1 QoS at the choreography layer...36
4.1.1 Evaluation of SLA Specification Languages.......................................36

4.1.1.1 WSLA Extension ...37
4.1.2 Integration of SLAs..38

4.1.2.1 Definition of SLA references...38
4.1.2.2 Integration of SLA references..39

4.2 QoS at the orchestration layer..41
4.2.1 Definition of a WS-QoS Policy ...41

4.2.1.1 Assertion Model...43
4.2.1.2 Normative Outline ...43
4.2.1.3 XML Schema ...44

4.2.2 From SLAs to policies ...45
4.2.2.1 SLA Scenario 1 ..46
4.2.2.2 SLA Scenario 2 ..48
4.2.2.3 SLA Scenario 3 ..51

4.2.3 Integration of policies ..52

 vii

4.2.3.1 WSDL Integration..53
4.2.3.2 BPEL Integration ...54

4.2.4 Evaluation ..59
5 Implementation ..61

5.1 System Overview...61
5.1.1 XML Processing ..62
5.1.2 XML Presentation..63

5.2 QoS Integration Process...64
5.2.1.1 Display of Role Type Definitions ..64
5.2.1.2 Manipulation of SLA References ..65
5.2.1.3 Generation of BPEL Processes and WSDL Descriptions................66

5.3 Build to Order Use Case ..67
5.4 Evaluation ..70

5.4.1 Choreography Modification...70
5.4.2 BPEL & WSDL Generation...71

6 Related work ..73
7 Conclusion ...76
References..78
Appendix..81

Appendix A: WS-QoSPolicy XML Schema..81
Appendix B: BTO Choreography - Activity Sequence82
Appendix C: BTO Customer-Manufacturer SLA..83
Appendix D: BTO Customer BPEL Process ...85
Appendix E: BTO Customer Partner Link Types..86
Appendix F: BTO Manufacturer WSDL Description......................................86

List of Figures
Figure 1 WSLA - Basic Structure [21] ..13
Figure 2 Policy Data Model - Normal Form [18] ..20
Figure 3 Web services stack ..22
Figure 5 WS-QoSPolicy Mapping & Integration ..52
Figure 6 System Architecture ..61
Figure 7 QoS Integrator – Role Type Definitions ...65
Figure 8 QoS Integrator – SLA Reference Definition ...66
Figure 9 BTO - Collaboration Sequence Diagram ..68

 1

1 Introduction
Web services are not only a key factor in the field of enterprise application integration

but also gain more and more importance for cross-organizational business-to-business

(B2B) scenarios. These B2B scenarios involve multiple business partners interacting

with each other by exchanging information in a structured way. This kind of

information exchange is performed by the coordinated invocation of Web services

which expose interfaces to internal business processes of the involved business

partners.

The engineering of such Web service based business processes involves two

composition techniques of the current Web services stack, namely choreography and

orchestration. The concepts of choreography and orchestration represent different

viewpoints in service composition.

Choreography represents a global viewpoint which “captures collaborative processes

involving multiple services where the interactions between these services are seen

from a global perspective” [9 p.2]. A choreography does not describe any internal

action that occurs within a participating service such as internal computation or data

transformation but focuses on the observable public exchange of messages

encompassing all the interactions that are relevant with respect to the choreography’s

goal. Choreographies can be defined using the Web Services Choreography

Description Language (WS-CDL) [19] specification.

Orchestration represents a local viewpoint which “deals with the description of the

interactions in which a given service can engage with other services, as well as the

internal steps between these interactions (e.g., data transformations)” [9 p.2]. An

orchestration captures a private executable business process (BPEL process)

representing control from one party's perspective. In contrast to a choreography

description such an orchestration defines the internal actions in which a service

engages but does not consider the message exchange from a global point of view.

Furthermore it is intended to be executed by an orchestration engine. BPEL processes

can be defined using the Web Service Business Process Execution Language (WS-

BPEL) [20] specification.

These concepts of choreography and orchestration imply a top-down modeling

approach. “Business partners agree on a specific choreography description defined in

 2

WS-CDL in order to achieve a common goal which is then used to generate BPEL

process stubs for each party”[12 p.2].

Within the context of Web service based business process development Quality of

Service (QoS) aspects play an essential role. QoS comprises many different

categories, ranging from secure and reliable messaging, as well as performance and

dependability related attributes of Web services (such as availability, response time or

throughput). QoS related terms and conditions are generally specified in a Service

Level Agreement (SLA) which needs to be fulfilled during the service execution

among the business partners.

Prior to this thesis a case study for a B2B scenario was implemented. Based on the

composition techniques choreography and orchestration a top-down modeling of Web

service based business processes was performed. The design of the implemented case

study aimed at simulating a Web service scenario in which one of the involved

business partners acts as both, a service provider as well as a service consumer being

dependent on services from other partners in order to process service requests. This

dependency emphasizes the importance of QoS aspects in cross-organizational B2B

scenarios. The realization of the case study revealed that current research has not

considered the integration of QoS in Web service based business processes

development scenarios.

Such a QoS integration approach is discussed in this thesis. The integration of QoS

will be performed at different stages. Initially QoS requirements will be considered at

the choreography layer. Subsequently these QoS requirements will be transformed

and integrated at the orchestration layer. Neither WS-CDL nor WS-BPEL specifies

the declaration of QoS attributes. Hence appropriate techniques are required for the

integration of such information. This integration will be accomplished by the use of

SLAs and Web service policies.

The definition of QoS plays a crucial rule in cross-organizational business processes.

Each participant offers services to other partners which the latter need to run their

businesses. Therefore, a certain degree of reliability concerning performance and

dependability related QoS requirements is desired and has to be specified and

explicitly expressed from the beginning of the modeling phase. SLAs provide proper

methods for establishing agreements on such QoS requirements between the

participants involved. In accordance to choreographies − where participants achieve

 3

agreement on the data exchanged − SLAs allow the specification of QoS agreements

on the business level. In contrast to SLAs Web service policies are more technology

oriented by specifying requirements on the service level. On this account policies are

a suitable technology for integrating QoS at the orchestration layer.

A primary concern of the QoS integration approach is the integration of SLAs from

the beginning of the choreography development process. In accordance to the top-

down modeling process of Web services SLA requirements are automatically

transformed and mapped to equivalent Web service policies which are further

attached to the generated BPEL process of the affected partner.

1.1 Problem Definition
The implementation of the QoS integration approach faces the following set of

problems.

Endpoint projection

The QoS integration approach implies a mapping of choreography descriptions to

BPEL processes. Whereas the mapping of WS-CDL language constructs to

corresponding WS-BPEL language constructs has been actively discussed in literature

an approach for a correct endpoint projection has not been provided yet. Such an

endpoint projection is a requirement in order to generate BPEL processes whose

interactions precisely realize the global choreography description model. This

endpoint projection problem will be referenced by a relevance mapping algorithm.

Integration of SLAs at the choreography layer

WS-CDL does not discuss how QoS related aspects can be provided with a

choreography description. As mentioned above SLAs will be used to include such

information at the choreography layer. This integration approach requires two aspects

to be considered. First, an appropriate language specification for the declaration of

SLAs will be identified. Second, an extension of WS-CDL will be performed which

enables an integration of existing SLA declarations.

Integration of policies at the orchestration layer

Similar to WS-CDL the WS-BPEL specification does not consider QoS related

information. Following the approach used at the choreography layer an existing Web

 4

service standard (WS-Policy) will be used for the integration of QoS at the

orchestration layer. Basically, an integration of policies at the orchestration layer can

be performed at different stages. Policies can either be attached to service descriptions

(WSDL) or be integrated in BPEL processes. An evaluation of both approaches will

be provided highlighting the advantages of policy integration inside BPEL processes.

Mapping of SLAs to policies

In order to implement a continuous QoS integration approach it is necessary to map

SLAs to corresponding Web service policies. However, the current WS-Policy

specifications focus on security and reliable messaging related QoS aspects only −

performance and dependability related QoS aspects (being subject to the obligations

defined in SLAs) have not been considered yet. Therefore a QoS mapping implies an

extension of the current WS-Policy framework by defining a policy for the QoS

domain. In this thesis such a policy will be defined by the declaration of a WS-

QoSPolicy. Subsequently appropriate SLA to policy mapping rules will be defined.

1.2 Organization of this thesis
The remaining part of this thesis is organized as follows. In Section 2 existing Web

service technologies will be described which form the basis for the aspects discussed

in the following sections. Section 3 presents the underlying concepts of Web service

based business process development showing by what means executable business

processes can be derived from a global choreography model description. In section 4

the actual integration of QoS throughout business process development scenarios will

be expatiated. Section 5 demonstrates the implementation which has been designed to

evaluate the QoS integration process for feasibility. Finally related work for the

diverse concepts of this thesis will be discussed in section 6.

 5

2 Basic Concepts
The integration of QoS in Web service based business process development scenarios

is based on existing Web service specifications. These specifications involve the

concepts of choreographies, orchestrations, Service Level Agreements and policies.

In the following an overview of the various specifications of these concepts will be

provided. Furthermore the different aspects of QoS with regard to Web services will

be revealed.

2.1 WS-CDL
“The purpose of the Web Services Choreography Description Language (WS-CDL),

is to define multi-party contracts, which describe the externally observable behavior

of Web Services and their clients (usually other Web Services), by describing the

message exchanges between them” [9 p.7]. WS-CDL [19] represents a specification

language which allows each involved party to describe its part in the message

exchange by specifying details on collaborations, information handling and activities.

2.1.1 Collaborations

The collaborations of a choreography are specified by defining participantTypes,

roleTypes, relationshipTypes and channelTypes. These declarations

define the collaborating participants and their coupling.

− ParticipantType

A participant declares an entity playing a particular set of roles in the

choreography. Thus a participantType definition contains one or more

roleType definitions.

− RoleType

A role enumerates the observable behavior a participant can exhibit in order to

interact throughout a message exchange. A roleType definition declares a

behavior interface which identifies a WSDL interface type.

− RelationshipType

The relations between roles are defined through relationshipType

definitions. A relationshipType always contains exactly two roleTypes,

restricting the relationshipType definition to 1:1 relations.

 6

− ChannelType

A channelType definition specifies where and how information between

participants is exchanged by defining a reference to a roleType which is the

target of an information exchange (either the receiver of a message request or

the sender of a message reply). This roleType reference indicates the

behavior interface which is used throughout the information exchange.

The definition and handling of information within a choreography is performed by

information types and variables.

− InformationType

 Information used within a choreography is specified by information types

which do not directly reference data types but rather reference type definitions.

Such a referenced type definition can be either a WSDL 1.1 Message Type, an

XML Schema type, a WSDL 2.0 Schema element or an XML Schema

element. Listing 1 illustrates an information type definition. The information

type is specified by the attribute type which contains a qualified name. In the

example below the information type corresponds to the QuoteRequest

definition from the namespace which is specified by the prefix b2o. This

namespace would be defined in the root element of the choreography.
<informationType name="QuoteRequest" type="b2o:QuoteRequest" />

Listing 1 Information Type Definition
− Variable

Variables capture information about objects in a choreography such as the

information exchanged or the observable information of the role types

involved and are either bound to informationType or channelType

definitions.

2.1.2 Activities

A choreography comprises three different types of activities, namely ordering

structures, workunit and basic activities.

Ordering Structures

Ordering structures are block structured, enclosing a number of sub-activities which

can be used recursively.

 7

− Sequence

The sequence activity defines one or more activities that are executed in a

sequential pre-defined order.

− Parallel

The parallel activity defines one or more activities that are executed

concurrently without any pre-defined order.

− Choice

The choice activity specifies that only one of two or more activities will be

performed. The choice activity actually captures two kinds of choices,

namely data-driven or event-driven choices. In the first case the choice is

based upon a boolean condition where data variables will be evaluated at the

time the choice activity is reached. In the second case the choice holds until

an event occurs. Such an event can be the occurrence of an interaction or an

action throughout the choreography flow resulting in certain variables being

populated [9]. The type of a choice activity depends on the definition of the

enclosed workunit activities.

Workunit

A workunit prescribes the conditional execution of an activity. This conditional

execution can either be repetitive (attribute repeat is set to true), competitive

(multiple workunit activities are defined inside a choice activity) or blocking

(attribute block is set to true). The conditional statement is defined by the attribute

guard which specifies a Boolean conditional expression according to the XPath 1.0

lexical rules.

Listing 2 illustrates three workunit scenarios. In the first scenario the enclosed

activities of the workunit activity will be repeated as long as the variable

QuoteAccept evaluates to false. In the second scenario the first workunit activity

which defines a guard condition evaluating to true will be executed. In the thrid

scenario the processing of the enclosed activities will be blocked as long as the

variable POAcknowledge is not available.
<!-- workunit with repetition condition -->
<workunit guard="cdl:getVariable('QuoteAccept','accept','')=false()"
name="QuoteBartering" repeat="true()">
 <!-- some activities -->
</workunit>

 8

<!-- workunits with competitive guard conditions inside choice -->
<choice>
 <workunit guard="cdl:getVariable('HWnotInStock','','')>0"
 name="Choice_HWnotInStock">
 <!--some activities -->
 </workunit>
 <workunit guard="cdl:getVariable('HWnotInStock','','')=0"
 name="Choice_HWInStock">
 <!--some activities -->
 </workunit>
</choice>

<!-- workunit with blocking condition -->
<workunit
 guard="cdl:isVariableAvailable('POAcknowledge','',''tns:Customer"
 name="POProcess" block="true">
 <!--some activities -->
</workunit>

Listing 2 Workunit Scenarios

Basic Activities

Basic activities define the interactions, actions and variable assignments of the

choreography flow.

− Interaction

The interaction activity defines the information to be exchanged and by

what means this information exchange will be performed. The attribute

channelVariable binds the interaction to a channelType and therefore to

a specific WSDL interface. The attribute operation corresponds to a SOAP

operation which is defined throughout this WSDL interface description. The

element participate defines the requesting and receiving part of the

interaction. Finally the element exchange defines whether the interaction is a

request or response and which variables will be used throughout the message

exchange. Listing 3 illustrates two interaction activities which define a

message request and response (corresponding to a synchronous messaging

scenario). Throughout the message request the operation

"requestForQuote" will be invoked at the corresponding WSDL interface

of the "ManRoleType". The message request is stored in the variable

"QuoteRequest". The "ManRoleType" will respond to the service

invocation by returning the variable "QuoteResponse".
<!-- message request -->
<interaction channelVariable="tns:QuoteChannelInstance"
 name="RequestForQuote" operation="requestForQuote">
 <participate fromRoleTypeRef="tns:CustRoleType"
 relationshipType="tns:CustMan"
 toRoleTypeRef="tns:ManRoleType"/>

 9

 <exchange action="request" informationType="tns:QuoteRequest"
 name="request">
 <send variable="cdl:getVariable('QuoteRequest','','')"/>
 <receive variable="cdl:getVariable('QuoteRequest','','')"/>
 </exchange>
</interaction>

<!-- message response -->
<interaction channelVariable="tns:QuoteChannelInstance"
 name="RequestForQuote" operation="requestForQuote">
 <participate fromRoleTypeRef="tns:CustRoleType"
 relationshipType="tns:CustMan"
 toRoleTypeRef="tns:ManRoleType"/>
 <exchange action="respond" informationType="tns:QuoteResponse"
 name="respond">
 <send variable="cdl:getVariable(QuoteResponse,'','')"/>
 <receive variable="cdl:getVariable(QuoteResponse,'','')"/>
 </exchange>
</interaction>

Listing 3 Interaction Activity

− Assign

The assign activity enables the creation or modification of variables based

on XPath expressions or other variables.

− Perform

The perform activity enables the invocation of another choreography

within the context of the executing choreography.

− SilentAction

The silentAction activity defines an action with non-observable behavior

which is either performed by exactly one or all participants of the

choreography (e.g., internal data processing). A silentAction will have to

be further defined at the orchestration layer.

− NoAction

The noAction activity explicitly defines the condition where a participant

will not perform any action.

2.2 WS-BPEL
“The Business Process Execution Language for Web services (WS-BPEL or BPEL

for short) defines a model and grammar for describing the behavior of a business

process based on interactions between the process and its partners. A BPEL process

defines how multiple service interactions with partners are coordinated to achieve a

business goal” [20 p.10]. BPEL specifies details on the relationships and activities of

a business process.

 10

2.2.1 Relationships

The relationships of a business process are defined by partnerLinks. Partner links

define different parties that interact with the BPEL process (whose services are

invoked during process execution).

Listing 4 specifies the definition of the partnerLinks construct.
<partnerLinks>
 <partnerLink name="NCName"
 partnerLinkType="QName"
 myRole="NCName"?
 partnerRole="NCName"?
 initializePartnerRole="yes|no"? />+
</partnerLinks>
 <!-- ... -->
</process>

Listing 4 Partner Links Construct

Each partner link is related to a specific partnerLinkType that characterizes it. The

attribute myRole indicates the role of the business process itself whereas

partnerRole indicates the role of the partner. The usage of the role attributes

depends on the messaging type. In the case of synchronous messaging a partner link

always contains one of the following role attributes:

− "myRole" if the BPEL process receives an invocation

− "partnerRole" if the BPEL process invokes a partner service

In the case of asynchronous messaging a partner link contains both roles.

2.2.2 Activities

A BPEL process comprises two types of activities, namely structured and basic

activities.

Structured Activities

Structured activities define the order in which a collection of activities can take place

and can be used in a recursive way.

− Sequence

The sequence activity defines one or more activities that are executed in a

sequential pre-defined order (corresponds to cdl:sequence).

− Flow

The flow activity defines one or more activities that are executed

concurrently without any pre-defined order (corresponds to cdl:parallel).

 11

− Switch

The switch activity consists of one or more conditional branches which are

defined by case elements with guard conditions (corresponds to

cdl:choose).

− While

The while activity is defined by a guard condition. All nested activities will

be repeated as long as the guard condition evaluates to true (corresponds to

cdl:workunit with repetition condition). The guard condition of the

switch/case and while activity is defined by a Boolean conditional

expressions according to the XPath 1.0 lexical rules.

− Pick

The pick activity awaits the occurrence of a message to be received and then

performs the activities which are defined for that message event. The message

event and activities are defined by one or more onMessage activites.

Basic Activities

Basic activities define the Web service operations and variable assignments of the

business process. The basic activities invoke, receive, reply and onMessage are

bound to a specific SOAP operation of a WSDL interface through declaration of the

attributes operation, partnerLink and portType.

− Invoke

The invoke activity defines a Web service request operation from the

prospect of the service requestor. The Web service request message is defined

by the attribute inputVariable. In the case of synchronous messaging

(request-response) a further variable outputVariable will be defined which

stores the response message of the Web service provider. In the case of

asynchronous messaging only the input variable will be defined as a response

is not expected as part of the service invocation.

− Receive

The receive activity defines a Web service request operation from the

prospect of the service provider. The Web service request message is defined

by the attribute Variable.

 12

− Reply

The reply activity defines a Web service response operation from the prospect

of the service provider. The Web service response message is defined by the

attribute Variable.

− OnMessage

The onMessage activity corresponds to a special receive activity which is

used in conjunction with a pick activity.

− Assign

The assign activity enables data manipulation by the creation or

modification of variables based on XPath expressions or other variables.

− Empty

The empty activity explicitly defines a condition where no activity will be

performed.

2.3 Service Level Agreements
“Service Level Agreements (SLAs) are agreements between a service provider and a

service consumer and as such define the obligations of the parties involved” [21 p.2].

These obligations consist of Service Level Objectives on performance and

dependability related QoS attributes of Web services. Two specification languages

can be differentiated which enable the definition of agreements:

− WSLA (Web Service Level Agreement)

− WS-Agreement

2.3.1 WSLA

The WSLA language specification [21] is part of the WSLA framework developed by

IBM which allows the definition and monitoring of SLAs for Web services. A final

publication (WSLA v. 1.0) was published in January 2003

 “In principle, there are many possible types of information and rules that can be

included in an SLA; however there is consensus on the general structure of an SLA.

WSLA embraces this structure by dividing an SLA into three sections: parties, service

definition, and obligations” [15 p.7].

 13

The parties section identifies the signatory parties of the SLA (service provider and

service consumer). Furthermore supporting parties may be defined (e.g., a

measurement service which monitors SLA enforcement).

The service definition section specifies the service and the corresponding service

objects (abstraction of a service, e.g., a WSDL/SOAP operation) which are subject to

the SLA. The service object(s) is bound to one or more SLA parameters which

correspond to the attributes of the QoS model. These SLA parameters are further

linked to metrics which define how SLA parameters have to be measured.

The obligations section comprises Service Level Objectives and action guarantees. A

Service Level Objective (SLO) defines the guarantees and constraints that may be

imposed on SLA parameters. An action guarantee defines an action to be performed if

a particular state is reached (e.g., the guarantees of a SLO get violated).

The WSLA language specification provides an XML-based schema for defining the

overall structure of an SLA. This basic structure of WSLA is illustrated in the UML

diagram shown in Figure 1.

Figure 1 WSLA - Basic Structure [21]

An SLA contains Service Level Objectives about SLA parameters. SLA parameters

are bound to a service object which is part of the service definition. These SLA

parameters are linked to metrics which define how SLA parameters have to be

 14

measured. The following sections provide an overview of these basic structures of an

SLA.

2.3.1.1 Service Definition

“The service definition part of an SLA provides language constructs to describe an

SLAs ontology. A service object defines an abstraction for all conceptual elements for

which SLA parameters can be defined. In the context of Web services, the most

detailed concept whose quality aspect can be described separately is the individual

service operation (in a binding) described in a WSDL specification” [14 p.13].

Such a service operation is bound to the service’s WSDL specification along with the

corresponding SOAP binding and operation. For each service operation SLA

parameters and metrics are defined accordingly. In case an SLA defines multiple

service operations it is possible to logically group these service operations so that they

share the same SLA parameters and metric definitions.

Listing 5 illustrates a sample service definition construct defining one operation which

is bound to a specific operation of a specified Web service. The operation contains

one SLA parameter which is linked to a specified metric. Details on SLA parameters

and metrics are provided in the preceding sections.
 <ServiceDefinition name="POService">
 <Operation xsi:type="wsla:WSDLSOAPOperationDescriptionType"
 name="sendPO">
 <SLAParameter name="p1" type="ExecutionTime" unit="seconds">
 <Metric>ExecutionTimeMetric</Metric>
 </SLAParameter>
 <!-- ... -->
 <Metric name="ExecutionTimeMetric" type="float">
 <Source>MeasurementService</Source>
 <MeasurementDirective xsi:type="Gauge">
 <MeasurementURI>http://example.org/ExecutionTimeMetric
 </MeasurementURI>
 </MeasurementDirective>
 </Metric>
 <!-- ... -->
 <WSDLFile>POService.wsdl</WSDLFile>
 <SOAPBindingName>POServiceBinding</SOAPBindingName>
 <SOAPOperationName>sendPO</SOAPOperationName>
 </Operation>
 </ServiceDefinition>

Listing 5 WSLA - Service Definition Construct

 15

2.3.1.2 SLA parameter

SLA parameters are the main elements of the service description. They represent the

relevant QoS aspects of the respective service operation. SLA parameters correspond

to performance and dependability related QoS aspects which have been illustrated in

Section 2.5.2 and represent measurable, observable properties of a Web service.

Typical examples of SLA parameters are response time, availability or throughput of

a Web service.

Listing 6 illustrates a sample SLA parameter construct. The attribute type defines the

QoS attribute specified by this SLA parameter. According to the WSLA XML schema

this attribute is bound to the type xsd:string. In Section 4.1.1.1 a modification of

this definition is proposed so that SLA parameters are bound to a set of pre-defined

QoS attributes. This eliminates the problem of inhomogeneous SLA parameter

definitions throughout different SLAs.
<SLAParameter name="p1" type="ExecutionTime" unit="seconds">
 <Metric>ExecutionTimeMetric</Metric>
</SLAParameter>

Listing 6 WSLA - SLA Parameter Construct

2.3.1.3 Metric

A metric either contains a function or a measurement directive. The WSLA schema

provides a subset of such predefined functions and measurement directives. A

function enables the computation of higher-level metrics by the use of lower-level

metrics. A measurement directive defines where the information about the different

metrics can be obtained. A measurement directive is bound to pre-defined standard

measurement directive types (Counter, Gauge, ResponseTime,

SumResponseTime, Status, InvocationCount, StatusRequest, Downtime,

MaintenancePeriodQuery).

According to the WSLA specification “metrics are the key instruments to describe

exactly what SLA parameters mean by specifying how to measure or compute the

parameter values” [21 p.27]. This is primary due to the fact that the definition of SLA

parameters is not bound to a subset of predefined QoS attributes in the WSLA

specification. As already mentioned in the last Section about SLA parameters this

problem can be avoided if a predefined subset of QoS attributes is integrated in the

WSLA schema.

 16

The definition of metrics and measurement directives is not directly related to the

aspect of considering QoS at the choreography description layer as it is not relevant

for the mapping of SLA parameters to policy assertions. However the question arises

how to integrate SLA parameters (bound to a specific QoS attribute) which does not

directly relate to pre-defined measurement directives. The approach which will be

further used throughout this work is the usage of the measurement directive type

Gauge for the corresponding metrics. This measurement directive represents a

common directive for all kinds of measurable SLA parameters.

Listing 7 illustrates a sample metric construct using the mentioned measurement

directive type Gauge. Source references the supporting party which is defined in the

parties section of the SLA. MeasurementURI defines the URI where metrics about

SLA parameters can be retrieved.

<Metric name="m1" type="float">
 <Source>MeasurementService</Source>
 <MeasurementDirective xsi:type="Gauge">
 <MeasurementURI>http://example.org/ExecutionTimeMetric
 </MeasurementURI>
 </MeasurementDirective>
</Metric>

Listing 7 WSLA – Metric Construct

2.3.1.4 Service Level Objectives

“An SLO expresses a commitment to maintain a particular state of the service in a

given time period” [13 p.17]. Hence SLO’s can be regarded as obligations of the

service provider which comprises guarantees for the respective SLA parameters.

Listing 8 provides a simple SLO construct for one SLA parameter. More detailed

SLO constructs are provided in Section 4.2. Obliged refers to the party that is

obliged to maintain the agreed upon state of a service. In typical scenarios this will be

accomplished by the service provider. Validity defines the time period of the SLO.

Expression defines the content of the SLO. An expression can either include an

element Predicate or first order logical operators (And, Or, Not, Implies).

These logical operators can be used to define nested expression elements. Predicate

defines the actual assertion on specified SLA parameters. The attribute xsi:type

refers to pre-defined compare operators (Less, Equal, GreaterEqual,

LessEqual). SLAParamter holds a reference to the SLA parameter defined in the

 17

service section of the SLA. Finally, Value specifies the SLA parameter’s value which

is used along with the compare operator to define the assertion.
<ServiceLevelObjective name="SLOServiceExecutionTime">
 <Obliged>SupplierCPU</Obliged>
 <Validity>
 <Start>2006-11-30T14:00:00.000+01:00</Start>
 <End>2006-12-31T14:00:00.000+01:00</End>
 </Validity>
 <Expression>
 <Predicate xsi:type="wsla:Less">
 <SLAParameter>p1</SLAParameter>
 <Value>4</Value>
 </Predicate>
 </Expression>
 <EvaluationEvent>NewValue</EvaluationEvent>
</ServiceLevelObjective>

Listing 8 WSLA - SLO Construct

2.3.2 WS-Agreement

The WS-Agreement specification defines a language and a protocol for establishing

agreements between two parties. The latest draft version was published in June 2005

(Version 2005/09). WS-Agreement is being developed in the Global Grid Forum’s

GRAAP (Grid Resource Allocation Agreement Protocol) working group and is

designed “for advertising the capabilities of service providers, creating agreements

based on initial offers and for monitoring agreement compliance at run-time. The

motivations for the design of WS-Agreement stem out of QoS concerns, especially in

the context of load balancing heavy loads on a grid of web service enabled hosts” [7

p.2].

Similar to WSLA the WS-Agreement language specification provides an XML-based

schema for defining the overall structure for an agreement document. Such an

agreement consists of the following main components:

− Context

− Terms

 Service Terms

 Guarantee Terms

− Constraints

The context section includes the definition of the parties involved in the agreement

process along with various metadata about the agreement. Among other context-

related information this metadata defines the duration of the agreement by specifying

 18

time intervals during which the agreement is valid. The terms section is the main part

of an agreement and comprises one or more service terms as well as zero or more

guarantee terms. Service terms define the services functionalities that will be

delivered under the agreement. Service terms include service description, service

reference and service property terms. “A service description term (SDT) defines an

inline functional full or partial description of a service, whereby the service

description content itself is dependant on the particular domain” [22 p.20]. This can

be a reference to an existing service, a domain specific description of a service (e.g., a

job using the Job Submission Description Language), or a set of observable properties

of the service [5 p.4]. Service references contain domain-specific references to

existing services by providing endpoint reference. Service properties specify domain-

specific aspects (e.g., QoS related aspects) that can be used to define the measurable

and exposed properties associated with a service. Guarantee terms specify SLO’s

about the service description terms. Finally guarantee terms declare the service scope

the guarantee applies to, specify SLO’s about the service description terms and

associate business values to the specified SLO’s.

WS-Agreement in general focuses on interaction protocols and the provision and

management of templates. Its overall goal is to define a common resource

management for Grid environments allowing the advance reservation of those

resources [14 p.25].

2.4 Policies
A policy is an assertion about a service that describes one or more characteristics that

a service provider instructs a service consumer to follow. In addition to WSDL (which

allows the description of functional properties) the WS-Policy framework was

developed to enable the declaration of Web service requirements which have to be

met by a service consumer to invoke a Web service successfully.

2.4.1 WS-Policy

The WS-Policy framework in the narrow sense comprises two specifications: WS-

Policy [23] and WS-PolicyAttachment [24]. The WS-Policy specification itself

provides a flexible and extensible grammar for expressing the capabilities and

 19

requirements of Web services. This grammar is domain-independent and has to be

extended with a domain-specific policy.

A policy expression is an XML Infoset (well-formed XML document following the

guidelines in the XML-InfoSet specification [29]) representation of a policy. The WS-

Policy language basically declares four elements and one attribute to construct a

policy expression.

− Policy

− All

− ExactlyOne

− PolicyReference

− wsp:Optional

The elements Policy, All and ExactlyOne represent policy operators which are

used for combining policy assertions, whereby the Policy operator play two roles.

On the one hand it defines a wrapper element (enclosing a policy expression), on the

other hand it represent a synonym for the All operator.

Combining policy assertions using the All operator means that all the requirements

represented by embraced assertions are required. Consequently, using the

ExactlyOne operator specifies that the policy requires exactly one of the policy

assertions to be fulfilled. The PolicyReference element can be used to reference a

policy expression (either as a standalone policy or within another policy expression).

Finally, the wsp:Optional attribute declares an optional policy assertion.

All child elements of the logical operators are policy assertions representing domain

specific assertions. Policy operators can be nested. Furthermore policy assertions can

include nested policy expressions. This allows to creation of flexible and complex

policy expressions.

The policy operators listed above refer to the following policy constructs:

− Policy

− Policy Alternative

− Policy Assertion

 20

These policy constructs define the data model of a policy in the following way. A

policy expression is an unordered collection of zero or more policy alternatives. A

policy alternative is an unordered collection of zero or more policy assertions. A

policy assertion represents a domain specific requirement or capability. A domain

specific requirement could be an assertion from the security domain specifying a

respective security protocol for the interaction. A domain specific capability could be

an assertion from the QoS domain specifying a pre-defined response time of the Web

service operation.

The definition of a policy expression can be represented either in normal form or an

equivalent compact form. The normal form of a policy expression directly maps to the

definition of the data model by representing a policy as a collection of policy

alternatives and a policy alternative as a collection of policy assertions. This is being

accomplished by the use of policy operators listed above. A sample normal form

policy construct which highlights the relation to the policy data model is illustrated in

Figure 2.

Figure 2 Policy Data Model - Normal Form [18]

 21

The WS-Policy specification provides a framework for the definition of domain

specific policies. Two domain-specific policies have been developed so far: WS-

SecurityPolicy [25] and WS-ReliableMessagingPolicy [28]. These policies are

extensions of the WS-Policy framework for the security and reliable messaging

related domain. In the following a policy for the QoS related domain will be

proposed.

2.5 Quality of Service Definitions
Quality of Service comprises many different categories, ranging from secure and

reliable messaging, as well as performance and dependability related aspects of Web

services. Basically, these QoS aspects can be classified in the following way:

− QoS aspects of the Web services stack

− QoS attributes of the QoS model

The first category corresponds to secure and reliable messaging, whereas the second

category refers to performance and dependability related QoS aspects. This

classification is not the only differentiation possible regarding QoS in general. In [3]

QoS aspects are referred to as Web service qualities and categorized according three

different views (business, service – and system level). The business level corresponds

to quality attributes depending on business values such as service charge,

compensation value, penalty rate and reputation. The service-level corresponds to

qualities depending on performance and stability whereas the system-level comprises

quality attributes related to the operations of Web services (interoperability,

manageability, business processing and security). Whereas this view-based

categorization seems well to consider the various aspects of non-functional properties

of Web services, it is not optimal for the differentiation of QoS in the context of Web

service based business process development. Such a differentiation is better provided

by the classification provided above. In the following, a definition of both defined

QoS categories will be given.

2.5.1 QoS aspects of the Web services stack

The current Web services stack (as shown in Figure 3) defines QoS in the broader

sense of security, reliable messaging and transactions. Various specifications (WS-

ReliableMessaging, WS-Security, WS-AtomicTransaction, WS-BusinessActivity)

 22

have been proposed which define these QoS aspects on the protocol level (security

and messaging protocols).

Figure 3 Web services stack1

 In order to guarantee that the aforementioned QoS aspects are guaranteed throughout

a message exchange, security and reliable messaging specific extensions for the WS-

Policy framework have been developed. These WS-Policy specifications (WS-

SecurityPolicy, WS-ReliableMessaging Policy) basically enable the declaration of

security and reliable messaging related Web service requirements which have to be

fulfilled by a service consumer in order to invoke a Web service successfully.

2.5.2 QoS attributes of the QoS model

In contrast to the QoS aspects of the Web services stack, the QoS model which is

proposed in [4] focus on measurable QoS attributes of Web services. This QoS model

can be classified into performance and dependability related QoS aspects.

The following definitions list the QoS attributes relating to these classifications - a

more detailed listing of these attributes is provided in [4 p.3ff].

1 Source: Univ.Prof.Dr. Schahram Dustdar. Lecture material for Service Composition.

URL: http://www.infosys.tuwien.ac.at/teaching/courses/IntAppl/3_Composition.pdf (Last accessed:

May, 24 2007)

 23

2.5.2.1 Performance

− Processing Time: The processing time (of a service S and an operation o)

tp(S,o) defines the time needed to actually carry out an operation for a specific

request R.

− Wrapping Time: The wrapping time tw(S,o) defines the time needed to un-

wrap (wrap) the XML structure of a received request (send response).

− Execution Time: The execution time te(S,o) defines the time a provider needs

to finish the processing of a service request. It is specified by the sum of two

wrapping times and the processing time: te = tp + 2 * tw

− Latency: The latency tl(S) of a service S defines the time of a SOAP message

to reach its destination.

− Response Time: The response time tr (S,o) defines the time needed for sending

a message M from a given client to a service S until the response R for the

message M returns back to the client. It is defined by the sum of two latency

times and the execution time: tr (S,o) = te + 2 * tl

− Round Trip Time (trt): The round trip time trt defines the overall time from the

time a request is issued to the moment the answer is received and processed. It

is defined by time-related attributes (on both, the requester and consumer side)

in the following way: trt = (2 * tw) + tl + (tp + 2 * tw) + tl + (2 * tw)

− Throughput: Defines the number of Web service requests R for an operation o

that can be processed by a service S within a given period of time:

tp(S,o) =
(sec) period time

R#

− Scalability: Defines the ability of a service S not to get overloaded by a

massive number of parallel requests:

sc(S) =
t)(Throughpu t

t
rt

rt

2.5.2.2 Dependability

− Availability: Defines a probability indicator for a service S that it is up and

running:

av(S) =
uptime

downtime1−

 24

− Accuracy: Defines the success rate of a service S:

ac(S) =
requests total#
request failed#1−

− Robustness: The robustness ro(s) defines a probability indicator that a service

can react properly to invalid or incomplete input messages.

3 Web service based business process
development

Web service based business process development involves two composition

techniques of the current Web services stack, namely choreography and orchestration.

As illustrated in Section 2.1 choreographies are described using the WS-CDL

specification language whereas orchestrations are specified using WS-BPEL. The

language constructs of WS-CDL can be mapped to WS-BPEL allowing a

choreography description to be transformed into BPEL processes and corresponding

WSDL descriptions. Hence, the engineering of Web service based business processes

represents a top-down modeling approach of Web services in which private

executable business processes are derived from a global choreography model

description.

The following sections expatiates the BPEL and WSDL transformation approach

mentioned above.

3.1 BPEL Transformation
The transformation of BPEL processes out of a WS-CDL choreography description

poses two challenges:

− Determination of CDL elements (ordering structures, activities and

definitions) which are relevant for a participant. This aspect will further be

referenced as endpoint projection.

− Mapping of relevant CDL elements to corresponding BPEL elements

In the following these aspects of endpoint projection and mapping will be revealed in

detail referring to an existing transformation approach. Furthermore a new

transformation approach will be described whose concepts will be used for BPEL

generation throughout the implementation part of this work.

 25

3.1.1 Endpoint Projection

A WS-CDL conform choreography represents a global description of communication

behavior. The projection of such a global description to endpoint processes whose

interactions precisely realize the global description is called endpoint projection [8].

The main difficulty in generating BPEL processes out of a WS-CDL choreography

description is the endpoint projection of the choreography flow to the respective

BPEL flows. The choreography flow comprises ordering structures and activities

which control the message exchange and the message processing of the parties

involved.

In [12] a transformation program is referenced which is based on XSLT. This XSLT

style sheet follows the (simplified) structure illustrated in Listing 9. For each role type

the style sheet evaluates if the role type is relevant for the choreography flow. If the

role type is relevant the choreography is traversed in a recursive way. For each node a

further relevance evaluation is performed by analyzing the attributes

cdl:toRoleTypeRef and cdl:fromRoleTypeRef. If the node is relevant it will

be mapped to a corresponding BPEL element.
For each roleType
 If choreography.hasRelevantActivities(roleType)
 Traverse choreography
 For each node
 Call Template "flow" (roleType)

Template "flow" (param roleType)
 If node.hasActivities(roleType)
 Map node to BPEL element
 Call Template "flow" (roleType)
:End

 Listing 9 1:1 Mapping

The above mentioned XSLT-based approach does not fulfill the principles of endpoint

projection entirely, because more BPEL elements (structured activities) are generated

than necessary. This is due to the fact that all parent nodes are considered for the

mappings even if they are not directly relevant for the BPEL process (1:1 mapping).

The problem is illustrated in Listing 10 showing a sample choreography flow. This

choreography flow defines multiple nested cdl:sequence elements. Only the 3rd

sequence is relevant for the role types "Customer" and "Manufacturer". The

placeholder "---" represents parts of the choreography which are not relevant for those

role types. The 1:1 mapping approach would generate BPEL processes with three

nested bpel:sequence elements (where the last bpel:sequence contains the

 26

corresponding BPEL activities) because the first and second bpel:sequence

element were considered to be relevant as well (as they contain relevant BPEL

activities too). However, a correct endpoint projection would only generate one

bpel:sequence element (with corresponding nested BPEL activities).
<package>
 <choreography>
 <sequence>
 <!-- ... -->
 <sequence>
 <!-- ... -->
 <sequence>
 <interaction operation="sendPO" ...>
 <participate fromRoleTypeRef="Customer"
 toRoleTypeRef="Manufacturer" .../>
 <exchange action="request" ...>
 <!-- ... -->
 </exchange>
 </interaction>
 <interaction operation="sendPO" ...>
 <participate fromRoleTypeRef="Customer"
 toRoleTypeRef="Manufacturer" .../>
 <exchange action="respond" ...>
 <!-- ... -->
 </exchange>
 </sequence>
 </sequence>
 </sequence>
 </choreography>
</package>

Listing 10 Choreography Flow - Example

With respect to endpoint projection a mapping approach is needed which maps only

relevant parent nodes (relevance mapping). In the following such a relevance mapping

algorithm will be discussed in detail.

3.1.2 Relevance Mapping Algorithm

The relevance mapping algorithm performs a traversing of the choreography

analyzing relevant ordering structures (cdl:sequence, cdl:parallel,

cdl:choice), workunits (cdl:workunit) and basic activities

(cdl:interaction, cdl:silentAction, cdl:assign). The relevance of

ordering structures will be determined by analyzing nested activities or variable

assignments. The relevance of workunits and basic activities will be determined by

analyzing role type definitions.

The core concept of the algorithm is a twofold relevance check for ordering structures

which will be applied recursively. For each ordering structure that is getting processed

 27

a check for relevant descendent and child nodes is performed (Descendent & Child

Relevance).

The pseudo code for the relevance mapping algorithm is provided in Listing 11.

Initially the root element of the choreography flow will be processed by the function

processChoreography(). Theoretically the choreography flow could consist of a

single basic activity – in this case a mapping to a corresponding BPEL basic activity

will be performed. In the common sense the root element of the choreography flow

represents a ordering structure (mostly cdl:sequence) or a workunit. In this case

the following relevance check will be performed by invoking the function

processCDLConstruct().

Descendant Relevance

If the ordering structure contains descendant node(s) representing a relevant basic

activity or workunit (Descendent Relevance = true) the ordering structure will be

considered for further analysis, otherwise the ordering structure will not be further

processed.

Child Relevance

If the ordering structure contains child node(s) representing a relevant basic activity,

workunit or cdl:choice (Child Relevance = true) the ordering structure will be

mapped to a corresponding BPEL structured activity. In the case of the ordering

structures cdl:sequence and cdl:parallel the mapping will only be performed

if there is more than one relevant child node.

Subsequently the child nodes (ordering structures, workunits and basic activities) of

the ordering structure will be enumerated. For each child node the following

procedure will be applied:

− If the child node represents a ordering structure further processing will be

performed for this ordering structure. In the following the term further

processing corresponds to a recursive invocation of the function

processCDLConstruct().

− If the child node represents a workunit a further twofold relevance distinction

check has to be performed.

 28

1) The workunit is directly relevant for the respective role type (the role

type is related to the variable definition(s) in the guard condition of the

cdl:workunit). In this case the child node will be mapped to a

corresponding BPEL structured activity and further processing for the

workunit will be performed.

2) The workunit is indirectly relevant for the respective role type (the role

type is not related to the variable definition(s) in the guard condition of

the cdl:workunit but referenced in an interaction activity

(toRoleTypeRef). In this case no mapping but further processing for

the workunit will be performed.

− If the child node represents a basic activity the child node will be mapped to a

corresponding BPEL basic activity.

If a ordering structure has relevant descendent nodes but no relevant child nodes

(Descendent Relevance = true, Child Relevance = false) further processing of the

child nodes (cdl:sequence and cdl:parallel) will be performed.

The following listing provides the pseudo code for the relevance mapping algorithm.
For each roleType {
 If roleType.isRelevant() {
 Generate bpel:partnerLinks
 Generate bpel:variables
 Generate bpel:process
 bpel:process.setRootElement()
 Call processChoreography(cdl:choreography,bpel:process)
 }
}

Function processChoreography(Node choreography, Element rootElement) {
 List = choreography.getChilds()
 For each node in List {
 Switch node.getType()
 Case type="sequence"|"parallel"|"choice"|"workunit"
 Call processCDLConstruct(node,rootElement)
 Case type="interaction"
 Map cdl:interaction to bpelConstruct
 rootElement.add(bpelConstruct)
 Case type="silentAction"
 Map cdl:silentAction to bpelConstruct
 rootElement.add(bpelConstruct)
 Case type="assign"
 Map cdl:assign to bpelConstruct
 rootElement.add(bpelConstruct)
 }
}
Function processCDLConstruct(Node cdlConstruct, Element rootElement) {
 If cdlConstruct.hasRelevantDescendants() {
 //Descendent Relevance = true
 If cdlConstruct.hasRelevantChilds() {
 //Child Relevance = true
 type = cdlConstruct.getType()
 Switch type
 Case "sequence"

 29

 If cdlConstruct.countRelevantChilds() > 1 {
 Map cdl:sequence to bpelConstruct
 rootElement.add(bpelConstruct)
 bpelConstruct.setRootElement()
 }
 Case "parallel"
 If cdlConstruct.countRelevantChilds() > 1 {
 Map cdl:parallel to bpelConstruct
 rootElement.add(bpelConstruct)
 bpelConstruct.setRootElement()
 }
 Case "choice"
 Map cdl:choice to bpelConstruct
 rootElement.add(bpelConstruct)
 bpelConstruct.setRootElements()
 List = cdlConstruct.getChilds()
 For each node in List {
 type = node.getType()
 Switch type
 Case "sequence"|"parallel"|"choice"
 Call enumerateCDLConstruct(node,rootElement)
 Case "workunit"
 relevance = node.getRelevanceType()
 Switch relevance
 Case "direct"
 Map cdl:workunit to bpelConstruct
 rootElement.add(bpelConstruct)
 Call enumerateCDLConstruct(node,rootElement)
 Case "indirect"
 Call enumerateCDLConstruct(node,rootElement)
 }
 Case "interaction"
 If node.isRelevant() {
 Map cdl:interaction to bpelConstruct
 rootElement.add(bpelConstruct)
 }
 Case "silentAction"
 If node.isRelevant() {
 Map cdl:silentAction to bpelConstruct
 rootElement.add(bpelConstruct)
 }
 Case "assign"
 If node.isRelevant() {
 Map cdl:assign to bpelConstruct
 rootElement.add(bpelConstruct)
 }
 }
 } // End: relevantChild
 Else {
 //Descendent Relevance = true, Child Relevance = false
 List = cdlConstruct.getChilds()
 For each node in List {
 Call enumerateCDLConstruct(node,rootElement)
 }
 }
 } // End: relevantDescendant
}

Listing 11 Relevance Mapping Algorithm

3.1.3 Mapping Rules

Having described the general relevance mapping algorithm element mapping rules for

each ordering structure, workunit and basic activity will be provided (see Table 1).

 30

The mapping rules basically follow the mapping rules defined in [12]. There are some

differences regarding the mapping of cdl:choice, cdl:workunit and

cdl:interaction which will be highlighted accordingly.

WS-CDL BPEL Mapping Conditions
 Activities

sequence sequence

parallel flow

choice switch

pick

nested workunit directly relevant

nested workunit indirectly relevant

workunit case

while

workunit inside choice

(block & repeat attribute set to false)

workunit not inside choice

(block attribute set to false, repeat set to true)

interaction invoke

receive

|| onMessage

outputVariable

|| receive

reply

action = request, roleType = fromRoleType

action = request, roleType = toRoleType

(interaction inside workunit which is inside choice)

action = respond, roleType = fromRoleType

(asynchronous messaging)

action = respond, roleType = toRoleType

silentAction sequence with

nested empty

noAction empty

assign assign

perform ---

Table 1 WS-CDL to BPEL Mapping

The following section provides details for those activities where the mapping requires

further differentiation (mapping conditions).

− cdl:choice

This ordering structure requires a differentiation of the nested cdl:workunit

constructs. If a cdl:workunit is directly relevant (Section 3.1.2) for the

respective role type a bpel:switch will be generated. If a cdl:workunit is

indirectly relevant a bpel:pick will be generated.

− cdl:workunit

If cdl:workunit is a child node of cdl:choice a bpel:case will be

 31

generated. In this case the attributes cdl:block and cdl:repeat are set to

false. Otherwise a bpel:while will be generated. In this case the attribute

cdl:repeat is set to true and cdl:block is set to false. The case of a

blocking condition (cdl:block set to true) will not be considered as it is

not clearly defined how to map this scenario (wait until variable becomes

available) to BPEL [9]. In [12] the authors propose to generate a

bpel:switch if cdl:block is set to false. In the choreographies considered

throughout this work such a scenario is always related with an enclosing

cdl:switch construct. Hence, cdl:workunit represents the case condition.

− cdl:interaction

Depending on this role type definition and the exchange action (request,

respond) four different cases have to be distinguished for the mapping.

1. "request & fromRoleType": generate a bpel:invoke activity

2. "request & toRoleType": if cdl:interaction is defined

inside a cdl:workunit which is defined inside a cdl:choice

generate a bpel:onMessage activity; otherwise generate a

bpel:receive activity.

3. "respond & fromRoleType": append attribute outputVariable to

corresponding bpel:invoke activity which has been already defined

in case 1. This output variable contains the message response.

4. "respond & toRoleType": generate a bpel:reply activity

In [12] the authors define a bpel:receive in case 3 mentioned above. This

mapping is applicable for an asynchronous messaging scenario. In the case of

synchronous messaging the cdl:invoke activity contains input and output

variables. The request message is defined in the input variable and the

response message gets stored in the output variable.

In addition to the ordering structures and basic activities listed above the following

choreography definitions have to be considered as well.

− cdl:relationshipType

All cdl:relationshipType definitions have to be considered where

roleType is either referenced in 1st or 2nd cdl:relationshipType/

roleType definition. If roleType is referenced in 1st

 32

cdl:relationshipType/roleType definition (attribute typeRef) an

element bpel:partnerLink with attribute partnerRole has to be

generated; otherwise an element bpel:partnerLink with attribute myRole

has to be generated.

− cdl:variable

All variable definitions have to be considered where roleType is referenced

in attribute roleTypes of cdl:variable and which declare an attribute

informationType. If informationType defines an XML Schema simple

type an element variable with attribute type has to be generated; otherwise an

element variable with attribute messageType has to be generated.

3.1.4 Attribute Mapping

Having identified the general relevance and mapping rules for the WS-CDL to BPEL

mapping process complementary rules for the attribute mappings are provided. These

attribute mapping rules define which attributes of the CDL elements have to be

considered in order to define the required attributes of the BPEL elements. The BPEL

elements sequence, flow, switch, and pick do not define any attributes; hence

these elements will not be further considered.

− All attributes of bpel:partnerLink and bpel:partnerLinkType are

derived from the attribute interface of the corresponding

cdl:roleType/behavior definition.

− The attribute name of bpel:variable is derived from the identical attribute

of cdl:variable. The attributes type and messageType are derived from

the attribute type of the corresponding cdl:informationType definition.

− The attribute operation of the BPEL activities

bpel:[invoke,receive,reply, onMessage] is derived from the

attribute operation of cdl:interaction. The attributes

inputVariable, outputVariable and Variable are derived from the

attribute variable of cdl:interaction/exchange/send or receive

respectively. The attributes partnerLink and portType are derived from

the attribute interface of the corresponding cdl:roleType/behavior

definition.

 33

− The attribute expression of bpel:assign/copy/from is derived from the

attribute variable of cdl:assign/copy/source. The attributes

variable and part of cdl:assign/copy/to are derived from the

attribute variable of cdl:assign/copy/target.

− The attributes name and condition of bpel:[while,case] are derived

from the attributes name and guard of cdl:workunit.

The second step in the twofold top-down modeling process involves the generation of

WSDL descriptions which will be described next.

3.2 WSDL Transformation
Each BPEL process is defined by a corresponding WSDL description. Contrary to

BPEL transformation the mapping of WS-CDL to WSDL does not require the

choreography flow to be analyzed in detail. WSDL descriptions define a static

structure which can be extracted from a choreography without considering the

choreography flow.

Table 2 summarizes the various elements of such a WSDL description illustrating the

corresponding WS-CDL elements. These WS-CDL elements represent the

information which has to be extracted from a choreography description in order to

generate WSDL descriptions for the respective BPEL processes.

WSDL WS-CDL
Element Attribute Element Attribute

definitions xmlns:tns

targetNamespace

name

package

behavior

xmlns:tns

targetNamespace

name

message [1...n] name exchange informationType

portType [1...n]

 operation [1...n]

 input | output

name

name

name

message

behavior

interaction

exchange

interface

operation

action

informationType

binding [1...n]

 operation [1...n]

 soap:operation

name

type

name

soapAction

behavior

interaction

behavior

interaction

name + “Binding”

“tns:” + interface + “Binding”

operation

interface namespace +

operation

 34

 input

 soap:body

 output

 soap:body

namespace

namespace

behavior

behavior

interface namespace

interface namespace

service [1...n]

 port [1...n]

name

name

binding

behavior

behavior

interface + “Service”

interface + “Port”

“tns:” + name + “Binding”

Table 2 WSDL - WS-CDL (Element & Attribute Mapping)

Listing 12 illustrates the pseudo code for the WSDL generation process. For each role

type of the choreography a WSDL description of its service interface (corresponding

to the respective BPEL process) will be generated if this service interface is invoked

throughout the choreography flow.
For each roleType
 Get behavior interface,name
 Call EvaluateRoleType
 If (interfaceOfRoleTypeUsed)
 Call GenerateWSDL

Function EvaluateRoleType {
 For each channelType
 Get behavior of corresponding roleType
 Get channelType variable
 If channelType variable referenced in [1...n]interaction(s)
 Set interfaceOfRoleTypeUsed=true
}

Function GenerateWSDL {
 Generate output file [cdl:behavior interface]+ ".wsdl"
 Generate wsdl:definitions element

 For each interaction where toRoleTypeRef=roleType
 Generate wsdl:message element

 For each behavior interface of roleType
 Generate wsdl:portType element
 For each interaction where toRoleTypeRef=roleType
 Generate wsdl:operation element
 Generate wsdl:binding element
 For each interaction where toRoleTypeRef=roleType
 Generate wsdl:operation element
 Generate a wsdl:service element
 Generate wsdl:port element
}

Listing 12 Pseudo Code - WSDL Generation

 35

4 QoS Integration
The integration of QoS throughout a Web service based business process development

scenario requires appropriate techniques to consider QoS at the choreography and

orchestration layer. This is due to the fact as neither WS-CDL nor WS-BPEL support

the declaration of QoS attributes. Yet, both language specifications can be extended

accordingly enabling an integration of existing standards. Considering QoS at the

choreography layer can be achieved by the use of Service Level Agreements (SLAs)

which focus on performance and dependability related aspects of the QoS model. The

integration of QoS at the orchestration layer can be attained by the use of Web service

policies. SLAs are a well-established standard and provide proper methods for

defining agreements on QoS requirements between the participants involved. On this

account SLAs will be used to integrate QoS inside choreography descriptions. Web

service policies are state-of-the-art for the definition of non-functional requirements

of Web services. In contrast to SLAs − where agreement on QoS requirements is

achieved on the business level − Web service policies are more technology oriented

which makes it a suitable standard for integrating QoS at the orchestration layer.

In order to map QoS aspects from the choreography to the orchestration layer it is

necessary to map SLAs to corresponding Web service policies. However, the current

WS-Policy specifications focus on security and reliable messaging related QoS

aspects only − performance and dependability related QoS aspects have not been

considered yet. Consequently, QoS aspects defined in SLAs can not be mapped to

existing WS-Policy specifications (WS-RMPolicy, WS-SecurityPolicy). Such a

mapping requires a WS-Policy specification for the QoS domain (WS-QoSPolicy)

which is missing in the current WS-Policy framework. Therefore a mapping between

these two layers implies an extension of the current WS-Policy framework by

defining a policy for the QoS domain.

In the following sections the above illustrated QoS integration process will be

discussed in detail.

 36

4.1 QoS at the choreography layer
As mentioned above SLAs will be used to integrate QoS in choreography

descriptions. In the following such an SLA integration approach will be highlighted.

Prior to this, an evaluation of SLA specification languages will be provided.

4.1.1 Evaluation of SLA Specification Languages

The following evaluation summarizes the relevance and applicability of both

specifications languages (WSLA and WS-Agreement) in respect to the QoS

integration process. Further aspects of both frameworks (e.g., monitoring in the case

of WSLA or provisioning of templates in case of WS-Agreement) have not been

considered as these aspects are not directly related to the QoS integration effort

examined throughout this work. The focus has been kept on the language

specifications of both frameworks.

The WSLA language specification focuses on the definition of SLA parameters. The

definition of measurable SLA parameters together with the ability to specify a rich set

of SLO’s using logical operators directly support the creation of SLAs for QoS

attributes of Web services.

As opposed to WSLA, the WS-Agreement language specification itself has little or no

support for the definition of such SLA parameters. WS-Agreement provides an

umbrella structure that must be complemented by other languages to describe a

service or to define guarantees [5 p.4]. To define SLAs in the context of performance

and dependability related aspects, WS-Agreement has to be extended regarding the

definition of service properties and SLO’s. This is due to the fact that WS-Agreement

considers the following topics outside the scope of the specification (the specification

defines three more out-of-scope topics – only the relevant topics are referenced):

1. Defining domain-specific expressions for service descriptions

2. Defining specific condition expression language for use in specifying

guarantee terms

3. Defining specific SLO terms for a specific usage domain

All topics listed above are relevant for specifying SLAs in the context of Web

services. The first topic refers to the definition of service parameters and the service

 37

reference. In WSLA these facts are considered through the specification of SLA

parameters and metrics along with a binding to an existing WSDL description of the

respective Web service. In WS-Agreement this would require an extension of the

service description term (SDT) for the specification of WSDL service references.

Furthermore the service properties section (contained in a SDT) has to be extended to

allow the definition of metric-related information for the specific service parameters.

The second and third topic refers to the definition and grouping of SLO’s based on

defined service properties. In WSLA these facts are considered through the

specification of expressions and logical operators. Expressions define assertions on

SLA parameters using compare operators and can be grouped and nested using first

order logic. In WS-Agreement this would require an extension to the SLO construct

of the guarantee term. Neither expressions nor logical operators are defined in the

specification. In [6] an extension of WS-Agreement is illustrated showing by what

means the definition of SLAs can be accomplished.

The integration of QoS in Web service based business process development requires

the definition of SLAs for Web services. In general, this requirement can be

accomplished by both language specifications. Contrary to WS-Agreement WSLA

does not have to be extended to enable the definition of SLAs which are used

throughout this work. Out of this reason the integration of QoS at the choreography

description layer is being accomplished with SLAs that follow the WSLA language

specification.

4.1.1.1 WSLA Extension

Without any modification of the WSLA schema an automatic mapping of an SLA

parameter to a policy assertion cannot be performed in a satisfying way. A mapping

would only be possible if the name of an SLA parameter agrees with the policy

assertions defined in the WS-QoSPolicy schema (see Section 4.2.1).

The following modification of the WSLA schema is proposed (The namespace prefix

qosp refers to the namespace of the WS-QoSPolicy schema):

<xsd:complexType name="SLAParameterType">
 <xsd:attribute name="type" type="qosp:QoSAttributes"/>
</xsd:complexType>

Listing 13 WSLA Extension - Parameter Type

 38

4.1.2 Integration of SLAs

Having identified WSLA for the definition of SLAs the question remains how to

integrate these SLAs at the choreography description layer. As mentioned before not

the SLA itself but a reference to the SLA has to be integrated in the choreography

description. In accordance to other Web service related specifications the WS-CDL

schema enables additionally elements to be defined in the respective CDL constructs.

In the following this extension mechanism will be described in detail.

Each element of the WS-CDL schema can be extended by the definition of elements

and attributes from other namespaces. All types defined in WS-CDL derive from the

cdl:tExtensibleElements type which is illustrated in Listing 14. This type

allows elements and attributes from other namespaces to be added. Furthermore, it

contains the optional description element that is applied to all WS-CDL constructs.
<complexType name="tExtensibleElements">
 <sequence>
 <element name="description" minOccurs="0">
 <complexType mixed="true">
 <sequence minOccurs="0" maxOccurs="unbounded">
 <any processContents="lax" />
 </sequence>
 <attribute name="type" type="cdl:tDescriptionType"
 use="optional" default="documentation" />
 </complexType>
 </element>
 <element name="CDLExtension" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence minOccurs="0" maxOccurs="unbounded">
 <any processContents="lax" />
 </sequence>
 </complexType>
 </element>
 </sequence>
 <anyAttribute namespace="##other" processContents="lax" />
</complexType>

<simpleType name="tDescriptionType">
 <restriction base="string">
 <enumeration value="documentation" />
 <enumeration value="reference" />
 <enumeration value="semantics" />
 </restriction>
</simpleType>

Listing 14 WS-CDL - Extensible Element

4.1.2.1 Definition of SLA references

To include an SLA in a choreography description an SLA reference element needs to

be defined. Listing 15 illustrates the declaration of such an SLA reference.

 39

The attribute serviceconsumer refers to the name of a role type which is defined in

the choreography description. This role type corresponds to the SLAs service

consumer. The attribute uri refers to the location where the SLA is stored and can be

accessed.
<xs:element name="slaReference">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="serviceconsumer" type="xs:string" use="required"/>
 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 </xs:complexType>
</xs:element>

Listing 15 SLA Reference – Schema Definition

4.1.2.2 Integration of SLA references

To associate an SLA with a particular service the respective SLA reference needs to

be added to the behavior element of a participants’ role type. The role type

corresponds to the service provider and the behavior interface attribute

corresponds to the service interface. Another possible approach would be the

integration of SLA references in the channel type definition. A choreography

interaction is always bound to a specific channel which defines exactly one role type

representing the receive part in the interaction (service provider). However, an

interaction also specifies the participating role types directly, providing information

about the interaction fromRoleType respective toRoleType. Out of this reason

integrating SLA references at the behavior element of a participant’s role type further

simplifies implementation efforts of such an SLA integration scenario.

As illustrated in Listing 14 the WS-CDL schema supports two methods for adding

SLA references to CDL constructs (the namespace prefix qosp refers to the

namespace of the WS-QoSPolicy schema):

1. CDL constructs can be extended using the CDLExtension element

2. CDL constructs can be semantically annotated using the description

element

Basically, both methods can be used for an integration of SLA references. However,

the use of the description element seems more appropriate as SLA references can be

regarded as semantic annotations of a choreography description. The fact that only

 40

one description element can be defined for each CDL construct implies no further

restrictions as multiple SLA references can be attached to one description element.

Listing 16 illustrates both extension methods. The attribute interface of the

element behavior identifies a WSDL interface type which is specified in form of a

qualified name (the namespace prefix b2o refers to an exemplary namespace used in

the implementation scenario). A behavior without an interface attribute describes a

role type that is not required to support a specific Web service interface. This cannot

be the case for a role type acting as a service provider. Therefore every role type

containing an SLA reference will have a corresponding Web service interface defined.

The attribute type of the element description is bound to one of the following

types:

− documentation

defined as plain text or other non-encoded text formats

− reference

defined as URI to a description of the component

− semantics

defined as machine oriented semantic descriptions

<!-- use of CDLExtension element -->
<roleType name="ManRoleType">
 <behavior interface="b2o:manInterface" name="ManBehaviour">
 <CDLExtension>
 <qosp:slaReference
 name="SLA1"
 uri="ManufacturerCustomerSLA.xml"
 serviceconsumer="CustRoleType"
 </qosp:slaReference>
 </CDLExtension>
 </behavior>
</roleType>

<!-- use of description element (semantic annotation) -->
<roleType name="ManRoleType">
 <behavior interface="b2o:manInterface" name="ManBehaviour">
 <description type="semantics">
 <qosp:slaReference
 name="SLA1"
 uri="ManufacturerCustomerSLA.xml"
 serviceconsumer="CustRoleType"
 </qosp:slaReference>
 </description>
 </behavior>
</roleType>

Listing 16 SLA Integration

 41

Throughout this work the second approach (semantic annotation) is used for the

integration of SLAs in a choreography description.

4.2 QoS at the orchestration layer
Following the approach used at the choreography layer an existing Web service

standard (WS-Policy) will be used for the integration of QoS at the orchestration

layer.

As summarized in Section 2.4 the WS-Policy framework provides a grammar for the

definition of domain-specific policies. In the following a QoS domain specific

extension of the WS-Policy framework will be provided. Such an extension is the

prerequisite for mapping SLAs from the choreography description layer to equivalent

policies on the orchestration layer. Subsequently to the different SLA to policy

mapping scenarios two policy integration approaches will be evaluated.

4.2.1 Definition of a WS-QoS Policy

The WS-QoSPolicy specification comprises domain-specific policy assertions for the

QoS domain. The QoS model described in Section 2.5.2 will provide a basis for the

QoS policy assertions. Not all of the attributes identified in the QoS model are

definable in advance. They are either dependant on external factors or will be derived

from empirical values. The WS-QoSPolicy will focus on attributes which are directly

influenced by the service provider. Hence all those QoS attributes will be considered

which are relevant in respect to Service Level Agreements.

Table 3 illustrates the relevance of the attributes from the QoS model.

QoS Attribute Relevant Reason
Processing time YES

Wrapping time YES

Execution time YES

Latency NO Represents external factor

Response time NO Depends on external factor

Round Trip time NO Depends on external factors

Throughput YES

Scalability NO Depends on external factor

Availability YES

Accuracy NO Depends on empirical values

 42

Robustness NO Depends on empirical values

Table 3 QoS Attribute Relevance

All QoS attributes marked as relevant will be considered in the WS-QoSPolicy. A

service provider can state guarantees on these attributes in an SLA.

Those attributes marked as non-relevant will not be considered based of the following

reasons.

− Latency represents an external factor which cannot be influenced by a service

provider as it is dependent on the type of network connection the request is

sent over. In a choreography scenario Web service requests will be typically

sent over the internet - participants will not be connected by an internal

WAN/LAN connection but use the internet for message exchanges.

− Response Time subsumes Execution Time and Latency. A service provider

can only state a guarantee on the Execution Time for a service request.

− Round Trip time defines the overall time of a service request and depends on

Latency, the processing on service consumer and the processing on service

provider side. Hence a service provider can not state any guarantee on this

value.

− Scalability defines a probability indicator which is dependant on the Round

Trip time.

− Accuracy depends on empirical values by evaluating all service invocations

during a defined period of time. A service provider cannot state a guarantee on

this value at the particular time an SLA will be established.

− Robustness defines a probability indicator which depends on empirical values

too.

Consequently the following QoS attributes will be reflected in the WS-QoSPolicy:

− Processing time

− Wrapping time

− Execution time

− Throughput

− Availability

Typically Processing time and Wrapping time will not be explicitly referred to in an

SLA. Instead a guarantee on Execution time will be defined.

 43

The WS-QoSPolicy specifies the following assertion model and normative outline.

4.2.1.1 Assertion Model

The WS-QoSPolicy assertion model defines a loose coupling of policy assertions for

all relevant QoS attributes of the QoS model (see Table 3).

The structure of SLAs imposes the following three requirements on this assertion

model:

1. no root element for the policy assertions is defined

2. policy assertions are not bound to a pre-defined order

3. the same policy assertion must not be defined inside the same policy operator

The first two requirements consider the fact that multiple SLO’s can be defined for

the same SLA parameter (corresponding to a QoS policy assertion) and that SLO’s

may contain a nested structure. The definition of a root element and a predefined

order for policy assertions would prevent an automatic SLA to policy mapping

approach.

Listing 17 illustrates two policy assertions following this assertion model.
<wsp:Policy>
 <wsp:All>
 <qosp:ExecutionTimeAssertion unit="seconds" predicate="Less"
 value="5"/>
 <qosp:ThroughputAssertion unit="requests"
 predicate="GreaterEqual" value="1"/>
 </wsp:All>
</wsp:Policy>

Listing 17 Policy Assertions

4.2.1.2 Normative Outline

The normative outline for the QoS policy assertion is illustrated in Listing 18.

<qosp:[QoS]Assertion unit="xs:string" predicate="tns:PredicateType"
 value="xs:integer | xs:flow"/>

Listing 18 Normative Outline

The following describes the normative constraints on the outline listed above:

/qosp:[QoS]Assertion

 44

[QoS] represents a placeholder for one of the following QoS assertions:

ProcessingTime, WrappingTime, ExecutionTime, Throughput, and Availability. The

exact signification of these assertions is defined in the QoS model (see Section 2.4).

/qosp:[QoS]Assertion/@value

For the AvailabilityAssertion the attribute value is of type xs:flow. For all

other assertions the attribute value is of type xs:integer.

/qosp:[QoS]Assertion/@unit

For all assertions the attribute unit is of type xs:string.

/qosp:[QoS]Assertion/@predicate

For all assertions the attribute predicate is of type tns:PredicateType. The

namespace-prefix tns points to the namespace of the WS-QoSPolicy. The type

PredicateType is bound to one of the following values: Greater, Less,

Equal, GreaterEqual, LessEqual.

4.2.1.3 XML Schema

The WS-QoSPolicy is defined by an XML schema. Listing 19 illustrates the relevant

part of this schema (the complete schema is listed in the appendix of this work). Each

element defines a corresponding QoS policy assertion.
<xs:element name="ProcessingTimeAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
</xs:element>
<xs:element name="WrappingTimeAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
</xs:element>
<xs:element name="ExecutionTimeAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>

 45

</xs:element>
<xs:element name="ThroughputAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
</xs:element>
 <xs:element name="AvailabilityAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:float" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
</xs:element>
<xs:simpleType name="PredicateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Greater"/>
 <xs:enumeration value="Less"/>
 <xs:enumeration value="Equal"/>
 <xs:enumeration value="GreaterEqual"/>
 <xs:enumeration value="LessEqual"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="QoSAttributes">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ProcessingTime"/>
 <xs:enumeration value="WrappingTime"/>
 <xs:enumeration value="ExecutionTime"/>
 <xs:enumeration value="Throughput"/>
 <xs:enumeration value="Availability"/>
 </xs:restriction>
</xs:simpleType>

Listing 19 QoS Policy - XML Schema

In addition to the policy assertions the WS-QoSPolicy schema is also used to define a

list of QoS attributes. These QoS attributes are referenced in the WSLA schema (see

Section 4.1.1.1) for the definition of SLA parameters. As SLA parameters are

restricted to the defined QoS attributes all prerequisites for an automatic mapping

approach of SLAs to policies are fulfilled

This automatic mapping approach which will be discussed in detail in the following

section.

4.2.2 From SLAs to policies

The extension of the WSLA schema to restrict SLA parameters to pre-defined QoS

attributes and the proposal of a WS-QoSPolicy to define policy assertions based on

QoS aspects form the basis for an automatic mapping of SLAs to policies. The SLA to

policy mapping approach comprises the following steps:

− Each SLA will be mapped to a policy

 46

− Each SLA parameter will be mapped to a policy assertion

For each SLA one or more Service Level Objectives (SLO’s) about SLA parameters

will be defined. These SLA parameters refer to the attributes of the QoS model.

Depending on the usage pattern of SLO’s the following different SLA scenarios can

be distinguished:

− SLA scenario 1:

One SLO is defined for every single SLA parameter

− SLA scenario 2:

One SLO comprises multiple SLA parameters

− SLA scenario 3:

SLA parameters are defined in multiple SLO’s

In the following sections these SLA scenarios are described in detail.

4.2.2.1 SLA Scenario 1

Listing 20 illustrates a sample SLA construct which defines two SLO’s (service

execution time and service throughput), whereby each SLO defines exactly one SLA

parameter (e.g., the SLO SLOServiceExecutionTime defines the SLA parameter

p1 which corresponds to the type ExecutionTime).
<SLA>
 <!-- ... -->
 <ServiceDefinition>
 <Operation>
 <SLAParameter name="p1" type="ExecutionTime" unit="seconds">
 <!-- ... -->
 </SLAParameter>
 <SLAParameter name="p2" type="Throughput" unit="requests">
 <!-- ... -->
 </SLAParameter>
 <!-- ... -->
 </Operation>
 <!-- ... -->
 <Obligations>
 <ServiceLevelObjective name="SLOServiceExecutionTime">
 <!-- ... -->
 <Expression>
 <Predicate type="wsla:Less">
 <SLAParameter>p1</SLAParameter>
 <Value>5</Value>
 </Predicate>
 </Expression>
 <!-- ... -->
 </ServiceLevelObjective>
 <ServiceLevelObjective name="SLOServiceThroughput">
 <!-- ... -->
 <Expression>

 47

 <Predicate type="wsla:GreaterEqual">
 <SLAParameter>p2</SLAParameter>
 <Value>1</Value>
 </Predicate>
 </Expression>
 <!-- ... -->
 </ServiceLevelObjective>
 </Obligations>
</SLA>

Listing 20 SLA Construct – Scenario 1

Listing 21 illustrates the pseudo code for this mapping scenario. Exactly one All

operator will be defined containing one ore more policy assertions. For each SLO a

policy assertion will be generated. The various attributes for a policy assertion have to

be enumerated according to the definition of the SLAParameter (defined in the

Service Description Term) and corresponding Predicate (defined in the SLO –

linked to a specific SLAParameter) attributes.
generateElement("wsp:Policy")
generateElement("wsp:All")
Element SLA = getRootElement()
For each SLO in SLA
 Element Expression = SLO.getNode("Expression")
 Call Function QoSAssertion(Expression, SLA)

Function QoSAssertion(Element Expression, Element SLA)
 Element Predicate = Expression.getElement("Predicate")
 String PredicateValue = Predicate.getValue()
 String PredicateType = Predicate.getAttribute("type")
 String SLAParameterName = Predicate.getValueOfElement("SLAParameter")
 Element ServiceDefinition = SLA.getElement("ServiceDefinition")
 For each SLAParameter in ServiceDefinition
 If SLAParameter.getAttribute("name") = SLAParameterName
 String SLAParameterUnit = SLAParameter.getAttribute("unit")
 String SLAParameterType = SLAParameter.getAttribute("type")
 SLAParameterType = generateElement("qosp:" & SLAParameterType)
 SLAParameterType.addAttribute("unit", SLAParameterUnit)
 SLAParameterType.addAttribute("predicate", PredicateType)
 SLAParameterType.addAttribute("value", PredicateValue)

Listing 21 Pseudo Code – Scenario 1

Listing 22 illustrates the equivalent policy construct for the SLA construct of Listing

20.
<wsp:Policy>
 <wsp:All>
 <qosp:ExecutionTimeAssertion unit="seconds" predicate="Less"
 value="5"/>
 <qosp:ThroughputAssertion unit="requests"
 predicate="GreaterEqual" value="1"/>
 </wsp:All>
</wsp:Policy>

Listing 22 Policy Construct – Scenario 1

 48

4.2.2.2 SLA Scenario 2

SLA Parameters can be grouped throughout an SLO by using the logical operators

And, Or, Not, Implies. These logical operators have to be mapped to the WS-

Policy operators All and ExactlyOne respectively.

Combining policy assertions using the All operator means that all the behaviors

represented by these assertions are required. Policy assertions combined using the

ExactlyOne operator requires exactly one of the behaviors represented by the

assertions. To allow a flexible nesting of QoS assertions the WS-QoSPolicy schema

must not define a root element. The following comparison illustrates the equivalent

policy operators for the different logical operators of the WSLA specification.

And → All

Or → ExactlyOne

Not → Reverse predicate

Implies → ExactlyOne & Reverse predicate

Listing 23 illustrates a sample SLA construct which defines one SLO for the service

performance (according to the classification of the QoS model), whereby two

different combinations for the SLA parameters ExecutionTime and Throughput

are defined.
<SLA>
 <!-- ... -->
 <ServiceDefinition>
 <Operation>
 <SLAParameter name="p1" type="ExecutionTime" unit="seconds">
 <!-- ... -->
 </SLAParameter>
 <SLAParameter name="p2" type="Throughput" unit="requests">
 <!-- ... -->
 </SLAParameter>
 <!-- ... -->
 </Operation>
 <!-- ... -->
 <Obligations>
 <ServiceLevelObjective name="SLOServicePerformance">
 <!-- ... -->
 <Expression>
 <Or>
 <Expression>
 <And>
 <Expression>
 <Predicate type="wsla:Less">
 <SLAParameter>p1</SLAParameter>
 <Value>5</Value>
 </Predicate>
 </Expression>
 <Expression>

 49

 <Predicate type="wsla:GreaterEqual">
 <SLAParameter>p2</SLAParameter>
 <Value>1</Value>
 </Predicate>
 </Expression>
 </And>
 </Expression>
 <Expression>
 <And>
 <Expression>
 <Predicate type="wsla:Less">
 <SLAParameter>p1</SLAParameter>
 <Value>7</Value>
 </Predicate>
 </Expression>
 <Expression>
 <Predicate type="wsla:GreaterEqual">
 <SLAParameter>p2</SLAParameter>
 <Value>3</Value>
 </Predicate>
 </Expression>
 </And>
 </Expression>
 </Or>
 </Expression>
 <!-- ... -->
 </ServiceLevelObjective>
 </Obligations>
</SLA>

Listing 23 SLA Construct - Scenario 2

Listing 24 illustrates the pseudo code for this mapping scenario. For each SLO the

number of Expression elements will be enumerated. If an SLO contains exactly one

Expression than the same procedure as in Scenario 1 will be applied (function

QoSAssertion). Otherwise the function EvaluateExpression will be called.

Throughout this function the nesting level of the root Expression element (number

of nested Expression elements) will be enumerated. If nesting level is null than the

function QoSAssertion will be called. Depending on the logical operator ("Not" or

"Implies") a reverse PredicateType will be defined. If nesting level is greater

null than the corresponding logical operator will be determined. Depending on the

logical operator a certain policy operator will be generated – furthermore the function

EvaluteExpression will be called recursively for each nested Expression

element.
generateElement("wsp:Policy")
generateElement("wsp:All")
Element SLA = getRootElement()
For each SLO in SLA
 Element Expression = SLO.getElement("Expression")
 If SLO.countNodes("Expression") = 1
 String PredicateType = Expression.getValueOfElement("Predicate")
 Call Function QoSAssertion(Expression, PredicateType, SLA)
 If SLO.countNodes("Expression") > 1
 Call Function EvaluateExpression(Expression, "", SLA)

 50

Function QoSAssertion(Element Expression, String PredicateType, Element SLA)
 Element Predicate = Expression.getElement("Predicate")
 String PredicateValue = Predicate.getValue()
 String PredicateType = Predicate.getAttribute("type")
 String SLAParameterName = Predicate.getValueOfElement("SLAParameter")
 Element ServiceDefinition = SLA.getElement("ServiceDefinition")
 For each SLAParameter in ServiceDefinition
 If SLAParameter.getAttribute("name") = SLAParameterName
 String SLAParameterUnit = SLAParameter.getAttribute("unit")
 String SLAParameterType = SLAParameter.getAttribute("type")
 SLAParameterType = generateElement("qosp:" & SLAParameterType)
 SLAParameterType.addAttribute("unit", SLAParameterUnit)
 SLAParameterType.addAttribute("predicate", PredicateType)
 SLAParameterType.addAttribute("value", PredicateValue)

Function EvaluateExpression(Element Expression, String LogicalOperator,
 Element SLA)
 If Expression.countNodes("Element") = 0 //nesting level = 0
 Element Predicate = Expression.getElement("Predicate")
 String PredicateType = Predicate.getAttribute("type")
 If LogicalOperator = "Not" | "Implies"
 If PredicateType = "Greater"
 Call QoSAssertion(Expression, "LessEqual")
 If PredicateType = "Less"
 Call QoSAssertion(Expression, "GreaterEqual")
 If PredicateType = "GreaterEqual"
 Call QoSAssertion(Expression, "Less")
 If PredicateType = "LessEqual"
 Call QoSAssertion(Expression, "Greater")
 Else
 Call QoSAssertion(Expression, PredicateType, SLA)
 If Expression.countNodes("Element") > 0 //nesting level > 0
 Element LogicalOperatorNode = Expression.getChildElement()
 If LogicalOperatorNode.getType() = "And"
 generateElement("wsp:All")
 For each Expression in LogicalOperatorNode
 Call EvaluateExpression(Expression, "And", SLA)
 If LogicalOperatorNode.getType() = "Or"
 generateElement("wsp:ExactlyOne")
 For each Expression in LogicalOperatorNode
 generateElement("wsp:All")
 Call EvaluateExpression(Expression, "Or", SLA)
 If LogicalOperatorNode.getType() = "Not"
 generateElement("wsp:All")
 For each Expression in LogicalOperatorNode
 Call EvaluateExpression(Expression, "Not", SLA)
 If LogicalOperatorNode.getType() = "Implies"
 generateElement("wsp:ExactlyOne")
 For each Expression in LogicalOperatorNode
 generateElement("wsp:All")
 Call EvaluateExpression(Expression, "Implies", SLA)

Listing 24 SLA Mapping – Scenario 2

Listing 25 illustrates the equivalent policy construct for the SLA construct of Listing

23.
<wsp:Policy>
 <wsp:All>
 <wsp:ExactlyOne>
 <wsp:All>
 <qosp:ExecutionTimeAssertion unit="seconds"
 predicate="Less" value="5" />
 <qosp:ThroughputAssertion unit="requests"
 predicate="GreaterEqual" value="1" />

 51

 </wsp:All>
 <wsp:All>
 <qosp:ExecutionTimeAssertion unit="seconds"
 predicate="Less" value="7" />
 <qosp:ThroughputAssertion unit="requests"
 predicate="GreaterEqual" value="3" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:All>
</wsp:Policy>

Listing 25 Policy Construct – Scenario 2

4.2.2.3 SLA Scenario 3

SLA parameters may be defined in multiple SLO’s. For each SLO a time period has

to be specified. Therefore it would be possible to specify multiple SLO’s (with

corresponding SLA parameters) for different time periods (as illustrated in Listing

26). However, a more useful approach would be the definition of timeslots (i.e. the

SLA parameter ExecutionTime must be of value x during peak-hours). Yet, this

kind of scenario is not supported by the WSLA specification.
<SLA>
 <!-- ... -->
 <ServiceDefinition>
 <Operation>
 <SLAParameter name="p1" type="ExecutionTime" unit="seconds">
 <!-- ... -->
 </SLAParameter>
 <!-- ... -->
 </Operation>
 <!-- ... -->
 <Obligations>
 <ServiceLevelObjective name="SLOServiceExecutionTime">
 <!-- ... -->
 <Validity>
 <Start>2007-01-01T00:00:00.000+01:00</Start>
 <End>2008-01-01T00:00:00.000+01:00</End>
 </Validity>
 <Expression>
 <Predicate type="wsla:Less">
 <SLAParameter>p1</SLAParameter>
 <Value>5</Value>
 </Predicate>
 </Expression>
 <!-- ... -->
 </ServiceLevelObjective>
 <!-- ... -->
 </Obligations>
</SLA>

Listing 26 SLA Construct - Scenario 3

 52

4.2.3 Integration of policies

The definition of a QoS policy and the definition of SLA mapping rules (which enable

the generation of policies out of SLAs) are the fundamental concepts for considering

QoS in a Web service based business process development scenario. Yet, the question

remains how to integrate the generated QoS policies at the orchestration layer. With

regard to the top-down modeling approach of Web services, two integration

approaches can be differentiated. Policies can either be attached to service

descriptions (WSDL) or can be integrated in BPEL processes. Figure 4 summarizes

the policy mapping and integration process. In the following sections both integration

approaches are described in detail. Furthermore an evaluation of both approaches with

regards to the aspects of relevance and differentiation is provided.

Figure 4 WS-QoSPolicy Mapping & Integration

 53

4.2.3.1 WSDL Integration

As shown in Section 4.1 the core WS-Policy framework comprises WS-Policy and

WS-PolicyAttachment. The WS-PolicyAttachment specification defines mechanisms

for associating policy expressions with WSDL and UDDI descriptions [24]. UDDI is

not directly related to the Web service based business process development scenario

as the definition of UDDI description cannot be performed automatically; hence the

focus is laid on the WSDL integration mechanism.

A policy expression can be attached to four different policy subjects (entities with

which a policy can be associated) in a WSDL service description:

1. Service Policy Subject

2. Endpoint Policy Subject

3. Operation Policy Subject

4. Message Policy Subject

The scope of a policy expression is dependent on the level of the policy subject (to

which a policy expression is applied to).

In the context of the Web service based business process development the attachment

of policy expressions should be applied to the service policy subject. This assumption

is based on the following considerations:

− The definition of an SLA is not restricted to a single operation − an SLA may

also be applied to multiple operations of the same service interface.

Considering this aspect only, policy expressions should be applied either to an

operation policy subject (if the SLA references one operation only) or to an

endpoint policy subject (if the SLA references multiple operations).

− However, the Web service based business process development scenario

requires a further aspect to be taken into account. The integration of SLAs in

choreography descriptions is being accomplished by attaching SLA references

to the behavior of a role type which always corresponds to the service

interface of the respective service provider. This aspects requires the policy

expression to be attached to the layer of the service policy subject which

corresponds to the wsdl:service element.

 54

Listing 27 illustrates a sample WSDL construct with an attached policy according to

the attachment rules mentioned above.
<definitions xmlns="..." xmlns:soap="..." xmlns:wsp="...">
 <!-- ... -->
 <portType name="xs:NCName">
 <!-- ... -->
 </portType>
 <binding name="xs:NCName" type="xs:anyURI">
 <!-- ... -->
 </binding>
 <service name="xs:NCName">
 <wsp:PolicyReference URI="xs:anyURI" required="true"/>
 <port name="xs:NCName" binding="xs:QName">
 <soap:address location="xs:anyURI"/>
 </port>
 </service>
 <!-- ... -->
 <wsp:Policy xmlns:qosp="..." xmlns:wsu="..." wsu:Id="xs:QName">
 <!-- ... -->
 </wsp:Policy>
</definitions>

Listing 27 WSDL - Example

The wsdl:service element actually contains a policy reference. This reference is

specified by the attribute URI which can either point to a location inside the WSDL

definition or refer to an external policy document.

In the case of a locally referenced policy the attribute URI is defined in the following

form: URI="#xs:NCName" (e.g., URI="#Policy1").

In the case of an external policy document the attribute "URI is defined in the

following form:

URI="xs:anyURI#NCName" (e.g., URI="http://example.org/#Policy1").

The policy expression itself contains an attribute wsu:Id which assigns an ID value

as an URI (e.g., wsu:Id="Policy1").

Including policies in WSDL is rather a static process. If the policy of a Web service

will gets redefined, the WSDL will have to be redefined as well. Therefore policies

should be attached to WSDL by referencing to an external URL where the

corresponding policy is located.

4.2.3.2 BPEL Integration

The WS-PolicyAttachment specification defines two ways for associating policies

with a policy subject. On the one hand policies may be attached to WSDL (as

illustrated in the preceding section) on the other hand policies may be integrated in

UDDI. However, in the context of Web service based business process development it

is more reasonable to attach policies to the BPEL processes of the respective

 55

choreography participants (this prediction will be discussed in detail in the following

section).

Similar to WS-CDL and WSDL, the WS-BPEL specification (BPEL4WS 1.1 as well

as WS-BPEL 2.0) supports language extensibility by allowing elements from other

namespaces to appear within WS-BPEL defined elements. This extensibility

mechanism basically enables the integration of policies inside BPEL processes.

All types defined in WS-BPEL derive from the bpws:tExtensibleElements type

which is illustrated in Listing 28. Compared to WS-CDL no root element has to be

defined which contains the actual extension elements. Furthermore there is no

restriction on the count of extension elements.
<complexType name="tExtensibleElements">
 <sequence>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax"/>
 </sequence>
 <anyAttribute namespace="##other" processContents="lax"/>
 </complexType>

Listing 28 WS-BPEL - Extensible Element [20]

Contrary to WSDL no specifications exist which illustrates such policy integration. In

the following an approach will be discussed which shows by what means policies may

be attached to BPEL processes. As partner links play an essential part in this approach

basic information about partner links will be provided first.

Partner Links

The following samples illustrate the use of partner links in synchronous and

asynchronous messaging scenarios (a general definition about partner links is

provided in Section 2.2).

Synchronous messaging corresponds to the request-reply message exchange pattern.

The service consumer invokes an operation (e.g., "PORequest") on the service

interface of the service provider. The invoke activity contains input and output

variables – the request message is defined in the input variable and the response

message gets stored in the output variable. Hence, on the side of the service consumer

only one activity takes place. On the side of the service provider two activities are

involved. The request message is received by the corresponding receive activity;

the response message is send back to the service provider by initializing a reply

activity. All activities on the service consumer and service provider side are bound to

 56

the same partner link type (and port type). In accordance to the definition above the

partner link of the service consumer contains a partnerRole attribute, whereas the

partner link of the service provider contains a myRole attribute.
<!-- Service Consumer -->
<process>
 <partnerLinks>
 <partnerLink name="POService" partnerLinkType="ns1:POServiceLT"
 partnerRole="POServiceRole"/>
 </partnerLinks>
 <!-- ... -->
 <sequence>
 <!-- ... -->
 <invoke inputVariable="PORequest" operation="PORequest"
 outputVariable="POResponse" partnerLink="POService"
 portType="ns1:POService"/>
 </sequence>
</process>

<!-- Service Provider -->
<process>
 <partnerLinks>
 <partnerLink myRole="POServiceRole" name="POService"
 partnerLinkType="ns1:POServiceLT"/>
 </partnerLinks>
 <!-- ... -->
 <sequence>
 <receive createInstance="yes" operation="PORequest"
 partnerLink="POService" portType="ns1:POService"
 variable="PORequest"/>
 <reply operation="PORequest" partnerLink="POService"
 portType="ns1:POService" variable="POResponse"/>
 </sequence>
</process>

Listing 29 Synchronous Messaging

The difference of an asynchronous messaging scenario to the synchronous messaging

scenario illustrated above is that the service provider invokes a callback operation on

the service consumer to send the response message. Subsequently the activities are

bound to different port types, however only one partner link is used on both sides.

This is due to the fact, that the partner link definitions contain two roles − myRole as

well as the partnerRole.
#Service Consumer
<process>
 <partnerLinks>
 <partnerLink myRole="POCallbackServiceRole"
 name="POCallbackService"
 partnerLinkType="ns1:POCallbackServiceLT"
 partnerRole="POServiceRole"/>
 </partnerLinks>
 ...
 <sequence>
 ...
 <invoke inputVariable="PORequest" operation="PORequest"
 partnerLink="POCallbackService" portType="ns1:POService"/>
 ...
 <receive operation="POResponse" partnerLink="POCallbackService"
 portType="ns1:POCallbackService" variable="POResponse"/>

 57

 ...
 </sequence>
</process>
#Service Provider
<process>
 <partnerLinks>
 <partnerLink myRole="POServiceRole" name="POService"
 partnerLinkType="ns1:POServiceLT"
 partnerRole="POCallbackServiceRole"/>
 </partnerLinks>
 ...
 <sequence>
 ...
 <receive createInstance="yes" operation="PORequest"
 partnerLink="POService" portType="ns1:POService"
 variable="PORequest"/>
 <invoke inputVariable="POResponse" operation="POResponse"
 partnerLink="POService" portType="ns1:POCallbackService"/>
 </sequence>
</process>

Listing 30 Asynchronous Messaging

Policy Subject

In WSDL a policy expression may be attached to four different policy subjects – as

illustrated in the last section the specific policy subject wsdl:service should be

used in the Web service based business process development scenario.

In BPEL two possible policy subjects can be identified in the first place - sorted by

their scopes throughout a BPEL process:

− Activities

− Partner Links

The information about interactions between participants in a choreography description

(involving the invocation of the same service interface) is mapped to partner links in

the corresponding BPEL processes. Each BPEL activity is thereby related to a specific

partner link. Considering this the use of activities as policy subjects is not a feasible

approach. For each activity which references a specific partner link (whose

corresponding service interface contains an SLA), a policy reference would have to be

attached accordingly. This problem of multiple policy references is prevented by the

use of partner links as policy subjects.

Having identified partner links as the relevant BPEL construct for the attachment of

policies another important aspect regarding the policy subject has to be taken into

account. On the level of BPEL processes two differentiations about policy integration

can be made:

1. Integration of policies at the side of the service provider

 58

2. Integration of policies at the side of the service consumer

Referring to this integration possibilities the following aspects regarding messaging

scenarios have to be considered.

In the case of synchronous messaging no additional information exists on the side of

the service provider about the service consumer which has initialized the service

invocation. This is due to the fact that the partner link of the service provider does not

contain any service consumer related details (illustrated in Listing 29). In the case of

asynchronous messaging the service provider does have information about the service

consumer - otherwise the callback operation to the service consumer could not be

established. This is due to the fact that the partner link of the service provider does

contain a partnerRole attribute with details of the service provider as illustrated in

Listing 30.

It’s a matter of fact that the restrictions of synchronous messaging do not apply to the

service consumer. As the service consumer initiates a service invocation on the

service provider its partner links always contain the relevant information about the

service provider.

Considering these circumstances the following relevant policy subject for policy

integration in BPEL can be identified: The partnerLink construct in the BPEL

processes of the service consumer

Listing 31 illustrates a sample BPEL construct with an attached policy. The

namespace prefix qosp refers to the WS-QoSPolicy schema which is further used for

the definition of policy assertions. The ns-prefix wsu refers to the WS-SecurityUtility

schema which is used for the declaration of wsu:Id. This attribute corresponds to the

name of the SLA (from which the policy was derived) whereas the attribute

qosp:operation declares the respective operation which is referenced in the SLA.

A complete BPEL process along with an integrated policy is provided in Appendix E

of this work.
<!-- Service Provider -->
<process>
 <partnerLinks>
 <partnerLink name="POService"
 partnerLinkType="ns1:POServiceLT "
 partnerRole="POServiceRole">
 <wsp:Policy xmlns:qosp="..." xmlns:wsu="..."
 wsu:Id="xs:QName" qosp:operation="...">
 <!-- ... -->

 59

 </wsp:Policy>
 </partnerLink>
 <!-- ... -->
 <partnerLinks>
 <!-- ... -->
</process>

Listing 31 WS-BPEL - Example

4.2.4 Evaluation

Having described the WSDL and BPEL integration approach for attaching policy

references at the orchestration layer the question remains which approach is more

reasonable in a Web service based business process development scenario. In the

following an evaluation of both approaches for certain key aspects will be given.

These key aspects include relevance and differentiation of policy references.

Concerning these key aspects the relation of BPEL and WSDL is an important aspect

- therefore this relation will be described first.

On the choreography layer an SLA reference is attached to the behavior interface of a

role type which corresponds to the service interface of the respective choreography

participant. The operations of this service interface correspond to the different receive

activities of the participant’s BPEL process and are exposed through a WSDL

description. With regards to Web service based business process development the

BPEL processes of the choreography participants are composite Web services which

are described in WSDL.

The integration of policies is being accomplished at different sides, either at the

service provider or service consumer side. In the case of WSDL integration it is

obvious that policy references have to be attached to the WSDL descriptions of the

service provider. In the case of BPEL integration policy references should be attached

to the BPEL processes of the service consumer as illustrated in the preceding section.

The following principles regarding relevance and differentiation in respect to policy

integration can be disposed:

− Relevance:

The scope of the respective policy must ensure that the policy only involves

parties which are referenced in the corresponding SLA.

 60

− Differentiation:

The relevance aspect implies that a differentiation on the agreed service level

must be ensured in the case that a party (service provider) is involved in

multiple SLAs throughout the same choreography scenario.

In order to examine the accordance of both integration approaches in relation to these

principles the following sample scenario is provided.

This scenario involves three service consumers which both interact with the same

service provider. Two service consumers have established an SLA with the service

provider. The SLAs are mapped to respective policies and integrated at the

orchestration layer.

Attaching these policies to the WSDL description of the service provider violates both

principles for relevance and differentiation:

− The invocation of service operations is always subject to a policy (even for

service consumers without corresponding SLAs).

− The service provider can not differentiate between the relevant policies if

multiple policies are attached to the same WSDL description. This is due to

the fact that policies do not contain information about the relevant parties.

Hence, if a service consumer invokes a service the service provider cannot

determine which policy this service interaction is subject to.

These restrictions do not apply if policies are attached to the BPEL processes of the

service consumers. The respective service consumer can always differentiate which

policy a service invocation is subject to. This is due to the fact that service invocations

are bound to partner links which in turn contain exactly one policy reference (if an

SLA between the service consumer and the provider of the invoked service exists). In

the case that a partner link is used for multiple interactions involving the invocation of

different service operations (e.g., the service of a service provider comprises multiple

operations which are invoked by a service consumer) a differentiation regarding the

policy scope is guaranteed as well because the operation name is referenced in the

respective policy.

 61

5 Implementation
In addition to the theoretical part of this work an implementation has been designed as

a proof of concept. In order to perform an evaluation of this implementation a use

case scenario has been developed representing a characteristic Web service based

business process scenario.

In the following an overview of the system architecture and used technologies will be

provided. Furthermore the functionality of the implementation will be demonstrated.

Subsequently the use case scenario will be illustrated. Finally the implementation will

be applied to this use case and the results will be evaluated accordingly.

5.1 System Overview
The implementation was designed using Java along with XSLT stylesheets and

comprises two main blocks which represent the different processing phases. These

processing phases (further detailed in Section 5.2) include the editing of a

choreography description to manipulate SLA references and the generation of BPEL

processes and WSDL descriptions. An overview of the main blocks of the system

architecture and the two different phases of the QoS integration approach is depicted

in Figure 5.

Figure 5 System Architecture

 62

The QoS integration process requires an implementation which addresses the

following challenges:

− XML processing

refers to the navigation, modification and transformation of XML documents.

− XML presentation

refers to the presentation of XML documents in a well arranged and dynamic

form, allowing XML content to be modified accordingly.

5.1.1 XML Processing

XML processing is performed using the dom4j API. Dom4j [33] integrates with DOM

(Document Object Model) and SAX (Simple API for XML). However, unlike DOM

and SAX (being platform independent) dom4j is a simpler, lightweight API which has

been designed especially for the Java programming language making extensive use of

standard Java APIs such as the Java 2 collection API. Additional features of dom4j

are full XPath [31] support and the integration of XSLT [30] using the JAXP standard

APIs.

Listing 32 provides an exemplary source code listing illustrating selective aspects of

XML processing in dom4j which are used in the implementation.

In this sample an XML file representing a choreography description gets parsed and is

stored in dom4j’s Document structure. Subsequently a dom4j XPath expression is

constructed which returns all role type definitions of the choreography. As elements in

a choreography description are defined in a specific namespace this namespace is

associated with a namespace prefix which is further used throughout the XPath

expression. The XPath expression is applied to the choreography document and

returns a Java List containing the various roleType elements. Finally, the List is

iterated using Java Iterators; each roleType element is added to the element

package and a specific roleType element is removed from the List. Removing an

element from the List will remove the element from the corresponding Document

structure as well. This concept of a backed List where modifications to the List are

reflected back into to Document (Element) allows the manipulation of XML data

structures using the Java Collection API.

 63

SAXReader reader = new SAXReader();
File file = new File("BuildToOrder.cdl")
Document choreography = reader.read(file);
HashMap map = new HashMap();
map.put("cdl", "http://www.w3.org/2005/10/cdl");
XPath xpath = DocumentHelper.createXPath("cdl:package/cdl:roleType");
xpath.setNamespaceContext(new SimpleNamespaceContext(map));
List roleTypesList = xpath.selectNodes(choreography);
Element package = DocumentHelper.createElement("package");
for (Iterator iter = roleTypesList.iterator(); iter.hasNext();) {
 Element roleType = (Element) iter.next();
 root.add(roleType);
 if (roleType.valueOf("@name").equalsIgnoreCase("TestRole"))
 roleTypesList.remove(roleType);
}

Listing 32 dom4j - XML Processing

As mentioned above dom4j supports XSLT using JAXP (Java API for XML

Processing). JAXP contains an XSLT interface which enables transformations on an

XML document without declaring details of a specific XSLT parsing implementation.

Listing 33 provides a sample source code listing illustrating an XSLT transformation

in dom4j.
TransformerFactory factory = TransformerFactory.newInstance();
Transformer transformerWSDL = factory.newTransformer(new
StreamSource("GenerateWSDLDescriptions.xslt"));
DocumentSource source = new DocumentSource(choreography);
StreamResult result = new StreamResult(new File(outputDirectory));
transformerWSDL.transform(source,result);

Listing 33 dom4j - XSLT Transformation

5.1.2 XML Presentation

XML presentation is performed using the Swing component JTree. The relevant

parts (role type definitions) of the input document (choreography description) are

displayed in a tree-based hierarchy (Figure 6). This is accomplished by converting an

XML element (along with all its child elements) into a Swing

DefaultMutableTreeNode which is then added to the model of the JTree.

Listing 34 depicts the source code [34] for transforming the element roleTypes into

a Swing DefaultTreeModel which is then used to build the JTree.
XMLEditorTree xmltree;
XMLEditorTreeNode root = new XMLEditorTreeNode("", "");
DefaultTreeModel model = new DefaultTreeModel(root);
root.add(buildChildren(roleTypes));
xmltree.setModel(model);

private XMLEditorTreeNode buildChildren(Element e) {
 XMLEditorTreeNode me = new XMLEditorTreeNode(e.getName(), e);

 64

 XMLEditorTreeNode child;
 List c = e.elements();
 for (int i=0; i<c.size(); i++) {
 Element ec = (Element)c.get(i);
 child = buildChildren(ec);
 me.add(child);
 }
 return me;
}
class XMLEditorTreeNode extends DefaultMutableTreeNode {
 public String _name;
 public Object _value;
 public XMLEditorTreeNode(String name, Object value)
 { _name = name; _value = value; }
 ...
}
class XMLEditorTree extends JTree {
 public XMLEditorTree() {
 super();
 setRootVisible(false);
 setExpandsSelectedPaths(true);
 setShowsRootHandles(true);
 setExpandsSelectedPaths(true);
 setScrollsOnExpand(true);
 }
 ...
}

Listing 34 Transform XML element to JTree model [34]

The GUI and the editing part of this implementation (as illustrated in Figure 5) is

based on the Swing and JDOM XML Editor presented in [34] which allows the

manipulation of arbitrary XML documents.

5.2 QoS Integration Process
In the following the functionality of the implementation will be presented by

illustrating the QoS integration process. Required input files for the implementation

are a WS-CDL conform choreography description and WSLA based Service Level

Agreements between the choreography participants.

5.2.1.1 Display of Role Type Definitions

Following the choreography import the role type definitions of the choreography will

be extracted and displayed in a tree-based structure. This tree defines a top-level node

package which comprises the roleType nodes of the choreography description.

Each roleType node contains a node behavior. If a role type definition already

defines an SLA reference the behavior node will include a child node

description comprising an additional node slaReference. The attributes of the

currently selected node will be displayed in a table.

 65

Figure 6 depicts the presentation of the role type definitions after the import of a

choreography has been performed.

Figure 6 QoS Integrator – Role Type Definitions

5.2.1.2 Manipulation of SLA References

The manipulation of SLA references comprises the addition, modification and

deletion of SLA references to role type definitions. As defined in Section 3.2 SLA

references have to be added to the behavior node of a role type definition. In order

to avoid SLA references to be added at the wrong position the button for the definition

of new SLA references (New SLA Ref.) will only be enabled if the behavior node

of a role type definition is selected. Similar the button for the deletion of SLA

references (Remove SLA Ref.) will only be enabled if an slaReference node is

selected. Existing SLA references can be modified by selecting the respective

slaReference node; the attributes displayed can then be modified accordingly.

Figure 7 depicts the definition of a new SLA reference. In order to facilitate

information entering a list of all role types of the choreography is provided for the

definition of the service consumer. If the corresponding SLA is stored locally the URI

information can be retrieved by file browsing. Otherwise the URI has to be filled in

manually. This is the case if the URI corresponds to a web address. If the SLA

reference is saved (Save SLA Ref.) a description node (containing the

slaReference node) will be added to the respective behavior node. However, the

 66

description node will only be added if no other SLA reference already exists for

that role type definition. Otherwise the slaReference node will be added to the

existing definition node. This implementation scenario corresponds to the fact,

that multiple SLA references (encapsulated in a description element) can be added

to a role type definition (see Section 3.2).

Figure 7 QoS Integrator – SLA Reference Definition

5.2.1.3 Generation of BPEL Processes and WSDL Descriptions

The SLA reference modifications are only considered during BPEL generation if the

choreography has been saved prior to this generation process. During saving the role

type definitions of the choreography are replaced with the role type definitions

displayed in the QoS Integrator.

The BPEL generation process subsumes the following tasks:

− Generation of BPEL processes

− Transformation of SLAs

− Integration of policies

− Generation of Partner Link Type definitions

 67

For each (interacting) role type of the choreography a BPEL process and Partner Link

Type definition is generated. Subsequently the referenced SLAs are transformed into

policies. Finally these policies are integrated into the respective BPEL processes. The

generated BPEL processes are named according to the corresponding participant of

the respective role type.

The WSDL generation process generates a WSDL description for each role type.

These WSDL descriptions define the service interfaces of the BPEL processes and are

named according to the corresponding participant of the role type definition.

5.3 Build to Order Use Case
The Build to Order (BTO) scenario describes a use case in the B2B area. The use case

consists of a customer, a manufacturer and supplier for CPU’s, main boards and hard

discs. The manufacturer offers assembled IT hardware equipment to its customers.

For these purposes the manufacturer has implemented a BTO business model. It holds

a certain part of the individual hardware components in stock and orders missing

components if necessary.

In the implemented BTO scenario, the customer sends a quote request with details

about the required hardware equipments to the manufacturer. The manufacturer sends

a quote response back to the customer. As long as customer and manufacturer do not

agree on the quote, this process will be repeated. If a mutual agreement was achieved

the customer sends a purchase order to the manufacturer. Depending on its hardware

stock the manufacturer has to order required hardware components from its suppliers.

If the manufacturer needs to obtain hardware components to fulfill the purchase order

he sends an appropriate hardware order to the respective supplier. In turn the supplier

sends a hardware order response to the manufacturer. Finally the manufacturer sends a

purchase order response back to the customer.

The interactions throughout the participants of the BTO scenario are illustrated in the

collaboration sequence diagram shown in Figure 8.

 68

Figure 8 BTO Scenario - Collaboration Sequence Diagram

The BTO scenario comprises six different Web service invocations which correspond

to the following SOAP operations: requestForQuote, updateQuote,

sendPurchaseOrder, orderCPU, orderMB, orderHD. Each SOAP operation

depicts a synchronous message request-reply scenario which will be illustrated

exemplary for the requestForQuote operation. The customer invokes the operation

requestForQuote on the service interface of the manufacturer sending the message

request QuoteRequest. The manufacturer receives the message request and replies

to the service invocation be returning the message response QuoteResponse.

Contrary to this, an asynchronous message scenario would require additional callback

operations on the service requestor side. In this case the manufacturer would invoke

an operation requestForQuoteCallback on the service interface of the customer

to send back the QuoteResponse.

Table 4 summarizes the choreography participants of the BTO scenario. Each

participant corresponds to one role type, which in turn defines the specified behavior

interface. This behavior interface corresponds to a Web service interface defining the

listed SOAP operations (invoked throughout the BTO collaboration).

 69

Participant Role Type Behavior Interface Operation
Customer CustRoleType custInterface ---

Manufacturer ManRoleType manInterface requestForQuote

updateQuote

sendPurchaseOrder

SupplierCPU SupCPURoleType supCPUInterface orderCPU

SupplierHD SupHDRoleType supHDInterface orderHD

SupplierMB SupMBRoleType supMBInterface orderMB

Table 4 BTO Scenario - Choreography Participants

The activity sequence of the BTO choreography is listed in the appendix of this work.

This activity sequence shows the choreography flow which implements the BTO

collaboration illustrated in Figure 8. Most parts of the BTO scenario are implemented

in the choreography itself. However, some non-observable implementation specific

details cannot be considered from a choreography point of view but have to be

implemented internally by the choreography participants. These internal

implementations are referred to as silent actions (containing the internal business

logic) and have to be implemented during refinement of the BPEL code.

The BTO scenario distinguishes four different relationships between the choreography

participants. The customer interacts with the manufacturer; the manufacturer interacts

with the different suppliers. For each relationship an SLA about the invoked service

operations is defined. These SLAs are summarized in Table 5.

SLA Service Consumer Service Provider Service Operation SLA Scenario
SLA1 Customer Manufacturer sendPurchaseOrder 2

SLA2 Manufacturer SupplierCPU orderCPU 1

SLA3 Manufacturer SupplierHD orderHD 1

SLA4 Manufacturer SupplierMB orderMB 1

Table 5 BTO Scenario - SLAs

The SLA between the customer and manufacturer defines an SLO for performance

related SLA parameters (Execution Time, Throughput) and dependability related SLA

parameters (Availability) which corresponds to the SLA scenario 2. The SLAs used

between the manufacturer and the suppliers define an SLO for each SLA parameter

which corresponds to the SLA scenario 1 (see Section 4.2).

 70

An exemplary SLA (defining the SLA between the customer and manufacturer) is

listed in the appendix of this work.

5.4 Evaluation
The BTO choreography and SLAs described above present the required input files

which were used to evaluate the implementation.

During this evaluation SLA references were added to the role type definitions of the

BTO choreography. Subsequently BPEL processes and WSDL descriptions were

generated based on the modified BTO choreography. In the following an analysis of

these modifications and generated files will be provided.

5.4.1 Choreography Modification

Listing 35 illustrates a small part of the BTO choreography for the manufacturer role

type definition before and after the SLA reference for the customer has been added.

The SLA reference conforms to the SLA integration approach which is proposed in

Section 3.2. There is one insignificant difference regarding the element

description which is bound to the namespace prefix cdl. The namespace prefix

cdl points to the same URI as the default namespace which is declared at the root

element package. This additional namespace prefix declaration (along with the

namespace declaration xmlns="") would not be necessary; it is added due to internal

reasons which emanate from the handling process of default namespace declarations

in dom4j.
<!-- Role Type Definition of Manufacturer -->
<package xmlns="http://www.w3.org/2005/10/cdl"
 xmlns:cdl="http://www.w3.org/2005/10/cdl"
 xmlns:qosp="http://example.org/qosp" ...>
 <!-- ... -->
 <roleType name="ManRoleType">
 <behavior interface="b2o:manInterface" name="ManBehaviour"/>
 </roleType>
 <!-- ... -->
</package>

<!-- Role Type Definition of Manufacturer with SLA Reference -->
<package xmlns="http://www.w3.org/2005/10/cdl"
 xmlns:cdl="http://www.w3.org/2005/10/cdl"
 xmlns:qosp="http://example.org/qosp" ...>
 <roleType name="ManRoleType">
 <behavior interface="b2o:manInterface" name="ManBehaviour">
 <cdl:description xmlns="" type="semantics">
 <qosp:slaReference name="SLA1"
 uri="D:/QoSIntegrator/input/Customer-Manufacturer-SLA.xml"
serviceconsumer="CustRoleType"/>
 </cdl:description>
 </behavior>

 71

 </roleType>
</package>

Listing 35 Choreography Modification

5.4.2 BPEL & WSDL Generation

As mentioned above, the BPEL generation process does not only create BPEL stubs

for each participant of the choreography but also includes the transformation of SLAs,

the integration of policies and the generation of partner link type definitions. During

the BPEL generation BPEL processes and partner link type definitions were created

for all participants of the BTO choreography. Policies were integrated in the customer

and manufacturer process. In the following the BPEL process of the customer will be

used to analyze the implementation.

Appendix D provides the SLA between the customer and manufacturer. During the

previous step an SLA reference was added to the manufacturer role type referencing

this respective SLA and defining the customer as the service consumer. Thus, the QoS

policy which corresponds to this SLA has to be integrated in the BPEL process of the

customer. The SLA corresponds to the SLA scenario 2 and defines an SLO for the

service performance and dependability. The SLO for the service performance defines

two different scenarios (Execution Time less than 5 and Throughput greater equal 1 or

Execution Time less than 7 and Throughput greater equal 3). The SLO for the service

dependability states that Availability must not be less than 95 percent. This exemplary

SLA definition was chosen to demonstrate that a complex SLA (defining nested

SLO’s with expressions) can be mapped to a QoS policy. The generated QoS policy

was integrated in the BPEL process of the customer which is presented in Appendix

E. It conforms to the SLA to policy mapping approach described in Section 4.2.2.2.

The policy was added to the partner link definition which is linked to the service

interface of the manufacturer. Furthermore the policy defines an attribute operation

which corresponds to the operation defined in the SLA. This policy integration

conforms to the integration approach described in Section 4.2.3.2. In the case of the

manufacturer three policies (corresponding to the manufacturer – supplier SLAs) were

generated and integrated in the partner link for the service interface of the respective

supplier.

 72

The generated BPEL flow reflects all BTO interactions which are related to the

customer. In accordance with the relevance mapping approach defined in Section

3.1.2 only relevant choreography activities were mapped. Sequence elements which

contain an empty element correspond to the silent actions which are defined for the

customer in the BTO choreography.

Appendix F provides the partner link type definitions of the customer. For each

partner link of the BPEL process a respective partner link type definition is provided.

In order to evaluate the WSDL generation process the WSDL description for the

service interface of the manufacturer (Appendix G) is used exemplary. The generated

WSDL description corresponds to the CDL to WSDL mapping approach defined in

Section 3.2. All BTO choreography interactions which invoke operations on the

manufacturer service interface are considered throughout the port type and binding

definitions of the WSDL description. The message elements (defining the messages

send to or from the customer) are related to the informationType elements of the

BTO choreography. All message elements which are relevant for the customer were

generated; the content (message parts) of these message elements was not

specified. This would require additional processing of the information types.

Information types are not specified directly in the choreography but represent

references to existing XML Schema Elements or WSDL Types. During the WSDL

generation process this references could be processed to define the respective

message part elements.

 73

6 Related work
The approach of integrating QoS in Web service based business process development

scenarios has not been considered in current research so far. However certain aspects

of this approach can be differentiated which are subject to related work. These aspects

include top-down modeling of Web services (focusing on the mapping of WS-CDL),

the extension of current Web services standards to include QoS attributes and the

integration of policies in WS-BPEL.

In [12] Mendling et al. define mapping rules for the derivation of BPEL processes

from a WS-CDL choreography description. For each WS-CDL ordering structure and

activity the corresponding BPEL construct respective activity is determined. These

mapping rules define the basis for the mapping rules used throughout the top-down

modeling process of this work. Whereas the mapping of the before mentioned

language constructs is referenced in detail, the second aspect for the derivation of

BPEL processes is not addressed explicitly. This aspect deals with the concept of

endpoint projection. In contrast to this work, no explicit projection rules are defined in

order to determine which ordering structures are relevant for the respective

participants of the choreography description. Finally, this work additionally defines

mapping rules for the generation of WSDL descriptions which correspond to the

service interface descriptions of the derived BPEL processes.

In [10] Díaz et al. use an intermediary model for the generation of BPEL processes

from a WS-CDL choreography description concentrating on Web services where time

constraints play a critical role. A choreography description is first transformed into a

Timed Automata model which is verified and validated for correctness using formal

model checking techniques. This model is then further used to generate BPEL

processes. In contrast to this work the focus is laid on the generation and verification

of the Timed Automata model. Detailed mapping rules for the derivation of BPEL

processes out of this model are not specified. In the context of top-down modeling it

seems more appropriate to perform a direct mapping between WS-CDL and BPEL

instead of using an intermediary model.

Pi4soa [32] is a toolset from pi4 Technologies and one of the first WS-CDL

implementations. It is available as an Eclipse plug-in and provides a choreography

 74

designer, a choreography validation / simulation tool and a possibility to generate Java

services from WS-CDL. Furthermore the support for generating BPEL processes and

WSDL descriptions is currently in progress. In contrast to this thesis the integration of

QoS throughout the development process has not been considered yet. It would be

interesting to enrich pi4soa’s choreography modeling and BPEL generation

capabilities with the QoS integration approach discussed throughout this work.

The integration of QoS in Web services is subject of the approach presented in [2].

Based on standardized QoS parameters (defined in an XML schema) a framework is

proposed which allows the dynamic selection of Web services with regard to QoS

requirements. A client application sends a service request along with QoS

requirements to a Web service broker (WSB). The WSB performs a UDDI registry

lookup to receive a set of service providers and requests service descriptions from the

respective service providers. The service providers return their service descriptions

along with their QoS offers to the WSB which evaluates these offers against the client

requirements. Finally the service provider with the most appropriate service is

returned to the client. In contrast to this work the approach aims at integrating QoS

directly in the Web service layer. This is accomplished by including QoS

requirements and offers in service requests and service responses. However, in the

context of Web service based business process development QoS has to be integrated

in higher levels such as the choreography and orchestration layer.

In [17] Garcia et al. propose an architecture for QoS management by extending the

current Web services standards UDDI and WS-Policy. This approach includes an

extended UDDI information model specifying a QoS tModel and the use of WS-

Policy to specify QoS policies. The architecture defines three main components,

namely Brokers, Monitors and extended UDDI registries. Service providers specify

QoS information on the offered services using QoS policies. Brokers process these

QoS policies and publish them in extended UDDI registries. A consumer application

requests service selection providing functional and QoS requirements. The Broker

selects an appropriate service (fulfilling functional and QoS requirements) in the

UDDI registry and reports the selected service back to the consumer. The Monitor

intercept messages exchanged between the consumer application and the Web service

to monitor the service execution and passes updated QoS information to the Broker.

In turn the Broker updates the respective QoS information about the service in UDDI.

 75

Similar to this work the WS-Policy framework is used to express QoS related aspects

for Web services. However, no further details on the proposed QoS policy are

asserted. The focus is laid on the general QoS management architecture without

providing details on a QoS policy specification. Furthermore no references can be

found by what means QoS policies are stored on the side of the service provider. Both

aspects are referred to in this work by specifying QoS policy assertions and by

defining a policy integration approach.

In [1] Tai et al. investigate the composition of coordinated Web services. The WS-

Policy framework is used to integrate coordination policies in BPEL. This is achieved

by specifying policy assertions for the WS-C (Web services Coordination)

framework. The integration of policies is performed by attaching policies to BPEL

partner links or scopes. In contrast to this work the focus is laid on coordination

context by specifying coordination requirements which have to be met by the

involved Web services; QoS related aspects are not further considered.

 76

7 Conclusion
The main contribution of this thesis was to show by what means QoS can be

integrated in Web service based business process development scenarios. In the

following a summarization of the results will be provided.

The engineering of Web service based business processes represents a top-down

modeling approach in which private executable business processes are derived from a

global choreography model. This top-down modeling approach transforms a WS-CDL

choreography description into BPEL processes along with corresponding WSDL

descriptions. Whereas the WSDL transformation process (see Section 3.2) represents

a straightforward mapping approach between the languages constructs of WS-CDL

and WSDL, the BPEL transformation process (see Section 3.1) is more complex. This

is due to the fact that an endpoint projection has to be performed for each participant

which determines the relevant constructs of a choreography description. In order to

implement such an endpoint projection a relevance mapping approach was proposed.

This relevance mapping guarantees that only those WS-CDL constructs will be

considered for mappings which are directly relevant for the respective participant.

The integration of QoS throughout Web service based business process development

comprises a twofold integration process. In accordance to the top-down modeling

approach of Web services QoS will be initially integrated at the choreography layer.

Subsequently a mapping of these QoS attributes will be performed followed by the

integration at the orchestration layer. Neither WS-CDL nor WS-BPEL support the

declaration of QoS attributes, yet both specifications can be extended to include such

information accordingly.

In the case of the choreography layer such an extension was performed by the

integration of SLA references inside a choreography description (see Section 4.1).

Prior to this integration process an evaluation of SLA language specifications was

provided identifying WSLA as an appropriate specification for the definition of SLAs.

The integration of SLA references was performed by the use of semantic annotations

inside the behavior definition of a participant’s role type (corresponding to the service

interface of a service provider).

 77

In the case of the orchestration layer QoS integration was performed by integrating

Web service policies inside BPEL processes (see Section 4.2). These policies

correspond to the QoS obligations defined in the SLAs referenced above. Due to the

fact that the current WS-Policy framework provides specifications which focus on

security and reliable messaging related aspects only, a policy specification for the

QoS domain (WS-QoSPolicy) was provided. The WS-QoSPolicy defines policy

assertions for attributes specified by the QoS model enabling an automated SLA to

policy mapping approach. The actual policy integration process was looked at from

two different perspectives. On the one hand the attachment of policies to WSDL

descriptions was considered by using mechanisms defined in the WS-

PolicyAttachment specification. On the other hand the integration of policies in BPEL

processes was examined by evaluating an appropriate policy subject. It was shown

that policies have to be integrated inside partner links of the service consumer’s BPEL

processes. Finally an evaluation was provided summarizing the advantages of the

BPEL integration approach with regards to policy relevance and differentiation.

Following the theoretical part of this thesis an implementation was designed as a

proof of concept. Based on a Build-To-Order use case scenario (see Section 5.3)

including a WS-CDL choreography description and SLAs (conforming to the WSLA

language specification) an evaluation of this implementation was performed (see

Section 5.4). During this evaluation SLA references were added to the choreography

description. Subsequently the referenced SLAs were mapped to corresponding

policies. Finally BPEL processes (including the integrated policies) along with their

corresponding WSDL descriptions were generated. Summarizing it can be stated that

the evaluation confirmed the feasibility of the QoS integration process.

 78

References
[1] S. Tai, R. Khalaf and T. Mikalsen. Composition of Coordinated Web Services. In

Proceedings of the 5th International Middleware Conference (Middleware’04),

Toronto, Canada, Oct. 2004.

[2] M. Tian, A. Gramm, T. Naumowicz, H. Ritter and J. Schiller. A Concept for QoS

Integration in Web Services. In Proceedings of the 4th International Conference on

Web Information Systems Engineering Workshops (WISEW’03), Roma, Italy, Dec.

2003.

[3] G. Yeom, T. Yun and D. Min. A QoS Model and Testing Mechanism for Quality-

driven Web Services Selection. In Proceedings of the 4th IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems (SEUS 2006) and the 2nd

International Workshop on Collaborative Computing, Integration and Architecture

(WCCIA’06), Gyeongju, Korea, Apr. 2006.

[4] F. Rosenberg, C. Platzer, S. Dustdar. Bootstrapping Performance and

Dependability Attributes of Web Services. In Proceedings of the IEEE International

Conference on Web Services (ICWS’06), Chicago, USA, Sept. 2006.

[5] H. Ludwig, A. Dan, R. Kearney. Cremona: An Architecture and Library for

Creation and Monitoring of WS-Agreements. In Proceedings of the 2nd International

Conference on Service Oriented Computing (ICSOC’04), New York, USA, Nov. 2004.

[6] N. Oldham, K. Verma, A. Sheth and F. Hakimpour. Semantic WS-agreement

partner selection. In Proceedings of the 15th International Conference on World Wide

Web (WWW’06), Edinburgh, Scotland, May 2006.

[7] M. Aiello, G. Frankova and D. Malfatti: What's in an Agreement? An Analysis

and an Extension of WS-Agreement. In Proceedings of 3rd International Conference

on Service-Oriented Computing (ICSOC’05), Amsterdam, The Netherlands, Dec.

2005.

[8] M. Carbone, K. Honda and N. Yoshida: Structured Communication-Centred

Programming for Web Services. In Proceedings of the 16th European Symposium on

Programming (ESOP’07), Barga, Portugal, May 2007.

[9] A. Barros, M. Dumas and P. Oaks. A Critical Overview of the Web Service

Choreography Description Language (WS-CDL). BPTrends Newsletter, Vol.3(3),

Mar. 2005.

 79

[10] G. Díaz, M. Cambronero, J. Pardo, V. Valero and F. Cuartero. Automatic

generation of Correct Web Services Choreographies and Orchestrations with Model

Checking Techniques. In Proceedings of Advanced International Conference on

Telecommunications and International Conference on Internet and Web Applications

and Services (AICT/ICIW’06), Guadeloupe, French Caribbean, Feb. 2006.

[11] J. Mendling and M. Hafner. From Inter-organizational Workflows to Process

Execution: Generating BPEL from WS-CDL. In Proceedings of On the Move – OTM

– to Meaningful Internet Systems and Ubiquitous Computing (OTM’05), Agia Napa,

Cyprus, Oct. 2005.

[12] J. Mendling and M. Hafner. From WS-CDL Choreography to BPEL Process

Orchestration. Journal of Enterprise Management, Vol.19, 2006.

[13] A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. Journal of Network and Systems

Management, Vol.11(1), Mar. 2003.

[14] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M.

Polan, M. Spreitzer and A. Youssef. Web services on demand: WSLA-driven

automated management. IBM Systems Journal, Vol.43(1), Jan. 2004.

[15] A. Dan, H. Ludwig and G. Pacifici. Web Service Differentiation with Service

Level Agreements. IBM White Paper, May 2003.

[16] D. Garcia and M. Toledo: A Policy-based Web Service Infrastructure for

Autonomic Service Integration. In Proceedings of the 1st Latin American Autonomic

Computing Symposium (LAACS’06), Campo Grande, Brazil, July 2006.

[17] D. Garcia and M. Toledo: A Web Service Architecture Providing QoS

Management. In Proceedings of the 4th Latin American Web Congress (LA WEB’06),

Puebla Cholula, Mexico, Oct. 2006.

[18] A. Vedamuthu and D. Roth. Understanding Web Services Policy. Microsoft Web

Services Technical Article, July 2006.

[19] W3C. Web Services Choreography Description Language (WS-CDL), Nov.

2005. URL: http://www.w3.org/TR/ws-cdl-10/ (Last accessed: May 24, 2007).

[20] OASIS. Web Service Business Process Execution Language 2.0, 2006. URL:

http://www.oasis-open.org/specs/index.php#wsbpelv2.0 (Last accessed: May 24,

2007).

[21] IBM. Web Service Level Agreement (WSLA) Language Specification, Jan. 2003.

URL: http://www.research.ibm.com/wsla/ (Last accessed: May 24, 2007).

 80

[22] Grid Resource Allocation Agreement Protocol (GRAAP). Web Services

Agreement Specification (WS-Agreement), Nov. 2005. (Last accessed: May 24, 2007).

[23] W3C. Web Services Policy Framework (WS-Policy), Mar. 2007. URL:

http://www.w3.org/TR/ws-policy/ (Last accessed: May 24, 2007).

[24] W3C. Web Services Policy Attachment (WS-PolicyAttachment), Mar. 2007. URL:

http://www.w3.org/TR/ws-policy-attach/ (Last accessed: May 24, 2007).

[25] OASIS. Web Services Security Policy Language (WS-SecurityPolicy), Mar. 2005.

URL: http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-

1.2-spec-cd-02.html (Last accessed: May 24, 2007).

[28] OASIS. Web Services ReliableMessaging Policy Assertion (WS-RMPolicy), Aug.

2006. URL: http://docs.oasis-open.org/ws-rx/wsrmp/200608/wsrmp-1.1-spec-cd-

04.html (Last accessed: May 24, 2007).

[29] W3C. XML Information Set, 2004. URL: http://www.w3.org/TR/xml-infoset/

(Last accessed: May 24, 2007).

[30] W3C. XSL Transformations (XSLT) – Version 2.0, Jan. 2007. URL:

http://www.w3.org/TR/xslt20/ (Last accessed: May 24, 2007).

[31] W3C. XML Path Language (XPath) – Version 2.0, Jan. 2007. URL:

http://www.w3.org/TR/xpath20/ (Last accessed: May 24, 2007).

 [32] pi4 Technologies Foundation. pi4soa – Version 1.6.2, 2007. URL:

http://sourceforge.net/projects/pi4soa (Last accessed: May 24, 2007).

[33] MetaStuff Ltd. dom4j – Version 1.6, 2005. URL: http://www.dom4j.org (Last

accessed: May 24, 2007).

[34] Swing and JDOM XML Editor. URL: http://hurring.com/code/java/xmleditor

(Last accessed: May 24, 2007).

 81

Appendix

Appendix A: WS-QoSPolicy XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:tns="http://stud3.tuwien.ac.at/~e9751151/ws/2006/12/qos/policy"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
targetNamespace="http://stud3.tuwien.ac.at/~e9751151/ws/2006/12/qos/policy"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.0">
 <xs:import namespace="http://schemas.xmlsoap.org/ws/2004/09/policy"
schemaLocation="http://schemas.xmlsoap.org/ws/2004/09/policy/ws-policy.xsd"/>
 <xs:element name="ProcessingTimeAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="WrappingTimeAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ExecutionTimeAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ThroughputAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:integer" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="AvailabilityAssertion">
 <xs:complexType>
 <xs:attribute name="value" type="xs:float" use="required"/>
 <xs:attribute name="unit" type="xs:string" use="required"/>
 <xs:attribute name="predicate" type="tns:PredicateType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="PredicateType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Greater"/>
 <xs:enumeration value="Less"/>
 <xs:enumeration value="Equal"/>
 <xs:enumeration value="GreaterEqual"/>
 <xs:enumeration value="LessEqual"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:annotation>
 <xs:documentation>The following QoS attributes can be used in an SLA to define
 the corresponding SLA parameters</xs:documentation>
 </xs:annotation>
 <xs:simpleType name="QoSAttributes">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ExecutionTime"/>
 <xs:enumeration value="Throughput"/>
 <xs:enumeration value="Availability"/>
 </xs:restriction>
 </xs:simpleType>

 82

 <xs:annotation>
 <xs:documentation>The following element defines an SLA reference for extending
 WS-CDL's behavior element</xs:documentation>
 </xs:annotation>
 <xs:element name="slaReference">
 <xs:complexType>
 <xs:attribute name=" name " type="xs:string" use="required"/>
 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 <xs:attribute name=" serviceconsumer " type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Appendix B: BTO Choreography - Activity Sequence

Initialize : Client invokes choreography by sending a QuoteRequest to the Customer

Sequence : Main sequence of choreography. Contains ProcessQuote, ProcessOrder,
EvaluateOrder, SendResponse

Sequence : ProcessQuote

RequestForQuote : Customer sends QuoteRequest to Manufacturer

SilentAction : [Manufacturer]: Process QuoteRequest

RequestForQuote : Manufacturer sends QuoteResponse to Customer

SilentAction : [Customer] Process QuoteResponse (1)

Inform1 : Synchronize variable QuoteAccept between Customer and Manufacturer.
Customer informs Manufacturer if QuoteAccept is true or false.

QuoteBartering : QuoteBartering loop: proceed with loop as long as Customer has
not accepted quote

UpdateQuote : Customer sends QuoteUpdate to Manufacturer

SilentAction : [Manufacturer] Process QuoteUpdate

UpdateQuote : Manufacturer sends QuoteResponse to Customer

SilentAction : [Customer] Process QuoteResponse (2)

Inform2 : Synchronize variable QuoteAccept between Customer and
Manufacturer. Customer informs Manufacturer if QuoteAccept is true or
false.

SendPurchaseOrder : Customer sends PurchaseOrder to Manufacturer

Sequence : ProcessOrder

SilentAction : [Manufacturer]: Invoke CheckHardwareStock Webservice. Determine
how much of the required CPU|MB|HD is not in stock.

Parallel : ParallelProcesses

Sequence : ProcessCPUSequence

Choice : ChoiceCPU

Choice_CPUnotInStock : CPU not in stock

Assign : Assign missing CPU to HardwareOrderCPU

SendCPUOrder : Manufacturer sends HardwareOrderCPU to
SupplierCPU

SilentAction : [SupplierCPU]: Process CPUOrder

SendCPUOrder : SupplierCPU sends HardwareOrderResponse to
Manufacturer

Choice_CPUinStock : CPU in stock

NoAction : CPUOrder not necassary

Assign : Set HardwareOrderCPUResponse to true

Sequence : ProcessMBSequence

Choice : ChoiceMB

Choice_MBnotInStock : MB not in stock

Assign : Assign missing MB to HardwareOrderMB

SendMBOrder : Manufacturer sends HardwareOrderMB to SupplierMB

 83

SilentAction : [SupplierMB]: Process MBOrder

SendMBOrder : SupplierMB sends HardwareOrderResponse to
Manufacturer

Choice_MBinStock : MB in stock

NoAction : MBOrder not necassary

Assign : Set HardwareOrderMBResponse to true

Sequence : ProcessHDSequence

Choice : ChoiceHD

Choice_HDnotInStock : HD not in stock

Assign : Assign missing HD to HardwareOrderHD

SendHDOrder : Manufacturer sends HardwareOrderHD to SupplierHD

SilentAction : [SupplierHD]: Process HDOrder

SendHDOrder : SupplierHD sends HardwareOrderResponse to
Manufacturer

Choice_HDinStock : HD in stock

NoAction : HDOrder not necassary

Assign : Set HardwareOrderHDResponse to true

Sequence : EvaluateOrder

Choice : Determine if PurchaseOrder was successfully performed

PO_success : PurchaseOrder successfully performed

Assign : Set confirmation of PurchaseOrder to true

PO_failure : PurchaseOrder not successfully performed

Assign : Set confirmation of PurchaseOrder to false

SilentAction : [Manufacturer]: Assign PurchaseOrderResponse

SendPurchaseOrder : Manufacturer sends PurchaseOrderResponse to Customer

Initialize : Sends result to client which has invoked the choreography

Appendix C: BTO Customer-Manufacturer SLA
<?xml version="1.0" encoding="UTF-8"?>

<SLA xmlns="http://www.ibm.com/wsla" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:wsla="http://www.ibm.com/wsla" name="Customer-Manufacturer-SLA">
 <Parties>
 <ServiceProvider name="Manufacturer" />
 <ServiceConsumer name="Customer" />
 <SupportingParty name="MeasurementService">
 <Sponsor>Manufacturer</Sponsor>
 <Role>MeasurementService</Role>
 </SupportingParty>
 </Parties>
 <ServiceDefinition name="manService">
 <Operation xsi:type="wsla:WSDLSOAPOperationDescriptionType"
 name="sendPurchaseOrder">
 <SLAParameter name="p1" type="ExecutionTime" unit="seconds">
 <Metric>ExecutionTimeMetric</Metric>
 </SLAParameter>
 <SLAParameter name="p2" type="Throughput" unit="requests">
 <Metric>ThroughputMetric</Metric>
 </SLAParameter>
 <SLAParameter name="p3" type="Availability" unit="uptimeratio">
 <Metric>AvailabilityMetric</Metric>
 </SLAParameter>
 <!-- Hypothetical metrics. It is assumed that metrics representing the
 respective SLA parameters are provided and can be retrieved. -->
 <Metric name="m1" type="float">
 <Source>MeasurementService</Source>
 <MeasurementDirective xsi:type="Gauge">
 <MeasurementURI>http://example.org/ExecutionTimeMetric</MeasurementURI>
 </MeasurementDirective>
 </Metric>
 <Metric name="m2" type="float">
 <Source>MeasurementService</Source>

 84

 <MeasurementDirective xsi:type="Gauge">
 <MeasurementURI>http://example.org/ThroughputMetric</MeasurementURI>
 </MeasurementDirective>
 </Metric>
 <Metric name="m3" type="float">
 <Source>MeasurementService</Source>
 <MeasurementDirective xsi:type="Gauge">
 <MeasurementURI>http://example.org/AvailabilityMetric</MeasurementURI>
 </MeasurementDirective>
 </Metric>
 <WSDLFile>manInterfacewsdl</WSDLFile>
 <SOAPBindingName>manBehaviourBinding</SOAPBindingName>
 <SOAPOperationName>sendPurchaseOrder</SOAPOperationName>
 </Operation>
 </ServiceDefinition>
 <Obligations>
 <ServiceLevelObjective name="SLOServicePerformance">
 <Obliged>SupplierCPU</Obliged>
 <Validity>
 <Start>2007-01-01T00:00:00.000+01:00</Start>
 <End>2007-12-31T00:00:00.000+01:00</End>
 </Validity>
 <Expression>
 <Or>
 <Expression>
 <And>
 <Expression>
 <Predicate xsi:type="wsla:Less">
 <SLAParameter>p1</SLAParameter>
 <Value>5</Value>
 </Predicate>
 </Expression>
 <Expression>
 <Predicate xsi:type="wsla:GreaterEqual">
 <SLAParameter>p2</SLAParameter>
 <Value>1</Value>
 </Predicate>
 </Expression>
 </And>
 </Expression>
 <Expression>
 <And>
 <Expression>
 <Predicate xsi:type="wsla:Less">
 <SLAParameter>p1</SLAParameter>
 <Value>7</Value>
 </Predicate>
 </Expression>
 <Expression>
 <Predicate xsi:type="wsla:GreaterEqual">
 <SLAParameter>p2</SLAParameter>
 <Value>3</Value>
 </Predicate>
 </Expression>
 </And>
 </Expression>
 </Or>
 </Expression>
 <EvaluationEvent>NewValue</EvaluationEvent>
 </ServiceLevelObjective>
 <ServiceLevelObjective name="SLOServiceDepandability">
 <Obliged>SupplierCPU</Obliged>
 <Validity>
 <Start>2007-01-01T00:00:00.000+01:00</Start>
 <End>2007-12-31T00:00:00.000+01:00</End>
 </Validity>
 <Expression>
 <Not>
 <Expression>
 <Predicate xsi:type="wsla:Less">
 <SLAParameter>p3</SLAParameter>
 <Value>0.95</Value>
 </Predicate>
 </Expression>
 </Not>
 </Expression>
 <EvaluationEvent>NewValue</EvaluationEvent>

 85

 </ServiceLevelObjective>
 <!-- Actions which should be taken if a SLO is violated (ActionGuarantees) have
 not been defined. -->
 </Obligations>
</SLA>

Appendix D: BTO Customer BPEL Process
<?xml version="1.0" encoding="UTF-8"?>

<process xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://example.org/build2order"
targetNamespace="http://example.org/build2order" name="BuildToOrderCDL_BPEL-
Process_Customer">
 <partnerLinks>
 <partnerLink name="manInterface" partnerRole="manInterfaceRole"
partnerLinkType="tns:manInterfaceLT">
 <wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:qosp="http://example.org/qosp" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="Customer-
Manufacturer-SLA" qosp:operation="sendPurchaseOrder">
 <wsp:All>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp:All>
 <qosp:ExecutionTime unit="seconds" predicate="Less" value="5"/>
 <qosp:Throughput unit="requests" predicate="GreaterEqual" value="1"/>
 </wsp:All>
 </wsp:All>
 <wsp:All>
 <wsp:All>
 <qosp:ExecutionTime unit="seconds" predicate="Less" value="7"/>
 <qosp:Throughput unit="requests" predicate="GreaterEqual" value="3"/>
 </wsp:All>
 </wsp:All>
 </wsp:ExactlyOne>
 <wsp:All>
 <qosp:Availability unit="uptimeratio" predicate="GreaterEqual"
 value="0.95"/>
 </wsp:All>
 </wsp:All>
 </wsp:Policy>
 </partnerLink>
 <partnerLink name="custInterface" myRole="custInterfaceRole"
 partnerLinkType="tns:custInterfaceLT"/>
 </partnerLinks>
 <variables>
 <variable name="PurchaseOrder" messageType="tns:PurchaseOrder"/>
 <variable name="PurchaseOrderResponse" messageType="tns:PurchaseOrderResponse"/>
 <variable name="QuoteAccept" messageType="tns:QuoteAccept"/>
 <variable name="QuoteRequest" messageType="tns:QuoteRequest"/>
 <variable name="QuoteResponse" messageType="tns:QuoteResponse"/>
 <variable name="QuoteUpdate" messageType="tns:QuoteUpdate"/>
 </variables>
 <sequence>
 <receive operation="initialize" Variable="QuoteRequest"
 partnerLink="custInterface" portType="tns:custInterface"/>
 <sequence>
 <sequence>
 <invoke operation="requestForQuote" inputVariable="QuoteRequest"
 partnerLink="manInterface" portType="tns:manInterface"
 outputVariable="QuoteResponse"/>
 <sequence name="Customer_AssignQuoteAccept">
 <empty/>
 </sequence>
 <invoke operation="inform" inputVariable="QuoteAccept"
 partnerLink="manInterface" portType="tns:manInterface"/>
 <while name="QuoteBartering"
 condition="bpws:getVariable('QuoteAccept','accept','')=false()">
 <sequence>
 <invoke operation="updateQuote" inputVariable="QuoteUpdate"
 partnerLink="manInterface" portType="tns:manInterface"
 outputVariable="QuoteResponse"/>
 <sequence name="Customer_ProcessUpdate">
 <empty/>

 86

 </sequence>
 <invoke operation="inform" inputVariable="QuoteAccept"
 partnerLink="manInterface" portType="tns:manInterface"/>
 </sequence>
 </while>
 </sequence>
 <invoke operation="sendPurchaseOrder" inputVariable="PurchaseOrder"
 partnerLink="manInterface" portType="tns:manInterface"
 outputVariable="PurchaseOrderResponse"/>
 </sequence>
 <reply operation="initialize" Variable="PurchaseOrderResponse"
 partnerLink="custInterface" portType="tns:custInterface"/>
 </sequence>
</process>

Appendix E: BTO Customer Partner Link Types
<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:tns="http://example.org/build2order"
name="BuildToOrderCDL_PartnerLinkTypes_Customer">
 <plnk:partnerLinkType xmlns="" name="manInterfaceLT">
 <plnk:role name="manInterfaceRole">
 <plnk:portType name="tns:manInterface"/>
 </plnk:role>
 </plnk:partnerLinkType>
 <plnk:partnerLinkType xmlns="" name="custInterfaceLT">
 <plnk:role name="custInterfaceRole">
 <plnk:portType name="tns:custInterface"/>
 </plnk:role>
 </plnk:partnerLinkType>
</definitions>

Appendix F: BTO Manufacturer WSDL Description
<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://example.org/build2order"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
targetNamespace="http://example.org/build2order" name="BuildToOrderCDL_WSDL-
Description_Manufacturer">
 <message name="QuoteRequest"/>
 <message name="QuoteResponse"/>
 <message name="QuoteAccept"/>
 <message name="QuoteUpdate"/>
 <message name="PurchaseOrder"/>
 <message name="PurchaseOrderResponse"/>
 <portType name="manInterface">
 <operation name="requestForQuote">
 <input name="request" message="tns:QuoteRequest"/>
 <output name="respond" message="tns:QuoteResponse"/>
 </operation>
 <operation name="inform">
 <input name="req2resp" message="tns:QuoteAccept"/>
 <output name="resp2req" message="tns:QuoteAccept"/>
 </operation>
 <operation name="updateQuote">
 <input name="request" message="tns:QuoteUpdate"/>
 <output name="respond" message="tns:QuoteResponse"/>
 </operation>
 <operation name="sendPurchaseOrder">
 <input name="request" message="tns:PurchaseOrder"/>
 <output name="respond" message="tns:PurchaseOrderResponse"/>
 </operation>
 </portType>
 <binding name="ManBehaviourBinding" type="tns:manInterface">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="requestForQuote">
 <soap:operation soapAction="http://example.org/build2order/requestForQuote"/>
 <input>

 87

 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </input>
 <output>
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </output>
 </operation>
 <operation name="inform">
 <soap:operation soapAction="http://example.org/build2order/inform"/>
 <input>
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </input>
 <output>
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </output>
 </operation>
 <operation name="updateQuote">
 <soap:operation soapAction="http://example.org/build2order/updateQuote"/>
 <input>
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </input>
 <output>
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </output>
 </operation>
 <operation name="sendPurchaseOrder">
 <soap:operation soapAction="http://example.org/build2order/sendPurchaseOrder"/>
 <input>
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </input>
 <output>
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://example.org/build2order"/>
 </output>
 </operation>
 </binding>
 <service name="manInterfaceService">
 <port name="manInterfacePort" binding="tns:ManBehaviourBinding">
 <soap:address location="URI_to_be_specified"/>
 </port>
 </service>
</definitions>

