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Abstract

In this thesis, we investigate three different non-classical propositional logics,
which are relevant to computer science.

The first logic under consideration is intuitionistic logic. We present
a Hilbert style calculus and a calculus of natural deduction, and show
completeness and soundness for both of them with respect to intuitionis-
tic Kripke models.

Then we investigate normal modal logic, with an emphasis on K, the
basic normal modal logic. We also glimpse at stronger normal modal logics.
Here we only present one calculus, a Hilbert style calculus, extended to fit
the new requirements to show completeness.

In the last part, we direct our attention to a relatively new non-classical
logic; namely intuitionistic modal logic. We investigate the soundness and
completeness of the system HK2, which was first presented in [BD84]. We
identified some severe gaps in the completeness proof in this paper.
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Chapter 1

Introduction

In the broad field of computer science logic plays an important part. Not
only in theoretical computer science, but also sometimes hidden from the
unwary observer. The usage of logic ranges from conditional statements in
programming languages to applications like chip design and the verification
of chips. In most of these applications, classical logic is used. This is the
meta-logic usually applied in mathematical reasoning.

Since the beginning of the 20th century, when logic itself has become
an area of active interest and research, logics other than classical logic have
been devised, because of dissatisfaction with classical logic.

C. I. Lewis criticized the usual (material) implication and created a series
of logical systems which were supposed to circumvent these problems. His
investigations ultimately lead to our modern systems of normal modal logic.

L. E. J. Brouwer wanted to put mathematics on a more solid foundation
than classical logic with its indirect methods. His constructive approach to
mathematics (and thus also to logic) has been further developed by many
mathematicians and logicians to our modern notion of intuitionistic logic.
Although rarely used as a meta-logic (which was Brouwer’s original inten-
tion), it nevertheless has its merits and applications, especially in the field
of computer science.

These are two of the non-classical logics with which we will concern our-
selves. Intuitionistic logic is a “sub-logic” of classical logic, as there are fewer
“true” statements in intuitionistic logic than in classical logic. In contrast,
modal logic has additional connectives (so called modalities) compared to
classical logic and thus can express more statements than classical logic,
while still permitting all classically true statements.

It is an obvious idea to add modalities to intuitionistic logic and just see
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what we get. This has first been done by R. A. Bull in [Bul66] and Gisèle
Fischer Servi in [FS77]. Since then many other intuitionistic modal logics
have been devised and proven complete for some semantics.

In the following of this chapter, we will present some conventions and
preliminary definitions to facilitate reading of the rest of this thesis.

In Chapter 2, we treat propositional intuitionistic logic in detail, present-
ing two calculi and proving completeness for intuitionistic Kripke models

In Chapter 3, we concern ourselves with some propositional normal
modal logics and present a soundness and completeness proof for a Hilbert
style calculus, which is an extension of one of the calculi presented in Chap-
ter 2.

In Chapter 4 we present the intuitionistic modal logic calculus HK2, as a
representative of an intuitionistic modal logic. This logic was first presented
in [BD84]. Taking this paper under close scrutiny, we identified severe gaps
in the completeness proof, which we point out for future investigation.

1.1 Conventions

1.1.1 Notational Conventions

In order to facilitate reading, we try to adhere as strictly as possible to the
following conventions regarding notation:

• We use lowercase Greek letters to denote formulae or formula schemata.
Most often we use ϕ,ψ, θ, α, β, etc., possibly sub-scripted or primed.

• We use uppercase Greek letters to denote sets of formulae, most often
Σ,Λ and Γ, possibly primed.

• We use lowercase Latin letters starting from p for logical variables
(i.e. atoms): p, q, r, etc., possibly sub-scripted or primed.

• We use lowercase Latin letters starting from a to denote worlds (or
nodes) in Kripke models: a, b, c, etc., possibly sub-scripted or primed.

• We use uppercase characters (and numbers) in a sans serif-font like 4
or K for axioms. Logical rules will additionally be put in brackets as,
e.g., (MP).

• We use a similar font for different calculi or logical systems as we do
for axioms and inference rules, but we use boldface characters as e.g. L
or C2.
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Language

As we present different logical systems in this thesis, the language of the
logic may also differ, but here is a super-set of all the elements which we
use:

• We use the binary logical connectives ∧ (conjunction), ∨ (disjunction)
and → (implication) and the unary logical connective ¬ (negation).

• We use the modalities 2 and 3. Modalities are unary.

• We use logical variables, denoted as described above.

• We only use ⊥ as logical constant for falsity.

• We may use abbreviations for sub-formulae instead of writing out all
formulae.

The language of the different logics is defined in the usual way. So all logical
variables, logical constants and sub-formula symbols are in the language
of the logic, as well as all permissible combinations thereof with logical
connectives and modalities (if modalities are in the respective logic).

Metalanguage

The following symbols will be used (in increasing order of precedence):

• ⇒ for “implies”

• ⇔ for “if and only if”

• ⇔: for “is defined as”

1.1.2 Logical Conventions and Preliminary Definitions

We have a countable infinite set of variables.
As usual, we make no distinction between formulae and schemata for

formulae.
For better readability, we sometimes omit parentheses. To make this

possible we have the following decreasing order of precedence of our logical
connectives:

• ¬,2,3: the unary connective and the modalities bind most strongly,

• ∧,
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• ∨,

• →, whereas implication is right-associative (i.e., ϕ → ψ → θ is the
same as ϕ→ (ψ → θ)).

For chains of disjunctions and conjunctions, we will usually omit paren-
theses and assume left-associativity, i.e., we will write ϕ ∧ ψ ∧ θ instead of
((ϕ ∧ ψ) ∧ θ).

The symbol ⊢ (possibly with subscript) is usually used for a syntactic
proof relation, whereas the symbol � is used for semantic forcing relation.

Σ ⊢ ϕ denotes a concrete proof of ϕ with assumptions in Σ, but—by a
slight abuse of notation—we will also use it to express the fact that there is
such a proof, i.e., ϕ can be proven when assuming all formulas in Σ to be
true.

When using induction arguments over formulae, we need a measure for
the complexity of a formula. The logical complexity, lcomp(ϕ), of a formula
ϕ is defined next.

Definition 1.1.1 (Logical complexity). The logical complexity of a formula
ϕ is inductively defined as follows:

lcomp(ϕ) =







0 if ϕ is atomic or a logical variable,
lcomp(ϕ1) + lcomp(ϕ2) if ϕ = ϕ1 ◦ ϕ2, for ◦ ∈ {∧,∨,→},
lcomp(ϕ1) + 1 if ϕ = ◦ϕ, for ◦ ∈ {¬,2}.
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Chapter 2

Intuitionistic Logic

2.1 History and Motivation

Intuitionistic Logic was first formulated by Luitzen E. J. Brouwer in 1907
(see [Bro07] for details). Brouwer considered logic as a sub-area of mathe-
matics and not as the foundation of mathematics, as it was and is widely
viewed. Logical reasoning is a mathematical activity, logical proofs are noth-
ing but mathematical constructs.

One feature of classical logic which was criticized by Brouwer is the
principle of the excluded middle, i.e., A∨¬A is true in classical logic. When
regarding A as a proof of a statement which can neither be proved nor
falsified (like Fermat’s Theorem at that time, or a still undecided statement
like Goldbach’s Conjecture), A ∨ ¬A is not evident.

In 1931 Arend Heyting presented the proof interpretation of intuition-
istic logic, which is in the spirit of Brouwer’s criticism of classical logic,
viewing intuitionistic statements as proofs/mental processes of an abstract
mathematician.

Already 1933 Kurt Gödel established the connection between the modal
logic S4 (which will be treated in Section 3.2.1) and intuitionistic logic in
[Göd33]. Later several so called topological interpretations where found for
intuitionistic logic, among those the Kripke structures developed by Saul
Kripke in 1963 is of most interest to us. As Gödel’s identification of a modal
logic with intuitionistic logic suggests, this semantics is important for modal
logics as well, as we will see in Chapter 3.

Intuitionistic logic and its constructive approach have shown to be quite
useful for computer science: A constructive proof of a theorem can also be
viewed as a λ-expression (or a computer program) creating witnesses for that
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theorem.1 More specifically, the Curry-Howard Isomorphism, named after
Haskell B. Curry and William A. Howard, who among others discovered this
correspondence, links proofs of theorems to types of the typed λ-calculus.
So a proof of a certain proposition can be read as a λ-program for obtaining
its correspondent type and vice versa. These λ-expressions can be trans-
lated into conventional computer programs and executed, hence the link to
computer science.

A thorough survey of the Curry-Howard Isomorphism with an introduc-
tion to the typed λ-calculus can be found in [Tho91].

2.2 Propositional Intuitionistic Logic

The following is a propositional calculus for intuitionistic logic in the spirit
of Heyting as found in [BD84].

Definition 2.2.1 (Hilbert style calculus for intuitionistic logic). These are
the axioms of Heyting’s propositional calculus (named H):

H1 ϕ→ (ψ → ϕ)

H2 (ϕ→ (ψ → θ)) → ((ϕ→ ψ) → (ϕ→ θ))

H3 (θ → ϕ) → ((θ → ψ) → (θ → ϕ ∧ ψ))

H4 (ϕ ∧ ψ) → ϕ

H5 (ϕ ∧ ψ) → ψ

H6 ϕ→ (ϕ ∨ ψ)

H7 ψ → (ϕ ∨ ψ)

H8 (ϕ→ θ) → ((ψ → θ) → (ϕ ∨ ψ → θ))

H9 (ϕ→ ¬ψ) → (ψ → ¬ϕ)

H10 ¬ϕ→ (ϕ→ ψ)

The only rule in H is the Modus Ponens rule:

(MP)
ϕ ϕ→ ψ

ψ

1For readers familiar with LISP, λ-expressions are LISP programs in a broader sense.
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Remark 2.2.2. We will use ⊥ as a symbol for logical falsity. It can be
viewed as a variable with a constant truth value, a logical connective with
arity 0 or an abbreviation for any false formula (e.g., ϕ ∧ ¬ϕ). In an anal-
ogous manner, we sometimes use ⊤, which denotes logical truth. We view
⊥ as a logical connective with arity 0 and with the logical complexity 0, i.e.,
lcomp(⊥) = 0. By contrast, ⊤ will be viewed as an abbreviation of the for-
mula ⊥ → ⊥, which is provable in all systems presented in this thesis, as we
see in Example 2.2.4.

Often ¬ϕ is defined to be ϕ → ⊥. Then ¬ is not in the language of the
logic, but rather ⊥. The preceding axioms are translated in a natural way.

If one of the axioms ϕ ∨ ¬ϕ or ¬¬ϕ → ϕ is added to the axiom sys-
tem of Definition 2.2.1, we obtain classical logic. Thus the intuitionistically
provable formulae are a subset of the classically provable formulae.

Definition 2.2.3 (Heyting proofs). A proof Σ ⊢H ϕ in the calculus H is a
sequence (ψ1, ψ2, . . . , ψn) of formulae, where ψn = ϕ and for all ψi either:

• ψi is a substitution instance of one of the axioms H1,. . . ,H10,

• ψi ∈ Σ (i.e., ψi is a premise),

• ψi is the conclusion of an application of MP, whose premises are ψj,
ψk with j, k < i.

The length of the proof Σ ⊢H ϕ is the length of the sequence (ψ1, ψ2, . . . , ψn),
which is n in this case. If Σ, the set of premises, is empty, we may write
⊢H ϕ instead of ∅ ⊢H ϕ for simplicity.

As stated above, we will use substitution instances of axioms in our
proofs. We obtain a substitution instance of a formula schema by consis-
tently replacing all occurrences of the sub-formulae ϕ, ψ and θ by arbi-
trary formulae. So ⊥ → (ψ → ⊥) is a substitution instance of H1, as is
ϕ→ (ϕ→ ϕ), but ϕ→ (ψ → ⊥) is not a substitution instance of H1 as the
atomic sub-formula ϕ is replaced by ⊥ only at its second occurrence, but
not at its first.

Example 2.2.4. The following is a proof of ⊢H ϕ → ϕ, where we mark
axioms and results of (MP):
[1: H2] (ϕ→ ((ϕ→ ϕ) → ϕ)) → ((ϕ→ (ϕ→ ϕ)) → (ϕ→ ϕ))
[2: H1] ϕ→ ((ϕ→ ϕ) → ϕ)
[3: (MP) 2, 1] (ϕ→ (ϕ→ ϕ)) → (ϕ→ ϕ)
[4: H1] ϕ→ (ϕ→ ϕ)
[5: (MP) 4, 3] ϕ→ ϕ

The same proof is depicted as a tree in Figure 2.1.
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ϕ→ α

ϕ→ (α→ ϕ) (ϕ→ (α→ ϕ)) → ((ϕ→ α) → α)

(ϕ→ α) → α
(MP)

α (MP)

Figure 2.1: Proof of α : ϕ→ ϕ from Example 2.2.4.

As we have seen in the last example, a proof in a “linear notation” can
be transformed to a proof in “tree notation” and vice versa. In general, the
latter can be longer than the former.

Example 2.2.5. When falsity ⊥ is in the language, then we can show that,
for all ϕ, it holds that ⊢H ⊥ → ϕ. This means that, whenever we can deduce
⊥, arbitrary formulae can be deduced ( ex falso quod libet).
Since H10 is an abbreviation for (ψ → ⊥) → (ψ → ϕ), with the substitution
instance (⊥ → ⊥) → (⊥ → ϕ) and Example 2.2.4, we get the following tree
proof:

by Example 2.2.4
▽

⊥ → ⊥
H10

(⊥ → ⊥) → (⊥ → ϕ)

(⊥ → ϕ)
(MP)

In the above proof tree, the symbol ▽ denotes a known sub-proof, which we
omit for better readability. We will use this symbol whenever we already have
a proof for the formula which is written directly below ▽. In this case, the
formula ⊥ → ⊥ is a substitution instance of ϕ → ϕ, which is the formula
proven in Example 2.2.4.

We will now formulate the Deduction Theorem for intuitionistic propo-
sitional logic with Heyting proofs.

Theorem 2.2.6 (Deduction Theorem for intuitionistic Heyting proofs).

Σ, ϕ ⊢H ψ ⇒ Σ ⊢H ϕ→ ψ

Proof. Suppose there is a proof Σ, ϕ ⊢H ψ, which is a sequence of formulae
of the form (α1, . . . , αn) with αn = ψ. We will transform this proof into a
proof Σ ⊢H ϕ→ ψ of the form (β1, . . . , βm) with βm = ϕ→ ψ.

We proceed by induction on n, the length of the proof (α1, . . . , αn) and
show that, for every such proof, there is a proof Σ ⊢H ϕ→ ψ.

Induction Base. n = 1.
If αn is an axiom, then we trivially have Σ, ϕ ⊢H αn, because, via the axiom
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H1 and modus ponens, we get

αn αn → (ϕ→ αn)

ϕ→ αn

(MP)

and therefore we have Σ ⊢H ϕ→ αn.
If αn ∈ Σ, then we proceed analogously.
If αn = ϕ, then we have ⊢H ϕ→ ϕ by Example 2.2.4 and thus Σ ⊢H ϕ→ ϕ.

Induction Hypothesis. Suppose n ≥ 1 and assume that, for all proofs
Σ, ϕ ⊢H ψ of length ≤ n, we have corresponding proofs Σ ⊢H ϕ→ ψ.

Induction Step. For the induction step, let us consider a proof Σ, ϕ ⊢H ψ
of length n+ 1, which is of the form (α1, . . . , αn, αn+1) with αn+1 = ψ.
If αn+1 is an axiom, an element of Σ or αn+1 = ϕ, this corresponds essentially
to the base case above and we would just have to add some formulae to the
proof Σ ⊢H ϕ→ αn (which exists by the induction hypothesis).

On the other hand, if αn+1 is the result of an application of (MP) of the
form

αi αj

αn+1
(MP),

where i, j < n + 1 and without loss of generality αj = αi → αn+1. Then
we proceed as follows: By the induction hypothesis, there are two proofs
Σ ⊢H ϕ→ αi and Σ ⊢H ϕ→ αj . So with the substitution instance of axiom
H2: ϕ → (αi → αn+1) → ((ϕ → αi) → (ϕ → αn+1)) and two applications
of modus ponens, we get Σ ⊢H ϕ→ αn+1.

This concludes the proof of the theorem.

We will now introduce a semantics for intuitionistic logic: the possible
world semantics first conceived by Saul Kripke in [Kri65].

The idea behind this semantics is that we have a certain state of knowl-
edge any given moment in a certain world. This knowledge follows—more
or less—classical rules.
So when we know that ϕ is true, we also know that, for any given ψ, the
formula ψ → ϕ is also true, just as it would be in a classical setting. When
we have ϕ and ψ, we also have ϕ ∧ ψ and so forth. But it is possible for
us to enlarge our knowledge and obtain new facts by going to a new world
accessible from our current one.

The whole “universe” of all accessible worlds is our Kripke model. Only
formulae which are universally true for the model (i.e., they are true in all
worlds of the model) are true in the model.

In the following definition, we create a formal framework for this kind of
model.
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Definition 2.2.7 (Kripke structures, Kripke models for intuitionistic logic).
A model

M = (N,≤, D)

is a tuple, where N is a partially ordered, non-empty set of nodes N (or
worlds), ≤ is a reflexive and transitive relation over N and D is the domain
function

D : N → P(VAR), 2

satisfying the constraint

∀a, b ∈ N : a ≤ b⇒ D(a) ⊆ D(b).

When we do not need to consider the domain function D of a Kripke model,
the pair (N,≤) is called a Kripke structure.

Remark 2.2.8. “For all a ∈ M ” denotes all elements of N in a model
M = (N,≤, D).

By the means of a forcing relation �, we first introduce the concept of
truth in a world of a Kripke model and then expand this notion to the whole
model and classes of models (i.e., all models satisfying all formulas in some
set Σ).

Definition 2.2.9 (Forcing relation). The forcing relation � establishes truth
in a model M = (N,≤, D) and is defined inductively as follows:

1. a � p⇔: p ∈ D(a);

2. a � ψ ∧ ϕ⇔: a � ψ and a � ϕ;

3. a � ψ ∨ ϕ⇔: a � ψ or a � ϕ;

4. a � ψ → ϕ⇔: for all b with a ≤ b : b � ψ ⇒ b � ϕ;

5. a � ¬ϕ⇔: for all b with a ≤ b : b 2 ϕ.

We say ϕ holds in a model M , M forces ϕ or M � ϕ holds, if, for all
worlds a of M , a � ϕ holds. We say M � Σ holds, if M � σ holds for all
σ ∈ Σ. Furthermore, we say Σ � ϕ holds, if, for all models with M � Σ,
also M � ϕ holds.

Remark 2.2.10 (Alternative definition of ¬ϕ). When ¬ϕ is defined as
ϕ→ ⊥, item number 5 of the previous definition is a consequence of the fact
that ⊥ is never forced at any world (i.e., for all a ∈ M , a 2 ⊥ holds).

2
P(VAR) is the power-set of the infinite, countable set of propositional atoms.
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Lemma 2.2.11 (Intuitionistic Heredity).

a ≤ b⇒ (a � ϕ⇒ b � ϕ)

Proof. The above statement expresses the fact that every succeeding world
forces all formulae which have been forced in its ≤-predecessor. Roughly
speaking, true statements stay true over the ≤-relation.

We have to prove that, for every world b, for which a ≤ b holds, all
statements ϕ, which are forced in a, are also forced in b. As always, when
considering implications as a � ϕ ⇒ b � ϕ, we only have to regard the
case that the left hand side of the implication is true, because otherwise the
statement as a whole is trivially true.

We prove the lemma by induction on lcomp(ϕ), the logical complexity
of ϕ. Assume that a ≤ b holds.

Induction Base. Consider ϕ with lcomp(ϕ) = 0, i.e., ϕ is of the form p,
where p is a variable, or ϕ is ⊥. As ⊥ is not forced in any world, a � ⊥
is never true and so in this case the statement is trivially true, as we have
stated above.
Now suppose a � p holds. By Definition 2.2.9, this is equivalent to p ∈ D(a).
By assumption, we have a ≤ b, which implies D(a) ⊆ D(b) by Definition
2.2.7. Thus, we know that p ∈ D(b) and obtain b � ϕ.

Induction Hypothesis. Suppose n ≥ 0 and assume, that, for all formulas
ϕ with lcomp(ϕ) ≤ n and all worlds a, b with a ≤ b, b � ϕ holds, if a � ϕ
holds.

Induction Step. Consider ϕ with lcomp(ϕ) = n + 1. Since n ≥ 0, ϕ
contains at least one connective. We perform a case distinction according
to the outermost logical connective, as, for the remaining immediate sub-
formulae, the desired property holds by the induction hypothesis.

ϕ is of the form ψ ∧ σ. Now suppose ψ ∧ σ is forced in a. By item 2 of
Definition 2.2.9, a � ψ and a � σ also holds. We apply the induction
hypothesis and obtain b � ψ and b � σ for all worlds b with a ≤ b.
Having both b � ψ and b � σ, once again by item 2 of Definition 2.2.9,
we obtain b � ψ ∧ σ for all b with a ≤ b.

ϕ is of the form ψ ∨ σ. This case of the induction step is analogous to the
case above with the slight difference that we quote item 3 of Definition
2.2.9 and we only know that ψ or σ is forced in a (and b respectively).

ϕ is of the form ψ → σ. Suppose a � ψ → σ holds. We use an indirect
approach and suppose that b 2 ϕ. By Definition 2.2.9, item 4, there is
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a c with b ≤ c for which c � ψ holds and c � σ does not hold. As—by
the transitivity of ≤—it holds that a ≤ c, by Definition 2.2.9, item 4,
a 2 ψ → σ holds. This is a contradiction to our assumption, so b � ϕ
holds.

ϕ is of the form ¬ψ. Suppose ¬ψ is forced in a. Then b 2 ψ holds for all
b with a ≤ b by Definition 2.2.9, item 5. Now, for all c with b ≤ c,
we also have c 2 ψ, because the successors of a are included in the
successors of b, since a ≤ b and transitivity of ≤ hold. Thus we obtain
b � ¬ψ by item 5 of Definition 2.2.9.

This concludes the proof of the lemma.

Lemma 2.2.12 (Soundness of H with respect to Kripke models for intu-
itionistic logic). If Σ ⊢H ϕ holds, then Σ � ϕ holds.

Proof. To prove the soundness of Heyting proofs with respect to Kripke
models, we have to show that, whenever we can construct a proof for ϕ by
iteratively applying (MP) on elements of Σ and axioms of H (i.e., Σ ⊢H ϕ
holds), the following is also true:
All Kripke models which force all elements of Σ also force ϕ, or in symbols:
∀M : M � Σ ⇒ M � ϕ (cf. Definition 2.2.9).

To obtain this result, we will somehow follow our proof semantically; we
will show that all axioms of H are forced in any Kripke model and that,
whenever two formulae ϕ and ϕ → ψ are forced in any Kripke model, so is
ψ, thus obtaining the correctness for the rule (MP).

First we show for every axiom of H that it holds in any world a of any
Kripke model M and thus a fortiori in the Kripke models which force all
elements of Σ. To obtain this result, we consider an arbitrary world a and
its successor(s). Since ≤ is reflexive, every world has at least one successor.
So when we consider a world a, we may also have to regard its successors
b, i.e., the worlds b such that a ≤ b holds. By the properties of ≤, we need
not consider successors of successors, i.e., the worlds c such that a ≤ b ≤ c
holds, as these are included in the set {b | a ≤ b holds}.

H1: ϕ→ (ψ → ϕ). Suppose a � ϕ→ (ψ → ϕ) does not hold. By Definition
2.2.9, item 4, this is only the case, if there are worlds b with a ≤ b
which force ϕ but which do not force ψ → ϕ.
If some b forces ϕ, all successors of those b also force ϕ by Intuitionistic
Heredity (Lemma 2.2.11). So, by the definition mentioned above, all
b with a ≤ b trivially force ψ → ϕ. But then a � ϕ → (ψ → ϕ) holds
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which is a contradiction to our assumption. Therefore H1 must be
forced in all worlds a.

H2: (ϕ → (ψ → θ)) → ((ϕ → ψ) → (ϕ → θ)). In order to show that H2
holds in every world a, we consider all b with a ≤ b. If there is no b
for which b � ϕ→ (ψ → θ) and b � ϕ→ ψ holds, H2 is trivially forced
in a.
On the other hand, if there is a b with a ≤ b and b 2 ϕ holds, the
following implications hold in b: ϕ→ (ψ → θ), ϕ→ ψ and ϕ→ θ. So
we get b � (ϕ→ (ψ → θ)) → ((ϕ→ ψ) → (ϕ→ θ)) by Definition 2.2.9
item 4 and Intuitionistic Heredity (Lemma 2.2.11). Now consider the
case that b � ϕ→ (ψ → θ), b � ϕ→ ψ and b � ϕ holds. By the latter
two it follows that b � ψ also holds, by the first and third, we have
b � ψ → θ. b � θ holds by Definition 2.2.9, item 4 So ϕ → θ is forced
by those b and so is H2.
Now we have established that b forces H2 for all b with a ≤ b, thus by
reflexivity of ≤, we know that a forces H2.

H3: (θ → ϕ) → ((θ → ψ) → (θ → ϕ ∧ ψ)). Using a similar argument as
the one above for H2, we focus on successors b of a which force θ → ϕ
as well as θ → ψ, since a � (θ → ϕ) → ((θ → ψ) → (θ → ϕ ∧ ψ))
is trivially true, if there is no such world. As all implications hold
trivially, when b 2 θ holds, we only consider those worlds b with b � θ.
By Definition 2.2.9, item 4 and reflexivity of ≤, we then have b � ϕ
and b � ψ. Thus by item 2 of the same definition, we have b � ϕ ∧ ψ
as well as b � θ → ϕ∧ψ. So all successors of a which force θ → ϕ and
θ → ψ also force θ → ϕ ∧ ψ, which means that all successors of a—a
included—force H3.

H4: (ϕ∧ψ) → ϕ. Suppose for all b with a ≤ b that b 2 (ϕ∧ψ) holds. Then
b � (ϕ ∧ ψ) → ϕ is trivially true and so is a � (ϕ ∧ ψ) → ϕ.
Now suppose there are some b with b � ϕ∧ψ. For those b, the relation
b � ϕ is true by Definition 2.2.9, item 2. So we get a � (ϕ ∧ ψ) → ϕ
by item 4 of the same definition.

H5: (ϕ ∧ ψ) → ψ. The proof is similar to the one for H4.

H6: ϕ → (ϕ ∨ ψ). To show that ϕ → (ϕ ∨ ψ) is forced in every world a
of every Kripke model, we suppose that ϕ is forced in some worlds b,
which are successors of a. (Otherwise we can apply the same argument
as for axiom H4 and conclude that a � ϕ→ (ϕ ∨ ψ) is trivially true.)
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Each world b with b � ϕ also forces ϕ ∨ ψ by Definition 2.2.9 item 3,
so those b and a also force ϕ→ (ϕ ∨ ψ).

H7: ψ → (ϕ ∨ ψ). The proof is similar to the one for H6.

H8: (ϕ → θ) → ((ψ → θ) → (ϕ ∨ ψ → θ)). We will proceed in a fashion
similar to the cases H2 and H3 to prove that H8 is forced by every
world a of every Kripke model. We focus on the successors b of a
which force ϕ → θ and ψ → θ. When b � ϕ holds, it follows that b
forces θ. Analogously when b � ψ holds, b also forces θ. So when b � ϕ
or b � ψ holds, b � θ holds. By Definition 2.2.9 item 3 and 4, this is
equivalent to the fact that b � ϕ ∨ ψ → θ holds. So once again, for
all successors of a, H8 either holds trivially (if ϕ → θ or ψ → θ is not
forced) or by the above argument.

H9: (ϕ → ¬ψ) → (ψ → ¬ϕ). We consider all b, for which a ≤ b holds and
which force ϕ → ¬ψ. By Definition 2.2.9 item 5, this means that all
b must not force ψ, when b � ϕ holds. So when b � ψ holds, b must
not force ϕ, which means that we have b � ψ → ¬ϕ. By reflexivity of
≤, we have a � ψ → ¬ϕ, whenever a � ϕ → ¬ψ holds. Therefore, by
Definition 2.2.9 item 4, any a forces H9.

H10: ¬ϕ→ (ϕ→ ψ). Here we only have to consider the case that no b with
a ≤ b forces ϕ, which, by Definition 2.2.9 item 5, means that a � ¬ϕ.
Otherwise the outermost implication of H10 would be trivially true.
When no b forces ϕ, all b force ϕ → ψ by Definition 2.2.9 item 4. So,
by this definition, b � ¬ϕ→ (ϕ→ ψ) also holds. Thus a forces H10.

We have shown that arbitrary worlds of arbitrary Kripke models force
all of the axioms presented in Definition 2.2.1. It remains to show that the
rule (MP) is correct for this semantics. So, whenever we have a � ϕ and
a � ϕ→ ψ, a � ψ must also be true. By Definition 2.2.9 item 4, a � ϕ→ ψ
holds, if and only if, for all b with a ≤ b, b � ϕ implies b � ψ. By reflexivity,
we get a � ψ and thus have shown the correctness of (MP).

With these results it is obvious that, once we can construct a proof
Σ ⊢H ϕ, Σ � ϕ holds (i.e., for all models M : M � Σ ⇒ M � ϕ): M forces
all elements of Σ by precondition and we have shown that any Kripke model
forces all axioms of H. Furthermore any formula, which is the result of an
application of (MP) of two formulae forced by M , is also forced by M .

The completeness of Kripke models with respect to the Heyting calculus
is more difficult to show. First we take a detour to prove the complete-
ness property Σ � ϕ ⇒ Σ ⊢H ϕ. We introduce a different notion of proof
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based on the Natural Deduction calculus (originally introduced by Gerhard
Gentzen in [Gen35]). The basic idea behind this calculus is the availability
of introduction and elimination rules for all logical connectives. The most
elementary proof in this system is the proof of ϕ from the premise ϕ. By
applications of the rules, the formula which is proven can more or less com-
plex, depending on whether we use an introduction or an elimination rule
and assumptions can be eliminated (canceled) or added.

We denote by Σ ⊢ND ϕ the provability of ϕ from a set Σ of formulae
(the assumptions) by rules of the Natural Deduction calculus ND. Then we
will show the completeness of Kripke models for that calculus via a Model
Existence Lemma and prove that all formulae which are provable by Natural
Deduction are also provable by our Heyting calculus, i.e., we will show that
Σ ⊢ND ϕ⇒ Σ ⊢H ϕ holds.

Together with the correctness result for the Heyting calculus, we will
eventually obtain

Σ ⊢H ϕ⇒ Σ � ϕ⇒ Σ ⊢ND ϕ⇒ Σ ⊢H ϕ

and thus the equivalence of all three notions.

Definition 2.2.13 (Natural Deduction calculus for intuitionistic proposi-
tional logic). The Natural Deduction calculus for intuitionistic logic (named
ND) for propositional logic has the following introduction and elimination
rules for the logical connectives:

ϕ ψ

ϕ ∧ ψ
(∧I) ϕ ∧ ψ

ϕ (∧E)
ϕ ∧ ψ

ψ
(∧E)

[ϕ]
...
ψ

ϕ→ ψ
(→I)

ϕ ϕ→ ψ

ψ
(→E)

ϕ

ϕ ∨ ψ
(∨I)

ψ

ϕ ∨ ψ
(∨I)

ψ ∨ ϕ

[ϕ]
...
θ

[ψ]
...
θ

θ
(∨E)
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[ϕ]
...
⊥
¬ϕ (¬I)

ϕ ¬ϕ

⊥
(¬E)

⊥
ϕ (⊥)

The formulae above the line are called premises, the formula below the
line is called conclusion. A formula in square brackets is called a canceled
hypothesis.

In this notation (◦I) is the introduction rule for the logical connective ◦,
where (◦E) is the corresponding elimination rule.
⊥ has no introduction rule, as we do not want to be able to deduce logical
falsity in our calculus. The rule (→E) coincides with modus ponens (MP)
from the Heyting calculus.

Remark 2.2.14. In the above calculus, if we interpret ¬ϕ as ϕ → ⊥, the
rules (¬I) and (¬E) are just instances of (→I) and (→E) with ψ = ⊥.

Analogously to Remark 2.2.2, if the rule reductio ad absurdum

[¬ϕ]
...
⊥
ϕ (RAA)

is added to the Natural Deduction calculus, we obtain classical logic.

Definition 2.2.15 (Natural Deduction proofs). A proof Σ ⊢ND ϕ is a tree,
whose root is ϕ and whose leaves are either canceled assumptions or formulae
from Σ. The inner nodes of the tree are conclusions of the rule applications
of ND, whose premises occur above the conclusion in the proof tree.

The length of the proof Σ ⊢ND ϕ is the number of formulas in the proof,
which corresponds to the number of nodes in the proof tree.

Proofs in ND are usually drawn as trees, whose roots are at the bottom.
When all leaf nodes are canceled, we have a proof ⊢ND ϕ, where ϕ is the
formula at the root of the proof tree.
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When applying one of the rules (→I), (¬I) or (∨E), we may cancel as-
sumptions. In Definition 2.2.13, the assumptions which we may cancel are
depicted in square brackets. It is possible to cancel none, some or all oc-
currences of the assumption in the proof tree above the rule application.
To denote that the respective assumption is canceled, we put it in square
brackets and—for better readability—add subscripts to the applications of
rules which cancel assumptions and the assumptions canceled by them, as
can be observed in the following examples.

The calculus ND is very convenient and thus we will use it to prove
formulae, we need in the later chapters as well. This is possible because
intuitionistic logic is the weakest logic we will treat, and all the other systems
are stronger in the sense that every intuitionistically provable formula is also
provable in the stronger systems.

Example 2.2.16 (⊢ND ϕ ∧ (ϕ → ψ) → ψ). This is a proof tree for the
formula ϕ ∧ (ϕ→ ψ) → ψ in the calculus of Natural Deduction:

[ϕ ∧ (ϕ→ ψ)]1
ϕ

(∧E)
[ϕ ∧ (ϕ→ ψ)]1

ϕ→ ψ
(∧E)

ψ
(→E)

ϕ ∧ (ϕ→ ψ) → ψ
(→I)1

The derived formula is a “paraphrase” of (MP).

Example 2.2.17 (⊢ND (ϕ→ ψ) → ((ψ → θ) → (ϕ→ θ))).

[ϕ]1 [ϕ→ ψ]3
ψ

(→E)
[ψ → θ]2

θ
(→E)

ϕ→ θ
(→I)1

(ψ → θ) → (ϕ→ θ)
(→I)2

(ϕ→ ψ) → ((ψ → θ) → (ϕ→ θ))
(→I)3

This formula describes the fact that the logical connective → behaves as a
transitive relation: When ϕ → ψ is provable and ψ → θ is provable, so is
ϕ→ θ.
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Example 2.2.18 (⊢ND (ϕ→ ψ) → ((ϕ ∧ θ) → (ψ ∧ θ))).

[ϕ ∧ θ]1
ϕ

(∧E)
[ϕ→ ψ]2

ψ
(→E)

[ϕ ∧ θ]1
θ

(∧E)

ψ ∧ θ
(∧I)

(ϕ ∧ θ) → (ψ ∧ θ)
(→I)1

(ϕ→ ψ) → ((ϕ ∧ θ) → (ψ ∧ θ))
(→I)2

Example 2.2.19 (⊢ND ¬((ϕ∨ψ)∧¬ϕ∧¬ψ). In the following, we abbreviate
(ϕ∨ψ)∧¬ϕ∧¬ψ by α. And—by a slight abuse of notation—we apply the rule
(∧E) in a more general form to conjunctions with more than two operands.

[α]2
ϕ ∨ ψ

(∧E)
[ϕ]1

[α]2
¬ϕ

(∧E)

⊥
(¬E)

[ψ]1

[α]2
¬ψ

(∧E)

⊥
(¬E)

⊥
(∨E)1

¬((ϕ ∨ ψ) ∧ ¬ϕ ∧ ¬ψ)
(¬I)2

Example 2.2.20 (⊢ND ¬(ϕ∧(ϕ→ ψ)∧¬ψ). In the following, we abbreviate
(ϕ ∧ (ϕ → ψ) ∧ ¬ψ) by α. Furthermore, we apply the rule (∧E) in a more
general form to conjunctions with more than two operands.

[α]1
ϕ

(∧E)
[α]1
ϕ→ ψ

(∧E)

ψ
(→E)

[α]1
¬ψ

(∧E)

⊥
(¬E)

¬(ϕ ∧ (ϕ→ ψ) ∧ ¬ψ)
(¬I)1

The completeness proof (i.e., the proof that everything which holds in all
models also can be proven in the calculus under consideration) is much easier
and comes more natural, when using Natural Deduction instead of a Hilbert-
style calculus. The drawback of proving completeness for the calculus ND
is that we still have to show that our two notions of proof produce the same
set of formulae (Σ ⊢H ϕ ⇔ Σ ⊢ND ϕ), but this is also not too difficult to
show.

We will use an indirect approach to show the completeness of the calculus
ND for Kripke models, by showing that, whenever a formula ϕ cannot be
proven for some assumptions in Σ, there exists a counter model, which forces
all formulae in Σ but not ϕ. In order to create such a counter model for ϕ
with Σ 0ND ϕ, we need the notion of prime theories, as our Kripke counter
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model will have prime theories as its nodes. We will proceed as in [vD04] to
create such a counter-model.

Definition 2.2.21 (Prime Theory (wrt. a calculus L)). Σ is called a prime
theory with respect to a calculus L if

(i) Σ is closed under ⊢L (i.e., Σ ⊢L ϕ ⇒ ϕ ∈ Σ), where ⊢L is the proof
relation of the calculus L, and

(ii) for all ϕ ∨ ψ ∈ Σ, ϕ ∈ Σ or ψ ∈ Σ.

The calculus L might not be explicitly noted when it is obvious from the
context.

Lemma 2.2.22. Suppose Σ does not prove ϕ (Σ 0ND ϕ). Then there is a
prime theory Σ′ ⊇ Σ (with respect to ND) with Σ′ 0ND ϕ.

Proof. We will construct a prime theory Σ′ with Σ′ 0ND ϕ by creating a
chain of formula sets Σ = Σ0,Σ1, . . . ,Σn, . . ., all of which do not force ϕ.
The prime theory is obtained by taking the union of all these sets.

We start with the construction of the Σn and show by induction on n
that, Σn 0ND ϕ holds for all n ∈ N:

Induction Base. Σ0 = Σ. Σ 0ND ϕ holds by the assumption of the
lemma.

Induction Hypothesis. Suppose n ≥ 0 and assume that Σn 0ND ϕ holds.
Induction Step. Consider Σn+1. We have to show that Σn+1 0ND ϕ

holds. We choose any enumeration of all well formed formulae and take the
first disjunction ψ1 ∨ψ2, which can be proven by Σn (i.e., ψ1 ∨ψ2 such that
Σn ⊢ND ψ1 ∨ ψ2 holds) and which we have not treated in a previous step.

We construct Σn+1 as follows:

Σn+1 =

{

Σn ∪ {ψ1} if Σn, ψ1 0ND ϕ,
Σn ∪ {ψ2} otherwise.

It remains to show that Σn+1 does not force ϕ.
If Σn+1 = Σn ∪ {ψ1}, then Σn+1 0ND ϕ by construction.
Now let Σn+1 = Σn∪{ψ2}. Then Σn∪{ψ1} ⊢ND ϕ holds by the construction
of Σn+1. Suppose Σn+1 ⊢ND ϕ holds. Then we have a proof Σn∪{ψ1} ⊢ND ϕ
and a proof Σn ∪ {ψ2} ⊢ND ϕ. As we have Σn ⊢ND ψ1 ∨ψ2, we can combine
it with these proofs by applying (∨E) and get a proof Σn ⊢ND ϕ. This is
a contradiction to the induction hypothesis, so when Σn+1 is Σn ∪ {ψ2} we
also have Σn+1 0ND ϕ. This concludes the induction proof.
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The set Σ′ =
⋃

n∈N
Σn, the union of all Σn, does not prove ϕ. If it would,

there would be a finite ND-proof, which only uses formulae contained in
some Σn. So this Σn would prove ϕ (Σn ⊢ND ϕ), which is a contradiction
to the construction of Σn.

Now we still have to show that Σ′ =
⋃

n∈N
Σn is a prime theory.

Property (i): If Σ′ ⊢ND ψ, then there is some n such that Σn ⊢ND ψ
holds and consequently Σn ⊢ND ψ ∨ ψ can be proven by an application of
(∨I). Sooner or later, we will treat the disjunction ψ ∨ψ in our construction
of the Σk and thus construct a Σk which contains ψ. Therefore, for every ψ
with Σ′ ⊢ND ψ, ψ ∈ Σ′ holds.

Property (ii): For every ψ ∨ θ ∈ Σ′, there is a Σi such that ψ ∨ θ ∈ Σi.
This Σi satisfies Σi ⊢ND ψ∨θ. So ψ∨θ is one of the disjunctions from which
we choose in the induction step of the construction of the Σi. As there are
only enumerably many well formed formulae, we will treat this disjunction
somewhere in our construction and add either ψ or θ to some Σj . Now there
is either ψ ∈ Σ′ or θ ∈ Σ′.

To prove the completeness of a logical system with respect to some se-
mantics, the construction of a canonical model is an often employed tech-
nique. Usually we call a model canonical, if it forces all formulae, provable
either in some logical system itself or provable by some set of premises, and
is a counter model for all other formulae, or—in our case—at least a counter
model for a specific formula which is of interest.

Lemma 2.2.23 (Model Existence Lemma for ⊢ND). If Σ 0ND ϕ, then there
is a (canonical) Kripke model M with a node a, such that M � Σ and a 2 ϕ

Proof. We will create an infinite, countable Kripke model by associating
finite sequences of natural numbers to its nodes. So let us quickly introduce
some notation which we will use in this proof: 〈〉 is the empty sequence.
−→n = 〈n1, n2, . . . , nk〉 is a sequence of k numbers and 〈−→n , i〉 is the same
sequence with i at its end, to spell it out: 〈n1, n2, . . . , nk, i〉. The relation ≤ is
defined as the sub-sequence relation on finite sequences of natural numbers.

For each node −→n , we will construct a prime theory Σ−→n ⊇ Σ as in Lemma
2.2.22 and show that −→n � Σ−→n holds. The model will be a rooted tree.

For the first node of our canonical model, we construct a prime theory
Σ〈〉 ⊇ Σ, and at node 〈〉, we force all atoms occurring as elements in Σ〈〉

(i.e., we define D(〈〉) to be the intersection of the set of all atoms and Σ〈〉).
Now, for any node −→n , we enumerate all pairs of formulae

〈ψ0, θ0〉, 〈ψ1, θ1〉, 〈ψ2, θ2〉, . . .
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such that, for all i, Σ−→n , ψi 0ND θi holds.
The direct successor 〈−→n , i〉 of −→n will be created as follows:

We construct a prime theory Σ〈−→n ,i〉 out of Σ−→n , ψi which still does not force
ϕ (via Lemma 2.2.22) and to obtain D(〈−→n , i〉), we force all atoms in Σ〈−→n ,i〉

at 〈−→n , i〉.
Now that we have established the form and the method of construction

for our canonical Kripke model M , we will prove that, for all worlds −→n ∈ M ,
−→n � Σ holds and that 〈〉 2 ϕ holds. In fact we will prove the following—even
stronger—statement: for all −→n ∈ M :

−→n � ψ ⇔ Σ−→n ⊢ND ψ

As all Σ−→n are super-sets of Σ by their construction, for any formula σ ∈ Σ,
Σ−→n ⊢ND σ holds since σ ∈ Σ−→n . So, once we prove the above equivalence
statement, for all σ ∈ Σ the relation −→n � σ holds. On the other hand,
by the construction of Σ〈〉, we have Σ〈〉 0ND ϕ, which we then show to be
equivalent to 〈〉 2 ϕ.

We will proceed by induction on lcomp(ψ), the logical complexity of an
arbitrary formula ψ.

Induction Base. lcomp(ψ) = 0. We only have to consider the case that
ψ is of the form p. If ⊥ ∈ Σ−→n , then, for any formula θ, we have Σ ⊢ND θ
by one application of (⊥). By the construction of D, the domain function
for the canonical model, we also have D(−→n ) = VAR and both sides of the
equivalence statement are true for all p ∈ VAR as well as ⊥.
Suppose Σ−→n ⊢ND ψ, then ψ ∈ D(〈−→n 〉), so −→n � ψ holds. For the other
direction of the equivalence statement above, we just consult Definition 2.2.9
and immediately recognize that any atomic ψ has to be in D(−→n ), whenever
−→n � ψ holds. Since D(〈−→n 〉) is a subset of Σ−→n , the atomic formula ψ is an
element of the prime theory Σ−→n .

Induction Hypothesis. Suppose m ≥ 0 and the above equivalence state-
ment holds for all ψ with lcomp(ψ) ≤ m.

Induction Step. Consider a ψ with lcomp(ψ) = m+ 1. We consider the
outermost logical connective of ψ and an arbitrary −→n .

ψ is of the form ψ1 ∧ψ2. Suppose −→n � ψ1 ∧ψ2 holds. By Definition 2.2.9,
this is equivalent to the fact that −→n � ψ1 holds and −→n � ψ2 holds.
Now we can apply our induction hypothesis and conclude that there
is a proof for ψ1 and there is a proof for ψ2, both with the hypotheses
in Σ−→n . So we can easily create a proof Σ−→n ⊢ND ψ1 ∧ ψ2.

For the other direction, when we have a proof Σ−→n ⊢ND ψ1 ∧ ψ2, we
add the two variants of the rule (∧E) to create two proofs Σ−→n ⊢ND ψ1
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and Σ−→n ⊢ND ψ2, apply the induction hypothesis to get −→n � ψ1 and
−→n � ψ2 and then consult Definition 2.2.9 to obtain −→n � ψ1 ∧ ψ2.

ψ is of the form ψ1 ∨ ψ2. Suppose −→n � ψ1 ∨ ψ2 holds. Then, by Definition
2.2.9, we have −→n � ψ1 or −→n � ψ2. Now, by our induction hypothesis,
we get a proof Σ−→n ⊢ND ψ1 or a proof Σ−→n ⊢ND ψ2 depending on which
of the above forcing relations hold. But no matter which proof we
obtain, once we add the rule (∨I) we get a proof Σ−→n ⊢ND ψ1 ∨ ψ2.

For the other direction, let us consider the proof Σ−→n ⊢ND ψ1 ∨ ψ2.
Σ−→n is a prime theory, so by item (i) of Definition 2.2.21, we have
ψ1 ∨ ψ2 ∈ Σ−→n and by item (ii) of Definition 2.2.21, we know that
ψ1 ∈ Σ−→n or ψ2 ∈ Σ−→n . Thus we can create at least one of the trivial
proofs Σ−→n ⊢ND ψ1 or Σ−→n ⊢ND ψ2. By induction hypothesis we can
conclude that −→n � ψ1 or −→n � ψ2 holds, thus, by Definition 2.2.9,
−→n � ψ1 ∨ ψ2 holds.

ψ is of the form ψ1 → ψ2. Suppose −→n � ψ1 → ψ2 and Σ−→n 0ND ψ1 → ψ2,
then clearly Σ−→n , ψ1 0ND ψ2, because otherwise, (→I) would result in
Σ−→n ⊢ND ψ1 → ψ2. So 〈ψ1, ψ2〉 is a pair in the construction of M (e.g.,
〈ψi, θi〉 for some i) and there exists a node 〈−→n , i〉, with associated prime
theory Σ〈−→n ,i〉 such that Σ〈−→n ,i〉 ⊇ Σ−→n ∪ {ψ1} and Σ〈−→n ,i〉 0ND ψ2. So,
by the induction hypothesis, 〈−→n , i〉 � ψ1 holds. If now −→n � ψ1 → ψ2

holds, then 〈−→n , i〉 � ψ2 must hold, because −→n ≤ 〈−→n , i〉 also holds.
This is a contradiction to 〈−→n , i〉 2 ψ2.

For the other direction, suppose there is a proof Σ−→n ⊢ND ψ1 → ψ2.
It can be transformed to a proof Σ−→n , ψ1 ⊢ND ψ2 by assuming ψ1 and
an application of (→E). Now, for all Σ−→m with Σ−→m ⊇ Σ−→n ∪ {ψ1}, we
have Σ−→m ⊢ND ψ2. By the induction hypothesis, we get that, for all −→m
where −→m � ψ1 holds, −→m � ψ2 also holds. By the construction of Σ−→m ,
we have Σ−→m ⊇ Σ−→n as well as −→n ≤ −→m, and this, by Definition 2.2.9,
coincides with the fact that −→n � ψ1 → ψ2.

ψ is of the form ¬ψ1. Once again we just view this as a special case of the
implication ψ = ψ1 → ⊥. For the above equivalence statement, it is
irrelevant that ⊥ must not be forced in any world.

This concludes the proof of the lemma.

In the following lemma, we show that everything that can be proven by
Natural Deduction can also be proven by the Heyting calculus. (That is,
the Heyting calculus simulates the calculus of Natural Deduction.)
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Lemma 2.2.24. If Σ ⊢ND ϕ holds, then Σ ⊢H ϕ holds.

Proof. We have to show that every formula ϕ, which has an ND proof where
all uncanceled are hypotheses in Σ, also has a Heyting proof Σ ⊢H ϕ. This
can be shown by induction on the length of the ND proof.

Induction Base. n = 1. When there is a proof of length 1 in the calculus
ND for the formula ϕ, ϕ has to be in Σ. So the proof Σ ⊢H ϕ is the trivial
proof of length 1.

Induction Hypothesis. Suppose n > 0. For each proof Σ ⊢ND ϕ of length
≤ n, there is a corresponding proof Σ ⊢H ϕ.

Induction Step. Consider an ND-proof of length n + 1. We perform a
case analysis on the last rule application of the ND proof. The proofs of the
premises of the last rule application are of length ≤ n and thus the induction
hypothesis applies to them.

Case (∧I): By the induction hypothesis, we have two Heyting proofs Σ ⊢H ϕ
and Σ ⊢H ψ. Using H1 (i.e., take ϕ→ ((θ → θ) → ϕ with an arbitrary
θ) and (MP), we also have Heyting proofs Σ ⊢H (θ → θ) → ϕ and
Σ ⊢H (θ → θ) → ψ. We instantiate H3 to

((θ → θ) → ϕ) → (((θ → θ) → ψ) → ((θ → θ) → ϕ ∧ ψ))

and apply (MP) twice. We obtain Σ ⊢H (θ → θ) → ϕ∧ψ. Now we use
the proof of Example 2.2.4 to get ⊢H θ → θ and by (MP), we obtain
Σ ⊢H ϕ ∧ ψ.

Case (∧E): For the first variant of (∧E), the induction hypothesis provides
a proof Σ ⊢H ψ ∧ θ, which gives us a proof Σ ⊢H ψ when we add
the axiom H4 and apply (MP). The second variant of (∧E) is treated
analogously with H5.

Case (→I): When (→I) is the last applied rule, the ND proof up to this rule
corresponds to a proof Σ, ϕ ⊢ND ψ, so, by the induction hypothesis, we
have a Heyting proof Σ, ϕ ⊢H ψ. By applying the Deduction Theorem
(Theorem 2.2.6), we get a proof Σ ⊢H ϕ→ ψ.

Case (→E): If this is the last applied rule, then, by the induction hypoth-
esis, there are two proofs Σ ⊢H ϕ → ψ and Σ ⊢H ϕ, which can be
concatenated to a proof of Σ ⊢H ψ with one additional application of
(MP).

Case (∨I): This case is similar to (∧E). For the first variant of (∨I), the
induction hypothesis provides a proof Σ ⊢H ψ, which gives us a proof
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Σ ⊢H ψ ∨ θ when we add the axiom H6 and apply (MP). The second
variant of (∨I) is treated analogously with H7.

Case (∨E): By the induction hypothesis, we have three proofs correspond-
ing to the premises of the (∨E)-rule, namely Σ ⊢H ϕ∨ψ, Σ, ϕ ⊢H θ and
Σ, ψ ⊢H θ. To the last two proofs, we apply the Deduction Theorem
to get Σ ⊢H ϕ → θ and Σ ⊢H ψ → θ. Then we use these two proofs,
together with axiom H8, apply (MP) twice and get Σ ⊢H ϕ ∨ ψ → θ.
Using the proof Σ ⊢H ϕ∨ψ, we apply (MP) and get Σ ⊢H θ as desired.

Case (⊥): By the induction hypothesis, we have a Heyting proof of ⊥ from
Σ. Take the formula ⊥ → ϕ (established in Example 2.2.5) and use
(MP) to derive ϕ.

Case (¬I) and (¬E): These rules are just specializations of (→I) and (→E).
We just have to replace the atomic formula ψ with ⊥ and can reuse
our above arguments.

This concludes the proof of the lemma.

Theorem 2.2.25 (Completeness of intuitionistic propositional logic).

Σ ⊢H ϕ⇒ Σ � ϕ⇒ Σ ⊢ND ϕ⇒ Σ ⊢H ϕ

Proof. The first implication Σ ⊢H ϕ ⇒ Σ � ϕ is the soundness of Kripke
models with respect to Heyting proofs (cf. Lemma 2.2.12).

To show that Σ � ϕ⇒ Σ ⊢ND ϕ holds, we suppose that there is no proof
Σ ⊢ND ϕ (i.e., Σ 0ND ϕ holds). Then, by Lemma 2.2.23, we have a model
M which does not force ϕ at some world a, but forces all formulae of Σ at
every world. So M 2 ϕ and Σ 2 ϕ hold. Thus, we have Σ 0ND ϕ ⇒ Σ 2 ϕ
and Σ � ϕ⇒ Σ ⊢ND ϕ holds.

The third implication Σ ⊢ND ϕ⇒ Σ ⊢H ϕ is shown in Lemma 2.2.24.

Although it was not necessary for proving the completeness of propo-
sitional intuitionistic logic and is now a by-product of Theorem 2.2.25, we
will give a direct proof that the calculus ND simulates H.

Lemma 2.2.26. If Σ ⊢H ϕ holds, then Σ ⊢ND ϕ holds.

Proof. As a preparatory step, we show that H1, . . . ,H10 are provable in ND.
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Case H1:
[ϕ]2 [ψ]1
ϕ ∧ ψ

(∧I)

ϕ (∧E)

ψ → ϕ
(→I)1

ϕ→ (ψ → ϕ)
(→I)2

Case H2:

[ϕ]1 [ϕ→ ψ]2
ψ

(→E)
[ϕ]1 [ϕ→ (ψ → θ)]3

ψ → θ
(→E)

θ
(→E)

ϕ→ θ
(→I)1

(ϕ→ ψ) → (ϕ→ θ)
(→I)2

(ϕ→ (ψ → θ)) → ((ϕ→ ψ) → (ϕ→ θ))
(→I)3

Case H3:
[θ]1 [θ → ϕ]3

ϕ
(→E)

[θ]1 [θ → ψ]2
ψ

(→E)

ϕ ∧ ψ
(∧I)

θ → ϕ ∧ ψ
(→I)1

(θ → ψ) → (θ → ϕ ∧ ψ)
(→I)2

(θ → ϕ) → ((θ → ψ) → (θ → ϕ ∧ ψ))
(→I)3

Case H4:
[ϕ ∧ ψ]
ϕ (∧E)

ϕ ∧ ψ → ϕ
(→I)

Case H5: H5 is shown analogously to the case of H4.

Case H6:
[ϕ]

ϕ ∨ ψ
(∨I)

ϕ→ ϕ ∨ ψ
(→I)

Case H7: H7 is shown analogously to the case of H6.
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Case H8:

[ϕ ∨ ψ]2

[ϕ]1 [ϕ→ θ]4
θ

(→E)
[ψ]1 [ψ → θ]3

θ
(→E)

θ
(∨E)1

ϕ ∨ ψ → θ
(→I)2

(ψ → θ) → (ϕ ∨ ψ → θ)
(→I)3

(ϕ→ θ) → ((ψ → θ) → (ϕ ∨ ψ → θ))
(→I)4

Case H9:
[ϕ]1 [ϕ→ ¬ψ]3

¬ψ
(→E)

[ψ]2
⊥

(¬E)

¬ϕ (¬I)1

ψ → ¬ϕ
(→I)2

(ϕ→ ¬ψ) → (ψ → ¬ϕ)
(→I)3

Case H10:
[ϕ]1 [¬ϕ]2

⊥
(¬E)

ψ
(⊥)

ϕ→ ψ
(→I)1

¬ϕ→ (ϕ→ ψ)
(→I)2

We will proceed by induction on the length of the Heyting proof Σ ⊢H ϕ
to show that, for every Heyting proof of length n, there is a ND proof
Σ ⊢ND ϕ.

Induction Base. n = 1. When we have a Heyting proof Σ ⊢H ϕ of
length 1, the proven formula ϕ is either an element of Σ or (the substitution
instance of) an axiom.
If ϕ ∈ Σ, then the ND proof is trivial. If ϕ is one of the axioms of H, there
is a ND proof for ϕ, as we have shown above.

Induction Hypothesis. Suppose n > 0. For each proof Σ ⊢H ϕ of length
≤ n, we have a corresponding proof Σ ⊢ND ϕ.

Induction Step. Consider a Heyting proof of length n + 1. We perform
a case analysis according to the type of ϕ, the last formula of the proof
Σ ⊢H ϕ.

Case 1: If the last formula is an axiom of the calculus H, there is an ND
proof as we have shown above in the preparatory step.

Case 2: If the last formula is an element of Σ, the corresponding ND proof
is the trivial proof of length 1.
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Case 3: If, on the other hand, ϕ is the result of an application of (MP),
there are two formulae ψ → ϕ and ψ with Heyting proofs of length ≤ n,
which, by the induction hypothesis, have corresponding ND proofs
Σ ⊢ND ψ → ϕ and Σ ⊢ND ψ. These two proofs can be concatenated
by the rule (→E) to a proof Σ ⊢ND ϕ.

This concludes the proof of the lemma.
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Chapter 3

Modal Logics

3.1 History and Motivation

Modal logic was first devised by C. I. Lewis in his work “A Survey of Sym-
bolic Logic” in 1918. He criticized the paradoxes of (material) implication,
such as “ex falso quodlibet” or ϕ → ϕ and developed a strict implication
ϕ ≻ ψ to avoid (some) paradoxes.

In contrast to intuitionistic logic, which is a subset of classical logic,
modal logic is an extension of classical logic. The language of modal logic
contains the language of classical logic and the two modalities 2 (sometimes
denoted as L) and 3 (sometimes denoted as M). In classical modal logics, 2

and 3 are inter-definable, i.e., 3ϕ can be defined to be ¬2¬ϕ. The formula
2ϕ is often read as “necessarily ϕ”, whereas 3ϕ is read as “possibly ϕ”.
In a philosophical context or in temporal logics (which are special modal
logics), the modalities 2 and 3 also may denote other dual concepts like “It
is obligatory to . . . ” vs. “It is allowed to . . . ” or “It will always be that
. . . ” vs. “At some point, it will be the case that . . . ”.

Calculi for modal logic have all the rules and axioms of the base logic
(which usually is classical logic) and some more rules and axioms to treat
the modal operators.
Depending on which rules and axioms are added to the base logic, we get
different modal logics. We discuss normal modal logics and the possible
worlds semantic which has been introduced by Saul Kripke in 1959. Normal
modal logics contain all classical tautologies, the modal axiom K and admit
the rule of necessitation; the latter two are introduced in Definition 3.2.1.
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3.2 Propositional Modal Logic

To obtain propositional modal logic, we need a proof system for classical
logic. We will take the system for intuitionistic logic as in Definition 2.2.1,
extended by the double negation elimination axiom DN ¬¬ϕ → ϕ, men-
tioned in Remark 2.2.2. Therefore, we obtain an axiomatization of proposi-
tional classical logic.

To spell it out, here are the axioms of the calculus C. C1,. . . ,C10 corre-
spond to H1,. . . ,H10.

C1 ϕ→ (ψ → ϕ)

C2 (ϕ→ (ψ → θ)) → ((ϕ→ ψ) → (ϕ→ θ))

C3 (θ → ϕ) → ((θ → ψ) → (θ → ϕ ∧ ψ))

C4 (ϕ ∧ ψ) → ϕ

C5 (ϕ ∧ ψ) → ψ

C6 ϕ→ (ϕ ∨ ψ)

C7 ψ → (ϕ ∨ ψ)

C8 (ϕ→ θ) → ((ψ → θ) → (ϕ ∨ ψ → θ))

C9 (ϕ→ ¬ψ) → (ψ → ¬ϕ)

C10 ¬ϕ→ (ϕ→ ψ)

DN ¬¬ϕ→ ϕ

The only rule of C is (MP).
In the following, we sometimes use well-known facts of propositional clas-

sical logic (like de Morgan’s Laws, the truth table semantics, the deduction
theorem, etc.) and suppose that the reader is familiar with them.

Definition 3.2.1 (Basic normal modal logic calculus). The weakest normal
modal logic K is obtained by adding to C the axiom

K 2(ϕ→ ψ) → (2ϕ→ 2ψ)

and the rule of necessitation
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ϕ

2ϕ
(N)

.

As the fact that K is called the weakest normal modal logic suggests,
there will be other systems of normal modal logics under our consideration.
These normal modal logics have additional axioms, other than C1–C10, DN
and K.

Definition 3.2.2 (Proofs in normal modal logic). A proof ⊢L ϕ in the
calculus of a normal modal logic L is a sequence (ψ1, ψ2, . . . , ψn) of formulae,
where ψn = ϕ and, for all ψi, either:

• ψi is a substitution instance of the axioms C1,. . . ,C10, DN, K or one
of the axioms specific to L,

• ψi is the conclusion of (MP) whose premises are ψj and ψk with j, k <
i, or

• ψi is the conclusion of (N) whose premise is ψj with j < i.

The length of the proof ⊢L ϕ is the length of the sequence (ψ1, ψ2, . . . , ψn),
which is n in this case.

Example 3.2.3 (2-distribution over ∧ ). A proof of the formula

2(ϕ ∧ ψ) → 2ϕ ∧ 2ψ

(written as a sequence of formulae) is as follows:

1. C4: (ϕ ∧ ψ) → ϕ

2. C4: (ϕ ∧ ψ) → ψ

3. (N) 1: 2((ϕ ∧ ψ) → ϕ)

4. (N) 2: 2((ϕ ∧ ψ) → ψ)

5. K: 2((ϕ ∧ ψ) → ϕ) → (2(ϕ ∧ ψ) → 2ϕ)

6. K: 2((ϕ ∧ ψ) → ψ) → (2(ϕ ∧ ψ) → 2ψ)

7. (MP) 3, 5: 2(ϕ ∧ ψ) → 2ϕ

8. (MP) 4, 6: 2(ϕ ∧ ψ) → 2ψ
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9. C3: (2(ϕ∧ψ) → 2ϕ) → ((2(ϕ∧ψ) → 2ψ) → (2(ϕ∧ψ) → 2ϕ∧2ψ))

10. (MP) 7, 9: (2(ϕ ∧ ψ) → 2ψ) → (2(ϕ ∧ ψ) → 2ϕ ∧ 2ψ)

11. (MP) 8, 10: 2(ϕ ∧ ψ) → 2ϕ ∧ 2ψ

All formulae are marked with the axiom, which they instantiate, or the rule,
of which they are the conclusion of. The last formula is the one which we
wanted to prove.

Definition 3.2.4 (Kripke structures, Kripke models for normal modal log-
ics). A Kripke structure (or Kripke frame) for modal logic is a pair (N,R),
where N is a non-empty set of nodes or worlds and R is a binary relation
on N , the accessibility relation.
A Kripke model M is a triple (N,R, D), where (N,R) is a Kripke structure
and D is a function D : N → P(VAR).
According to the properties of the accessibility relation R, the Kripke frames
(and thus also the Kripke models) can be divided in classes. For now, we
will only consider K , the class of all Kripke frames, i.e., the class of Kripke
frame, where there is no restriction on R.

When we reconsider the Kripke structures for intuitionistic logic from
Chapter 2 (cf. Remark 2.2.8), the most remarkable difference is the ac-
cessibility relation. The relation ≤ from Definition 2.2.7 is reflexive and
transitive, whereas R from the definition above is a general relation with no
restrictions at all.

When we look at the Kripke models, we notice another difference in the
definition of the domain function D: it is unrestricted for modal Kripke
models, but it has to satisfy

∀a, b ∈ N : a ≤ b⇒ D(a) ⊆ D(b)

in the intuitionistic case. In other words, D is non-decreasing, when we
“follow” the relation towards the successors.

Later in this chapter, we see that stronger normal modal logics (that is
logics where we add some further axioms) impose restrictions on the acces-
sibility relations of the models. In particular, the models for the modal logic
S4 have a reflexive and transitive accessibility relation R.

The translation by Kurt Gödel (cf. [Göd33]) form intuitionistic logic to
S4, which we mentioned in the introduction to Chapter 2, simulates the
property of the intuitionistic domain function by adding the modality 2 to
certain sub-formulae. The rule (N) takes care of intuitionistic heredity (cf.
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Lemma 2.2.11), which is a direct result of the property of the intuitionistic
domain function.

Remark 3.2.5 (Abbreviations and inter-definable connectives for normal
modal logics). The following abbreviations will be used:

• 3ϕ is defined to be ¬2¬ϕ.

• ϕ↔ ψ is defined to be (ϕ→ ψ) ∧ (ψ → ϕ).

• ⊤ is defined to be ¬⊥.

In classical logic, some connectives are inter-definable. The following state-
ments hold classically—and as the modal calculus K is an extension of the
calculus C—also in K and all stronger normal modal logics.

• ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ)

• ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ)

• (ϕ→ ψ) ↔ (¬ϕ ∨ ψ)

These equivalences can be used as rewrite rules, and so all formulae in
classical logic can be rewritten to contain only → and ⊥ (or ¬) as con-
nectives, or alternatively to contain only ∨ (or ∧) and ¬. This rewriting
of formulae might make some proofs easier, in which we proceed by induc-
tion on the formula structure, but decreases readability—so we will not take
advantage of this possibility.

Definition 3.2.6 (Forcing relation for modal Kripke models). The forcing
relation � on a Kripke model M = (N,R, D) for normal modal logics is
inductively defined for individual worlds a ∈ N by:

1. a � p⇔: p ∈ D(a);

2. a � ¬ϕ⇔: a 2 ϕ;

3. a � ψ ∧ ϕ⇔: a � ψ and a � ϕ;

4. a � ψ ∨ ϕ⇔: a � ψ or a � ϕ;

5. a � ψ → ϕ⇔: If a � ψ, then also a � ϕ;

6. a � 2ϕ⇔: for all b with aR b: b � ϕ;

7. a � 3ϕ⇔: there exists b with aR b and b � ϕ.
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We say M � ϕ, if a � ϕ for all a ∈ N , and we say M � Σ, if, for all σ ∈ Σ,
M � σ. Furthermore, we say that C � ϕ holds, if, for all models M of a
certain class C of Kripke frames, M � ϕ holds.

When we take a closer look at Definition 3.2.6, we recognize that, also on
the semantical side, modal logic is only an extension of classical logic. Items
1 to 5 would be defined in exactly the same way for the forcing relation
of classical propositional logic. When we erase all axioms and rules which
contain modalities, we get a calculus for classical logic. Analogously, when
we erase all notions of other worlds in the definition of the Kripke models
and the forcing relation, we get models suitable for classical logic.

Lemma 3.2.7 (Soundness for normal modal logics (with respect to modal
Kripke models)). If ⊢K ϕ holds, then K � ϕ holds.

Proof. We have to show that, whenever there exists a proof ⊢K ϕ, i.e., a
sequence of formulae (α1, α2 . . . αn) with αn = ϕ (as in Definition 3.2.2), all
models M force ϕ or a fortiori all αi.

We will proceed by induction on the length n of the proof Σ ⊢K ϕ.
Induction Base. Here we will consider all proofs (α1) of α1 with length 1.

We distinguish whether ϕ is an axiom of classical logic or ϕ is K.

Case 1: α1 is an instance of a “classical” axiom (i.e., the formula α1 is an
instance of C1-C10 or DN). These axiom schemata contain no modali-
ties. Consider an arbitrary world a to find out whether a � α1. When
we have a look at the forcing relation for modal Kripke models, only
items 1 to 5 of Definition 3.2.6 are relevant, because of the lack of any
2 and 3.1 Thus, the soundness of this axioms coincides exactly with
the soundness of classical propositional logic. This is not surprising,
because these axioms are the ones we directly took over from classical
logic. So we can make use of the well known fact that classical logic
is sound to prove the soundness of these axioms.

Case 2: α1 is an instance of K. Suppose there is a world a in an arbitrary
model M with a 2 2(ϕ → ψ) → (2ϕ → 2ψ). Then a � 2(ϕ → ψ)
and a 2 2ϕ → 2ψ holds. a 2 2ϕ → 2ψ means that a � 2ϕ and
a 2 2ψ. So there is a world b with aR b and b 2 ψ, but, for all c
with aR c, c � ϕ → ψ and c � ϕ hold. By item 5 in Definition 3.2.6,

1The fact that there are no modalities in the axioms does not imply that there are
no modalities in their substitution instances, but the sub-formulae are not relevant to
establish the truth of an axiom.
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c � ψ holds. Hence, we have a contradiction as b coincides with some
c. Therefore the axiom K is forced in (all worlds a of) all models.

Induction Hypothesis. Suppose n ≥ 0 and K � ϕ holds for all formulas
ϕ, which have a proof ⊢K ϕ of length ≤ n.

Induction step: When we have a proof ⊢K ϕ of length n+1, the formula
αn+1 (i.e., the formula ϕ) can either be an axiom, which essentially corre-
sponds to the base case, or it can be the conclusion of a rule, namely (MP)
and (N).

Case (MP): αn+1 is the conclusion of an application of (MP). There ex-
ist two premise formulae αi and αj , with i, j ≤ n. Without loss of
generality we assume that αj = αi → αn+1. Then, by the induction
hypothesis, K � αi → αn+1 and K � αi hold. Thus, by Definition
3.2.6, it follows that K � αn+1 holds.

Case (N): αn+1 is the conclusion of an application of (N). Then there exists
a formula αi with i ≤ n, αn+1 = 2αi and, for any M in K , all worlds
in M force αi by the induction hypothesis. So, for any world a, all
worlds b with aR b force αi, so a � 2αi and K � αn+1 hold.

This concludes the proof of the lemma.

To establish completeness of normal modal logics (and at first of the sys-
tem K) with respect to modal Kripke models, we will construct a canonical
model for each formula set Σ, which only forces formulae that can be proven
by Σ.
To achieve this we introduce the notion of maximal consistent extensions.

We will mainly follow [HC96].

Definition 3.2.8 (Consistency, maximality). A set Σ of formulae is L-
consistent, if there is no proof ⊢L ¬(α1 ∧ . . .∧αn) for α1, . . . , αn ∈ Σ, where
⊢L is the proof relation of some normal modal logic L.
A set Σ of formulae is maximal if, for every formula ϕ, either ϕ ∈ Σ or
¬ϕ ∈ Σ.

Definition 3.2.9 (Maximal L-consistent extensions). A set of formulae
Σ′ ⊇ Σ is a maximal L-consistent extension of Σ, if Σ′ is L-consistent
and maximal.

Lemma 3.2.10 (Existence of maximal L-consistent extensions). For every
L-consistent set Σ, there is a maximal L-consistent extension Σ′ of Σ.
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Proof. In order to construct such a Σ′, we enumerate all formulae of the
language of the normal modal logic L and create a chain of L-consistent
formula sets Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . . and define Σ′ =

⋃

i∈N
Σi.

To do this, we enumerate all formulae ϕ by an index n. We create the Σn

as follows: We start with Σ0 = Σ; the other Σn are constructed inductively
by the following rule:

Σn+1 =

{

Σn ∪ {ϕn} if Σn ∪ {ϕn} is L-consistent,
Σn ∪ {¬ϕn} otherwise.

We have to show that Σ′ is maximal and L-consistent.

Σ′ is maximal. For every formula ϕ, there is an n ∈ N such that ϕ = ϕn.
Therefore, ϕ ∈ Σn+1 or ¬ϕ ∈ Σn+1 and thus ϕ ∈ Σ′ or ¬ϕ ∈ Σ′.

Σ′ is L-consistent. Suppose Σ′ is L-inconsistent, i.e., there is a proof ⊢L

¬(α1 ∧ . . . ∧ αk) for α1, . . . , αk ∈ Σ′. As there are only finitely many
αi, we can find an n such that α1, . . . , αk ∈ Σn, i.e., a Σn which is
L-inconsistent.

When we are able to show that all Σn are L-consistent, we have pro-
duced a contradiction thus proving the L-consistency of Σ′.
We proceed by induction on n to show that all Σn are L-consistent.

Induction Base. n = 0. Then Σ0 = Σ is L-consistent by the assump-
tions of this lemma.

Induction Hypothesis. Suppose n ≥ 0 and assume that, for all i ≤ n,
Σi is L-consistent.

Induction Step. By the induction hypothesis, we have that Σn is L-
consistent. We have to show that Σn+1 is L-consistent. To achieve
this, we will use an indirect approach and assume that Σn+1 is L-
inconsistent.
Since Σn+1 is considered to be L-inconsistent and Σn is L-consistent,
Σn+1 must be Σn ∪ {¬ϕn} by construction. Moreover, Σn ∪ {ϕn} is
L-inconsistent. So we have a proof ⊢L ¬(α1 ∧ . . . ∧ αk ∧ ϕn) and a
proof ⊢L ¬(β1 ∧ . . . ∧ βl ∧ ¬ϕn). Clearly ϕn (and ¬ϕn respectively)
must occur in the proof, since otherwise, Σn would be L-inconsistent
as well.

Since the logical connective ∧ is left-associative, (α1 ∧ . . .∧αk ∧ϕn) is
actually (. . . (α1 ∧α2)∧ . . .∧αk)∧ϕn). We abbreviate (. . . (α1 ∧α2)∧
. . .∧αk) by ᾱ in the rest of the proof (analogously, we write β̄ for the
conjunction of all βj).
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[ᾱ ∧ β̄]2

β̄
(∧E)

[ᾱ ∧ β̄]2

ᾱ
(∧E)

[ϕn]1

ᾱ ∧ ϕn

(∧I)
¬(ᾱ ∧ ϕn)

⊥
(¬E)

¬ϕn

(¬I)1

β̄ ∧ ¬ϕn

(∧I)
¬(β̄ ∧ ¬ϕn)

⊥
(¬E)

¬(ᾱ ∧ β̄)
(¬I)2

Figure 3.1: The proof ¬(ᾱ ∧ ϕn),¬(β̄ ∧ ¬ϕn) ⊢ND ¬(ᾱ ∧ β̄).

In Figure 3.1, we show that there is a proof

¬(ᾱ ∧ ϕn),¬(β̄ ∧ ¬ϕn) ⊢ND ¬(ᾱ ∧ β̄)

in intuitionistic logic. Therefore ¬(ᾱ∧β̄) is also provable from ¬(ᾱ∧ϕn)
and ¬(β̄ ∧ ¬ϕn) in classical logic and modal logic. Here we use the
system ND for convenience, as such proofs are rather lengthy and
tedious in a Hilbert style calculus.

By Theorem 2.2.25, when ¬(ᾱ ∧ ϕn),¬(β̄ ∧ ¬ϕn) ⊢ND ¬(ᾱ ∧ β̄) holds,
there also is a H-proof ¬(ᾱ ∧ ϕn),¬(β̄ ∧ ¬ϕn) ⊢H ¬(ᾱ ∧ β̄). By the
deduction theorem for H (cf. Theorem 2.2.6), we have ⊢H ¬(ᾱ∧ϕn) →
(¬(β̄∧¬ϕn) → ¬(ᾱ∧ β̄)). Clearly, the above H-proof is also a proof in
the modal calculus K (or any stronger normal modal logic L), namely
⊢K ¬(ᾱ ∧ ϕn) → (¬(β̄ ∧ ¬ϕn) → ¬(ᾱ ∧ β̄)). By our assumption
that Σn+1 is L-inconsistent, we have obtained two more L-proofs ⊢L

¬(ᾱ∧ϕn) and ⊢L ¬(β̄∧¬ϕn). Via two applications of (MP), these three
proofs can be combined to a proof ⊢L ¬(ᾱ ∧ β̄) or—to spell it out—a
proof ⊢L ¬(α1∧ . . .∧αk∧β1∧ . . .∧βl). But α1, . . . , αk, β1, . . . , βl ∈ Σn,
so we have obtained L-inconsistency of Σn by assuming that Σn+1 is
L-inconsistent. This is a contradiction to the induction hypothesis and
concludes the induction proof of the L-consistency of Σ′.

Now we have shown that Σ′ is maximal and L-consistent.

For the next lemma, we need to know if ⊢K 2ϕ∧2ψ → 2(ϕ∧ψ) holds.
The other “direction” of the implication has been shown in Example 3.2.3.
This proof in Example 3.2.3 was rather lengthy in the Hilbert style calculus
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H. Since the proof for this formula would be even longer, we make use of
Theorem 2.2.25 and use the much nicer calculus ND for some parts of the
next example.

Example 3.2.11 (⊢K 2ϕ ∧ 2ψ → 2(ϕ ∧ ψ)). In order to show that ⊢K

2ϕ ∧ 2ψ → 2(ϕ ∧ ψ) holds, we need some preliminary results. First we
show that ⊢K ϕ → (ψ → (ϕ ∧ ψ)) holds. We present an ND-proof for the
formula, which has an analogous H-proof by Theorem 2.2.25, which in turn
is a K-proof as K contains all rules and axioms of H. So here is the proof
⊢ND ϕ→ (ψ → (ϕ ∧ ψ)):

[ϕ]2 [ψ]1
ϕ ∧ ψ

(∧I)

ψ → (ϕ ∧ ψ)
(→I)1

ϕ→ (ψ → (ϕ ∧ ψ))
(→I)2

Furthermore, we have to make sure that ⊢K (ϕ → ψ) → (ψ → (θ →
κ)) → ((ϕ∧θ) → κ) holds. As this formula is intuitionistically valid as well,
we again present an ND-proof:

[ϕ ∧ θ]1
θ

(∧E)

[ϕ ∧ θ]1
ϕ

(∧E)
[ϕ→ ψ]3

ψ
(→E)

[ψ → (θ → κ)]2
θ → κ

(→E)

κ
(→E)

(ϕ ∧ θ) → κ
(→I)1

(ψ → (θ → κ)) → ((ϕ ∧ θ) → κ)
(→I)2

(ϕ→ ψ) → ((ψ → (θ → κ)) → ((ϕ ∧ θ) → κ))
(→I)3

We will not use this formula directly, but the following substitution instance,
where we substitute ϕ by 2ϕ, ψ by 2(ψ → ϕ∧ψ), θ by 2ψ and κ by 2(ϕ∧ψ).
We obtain:

(2ϕ→ 2(ψ → ϕ ∧ ψ)) → ((2(ψ → ϕ ∧ ψ) → (2ψ → 2(ϕ ∧ ψ))) →
(2ϕ ∧ 2ψ → 2(ϕ ∧ ψ)))

Here we have removed some parentheses, which we do not need because of
the precedence rules for logical connectives, which we introduced in Section
1.1.2.

In the following, we use abbreviations for some formulae:

• The above formula will be abbreviated by α.
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K2

by ⊢H ϕ→ (ψ → (ϕ ∧ ψ))
▽

ϕ→ (ψ → (ϕ ∧ ψ))

2(ϕ→ (ψ → (ϕ ∧ ψ)))
(N)

K1

2ϕ→ 2(ψ → (ϕ ∧ ψ))
(MP)

by ⊢H α
▽
α

β
(MP)

2ϕ ∧ 2ψ → 2(ϕ ∧ ψ)
(MP)

Figure 3.2: The proof ⊢K 2ϕ ∧ 2ψ → 2(ϕ ∧ ψ).

• The above formula, with the principal implication and the formula
(2ϕ → 2(ψ → ϕ ∧ ψ)) removed, is abbreviated as β (so α = (2ϕ →
2(ψ → ϕ ∧ ψ)) → β).

• K1 is the following substitution instance of K:

2(ϕ→ (ψ → (ϕ ∧ ψ))) → (2ϕ→ 2(ψ → (ϕ ∧ ψ))).

• K2 is the following substitution instance of K:

2(ψ → (ϕ ∧ ψ)) → (2ψ → 2(ϕ ∧ ψ)).

In Figure 3.2 a proof

⊢K 2ϕ ∧ 2ψ → 2(ϕ ∧ ψ))

is shown, which uses the two proofs ⊢K α and ⊢K ϕ → (ψ → (ϕ ∧ ψ)),
which clearly exist, as the ND-proofs have corresponding H-proofs, which
are K-proofs.

Corollary 3.2.12 (Corollary to Example 3.2.11). The following holds for
all n > 0:

⊢K 2ϕ1 ∧ . . . ∧ 2ϕn → 2(ϕ1 ∧ . . . ∧ ϕn).

Proof. Since we have established that ⊢K 2ϕ ∧ 2ψ → 2(ϕ ∧ ψ) holds, it is
easy to show that the same is true for the conjunction of n formulae, i.e.,
that ⊢K 2ϕ1∧ . . .∧2ϕn → 2(ϕ1∧ . . .∧ϕn) holds. We proceed by induction
on n, the number of conjuncts, to show that the corollary is true.

Induction Base. Suppose n = 1. Then the formula which we want to
prove is of the form 2ϕ1 → 2ϕ1. This is a substitution instance of the

42



formula ϕ → ϕ. In Example 2.2.4, we have presented a proof ⊢H ϕ → ϕ.
This proof is also a K proof.

Induction Hypothesis. Suppose n ≥ 1 and assume that, for all i ≤ n, we
have that ⊢K 2ϕ1 ∧ . . . ∧ 2ϕn → 2(ϕ1 ∧ . . . ∧ ϕn) holds.

Induction Step. Consider 2ϕ1∧ . . .∧2ϕn+1 → 2(ϕ1∧ . . .∧ϕn+1) By the
induction hypothesis ⊢K 2ϕ1 ∧ . . . ∧ 2ϕn → 2(ϕ1 ∧ . . . ∧ ϕn) holds. From
this we obtain ⊢K 2ϕ1 ∧ . . . ∧ 2ϕn ∧ 2ϕn+1 → 2(ϕ1 ∧ . . . ∧ ϕn) ∧ 2ϕn+1

with this substitution instance

(2ϕ1 ∧ . . . ∧ 2ϕn → 2(ϕ1 ∧ . . . ∧ ϕn)) →
(((2ϕ1 ∧ . . . ∧ 2ϕn) ∧ 2ϕn+1) → (2(ϕ1 ∧ . . . ∧ ϕn) ∧ 2ϕn+1))

of the formula we have proven in Example 2.2.18 and one application of
(MP). When we take the substitution instance 2(ϕ1 ∧ . . .∧ ϕn)∧2ϕn+1 →
2(ϕ1 ∧ . . . ∧ ϕn ∧ ϕn+1) of Example 3.2.11, we can use “transitivity” of →
(which was shown in Example 2.2.17) and obtain

⊢K 2ϕ1 ∧ . . . ∧ 2ϕn ∧ 2ϕn+1 → 2(ϕ1 ∧ . . . ∧ ϕn ∧ ϕn+1).

This concludes the proof of the corollary.

Lemma 3.2.13. If an L-consistent set Σ contains ¬2ϕ, then 2
−(Σ)∪{¬ϕ}

is L-consistent, where

2
−(Σ) = {ϕ | 2ϕ ∈ Σ}.

Proof. In the following, we need a proof of ¬(ψ∧¬θ) → (ψ → θ) and a proof
of (ψ → θ) → ¬(ψ ∧ ¬θ). The first formula is not valid in intuitionistic
logic, but in classical logic. As the Hilbert style calculus of K is rather
cumbersome, we will present a proof in the calculus ND extended by the
rule (RAA) (cf. Remark 2.2.14), which suffices to show that this formula
is provable in classical logic. By the completeness of classical logic with
respect to the natural deduction calculus extended by the rule (RAA) and
the calculus C, this is also provable in the classical fragment of K (and thus
any normal modal logic L).
The second formula is intuitionistically valid, so we only present an ND-
proof, which has a corresponding H-proof by Theorem 2.2.25. This H-proof
is also a K-proof. The two proofs are presented in Figure 3.3.

Suppose 2
−(Σ) ∪ {¬ϕ} is L-inconsistent, then there is a proof

⊢L ¬(α1 ∧ . . . ∧ αn ∧ ¬ϕ).
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We can safely assume that ¬ϕ is in the proof for the L-inconsistency of
2

−(Σ) ∪ {¬ϕ}. When we only have a proof

⊢L ¬(α1 ∧ . . . ∧ αn)

by transitivity of → (cf. Example 2.2.17) and with this substitution instance
of C4:

(α1 ∧ . . . ∧ αn ∧ ¬ϕ) → (α1 ∧ . . . ∧ αn)

we obtain the the desired proof ⊢L ¬(α1 ∧ . . . ∧ αn ∧ ¬ϕ).
On the other hand, if there are no αi in the proof for the L-inconsistency of
2

−(Σ)∪{¬ϕ}, we can add some in the same fashion as we added ¬ϕ above,
if 2

−(Σ) is not empty. If 2
−(ϕ) is empty and ⊢L ¬¬ϕ holds, we also have

a proof ⊢L ϕ and, by necessitation, ⊢L 2ϕ and ⊢L ¬¬2ϕ. But then Σ is
L-inconsistent as ¬2ϕ ∈ Σ. This is a contradiction to the assumption of the
lemma. Now we have established that there has to be a proof of the form
⊢L ¬(α1∧ . . .∧αn ∧¬ϕ), if we suppose that 2

−(Σ)∪{¬ϕ} is L-inconsistent.
This proof ⊢L ¬(α1 ∧ . . . ∧ αn ∧ ¬ϕ) can be viewed as ⊢L ¬(ᾱ ∧ ¬ϕ),

where ᾱ = α1∧ . . .∧αn. Using the formula ¬(ψ∧¬θ) → (ψ → θ), we obtain
⊢L (ᾱ→ ϕ) by an application of (MP). We continue to derive 2ᾱ→ 2ϕ as
follows:

By assumption
▽

¬(ᾱ ∧ ¬ϕ)

By classical logic
▽

¬(ᾱ ∧ ¬ϕ) → (ᾱ→ ϕ)
ᾱ→ ϕ

(MP)

2(ᾱ→ ϕ)
(N) K

2(ᾱ→ ϕ) → (2ᾱ→ 2ϕ)
2ᾱ→ 2ϕ

(MP)

This is a proof of ⊢K 2ᾱ → 2ϕ using the two proofs ⊢H ¬(ᾱ ∧ ¬ϕ) and
⊢H ¬(ᾱ∧¬ϕ) → (ᾱ→ θ). Clearly, these H-proofs exist by the completeness
of intuitionistic logic and are L-proofs, for any normal modal logic L.

By the following substitution instance of the formula proven in Corollary
3.2.12

⊢K 2α1 ∧ . . . ∧ 2αn → 2(α1 ∧ . . . ∧ αn)

and transitivity of →, we can transform the proof ⊢K 2ᾱ→ 2ϕ to

⊢L (2α1 ∧ . . . ∧ 2αn) → 2ϕ.

Using the intuitionistically provable formula (ψ → θ) → ¬(ψ ∧¬θ) from
Figure 3.3 and (MP), we obtain

⊢L ¬(2α1 ∧ . . . ∧ 2αn ∧ ¬2ϕ).
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[ψ]2 [¬θ]1
ψ ∧ ¬θ

(∧I)
[¬(ψ ∧ ¬θ)]3

⊥
(¬E)

θ
(RAA)1

(ψ → θ)
(→I)2

¬(ψ ∧ ¬θ) → (ψ → θ)
(→I)3

[ψ ∧ ¬θ]1
ψ

(∧E)
[ψ → θ]2

θ
(→E)

[ψ ∧ ¬θ]1
¬θ

(∧E)

⊥
(¬E)

¬(ψ ∧ ¬θ)
(¬I)1

(ψ → θ) → ¬(ψ ∧ ¬θ)
(→I)2

Figure 3.3: The proof ⊢ND∪{(RAA)} ¬(ψ ∧ ¬θ) → (ψ → θ) and the proof
⊢ND (ψ → θ) → ¬(ψ ∧ ¬θ).

Since 2α1, . . . ,2αn,¬2ϕ ∈ Σ, Σ is L-inconsistent. This is a contradiction
to the prerequisite of the lemma, namely that Σ is L-consistent.

This concludes the proof of the lemma.

Lemma 3.2.14 (Properties of L-consistent sets). Let Σ be a maximal L-
consistent set. Then the following properties hold:

1. For all formulae ϕ, either ϕ ∈ Σ or ¬ϕ ∈ Σ.

2. ϕ ∨ ψ ∈ Σ, if and only if ϕ ∈ Σ or ψ ∈ Σ.

3. ϕ ∧ ψ ∈ Σ, if and only if ϕ ∈ Σ and ψ ∈ Σ.

4. If ϕ→ ψ ∈ Σ, then, if ϕ ∈ Σ, also ψ ∈ Σ.

5. If ⊢L ϕ holds, then ϕ ∈ Σ.

Proof. We will prove the above properties one by one.

1. By the maximality of Σ, we have ϕ ∈ Σ or ¬ϕ ∈ Σ. If both ϕ
and ¬ϕ were elements of Σ, then Σ is L-inconsistent by the following
substitution instance of the formula proven in Example 2.2.16:

ϕ ∧ (ϕ→ ⊥) → ⊥
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Since this formula is provable in intuitionistic logic, it is also provable
in K.

2. If ϕ ∨ ψ ∈ Σ and neither ϕ ∈ Σ nor ψ ∈ Σ, then, by the maximality
of Σ, we have ¬ϕ ∈ Σ and ¬ψ ∈ Σ. But then, by Example 2.2.19, the
formula

¬((ϕ ∨ ψ) ∧ ¬ϕ ∧ ¬ψ)

is intuitionistically valid. This means that it is also provable in K or
any stronger normal modal logic L. Thus, Σ is L-inconsistent.

For the other direction, without loss of generality, suppose that ϕ ∈ Σ
and ϕ∨ψ /∈ Σ. By the maximality of Σ, ¬(ϕ∨ψ) must be in Σ. With
axiom C6: (ϕ→ (ϕ ∨ ψ)) and this substitution instance

(ϕ→ (ϕ ∨ ψ)) → ¬(ϕ ∧ ¬(ϕ ∨ ψ))

of the second formula proven in Figure 3.3, we obtain a proof ⊢K

¬(ϕ ∧ ¬(ϕ ∨ ψ)). But then, Σ is L-inconsistent.

3. Suppose ϕ ∧ ψ ∈ Σ and ϕ /∈ Σ. Then, by the maximality of Σ, ¬ϕ
must be in Σ. With axiom C4: ((ϕ ∧ ψ) → ϕ) and the substitution
instance

((ϕ ∧ ψ) → ϕ) → ¬((ϕ ∧ ψ) ∧ ¬ϕ)

of the second formula proven in Figure 3.3, we obtain a proof ⊢K

¬((ϕ ∧ ψ) ∧ ¬ϕ). But then, Σ is L-inconsistent.

For the other direction, suppose ϕ ∈ Σ and ψ ∈ Σ, but ϕ ∧ ψ /∈ Σ.
Then ¬(ϕ ∧ ψ) ∈ Σ. By Example 2.2.16, we have the following proof

⊢L ((ϕ ∧ ψ) ∧ ((ϕ ∧ ψ) → ⊥) → ⊥.

Since the proven formula can be read as ¬(ϕ ∧ ψ ∧ ¬(ϕ ∧ ψ)), Σ is
L-inconsistent.

4. Suppose ϕ → ψ ∈ Σ and ϕ ∈ Σ, but ψ /∈ Σ. Then ¬ψ ∈ Σ. By
Example 2.2.20, we have the following proof:

⊢L ¬(ϕ ∧ (ϕ→ ψ) ∧ ¬ψ).

This is a contradiction to the L-consistency of Σ.

5. Suppose ⊢L ϕ holds, but ϕ /∈ Σ. Then ¬ϕ ∈ Σ. In the following proof
tree, we see that any proof ⊢L ϕ can easily be transformed to a proof
⊢L ¬¬ϕ, thus Σ is L-inconsistent.
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⊢L ϕ
▽
ϕ

By Example 2.2.4
▽

¬ϕ→ ¬ϕ
C9

(¬ϕ→ ¬ϕ) → (ϕ→ ¬¬ϕ)
ϕ→ ¬¬ϕ (MP)

¬¬ϕ (MP)

This concludes the proof of the lemma.

Definition 3.2.15 (Canonical model for L). The canonical model C for a
normal modal logic L is a triple (N,R, D), where N is the set of all maximal
L-consistent sets Σ, R is defined by

ΣR Σ′ ⇔: 2
−(Σ) ⊆ Σ′

and D(Σ) = Σ ∩ VAR.

Lemma 3.2.16 (Canonical model for K). There is a canonical models C =
(N,R, D) for the normal modal logic K.

Proof. By the existence of maximal L-consistent extensions (Lemma 3.2.10),
the set N is not empty, but it contains all maximal L-consistent extensions
of ∅. As there are no restrictions on the properties of R and D, other than
the range of the domain function being the set of variables, we have model
satisfying the conditions of Definition 3.2.4.

Lemma 3.2.17. Let C = (N,R, D) be the canonical model for a normal
modal logic L, then, for any Σ ∈ N , Σ � ϕ holds, if and only if ϕ ∈ Σ.

Proof. We proceed by induction on the logical complexity, lcomp(ϕ), of ϕ
to show that Σ � ϕ holds, if and only if ϕ ∈ Σ.

Induction Base. lcomp(ϕ) = 0. As ⊥ is never forced in any world, and
any set containing ⊥ is immediately L-inconsistent (by ⊢L ⊥ → ⊥ for any
normal modal logic L), we only have to consider here the case where ϕ = p.
For propositional variables, the statement holds, because D(Σ) = Σ ∩ VAR
in the construction of the canonical model (cf. Definition 3.2.15).

Induction Hypothesis. Suppose n ≥ 0 and for all ϕ with lcomp(ϕ) ≤ n
and all Σ ∈ N , the following equivalence holds:

Σ � ϕ⇔ ϕ ∈ Σ

Induction Step. Let us consider ϕ with lcomp(ϕ) = n + 1. We perform
a case distinction with respect to the top-level connective.
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ϕ is of the form ¬ϕ1: By Definition 3.2.6, Σ � ¬ϕ1 holds, if and only if
Σ 2 ϕ1. By the induction hypothesis, this is the case, if and only if
ϕ1 /∈ Σ. By Lemma 3.2.14 (1), ϕ1 /∈ Σ if and only if ¬ϕ1 ∈ Σ.

ϕ is of the form ϕ1 ∧ ϕ2: Suppose Σ � ϕ holds. Then, by Definition
3.2.6, Σ � ϕ1 and Σ � ϕ2 holds. By the induction hypothesis, we
have ϕ1, ϕ2 ∈ Σ. By Lemma 3.2.14 (3), this is the case if and only if
ϕ1 ∧ ϕ2 ∈ Σ.

ϕ is of the form ϕ1 ∨ ϕ2: If Σ � ϕ holds, then, by Definition 3.2.6, Σ � ϕ1

holds or Σ � ϕ2 holds. Without loss of generality, we assume that
Σ � ϕ1 holds. By the induction hypothesis, we obtain ϕ1 ∈ Σ. By
Lemma 3.2.14 (2), then also ϕ1 ∨ ϕ2 ∈ Σ.

For the other direction, if ϕ1 ∨ ϕ2 ∈ Σ, then ϕ1 ∈ Σ or ϕ2 ∈ Σ,
by Lemma 3.2.14 (2). Without loss of generality, assume ϕ1 ∈ Σ.
Then, by the induction hypothesis, Σ � ϕ1 holds. By Definition 3.2.6,
Σ � ϕ1 ∨ ϕ2 also holds.

ϕ is of the form ϕ1 → ϕ2: Suppose Σ � ϕ holds. There are two cases
depending on whether ϕ1 is forced in Σ.
Sub-case 1: If Σ 2 ϕ1 holds, then, by the induction hypothesis and
the maximality of Σ, ϕ1 /∈ Σ and ¬ϕ1 ∈ Σ. If ϕ1 → ϕ2 /∈ Σ, then
¬(ϕ1 → ϕ2) ∈ Σ. But then Σ is L-inconsistent, as can be seen in the
following proof tree:

C9
¬ϕ1 → (ϕ1 → ϕ2)

By Figure 3.3
(¬ϕ1 → (ϕ1 → ϕ2)) → ¬(¬ϕ1 ∧ ¬(ϕ1 → ϕ))

¬(¬ϕ1 ∧ ¬(ϕ1 → ϕ))
(MP)

Therefore, ϕ1 → ϕ2 ∈ Σ holds.
Sub-case 2: If Σ � ϕ1 holds, by Definition 3.2.6, Σ � ϕ2 also holds,
as we suppose Σ � ϕ1 → ϕ2 holds. By the induction hypothesis,
ϕ1, ϕ2 ∈ Σ. If ϕ /∈ Σ and, thus, ¬ϕ ∈ Σ, Σ is L-inconsistent, as can be
seen in the following ND-proof tree:

[¬(ϕ1 → ϕ2) ∧ ϕ2]1
ϕ2

(∧E)

ϕ1 → ϕ2
(→I)

[¬(ϕ1 → ϕ2) ∧ ϕ2]1

¬(ϕ1 → ϕ2)
(∧E)

⊥
(¬E)

¬(¬(ϕ1 → ϕ2) ∧ ϕ2)
(→I)1

For the other direction, suppose ϕ ∈ Σ. If ϕ1 ∈ Σ, then, by Lemma
3.2.14 (4), ϕ2 ∈ Σ. So by the induction hypothesis, Σ � ϕ1 and Σ � ϕ2
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hold. Then, by Definition 3.2.6, Σ � ϕ1 → ϕ2 holds.
If ϕ1 /∈ Σ, then by the induction hypothesis Σ 2 ϕ1 holds, and so,
Σ � ϕ1 → ϕ2 holds trivially.

ϕ is of the form 2ϕ1: Suppose ϕ /∈ Σ. Then, by the maximality of Σ, the
formula ¬2ϕ1 ∈ Σ. By Lemma 3.2.13 and Lemma 3.2.10, there is a
maximal L-consistent set Σ′ with 2

−(Σ) ∪ {¬ϕ1} ⊆ Σ′. By Definition
3.2.15, ΣR Σ′ holds, but, by Lemma 3.2.14 (1), ϕ1 /∈ Σ′ and by the
induction hypothesis Σ′ does not force ϕ1. By the definition of the
forcing relation, it follows that Σ 2 ϕ.

Suppose ϕ ∈ Σ. Then, for all Σ′ with ΣR Σ′, we have ϕ1 ∈ Σ′, by
the construction of the canonical model (cf. Definition 3.2.15). So by
the induction hypothesis, for all Σ′ with ΣR Σ′, Σ′

� ϕ1 holds. By
Definition 3.2.6, Σ � 2ϕ1 holds.

This concludes the proof of the lemma.

Lemma 3.2.18 (Completeness of canonical models). Let C = (N,R, D) be
the canonical model for a normal modal logic L. If C � ϕ holds, then ⊢L ϕ
holds.

Proof. We use an indirect approach to prove this lemma and show that 0L ϕ
implies C 2 ϕ.

Suppose 0L ϕ holds, then the set {¬ϕ} is L-consistent, as any proof of
its inconsistency, that is ⊢L ¬¬ϕ, can be transformed to a proof ⊢L ϕ via
the axiom DN. Such a proof must not exist by the assumption that 0L ϕ
holds.

In the canonical model C , there is a maximal L-consistent set Σ by
Lemma 3.2.10, which is an extension of {¬ϕ}, i.e., {¬ϕ} ⊆ Σ. As ¬ϕ ∈ Σ,
by the properties of maximal L-consistent sets—as established in item 1 of
Lemma 3.2.14—we have ϕ /∈ Σ.

Applying Lemma 3.2.17, we obtain that, for all Σ, Σ 2 ϕ holds, if ϕ /∈ Σ
holds. Thus, since Σ ∈ N , the canonical model C for the logic L does not
force ϕ.

Theorem 3.2.19 (Completeness of K). K is sound and complete with re-
spect to K , the class of all Kripke frames. In symbols:

K � ϕ⇔ ⊢K ϕ
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Proof. In Lemma 3.2.7, we have shown that K � ϕ holds, if there is a proof
⊢K ϕ. To show that there is a proof ⊢K ϕ, if K � ϕ holds, we assume 0K ϕ
holds. Since 0K ϕ holds, the canonical model C for K does not force ϕ.
Clearly, the class K (cf. Definition 3.2.4) contains the Kripke model C . So
K 2 ϕ holds.

3.2.1 Other Modal Logics

We have introduced the weakest normal modal logic K, but there are many
other normal modal logics, which have some extra axioms and impose con-
straints on the modal accessibility relation R. Consequently, their models
are in a smaller class of Kripke frames, as opposed to the class K of all
Kripke frames.
These logics are stronger than K in the sense that the set of valid formulae
is a super-set of the valid formulae of K.

Definition 3.2.20 (Axioms for stronger normal modal logics). The fol-
lowing axioms can be added to C1-C10, DN and K (i.e., the axioms of the
calculus K) to obtain modal logics stronger than K:

T 2ϕ→ ϕ

D 2ϕ→ 3ϕ

4 2ϕ→ 22ϕ

B ϕ→ 23ϕ

Definition 3.2.21 (Stronger normal modal logics).
The system T has the rules and axioms of K and the axiom T.
The system D has the rules and axioms of K and the axiom D.
The system S4 has the rules and axioms of K and the axioms T and 4.
The system S5 has the rules and axioms of K and the axioms T, 4 and B.

For proofs in K,T,D,S4 or S5, we use the respective proof relations
⊢K,⊢T,⊢D,⊢S4 or ⊢S5.

The proof relation ⊢L for L ∈ {T,D,S4,S5} is an extension of the rela-
tion ⊢K as defined in Definition 3.2.2.

As we have already mentioned, the stronger logics are larger in the sense
that more formulae are derivable, but, on the semantic side, the additional
axioms impose constraints on the accessibility relation between the worlds
of the Kripke models, thus allowing only models of a certain class of Kripke
frames.
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Lemma 3.2.22 (Soundness for stronger normal modal logics).

1. If T is one of the axioms of a normal modal logic L and ⊢L ϕ holds,
then M � ϕ holds for all models M , where the accessibility relation R
is reflexive (i.e., for every world x, xRx holds).

2. If D is one of the axioms of a normal modal logic L and ⊢L ϕ holds,
then M � ϕ holds for all models M , where the accessibility relation
R is serial (i.e., for every world x, there is a world y, such that xR y
holds).

3. If 4 is one of the axioms of a normal modal logic L and ⊢L ϕ holds,
then M � ϕ holds for all models M , where the accessibility relation R
is transitive (i.e., for three worlds x, y, z, if xR y and yR z hold, then
xR z also holds).

4. If B is one of the axioms of a normal modal logic L and ⊢L ϕ holds,
then M � ϕ holds for all models M , where the accessibility relation R
is symmetric (i.e., for two worlds x, y, if xR y holds, then yRx also
holds).

Proof. This lemma is an extension of Lemma 3.2.7, which states that, if ⊢K ϕ
holds, then K � ϕ. In Lemma 3.2.7, we have shown that the existence of a
proof ⊢K ϕ implies that all models force ϕ.

When we take into account that the lemma is no longer applicable to all
Kripke model, but only to those, whose accessibility relation satisfy some
restrictions, it suffices to extend the induction base and the induction step
with the cases that, either α1 or—for the induction step—αn+1, is one of
the four axioms treated in this lemma.

In the induction base, we treated the case that α1 is an axiom of C (Case
1) and the case that α1 is the axiom K. We will extend these cases by a new
case for each α1 ∈ {T,D, 4,B}.

In those four new induction base cases, we have to make use of the
respective restrictions to the accessibility relation R.

Case 3: α1 is an instance of T. Suppose there is a model M with a reflexive
accessibility relation R. Let us consider an arbitrary world a with
a � 2ϕ. Then, for all worlds b with aR b, we have b � ϕ. As R
is reflexive, we get a � ϕ. So, for any world a, a � 2ϕ → ϕ holds
and thus all substitution instances of T are forced in models with a
reflexive relation R.
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Case 4: α1 is an instance of D. Consider a model M , where the accessibility
relation R is serial. When a � 2ϕ holds, then b � ϕ holds for all
b with aR b. By the seriality of R, there is a successor b. So, by
Definition 3.2.6, a forces 3ϕ, whenever a � 2ϕ holds or—in symbols—
a � 2ϕ→ 3ϕ for any world a, whenever R is serial.

Case 5: α1 is an instance of 4. Consider an arbitrary model M , where the
accessibility relation R is transitive. Suppose there are worlds a, b with
aR b and a � 2ϕ. So b forces ϕ. All successors of b also force ϕ, as
they are also successors of a, because of the transitivity of R. As for all
worlds c with aR b and bR c, where the relation c � ϕ holds, a � 22ϕ
also holds and so, by Definition 3.2.6, we get a � 2ϕ→ 22ϕ.

Case 6: α1 is an instance of B. Suppose there is a model M , where R is
symmetric. If an arbitrary world a forces ϕ, all successors b of a force
3ϕ, since bR a and a � ϕ hold. As b � 3ϕ holds for all successors b
of a, a forces 23ϕ. Therefore, for all a, a � ϕ→ 23ϕ holds.

Once again we will omit the induction step for the respective axioms, as
they are analogous to the induction base.

As all the other cases of the induction base and the induction step can be
directly taken from Lemma 3.2.7, this concludes the proof of the extension
of Lemma 3.2.7.

Definition 3.2.23 (Classes of Kripke frames). We denote by T the class
of all Kripke frames, which have a reflexive accessibility relation.
We denote by D the class of all Kripke frames, which have a serial accessi-
bility relation.
We denote by S 4 the class of all Kripke frames, which have a reflexive and
transitive accessibility relation.
We denote by S 5 the class of all Kripke frames, which have a reflexive, sym-
metric and transitive accessibility relation, i.e., the class of Kripke frames
whose accessibility relation is an equivalence relation.

We write C � ϕ, if ϕ is forced in all models of a class C of Kripke
frames.

In the proofs of the following lemmata, Σ,Σ′ and Σ′′ will denote maximal
L-consistent sets.

Lemma 3.2.24. If T is in the set of axioms of a normal modal logic L,
then, in the canonical model C for L, the relation R is reflexive.
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Proof. Recall that, in a canonical model, ΣR Σ′ is defined to hold, if and
only if 2

−(Σ) ⊆ Σ′. We have to show that 2
−(Σ) ⊆ Σ holds for any maximal

L-consistent set Σ. We use an indirect approach. Suppose there is a world
Σ in the canonical model C and a formula ϕ with 2ϕ ∈ Σ and ϕ /∈ Σ,
i.e. 2

−(Σ) 6⊆ Σ. Then, by the maximality of Σ, ¬ϕ ∈ Σ. But 2ϕ → ϕ
is in the set of axioms, we have ⊢L 2ϕ → ϕ and by maximality of Σ also
2ϕ → ϕ ∈ Σ. By item 4 of Lemma 3.2.14, ϕ ∈ Σ. Therefore, 2

−(Σ) ⊆ Σ
holds.

Lemma 3.2.25. If D is in the set of axioms of a normal modal logic L,
then, in the canonical model C for L, the relation R is serial.

Proof. If D is in the set of axioms of some calculus L, then ⊢L 2¬⊥ →
¬2¬¬⊥—or shorter ⊢L 2⊤ → 3⊤—holds. Since ⊢L ⊤ can easily be proven
in intuitionistic (as well as classical, or modal) logic (cf. Example 2.2.4), by
one application of the rule (N), we can prove ⊢L 2⊤. Now, for all maximal
L-consistent sets Σ, we have 2⊤ ∈ Σ and 2⊤ → 3⊤ ∈ Σ, thus also 3⊤ ∈ Σ.
By Lemma 3.2.13, 2

−(Σ) ∪ {¬¬⊤} is L-consistent. Now, since 2
−(Σ) is L-

consistent (as a subset of a L-consistent set), there is a maximal L-consistent
extension Σ′ ⊇ 2

−(Σ). So there is a Σ′ in the canonical model C with ΣRΣ′,
if D is in the set of axioms of the calculus L.

Lemma 3.2.26. If 4 is in the set of axioms of a normal modal logic L, then,
in the canonical model C for L, the relation R is transitive.

Proof. We have to show that, whenever we have ΣRΣ′ and Σ′ R Σ′′ in a
canonical model, constructed as in Definition 3.2.15 for some logic L which
includes axiom 4, ΣR Σ′′ holds.
By Definition 3.2.15, we have 2

−(Σ) ⊆ Σ′ and thus 2
−(2−(Σ)) ⊆ 2

−(Σ′) ⊆
Σ′′. Now suppose that ΣR Σ′′ does not hold. Then there is a ϕ, such that
ϕ ∈ 2

−(Σ) and ϕ /∈ Σ′′. But since 2ϕ ∈ Σ, then, by using the axiom
2ϕ → 22ϕ, we can show that also 22ϕ ∈ Σ. So it must also hold that
ϕ ∈ 2

−(2−(Σ)) ⊆ Σ′′, and thus R is transitive.

Lemma 3.2.27. If B is in the set of axioms of a normal modal logic L,
then, in the canonical model C for L, the relation R is symmetric.

Proof. We have to show that, if the relation 2
−(Σ) ⊆ Σ′ holds, then

2
−(Σ′) ⊆ Σ also holds. Now suppose there is a formula ϕ ∈ 2

−(Σ′),
such that ϕ /∈ Σ. By the maximality of Σ, we have that ¬ϕ ∈ Σ. With the
instantiation Σ ⊢L ¬ϕ → 2¬2¬¬ϕ of the axiom B, we obtain ¬2¬¬ϕ ∈
2

−(Σ) ⊆ Σ′. Now we have ¬2¬¬ϕ ∈ Σ′ and 2¬ϕ ∈ Σ′. By the (even
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intuitionistically) valid formula ϕ→ ¬¬ϕ, the rule (N) and the axiom K, we
get ⊢L 2ϕ→ 2¬¬ϕ (The proof is shown in in Figure 3.4).

So ¬2¬¬ϕ ∈ Σ′ and 2¬¬ϕ ∈ Σ′. This is a contradiction to the consis-
tency of Σ′. Therefore, R is symmetric.

Theorem 3.2.28 (Soundness and completeness of stronger normal modal
logics).

T � ϕ ⇔ ⊢T ϕ
D � ϕ ⇔ ⊢D ϕ

S 4 � ϕ ⇔ ⊢S4 ϕ
S 5 � ϕ ⇔ ⊢S5 ϕ

Proof. The soundness part, i.e., everything that can be proven holds in the
corresponding models, in symbols

⊢L ϕ⇒ L � ϕ,

where L is the class of Kripke frames corresponding to L, was proven in
Lemma 3.2.22.

For the other direction, we use an indirect approach and show that L 2 ϕ
holds, when there is no proof ⊢L ϕ. In particular the canonical model C

for L does not force ϕ. In Lemmata 3.2.24–3.2.27 we have shown that the
canonical model of a logic L is an element of the corresponding class L

of Kripke frames. By the completeness of the canonical model (cf. Lemma
3.2.18), C � ϕ holds, if and only if a proof ⊢L ϕ exists. Since there is no
such proof, the canonical model does not force ϕ and so the respective class
of Kripke frames does not force ϕ either. So when L � ϕ holds, there has to
be a proof ⊢L ϕ. This concludes the completeness proof for stronger normal
modal logics.

Therefore, the normal modal logics T, D, S4 and S5 are sound and
complete with respect to the corresponding class of Kripke frames.
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▽

¬ϕ→ ¬ϕ C9: (¬ϕ→ ¬ϕ) → (ϕ→ ¬¬ϕ)

ϕ→ ¬¬ϕ
(MP)

2(ϕ→ ¬¬ϕ)
(N)

2ϕ→ 2¬¬ϕ
(MP)
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Chapter 4

Intuitionistic Modal Logic

Intuitionistic modal logic usually is a system with an intuitionistic base
logic and one or two modal operators. R. A. Bull and G. Fischer Servi were
among the first to come up with an intuitionistic modal logic in 1966 and
1977 respectively (see [Bul66] and [FS77] for details).

Since there are Kripke models for intuitionistic logic as well as for modal
logic, it is reasonable to assume that we can use Kripke models for intuition-
istic modal logics as well. Of course, these models must have at least two
accessibility relations, one for the intuitionistic part, and one for the modal
part. In contrast to modal logics with a classical base, the two modalities
2 and 3 are not inter-definable in general and there might be even more
accessibility relations, one for each modality and one for the “intuitionism”.
The interplay of these two relations has to be carefully defined in order to
create feasible models.

Although intuitionistic modal logics have been devised more than 40
years ago, there are not many applications, most notably [DP96], which use
intuitionistic modal logic to model staged computation in the λ-calculus.
Another example is lax logic, which is an intuitionistic logic with one modal-
ity. Lax logic is used in hardware verification (see [Men93] for details). It
has been shown in [Egl02] that lax logic can be faithfully embedded into
intuitionistic logic. Hence, from a provability viewpoint, lax logic is “intu-
itionistic logic with added syntactic sugar”.

In the following, we will introduce another intuitionistic modal logic with
only one modality.
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4.1 Modal Logic with an Intuitionistic Base De-

fined with the Modality 2

In the following section, we will introduce a modal logic with intuitionistic
base defined with the single modal operator 2. This particular logic was
first defined in [BD84] and we mostly follow this paper.

The logic HK2 is a natural extension of H: natural in the sense that
removing all occurrences of 2 from a valid formula derived by HK2 gives
us a valid formula, which can be proven in the calculus H.
Furthermore HK2 is a sub-logic of K, because its modal rule can be viewed
as a derived rule in K and its modal axioms can be proven in K.

4.1.1 Calculi for Intuitionistic Modal Logics Defined with 2

Definition 4.1.1 (HK2). When we add the following axioms and the rule
(R2) to Heyting’s propositional calculus H (from Definition 2.2.1), we ob-
tain the system HK2.

21 (2ϕ ∧ 2ψ) → 2(ϕ ∧ ψ)

22 2(ϕ→ ϕ)

ϕ→ ψ

2ϕ→ 2ψ
(R2)

We call (R2) the rule of regularity.

Definition 4.1.2 (Proofs in HK2). A proof Σ ⊢HK2 ϕ is a sequence (ψ1, ψ2, . . . , ψn)
of formulae, where ψn = ϕ and, for all ψi, either:

• ψi is a substitution instance of one of the axioms of HK2,

• ψi ∈ Σ,

• ψi is the conclusion of (MP), whose premises are ψj and ψk with
j, k < i, or

• ψi is the conclusion of (R2) whose premise is ψj with j < i.

When Σ is the empty set, we sometimes write ⊢HK2 ϕ or HK2⊢ ϕ instead
of ∅ ⊢HK2 ϕ As usual, the length of a HK2-proof is defined as the number
of formulae occurring in that sequence.
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Remark 4.1.3 (HK2-proofs in [BD84]). In [BD84], HK2-proofs are de-
fined such that only (MP) is a valid inference rule and (R2) is not allowed
to be used in a proof. The motivation for this is the fact that the Deduction
Theorem (Theorem 2.2.6) is of the same form and has the same proof as it
has for intuitionistic logic. But this decreases the expressiveness of HK2,
and HK2 is no longer an intuitionistic modal logic in the sense of [WZ99]1.

In their completeness proof for HK2 with respect to H-models (cf. Def-
inition 4.1.5), the authors of [BD84] use the Deduction Theorem and also
the fact that HK2 produces the same set of formulae as the calculus H (Def-
inition 2.2.1) extended by the axiom K and the rule (N) (as in Definition
3.2.1). Unfortunately, we have not been able to prove the pairwise simu-
lation of these two modal intuitionistic calculi—especially when we do not
permit (R2) in HK2-proofs.

Relation to H and K We expect from an intuitionistic analogue of the
the weakest normal modal logic K that, when we remove all occurrences
of 2, we just get intuitionistic propositional logic. By removing all 2, the
modal axioms of HK2 are just instances of the intuitionistically provable
formula ϕ→ ϕ (cf. Example 2.2.4). So all modal axioms become non-modal
formulae which are provable in H and the rule (R2) disappears.

Another expectation we have for the logic HK2 is that once we add the
axiom of double negation2, we get the system K. Since there is no proof
⊢HK2 K in [BD84] this remains an open question. We believe that

⊢HK2 2(ϕ→ ψ) → (2ϕ→ 2ψ)

is not provable. But HK2 extended by the axiom DN is a sub-system of K.

4.1.2 Semantics for HK2

Definition 4.1.4 (Composite relation). Let R1 and R2 be arbitrary binary
relations. We define the composite relation R1 ◦R2 as follows:

R1 ◦R2 = {(x, z) | ∃y : (x, y) ∈ R1 and (y, z) ∈ R2}

Definition 4.1.5 (H2 frames and models). A triple F = (N,≤,R) is a
H2 frame, if and only if

1. N is a non-empty set of nodes or worlds,

1By [WZ99] an intuitionistic modal logic must contain intuitionistic logic, has to be
closed under modus ponens, substitution and the rule of regularity for all modalities.

2
DN as in the system C of classical logic, see Section 3.2
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2. ≤ is a partial ordering over N , i.e., a reflexive and transitive relation,

3. R is an arbitrary relation over N and

4. the following restriction holds: (≤ ◦R) ⊆ (R ◦ ≤).

Furthermore M = (N,≤,R, D) is a H2 model if and only if (N,≤,R) is a
H2 frame and D is the domain function D : N → P(VAR), which satisfies

∀a, b ∈ N : a ≤ b⇒ D(a) ⊆ D(b).

Definition 4.1.6 (Forcing relation for H2 models). The forcing relation �

establishes truth in a model M = (N,≤,R, D) and is defined inductively as
follows:

1. a � p⇔: p ∈ D(a);

2. a � ψ ∧ ϕ⇔: a � ψ and a � ϕ;

3. a � ψ ∨ ϕ⇔: a � ψ or a � ϕ;

4. a � ψ → ϕ⇔: for all b with a ≤ b : b � ψ ⇒ b � ϕ;

5. a � ¬ϕ⇔: for all b with a ≤ b : a 2 ϕ;

6. a � 2ϕ⇔: for all b with aR b : b � ϕ.

We say ϕ holds in a model M , M forces ϕ or M � ϕ, if, for all worlds a
of M , the relation a � ϕ holds. We say M � Σ holds, if M � σ holds for
all σ ∈ Σ. Furthermore we say Σ � ϕ, if for all models with M � Σ, also
M � ϕ holds.

As mentioned in Remark 2.2.10 for pure intuitionistic logic, ⊥ is never
forced in any world, so ¬ϕ can be conveniently viewed as ϕ→ ⊥.

Remark 4.1.7. We notice that items 1 to 5 of Definition 4.1.6 coincide
exactly with items 1 to 5 of Definition 2.2.9, while item 6 coincides with
item 6 of Definition 3.2.6.

The following lemma points out another analogy to intuitionistic logic
(cf. Lemma 2.2.11).

Lemma 4.1.8 (Intuitionistic Heredity).

a ≤ b⇒ (a � ϕ⇒ b � ϕ)
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Proof. We will prove the lemma by induction on lcomp(ϕ), the logical com-
plexity of ϕ. Assume that a ≤ b holds.

Induction Base. lcomp(ϕ) = 0, i.e., ϕ is of the form p, where p is a
variable. We need not consider the case that ϕ = ⊥, because ⊥ is not
forced in any world. Now suppose a � p holds. By Definition 4.1.6, this
is equivalent to p ∈ D(a). By assumption, we have a ≤ b, which implies
D(a) ⊆ D(b) by Definition 4.1.5. Thus, we know that p ∈ D(b) and obtain
b � ϕ.

Induction Hypothesis. Suppose n ≥ 0 and assume that, for all formulas
ϕ with lcomp(ϕ) ≤ n and all worlds a, b with a ≤ b, the relation b � ϕ holds,
if a � ϕ holds.

Induction Step. lcomp(ϕ) = n+ 1. Since n ≥ 0, the formula ϕ contains
at least one connective. We perform a case distinction according to the
outermost logical connective, since, for the immediate sub-formulae of the
formula under consideration, the desired property holds by the induction
hypothesis.

ϕ is of the form 2ψ. In this case, we suppose a forces 2ψ and a ≤ b holds,
so, for all worlds c, the implication aR c ⇒ c � ψ holds by Definition
4.1.6, item 6. By the induction hypothesis, we have d � ψ for all d
with cR d. Now let’s consider the e with bR e:

{e|bR e} = {e|a ≤ bR e} ⊆ {e|a (≤ ◦R) e}
by Definition 4.1.5 item 4

⊆

⊆ {d|a (R ◦ ≤) d} = {d|∃c : aR c ≤ d}.

So when d forces ψ, it also holds that e � ψ for all e with bR e, as the
set of those e is a subset of all d with {d|aR ◦ ≤ d}. Thus b � 2ψ
holds for all b with a ≤ b.

ϕ is of the form ¬ψ or ϕ is of the form ψ ◦ σ with ◦ ∈ {∧,∨,→}. Since
the relevant items of Definition 4.1.6 correspond directly to Definition
2.2.9, and since ≤ behaves the same way in intuitionistic Kripke models
as in H2 models, we can directly use the arguments from Lemma 2.2.11
for the remaining cases of the induction step.

This concludes the induction proof of the lemma.

In the next lemma, we show that the condition (≤ ◦R) ⊆ (R ◦ ≤) is
necessary for the usefulness of our models.

Lemma 4.1.9. Let M̄ =< N,≤,R > be a “quasi” H2 frame, which does
not satisfy condition 4. of Definition 4.1.5. Then there is a formula ϕ and
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two worlds a, b ∈ N such that a ≤ b, a � ϕ and b 2 ϕ for some domain-
function D.

Proof. When (≤ ◦R) * (R ◦ ≤) holds, there have to be two worlds a, c, such
that a ≤ ◦R c holds, but aR ◦ ≤ c does not hold. So there is a world b ∈ N
with a ≤ bR c. Now let us create a domain function as follows:

D(e) =

{

VAR ∀e : a R ◦ ≤ e,

VAR \ {p} otherwise,

where p is an arbitrary propositional variable.
This is a valid domain function, as it obviously satisfies the condition

a′ ≤ b′ ⇒ D(a′) ⊆ D(b′) for all a′ /∈ {e|a R ◦ ≤ e}. For all a′ ∈ {e|a R ◦ ≤
e}, we have b′ ∈ {e|a R ◦ ≤ e} by the transitivity of ≤.

For all d with aR d, we have—by reflexivity of ≤—aR d ≤ d and thus
d � p and a � 2p hold. Since aR ◦ ≤ c does not hold because of the
definition of the domain function D, c does not force p. We have bR c and
so b � 2p cannot hold.

Since a � 2p, a ≤ b and b 2 2p holds, there is no intuitionistic heredity in
this particular model. So item 4 of Definition 4.1.5 is a necessary condition
for our H2 models to satisfy intuitionistic heredity.

Lemma 4.1.10 (Soundness of HK2 with respect to H2 models)).

Σ ⊢HK2 ϕ⇒ Σ � ϕ

Proof. As a preparatory step, we show that the axioms 21 and 22 hold in
any world a of any Kripke model.

21: a � 2ϕ ∧ 2ψ → 2(ϕ ∧ ψ)
If a � 2ϕ ∧ 2ψ holds, then, for all worlds b with aR b, the relations
b � ϕ and b � ψ hold by Definition 4.1.6 (6). Thus, all b force ϕ∧ψ and
so a � 2(ϕ ∧ ψ) holds. By Definition 4.1.6, a � 2ϕ ∧ 2ψ → 2(ϕ ∧ ψ)
holds.

22: a � 2(ϕ→ ϕ)
Trivially, in any world a, ϕ → ϕ is forced. So it is also forced in all
R-successors of a. Since we have b � ϕ→ ϕ for all worlds b with aR b
by Definition 4.1.6 (6), the relation a � 2(ϕ→ ϕ) holds.

Now we proceed by induction on n, the length of the proof Σ ⊢HK2, to
prove the above implication.
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Induction Base. n = 1. Σ ⊢HK2 is of the form (ϕ). If ϕ is in Σ, Σ � ϕ
holds trivially. If ϕ is one of the non-modal axioms (i.e., H1–H10), ϕ is
forced in all HK2-models by the the same arguments, we already used in
Lemma 2.2.12. The only difference is that we have to refer to Definition
4.1.6 instead of Definition 2.2.9.
If ϕ is one of the modal axioms (i.e., 21 or 22), any world a forces ϕ, as we
have shown in the preparatory step.

Induction Hypothesis. Suppose n > 0. If there is a proof Σ ⊢HK2 ϕ of
length ≤ n, Σ � ϕ holds.

Induction Step. Suppose there is a proof Σ ⊢HK2 ϕ of length n + 1.
The proof has the form (α1, . . . , αn+1) with αn+1 = ϕ. The formula αn+1

can either be an axiom, an element of Σ or the result of an application of
the rules (MP) or (R2). Unless αn+1 is the result of a rule application,
this essentially corresponds to the base case. We perform a case distinction
according to the rule which has αn+1 as its conclusion.

Case 1: Suppose αn+1 is the result of an application of (MP):

αi αi → αn+1

αn+1
(MP)

with αj = αi → αn+1 and i, j ≤ n. By the induction hypothesis,
Σ � αi → αn+1 holds and Σ � αi holds. But then—by Definition
4.1.6—Σ � αn+1 holds.

Case 2: Suppose αn+1 is the result of an application of (R2):

σ → ψ

2σ → 2ψ
(R2)

with some αi = σ → ψ and i ≤ n. By the induction hypothesis,
a � σ → ψ holds for all a ∈ M . Then, for all b with a ≤ b, if b � σ
holds, then b � ψ holds.
Now, for all c ∈ M with cR a, if c � 2σ holds, we have a � σ by
Definition 4.1.6, item 6. Then, by Lemma 4.1.8, b � σ holds, and thus,
as all worlds force σ → ψ, by the induction hypothesis b � ψ holds.
We just have to show that for all d ∈ M with c ≤ d: d � 2ψ holds, if
c � 2σ holds. All e with dR e coincide with the ≤-successors b of the
world a by the restriction imposed on the two relations ≤ and R by
item 4 of Definition 4.1.5 (i.e., (≤ ◦R) ⊆ (R ◦ ≤)). Since b � ψ holds,
e � ψ also holds for all e with dR e. Thus d � 2ψ holds. We now have
d � 2ψ, when c � 2σ. So, by item 4 of Definition 4.1.6, c � 2σ → 2ψ
holds for all c ∈ M .
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Figure 4.1: σ → ψ in H2 models
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c � 2σ d � 2ψ
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This concludes the proof of the lemma.

Completeness

Unfortunately, we have not been able to retrace the steps taken in [BD84]
to prove completeness of the calculus HK2 with respect to H2-models.
The main problem is the fact that the authors of [BD84] switch between
two notions of HK2-proofs. When it suits their argumentative needs, they
allow applications of the rule (R2). But when they need the deduction
theorem, which does not allow for other rules than (MP), they use it as
well. It seems prudent to permit the applications of (R2) in proofs, because
otherwise HK2 is probably not more expressive than intuitionistic logic.

The main problem is a preliminary lemma of the completeness proof
(Lemma 8) on page 226 in [BD84], the authors have a proof of the form

ϕ1, . . . , ϕn ⊢HK2 ψ,

from which they obtain

⊢HK2 ϕ1 ∧ . . . ∧ ϕn → ψ

“by the Deduction Theorem and theorems of HK2”. But the Deduction
Theorem in this form is only permissible, when we do not allow applications
of (R2). In the next step, they obtain

⊢HK2 2(ϕ1 ∧ . . . ∧ ϕn) → 2ψ

without any further explanation (other than using the Deduction Theorem
and theorems of HK2). This looks like an application of (R2), although
it admittedly could have also been produced if—for example—a formula of
the form (ϕ → ψ) → (2ϕ → 2ψ) was a theorem of HK2 (in the notion
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of the calculus which does not allow for applications of the rule (R2)). We
have not been able to disprove that one can obtain a proof

⊢HK2 2(ϕ1 ∧ . . . ∧ ϕn) → 2ψ

from a proof
ϕ1, . . . , ϕn ⊢HK2 ψ

using either notion of HK2-proofs.
Furthermore, we have not been able to show that the calculus HK2 and

the calculus H extended by the axiom K and the rule (N) produce the same
set of formulae, as we have not been able to come up with an HK2-proof
for the axiom K (cf. Remark 4.1.3). This might have facilitated another
approach to proving completeness.

It is likely that there is a completeness proof of HK2, but for now it still
remains an open question to produce it.
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Chapter 5

Conclusion, Outlook and

Future Work

The initial intention of this thesis was to investigate modal logics with an
intuitionistic base. There are already several papers on this topic, but I
decided to start my investigation of this subject with the rather old paper
[BD84], which, in contrast to the even earlier first publications on this topic,
seemed already quite evolved and “modern”.

To put my own investigation on intuitionistic modal logics on a firm base,
it seemed necessary to reproduce one of the well-known completeness proofs
for intuitionistic logic as well as modal logic. As the authors of [BD84] used a
Hilbert style calculus, it seemed the natural choice for the other non-classical
logics as well.

As—even for intuitionistic logic—proving completeness with a Hilbert
style calculus was rather tedious, at least at the level of detail I envisioned
for this thesis, I helped myself by introducing a calculus of natural deduction
(as can be found in [vD04]). With this calculus proving completeness was
less complicated and it could be used in the following chapters as well. So
instead of showing soundness and completeness of the calculus H (cf. Defi-
nition 2.2.1), I took an unusual approach by showing soundness for H and
completeness for ND. To complete the soundness and completeness proof
for both calculi in a circular fashion, I then showed that H simulates ND.

In Chapter 3, when I examined modal logic, I used the same Hilbert
style calculus for the classical base logic (of course extended by an axiom
which made the elimination of double negation possible). But whenever the
Hilbert style calculus proved to cumbersome and I only needed results which
could be proven in classical logic, I conveniently used the natural deduction
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calculus for intuitionistic logic (again extended by an extra rule to expand
the calculus’ expressiveness to classical logic).

I used the technique from [HC96] to prove soundness and completeness as
well for some stronger normal modal logics without much additional effort.

When I started to investigate intuitionistic modal logic in Chapter 4,
the original intention was to improve the rudimentary proof sketches of
the soundness and completeness of HK2 in [BD84]. But there were severe
problems in the argumentation of the completeness proof, which I pointed
out in the section Completeness on page 63. So there still remain a lot of
open questions for future work on HK2:

• Is it possible to prove completeness for the calculus HK2 with respect
to H-models?

• Is the calculus HK2 without the rule (R2) essentially intuitionistic
logic with some syntactic sugar?

• Do the calculi HK2 and H extended by the axiom K and the rule (N)
simulate each other?
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sagenkalküls, 1933. English translation in [Fef86].

[HC96] George E. Hughes and Maxwell J. Cresswell. A New Introduction
to Modal Logic. Routledge, 1996.

67



[Hey75] Arend Heyting, editor. Luitzen E. J. Brouwer: Collected Works 1.
North-Holland/American Elsevier, North-Holland/American Else-
vie, 1975.

[Kri65] Saul Kripke. Semantical Analysis of Intuitionistic Logic I, pages
92–130. North-Holland Publishing Co, 1965.

[Men93] Michael Mendler. A Modal Logic for Handling Behavioural Con-
straints in Formal Hardware Verification. PhD thesis, Edinburgh
University, 1993.

[Tho91] Simon Thompson. Type Theory and Functional Pro-
gramming. Addison-Wesley, 1991. Available on-line at:
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/ .

[vD85] Dirk van Dalen. Handbook of Philosophical Logic, chapter Intuition-
istic Logic, pages 225–340. Reidel, Dordrecht, 3. edition, 1985.

[vD04] Dirk van Dalen. Logic and Structure. Springer, Berlin, Heidelberg,
New York, 4. edition, 2004.

[WZ99] Frank Wolter and Michael Zakharyaschev. Intuitionistic modal
logic. In A. Cantini, E. Casari, and P. Minari, editors, Logic and
Foundations of Mathematics: Selected Contributed Papers of 10th
Int. Congress of Logic, Methodology and Philosophy of Science,
Florence, Aug. 1995, volume 280 of Synthese Library. Kluwer Aca-
demic Publishers, Dordrecht, 1999.

68


