
Master’s Thesis

Access Control Policy Editor
and Analyzer for Policies

on a Business Level

carried out at the
Institute of Computer Aided Automation

Automation Systems Group
Vienna University of Technology

under the guidance of
Dipl.-Ing. Dr.techn. Christopher Krügel

and
Dipl.-Ing. Dr.-Ing. Marcel Graf

as advisor at the IBM Zurich Research Laboratory

by

Franz-Stefan Preiss
Kesselbodengasse 47
3910 Zwettl, Austria

Date Signature

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

Access control is extensively used as security technology to prevent unautho-
rized access to protected information and system resources in accordance with
a policy. However, the formulation of such policies is a complicated task and
requires a lot of technical knowledge. This task can therefore only be performed
by security experts but not by the persons that are familiar with the business
domain for which the access shall be controlled.

This thesis introduces therefore a policy language that expresses the access
control behavior on a higher abstraction level — on the business level. The level
elevation is achieved by formulating the policies around the data itself and its
meaning to the business. The business meaning is introduced by formalizing
business concepts and classifying the data according to these concepts.

On top of this new policy language, this thesis proposes a number of analy-
sis algorithms that may be performed by the policy authors in order to answer
common questions that arise during the authoring process and to simulate an
evaluation of the policies. Moreover, since the authoring of access control poli-
cies is not a task that is performed by a single person, a policy delegation
mechanism is proposed that allows multiple authors to formulate their policies
collaboratively. In order to enable an enforcement of the policies in an existing
IT infrastructure without making any changes to the infrastructure, it is shown
how the policies on the business level are translated into the standardized policy
language XACML.

Finally a prototype of a user friendly policy editor and analyzer is created
that puts all the pieces together in one tool. This tool enables non-technical
policy authors to formulate policies on the business level collaboratively and to
perform the introduced analysis algorithms on the policies. To facilitate the
formulation of the policies for the non-technical authors, significant emphasis
was put on the usability aspect of the prototype.

1

Kurzfassung

Zugriffskontrolle auf Basis von bestimmten Regelwerken, sogenannten Policies,
ist eine weit verbreitete Technik um unautorisierten Zugriff auf geschützte Infor-
mationen und Systemressourcen zu verhindern. Die Formulierung von solchen
Policies ist eine schwierige Aufgabe, welche ein hohes Maß an technischem
Wissen erfordert. Diese Aufgabe kann demnach nur von Sicherheitsexperten
durchgeführt werden, aber nicht von den eigentlichen Verantwortlichen, die mit
dem jeweiligen Geschäftsbereich vertraut sind, in dem der Zugriff kontrolliert
wird.

Diese Arbeit stellt daher eine neue Sprache zur Formulierung von Poli-
cies vor, welche das Zugriffsverhalten auf höherer Abstraktionsebene, auf der
Geschäftsebene, ausdrückt. Die Abstrahierung wird dadurch erreicht, dass die
Policies nun mit Hilfe von Begriffen formuliert werden, die in dem jeweiligen
Geschäftsbereich geläufig sind.

Auf Basis dieser neuen Sprache wird eine Reihe von Analysealgorithmen
eingeführt, die den Autoren von Policies dabei helfen, Fragen zu beantworten,
die beim Verfassen der Policies häufig auftreten, und die ihn den Entscheidungs-
findungsprozesses für einen Zugriff auf Informationen simulieren lassen. Da das
Verfassen von Policies eine Aufgabe ist, die meist von mehreren Personen in
Zusammenarbeit durchgeführt wird, beschreiben wir einen Mechanismus zur
Delegierung der Zugriffskontrolle. Damit die Policies auf der Geschäftsebene
auch in bereits bestehenden IT Infrastrukturen eingesetzt werden können ohne
Änderungen an dieser Infrastruktur vornehmen zu müssen, wird gezeigt, wie
eine Übersetzung der Policies in die standardisierte Sprache namens XACML
ausgeführt werden kann.

Schließlich wird ein Prototyp eines Policyeditors gezeigt, welcher alle zu-
vor erwähnten Konzepte und Funktionen in sich vereint. Dieses Werkzeug er-
möglicht es auch Personen, die nicht über technisches Wissen verfügen, Policies
auf der Geschäftsebene zu Verfassen und die erwähnten Analysefunktionen zur
Beantwortung auftretender Fragen durchzuführen. Um für die technisch nicht
versierten Autoren den Erstellungsprozess der Policies so einfach wie möglich
zu gestalten, wurde bei dem erstellten Editor besonders Wert auf die Benutzer-
freundlichkeit gelegt.

2

Acknowledgements

I want to thank Christopher Krügel, my professor at the Vienna University of
Technology, who immediately agreed in supervising me without even knowing
me personally and although I stayed in Switzerland during the time I was work-
ing on the thesis. I am very grateful for the support of my study abroad and
for the quick and uncomplicated handling of all the administrative issues I had
to deal with to finish my study.

Many thanks to Marcel Graf, my advisor at the IBM Research Laboratory
in Zurich, for his guidance and support in introducing me to scientific research.
Thank you for all the helpful discussions we had and for the excellent feedback
you gave me during my time in the lab.

The friends that I found during my stay in Switzerland deserve my gratitude
as well. I sincerely have to thank all of you for the great time I was allowed to
experience. Especially I have to thank my friends at IBM for contributing to
such a pleasant and comfortable work environment and for all the fun we had
at our non work related activities. Alexandru, Caroline, Dieter, Lydia, Martin,
Mathias, Rafik and Urko, thank you!

Furthermore, I have to thank my colleague and very good friend Christian
Distelberger for going through all the pain of the computer science study to-
gether with me and for the constant push he gave me that enabled us both to
finish the study in that short time.

Finally I want to thank my extraordinary parents. I am very grateful for
giving me the opportunity to receive so much education, for supporting me in
everything I did during the last twenty four years and for always being there
when I need something. Mum and Dad, thank you very much, without you I
would not be where I am.

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Contributions of this Thesis . 10
1.3 Thesis Outline . 11

2 Related Work 12
2.1 Data Centric Security . 12
2.2 eXtensible Access Control Markup Language 14

2.2.1 XACML Architecture . 14
2.2.2 XACML Policy Language 15

2.3 Role Based Access Control . 17
2.3.1 Core RBAC . 17
2.3.2 Hierarchical RBAC . 18

2.4 Resource Description Framework 19
2.5 Related Tools . 20

2.5.1 IBM P3P Policy Editor 20
2.5.2 UMU XACML Editor . 20

2.6 Access Control Lists vs. Data Classification 21
2.7 MAP vs. Data Centric Security 22
2.8 User Interface Issues . 23
2.9 Intentional Access Management 25
2.10 Policy Evaluation Issues . 25
2.11 Summary . 26

3 Access Control for Data Centric Security 27
3.1 Introduction . 27
3.2 Business Level Policies . 28

3.2.1 Reduction of Policy Quantity 29
3.3 Basic Concepts . 29

3.3.1 Resource . 29
3.3.1.1 Resource Attributes 30

3.3.2 Classification Scheme . 30
3.3.3 Subject . 31
3.3.4 Role . 31

3.3.4.1 Role Assignment. 31
3.3.5 Action . 32

4

CONTENTS 5

3.4 Data Classification . 32
3.4.1 Label Propagation . 32

3.5 Policy Author Collaboration . 33
3.5.1 Policy Delegation . 33

3.6 Business Level Policy Language 34
3.6.1 Business Level Rule . 34

3.6.1.1 Business Level Condition 35
3.6.2 Business Level Target . 35
3.6.3 Business Level Policy . 36
3.6.4 Business Level Policy Set 36

3.7 Matching Semantics . 37
3.7.1 Subject Match . 37
3.7.2 Action Match . 37
3.7.3 Resource Match . 37

3.8 Hierarchy Semantics . 38
3.8.1 Role Hierarchy Semantics 38
3.8.2 Resource Hierarchy Semantics 38
3.8.3 Label Hierarchy Semantics 39

3.9 Policy Application . 39
3.9.1 Business Level Rule Application 39
3.9.2 Business Level Policy Application 39

3.10 Scenarios . 40
3.10.1 Common Roles, Subjects and Labels 40
3.10.2 Physical Access Control 40
3.10.3 Travel Expense Data . 43
3.10.4 Backup Data . 45
3.10.5 Discovering Issues in the Policies 45
3.10.6 Policy Delegation . 46

4 Analysis Algorithms 47
4.1 Introduction . 47
4.2 Business Level Decision Request 47

4.2.1 Decision Rendering on XACML Level 49
4.2.2 Use of Roles instead of Subjects 49
4.2.3 Use of Labels instead of Resources 50
4.2.4 Use of Roles and Labels 51
4.2.5 Policy Application . 52

4.3 Contribution Analysis . 52
4.4 Policy Override Detection . 54
4.5 Authorization Analysis . 55

4.5.1 Subject Sets . 56
4.5.2 Role Sets . 56
4.5.3 Action Sets . 56
4.5.4 Resource Sets . 57
4.5.5 Label Sets . 57

4.6 Coverage Analysis . 58

CONTENTS 6

5 Implementation of Analysis Algorithms 60
5.1 Policy Translation . 60

5.1.1 Label Concept . 61
5.1.2 Policy Delegation Concept 62
5.1.3 Role Concept . 63
5.1.4 Conditions . 64
5.1.5 XACML Policy File Size 64
5.1.6 Example Rule . 64

5.2 Formulation of Business Level Decision Request 66
5.2.1 Example Request . 67

5.3 Contribution Analysis . 68
5.4 Policy Override Detection . 69
5.5 Authorization Analysis . 70

6 Policy Editor and Analyzer 71
6.1 Design . 71

6.1.1 Eclipse Rich Client Platform 71
6.1.2 RDF Store . 73
6.1.3 Jena - Semantic Web Framework for Java 73
6.1.4 IBM XACML Light Library 76
6.1.5 Sun XACML Implementation 76
6.1.6 Assumptions . 76

6.2 Perspectives . 77
6.3 Policy Authoring and Review . 77

6.3.1 Author Authentication . 79
6.3.2 Policy Authoring . 79
6.3.3 Rule Authoring . 81
6.3.4 Policy Review . 82

6.3.4.1 Policy Override Detection 85
6.4 Domain Browsing . 87
6.5 Data Classification . 88
6.6 Policy Simulation . 91

6.6.1 Contribution Analysis . 92
6.7 Authorization Analysis . 93

7 Conclusions and Future Work 96
7.1 Conclusions . 96
7.2 Future Work . 97

A Example XACML Policy 99

Bibliography 107

List of Figures

2.1 The Data Centric Security Model [13] 13
2.2 XACML Architecture . 14
2.3 XACML Policy Language Model [10] 16
2.4 Hierarchical RBAC [1] . 18
2.5 RDF Graph of a Single RDF Statement [20] 19
2.6 IBM P3P Policy Editor . 21
2.7 UMU XACML Editor . 22

3.1 Abstract Level Elevation . 28
3.2 Concrete Level Elevation . 29
3.3 Business Level Policy Language Model 35
3.4 Organization Hierarchy . 46

4.1 Decision Request Evaluation . 48

6.1 Policy Editor Components . 72
6.2 Author Authentication . 79
6.3 Policy Authoring and Review Perspective 80
6.4 Business Level Policy Editor . 81
6.5 Business Level Rule Editor . 82
6.6 Subject Dialog . 83
6.7 Condition Selection . 83
6.8 Grouping in Policy Explorer View 84
6.9 Rule Outline . 85
6.10 Policy Override Detection . 86
6.11 Domain Browsing Perspective . 88
6.12 Data Classification Perspective 89
6.13 Data Classification Outline Views 90
6.14 Policy Simulation Perspective . 92
6.15 Contribution Analysis View . 93
6.16 Authorization Analysis Perspective 94
6.17 Authorization Analysis Result View 95

7

List of Tables

3.1 Common Role Scheme: JobType 40
3.2 Common Role Scheme: JobDuration 41
3.3 Common Role Scheme: WorkComunity 41
3.4 Common Role Scheme: SpecialPermissions 41
3.5 Common Subjects . 41
3.6 Common Classification Scheme: RoomType 42
3.7 Common Classification Scheme: DataOrigin 42
3.8 Physical Access Control: Resources 43
3.9 Physical Access Control: Business Level Rules 44
3.10 Travel Expenses: Resources . 44
3.11 Travel Expenses: Business Level Rules 44
3.12 Backup Data: Resources . 45
3.13 Backup Data: Business Level Rules 45
3.14 Final Policy by Administration Office of Canton Zurich 46
3.15 Recommended Policy by IBM Switzerland Headquarters 46

6.1 DCSM Ontology: RDFS Classes 74
6.2 DCSM Ontology: RDF Properties 75
6.3 Perspectives and the corresponding Workbench Parts. An (i)

entry denotes that the workbench part is available initially in
the corresponding perspective whereby a (d) entry denotes that
the part is shown on demand. 78

8

Chapter 1

Introduction

This thesis describes the specification and implementation of an access control
policy editor and analyzer for policies on a business level. The goal of this policy
editor is to enable non-technical decision makers to author and analyze access
control policies, until now a domain reserved to security experts. Therefore the
policies are not any more formulated on a — low — system level, but on a —
higher — business level. The idea to build such a policy editor came up within
the Data Centric Security project at the IBM Zurich Research Laboratory.

1.1 Motivation

Access control is extensively used as security technology to prevent unautho-
rized access to information and system resources in accordance with a policy.
Different models have been developed and studied throughout the last years to
construct and manage access control systems. The vocabulary that is used by
all these existing access control models to formulate the corresponding policies is
hard to understand for non-technical policy authors. In February 2005, the Or-
ganization for the Advancement of Structured Information Standards (OASIS)
approved the eXtensible Access Control Markup Language (XACML) 2.0 [10].
XACML is amongst others a standard language to express access control poli-
cies. Nowadays more and more companies and institutions follow this standard
to formulate their access control policies, but still security experts are needed to
formulate these standardized policies. This is because the XACML policies are
rich XML-based documents with complex syntax and it is very difficult and time
consuming to write error free XML documents by hand, especially for people
who do not know the syntax well. To support the security experts in authoring
their policies, different policy editors may be used to speed up and facilitate the
authoring process and avoid errors in the policy syntax. However, the policy
author must be very familiar with the concepts of the underlying policy lan-
guage in order to use the policy editor.

Therefore, on the one hand this thesis provides a policy language that may
not only be used by security experts but also by authors that are familiar with
the business concepts of the domain for that the access shall be controlled. In

9

CHAPTER 1. INTRODUCTION 10

this new language the policies are formulated around the data — that is con-
tained in the protected resources — itself and its meaning to the business. The
business meaning is introduced by formalizing business concepts and classifying
the resources according to these concepts. The new policy language elevates
the policies from the technical level to the business level and makes it therefore
understandable for non-technical policy authors. The level elevation is achieved
by allowing subjects to be addresses in terms of roles, and resources in terms
of labels that capture their business meaning. On top of the policy language,
the thesis defines different analysis algorithms that may be performed by the
policy authors in order to answer a number of questions that arise during the
authoring process and to simulate the evaluation of the policies in an XACML
environment. Because policy authoring is not a task that is performed by a sin-
gle person or a single institution within an organization, furthermore a policy
delegation mechanism is proposed that allows to delegate or override specific
access control behavior within this organization. In order to deploy the new
policy language in existing IT infrastructure without making any changes to
the infrastructure, a translation from policies on the business level to XACML
is defined later on. This allows the formulation of policies on a business level
while the enforcement can take place in any domain that supports the XACML
standard.

On the other hand, a user friendly prototype of an policy editor and analyzer
is presented in this thesis, which puts all the theoretical work of the thesis into
practice. This tool enables non-technical policy authors to formulate policies in
the new policy language and to analyze them according to the specified anal-
ysis algorithms. Since the policy authoring tool is primarily built to be used
by non-technical authors instead of security experts that have high technical
knowledge, significant emphasis was put on the usability aspect of the policy
editor. It is intended to give business users, who have no technical skills but
high-level knowledge of the business domain instead, an appealing tool to ex-
press access control policies while using concepts they are familiar with. The
analysis algorithms that have been integrated in the tool support the user in
better understanding the current state of the policy repository as well as the
effects that result from the delegation of access control behavior. Moreover the
implementation of the policy editor and analyzer is intended to show that the
business level policies are based on sound and easily understandable concepts.

1.2 Contributions of this Thesis

The major contributions of this thesis are the following:

− Using a labeling concept — whereby business meaning is attached to re-
sources that shall be protected — together with a role concept to express
access control behavior on a business level.

− Creating a policy language model to formulate policies on the business
level.

CHAPTER 1. INTRODUCTION 11

− Introducing a policy delegation mechanism that allows policy authors to
formulate their policies collaboratively.

− Specifying and implementing analysis algorithms for this new policy lan-
guage model to answer questions that arise during an authoring process
and to simulate an evaluation process of the policies in an XACML envi-
ronment.

− Defining and implementing a translation between policies on a business
level and standardized XACML policies.

− Building a user friendly prototype that supports the authoring and anal-
ysis of access control policies on the business level.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2 reviews the background of the policy editor and analyzer by introduc-
ing IBM’s Data Centric Security project, the eXtensible Access control
Markup Language as well as Role Based Access Control and the Resource
Description Framework. Moreover, it summarizes the research findings
that that have been made in the domains that are related to the devel-
opment of the policy editor and analyzer. It reviews existing ideas and
concepts related to data classification and discusses design principles and
guidelines for the building of user interfaces for systems in the security
domain.

Chapter 3 specifies the underlying concepts of policies on a business level. It proposes
a language to formulate the policies on the business level and defines
appropriate semantics to interpret them.

Chapter 4 introduces and formalizes a number of analysis algorithms that can be
performed on a repository of policies on a business level in order to an-
swer questions that arise during the authoring process, to see the effects
of policy delegation and to simulate the evaluation of the policies in an
XACML environment.

Chapter 5 describes how the analysis algorithms introduced in chapter 5 can be im-
plemented. Moreover, it discusses how a translation from policies on a
business level to a standardized XACML policy can be done.

Chapter 6 presents the implementation of the actual policy editor and analyzer. It
describes the solution components that have been used to implement the
policy editor and it provides detailed insight into the developed user in-
terfaces.

Chapter 7 gives the conclusions and discusses the future work.

Chapter 2

Related Work

This chapter provides general background information about underlying con-
cepts for the policy editor and analyzer that is proposed in this thesis, it in-
troduces Data Centric Security which is the base of the main ideas that are
proposed in this thesis, and it contains a summary of tools and research find-
ings that are related to the policy editor.

At first Data Centric Security, XACML, RBAC and RDF are described.
Then two policy editors and their capabilities as well as a a policy analysis and
verification tool are discussed. The next section discusses why it is better to
use the concept of data classification to control access than to use access control
lists. Afterwards a project called MAP that uses a labeling concept is compared
to Data Centric Security. Later on a number of articles are discussed whose
authors propose concepts of access control where namespaces are no longer a
restrictive factor. At last some ideas related to user interfaces for systems in
the security domain are discussed, which are relevant for the implementation of
the policy editor.

2.1 Data Centric Security

Today adapting the IT infrastructure to become compliant with changing regu-
lations and guidelines is slow and costly. This is because it is hard for enterprises
to correctly configure security mechanisms such as access control that governs
who can access what data. Traditionally, writing security policies requires a
lot of knowledge of technical details, therefore only security experts are able
to write policies. However, as each security policy incurs the business certain
costs, decision about security and the right level of protection of data assets are
increasingly being made at the executive level.

With Data Centric Security (DCS) a new approach of formulating security
policies was developed by IBM. This approach introduces high-level business
concepts into the policies which enables non-technical decision makers to un-
derstand and formulate such policies on a business level. Figure 2.1 shows these
concepts as well as a general overview of DCS. The main issue that is new in
DCS and that makes policy authoring easier is data classification. Through data
classification business meaning is attached to data assets in the form of meta-

12

CHAPTER 2. RELATED WORK 13

data, thus the data is elevated to the level of business processes. For example,
metadata that states that the assets contain travel expense data or backup data
may be attached. Policy authors can then refer in their policies to the travel
expense or backup label and therefore govern the access for assets that are classi-
fied by these labels. Together with an appropriate role assignment, it is possible
to formulate business level policies on a base of corporate security guidelines
and law regulations. For the formulation of the policies, the vocabulary that
was introduced for data classification and role assignment is used to describe the
intended regulations at a business level. These business level policies can not
only state access control but also data retention behavior as well as a specific
data lifecycle etc. In order to enforce the policies within the IT infrastructure
an automatic process derives low-level security policies and deploys them in the
infrastructure. Becoming compliant to changing regulations and guidelines is
now only a matter of changing the business level policies.

This thesis pays special attention to policies that state access control be-
havior in Data Centric Security. Amongst others it points out how to formulate
policies on a business level and how to translate them into a representation that
can be used in existing IT infrastructure. Note that the question how to enforce
these policies is not an issue addressed by this thesis.

Figure 2.1: The Data Centric Security Model [13]

CHAPTER 2. RELATED WORK 14

2.2 eXtensible Access Control Markup Language

In 2005 OASIS1 published the eXtensible Access Control Markup Language
(XACML) [10] that defines a standard language to express access control poli-
cies as well as a standard language for expressing queries over these policies.
Both languages are formulated in XML2 and are based on XML schema. The
policy language is used to describe general access control requirements for pro-
tected application resources and has standard extension points for defining new
functions, data types, etc. The query language lets one ask whether a given ac-
tion should be allowed for a resource or not, and therefore renders authorization
decisions. In case a policy is found for the queried resource, given attributes
in the request are compared against the attributes contained in the policy. Fi-
nally a response is issued containing an answer about the given request where
four possible return values are possible: Permit, Deny, Indeterminate (an error
occurred or some required value was missing, so a decision cannot be made) or
NotApplicable (there is no policy that states access control behavior for this
request).

2.2.1 XACML Architecture

A typical XACML architecture is shown in Figure 2.2.

Figure 2.2: XACML Architecture

(1) The Policy Administration Point (PAP) writes a policy in XACML format
and makes it available to the Policy Decision Point (PDP).

(2) The access requester sends a request for access in its native request format
to the Policy Enforcement Point (PEP).

1Organization for the Advancement of Structured Information Standards
2eXtensible Markup Language

CHAPTER 2. RELATED WORK 15

(3) The PEP creates a request for access in XACML format, optionally in-
cluding attributes of the subject, action, resource and environment.

(4) (5) (6) The PDP queries the Policy Information Point (PIP) service to retrieve
attributes of the subject, action, resource and environment that were not
included in the request.

(7) The PDP compares the available attributes against attributes in the policy
and determines an answer about whether access should be permitted or
not. That answer is returned as response in XACML format to the PEP.

(8) Optionally the PEP fulfills obligations that are bound to the responded
decision.

2.2.2 XACML Policy Language

As mentioned previously and shown in Figure 2.2, XACML defines how a re-
quest, a response and the policies for a PDP are formulated. The components
of the XACML policy language are shown in Figure 2.3. The main components
are Rule, Policy and PolicySet.

A PolicySet comprises the following components:

a) A set of Policies and/or PolicySets or references to them.

b) A Target to which this PolicySet is intended to apply. The Target defines
which characteristics a subject, action, resource or environment must have
that the PolicySet applies. For example, it can be stated that the PolicySet
applies to subjects that have an email address within the zurich.ibm.com
domain.

c) A Policy Combining Algorithm, which determines how the individual de-
cisions of the contained Policies and/or PolicySets are reconciled into a
single decision. Examples of Policy Combining Algorithms include policy
deny overrides, policy permit overrides, policy first applicable and policy
only-one applicable.

d) A set of optional obligations that must be fulfilled by the PEP in conjunc-
tion with the enforcement of the authorization decision.

A Policy comprises the following components:

a) A set of Rules.

b) A Target to which this Policy is intended to apply.

c) A Rule Combining Algorithm, which determines how the individual de-
cisions of the contained Rules are reconciled into a single decision. Ex-
amples of Rule Combining Algorithms include rule deny overrides, rule
permit overrides and rule first applicable.

CHAPTER 2. RELATED WORK 16

Figure 2.3: XACML Policy Language Model [10]

CHAPTER 2. RELATED WORK 17

d) A set of optional Obligations that must be fulfilled by the PEP in con-
junction with the enforcement of the authorization decision.

A Rule comprises the following components:

a) A Target to which this Rule is intended to apply.

b) An optional Condition that is a Boolean expression used to evaluate at-
tributes of subjects, actions, resources and environment.

c) An Effect which defines the access decision of this rule. The possible values
are “Permit” or “Deny”.

To get an impression how an XACML policy looks like, see Section 5.1 on page
60 to find some example policies.

2.3 Role Based Access Control

Role Based Access Control (RBAC) is an approach to restrict system access
to authorized users. It is a newer alternative approach to mandatory access
control (MAC) and discretionary access control (DAC). MAC refers to means of
restricting access to objects based on the sensitivity of the information contained
in the objects and the formal authorization of subjects to access information of
such sensitivity. DAC refers to means of restricting access to objects based on
the identity of subjects and/or groups to which they belong. The controls are
discretionary in the sense that a subject with a certain access permission is
capable of passing that permission on to any other subject.

In Data Centric Security (see Section 2.1), RBAC serves as the basis to
formulate policies on a business level whereby this basis is extended by the data
classification concept to achieve the intended abstraction from the system level
to the business level.

The RBAC model was first proposed in 1992 [6]. Since then it has been
widely discussed and further developed [23]. In 2001, NIST3 proposed a con-
sensus model for RBAC which after further refinement has been adopted by the
American National Institute(ANSI), International Committee for Information
Technology Standards(ANSI/INCITS) as ANSI INCITS 359-2004 [1].

In the ANSI INCITS 359-2004 standard, the RBAC model is defined in terms
of four model components: Core RBAC, Hierarchical RBAC, Static Separation
of Duty Relations and Dynamic Separation of Duty Relations. The important
part for my thesis are Core RBAC as well as Hierarchical RBAC which are
described in the following.

2.3.1 Core RBAC

Core RBAC embodies the essential aspects of RBAC. The basic concept of
RBAC is that users are assigned to roles, permissions are assigned to roles, and
users acquire permissions by being members of roles. The same user can be

3National Institute of Standards and Technology

CHAPTER 2. RELATED WORK 18

assigned to many roles and a single role can have many users. Similarly, for
permissions, a single permission can be assigned to many roles and a single role
can be assigned to many permissions. Core RBAC also includes the concept of
user sessions, which allows selective activation and deactivation of roles.

A user is defined as a human being (or autonomous agent). A role is a job
function within the context of an organization with some associated semantics
regarding the authority and responsibility conferred on the user assigned to the
role. Permission is an approval to perform an operation on one or more RBAC
protected objects. An operation is an execution action performed by a user.
When a user logs on to a system, she establishes a session during which the
user activates a subset of roles that are assigned to him [1].

2.3.2 Hierarchical RBAC

Hierarchical RBAC (see Figure 2.4) adds requirements for supporting role hi-
erarchies. A hierarchy is mathematically a partial order defining a seniority
relation between roles, whereby senior roles acquire the permissions of their
juniors, and junior roles acquire the user membership of their seniors. The
standard recognizes two types of role hierarchies [1]:

− General Hierarchical RBAC. General role hierarchies support the concept
of multiple inheritance, which provides the ability to inherit permission
from two or more role sources and to inherit user membership from two
or more role sources.

− Limited Hierarchical RBAC. Roles in a limited role hierarchy are restricted
to a single immediate descendant whereby the role hierarchy results in a
simple “tree” structure.

Figure 2.4: Hierarchical RBAC [1]

CHAPTER 2. RELATED WORK 19

2.4 Resource Description Framework

The Resource Description Framework (RDF) [15] is a language for representing
information about resources in the World Wide Web. It is particularly intended
for representing metadata about Web resources, such as the title, author, and
modification date of a Web page, copyright and licensing information about a
Web document, etc. However, by generalizing the concept of a “Web resource”,
RDF can also be used to represent information about objects that can be identi-
fied on the Web, even when they cannot be directly retrieved. Examples include
information about items available from online shopping facilities (e.g., specifica-
tions, prices, and availability), or information about a movie in the local cinema
(e.g., date, time, location) [17]. Before resources can be described with seman-
tic metadata, an ontology has to be defined for the domain of discourse. An
ontology formally describes the vocabulary that is used in the domain that it
describes. For example, in the domain of an online record shop concepts such
as “composer”, “album” and “track” and properties such as “composed by”, “has
track” and “has title” have to be defined.

To formalize the metadata about resources, the RDF data model is based on
subject - predicate - object triples, so called RDF statements. The subject is the
entity the statement is about, the predicate (also called property) defines the
kind of information that is expressed about the subject, and the object defines
the value of the predicate. For example, the fact:

“The CD with the item number “1234” has the title “Alanis Un-
plugged” [20]

can be expressed as RDF statement. This is shown in Figure 2.5 where the
statement is represented as RDF Graph. RDF also provides an XML-based
syntax called RDF/XML [2] for recording and exchanging these graphs.

Figure 2.5: RDF Graph of a Single RDF Statement [20]

The big advantage of RDF is that it is domain independent in that no
assumptions are made about the domain of discourse. The users are responsible
for defining their own ontology in some ontology definition language (such as
RDF Schema (RDFS) [3] or OWL4 [18]). The vocabulary of an ontology is then
used to describe resources. A resource is a “thing” we want to make a statement
about. It can really be everything, for example, a movie, a person, a tree, an
access control policy(!) and so on. Every resource is identified by a Uniform
Resource Identifier (URI). This URI does not necessarily enable an access via
the Web to this resource, it just has to unambiguously identify the resource.

For the policy editor and analyzer tool proposed in this thesis, a collection
of RDF statements is used as data store to query and persist the data the policy

4Web Ontology Language

CHAPTER 2. RELATED WORK 20

editor is operating on.

2.5 Related Tools

In the field of policy editors only few tools are existing. We describe a policy
editor for P3P policies on the one hand and an XACML policy editor on the
other hand.

A third related tool is a policy verification and change analysis tool called
Margrave [7]. It represents an API that can be used in analyzing access control
policies written in a subset of XACML. Margrave provides functions to answer
queries about one policy or about the relationship between two policies.

2.5.1 IBM P3P Policy Editor

The Platform for Privacy Preferences Project (P3P) is a specification from the
World Wide Web Consortium (W3C) that enables web sites to post their privacy
practices in a machine-readable format. P3P user agents can inform users about
a site’s data collection practices and allow users to either accept or reject data
transfer based on their own preferences.

IBM’s P3P Policy Editor [14] is a tool for creating or updating such web
site policies that are formulated in XML. For the user no knowledge of XML
is required. The policies are created by a number of drag and drop operations
and some additional changes in property windows. The policy editor generates
an XML policy as well as a human readable version of the policy for review.
Furthermore it includes a set of template policies to help site owners create a
policy quickly.

The user interface of the editor is kept very simple. It mainly consists of
three parts (see Figure 2.6):

− The available data elements to protect, structured in a tree,

− a list of the elements that were already chosen by the user, and

− a review area where the user can see his policy in XML and in human
readable format.

The policy editor for P3P policies is in a sense similar to the policy editor
that is created in this thesis in that both editors create an XML policy in the
background through a users interaction on user interfaces. The idea behind
the editors is the same, however, as P3P policies are very simple compared to
XACML policies the requirements for a P3P editor are much simpler than on
an XACML editor.

2.5.2 UMU XACML Editor

Another editor that is currently available is a policy editor that was developed
at the University of Murcia (UMU). This tool is related to the editor proposed in
this thesis since it allows users to create XACML policies, i.e., the final output

CHAPTER 2. RELATED WORK 21

Figure 2.6: IBM P3P Policy Editor

format of both editors is the same. However, UMU’s policy editor has neither
support for policies on business level nor any analysis functionality. It supports
a user in creating and reviewing plain XACML policies with the help of a user
interface (see Figure 2.7). The creation of a policy with this editor helps a user
to avoid spelling mistakes since the most identifiers for common attributes are
predefined. An author who wants to formulate XACML policies with this editor
needs very detailed knowledge of XACML.

2.6 Access Control Lists vs. Data Classification

An access control list (ACL) allows policy authors to create access control poli-
cies for individual resources by specifying lists of subjects who can access the
resource (as well as the kinds of access that are permitted). However, ACLs
fail to provide the mechanisms needed to categorize and group information ob-
jects throughout the namespace or to apply ranked levels of trust to subjects.
These criteria are often the ones used to express security policies. In addition,
ACLs do not have any generally accepted well-defined semantics. Every system
is different, and the inconsistency makes using ACLs difficult when translating
between different systems or working in a heterogeneous environment [25].

The concepts of data classification (also named data labeling) together with
business level rules used in DCS meets these shortcomings of ACLs. Through
the classification the resources are categorized according to user defined schemes
that are later used in business level policies to specify access control behavior.
Access is no longer controlled by the location of a resource but by its category.
It does no longer matter where a resource is stored within the enterprise as long
it is classified by the right label(s) [25].

CHAPTER 2. RELATED WORK 22

Figure 2.7: UMU XACML Editor

2.7 MAP vs. Data Centric Security

In [25] a project called MAP5 is described in which a prototype was built that
extended the existing authorization engine of the DCE6 Web Server [21] with a
label and rule mechanism.

In DCE users are arranged in groups. These user groups are then used in
ACLs to make authorization decisions. However, no similar concept of arranging
objects in groups is defined in DCE. MAP now used the DCE with the user
group concept and extended it with a concept of labels which can be applied to
objects and the ability to define rules that grant or deny access based on the
relationship between the subjects’s group and the object’s label.

So far the user groups and the object labels look very similar to the concepts
of Data Centric Security (while DCS uses user roles instead of user groups). But
the big difference now is that MAP uses the existing user groups to label the
objects whereas in DCS independent label schemes are used to label objects.

Allowing objects in MAP to be labeled and collected into groups fixes a basic
asymmetry between how subjects and objects were treated in DCE. Labeling
and grouping objects according to sensitivity or function is a natural thing to do,
and relying on namespace partitions to accomplish this — by placing different
kinds of objects in different places — is unnecessarily restrictive and difficult to

5Management of Authorization for site Policy
6Distributed Computing Environment

CHAPTER 2. RELATED WORK 23

manage. Explicitly adding object groups and labels allows objects with similar
labels to be protected in the same way, no matter where they are located.

Since data labeling is seen in [25] as a very powerful und intuitive method to
control access on resources, it is also mentioned that the way the data labeling
is applied in MAP has several shortcomings. A major problem of MAP was
that rules were attached to namespaces. Thus it was not possible to specify
exceptions to rules within a namespace branch, i.e., the granularity of protec-
tion was not fine enough. The authors of [25] mention that if the connection
between rules and namespaces were broken, then finer grained control could be
obtained more easily, for example, by having the scope of rules be governed by
the labels on objects no matter where they were, rather than by their position
in the namespace. Exactly these shortcomings are met in DCS. A fine grained
granularity is possible because rules connect no longer roles and namespaces but
roles and object labels. And the resources that are classified by these object
labels may be located anywhere in the namespace.

Although the labeling concepts are different in DCS and in MAP, the method
how the labels are applied to the objects was considered for DCS. In MAP, labels
may be applied to single objects or to all objects in one or more branches of
the object namespace. The branches covered by different labels may overlap
so objects may have more than one label applied to them. The effective group
membership of an object at MAP is the union of all the groups in all the labels
applied to the object (with redundancies removed). This concept is similar to
the one that was defined as label propagation for the DCS (see Section 3.4.1).

In [24] the authors tried to find ways of allowing administrators to specify
authorization policy about targets without being tied to their namespace, but
still allowing them to take advantage of the natural grouping in their namespace,
by using features such as wildcarding. They said that users should think in terms
of labels and collections and it should be possible to combine the advantages of
using labels together with the advantages of namespaces.

2.8 User Interface Issues

In [22] a number of design principles are mentioned that shall be considered
when creating secure systems. Among them are the following principles that
have been considered while the policy editor and analyzer was built.

− Economy of mechanism. Keep the design as simple and small as possible.

− Fail-safe defaults. Base access decisions on permission rather than exclu-
sion. The default situation is lack of access, and the protection scheme
identifies conditions under which access is permitted. The alternative,
in which mechanisms attempt to identify conditions under which access
should be refused, presents the wrong psychological base for secure system
design.

− Psychological acceptability. It is essential that the human interface be
designed for ease of use, so that users routinely and automatically apply
the protection mechanisms correctly.

CHAPTER 2. RELATED WORK 24

− Clarity. The effect of any security-relevant action must be clearly apparent
to the user before the action is taken.

In addition the authors of [22] mention the design philosophy of “affordances”7,
whereby the affordance of an object helps a potential user to determine how
that object can be used, and they point out that mechanisms and models that
are confusing to the user will be misused. Further it is underlined that clarity
of effect is crucial to the implementation of a coherent security policy. This can
only be done through a carefully thought-out GUI that facilitates rule, label
and group (in DCS this means roles) definition and perception of the overall
protection structure that is in force. The minimal requirements on this GUI
according to the authors would be:

− Integrated management of rules, labels and groups.

− Convenient data entry of complex structures like rules.

− Consistency checking between current rules and one being entered.

− High-level overview of rules, labels and groups and their effects.

− Convenient querying of current policy constraints (how is a given object
or group of objects protected?).

They further mention that user-centered security is as much about user in-
terfaces as about security mechanisms. A coherent, consistent GUI is itself a
security tool, not just window dressing.

A major usability problem in current systems is that applications unnec-
essarily export the underlying data structure as the user model. The user is
given a rudimentary formatted display of the information in the data structure
(or perhaps just a literal display of its values) and must learn the algorithm
that the computer software will use to evaluate the data structure in order to
understand what access control policy is actually instantiated [22].

In [4] is mentioned that “security experts are mainly blind to normal users
(lack of) ability to understand security concepts and terminology” and that
great care and early user testing is required in order to bridge the knowledge
gap between the security experts and the normal users.

The authors of [25] mention that they did not explicitly include the notion
of roles in their user interface, in order to keep the range of concepts to a
minimum. An additional reason for that was that they already had a large
number of defined terms for the user to understand.

They further mention that in MAP it was hard to know in which groups a
given object was and what rules would be applied in any given decision. For
DCS that means that it must be possible through a user interface to determine
the labels a resource has associated and which rules contribute to a specific
authorization decision.

In the system the authors of [24] propose, they allow the user to try various
policy alternatives in a “debugging” mode before actually deploying a policy

7In German: “Aufforderungscharakter”

CHAPTER 2. RELATED WORK 25

or policy change. Users can build and test latent policies off-line, and then
activate them when appropriate. A query capability allows authorization rules
to be tested.

In a usability test of a policy editor system in [24] the users indicated that
they need a feature that would compare two entities (like rules or actors) and
show the differences. This usability test also showed that users wondered how
rules would combine and that they are concerned that an administrator could
make a rule that would override an existing rule without knowing it.

A user study in [5] showed that confusion between stated and effective priv-
ileges is one of the main sources of error for end-users in manipulating ACLs.
The Policy Editor for the DCSM shall mitigate such human errors by presenting
the needed information including the effective permissions on the GUI to the
user.

2.9 Intentional Access Management

In a paper about intentional access management [5] it is stated that before even
considering user interface issues one should determine whether too much may be
asked of the user in terms of sheer involvement with the process. The end user
is primarily interested in the output of the ACL system and not in the means
by which this output is achieved. They state that the end user is only interested
in one of the following two goals that are called primary user intentions:

− G1: Principal X must have privilege Y on object Z.

− G2: Principal X must not have privilege Y on object Z.

Based on these two possible intentions they present an algorithmic approach on
how to achieve the desired goals. This intentional approach is related to the
authorization analysis algorithm that is later proposed in this thesis. Thereby
a user can ask the system which values his business level rules must comprise
in order to achieve an intended access control behavior.

2.10 Policy Evaluation Issues

The system that is specified in [4] denies everything except that what is specif-
ically granted in the current authorization policy. The system that is specified
in [24] denies access if any rule fails or if no rules are found that pertain to the
decision. The WebDAV system that is described in [5] denies access if during
the ACL evaluation a deny entry is encountered for a privilege which has not
yet been granted.

Conform to the design principle of “fail safe defaults” and to the evaluation
algorithms used in the three systems mentioned above, in the policy editor
the XACML combining algorithm “Deny-Overrides” is used as default value
wherever possible. In [24] is further mentioned that it is better to start with a
simple too restrictive policy because a loose policy would not get tightened up.
But the too restrictive will be loosened over time naturally.

CHAPTER 2. RELATED WORK 26

2.11 Summary

Based on several papers data classification — or labeling — is in contrast to
ACLs a very promising and intuitive concept for usable access control. Data
classification makes fine grained granularity in access control possible because
the connection between subjects and namespaces is broken.

At the design of the user interface for the policy editor, the consideration of
the mentioned design principles was a good starting point. We where thereby
aware of the (lack of) ability to understand security concepts and terminology
and tried to keep the range of concepts that are presented to the user to a
minimum.

The following list captures requirements that were stated from the referenced
papers and finally implemented in the policy editor and analyzer that focuses
on usability.

− Keep the number of concepts at a minimum.

− Convenient querying of current policy constraints.

− Check which labels are assigned to a resource.

− Check which roles are assigned to a subject.

− Check which rules contribute to a specific authorization decision.

− Present effective permissions to the user, not only the stated permission.

Chapter 3

Access Control for
Data Centric Security

3.1 Introduction

Access is the ability to perform an action on a resource (e.g., read, delete).
Access control is the means by which the ability is explicitly enabled or restricted
in some way. Data Centric Security (see 2.1 on page 12) seeks to control access
by allowing non-technical decision makers to understand and formulate access
control policies on a business level. This chapter describes what the underlying
concepts of these access control policies are, how the access control policies can
be formulated and how they have to be interpreted.

In the following a new policy language model is proposed that was mainly
inspired by the policy language model of XACML. The modifications that have
been made to deduce the new model from XACML are the following:

− Complexity removal. The XACML model is very expressive and can be-
come very complex. A non-technical policy author can not be expected to
handle this complexity and expressivity. Therefore we simplified the model
for the user by removing the nesting of of PolicySets and by reducing the
number of allowed combining algorithms and conditions.

− Extension with business level. To be able to express our policies at business
level we extended the model in a way that we can address subjects also in
terms of (hierarchic) roles and resources in terms of (hierarchic) labels.

The goal was to define a proper policy language model on a business level that
can still be translated into the policy language model of XACML. A set of access
control policies formulated on business level can then be translated into access
control policies on XACML level. Therefore, in every domain where an XACML
PDP is used to render an authorization decision, policies can be formulated on
business level and then — after a translation process — enforced on XACML
level.

27

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 28

3.2 Business Level Policies

When we are talking about business level policies, the term business itself does
not tell anything about the appearance or formal construction of the policies.
It just states that the policies are formulated on a level that is understandable
by people that are familiar with the business domain of the policies, thus the
policies are formulated on a high level of abstraction. In an ideal environment
the policies would be formulated as sentences of natural language, which are
then parsed and translated into policies on a lower, more technical, level.

Access control policies, regardless of which abstraction level, express the
information “who is permitted to access what data in what way”. In access
control policies that are formulated at a system level, terms like subject, action
and resource are used to define access control, i.e., it is stated that subject s
is permitted to perform action a on resource r. For example, it may be stated
that Sue is permitted to perform a read action on the salary database. In order
to express the policies at business level to support DCS, two concepts are used
to increase the level of abstraction.

With DCS, for the data classification — also called data labeling — a clas-
sification scheme is used to classify the enterprise data, and within the role
assignment an assignment scheme is used to define the responsibilities of the
users. The terms contained in these two schemes are now used to achieve the
intended abstraction. So, instead of addressing subjects directly, one may use
roles, and instead of addressing resources directly, one may use labels. This is
illustrated in Figure 3.1.

Figure 3.1: Abstract Level Elevation

With the use of the roles and labels, policy authors now get the opportunity
to express the policies at a business level. For example, it can be expressed
that an employee from the human resources (HR) department may access data
that is HR related, i.e., “HR role is permitted to perform action A on HR data”.
Therefore in a previous data classification the HR data has to be labeled accord-
ingly as well as an HR role has to be assigned to the HR employees (see Figure
3.2). The flexibility of security policies on a business level lies in the possibility
to associate any subject with the intended roles and to label any resource with
the intended labels.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 29

Figure 3.2: Concrete Level Elevation

3.2.1 Reduction of Policy Quantity

Using a formulation of policies at a business level, the easier understanding due
to the higher level of abstraction is not the only benefit one can achieve. An-
other important outcome of the level elevation is that this enables a significant
reduction of the number of policies. This reduction can be obtained through a
structuring of the used roles and labels in a hierarchical way:

− An inheritance of role privileges along the role hierarchy as defined in
RBAC establishes the opportunity to cover lower role levels with a policy
targeting a higher role level.

− A hierarchical structure of labels allows the coverage of labels on lower
levels with a policy targeting a label on a higher (hierarchical) level.

The possibility to retain the labels of resources throughout a copy process of this
resource is another reason for the quantity reduction of the policies. Imagine
a resource that is classified by a “Backup” label during a backup process. For
redundancy reasons this copied version of the resource is again copied to different
machines. If during this copy process the labels are retained, then a policy that
addresses the “Backup” label addresses all copies of the resource and not just
the original one.

3.3 Basic Concepts

Before describing a language for an access control policy on business level, the
concepts that are used in this language must be defined precisely. This sec-
tion provides definitions for resources, classification schemes, subjects, roles and
actions.

3.3.1 Resource

An object for which access shall be controlled is referred to as a resource (Note:
Do not confuse with resources used in RDF). Resources may be organized in a
hierarchy. A set of resources organized in a hierarchy is a tree, i.e., a hierarchy
with a single root that may not have cycles. Each resource in the hierarchy has
zero or more child resources. A resource that has a child is called the child’s

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 30

parent resource. A resource has at most one parent. All direct or indirect
children of a resource are called the descendants of the resource. All direct or
indirect parents of a resource are called the ancestors of the resource.

An XML document for example is structured as a tree. Other types of
hierarchical resources may be structured in a way where a resource may have
multiple parents. We do not consider such structures here, i.e., only tree struc-
tures are used to describe resources. If access shall be controlled for a hierarchy
with multiple parents, this structure has to be transformed to a less expressive
tree structure first.

A consistent representation for the identity of the resources is used. This
is done by including the resource’s position in the hierarchy as part of the
resource’s identity. Thus, the identity of a resource in a hierarchy depends on
the position of the resource in the hierarchy.

3.3.1.1 Resource Attributes

Authorization decisions may be based on characteristic of the resource other
than its identity. This approach is supported by means of resource attributes.
Although a resource may have an arbitrary number of attributes, for DCS espe-
cially an owner attribute is important. Thereby the value of the owner attribute
refers to the subject that owns the resource. Every resource is allowed to have
at most one owner attribute (whereby this constraint is just true for the owner
attribute but not for other resource attributes).

3.3.2 Classification Scheme

A classification scheme is an arrangement or division of objects into groups
based on characteristics that the objects have in common. Classification schemes
are used as a way to classify administered items, such as resources, in a metadata
registry. The names of the groups that characterize the objects are referred to
as labels. Data can be classified according to any criteria, not only access control
or security related ones.

The labels in a classification scheme may be organized in a hierarchy. A
classification scheme organized in a hierarchy is a tree, i.e., a hierarchy with a
single root that may not have cycles. Each label in the hierarchy has zero or
more child labels. A label that has a child is called the child’s parent label. A
label has at most one parent. All direct or indirect children of a label are called
the descendants of the label. All direct or indirect parents of a label are called
the ancestors of the label. A classification scheme has an associated scheme
name and may contain labels — which may be organized in a hierarchy — as
well as other classification schemes, i.e., a classification scheme may be part of
another classification scheme.

Every label has a label name. The label name is an arbitrary string associ-
ated with the label that is intended to indicate the semantics of the label. For
example, imagine a label with the name “Zurich”. Since labels may be struc-
tured in a hierarchy, the label name alone is not expressive enough to identify
a label in the label repository unambiguously. Therefore a label has a label

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 31

identity that is a concatenation of all the label names of the ancestors together
with label’s name. For example, the identity of a “Zurich” label could be “Eu-
rope>Switzerland>Zurich”. Within the same hierarchy level of a classification
scheme the label names have to be unique, i.e., it is not allowed that two Euro-
pean countries with the name Switzerland exist, but it might be the case the in
another European country a city with the name Zurich exists. In business level
policies always the label identity is used to reference a label.

3.3.3 Subject

A subject represents an actor who may request access to a resource. A subject
may be assigned to several roles, depending on the job function of that subject.

3.3.4 Role

A role represents a job function that has — according to the access control
policy — associated a collection of access privileges. At the same time a role
represents — according to a role assignment — a collection of subjects. The
role serves as an intermediary to bring these two collections together, i.e., which
subject has which access privileges.

Roles may be organized in a hierarchy. The role hierarchy is defined accord-
ing to Limited Hierarchical RBAC (see 2.3.2 on page 18). Thereby the hierarchy
defines a seniority relation between roles, whereby senior roles acquire the access
privileges of their juniors, and junior roles acquire the subject membership of
their seniors. A set of roles organized in a hierarchy is a "tree", i.e., a hierarchy
with a single root that may not have cycles. Each role in the hierarchy has zero
or more senior roles. A role has at most one junior role. All direct or indirect
seniors of a role are called the descendants of the role. All direct or indirect
juniors of a role are called the ancestors of the role.

Roles are divided into role schemes. A role scheme has an associated schema
name and may contain roles — which may be organized in a hierarchy — as well
as other role schemes, i.e., a role scheme may be part of another role scheme.

In XACML, roles are implemented by means of individual characteristics of
subjects, which are called subject attributes. A subject may have an arbitrary
number of attributes at the same time, and therefore an arbitrary number of
roles.

A role that was assigned to a subject by a role assignment (see 3.3.4.1) is
referred to as explicit role of the subject. The roles that a subject has due to the
fact that junior rules acquire the subject membership of their seniors are referred
to as implicit roles. For example, think of a role “EmergencyTeam” that has a
senior role, i.e., a child role, “FireDepartement”. If the role “FireDepartement”
is now — explicitly — assigned to the subject John, then John has an implicit
role assignment of the role “EmergencyTeam”.

3.3.4.1 Role Assignment.

The process by which a role is assigned to a subject is referred to as role assign-
ment, i.e., the process by which a subject gets the role assigned. At the same

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 32

time a role assignment may refer to a repository that contains the information
which roles are assigned to which subjects.

3.3.5 Action

An operation performed on a resource is referred to as an action. The actions
that may be performed are not predefined, i.e., appropriate actions for the
particular target domain may be chosen freely. Each of the chosen actions
refers to one specific operation that may be performed on a resource.

3.4 Data Classification

The process by which a label defined in a classification scheme is assigned to a
resource is referred to as data classification, i.e., the process by which a resource
is classified by a label according to a classification scheme. At the same time a
data classification may refer to a repository that contains the information which
labels are assigned to which resources. A label that is associated to a resource
acts as a tag, which assigns particular meaning to the resource. Each node of a
classification scheme, no matter if organized in a hierarchy or not, may be used
to classify a resource. Multiple classification schemes may be used to classify a
resource, i.e., a resource may have labels out of different classification schemes
associated at the same time. The labels that classify a resource are referred to
as explicit labels.

A label hierarchy defines a specialization relation between the labels, i.e.,
a child label is more specific than its parent label, and a parent label is more
general than its child labels. Hence, for a resource that is explicitly classified
by a label exist implicit classifications by the ancestors of that label. The labels
that classify a resource due to an implicit classification are referred to as implicit
labels. For example, think of a label “Europe” that has a child label “Zurich”.
If a resource is now — explicitly — classified by the label “Zurich”, then this
resource has an implicit classification by the label “Europe”.

3.4.1 Label Propagation

If a resource that is classified by a label is a node in a hierarchy, the label
may also be assigned to the descendants of that resource. This mechanism is
referred to as label propagation. Label propagation is mainly motivated by the
containment relation that is true for most hierarchically structured resources.
For example, at databases where a database scheme contains tables and a table
contains columns, this containment relation is obvious. In the file system domain
different points of view exist though where the the containment relation is not
always adopted.

A resource’s label that is inherited through label propagation is referred to
as inherited label. For example, think of a resource “EmployeeTable” that has a
child resource “SurnameColumn”. If the “EmployeeTable” is now — explicitly —
classified by the label “PersonalData” using label propagation, then the resource
“SurnameColumn” inherits the label “PersonalData”.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 33

As for an explicit label, also for an inherited label exists an implicit classifi-
cation by the ancestors of that label, i.e., it does not matter if a resource’s label
was inherited by label propagation or not. Thus, a resource may have explicit,
implicit and inherited labels associated at the same time.

Label propagation allows adapting the granularity of access control because
at the beginning of the data classification a coarse grained classification may be
done using label propagation. This coarse grained classification is then refined in
further classification steps. This is done by removing the explicit classifications
on the coarse grained level and classify the intended resources on a finer level.

3.5 Policy Author Collaboration

Policy authoring is not a task that is done by one specific facility. Policies may
be issued by multiple policy authors, where each author is likely to formulate
policies for a specific domain she is designated for. To meet the requirements
of each policy author, all formulated policies have then to be considered at the
same time. However, policy authors may reside in different levels of an organiza-
tion that is structured in a hierarchy. Authors on higher levels in the hierarchy
have more power of decision than authors on lower levels in the hierarchy. The
authors on the higher levels want to be able to formulate policies that are either
recommended or final. Authors formulate final policies if they know exactly
which access control behavior is desired. Authors formulate recommended poli-
cies if they do not know exactly which access control behavior is desired on the
one hand, but want to specify a “default” behavior for lower levels on the other
hand. Therefore, recommended policies may be overridden by authors on lower
levels, but final policies may not be overridden by authors on lower levels. The
sequence in which the policies are considered to decide about the access control
behavior is determined by the policy author’s level in this hierarchy and by the
type of the policy which is either final or recommended.

For example, an author that resides on a higher hierarchy level is concerned
about the safety of financial data and formulates therefore a recommended policy
that denies every employee the access to this kind of data. At the same time
she intends institutions on lower hierarchy levels to allow later on the the access
for authorized personnel.

3.5.1 Policy Delegation

An access control policy on a business level has a hierarchy level which deter-
mines the sequence in which the policies are considered. Different policies may
have the same hierarchy level. The higher the hierarchy level of a policy, the
earlier the policy is considered to decide about the access control behavior. If a
policy does not specify a particular access control behavior for a given decision
request, then the next lower hierarchy level is considered. If a policy specifies
access control behavior that was already specified on a higher level, the behavior
on the lower level overrides the behavior on the higher level, i.e., a policy author
on a higher level may specify a recommended access control behavior that can
be overridden by policy authors on lower levels.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 34

A policy on a business level may be a final policy or a recommended policy.
A final policy overrides all policies — no matter if final or not — that reside
on a lower hierarchical level than the policy itself, i.e., a final policy can not be
overridden. At each hierarchy level there may be zero or more final and zero or
more recommended policies.

Since every policy has an associated hierarchy level, contradicting access
control behavior between policies on different levels is always resolved by the
delegation mechanism (whereby the higher level determines the behavior). Con-
tradicting behavior between policies on the same hierarchy level is resolved by
combining algorithms that are introduced in the next section.

3.6 Business Level Policy Language

The policy language model on business level is shown in Figure 3.3. This model
was inspired by the XACML policy language model (see Figure 2.3 on page 16).
The XACML model was simplified on the one hand in order to create a policy
language that is easier to understand for non-technical policy authors, on the
other hand it was extended in order to enable the policy delegation mechanism.
Due to the simplification it is not as expressive as the XACML model. Our
model is less expressive because policy sets can not be nested and only two
possible kinds of conditions are allowed. The main components of the model
are:

− Business Level Rule,

− Business Level Target,

− Business Level Policy, and

− Business Level Policy Set.

These components are described in detail in the following subsections.

3.6.1 Business Level Rule

An access control rule on business level, called business level rule, is the most
elementary unit of policy. It defines authorization behavior for a set of subjects
to perform an action on a set of resources. The set of entities to which the
rule is intended to apply is called the business level target of the rule. The
authorization behavior of a business level rule is specified through the effect of
the rule, which may be:

− “Permit”, or

− “Deny”.

The effect indicates the intended consequence of a rule. If the consequence shall
be to grant access then the effect “Permit” is used. Otherwise the effect “Deny”
is used to indicate that access is not granted.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 35

Figure 3.3: Business Level Policy Language Model

3.6.1.1 Business Level Condition

A set of business level conditions may refine the applicability established by
a business level target. A business level condition represents a function that
can evaluate to “True” or “False”. Only if all associated conditions evaluate
to “True” in conjunction, the particular business level rule is applicable. Two
possible types of conditions may be used to specify if a business level rule is
applicable or not:

− “Owner Condition”, and

− “Time Range Condition”.

The “Owner Condition” evaluates to “True” if the resource that shall be accessed
has exactly one owner attribute and its value is equal to the subject that requests
the access to the resource. The “Time Range Condition” evaluates to “True” if
the decision request was issued between two specified points of time.

3.6.2 Business Level Target

A business level target specifies the set of subjects, actions and resources that
are governed by the associated rule. The subjects can either be specified directly
or in terms of roles, i.e., subjects and roles in a target are mutually exclusive.
Similarly the resources can either be specified directly or in terms of labels, i.e.,
resources and labels in a target are mutually exclusive.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 36

The mutual exclusivity of subjects and roles is defined because combina-
tions of subjects have different matching semantics than combinations of roles
(see Section 3.7). A non-technical policy author could get easily confused by
the different semantics if they would be used within the same rule. The same
reasoning is true for the mutual exclusivity of resources and labels.

3.6.3 Business Level Policy

Business level rules are combined in a business level policy. Such a policy com-
prises the following components:

− an author,

− a hierarchy level,

− an optional final flag,

− a set of business level rules, and

− a rule combining algorithm.

The hierarchy level and the final flag refer to the corresponding concepts of
policy author collaboration (see Section 3.5 on page 33). The rule combining
algorithm specifies the procedure by which the individual results of evaluating
the contained rules are combined when evaluating the business level policy. The
rule combining algorithms that may be used are:

− “Deny-overrides”, and

− “Permit-overrides”.

In case of the “Deny-overrides” algorithm, if a single rule is encountered that
evaluates to “Deny”, then, regardless of the evaluation result of the other appli-
cable rules in the policy, the combined result is “Deny”. Likewise, in case of the
“Permit-overrides” algorithm, if a single “Permit” result is encountered, then the
combined result is “Permit”. The notion and semantics of the used combining
algorithms are taken directly from [10].

3.6.4 Business Level Policy Set

A business level policy set is a container for business level policies. Throughout
this thesis, only one business level policy set is used which comprises all business
level policies that are created from any author. The individual policies are
combined with a policy combining algorithm. The policy combining algorithms
that may be used for business level policy sets are the same as for business level
policies. The notion and semantics of the used combining algorithms are taken
directly from [10].

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 37

3.7 Matching Semantics

As described in Section 3.6.2, a business level target specifies the subjects, ac-
tions and resources that are intended to be matched by the target whereby the
subjects and resources can either be addressed directly or in terms of roles and
labels respectively. In the cases where the subjects or resources are not addressed
directly, a proper semantics has to be provided that states which subjects are
matched by which roles and which resources are matched by which labels. This
semantics is introduced in the following subsections. Such a matching semantics
is necessary to make a translation from access control policies on business level
to access control policies on XACML level possible.

3.7.1 Subject Match

Subjects may either be matched directly by a business level target or in terms
of roles, i.e., a business level target may not use both terms of roles and subjects
at the same time to address the subjects that are intended to be matched.

A business level target that uses roles to match subjects, is intended to match
subjects that have all the target’s roles assigned in conjunction, i.e., the subjects
that have an appropriate role assignment for every role the target contains. For
matching a subject, it does not matter whether the subject’s roles are explicit
or implicit.

A business level target that matches subjects directly, is intended to match
subjects that are contained in the target’s subjects. If a target contains more
than one subject, the target matches any of the target’s subjects.

If a business level target contains no role and no subject, i.e., if the roles
and the subjects are omitted, the target matches any subject.

3.7.2 Action Match

A business level target is intended to match actions that are contained in the
target’s actions. If a target contains more than one action, the target matches
any action out of the target’s actions. If a target contains no action, i.e., if the
actions are omitted, the target matches any action.

3.7.3 Resource Match

Resources may either be matched directly by a business level target or in terms
of labels, i.e., a business level target may not use both terms of labels and
resources at the same time to address the resources that are intended to be
matched.

A business level target that uses labels to match resources, is intended to
match resources that are classified by all the target’s labels in conjunction, i.e.,
the resources that have an appropriate classification by every label the target
contains. For matching a resource, it does not matter whether the labels of the
resource are explicit, implicit or inherited.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 38

A business level target that matches resources directly, is intended to match
resources that are contained in the target’s resources. If a target contains more
than one resource, the target matches any of the target’s resources.

If a business level target contains no label and no resource, i.e., if the labels
and the resources are omitted, the target matches any resource.

3.8 Hierarchy Semantics

According to the basic concepts that have been defined previously, the roles,
labels and resources of a business level target may be nodes in a hierarchically
organized structure (see also Figure 3.3). This leads to different possible inter-
pretations on how a policy for a particular node governs access for nodes that
are ancestors or descendants of that node. In the following subsections, the se-
mantics of the hierarchic elements are defined. Thereby the described semantics
for the roles and labels derive from their definitions provided in the Sections
3.3.4 and 3.3.2, i.e., the corresponding subsections just make these concepts
more clear.

3.8.1 Role Hierarchy Semantics

Senior roles acquire the access privileges of their juniors, and junior roles acquire
the subject membership of their seniors (see Section 3.3.4 on page 31). A single
policy for a particular role governs therefore also the access for all descendants
of that role. For example, if a role “Admin” has a senior role “BackupAdmin”
and a policy governs access for the “Admin” role (which is the junior role), then
the policy also governs access for the “BackupAdmin” role since the “Backu-
pAdmin” role is a descendant of the “Admin” role. However, a policy for the
“BackupAdmin” role does not govern the access for the “Admin” role.

Being able to express a single policy constraint that applies to an entire
path in a role hierarchy up to a particular role, rather than having to specify a
separate constraint for each role, increases ease of use and reduces the amount
of policies that have to be formulated (see 3.2.1 on page 29).

3.8.2 Resource Hierarchy Semantics

The nodes in a hierarchical resource are treated as individual resources, i.e.,
an authorization decision that permits access to an interior node in a resource
hierarchy does not imply that access to its descendant nodes is permitted. At
the same time an authorization decision that denies access to an interior node
does not imply that access to its descendant nodes is denied.

Note that OASIS has published an XACML Profile for hierarchical re-
sources [11] where is defined how to represent the identity of a node and how to
request access to a node. However, this Profile is not considered here.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 39

3.8.3 Label Hierarchy Semantics

An implicit classification by the ancestors of the label exists for resources that
are classified by a label (see Section 3.4 on page 32). A single policy for a
particular label governs therefore also the access for all descendants of that
label. For example, if a label “Financial” has a child label “Salaries” and a
policy governs access for the “Financial” label (which is the parent label), then
the policy also governs access for the “Salaries” label since the “Salaries” label is
a descendant of the “Financial” label. However, a policy for the “Salaries” label
does not govern the access for the “Financial” label.

Being able to express a single policy constraint that applies to a label as
well as the entire sub tree of the label in the label hierarchy, rather than having
to specify a separate constraint for each label, increases ease of use and reduces
the amount of policies that have to be formulated (see 3.2.1 on page 29).

In the same way as for hierarchical resources, the nodes in a hierarchical
classification scheme are treated as individual labels. That means an authoriza-
tion decision for a decision request on business level (see Section 4.2 on page
47) that governs access to resources labeled by an interior label does not imply
that access to resources labeled with its descendant labels is governed.

3.9 Policy Application

To let an existing XACML policy decision point (PDP) perform an authorization
decision, which states if a subject is permitted to perform an action on a resource
or not, a decision request is issued that comprises three components:

− a subject that wants to perform an action on a resource,

− an action that is intended to be performed, and

− a resource on that the action is intended to be performed.

The set of business level policies and business level rules that govern access for
such a decision request is referred to as the applicable policy of the decision
request. The complete policy applicable to a decision request may be composed
of a number of individual rules or policies. In the following is defined which
policies and rules apply to a decision request.

3.9.1 Business Level Rule Application

A business level rule is applicable to a decision request if the rule’s target
matches the subject and the action and the resource of the decision request
and the rule’s business level condition is fulfilled.

3.9.2 Business Level Policy Application

A business level policy is applicable to a decision request if at least one business
level rule that is contained in the policy is applicable.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 40

Table 3.1: Common Role Scheme: JobType

. Employee
. ComputerScience

. Security&Assurance

. Security&Cryptography
. Science&Technology

. PhysicsOfNanoscaleSystems
. SiteOperations

. InformationServices

. Finance&Administration
. FinanceAnalyst
. FinancePayroll
. Contolling

. HumanResources

3.10 Scenarios

In the previous sections was specified on a theoretical level what the underlying
concepts of access control policies on a business level are, how they can be
formulated and how they have to be interpreted. This section is intended to
show some examples inspired by real requirements in the IBM Zurich Research
Laboratory (ZRL) to illustrate the practical aspect of business level policies. In
Chapter 6, where the actual policy editor is presented, these scenarios are used
again.

3.10.1 Common Roles, Subjects and Labels

This section shows the roles, the subjects together with associated role assign-
ments as well as the labels — arranged in classification schemes — the scenarios
have in common. The Tables 3.1, 3.2, 3.3 and 3.4 show the common roles
arranged in role schemes.

Table 3.5 shows the common subjects as well as associated role assignments.
The role assignments just state the explicit role assignments. The implicit role
assignments are not shown here. In Chapter 6, the policy editor is used to show
some of the implicit role assignments.

The Tables 3.6 and 3.7 show the common classification schemes that are
used in the scenarios.

3.10.2 Physical Access Control

This scenario is inspired by the physical access control at the IBM Zurich Re-
search Laboratory. To control the physical access in this scenario, the action

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 41

Table 3.2: Common Role Scheme: JobDuration

. Regular
. ResearchStaffMember

. Supplemental

. Contractor

Table 3.3: Common Role Scheme: WorkComunity

. OfficeCommunityC231

. OfficeCommunityIS

Table 3.4: Common Role Scheme: SpecialPermissions

. LaboratoryAccess

. EmergencyTeam

Table 3.5: Common Subjects

Subject Explicit roles
Alice Security&Assurance, Supplemental, OfficeCommunityC231
Bob Security&Assurance, ResearchStaffMember, LaboratoryAccess
Carol Security&Assurance, Contractor, OfficeCommunityC231
Dave Security&Cryptography, ResearchStaffMember, LaboratoryAccess
Emily PhysicsOfNanoscaleSystems, ResearchStaffMember
Francis InformationServices, Regular, OfficeCommunityIS
George FinancePayroll, Regular
Helen Controlling, Regular
Isaac HumanResources, Regular
John EmergencyTeam

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 42

Table 3.6: Common Classification Scheme: RoomType

. Area
. Office
. ConferenceRoom
. PrinterRoom
. ConfidentialPrinterRoom
. Lounge
. RoomWithServer
. Laboratory

Table 3.7: Common Classification Scheme: DataOrigin

. ComputerScience
. Security&Assurance
. Security&Cryptography

. Science&Technology
. PhysicsOfNanoscaleSystems

. SiteOperations
. InformationServices

. Backup
. Finance&Administration

. TravelExpenses
. HumanResources

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 43

Table 3.8: Physical Access Control: Resources

Resource Owner Explicit classifications
. ZRL

. BuildingC Security&Ass., Security&Cryptography
. C201 ConferenceRoom
. C202 ConferenceRoom
. C230 PrinterRoom
. C231 Office, RoomWithServer
. C273 Office
. C247 Laboratory
. C350 Dave Office
. C375 Bob Office
. BlueLagoon Lounge

. BuildingL Science&Technology

. BuildingM Science&Technology
. Lobby Lounge

. Cafeteria Lounge

“enter” is used. Table 3.8 shows the used resources and Table 3.9 shows the
most interesting part of the scenario: the access control rules on business level.

3.10.3 Travel Expense Data

This scenario is inspired by the access control to travel expense data at the IBM
ZRL. The following requirements have to be met:

a) Every financial employee may create travel expense entries in the database.

b) A financial analyst has to check the travel expenses in random intervals.

c) A financial payroll employee marks a travel expense as disbursed after
disbursement.

d) A controller has to check disbursed travel expenses.

Therefore the actions that are used in this scenario are “read”, “write” and
“create”. The “TravelExpenses” label is used to classify data. Table 3.10 shows
the used resources and Table 3.11 shows the the access control rules on business
level.

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 44

Table 3.9: Physical Access Control: Business Level Rules

[1] Permit Employee enter Area ifOwner
[2] Deny Contractor enter Area between

8pm
and
6am

[3] Permit OfficeCommunityC231 enter C231
[4] Permit OfficeCommunityIS enter C273

[5] Permit Employee enter ConferenceRoom
[6] Permit Employee enter PrinterRoom
[7] Permit Employee enter Lounge
[8] Permit InformationServices enter RoomWithServer

[9] Permit Security&Assurance,
LaboratoryAccess

enter Security&Assurance,
Laboratory

[10] Permit Security&Assurance,
ResearchStaffMember

enter Security&Assurance,
ConfidentialPrinter-
Room

[11] Permit Science&Technology enter Science&Technology

Table 3.10: Travel Expenses: Resources

Resource Owner Explicit classifications
. HostComputer1234

. DB2DataBaseServer
. DataBaseSchemaXY

. TravelExpensesTable TravelExpenses

Table 3.11: Travel Expenses: Business Level Rules

[1] Permit Finance&Administration create TravelExpenses
[2] Permit FinanceAnalyst read TravelExpenses
[3] Permit FinancePayroll read, write TravelExpenses
[4] Permit Controlling read TravelExpenses

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 45

Table 3.12: Backup Data: Resources

Resource Owner Explicit classifications
. HostComputer1234

. DB2DataBaseServer
. DataBaseSchemaXY

. TravelExpensesTable TravelExpenses, Backup

Table 3.13: Backup Data: Business Level Rules

[1] Permit InformationServices read,
write,
create,
delete

Backup

3.10.4 Backup Data

This scenario is inspired by the access control to backup data at the IBM ZRL. It
aims to meet the requirement that “Administrators may manipulate all backup
data”. Therefore the actions that are used in this scenario are “read”, “write”,
“create” and “delete”. A “Backup” label is used to classify data. Table 3.12 shows
the used resources and Table 3.13 shows the the access control rules on business
level.

3.10.5 Discovering Issues in the Policies

After data backup, data in the resource “TravelExpensesTable” is labeled with
the labels “Backup” and “TravelExpenses”. This means that a subject with the
“InformationServices” role has access to all travel expense data. This behavior is
not intended. But the good news is, the policy editor can help in discovering such
issues. With the help of an analysis functions of the policy editor that shows
which subjects are allowed to access travel expense data, this error in access
control can be discovered. The person responsible for formulating the access
control policies for travel expense data will then contact the person responsible
for the access control policies for backup data and they negotiate a different
access control behavior. For example, they might negotiate to create a new
“BackupAdmin” role — which is assigned to explicitly authorized employees —
and to restrict the access to backup data to employees who hold this new role.

In a first attempt of creating the common classification scheme RoomType,
the label “ConfidentialPrinterRoom” (Table 3.6) was a child of the label “Printer-
Room”. This lead to a problem in the label hierarchy since a policy that permits
the access to resources labeled with the “PrinterRoom” label, would also permit
access to resources labeled with the “ConfidentialPrinterRoom” label. This issue

CHAPTER 3. ACCESS CONTROL FOR DATA CENTRIC SECURITY 46

is fixed in the current scenario.

3.10.6 Policy Delegation

This scenario aims to show how a possible policy delegation scenario could look
like and gives examples of final and recommended policies. In Section 3.5.1 it was
mentioned that each business level policy resides on a specific hierarchy level.
For this scenario we assume an organization hierarchy as shown in Figure 3.4
where each organization has an associated hierarchy level. A detailed description
on how the delegation mechanism is implemented can be found in Section 5.1.2
on page 62.

The administration office of Canton Zurich wants to make sure that emer-
gency teams have the possibility to safe peoples’ lives. Therefore it creates a
final policy that ensures this behavior (see Table 3.14). The IBM Switzerland
Headquarters are concerned about the safety of financial data. To ensure that
access to this kind of data is controlled properly, they create a recommended
policy that denies every employee the access to financial data (see Table 3.15).
The headquarters intend that institutions on lower hierarchy level allow later on
the access for authorized personnel. The access control requirements and poli-
cies for the IBM ZRL have already been described in Section 3.10.3. Therefore,
assume the policies of Table 3.11 on the lowest hierarchy level in the organization
hierarchy. As the access control policy of the IBM Switzerland Headquarters
is only recommended, the policy of the IBM ZRL overrides, and the roles “Fi-
nance&Administration”, “FinanceAnalyst”, “FinancePayroll” and “Controlling”
are allowed to access data that is classified as “TravelExpenses”.

Figure 3.4: Organization Hierarchy

Level 10: Administration Office of Canton Zurich
|

Level 20: IBM Switzerland Headquarters
|

Level 30: IBM Zurich Research Laboratory

Table 3.14: Final Policy by Administration Office of Canton Zurich

[1] Permit EmergencyTeam enter Area

Table 3.15: Recommended Policy by IBM Switzerland Headquarters

[1] Deny Employee read Finance&Administration

Chapter 4

Analysis Algorithms

4.1 Introduction

Multiple policy authors may formulate access control policies independently.
The set of all individual policies jointly forms the policy repository, which is
the base for a policy decision point (PDP) to render an authorization decision.
This chapter specifies different analysis algorithms that may be performed on
a policy repository. Most of the introduced algorithms are later implemented
within the policy editor. The types of analysis that are proposed in this chapter
are the following:

− A decision request on business level is the base for most of the other
analysis algorithms. By formulating the request on the business level
an author can render decisions for roles instead of subjects and/or for
labels instead of resources. Consequently the author gets the possibility
to simulate an evaluation process that is performed by a PDP to determine
a decision for an arbitrary request.

− Contribution Analysis tells an author which rules and policies in particular
are the reason that a specific decision is rendered.

− Policy Override Detection lets authors find out which of their policies are
overridden by other authors or which policies they override themselves.

− Authorization Analysis is used by an author to determine how she has
to formulate a decision request in order to get a specific authorization
decision by a PDP.

− Coverage Analysis lets an author identify the subjects that may never
access any resource as well as the resources that may never be accessed
by anyone.

4.2 Business Level Decision Request

As mentioned before, an XACML PDP renders an authorization decision for
a specific decision request that comprises a subject, an action and a resource.

47

CHAPTER 4. ANALYSIS ALGORITHMS 48

From now on we refer to such a decision request as decision request on XACML
level. As we are formulating access control policies on a business level we also
want to be able to issue decision requests that are on a business level. Such
a decision request on business level comprises roles instead of subjects and/or
labels instead of resources. It lets an author therefore issue requests that do not
contain specific subjects or specific resources any more. Using the policy editor
prototype that is presented later, a policy author can issue decision requests on
both levels, i.e., she can therefore simulate an evaluation process and render an
authorization decision.

Our goal is to use an existing XACML PDP to render an authorization
decision for a decision request. Such a decision request is now either on the
business level or on XACML level. However, a PDP can only answer requests
on XACML level, thus we give a translation from the business level to XACML
whereby the XACML request addresses the intentions of the request on business
level.

Every time an author uses the policy editor to simulate a decision request,
requests that are formulated on the business level are translated to XACML first
before an XACML PDP is used to render a decision. In case a user provides
roles instead of a subject, the translation process comes up with a temporary
subject that has exactly the given roles. In case a user provides labels instead
of resources, the translation process comes up with a temporary resource that
has exactly the given labels. A modified decision request, that contains the
temporary subject and the temporary resource, is handed over to an XACML
PDP in order to reach a decision. In case a user provides already a subject and
a resource a lookup process determines the corresponding roles and labels and
lets the PDP render a decision. This is illustrated in Figure 4.1.

Figure 4.1: Decision Request Evaluation

Decision requests on business level are necessary for the simulation in the
policy editor and they serve as basis for more analysis algorithms. However,

CHAPTER 4. ANALYSIS ALGORITHMS 49

in an operational system only requests on the XACML level are issued. To
formalize decision requests on business level we use the following definitions:

− S, O, A, R, and L, which refers to subjects, roles, actions, resources and
labels respectively,

− E, which refers to environments,

− LA ⊆ L×R, a many-to-many label to resource assignment relation, and

− OA ⊆ O × S, a many-to-many role to subject assignment relation.

The environment components E address attributes that are relevant to an au-
thorization decision but are independent of a particular subject, action, and
resource. For example, an attribute that specifies the date and time of the de-
cision request would be provided as environment attribute. This environment
attribute is required if a business level rule has a time range condition, which
needs a reference point to evaluate its value.

4.2.1 Decision Rendering on XACML Level

An XACML PDP is able to render an authorization decision for a subject s, an
action a, a resource r and an environment e, i.e., the PDP is able to evaluate a
“permission” function

p(s, a, r, e)→ {true, false} (4.1)

and thus to answer the question “Is subject s permitted to perform action a on
resource r within the environment e?”. If the function p(·) evaluates to true,
then the subject is permitted to perform the action. Otherwise the subject is
not permitted to perform the action. With the help of the function p(·), which is
the only function that can be evaluated by an XACML PDP, decision requests
on a business level can be evaluated by using values for s and r which satisfy
special properties. These properties are defined in the following.

4.2.2 Use of Roles instead of Subjects

When formulating policies on a business level, we are able to target roles instead
of subjects, so we also want to be able to issue a decision request on a business
level that comprises roles instead of a subject. Therefore we want to be able to
evaluate a “role permission” function

po({o1, o2, . . . , on}, a, r, e)→ {true, true} (4.2)

and thus to answer the question “Is a subject with exactly the roles o1, o2,. . . ,
on permitted to perform action a on resource r within environment e?”. For
example, recall the rule “Permit Employee enter ConferenceRoom” from the
physical access control scenario (see Table 3.9). This rule is intended to permit
all subjects that have the role employee the physical access to resources labeled
as conference room. A decision request on business level could therefore be

po({Employee}, enter, C201, 9pm)

CHAPTER 4. ANALYSIS ALGORITHMS 50

which answers the question “Is a subject with the role “Employee” permitted
to “enter” the resource “C201” at 9p.m.?”. In contrast to a decision request on
XACML level where we would ask for the permission of a specific subject, we
are asking if any subject that has the role “Employee” — no matter if such a
subject exists or not — has permission or not.

Note that the answer the function po(·) returns is only valid for exactly the
given role set, i.e., for subjects that would have the roles o1, o2,. . . , on and only
these roles. This is because for a subject that has a role in addition to the
given roles, a business level rule could state an access control behavior that is
different to the one that is stated for the given roles. For example, imagine a
subject “Kelly” that has just the role “Employee”. The example decision request
from above would give the same answer as a request for “Kelly” herself. So far
so good. But now imagine that “Kelly” has also the “Contractor” role. Then is
not guaranteed any more that the example decision request from above returns
the same answer as a request for “Kelly” herself. Especially if there exists a
business level rule like the one in Table 3.9 that states “Deny Contractor enter
Area between 8pm and 6am”. Furthermore the given answer is only valid for
subjects (1) for that no business level rules exist that target the subject directly
and (2) that are not owner of the requested resource. This is because rules that
target the subject directly or have owner conditions could state different access
control behavior.

The function po(·) is defined as

po({o1, o2, . . . , on}, a, r, e)
= p(stemp, a, r, e)

(o1, stemp) ∈ OA ∧ (o2, stemp) ∈ OA ∧ . . .∧
(on, stemp) ∈ OA ∧ |{(x, stemp) ∈ OA}|=n

(4.3)

where stemp is a subject that has (1) the roles o1, o2,. . . , on and no other roles
and is (2) not existing in the subject repository and (3) just existing temporarily
while the decision request is evaluated by the PDP. This temporary subject is
necessary because only for such a new subject, which has not existed before, is
guaranteed that no business level rules exists that govern access for this subject
directly. For example, for this subject stemp is guaranteed that there exists no
rule like “Deny stemp enter Area”.

4.2.3 Use of Labels instead of Resources

Since we are now able to address roles instead of subjects, we also want to be
able to issue a decision request that comprises labels instead of subjects. Note
that the methods to use labels instead of resources that are described in the
section are identical to the ones to use roles instead of subjects.

To address labels instead of resources we want also be able to evaluate a
“label permission” function

pl(s, a, {l1, l2, . . . , ln}, e)→ {true, true} (4.4)

and thus to answer the question “Is subject s permitted to perform action a on
a resource labeled with exactly the labels l1, l2,. . . , ln within environment e?”.

CHAPTER 4. ANALYSIS ALGORITHMS 51

For example, recall again the rule “Permit Employee enter ConferenceRoom’. A
decision request on business level could therefore be

pl(Alice, enter, {ConferenceRoom}, 11am)

which answers the question “Is “Alice” at 11a.m. permitted to “enter” resources
labeled with the label “ConferenceRoom?”. In contrast to a decision request on
XACML level where we would ask for the permission to enter a specific resource,
we are asking if there is permission to enter “any” resource that has the label
“ConferenceRoom”, no matter if such a resource exists or not.

Note that the answer the function pl(·) returns is only valid for exactly the
given label set, i.e., for resources that would have the labels l1, l2,. . . , ln and
only these labels. The reasoning is similar to the previous one for exact role sets.
Furthermore the given answer is only valid for resources, for which no business
level rules exist that target the resource directly.

The function pl(·) is defined as

pl(s, a, {l1, l2, . . . , ln}, e)
= p(s, a, rtemp, e)

(l1, rtemp) ∈ LA ∧ (l2, rtemp) ∈ LA ∧ . . .∧
(ln, rtemp) ∈ LA ∧ |{(x, rtemp) ∈ LA}|=n

(4.5)

where rtemp is a resource that has (1) the labels l1, l2,. . . , ln and no other
labels and is (2) not existing in the resource repository and (3) just existing
temporarily while the decision request is evaluated by the PDP.

4.2.4 Use of Roles and Labels

As combination of the two previous requirements, we want to be able to issue
a decision request that comprises roles instead of subjects and labels instead of
resources. Therefore we want to be able to evaluate a “role and label permission”
function

pol({o1, o2, . . . , om}, a, {l1, l2, . . . , ln}, e)→ {true, true} (4.6)

and thus to answer the question “Is a subject with exactly the roles o1, o2,. . . ,
om permitted to perform action a on a resource labeled with exactly the labels
l1, l2,. . . , ln within environment e?”. A decision request on business level could
therefore be

pol({Employee}, enter, {ConferenceRoom}, 9pm)

The function pol(·) is defined as

CHAPTER 4. ANALYSIS ALGORITHMS 52

pol({o1, o2, . . . , om}, a, {l1, l2, . . . , ln}, e)
= p(stemp, a, rtemp, e)

(o1, stemp) ∈ OA ∧ (o2, stemp)
∈ OA ∧ . . . ∧ (om, stemp) ∈ OA
∧ |{(x, stemp) ∈ OA}|=m ∧
(l1, rtemp) ∈ LA ∧ (l2, rtemp)
∈ LA ∧ . . . ∧ (ln, rtemp) ∈ LA ∧
|{(x, rtemp) ∈ LA}|=n

(4.7)

where the same requirements are put on stemp and rtemp as above.

4.2.5 Policy Application

In Section 3.9 it has been defined under which conditions a business level rule is
applicable to a decision request on XACML level. Because it is also important
for the following analysis algorithms under which conditions a business level rule
is applicable to a decision request on the business level, this is defined in the
following.

The rule application semantics for a decision request on a business level is
the same as for a decision request on XACML level (see Section 3.9.1) with two
extensions:

1. In case the decision request addresses roles instead of subjects, a subject
match is only accomplished if (1) the rule’s target also addresses roles
instead of subjects and (2) the rule’s target addresses the same roles as
the decision request.

2. In case the decision request addresses labels instead of resources, a resource
match is only accomplished if (1) the rule’s target also addresses labels
instead of resources and (2) the rule’s target addresses the same labels as
the decision request.

4.3 Contribution Analysis

Using a decision request, a policy author is able to determine if a certain access
is permitted or not. Such a decision request can either be on the XACML level,
which means evaluating p(·), or on the business level, which implies evaluating
po(·), pl(·) or pol(·). In both cases the answer the policy author gets is either
true or false, i.e., a certain access is, or is not, permitted. For a PEP that has
to enforce the decision, such an answer is sufficient. But for a policy author it is
interesting why a true decision, or why a false decision was rendered. Therefore
she is interested in the particular business level rules that are responsible for the
rendered decision, i.e., she is interested in the rules that contribute to the deci-
sion. Furthermore she can be interested in the rules that are not contributing,

CHAPTER 4. ANALYSIS ALGORITHMS 53

or in the rules that may never contribute to a particular decision. The corre-
sponding analysis algorithm is referred to as contribution analysis. To formalize
this kind of analysis, the following definitions are used:

− PR, which refers to policy repositories (although we are always referring
to the same policy repository — the one the policy editor is operating on
— we talk for formalization reasons about repositories),

− DR, which refers to decision requests, either on XACML or on a business
level,

− BLR, which refers to business level rules, and

− a “contribution” function c(blr, dr, pr) → {true, true}, which evaluates to
true if the business level rule blr contributes to an authorization decision
for the decision request dr according to the policy repository pr, and
to false otherwise. A business level rule contributes to an authorization
decision for a decision request if it is applicable to the decision request (see
Section 3.9 on page 39 for policy application on XACML level as well as
Section 4.2.5 for policy application on a business level) and the business
level condition is fulfilled.

The set of business level rules that contribute to an authorization decision for
a decision request dr according to a policy repository pr is defined by

{blr | c(blr, dr, pr)} (4.8)

This set answers the question “Which business level rules contribute to an autho-
rization decision for the decision request dr according to the policy repository
pr?”.

The set of business level rules that do not contribute to an authorization
decision for a decision request dr according to a policy repository pr is defined
by

{blr | ¬c(blr, dr, pr)} (4.9)

This set answers the question “Which business level rules blr do not contribute
to an authorization decision for the decision request dr according to the policy
repository pr?”.

The set of business level rules that may never contribute to a decision request
dr according to a policy repository pr is defined by

{blr | ∀dr ¬c(blr, dr, pr)} (4.10)

This set answers the question “Which business level rules blr may never con-
tribute to an authorization decision for any decision request according to a policy
repository pr?”.

CHAPTER 4. ANALYSIS ALGORITHMS 54

4.4 Policy Override Detection

Policy authors formulate business level policies that reside on a specific hierarchy
level. For a policy author it is interesting to know if other policy authors over-
ride his policy or which policies she overrides herself. To determine if a policy
overrides another policy, the contained rules are investigated first for overrides.
Thereby a rule overrides another rule if it addresses the same subjects, actions
and resources as the other rule and resides at the same time on a higher level in
the policy delegation hierarchy. If then a rule override is found for at least one
pair of rules out of two policies, one policy overrides the other one. To formalize
policy override detection we use the following definitions:

− BLP , which refers to business level policies,

− BLR, which refers to business level rules,

− RA ⊆ BLR × BLP , a many-to-one rule to policy assignment relation,

− a “delegation level” function dl(blp)→ N+, which returns the level of the
business level policy blp in the policy delegation hierarchy as integer value
where a lower value means a higher priority,

− a “target match” function tm(blr1, blr2) → {true, true}, which evaluates
to true if the business level targets of the business level rules blr1 and
blr2 have intersections in the subjects and actions and resources that are
matched (for definitions on matching see Section 3.7 on page 37 as well as
Section 3.8 on page 38), and to false otherwise.

To be able to decide if a business level rule blr1 overrides another business level
rule blr2, we have to evaluate a “rule override” function

or(blr1, blr2)→ {true, true} (4.11)

and thus to answer the question “Does the business level rule blr1 override the
business level rule blr2?”. The function or(·) is defined as

or(blr1, blr2) = tm(blr1, blr2) ∧
dl(blp1 | (blr1, blp1) ∈ RA) > dl(blp2 | (blr2, blp2) ∈ RA) (4.12)

In the current definition of or(·), an override is defined by a target match of
two rules where one rule resides on a higher hierarchy level. Since a target
match requires that actual subjects and actions and resources exist in the sub-
ject, action and resource repositories, a policy override is only detected if this
requirement is fulfilled. For example, remember the rules “Deny Employee read
Finance&Administration” and “Permit FinanceAnalyst read TravelExpenses”
from the policy delegation scenario, which reside on different hierarchy levels.
With the current definition of or(·), an override of these rules is only detected if
there exists at least one subject that has the “FinanceAnalyst” role, and at least
one resource that has the “TravelExpenses” label. Thus, the definition of or(·)
detects overrides that are currently present whereby the presence is dependent

CHAPTER 4. ANALYSIS ALGORITHMS 55

on the policy repository, the role assignment and the data classification. An-
other approach for defining or(·) would be, to consider also overrides that might
occur later on. Note also that or(·) only defines potential overrides since it just
takes the matching into account and disregards the business level conditions of
the rules.

After knowing that one business level rule overrides another business level
rule, it is interesting to know which business level policy as a whole overrides
another business level policy. To be able to decide if a business level policy
blp1 overrides another business level policy blp2, we have to evaluate a “policy
override” function

op(blp1, blp2)→ {true, true} (4.13)

and thus to answer the question “Does the business level policy blp1 override
the business level policy blp2?”. The function op(·) is defined as

op(blp1, blp2) = ∃blr1∃blr2 or(blr1, blr2 | (blr1, blp1) ∈ RA
∧(blr2, blp2) ∈ RA) (4.14)

4.5 Authorization Analysis

A single decision request on business level makes a statement about authoriza-
tion of one particular combination of request parameters. However, often it is
required not to determine the authorization decision itself but the set of request
parameters that evaluate to a particular authorization decision. This process
is referred to as authorization analysis. With authorization analysis a policy
author can find answers to common questions that may arise during the policy
authoring process. A policy author can for example answer questions such as:

− Which subjects are permitted to “enter” the room “C230”?

− Which subjects are permitted to “enter” resources that have the label
“ConferenceRoom”?

− Which roles must a subject have to be permitted to “enter” the room
“C230”?

− Which roles must a subject have to be permitted to “enter” resources that
have the label “ConferenceRoom”?

− etc.

The pattern of the questions above can be continued, i.e., a user can ask for
subjects, roles, actions, resources or labels. Depending on the value she is
interested in, she has to provide the remaining parameters to form a complete
question.

CHAPTER 4. ANALYSIS ALGORITHMS 56

4.5.1 Subject Sets

The set of subjects that are permitted to perform action a on resource r within
environment e is defined by

{s | p(s, a, r, e)} (4.15)

This set answers the question “Which subjects s are permitted to perform action
a on resource r within environment e?”.

The set of subjects that are permitted to perform action a on a resource that
has the labels l1, l2,. . . , ln and only these labels assigned within environment e
is defined by

{s | pl(s, a, {l1, l2, . . . , ln}, e)} (4.16)

This set answers the question “Which subjects s are permitted to perform action
a on a resource labeled with exactly the labels l1, l2,. . . , ln within environment
e?”.

4.5.2 Role Sets

The set of role sets, which has a subject exactly to hold to be permitted to
perform action a on resource r within environment e is defined by

{{o1, o2, . . . , on} | po({o1, o2, . . . , on}, a, r, e)} (4.17)

This set answers the question “Which roles o1, o2,. . . , on has a subject exactly
to hold to be permitted to perform action a on resource r within environment
e?”.

The set of role sets, which has a subject exactly to hold to be permitted to
perform action a on a resource r labeled with the labels l1, l2,. . . , ln and only
these labels within environment e is defined by

{{o1, o2, . . . , om} | pol({o1, o2, . . . , om}, a, {l1, l2, . . . , ln}, e)} (4.18)

This set answers the question “Which roles o1, o2,. . . , om has a subject exactly
to hold to be permitted to perform action a on a resource labeled with exactly
the labels l1, l2,. . . , ln within environment e?".

4.5.3 Action Sets

The set of actions, which may be performed by subject s on resource r within
environment e is defined by

{a | p(s, a, r, e)} (4.19)

This set answers the question “Which actions a may be performed by subject s
on resource r within environment e?”.

The set of actions, which may be performed on resource r by a subject that
holds the roles o1, o2,. . . , on and only these roles within environment e is defined
by

{a | po({o1, o2, . . . , on}, a, r, e)} (4.20)

CHAPTER 4. ANALYSIS ALGORITHMS 57

This set answers the question “Which actions a may be performed on resource r
by a subject that holds exactly the roles o1, o2,. . . , on within environment e?”.

The set of actions, which may be performed by subject s on a resource
labeled with the labels l1, l2,. . . , ln and only these labels within environment e
is defined by

{a | pl(s, a, {l1, l2, . . . , ln}, e)} (4.21)

This set answers the question “Which actions a may be performed by subject s
on a resource labeled exactly with the labels l1, l2,. . . , ln within environment
e?”.

The set of actions, which may be performed by a subject that holds the
roles o1, o2,. . . , om and only these roles on a resource labeled with the labels l1,
l2,. . . , ln and only these labels within environment e is defined by

{a | pol({o1, o2, . . . , om}, a, {l1, l2, . . . , ln}, e)} (4.22)

This set answers the question “Which actions a may be performed by a subject
that holds exactly the roles o1, o2,. . . , om on a resource labeled exactly with the
labels l1, l2,. . . , ln within environment e?”.

4.5.4 Resource Sets

The set of resources on which action a may be performed by subject s within
environment e is defined by

{r | p(s, a, r, e)} (4.23)

This set answers the question “On which resources r may action a be performed
by subject s within environment e?”.

The set of resources on which action a may be performed by a subject that
holds the roles o1, o2,. . . , on and only these roles within environment e is defined
by

{r | po({o1, o2, . . . , on}, a, r, e)} (4.24)

This set answers the question “On which resources r may action a be performed
by a subject that holds exactly the roles o1, o2,. . . , on within environment e?”.

4.5.5 Label Sets

The set of label sets that must be assigned to a resource exactly so that subject s
is permitted to perform action a on the resource within environment e is defined
by

{{l1, l2, . . . , ln} | pl(s, a, {l1, l2, . . . , ln}, e)} (4.25)

This set answers the question “Which labels l1, l2,. . . , ln must be assigned to
a resource exactly so that subject s is permitted to perform action a on the
resource within environment e?”.

The set of label sets that must be assigned to a resource exactly so that a
subject that holds the roles o1, o2,. . . , om and only these roles is permitted to
perform action a on the resource within environment e is defined by

{{l1, l2, . . . , ln} | pol({o1, o2, . . . , om}, a, {l1, l2, . . . , ln}, e)} (4.26)

CHAPTER 4. ANALYSIS ALGORITHMS 58

This set answers the question “Which labels l1, l2,. . . , ln must be assigned to a
resource exactly so that a subject that holds exactly the roles o1, o2,. . . , om is
permitted to perform action a on this the resource within environment e?”.

4.6 Coverage Analysis

A policy decision point answers to a decision request with an authorization
decision according to a policy repository. The policy repository contains rules
which define the access control behavior for the decision request. With coverage
analysis it can be evaluated if there are gaps in the rule set, i.e., if there are
subjects or roles that may never access any resource or if there are resources or
labels that may never be accessed by anyone.

To be able to analyze the policy coverage, we have to redefine the function
p(·) that was introduced earlier. Since an XACML PDP has actually not only
the outcomes “true” and “false”, but also “NotApplicable” and “Indeterminate”
we define

pa(s, a, r, e)→ {true, false,NotApplicable, Indeterminate} (4.27)

as the function that is evaluated by a real world PDP. This function evaluates to
NotApplicable if no statement can be made by the PDP because the underlying
policy repository defines no behavior for the given input, and it evaluates to
Indeterminate if an error occurs during the evaluation process. To keep the
formalisms defined earlier consistent we redefine p(·) so that

p(·) =
{

pa(·) if pa(·) ∈ {true, false}
true otherwise (4.28)

With this redefined p(·) we are now capable to define coverage analysis.
The set of subjects which may not perform any action on any resource within

environment e is defined by

{s | ∀a∀r pa(s, a, r, e)=(false ∨ NotApplicable)} (4.29)

This set answers the question “Which subjects s are not permitted to perform
any action on any resource within environment e”.

The set of role sets that has a subject exactly to hold so that no action may
be performed on any resource within environment e is defined by

{{o1, o2, . . . , on} | ∀a∀r po({o1, o2, . . . , on}, a, r, e)
=(false ∨ NotApplicable)} (4.30)

This set answers the question “Which roles o1, o2,. . . , on has a subject exactly
to hold so that no action may be performed on any resource within environment
e?”.

The set of resources, on which no action may be performed by any subject
within environment e is defined by

{r | ∀s∀a p(s, a, r, e)=(false ∨ NotApplicable)} (4.31)

CHAPTER 4. ANALYSIS ALGORITHMS 59

This set answers the question “On which resources r may no action be performed
by any access requestor within environment e?”.

The set of label sets that has a resource exactly to have so that no access
requestor is permitted to perform any action on the resource within environment
e is defined by

{{l1, l2, . . . , ln} | ∀s∀a pl(s, a, {l1, l2, . . . , ln}, e)
=(false ∨ NotApplicable)} (4.32)

This set answers the question “Which labels l1, l2,. . . , ln has a resource exactly
to have so that no access requestor is permitted to perform any action on the
resource within environment e?”.

Chapter 5

Implementation of
Analysis Algorithms

This chapter gives an insight on how policies on a business level are translated to
XACML and describes how the concepts and functions introduced and specified
in the previous chapter have been implemented in the policy editor.

First, the translation of all the underlaying concepts of business level policies
into XACML is described in detail. Then we explain how a decision request
on business level is formulated in XACML and give an example for such a
formulation. Finally, it is shown how we implemented the contribution analysis,
the override detection and the authorization analysis.

5.1 Policy Translation

Since XACML emerged as standard for expressing access control policies, more
and more companies follow this standard to implement access control in their
IT infrastructure [8]. For policies on a business level, as they are defined in
this thesis, it shall be possible to use them in the existing IT infrastructures of
these companies without making any changes to the infrastructure. Therefore,
the policies on business level have to be transformed into XACML policies.
Although some concepts can be translated directly — remember that the policy
language for business level policies was inspired by the XACML model — the
new concepts that are only used on the business level are not supported by
XACML. Thus, these concepts have to be translated accordingly. The concepts
that need special attention during the translation process from the business level
into XACML are the following:

− Label Concept

− Policy Delegation Concept

− Role Concept

The translation of these concepts is described in the following subsections. Fur-
thermore the implementation of the translation from business level conditions
to XACML conditions as well as the size of XACML policy files are discussed.

60

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 61

Note that the described translation is a one way translation from business level
to XACML. A translation from XACML back to the business level is possible
under certain conditions and with some restrictions, but not discussed here.
Since the role repository as well as the label repository are input data for the
translation algorithm, every change in one of the repositories requires that a
new translation of the policies has to be performed.

5.1.1 Label Concept

A business level rule’s target may address resources in terms of labels instead of
addressing the resources directly. In XACML this approach can be implemented
with the help of resource attributes. In an XACML rule, resource attributes are
used to specify the characteristics of the resources that shall be matched by the
rule. In a typical XACML policy, a resource is addressed by an identity attribute,
but what we want is to address the resource in terms of label attributes. Each
attribute has an attribute identifier, which states the kind of characteristic and
an attribute value. Due to the fact that XACML is extensible1, a label attribute
with the identifier

“urn:zurich:ibm:names:xacml:2.0:resource:label”

to expresses such a label characteristic of a resource is introduced here. Using
this new label attribute, we can address resources in XACML rules by their
labels instead of their identity.

For every business level rule that addresses labels instead of resources, in
the corresponding XACML rule an XACML <Resource> element is created that
comprises the business level rule’s target labels expressed by our label attribute.
The XACML rule is then always considered if the access requestor tries to access
a resource that has at least the labels contained in the <Resource> element.

Since the labels in a classification scheme may be organized in a hierarchy
whereby the label hierarchy defines a specialization relation between the labels,
this specialization relation is considered during the policy translation. Whenever
a policy on business level states access control behavior in terms of labels, then
the intention is that access control behavior is also stated for all the descendants
of that label. For example, remember the rule “Permit Employee enter Area if
Owner” from the physical access control scenario (see Table 3.9). This rule is
intended to address all resources that have the “Area” label as well as resources
that have some descendant label like “Office”, “ConferenceRoom”, “PrinterRoom”
etc. Therefore, at a policy translation of a rule from business level to XACML,
an XACML <Resource> element is created not only for the business level rule’s
target label itself, but also for every descendant of that label.

A business level rule’s target may contain more than one label at the same
time, i.e., a whole label set. As defined in Section 3.7.3, in this case, the rule
targets resources that have all these labels together. For the policy translation
of such a rule, a <Resource> element is created for every consistent combina-
tion of the set’s labels together with their descendants whereby a label set is

1“eXtensible” Access Control Markup Language

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 62

considered as consistent if no label of the set is ancestor of another label of this
set. For example, consider a rule “Permit Alice enter Area,ComputerScience”.
This rule intends to let “Alice” enter every resource that has the labels “Area”
and “ComputerScience”, i.e., “Alice” is allowed to enter every room that be-
longs to the computer science department. The policy translation algorithm
creates therefore also <Resource> elements for every consistent combination of
the “Area” and the “ComputerScience” label together with their descendants,
such as

− “Area”, ”Security&Assurance’,

− “Area”, ”Security&Cryptography’,

− “Office”, ”Security&Assurance”,

− “Office”, ”Security&Cryptography”,

− . . .

5.1.2 Policy Delegation Concept

A delegation concept for access control policies like the one proposed in this
thesis (see Section 3.5.1) is not supported explicitly in XACML. Nevertheless,
we can translate the delegation mechanism of the policies on business level to
XACML.

The proposed concept of policy delegation in this thesis is in the end a prob-
lem of finding the first policy that was not delegated to somebody else. To
find this policy, we arrange all the policies in a specific sequence according to
their hierarchy level and final status, and then we use the first policy that is
applicable in this sequence. Since XACML has the built in policy combining
algorithm “First-applicable” [10] whereby the first policy that states access con-
trol behavior for the given decision request determines the overall outcome (if
no access control behavior is stated in the first policy, then the second policy
in the list is considered, etc.), the remaining part is to find and specify the
right sequence of the policies. Recall that the requirements for the proposed
delegation mechanism are:

− The higher the hierarchy level, the earlier a policy must be considered to
decide about the access control behavior.

− Final policies can not be overridden by policies on lower hierarchy levels.

− Recommended policies may be overridden by policies on lower hierarchy
levels.

According to these requirements, the policies have to be split in two groups.
The first group contains the final policies, and the second group contains the
recommended policies. The policies in the first group are then sorted ascending
by the hierarchy level, and the policies in the second group are sorted descending
by the hierarchy level. Then, an XACML policy set with the policy combining

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 63

algorithm “First-applicable” is created, whereby at first the sorted policies of
the first group and then the sorted polices of the second group are attached to
this policy set.

The following provides an example sequence of some business level policies
as they would appear and be considered in an XACML policy set with the
combining algorithm “First-applicable” after a policy translation. Note that a
higher hierarchy level is associated with a smaller integer value. Also, observe
that the final policies are sorted ascending, and the recommend policies are
sorted descending:

1. Policy with Hierarchy Level 10 [final]

2. Policy with Hierarchy Level 20 [final]

3. Policy with Hierarchy Level 30 [final]

4. Policy with Hierarchy Level 50 [recommended]

5. Policy with Hierarchy Level 30 [recommended]

6. Policy with Hierarchy Level 20 [recommended]

7. Policy with Hierarchy Level 10 [recommended]

At each hierarchy level there may be more than one final or more than one
recommended policy. In this case it is necessary to pool all policies at the same
hierarchy level together in single policy. In XACML this can be done by attach-
ing the relevant XACML policies to a XACML <PolicySet> and combining
the policies with the combining algorithm that is defined for the business level
policy set.

5.1.3 Role Concept

Although OASIS published a Profile that defines how to implement access con-
trol policies in conjunction with RBAC [9], this Profile cannot be applied here.
The reason for that is the way in which the policy delegation mechanism has to
be translated from business level to XACML. Thereby the policies have to be
sorted — according to the described requirements (see 5.1.2) — and combined as
a whole with the “First-Applicable” combining algorithm. However, the RBAC
Profile resolves the role hierarchy by (1) splitting the individual policies up into
parts where every part contains just the access control behavior for a specific
role and (2) connecting the parts with references. This splitting mechanism is
not compatible with our method to translate the policy delegation mechanism.

The approach which is used instead is the same as the one for translating the
label concept. The attribute identifier that is used to specify the role attribute
of a subject is

“urn:oasis:names:tc:xacml:2.0:subject:role”

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 64

which is defined by OASIS in the RBAC Profile.
For every business level rule that addresses roles instead of subjects, in the

corresponding XACML rule an XACML <Subject> element is created that com-
prises the business level rule’s target roles expressed by OASIS’s role attribute.
The XACML rule is then always considered if the access requestor has at least
the roles of the <Subject> element associated.

The translation of the role hierarchy as well as the translation of role sets is
implemented in the same way as for the label concept (see Section 5.1.1).

5.1.4 Conditions

For the translation of an owner condition to XACML an owner attribute with
the identifier

“urn:zurich:ibm:names:xacml:2.0:resource:owner”

has been introduced. The translation of an owner condition can be seen in
Appendix A on lines 149–168.

An example translation of a time range condition can be seen in Appendix
A on lines 277–285.

5.1.5 XACML Policy File Size

The reduction of the policy quantity, which was mentioned in Section 3.2.1, has
some side effect on the size of the XACML policy file. The reduced amount
of policies that have to be formulated derives from the possibility to cover an
entire path in a role or label hierarchy up to a particular depth. While for
policies on a business level the role and label hierarchies are represented in the
role and label repositories, after the translation from business level to XACML,
these hierarchies are partially reflected in the XACML policy itself. Remember
that for a label that is targeted on business level, a <Resource> element is
created for every descendant of that role. The same is true for roles and their
<Subject> elements. Thus, the deeper the role and label hierarchy trees are,
the bigger the XACML policies files may get. For example, consider a rule
that states “Permit Alice enter Area,SiteOperations”. Since the label “Area”
has seven descendant labels and the label “SiteOperations” has four descendant
labels, an overall amount of

40 = (1 + 7) · (1 + 4)

<Resource> elements is created for the XACML representation of this rule.

5.1.6 Example Rule

The translation of the business level rule “Permit Finance&Administration cre-
ate TravelExpenses” to XACML has the following XML representation.

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 65

1 <Rule E f f e c t="Permit" RuleId="urn : zu r i ch : ibm : names : xacml : 2 . 0 : r u l e i d :4">
2 <Target>
3 <Subjects>
4 <Subject>
5 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
6 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#
financeAndAdministrat ion </Attr ibuteValue>

7 <Subjec tAtt r ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org /2001/
XMLSchema#s t r i n g "/>

8 </SubjectMatch>
9 </Subject>

10 <Subject>
11 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
12 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#f inanceAnalyst </
Attr ibuteValue>

13 <Subjec tAtt r ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org /2001/
XMLSchema#s t r i n g "/>

14 </SubjectMatch>
15 </Subject>
16 <Subject>
17 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
18 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#con t r o l l i n g </
Attr ibuteValue>

19 <Subjec tAtt r ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org /2001/
XMLSchema#s t r i n g "/>

20 </SubjectMatch>
21 </Subject>
22 <Subject>
23 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
24 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#f inancePayro l l </
Attr ibuteValue>

25 <Subjec tAtt r ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org /2001/
XMLSchema#s t r i n g "/>

26 </SubjectMatch>
27 </Subject>
28 </Subjects>
29 <Resources>
30 <Resource>
31 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
32 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#trave lExpenses </
Attr ibuteValue>

33 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm : names :
xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3 . org /2001/
XMLSchema#s t r i n g "/>

34 </ResourceMatch>
35 </Resource>
36 </Resources>
37 <Actions>
38 <Action>
39 <ActionMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 66

40 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / ac t i on#create </
Attr ibuteValue>

41 <Act ionAttr ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 1 . 0 : a c t i on : act ion−id " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

42 </ActionMatch>
43 </Action>
44 </Actions>
45 </Target>
46 </Rule>

Line 1 introduces the XACML Rule. The effect of the rule is to permit the
access.

Line 2 introduces the target of the rule. The target of a rule describes the
decision requests to which this rule applies. If the subject, resource, action or
environment in a decision request do not match the values specified in the rule’s
target, then the remainder of the rule does not need to be evaluated, and a value
of “NotApplicable” is returned to the rule evaluation.

Line 3 introduces the subjects that are matched by this rule. This rule
specifies four kinds of subjects that are matched.

The lines 4–9 specify one of the four kinds of subjects that are matched
by this rule. In this case it is stated that subjects are matched that have an
attribute with the identifier urn:oasis:names:tc:xacml:2.0:subject:role that has
the value http://www.example.org/role#financeAndAdministration.

The subjects that are introduced in the lines 10, 16 and 22 state that also
subjects are matched that have the roles http://www.example.org/role#finance
Analyst, http://www.example.org/role#controlling or http://www.example.org/
role#financePayroll. These roles are the descendants of the “Finance&
Administration” role.

Line 29 introduces the resources that are matched by this rule. The re-
sources that are matched must have an attribute with the identifier urn:zurich
:ibm:names:xacml:2.0:resource:label — which was introduced in this thesis —
that has the value http://www.example.org/label#travelExpenses.

Line 37 introduces the actions that are matched. The actions that are
matched must have the identifier http://www.example.org/action#create.

5.2 Formulation of Business Level Decision Request

To let an XACML PDP render an authorization decision — which means eval-
uating the function p(·) — an XACML <Request> context is created that com-
prises the following elements:

− A mandatory <Subject> element containing an attribute with the identi-
fier urn:oasis:names:tc:xacml:1.0:subject:subject-id.

− A mandatory <Action> element containing an attribute with the identifier
urn:oasis:names:tc:xacml:1.0:action:action-id.

− A mandatory <Resource> element containing an attribute with the iden-
tifier urn:oasis:names:tc:xacml:1.0:resource:resource-id.

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 67

− An optional <Environment> element containing attributes that are not
related to a subject, an action or a resource.

The elements given in the <Request> context are then compared — using string
comparison — with the <Target> elements of the rules in the XACML policy
to determine finally an authorization decision. Since the subject-id, the action-
id and the resource-id attributes are mandatory, we always have to render the
decision for a specific subject, a specific action and a specific resource. To
render an authorization decision for a decision request on business level, special
requirements have been specified in Section 4.2 that are put on the subject
and/or the resource.

In order to fulfill the first requirement that is put on the subject to eval-
uate the function po(·), a subject attribute — with the attribute identifier
urn:oasis:names:tc:xacml:2.0:subject:role — for every element in the given role
set and only these elements is included in the <Request> context. To fulfill the
second and third requirement, the value of the subject-id attribute must be a
subject name that is not existing in the subject repository and just existing
temporarily. Therefore we choose an empty string as value and ensure at the
same time, that no subject with an empty string as identifier is allowed in the
policy editor and therefore in the business level policies.

The same methods are used to evaluate the function pl(·). A resource at-
tribute with the identifier urn:zurich:ibm:names:xacml:2.0:resource:label is cre-
ated for every element in the given label set and only these elements. Further,
an empty string is chosen as value of the resource-id attribute while making
sure that no resource with an empty string as identifier is allowed in the policy
editor and therefore in the business level policies.

To evaluate the function pol(·), the methods to evaluate po(·) and pl(·) are
combined. An example on how to formulate a request to evaluate the function
pol(·) is given in the next section.

5.2.1 Example Request

The following gives an example on how to evaluate a decision request on business
level that corresponds to the function call

pol({FinanceAnalyst}, read, {TravelExpenses}, 9am)

which answers the question “Is a subject with the role “FinanceAnalyst” permit-
ted to “read” resources labeled with the label “TravelExpenses” at 9a.m?”.

1 <Request xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t anc e " xmlns="urn
: o a s i s : names : tc : xacml : 2 . 0 : context : schema : os " x s i : schemaLocation="urn :
o a s i s : names : tc : xacml : 2 . 0 : p o l i c y : schema : os access_contro l−xacml−2.0−
context−schema−os . xsd">

2 <Subject>
3 <Attr ibute Att r ibute Id="urn : o a s i s : names : tc : xacml : 1 . 0 : sub j e c t : sub ject−

id " DataType="http ://www.w3 . org /2001/XMLSchema#s t r i n g">
4 <Attr ibuteValue></Attr ibuteValue>
5 </Attr ibute>
6 <Attr ibute Att r ibute Id="urn : o a s i s : names : tc : xacml : 2 . 0 : sub j e c t : r o l e "

DataType="http ://www.w3 . org /2001/XMLSchema#s t r i n g">

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 68

7 <Attr ibuteValue>http ://www. example . org / r o l e#f inanceAnalyst </
Attr ibuteValue>

8 </Attr ibute>
9 </Subject>

10 <Resource>
11 <Attr ibute Att r ibute Id="urn : o a s i s : names : tc : xacml : 1 . 0 : r e s ou r c e :

r e source−id " DataType="http ://www.w3 . org /2001/XMLSchema#s t r i n g">
12 <Attr ibuteValue></Attr ibuteValue>
13 </Attr ibute>
14 <Attr ibute Att r ibute Id="urn : zu r i ch : ibm : names : xacml : 2 . 0 : r e s ou r c e : owner

" DataType="http ://www.w3 . org /2001/XMLSchema#s t r i n g">
15 <Attr ibuteValue></Attr ibuteValue>
16 </Attr ibute>
17 <Attr ibute Att r ibute Id="urn : zu r i ch : ibm : names : xacml : 2 . 0 : r e s ou r c e : l a b e l

" DataType="http ://www.w3 . org /2001/XMLSchema#s t r i n g">
18 <Attr ibuteValue>http ://www. example . org / l a b e l#trave lExpenses </

Attr ibuteValue>
19 </Attr ibute>
20 </Resource>
21 <Action>
22 <Attr ibute Att r ibute Id="urn : o a s i s : names : tc : xacml : 1 . 0 : a c t i on : act ion−id

" DataType="http ://www.w3 . org /2001/XMLSchema#s t r i n g">
23 <Attr ibuteValue>http ://www. example . org / ac t i on#read</Attr ibuteValue>
24 </Attr ibute>
25 </Action>
26 <Environment>
27 <Attr ibute Att r ibute Id="urn : o a s i s : names : tc : xacml : 1 . 0 : environment :

current−time" DataType="http ://www.w3 . org /2001/XMLSchema#time">
28 <Attr ibuteValue >09:00:00</ Attr ibuteValue>
29 </Attr ibute>
30 </Environment>
31 </Request>

The lines 2–9 describe the subject for that the request is made. The request is
issued for a subject which subject-id is an empty string and that has just the
role “FinanceAnalyst”.

The lines 10–20 describe the resource for that the request is made. The
request is issued for a resource which resource-id is an empty string and that
has just the label “TravelExpenses”. The empty owner attribute is necessary to
let the PDP evaluate owner conditions properly.

The lines 21–25 describe the action for that the request is made. We issue
the request for the “read” action.

The line 26–30 describe the environment. It contains the current time which
is necessary to let the PDP evaluate time range conditions properly.

5.3 Contribution Analysis

The idea of the contribution analysis is to determine the rules and policies that
apply to a given decision request. Because the application functionality for
individual rules already exists in the used XACML PDP implementation2, this
functionality was reused and has been extended.

This extension implements an evaluation recording functionality. Thereby
every rule and policy that is evaluated by the PDP— only rules and policies that
apply to the decision request are evaluated — is recorded in a central buffer,
together with the evaluation result of the evaluated rule or policy. After the

2In the policy editor Sun’s open source XACML implementation is used

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 69

evaluation process this buffer contains a collection of all the rules and policies
the PDP has evaluated to come up with a authorization decision, as well as the
corresponding evaluation results of the individual rules and policies.

The individual rules in a policy as well as the individual policies in a pol-
icy set are combined with a combining algorithm. Depending on the particular
combining algorithm, the PDP stops the evaluation process as soon as it has
enough information to come up with a combining result. For example, when
evaluating a policy that combines the individual rules with the “Deny-overrides”
combining algorithm, the PDP can stop the evaluation process as soon as the
first rule with an effect of “Deny” matches. Hence, after the evaluation process
our buffer contains so far not all the rules and policies that apply to the de-
cision request, since some may not have been evaluated because the PDP had
already enough information to come up with the combining result. However, in
contribution analysis we are interested in all rules and policies that apply to a
given decision request.

Therefore we came up with modified versions for all the combining algo-
rithms that may appear in a translation of a business level policy to XACML.
These modified versions perform the entire evaluation, i.e., they keep the overall
evaluation result in mind, but do not stop the evaluation process.

When performing contribution analysis in the policy editor, the policy on
business level is translated to XACML level whereby all the combining algorithm
identifiers are replaced with the corresponding identifiers of our versions that
perform an entire evaluation. In this way our recording buffer contains after the
evaluation process all rules and policies that apply to the given decision request.

5.4 Policy Override Detection

According to the specifications in Section 4.4, an implementation of a “target
match” function tm(·) is needed to detect overrides between rules or policies.

To implement tm(·), at first it has to be determined if two given business
level rules have intersections in the set of subjects they govern. Therefore, for
both rules, the following steps are taken to determine these individual set of
subjects:

1. If the rule’s target contains subjects — and matches them therefore di-
rectly — we take these subjects and are done.

2. Otherwise, if the rule’s target contains roles — and matches the subjects
therefore indirectly — we determine the subjects that have associations
for all these roles and are done.

3. Otherwise the rule’s target targets all subjects, so we take all subjects
from the repository and are done.

Now it can be verified if the two determined subject sets have an intersection.
If this is the case, similar methods as above are used to determine the set of
actions and the set of resources that are matched. If there are intersections in
all three types of sets, then we found a “target match”.

CHAPTER 5. IMPLEMENTATION OF ANALYSIS ALGORITHMS 70

Given a target match between two rules, the delegation levels of the policies
that contain the rules determine if one rule overrides the other or is overridden
by the other. The outcome of the delegation level function dl(·) is defined by
the evaluation sequence of the policies that is described in Section 5.1.2.

5.5 Authorization Analysis

To determine the authorized subject, action or resource sets, as defined in Sec-
tion 4.5, we iterate through all subjects, actions or resources in the repository
respectively, and evaluate the corresponding decision request function.

Before we can determine the authorized role or label sets as defined in the
mentioned section, we have to define for which sets in particular we want to
evaluate the corresponding function. While it is typically too costly to iterate
through all possible combinations of roles or labels respectively, the user is often
only interested in role sets with a small number of elements. Therefore, we let
the user decide the size of role sets up to which she is interested and then,
we determine for all the role sets up to the specified size whether they are (1)
consistent and for the consistent ones if (2) the corresponding decision request
function evaluates to true.

For example, we assume that a user uses the policy editor to determine
authorized role sets and specifies at the same time that she is interested in
result sets up to a size of three. For a role repository that contains n different
roles, this means that

3∑
k=1

(
n

k

)
=
(

n

1

)
+
(

n

2

)
+
(

n

3

)
different role sets have to be checked if they are authorized or not. Therefore,
the more roles the repository contains, the more role sets have to be checked.

Chapter 6

Policy Editor and Analyzer

This chapter describes the implementation and user interfaces of the policy
editor and analyzer tool that was created for this thesis. It shows an overview of
the components that have been used to build the policy editor and describes each
individual component in detail. Different perspectives have been introduced to
perform different user tasks, whereby a perspective shows only the user interface
elements that are needed to perform a given task. These particular perspectives,
together with their corresponding user tasks and the user interface elements that
are needed to fulfill these tasks are described in detail as well.

6.1 Design

The Eclipse RCP was chosen as platform for the user interface, which is there-
fore used by the policy authors to interact with the system. A collection of
RDF statements is used as data store for the editor. This data store contains
the data model the policy editor is operating on. The Jena Library is used to
manipulate the statements in the RDF store programmatically. Sun’s XACML
implementation is used as decision engine for XACML requests. Since this im-
plementation takes its XACML inputs in XML format, an existing IBM internal
library is used to generate these XACML inputs programmatically.

Figure 6.1 shows the components that are used in the design of the policy
editor. The components that have been provided or extended throughout this
thesis are shaded in gray.

6.1.1 Eclipse Rich Client Platform

The Eclipse1 Rich Client Platform (RCP) is the platform that was extracted
from the well known Eclipse IDE. Now, one can use the same platform that was
used to build the Eclipse IDE to build applications with powerful user interfaces
and rich functionality. Eclipse RCP was chosen as platform since it offers several
advantages over other UI platforms for building rich client applications. For
example, it has a plug-in architecture that allows other developers to extend
the application easily and fast SWT widgets that have a native look and feel on

1http://www.eclipse.org/

71

http://www.eclipse.org/

CHAPTER 6. POLICY EDITOR AND ANALYZER 72

Figure 6.1: Policy Editor Components

multiple platforms. Furthermore the language to develop the application is the
open source programming language Java.

However, the Eclipse RCP was not the only platform that was considered as
platform for the user interface. Initially we intended to implement the interfaces
as web interface. To this end we evaluated the Google Web Toolkit (GWT) [12].
Although the GWT offers interesting facilities for building web applications it
turned out that the user interfaces of that toolkit are not yet powerful and user
friendly enough to create a policy editor that has the focus on usability for
non-technical authors.

The components of the RCP are a platform Runtime, a low level widget
toolkit called Standard Widget Toolkit (SWT), a UI toolkit called JFace that
provides helper classes for developing UI features with the SWT faster, and a
Workbench implementation that provides the look and feel and therefore the
UI personality of the Eclipse Platform. The UI paradigm of the Workbench is
centered around Editors, Views and Perspectives. Editors are parts that have an
“open, edit, save, close” lifecycle. Views are parts that provide information on
some object and augment editors or other views. Perspectives are arrangements
of views and editors whereby different perspectives are suited for different user
tasks.

The plug-in architecture of the Eclipse RCP requires that all the compo-
nents of the application are implemented as plug-ins. Even the Runtime, SWT,
JFace and the Workbench themselves are provided as plug-ins. Because the
Sun XACML implementation and the Jena library are originally not provided
as plug-in — only IBM’s XACML Light library is provided as plug-in — these
two components had to be transformed into corresponding Eclipse plug-ins.

CHAPTER 6. POLICY EDITOR AND ANALYZER 73

6.1.2 RDF Store

The advantage of using RDF as storage technology is that the RDF data model
can be extended without any influence on the already present data. Whenever
new information has to be stored in the RDF data store this fact is just expresses
as RDF statement and there is no impact on the existing queries that read
information out of the data store.

To be able to build up the RDF store with statements about the access
control domain on a business level, an ontology was defined that describes the
vocabulary that can be used for this purpose. The classes and the properties of
this ontology are listed in the Tables 6.1 and 6.2. The data that is stored in the
RDF store with this ontology comprises

− subjects, role schemes, roles and the role assignments,

− actions,

− resources with their owner and type, classification schemes, labels and the
data classification,

− business level policy sets and policies together with their combining algo-
rithms and rules together with their effect and conditions,

− organizations and their associated hierarchy levels, and

− users with their associated organization, username and password.

An example namespace is used to identify the RDF resources that are de-
scribed by the ontology. Some examples of URIs as they are used in the RDF
store of the policy editor are:

− http://www.example.org/subject#alice

− http://www.example.org/label#office

− http://www.example.org/businessLevelPolicy#policy002

SPARQL2 [19] is used as RDF query language to access information con-
tained in an RDF data store. Since only simple queries can be generated by
Jena programmatically, a number of more sophisticated queries was created to
get the right information out of the RDF store.

6.1.3 Jena - Semantic Web Framework for Java

Jena [16] is an open source Java framework for building Semantic Web appli-
cations. It provides a programmatic environment for RDF, RDFS, OWL and
SPARQL and includes a rule-based inference engine. We use Jena

− as RDF API,

− for reading and writing RDF in RDF/XML to create in-memory models
and persistent storage, and

− as SPARQL query engine.
2SPARQL Protocol and RDF Query Language

CHAPTER 6. POLICY EDITOR AND ANALYZER 74

Table 6.1: DCSM Ontology: RDFS Classes

. Subject

. Role

. Action

. Resource

. Label

. BusinessLevelPolicySet

. BusinessLevelPolicy

. BusinessLevelRule

. Effect
. Permit
. Deny

. BusinessLevelCondition
. OwnerCondition
. TimeRangeCondition

. CombiningAlgorithm
. PolicyCombiningAlgorithm

. DenyOverrides

. PermitOverrides
. RuleCombiningAlgorithm

. DenyOverrides

. PermitOverrides
. AuthorizationDecision

. Permit

. Deny

. NotApplicable

. Indeterminate
. ClassificationType

. Explicit

. Inherited

. Implicit
. ResourceType

. DefaultResource

. HostComputer

. RelationalDataStore

. RelationalSchema

. RelationalTable

. RelationalColumm
. Scheme

. RoleScheme

. ClassificationScheme
. User
. Organization

CHAPTER 6. POLICY EDITOR AND ANALYZER 75

Table 6.2: DCSM Ontology: RDF Properties

Property Domain Range
subRoleOf Role Role
subLabelOf Label Label
subResourceOf Resource Resource
owner Resource Subject
classification Resource Label
resourceType Resource ResourceType

name rdfs:Class xsd:string
schemaContainer rdfs:Class Scheme
classificationType rdfs:Class ClassificationType

policyCombiningAlgorithm BusinessLevelPolicySet PolicyCombiningAlgorithm
hasPolicy BusinessLevelPolicySet BusinessLevelPolicy

hierarchyLevel BusinessLevelPolicy xsd:int
isFinal BusinessLevelPolicy xsd:boolean
authorUser BusinessLevelPolicy User
ruleCombiningAlgorithm BusinessLevelPolicy RuleCombiningAlgorithm
hasRule BusinessLevelPolicy BusinessLevelRule

effect BusinessLevelRule Effect
hasTargetSubject BusinessLevelRule Subject
hasTargetRole BusinessLevelRule Role
hasTargetAction BusinessLevelRule Action
hasTargetResource BusinessLevelRule Resource
hasTargetLabel BusinessLevelRule Label
hasCondition BusinessLevelRule BusinessLevelCondition

organization User Organization
password User xsd:string
username User xsd:string

role Subject Role
email Subject xsd:string
phone Subject xsd:string

timeRangeBegin TimeRangeCondition xsd:time
timeRangeEnd TimeRangeCondition xsd:time

CHAPTER 6. POLICY EDITOR AND ANALYZER 76

6.1.4 IBM XACML Light Library

While the data in the policy editor is represented as collection of RDF state-
ments, the Sun XACML implementation demands its input in XML format.
To achieve a transformation between the given RDF and the needed XML, an
existing IBM internal library is used. In particular this library is used for the
translation process of business level policies into XACML, as well as at the cre-
ation of a decision request. With the help of the library, the transformation
from the RDF statements to XACML is achieved programmatically, but the
content and the semantics of the data remain unchanged.

6.1.5 Sun XACML Implementation

Sun’s XACML implementation is used in the policy editor as decision engine to
evaluate decision requests. Throughout this thesis, Sun’s implementation was
extended with

− an EvaluationRecorder class which records all Rules and Policies that are
evaluated by the PDP,

− modified versions of the combining algorithms — our versions perform an
entire evaluation — that may appear in a translation of a business level
policy to XACML, and

− the necessary modifications in the PDP to include these new combining
algorithms.

6.1.6 Assumptions

Before being able to formulate and analyze policies, a proper data foundation
is needed on that the policies can be formulated on. Since the main focus of
the established tool is to support a policy author in formulating and analyzing
his business level policies, some less interesting features of the editor were not
fully implemented due to time constraints. Therefore, we created as input for
the policy editor an RDF store that contains already

− subjects,

− role schemes,

− role assignments,

− actions,

− resources with an optional associated owner,

− classification schemes,

− organizations with associated hierarchy levels, and

− users with associated organization, username and password.

CHAPTER 6. POLICY EDITOR AND ANALYZER 77

A data classification, which assigns the labels of the classification schemes to the
resources, may also be part of the input. However, the policy editor provides
functionality for classifying resources with labels.

6.2 Perspectives

Developers who build RCP applications do this by creating their own views
and editors which are made visible in the workbench through perspectives. The
policy editor supports a policy author during different tasks that need different
user interfaces for their proper completion. Therefore different perspectives have
been introduced whereby each perspective shows only the user interfaces that
are needed to perform a given task. Table 6.3 lists these perspectives together
with the views and editors that are available at each perspective. A summary of
the tasks that can be performed in these perspectives is given in the following:

− The Policy Authoring and Review Perspective supports an author in cre-
ating, modifying and deleting policies and rules, in reviewing the policy
repository and in detecting overrides between rules.

− The Domain Browsing Perspective provides an overview of the subjects,
roles, actions, resources and labels that are contained in the current repos-
itory and in determining the assignments between subjects and roles and
between resources and labels.

− The Data Classification Perspective is used by an author to classify re-
sources by labels.

− The Policy Simulation Perspective lets an author simulate a decision re-
quest and perform contribution analysis accordingly.

− The Authorization Analysis Perspective supports an author in determin-
ing the values she has to provide in order to get a specific authorization
decision from a PDP.

A policy author who wants to carry out a specific task chooses the appro-
priate perspective in the policy editor and is then able to use the user interface
parts that are associated to this perspective.

6.3 Policy Authoring and Review

The Policy Authoring and Review Perspective supports an author in performing
all tasks that are related to the authoring of policies and rules, as well as to the
review of already existing policies. The policies that can be reviewed contain the
policies the author created himself as well as the policies that have been created
by other policy authors. The policy authoring related tasks that a policy author
can carry out in this perspective are:

− Create a new policy.

CHAPTER 6. POLICY EDITOR AND ANALYZER 78

Table 6.3: Perspectives and the corresponding Workbench Parts. An (i) en-
try denotes that the workbench part is available initially in the corresponding
perspective whereby a (d) entry denotes that the part is shown on demand.

P
ol
ic
y
A
ut
ho

ri
ng

an
d
R
ev
ie
w

P
er
sp
ec
ti
ve

D
om

ai
n
B
ro
w
si
ng

P
er
sp
ec
ti
ve

D
at
a
C
la
ss
ifi
ca
ti
on

P
er
sp
ec
ti
ve

P
ol
ic
y
Si
m
ul
at
io
n
P
er
sp
ec
ti
ve

A
ut
ho

ri
za
ti
on

A
na

ly
si
s
P
er
sp
ec
ti
ve

Policy Explorer View (i)
Rule Outline View (i) (i)
Override Detection View (d)
Data Classification View (i)
Domain Explorer View (i)
Classification Outline View (i) (i)
Classified Resources Outline View (i) (i)
Role Outline View (i)
Subject Outline View (i)
Policy Simulation View (i)
Policy Simulation Result View (i)
Decision Contribution View (i)
Authorization Analysis View (i)
Authorization Analysis Result View (i)

Business Level Policy Editor (d) (d)
Business Level Rule Editor (d) (d)

CHAPTER 6. POLICY EDITOR AND ANALYZER 79

− Modify a policy she created.

− Delete a policy she created.

− Add a rule to a policy she created.

− Modify a rule she created.

− Remove a rule she created.

The policy reviewing related tasks that a policy author can carry out in this
perspective are:

− View any policy and the associated rules in the policy repository.

− Determine the set of rules that are overridden by a specific rule.

− Determine the set of rules that override a specific rule.

6.3.1 Author Authentication

In order to be allowed to use the policy editor, an author has to identify himself
to the system, i.e., every user who wants to use the application needs a valid
user with username and password (see Figure 6.2). Every user has an associated
organization which provides a specific hierarchy level for the policy delegation
support. Thereby a user may only create business level policies for his particular
hierarchy level while she is not allowed to modify the policies of other users. The
policy delegation mechanism is only useable after the particular authors have
authenticated themselves to the system. Otherwise anybody could override all
other policies by creating a policy on the lowest level.

Figure 6.2: Author Authentication

6.3.2 Policy Authoring

Figure 6.3 shows the policy editor in the Policy Authoring and Review Per-
spective. The left part of the workbench shows the Policy Explorer View. The
upper right part shows the editor area where editors of policies and rules are
displayed later on. The lower right part shows the Rule Outline View which
gives additional information to a displayed policy. Actions in the global toolbar,

CHAPTER 6. POLICY EDITOR AND ANALYZER 80

which is available in every perspective, allow the author to save modifications
that she made in an editor and to edit an element that is currently selected
in the policy editor. All the actions that are available in a toolbar or a menu
are context aware, i.e., they are grayed out if the corresponding action is not
compatible with the current selection or state of the application.

A policy author who wants to create a new policy does this by using the
Policy Explorer View. This view displays the policies and rules of the policy
repository as tree structure and has a view toolbar that allows the author to
perform actions on the contained elements. Furthermore, the elements shown
in the tree have an associated context menu that contains some more specific
actions than the toolbar.

Figure 6.3: Policy Authoring and Review Perspective

After creating a new policy, the Policy Explorer View displays this policy
and a Policy Editor for the policy is opened in the editor area of the workbench
(see Figure 6.4). The editor contains a header area where a general description
of a policy is provided so that even users that are not familiar with the tool can
get an idea what a business level policy is. An author defines the name, the
delegation type — final or recommended — and the combining algorithm of the
policy by modifying the corresponding fields in the editor. Conform to the design
principle of “fail-safe defaults” [22] the default value for the combining algorithm
is “Deny-Overrides”. The input field for the combining algorithm is augmented
by a descriptive text that explains the currently selected algorithm. The editor
shows additional information about the author, the associated organization and
the hierarchy level of the policy.

As soon as the editable fields in an editor are modified, this is indicated by
a star (*) in the caption of the editor and at the same time the “save” action in
the global toolbar is activated. An author uses this action to apply the changes
she made in the editor. Otherwise she closes the editor and confirms that she
wants to discard the changes.

CHAPTER 6. POLICY EDITOR AND ANALYZER 81

Figure 6.4: Business Level Policy Editor

6.3.3 Rule Authoring

To add a rule to a policy, the policy author uses the corresponding actions in
the toolbar or context menu of the Policy Explorer View. The new rule is then
displayed in a Rule Editor that contains a general description of a rule as well
as a set of input fields that are arranged in a way that the policy author can
read them as completion exercise3 (see Figure 6.5). The author is expected
to read the completion exercise from top to bottom and fill in the missing
parts in order to form a meaningful sentence. By reading this sentence, policy
authors can quickly grasp the intentions of the author who created this rule.
The policy editor keeps the grammar of the sentence always consistent, i.e., the
fillers between the missing parts in the completion exercise change according to
the content of the rule. The editor also uses fillers to express the semantics of
multiple entries in one of the completion exercise’s parts. For example, if an
author selects multiple roles for a rule, the filler “and” is used to express that
the rule targets persons that have the given roles in conjunction (e.g., “Permit
that the person that simultaneously have the roles Security&Assurance and
LaboratoryAccess can. . . ”). The filler “as well as” is used if an author selects
multiple subjects (e.g., “Permit that the persons Alice as well as Carol can. . . ”).

The mandatory parts of the completion exercise that an author has to define
are an effect, subjects or roles, actions as well as resources or labels. Optionally
the author can define conditions for the rule. Conform to the design principle
of “fail-safe defaults” [22] the default value for the effect is “Deny”.

To select the subjects, actions or resources for the rule, the author presses
the corresponding button next to the missing part in the completion exercise.
Figure 6.6 shows the dialog that requests an author to select the rule’s subjects
or roles. The left part of the dialog contains the available subjects and roles

3In German: Lückentext

CHAPTER 6. POLICY EDITOR AND ANALYZER 82

Figure 6.5: Business Level Rule Editor

as well as an entry to address any subject. A search field — that also allows
wildcards — supports an author in finding the intended available items quickly
since she does not have to navigate through the scheme and role hierarchies any
more. The right part contains the list of items that are already selected. With
the help of the buttons “add”, “remove” and “remove all” that are located between
the two parts, the available items can be marked or unmarked as selected. Since
a rule allows to address either subjects or roles but not both at the same time, a
selection of a subject disallows the selection of a role and vice versa. The items
that are already selected as well as the items that are not allowed to be selected
together with the already selected ones are grayed out to indicate this fact.

The dialog for selecting actions and the dialog for selecting resources are
similar to the one for selecting subjects. Conditions are specified with the button
next to the corresponding missing part in the completion exercise (see Figure
6.7). Thereby an owner condition and/or a time range condition can be defined
for the rule. While for the owner condition no more information is needed, an
author has to specify the begin and the end of the time range in a separate
dialog.

As soon as an author has defined all the mandatory parts of the completion
exercise — and optionally the conditions as well — she saves the rule by using
the “save” action in the global toolbar.

6.3.4 Policy Review

A policy author who wants to do a review of the policies and rules available
in the repository may have the intention to review the policy repository as a
whole, to review a particular policy and its content or to review a particular
rule.

CHAPTER 6. POLICY EDITOR AND ANALYZER 83

Figure 6.6: Subject Dialog

Figure 6.7: Condition Selection

CHAPTER 6. POLICY EDITOR AND ANALYZER 84

The Policy Explorer View supports an author in reviewing the repository as
a whole, and therefore in getting an overall idea of the content of the reposi-
tory. Thereby the Explorer can display the policies in two different ways. The
policies are either displayed in the sequence as they are evaluated by a PDP,
i.e., sorted according to the delegation type and the hierarchy level (see Section
5.1.2), or they can be grouped by their author(s). To group the policies by
author, the corresponding option has to be activated in the view menu of the
Policy Explorer. The type of an element that is shown in the Policy Explorer is
indicated by an icon. Different icons indicate that an element is a policy with
deny-override combining, a policy with permit-override combining, a deny rule,
a permit rule or an author group element. At the same time the hierarchy levels
of the policies as well as their delegation types are shown. Figure 6.8 shows the
grouping mechanism as well as the different icons.

(a) Evaluation sequence

(b) Group by Author

Figure 6.8: Grouping in Policy Explorer View

Although the Policy Explorer View shows which rules are contained in a pol-

CHAPTER 6. POLICY EDITOR AND ANALYZER 85

icy, it does not give an overview of the actual contents of these rules. Therefore
the Rule Outline View was created, which shows such an overview as soon as a
policy is displayed in a Policy Editor View (see Figure 6.9). The Rule Outline
displays the rules of a policy in a way that they can be read as sentences so that
the policy author gets an idea of the policy’s content.

Figure 6.9: Rule Outline

To review a particular policy or a particular rule, the policy author selects
the element in the Policy Explorer View and uses the “edit” action in the global
toolbar or in the context menu. Then the corresponding Editor, which shows
the content of the element, is displayed. If the user that reviews the element
is also its author, then the content can be modified as this was shown in the
previous section. Otherwise the controls are not editable and the reviewer can
only read the element’s content.

6.3.4.1 Policy Override Detection

For a policy author it might be interesting to know whether the rules in his for-
mulated policy are overridden by rules from another policy author, or if his own
rules override the rules of another author. The policy editor’s override detection
function helps an author to determine which rules in particular override a rule
of his interest or which rules get overridden by a rule of his interest.

The override detection is available through the context menu of a business
level rule in the Policy Explorer View. The policy author selects the desired
rule in the Explorer’s tree and specifies in the context menu if she is interested
in the rules that are overridden by this rule or in the rules that override this
rule, i.e., if the rules below or above in the evaluation sequence shall be checked
for an override (see Figure 6.10a).

The results of the override detection are then shown in the Override Detec-
tion View. This view is similar to the Policy Explorer View but contains an
additional column to mark the rules that satisfy the given override requirement.
Thereby rules that override others are marked with “override”, and rules that get
overridden are marked with “gets overridden” (see Figure 6.10b). Additionally
every element that overrides or is overridden is displayed with bold font.

Recall the policy that was formulated by the IBM Switzerland Headquarters
in the policy delegation scenario (see Section 3.10.6). This recommended policy
was intended to be overridden by institutions on lower hierarchy levels. The

CHAPTER 6. POLICY EDITOR AND ANALYZER 86

(a) Show overriding Rules

(b) Override Detection View

Figure 6.10: Policy Override Detection

CHAPTER 6. POLICY EDITOR AND ANALYZER 87

IBM Switzerland Headquarters uses the policy editor now to see if other policy
authors have overridden their recommended policy. This is illustrated in Figure
6.10. There the Override Detection View shows the policies in the evaluation
sequence and one can see that two rules override the “protect financial data”
rule. Note that since the implementation of override detection just detects
potential overrides, the rule “enable analyst check travel expenses randomly” is
not identified as override because there exists no subject in the subject repository
that has the role “FinancialAnalyst”.

6.4 Domain Browsing

Formulating policies on a business level allows a policy author to use various
terms in order to express his intention. The terms that can be used comprise
all the subjects, roles, actions, labels and resources that exist in the individual
repositories whereby some of the terms may also be organized in a hierarchy.
Moreover, the assignments between subjects and roles as well as between labels
and resources are relevant for the formulation of the policies.

The Domain Browsing Perspective of the policy editor supports an author in
getting an overview of the whole term domain that she can use for formulating
policies. The tasks that can be carried out in this perspective are:

− Browse the non-hierarchic repositories of subjects, and actions.

− Browse the hierarchic repositories of roles, labels and resources whereby
the roles and labels are divided into schemes.

− Determine the assignments between subjects and roles and vice versa.

− Determine the assignments between resources and labels and vice versa.

The Domain Browsing Perspective comprises a Domain Explorer View and
four outline views for labels, resources, roles and subjects. The Domain Explorer
View shows the individual repositories as tree structures and comes with a
search field on top that also supports wildcards in order to support the author
in finding specific elements quickly. While an author browses the repositories in
the Domain Explorer View, the outline views adapt according to his selection.
She can also browse the entries in one of the outline views and the corresponding
outline views adapt accordingly as well.

An author who is for example interested in the roles of the subject “Fran-
cis” selects this subject in the Domain Explorer View (see Figure 6.11). The
Role Outline View adapts to this selection and shows that Francis has the ex-
plicit roles “OfficeCommunityIS”, “Regular” and “InformationServices” and the
implicit roles “Employee” and “SiteOperations” whereby the implicit ones are
triggered by the “InformationServices” role. The author is now for example in-
terested in all the subjects that have the role “Regular” and selects this role
either in the Domain Explorer View or in the Role Outline View itself. Then
the Subject Outline View adapts accordingly and shows that “Helen”, “Isaac”,
“Francis” and “George” have this role explicitly and “Bob”, “Dave” and “Emily”
have it implicitly because they also have the role “ResearchStaffMember”.

CHAPTER 6. POLICY EDITOR AND ANALYZER 88

Similarly an author can select resources in one of the perspective’s views
and determine thereby the assigned labels, or she selects a label and determines
the assigned resources.

Figure 6.11: Domain Browsing Perspective

6.5 Data Classification

The policy editor can be used to classify resources by labels, i.e., to assign a
label that is contained in a classification scheme to a resource. This is done in
the Data Classification Perspective that contains a Data Classification View as
well as outline views for labels and resources. The tasks that can be carried out
in this perspective are:

− Classify a resource by a label (explicitly).

− Remove an explicit classification from a resource.

The Data Classification View is divided into three parts. The first part
shows the labels of the repository as tree structure and contains also a search
field. The second part contains buttons for the tasks that can be carried out
in the perspective and the third part shows the resources of the repository as
tree structure and contains a search field as well. A user has the possibility to
display a column in the resource pane that marks all the resources that have a
particular label assigned. This is done by activating a checkbox in front of this
label in the label pane.

CHAPTER 6. POLICY EDITOR AND ANALYZER 89

A user who wants to perform one of the possible tasks selects the desired
label in the label tree and the desired resource in the resource tree. According
to his selection the buttons in the task area are enabled or disabled. The “Add
label” button is enabled if the resource does not have the label assigned explicitly
or inherited, and the “Remove label” button is enabled if the resource has the
label assigned explicitly.

Figure 6.12 shows the Data Classification Perspective after classifying the
resource “TravelExpensesTable” with the “TravelExpenses” label. Because the
checkboxes of the “TravelExpenses” and the “SiteOperations” label have been
activated by the user, the resource tree shows two additional columns that
mark the resources that have these labels assigned. The figure shows that three
different icon types are used to indicate that a label is explicit, inherited or
implicit.

Figure 6.12: Data Classification Perspective

Since the horizontal space on a screen is limited, the Data Classification
Perspective also contains the mentioned outline views for labels and resources.

CHAPTER 6. POLICY EDITOR AND ANALYZER 90

In the figure these views are displayed minimized by placeholders on the right
border. The views are adapted accordingly to the selections of the user. The
maximized outline views, as they appear with selections of the “TravelExpenses”
label and the “TravelExpensesTable” resource in the Data Classification View,
are shown in Figure 6.13.

(a) Classified Resources Outline View (b) Classification Outline View

Figure 6.13: Data Classification Outline Views

CHAPTER 6. POLICY EDITOR AND ANALYZER 91

6.6 Policy Simulation

A policy repository typically contains a big number of policies and rules that
have been formulated by multiple authors. Since a single author easily looses
track of the current state of the repository she can review it with the help of the
Policy Authoring and Review Perspective. However, even if an author got an
idea of the policies in the repository, it is not clear how the individual policies
and rules cooperate at an evaluation process of a PDP. Therefore the Policy
Simulation Perspective allows an author to simulate such an evaluation as it
would appear in a running system to see if she captured his intentions properly
and if a PDP would behave like she expect it. The tasks that can be carried
out in this perspective are:

− Issue a decision request and receive an authorization decision from a PDP.

− Perform contribution analysis, i.e., see which rules in particular contribute
to a decision for a given request.

− Review the policies and rules that have been discovered in a contribution
analysis.

As described earlier, a decision request resides either on XACML level or on
a business level. Nevertheless, for an author who wants to issue a request in
the Policy Simulation Perspective this is irrelevant. This is because the user
interface hides the different levels from the user, she even does not have to know
about them.

For issuing a decision request, the Policy Simulation Perspective contains
the Policy Simulation View. The user interface of this view is very similar to
the already described Rule Editor. It contains input fields that are arranged in
a way such that a user can read them as a completion exercise, and the user
is expected to fill in the missing parts of the exercise to form a meaningful
sentence.

The mandatory parts of the completion exercise are subjects or roles, actions,
resources or labels, and a point in time for which the request is evaluated. To
select these elements, the author presses the corresponding button next to the
missing part in the exercise. The request time can either be the current point
in time when the user issues the request or a specific one that the user specifies
in a separate dialog. After the user presses the “Evaluate” button, the policy
editor determines in the background, depending on the inputs of the author,
if the given request is on XACML or on a business level and evaluates the
corresponding function using an XACML PDP. For example, if a user specifies
the subjects in terms of roles then the policy editor evaluates the function po(·).
Figure 6.14 illustrates a user input that leads to an evaluation of the function

pol({FinanceAnalyst}, read, {TravelExpenses}, 9am)

and it shows the result of the evaluation of that function. Thereby the Policy
Simulation Result View shows the result of the evaluation. This view contains

CHAPTER 6. POLICY EDITOR AND ANALYZER 92

Figure 6.14: Policy Simulation Perspective

a header area, where the given request is repeated in sentence representation,
and the result of the evaluation process.

The input fields in the Policy Simulation View allow a user to formulate
a sentence that addresses more than one subject, more than one action and
more than one resource. Since a single decision request can only comprise one
subject, one action and one resource, the policy editor splits the users request
in multiple requests and evaluates them independently. In that case the Policy
Simulation Result View contains multiple result lines where each line represents
an individual authorization decision. For example, a user that formulates the
sentence “Evaluate if the persons Alice, as well as Carol can. . . ” is split into
two requests, one for Alice and one for Carol. A sentence like “Evaluate if any
Subject can. . . ” is split into individual requests for all subjects in the repository.
The same methods are used to resolve multiple actions and multiple resources.

6.6.1 Contribution Analysis

To perform contribution analysis on a particular authorization decision that is
shown in the Policy Simulation Result View, a user selects the corresponding
line in the view and uses the “Authorization Analysis” button in the view toolbar
or in the context menu of the entry. The results of the contribution analysis
are then shown in the Decision Contribution View. This view is similar to the
Policy Explorer View but contains an additional column to mark the rules that
contribute to the given authorization decision. Thereby rules that evaluated to

CHAPTER 6. POLICY EDITOR AND ANALYZER 93

a permit are marked with “Permit” and the ones that evaluated to a deny are
marked with “Deny”. The policies that contain contributing rules are marked
with the evaluation result of the corresponding combining algorithm in the same
way. Additionally every element that contributes to the decision is displayed
with bold font.

Figure 6.15 shows the results of a contribution analysis for the authorization
decision of the decision request given in the last section. Thereby the “Travel
Expense Policy” and the “Sensitive Data Policy” contribute with a “Permit” and
a “Deny” decision. Since the “Travel Expense Policy” is the first policy in the
evaluation sequence that gives a decision, this decision is also the overall decision
and the “Sensitive Data Policy” is overridden.

Figure 6.15: Contribution Analysis View

6.7 Authorization Analysis

With authorization analysis a user can determine what the values of certain
parameters of a decision request must be, in order to receive a permit decision.
An author can use the policy editor to determine the values for the role set
parameter (defined in Section 4.5.2) and the values for the label set parameter
(defined in Section 4.5.5) in order to receive a permit decision. Therefore a user
can ask questions of the form “Which roles has a subject exactly to hold to. . . ”
and “Which labels has a resource exactly to have so that. . . ”.

A user does not have to specify or even know which of the sets that are
defined in the mentioned sections she wants to determine. She just formulates
his question with the user interface as meaningful sentence (see Figure 6.16),
and the the policy editor determines in the background which set corresponds
to the given question. As in the Policy Editor and the Policy Simulation View,
the user interface is designed in a way that the user can read the input fields as
completion exercise and formulate his question by specifying the variable and
missing parts.

An author who wants to formulate a question uses the Authorization Analysis
View to define the first part of his question which can either be “Which roles. . . ”
or “Which labels. . . ”. According to his decision the user interface adapts its

CHAPTER 6. POLICY EDITOR AND ANALYZER 94

appearance since the word order in these two types of questions is not the same.
In case the user is interested in roles, she has to define an action and resources
or labels. In case she is interested in labels, she has to define subjects or roles
as well as an action. In both cases it has to be defined for which point in time
the request has to be evaluated. To select the missing parts of the completion
exercise the author presses the corresponding button next to it. Before a user
can start the analysis process, she has to define in which size of result sets she
is interested in, i.e., what the highest number of role or label combinations is
that the policy editor shall check for permit decisions.

Figure 6.16 shows the user input that represents the question “Which roles
has a subject exactly to hold to be permitted to “enter” resources that are labeled
with exactly the labels “Security&Assurance” and “ConfidentialPrinterRoom” at
9a.m.?” whereby we are interested in role sets up to the size of two.

Figure 6.16: Authorization Analysis Perspective

The Authorization Analysis Result View shows the result of the analysis
after pressing the “Analysis” button. The view contains a header area where
the given question that was evaluated by the PDP is repeated. Furthermore it
displays the list of role sets or label sets, that result in a permit decision from
the PDP for the given question. Figure 6.17 shows the result of the question
that was given in the last paragraph. All the results that are shown in the figure
would result in a “Permit” decision if an author used the Policy Simulation View
with the corresponding values. Since we specified we are interested in result sets

CHAPTER 6. POLICY EDITOR AND ANALYZER 95

up to the size of two elements, we received result sets with one or two elements.
In our example we got a number of results with two elements, and one result
with one element. The first element in the list — which is highlighted in blue
— is found because of a concrete rule in the policy repository that permits the
access for this role set. All the other results are found because subjects with
the “EmergencyTeam” role are permitted to enter all areas.

Figure 6.17: Authorization Analysis Result View

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the security domain different models to formulate access control policies have
been developed and studied throughout the last years. However, all these mod-
els use concepts that are hard to understand for non-technical policy authors
and furthermore the authoring of the corresponding policies is not supported
by user-friendly and easy-to-use tools. This thesis proposes a policy language
on a higher abstraction level that leverages business terms to formulate access
control behavior and provides analysis as well as tool support for the authoring
of policies formulated in this language. The abstraction is achieved by address-
ing subjects in terms of roles and by using data classification to attach business
meaning to resources. In order to deploy the business level policies in existing
IT infrastructure, they can be translated to the standardized XACML access
control policy language.

Up to now there were no approaches of formulating policies on such a busi-
ness level. A survey in the IBM Zurich Research Laboratory has shown that
there are no policies on this abstraction level available so far, which makes a
communication between the high level executives who are responsible for the
access control policies and the actual authors of the policies difficult. At the
moment there are only policies on an even higher level than the one used in
this thesis (like recommendations, guidelines, etc.), and policies on a lower,
more technical level. Our policy language on business level closes therefore the
existing gap between these levels.

We found that the used concept of data classification appears to be very
intuitive and natural, compared to access control models in which policies are
tied to namespaces. It does no longer matter where the resources to protect
reside in the namespace since the policies address the resources now by their
labels.

Due to the hierarchical structure of roles, labels and resources, various ad-
vantages in the formulation of policies can be achieved. The hierarchies of roles
and labels reduce the number of policies that have to be formulated. Further-
more the resource hierarchy enables an individual degree of granularity in data

96

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 97

classification. While the number of policies to be formulated is reduced, the size
of a policy in its XACML representation can become very big if the used role
and label hierarchies are large.

The proposed policy delegation mechanism allows authors to formulate poli-
cies throughout multiple levels in an organization that is structured in a hierar-
chy. This offers the possibility to let every policy be formulated by the person
who is responsible for it, without the need to communicate the policy to techni-
cal employees. However, policy authors who use the delegation mechanism have
to agree on common role and label schemes they use in their policies.

With respect to policy analysis we found that a number of analysis algo-
rithms with value for the policy authors can be formulated. The analysis al-
gorithms we propose support an policy author in issuing a decision request on
business level, in determining the individual policies and rules that contribute
to an authorization decision, in detecting overrides between policies, in deter-
mining the values she has to provide in order to receive a specific authorization
decision and in identifying gaps in the access control behavior that prevent sub-
jects from accessing in any resource and resources from being accessed by any
subject.

The results of a decision request on business level as well as of the policy
override detection are subject to certain restrictions that have to be kept in
mind when performing the analysis. For a decision request on business level that
targets roles instead of subjects it has to be considered that the given answer
is only valid for subjects that (1) hold the given role sets exactly, (2) for that
no rules exist that target the subject directly and (3) that are not owner of the
requested resource. Similar restrictions are put on the results of requests that
target labels instead of resources. For the results of policy override detection it
has to be kept in mind that just overrides are detected that are (1) currently
present — whereby the presence is dependent on the policy repository, the role
assignment and the data classification — and that are (3) potential because the
conditions of the rules are not considered.

For the development of the tool to support policy authors in formulating
their policies, we could see that the consideration of the design principles de-
scribed in Section 2 is a very good starting point. While keeping them in mind
we could develop an graphically appealing and user friendly policy editor that is
kept small and simple but nevertheless powerful enough to let authors formulate
real world policies in a very intuitive and easy way.

7.2 Future Work

With time as restricting factor, not all ideas that came up during the work on
this thesis could be explored or even implemented. In the following an unordered
list captures some of the unimplemented ideas we had over the last six months
as well as possible improvements of analysis algorithms and the policy editor.

− A more efficient policy translation algorithm. At the moment only the
entire business level policy can be translated. For big policies an improve-
ment in time could be made by an incremental translation approach where

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 98

just new or modified policies are translated.

− A new policy editor perspective that focuses on one specific subject and
where a user can obtain all kind of information that is related to that
single subject. For example, if a specific subject is exposed as crook, this
perspective shall enable to identify the resources as well as the labels of
these resources that might be compromised. A similar perspective would
also be possible for resources.

− New policy editor functions to (1) export the current policy in XACML
format to enforce it in an IT infrastructure and to (2) allow the import
and export of repositories for labels, roles, resources, etc.

− A change impact analysis algorithm that determines the changes or side
effects in access behavior for certain actions. For example, which sub-
jects would have access to a resource if this resource is classified with a
particular label.

− Use more expressive and powerful OWL ontologies to describe the role
and label repositories. This would open up new methods to formulate and
analyze the policy repository.

− A conflict analysis algorithm that identifies potential inconsistencies of
access control behavior within one specific business level policy (the con-
flicts throughout multiple policies are resolved by the policy delegation
mechanism).

− A time range analysis algorithm that allows to determine the time ranges
for which different access control behavior is stated. The authorization
decisions that are given with the current implementation are only valid
for one specific point of time. The time range analysis could help in
loosening this restriction.

Appendix A

Example XACML Policy

1 <Po l i cySe t xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t anc e " xmlns="
urn : o a s i s : names : tc : xacml : 2 . 0 : p o l i c y : schema : os " x s i : schemaLocation="
urn : o a s i s : names : tc : xacml : 2 . 0 : p o l i c y : schema : os access_contro l−xacml
−2.0−po l i cy−schema−os . xsd" PolicyCombiningAlgId="urn : o a s i s : names : tc :
xacml : 1 . 0 : po l i cy−combining−a lgor i thm : f i r s t −app l i c ab l e " Po l i cySe t Id="
urn : zu r i ch : ibm : names : xacml : 2 . 0 : p o l i c y s e t i d :1">

2 <Descr ipt ion>Contained p o l i c i e s are ordered accord ing to t h e i r
h i e ra r chy l e v e l and f i n a l type</Descr ipt ion>

3 <Target/>
4 <Pol i cy Po l i cy Id="urn : zu r i ch : ibm : names : xacml : 2 . 0 : p o l i c y i d :1"

RuleCombiningAlgId="urn : o a s i s : names : tc : xacml : 1 . 0 : ru l e−combining−
a lgor i thm : deny−ov e r r i d e s">

5 <Descr ipt ion>Corresponds to bus in e s s l e v e l p o l i c y the name ’ Phys i ca l
Lab Access Pol icy ’</ Descr ipt ion>

6 <Target/>
7 <Rule E f f e c t="Permit" RuleId="urn : zu r i ch : ibm : names : xacml : 2 . 0 : r u l e i d

:1">
8 <Descr ipt ion>Corresponds to bus in e s s l e v e l r u l e with id ’ http ://www

. example . org / bus ine s sLeve lRu le#rule0003 ’ and name ’ enable
owners ente r t h e i r rooms ’</ Descr ipt ion>

9 <Target>
10 <Subjects>
11 <Subject>
12 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
13 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#employee</
Attr ibuteValue>

14 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

15 </SubjectMatch>
16 </Subject>
17 <Subject>
18 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
19 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#computerScience </
Attr ibuteValue>

20 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

21 </SubjectMatch>
22 </Subject>
23 <Subject>
24 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">

99

APPENDIX A. EXAMPLE XACML POLICY 100

25 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / r o l e#
scienceAndTechnology</Attr ibuteValue>

26 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

27 </SubjectMatch>
28 </Subject>
29 <Subject>
30 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
31 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#in fo rmat i onSe rv i c e s
</Attr ibuteValue>

32 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

33 </SubjectMatch>
34 </Subject>
35 <Subject>
36 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
37 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#
physicsOfNanoscaleSystems </Attr ibuteValue>

38 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

39 </SubjectMatch>
40 </Subject>
41 <Subject>
42 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
43 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#s i t eOpera t i ons </
Attr ibuteValue>

44 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

45 </SubjectMatch>
46 </Subject>
47 <Subject>
48 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
49 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#
securityAndAssurance </Attr ibuteValue>

50 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

51 </SubjectMatch>
52 </Subject>
53 <Subject>
54 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
55 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#f inanceAnalyst </
Attr ibuteValue>

56 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

57 </SubjectMatch>
58 </Subject>
59 <Subject>
60 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">

APPENDIX A. EXAMPLE XACML POLICY 101

61 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / r o l e#humanResources</
Attr ibuteValue>

62 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

63 </SubjectMatch>
64 </Subject>
65 <Subject>
66 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
67 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#
securityAndCryptography</Attr ibuteValue>

68 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

69 </SubjectMatch>
70 </Subject>
71 <Subject>
72 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
73 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#con t r o l l i n g </
Attr ibuteValue>

74 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

75 </SubjectMatch>
76 </Subject>
77 <Subject>
78 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
79 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#f inancePayro l l </
Attr ibuteValue>

80 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

81 </SubjectMatch>
82 </Subject>
83 <Subject>
84 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
85 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#
financeAndAdministrat ion </Attr ibuteValue>

86 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

87 </SubjectMatch>
88 </Subject>
89 </Subjects>
90 <Resources>
91 <Resource>
92 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
93 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#area</
Attr ibuteValue>

94 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

95 </ResourceMatch>
96 </Resource>
97 <Resource>

APPENDIX A. EXAMPLE XACML POLICY 102

98 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on
: s t r i ng−equal">

99 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / l a b e l#lounge</
Attr ibuteValue>

100 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

101 </ResourceMatch>
102 </Resource>
103 <Resource>
104 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
105 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#o f f i c e </
Attr ibuteValue>

106 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

107 </ResourceMatch>
108 </Resource>
109 <Resource>
110 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
111 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#
conf ident ia lPr interRoom </Attr ibuteValue>

112 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

113 </ResourceMatch>
114 </Resource>
115 <Resource>
116 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
117 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#laboratory </
Attr ibuteValue>

118 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

119 </ResourceMatch>
120 </Resource>
121 <Resource>
122 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
123 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#roomWithServer</
Attr ibuteValue>

124 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

125 </ResourceMatch>
126 </Resource>
127 <Resource>
128 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
129 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#printerRoom</
Attr ibuteValue>

130 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

131 </ResourceMatch>
132 </Resource>
133 <Resource>

APPENDIX A. EXAMPLE XACML POLICY 103

134 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on
: s t r i ng−equal">

135 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / l a b e l#conferenceRoom</
Attr ibuteValue>

136 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

137 </ResourceMatch>
138 </Resource>
139 </Resources>
140 <Actions>
141 <Action>
142 <ActionMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
143 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / ac t i on#enter </
Attr ibuteValue>

144 <Act ionAttr ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 1 . 0 : a c t i on : act ion−id " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

145 </ActionMatch>
146 </Action>
147 </Actions>
148 </Target>
149 <Condition>
150 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on : and">
151 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on : s t r i ng

−equal">
152 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−one−and−only">
153 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc

: xacml : 1 . 0 : sub j e c t : sub jec t−id " DataType="http ://www.w3 .
org /2001/XMLSchema#s t r i n g "/>

154 </Apply>
155 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−one−and−only">
156 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :

names : xacml : 2 . 0 : r e s ou r c e : owner" DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

157 </Apply>
158 </Apply>
159 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on : not">
160 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
161 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g"></Attr ibuteValue>
162 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−one−and−only">
163 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :

names : xacml : 2 . 0 : r e s ou r c e : owner" DataType="http ://www.
w3 . org /2001/XMLSchema#s t r i n g "/>

164 </Apply>
165 </Apply>
166 </Apply>
167 </Apply>
168 </Condition>
169 </Rule>
170 <Rule E f f e c t="Permit" RuleId="urn : zu r i ch : ibm : names : xacml : 2 . 0 : r u l e i d

:2">
171 <Descr ipt ion>Corresponds to bus in e s s l e v e l r u l e with id ’ http ://www

. example . org / bus ine s sLeve lRu le#rule0011 ’ and name ’ enable
l abo ra to ry us e r s o f S& ;A ente r t h e i r labs ’</ Descr ipt ion>

172 <Target>
173 <Subjects>
174 <Subject>

APPENDIX A. EXAMPLE XACML POLICY 104

175 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :
s t r i ng−equal">

176 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / r o l e#
securityAndAssurance </Attr ibuteValue>

177 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

178 </SubjectMatch>
179 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
180 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / r o l e#laboratoryAccess </
Attr ibuteValue>

181 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

182 </SubjectMatch>
183 </Subject>
184 </Subjects>
185 <Resources>
186 <Resource>
187 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
188 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#laboratory </
Attr ibuteValue>

189 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

190 </ResourceMatch>
191 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
192 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#
securityAndAssurance </Attr ibuteValue>

193 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

194 </ResourceMatch>
195 </Resource>
196 </Resources>
197 <Actions>
198 <Action>
199 <ActionMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
200 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / ac t i on#enter </
Attr ibuteValue>

201 <Act ionAttr ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 1 . 0 : a c t i on : act ion−id " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

202 </ActionMatch>
203 </Action>
204 </Actions>
205 </Target>
206 </Rule>
207 <Rule E f f e c t="Deny" RuleId="urn : zu r i ch : ibm : names : xacml : 2 . 0 : r u l e i d :3">
208 <Descr ipt ion>Corresponds to bus in e s s l e v e l r u l e with id ’ http ://www

. example . org / bus ine s sLeve lRu le#rule0004 ’ and name ’ c on t r a c t o r s
only during the day ’</ Descr ipt ion>

209 <Target>
210 <Subjects>
211 <Subject>
212 <SubjectMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">

APPENDIX A. EXAMPLE XACML POLICY 105

213 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / r o l e#contractor </
Attr ibuteValue>

214 <Subjec tAtt r ibuteDes ignato r Att r ibute Id="urn : o a s i s : names : tc
: xacml : 2 . 0 : sub j e c t : r o l e " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

215 </SubjectMatch>
216 </Subject>
217 </Subjects>
218 <Resources>
219 <Resource>
220 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
221 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#area</
Attr ibuteValue>

222 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

223 </ResourceMatch>
224 </Resource>
225 <Resource>
226 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
227 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#lounge</
Attr ibuteValue>

228 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

229 </ResourceMatch>
230 </Resource>
231 <Resource>
232 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
233 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#o f f i c e </
Attr ibuteValue>

234 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

235 </ResourceMatch>
236 </Resource>
237 <Resource>
238 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
239 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#
conf ident ia lPr interRoom </Attr ibuteValue>

240 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

241 </ResourceMatch>
242 </Resource>
243 <Resource>
244 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
245 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#laboratory </
Attr ibuteValue>

246 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

247 </ResourceMatch>
248 </Resource>
249 <Resource>

APPENDIX A. EXAMPLE XACML POLICY 106

250 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on
: s t r i ng−equal">

251 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#
s t r i n g">http ://www. example . org / l a b e l#roomWithServer</
Attr ibuteValue>

252 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

253 </ResourceMatch>
254 </Resource>
255 <Resource>
256 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
257 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#printerRoom</
Attr ibuteValue>

258 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

259 </ResourceMatch>
260 </Resource>
261 <Resource>
262 <ResourceMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on

: s t r i ng−equal">
263 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / l a b e l#conferenceRoom</
Attr ibuteValue>

264 <ResourceAttr ibuteDes ignator Att r ibute Id="urn : zu r i ch : ibm :
names : xacml : 2 . 0 : r e s ou r c e : l a b e l " DataType="http ://www.w3
. org /2001/XMLSchema#s t r i n g "/>

265 </ResourceMatch>
266 </Resource>
267 </Resources>
268 <Actions>
269 <Action>
270 <ActionMatch MatchId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on :

s t r i ng−equal">
271 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#

s t r i n g">http ://www. example . org / ac t i on#enter </
Attr ibuteValue>

272 <Act ionAttr ibuteDes ignator Att r ibute Id="urn : o a s i s : names : tc :
xacml : 1 . 0 : a c t i on : act ion−id " DataType="http ://www.w3 . org
/2001/XMLSchema#s t r i n g "/>

273 </ActionMatch>
274 </Action>
275 </Actions>
276 </Target>
277 <Condition>
278 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 2 . 0 : f unc t i on : time−in−

range">
279 <Apply FunctionId="urn : o a s i s : names : tc : xacml : 1 . 0 : f unc t i on : time−

one−and−only">
280 <EnvironmentAttr ibuteDesignator Att r ibute Id="urn : o a s i s : names :

tc : xacml : 1 . 0 : environment : current−time" DataType="http ://
www.w3 . org /2001/XMLSchema#time"/>

281 </Apply>
282 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#time

">20:00:00</ Attr ibuteValue>
283 <Attr ibuteValue DataType="http ://www.w3 . org /2001/XMLSchema#time

">06:00:00</ Attr ibuteValue>
284 </Apply>
285 </Condition>
286 </Rule>
287 </Pol icy>
288 </Pol icySet>

Bibliography

[1] ANSI INCITS 359-2004. American National Standard for Information
Technology, 2004.

[2] D. Beckett. RDF/XML Syntax Specification (Revised). W3C Recommen-
dation, 10 February 2004. http://www.w3.org/TR/rdf-syntax-grammar/
[cited 2007 August].

[3] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, 10 February 2004. http://www.w3.
org/TR/rdf-schema/ [cited 2007 August].

[4] S. Brostoff, M.A. Sasse, D. Chadwick, J. Cunningham, U. Mbanaso, and
S. Otenko. “R-what?” Development of a role-based access control policy-
writing tool for e-Scientists. Software- Practice & Experience, 35(9):835–
856, 2005.

[5] X. Cao and L. Iverson. Intentional access management: making access
control usable for end-users. Proceedings of the second symposium on Usable
privacy and security, pages 20–31, 2006.

[6] D. Ferraiolo and R. Kuhn. Role-based access control. In 15th NIST-NCSC
National Computer Security Conference, 1992.

[7] K. Fisler, Krishnamurthi S., Meyerovich L.A., and Tschantz M.C.
Margrave. An API for XACML Policy Verification and Change Anal-
ysis. http://www.cs.brown.edu/research/plt/software/margrave/
[cited 2007 August].

[8] Organization for the Advancement of Structured Information Standards.
XACML Products and Deployments. http://docs.oasis-open.org/
xacml/xacmlRefs.html#Products [cited 2007 August].

[9] Organization for the Advancement of Structured Information Standards.
Core and hierarchical role based access control (RBAC) profile of XACML
Version 2.0, 2005. Available from: http://docs.oasis-open.org/xacml/
2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf [cited
2007 August].

[10] Organization for the Advancement of Structured Information Standards.
eXtensible Access Control Markup Language (XACML) Version 2.0,

107

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.cs.brown.edu/research/plt/software/margrave/
http://docs.oasis-open.org/xacml/xacmlRefs.html#Products
http://docs.oasis-open.org/xacml/xacmlRefs.html#Products
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

BIBLIOGRAPHY 108

2005. Available from: http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-core-spec-os.pdf [cited 2007 August].

[11] Organization for the Advancement of Structured Information Standards.
Hierarchical resource profile of XACML Version 2.0, 2005. Available from:
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.
0-hier-profile-spec-os.pdf [cited 2007 August].

[12] Google. Google Web Toolkit - Build AJAX apps in the Java language.
http://code.google.com/webtoolkit/ [cited 2007 August].

[13] M. Graf and M. Swimmer. Data Centric Security. IBM internal slide set,
2007.

[14] IBM. P3P Policy Editor. http://www.alphaworks.ibm.com/tech/
p3peditor/ [cited 2007 August].

[15] G. Klyne and J.J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/rdf-concepts/ [cited 2007 August].

[16] HP Labs. Jena - A Semantic Web Framework for Java. http://jena.
sourceforge.net/ [cited 2007 August].

[17] F. Manola and E. Miller. RDF Primer. W3C Recommendation, 10 February
2004. http://www.w3.org/TR/rdf-primer/ [cited 2007 August].

[18] D.L. McGuinness and F. Van Harmelen. OWL Web Ontology Lan-
guage. W3C Recommendation, 10 February 2004. http://www.w3.org/
TR/owl-features/ [cited 2007 August].

[19] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.
W3C Candidate Recommendation 14 June 2007. http://www.w3.org/TR/
rdf-sparql-query/ [cited 2007 August].

[20] G. Reif. WEESA - Web Engineering for Semantic Web Applications. PhD
thesis, TU Wien, 2005.

[21] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 1992.

[22] J.H. Saltzer and M.D. Schroeder. The protection of information in com-
puter systems. Proceedings of the IEEE, 63:1278–1308, 1975.

[23] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based
access control models. Computer, 29(2):38–47, 1996.

[24] M.E. Zurko, R. Simon, and T. Sanfilippo. A User-Centered, Modular Au-
thorization Service Built on an RBAC Foundation. IEEE Symposium on
Security and Privacy, pages 57–71, 1999.

[25] M.E. Zurko and R.T. Simon. User-centered security. Proceedings of the
1996 workshop on New security paradigms, pages 27–33, 1996.

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-hier-profile-spec-os.pdf
http://code.google.com/webtoolkit/
http://www.alphaworks.ibm.com/tech/p3peditor/
http://www.alphaworks.ibm.com/tech/p3peditor/
http://www.w3.org/TR/rdf-concepts/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Motivation
	Contributions of this Thesis
	Thesis Outline

	Related Work
	Data Centric Security
	eXtensible Access Control Markup Language
	XACML Architecture
	XACML Policy Language

	Role Based Access Control
	Core RBAC
	Hierarchical RBAC

	Resource Description Framework
	Related Tools
	IBM P3P Policy Editor
	UMU XACML Editor

	Access Control Lists vs. Data Classification
	MAP vs. Data Centric Security
	User Interface Issues
	Intentional Access Management
	Policy Evaluation Issues
	Summary

	Access Control for Data Centric Security
	Introduction
	Business Level Policies
	Reduction of Policy Quantity

	Basic Concepts
	Resource
	Resource Attributes

	Classification Scheme
	Subject
	Role
	Role Assignment.

	Action

	Data Classification
	Label Propagation

	Policy Author Collaboration
	Policy Delegation

	Business Level Policy Language
	Business Level Rule
	Business Level Condition

	Business Level Target
	Business Level Policy
	Business Level Policy Set

	Matching Semantics
	Subject Match
	Action Match
	Resource Match

	Hierarchy Semantics
	Role Hierarchy Semantics
	Resource Hierarchy Semantics
	Label Hierarchy Semantics

	Policy Application
	Business Level Rule Application
	Business Level Policy Application

	Scenarios
	Common Roles, Subjects and Labels
	Physical Access Control
	Travel Expense Data
	Backup Data
	Discovering Issues in the Policies
	Policy Delegation

	Analysis Algorithms
	Introduction
	Business Level Decision Request
	Decision Rendering on XACML Level
	Use of Roles instead of Subjects
	Use of Labels instead of Resources
	Use of Roles and Labels
	Policy Application

	Contribution Analysis
	Policy Override Detection
	Authorization Analysis
	Subject Sets
	Role Sets
	Action Sets
	Resource Sets
	Label Sets

	Coverage Analysis

	Implementation of Analysis Algorithms
	Policy Translation
	Label Concept
	Policy Delegation Concept
	Role Concept
	Conditions
	XACML Policy File Size
	Example Rule

	Formulation of Business Level Decision Request
	Example Request

	Contribution Analysis
	Policy Override Detection
	Authorization Analysis

	Policy Editor and Analyzer
	Design
	Eclipse Rich Client Platform
	RDF Store
	Jena - Semantic Web Framework for Java
	IBM XACML Light Library
	Sun XACML Implementation
	Assumptions

	Perspectives
	Policy Authoring and Review
	Author Authentication
	Policy Authoring
	Rule Authoring
	Policy Review
	Policy Override Detection

	Domain Browsing
	Data Classification
	Policy Simulation
	Contribution Analysis

	Authorization Analysis

	Conclusions and Future Work
	Conclusions
	Future Work

	Example XACML Policy
	Bibliography

