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Abstract

Hasse Diagrams are a way to draw lattices in an easy-to-understand way.
For complicated lattices with lots of edges, the conventional 2D approach
usually is not adequate as the diagram is too cluttered. Too many edges and
edge crossings make the picture unpleasing and hard to comprehend. In this
thesis, we describe a way to model lattices in 3D and a Java program which
implements this approach. Furthermore, this program acts as a wrapper for
the cgol program proposed in the master thesis of A. Zugaj. The program
cgol is a theorem prover for ortholattices. A proof search with cgol results
either in a proof in a sequent-style calculus or an ortholattice which acts as
a counter-example for the given formula to prove. This “counter lattice” is
taken and transformed into a 3D Hasse Diagram. Such a Hasse Diagram
depicts the transitive reduct of a lattice. As it cannot be guaranteed that all
input represent a transitively reduced lattice, an approach which automati-
cally calculates the transitive reduct of the input lattice is chosen.
This thesis describes some of the graph theoretic and algorithmic founda-
tions of graph drawing. Besides the fundamental aspects, psychological and
physiological implications of graph understanding are also taken into ac-
count. It describes a program which is devised according to the theoretic
guidelines. This program acts as a wrapper for the program cgol to sim-
plify user-interaction. Our implementation is then compared to two other
prominent state-of-the-art lattice drawing programs.
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1 Introduction and Motivation

“One picture is worth ten thousand words.”

According to [25], this famous quotation was coined by F. R. Barnard—an
advertising manager—in 1927. What was true then, namely that informa-
tion is much better conveyed in a picture than in a long text, is still true
today. It is not only applicable in the field of advertising, where a quick
impression counts. There is psychological evidence that the same principle
can be employed in many other areas as well. In [16] we can find a survey
on the eye movement of people reading Shakespearian sonnets. It was found
out that the reader spends 300 milliseconds for one fixation of the eyes and
35 milliseconds to advance to the next fixation. That yields about 150 words
per minute if one fixation takes in about 1.2 words and if we take into ac-
count some degree of regressive movement while reading. As we will see later
on we are not dealing with natural language texts here, but numbers and
parentheses and we can safely assume the same or an even longer duration
for deciphering one number. In [16] we can also find a reference to research on
the eye movement of viewers when scanning pictures. Viewers have a general
impression of the whole picture within the first seconds of exposure. During
this relatively short time period, the eyes search for particularly interesting
points in the picture where there is a “dark spot”, a gradient fall indicating
an edge or the like. Then the eyes move along edges to adjacent interesting
spots. Mixed with this systematic scanning of the pictures is some chaotic
eye movement which is similar to regressive movement when reading text and
which cannot be controlled by the viewer.
This indicates that relational information can be much better conveyed if
represented as a picture and not as a written text, as the picture can be
decoded much quicker than the text. The time estimates in the above para-
graph only deal with the proper reading, that is transferring the letters on the
page to the brain in a certain way. For the information to become actually
useful, a process of understanding the meaning is necessary. Furthermore,
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if dealing with lattices, a representation of the lattice has to be constructed
in the mind of the reader. This representation most likely will be that of a
picture showing a Hasse Diagram of the lattice.
To ease the understanding of relational information occurring in lattice the-
ory, H. Hasse used diagrams effectively. Later, this kind of diagram was
named after him. At first, other theorists were skeptical of the diagrams and
did not accept them for a proof. Later on, around the 1970s, they became
an essential part of several proofs making them much more understandable.

When studying a logic, it is often desirable to have a calculus at hand, with
which one can prove “valid” formulas of the semantics under consideration.
With help of “theorem provers” (often called solvers), one can automate the
search for a proof for a certain formula. If it is not possible to prove the
formula, then there has to exist a counter-example which provides evidence
that the formula is not true in every case. Most modern solvers only have
two kinds of output after they have processed a formula, either “valid” or
“invalid”. Moreover, depending on the logic and the input formula, the solver
might not terminate. In case the formula is valid, most solvers output a
proof. In case the formula is not valid, then one is usually interested in a
counter-example, indicating why the formula is not valid. Most solvers are
not able to produce such a counter-example.
In the field of orthologic (sometimes called minimal quantum logic for his-
torical reasons), a new solver—cgol—was devised by A. Zugaj as described
in [32]. The solver is based on results from the investigation of proof search
in [7] and the construction of counter-examples in [6]. This solver not only
outputs whether a formula is valid or not, it can also construct a proof if
the formula is valid and a counter-example if the formula is not valid. The
counter-examples have the form of a semi-lattice. One can construct a lat-
tice from this semi-lattice very easily which has the same properties as the
semi-lattice and thus still serves as a counter-example for the formula. This
lattice is represented as textual output and, as such, it is not very attractive.
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Many people have tried to automatically draw lattices with a textual repre-
sentation as input. These attempts either did not yield satisfactory results
for several reasons as we will see later on, or it was very complicated to get
the textual representation first and then use it to get the drawing. The pro-
gram described in Section 5 aims to overcome the drawbacks of unpleasing
drawings by exploiting the advances in 3D hard- and software to create a
three-dimensional model of the lattice, but also trying to find a better layout
algorithm suitable for three dimensions. To ease the handling of formulas,
the program interfaces directly with cgol and thus hides many of the tex-
tual files which the user had to work with. To use the functionality of cgol
in the drawing program, the solver was adapted to work as a dynamic li-
brary. This integration of cgol into the drawing program allows the user to
interactively manipulate the lattice. It also allows user-guided optimization
of the lattice by interactively adding non-logical axioms. This optimization
can dramatically reduce the size of these lattices.This library is only needed
when dealing with orthologic formulas. It is not needed for simple rendering
of input lattices. The drawing program does not only layout the lattice it
gets as input, but it also performs some computations and optimizations that
make it easier for the user to comprehend the structure of the lattice. One
example of such an optimization is the transitive reduction of the lattice.
This can reduce the number of edges in the diagram and therefore greatly
improve the readability of the picture.

The thesis is organized as follows. In Section 2, the theoretical foundation for
later chapters is laid. Important terms like that of posets, lattices and chains
are defined. A short introduction to graph theory and Hasse Diagrams as far
as they are needed for this thesis can also be found here. At the end of this
section, we discuss efficient algorithms for lattices.
Section 3 deals with the physiological and psychological aspects related to
three-dimensional perception and aesthetics for graph layouts. Different as-
pects are discussed which lead to three major layout algorithms implemented
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in WilmaScope. Each of these algorithms satisfies the stated requirements
to some degree. A detailled description of the layout algorithms follows in
Section 4.
Section 5 deals with the implementation details of the program which was
developed in the course of this thesis according to the insights from the pre-
vious sections. First, the use of the program is explained and then illustrated
with screenshots in order to show the functionality of the program. The rest
of this section is devoted to the technical details of the drawing program
and the development process. As the developed prototype proved not to be
sufficient, an alternative approach was explored. This alternative in the form
of the WilmaScope program proved to be a good choice for the reasons given
in Subsection 5.5 where a description of this program can also be found.
Section 6 explores the analogies and differences of the chosen approach to
the two most important drawing programs in this context, which are the
LatDraw program from Ralph Freese and the graphviz package developed by
Emden R. Gansner and others.
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2 Theoretical Background

In this section, we introduce the theoretical background from lattice theory,
graph theory and algorithms for drawing graphs. In the later sections, it will
be necessary to use these definitions and theorems to justify the approach
that was chosen, as well as to support the understanding of the algorithms.

2.1 Lattice Theory

A partially ordered set (or poset) is an ordered pair (P,≤) where P is a set
and ≤ is a partial order relation on P . This partial order relation is a subset
of P × P and is written as a ≤ b, where a, b ∈ P . It satisfies the following
properties

P1 a ≤ a reflexivity,
P2 a ≤ b and b ≤ a implies a = b antisymmetry and
P3 a ≤ b and b ≤ c implies a ≤ c transitivity.

The equality used in P2 is defined as follows:

a = b ⇐⇒ a ≤ b ∧ b ≤ a.

This partial order relation is the reflexive and transitive closure of the cover
relation ≺. This cover relation satisfies P2 and, for all a, c ∈ P , P4 given
below.

P4 a ≺ c ⇐⇒ for any b ∈ P , a ≤ b ≤ c implies a = b or b = c.

Another order relation < can be defined on P . This relation does not satisfy
P1 and P4, but P2 and P3.
An upper bound of a subset X of a poset P is an element c of P such that
x ≤ c for all elements x of X. Similarly, a lower bound d of X is an element d
of P for which it holds that d ≤ x for all elements x of X. The supremum of
X, sup(X), is an upper bound of X where any other upper bound u of X is
greater than or equal to sup(X). The infimum of X, inf (X), is a lower bound
of X such that any other lower bound of X is less than or equal to inf (X).
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The supremum or infimum of arbitrary sets need not to exist. Lattices are
those posets, for which the supremum and the infimum exist for any two-
element subset. Complete lattices are lattices for which, the supremum and
infimum of arbitrary subsets exist.
A bounded poset is a poset which contains a smallest element (zero element)
denoted by 0 and a largest (or unit) element denoted by 1. Elements a, b ∈ P
are called comparable, if a ≤ b or b ≤ a holds. They are incomparable, if they
are not comparable. A chain is a subset of a lattice, where any two elements
are comparable. In other words, a chain is a totally ordered subset of a
lattice. Since a chain satisfies all the requirements for a lattice, it is also a
lattice. An anti-chain is a subset of a poset, where any two elements are
incomparable. A poset is called chain finite, if all chains in the poset are
finite. The length of a chain is defined as its cardinality. The length of a
lattice is equal to the length of the longest chain in it. A chain C which
satisfies the following three conditions is called a chain from a to b.

C1 The element a is the lower bound of C.

C2 The element b is the upper bound of C.

C3 The length of C is less than or equal to the length of all chains satisfying
C1 and C2.

In the following, the operations ∧ and ∨ denote the meet and join, respec-
tively. A lattice L ist called upper semimodular if a∧ b ≺ a implies b ≺ a∨ b
for all elements a, b in L. L is called lower semimodular if b ≺ a ∨ b implies
a∧ b ≺ a. If L is chain finite and is upper and lower semimodular, it is called
modular.
A lattice L satisfying the distributive law given in Equation (1) for all ele-
ments x, y, z ∈ L is called a distributive lattice.

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(1)
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A rank can be assigned to each element x in a lattice. This rank of x, rank(x ),
is defined as the length of the chain from 0 to x.

An interval between a and b, [a, b], is a subset I of a lattice which satis-
fies the following conditions.

I1 The element a is the least element of I.

I2 The element b is the greatest element of I.

I3 For all other elements x in I, it holds that a ≤ x and x ≤ b.

Another way to define I is to view it as the union of all chains from a to b.

An orthoposet is a bounded poset with a unary orthocomplementation oper-
ation ’ satisfying the following three conditions for all x, y ∈ P.

O1 If x ≤ y holds, then y′ ≤ x′ holds.
O2 The equality x′′ = x holds.
O3 The supremum x ∨ x′ and the infimum x ∧ x′ exist and the

equations x ∨ x′ = 1 and x ∧ x′ = 0 hold.

An ortholattice is an orthoposet which is also a lattice. Particularly inter-
esting are ortholattices where the distributive law as given in Equation (1)
holds. One example of such a distributive ortholattice is a Boolean Algebra.
Note that classical propositional logic is defined as the logic of distributive
ortholattices.

Here, the definition of an (ortho-)lattice as a special poset is particularly
interesting, as the drawing has to reflect that ordering. There is another
possibility to define a lattice by equations.
An equational class consists of all algebras satisfying a given set of equations.
In the case of lattices, the equational class L of lattices consists of algebras
(L;∧,∨) where L is a set and ∧ and ∨ are the binary operations meet and
join. The set of equations these algebras have to satisfy includes the following
associative, commutative and absorption laws.
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a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c associative law
a ∨ b = b ∨ a a ∧ b = b ∧ a commutative law
a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a absorption law

From these equations, another important law can be derived for L. From
the absorption law, the idempotent laws a = a ∧ (a ∨ (a ∧ b)) = a ∧ a and
a = a ∨ (a ∧ (a ∨ b)) = a ∨ a follow.

A linear extension of a poset P is a total order on P containing ≤. This
linear extension is also referred to as topological sorting. The proof that
every poset also has a linear extension can be found in [9].
A principal filter or filter for short, of an element x in a lattice is the union
of all chains from that element x to the top element. Recall that chains
are just special sets. This union in general is not a chain. A reduced princi-
pal filter of an element x is just the principal filter of x not containing x itself.

To illustrate the above definitions, a few examples are given. These ex-
amples use Figure 1 as a reference. For brevity, a letter is assigned to each
vertex which can be found to the left of each vertex.
In the given structure a ≤ f and a ≺ b hold, but a ≺ f does not hold. The
reason for this is that b and d directly cover a, but either element b or d lies
between a and f. All those elements connected with a single line or a path of
lines are comparable. Elements b and c are an example of two incomparable
elements. An exemplary chain is the set {a, b, f, h}. This chain has length
4. The sets {b, g} and {c, f} are examples for anti-chains. The structure is
a bounded poset, since it contains vertices a and h as its respective smallest
and largest elements. A linear extension of this structure might look like {a,
b, c, d, e, f, g, h}. The principal filter of c is the set {c, e, g, h}, the
reduced filter just {e, g, h}.
Figure 1 can also be used as an example of an ortholattice if the orthocomple-
mentation operation is interpreted as the set-theoretic complement. Indeed,
all the requirements for the orthocomplementation operation O1 to O3 also
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hold for the set-theoretic complement as discussed below.
Let us consider the elements b and f. For these two, the relation b ≤ f holds
in this structure. To satisfy O1, f ’ ≤ b’ should hold. The set-theoretic com-
plement of set f is the set {2} and the complement of b is {2, 3}. These sets
are labelled c and g, respectively, and indeed c ≤ g holds in this structure.
To show that O2 holds, let us consider element b. Above we have established
that b’ is g. Now, what we need is g’ to obtain b”. The complement of set
g is the set {1} which is b, thus b = b” holds and O2 is satisfied. To see
that O3 holds, again consider b and b’ = g. Remember that b ∨ b’ can also
be written as {1} ∪ {2, 3} which is equal to {1, 2, 3} = h. Now, h is the
largest element in the structure, denoted by 1 in O3. The other equation
in O3, x ∧ x′ = 0, can be proved similarly. {1} ∩ {2, 3} = {} which is
a, the smallest element in the structure. This smallest element is denoted
by 0 in O3. To verify that O1 to O3 hold for all other elements, a similar
argumentation can be used. This is left to the reader.

2.1.1 The Chain Condition of Jordan and Dedekind

In [15], the procedure Jodeh is devised which computes the transitive reduct
of an acyclic graph in linear time. A prerequisite for this procedure is that the
graph has to satisfy the Jordan-Dedekind Chain Condition (JD for short),
which is given below. The definition is taken from [28].

For all elements a, b [of a lattice] with a < b, all maximal chains
of the interval [a, b] have the same length, that is, either all chains
between a and b are inifinte or the lengths of all chains equal the
same finite number.

It is essential to note that only finite lattices can be processed with the
program proposed in Section 5. It is also important to note that finite lat-
tices always satisfy the Jordan-Dedekind chain condition. The proof can be
sketched as follows. By Theorem 1.9.9 in [28], every lattice of finite length
is upper semimodular. Together with Theorem 1.9.1, which states that any
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{}a
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e f g

h

Figure 1: The Lattice of Subsets of a Set with Three Elements.
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upper or lower semimodular lattice satisfies JD, we can conclude that every
finite lattice satisfies JD and the procedure Jodeh can be used.
This procedure gives an upper bound on the time complexity for comput-
ing the transitive reduct. The algorithm proposed in Subsection 2.4.2 is an
adapted version of the Jodeh procedure. For performance reasons, it does not
operate on sets, as Jodeh does, but more suitable data structures are used.
In Subsection 2.4.2, it will be shown that Jodeh and the adapted algorithm
both have the same upper bound on time complexity.

2.2 Graph Theory

A graph G is an ordered pair 〈V,E〉, where V is a set of vertices and E ⊆
V × V is a set of edges. If G is an undirected graph, then, for each element
e ∈ E, it holds that, if e = (v1, v2), then E also has to contain e′ = (v2, v1). A
directed graph need not to have both e and e′ in its set of edges. Two vertices
v1, v2 ∈ V are called adjacent iff (v1, v2) is in E. An edge e and a vertex v
are incident iff e = (v, v1) or e = (v1, v). A representation of a graph is a
drawing, where each vertex is depicted as a dot, circle or sphere and each
edge is depicted as a line or cylinder connecting the two vertices it is incident
to. A planar graph is a graph which has a representation where there are
no intersections between edges. A path P between u and w of length k is
a (k + 1)-element subset {v0, v1, ..., vk} of V satisfying the following three
conditions

G1 u = v0,
G2 w = vk, and
G3 for all i with 0 ≤ i < k, there is an edge (vi, vi+1) in E.

The graph theoretical distance between vertices u and w is the length of the
shortest path between u and w. A cycle of length k is a path where v0 = vk.
An acyclic graph is a graph not containing any cycles. The above definitions
of path, cycle and acyclic graph in this form also hold for directed graphs.
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The transitive closure G∗ of a graph G = 〈V,E〉 is an ordered pair 〈V,E∗〉,
where E∗ is a set of edges for which the following two conditions hold.

T1 E ⊆ E∗

T2 If (v1, v2) and (v2, v3) are in E∗, then also (v1, v3) is in E∗.

The transitive reduct G− of a graph G = 〈V,E〉 is an ordered pair 〈V,E−〉
where E− is the smallest set of edges such that the transitive closure of G−

and the transitive closure of G are the same.

A weighted graph G is an ordered 4-tuple 〈V,E,Γ,∆〉. V and E are de-
fined as above, Γ and ∆ are functions. Γ is defined as Γ : V → R which
assigns a weight to each vertex. The function ∆ is defined as ∆ : E → R
and assigns a weight to each edge.

2.3 Hasse Diagrams

The Hasse Diagram is named after H. Hasse. He was the first who extensively
used a certain diagram to display lattices. Ortholattices are an extension of
the concept of lattices. This kind of diagram can also be used to depict or-
tholattices. Hasse Diagrams are directed acyclic graphs. Usually, the arrows
which would indicate the direction are omitted, since the orientation of any
edge is known to be from bottom to top as indicated in the conditions H4
and H5 below.
This kind of diagram is one way to graphically represent a poset. It conforms
to the criteria H1,...,H5 given below.

H1 The diagram is organized in layers.

H2 Each element is represented by a circle.

H3 The bottom-most elements b1, b2, ... are drawn on the lowest layer.

H4 If an element x covers an element y (y ≺ x), then x is drawn in the
layer directly above the layer of y.
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H5 If an element x covers an element y, then the circles for x and y are
connected with a (straight) line from x to y.

An example of such a Hasse Diagram is given in Figure 1. The relation
depicted is set inclusion. Though this definition was originally intended for
two-dimensional drawings, it can be adopted for three-dimensional drawings.

2.4 Algorithms on Lattices

In this subsection, we introduce some of the most important algorithms on
lattices which are important later on. All these algorithms are used in the
program and their worst case time-complexity will be discussed by analyz-
ing pseudo code descriptions. When analyzing the time complexity of the
algorithms the following notation will be used. The number of vertices in a
graph |V | will be given as n, the number of edges |E| as m and the length of
a lattice as l. For simplicity, we will only refer to lattices in the following al-
though all of the facts mentioned in this subsection also hold for ortholattices
unless otherwise mentioned.

2.4.1 Computation of Levels, Linear Extension and Principal Fil-

ters

As it was pointed out in Subsection 2.1, a rank can be assigned to each ele-
ment v in a lattice. This rank of v will also be referred to as the level of v. To
compute the levels of all elements in the lattice by traversing the graph just
once and to get the linear extension of the elements at the same time, the
Breadth First Search algorithm (BFS for short) is used. BFS is designed to
traverse a (directed) graph from a starting vertex and then visiting all adja-
cent vertices before choosing a new starting vertex among the vertices visited
in the previous step. Compared to the Depth First Search algorithm (DFS
for short), it has the drawback of much more bookkeeping being involved
in the process. Its big advantage is that all the vertices get the right level
by traversing the graph exactly once. DFS would have to traverse certain
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Figure 2: Example Graph for Comparing BFS, DFS and IDDFS.

subgraphs several times. Take the graph in Figure 2 as an example. The
subgraph F rooted at vertex E and depicted as a cloud shape would have to
be visited two times by DFS to guarantee that all vertices in F have the right
rank. Let us assume that DFS always expands nodes from left to right and
that a rank of zero is assigned to A. Then the rank of E changes from 2 to
3 when DFS visits it the second time. Accordingly, all the ranks in F need
to be updated and the whole subgraph F has to be explored a second time.
With BFS each edge is traversed only once.
A disadvantage of BFS is often the enormous space requirement because
nearly the whole search space as to be recorded in the memory. For our
application here, we always have the underlying graph in the main memory.
Therefore, BFS can be preferred over DFS without disadvantages. Thus we
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can guarantee a running time of O(m).
If DFS is used, then a linear extension can also be computed in O(m) by
using a visited flag for each vertex. This flag is set in a vertex after all out-
going edges have been visited. If it is set, then DFS will not explore the
subgraph rooted in this vertex again. The problem with this approach is the
computation of levels which would require the whole subgraph rooted in a
vertex v to be explored again every time the level of v changes. This would
unnecessarily increase the running time.
Related to BFS and DFS is the approach of Iterative Deepening Depth First
Search (IDDFS for short). The idea is to perform a DFS, but to bound the
depth of maximal descent. If there are vertices which were not yet visited,
increase the bound and perform another DFS. It can be used to traverse
directed graphs and assign ranks to vertices, yet in this context it is not a
sensible choice. If all vertices are visited up to a predetermined rank and
then the whole procedure is repeated with an increased rank, the example
graph in Figure 2 would be visited in the following manner. Let us assume
that we want to determine the exact rank of F and we only count the ver-
tices we visit on the way down and again that DFS expands vertices from
left to right. Then DFS visits 8 vertices in the sequence A, B, E, F, C, D,
E, F. Similarly, BFS also visits 8 vertices but in the sequence A, B, C, E, D,
F, E, F. In contrast to the first two algorithms IDDFS performs far worse.
The reason is that the vertices between A and F are visited more than once,
because the rank up to which IDDFS descends is increased in each iteration.
The total number of vertices that IDDFS visits is composed as follows. In
the first iteration, IDDFS visits A, B, C, in the second A, B, E, C, D, in the
third A, B, E, F, C, D, E and finally in the fourth A, B, E, F, C, D, E, F.
This equals a total of 24 vertices. Since the whole graph has to be explored
DFS has to be performed a number of times equal to the length of the longest
path in the graph. This approach is of better use if only a small portion of
a graph needs to explored. Thus BFS remains the best choice.
The pseudo code of the method used to compute the linear extension and
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Vertex {

int index = -1;

int level = -1;

int position = -1;

Vertex[] cover = null;

BitSet filter = null;

}

Figure 3: The Vertex Data Structure with Initial Values.

levels and principal filters of vertices in the program is given below in Algo-
rithm 1.
Before discussing the details of the algorithm, a look at the data structure
employed in the algorithms is helpful. The vertex data structure is shown in
Figure 3. Each vertex holds the following data. It has an index to identify
it and an associated level. This level is used to determine at which level
of the Hasse Diagram this vertex is located. The position of a vertex v,
later referred to as position(v), is the integer index i, for which it holds that
extension[i] = v. The principal filter of a vertex v, referred to as filter(v),
stores the characteristic function of v’s principal filter. It is an array of bits
with length equal to the total number of vertices. If a vertex w is contained
in the principal filter of v, then the bit at the position position(w) is set
to one, otherwise it is zero. The values for index and cover are set during
the processing of the input file. The values for level, position and filter are
computed in Algorithm 1, which is described in the following.
The function ComputeLevels computes the level of each vertex using the aux-
iliary method level_BFS. We estimate the running time of ComputeLevels,
which is essentially the runtime of level_BFS(Set S, int level). The foreach-
loop in lines 10 to 15 fills the set S+ for the next recursive call of level_BFS(Set

S+, int ++level). If S+ is empty, we have reached the top element and no
further recursive calls are needed, otherwise we enter a new recursion. The
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maximal recursion depth of all calls is equal to the length of the lattice. Each
vertex is put into S+ a number of times equal to the number of its incoming
edges. If we have reached the top element, we put it into the linear exten-
sion, compute its principal filter and leave the recursion. Before leaving a
recursion, all vertices in S, which are not put into the extension, are put into
the extension and their filters are computed. Note that the i used in the
foreach-loop in lines 19 to 25 is a global variable. This is the reason it is
declared in line 1 outside the local scope of all functions.
The time complexity of the whole algorithm T is given in Equation (2) where
ti is the time taken for one recursion with input set Si as given in Equa-
tion (3). Ei is the set of edges with starting vertices in Si. The cardinality
of the set Si, |Si| will be given as ni and the cardinality of the set Ei as mi.
The set of all vertices in Si which are not contained in the linear extension
is denoted by n̄i

T =
l∑

i=0

ti (2)

ti = O(ni +mi)︸ ︷︷ ︸
for1

+O(1) +O(n̄i +mi)︸ ︷︷ ︸
for2

(3)

The first term labelled for1 is derived from the foreach-loop on lines 10 to
15. The middle term represents the if-statement and the recursive call. The
last term labelled for2 is derived from the foreach-loop on lines 19 to 25.
We will now estimate T with a worst-case analysis. We are dealing with di-
rected acyclic graphs. This class of graphs can have at most

∑n−1
i=0 i edges in

a graph with n vertices, otherwise it contains a cycle. Therefore, the Si have
sizes 1, n − 1, n − 2, ..., 1 since each vertex is put into Si a number of times
equal to the number of its incoming edges. In the worst case we start with S0

containing one vertex. This vertex v0 has an edge to all other vertices in the
graph, which are put into S1. In S1, one vertex v1 has to have an edge to all
other vertices in the graph except for v0. This observation can be generalized
for all Si with i ≥ 1 such that Si = Si−1 \ {vi−1}.
Summing up only the first terms of Equation (3) yields O(1 +

∑n−1
i=0 i + m)
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since each edge is explored exactly once. This can be rewritten as O(1 +
(n−1)n

2
+m).

Summing up the middle terms yields O(l) since it is done once in each recur-
sive call. In the worst case, the whole graph is a directed chain and l = n,
thus we can rewrite this estimate to O(n).
The third term is different form the first in that the loop only considers ver-
tices which are not yet in the extension. Thus, each vertex is handled only
once and again, each edge is explored only once. This yields a total time of
O(n+m). This third term equals the time estimate of BFS as usually given
in the literature.
Taking all three of the sums above together we obtain the time estimate for T
as given in Equation (4). Taking into account that constants can be omitted
in the O-notation and that m can also be estimated with O(m) = O(n2) we
reach the result in Equation (5).

T = O(1 +
(n− 1)n

2
+m) +O(n) +O(n+m) (4)

T = O(n2) (5)

The increased cost compared to traditional BFS is caused by the computation
of the levels. Traditionally, BFS is realized with some queue data structure
to store the working set and each vertex is put into the queue only once. The
problem with this approach is, that it does not compute the right levels. It
computes the shortest path from the root vertex to each other vertex in the
graph. In contrast, we are interested in the longest path from the root to
each vertex. That is why we have to consider certain vertices several times,
which increases the running time.

2.4.2 Computing the Transitive Reduct

The Hasse Diagram is a representation of the transitively reduced graph of
a poset. Therefore, it is necessary to compute the transitive reduct of the
input poset since it cannot be guaranteed that the input is of that form.
Furthermore, this reduction can increase the readability of the graphs.
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Input: A set S of starting vertices with no incoming edges, the total

number of elements and a set E of directed edges not containing

cycles.

Result: An array with a linear extension of the vertices with their levels

and filters.

Vertex [] extension = null; int i = −1;1

ComputeLevels(Set S, int numElements) {2

extension = new Vertex [numElements];3

i = numElements− 1;4

level_BFS(S, 0);5

return extension;6

}7

level_BFS(Set S, int level) {8

Set S+ = {} ;9

foreach vertex v in S do10

level(v) = level; position(v) = −1;11

foreach (v, w) ∈ E do12

S+ = S+ ∪ {w}13

end14

end15

if S+ ! = {} then16

level_BFS(S+, ++level);17

end18

foreach vertex v in S where position(v) == −1 do19

extension[i] = v; position(v) = i;20

filter(v) = new BitSet (); filter(v, i) = 1; i = i− 1;21

foreach (v, w) ∈ E do22

filter(v) = filter(v) ∨ filter(w);23

end24

end25

}26

Algorithm 1: Computation of Linear Extension and Levels Using BFS.
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Each vertex v has references to two sets of vertices, namely the vertices
which cover v and the vertices which are in the principal filter of v. The
set of vertices denoted by cover in the vertex data structure in Figure 3
is initialized when the graph is read in. It cannot be guaranteed that the
graph is transitively reduced, for which reason this array may contain vertices
which do not directly cover v, but are in the principal filter of v. This
array has to be reduced to contain only the vertices directly covering v.The
set denoted by filter in the vertex data structure stores a set of vertices
which are in the principal filter of v in the form of a BitSet representing
the characteristic function of this set. With this information, the transitive
reduct can be computed as follows. The pseudo code of the method used is
given in Algorithm 2.
For each vertex v, the set of vertices in the filter of v but not directly covering
v are computed in the following way. All the reduced principal filters of the
vertices w—the filters of the vertices w not containing w itself—in the cover
of v are joined. This operation is performed as a bitwise or of the BitSets

storing the principal filter of each vertex w. This yields the filter of v where
the vertices w are only contained, if they are not covering v. In other words,
another vertex lies between v and w. If the bit at position w is set to 1 in
this BitSet, then w it is not directly reachable from v, but from some other
vertex. Therefore, w cannot directly cover v.
As can be seen this method explores each edge of the graph twice. Once in
each foreach-loop starting at lines 5 and 10. At line 12, all the vertices in the
cover of v which are reachable via an intermediate vertex are removed from
the cover of v. As indicated above, the bit at position v1 This process explores
each edge a third time due to the kind of data structure used to represent
the edges in a graph. The array storing references to the vertices covering
v needs to be updated. This yields a total time of O(m) for computing the
transitive reduct of the input lattice. This is exactly the runtime estimate
given by the Jodeh procedure in Subsection 2.1.1. The use of a BitSet to
store the principal filters allows us to perform set union in constant time.
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Since Jodeh is described using proper sets, an efficient encoding of the sets
is needed. Therefore, BitSets are used to encode the characteristic function
of these sets.

Input: A graph as a set S of vertices with principal filters.
Result: Transitively reduced graph as a set of vertices.
ComputeTransitiveReduct(Set S) {1

foreach vertex v in S do2

/* new BitSets are initialized with zeros */

BitSet bs = new BitSet ();3

BitSet temp = new BitSet ();4

foreach vertex w adjacent to v do5

temp = filter(w);6

temp(position(w)) = 0;7

bs = bs | temp; /* bitwise or of bs and temp */8

end9

foreach vertex w adjacent to v do10

if bs(position(w)) == 1 then11

/* w reachable via an intermediate vertex */

cover(v) = cover(v)− {w};12

end13

end14

end15

}16

Algorithm 2: The Transitive Reduct Method.
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2.5 Description of Cgol

In this thesis, we describe and implement a system for lattice drawing with
a theorem prover for ortholattices as a subsystem. This prover is called cgol

and is described in full detail in [32]. In this subsection we give an introduc-
tory explanation of its basic ideas and goals.

The prover cgol is based on the paper [7] which presents an analysis of
the search space for different search strategies of solvers for lattices. It is
also based on [6], which deals with the construction of lattices from “satu-
rated” sets of sequents.
In [7], different proof strategies for orthologic are considered. Orthologic is
a logic defined over lattices where the orthocomplementation operation is
defined. It is similar to classical propositional logic, with the difference that
the distributive law does not hold in general for ortholattices. Also related
to orthologic is orthomodular logic, a logic over ortholattices where the law
of modularity holds. Now, cgol is an automated theorem prover for or-
thologic which performs proofs in a sequent style calculus. A sequent is an
ordered pair M ` N where M and N can be sequences, sets or multisets of
formulas depending on the calculus. In the case of cgol, M and N are sets.
An n-restricted sequent is a sequent M ` N , where M and N are sets and
|M | + |N | ≤ n holds. Here, |X| denotes the cardinality of the set X. A
sequent style calculus or Gentzen system, as it is often called, uses axioms
and inference rules to derive a proof for a given formula. Two sets of axioms
can be distinguished which are given below.

• Logical Axioms are sequents which are known to be valid. Most im-
portant are sequents of the form a ` a, where a is an atom.

• Non-logical Axioms are sequents which are assumed to hold. Such non-
logical axioms are not needed in the usual proof search, but can be used
to find counter-examples of smaller sizes.
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Figure 4: Gentzen Style Inference Rules.

The inference rules in a Gentzen system can be of two forms as well. They
are shown in Figure 4, where P , Q and C are sequents. P and Q are called
premises and C is called the conclusion of the inference rule. There are rules
for each logical connective and some structural rules. For details on these
rules, please see [7] or [32].
In Gentzen systems one can distinguish three kinds of search strategies given
below.

• First, there is backward search. It starts with the end sequent S and
proceeds towards the axioms during the search. This strategy produces
a tree proof for S with S as the root of the tree. All the inner nodes must
be sequents which were derived by the application of inference rules on
their predecessors. All leaf nodes must be (non-logical) axioms.

• Then there is forward search which is also known as Maslov’s inverse
method. It usually produces a sequence proof. A sequence proof of a
formula S from a set of (non-logical) axioms A has the following form.
It is a sequence of sequents S1, ..., Sn where S = Sn and, for 1 ≤ m ≤ n

and k, l < m, one of the following statements holds.

1. Sm is a (non-logical) axiom in A.

2. Sm is the conclusion of a unary inference rule with premise Sk.

3. Sm is the conclusion of a binary inference rule with premises Sk, Sl.

This approach implements a saturation where more complex formulas
are built with the application of each inference rule. A crucial factor
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for the effectiveness of this approach is to keep the number of derived
sequents as small as possible.

• Last there is a combined search strategy which is a combination of the
two mentioned above. It produces a sequence proof where non-logical
axioms are sought using short tree proofs. Weakening-free backward
search is used to find proofs for α-subformulas of the original formula.
If a proof is found, these subformulas are introduced as non-logical
axioms to prove the original formula with forward search.

Egly and Tompits showed in [7] that the forward strategy can provide a
polynomial decision procedure for orthologic. As cgol is based on the results
of that paper, it implements this forward strategy. In the following, a short
description of the benefits using forward search will be given.
Often simple forward search is considered slow and ineffective, but one has
to take certain aspects into account to speed it up. The total search space
can be reduced if only those sequents are derived as conclusions to inference
rules, which contain only subformulas of the input sequent. For a further
speed-up, we can even restrict those conclusions to only contain formulas
in the right polarity. Deriving only those sequents which obey the above
requirements can dramatically speed up the whole process. Unfortunately, to
construct counter-examples the polarity restriction cannot be used in cgol

so the process of constructing a counter-example is slightly slower than a
simple proof with the polarity-restriction. An explanation why this is the
case can be found in [32].
The interface between cgol depicted at the bottom of Figure 5 and the
drawing program at the top is achieved with the help of four auxiliary files. A
detailled description of these files can be found in Subsection 5.4.2. Here, only
an overview of their use is given. The file to the very left labelled with Input

Formula contains the formula for which cgol should find a proof. To find a
proof, cgol uses a saturation approach as discussed above. This saturation is
written to the file denoted by Saturation File. This file also contains the
line PROOF FOUND! or NO PROOF FOUND! informing the user whether a proof
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Figure 5: The Communication Between the Drawing Program and cgol.

was found or not. If no proof was found and the mode of operation without
the polarity restriction was used, a counter-example to the formula is output
to the file called Output File. This file is then processed by the drawing
program as described in Subsection 5.4 to construct the graph corresponding
to the lattice in the file and to render it to the screen. The last file not yet
mentioned is called Non-logical Axioms File. It can be used to supply
cgol with non-logical axioms to be used for reducing the size of the counter-
example by finding equivalence classes. These equivalence classes reduce the
size of the counter-example since only one representative of the whole class
which may contain many elements needs to be rendered to the screen. This
can also decrease the number of relations between elements and thus edges
in the corresponding graph, which again makes it easier to understand the
graph. The contents of this file are added by interacting with the rendered
graph. By clicking on the displayed vertices a non-logical axiom can be
added to this file. If it does not exist, it is created prior to adding non-logical
axioms.
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2.6 Concept Lattices

Concept lattices are an early form of ontologies which are important in the
context of the semantic web. Such concept lattices as described in [13] or [14]
are lattices which can also be rendered with our program. A formal context
is a triple (G,M, I) where G is the set of objects, M is the set of attributes
and I ⊆ G × M a relation over G and M . For a set A ⊆ G, we define
the set of attributes common to all objects in A as Ā = {m ∈ M |(g,m) ∈
I for all g ∈ A}. For a set B ⊆M we define the set of objects having all the
attributes in B as B̄ = {g ∈ G|(g,m) ∈ I for all m ∈M}.
A formal concept of a formal context (G,M, I) is a pair (A,B) with A ⊆
G,B ⊆ M, Ā = B and B̄ = A. In the following, formal context and context
will be used synonymously for brevity, as well as formal concept and concept.
If (A1, B1) and (A2, B2) are concepts of the same context, then (A1, B1) is
called subconcept of (A2, B2), if A1 ⊆ A2 or equally B2 ⊆ B1. If (A1, B1) is
a subconcept of (A2, B2), then (A2, B2) is a superconcept of (A1, B1). This
subconcept-superconcept relation is a partial order relation on the set of all
concepts in a given context. As stated in Subsection 2.1, a poset where the
supremum and infimum of arbitrary subsets exist is a lattice. Ganter and
Wille show in [13] that such a concept poset is indeed a lattice, which is
called concept lattice. In a Hasse Diagram of such a concept lattice, the ver-
tices are usually labelled with the concept and the connecting lines represent
the subconcept-superconcept partial order relation. Therefore, we can use
the same strategy for rendering ortholattices produced by cgol and concept
lattices with the only difference that vertices are not labelled with orthologic
formulas, but with concepts. An example of such a concept lattice taken
from page 69 and the following pages of [13] can be seen in Figure 6. This
example deals with properties of triangles.
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Figure 6: A Concept Lattice.
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3 Psychological Aspects

The visual perception of images is organised in many simultaneous processes
being performed in the retina and several portions of the brain. The re-
ception and first preliminary processing of visual stimuli takes place in the
retina. This retinal processing of isolated stimuli is not of great interest and
thus its description is omitted. Since colors are of special interest, we have
to investigate the use of colors based on some of these basics, though. What
concerns us most is the composition of images from the stimuli and extrac-
tion of features from these images.
There are many theories concerning visual perception and there is evidence
supporting all of these. The most important for this application is covered
in short.
One theory which has to be mentioned here is the Feature Theory. It states
that objects are recognised in such a manner that each object has a set of
certain criteria which discriminates it from all other objects. During the pro-
cess of object recognition, a check is performed which matches the properties
of the perceived object to the set of properties ascribed to an object in mem-
ory. For this to happen, a process of feature extraction has to be performed
prior to object recognition and classification. In this case, the user has to
recognize the circles and edges in the diagram as distinct shapes. Though
this theory is not the most accurate one, it provides an idea of what has to
happen to extract a Hasse Diagram from a picture. Once the picture is split
up into all the simple features, all the perceived features need to be grouped
together to cope with all the information conveyed. This is where the next
subsection comes into play.

3.1 Gestalt Psychology

According to [8], a process vital to perception is perceptual segregation. It
separates parts of the visual information which belong together from each
other and so enables the viewer to work with these seperate objects. Then, to
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reduce complexity and find relations among these seperate objects, a process
of grouping is performed according to [3]. How this grouping is performed
depends on innate and learned factors.
The Gestaltist approach was one of the first to systematically study this
process. This school consisting of the German psychologists Koffka, Köhler,
Wertheimer and others proposed one important law concerning this percep-
tual segregation and grouping.
This Law of Prägnanz as found in [21] states:

Of several geometrically possible organisations that one will ac-
tually occur which possesses the best, simplest and most stable
shape.

This principle applied to the drawing of Hasse Diagrams is somewhat prob-
lematic. What is the best, simplest and most stable shape can be defined
in many different and equally acceptable ways. Let us consider an example.
With the analogy of the force-directed layout scheme described in Subsec-
tion 4.2, a definition of these terms becomes clearer. A stable shape is one
that minized the total force of the system. The simplest form is that which
exhibits the least crossing of edges and regular distances between vertices.
Usually symmetric drawings are also perceived as simple. According to the
above, the best drawing is one that satisfies all the above criteria.

3.2 Nice-looking Diagrams

If we are looking at pictures, we can distinguish two kinds of them—those
which please the eye and those which do not. Of course, this classification
is highly dependent on the person viewing the image. Yet, we know from
research in the field of psychology that there are a number of generally ap-
plicable criteria which influence the perception of the image. These are the
same for each viewer. Some of these criteria are listed in the following sub-
sections. This enumeration is by no means exhaustive, but covers most of the
issues which are relevant to the layout algorithm described in Subsection 4.2.
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In [3], we can find a short summary of the history of aesthetics.
The first approaches to aesthetics date back to ancient Greece. As an exam-
ple, we will first quote Aristotle here.

“A master of any art avoids excess and defect but seeks the inter-
mediate and chooses this.”

This observation can be seen to relate to layout algorithms in the following
way. A “master layout algoritm” seeks to avoid excessively long or short edges,
excessively acute or obtuse angles or an excessively irregular arrangement of
vertices. What is missing here is the regular arrangement of vertices. A
regular arrangement is that which we get when we find the intermediate.
This is also the configuration proposed by the Gestaltists. The same line of
thought can be found in Leibniz’s definition of perfection.

“...to obtain as much variety as possible but with the greatest
order that one can.”

Aesthetics were also examined from an information-theoretic point of view.
Birkoff proposed a formula to measure the aestetic value M of objects.

M =
O

C
(6)

O denotes the order and C the complexity of an object. The order of an object
can be considered as a measure for the regularity or symmetry or any other
property reflecting some sort of systematic arrangement. He also supplied
formulas to estimate the order and complexity of objects like polygons, music
and so on. Thus, the aesthetic value of an object is directly proportional to its
order and inversely proportional to its complexity. Later, this equation was
adapted by Gunzenhäuser where O and C are transformed into information-
theoretic quantities. C is regarded as the uncertainty or entropy H and the
order O is defined as redundancy R = (Hmax −H)/Hmax. Substituting this
into Equation (6), we obtain Equation (7).

M =
1

H
− 1

Hmax

(7)
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This later adaption better reflects the findings of Eysenck and Davis which
state that the aesthetic value reaches a maximum when Birkoff’sM is neither
too high nor too low.
Nice looking diagrams are not only pleasing for the eye, but they also simplify
the comprehension of the information in the image. In the case of automati-
cally layouted lattices, the intention is to convey the structure of the lattice
as fast and easy as possible. Purchase shows in [24] that diagrams which
exhibit a certain degree of symmetry, which have straight lines and few edge
crossings are more readable than diagrams with less symmetry, curved lines
and many crossing edges. Some of the featured properties are discussed in
the following subsection.

3.3 Criteria for Nice-looking Diagrams

The following criteria and their impact on readability are taken from [24].
Some more information can be found in [3]. The latter is a survey of different
studies on aesthetics and complexity in visual and acoustic arts.

3.3.1 Symmetry

This seems to be one of the most important criteria for eye-pleasing pictures.
Therefore it is essential that the diagrams drawn by the program exhibit as
much symmetry as possible. Lattices often have a high degree of inherent
symmetry; thus, it is natural to reflect this symmetry in drawings of lattices.
Symmetrical pictures are not only better-looking than asymmetrical ones,
they were also found to help viewers in quicker understanding of the infor-
mation displayed. Therefore, a layout scheme which favours symmetrical
layouts over asymmetrical ones should be used.

3.3.2 Line Length

As it was implicit in the previous section, the length of the edges should be
uniform or at least exhibit a small variation of length. To avoid extremes in

31



line length and attain the goal of small variations in line length, the layering
of the vertices should respect this requirement. Not only the layering should
be determined in a way to achieve uniform edge length, but even more im-
portant, the vertices in each layer should be arranged in a way that promotes
uniform edge length. Usually, drawings with a small variation in line length
also exhibit a high degree of symmetry and vice versa. Since a small variation
in line length and symmetry are both beneficial to aesthetic pleasure, this is
a very nice property.

3.3.3 Edge Crossings

In [24], a study is mentioned which investigates the effect of edge crossings on
the effectiveness with which users interpret given graphs. It turns out that
the number of crossings has by far the greatest influence on the perceived
complexity of a graph drawing. Graphs with many crossings have another
negative property. When asked for the more aesthetically pleasing picture,
test persons preferred drawings with fewer crossings over drawings with more
crossings. This can be viewed to support the Gestaltist Law of Prägnanz
quoted in Subsection 3.1. The test persons preferred the simpler arrangement
with less crossings over the more complicated one with more crossings. This
implies that a considerable effort has to be made to find a graph with as few
edge crossings as possible. However, it is known that finding a layout with
a minimum number of edge crossings is NP hard, which calls for a heuristic
to be employed. One heuristic that proved to work relatively well is a force
directed layout scheme like the Spring Embedder discussed in more detail in
Subsection 4.2.

3.3.4 Slope Angles

In [24], the effect of slope angles is also investigated. The hypothesis there
is that maximizing the minimum angle between edges leaving the nodes in a
drawing increases the understandability of a graph. The data suggests that
this aesthetic does not have a significant effect on the understandability.
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3.3.5 Colours

Though this is not a criterion related directly to graph layout, it needs to be
discussed in this context since it has an effect on the perceived aesthetic value
of a drawing. The use of colours needs to be considered from a physiological
and psychological point of view. We first discuss the physiological aspects.
Some colours do not go well together, since the eye needs to adapt to the
different wave-lengths that are refracted at different angles in the lens. An-
other reason why two colours should not be used together is that the contrast
between two colours may be too small and it becomes difficult or impossible
to distinguish between two seperate objects and they are perceived as just
one object.
When choosing colours, one has to take into account psychological consid-
erations and what has to be achieved with the colouring. Is is necessary to
convey information or just to please the eye? Is it used to raise attention and
focus the attention of the viewer on something special or to calm him or her
down? All these aspects need careful consideration and the literature on this
matter like [3] gives some hints on which colours to choose when. The colours
red and orange were found to stimulate the viewers attention, excitation level
and alertness. The colours on the blue-green end of the spectrum and pastel
colours were found to have a calming effect on the viewer. In [18], we can
also find a suggestion that bright and saturated colours are more pleasing
than dull ones.
The assumption for the state of the user is that he or she is in a state of ex-
citement and curiousity to see what the lattice will look like and to interact
with it. There is no need to raise even more attention and so a calming color
is chosen for the vertices and edges which also yields a maximum contrast
to the background. When the user interacts with the displayed lattice and
tries to add edges, it is necessary to inform him or her about the results of
his or her actions. It is necessary to convey which vertices are selected to
become the ends of the newly added edge. Also, the new edge needs to be
highlighted to be easily distinguished from the originally present edges.
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3.4 Perception of Three-Dimensional Graph Drawings

With many sophisticated graph drawing algorithms well suited for 2D draw-
ings, like those proposed in [12] or [29], one question remains. Which ben-
efits can be gained from using three-dimensional drawings instead of two-
dimensional ones?
One answer can be found in [26]. This reference reports on an experiment
to investigate the acceptance of web browsers. Graphs of the content of
the www.snap.com website were presented to the test persons. They were
asked to perform tasks of different types and with varying levels of difficulty.
To complete these tasks, the test persons could choose between the novel
representation in 3D hyperbolic space and the traditional tree-browser with
collapsable view known from the file browser in various operating systems.
See [23] for details on the layout in hyperbolic space. The test persons could
also use the user-interface presented by all modern web browsers, namely
clicking on links and entering keywords into search fields. This study shows
that tasks can be completed faster with the novel 3D interface than with the
traditional one. This faster completion does not have an adverse effect on
the level of consistency. This is a measure for how much the test persons
agreed on the results. It can also be interpreted as the number of errors the
test persons made, caused by shorter completion time. In other words, 3D
representations of graphs can help users to understand the structure of the
graph more quickly.
Another answer to the above question can be found in [31]. This paper de-
scribes another study of the effects of three-dimensional display of graphs
in contrast to the traditional two-dimensional one. In the experiment, test
persons had to trace a path in a given graph, which was presented in dif-
ferent ways. The first presentation was in two dimensions where the three-
dimensional drawing was projected onto a plane. This drawing could not
be rotated or otherwise interacted with. The second way the drawing was
presented to the test persons was with the help of stereo glasses. With the
help of these glasses, the user perceives the displayed structure of the graph
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as three-dimensional. Test Persons were presented with graphs of different
sizes and had to decide whether two randomly highlighted nodes in the graph
were connected by a path of length two or no path. It was found that the
test persons could cope with a graph increased in size by a factor of 1.6 com-
pared to the original graph. If it was also possible to rotate the graph, the
increase is almost doubled to a factor of three. If there was no stereo vision
but rotation provided, the increase is still by a factor of 2.2 compared to the
original graph. This leads to the following two conclusions.

• If we cannot render a graph in three-dimensional space, then, if we at
least provide means to rotate it, it is easier to understand graphs or it
is possible to understand larger graphs.

• If we can render a graph in three dimensions, but cannot provide means
to interact with it and rotate it interactively, the gain is only moderate.

Therefore, the best results can be achieved by combining 3D rendering and
interactive translation, rotation and zooming of the drawing.
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4 Layout Algorithms

As it was pointed out in the previous section, force-directed layout algorithms
exhibit some very nice properties. They perform quite well in terms of con-
forming to the aesthetic criteria stated above. Thus, the algorithms used for
laying out the graph in the program described in Section 5 also belong to the
family of force-directed layouts. They are adapted such that they allow the
employment of level constraints. This means that vertices can be assigned
to planes parallel to the x-z-plane. They cannot leave these planes during
the layout process. This is extremely useful in the case of Hasse Diagrams
where this kind of layering is desired. Details on the algorithms implemented
in WilmaScope are described below. First, the optimization scheme known
as Simulated Annealing is introduced. Then, two force-directed layouts are
discussed. To aid the discussion on how algorithms perform on certain graph
instances, the following notation will be used. The number of vertices in a
graph G will be given as n and the number of edges in G as m.

4.1 Simulated Annealing

This approach to tackle NP hard problems was first introduced in [20].
Though this idea is adapted from statistical mechanics and originally ap-
plied to combinatorial optimization, it can be adapted for graph drawing.
At first, we will introduce the central ideas of simulated annealing and then
show how it can be used in the context of graph drawing.
Statistical mechanics is a body of methods for analyzing the aggregate prop-
erties of large numbers of atoms in solids and liquids. Each of these atoms
has its own set of properties like its location, momentum or electrical charge.
The whole state of the solid or liquid is determined by the properties of each
of its constituting atoms. These properties change over time according to
probabilistic laws. Thus, such a solid or liquid can be in one of a large num-
ber of states. Because of the large number of atoms involved, only the most
probable state of the system at a given temperature is observed in experi-
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ments. The temperature of solids or liquids can be defined in relation to the
momentums of its constituting atoms. This allows many different states, as
the momentum of each atom changes after collisions with other atoms. The
most probable state observed in experiments is that of each atom having an
average momentum with small fluctuations about this average. How large
this fluctuations are can be estimated by the Maxwell-Boltzmann distribu-
tion. This assumes idealized particles to be identical point masses. Cooling
the matter means reducing the momentum of the particles until they eventu-
ally freeze and stop moving. We are interested in the state where the particles
rest in the end. The aim of experiments in condensed matter physics is to
create solid crystals with an atomic grid structure which is as regular as
possible. These states of matter are called ground states. They have an
interesting property, namely a minimal energy configuration.
Let us consider the simple example of n identical particles lined up in a
row, each carrying either positive or negative unit charge. Each charge is
equally likely. The interaction energy between two particles pi and pi+1 is
denoted by Ji. The total energy of the system is given as

∑
i Ji and it is in

the range between zero and |nJ |, where | · | denotes the absolute value. It
was proven that the probability of a system having a specified energy fol-
lows the binomial distribution. We are interested in the rare states having
maximal or minimal energy as opposed to the large number of zero energy
states. The ground states with maximal or minimal energy are those which
are also important for graph drawing. The vertices are the particles we want
to position. The interrelation energy can be thought of as a cost function
taking into account the deviation of the distance between connected vertices
from a desired value, the number of edge crossings and so on. A ground state
of the graph is an arrangement which best satisfies all the requirements. A
defect of this analogy is that all atoms are assumed to be identical, yet all
the vertices in a graph are different in that they are incident to a different
number of edges.
The process of simulated annealing aims to first position the vertices ran-
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domly and then move them around with high momentum. In this phase the
general structure of the graph should become visible. Then the momentum
of the vertices is decreased and only minor improvements are allowed to get
a finer and more symmetric placement.
The main difference to other layout algorithms based on the greedy heuristic
is most apparent in the early stages when the system is hot. In these stages,
the total energy is allowed to increase with a probability dependent on the
heat of the system. This can help avoid local minima and reach a better
layout in the end.
The downside of this approach is that a cooling scheme has to be chosen. On
the one hand, to get the best results, a slow cooling scheme is needed. On the
other hand, a slow cooling scheme requires a lot of computation. Therefore,
it is difficult to find a cooling scheme which is an acceptable compromise
between satisfactory results and an acceptable amount of computation.
This idea of finding ground states can be adopted for combinatorial opti-
mization in the following way. In contrast to a greedy heuristic which tries
to improve the solution in every step, simulated annealing can be used. The
idea is to model the system as the physical system of a cooling liquid. In a
hot liquid, the molecules have a great kinetic energy and thus move very fast.
As the liquid cools down, this kinetic energy of the molecules gradually gets
smaller and the speed at which they move about is getting smaller as well
until the liquid eventually freezes and all molecules are confined to a place
in a grid-like structure and do not move any more.
For this to work, an application-dependent cooling scheme has to be devised.
Usually, such a cooling scheme is computationally expensive, but it yields
competitive results.

4.2 Spring Embedder

This algorithm for laying out graphs was proposed in [5] and later optimised
in [10]. The idea is to model a graph as a mechanical system of springs. Each
vertex is thought of as a steel ring and each edge is modelled as a spring.
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All vertices are laid out either randomly or with a certain heuristic to get
an initial layout. Usually, heuristics which place nodes very close to their
final position yield better results than totally random placement. Yet, care
has to be taken not to constrain the initial layout too much or to place the
nodes too regularly. This might have an adverse effect on the performance of
the algorithm, as it might induce unstable equilibria. They might cause the
algorithm to get stuck in suboptimal local minima. Depending on the way the
initial layout is obtained, a strategy has to be chosen to minimize the total
energy of the springs and to avoid these local minima. Minimizing the energy
of the springs is done by adjusting the position of the vertices in a manner
such that adjacent vertices are attracted to each other and vertices which
are not connected via an edge (or sometimes via a path) are repulsed. The
algorithm is time-discrete. During each step of the iteration, all attractive
and repulsive forces on a vertex are computed. At the end of the iteration,
the vertex is moved according to the resulting force, which is the sum of
all the forces on a certain vertex. In some cases, the algorithm may get
stuck in an unstable state. This state can have two forms. It can either be a
local minimum or the vertices my oscillate and thus preventing the algorithm
from reaching a stable state. To keep the algorithm from oscillating and never
reaching a stable and optimal state, some other heuristic can be employed.
One such example is Simulated Annealing described in Subsection 4.1. This
allows the vertices to move further during the first few iterations and then,
in the later iteration allows only small improvements on the position of the
vertices.
What was not discussed so far is the computation of the forces. One can
employ many different force schemes. The choice which one to use can be
guided by the time it takes to compute the forces, by well researched physical
models or by aesthetic criteria to which some force schemes conform better
than others. Using a force model which is based on symmetric forces for
attraction and repulsion results in drawings which exhibit a higher degree of
symmetry than a drawing based on asymmetric forces.
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4.3 Multilevel Force-Directed Placement

The program WilmaScope, which is described in detail in Subsection 5.5,
implements the following layout algorithm taken from [30] which is an im-
provement of the approach described above. It tries to overcome some of the
defects of the traditional force-directed algorithm.
One of these drawbacks of force-directed algorithms is that the general struc-
ture of the graph is not considered when laying out the graph. The multilevel
approach tries to first untangle the graph and get the general structure right,
before laying out the final graph like the force-directed approach.
The key idea here is to partition the graph to get a coarse layout of the
general structure of it and then iteratively add vertices to get an increas-
ingly finer grained layout until all vertices are added and the final layout is
produced. There are many different ways to get coarser graphs of the orig-
inal. The one chosen by Walshaw in [30] is known as maximum cardinality
matching. Optimal solutions to instances of this problem can be computed
by algorithms with time complexity of at least O(n2.5). Since we are only
interested in the layout of the whole graph, we do not need optimal solutions
for the coarsening and we can use a heuristic as devised in [17].
This heuristic works as follows. The coarser graph is created by means of
edge contraction. This means, if two vertices are connected by an edge, they
are contracted into one super-vertex. This new vertex is then connected to
all the vertices adjacent to the original vertices. To preserve some of the
structural properties of the original graph, weights of vertices and edges are
used. If the original graph was unweighted, then for the algorithm to work,
each vertex and edge gets a default weight of 1. The weight of the new vertex
is the sum of the weights of the original vertices. The weights of the new
edges are computed as follows. If only one of the original vertices was con-
nected to another vertex, the weight of the edge remains the same. If more
than one edge points from the contracted vertex to some other vertex, these
edges are contracted into one and the weight of this new edge is the sum of
the weights of the original edges.
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To find vertices to contract into super-vertices, a matching of vertices is com-
puted. This is done in the following manner. The vertices are visited in a
random order. If it is not yet matched, an unmatched neighbour is selected
and these two vertices are matched. This requires time in O(m). After all
vertices are matched, the graph is coarsened with the contraction strategy
described above. Then this coarsening is repeated until the size of the re-
sulting graph falls below some threshold, which is typically two. This first
graph to be laid out consists of two vertices connected with a weighted edge.
This smallest graph is subject to the force-directed layout scheme. After the
layout has become stable, the layout is refined by undoing the last step of
the coarsening and separating the super-vertices into their constituting ver-
tices. They are initially positioned in place of the super-vertex. After the
super-vertices of this iteration are split up, another force-directed layout is
produced. This splitting and layouting is performed, until the original graph
has been laid out.
A detailled description of how the forces are computed can be found in [30].
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5 The Lattice Drawing Program

This section describes the lattice drawing program based on the insights from
the previous sections. To gain a general understanding of the functions of
this software, the intended use and functionality of the program is discussed
in Subsection 5.1. Then, a sample session with screenshots of the program in
use can be found in Subsection 5.2. The development history of the program
and the technical details are described in Subsections 5.3.2 and 5.4.
In this section the following typographical convention is used. Whenever
referring to pictures or Java objects in the text, the text from the picture or
the name of the object is set in typewriter font.
For brevity, another convention is in order. This section makes extensive use
of Equation 1 as mentioned in [22] (reproduced as Equation (8) below) to
demonstrate the use of the program.

((a ∧ b′) ∨ a′)′ ∨ ((a ∧ b′) ∨ ((a′ ∧ ((a ∨ b′) ∧ (a ∨ b)))∨

(a′ ∧ ((a ∨ b′) ∧ (a ∨ b))′))) = 1 (8)

This equation arose in the work N. Megill and M. Pavičić on quantum logic.
They were known to hold in orthomodular lattices, but they were not known
to have a proof in orthologic. Since Megill and Pavičić did not find a proof by
hand, they asked W. McCune for help. He tried to find a proof or a counter-
examples with the help of the automated theorem prover otter together with
the “model checker” MACE. A counter-example to Equation (8) was found
in 15 minutes after using 84 MB of RAM. With cgol, such a failed proof
search and the generation of a counter-example takes only a fraction of a
second and less than 13kB of memory. A reason for this difference in the
timing is that McCune used a different strategy than Zugaj. McCune used
an exhaustive search strategy to find counter-examples of sizes 1, 2, 3 and
so on. The smallest counter-example that McCune could find was of size 10.
For details on the strategy of cgol, see Subsection 2.5. One lattice generated
by cgol as the result of a failed proof search for this formula will be referred
to as “McCune 1 lattice”. It has 25 vertices, which is larger than the counter-
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example found by MACE. The size of this counter-example can be reduced
by adding non-logical axioms and finding equivalence classes. Details on how
this is done can be found in the remainder of this section.

5.1 Intended Use and Functionality

This subsection can be seen in two ways. First, it can serve as a rough spec-
ification of requirements what the program should achieve. Second, it serves
as a description of the intended use cases. A graphical representation of this
subsection can be found in Figure 9 to which we will refer throughout the
remainder of this subsection. This figure is a UML use-case diagram con-
forming to version 2.1.1 of the UML specification.
In this subsection, we will stick to the following typesetting convention for
grammars. Text set in bold face denotes terminal symbols, whereas text set
in italic denotes non-terminals.
We will also stick to the following syntactic convention for the grammars in
this subsection. An ε on the right hand side of a grammar production de-
notes an empty string. A parenthesized expression may be followed by one
of three symbols to indicate the number of occurrences of this expression.
A ? indicates “no or exactly one” occurrence, a + produces “one or more”
occurrences and a * is a placeholder for “none or arbitrarily many” occur-
rences. Note that the non-terminal Space expands to one or more terminal
whitespace characters excluding newline characters.
The user can choose a file which contains the input to the program. This
input can be of two forms:

• The file contains a lattice in the notation defined in Figure 7 below.
The intention is to draw the lattice given in the file.

• The file contains a formula in the notation given in Figure 8. Here, the
intention is to try a proof with cgol first and in case the formula is
unprovable, present the counter-example as a lattice.
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If any other input file is chosen, the program will not process it and output
an error message to the user. For simplicity, all the error handling is left
out of the following discussion and consequently it is not shown in Figure 9.
Let us consider the simple case, where the input conforms to Figure 7 and
consists of a lattice or a lattice-like structure. In this case, we follow the
lower extend arrow to the Draw Lattice use case. This means that, if we
encounter this form of input, the lattice is constructed and rendered to the
screen. Nothing more can be done in this case.
In the other case, where the input is an orthologic formula, we follow the
upper extend arrow to the Search for Proof use case. The program cgol

tries to prove this formula. If a proof is found, it is output to the user. If
not, a counter-example is constructed. This counter-example has the form
of a lattice. We follow the next extend arrow to Draw Lattice. Now, the
lattice obtained as a result of the failed proof search is rendered to the screen.
Once rendered to the screen, the user can then try to reduce the lattice. This
reduction can be done in two ways, either automatically or manually. This
is depicted in the use case called Reduce Lattice to the very right of the
figure. This use case is optional and so is connected with an extend arrow.
The reduction can be performed either automatically or interactively. Non-
logical axioms can be added to reduce the size of the lattice. How this can be
done is described in detail in Subsections 5.2.4 and 5.2.5. The result of this
reduction is again rendered to the screen, as implied by the extend arrow in
the reverse direction. This rendering is not mandatory, since the reduction
might result in the formula becoming provable and then there is nothing to
render. In this case, an appropriate message is displayed. The reduction
step can be repeated to find smaller counter-examples or until the formula
becomes provable. In any case, some undo/redo functionality is desired to
improve user-friendliness. For simplicity, this is left out of the diagram.

The interaction between cgol and the drawing program is given in Figure 10
in the notation of a flowchart. We proceed from left to right. To the very left,
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Inputfile → ( (Vertex )* ) (Subformulalist)?
Vertex → ( Index ( Cover ) )

Index → ( (c)? ([0–9])+ ) | top | bot
Cover → Index (Space Index )* | ε

Subformulalist → Subformula: Index is: Formula

Figure 7: Grammar for a File Containing a Lattice.

we can find the orthologic formula we want to prove. We run cgol with this
formula as an input. Then we have two scenarios. If cgol finds a proof, then
a message is output to the user telling him or her that a proof was found.
If no proof could be found, then cgol constructs a counter-example to this
formula. This counter-example is then handed to the drawing program and
rendered to the screen. We are now in the upper right corner of the diagram.
From this stage on, we can try to find a smaller counter-example. This can
be achieved in two ways which are both supported by the drawing program.

• The user can try to reduce the size of the lattice by introducing non-
logical axioms.

• cgol can be told to perform a reduction based on its built-in heuristics.

In any case, cgol is called again to search for a proof with user-supplied
non-logical axioms or with its heuristics. The result can either be that the
formula becomes provable, which means that we have to go a step back and
try other non-logical axioms if possible. The result can also be a smaller
counter-example, which is again handed to the drawing program and we can
repeat the procedure of finding non-logical axioms, running cgol with these
non-logical axioms and getting a drawing of the result.
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Input Sequent → (Formula <)? Formula
Formula → ( Atom ) | ∼ ( Formula )

| & ( Formula , Formula )

| | ( Formula , Formula )

Atom → ( [a–z] )+

Figure 8: Grammar for a File Containing an Orthologic Formula and an
Input Sequent.

Choose 
Input File

User

Search for 
Proof

Draw Lattice

Reduce 
Lattice

<extend>

<extend>

<extend>

<extend>

<extend>

Figure 9: Intended Use of the Program.
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Orthologic 
Formula cgol

Proof

Counter-Example

Look for Smaller 
Counter-Example

Show
Counter-Example

Drawing 
Program

Figure 10: Flowchart of the Interaction Between cgol and the Drawing Pro-
gram.
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5.2 A Sample Session

In this subsection, the use of the program with the help of screenshots is
demonstrated. The use cases will be listed one by one as described in Sub-
section 5.1. We will also demonstrate the effect the algorithm for computing
the transitive reduct has on the overall readability of the graph.

5.2.1 Drawing a Lattice

For this use case, we assume that we already have a file containing a lattice
in the format described in Figure 7. In Figure 11(a) we can see the program
after startup before any user-interaction is performed. The next step is then
displayed in Figure 11(b). The dialog to select a file to open is shown. Note
the type of files to select. Besides the filter for all files and for the .xwgl

format that WilmaScope understands, there is a third to select lattice files
and input files containing orthologic formulas. This third filter is selected by
default. We will select a file called mccune1.lat which holds the McCune 1
lattice as calculated by cgol as result of a failed proof search for Equation (8).
Figure 12 shows two versions of this lattice. In Figure 12(a), we can see
the transitively reduced version. Figure 12(b) shows what the lattice looks
like when no transitive reduction is performed and a lot of edges remain.
These two figures show the tremendous effect the transitive reduction has
on readability. In the upper figure, the structure of the lattice is visible. In
the lower figure, the structure of the lattice is obscured by the edges in the
center of the lattice. This concludes the use case of drawing a lattice. Next,
the use case of proving an orthologic formula is discussed.

5.2.2 Proving a Formula

The starting point here is an orthologic formula given in the format described
in Figure 8. The typesetting conventions of the grammar are given in Sub-
section 5.1. The input file containing the formula is chosen in a way similar
to the one described in Subsection 5.2.1. If the proof search was successful,
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(a) Before Any User-Interaction.

(b) Dialog to Open Files.

Figure 11: Two Screenshots of the Drawing Program.
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a message is displayed that a proof was found. The user can then take a
look at the proof. If the proof search was not successful, cgol automatically
creates a counter-example to the input formula. This counter-example in the
form of a lattice is rendered to the screen to convince the user that the input
formula is indeed not valid.
If an orthologic formula is used as input and a lattice is produced as a result
of a failed proof search, some additional items in the Editmenu are activated.
The following subsections explain how these can be used to manipulate the
drawn lattice.

5.2.3 Showing Formulas

This is the first item in the Edit menu that becomes accessible, if a lattice
is generated by cgol. If cgol produces a lattice, then a formula can be
assigned to each element of this lattice. It is important to see how these
formulas are interrelated and which formula is assigned to which vertex. It
would seem natural to label each vertex with the corresponding formula.
Unfortunately, these formulas can become fairly large and clutter up the
drawing. An example of such a bad drawing is given in Figure 13. To view
one particular formula as a whole, it would be necessary to zoom out of the
scene, but then the writing gets too small to be read easily.
The solution here is to use something cgol readily provides. Each vertex is
assigned a unique integer index. If a formula is the complement of another
formula, it has the same index, but a “c” is prepended to the index. These
indices usually are much shorter than the formulas assigned to the vertices.
An example of a lattice labelled with indices can be seen in Figure 12a.
What is needed now is a way to establish a connection between formulas
and vertices labelled with indices. When clicking on the Show Formulas

item in the Edit menu, a frame pops up, which shows an index to the left
and the corresponding formula to the right. This way it is easy to find out,
which formula belongs to which vertex. A screenshot showing the frame with
formulas for the McCune1 lattice is depicted in Figure 14.

50



(a) With Transitive Reduction.

(b) Without Transitive Reduction.

Figure 12: Two Screenshots of the Drawing Program Showing the McCune 1
Lattice.

51



Figure 13: McCune 1 Lattice with Large Formulas.

Figure 14: Frame Showing Labels and Formulas for McCune 1 Lattice.
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5.2.4 Adding Non-logical Axioms

The Reduce Lattice use case to the right of Figure 9 is split up into two
seperate actions. First, the user can add non-logical axioms, which are then
used to reduce the size of the lattice. Second, the user can choose to ac-
tually compute the reduced lattice based on the non-logical axioms he has
introduced earlier or with the help of a heuristic implemented in cgol to au-
tomatically find suitable axioms. The latter alternative is explored in detail
in the following subsection. Now, we focus on the former and demonstrate
the way non-logical axioms can be added manually.
This function can be accessed like all others directly manipulating the struc-
ture of a lattice via the Edit menu of the program. A picture of the Edit

menu can be seen in Figure 15. The first five items there—each with an
icon to the left—are WilmaScope specific functions which we will not discuss
here. The lower five items with exception of Show Formula are those which
trigger the interaction between cgol and the drawing program. If the user
decides to add a non-logical axiom, a status bar is displayed at the bottom
of the window telling the user to pick two vertices with the mouse. Once two
vertices are selected, the user can click the “OK” button to the right and the
non-logical axiom is added. The 3D scene is also updated with a new edge
representing the non-logical axiom. This edge has a colour different to that
of all other edges.

5.2.5 Calculating a Reduced Lattice

In Figure 16, we see the dialog that pops up when the user selects to reduce
the lattice by clicking on the lowermost item of the Edit menu in Figure 15.
It offers two choices, the first being selected by default. The user can either
choose to reduce the lattice on the basis of non-logical axioms he has added
earlier. The second choice available is to use the heuristics built into cgol

to find a reduced lattice. Here, the user can specify a time limit as a number
of milliseconds. This time allows the heuristic to look for a reduction, see
[32] for details on the heuristics. In the lower part of the dialog, a progress
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Figure 15: The Edit Menu of the Drawing Program, Add Non-logical Axiom
Highlighted.
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Figure 16: Dialog for Computing a Reduced Lattice.
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bar can be found. It informs the user of how much of the time has already
passed and when to expect a result.
After the time has elapsed, the reduced lattice is rendered to the screen, if a
reduction could be found. In some cases, the non-logical axioms can render a
formula provable. In this case, a message is output to the user informing him
or her, that the proof search was successful and the counter-example cannot
be compressed by the given non-logical axioms.

5.3 Evolution of the Program

“Do it badly, do it quickly, make it better, and then say you
planned it.” – Tom Peters

5.3.1 Rapid Evolutionary Prototyping

To realize the functionality described in the previous subsection, a program
was developed according to the rapid prototyping approach described in [1].
This seemed the most promising choice for the following reasons. In this book
on page 56, a list of benefits of this approach compared to other development
processes, like the waterfall model, can be found. We will only quote the four
most important benefits pertaining to this project and explain how and why
they are relevant in this context.

2. Reducing risk by eliminating uncertainty. The initial system is
often created with fewer people in less time. Cycle time to proof
of concept is dramatically reduced.

Before discussing the element of uncertainty, we will start with the second
part of this quote, namely that an initial system can be created within fewer
man hours. Since this is a one-man project, the idea of saving time to create
something tangible was very attractive. Especially as the project started
off with a lot of uncertainty. It was not clear, what exactly the system has
to do and how this should be done. The general idea was that we have an
orthologic formula and we have a prover which can either prove it or find a
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counter-example in the form of a lattice. If we find such a lattice, we want
to draw it nicely onto the screen. The choice which technology to use had to
be made without much experience in the field of 3D visualization. All these
reasons lead to the next point taken from the book.

4. Incorporating a learning process into the development pro-
cess. Since we know that we are operating on incomplete knowl-
edge whenever we start a development process, rapid evolutionary
development encourages us to learn as we go, backtracking and
changing things until we get them right. It encourages rather
than stifles change. Frozen requirements cannot reflect the dy-
namics of the organization or market.

This project was started with incomplete knowledge as far as the functionality
was concerned, but this was a minor issue. Much of the technology for 3D
rendering needed to be investigated as well. Using a development process
which encourages learning, not only from the books, but most importantly
by trial and error, is really helpful. As this project combines many different
programming languages, this approach especially helps to control complexity
by developing different modules and then plugging them together one after
the other. Not all the required features needed to be known at the beginning,
but either revealed themselves when testing the prototype or asked for by
the users. As the project proceeded, new or different approaches to some
problems were discovered, which is summed up by the next point.

5. Encouraging discovery and serendipity in the development of
desired functionality. If we learn as we go, there is a much greater
chance of discovering opportunities along the way that will shape
the course of the system and possibly the course of the company.

As stated above, a development process which needed less planning at the
beginning and which is capable of incorporating things found in the course of
the project into the final product was desired. This property was extremely
helpful in this project. WilmaScope was regarded as a starting point at the
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very beginning, but found too complex. Yet, after a few months developing
a prototype with similar functionality and more familiarity with Java3D, its
usefulness was investigated again. This time it was found flexible enough
to become an integral part of the software and it has been adapted for this
special project. This would not have been possible, if the waterfall process
had been used.
Another defect of the waterfall process model is that testing is performed
at the very end of the coding phase. If a serious flaw in the software is
detected, it is very hard to “swim upstream” and back to the planning and
coding phase. The rapid prototyping approach is better suited since coding
and testing occur in short succession and all the bugs found during testing
can be dealt with in the next iteration of the evolution. This is summed up
in the following quote.

7. Reducing defects through continuous testing and evaluation
of the system components during the initial prototyping and on-
going evolutionary phases. User manuals and training can be
developed using the working prototype to ensure accuracy.

This project not only involved writing a piece of software, but also docu-
menting it in this thesis. For this reason, it was very helpful to always have
a working prototype at hand, to keep the documentation of the software
accurate.

5.3.2 Chronolgy of the Implementation

Now we will give a short chronological description of how the program evolved
over time. As stated above, the rapid prototyping approach was used. This
means that the program was developed in stages. Each time some function-
ality was added it was immediately tested thoroughly. If and only if it was
found to work satisfactorily, the next stage was entered.
The first prototype was just a simple graphical user-interface to become famil-
iar with interface development with the Java language. This non-functional
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user-interface was then extended by adding some simple Java3D rendering
facilities and simple user-interaction. This phase largely exploited benefit
4. from above as it involved most of the learning needed for the later de-
velopment. During this phase, knowledge of 3D-visualization and the data
structures in Java3D was acquired. A summary on how Java3D handles the
data needed for rendering is given in Subsection 5.4.1.
The next step was to integrate cgol to automatically generate lattices to
be drawn. This was problematic for three reasons. First, cgol has to be
called and provided with some input. Next, the output of cgol has to be
read and used. And at last, if the output of cgol is a lattice, it has to be
drawn. The interaction between the drawing program written in Java and
Java3D and the cgol program written in ANSI C is described in detail in
Subsection 5.4.2.
As soon as cgol could be called from the drawing program, it produced out-
put which had to be processed. The detailed structure of the files used for the
input to cgol and the output from cgol can be found in Subsection 5.4.3. To
faciliate the processing of the files, a parser was implemented. This parser in-
troduced JavaCC, a parser generator, as the fourth technology besides Java,
Java3D and ANSI C. A detailed description of the parser which scanned the
output of cgol to make the graph data available is given in Subsection 5.4.4.
Now was the time to implement the algorithms on lattices mentioned in Sub-
section 2.4. Still, no graphs were rendered onto the screen. To test the correct
working of the algorithms, output files had to be checked manually. As this
was quite tedious, a better way to visualize the results of these algorithms
had to be devised. A few very simple layout algorithms were implemented
and then the first graphs generated by cgol were rendered. A short sum-
mary on these algorithms is given in Subsection 5.4.5. This three dimensional
rendering required setting up all the necessary Java3D datastructures, which
was quite a challenging task. This completed the first part of the project
to basically get something onto the screen and to have a program ready for
further improvements.
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As a first improvement, the functionality to interactively add non-logical
axioms to the lattice and see how it reduces the size of the current lattice
was added. For reasons of user-friendliness, this also included the introduc-
tion of undo and redo functionality.
The next remarkable improvement was the better integration of cgol. In-
stead of calling cgol as an external program, the integration as a dynamic
library was added. This required the use of the Java Native Interface, a way
of calling existing C code from Java programs. For this to work, some of the
original code of cgol had to be adapted to work together with the drawing
program. In essence, this was the addition of a method to pass all the nec-
essary parameters from the drawing program to cgol. Difficulties here were
hidden in the details of getting the right compiler options and putting things
in the right places to be found first by the linker and then by the executing
program.
After this, an algorithm evaluation took place. An intensive literature search
resulted in several papers on different force-directed algorithms. Some of
them were related to a novel approach inspired by multi-dimensional scal-
ing like that introduced in [11]. These algorithms are implemented in the
Graphviz package, see Subsection 6.2 for the details. After some work trying
to interface the drawing program with the graphviz package, it turned out
that the layout algorithms in Graphviz did not prove as promising as they
appeared to be.
After all this, the prototype still was not satisfactory and a better alternative
was looked for. All the results from the previous chapters lead to an imple-
mentation in the form of a plugin to the WilmaScope program developed by
Tim Dwyer and discussed in detail in Subsection 5.5. This new approach was
very promising, since much of the already quite matured prototype could be
adapted to work with WilmaScope. It required only minor changes in the
original source code of WilmaScope and little changes to take the prototype
apart and put it back together to work with WilmaScope.
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Figure 17: The General Structure of a Java3D Scenegraph.

5.4 Description of the Prototype

Since the prototype was an integral part to develop and test all the ideas, a
description is given in the remainder of this subsection.

5.4.1 The Java3D Datastructure

All the data needed to render 3D objects to the screen is usually referred to
as scene. This includes coordinates for the objects to be drawn, their surface
materials, lighting and so on. This data can be organised in different ways.
Java3D—like many other 3D programming languages—stores this informa-
tion in a scenegraph. The structure of such a graph is depicted in Figure 17.
This scenegraph is a collection of Java objects structured as a rooted tree.
To render this scene, Java3D traverses this tree and collects all the necessary
data. The root of a scenegraph is a VirtualUniverse object which has a
Locale as its child.
A Locale can have many children but usually has only two, one subtree for
all the data of the 3D objects and lights, and another one for the data used
for computing the type and position of the viewer within the 3D universe.
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Figure 18: The General Structure of the Content Branch.

The subtree holding the data of the 3D objects is to the left, labelled as
Content Branch, and the subtree storing the information on the view is to
the right, labelled View Branch. They have a cloud-like shape to indicate
that they do not consist of single objects, but a whole collection of objects.
More details on the structure of the Content Branch and View Branch can
be found in the following paragraphs. A more detailed introduction to this
subject is presented in [27] and [2].

Content Branch The root of the Content Branch is a BranchGroup. This
Java3D object is added as a child to the Locale object depicted in Figure 17
in place of the cloud-shape labelled Content Branch.
This BranchGroup is depicted at the very top of Figure 18. The name of
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the variable used to refer to this BranchGroup is given to the left. This
BranchGroup can store several references to other objects in the scene. One
such object is its right child labelled Light Branch. This cloud shape is a
placeholder for many objects storing information on the lights to illuminate
the scene. These lights are set up at start up and not altered later on. They
consist of one ambient and one directed light source. They are necessary to
produce specular effects on the spheres to create a notion of depth in the 3D
scene.
The left child is a TransformGroup which is used to rotate the whole scene.
All the objects in the scene which need to be rotated are children of this
object. Only the lights need not be rotated, therefore they are not children
to this TransformGroup. The vertexRoot holds references to all the Vertex
Branches in the scene. A Vertex Branch is a very simple structure which
contains a Sphere object and a TransformGroup object to put the sphere in
the right place. Similar to this structure are the Edge Branches to the right.
They consist of a Cylinder object instead of a sphere to represent the edge
and a TransformGroup to position the edge. To keep things organized, all
the edges are children of the BranchGroup called edgeRoot to the right. The
middle child of transformRoot labelled Text Branch is a structure similar to
vertexRoot and edgeRoot. It consists of a BranchGroup to hold references
to a collection of structures similar to the Text Branches. They each con-
tain a text object representing the label of a vertex and a TransformGroup

to position the label.
The transformRoot has another child which does not show up in the dia-
gram. It is a Behavior object that controls the angular speed of the rotation
and listens for events from the GUI to start or stop execution of this behav-
ior.
The above separation of edges and vertices has another reason. The user
wants to interact with the scene, pick vertices to draw an edge between them
or switch labels on and off. The picking in Java3D is realized in a way that
the scenegraph below a given object is traversed and a check is performed
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whether the current object was picked by the mouse click. This check is com-
putationally expensive and thus the fewer checks have to be performed, the
more responsive the user-interface stays. This is the main reason to seperate
pickable vertices from non-pickable labels and edges.

View Branch The Content Branch holds information on the objects which
populate a 3D scene. This branch of the scenegraph stores information on
the view a virtual viewer has of the scene. This includes where he or she
is, the direction he or she is looking in and how this view is rendered to the
screen. The View Branch depicted as a cloud shape in Figure 17 is a very
simple structure. It has a BranchGroup as its root which is added as a child
to the Locale object. This BranchGroup has a TransformGroup as its child
which positions the viewer and the line of sight. This TransformGroup has
a reference to the ViewPlatform which stores information on the viewer and
how the scene the viewer observes should be rendered to the screen.
Since the picking described above is dependent on the position of the viewer,
the object controlling the picking process is added as a child of the view
TransformGroup.

5.4.2 Communication Between cgol and the Drawing Program

Since the drawing program is written in Java and Java3D and cgol is written
in ANSI C, the interaction between the two is a bit problematic. It needs
more than just a method call to pass parameters and to get a return value.
The first way to call cgol from the drawing program was to start it as an
external process and wait until it has finished. The communication between
the drawing program and the external process is realized via four temporary
files.

• A file for the input formula, which is considered.

• A file for the non-logical axioms to reduce the size of the resulting
lattice.
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• A file for the lattice as the result of a failed proof search.

• A file for the saturation which contains details of the proof search.

The files involved have already been shown in Figure 5. Single arrows indi-
cate that a file is provided by the drawing program and read by cgol. Double
arrows indicate that the drawing program provides this file, cgol writes to
it and after cgol has terminated, it is processed by the drawing program.
These files all have a defined structure so they can be constructed and parsed
easily. Details on the structure of these files can be found in Subsection 5.4.3.
The program cgol demands different input files. First and foremost, it needs
a file which contains the input formula. This file has to be supplied by the
user and the drawing program does not perform any computation on it. The
second file which is needed is an output file to which the cgol program can
write the lattice constituting the counter-example if the formula was not
provable. This is a temporary file supplied by the drawing program. This
file is later parsed to obtain the input to the drawing program. A grammar
specifying the structure of this file can be found in Subsection 5.4.3. The
temporary file denoted by Saturation File contains the structure of the
proof search performed by cgol. It can be used to find out if a proof was
found or not. If a proof was found, it contains the line “PROOF FOUND!”.
If this line is contained, a message has to be delivered to the user. Besides
the search for proofs, cgol can be used with non-logical axioms to reduce the
size of a lattice obtained as a result of a failed proof search. These axioms
are provided in the file denoted by Non-logical Axioms File.
The interface to cgol is achieved by two classes. The FileHandler class
handles the creation and deletion of temporary files used to communicate
with cgol and retrieves input files and hands them to the parser or to cgol.
The class to invoke the cgol program from the Java user-interface is called
CgolInterface.class. Its method runcgol(File infile, File outfile,

File axiomFile) is the main interface to cgol. It gives the files to read in-
put from, write output to and also the file where non-logical axioms can be
found—which is also provided by the FileHandler—to the cgol program.
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In the first phase of the prototype, the Java UI creates a new external process
to run cgol and waits for it to complete. Then it reads the output file in
order to draw the new lattice. In the second phase as described above, cgol
was called as a dynamic library.

5.4.3 Input and Output Files

The lattice drawing program recognizes two types of input files which are
distinguished via the suffix of the files.
The input file to cgol which contains the input formula to obtain a lattice
has the ending .in and the grammar specification is given in Figure 8. This
structure of the input file may seem strange because of the right hand side of
the first production. This less than relation is introduced due to the structure
of the sequents cgol works on. In Definition 2.4 of [32], we find that this has
the form of a 1-1-Sequent.

A 1-1-sequent is an ordered pair of the form φ ` ψ, where φ
and ψ are formulas. The formula φ is the only formula of the
antecedent and ψ is the only formula of the succedent of the 1-1-
sequent.

The left formula in the production is φ and the right is ψ. If the left hand
side formula is omitted—as allowed by the grammar—it is assumed to be
true. For reasons of practicality, ` is replaced by < in the input file. The
symbol ∼ indicates negation, where & and | are replacements for the binary
connectives ∧ and ∨, respectively.
The last file needed for the communication between cgol and the drawing
program is a file holding the non-logical axioms. This file usually has the end-
ing .nla and has the format given in Figure 19. Two non-terminal symbols
do not have productions given here. The non-terminal Spaces expands to one
or more terminal whitespace characters, excluding newline characters. These
characters are treated specially and are represented by the non-terminal New-
line, which expands to exactly one terminal newline character.
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Axiomfile → Axiomlist
Axiomlist → ( ε | (Axiom)+ )
Axiom → Index Space Index Newline
Index → (–)? ( [0–9] )+

Figure 19: Grammar for a File Containing Non-logical Axioms.

This file is needed for the lattice compression procedure implemented in cgol.
For the following reason, the top and bottom elements top and bot of lat-
tices do not appear in this file. Adding non-logical axioms that contain these
minimal and maximal elements does not add any useful information. For all
elements x of the lattice, it holds by definition that bot ≤ x and also x ≤
top. Adding these two relations as axioms does not help the compression
procedure to reduce the size of the lattice. This procedure tries to reduce
the lattice by finding equivalence classes of formulas based on non-logical
axioms.
The drawing program accepts another type of input file which has the ending
.lat. This file—in contrast to those mentioned above—is not passed on to
cgol, but handled directly by the drawing program. If an input file with
the ending .in is selected and cgol cannot find a proof, then the counter-
example of cgol is output to the drawing program in the same .lat format.
Its grammar specification is given in Figure 7. Formula is specified in the
grammar of the .in input file in Figure 8. Space is a non-terminal which
expands to one or more terminal whitespace characters except the newline
character. Although it is possible to have an input file which contains no
vertices but a Subformulalist, it does not make much sense. In this case, no
lattice is drawn and the subformulas cannot be matched to any vertices.

5.4.4 Parsing cgol Output

A parser is important to read the output file of cgol. Since the whole pro-
gram is written in Java, lex and yacc are of no use. Yet, with JavaCC there
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is a program at hand which—for our purpose—has the same functionality. It
constructs a top-down recursive descent parser from a given annotated gram-
mar specification. This parser belongs to the class of LL(k) parsers where
the look-ahead k is equal to 1 for performance reasons. The specification is
derived from the interface definition in [32]. The input to JavaCC is located
in the file called LatParser.jj. After processing it with JavaCC, new files
are created. The most important one of these is LatParser.java, which is
the parser itself. Along with it, the additional files SimpleCharStream.java,
LatParserConstants.java, LatParserTokenManager.java, Token.java,
ParseException.java, and TokenMgrError.java are created automatically.
For more detailed information on how the parser generator works, please see
the URL http://javacc.dev.java.net/.

5.4.5 Simple Layout Algorithms

To get all the vertices layouted as quickly as possible, a very simple layout
algorithm was implemented. Since all vertices were assigned a level by Al-
gorithm 1, this level was used as the z-coordinate. The other coordinates
were calculated according to the following formulas where n is equal to the
number of vertices at the same level and i = 0, ..., n − 1. All the vertices
at the same level are arranged in a circle with equal angle φ between two
neighbouring vertices.

x = n× sin (iφ)

y = n× cos (iφ)

φ =
2π

n

5.5 WilmaScope

In this subsection, we will give a short overview of the features of WilmaScope
and justify the use of this program as a basis for the lattice drawing program
instead of the prototype developed in earlier stages of this project. A more
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detailed description of WilmaScope can be found in [19] or [4].
When creating WilmaScope, Tim Dwyer aimed to achieve the following goals.

• Create “a general purpose 3D visualization system”.

• “Provide easy-to-use components which can be employed by future soft-
ware across different application domains”.

• Develop software “that is flexible, interactive and easily extensible”.

• “Provide these benefits as widely as possible” by releasing the software
under a free software licence.

All the above points make it a good framework to develop an application to
display lattices. With very little changes in the original WilmaScope code,
it was possible to extend the application to work together with cgol. A
great deal of this ability to be extensible is due to the way WilmaScope is
designed. It follows the model-view-controller architecture which aims to
separate the underlying data model from parts of the program which manip-
ulate the model and other parts which are needed to render the graph to the
screen. A schematic diagram of this approach can be found in Figure 20. To
accomodate for some WilmaScope specific needs, the Controller and Model

parts are split up into smaller parts. Still the general structure and the mode
of interaction as indicated by the arrows connecting the components is visible.

This architecture makes it possible to change only a small part of the code
in order to make it work together with parts of the prototype which are
needed to interact with cgol. All the code that needed adaption belongs
to the Controller part located in the upper part of Figure 20. The code
constituting the View and Model parts of the WilmaScope program could be
left unchanged.
The changes made in the WilmaScope source code pertain to the GUI and
FileHandler parts of the Controller. The GUI was changed such that the
additional menu items to manipulate lattices was added. The FileHandler
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Figure 1: This diagram summarises the various ways in which WilmaScope may be adapted for use in
applications.

• New layout algorithms can also be added as
plug-ins by extending the WilmaScope Lay-
outEngine framework. Such layout algorithms
can use the WilmaScope graph data structures
or they can use external graph data-structure li-
braries such as Leda6 or yFiles. They can also
potentially use other programs such as DOT (see
Section 4).

• Developers can create stand-alone applications
which use the WilmaScope GraphCanvas in a
custom GUI.

Note that none of these methods require devel-
opers to understand, modify or recompile existing
WilmaScope source code. In this paper we discuss
the WilmaScope architecture and design philosophy
that makes this extensibility possible.

3 Architecture

As shown in Figure 2, WilmaScope is based around
a model–view–controller architecture in that classes
that maintain the underlying data-model (in this case
a clustered graph) are decoupled from both:
• classes that allow external entities to update this

graph model;

• and classes which create the visual representation
of the graph.

This decoupling of the model, view and controller
aspects of the graph visualisation architecture means
that new:
• graph element glyphs;

• graph layout algorithms;

• and algorithms for generating graphs automati-
cally

6http://www.algorithmic-solutions.com/

Figure 2: The WilmaScope Model–View–Controller
architecture.

can all be created as plug-in components which can
be loaded into WilmaScope at run-time. There-
fore, applications which require such custom com-
ponents can be developed for WilmaScope without
any modification or even recompiling of the WilmaS-
cope source. Further, since WilmaScope is released
into open-source via the Lesser Gnu Public License
(rather than the full GPL), the source code for plug-
ins containing confidential intellectual property does
not need to be released back into open source. De-
velopers need only compile their new plug-ins, make
them known to WilmaScope via the WilmaScope
control panel and they will be loaded at run-time.

Figure 3 shows the hierarchy of classes which re-
alise the model and view components. The graph
package contains classes which define the graph
model. A WilmaScope graph defines an object-
oriented model for a clustered graph with a recur-
sive class definition. A graph is defined as a Cluster

Figure 20: The WilmaScope Model-View-Controller Architecture.

part was adapted such that input files with the endings .in and .lat could
be passed to and processed by cgol.
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6 Comparison With Existing Programs

In this section, two other programs to display graphs are compared to the
program described in the previous sections. This list is by no means exhaus-
tive as there are more than these two programs available for drawing graphs.
Yet, these two seemed to be the two most important programs for drawing
lattices. This is the reason for evaluating them in the course of this thesis.

6.1 LatDraw

First and foremost, the program of R. Freese has to be mentioned which
produces quite pleasing drawings, but it has some important drawbacks, as
we will point out below. A Java Applet of this program for drawing lattices
is also available1. In Figure 21, we see two different versions of the McCune 1
lattice produced by the cgol program as a counter-example to Equation (8).
These pictures are obtained by different angles of rotation about the verti-
cal axis. Figure 21(a) is a very bad example of the layout. In the center
of the picture, there are many edge crossings and some vertices are hidden
behind others. This makes it very hard to discern which edges belong to
which vertex. Figure 21(b) is a better picture of the same lattice. Here, only
one vertex is hidden by another and there are fewer edge crossings than in
the above picture. Still, these pictures are not very pleasing. The applet
does not support zooming in or out of the scene, consequently, the size of
the lattice that can be viewed is rather limited. All what is supported is to
automatically scale the lattice to fill the given area. This is problematic as
indicated in Figure 21(a), since larger lattices clutter the picture and make
it hard to see the structure of the lattice.
From the usability point of view, Freese’s applet does not support direct
interaction with cgol or interactively adding non-logical axioms.Using this
program as a starting point to build in interaction with cgol was consid-
ered, but the poor user-interface and the fact that applets cannot use ANSI

1Available at: http://www.math.hawaii.edu/~ralph/LatDraw
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C libraries suggested not to implement an interface between cgol and the
applet and look for other alternatives. As was pointed out, WilmaScope is
the better choice.
The last drawback we want to mention is that the grey background unnec-
essarily reduces the contrast between nodes, edges and the background. The
drawing is not finely grained either and thus the edges do not look very
pleasing. Furthermore, it does not make use of colours.

6.2 Graphviz

The Graphviz library2 by E. Gansner including the dot and neato layout
engines seemed to be quite promising but was found to perform rather poorly
on lattices in this context. The dot layout could not be used since it only
produces two-dimensional layouts. If one looks for 2D-layout, then it is a
good choice. The other layout engine neato produced three-dimensional
drawings of lattices. Unfortunately, it is not possible to constrain vertices to
certain levels. These drawings then lack the usual layering expected in Hasse
Diagrams. An adaption of the algorithm did not seem practical. As a matter
of user-friendliness, it was not a feasible solution to build an application
relying on a seperate installation of the Graphviz library when WilmaScope
provides everything that is necessary to render graphs. A screenshot of the
same lattice as in Figure 21, this time rendered with dot from the Graphviz
package can be seen in Figure 22. Note that the dot drawing, as opposed
to the Freese ones, is aligned top to bottom instead of bottom to top. If we
compare this picture to the ones produced by Freese’s applet, then it does
not show any symmetries or other structural properties. It only has the right
layering. The graph in Figure 22 is not very large or very dense. A problem
that is not readily visible here, but occurs in larger and denser graphs, is
that dot may produce confusingly routed edges and many edge crossings.

2Available at: http://www.graphviz.org
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(a) A Bad Drawing.

(b) A Better Drawing.

Figure 21: McCune 1 Lattice Drawn by the Freese Applet.
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Figure 22: McCune 1 Lattice Drawn by dot.
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7 Conclusion

In this thesis we have investigated a way to render lattices which are the
result of a failed proof search in orthologic to the screen three-dimensionally.
For this reason, lattice theoretic and algorithmic aspects were considered.
Psychological and physiological properties of the intended users were also
considered. According to insights gained from intensive study of the litera-
ture, a drawing system was implemented—first as a prototype and then as
an extension to an existing program. This system was then compared to the
two most important programs in the field of lattice drawing. The results
obtained from this comparison are quite promising.
This system is a first attempt to create a program which works together with
cgol and renders the results in three dimensions. It performs quite well,
yet there is ample space for improvements. New layout algorithms could be
added to better convey the structure of lattices. The algorithm used in Lat-
Draw performs quite well and since it does 3D-layout, it could be integrated.
Beside the layout part, also the rendering component of the program can be
improved. Some parts of WilmaScope might be removed, since they are not
really needed for manipulating lattices.
This thesis involved very little testing of the user-interface. Only a few per-
sons had access to the program, actively used it and provided feedback for
improvements. Future work might involve more extensive testing and im-
provement of the user-interface. It would also be beneficial to test this soft-
ware in a virtual or augmented reality environment where an even greater
degree of three-dimensionality can be achieved.
Another improvement is tighter integration of cgol and the drawing pro-
gram. This can be achieved by replacing the way these two pieces of soft-
ware communicate with each other. It would be interesting to see a Java
implementation of cgol to compare it to the ANSI C version. This would
be interesting in terms of performance. Then the whole software could be
distributed as a Java Applet, which would make it more accessible and easier
to use.
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The goal of creating a piece of software which makes the use of cgol a great
deal easier and convenient was achieved. How great the benefits really are
has yet to be determined.

It was also pointed out in Subsection 2.6 that this drawing program may
be useful to display concept lattices. This needs some further investigation
and some minor adjustments of the software.
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