
Diplomarbeit

Generalization

of building footprints derived from high

resolution remote sensing data

Ausgeführt am

Institut für Photogrammetrie und Fernerkundung,

Technische Universität Wien

unter der Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Norbert Pfeifer

und

Dipl.-Ing. Dr.techn. Markus Hollaus

durch

Marieke Dutter

Obere Augartenstraße 72/14

A-1020 Wien

Wien, im März 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Contents

1 Introduction 6

1.1 Objectives . 6

1.2 Structure of the work . 7

2 State of the art 9

2.1 Cartographic generalization 10

2.2 Description of boundaries and regions 12

2.2.1 Representation of boundaries and regions 12

2.2.2 Description of closed boundaries 14

2.2.3 Description of regions 17

2.3 Line simplification algorithms 22

2.3.1 Independent point routines 23

2.3.2 Local processing routines 23

2.3.3 Unconstrained extended local processing routines . . . 24

2.3.4 Constrained extended local processing routines 25

2.3.5 Constrained global routines 25

2.4 Building generalization algorithms 27

2.4.1 Work by W. Staufenbiel 29

2.4.2 Adaptation of the Douglas-Peucker algorithm to build-

ings . 30

2.4.3 Simplify buildings . 31

2.4.4 Generalization based on least squares adjustment . . . 33

2.4.5 Boundary regularization 33

2.4.6 Recursive rectangle approximation 35

1

2.4.7 Extraction of rectangular buildings from aerial images . 37

2.4.8 Hough Transformation 38

3 Proposed building generalization method 44

3.1 Overview . 44

3.1.1 Prerequisites of input data 45

3.1.2 Proposed generalization algorithm 45

3.1.3 User defined parameters 46

3.2 Method . 46

3.2.1 Minimum bounding rectangle (MBR) 46

3.2.2 Level 1 . 49

3.2.3 Level 2 . 52

3.2.4 Level 3 . 55

3.2.5 Computation of the building footprint 59

3.2.6 Built-in validation . 62

4 Implementation and practical application 64

4.1 Study area and data . 65

4.2 Work flow . 65

4.2.1 Automatic generalization 65

4.2.2 Manual editing . 69

5 Validation 75

5.1 Quality measurement . 75

5.1.1 Point distance measures 75

5.1.2 Hausdorff distance . 76

5.1.3 Area of symmetric difference 78

5.2 Validation of the presented generalization algorithm 78

5.2.1 Errors in the building classification 79

5.2.2 Evaluation of automatic generalization 79

5.2.3 Evaluation of the built-in classification 84

6 Discussion and conclusion 89

6.1 Limitations of the presented algorithm 89

2

6.2 Outlook . 96

6.3 Conclusion . 98

A Test area 105

B Curriculum vitae 119

3

Abstract

This work describes the generalization of two-dimensional building outlines.

The building outlines are derived through image segmentation and classifica-

tion processes from aerial images and consist of small line segments and many

redundant points. The generalized building outlines are dedicated to serve

as a base for the three dimensional modeling of buildings. Therefore sim-

ple geometric shapes are required. For this purpose a model driven method

for generalization of two-dimensional building outlines has been developed.

The basic idea is to fit a limited count of building primitives (a rectangle,

the “L”-, “T”- and “Z”-form, as well as a combination of those structures)

to the raw building outline, beginning with the simplest model, and after

a quality check, proceeding with more complex models if necessary. This

method has been implemented as a tool in ArcGIS. Due to the restrictions

in the building primitives, not all buildings from the input data can be gen-

eralized automatically. Therefore an editing tool has been integrated in the

generalization tool. It provides a simple assistance to the user in the manual

post-processing.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Generalisierung zweidimensionaler Ge-

bäudegrundrisse. Die Gebäudegrundrisse stammen aus einer Bildsegmen-

tierung und -klassifizierung von Luftbildern und bestehen folglich aus kleinen

Liniensegmenten und vielen redundanten Punkten. Die generalisierten Ge-

bäude können als Basis für die dreidimensionale Gebäudemodellierung di-

enen und weisen aus diesem Grund einfache geometrischen Formen auf. Für

diesen Zweck wurde eine modellgetriebene Methode zur Generalisierung zwei-

dimensionaler Gebäudegrundrisse entwickelt. Ihr liegt die Idee zugrunde, den

abgeleiteten Gebäudegrundrissen eine beschränkte Anzahl Gebäudeprimitive

(Rechteck, “L”-, “T”- und “Z”-Form, sowie eine Kombination aus diesen)

einzupassen, wobei mit dem einfachsten Modell begonnen wird und nach

4

einer Qualitätskontrolle bei Bedarf mit komplexeren Modellen fortgefahren

wird. Diese Methode wurde in einem Tool in ArcGIS implementiert. Auf-

grund der Beschränkungen in der Gebäudeform durch die Modelle können

nicht alle Gebäude automatisch generalisiert werden. Deshalb wurde ein

Editierwerkzeug, das den Benutzer durch den Editiervorgang führt, in das

Generalisierungsprogramm integriert.

Acknowledgements

I would like to thank Dr. Markus Hollaus for his continuous support in pro-

fessional and programming aspects and for the confiding positive working

atmosphere, which enabled this thesis.

Further I would like to thank Prof. Dr. Norbert Pfeifer for his helping sup-

port and inspiring discussions, which provided me with a wider perspective

on this work.

5

Chapter 1

Introduction

Two-dimensional building outlines are needed in many disciplines dealing

with spatial data, as for example cartography and the field of GIS. Building

footprints also serve as a base for computation of three-dimensional building

models. They can be derived from classified height data (LIDAR data) or

from image segmentation. In both cases the result of the classification pro-

cess is very often a set of pixel-areas (so-called blobs). After vectorization

of the blobs, the buildings are represented as polygons, which have a noisy

outline. In most cases they are not adequate to serve as a base for the final

application. Therefore, generalization of the raw building outline is essen-

tial. Manual generalization is time-intensive and is more and more replaced

by automatic or semiautomatic methods. This leads to a more transparent

and efficient work flow, from the data capture to the final visualization. Of

course the use of automatic methods reduces time consumption and increases

cost efficiency. Furthermore, the objectivity of the generalization process is

enhanced since the generalization result can be reproduced.

1.1 Objectives

The generation of building outlines results in most cases in noisy polygons

containing small structures, that do not represent the real boundary. That’s

6

why a generalization of the raw building outline is essential. The aim of the

work is the development of a generalization method and the implementation

of the method in a tool that should be ready for use. The generalized building

outlines are needed for visualization purposes and three-dimensional building

modeling. There is no need of fine details of the building outline. In contrary,

the focus is set on the acquisition of the inherent building structure. This

should be realized in two ways: On the one hand the generalized buildings

should consist of only rectangular angles. On the other hand the complexity

of the generalized buildings should be limited by providing only a small

amount of different building primitives that are fitted to the raw building

polygons. Furthermore, particular emphasis should be laid on a high degree

of automation. But since obviously not all buildings can be represented by

generalized polygons that fulfill the conditions mentioned above (because

the buildings consist of a more complex structure), the user has to edit

manually the badly generalized buildings. In order to support the editing

process, an appropriate tool should be developed and integrated into the

generalization tool. The tool should be embedded into a well-known GIS

environment (ArcGIS1), which provides all GIS-functionality for the user

and at the same time the integrated VBA (Visual Basics for Applications)

software development environment. Another benefit in the use of ArcGIS is

the integration of both the automatic generalization and the manual editing

process in one software. This fact frees the user from another data import

and export procedure and thus reduces time consumption and possible errors.

1.2 Structure of the work

Section 2 starts with general descriptors for building boundaries and areas.

It gives an overview on line generalization algorithms. In the last part of

the chapter, a selection of generalization algorithms, developed in past and

present days specifically for buildings, are presented.

In section 3, details on the algorithm, that has been developed and imple-

1ESRI ArcGIS Desktop 9.1

7

mented for this thesis, are described.

The practical use of the implemented generalization tool is presented in sec-

tion 4. Furthermore, the work flow is described and examples of the general-

ization results are shown. Finally, the application of the manual editing tool

is described in this section.

The generalization result is validated in section 5. It starts with the pre-

sentation of three quality measures, which describe the fitting quality of the

generalized buildings. The chapter goes on with the application of those

measures to the realized generalization result.

Based on the findings of the previous chapter, the last chapter (section 6)

shows and discusses limitations of the presented algorithm and gives pro-

posals for possible enhancement. Furthermore, a short outlook on other

techniques, that could possibly be used for building generalization, is given.

In the appendix the generalization result, achieved with the test data, is fully

documented in 12 tiles.

8

Chapter 2

State of the art

The term generalization, as used in the title of this work, has some aspects in

common with the term generalization, as it is used in cartography. In order

to distinguish between the different usages of the term, this chapter starts

with a brief definition of cartographic generalization. Afterwards it will be

presented, which aspect of cartographic generalization this work concentrates

on. The way algorithms deal with data depends to a great extent on the way

the data is stored. For this reason a selection of possible representations of

boundaries and regions is presented. Moreover describing boundaries and

regions provides information about geometric characteristics of the objects.

Some descriptive parameters are presented in this chapter. Line generaliza-

tion algorithms do not consider building characteristics and constraints on

the shape that should represent a building. For this reason they are not a

solution for the building generalization problem. Nevertheless, they often

contribute to the building generalization process, and therefore, a selection

of line generalization algorithms is presented in this chapter. The diversity

of building generalization methods present in the literature can not be pre-

sented in this context in a satisfying way. A selection of them is described

in the last subsection of this chapter.

9

2.1 Cartographic generalization

In the work of Weibel and Jones (Weibel and Jones 1998) the following

definition of cartographic generalization can be found:

[. . .] map generalization (or simply generalization) is the pro-

cess of deriving from a detailed source spatial database a map

or database, the contents and complexity of which are reduced,

while retaining the major semantic and structural characteristics

of the source data appropriate to a required purpose. (Weibel

and Jones 1998)

A classic example would be the derivation of a topographic map at 1 : 100 000

from a source map of 1 : 50 000. However, map generalization should not be

reduced to scale reduction:

[. . .] it represents a process of informed extraction and emphasis

of the essential while suppressing the unimportant, maintaining

logical and unambiguous relations between map objects, main-

taining legibility of the map image, and preserving accuracy as

far as possible. (Weibel and Jones 1998)

Changing the scale of a map causes several visualization problems. Some ob-

jects may be to small and would not be readable any more by the user. The

distance between objects may be to short and therefore neighbored objects

could not be visually distinguished any more. Dealing with those problems

leads to the need of cartographic generalization.

The generalization process is based on general rules. But it has to allow local,

individual modifications of the rules, in order to preserve the characteristics

of a situation in the generalized data set (Kelnhofer 2001).

Generalization strategies can be divided into two groups:

• Geometric generalization and

• geometric-semantic generalization.

10

Geometric generalization of an object means simplification, enlargement and

displacement of the object. For example a building outline has to be sim-

plified, because details would no longer be readable. An object has to be

enlarged, if its dimensions are less than required for readability. It has to be

displaced, if the distance to the neighboring object is to small.

Geometric-semantic generalization means selection, aggregation, classifica-

tion and exaggeration. If, for example, the interspace between detached

houses in rural area is too small, we have to select some of them to remain in

the generalized data set. In that way the characteristics of individual houses

are preserved. However a similar situation in urban area could be classified

as closed building area and therefore the buildings would be merged into a

block of houses.

Obviously the task of generalization can not be performed by applying gener-

alization rules sequentially. Rather it is a complex process where particular

sub tasks impact upon others. Manual generalization requires knowledge

about the generalization rules, a precise idea of the information that should

be transported by the medium and a lot of experience. Automated digital

generalization has been a field of research for many years, but totally auto-

mated generalization remains still a difficult task and is a work in progress

(Meng 2001).

In digital cartography and GIS two branches of map generalization can be

distinguished: cartographic generalization and database (or model) general-

ization (Weibel and Jones 1998).

Cartographic generalization is the process of deriving a visualization from a

source database. It has to deal with the specific problems of graphical sym-

bolization and comprises the generalization methods mentioned above. The

aim is to produce a readable image and hence a message that can be clearly

decoded.

Database (or model) generalization concentrates on the derivation of reduced

databases from source databases. The aim is to save data storage, to increase

11

computational efficiency and to derive data sets of reduced accuracy and/or

resolution. It can be a preprocessing step to cartographic generalization.

Database generalization does not produce graphic output, but output that

meets the accuracy specifications of the target database. Processes involved

in database generalization can be formalized more easily than cartographic

generalization.

Building generalization, in the way it is explored in this thesis, is among

database (or model) generalization. It focuses on detecting the main charac-

teristics of a building in the raw building outline data, that comes out from

the segmentation and classification process. This leads at the same time to a

reduction of points representing the building outline. In many cases the aim

is not a change in scale, but a “cleaning” and regularization (which means e.g.

the introduction of rectangular angles) of the outline. This is a prerequisite

of storing the building outlines in a database for a further processing.

2.2 Description of boundaries and regions

2.2.1 Representation of boundaries and regions

Boundaries and regions can be represented in numerous ways. Some exam-

ples are presented in the following.

The coordinates of the boundary points can be stored in a coordinate list.

The order of the points in the list is the same as they are encountered by

traversing the boundary (for example counterclockwise).

A boundary can be represented by registering the slope of each line segment

and the length of that segment. In other words the slope is a function of

the distance. This line representation carries information about basic shape

characteristics. For example straight line parts can be identified by horizon-

tal lines in the slope functions. This descriptor has to be used with care,

especially if the boundary comes from a raster data vectorization. It is not

possible to make a statement about the overall shape of the boundary with-

12

Figure 2.1: In boundaries coming from vectorized raster data, only four values for
the slope can be found (indicated by the left cross for the left polygon). The cross
in the right image indicates four mean values for the slope in the right polygon.

out further processing of the slope representation, because only four different

values for the slope exist! In general the four directions are completely dif-

ferent from the approximated orientations of the boundary segments when

neighboring points are considered (see example in figure 2.1).

Chain code is often used to represent the boundary of a pixel area and is

a specialization of the representation described above. It is a connected se-

quence of straight-line segments of specified length and direction (Gonzalez

and Woods 2003). The 4-directional chain code considers only four directions

and a single length of a segment. The 8-directional chain code considers 8

directions an two different values for the length of a segment.

Coordinate pairs of boundary points can be treated as complex numbers :

s(k) = x(k) + iy(k) (2.1)

where s is an arbitrary point of the boundary with the coordinates (xk, yk)

for k = 0, 1, 2, . . . , K − 1. K is the count of points. The x-axis is treated as

the real axis and the y-axis as the imaginary axis of a sequence of complex

numbers.

A curve can be represented by its fourier coefficients, each coefficient being

related to a spatial frequency.

A compact representation of a binary image (a region) is the run-length

code (Jähne 2004). The image is “scanned” line by line and the count of

pixels in a sequence of equal pixels is registered together with the value of

13

the pixels. Since the representation of an area requires only two pixel values

(zero and one) and a sequence of zero-pixels is always followed by a sequence

of one-pixels, there is no need to store the pixel value. Only the count of

pixels in a sequence of equal pixels is stored.

2.2.2 Description of closed boundaries

The main shape characteristics of a boundary are easily perceptible by human

operators. In order to formalize them (thus to make them accessible to a

potential generalization algorithm), it is necessary to find useful descriptions

for boundaries. Some descriptors are presented in this section (Gonzalez and

Woods 2003):

Scalar features

The simplest descriptor is the length of the boundary.

The diameter of a boundary is defined as the maximum distance between

two boundary points:

Diam(B) = max[D(pi, pj)] (2.2)

where D is a distance measure and pi and pj are points on the boundary.

The line connecting the two points pi and pj, that comprises the diameter,

is called the major axis.

The line being perpendicular to the major axis and having such a length,

that the rectangle formed by both axes encloses the boundary and touches

the boundary in four points, is the minor axis.

The box just described is called basic rectangle of the boundary. The ratio

of the major to the minor axis is called eccentricity of the boundary.

Curvature is defined as the rate of change of slope in a point of the bound-

ary. It can be used to detect straight parts or corner points. For example

the change in a point of 10 % indicates, that the point is part of a nearly

straight segment. It may be a corner point, if the change exceeds 90 %. As

described for the slope-descriptor it has to be used with care with noisy data

14

(a) The convex
hull (black points)
of a set of points.

(b) Convex hull and MBR: The MBR has one side collinear to
a side of the convex hull.

Figure 2.2: Convex hull and MBR of a set of points and of a polygon

or vectorized raster data. In order to provide meaningful results, it has to

be interpretated in relation to the length of the boundary segments.

Convex hull

Given a set P of n points, the convex hull is defined as the smallest convex set

containing P (Chan 1996). Several algorithms for computing the convex hull

have been developed (e.g. Jarvi’s march or Graham’s scan). Let’s consider

the convex hull of the set of vertices of a polygon. It is the smallest convex

polygon, that contains the original polygon. See figure 2.2(a) for a convex

hull of a set of points, and figure 2.2(b) for the convex hull of a polygon.

Minimum bounding rectangle (MBR)

The minimum bounding rectangle of a closed polygon completely encloses the

polygon and has the smallest area. One method of calculating the MBR is

presented by (Freeman and Shapira 1975). The MBR of a polygon is the

same rectangle as the MBR of the convex hull of the polygon. Furthermore,

the MBR of a convex polygon has one side collinear with one of the edges of

15

the convex polygon. Therefore, the convex hull must be calculated first. By

iterating through all edges of the convex hull and computing the enclosing

rectangle that is oriented parallel to the actual edge, the smallest rectangle

is found. This is the minimum bounding rectangle (see figure 2.2(b) for an

example of an MBR).

As it will be detailed in section 3, the MBR can be used for the detection of

the main orientation of a building.

Fourier Descriptors

Having reduced the boundary from a 2-D representation to a 1-D representa-

tion by treating the coordinates of the boundary’s points as complex numbers

s(k) (see eq. 2.1), the complex fourier coefficients (or fourier descriptors) of

the boundary can be calculated as follows:

a(u) =
1

K

K−1∑
k=0

s(k)e−i2πuk/K (2.3)

for u = 0, 1, 2, . . . , K − 1. It is the Discrete Fourier Transform (DFT) in the

complex form.

By means of the coefficients, the boundary can be fully reconstructed (inverse

Fourier transform):

s(k) =
K−1∑
u=0

a(u)i2πuk/K (2.4)

The high-frequency components (thus the last coefficients) account for fine

detail and low-frequency components determine the global shape. This means

that using only some of the first coefficients for reconstruction of the bound-

ary results in smoothing the boundary.

Statistical Moments

The shape of boundary segments can be described quantitatively by using

simple statistical moments. See figure 2.3 (a) and (b) for a simple example.

The boundary is represented as a 1-D function g(r) of an arbitrary variable

16

(a) Points of a boundary seg-
ment

(b) Boundary segment represented as a 1-D func-
tion g(r)

Figure 2.3: Statistical moments of a boundary segment

r. The distances from the boundary points to a reference line (e.g. the line

connecting the first and last point) are treated as realizations of a discrete

random variable v. From these values statistical moments such as the mean,

the variance and higher-order moments, can be calculated. To achieve valid

results, the length of the boundary segments has to be taken into account.

That means that boundary points have to be equally distributed along the

boundary. As it will be detailed in section 3, the standard deviation of the

random variable v is used by the developed generalization method for the

quality check of the fitting of a straight line segment.

Another approach is to normalize g(r) to unit area and to consider it to rep-

resent a histogram. This means, that g(ri) is now treated as the probability

of the occurring of value ri. In this case, r is treated as the random variable

and the statistical moments provide information about the shape. For ex-

ample, the second moment µ2(r) measures the spread of the curve about the

mean value of r, and the third moment µ3(r) measures the symmetry with

reference to the mean.

2.2.3 Description of regions

Scalar features

The area of a region is defined as the number of pixels in the region multiplied

by the area of one pixel. If the region is represented by a boundary vector

17

polygon, then for example the Gaussian trapezoidal formula (Gruber 2001)

can be used to calculate the area:

A =
1

2

n∑
i=1

(yi + yi+1)(xi − xi+1) (2.5)

The perimeter P of a region is the length of its boundary.

A very useful descriptor for the compactness of a region is:

c =
P 2

A
(2.6)

where P is the perimeter and A the area of the region. It is a minimum for

a disc-shaped region (c = 4π for a perfect circle). Another useful formula

describing compactness of an arbitrary formed region is the Forman-Godron-

Formindex FI (Meng 2001):

FI =
P

2
√
πA

(2.7)

The minimal value is 1 (FI = 1 for perfect circles). (FI)2 is proportional to

c.

Moment invariants

A statistical method used in object recognition and automated feature ex-

traction is the calculation of moment invariants. Moment invariants provide

characteristics of an object that uniquely represent its shape. They are cal-

culated from statistical moments of a function. If f(x, y) is a digital image

(e.g. a value from 0 to 255 is mapped to every pair (xi, yi)), the moment of

order (p+ q) is defined as

mpq =
∑
x

∑
y

xpyqf(x, y). (2.8)

18

The central moments are defined as

µpq =
∑
x

∑
y

(x− x)p(y − y)qf(x, y) (2.9)

where

x =
m10

m00

and y =
m01

m00

are the mean of the x- and y-coordinates. The central moments are invariant

to translation since the mean is always subtracted.

The central moments can be normalized using the following formula:

ηpq =
µpq
µγ00

(2.10)

where

γ =
p+ q

2
+ 1

for p + q = 2, 3, . . . These are the normalized central moments. They are

dimensionless, thus invariant to scale change.

Finally a set of seven invariant moments can be derived:

φ1 = η20 + η02 (2.11)

φ2 = (η20 − η02)
2 + 4η2

11 (2.12)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (2.13)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (2.14)

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] +

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (2.15)

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] +

4η11(η30 + η12)(η21 + η03) (2.16)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] +

(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (2.17)

These moments are invariant to translation, rotation and scale change.

Moment invariants are a very good feature to use when dealing with par-

19

ticular types of shapes such as aircrafts or alphanumeric characters. In the

work of Keyes and Winstanley (Keyes and Winstanley 2001) calculation of

moment invariants was applied to topographic data like buildings, parcels

and roads represented by closed polygons. The aim of their work was to in-

vestigate the usefulness of moment invariants for the identification of general

shapes on maps. For each object that had to be classified, a set of moment

invariants was calculated. The set of moment invariants was treated as a

vector in multidimensional space. To be able to measure the similarity of the

shapes of two objects, the length of the difference-vector of the corresponding

moment invariants vectors was calculated. The conclusion was, that moment

invariants alone are not sufficient for satisfying classification and that addi-

tional descriptors are necessary.

Moment invariants can be used for the derivation of three-dimensional build-

ing parameters from laser scanning data (Maas 1999). Using only first and

second order invariant moments, a number of basic parameters of a building

(position, orientation, length, width, height, root type and roof steepness)

can be determined. Using higher order moments, more complex roof shapes

can be modeled as well.

Principal Components Analysis

Principal Components Analysis (PCA) is a common technique for image

compression and for finding patterns in higher dimensional data. It is also

known from statistics as the (discrete) Karhunen-Loève transform or from

image processing as the Hotelling transform. The task is to transform corre-

lated data into uncorrelated data and to preserve the information contained

in the data set. For example the values of corresponding pixels (i.e. which

have the same coordinates) in the three component images of a color RGB

image are correlated. This data can be represented as a random vector with

three components:

x = (x1, x2, x3)
T

For each of the K pixel elements one population vector exists.

Considering an object, that is represented by a binary image, the coordinates

20

of the pixels can be treated as a random vector with two components popu-

lated by the x-values and the y-values of the pixels. This is the case for the

points of a vector boundary:

x = (x1, x2)
T

This data is also correlated.

The mean vector of a random vector is defined as:

mx = E{x} (2.18)

Information about the correlation of the random variables gives the covari-

ance matrix Cx:

Cx = E{(x−mx)(x−mx)T} (2.19)

If two random variables xi and xj of a random vector are uncorrelated, their

covariance will be zero. Thus the covariance matrix of uncorrelated data is

a diagonal matrix.

The mean vector can be approximated from the data by using:

mx =
1

K

K∑
k=1

xk (2.20)

and the covariance matrix:

Cx =
1

K

K∑
k=1

xkx
T
k −mxmx

T (2.21)

Let ei be the eigenvectors and λi be the eigenvalues of Cx (with i = 1, 2, . . . , n

- n is count of elements of the random vector). The eigenvalues are arranged

in descending order so that λi ≥ λi+1(i=1,2,. . . ,n-1). Let A be a matrix

which rows are the eigenvectors of Cx, ordered in such a manner, that the

first row of A is the eigenvector corresponding to the largest eigenvalue, and

the last row is the eigenvector corresponding to the smallest eigenvalue.

21

Finally the hotelling transform is defined as:

y = A(x−mx) (2.22)

Some of the properties of the Hotelling transform are:

• The mean of y is zero.

• The covariance matrix Cy of y is a diagonal matrix. It follows that the

population of the vector y is uncorrelated.

• Cx and Cy have the same eigenvalues and eigenvectors.

The result of the Hotelling transform is a vector y containing the coordinates

of the translated and rotated binary object. The origin of the new coordinate

systme is now located in the center of mass of the object. The axes of the

new coordinate system are oriented in direction of the eigenvectors of Cx.

Thinking of the given (two dimensional) object rotating around an arbitrary

axis (defined by two arbitrary points of the object), the moment of inertia is

minimal for the principal axis of inertia. This axis is found by the hotelling

transform. It is the x-axis of the new coordinate system.

2.3 Line simplification algorithms

Automated line generalization includes simplification, smoothing, displace-

ment and enhancement (McMaster 1987). These elements must be consid-

ered as interrelated operations in order to guarantee adequate generalization

results.

The purpose of line simplification is to reduce the number of points required

to represent the line, without changing the main characteristics of the line.

In the following some algorithms for line simplification will be presented. All

presented algorithms have in common that a certain amount of salient or

critical points are selected. No displacement of points is accomplished.

The following classification, that proposes five categories of algorithms, is

22

made by McMaster (McMaster 1987). The algorithms are classified by ex-

amining the “neighborliness” of the underlying mathematical processing.

2.3.1 Independent point routines

An example in this category is the very simple thinning algorithm, where

only every nth point is retained in the data. The result is of random nature

and can only be used for thinning out unnecessarily dens data.

2.3.2 Local processing routines

When a point is tested for its geometrical relevance, algorithms in this class

take information about the neighboring points into account. In the following

the ordered set of points of the line will be referred to as pi with i = 1, . . . , n.

The precedent point of pi is pi−1, the successive point of pi is pi+1. The

euclidean distance between two points will be formalized as ‖−−→pi, pj‖ and the

perpendicular distance from a point pi to a line segment −−−→pj, pk as ‖−−−−−→pi,−−−→pj, pk‖.
The angle](pi, pj, pk) is defined as the smaller angle between line segment
−−→pj, pi and −−−→pj, pk.

• A point can be tested for its euclidean distance toward the successive

point. If they are closer together than a defined value, the point is

removed from the data:

‖−−−−→pi, pi+1‖ < const⇒ pi removed (2.23)

The generalization result depends on the orientation of the traversing

of the points!

• Another algorithm takes into account two neighbors of a point: The

previous and successive point are connected by a straight line and the

perpendicular distance of the examined point to the line is calculated.

If the distance is smaller than a defined tolerance value, the point is

assumed to be not essential for the shape of the line and it is removed

23

from the data:

‖−−−−−−−−→pi,−−−−−−→pi−1, pi+1‖ < const⇒ pi removed (2.24)

• An essential point can be detected by the angular change between two

vectors. If point pi is tested, the angle](pi+1, pi−1, pi) must be cal-

culated. If it is smaller than a predefined value, the point is removed

from the line:

](pi+1, pi−1, pi) < const⇒ pi removed (2.25)

This algorithm provides different generalization results for the same

line depending on the orientation of the traversing of the points!

• Another algorithm in this group is testing the two neighbors pi−1 and

pi+1 of a point pi for three parametersD1, D2, A. These are the distance

‖−−−−→pi−1, pi‖, the distance ‖−−−−−−→pi−1, pi+1‖ and the angle](pi−1, pi, pi+1). If

one of the distances is smaller than its specific threshold, pi is removed

from the list. If both distances are larger than its threshold and the

angle is larger than A, the point is also removed from the list:

[(‖−−−−→pi−1, pi‖ < D1) ∨ (‖−−−−−−→pi−1, pi+1‖ < D2)] ∨ . . .

. . . (](pi−1, pi, pi+1) > M)⇒ pi removed (2.26)

2.3.3 Unconstrained extended local processing routines

An example of this type of algorithm is the Reumann-Witkam routine. The

first point of the line is the first point of the generalized line. A corridor of

predefined width is calculated parallel to the first line segment. Looking at

the points sequentially, point pi is considered to be the first point lying outside

the corridor. Point pi−1 is the second point retained in the generalized line.

Now the next corridor is calculated parallel to the line segment connecting

point pi and pi+1. This procedure is continued until the end of the line is

reached.

24

2.3.4 Constrained extended local processing routines

Like the Reumann-Witkam algorithm in the section before, the constrained

extended local processing routines evaluate not only points and neighbors,

but extended parts of the line. However, either the count of points being

removed or the length of the generalized line segment is constrained. Some

examples are algorithms by Opheim, Lang and Johannsen (McMaster 1987).

2.3.5 Constrained global routines

While testing the individual points for their importance, algorithms in this

group take the whole line into consideration.

The well-known Douglas-Peucker algorithm (Douglas and Peucker 1973) takes

the first point of the line as anchor point and the last point as a floating point.

The distances from all other points to the line connecting the anchor point

and the floating point must be calculated. If the greatest distance is below a

certain tolerance parameter (thus it is located outside of a corridor which is

defined by the connection line between the anchor and the floating point and

has a width of the tolerance value), the straight line is a good approximation

for the original line. If it is greater, the furthest point becomes the new float-

ing point and the procedure is repeated. The floating point advances toward

the anchor point until no point, that is located outside of the corridor, is left.

The last floating point is stored as point of the simplified line and becomes

the new anchor point. Again, the last point of the line is defined as floating

point and the whole procedure is repeated.

All points from the original line, that are located between two points of the

simplified line, are located within the tolerance distance.

In figure 2.4 an example of a line generalization by means of the Douglas

Peucker algorithm can be examined: The first and last point of the line are

connected by a straight line (figure a). Point 1 is the anchor point, point

17 is the floating point. Now it is searched for the farthest point from the

25

Figure 2.4: Douglas-Peucker algorithm

26

connection line. This is point 5. It is located outside the corridor, so it

becomes the new floating point. A new base line from point 1 to point 5 and

the distances of the points 2 to 4 are calculated. All distances are smaller

than the tolerance value. Therefore, point 5 is retained in the simplified line.

It becomes the new anchor point. The procedure is repeated with point 5 as

anchor point and point 17 as floating point (figure b). The distances of point

5 to 16 are tested. Point 10 is the farthest and becomes the new floating

point. From point 6 to 9, point 6 is the farthest from the base line connect-

ing point 5 and 10. No more points are left, therefore point 6 is retained in

the simplified line and becomes the new anchor point. The procedure is re-

peated (figure c and d). The result of the simplification can be seen in figure

e. With the selected tolerance value, the points 1, 5, 6, 9 and 17 remain in

the simplified line.

The later developed Visvalingam-algorithm (Visvalingam and Whyatt 1993)

doesn’t focuse on point distances but on area. The effective area of a point is

defined as the area enclosed by the predecessor of the point, the point itself

and the successor. The effective area of all points between the first and last

point is calculated. The point with the least effective area is eliminated and

the effective area of the neighboring points is recalculated. This procedure is

repeated until the desired count of points is left. In this way small features

of the line are eliminated first. It is ensured that small spikes can not be

selected as critical points, as it might be the case using the Douglas-Peucker

algorithm (such a point might have the greatest distance from the anchor-

floater line).

2.4 Building generalization algorithms

Line generalization algorithms can not simply be applied to building poly-

gons, because additional constraints like rectangularity and parallelism have

to be taken into account (Sester 2000). Building generalization is essential in

the case, that building outlines are derived from raster data. Not only data

27

reduction by line simplification is demanded but more often recognition of the

structure of the building. Applying known line generalization algorithms to

buildings is difficult, because parameters have to be set individually in order

to achieve satisfying results and this is at odds with the need of automation.

Building generalization aims at

• simplification of the building outline,

• computing “plane” building edges,

• preserving essential characteristics of the shape and

• applying constraints like rectangularity and parallelism.

Application fields for building generalization algorithms are all areas, where

large-scale building footprints are needed. This is the case for all kinds of

visualizations in 2D and as a base for 3D-building models. Moreover a large

application area is the civil protection (flood maps, mud flows, avalanches,

volcanic eruptions, etc.). In the insurance industry a growing demand of

large-scale building models can be noticed. A special application is the com-

putation of noise dispersion maps. In this case it is especially important to

dispose of clean building edges. Particular attention must be turned on the

correct detection of the orientation of the building.

Enhancement of the accuracy of a building outline through geometric gen-

eralization is possible under certain conditions. It is possible if it can be

assumed, that only random errors and no gross errors exist in the data and if

the task is to reconstruct all details (other than the random errors) appearing

in the data. However, if the geometric generalization does not only aim in

eliminating random errors, but is additionally applied for the simplifying and

elimination of details of the building outline, the accuracy can obviously not

be enhanced. In contrary, a loss of information must be accepted. If there

exist classification errors in the data, the generalization process may elimi-

nate those gross errors, in case of the degree of generalization is high enough.

But this is a “side effect” and can not be controlled, because algorithms in

general can not a priori differentiate between details of the building outline

28

Generalization action Order
Elimination of a corner edge 1
Aggregation of two short edges 2
Elimination of two corner edges 3
Elimination of insignificant porches or indentations 4
Elimination of an offset 5
Accentuation of significant porches or indentations 6

Table 2.1: Generalization action hierarchy

and gross errors (coming e.g. from image classification).

Building generalization algorithms are mostly designed in the face of avail-

able data and in the face of the application, which the generalized result is

dedicated to. Typically the input data must fulfill several properties: a spe-

cific data format, specific building outline characteristics (e.g. approximate

rectangularity), adjacency of buildings (e.g. disjoint buildings or restriction

of connection of buildings to straight lines), etc. Furthermore, the generaliza-

tion result is completely determined by the algorithm. It may be controlled in

a certain manner by e.g. tolerance values or selection of building primitives,

that are provided by the algorithm, but in general not every generalization

result can be achieved by any algorithm. In this section some known building

generalization algorithms are presented.

2.4.1 Work by W. Staufenbiel

An early approach to automatic building generalization was made by Staufen-

biel (Staufenbiel 1973). An operation work flow for cartographic generaliza-

tion is presented. A major part of the work deals with building generaliza-

tion. The base idea is preserving the perception thresholds for length and

area when changing the scale of a map. Therefore the building generalization

algorithm searches for edges of the building, that are smaller than a fixed

threshold. They are either eliminated, adapted or accentuated. A specific

order of the processing steps has to be preserved, otherwise no meaningful

results are achieved. Table 2.4.1 shows the generalization work flow, that is

29

Figure 2.5: Successive edge processing steps (Staufenbiel-algorithm). The bold
line segments are shorter than the specified threshold and have to be edited.

applied to each building. The succession is indicated in the right column.

An example for every simplification step can be found in figure 2.5. The

processing scheme developed by Staufenbiel was later implemented in the

software CHANGE (Sester 2000).

2.4.2 Adaptation of the Douglas-Peucker algorithm to

buildings

How the Douglas-Peucker-algorithm can be adapted to closed building poly-

gons is described in (Kanani 2000). Initially the point farthest from the

center of mass of the polygon is defined as the anchor point. The point

farthest from the anchor point is defined as the floating point. These two

points define a straight segment and separate the building polygon into two

polylines. These two points are at the same time two detected corners of the

simplified building. Now, the Douglas-Peucker-algorithm is computed with

both polylines separately as described in section 2.3.5. The “tricky” part of

the implementation is the determination of a suitable tolerance parameter.

30

Figure 2.6: Application of the MATLAB function reducem on a building polygon.
The green polygon is the original building polygon. The tolerance value of 0.3 was
used.

It is dependent on the characteristics of the input data and on the desired

level of detail. The building model achieved by the algorithm can be refined

by applying a least squares adjustment. In this way rectangularity or paral-

lelism of building edges can be achieved.

The Douglas-Peucker algorithm is implemented in the function reducem in

the software MATLAB1 (The MathWorks). An example of a (fictive) build-

ing polygon, simplified by means of this function is shown in figure 2.6. A

tolerance value of 0.3 was used.

2.4.3 Simplify buildings

ArcGIS provides the tool Simplify buildings (ESRI, Environmental Systems

Research Institute). It takes a coverage file containing building polygons as

input data and computes simplified buildings (A coverage is a data model

1The MathWorks MATLAB (http://www.mathworks.com)

31

http://www.mathworks.com

(a) A distance and an area tolerance
value are specified by the user. Too
short segments are further processed
(eliminated or widened).

(b) Disjoint buildings are simplified by itself
(left). Connected buildings are simplified as a
group, if the connection line is a straight line
(middle). If the connection line is more complex,
the buildings are not simplified (right).

Figure 2.7: Principles of the Simplify buildings-algorithm available from ArcGIS
(image taken from the Help file).

for the storage of vector data. It contains both the spatial (location) and at-

tribute (descriptive) data for geographic features). The algorithm preserves

and enhances orthogonality of the buildings. This means, that near-90◦ an-

gles become exactly 90◦. The algorithm works on large scale data, where

each building is represented individually. Topologically disjoint buildings are

simplified independently. Connected buildings will only be simplified, if the

common boundary is a straight line. They are handled as a group. If the

boundary in common is more complicated, the buildings are not simplified.

Two parameters are specified by the user:

• Simplification tolerance: Boundary segments shorter than the simplifi-

cation tolerance are further processed. That means, that e.g. isolated,

small intrusions are either filled or widened. Isolated small extrusions

are cut off.

• Minimum area: Buildings that have a smaller area than the given min-

imum area are eliminated.

Compendiously, the number of vertices is reduced, but the measured area

remains roughly the same as the original. The maximum degree of simplifi-

cation is reached when a building is reduced to a rectangle.

32

The tool provides a friendly user-interface and is well integrated in the GIS-

software. This makes it easy for GIS users and cartographers to perform

generalization sessions (ESRI 1996). However the algorithm is not advan-

tageous to data coming from raster data vectorization. Since the algorithm

only eliminates or widens small boundary segments, the “pixel-shape” of the

boundary is preserved and accentuated instead of a straightening of the edge.

The result is e.g. not suitable for a visualization of 3D building models.

2.4.4 Generalization based on least squares adjustment

Sester presented a building generalization method, that uses the least squares

adjustment (Sester 2000). The algorithm works in two steps. First an ap-

proximated model for each building is generated. This model is afterwards

introduced in the least squares adjustment. It is adapted by means of the

original building edges, that serve as observations. Characteristics of build-

ings like rectangularity and parallelism and characteristic building parts are

not only preserved but can be exaggerated by means of the stochastic model.

In a first step the buildings are processed individually one after the other.

In a similar approach as described in section 2.4.1, the algorithm tries to

replace building edges, which are shorter than a predefined minimal length.

These edges are substituted according to some given rules, depending on the

geometry of the adjacent building sides. The simplified building serves as

an approximate building model and is then transformed into a parametric

representation. These form parameters are the unknowns introduced in the

least squares adjustment. The observations are the original building edges.

The stochastic model, which describes the accuracy of the observations, is

modeled in terms of the overlap with the approximate building model. An

example of the results produced by the algorithm is shown in figure 2.8.

2.4.5 Boundary regularization

A method, that uses the boundary points to determine the parameters of

a regularized polygon with perpendicular directions is presented by Sam-

path and Shan (Sampath and Shan 2004). The method was developed in

33

Figure 2.8: Example buildings, simplified with the algorithm presented by (Sester
2000). The original buildings are on the left. Buildings simplified with a small
minimal length (3 m) can be seen in the middle and with a large minimal length
(7 m) on the right. From: (Sester 2000).

order to transform lidar data points, which were classified as building points,

into a building representation, that can be stored in a geospatial database.

Therefore the building boundary points are first extracted by means of a

“tracing”-algorithm. The resulting points, representing an irregular shape

and possible artifacts, are introduced into the regularization process, that is

described in the following.

The main idea of the algorithm is the extraction of long line segments as

well as the two main directions of the segments from the original points and

afterwards to introduce all points, segments and directions into a hierarchical

least squares adjustment. Four steps are involved in the process:

1. The first step is to find all group of points, that represent straight

line segments (so called “long line segments”). This is achieved by

examining the slope of line segments, formed by consecutive points, and

to pool points on consecutive edges with similar slopes into a group.

For further processing (step 2 to 4) the largest groups are selected,

because the longer the line segments, the more likely they represent

the dominant directions of the building.

2. In the next step a line Aix + Biy + 1 = 0 is fitted into each group

of points. The slope of each line is calculated: Mi = −Ai/Bi. The

lines are again sorted into two groups, based on their slope. Approxi-

mately parallel lines have similar slopes and the product of the slopes

34

of approximately perpendicular lines is around −1.

3. The third step is again the determination of the long line parameters,

but this time the constraint of parallelism or perpendicularity (step 2)

is introduced. The result is a set of parameters of each long line and

the dominant slopes of the building.

4. The final regularization step includes all (long and short) line segments

into the least squares solution. The slopes obtained from the previous

step are used as approximated values. In this step no explicit constraint

is enforced, but the slope parameters for long line segments are given

high weights. The line segments of the resulting polygon are fitted to

the dominant directions of the building and at the same time, they are

fitted to the lidar boundary points.

Because of the hierarchical approach (shorter line segments are processed af-

ter longer lines), the method is robust to possible errors in building segmen-

tation and boundary tracing (Shan and Sampath 2006). Another advantage

of the presented method is that the errors of the final extracted buildings

can be evaluated through the least squares adjustment process. The method

provides a global optimization solution, since no points or line segments are

taken as fixed reference.

2.4.6 Recursive rectangle approximation

Very useful in case of building polygons, which are noisy due to the seg-

mentation process, is the approximation by polygons, consisting exclusively

of rectangular angles. The basic idea is to subtract all non-building parts

from the smallest surrounding rectangle, that has the same orientation as the

orientations of the boundary edges (Gross, Thoennessen, and Hansen 2005).

Since a rectangular approximation is wanted, the rectangular approximation

of the non-building parts has to be computed first. This leads to a recursive

procedure, which is schematically visualized in figure 2.4.6.

Let A’ be the area of the building. The procedure starts with the calculation

35

Figure 2.9: Recursive rectangle approximation: A dotted polygon line indicates
noisy segments (from segmentation process). The smallest surrounding rectangle
is marked in orange.

of the smallest surrounding rectangle with the same orientation as the orien-

tations of the boundary edges P(A) (see step a). The non-building part B’ is

the difference of the surrounding rectangle P(A) and the original polygon A’.

Step b is identical with step a, but now B’ is taken as input polygon instead

of A’. The smallest surrounding rectangle of B is computed (gives P(B)). The

difference P(B) minus B’ gives C’ and so forth. In step d the appropriate

depth of recursion is reached. The surrounding rectangle of D is computed:

P(D). This is at the same time the rectangular approximation of D (step e).

Now the exact rectangle D can be subtracted from the surrounding rectangle

P(C) and the result is the rectangular polygon C (step f). In the same way

step g and h are computed. Result is the rectangular approximation of the

building.

When computing the difference of the surrounding rectangle and the build-

ing polygon, the result is in general composed of more than one polygon.

An area threshold has to be defined. The described recursive algorithm is

processed with all resulting polygons which have an area not smaller than

the threshold. In case of very noisy polygon edges, the resulting rectangle

36

(a) A rectangle is determined by five parame-
ters: center coordinates, orientation, length and
width. From: (Vinson, Cohen, and Perlant
2001).

(b) Example of a building with esti-
mated rectangle. From: (Vinson, Co-
hen, and Perlant 2001)(digitized).

Figure 2.10: Approximation of a (raster blob) building by a rectangle

approximation can not serve as the final approximation. The resulting ap-

proximation can serve as a suitable model, but the final location of the edges

must be adapted to fit the noisy edges.

2.4.7 Extraction of rectangular buildings from aerial

images

The method described in (Vinson, Cohen, and Perlant 2001), implements

ideas from the principal components analysis (see section 2.2.3) for the esti-

mation of rectangles from given raster blobs. A relation between the eigen-

values of the covariance matrix and the rectangle dimensions is established.

The algorithm estimates five parameters over any given blob, which deter-

mine an approximating rectangle. The parameters are the center-coordinates

Xg and Yg, the orientation Θ, the length L and the width l (see figure 2.10(a)).

The coordinates of the center of mass of the blob are taken as center-

coordinates of the rectangle (see eq. 2.20). The orientation of the principal

axis of the blob is taken as an estimation of the orientation of the rectangle.

37

It is calculated as follows:

tan 2Θ =
2Mxy

Mxx −Myy

(2.27)

The length and width of the rectangle is calculated by means of the eigen-

values:

λmax/min =
Mxx −Myy ±

√
(Mxx −Myy)2 + 4M2

xy

2
(2.28)

The analytic resolution of eq. 2.28 gives the eigenvalues:

λmax =
L2 − 1

12
and λmin =

l2 − 1

12
(2.29)

The width and length of the estimated rectangle can be calculated as follows:

L =
√

12λmax + 1 and l =
√

12λmin + 1 (2.30)

The Hausdorff-distance is used as a measure of similarity between the original

blob and the approximated rectangle. An example of a rectangle approxima-

tion of a building can be seen in figure 2.10(b).

Furthermore, a method for refining the rectangular building model for com-

plex buildings is presented. The automatic algorithm splits the blob into

several parts. Each part is approximated by a rectangle. So the number

of rectangles and the overlap between rectangles is minimized. The size of

the rectangles is maximized. This optimization process is controlled by the

Hausdorff-distance, which serves as a quality measure. An example of the

rectangle decomposition is shown in figure 2.11.

2.4.8 Hough Transformation

The so called Hough Transformation is a method to detect lines, circles,

ellipses etc. from a set of points. It is a technique for isolating features that

share common characteristics (Vozikis 2005). From a set of points, those

points are detected by the Hough Transformation, that are elements of a

line. The level of detail can be controlled by defining either the number of

38

Figure 2.11: Refinement of the rectangle approximation by splitting up into several
rectangles. From: (Vinson, Cohen, and Perlant 2001).

Figure 2.12: Transformation of a point from the image space to the parameter
space. From: (Vozikis 2005).

edges to be found, or the number of points lying on one edge. Furthermore,

constraints like orthogonal angles can be applied. This makes it very useful

for the simplification of noisy building outlines.

The general idea of the Hough Transformation is to transform the information

from the image space into a parameter space and apply there an analysis. A

general representation of a line in 2D-space is the Hesse Normal Form:

x cos θ + y sin θ − ρ = 0 (2.31)

where ρ is the perpendicular distance from the origin to the line and Θ is the

angle of the perpendicular vector in the range 0 to π counted counterclockwise

from the x-axis (see figure 2.12 on the left). Each point from the image space

39

is transformed into the parameter space by using the following formula:

ρ = x cos θ + y sin θ (2.32)

The points in the image space produce sinusoids in the parameter space.

Each line in the image space corresponds to a point in the parameter space.

Thus if some points lie on the same line in the image space, the sinusoids in

parameter space will intersect in a single point. The transformed sinusoids

are analyzed in respect of intersection points in the parameter space. An

example of five points, being transformed into parameter space, is illustrated

in figure 2.13. Four of the sinusoids intersect in a single point, hence the

corresponding points are elements of the same line.

The computational attractiveness of the Hough Transformation arises from

the subdividing of the parameter space into so-called accumulator cells. This

corresponds to a discretization of the Hough Transformation. The value of

all accumulator cells, which are covered by a sinusoid, is incremented by the

value 1. After all points have been transformed into the parameter space,

the intersection points of the sinusoids can be found easily by searching for

maximum values of the accumulator cells.

Another advantage is, that the computational accuracy can be adjusted eas-

ily by varying the cell size. The smaller the cells are, the better becomes the

accuracy, but concurrently the computation time increases. Unfortunately

the points of a noisy building edge lie not exactly on a line, but close to it.

That means, that the sinusoids in the Hough domain intersect not exactly in

one point and it has to be searched for a distribution of intersecting points.

The distribution is not normal, therefore the straightforward solution (taking

the local maximum as an estimation for the line parameters) is not suitable.

Instead the center of the distribution is defined as the weighted mean of all

intersection points that are bigger than a predefined threshold.

After finding the local maxima and processing the back transformation, the

resulting lines have to be intersected in order to find the final building poly-

gon. To avoid the problem of intersecting the wrong lines, it has to be

searched only for intersections that lie close to the vector data. In figure 2.14

40

(a) Five points in image space. Four of them
lie exactly on a line.

(b) The same points in parameter space.
Four of the sinusoids intersect in one point.

Figure 2.13: Example for a transformation of points from image into parameter
space. Four points lie on a line and therefore intersect in parameter space in a
single point.

Figure 2.14: The level of detail can be controlled by the count of lines, thus the
count of searched local maxima. From: (Vozikis 2005).

41

Figure 2.15: In the left image, four intersection points are searched and no angle
constraint is applied. For the right example an adjustment is calculated, in order
to force the lines at 90 degrees. From: (Vozikis 2005).

an example of different simplification results by means of the Hough Trans-

formation is shown. The degree of generalization is determined by the count

of detected lines.

Angle constraints between intersecting lines will be achieved, if the horizon-

tal distance between the corresponding local maxima in parameter space is

equal to the wanted angle. Thus the final locations of the used points in

Hough domain are calculated through an adjustment. Figure 2.15 shows an

example with four intersection points. In the left part of the figure, no an-

gle constraint is applied. In the right part of the figure, an adjustment is

calculated , in order to force the lines at 90 degrees. It can be seen, that

the intersecting points corresponding to perpendicular lines, have a constant

horizontal distance.

Another advantage of the Hough Transformation is the ability to overcome

missing data. An example can be seen in figure 2.16. Due to the data cap-

tion process, many building boundary pixels were not detected. By means of

the Hough Transformation however it is possible to reconstruct the missing

building corner. A small amount of points located along a line answers the

purpose, despite a lot of incorrect data exist in the neighborhood.

42

Figure 2.16: Example of the strength of the Hough Transformation in overcoming
missing data. A small amount of points lying on a line is enough, to detect the
correct edge. From: (Vozikis 2005).

43

Chapter 3

Proposed building

generalization method

3.1 Overview

The proposed generalization method was developed facing the need of gen-

eralized building outlines, that could serve as a base for various 2D and 3D

visualizations. Therefore, the generalization process should result in simple

polygons with restriction to rectangular angles and to a certain degree of

detail. The geometry of the raw buildings is analyzed in a sort of “top down-

way”, meaning that a building polygon is first approximated by a simple

rectangle. If the rectangular model does not fit well enough, it is refined by

cutting out corners or by replacing an edge by more edges. A model is fitted

to the data by filtering the essential points (the so-called split points) out of

all building polygon points. If e.g. a rectangle is going to be fitted, four split

points are searched, which must be located in the corners of the building.

As soon as the split points are found, the points between the split points are

used to calculate the final location of the building edges.

The level of detail of the generalization can be changed by variation of two

input parameters, which have to be specified by the user.

44

3.1.1 Prerequisites of input data

The input data must comply with the following requirements:

1. The input polygons must be represented by a list of points, ordered

in the manner they are encountered by traversing the polygon in one

direction.

2. They must be simple closed polygons, thus they must not contain holes.

3. A polygon has to be composed of a minimum of four points.

4. The building points must be roughly equally distributed along the

building outline (i.e. the euclidean distance between every two suc-

cessive points should be similar).

3.1.2 Proposed generalization algorithm

The proposed generalization algorithm can be divided into five major steps:

1. Checking, if the point density along the building boundary is constant.

2. Calculation of the major orientation of the building. It is taken from

the orientation of the longer edge of the minimal bounding rectangle

(MBR). The edges of the generalized polygon are designed to be parallel

to one of the edges of the MBR.

3. Search for split points in three different levels of detail. This fixes the

geometry of the generalized polygon.

• Level 1: Rectangular model

• Level 2: “L-”, “T-” or “Z-model”

• Level 3: “U-model”

4. Calculation of the position of the generalized edges in relation to the

MBR-edges. The distance of an edge from the according MBR-edge is

the median of the distances of all points assigned to this edge from the

MBR-edge. The vertices of the generalized polygon are calculated by

a intersection of all successive edges.

45

5. Elimination of too short edges.

Details on the algorithm will be presented below.

3.1.3 User defined parameters

Two parameters are required for the execution of the generalization tool.

They have to be specified by the user. Through both parameters the gener-

alization level can be controlled:

Variationparameter Vspec: This term is used for the standard deviation

of the distances of the building points, which are assigned to one single

edge, to the appropriate MBR-edge. The calculation will be described

in detail later on. The user specified variationparameter influences the

level of detail of the generalization. After the generalization process

of each level, the actual values for the variationparameter of all edges

are calculated. By comparing the values with the user specified vari-

ationparameter, the quality of the generalization is examined. If the

actual values V are below Vspec, the generalization quality will be good

enough and the computation will be stopped. Otherwise the next level

generalization is started.

Minimal length of edge Mspec: As the name implies it is the minimal

length of an edge of the final generalization. This term also affects the

level of detail of the generalization.

3.2 Method

In this section the proposed generalization method is described in detail. All

buildings are processed independently one after the other.

3.2.1 Minimum bounding rectangle (MBR)

The first processing step is the determination of the main orientation of

the building. For this purpose the minimum bounding rectangle (MBR) is

46

Figure 3.1: Minimal bounding rectangles (MBR) of some buildings. The orien-
tation of an MBR is an adequate measure for the main orientation of a building
polygon.

calculated. The orientation of the longer edge of an MBR of a building

polygon corresponds in the majority of cases with the orientation of the

building, as it is perceived by a human operator. If a building polygon,

that has a rectangular shape but very noisy edges, should be approximated

by a rectangle, it will be well represented by a rectangle that has all edges

parallel to the MBR. The evaluation of a set of test buildings shows, that

the orientation of all rectangular shaped buildings are detected correctly by

computing the MBR.

The algorithm described in section 2.2.2 is used for this task. The calculation

of the MBR is implemented in the following way (see figure 3.2):

• Calculate the convex hull of the polygon (a built-in ArcMap function

was used).

• From all encasing rectangles having one side collinear with the convex

hull’s edges, take that one with the smallest area.

Details:

– Go through all points of the convex hull.

– Create a local coordinate system with origin in the actual point

47

Figure 3.2: Illustration of the calculation steps for the determination of the
MBR.

48

and positive x axis directed toward the successive point.

– Calculate local coordinates of all points of the convex hull.

– Get the minimum and maximum x coordinates and the minimum

y coordinate. The maximum y coordinate is zero.

– Test for the least area rectangle resulting from the minimum and

maximum points.

– Retransform the local point coordinates of the rectangle to get the

real coordinates.

See figure 3.1 for some example buildings with corresponding MBR. All edges

of the final generalization will be parallel to the edges of the MBR.

Sometimes problems occur with distinct “L-”, “T-” or “Z-Shapes”. In this

cases, the MBR is no satisfying method to compute the orientation of the

building. Alternative methods for computing the main orientation of a build-

ing are thinkable. This will be discussed in section 6.

3.2.2 Level 1

Now that the MBR is known, the best fitting rectangle with edges parallel to

the MBR is calculated. The task is to find four split points S = {s1, s2, s3, s4}
from the set of the building points P = {p1, . . . , pn} (n is the count of building

points), which best represent the corners of a rectangle. In other words, a

split point should be an essential point of the polygon (figure 3.3, s1 to

s4), whereas all other points can be seen as redundant1 points. Let’s T =

{t1, t2, t3, t4} be the set of MBR corner points and d(pi, pj) be the euclidean

distance between two points pi and pj. The split points s1 to s4 are defined as

those building points that have the minimum distance to the MBR-corners:

si = pj ∈ P with d(pj, ti) < d(pk, ti) k = 1, . . . , j − 1, j + 1, . . . , n

i = 1, 2, 3, 4 (3.1)

1The term redundant is used, because the points hold no new information about the
form of the building.

49

Figure 3.3: Construction of the split points at level 1: The split points are those
building points which have smallest distance from the according MBR-corners.

where n is the count of building points in P . In that way the set of building

points can be split into four subsets P = {P1, P2, P3, P4}. The order of the

building points is not changed and the split point is the first point in each

subset: Pi = {psi
, psi+1, . . . , psi+1−1}. For example, if the first split point in

subset P1 is building point 5 and the second split point is building point 26,

the subset P1 contains the building points {5, 6, . . . , 25}.
The assumption is, that all building points being an element of a single

subset, can be well generalized by a straight line, which is parallel to the

corresponding MBR-edge. If this is true, the model, that is defined by the

characteristics of the split points (and which is a rectangle in level 1), is

suitable for the actual building. As a criterion serves the variationparameter

Vi. Let mi be the MBR-edge, that is defined by the MBR-corners ti, ti+1 and

d(pj,mi) be the nearest distance (euclidean norm) from a point pj ∈ Pi to

mi. The set of distances measured from all points pj ∈ Pi to mi is Di. The

50

Figure 3.4: Calculation of variationparameter V4: D4 is the set of distances from
all points pj ∈ P4 to m4. The variationparameter V4 is the standard deviation of
the elements in D4.

variationparameter Vi is the standard deviation of the elements in Di:

Vi = σ(Di) =

√√√√ 1

|Pi| − 1

|P1|∑
j=1

(d(pj,mi)− d)2 (3.2)

where d is the arithmetic mean of the distances in Di. In figure 3.4 the

calculation of the variationparameter is illustrated.

If for all subsets Vi is smaller than the variationparameter specified by the

user Vspec, the rectangular model will be accepted. If Vi is larger than Vspec

for an individual subset, the rectangular model will be replaced by a more

complex model as described in the following section.

51

3.2.3 Level 2

In the example building in figure 3.4, V4 might be larger than Vspec. Therefore

level 2 of the generalization process is started.

In this level, the rectangular model is refined by cutting out one or more

corners. Depending on how many and which corners are eliminated, the

resulting polygon has “L”-, “T-”, “Z-”- or a even more complicated form.

The idea is, that if a split point si (that has been found in level 1) has a very

large distance from its corresponding MBR-corner ti, it will be suitable to

divide the combination of subsets Pi−1 and Pi into four new subsets. Again

the assumption is, that all points being elements of a single subset of the

new subsets can be well generalized by a straight line, which is parallel to

any of the MBR-edges. If this is true, a suitable model for the generalization

of building points in Pi−1 and Pi will be found.

As a first step the distances from the split points to the correspondent MBR-

corners are examined. The user specified minimal length of an edge Mspec

serves as a reference value. If the distance from a split point to the MBR-

corner is larger than Mspec, the split point will be replaced by three new split

points. If the distance is smaller or equal Mspec, the split point will remain

in the set of split points and no change will be applied to that corner of the

rectangular model:

{si} ⇒

{
{sib , sim , sif} for d(si, ti) > Mspec

{si} for d(si, ti) ≤Mspec

i = 1, 2, 3, 4 (3.3)

The new split points sib , sim and sif
2 are determined in the following way:

• The split point sib (sif) is the first building point being element of Pi−1

(Pi), that has a smaller distance from the MBR-edge mi−1 (m1) than a

specific value (a value of 2 m seems to be adequate with the test data),

when each point is tested subsequently starting from si going backward

2b . . . backward, m. . . middle, f . . . forward

52

Figure 3.5: Computation of new split points at level 2 (“L”-model).

53

(forward).

sib = pj ∈ Pi−1 with d(pj,mi−1) < const ∧ j = max

sif = pj ∈ Pi with d(pj,mi) < const ∧ j = min
(3.4)

• Intersection of the line that goes through sib and is parallel to mi and

the line that goes through sif and is parallel to mi−1 results in the

intersection point hi. This can easily be formalized by defining a co-

ordinate system which has its origin in ti, the positive x-axis through

ti−1 and the positive y-axis going through ti+1. If (x(sib), y(sib)) are the

coordinates of sib and (x(sif), y(sif)) are the coordinates of sif , then hi

will be defined as follows:

hi = (x(sib), y(sif)) (3.5)

• The split point sim is defined as the point being element of Pi−1 or Pi,

and having the smallest distance to hi:

sim = pj ∈ {Pi−1, Pi} with d(pj, hi) < d(pk, hi)

k = 1, . . . , j − 1, j + 1, . . . , n (3.6)

where n is the count of points in the union of the subsets Pi−1 and Pi.

After iterating through all si with i = 1, 2, 3, 4, either no new split point,

or 3, 6, 9 or 12 new split points are found. They are inserted into the set

of split points considering the correct order whereas the corresponding si

is eliminated from the set of split points. The count of split points is now

4 + 2 · v, where v is the count of corners, that have been cut out from the

rectangular model.

Once the level 2 split points are found, the procedure is the same as described

in level 1. By means of the split points, the set of building points P is divided

into subsets Pi. It is assumed, that points being element from a single Pi,

can be well generalized by a straight line. This is verified by calculating the

variationparameter Vi of the subset Pi and by comparing it with Vspec. If one

54

Figure 3.6: Four split points have been found in level 1. After running through
level 2 no split points have been added, because they are located very close to the
MBR-edges. The variationparameter V2 is still larger than Vspec. A “U-”-model
will be fitted in level 3.

of the Vi is larger than Vspec, the straight line is not a suitable generalization

model for that subset and it will be further refined in the next level. If all

Vi are smaller than Vspec, the model, which is defined by the split points,

will be accepted as a suitable model for the actual building and no further

refinements of the model will be needed. In this case, the level 3 is skipped.

A visualization of the calculation steps, described so far, can be seen in

figure 3.5. In the example building, the split point s4 is replaced by three

new split points. The count of split points is now 6 and they determine a

“L”-form (see figure 3.5). All subsets pass the variationparameter criterion.

For this reason the process of finding a suitable model is terminated at this

level and the algorithm goes on with the calculation of the position of the

final generalized edges (described in section 3.2.5).

3.2.4 Level 3

Figure 3.6 illustrates another example building and shows the location of

the split points after running through level 1 and level 2. Obviously the

split points s1 to s4 have been found already in level 1. From the result

of the variationparameter test (V2 > Vspec) in level 1 it followed, that the

rectangular model had to be refined and for this reason level 2 was started.

55

But all split points are located close to the corresponding MBR-corner (they

were not detected by the test in level 2) and therefore, the corners of the

model should not be changed. Since V2 is still larger than Vspec, level 3 is

started.

The basic idea of level 3 generalization is described in the following. If two

successive corners of a polygon are essential points (justified by level 2) and

if there is large variation in the raw building, there might be two reasons:

Either the large Vi can be attributed to large error in the raw data, or the

geometry of the concerning building edge is more complex than assumed

in level 2. In this case the generalization should be enhanced by adding

more line segments. Since only rectangular angels are allowed, the simplest

refinement is cutting out a rectangle, which means replacing the straight line

by 5 shorter line segments. If other angle values besides 90◦ occur in this

part of the building, it will show up as a very noisy building polygon to the

algorithm and will not be generalized satisfactorily.

This idea is realized by a search for five new sets of building points that will

replace a single subset from level 2. That means, if Vi of subset Pi (from

level 2) is too large, the aim of level 3 is to find and add four new split points

si1 , si2 , si3 , si4 out of this set of building points:

{si} ⇒

{
{si, si1 , si2 , si2 , si4} for Vi > Vspec

{si} for Vi ≤ Vspec
i = 1, . . . , n (3.7)

where n is the count of split points resulting from level 2.

Again, all building points from a single subset will be generalized by a straight

line. In that way, the straight line, that was the model for Pi in level 2, is in

level 3 replaced by 5 lines, which form a “U”.

The first step is the determining of a value Ui, that gives evidence, wether the

model described above is appropriate for the refining of Pi. For this purpose

the points of Pi, which have the largest distance from the MBR-edge, are

observed. If the proportion of those points in relation to the totality of the

points in Pi is greater than a reference value Uref , it will be assumed, that

one of the new segments is shifted to the interior of the MBR. In this case

56

the new split points will be calculated. In the following the calculation of Ui

is described.

Di has already been defined as the set of distances d(pj,mi), where pj are all

points in subset Pi and i = 1, . . . , 4 + 2 · v (see section 3.2.3). However there

are only four MBR-edges. For this reason the notation has to be changed.

The distances in Di are now measured between a point pj and MBR-edge m1

or m2. So Di is now the set of distances d(pj,mw), where pj are all points

in subset Pi and w = 2− i ·mod 2. Let n be the count of points in Pi. The

distances in Di are transformed into a histogram. Therefore the elements

of Di are sorted in ascending order and afterwards divided into a certain

amount of classes (C1 to Cc). Typically the count of classes c of a histogram

is chosen in dependency of the count of samples (Staudinger 2003):

c =


5 für n < 25
√
n für 25 ≤ n ≤ 100

1 + 4.5 · lg n für n > 100

(3.8)

The smaller the count of classes, the clearer the histogram, but the more

information gets lost. If, on the other hand, the count of classes is large, an

accumulation of values in the last class (which is an indication for a “U”)

might remain undetected. For this application the samples are the distances

in Di. With the available test data the count of distances in Di varies from

approximately 50 to 150 points. Consequently 7 to 10 classes should be

created. In consideration that an eventual accumulation of values in the last

class should necessarily be detected, a very small number of classes is chosen,

namely 6. The class width is calculated by dividing the range of Di by the

required count of classes: (dmax − dmin)/6.

The elements of the last class C6 (which contains the largest values of Di)

are counted. The ratio of the count of elements of C6 to n (the count of Di)

is the value that leads to an estimation of the geometrical structure of the

subset of building points Pi:

Ui =
|C6|
n

(3.9)

57

Figure 3.7: Construction of the third level split points

If the calculated ratio is less than a certain constant Uref (with the available

data a value of Uref = 11% turns out to be an adequate value to detect an

accumulation of distances in this class), either the data is of poor quality

(meaning that there is too much variation in the elements of D) or the

geometry of the building is more complex than expected. In that case no

satisfying generalization can be processed by means of this method. For this

reason the building will be labeled for manual editing.

However, if Ui is larger than Uref , it is assumed, that the building points can

be modeled by edges forming a “U” and the search for the new split points

is started. This process is described in the following.

• Looping through the elements of Pi, the first and last occurrence of a

point being element of subset C6 is stored as new split point si2 and

si3 :

si2 = pj ∈ Pi with pj ∈ C6 ∧ j = max

si3 = pj ∈ Pi with pj ∈ C6 ∧ j = min
(3.10)

If a very noisy building polygon is computed, it might happen that the

first detected point being an element of C6 will be located far away

from the essential corner point of the “U”-form. But this happens very

seldom and is accepted in the face of a preferably simple algorithm.

58

• Intersection of the line that is parallel to MBR-edge mi and goes

through si (si+1) with the line that is parallel to MBR-edge mi+1 and

goes through si2 (si3) results in the intersection point h1 (h4).

• Searching through all building points located between si and si2 (which

is the point subset {psi
, psi+1, . . . , psi2

−1}) for the nearest point relative

to the intersection point. This gives the new split point si1 :

si1 = pj ∈ {psi
, psi+1, . . . , psi2

−1} with d(pj, h2) < d(pk, h2)

k = 1, . . . , j − 1, j + 1, . . . , n (3.11)

where n is the count of points in subset {psi
, psi+1, . . . , psi2

−1}. In the

analogous way s4 is found:

si4 = pj ∈ {psi3
, psi3

+1, . . . , psi+1−1} with d(pj, h3) < d(pk, h3)

k = 1, . . . , j − 1, j + 1, . . . , n (3.12)

where n is the count of points in {psi3
, psi3

+1, . . . , psi+1−1}.

After all new split points are detected, they are added to the set of split

points from level 2 (considering the correct order). In the same way as in

level 1 and 2, it has to be checked if the subsets Pi (defined by the split

points si) can be well generalized by straight lines. If Vi is smaller than Vspec

for all Pi, than the refined model will be accepted and the location of the

generalized edges will be calculated (see next section). However, if Vi is larger

for any subset Pi, the quality of a generalization by means of this model will

be assumed to be not good enough. Since no further refinement of the model

is implemented, no enhancement of the generalization is possible by means

of this algorithm.

3.2.5 Computation of the building footprint

So far the best fitting model has been selected (in level 1, 2 or 3) by assigning

each point of the building to a subset of points Pi and by assuming, that the

points of one subset can be well generalized by a straight line, that is parallel

59

to one of the MBR-edges. Now the position of the straight line segment is

determined by the distances ei (the “offset”) to the corresponding MBR-edge

(figure 3.8). For ei, the median of the distances in Di is taken:

ei =

{
d(nd+1)/2 d(nd+1)/2 ∈ Diord

nd odd
1
2
(dnd/2 + dnd/2+1) dnd/2, dnd/2+1 ∈ Diord

nd even
i = 1, . . . , n

(3.13)

where Diord
are the distances in Di ordered by value, n is the count of split

points and nd is the count of points in Pi or rather the count of distances in

Di. This is the offset of the generalized line in relation to the correspondent

MBR-edge. Other descriptive values could be taken instead of the median.

But it has to be taken into consideration that the distribution of the distances

is not normal. Only in case that the building polygon is an exact rectangle

and the “raster”-structure can be handled as random errors, the distances

represent a normal distribution. The task is to determine an accumulation

of values, that represents the generalized position of the edge. The median

is a more “robust” measure and is useful to detect an existent accumulation.

The final vertices ui of the generalized polygon are the intersection points of

two successive generalized lines. The coordinates of the vertices ui can easily

be calculated in a local coordinate system with origin in t2 and the positive

x-axis oriented through t1:

ui = (e
i−i mod 2

, e
i−1+i mod 2

) i = 1, . . . , n (3.14)

where n is the count of split points. The result of the intersection is shown

in figure 3.9.

Elimination of too short edges

Some edges of the generalized polygon may be very short, as shown in fig-

ure 3.10 (a). They must be eliminated in order to provide meaningful results.

Therefore, the edges of the generalized polygon are tested for their length,

starting with the first edge. Those edges, that are shorter than the value

60

Figure 3.8: Computation of the final location of the edges

(a) Building from figure 3.5 (b) Building from figure 3.7

Figure 3.9: Result of generalization

61

(a) Before elimination: all edges, which
will be eliminated are indicated by ar-
rows. For this purpose the split point
symbolized by rectangles are removed
from the split point list

(b) After elimination

Figure 3.10: Elimination of short edges

specified by the user (minimal length of edge Mspec), are eliminated. This is

realized in the following way: If edge i (which belongs to split point si) is

too short, the split points si and si+1 will be removed from the set of split

points. If two successive edges, which belong to si and si+1, are too short, the

same action will be taken: si and si+1 are eliminated. The point subsets Pi,

i = 1, . . . , n are reorganized and the position of the generalized polygon edges

is recomputed. The result of the edge elimination is illustrated in figure 3.10

(b).

3.2.6 Built-in validation

The generalization process is finished after the eliminiation of too short edges.

Through the elimination of split points in the last step, the variation param-

eter values Vi may have changed. For that reason another quality test is

accomplished by recalculating the Vi. The generalized polygons are classi-

fied into two groups: the valid generalized polygons (Vi is smaller than Vspec

62

for all i) and the polygons, which require further manual processing (Vi is

larger than Vspec for at least one i). If the quality criterion is not met, either

the building structure will be too complex, the building edges will be too

noisy or the orientation of the building was not detected correctly. Reasons

for the problems and possible improvements of the method are presented

in section 6. The poorly generalized buildings are labeled as “insufficiently

generalized“. They have to be edited manually by the user.

63

Chapter 4

Implementation and practical

application

The building generalization algorithm presented in the previous chapter was

embedded in a work flow, including a graphical user interface, data input,

data output, a data preprocessing tool and a tool for facilitating the man-

ual post processing of the buildings. The so-called generalization tool was

implemented as a Makro in ArcGIS1. It is a semi-automatic generalization

tool, because those buildings, which can not be automatically generalized by

the algorithm in a satisfying manner, must be edited manually by the user.

The advantages of implementing the tool in ArcGIS are the widespread use

of the software on the one hand and the availability of an integrated VBA

(Visual Basics for Applications) software development environment on the

other hand.

The tool takes a polygon shape file containing the building polygons as in-

put data and produces a new polygon shape file containing the generalized

building footprints.

The command buttons necessary to start the tool are located on a separate

toolbar in the main application window of ArcGIS.

The generalization tool consists of two parts. First an automatic general-

ization is processed by means of the presented generalization method. The

1ESRI ArcGIS Desktop 9.1 (http://www.esri.com)

64

http://www.esri.com

generalized buildings are saved as a new polygon shape file. The second part

is the manual editing of the buildings, which could not be generalized with

satisfying results.

In this chapter the application of the generalization tool is demonstrated.

First of all, the study area and data is presented. Afterwards the procedure

of generalizing this set of building polygons from the user’s point of view is

described.

4.1 Study area and data

The data used for the practical demonstration is a set of 315 vectorized

building polygons. It is a sub area of the data, that was used during the

development of the tool. The test area covers an area of about one square

kilometer and is located in Hall in Tirol, Austria (see figure 4.1).

The building outlines are a result of an object oriented classification of a

true-colored orthophoto followed by a vectorization. The classification was

accomplished by means of the software Definiens Professional2. No height

information was introduced into the classification process. The ground reso-

lution of the orthophoto was 0.25 m. The regions classified as buildings where

vectorized and exported into a shapefile. The smallest distance between two

neighboring points is therefore 0.25 m and the segments of the building poly-

gons are oriented in direction of the image raster.

4.2 Work flow

4.2.1 Automatic generalization

All command buttons of the generalization tool are located on a separate

toolbar (figure 4.2 (a)), which must be activated in the current project. The

shapefile with the building polygons is loaded as a layer into the active data

2formerly known as eCognition (http://www.definiens.com/)

65

http://www.definiens.com/

Figure 4.1: Test area Hall in Tirol. The ground resolution of the true-colored
orthophoto is 0.25 m. In the more detailed figures a and b the building polygon
data is added.

66

(a) All commands are located on a sep-
arate toolbar (a - start of the automatic
generalization, b - editing tool, c - densi-
fication function).

(b) The shapefile with the building poly-
gons is loaded into the data frame. The
layer is selected.

Figure 4.2: Toolbar and work flow in ArcGIS

frame and the layer is selected.

In order to facilitate the fulfilling of the constant point density prerequisite, a

point densification function is integrated in the generalization toolbar. The

function interpolates points linearly into the boundary in such a manner,

that approximate equidistance between neighboring points is achieved. The

user must specify a maximal point distance. As a maximal point distance,

the least point distance occurring in the data should be chosen. If the value

is chosen higher, there will be irregularities in the point distribution. If the

value is chosen smaller, the data volume will be unnecessarily large and there-

fore the processing time of the generalization that follows will raise. In order

to achieve equidistance between neighboring points along the polygon bound-

ary (which is a prerequisite of the data), the distance function is executed

with the data. It is started by clicking on the “Dens”-button in the toolbar

(figure 4.2 (a) - button c). The maximal accepted point distance has to be

entered in the appearing input window (figure 4.3 (b)). As a maximal point

distance 0.25 m is chosen because the polygon data is derived from 0.25 m

raster pixels. The function produces a new shape file containing the densi-

fied polygons. The shape file is automatically loaded into the data frame by

the function. The count of polygon points triples approximately due to the

densification.

The new shapefile must be selected. The input window for the user specified

67

(a) The user interface of the general-
ization tool.

(b) Input window of the densification
function.

Figure 4.3: User interfaces of the generalization tool and the densification function

values is activated by clicking the button in the toolbar (figure 4.2 (a) - but-

ton a). The window appears, where the variationparameter and the minimal

length of an edge must be specified (figure 4.3 (a)). The following values are

chosen:

Variationparameter: 2 m

Minimal length of an edge: 3 m

The automatic generalization is started by activating the “Start”-button.

The building polygons are generalized by means of the algorithm described

in chapter 3. First the MBRs are calculated and afterwards the three gener-

alization levels are run through. A quality check is done using the two user

specified values. Finally the generalized polygons are computed and saved

in a new shapefile. Two columns are added to the table of the new shape-

file (figure 4.4). The content of both columns is identical. The first column

(“Critical”) is generated for documentation purposes. The content of this

column will not be changed during the editing process. The second column

(“NotEdited”) is required by the editing tool. A “1” in this column indicates,

that the building is not satisfyingly generalized. The built-in validation of

the tool (which works with the variationparameter) flags 37 buildings “NotE-

dited”. These buildings have to be generalized manually. The new shapefile

is automatically loaded into the data frame. Processing time of the auto-

matic generalization is approximately one minute with a standard system

(AMD Athlon(TM)XP1800+, 1.54 GHz, 1 GB of RAM).

Examples of the generalization result are shown in figure 4.5 and figure 4.6.

68

Figure 4.4: Two columns are added to the table of the new shapefile by the
algorithm.

The complete result is documented in the appendix (figure A.3 to fig-

ure A.13). The figures cover the whole test area. The generalized polygons

are combined with the original polygons and the orthophoto. Figure A.1

gives an overview about the location of the tiles.

4.2.2 Manual editing

The buildings which are marked in the “NotEdited”-column, have to be

edited manually (some example buildings from the test data can be seen in

figure 4.7).

In order to facilitate the manual post processing, an editing tool was in-

tegrated into the generalization toolbar. After selecting the shapefile con-

taining the generalized buildings, the edit session is started by activating

the “StartEdit”-Button (figure 4.2 (a) - button b). Now the editing state is

checked by the tool. If there exists no columns “NotEdited” in the shapefile-

table, the session is canceled. If no values “1” are left in the columns, the edit

session is terminated - there are no buildings left that have to be edited. If

there are values “1” in the “NotEdited”-column, the first building that has a

“1” is selected and additionally a centering and zooming operation is applied

in the active view on that building. Now the built-in editing functionality

of ArcGIS can be used in order to adapt the geometry of the generalization.

The vertices of the polygon can be moved or deleted. New vertices can be

inserted.

While the user edits one building after the other, guided by the tool, the

69

Figure 4.5: Detail of the generalization result with and without orthophoto. Blue
polygons are valid generalizations, the ruled polygon has to be edited manually.

70

Figure 4.6: Detail of the generalization result. Blue polygons are valid generaliza-
tion, the ruled polygon has to be edited manually.

71

Figure 4.7: Example of buildings that are marked by the tool as insufficiently
generalized.

Figure 4.8: Functionality of the edit tool

following editing functionality is available:

• Selecting the next or previous polygon: By a click on the “Next” or

“Previous”-button (figure 4.8 - a), the active view is automatically cen-

tered on the next or previous building, that is flagged in the “NotEdited”-

column. A mouse-over tool tip provides information about the ongoing

process.

• Saving the intermediated editing state: If the “Save”-button is acti-

vated (figure 4.8 - b), all changes in the geometry are saved (the tool

executes the ArcGIS Editor command “Save Edits”) and the value in

the “NotEdited”-column of all buildings, that have been shown until

this moment, is changed to “0”. The edit session remains open and the

editing process is continued. In order to prevent loss of changed data

and loss of the progress information in the “NotEdited”-column, it is

recommended to save the work from time to time, especially if a large

dataset is processed.

• Saving the intermediated editing state and closing the edit session: If

72

the user wants to interrupt the editing process, he should save the

work and also save the progress by flushing “0” into the “NotEdited”-

column. In this way it is possible to continue the edit session with the

building after the last building, that has been edited so far. This is

exactly what the “StopEdit”-button does (figure 4.8 - d). The edits

and the progress are saved, and the edit session is closed. To start a

new edit session, the “StartEdit”-button must be activated again.

• Deleting polygons : Furthermore, a function is available, which deletes

the actually selected polygon (figure 4.8 - b). It is important to use that

function (and not to simply delete the object by pressing the “Del”-

key), because it undertakes the updating of the list of buildings, that

must be edited.

It has to be considered, that if a building is deleted, the FIDs of the

shapefile will of course be updated by the GIS. The FIDs of the original

building polygons and the corresponding generalized polygons are not

identical any more. If the user is interested in preserving the connection

between original and generalized polygon, he should create a column in

the shapefile of the generalized buildings (before the editing is started!),

containing copies of the IDs in the original building shapefile.

• Displaying the FID of the actual polygon: When pointing to the “i”-

field on the toolbar (figure 4.8 - e), a tool tip provides information

about the FID of the actual selected building.

After editing all buildings, the changes are saved by pressing the “StopEdit”-

button. No “1” are left in the “NotEdited”-column.

The edit tool provides a useful help for the manual editing of the buildings.

But some more functionality would be helpful, like for example the insertion

of new polygons: it is more time-consuming to move all vertices of a polygon

than to create a new one. For that it must be guaranteed, that the new

building gets the same FID as the deleted one. This functionality would

require a more comprehensive strategy for the editing tool. Another problem

73

is an eventual inconsistency in the data, when the functionality of the ArcGIS

Editor and the editor tool described here interfere. This may lead to software

crashes, if the user is not aware of the difficulties.

74

Chapter 5

Validation

5.1 Quality measurement

After completing the automatic generalization and the manual editing pro-

cess with the test data, the quality of the generalized building footprints

is validated. Quality parameters are needed, in order to make a statement

about the quality of the generalization.

In the following section, three quality criteria are presented.

5.1.1 Point distance measures

The distances from equally distributed points along the original polygon

to the generalized polygon give a useful measure for the distance of both

polygons. From the set of calculated distances, statistical quantities like the

the maximum distance, the mean distance, the standard deviation of the

distances, etc. can be calculated. They serve as scalar descriptors for the

similarity of original and generalized polygon.

Let A be a polygon that should be generalized. It is an infinite bounded

subset of R2. Let an be a finite, ordered subset of points of A. The points

should be equally distributed along the boundary, i.e. of the length of all line

segments between two neighboring points must be equal.

Let G (also an infinite bounded subset of R2) be the generalized polygon.

The distance d(ak, G) from the point ak to the boundary G is defined as the

75

Figure 5.1: Point distance measure: The nearest distances from equally distributed
points ak (along the original polygon boundary A) to the generalized polygon G
are calculated. The smaller the mean distance, the higher the similarity between
original polygon and generalized polygon.

euclidean distance between the point and the nearest point (in terms of the

euclidean norm) which is part of the boundary.

All distances are calculated. These values serve as a quality measure for

the similarity and distance of the generalized building in relation to the

original data. We can for example calculate the maximum distance, the mean

disthgggnance, the standard deviation etc. The smaller the mean distance,

the greater the “similarity” between the original and the generalized polygon.

5.1.2 Hausdorff distance

The Hausdorff distance is a measure of the degree of mismatch between two

sets. It is used in the field of pattern recognition and computer vision for de-

termining the difference or similarity of shapes (Huttenlocher, Klanderman,

and Rucklidge 1993).

76

Figure 5.2: Hausdorff distance

Given two finite point sets A = {a1, . . . , ap} and B = {b1, . . . , bq}, the Haus-

dorff distance is defined as:

H(A,B) = max(h(A,B), h(B,A)) (5.1)

where

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (5.2)

The term ‖a − b‖ is a distance function, e.g. the euclidean distance. The

function h(A,B) is called the directed Hausdorff distance from A to B. It

identifies a point a ∈ A, that is farthest from any point of B, and returns

the distance from a to its nearest neighbor in B using the distance function

‖a − b‖. If h(A,B) = d, then each point of A must be within distance d of

a point of B. The Hausdorff distance H(A,B) is the maximum of h(A,B)

and h(B,A). It measures the distance of the point of A that is farthest from

any point of B and vice versa.

Let K be the infinite set of all closed, bounded set of the Rn (e.g. a set

of building polygons in R2). Analog to the euclidean distance, which is a

metric over the elements of Rn, the Hausdorff distance is a metric over K.

The Hausdorff distance maps an element of R to every pair of sets that are

elements of K.

77

Figure 5.3: Symmetric difference of two sets.

5.1.3 Area of symmetric difference

The symmetric difference, coming from set theory, is employed e.g. for spatial

analysis in GIS. The symmetric difference A4B of two sets A andB is defined

as:

A4B = (A−B) ∪ (B − A) (5.3)

It is the set of elements, which are in one of the sets but not in both (see

figure 5.3).

The area of symmetric difference serves as useful distance measure and thus

as a measure for the amount of generalization. The greater the area of

symmetric difference of the original building and the generalized building,

the greater is the effect of generalization.

5.2 Validation of the presented generalization

algorithm

In this section the results of the validation process are presented. The quality

of the automatic generalization is first inspected manually. Furthermore, dis-

tance respectively similarity values of original and generalized buildings are

validated. The results of the built-in validation are reported and afterwards

analysed with respect to its significance.

78

(a) Example of merged
buildings due to segmenta-
tion errors.

(b) Another example of
merged buildings.

(c) Noisy building outlines
due to classification inaccu-
racy

Figure 5.4: Error in building classification

5.2.1 Errors in the building classification

Most of the buildings located in this part of Hall are detached houses and

have a simple geometry. These houses enable a good classification result.

Some buildings are merged together and are therefore classified as a single

building. Sometimes there is no good result achieved in these cases, because

merged buildings have a complex structure, that can not be modeled by

the algorithm. Some actually detached houses are merged together into a

single building polygon because of classification errors (e.g. a farm building

in figure 5.4(a), or two actually separated family houses in figure 5.4(b)).

This causes problems for the generalization algorithm, because every building

polygon is expected to be a single building. Complex building structures, as

they result from merging errors, can not be handled appropriately. In many

cases the vectorized polygon is noisy because of classification inaccuracy (see

figure 5.4(c)). This can be corrected by the algorithm in many cases.

5.2.2 Evaluation of automatic generalization

It must be differentiated between a comparison of the generalized build-

ings with the original building polygons coming from the image classification

process and a comparison of the generalized buildings with the original or-

thophoto or the cadastre. Since the algorithm processes information only

79

from single building polygons and does not use additional information about

neighboring buildings or the surrounding area (e.g. the street network), the

evaluation is limited to a comparison between the generalized building and

the raw vectorized building polygon. The following criteria are tested:

• Manual evaluation (intuitive evaluation)

• Mean point distance

• Area of symmetrical difference

• Variationparameter (built-in evaluation)

The mean point distance and the area of symmetrical difference are computed

only for those buildings, that fulfilled the built-in quality test.

Manual evaluation (intuitive evaluation)

All generalized buildings are visually compared with the original building

polygon and inspected in respect to their suitability to serve as base data for

a 3D visualization.

From 315 generalized buildings (using a variationparameter of 2 m and a min-

imal edge length of 3 m), 29 buildings are manually classified as “insufficient

generalized”. This is a percentage of 9.2%. All other buildings are, from the

user’s point of view, qualified to serve e.g. as a base for a modelling of 3D-

building-models. The count and the percentage of bad generalized buildings

Variationparameter [m] 1 1.5 2 2.5 3 3.5 4

Count of buildings 42 48 29 55 66 42 47
Percentage of buildings % 13.3 15.2 9.2 17.5 21.0 13.3 14.9

Table 5.1: Count and percentage of buildings, that are manually classified as “in-
sufficient generalized” (validated with different values for the variationparamter).

with all tested values for the variationparameter are listed in table 5.1 and a

chart of the percentage can be seen in figure 5.5.

80

Figure 5.5: Percentage of buildings, that are manually classified as “insufficient
generalized” (validated with different values for the variationparamter).

Reducing the variationparameter leads to a more detailed generalized poly-

gon. If changing the variationparameter to 1 m, one might think that a “bet-

ter“ (from an intuitive approach) generalization result should be achieved.

But in this case 42 buildings (13.3%) fail the manual quality test, thus more

than with a variationparameter of 2 m. By reducing the variationparameter

the degree of generalization is changed. This shows that there is a correla-

tion between the degree of generalization and the robustness of the algorithm

concerning gross errors in the building outline. This means that the gener-

alized polygon fits better the building outline, but, at the same time, that it

is a better modeling of the errors, that came from the former classification

process. A human operator interprets the more detailed generalization as

not being useful to serve as input data for a 3D-building-modelling.

From 30 buildings, manually classified as “insufficient generalized”, 15 are

derived from building polygons with complex structure (merged buildings,

mainly due to wrong segmentation). At 15 buildings the orientation of the

MBR does not correspond to the main orientation of the buildings, and

therefore the orientation of the generalized building polygon is wrong, too.

81

Figure 5.6: Distribution of mean point distances for different variation parameters
(only buildings, that passed the built-in quality test).

Mean point distance

In order to calculate the mean point distance between the raw vectorized

building and the generalized building, additional points are added into the

polygon boundary of the raw vectorized polygon in such a way that rough

equality of the distances of neighboring points is achieved (see section 5.1.1).

After that, the distances between every point and the generalized polygon

are calculated. This gives a set of values, from which statistical qualities (e.g.

minimum, maximum, mean, standard deviation, etc.) are calculated.

Figure 5.6 shows a histogram of the mean point distance, computed for dif-

ferent variationparameters.

82

Figure 5.7: Area of symmetric difference in percent of original area, computed
with different variationparameter (only buildings, that passed the built-in quality
test).

Area of symmetrical difference

ArcGIS provides a tool to calculate the symmetrical difference between the

raw vectorized polygon and the generalized polygon. Statistical data can be

collected about the area of the symmetrical difference. In order to compare

values for different building sizes, the area of symmetrical difference is com-

puted in percent of the raw vectorized building area.

In figure 5.7 the result for different variationparameter is shown. The follow-

ing can be observed: the higher the variationparameter is chosen, the higher

is the percentage where the maximum of the distribution is located. High

percentage of the area means small congruence between original polygon and

generalized polygon.

83

Variationparameter (built-in evaluation)

The built-in evaluation method is the variationparameter, as described in

chapter 3. The variation of the distance between every point of a building

edge and the MBR edge serves as a measure for the degree of generalization.

The count of buildings that are marked as insufficiently generalized by the

tool itself (computed with different values for the variationparameter) can

be seen in figure 5.8.

When using a variationparameter of 1 m, 54 % of all buildings fail the quality

check. Since the variationparameter is used to control the generalization pro-

cess and, at the same time, to estimate the generalization result afterwards,

this may not be expected. But the reason for this high percentage can be

found either in the limitations of the algorithm (the level of detail is not

unlimited) or in the minimal length of an edge of 3 m. If shorter edges were

allowed, a smaller value for the variationparameter would be achieved.

The larger the variationparameter is set by the user, the less buildings fail

the test. For the same reason as described above, this can not directly be

seen as a quality statement about the correctness of the building representa-

tion, but it tells something about the degree of generalization. A high value

for the variationparameter leads to a high tolerance in the calculation and

therefore eventually hides inadequate generalization.

5.2.3 Evaluation of the built-in classification

After running through all generalization levels, the variationparameter is

again calculated and used as a quality criterion of the resulting generaliza-

tion. If the value exceeds the user defined value, the building is marked as

critical building. It has to be evaluated how much the estimation by the

algorithm corresponds to a manual classification. Several sets of parameters

are tested. Figure 5.9 shows graphically the amount of buildings marked as

critical by the tool and how the selection corresponds to manual evaluation.

The first subset is the set of bad generalized buildings recognized by the tool,

but which are not marked manually as critical. The second subset is the set

of buildings recognized as critical by the tool and also by manual validation.

84

Figure 5.8: Percent of buildings, marked as insufficiently generalized by the tool,
tested with different variationparameter.

Figure 5.9: Comparison of the built-in and the manual validation. A pie chart is
the set of all buildings. “Recognized” means, that the building is marked by the
tool as not valid.

85

(a) Satisfying classification: Both gener-
alized polygons are accepted by the tool.
Red polygon: V=2.5 m; blue, dashed
polygon: V=3 m

(b) Unsuccessful classification: The red
polygon (V=2 m) is marked as critical by
the tool, the blue, dashed one (V=2.5 m)
is accepted.

Figure 5.10: Examples of the built-in evaluation

86

Variationparameter [m] 1 1.5 2 2.5 3 3.5 4

Recognized critical 170 57 37 19 15 12 8
Recognized critical % 54.0 18.1 11.7 6.0 4.8 3.8 2.5
Recognized critical true 40 29 19 13 12 9 5
Recognized critical true % 12.7 9.2 6.0 4.1 3.8 2.9 1.6
Not recognized but critical 2 11 10 42 54 33 42
Not recognized but critical % 0.6 3.5 3.2 13.3 17.1 10.5 13.3
Not recognized but critical
(% from recognized critical)

1.4 4.2 3.6 14.2 18.0 10.9 13.7

Recognized critical wrong 130 28 18 6 3 3 3
Recognized critical wrong % 41.3 8.9 5.7 1.9 1.0 1.0 1.0

Table 5.2: Classification of generalization quality by the algorithm, using different
values for the variationparameter.

The third subset is the set of buildings not marked as critical by the tool

but very well by manual validation. This set is fortunately very small with

a low varitionparameter (0.6 %), but grows when using a greater variation-

parameter (17.1 % with V=3 m). The last subset is the set of the remaining

buildings, which are neither recognized critical by the tool nor by hand.

An example for different generalization results achieved by different values for

the variationparameter can be seen in Figure 5.10(a). Both generalizations

are classified as valid by the tool. This corresponds to a manual classifica-

tion.

An example, where the classification by the tool is not successful, follows in

figure 5.10(b). The orientation of the building has been calculated wrong. In

the first case (V = 2 m, blue dashed polygon), the generalization is classified

as critical and this corresponds to the visual evaluation. In the second case

(V = 2.5 m, red polygon) the generalized polygon is not detected as critical

by the tool.

Coarse orientation error

A manual analysis of the result of the automatic generalization shows, that

16 buildings (5 %) have a coarse orientation error. The reason for that kind of

error is, that the orientation of the MBR is not equal to the orientation of the

87

building (see section 6.1). The count of wrongly orientated generalized build-

ings, that are not detected by the tool, depends on the variationparameter

and is shown in table 5.3.

Variationparameter [m] 1 1.5 2 2.5 3 3.5 4

Recognized critical 0 6 8 12 12 13 15
Recognized critical in % 0 37.5 50 75 75 81.25 93.75

Table 5.3: Count of wrong orientated generalizations, that are not detected by the
built-in classification.

88

Chapter 6

Discussion and conclusion

The last chapter of this work starts with a brief description of restrictions of

the presented algorithm, and makes proposals on possible enhancements of

some aspects.

6.1 Limitations of the presented algorithm

Limited geometry for the generalized building

Through the presented method it is not possible to achieve an arbitrarily

geometry of generalization. The level of detail is restricted to a certain

number of defined geometries, which are listed below:

1. Simple rectangles.

2. Rectangles, where one or more corners are replaced by two new edges

respectiveldy (see figure 6.1(a), (b) and (c)).

3. Rectangles, where one or more edges are replaced by five new edges

each (formed like an “U”, see figure 6.1(d)).

4. The most complex geometry is a combination of all so far mentioned

geometries: A rectangle, where corners are cut out and additionally

one or more edges are replaced by five new edges respectively (see

figure 6.1(e) and (f)).

89

(a) (b) (c)

(d) (e) (f)

Figure 6.1: Restriction in geometry

An enhancement of the algorithm aiming in a greater flexibility in the build-

ing structure is possible up to a certain extent. However, it has to be con-

sidered, that the higher the complexity of a building structure, the lower is

the probability of a strictly rectangular structure.

Determining the orientation by means of the MBR

In some cases, depending on the shape of the building polygon, the calcu-

lation of the MBR leads to a rectangle, that is wrong orientated regarding

the orientation of the building edges. An example is shown in figure 6.2.

The rectangle in the left image is the calculated MBR, whereas the dashed

rectangle is the desired bounding rectangle (from which the orientation of

the building is derived). If the MBR is taken as a measure of the future

orientation of the generalized polygon (as it is in the presented algorithm),

this leads to a wrong generalization (figure 6.2(b)).

One improvement to get this problem under control would be an adaptation

of the algorithm by H.Freeman and R.Shapira (see section 2.2.2) used to cal-

90

(a) Minimal bounding rectangle
(bold rectangle) has a different ori-
entation than the building polygon
. . .

(b) . . . this results in a completely
wrong generalization.

Figure 6.2: Incorrect orientation of the final generalization due to the MBR ori-
entation

culate the MBR.: Originally an iteration through all points of the convex hull

is done. The area of the encasing rectangle, that has one edge through the

actual point of the iteration and the following point of the complex hull, is

calculated. There are five points of contact between the convex hull and the

actual rectangle. If the smallest rectangle is found, one could calculate the

distances of all building points (that are located between two of these points

of contact) to one single rectangle edge (see figure 6.3). If the orientation of

the rectangle differs much from the orientation of the axis of the building, the

distances will vary strongly (dashed lines in figure 6.3). If the orientation is

similar, there will be no significant variation in the distances (drawn through

lines in figure 6.3). The abrupt change in variation and rapid growth of the

distances afterward must be interpreted correctly as a corner of the building.

If the variance of the distances increases a certain value, the orientation of

the MBR is considered to be very different from the orientation of the axes

of the building polygon. In this case, it should not be taken as a measure

for the orientation of the building, although it is the MBR. Rather the rect-

angle, that has the second smallest area, might be a better measure for the

91

Figure 6.3: The length of the dotted lines vary strongly - this is an indication for
a wrong detection of the building axis. This measure could be integrated into the
implemented MBR-algorithm, in order to guarantee a correct orientation of the
generalized polygon.

92

Figure 6.4: Comparison MBR versus principal axis

orientation (which must be tested) and should be taken instead of the MBR.

Another point of departure might be the determination of the principal axis

of the polygon (see section 2.2.3) and to use the orientation of the axis as

the orientation of the generalized polygon. However, as experiments show,

the orientation of the MBR and the principal axis of a polygon are similar.

Unfortunately, this is the case in situations, where the MBR is not a suit-

able measure for the orientation of the building (see figure 6.4). From this

it follows, that this measure is not more adequate for solving the building

orientation task than the MBR.

Distance of parallel edges

Figure 6.5 shows a group of buildings that has been classified incorrectly as

a single building. By means of the presented generalization algorithm it is

not possible to detect the composition of buildings. But the algorithm could

be enhanced by testing for the distance of collinear edges of the generalized

polygon. Parallel edges, that are very close together, and have not been elim-

93

Figure 6.5: Distance between edges is 4.5m

inated in the course of the test for short edges (section 3.2.5), can be a sign of

an incorrectly classified composition of multiple buildings. Figure 6.5 shows

an example generalization that consists of three major parts. Among them

is a narrow part of only 4.5m of broadness. Consider the subset of building

points belonging to edge e1 and the subset of building points belonging to

edge e5. e5 must not be adjacent to e1. Calculate the euclidean distance

between the points of all combinations of the elements from both subsets.

The building polygon could be separated into two polygons at those points

with the least distance. The generalization algorithm should be applied once

again to the new polygons.

Point density of input data

The position of an edge of the final generalization is defined through the me-

dian of the distances from the building points to the MBR-edge. Thinking of

a local coordinate system (where the x-axis goes through an MBR-edge and

is oriented counterclockwise), only the y-values of a building point have an

impact on the generalization result. Considering as well the x-values (thus

the distribution of the points along the MBR-edge) would however improve

the result.

An alternative way leading to the same effect is to insert points into the raw

boundary without changing the boundary’s shape in such a manner, that

the euclidean distance between neighboring points of the boundary is similar

94

(a) (b)

Figure 6.6: Effect of point densification: The green, dashed polygons are derived
from the original building polygons, whereas the red polygons are calculated from
building polygons with equidistant points. Obviously the latter fit better.

for all points. This was formulated as a prerequisite for the input data in

section 3.1.1. For that reason a densification function, which carries out the

interpolation of the required count of points, was integrated into the gener-

alization tool.

Figure 6.6 shows two examples of a generalization with different input poly-

gons. The green dashed polygons are a generalization derived from the orig-

inal polygons. The minimum point distance in the original building polygon

is 0.25 m. After interpolating more points, the maximum distance between

points is 0.25 m. The red line is a generalization derived from this densified

polygon.

As it can be seen in figure 6.6(a), the position of the right vertical edge is

affected by the great amount of building points with little distance from the

MBR-edge (region marked with 1). The lower part of the building points

(see area 2) seems to represent more likely the real position of the building

edge. However, the point density is much lower than in the upper part. Ex-

pectedly, the red edge, that has been generalized from the densified polygon,

goes now through the points marked with 2.

95

6.2 Outlook

Other interesting methods, also from other disciplines, are adaptable to these

problems mentioned above. Some ideas should be mentioned at the end of

the thesis. Data clustering methods can be used to detect the orientation

of the building edges. One data clustering algorithm is the LBG1-algorithm

(k-Means). Given a set of vectors (in our case these vectors are points in R2),

the application of a LBG-algorithm determines a codebook. The codebook is

a set of reference vectors. Each reference vector will be located in the center

of mass of the vectors of its voronoi-set after the execution of the algorithm.

Details on the method can be found in (Fritzke 1998). The application of

a data clustering method is shown in figure 6.7: The direction of each line

segment of a building polygon (figure 6.7(a)) is represented by a point lo-

cated on the unit circle. The result are the points in figure 6.7 (b) (marked

in blue). Since the building is composed from four edges, the directions of

the line segments will be concentrated around four values. In other words,

the created points accumulate in four clusters. The center of the clusters are

detected by a k-Means algorithm and are marked in red in figure 6.7 (b). In

this way four main directions of the building polygon are determined. The

next step would be to allocate every point to an edge, and to fit a straight

line with the direction calculated above to every group of points. In this ex-

ample, the generalization model is determined by the count of clusters, the

algorithm should search for. Unfortunately, the count of clusters can not be

discovered by a k-Means algorithm.

It could be useful to introduce additional information, like investigation of

the neighborhood of a building polygon, into the generalization process. The

street network could give useful information about the orientation of nearby

houses. Assumptions about the “type” of a building could be made on the

basis of the “type” of buildings in the neighborhood. Furthermore, informa-

tion from the cadaster could be integrated into the generalization process.

1a method named after its developers Linde, Buzo and Gray.

96

(a) The original building polygon. (b) Points on the unit circle, representing
the direction of the line segments. The cen-
ters of the four clusters are the result of a
k-Means clustering.

Figure 6.7: Example of an application of k-Means clustering in building general-
ization.

Another method should be mentioned: RANSAC (Random Sample Con-

sensus) is a method for fitting a model to data, that contains a significant

percentage of gross errors (Fischler and Bolles 1981). The method takes

randomly the minimum count of observations from the data, and computes

a realization of the model. Afterwards it determines the count of points,

that are close enough to the calculated realization. If there are enough com-

patible points, an improved estimation would be calculated from all of the

compatible points (e.g. by means of a least squares estimation). If there

are not enough compatible points, another set of observations is randomly

selected. This procedure is repeated, until a realization is found or until a

predefined number of trials is reached. RANSAC could be used to detect

lines in building polygon data or to directly fit a building model.

97

6.3 Conclusion

The aim of this work was the development of a generalization method and

the implementation of the method in a ready-to-use tool embedded in a

GIS-software. The level of generalization should be chosen in the face of 3D-

visualization purposes, thus the generalization process should result in simple

building structures like rectangles or a composition of rectangles. The focus

should be set on a high level of automation.

A model based generalization method proofed to be accurate and reliable

to solve the task of providing simplified building outlines for visualization

purposes. The rectangularity-constraint is realized by fitting lines parallel

to an MBR of a building polygon. Simplicity in the generalized geometry is

achieved by running through three levels of detail. The computation starts

with a fitting of the simplest geometry, a rectangle, and will go on with a

composition of rectangles, if the result is not satisfying. The concept of split

points turned out to be accurate to find a suitable model for an arbitrary

building polygon, and on the other hand to fit the model to the building

polygon.

The generalization method, that has been developed, meets the requirements

mentioned in the objectives in section 1.1. The validation of the results,

achieved with the data from Hall, demonstrates, that the algorithm is suc-

cessfully applied and moreover handles building polygons with noisy edges.

The degree of automation is high (88.3 % of the buildings from the test data

are automatically generalized), considering the limited amount of building

primitives, that are fitted to the data. The buildings, which didn’t pass the

built-in quality test, have a more complex geometric structure and can not be

generalized by means of the provided models. The manual inspection shows,

that from the set of all input polygons, 9.2 % can not be automatically gener-

alized in a satisfying way. From all polygons 3.2 % have a bad generalization

quality, but remain undetected by the built-in quality check. Due to the

coarse orientation error, 5 % of the buildings are generalized inaccurately.

By enhancing the method of detecting the orientation of a building, a the

overall result could even be improved.

98

List of Figures

2.1 Slope with vectorized raster data 13

2.2 Convex hull . 15

2.3 Statistical moments of a boundary segment 17

2.4 Douglas-Peucker algorithm . 26

2.5 Staufenbiel-algorithm . 30

2.6 Douglas-Peucker algorithm implemented in MATLAB 31

2.7 Simplify buildings (ArcGIS) 32

2.8 Simplified buildings (Sester 2000) 34

2.9 Recursive rectangle approximation (Gross, Thoennessen, and

Hansen 2005) . 36

2.10 Extraction of rectangular buildings from aerial images (Vin-

son, Cohen, and Perlant 2001) 37

2.11 Refinement of the rectangle approximation 39

2.12 Hough Transformation . 39

2.13 Hough Transformation . 41

2.14 Hough Transformation . 41

2.15 Hough Transformation . 42

2.16 Hough Transformation . 43

3.1 MBRs . 47

3.2 Calculation steps MBR . 48

3.3 Construction of the split points at level 1 50

3.4 Calculation variationparameter 51

3.5 Computation of new split points at level 2 (“L”-model). 53

3.6 Bad fitting model after level 2 55

99

3.7 Construction of the third level split points 58

3.8 Computation of the final location of the edges 61

3.9 Result of generalization . 61

3.10 Elimination of short edges . 62

4.1 Test area Hall in Tirol . 66

4.2 Toolbar and work flow in ArcGIS 67

4.3 User interfaces . 68

4.4 Added columns of the new shapefile 69

4.5 Detail of the generalization result with and without orthophoto.

Blue polygons are valid generalizations, the ruled polygon has

to be edited manually. 70

4.6 Detail of the generalization result. Blue polygons are valid

generalization, the ruled polygon has to be edited manually. . 71

4.7 Example of buildings that are marked by the tool as insuffi-

ciently generalized. 72

4.8 Functionality of the edit tool 72

5.1 Point distance measure . 76

5.2 Hausdorff distance . 77

5.3 Symmetric difference of two sets. 78

5.4 Error in building classification 79

5.5 Percentage of buildings, that are manually classified as “in-

sufficient generalized” (validated with different values for the

variationparamter). 81

5.6 Mean point distances . 82

5.7 Area of symmetric difference 83

5.8 Built-in validation . 85

5.9 Built-in versus manual validation 85

5.10 Examples of the built-in evaluation 86

6.1 Restriction in geometry . 90

6.2 Incorrect orientation . 91

6.3 Adaption of the MBR-algorithm 92

100

6.4 Comparison MBR versus principal axis 93

6.5 Distance between edges is 4.5m 94

6.6 Effect of point densification 95

6.7 k-Means clustering . 97

A.1 Test area with generalization result - overview 106

A.2 Tile 11 . 107

A.3 Tile 12 . 108

A.4 Tile 13 . 109

A.5 Tile 14 . 110

A.6 Tile 21 . 111

A.7 Tile 22 . 112

A.8 Tile 23 . 113

A.9 Tile 24 . 114

A.10 Tile 31 . 115

A.11 Tile 32 . 116

A.12 Tile 33 . 117

A.13 Tile 34 . 118

101

Bibliography

Chan, T. (1996). Optimal output-sensitive convex hull algorithms in two

and three dimensions. Discrete and Computational Geometry 16/4,

361–368.

Douglas, D. and T. Peucker (1973). Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature.

Cancadian Cartographer 10/2, 112–122.

ESRI, E. S. R. I. (1996). Automation of map generalization - the cutting-

edge technology.

ESRI, Environmental Systems Research Institute. ArcGIS Desktop Help:

How Simplify Building (Coverage) works. ESRI, Environmental Sys-

tems Research Institute.

Fischler, M. A. and R. C. Bolles (1981). Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography. Communications of the ACM 24, 381 – 395.

Freeman, H. and R. Shapira (July 1975). Determining the minimum-area

encasing rectangle for an arbitrary closed curve. Communications of

the ACM 18 (7), 409 – 413.

Fritzke, B. (1998). Vektorbasierte Neuronale Netze. Shaker Verlag.

Gonzalez, R. and R. Woods (2003). Digital Image Processing (2nd ed.).

Prentice Hall.

Gross, H., U. Thoennessen, and W. Hansen (2005). 3d-modeling of ur-

ban structures. International Archives of Photogrammetry and Remote

Sensing 36.

102

Gruber, F. J. (2001). Formelsammlung für das Vermessungswesen. Konrad

Wittwer, Stuttgart.

Huttenlocher, D. P., G. A. Klanderman, and W. J. Rucklidge (1993).

Comparing images using the Hausdorff distance. IEEE Transactions

on Pattern Analysis and Machine Intelligence 15, 850–863.

Jähne, B. (2004). Practical Handbook on Image Processing for Scientific

and Technical Applications. CRC Press.

Kanani, E. (2000). Robust estimators for geodetic transformations and

GIS. Ph. D. thesis, ETH Zurich.

Kelnhofer, F. (2001). Grundzüge der Kartographie. Script from the lecture

at Vienna University of Technology.

Keyes, L. and A. C. Winstanley (2001). Using moment invariants for classi-

fying shapes on large scale maps. Computers, Environment and Urban

Systems 25.

Maas, H.-G. (1999). Closed solutions for the determination of parametric

building models from invariant moments of airborne laserscanner data.

International Archives of Photogrammetry and Remote Sensing 32,

193–199.

McMaster, R. (1987). Automated line generalization. Cartographica 24/2,

74–111.

Meng, L. (2001). Heutiger Stand von Theorie und Methodik der General-

isierung. Kartographische Bausteine 19.

Sampath, A. and J. Shan (2004). Urban modeling based on segmenta-

tion and regularization of airborne lidar point clouds. In XXth ISPRS

Congress, Istanbul, Turkey, Commission III, pp. 937 ff.

Sester, M. (2000). Generalization based on least squares adjustment. In-

ternational Archives of Photogrammetry and Remote Sensing 33.

Shan, J. and A. Sampath (2006). Urban Terrain and Building Extraction

from Arborne Lidar Data, Chapter 2. CRC Press/Taylor & Francis

Group.

103

Staudinger, M. (2003). Ausgleichungsrechnung I. Script from the lecture

at Vienna University of Technology.

Staufenbiel, W. (1973). Zur Automation der Generalisierung topographis-

cher Karten mit besonderer Berücksichtigung großmaßstäbiger

Gebäudedarstellungen. Ph. D. thesis, Technische Universität Han-

nover.

The MathWorks. Matlab documentation. http://www.mathworks.

com/access/helpdesk/help/toolbox/map/index.html?/access/

helpdesk/help/toolbox/map/reducem.html&http://www.

mathworks.com/support/functions/alpha_list.html?sec=7;

accessed March 2007.

Vinson, S., L. Cohen, and F. Perlant (2001). Extraction of rectangular

buildings in aerial images. Proc. Scandinavian Conference on Image

Analysis (SCIA’01).

Visvalingam, M. and J. Whyatt (1993). Line generalisation by repeated

elimination of points. Cartographic Journal 30(1), 46–51.

Vozikis, G. (2005). Automated generation and updating of digital city mod-

els using high-resolution line scanning systems. Ph. D. thesis, Vienna

University of Technology.

Weibel, R. and C. Jones (1998). Computational perspectives on map gen-

eralization. GeoInformatica 2/4, 307–314.

104

http://www.mathworks.com/access/helpdesk/help/toolbox/map/index.html?/access/helpdesk/help/toolbox/map/reducem.html&http://www.mathworks.com/support/functions/alpha_list.html?sec=7
http://www.mathworks.com/access/helpdesk/help/toolbox/map/index.html?/access/helpdesk/help/toolbox/map/reducem.html&http://www.mathworks.com/support/functions/alpha_list.html?sec=7
http://www.mathworks.com/access/helpdesk/help/toolbox/map/index.html?/access/helpdesk/help/toolbox/map/reducem.html&http://www.mathworks.com/support/functions/alpha_list.html?sec=7
http://www.mathworks.com/access/helpdesk/help/toolbox/map/index.html?/access/helpdesk/help/toolbox/map/reducem.html&http://www.mathworks.com/support/functions/alpha_list.html?sec=7

Appendix A

Test area

For completeness the generalization result achieved with the presented algo-

rithm is documented in figure A.3 to figure A.13. The test area is divided

into 12 tiles. Figure A.1 gives an overview about the location of the tiles.

The generalization result is shown together with the original polygons and

the orthophoto.

105

Figure A.1: Test area with generalization result - overview

106

Figure A.2: Result of the automatic generalization, tile 11

107

Figure A.3: Result of the automatic generalization, tile 12

108

Figure A.4: Result of the automatic generalization, tile 13

109

Figure A.5: Result of the automatic generalization, tile 14

110

Figure A.6: Result of the automatic generalization, tile 21

111

Figure A.7: Result of the automatic generalization, tile 22

112

Figure A.8: Result of the automatic generalization, tile 23

113

Figure A.9: Result of the automatic generalization, tile 24

114

Figure A.10: Result of the automatic generalization, tile 31

115

Figure A.11: Result of the automatic generalization, tile 32

116

Figure A.12: Result of the automatic generalization, tile 33

117

Figure A.13: Result of the automatic generalization, tile 34

118

Appendix B

Curriculum vitae

Name Marieke Dutter

Date of birth March 15, 1978

Place of birth Graz, Austria

1984 – 1988 Elementary school in Graz and Vienna

1988 – 1996 Grammar school in Vienna

1996 School leaving examination (Matura)

1996 – 2000 Studies of “Instrumentalpädagogik” at Vienna Univer-

sity of Music and Performing Arts

2000 First diploma examination (teaching qualification exam-

ination)

2000 – 2001 Two exchange semesters at Sibelius Academy in

Helsinki, Finland

Since 2001 Studies of “Vermessung und Geoinformation” at Vienna

University of Technology

119

	Introduction
	Objectives
	Structure of the work

	State of the art
	Cartographic generalization
	Description of boundaries and regions
	Representation of boundaries and regions
	Description of closed boundaries
	Description of regions

	Line simplification algorithms
	Independent point routines
	Local processing routines
	Unconstrained extended local processing routines
	Constrained extended local processing routines
	Constrained global routines

	Building generalization algorithms
	Work by W. Staufenbiel
	Adaptation of the Douglas-Peucker algorithm to buildings
	Simplify buildings
	Generalization based on least squares adjustment
	Boundary regularization
	Recursive rectangle approximation
	Extraction of rectangular buildings from aerial images
	Hough Transformation

	Proposed building generalization method
	Overview
	Prerequisites of input data
	Proposed generalization algorithm
	User defined parameters

	Method
	Minimum bounding rectangle (MBR)
	Level 1
	Level 2
	Level 3
	Computation of the building footprint
	Built-in validation

	Implementation and practical application
	Study area and data
	Work flow
	Automatic generalization
	Manual editing

	Validation
	Quality measurement
	Point distance measures
	Hausdorff distance
	Area of symmetric difference

	Validation of the presented generalization algorithm
	Errors in the building classification
	Evaluation of automatic generalization
	Evaluation of the built-in classification

	Discussion and conclusion
	Limitations of the presented algorithm
	Outlook
	Conclusion

	Test area
	Curriculum vitae

