
Diplomarbeit

A unit-test platform for design
tools for fault-tolerant

real-time systems

Ausgeführt am Institut für

Technische Informatik

der Technischen Universität Wien

unter der Anleitung von

Ao. Univ.-Prof. Dr. Peter Puschner

und

Dipl.-Ing. Dr. Raimund Kirner

als verantwortlich mitwirkendem Universitätsassistenten

Branislav Križan
Matr.-Nr. 0025634

Ormisova 3, 831 02 Bratislava, Slowakei

Wien, März 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

ii

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility
to complete this thesis. I want to thank to TTTech Company, especially to Mr.
Dipl. Ing. Alois Goller to allow me to write my thesis at theirs and to encourage
me in it.
I am deeply indebted to my supervisor Univ. Ass. PhD Raimund Kirner from the
Department of Technical Informatics from Viennna University of Technology
whose help, stimulating suggestions and encouragement helped me in all the
time of research for writing this thesis.
My colleagues from the TTTech Company supported me in my research work.
I want to thank them for all their help, support, interest and valuable hints.
Especially I am obliged to Software Tool Team, Christoph Zuschnig and Karl
Salasch.

I thank to my father who offered me suggestions for improvement and to my

mother who helped me with the English style and grammar.

iii

Abstract

Due to the increasing complexity of software, software reliability nowadays
plays a very important role. Software reliability can be increased by improving
the software development process and the quality of software tests. TTTech
develops software to design dependable real-time systems, thus keeping the
reliability of the developed software at a high level. This master’s thesis fo-
cuses on the assessment of software tests used for checking the reliability of
software developed on Python platform. In particular, this master’s thesis is
aimed at examining the testing methods, code metrics and the implementation
of a new unit test framework containing new additional metrics. The new unit
test framework, which also replaces the current unit test framework, should
provide additional metrics to assist developers in writing better-quality soft-
ware tests and source codes. The results of the new unit test framework can
be used as input data for quality management as well.

Zusammenfassung

Auf Grund der zunehmenden Komplexität von Software spielt die Funktions-

fähigkeit von Software eine außerordentlich wichtige Rolle. Die Funktions-

fähigkeit von Software kann durch eine Verbesserung des Entwicklungspro-

zesses und der Qualität von Software-Tests erhöht werden. Die Firma TTTech

entwickelt Software-Produkte für den Entwurf von zuverlässigen Echtzeitsyste-

men, wodurch die Funktionsfähigkeit der entwickelten Software auf einem ho-

hen Niveau bleibt. Diese Diplomarbeit beschreibt die Bewertung von Software-

Tests, welche die Funktionsfähigkeit der in Python Plattform entwickelten Soft-

ware prüfen, und untersucht insbesondere Testmethoden, Code-Metriken sowie

die Implementierung eines neuen Unit-Test-Frameworks, das zusätzliche Met-

riken enthält. Das neue Unit-Test-Framework, welches das derzeit in Ver-

wendung befindliche ersetzen soll, stellt zusätzliche Metriken zur Verfügung,

welche den Entwicklern bei der Entwicklung von qualitativ besseren Software-

Tests und Source-Codes behilflich sind. Die Ergebnisse des neuen Unit-Test-

Framework können auch als Input für das Qualitätsmanagement verwendet

werden.

iv

Contents

Acknowledgement ii

Abstract iii

1 Introduction 1

1.1 Definition of Test Case . 1

1.2 Scope . 1

1.3 Typographic Conventions . 2

2 Current Software Testing Framework 3

2.1 The Unit Test Framework . 3

2.2 The Mechanism of the Unit Test Framework 5

2.3 The Analysis of the Unit Test Framework 6

2.4 The Unit Test Mechanism . 7

2.5 The Analysis of the Unit Test 9

2.6 The Docstring Test Mechanism 9

2.7 The Analysis of the Docstring Test 10

2.8 Summary . 11

3 Overview of Testing Methods 13

3.1 Criteria . 14

3.1.1 The Input Criterion 14

3.1.2 The Apriori Knowledge Criterion 14

3.1.3 The Test Control Criterion 15

3.1.4 The Test Nature Criterion 16

3.1.5 The Test Scope Criterion 17

3.1.6 The Tested Items Criterion 17

3.2 A List of Known Testing Methods 18

3.2.1 Random Test . 18

3.2.2 Regression Test . 18

3.2.3 Functional Test . 19

3.2.4 Structural Test . 19

3.2.5 Symbolic Execution 19

3.2.6 Program Spectra Analysis 20

3.2.7 Anomaly Detection . 21

3.2.8 Walk-Through Verification 21

3.2.9 Mathematical Verification 21

3.2.10Executable Assertions 22

3.2.11Adaptive Test . 22

3.2.12Object State Testing 23

3.2.13Unit Test . 24

3.2.14Integration Test . 24

3.3 Summary . 26

v

4 Research of Code Metrics 27
4.1 Introduction . 27
4.2 Control Flow Code Coverage Metrics 27

4.2.1 Statement Coverage Metrics 28
4.2.2 Decision Coverage Metrics 28
4.2.3 Condition Coverage Metrics 28
4.2.4 Decision Condition Coverage Metrics 28
4.2.5 Multiple Condition Coverage Metrics 29
4.2.6 Path Coverage Metrics 29
4.2.7 Modified Condition Decision Coverage Metrics 29
4.2.8 Boundary-Interior Metrics 29
4.2.9 Structured Path Coverage Metrics 29
4.2.10TER Metrics . 30

4.3 Data Flow Code Coverage Metrics 30
4.3.1 All-P-Uses Metrics . 31
4.3.2 All-Defs Metrics . 31
4.3.3 All-P-Uses Some-C-Uses Metrics 33
4.3.4 All-C-Uses Some-P-Uses Metrics 33
4.3.5 All-Uses Metrics . 33
4.3.6 All-DU-Paths Metrics 33
4.3.7 2-DR Interaction Metrics 33
4.3.8 Elementary Data Context Metrics 33
4.3.9 Ordered Data Context Metrics 34
4.3.10Required Pairs Metrics 34
4.3.11Required k-tuples Metrics 34

4.4 Code Complexity Metrics . 34
4.4.1 Weighted Methods Per Class 35
4.4.2 Depth Of Inheritance Tree 35
4.4.3 Number Of Children 36
4.4.4 Coupling Between Object Classes 36
4.4.5 Response For A Class 36
4.4.6 Lack Of Cohesion In Methods 36
4.4.7 Code Size . 37

4.5 Summary . 37

5 The New Unit Test Framework 39
5.1 The Requirements and the Limitations Concerning Metrics 39

5.1.1 The Company Requirements for the new Unit Test
Framework . 39

5.1.2 The Abstract Syntax Tree 39
5.1.3 The Tracking System 40

5.2 The Arguments About the Metrics 42
5.2.1 The Chosen Control Flow Code Coverage Metrics . . 42
5.2.2 The Rejection of The Data Flow Code Coverage Met-

rics . 43
5.2.3 The Problems With The Code Complexity Metrics . . 43

5.3 The Design of the Metrics . 44
5.3.1 The Statement Coverage 44
5.3.2 The Decision Coverage 45
5.3.3 The Code Size . 47

vi

5.3.4 The Execution Time Per Method 47
5.3.5 The Weighted Method Per Class 47
5.3.6 The Response For A Class 48

5.4 The Input and The Output of The New Unit Test Framework 48
5.4.1 Framework Command Line Input 48
5.4.2 Framework XML Output 49

5.5 The Architecture of the new Unit Test Framework 57
5.5.1 The Tracker Component 60
5.5.2 The Parser Component 61

5.6 Summary . 62

6 Evaluation 64
6.1 Metrics Evaluation . 69
6.2 Internal Data Structures Evaluation 83
6.3 Time Measurement Precision 95
6.4 Summary . 96

7 Conclusion 97

Glossary 99

References 100

Index 102

1

1 Introduction

TTTech offers a range of software tools that enable developers of aero-
space, automotive, and industrial control equipment to deliver reliable
embedded systems quickly and efficiently. One of the most important
features of these software tools is dependability with a couple of pro-
cesses, standards and testing frameworks ensuring the quality of these
tools.

This master’s thesis deals with a unit-test framework that is part of the
testing frameworks used at TTTech. This master’s thesis aims at ana-
lyzing and integrating software metrics based on source code. Those
metrics are to provide information on the quality of unit tests exe-
cuted in the unit-test framework, which results in an improved unit-
test framework with new software metrics.

1.1 Definition of Test Case

Generally, a test case for any system is an item that specifies the in-
put behavior of that system and the expected output behavior of that
system [BJK+05]. We have to distinguish between test case and test
case implementation. A test case is only the specification. This mas-
ter’s thesis deals with two types of test case implementations: test case
function and test case string pair.

A test case function is a function or method simulating the input behav-
ior of a system and implementing the output behavior of that system,
with the output behavior being the result of a comparison between the
expected behavior and the behavior actually observed during testing.

A test case string pair is a pair of command line strings specifying the
command line input behavior of a system and the command line out-
put behavior of that system. Test case string pairs are always included
as comments in the module to be tested.

The two types of test case implementations described above have iden-
tical logical steps: execution, comparison and result delivery.

1.2 Scope

This master’s thesis covers the following topics:

- Section 2 on page 3, Current Software Testing Framework, an-
alyzing the unit-test framework currently used;

- Section 3 on page 13, An Overview of the Testing Methods,
giving an overview of various testing methods including the unit
test;

- Section 4 on page 27, Research of Code Metrics, describing var-
ious kinds of metrics used for the evaluation of the source code;

2

- Section 5 on page 39, The New Unit Test Framework, describing
the design and the user interface of the new unit-test framework
to be used;

- Section 6 on page 64, Evaluation, presenting the results of the
new unit-test framework used.

1.3 Typographic Conventions

The typographic conventions for this master’s thesis are as follows:

Element Typographic for-
mat

Example

New definitions italics This is a definition

A software object typewriter This is an object

3

2 Current Software Testing Framework

This section deals with a method of software testing currently used
at TTTech. This method includes unit tests and docstring tests. The
following sections introduce these two kinds of testing and the entire
testing framework, analyzing its advantages, disadvantages and effi-
ciency.

2.1 The Unit Test Framework

The unit test framework Figure 1 on the next page supports the unit
test type of software testing and the implementation of test cases for
modules under test. The unit test framework also supports a way to
execute – from one point, with one single command – all the test case
implementations related to the modules to be tested. As the unit test
framework is written in Python, it accepts only Python modules for test-
ing.

By the type of the test case implementation (the test case method or
the test case string pair), we distinguish between the unit tests and the
docstring tests in the framework. The unit test is a mechanism han-
dling the test case functions, whereas the docstring test processes test
case string pairs. While performing unit tests and docstring tests the
unit test framework calculates the .

The in the framework is the proportion of source code lines executed
during the execution of all unit and docstring tests to all executable
source code lines. The code coverage is not only calculated for the
module explicitly under test, but for all modules indirectly executed
during test. As can be seen in Figure 1 on the following page, the
unit test framework is strongly related to the Python unittest and
doctest standard libraries. There are two main modules unittest.py
and doctest.py. The names of the modules disclose that the former
one manages the unit tests and the latter one manages the docstring
tests.

The integration of the unit test framework to the software development
process is almost simple. For all modules being tested by the unit
test framework, we only need to write the test case functions or test
case string pairs according to the requirements of the Python standard
unittest and doctest libraries. Both of the test case implementations
may exist on all levels (module, class, method, function).

The second thing is to define which modules may be tested recursively.
Since the module dependency tree is often extra large, the framework
offers a possibility to control for which modules the code coverage
should be calculated. We simply define the directories, which should
be taken or on the contrary which should be ignored.

4

UNIT TEST LIBRARY

DOCTEST

UNITTEST

Python Module to be tested

+_test()

-_unit_test()

-_doc_test()

Python

Coverage
result

file

utest
_coverage.txt

CURRENT UNIT TEST FRAMEWORK

unittest.py

nightly-test.sh

doctest.py

unit.pytrace.py

U_Test.py

CONTROL FLOW

DATA FLOW

utest.txt

no_utest.txt

Figure 1: Current Unit Test Framework

The output of the framework are coverage files (*.cover) per tested
modules each, then utest_coverage.txt, utest.txt and
no_utest.txt. The latter three files are produced by unit.py. The
utest.txt comprises the filenames of all modules being tested which
have implemented some test cases, plus the result. The filenames of
the rest modules being tested, which do not have implemented any test
case are saved in the no_utest.txt. The additional information is the
number of lines of code. The utest_coverage.txt stores all modules
being tested. Further it provides for every filename the code coverage if
it exists, the total number of lines and the total number of code lines.
At the end of the utest_coverage.txt some statistics about the whole
testing are added.

The coverage files are in fact the source files, but executed executable
lines and not executed executable lines are distinguished with some
marks. The marks for executed lines keep information how many times
the source line was executed. These marks are needed especially for
the calculations. The trace.py module provides further information
printed on the output. But it is supressed in this framework.

In the previous lines we have described what the unit test framework is
about and how we can integrate it into the development process. The
necessary technical details like what must be called and what the con-
trol parameters are, are out of the scope of this document. Now we want
to describe the concrete configuration of the unit test framework at TT-

Tech. The modules to be tested (green in the Figure 1) are located in
/projects/SW/lib/python directory. Only some of the modules have
test case implementations. The framework creates coverage files in the
same directory where the modules are located. The utest.txt and

5

no_utest.txt are located at $ROOT_DIR. The utest_coverage.txt is
located at $CASE_DIR. These two environment variables are defined in
nightly-test.sh.

2.2 The Mechanism of the Unit Test Framework

The Figure 1 on the facing page shows us that the framework consists
of three basic Python modules (unit.py,trace.py,U_Test.py) and one
shell script. We will focus on the Python modules as they are the core
of the framework. The shell script nightly-test.sh represents the
single point of getting started the framework. The script is used mainly
by the testers to start the nightly tests. It also checks out the required
version of the modules to be tested and chooses a code coverage tool.
In this case, it is trace.py.

Now we describe the main procedure of the framework. It begins in
unit.py, which walks recursively through the given directory includ-
ing the modules to be tested. We assume that some of the modules have
test case implementations. Only these modules are directly tested by
the framework. Further, we assume that the access point to these test
case implementations is a function called _test(). This function uses
unittest and doctest libraries directly or via U_Test.py module to
execute all test case implementations. In fact, so it is with real Python
modules at TTTech. When the unit.py finds such module, it applies
the coverage tool to it. The coverage tool is implemented in trace.py.
The trace.py lets another Python interpreter execute _test() in the
given module. The new Python interpreter provides information needed
for the calculations as well. U_Test.py is a small extension of the
unittest.py and doctest.py, but it is not always used. The strategy

Python Module to be tested

Python
Trace

+run()

-globaltrace_cb()

-localtrace_cb()

Coverage
result

file

CoverageResults

+write_results()

CONTROL FLOW

DATA FLOW

Figure 2: Code Coverage Calculation

of the coverage tool is based on debugging extension of the Python in-
terpreter. Figure 2 depicts the relations between a module to be tested,
the unit test framework and the resulting coverage file. The trace.py
implements two important classes - Trace and CoverageResults.

The Trace class connects its callback functions to the tracing Python

6

interpreter to get the trace information. The globaltrace_cb() call-
back function is called whenever the Python interpreter enters a func-
tion and the localtrace_cb() callback function is called before en-
tering a new source code line. After the Python interpreter has finished
the execution of the given module, the Trace class disposes of Python
dictionary where positions of all traced code lines of all traced modules
are saved.

This result is then used by the CoverageResults class which produces
all coverage files. To produce the coverage file, first the original source
code is compiled. From the compiled module we gain the information
which lines in the source code are executable code lines. So, when the
CoverageResults produces a coverage file, it knows exactly, which
source code line is the executable one. The executable source code
lines in the coverage file get marks in front of them to know which ones
were executed and how many times and which ones were not at all. At
the end the unit.py calculates the and some statistics stored in the
files as already mentioned above.

2.3 The Analysis of the Unit Test Framework

If we look at the unittest library used by the framework more closely,
we can realize that it enables us to implement the test cases in different
ways (see unittest Python documentation). This variability is useful
when the test case functions are already available, but not conformable
with the library. On the other hand, if we write new test case functions,
we may choose the class-way alternative.

Each test case function may be encapsulated in a class representing
a test case implementation. This variability improves the flexibility of
the framework. The question is whether the possible non-uniformity of
writing test case implementations can harm the software testing or not.

The second thing worth analyzing are test case string pairs. The Python
interpreter uses them as an input of a given interpreted module. Then
the interpreter compares the output of the system with the given out-
put stored in the test case string pair. The problem is that the received
and expected results are compared at the character level. That makes
the test case string pairs strongly dependent on the used Python inter-
preter version, thus worsening the flexibility of the framework.

The third important item is the calculation of the . As mentioned ear-
lier, the is the ratio of the executed lines to all executable lines. The
problem here is that the calculations depend on the developer’s coding
style, because if a statement stretches through more lines, the tracer
evaluates it as more executable lines as well. This may lead to the fact
that the results of two different developers are incomparable. That’s
why a norm, what a code line is, should be defined. If we inspect
the code coverage algorithm, we can realize that the one and the same

7

coverage file is generated many times. This problem comes into be-
ing, because the coverage file is generated not only for the direct tested
module, but also for all indirectly used ones. The version of the cover-
age file on which the coverage result for the particular module is based
is the one generated after the direct module test. So the coverage re-
sult is the coverage of the module’s test case implementations. From
the global point of view the coverage results do not concern the indi-
rectly executed lines (i.e. the executed lines of the different modules).
If all versions of one coverage file were merged and then used for the
calculations, the results would be more real, since they would comprise
all module’s executions.

The fourth important point is the format of the output. The output of
the unit test framework is produced in more text files placed in different
places. We propose to research this aspect so that the really important
data are available in a clear and sufficiently expressive form.

The last thing to be mentioned is the documentation. There is no man-
ual that describes the usage of the framework precisely.

2.4 The Unit Test Mechanism

We have discussed the current unit test framework at TTTech. Now
we shift us to Python unittest library, which is one of the two fun-
daments of the framework. First, we will talk about the unit tests Fig-
ure 3 and then in the further section about docstring tests Figure 5 on
page 10, which is in doctest library.

unittest.py

TestSuite

+run()

TestCase

+__init__(tcfn)

+setUp()

+tearDown()

+__call__()

+run()

+runTest()

TestRunner

+run()

TestResult

+errors

+failures

TestLoader

+loadTestFromTestCase()

Module to be tested (case 2)

ModuleTestCase

+setUp()

+tearDown()

+test_1()

+test_2()

+test_N()

Module to be tested (case 1)

ModuleTestCase1

+setUp()

+tearDown()

+test_1()

ModuleTestCase2

+setUp()

+tearDown()

+test_2()

ModuleTestCaseN

+setUp()

+tearDown()

+test_N()

Figure 3: Unit Test Source Code Layout

The unittest library in unittest.py enables us to implement test
case functions and then call them all from one location. There are two
main ways how to connect test case functions to the unittest library.
Before explaining these two cases we have to explain a TestCase class

8

providing the connectivity. The TestCase class’s main purpose is to en-
capsulate a test case function that overloades the runTest() method.
The run() and __call__() methods of the TestCase then call this
method. The next methods, the setUp() and the tearDown() meth-
ods are intended to establish and to close testing environment, called
the fixture. What is important is the constructor of the TestCase. Its
argument tcfn Figure 3 on the preceding page denotes a function that
is called instead of the original or the overloaded runTest() method
when calling obj.run() or obj(). This feature is used in the following
text.

Memory

testSuite

modtc1

+test_1()

+setUp()

+tearDown()

modtc2

+test_2()

+setUp()

+tearDown()

modtcN

+test_N()

+setUp()

+tearDown()

testRunner

+run()

testResult

+errors

+failures

testLoader

+loadTestFromTestCase()

Module to be tested

moduleTestCase

+setUp()

+tearDown()

+test_1()

+test_2()

+test_N()

CONTROL FLOW

DATA FLOW

Figure 4: Unit Test Memory Layout (case 2)

In the first case (Case 1 in Figure 3 on the page before) we define
a new ModuleTestCase1..N class for each test case function. The
ModuleTestCase1..N classes are subclasses of the TestCase class
then. The test case functions are implemented in (test_1..N()). The
objects of the ModuleTestCase1..N classes are then executed. In each
executed object the refering test_1..N() is executed.

In the second case (Case 2 in Figure 3 on the preceding page), we have
a module’s class ModuleTestCase, which comprises now all test case
functions (test_1..N()). We cannot execute the ModuleTestCase ob-
ject moduleTestCase Figure 4 as in the first case, because the run()
method does not know which of the comprised test_1..N() test case
functions should be executed. Therefore we create N copies of the
moduleTestCase modtc1..N and for every object we denote one of
test_1..N() test case functions to be called by the run() method. In
this way we get virtually TestCase objects similar to the first case ones.
For example, although the object modtc2 comprises all test_1..N(),
only test_2() will be executed upon calling modtc2.run() or modtc2().
The advantage of the second case is that the setUp() and the
tearDown() are implemented only once, namely in the ModuleTestCase

9

class.
This transformation Figure 4 on the facing page is implemented in
TestLoader method loadTestFromTestCase(). To understand it bet-
ter a pseudocode Listing 1 is provided. The pseudocode is not exactly
the same code as used in the unittest library.

Listing 1: Test Case Function Transformation

in TestLoader class

def loadTestFromTestCase(ModuleTestCase)

finds a l l test_1 , test_2 , . . , test_N function names

TCFuncNames=getTCFuncNames (moduleTestCase)

for TCFuncName in TCFuncNames

create a copy of moduleTestCase

the test case function for th is copy

has name TCFuncName

newTestCase=ModuleTestCase (TCFuncName)

store the copy in a TestSuite object

aTestSuite .add(newTestCase)

return aTestSuite

in TestRunner class ,

which ca l l s a l l TestCase objects

def run (aTestSuite)
for newTestCase in aTestSuite

newTestCase . run () ca l l s setUp () , test_X ()

and tearDown () functions

newTestCase. run ()

The further step - the same for both cases - is controlled by the
testRunner object in the run() method. It runs the test suite the
TestSuite which runs all TestCase instances where test_1..N() are
called and it prints test statistics and error messages. When a test case
is called and an error occurres, it stores the error messages to a given
result instance of the TestResult type. This results are printed out
after the testRunner finishes execution of the test cases.

2.5 The Analysis of the Unit Test

We could see that the unittest library is flexible as far as the imple-
mentation of the test cases concerns. On the other hand, the unit test
as a software testing concept should almost perfectly test the software
unit - the module, because it is specialized for that module. But there is
not a control mechanism which makes sure, that the called test cases
are the adequate tests. The quality of test cases lies on developers and
not on testers. That’s why the software may be tested successfully, but
still it is not tested correctly and completely.

2.6 The Docstring Test Mechanism

The second part of the Python unit test framework Figure 1 on page 4 is
the docstring test. The docstring architecture is depicted in Figure 5 on
the next page. The docstring tests are similar to the unit tests. The dif-
ference between them is that the the test cases are implemented in
the test case string pairs. One or more test case string pairs are im-
plemented in documentation strings - the docstrings. The docstrings

10

doctest.py

DocTestFinder

DocTestRunner

+run()

+summarize()

Example

+source

+want

DocTestParser

DocTest Array

Module to be tested

Module Docstring

Class Docstring

Function Docstring

Figure 5: Docstring Test Source Code Layout

are special comments accessible dynamically. For every module, every
class, every function and every method exactly one docstring may exist.
The test case string pair coded in a docstring consists of a command
line input and an expected output. The task of the doctest library
implemented in doctest.py is to extract such docstrings from a given
module, to execute the test case string pairs and to compare the re-
ceived and the expected results.

At the begining the doctest library gets the module to be tested. The
docTestFinder object Figure 6 on the facing page looks recursively
for all docstrings in the module. The docTestParser object extracts
all test case string pairs from a docstring. The docTestFinder then
stores the pairs in the example objects each. The example objects of
one docstring are collected in docTest object. The docTest objects
are then stored in DocTest array dta. The source attribute in the
Example class represents the command line input and the want at-
tribute represents the expected result. When all docstrings are parsed
the docTestRunner object executes all example objects and compares
the results. The Figure 6 on the next page shows the structure of men-
tioned objects after all docstrings are parsed and test case string pairs
are extracted.

2.7 The Analysis of the Docstring Test

The docstrings test is a simple and powerful software testing concept.
This concept enables us to write the documentation and the tests of an
item at once. That saves the time. A good feature of the docstring test
(as well as that of the unit test) is the one which allows us to implement
the test cases testing thrown exceptions. So we can implement both,
the positive and negative test cases. The drawback of this concept

11

Memory

Module to be tested

docTestFinder

example1

+source

+want

docTestRunner

+run()

Module Docstring

Class Docstring

Function Docstring
example2

+source

+want

exampleN

+source

+want

docTestParser DocTest Array dta

docTest

Python

CONTROL FLOW

DATA FLOW

CONSISTS OF

Figure 6: Docstring Test Memory Layout

is a strong dependence on the interpreter’s version, especially when
comparing traceback messages after an exception has been thrown.
The dependence resides in a primitive result comparison, which is a
string comparison. If the newer Python interpreter prints its traceback
in a changed way, all touched test case string pairs in docstrings must
be rewritten.

2.8 Summary

This chapter described the unit test framework currently used at TT-

Tech. This framework uses two types of testing mechanisms, the unit
test mechanism and the docstring test mechanism. The main differ-
ence is in the test case implementations for these two machanisms.
The unit test mechanism uses the TestCase classes, whereas the doc-
string test uses for the implementation of the test cases the Python
docstrings .

The current unit test framework provides two metrics: the line cover-
age and the code size measured in the SLOCs. For details, see Sec-
tion 4.4.7 on page 37. The problem of the two metrics is that they are
based on source code lines that are defined by the coding style of de-
velopers. As a consquence the metrics results of codes written by two
different developers are not comparable.

The second weak point of the framework are the docstring tests where
the given and expected results are compared with each other at the
character level. Due to this low-level comparison, the framework strong-
ly depends on the Python version used when comparing a Python trace-
back, whose format need not be backwards compatible.

12

The last weak point of the framework is the mechanism of how to collect
metrics data. If a module is tested directly and indirectly via another
module, then the metrics results are taken only from the direct testing
method. In such a way the real metrics results differ from the calcu-
lated ones.

13

3 Overview of Testing Methods

This section covers testing methods, which can be classified according
to the software developement stages at which those methods are used.
Such classification is necessary, because this section focuses on testing
methods used only at the implementation stage and because this the-
sis aims at improving code quality. Other development stages, such as
analysis, design and delivery, have testing methods of their own. They
are – in contrast to the testing methods used during implementation –
rather informal, because they are based on vague user requirements.
“Informal” means that these testing methods try to ensure informally
that the specification and the design is correct and complete. At the de-
sign stage, however, the consistency of an abstract system model can
be formally verified as well. On the other hand, the testing methods
used at the implementation stage are rather formal and exactly speci-
fied, because they are based on the compiled code, the source code, or
on both.

We try to classify and examine the testing methods used at the imple-
mentation stage to get an overview. There are several criteria according
to which we can classify those methods. Almost all classification crite-
ria are orthogonal to each other. Table 1 lists the classification criteria
and the possible testing methods corresponding to those criteria. From
now on, we use the term testing method instead of implementation
stage testing method.

Criterion Testing Method

Input full, partition, random

Apriori Knowledge white-box, black-box, gray-box

Test Control automated, manual, code review

Test Nature dynamic, static

Test Scope function, module, component, system

Tested Items functional, structural

non-functional issues, difference-related issues

Table 1: Overview of the classification criteria

14

3.1 Criteria

The following sections explain and analyze the criteria listed in Ta-
ble 1 on the preceding page.

3.1.1 The Input Criterion

The first classification is done according to the input data required by
a testing method. There are three testing methods.

Full testing method: Requires all possible test cases to be used to
test a program under test. This testing method is used rarely,
because it is almost always impossible to test the program under
test with all possible test cases. The problem is not only time, but
also the finding of proper test cases.

Partition testing method: Tries to solve the problem of covering the
whole input domain. This strategy is based on the similarity of
test cases. Which test cases are similar depends on decision of
software engineers. For example, if two different test cases pro-
duce the same control flow path, then they are similar. Similar
test cases create a partition. This testing method then selects at
least one test case from all partitions that are applied to the test.

Random testing method: As the name already says, the test cases
are selected randomly.

Examine these three methods, we can exclude the full testing method,
because it cannot be put into practice. Comparing the partition and
random testing method one might say that the partition testing method
is much more efficient than the random one. But the random testing
method is under some circumstances more efficient than the parti-
tion testing method, because the random testing method is actually a
partition testing method with one partition. In other words, the par-
tition testing method randomly selects representative test cases from
every partition, whereas the random testing method randomly selects
representative test cases from the whole input domain (one partition).
Thus, the difference between these two methods is the partitioning it-
self. When the input domain consists of a few large and many small
partitions then the random testing method is statistically more effi-
cient. The random testing method is also more efficient for detecting
errors that occur rarely. [GS04][Gut99][Rus91]

3.1.2 The Apriori Knowledge Criterion

The second testing method classification is done according to addi-
tional knowledge about the program we have. When we have the inter-
face specification (otherwise we could not use the program) we can also
have the source code of the program.

White-box testing method: Requires knowledge about the internals
of the system under test. This strategy checks not only the output
but also the correctness of the internal steps.

15

Black-box testing method: Deals with interfaces only. The black-
box testing method does not know the internal control and data
flow. It knows only the input and output. The strategy is to check
whether the output of a system is equal to the expected output
that is mapped to the given input in the specification.

Gray-box testing method: Is a method that is in between two meth-
ods mentioned. It uses more than only interfaces (for example, in
the black-box testing method), but less than all details (for exam-
ple, in the white-box testing method. This testing method uses an
abstract model that reveals some details of the system under test.

As the gray-box testing method is a trade-off between the white-box
testing method and the black-box testing method, we need not exam-
ine it. The characteristics of the gray-box testing method are, in fact, a
mixture of the characteristics of the other two testing methods.

The white-box testing method is used for the consistent testing of inter-
nal data structures and control flow. The advantage of the white-box
testing method is that it can efficiently cover a huge number of test
cases, because it is based on the principle of logical deduction. This
means that we take logically independent test cases from which we can
deduce that the remaining test cases will be successful if the former
ones pass. To determine which test cases are logically independent we
need to know the source code. To this end, we exclude logically redun-
dant test cases.

A suitable example is a prime number generator. We cannot test the
whole output, containing the interesting numbers, which are huge. The
first barrier is that we need another prime number generator so that
we can compare the results. The second barrier is the time needed to
generate all prime numbers. Instead of examining the result, we test
the generator for consistency by using the proven mathematical model.
We only select test cases that test the control and data structures for
correctness. For example, we test the prime number generator with
small numbers. Then we can say that the generator is reliable. The
white-box testing method is often called structural testing method, too.
See also Section 3.1.6 on page 17.

The opposite of the white-box testing method is the black-box test-
ing method mentioned above. The black-box testing method questions
the principle of logical deduction. The problem is that if some specific
test cases are successful then this does not imply that all other test
cases pass successfully. The black-box testing method is also called
functional testing method or interface testing method. See also Sec-
tion 3.1.6 on page 17. [Rus91][Vig05][SL05]

3.1.3 The Test Control Criterion

The third criterion is controlling the testing process. There are three
methods how to control a testing.

16

automated testing method: Means that the system under test is
automatically fed with input data and that the output data are
evaluated automatically. If the test cases defining the input data
are generated automatically, then we call this fully automated
testing method[AB81]. In the following, we do not differentiate
between these two cases and use the automated testing method-
ology for both, unless explicitly distinguished.

Manual testing method: Means that the feeding of the input and the
evaluation of the output is carried out by a human being.

Code review: Is no testing, but verification. A group of relevant de-
velopers review a source code and verify its correctness.

The advantage of the manual testing method is high flexibility and easy
implementation. But the time to execute and examine all test cases
can grow significantly. The advantage of the automated testing method
is that the automated generation of test cases, the automated execu-
tion of testing and the automated examination of its results can reduce
the time required for testing. The drawback of the method is that it is
difficult to automatically generate test cases that cover the whole input
domain, because a detailed formal specification is missing, although
required. Sometimes the input domain is so huge that automated test-
ing is impossible even with a detailed formal specification. Let us, by
way of example, look at the testing of a graphical user interface. The
second drawback is the relative long time to prepare a framework for
automated testing. That is why a tradeoff between these methods is to
be achieved.

As far as code review is concerned, this method can detect errors in
the abstract levels of the program. On the other hand, typically funda-
mental errors can be overlooked. Therefore, more reviewers are recom-
mended to cooperate with each other, when reviewing a source code.

3.1.4 The Test Nature Criterion

To differentiate between test and formal verification we have to intro-
duce the test nature criterion.

Dynamic testing method: Is a testing method where the real system
under test is executed.

Static testing method: Is not a testing method but a formal verifi-
cation. Here, the real system under test is not executed. Testing
is not verifying, and therefore this name static testing method is
logically false. To be exact, we will use formal verification instead
of the static testing method unless a method is a dynamic testing
method. We can also use the same classification criteria names
(for example, test scope rather than verification scope) for formal
verifications, too.

17

The advantage of the dynamic testing method is that we can test the dy-
namic behavior of the system (race conditions, boundaries, communi-
cation, overload, etc.). The next advantage is that we can test real sys-
tem, which will be applied somewhere. The disadvantage of this testing
method is that we are almost never able to test everything. Sometimes
we are not able to test all important issues. Such testing method is, for
example, insufficient for fault-tolerant and security systems.

That is why we use formal verification, which helps to verify the cor-
rectnes of the abstract model (authentication protocol in a security sys-
tem, or peak load behavior in fault-tolerant systems). Formal verifica-
tion does not, of course, detect implementation errors.[Rus91][SL05]

3.1.5 The Test Scope Criterion

The next classification criterion is the test scope of the testing methods.
The smaller the test scope, the easier and more reliable testing meth-
ods can be used, because the input domain of a smaller test scope is
smaller than the input domain of a larger test scope. The monotony
between the input domain size and the test scope size is violated when
testing the interfaces, because of the encapsulation of details. For ex-
ample, testing a system interface can be less complex than testing sys-
tem component interfaces. The monotony is valid, for example, if the
testing method is the structural testing method.

Summing up, we can say that testing methods for small scopes, such
as statements and functions, used to be efficient and reliable. On
the other hand, the interdependencies between such parts stayed un-
checked.

3.1.6 The Tested Items Criterion

The last criterion classifies testing methods according to the items be-
ing tested.

Functional testing method: Focuses on items, such as interfaces
functions, expressions and internal control flows.

Structural testing method: Focuses on data states and data flow.

Non-functional issues: Are issues, such as efficiency, performance,
timeliness, etc.

Difference-related issues: Are all differences between two or more
systems under test. It overlaps functional and structural testing
methods, but the focus of this testing method is to make sure that
none of the previous failures occurs again. [SL05]

We can compare the advantages and disadvantages of the first two test-
ing methods at most. The third testing method cannot be compared,

18

because it deals with the quality rather than the correctness of the
program. The last testing method comprises functional and structural
testing methods so that it need not be extra evaluated.

Comparing the efficiency of the first two methods is not so easy. A
hint of which method to choose in a particular situation is given by
the architecture of the program. There are two classes of software de-
rived from the fact that software is code and data. Function-oriented
software (for example, an internet phone program) and data-oriented
software (for example, file system software). For the testing of function-
oriented software we would choose one functional testing method, be-
cause it focuses on functions. For the testing of data-oriented software
we would choose a structural testing method, because in that case the
internal structure - filesystem must be correct. Often, both testing
methods are used for testing a program. [Rus91][GS04]

3.2 A List of Known Testing Methods

Realistically spoken, we provide not only a general classification of test-
ing methods, but also real testing methods. An overview of the classi-
fication of testing methods can be found in Table 3 on page 25. It is
relevant here to define the difference between a testing method and a
test. A test is a concrete implementation of a testing method, depend-
ing on the program to be tested, while a testing method is a strategy
of what to test in which way. All tests described in the following are
dynamic testing methods, with all verifications being implicit formal
verifications (see Table 3 on page 25 and Table 4 on page 26 to get an
overview).

3.2.1 Random Test

The name of this test determines its main characteristic, which says
that the random test is a test for which its input domain subset is
selected randomly. The distribution function of the selection may be
adjusted according to the probability of failures occurring. [Rus91] The
random test is mostly applied when an interface is to be tested. There-
fore it belongs to the black-box testing method. Interfaces, mostly at
lower abstract levels, are primarily tested in an automated way. So, the
random test used to be an automated testing method as well. Random
tests are rather used at lower abstract levels, because the lower level
interfaces are rather simple and formally specified, which is a precon-
dition for automated testing methods. As the random test used to test
interfaces, it is also a functional testing method. As far as the scope is
concerned, the random test may be used in every scope. [Rus91].

3.2.2 Regression Test

The fundamental idea behind the regression test is to use old test cases
to prevent previous errors from occurring again. Such situations can
appear when the program is changed in the maintenance phase or if a

19

different program is developed, with a component used by this program
needing to be tested as well. As the test cases used are available, the
regression test is an automated testing method. It is also a black-
box testing method, because only the test cases for black-box testing
methodolgies remain in principle valid, if the program internals are
changed or it is totally different. Sometimes regression testing can
be also considered as a white-box testing method if the internals are
not changed, but must be tested due to new unintended errors. With
regard to test cases, the regression test is a partition testing method
or random testing method. The regression tests may be speeded up by
selecting relevant test cases instead of running all test cases. The test
scope is in between functions and modules. The tested items are all
except non-functional items. [Rus91][SL05]

3.2.3 Functional Test

A functional test is every test that tests any software component accord-
ing to its functional specification. A functional test may be mapped to a
couple of testing methods. It belongs to the black-box testing method,
because of its testing interfaces. The functional tests can be mapped to
the automated testing method and the manual testing method. It de-
pends on the complexity of the specification of the interface under test.
The decision of which method to choose often depends on the costs of
each testing method. Furthermore, a functional test might be mapped
to all testing methods mentioned in the input row and test scope row
of Table 1 on page 13. [Rus91]

3.2.4 Structural Test

The structural test focuses on the internals of a program under test.
There are two fundamental groups of structural tests. The first deals
with control structures, such as decision points, loops and recursions.
The second deals with data structures, such as variables, arrays, re-
cursive lists, trees, etc. To implement structural test we need to have
the source code of the program as an apriori knowledge.

The structural tests used to be applied in smaller rather than larger
test scope, because the complexity of the internal structures of a sys-
tem composed of many components used to be very high. To solve this
problem we can transform the structural test from the white-box test-
ing method to the gray-box testing method. Then we need an abstract
model of the internals instead of the details of the source code. With
regard to the input criterion and the control criterion, shown in Ta-
ble 1 on page 13, a structural test can be every testing method. [Rus91]

3.2.5 Symbolic Execution

The symbolic execution is a test that constitutes a systematic tech-
nique for generating information about the inner workings of a pro-
gram. [Rus91] This test is mainly suitable for complex expressions,

20

such as recursive mathematical expressions. The test assigns initial
symbolic values to all variables. Then it substitutes the variables in the
expressions and continues with the simplification of the expressions.
During and after the symbolic execution we can inspect the given ex-
pressions for correctness.

Symbolic execution is a white-box testing method, because it requires
knowledge about the internal expressions. The test scope is a rather
small test scope, such as a statement or function test scope. From the
focus on symbolic execution it follows that the tested items are expres-
sions that are functional items. The symbolic execution is suitable to
be implemented as an automated testing method. As far as the input
is concerned, all options are possible. [Rus91]

3.2.6 Program Spectra Analysis

To understand the program spectra analysis we first have to explain
the program spectrum. The program spectrum, according to [HRWY98],
characterizes or provides a signature of a program’s behavior. There
are the following six kinds of spectra (according to [HRWY98]). The
branch spectra record the set of conditional branches that are exer-
cised, as a program P executes. The path spectra record the set of
loop-free intraprocedural paths that are traversed, as P executes. The
complete-path spectrum records the complete path that is traversed, as
P executes. The data-dependence spectra record the set of definition-
use (see Section 4.3 on page 30) pairs that are exercised, as P exe-
cutes. The output spectrum records the output produced by P, as it
executes. The last spectrum, called execution-trace spectrum, records
the sequence of program statements traversed, as P executes.

The main idea behind the program spectra analysis is to produce the
program spectra for two or more programs, then to compare them and,
finally, to locate where the programs behave differently to each other.
To complete the description of this testing method we have to mention
the substantial problems connected with it. The first one states that
the difference between the program spectra of two compared programs
P and P’ does not imply that one of these programs fails where the pro-
gram spectra differ. The second one states that if one program fails and
another one not does not this implies that their program spectra must
be different. For more details, see [HRWY98].

This method is a difference-related testing method, because we focus
on differences between at least two similar programs (for example, an
old program and a newly changed one). The extraction of program
spectra information from the source code arranges this method to be a
white-box testing method. As far as the test scope is concerned, it is
suitable for a simple, smaller scope rather than for a complex, larger
one. As the program spectra must be generated, it is supposed to be an
automated testing method. As far as the input is concerned, it depends
on the application.

21

3.2.7 Anomaly Detection

The anomaly detection is a formal verification method that evaluates
the quality of a given source code. To detect anomalies the detection
method must know the syntax and semantics of the source code. Typ-
ical anomalies are unused variables or unreachable statements.

This formal verification works with source code that has an exactly de-
fined syntax, thus this verification can be automated. The scope of
anomaly detection is almost unlimited due to its linear complexity. The
verified items are structural items, such as control and data structures.

The main advantage of this formal verification method is the automated
detection of locations where errors may reside, without understanding
the program or its specification. [Rus91]

3.2.8 Walk-Through Verification

The walk-through verification is a code review method, because it is
done by people. The relevant people inspect the source code system-
atically. They cover every piece of logic at least once and take every
branch at least once. According to [Fag76] there are four important
reviewer roles: moderator, designer, coder and tester. The coder reads
the source code and the others walk through the code.

The advantage of this formal verification method is that there is no
need for executable testing programs and formal specifications. This
formal verification may be applied to earlier development stages, too.
[Rus91]

The walk-through verification is like partition testing method because
some specially selected input data are necessary for walking through.
The verification scope is rather smaller, because it may be very imprac-
tical to walk through the whole system code. Verified items are both
functional and structural items.

3.2.9 Mathematical Verification

The mathematical verification is another code review method that for-
mally verifies abstract models for consistency. This can be done at
various levels of formality. The process is based on formal, mathemat-
ical principles [Rus91]. The mathematical verification method has two
weak points. The first is the possibility of a flaw occurring in the verifi-
cation itself. The second is that the verification does not find problems
originating from a bad specification, which does not meet the user re-
quirements.

As far as our classification is concerned, this verification is based on
the source code. The verification scope may vary, because it depends
on the level of abstraction of the verified model. The verified items are

22

expressions and functions. Mathematical verification does not need
any input data, because it operates with symbols. [Rus91]

3.2.10 Executable Assertions

The executable assertions method is a formal verification and dynamic
testing method. In the first case embedded executable assertions are
proven that they are always satisfied by being passed by the locus of
control without problems. In the latter case the executable assertions
embedded in the program react by printing a message or throwing an
exception, when they are broken.

This method enables developers and testers to watch the internal be-
havior of the tested program. It also helps to locate the error in the
program more quickly.

As far as our classification is concerned, the executable assertions
method is a typically manual testing/verification method, because the
assertions are evaluated manually. In some circumstances it may
be designed as an automated testing/verification method. The test-
ing/verification scope is unbounded. The tested/verified items are
functional and structural items. Also non-functional items, such as
timeliness, can be tested efficiently if this method is a dynamic testing
method. Necessary apriori knowledge is the source code so that we
can implement the executable assertions, thus it is a white-box testing
method.[Rus91]

3.2.11 Adaptive Test

BASIC
TEST
DATA

TEST
DRIVER

TEST OBJECT

ASSERTION
EVALUATOR

TEST
RESULTS

FILE

ADAPTIVE
TESTER

Figure 7: Adaptive Test Architecture [AB81]

The adaptive test is an automated testing method. The architecture of
the adaptive testing method is shown in Figure 7. To understand the
individual components, we have to explain the principle of the adaptive
test. The first precondition is that the program under test must contain
embedded executable assertions that trigger an error signal whenever
they are evaluated to be false. The second precondition is basic test
data that consists of some initial input data and their specifications,

23

such as data range, minimum, maximum, etc. When both precondi-
tions are fulfilled the adaptive test can start.

The test driver executes the test object with the basic test data. The
assertion evaluator maintains a test results file where asser-
tion violations are recorded together with their input data. Based on
the test results file, the adaptive tester tries to find and gen-
erate such test cases that produce an as high as possible number of
assertion violations. The adaptive tester uses an heuristic search
algorithm for finding further necessary test cases. The classification of
the adaptive testing method is shown in Table 2.

Criterion Testing Method

Input basic test data

Apriori Knowledge black-box

Test Control automated

Test Nature dynamic

Test Scope function, module, component, system

Tested Items functional, structural

Table 2: Adaptive Testing Method Classification

The crucial point with respect to flexibility and robustness is the formal
specification of the input data. With the adaptive test we can practi-
cally test every program for which input data can be represented as
multidimensional vectors with bijective relation. Multidimensional vec-
tors then create an input for an error function according to which the
heuristic search algorithm seeks new test cases. The adaptive test
is suitable for testing all tested item, with the exception of program
differences Table 1 on page 13, because it works with data produced
only during the current test. It can also be used for testing real-time
and embedded systems, because the executable assertions may watch
deadlines and resources usage. [AB81]

3.2.12 Object State Testing

The object state testing is a static testing method or, according to our
convention, a formal verification method. It tries to find certain imple-
mentation errors whose detection would be much more difficult by us-
ing conventional structural and functional testing methods. Function-
oriented software used to be modeled and tested using flat state ma-
chines, which tend to become excessively complex.
Therefore, the object state testing uses a composite object state diagram

(COSD) that is a concurrent finite state machine composed of interact-
ing atomic object state diagrams (AOSD). AOSDs are atomic finite state

24

machines. A substantial fact is that if we derive a spanning tree from
the COSD, where nodes are the states and the edges are method calls,
then we can find wrong paths (for example, disallowed sequences of
method calls). Fo more details, see [KSGH94].

This formal verification method is like the white-box testing method,
because it is based on the source code. It may also be like the gray-box
testing method, because it requires at least an abstract model. The
verification is done by using some input data. Dependening on the
formalization of the correct and wrong paths in the COSD spanning
tree, this verification can be carried out in an automated or manual
way. The verification scope is the class or a set of classes, and the
verified items are states of those classes. [KSGH94]

3.2.13 Unit Test

According to [Vig05] unit tests are all kinds of software unit tests that
are done by developers. A unit can be a separate class that chains,
through associations, classes or a module that contains a class.

The unit tests can be implemented as a white-box, gray-box or black-
box testing method. Furthermore, it is an automated testing method.
As far as the input data and tested items are concerned, they depend
on the implementation of the unit tests only. The test scope of the test
is defined by the unit definition.

3.2.14 Integration Test

The integration test is, in principle, similar to the unit test, with the
exception of the test scope and the focus. The test scope of the integra-
tion test is components and system. The focus is on the communication
among these system parts [SL05]. Sometimes it is hard to tell whether
a test is an integration test or a lower-level test, because the borders
are not sharp. [Lin05]

25

T
e
s
ti

n
g

M
e
th

o
d

C
ri

te
ri

a

In
p
u
t

A
p
ri

o
ri

K
n
o
w

le
d
g
e

T
e
s
t

C
o
n
tr

o
l

T
e
s
t

N
a
tu

re
T
e
s
t

S
c
o
p
e

full

partition

random

black-box

gray-box

white-box

automated

manual

codereview

test

verification

function

module

component

system

R
a
n

d
o
m

T
e
s
t

x
x

x
x

x
x

x
x

R
e
g
re

s
s
io

n
T
e
s
t

x
x

x
x

x
x

x
x

x

F
u

n
c
ti

o
n

a
l
T
e
s
t

x
x

x
x

x
x

x
x

x
x

x

S
tr

u
c
tu

ra
l
T
e
s
t

x
x

x
x

x
x

x
x

x
x

S
y
m

b
o
li
c

E
x
e
c
u

ti
o
n

x
x

x
x

x
x

x
x

P
ro

g
ra

m
S

p
e
c
tr

a
A

n
a
ly

s
is

x
x

x
x

x
x

x
x

x

A
n

o
m

a
ly

D
e
te

c
ti

o
n

x
x

x
x

x
x

x

W
a
lk

-T
h

ro
u

g
h

V
e
ri

fi
c
a
ti

o
n

x
x

x
x

x
x

x

M
a
th

e
m

a
ti

c
a
l
V
e
ri

fi
c
a
ti

o
n

x
x

x
x

x
x

x

E
x
e
c
u

ta
b
le

A
s
s
e
rt

io
n

s
x

x
x

x
x

x
x

x
x

x
x

A
d
a
p
ti

v
e

T
e
s
t

x
x

x
x

x
x

x
x

x

O
b
je

c
t

S
ta

te
T
e
s
ti

n
g

x
x

x
x

x
x

x
x

x

U
n

it
T
e
s
t

x
x

x
x

x
x

x
x

x
x

In
te

g
ra

ti
o
n

T
e
s
t

x
x

x
x

x
x

x
x

x
x

x

T
a
b
le

3
:

O
v
e
rv

ie
w

o
f
th

e
C

la
s
s
ifi

c
a
ti

o
n

o
f

th
e

T
e
s
ti

n
g

M
e
th

o
d
s

a
n

d
F
o
rm

a
l
V
e
ri

fi
c
a
ti

o
n

s

26

Testing Method Criteria

Tested Items

fu
n

c
ti

o
n

a
l

s
tr

u
c
tu

ra
l

n
o
n

-f
u

n
c
ti

o
n

a
l

d
if

fe
re

n
c
e
-r

e
la

te
d

Random Test x

Regression Test x x x

Functional Test x

Structural Test x

Symbolic Execution x x

Program Spectra Analysis x

Anomaly Detection x

Walk-Through Verification x x

Mathematical Verification x x

Executable Assertions x x x

Adaptive Test x x

Object State Testing x

Unit Test x x x

Integration Test x x x

Table 4: Overview of the Classification of the Testing Methods and For-
mal Verifications

3.3 Summary

This chapter examined a range of testing methods to get an overview
of software testing and to find out which testing methods can be im-
plemented in the new unit test framework. We found fourteen testing
methods which we tried to classify. To do a reasonable classification of
those methods, we focused on tests that are concrete implementations
of testing methods. We found out that a test has six different aspects
according to which we can classify that test. Thus we have also six
criteria for the testing methods.

As far as the current unit test framework and this examination is con-
cerned, we can see that the framework implements integration, regres-
sion and unit tests.

27

4 Research of Code Metrics

Section 3 on page 13 analyzes a range testing methods that are used in
software testing for checking the correctness of the software developed.
Choosing an efficient testing method depends on the type of applica-
tion and on the effort of testing we want to expend. But that is not
enough with respect to efficient testing. We also need to select the right
test cases for the testing method chosen, otherwise the chosen testing
method may become inefficient and, in the worst case, unreliable. To
measure whether the selected test cases are sufficient or not we intro-
duce , which require testers to select the right test cases.

4.1 Introduction

A code coverage metrics is a metrics that is based on a given code un-
der test. Such metrics measures how many program structure items
are covered by executing a test suite. A test suite is a collection of test
cases. As the program structure is composed of many different items,
we need a definition or criterion that determines what is an item for a
particular test. That is why a metrics is in close relation to a criterion.
In the following, we show some criteria on which metrics are based.

The code complexity metrics is similar to code coverage metrics, but it
calculates the program code complexity using the program structure
items instead of measuring the coverage. Again the program structure
items must be defined. This kind of metrics is relevant as well, because
it helps developers to keep the software smart and thus more reliable.

In this chapter, we list some code metrics, which are divided into three
basic classes according to their criteria. The first class contains met-
rics whose criteria are based on the control flow. The second class
contains metrics whose criteria are based on the data flow. Finally, the
third class contains code complexity metrics suitable for measuring the
complexity of the object-oriented program code.

4.2 Control Flow Code Coverage Metrics

The control flow are based on the control flow graph. The control flow

graph is a graph as used in graph theory, with the vertices being linear
sequences of computations and the edges representing control trans-
fer between two nodes. Each edge is associated with a predicate that
represents the condition of control transfer from node n1 to node n2.
[ZHM97]

The precondition for using the control flow is the possibility to build a
control flow graph from source code. For this reason, we need to detect
and extract the following items:

1. statements

28

2. branches

3. conditions

The description of each metrics listed in the following contains a met-
rics definition and the practical limits of its usage.

4.2.1 Statement Coverage Metrics

The statement coverage metrics (SC) is the simplest metrics. The cri-
terion is that each node in the control flow graph of the program code
is executed at least once. The SC metrics can be easily implemented
and used. On the other hand, SC is so weak that even some control
transfers may be missed. [ZHM97][VB01]

4.2.2 Decision Coverage Metrics

The criterion for the decision coverage metrics (DC) requires that every
edge of the control flow graph be contained in at least one control flow
path covered by an executed test suite. This metrics is also called
branch coverage metrics, because every outcome of each branch (see the
Section 5.3.2 on page 45) is tested. This metrics is easy to implement
and to use even for large programs. DC metrics does not require a
complete test of each condition in each decision. [ZHM97][VB01][GS04]

4.2.3 Condition Coverage Metrics

The next metrics is the condition coverage metrics (CC). Its criterion
requires that each statement be executed and that each condition in
each decision take all possible values at least once. A condition is an
atomic predicate or elementary Boolean expression that cannot be di-
vided into further Boolean expresssions. At first glance, this criterion
seems to satisfy the DC criterion. This is not true, because it is pos-
sible to omit such combinations of condition values that are necessary
for a particular decision so that some decisions might not be covered.
[VB01][GS04]

4.2.4 Decision Condition Coverage Metrics

The decision condition coverage metrics (DCC) defines a criterion that
combines the DC criterion with the CC criterion. This means that a
set of executions satisfies the DCC criterion if all the statements are
covered, if all the decisions take all possible values and if each condi-
tion in each decision takes all possible values at least once. As this
criterion satisifies the DC and CC, we say that it subsumes these two
criteria. DCC also has another name – branch condition coverage met-
rics. [VB01][GS04]

29

4.2.5 Multiple Condition Coverage Metrics

The multiple condition coverage metrics (MCC) criterion requires that,
for each decision, all combinations of condition values be covered by
an executed test suite at least once. Thus it subsumes the DCC cri-
terion. This criterion is unmanageable even for a moderate number of
conditions, because the number of combinations of all the conditions
grows exponentially. [GS04][VB01][ZHM97]

4.2.6 Path Coverage Metrics

The path coverage metrics (PC) defines a criterion that is satisfied if and
only if an executed test suite covers all control flow paths in the pro-
gram at least once. The difference between the PC criterion and the DC
criterion is that the PC metrics requires all combinatiions of all decision
outcomes. Keeping our metrics namings, this metrics should be called
multiple decision coverage metrics. A test suite actually satisfies the
PC criterion if it covers the entire control flow graph of the program.
This code coverage criterion is the most complex criterion presented
in this thesis. Satisfying this criterion may become infeasible for large
software systems, because the number of decision combinations expo-
nentially grows with the number of decisions. The PC criterion is also
called all-pathscriterion. [ZHM97][Nta88][FW88][CPRZ85]

4.2.7 Modified Condition Decision Coverage Metrics

Although the MCC criterion subsumes a couple of metrics, which makes
it very efficient for error detection, it is a practically unmanageable
[GS04][VB01] criterion, as already discussed. The criterion for the mod-

ified condition decision coverage metrics (MCDC), which is in between
the MCC criterion and the other criteria, has the same requirements
as the criterion for DCC, with the addition that each condition in a de-
cision is shown to affect the decision value independently of the other
conditions. This is done by keeping fixed the values of all the other
conditions in a decision while the variable condition affects the deci-
sion outcome. [GS04][VB01] [ZHM97]

4.2.8 Boundary-Interior Metrics

The boundary-interior metrics has two testing criteria, the boundary
testing criterion and the interior testing criterion. The boundary testing

criterion selects control paths that enter every loop body but do not it-
erate it, while the interior testing criterion selects control paths iterating
every loop body several times. [Nta88]

4.2.9 Structured Path Coverage Metrics

The criterion for the structured path coverage metrics requires that all
paths P of a given control flow graph be covered, where P does not
contain any path p such that p consists of some subpath α, followed by

30

more than k repetitions of some subpath s, followed by some subpath
β. That means that each loop in the path is executed not more than k
times. If the program under test is cycle-free then the structured path
coverage metrics is equal to the path coverage metrics known as path
testing metrics as well. [Nta88]

4.2.10 TER Metrics

The test effectiveness ratios (TER) is a class to which a testing strategy
corresponds. TER1 is segment testing (statement coverage metrics) and
TER2 is branch testing or decision coverage metrics. TERn+2 is satis-
fied if n LCSAJ’s are tested. A linear code sequence and jump (LCSAJ)
is defined in terms of the code text. An LCSAJ is a sequence of con-
secutive statements in a code text, starting at an entry point or after a
jump and terminating with a jump or at an exit point. [Nta88][ZHM97]

4.3 Data Flow Code Coverage Metrics

1 int func(int a, int b, int c){
2 ...
3 if(a < b){
4 c = -1;
 }
5 ...
6 if(b > 10){
7 a = sqrt(c);
 }
8 return a;
}

1

4

3

7

2

5

6

8

def(a), def(b), def(c)

p-use(a), p-use(b)

p-use(a), p-use(b) def(c)

p-use(b)

p-use(b) c-use(c), def(a)

c-use(a)

Figure 8: Data Flow Graph

The data flow are based on the data flow graph. The data flow graph,
an example of which is shown in Figure 8, is a graph according to the
graph theory, where the node represents a data processing, while the
edge represents a control transfer between two distinct nodes [CPRZ85].

To understand data flow we need to introduce some definitions.

Generally, a definition occurrence def(x) is a storing of a value in a
memory location of variable x, and a use occurrence use(x) is a fetch-
ing of a value from a memory location of variable x.

31

Use occurrence is divided into computational use occurrence c-use(x)
and predicate use occurrence p-use(x). The former affects the com-
putation being performed or outputs the result of an earlier definition.
The latter directly affects the control flow.

A def(x) reaches a p-use(x) or a c-use(x) if no redefinition of the
variable x occurs along the path from the def(x) to the p-use(x) or
the c-use(x).

Another important definition is definition occurrence liveness. The
definition occurrence of a variable lives at some location if there ex-
ists a control path from the definition occurrence of the variable to
the location, where the variable is redefined yet. In other words, if
a def(x) reaches a use(x), then the def(x) is alive at the use(x).
[FW88][GS04][Nta88][Las82]

To use the data flow we need to be able to build a data flow graph from
the source code. This means that we need to be able to detect and to
extract the following items:

1. def statements

2. c-use statements

3. p-use statements

4. branches

Figure 9 on the next page shows the subsume relation between the data
flow criteria. The subsume relation is explained in Section 4.2.4 on
page 28. Path testing, branch testing (decision testing), and segment
testing (statement testing) are not explained in this section, because
they have been explained in the previous section. The following data
flow metrics relate to one variable. If we want to apply any of these data
flow metrics, we have to determine, which variables are to be dealt with.

4.3.1 All-P-Uses Metrics

The all-p-uses metrics defines a criterion that is satisfied by a test suite
if for all def(x) all reachable p-use(x) are covered by the test suite at
least once. [CPRZ85][Nta88][FW88][GS04]

4.3.2 All-Defs Metrics

The all-defs metrics defines a criterion that is satisfied by a test suite if
for all def(x) at least one path from the def(x) to a reachable use(x)
is covered by the test suite at least once. [CPRZ85][Nta88][FW88]

32

path testing

structured path testing

boundary-interior
path testing

required k-tuples
k > 2ordered

data contexts

elementary
data contexts

2-dr interactions

all-c-uses /
some-p-uses

all-p-uses /
some-c-uses

all-du-paths

all-uses

required pairs

all-p-uses

branch testing

segment testing

all-defs

TER = 1
n>3

TER = 1
3

Figure 9: Partial Order of Data Flow Metrics [Nta88]

33

4.3.3 All-P-Uses Some-C-Uses Metrics

The all-p-uses some-c-uses metrics defines a criterion that is satisified
by a test suite if for all def(x) at least one path from each def(x) to
all its reachable p-use(x) is covered by the test suite. If no p-use(x)
is reachable from the def(x), then at least one path to a reachable
c-use(x) must be tested at least once. [CPRZ85][Nta88][FW88]

4.3.4 All-C-Uses Some-P-Uses Metrics

The all-c-uses some-p-uses metrics defines a criterion that is satisified
by a test suite if for all def(x) at least one path from each def(x) to
all its reachable c-use(x) is covered by the test suite. If no c-use(x)
is reachable from the def(x) then at least one path to a reachable
p-use(x) must be tested at least once. [CPRZ85][Nta88][FW88]

4.3.5 All-Uses Metrics

The criterion of the all-uses metrics is satisfied by a test suite if for each
def(x) at least one path to its every reachable use(x) is covered by
the test suite at least once. [GS04][ZHM97] [Nta88][CPRZ85][FW88]

4.3.6 All-DU-Paths Metrics

The all-du-path criterion is satisified by a test suite if all possible paths
between all def(x) and all their reachable use(x) are covered by the
test suite at least once. [GS04][ZHM97] [CPRZ85][FW88]

4.3.7 2-DR Interaction Metrics

The 2-dr interaction is a def(x)/use(x) pair, where the use(x) is
reachable by the def(x). The criterion is satisfied by a test suite if
all 2-dr interactions in the code under test are covered by the test suite
at least once. [ZHM97][Nta88][Nta84]

4.3.8 Elementary Data Context Metrics

An elementary data context (EDC) of an instruction is a set of all def-
initions living at the instruction. For node 8, shown in Figure 8 on
page 30, the EDC is c. The criterion for the elementary data context

metrics (EDCM) requires that all definitions in EDC must be covered
by a test suite at least once. In other words, at least one subpath to
the instruction must be covered. As shown in Figure 8 on page 30, one
of [1, 2, 3, 5, 6, 8], [1, 2, 3, 5, 6, 7, 8], [4, 5, 6, 8] or [4, 5, 6, 7, 8] subpaths must be
tested.

As the instruction is a very small and impractical unit in the currently
used high-level programming languages, this metrics can be extended
to a block of statements. The input of the block is a set of such variables
that are, for the first time, used in the block, but defined before entering

34

the block. The output of the block is a set of all variables, which are
defined in the block at least once. EDC is sometimes called definition
context as well. [CPRZ85] [Las82] [ZHM97] [Nta88]

4.3.9 Ordered Data Context Metrics

An ordered data context (ODC) of an instruction or a block is a sequence
of all definitions living at that instruction. An ordered data context met-

rics (ODCM) requires that all ODCs of an instruction or a block be cov-
ered by a test suite at least once. Covering all sequences (ODCs) means
covering all subpaths to the instruction or the block each of which com-
prises all living definitions. [CPRZ85] [Las82] [ZHM97] [Nta88]

4.3.10 Required Pairs Metrics

The required pairs metrics is similar to the 2-dr interaction metrics. It
differs only in producing required pairs in branches and loops. If the
use(x) of a 2-DR pair is p-use(x) in a branch, one required pair for
each outcome of the branch is produced. For loops, two types of re-
quired pairs are considered: one exits the loop at the first opportunity,
while the other asks that the loop be iterated several times. [Nta88]

4.3.11 Required k-tuples Metrics

The k-tuple or k-dr interaction is such a sequence as a sequence in 2-dr
interaction, but expanded to k-nodes {}.

K = [{def1(x1)},

{use2(x1), def2(x2)},

...

{usek−1(xk−2), defk−1(xk−1)},

{usek(xk−1)}]

The criterion is that all j-dr interactions 2 ≤ j ≤ k must be covered by a
test suite. Note that a-dr interaction does not subsume b-dr interaction
if a ≥ b. [Nta88][ZHM97]

4.4 Code Complexity Metrics

Section 4.2 and 4.3 discussed code coverage metrics, which help to
select the best test cases possible. This section focuses on code com-

plexity metrics, which measure the complexity of code written mainly
in object-oriented languages. The aim of the code complexity metrics is
to decrease the number of potential errors in the code.

Before describing a couple of code complexity metrics we need to de-
fine the terms “coupling” and “cohesion” is. We use terminology used
in object-oriented languages, especially terms like class, subclass, in-

heritance tree, method and object (or instance). Coupling between two

35

classes means that at least one class acts upon the other, which, in
other words, is any evidence of a method of one class using methods
or instance variables of another class [CK94]. The cohesion expresses
internal data dependence among the methods of a class. If a class has
different methods that do not operate on any set of instance variables
of the class or do not call other methods of the class, then the class is
not cohesive [CK94].

To apply these metrics we need to be able to detect and extract the
following items:

1. classes

2. subclasses

3. methods definitions

4. methods calls

5. class variables

6. class variables uses

4.4.1 Weighted Methods Per Class

The weighted methods per class (WMC) is defined as

WMC =
n∑

i=1

ci

where n is the number of the methods in a class and ci is the complex-
ity of methodi. The complexity of the methods is not defined here in
order to allow for the most general application of this metrics.

The WMC number shows us how many important methods a class con-
tains. If the WMC number is high, then that class has probably many
simple or a few complex methods. Such a class needs more develop-
ment and maintenance effort and may have a greater potential impact
on children, because they inherit all the methods of that class. Such a
class also seems to be more application-specific and thus less reusable.
[CK94]

4.4.2 Depth Of Inheritance Tree

The depth of inheritance tree (DIT) is, as defined in the graph theory,
the depth of an inheritance tree built from classes, as defined in object-
oriented languages. If multiple inheritance is supported, then the depth
of the inheritance tree is the longest distance to the root of a class.

The higher the DIT number, the more complex is the class, since all the
superclasses may influence its behavior. A high DIT number also tells
us that the inherited methods have a larger reusability potential.[CK94]

36

4.4.3 Number Of Children

The number of children (NOC) is the number of immediate subclasses
of a class. When the NOC number increases we have to be careful,
because such class becomes more important and should therefore be
better tested. A class with a high NOC number represents an impor-
tant abstraction level, which hides specific details of the subclasses,
thus the interface of that class has a larger impact on the system ar-
chitecture. The NOC number also shows a high reusability of the class.
In case of improper abstraction represented by such a class the whole
system may become unusable or unmaintainable. [CK94]

4.4.4 Coupling Between Object Classes

The coupling between object classes (CBO) indicates the number of
other classes to which a class is coupled (see above definition of cou-
pling). The smaller the CBO number, the more independent and more
reusable the class is. On the other hand, if the CBO number is high,
then testing and maintenance of this class becomes more complex and
more sensitive. [CK94]

4.4.5 Response For A Class

The response for a class (RFC) is the cardinality of the set of methods
that can potentially be executed in response to a message received by
an instance of the class. This set contains all methods of the class
and all other methods called by these methods. As we can see, it is
a level nesting of method calls. This limit is given due to practical
considerations. The RFC number indicates that the class is more or
less complex and thus needs more or less testing effort. [CK94]

4.4.6 Lack Of Cohesion In Methods

The lack of cohesion in methods (LCOM) is a count of method pairs
whose similarity is zero minus a count of method pairs whose simi-
larity is not zero (in case of a negative result, the result is adjusted
to zero). The similarity of a method pair is defined as the number of
instance variables on which both methods operate. The zero LCOM
number means that the class may be cohesive, because there are a
few (up to one half) or no method pairs operating on the same set of
instance variables. On the other hand, if the LCOM number is positive,
then the cohesion of a class is low.

The cohesiveness of methods within a class is desirable, because it pro-
motes encapsulation. The lack of cohesiveness indicates that the class
should be split into two or more subclasses, because it consists of two
or more independent parts. Low class cohesion increases complexity
and thus the likelihood of errors occurring during the development pro-
cess. A low cohesive class warns that the class design is probably not
correct. [CK94]

37

4.4.7 Code Size

One of the simpliest code complexity metrics is the code size metrics.
Although it is such a simple code complexity metrics, it is not so easy
to define what the smallest unit to be counted is. One way is to define
a source code single line of code (SLOC) to be the smallest countable
unit. The drawback of this model is that it is quite difficult to define
what a single line of code is, because it depends on the developer’s
coding style. This is why we need to define a unit that does not depend
on the developer’s coding style. According to [Rus91] syntactic tokens
should be the smallest countable units rather than the SLOCs. Then
this metrics does not depend on the developer’s coding style whithin a
language. [Rus91]

4.5 Summary

In this chapter we presented metrics that try to measure the quality of
test suites. There are three classes of metrics: the control-flow code
coverage metrics, the data-flow code coverage metrics, and the code
complexity metrics. Metrics in the first class measure how well a con-
trol flow is tested by a test. The second class of metrics measures the
quality of how well a data flow is tested by a test. The last class of
metrics concerns source code only and measures how efficiently the
source code has been written.

The new unit test framework should support developers to write test
suites having higher quality, thus some of the currently examined met-
rics must be chosen and integrated into the new framework.

38

39

5 The New Unit Test Framework

In this chapter we analyze how to eliminate the drawbacks of the cur-
rent unit test framework mentioned in Section 2.3 on page 6. Also we
propose some extensions and new metrics for the new unit test frame-
work to improve the quality of testing the targeted software.

5.1 The Requirements and the Limitations Concern-
ing Metrics

Before we discuss the design and the architecture of the new unit test
framework we have to make clear which metrics can be implemented
in Python language environment at all. Further we have to respect all
requirements of the company (TTTech) concerning the new unit test
framework.

5.1.1 The Company Requirements for the new Unit Test Frame-
work

The company requires that the new unit test framework contains as
many as possible metrics mentioned in the previous chapter. On the
other hand the complexity of the metrics must be suitable for large
nightly tests.

A further requirement is the possibility of measuring the execution time
for each method. For this purpose, we introduce new metrics called ex-

ecution time per method (ETM). This is an additional metrics that has
not been discussed before, because it is not a . The ETM metrics pro-
vides two measured values per executed method. The first one is the
gross execution time, which is the time between the entry point and
the exit point of the method. The second one is the net execution time.
The net execution time is calculated as the gross execution time minus
the gross execution time of all methods and subroutines called by this
method during an execution. Detailed explanation of the ETM is in Sec-
tion 5.3.4 on page 47. The ETM should help to find the performance
bottlenecks.

The last requirement is that metrics in the new unit test framework
must be limited to the syntax level concerning the source code of the
program. In other words, the metrics must not use information from
the semantic level of the source code. These limitations keep the new
unit test framework relative simple, thus suitable for larger systems
under test. Of course, we need information from the dynamic analysis
too. Exactly, we need to know, which parts of the program have been
covered by the execution.

5.1.2 The Abstract Syntax Tree

To make choice, which metrics should be implemented in the new
unit test framework, we need to analyze our infrastructure to gain

40

necessary information. The first fundamental infrastructure is the
Python abstract syntax tree (AST) delivered in the compiler and the
compiler.ast modules included in the Python standard library.The
AST data structure is the result of the parsing pass of the Python com-
piler. The AST provides almost all details defined in the Python gram-
mar. See the documentation about the Python compiler.ast module
where all possible AST nodes are described.

For us it is important to recognize and localize expressions, statements
and compound statements from the source code, because each of the
generated AST node represents a Python grammar structure linked
with its location in the source code by a line number attribute lineno.
See the Listing 2 and the Listing 3. The only exceptions are the ab-
stract nodes like the statement block STMT node and the module node
MODULE which do not store the line number information. We have to
pay attention to the fact that AST data structure can vary from one
version of Python interpreter to another. Due to this reason the new
unit test framework uses the AST from the 2.5 version of Python only.
The attributes with ("...") in the Listing 3 are in fact the references on
some children nodes. They are blanked due to the better readability.
For example, the SUB (Listing 3 at the line 15 has the right and the
left attributes. They refer to the node NAME (line 16) and to the CONST
(line 17).

Listing 2: Simple Parsed Python Source Code
1 a = 5
2 while a > 0 :
3 a = a − 1

Listing 3: Abstract Syntax Tree in XML Form
1 <MODULE node=" . . . " doc=" . . . " lineno="None">
2 <STMT nodes=" . . . " lineno="None">
3 <ASSIGN expr=" . . . " nodes=" . . . " lineno="1">
4 <ASSNAME flags="OP_ASSIGN " name="a" lineno="1"/>
5 <CONST lineno="1" value="5"/>
6 </ASSIGN>
7 <WHILE test=" . . . " body=" . . . " else_=" . . . " lineno="2">
8 <COMPARE expr=" . . . " lineno="2" ops=" . . . ">
9 <NAME name="a" lineno="2"/>

10 <CONST lineno="2" value="0"/>
11 </COMPARE>
12 <STMT nodes=" . . . " lineno="None">
13 <ASSIGN expr=" . . . " nodes=" . . . " lineno="3">
14 <ASSNAME flags="OP_ASSIGN " name="a" lineno="3"/>
15 <SUB right=" . . . " lineno="3" l e f t =" . . . ">
16 <NAME name="a" lineno="3"/>
17 <CONST lineno="3" value="1"/>
18 </SUB>
19 </ASSIGN>
20 </STMT>
21 </WHILE>
22 </STMT >
23 </MODULE >

5.1.3 The Tracking System

The second infrastructure is the Python tracking system delivered also
in Python standard library in the sys module. The tracking system
provides a line event for every line of code about to execute, what is
fundamental thing for tracking the Python source code. A very impor-
tant fact is that if more statements are in the same line and only some

41

of them are executed, the line event is still emitted. In other words, the
tracking system is unable to recognize whether the whole line or only a
part of the line has been executed when the line event has been emit-
ted. See the Python source code in the Listing 4 on the next page in the
line 7 and its output in the Listing 5 on the following page. The tracking
system says that the line 7 was about to be executed, but we could not
realize afterwards whether it was really completely executed or not. We
can see that the line 7 was not executed, because the condition is false.

Besides this basic event there are three more events. Together, there
are four events:

• call event emitted when a callable object is called,

• return event emitted when the return statement is executed,

• exception event emitted when the raise statement is executed
and

• line event emitted when a line is to be executed.

The call event is a global scope event, because the scope is changed.
The other events are local scope events, because the scope remains.
The scope changes whenever a function call happens. For example,
when the tst2 (2) is executed at the line 8 then a call event is
emitted. Next example is the return statement (line 19) where first the
line event and then the return event are emitted. See the example
in the Listing 4 on the next page and the tracking system results in the
Listing 5 on the following page. Among other useful pieces of informa-
tion these events provide the line number, the module name and the
function name. For details see the Python documentation for the sys
module.

The tracking system is sensitive to the Python version. During this
thesis work we have found out that the track of the while compound
statement differs in the Python 2.5 from the Python 2.4. The difference
is the next executed line after the last statement in the while body,
while the condition is true. In our example, the next executed line in
the Python 2.4 would be the line 15 (the condition) instead of the line
16 (the first statement in the body) in the Python 2.5. We suppose
that this line 15 is ignored in Python 2.5 because the line number
stored in the compiled code possibly does not match against the real
line number in the source code. This inconsistency is possibly caused
by some optimization enhancements in Python 2.5.

42

Listing 4: Simple Tracker
1 # For Python 2.5

2 import sys
3
4 def tst1 () :
5 a = 6
6 b = 7
7 i f a == 8 : c = 2
8 d = tst2 (2)
9 i f d == 0 :

10 raise StandardError (" exception raised ")
11 d = 8
12
13 def tst2 (a) :
14 b = a
15 while a > 0 :
16 d = 7
17 a = a − 1
18 c = 6
19 return b % 2
20
21 def global_cb (frame , event , arg) :
22 print " global : event: %s, l ine %s " % (event , frame . f_ l ineno)
23 return local_cb
24
25 def local_cb (frame , event , arg) :
26 print " local : event: %s , l ine %s" % (event , frame . f_ l ineno)
27 return local_cb
28
29 try :
30
31 sys . settrace (global_cb)
32 tst1 ()
33
34 except StandardError , e :
35 sys . settrace (None)
36 print "%s: %s " % (e . __class__ . __name__ , s tr (e))
37 f inally :
38 sys . settrace (None)

Listing 5: Simple Tracker Result
global : event : cal l , l ine 4
local : event : line , l ine 5
local : event : line , l ine 6
local : event : line , l ine 7
local : event : line , l ine 8
global : event : cal l , l ine 13
local : event : line , l ine 14
local : event : line , l ine 15
local : event : line , l ine 16
local : event : line , l ine 17
local : event : line , l ine 18
local : event : line , l ine 16
local : event : line , l ine 17
local : event : line , l ine 18
local : event : line , l ine 19
local : event : return , l ine 19
local : event : line , l ine 9
local : event : line , l ine 10
local : event : exception , l ine 10
local : event : return , l ine 10
StandardError : exception raised

5.2 The Arguments About the Metrics

In this section we explain, which metrics can be implemented in the
new unit test framework generally. We also submit arguments, why we
reject the other metrics.

5.2.1 The Chosen Control Flow Code Coverage Metrics

In the Section 4.2 on page 27 we discussed the control-flow code cov-
erage metrics. We are going to choose all possible metrics keeping the
given requirements and limitations. The first limitation lies in the fact
that we have to extract the necessary structures from the result of the
syntactic analysis only. The metrics, which need more information, like
runtime values, are all metrics evaluating the conditions. These are the

43

CC, DCC, MCC and the MCDC metrics, thus they must be eliminated.

One of the company’s requirements is keeping the complexity of met-
rics low. That is why we have to exclude all the path-based coverage
metrics like the path coverage metrics, the structured path coverage
metrics, the boundary-interior metrics and TER metrics.

The only metrics fulfilling all the requirements are the statement cov-
erage metrics and the decision coverage metrics. Unfortunately, the
tracking system is insufficient for both the SC and the DC metrics to
produce the correct results. The problem is that the resolution of the
tracking system is the line resolution only, what means that it hides the
information how many statements in the same line have been really
executed. Thus the coverage of some statements can be determined
incorrectly. To prevent such situations we have to make a prelimi-
nary which checks the source code for multiple statements per line
and warns the user.

5.2.2 The Rejection of The Data Flow Code Coverage Metrics

All data-flow code coverage metrics are based on the data flow graph
(DFG) as mentioned in the Section 4.3 on page 30. To build the DFG we
need the def and use statements. The Python language is a dynamic
language what means that classes, function definitions and attributes
can be defined in runtime. Therefore, extracting the real data flow
graph within the syntax level is impossible, because we do not know
where and when a def or use have occurred. Thus all the data-flow
code coverage metrics have to be rejected.

5.2.3 The Problems With The Code Complexity Metrics

The difference between the former two groups of metrics and the code
complexity metrics is that here we do not need any information gained
from the tracking system. They are based on the generated AST only.

As we saw in the Section 4.4.1 on page 35 the WMC metrics can be
implemented for Python source code if the complexity c is based on the
AST, too. For example, c may be the number of if, for and while
compound statements.

The next two metrics DIT and NOC are based on the class inheritance
tree. To construct the class inheritance tree, we need the information
about superclasses. This information is provided completely by the
AST for every class definition, so DIT and NOC can be implemented
using the information from AST.

The CBO metrics measures the coupling between classes. Again, we
have to remember that Python is a dynamic language, thus we do not
know (if based on source code only), how many classes really exist at

44

runtime. That is why we cannot compute CBO from given AST.

The fifth metrics RFC has a characteristics similar to the CBO met-
rics, since it needs information about the number of methods both,
defined and called. Because the methods may be added or removed
dynamically, the RFC also cannot be computed from the pure AST data
structure.

The sixth metrics the LCOM works with the similarity of methods. To
calculate its value, we need the class attributes. And again, the class
attributes can be added or removed dynamically and therefore to cal-
culate the LCOM from the pure AST is impossible, thus the LCOM has
to be rejected.

The last metrics is the best known the code complexity metrics - the
code size metrics. The AST gives us a possibility to solve the problem
with the SLOC unit. If we choose the AST node as a size unit, then
the metrics is independent from the coding style. This metrics only
requires the AST, so it can be implemented for the Python source code.

5.3 The Design of the Metrics

We have just investigated the metrics themselves and their limits. Now
we are going to specify the design of the chosen metrics in the new unit
test framework. Taking in account the limits originating in the Python
language characteristics and the requirements of the TTTech company,
we design a framework containing the following metrics:

1. Statement Coverage (SC)

2. Decision Coverage (DC)

3. Code Size

4. Execution Time per Method (ETM)

5. Weighted Methods per Class (WMC)

6. Response For a Class (RFC)

Further details about these metrics are dealt with in the following sec-
tions.

5.3.1 The Statement Coverage

The statement in the AST is defined as follows:

1. a direct child of any <STMT> node (Listing 3 on page 40)

2. a direct child of any <IF> or <TRYEXCEPT> node and at the same
time the child is not <STMT>

45

The SC is calculated as a division of the number of covered statements
by the number of all statements. Before calculating metrics we have to
check whether maximum one statement is placed per line or not so that
the result of the tracking system is reliable. The checker compares line
numbers of the found if or elseif or for or while or except state-
ments with the line numbers of their first body statements.

An exceptional case is the else statement ommitted in the AST. But
that is not a problem, because a partial execution of such a line is
impossible, due to the non-existence of the condition causing a par-
tial execution of the line. The second exceptional case is the except
statement where the name of the exception class and the name of its
instance are defined. See the (Listing 6 line 3). According to the AST
this line carries two statements, namely the StandardError and the e.

Listing 6: Two statements in a line
1 try :
2 he l lo ()
3 except StandardError , e :
4 print "%s" % e

Concerning the aggregation of SCs to one SC, the aggregation is defined
as the number of all covered statements of all modules divided by all
statements in all modules. Generally, the aggregation of the metrics is
used for calculating the metrics of a system.

5.3.2 The Decision Coverage

To calculate DC we need to define and distinguish a decision from a
branch point, because they need not be identical seeing the AST of a
source code. A decision is a compound condition according to which
the control flow is changed. A decision is represented by a set of AST
nodes. The branch point is represented by a single AST node, at which
the control flow is really branched. The branch point is more important
for the DC metrics. The branch is a sequence of executed AST nodes,
which begins with a branch point node.

To find branch points in a AST, we have to set two criteria for AST
nodes that can be taken as branch points in the Python language:

• the node can have more than one successor nodes or

• the node can have at least one successor node, but it can be the
last executed node.

We have searched for branch points in the AST generated from a source
code that has contained all grammar constructs, which imply control
flow branching. These grammar constructs are if, while, for, and
try-except compound statements. All found branch points are the
last nodes of statements marked as “branch point” in the Listing 7 on
the following page, Listing 8 on the next page, Listing 9 on the following
page and in the Listing 10 on the next page.

46

The DC is then defined as the number of covered branches divided by
the number of all branches. Some branches are ignored, as they are
implicitly counted in immediately following decision, because they are
in a sequence. See the Listing 7. If the true branch of the decision 2
has been executed, then the false branch of the decision 1 must have
been executed too.

Listing 7: IF Compound Statement
1 # Python 2.5

2 i f a == 5 : # branch point 1 (jump l i n e 3 or l i n e 4 − ignored branch)

3 b = 6
4 e l i f a == 6 : # branch point 2 (jump l i n e 5 or l i n e 7)
5 b = 7
6 else :
7 b = 0

This piece of code hides actually two decisions (the line 2 and 4), be-
cause it contains two compound conditions. Every decision has exactly
two branches due to Boolean type of the condition result (True, False).
Intuitively, this code has three alternatives (the line 3, 5 and 7) that
may or may not be covered. So we would expect that the DC would eval-
uate these three alternatives. Unfortunately, we have two decisions,
thus four alternatives. The DC results might be then 0%, 25%, 50%, 75%
or 100% instead of 0%, 33%, 67% or 100%. To achieve our intuitive expec-
tations we count the true branches only and ignore the false branches
of all decisions (the line 2 in the example), unless they are the last ones
(the line 4 in the example).

The similar situation appears in the try - except construct in the
Listing 8, because these decisions are in a sequence too.

Listing 8: TRY - EXCEPT Compound Statement
1 # Python 2.5

2 try :
3 a = 6
4 func () # exception may be raised here

5 b = 7 # branch point 1 (jump l i n e 11 or l i n e unreachable)
6 except Error1 , e : # branch point 2 (jump l i n e 7 or l i n e 8 − ignored branch)

7 print e
8 except Error2 , e : # branch point 3 (jump l i n e 9 or out)

9 print e
10 else :
11 c = 8

To close this section, we depict the decisions of the rest compound
statements FOR and WHILE in the Listing 9 and in the Listing 10.

Listing 9: WHILE Compound Statements
1 # Python 2.5

2 a = 8
3 while a > 0 : # branch point 1 (jump l i n e 4 or l i n e 9)
4 d = 9
5 a = a − 1
6 c = 6 # branch point 2 (jump l i n e 4 or l i n e 9)

7 # (jump l i n e 3 or l i n e 9) in Python 2.4

8 else :
9 b = 7

10 x = a

Listing 10: FOR Compound Statements
1 #Python2 .5

2 for a in range (1 0) : # branch point 1 (jump l i n e 3 or l i n e 5)

3 print a
4 else :
5 print " stop"

47

As for the aggregation of the DCs to one DC, the aggregation is defined
as the number of all covered branches of all modules divided by all
branches in all modules.

5.3.3 The Code Size

The code size metrics is very simple metrics, which counts the AST
nodes. See Listing 3 on page 40 for Listing 2 on page 40. The aggre-
gated code size is the sum of all code sizes.

The new unit test framework also supports the line coverage metrics.
The line coverage metrics (LC) counts the covered lines instead of cov-
ered AST nodes. This metrics, which strongly depends on the coding
guidelines is supported so that the user can compare the results of the
new metrics with the results of the well-known line coverage metrics.

5.3.4 The Execution Time Per Method

We know two execution times - the gross time and the net time. The
gross time is the time from any entry point of a method to any exit point
of the method. The net time is the gross time without the gross times
of all subroutines called by the method. See Figure 10.

net time

gross time

Method

Subroutine

Method Exit PointMethod Entry Point

Subroutine Entry Point Subroutine Exit Point

Tracking Overhead Time

Figure 10: Gross Time and Net Time

To gain the current time instance we use the time.clock() function.
Notice the yellow bars, which mean the tracking overhead time, the
time of the callback functions triggered on the call and the return
events. This time may be neglected if the subroutine takes enough
time. But for short calls the overhead time influences the measure-
ments negatively. Of course, each line event causes overhead time
too.

The ETM on the system level is the sum of theETMs in the module level
and the ETM in the module level is the sum of the ETMs in the function
levels. Since the gross time must not be summed, the aggregated ETMs
are net times only.

5.3.5 The Weighted Method Per Class

The WMC is in fact a special code size metrics, since it counts some
predetermined AST nodes in the class methods only. That means for

48

example that the top level functions and the expressions are ignored.
It counts the occurrences of all binary, compare and arithmetic opera-
tors, the occurrences of all compound statements and the occurrences
of all nested classes and functions. Although the nested classes and
the functions are parsed recursively, their results are separated from
the results of the enclosing methods and classes. The system WMC is
the sum of the module WMCs.

5.3.6 The Response For A Class

In Section 5.2.3 on page 43 we have analyzed that RFC is impossible to
be implemented for Python language. But if we do some restrictions
we can approximate to the real RFC. We need one restriction only,
namely we count methods that are explicitly defined in explictly de-
fined classes. The less dynamic definitions of methods and classes in
the source code the better the results of the RFC.

The RFC metrics is similar to the WMC metrics, since it counts some
predetermined AST nodes too. The predetermined AST nodes are the
classes, the functions and the function calls. Thus the RFC handles
with the classes and the functions (nested as well) in the same way as
the WMC. The system RFC is the sum of the module RFCs.

5.4 The Input and The Output of The New Unit Test
Framework

5.4.1 Framework Command Line Input

This section shows options provided by the new unit test framework.
The main module of the framework is the Unit_Test_FW_Tool.py,
which accepts the options. After the options a list of start modules
and directories is expected. Every start module must contain some
unit tests or docstring tests, otherwise it is ignored. In case of the start
directory all modules are executed recursively as the start modules.

Unit_Test_FW_Tool.py [OPTIONS] (start_module|start_directory)+

This is the synopsis of the new unit test framework main module
Unit_Test_FW_Tool.py. The options are described below. The
start_module is any Python source code module. If the module
does not contain any unit tests or docstring tests the module is
not executed completely, since the framework starts with such
tests only. If a start_directory is given, then the directory is
traversed recursively and loads each found Python source code
module as a start_module.

--ignore, -i path(:path)*

Defines directories where all modules are completely ignored. This
option is recursive, thus all modules in all subdirectories are ig-
nored too. This option has higher precedence than the start mod-
ules and directories. The main reason for this option is to exclude
the standard Python libraries to prevent them from evaluation.

49

--output, -o global_xml_file

The global results are placed in the standard output or in the file
global_xml_file if this option is given. The suffix built from the
_label string and the .cover.xml file name extension is added
to the global_xml_file. For example the name of a global XML
file can be global_3.0.cover.xml. The _label infix is described
in the --label option.

--details, -d

This option forces the framework to provide details of metrics for
manual checking of metrics results. All details are written in mod-
ule XML file.

--debug, -g

The debug option writes module’s AST and all tracked path in the
module in the module XML file.

--label, -l

The label is used to distinguish the test results from other test
runs. This label is contained in every module XML file and global
XML file. It also codetermines the names of global and module
XML files. Thus the result XML files from previous test runs are
not overwritten. For example if the label is 3.0-test then all mod-
ules modname.py have name modname_3.0-test.cover.xml.

--version, -v

Prints the version of this framework.

--verbose, -b

In the verbose mode each phase is announced. There are three
phases: tracking, parsing and aggregating. In the tracking phase
every start module is written to standard output. The letter “T”
at the beginning informs us that we are in the tracking phase.
The tracking phase has 4 result states. The result states are writ-
ten after the start module name being tracked. The possible re-
sults states are: “OK” - the test starting with the start module has
passed errorless. “NO TESTS” - the same as the first one, but no
unit tests or docstring tests have been found. “FAILED” - an error
has occurred. In the parsing phase, all modules being parsed and
evaluated are written to the standard output. The letter “P” at the
beginning informs us that we are in the parsing phase.

5.4.2 Framework XML Output

The output is divided into:

comand line, where errors are written if XML output is unavailable.
Also the progression is written here if verbose mode enabled.

50

module XML file, which contains all results related to module. The
name of the file is module.cover.xml if the Python module calls
module.py. A content of module XML file is depicted in Listing 11.

Listing 11: Module XML File
1 <TEST date="06−Feb−07" module="Example .py" version=" test V1.0 " time="15:51:27 ">
2 <METRICS>
3 <SC covered="4" t o ta l="9" result="44">
4 <SCDETAILS covered=" False " l ine="20" id="2"/>
5 .
6 .
7 .
8 <SCDETAILS covered="True " l ine="30" id="26"/>
9 </SC>

10
11 <DC covered="9" t o ta l="12" result="75">
12 <DCDETAILS taken="True " l ine ="10" nottaken="−" id="22"/>
13 <DCDETAILS taken="True " l ine ="12" nottaken="True " id="28"/>
14 <DCDETAILS taken="−" l ine ="31" nottaken=" False " id="80"/>
15 <DCDETAILS taken="True " l ine ="31" nottaken=" False " id="81"/>
16 </DC>
17
18 <SIZE result="34"/>
19
20 <ETM netmin="0.001s " netmax="0.001s " module="Example. py" netavg="0.001s">
21 <ETMFUNCTION function=" test_a2"
22 netmin="0.000s" netavg="0.000s " netmax="0.000s"
23 grossmin="0.002s " grossavg="0.002s" grossmax="0.002s ">
24 <ETMDETAILS gross="0.00189995765686" net="0.000440835952759"/>
25 </ETMFUNCTION>
26 <ETMFUNCTION function=" test_a1"
27 netmin="0.000s" netavg="0.000s " netmax="0.000s"
28 grossmin="0.003s " grossavg="0.003s" grossmax="0.003s ">
29 <ETMDETAILS gross="0.00296688079834" net="0.00041389465332"/>
30 </ETMFUNCTION>
31 </ETM>
32
33 <WMC wmc="2">
34 <WMCCLASS wmc="2" class="utClass ">
35 <WMCDETAILS function=" test_a2" c="1"/>
36 <WMCDETAILS function=" test_a1" c="1"/>
37 </WMCCLASS>
38 </WMC>
39
40 <RFC rfc ="6">
41 <RFCCLASS rfc="6" class="utClass ">
42 <RFCDETAILS function=" test_a2" cal ls ="3"/>
43 <RFCDETAILS function=" test_a1" cal ls ="3"/>
44 </RFCCLASS>
45 </RFC>
46
47 <LC covered="2" t o ta l="3" result="67">
48 <LCDETAILS covered="True " l ine="1"/>
49 <LCDETAILS covered="True " l ine="3"/>
50 <LCDETAILS covered=" False " l ine="4"/>
51 </LC>
52
53 </METRICS>
54
55 <TRACKER>
56 <FILE name="Example. py">
57 <PATH number="0">
58 <LINE number="26"/>
59 <LINE number="27"/>
60 </PATH>
61 <PATH number="1">
62 <LINE number="29"/>
63 <LINE number="30"/>
64 </PATH>
65 </FILE>
66 </TRACKER>
67
68 <PARSER>
69 <MODULE node=" . . . " count="0" end=" False " name="Example. py" doc=" . . . "
70 next="1" lineno="None" successors=" [] " id="0" predecessors=" . . . "
71 previous="None">
72 <STMT count="0" end=" False " parent=" . . . " next="2" lineno="None" nodes=" . . . "
73 successors=" [] " id="1" predecessors=" . . . " previous="0">
74 <CLASS count="0" code=" . . . " end=" False " name="utClass " parent=" . . . "
75 doc=" . . . " next="5" bases=" [Getattr (Name(’ unittest ’) , ’ TestCase ’)] "
76 lineno="24" successors=" [] " id="4" predecessors=" . . . " previous="3">
77 .
78 .
79 .
80 </CLASS>
81 </STMT>
82 </MODULE>
83 </PARSER>
84 </TEST>

Listing 12: The DTD of The Module XML File

51

1 <!DOCTYPE MODULEXMLFILE [
2
3 <!ELEMENT DC (DCDETAILS∗)>
4 <!ELEMENT DCDETAILS EMPTY>
5 <!ELEMENT ETM (ETMFUNCTION+)>
6 <!ELEMENT ETMDETAILS EMPTY>
7 <!ELEMENT ETMFUNCTION (ETMDETAILS∗)>
8 <!ELEMENT FILE (PATH+)>
9 <!ELEMENT LC (LCDETAILS∗)>

10 <!ELEMENT LCDETAILS EMPTY>
11 <!ELEMENT LINE EMPTY>
12 <!ELEMENT METRICS (SC|DC|ETM|SIZE|WMC|RFC|LC)∗>
13 <!ELEMENT PARSER ANY>
14 <!ELEMENT PATH (LINE+)>
15 <!ELEMENT RFC (RFCCLASS∗)>
16 <!ELEMENT RFCCLASS (RFCDETAILS∗)>
17 <!ELEMENT RFCDETAILS EMPTY>
18 <!ELEMENT SC (SCDETAILS∗)>
19 <!ELEMENT SCDETAILS EMPTY>
20 <!ELEMENT SIZE EMPTY>
21 <!ELEMENT TEST (METRICS, (TRACKER,PARSER)?) >
22 <!ELEMENT TRACKER (FILE+)>
23 <!ELEMENT WMC (WMCCLASS∗)>
24 <!ELEMENT WMCCLASS (WMCDETAILS∗)>
25 <!ELEMENT WMCDETAILS EMPTY>
26
27 <!ATTLIST DC covered CDATA #REQUIRED
28 to ta l CDATA #REQUIRED
29 result CDATA #REQUIRED>
30 <!ATTLIST DCDETAILS line CDATA #REQUIRED
31 id CDATA #REQUIRED
32 taken (True|False|−) #REQUIRED
33 nottaken (True|False|−) #REQUIRED>
34 <!ATTLIST ETM module CDATA #REQUIRED
35 netmin CDATA #REQUIRED
36 netavg CDATA #REQUIRED
37 netmax CDATA #REQUIRED>
38 <!ATTLIST ETMDETAILS gross CDATA #REQUIRED
39 net CDATA #REQUIRED>
40 <!ATTLIST FILE name CDATA #REQUIRED>
41 <!ATTLIST LC covered CDATA #REQUIRED
42 to ta l CDATA #REQUIRED
43 result CDATA #REQUIRED>
44 <!ATTLIST LCDETAILS covered (True|False) #REQUIRED
45 line CDATA #REQUIRED>
46 <!ATTLIST LINE number CDATA #REQUIRED>
47 <!ATTLIST PATH number CDATA #REQUIRED>
48 <!ATTLIST RFC rfc CDATA #REQUIRED>
49 <!ATTLIST RFCCLASS rfc CDATA #REQUIRED
50 class CDATA #REQUIRED>
51 <!ATTLIST RFCDETAILS function CDATA #REQUIRED
52 calls CDATA #REQUIRED>
53 <!ATTLIST SC covered CDATA #REQUIRED
54 to ta l CDATA #REQUIRED
55 result CDATA #REQUIRED>
56 <!ATTLIST SCDETAILS covered (True|False) #REQUIRED
57 line CDATA #REQUIRED
58 id CDATA #REQUIRED>
59 <!ATTLIST TEST date CDATA #REQUIRED
60 module CDATA #REQUIRED
61 version CDATA #IMPLIED
62 time CDATA #REQUIRED>
63 <!ATTLIST WMC wmc CDATA #REQUIRED>
64 <!ATTLIST WMCCLASS wmc CDATA #REQUIRED
65 class CDATA #REQUIRED>
66 <!ATTLIST WMCDETAILS function CDATA #REQUIRED
67 c CDATA #REQUIRED>
68]>

• <DC> - the decision coverage metrics

covered - the number of covered branches

total - the number of all branches

result - the fraction of (covered/total) in percent

• <DCDETAILS> - the details about the decisions (if details en-
abled)

line - the line position of a decsion

id - the identification number of the decision in the extended
AST.

taken - whether the true branch was taken. If taken = "-"
then this branch is ignored.

52

nottaken - whether the false branch was taken. If nottaken
= "-" then this branch is ignored.

• <ETM> - the sum of the execution times per method in the
module

module - the name of the module

netmin - the minimum net execution time of the module

netavg - the average net execution time of the module

netmax - the maximum net execution time of the module

• <ETMDETAILS> - the details about the net times and the
gross times per measurement (if details enabled)

gross - the gross time

net - the net time

• <ETMFUNCTION> - the execution times per method metrics

function - the name of the method

netmin - the minimum net execution time of the module

netavg - the average net execution time of the module

netmax - the maximum net execution time of the module

grossmin - the minimum gross execution time of the module

grossavg - the average gross execution time of the module

grossmax - the maximum gross execution time of the mod-
ule

• <FILE> - the block of all tracked paths <PATH> in a module
(if debug enabled)

name - the name of the module

• <LC> - the line coverage metrics

covered - the number of covered code lines

total - the number of all code lines

result - the fraction of (covered/total) in percent

• <LCDETAILS> the details about the covered lines (if details
enabled)

covered - the coverage of a line (True/False)

line - the line number

• <LINE> - the tracked line (if debug enabled)

number - the line number

• <METRICS> - the block of metrics

• <PARSER> - this block of the parser subsystem debug infor-
mation (if debug enabled)

• <PATH> - the block of lines <LINE> composing a tracked path
(if debug enabled)

number - the path number

• <RFC> - the sum of all response for a class metrics in the
module

53

rfc - the sum

• <RFCCLASS> - the response for a class metrics

rfc - the metrics result value

class - the name of the class

• <RFCDETAILS> the details about the rfc value (if details en-
abled)

function - the function name

calls - the number of calls of the function

• <SC> - the statement metrics

covered - the number of covered statements

total - the number of all statements

result - the fraction of (covered/total) in percent

• <SCDETAILS> - the details about the statements (if details
enabled)

covered - the coverage of a statement (True/False)

line - the line number of the statement

id - the identification number of the root node (extended AST
node) of the subtree, which represents the statement

• <SIZE> - the code size metrics

result - the number of extended AST nodes in the module

• <TEST> - the top block

date - the date of performing the test

module - the name of the module under test

version - the label of the test

time - the time of performing the test

• <TRACKER> - the block of the tracker subsystem debug in-
formation (if debug enabled)

• <WMC> - the sum of the weighted method per class metrics

wmc - the sum

• <WMCCLASS> - the weighted method per class metrics

wmc - the metrics result value

class - the name of the class

• <WMCDETAILS> - the details about the wmc value (if details
enabled)

function - the name of the method

c - the wmc complexity of the method

The module XML file is enclosed by the <TEST> tag and divided
into three parts.

The first one is the metrics part enclosed by the <METRICS>, which
contains all metrics results. See the Listing 11 on page 50 and

54

the detailed descriptions of the tags above. To support the user
to make the manual check for the correctness of the results the
new unit test framework provides the <...DETAILS> tags for ev-
ery metrics.

The second and the third parts are enabled if the debug option is
enabled. The <TRACKER> contains the independent paths (see the
Section 5.5.1 on page 60) for this file. The <PARSER> contains the
extended AST for this file. See the Section 5.5.2 on page 61 for
details.

global XML file, which contains aggregated results of all tracked mod-
ules in <METRICS>. It also contains the standard output of the
system under test located in the <OUTPUT> tag. Further it con-
tains the output of the docstring tests in the <DOCSTRINGTEST>
tag and the unit tests output in the <UNITTEST> tag. The error
messages are in the <ERRORS> tag. Each error message <ERROR>
has the error type (type) attribute. The values of the attribute can
be:

• external - the errors originating from the system under test

• internal - the errors from the new framework itself (should
not happen).

• parser - the errors while parsing a module

• tracker - the errors originating from the tracking system itself
(e.g. event callbacks)

• xml - the errors from XML subsystem

• io - standard input/output errors

Further it has module name attribute (module or start), where
the error message comes from. The former attribute is name of
the module where the error has occurred, whereas the latter one
is the start module, from which the test has started (start module
is the module, which the unit tests and docstring tests are started
from). The reason for the start attribute is that framework does
not know always, where the error has occurred. So it provides at
least this attribute. For details of the global XML file structure see
the Listing 13 on the facing page and the description of all tags.

55

Listing 13: Global XML file
1
2 <TEST date="10−Mar−07" version="v1.0 " time="12:50:48 ">
3 <MODULES tracked="2" parsed="2">
4 <MODULE name="Module1. py"/>
5 <MODULE name="Example. py"/>
6 </MODULES>
7 <METRICS>
8 <SC covered="40" t o ta l="41" result="97"/>
9 <DC covered="9" t o ta l="12" result="75"/>

10 <SIZE result="137"/>
11 <ETM netmin="0.006s " netmax="0.006s " netavg="0.006s "/>
12 <WMC wmc="16"/>
13 <RFC rfc ="13"/>
14 <LC covered="40" t o ta l="41" result="97"/>
15 </METRICS>
16 <DOCSTRINGTEST>
17 DOCTEST: fa i lure s : 0
18 t r i e s : 4
19
20 </DOCSTRINGTEST>
21 <UNITTEST>
22 . .
23 −−

24 Ran 2 tests in 0.005s
25
26 OK
27
28 </UNITTEST>
29 <OUTPUT>
30 333
31 4
32 000
33 Error 3
34
35 </OUTPUT>
36 <ERRORS>
37 <ERROR type="warning " module="Module1 .py">
38 Same−l ine warning (IF statement) at l ine 10 in Module1 .py
39 </ERROR>
40 </ERRORS>
41 </TEST>

The last part is the <MODULES> part and shows all parsed (tracked
too) modules. Its attributes state how many modules have been
tracked and parsed. In normal case, both of them should be
equal.

56

Listing 14: The DTD of The Global XML File
1 <!DOCTYPE GLOBALXMLFILE [
2
3 <!ELEMENT DC EMPTY>
4 <!ELEMENT DOCSTRINGTEST (#PCDATA)>
5 <!ELEMENT ERROR (#PCDATA)>
6 <!ELEMENT ERRORS (ERROR)∗>
7 <!ELEMENT ETM EMPTY>
8 <!ELEMENT LC EMPTY>
9 <!ELEMENT METRICS (SC|DC|ETM|SIZE|WMC|RFC|LC)>

10 <!ELEMENT MODULE EMPTY>
11 <!ELEMENT MODULES (MODULE)+>
12 <!ELEMENT OUTPUT (#PCDATA)>
13 <!ELEMENT RFC EMPTY>
14 <!ELEMENT SC EMPTY>
15 <!ELEMENT SIZE EMPTY>
16 <!ELEMENT TEST (MODULES,METRICS,DOCSTRINGTEST,UNITTEST,OUTPUT,ERRORS)>
17 <!ELEMENT UNITTEST (#PCDATA)>
18 <!ELEMENT WMC (WMCCLASS∗)>
19
20 <!ATTLIST DC covered CDATA #REQUIRED
21 to ta l CDATA #REQUIRED
22 result CDATA #REQUIRED>
23 <!ATTLIST ERROR type (external|internal |parser|tracker|xml|io) #REQUIRED
24 module CDATA #IMPLIED
25 start CDATA #IMPLIED>
26 <!ATTLIST ETM netmin CDATA #REQUIRED
27 netavg CDATA #REQUIRED
28 netmax CDATA #REQUIRED>
29 <!ATTLIST LC covered CDATA #REQUIRED
30 to ta l CDATA #REQUIRED
31 result CDATA #REQUIRED>
32 <!ATTLIST MODULE name CDATA #REQUIRED>
33 <!ATTLIST MODULES tracked CDATA #REQUIRED
34 parsed CDATA #REQUIRED>
35 <!ATTLIST RFC rfc CDATA #REQUIRED>
36 <!ATTLIST SC covered CDATA #REQUIRED
37 to ta l CDATA #REQUIRED
38 result CDATA #REQUIRED>
39 <!ATTLIST TEST date CDATA #REQUIRED
40 version CDATA #IMPLIED
41 time CDATA #REQUIRED>
42 <!ATTLIST WMC wmc CDATA #REQUIRED>
43]>

• <DC> - the decision coverage metrics

covered - the number of covered branches

total - the number of all branches

result - the fraction of (covered/total) in percent

• <DOCSTRINGTEST> - the output of the docstring tests

• <ERROR> - an error message

type - the type of the error

module - the name of the module, where the error occurred

start - the test, represented by the start module, during
which the error occurred

• <ERRORS> - the block of errors <ERROR>

• <ETM> - the execution time per method

netmin - the minimum net execution time of all modules

netavg - the average net execution time of all modules

netmax - the maximum net execution time of all modules

• <LC> - the line coverage metrics

covered - the number of covered lines

total - the number of all covered lines

result - the fraction of (covered/total) in percent

• <METRICS> - the block of metrics

• <MODULE> - the parsed module

57

name - the name of the parsed module

• <MODULES> - the block of parsed modules

tracked - the number of all successfully tracked modules

parsed - the number of all successfully tracked and parsed
modules

• <OUTPUT> - the standard output of the system under test

• <RFC> the response for a class metrics

rfc the metrics result value

• <SC> - the statement coverage metrics

covered - te number of covered statements

total - the number of all statements

result - the fraction of (covered/total) in percent

• <SIZE> - the code size metrics

result - the number of all extended AST nodes

• <TEST> - top block

date - the date of performing the test

version - the label of the test

time - the time of performing the test

• <UNITTEST> - the output of the unit tests

• <WMC> - the weighted method per class

wmc - the metrics result value

5.5 The Architecture of the new Unit Test Framework

The architecture of the new unit test framework Figure 11 on page 59
consists of five components. The main logic is coded in the
Unit_Test_FW_Tool.py. The control graph on Figure 12 on page 60
depicts all important steps. The Tracker.py is responsible for the dy-
namic analysis and the Parser.py is responsible for generating the
AST structures. The Metrics.py contains all metrics. The last compo-
nent Output.py writes XML files.

First the options are parsed and evaluated so that all parameters are
prepared for the next steps. The options like help or version termi-
nate the framework already here.

In the second step, the global XML tree with specific nodes is prepared.
Also the global XML file is opened if given. Otherwise the standard
output is used. For details about XML tree, see the standard Python
documentation about the xml.dom and the xml.dom.minidom modules

When the XML infrastructure is ready, we can enter the third step,
where all given directories are recursively traversed and all Python
modules containing unit tests or docstring tests are executed. In this

58

step all paths and time measurements are recorded. See Section 5.5.1 on
page 60 for details. If we want to test extremely huge system the record
structures may become serious bottleneck.

The fourth step is responsible for preparing module XML tree and out-
put file. In fact, it is similar to the second step with the difference that
a slightly different XML tree is prepared and the module XML file is
opened.

After having finished the dynamic analysis we can start to parse each
tracked module. We generate an AST tree and extend it with other
useful attributes to save the number of recursive traversals performed
during the calculation of the metrics. See Section 5.5.2 on page 61 for
details. Also multiple statement per line check is carried out here.

In the sixth step both results are available - the dynamic (execution
paths, time measurements) and the static (AST) results. So we can
calculate metrics for each module. Note, that the AST structures are
released afterwards to save the memory.

Then these results are written to the module XML file. That happens
in the seventh step.

The system level metrics are calculated in the eighth step by aggregat-
ing the module metrics results. We have to check in the global XML
file that all modules to be evaluated have been processed successfully.
The attributes tracked and parsed of the <MODULES> XML element
in the global XML file must be equal to the number of all modules un-
der test. If not then an error occurred and the results are not complete.

The last ninth step writes the system level results to the global XML file
or to the standard output and terminates.

59

P
yt

ho
n

M
od

ul
e

to
 b

e
te

st
ed

m
od

ul
e.

co
ve

r.
xm

l

N
E

W
 U

N
IT

 T
E

S
T

 F
R

A
M

E
W

O
R

K
T
r
a
c
k
e
r
.
p
y

T
ra

ck
er

U
n
i
t
_
T
e
s
t
_
F
W
_
T
o
o
l
.
p
y

O
u
t
p
u
t
.
p
y

gl
ob

al
.c

ov
er

.x
m

l

M
e
t
r
i
c
s
.
p
y

S
C

D
C

S
iz

e
E

T
M

W
M

C
R

F
C

P
Y

T
H

O
N

 S
T

A
N

D
A

R
D

 L
IB

R
A

R
Y D
o
c
t
e
s
t
.
p
y

U
n
i
t
t
e
s
t
.
p
y

P
a
r
s
e
r
.
p
y

P
ar

se
r

C
O

N
T

R
O

L
 F

L
O

W

D
A

T
A

 F
L

O
W

F
ig

u
re

1
1
:

T
h

e
N

e
w

U
n

it
T
e
s
t

F
ra

m
e
w

o
rk

60

Process Options

Prepare Global
XML Structure

Track

Parse

Calculate Metrics

Write Results to
Module XML File

Prepare Module
XML Structure

Aggregate Metrics

Write Results to
Global XML File

Process Module

1

2

3

4

5

6

7

8

9

Figure 12: The Main Logic of the New Unit Test Framework

5.5.1 The Tracker Component

The dynamic analysis whose results are necessary for the statement
and the decision coverage is performed by the tracking subsystem in
the Tracker.py. The subsystem has two main functions; to record the
paths and to measure execution time.

For recording the paths, we use the tracks data structure depicted in
Figure 13 on the next page. This structure stores all independent paths
for all modules. An independent path is an execution path in the mod-
ule, which starts when the module is entered and it ends when the
module is left. When the execution path enters another module mean-
while, this independent path is switched to another independent path
belonging to that module. On the return from that module , the inde-
pendent path of the interrupted module is restored for further record-
ing. The recording is carried out by the line event callback function.
To know, which independent path shall be restored, we store the in-
dices from the “Files” and the “Independent Paths” arrays to a stack
data structure. The independent path is represented by a “Line Num-
bers” array in the Table 13 on the facing page. After finishing the
execution, the tracks data structure contains all independent paths for
all modules.

For measuring the ETM we use the time data structure depicted in the
Figure 14 on page 62. When a function is called the start gross time

61

and the start net time are pushed to the stack. Both of these times are
equal to the time instance when the function is entered. The start gross

time and the start net time are at the beginning the instances of time
when the function is entered. On the other hand, the gross time and
the net time are intervals. See the Figure 10 on page 47. On the return
from the function the gross time and the net time are calculated and
stored in the time data structure. As we can see in the Figure 14 on
the next page, each entry in the “Files” array is a tuple of containing
the module name and the function name. Each of these entries points
to another array of tuples consisting of the gross time and the net time.
The length of this array represents in fact the number of calls of the
function.

The calculation of the gross time is very simple. It is the difference
between the start gross time and the end time. The end time is the time
instance when the function is left. In case of the net time, the net time
is the end time minus the start net time minus the sum of the gross
times of all function’s subroutines. Therefore, we add these gross times
to the function’s start net time, so that the difference between the end
time and the start net time is the net time of the function.

"module.py"

Files

1

Independent Paths

55

56

57

58

Line Numbers

Figure 13: Tracks Data Structure

After the tracking subsystem finishes, every metrics gets the array of
the independent paths as the result of the dynamic analysis.

5.5.2 The Parser Component

The static analysis, which generates the extended AST is performed
by the Parser.py. We want to introduce the extensions only, since
the AST is documented in the Python standard documentation. As
mentioned earlier, the extensions shall save the number of recursive
traversals and are in fact additional attributes of the extended AST
nodes. They are:

62

("mod.py",foo)

Files

(2,9s;1,1s)

(3,0s;1,2s)

(3,1s;1,2s)

Gross Time;Net Time

Figure 14: Time Data Structure

• id - every node has unique id, which is useful when metrics re-
sults are manually checked.

• count - stores, how many times the node has been executed.

• end - if true, it warns that the control flow has ended here. This
is needed for decision coverage when detecting branches.

• next - the next node concerning the source code

• previous - the previous node concerning the source code

• parent - the parent node concerning AST. This attribute improves
the navigation in the AST.

• successors - the successing nodes concerning execution

• predecessors - the preceding nodes concerning execution

When the AST is generated and extended with these additional at-
tributes, it is given to all metrics.

5.6 Summary

This chapter described the requirements and limitations of the new
unit test framework. The requirements were the implementation of the
maximum number of metrics and the possibility of measuring the exe-
cution time. To keep the complexity of the metrics calculations low, the
metrics used the syntactic level of the measured source code only. An-
other limitation was the line resolution of the tracking system, which is
one of two cornerstones on which all metrics are based on. The second

63

cornerstone is the abstract syntax tree (AST), which is received as a
result of the parsing system.

With regard to the requirements and limitations we chose the follow-
ing metrics that could be implemented: the SC, the DC, the SIZE, the
ETM, the WMC, the RFC, and the LC. Two other metrics, the DIT and
the NOC, which also met the requirements and the limitations, were
not implemented. It was decided to implement them later.

This chapter also dealt with the interface of the new unit test frame-
work. The framework accepted all Python modules, especially those
which implemented the unit tests and the docstring tests. The result
was written into the module XML files and the global XML file.

Finally, the architecture of the new unit test framework was described.
All given Python modules were executed and tracked to extract the
execution path. Then, the metrics were calculated for each module
parsed, with the metrics results having been written into XML files.

64

6 Evaluation

After designing and implementing the new unit test framework, we an-
alyze the results generated by the framework. The generated results
are shown in the following tables: Table 5 on page 69, Table 6.1 on
page 71 and Table 6.2 on page 84.

Table 5 on page 69 is an ancillary table containing the long names of
the start modules. Note: A start module is an entry point of the system
under test. A unique number (shown in the left column of Table 5 on
page 69) is assigned to every start module. This number No. is then
used in the other two tables (Table 6.1 on page 71 and Table 6.2 on
page 84) as a reference number.

Before we analyze the metrics and the framework-internal results, we
describe what has been tested in which way. The first question can be
answered quite simply. We took all the Python modules beginning with
the Test prefix as the start modules, because the company convention
requires exactly these modules to contain all test case implementa-
tions.

As far as the way of testing is concerned, the new unit test framework
supports two ways of testing:

1. We provide a list of start modules that are evaluated at once.

2. We start the framework evaluation per start module.

The advantage of the first alternative is that it yields results combining
all per metrics. For example, if two test case implementations of two
different start modules test something in a third module, then the SC
of the third module is a combination of two SCs produced by these two
test case implementations.

The advantage of the second alternative is that we have metrics results
per start module. Table 6.1 on page 71 and Table 6.2 on page 84
show the metrics results and internal statistical data. We took only the
second testing method, because we are interested in results per start
module.

No. Start Modules

0 Testoize.py

1 Testoize_pkg.py

2 _BETH/Test_Action.py

3 _BETH/Test_Case.py

4 _BETH/Test_Case_Template.py

5 _BETH/Test_Command.py

65

No. Start Modules

6 _BETH/Test_Interface.py

7 _BETH/Test_Result_File.py

8 _BETH/Test_Script.py

9 _CDT/_Sched/Test_FA.py

10 _CPT/_U_Test/Test_UI_Spec_Parser.py

11 _DLT/_U_Test/Test_BBlock_Lists.py

12 _DLT/_U_Test/Test_Byte_Order.py

13 _DLT/_U_Test/Test_DLT_COM_Buffer.py

14 _DLT/_U_Test/Test_DLT_COM_Frame.py

15 _DLT/_U_Test/Test_DLT_COM_GDL.py

16 _DLT/_U_Test/Test_Descriptor_Blocks.py

17 _DLT/_U_Test/Test_File_Loader.py

18 _DLT/_U_Test/Test_Node_Config.py

19 _ETA/_U_Test/Test_Msg_Type_P_uses_Enum_Type.py

20 _ETT/_TD/_U_Test/Test_Measurement.py

21 _HDT/_EXC/_BAT/_U_Test/Test_Bit_Assignment_Worksheet.py

22 _HDT/_EXC/_DMS/_U_Test/Test_Dms_Reader.py

23 _HDT/_EXC/_U_Test/Test_Cell_Range.py

24 _HDT/_EXC/_U_Test/Test_Data_Reader.py

25 _HDT/_EXC/_U_Test/Test_Excel_Handler.py

26 _HDT/_EXC/_U_Test/Test_TMC_Data_Reader.py

27 _HDT/_EXC/_U_Test/Test_TMC_Work_Sheet.py

28 _HDT/_LGO/_U_Test/Test_Round.py

29 _HDT/_Sched/_U_Test/Test_Frequency_Selector.py

30 _HDT/_Sched/_U_Test/Test_Schedule_Table.py

31 _HDT/_Sched/_U_Test/Test_Scheduler.py

32 _LIN/_FRAME/_U_Test/Test_Diagnostic_Frame.py

33 _LIN/_FRAME/_U_Test/Test_ET_Frame.py

34 _LIN/_FRAME/_U_Test/Test_Frame_A.py

35 _LIN/_FRAME/_U_Test/Test_Frame_Mixin.py

36 _LIN/_FRAME/_U_Test/Test_Frame_carries_Unconditional_Frame.py

37 _LIN/_FRAME/_U_Test/Test_Master_Request_Frame.py

38 _LIN/_FRAME/_U_Test/Test_Slave_Response_Frame.py

39 _LIN/_FRAME/_U_Test/Test_Sporadic_Frame.py

40 _LIN/_FRAME/_U_Test/Test_Sporadic_Frame_carries_Unconditional_Frame.py

41 _LIN/_FRAME/_U_Test/Test_Unconditional_Frame.py

66

No. Start Modules

42 _LIN/_SIG/_U_Test/Test_Byte_Array.py

43 _LIN/_SIG/_U_Test/Test_Data_Signal.py

44 _LIN/_SIG/_U_Test/Test_Data_Signal_depends_on_Data_Signal.py

45 _LIN/_SIG/_U_Test/Test_Diagnostic_Signal.py

46 _LIN/_SIG/_U_Test/Test_Msg_Type_ASCII.py

47 _LIN/_SIG/_U_Test/Test_Msg_Type_BCD.py

48 _LIN/_SIG/_U_Test/Test_Msg_Type_L.py

49 _LIN/_SIG/_U_Test/Test_Msg_Type_Phy.py

50 _LIN/_SIG/_U_Test/Test_Scalar_Signal.py

51 _LIN/_SIG/_U_Test/Test_Scalar_Signal_uses_Signal_Encoding.py

52 _LIN/_SIG/_U_Test/Test_Signal.py

53 _LIN/_SIG/_U_Test/Test_Signal_Encoding.py

54 _LIN/_SIG/_U_Test/Test_Signal_Encoding_uses_Msg_Type.py

55 _LIN/_U_Test/Test_Centurion.py

56 _LIN/_U_Test/Test_Cohort.py

57 _LIN/_U_Test/Test_Cohort_Mode.py

58 _LIN/_U_Test/Test_Cohort_Mode_sends_Frame_A_in_Round_A.py

59 _LIN/_U_Test/Test_Cohort_Mode_uses_Data_Signal.py

60 _LIN/_U_Test/Test_Cohort_Mode_uses_Frame_A.py

61 _LIN/_U_Test/Test_Cohort_Mode_uses_Special_Frame.py

62 _LIN/_U_Test/Test_Configuration.py

63 _LIN/_U_Test/Test_Data_Signal_in_Unconditional_Frame.py

64 _LIN/_U_Test/Test_Diagnostic_Signal_in_Diagnostic_Frame.py

65 _LIN/_U_Test/Test_Legionary.py

66 _LIN/_U_Test/Test_Lin_Node_provides_Data_Signal.py

67 _LIN/_U_Test/Test_Lin_Node_requires_Data_Signal.py

68 _LIN/_U_Test/Test_Lin_Node_uses_Data_Signal.py

69 _LIN/_U_Test/Test_Node_A.py

70 _LIN/_U_Test/Test_Node_A_in_Cohort.py

71 _MGW/_U_Test/Test_Monitor_Gateway.py

72 _NDT/_Sched2/_Tester/Test_Driver.py

73 _TFL/_Meta/Test.py

74 _TFL/_Meta/Test_2.py

75 _TFL/_Meta/Test_3.py

76 _TGW/_U_Test/Test_Slideshow.py

77 _TGW/_U_Test/Test_Slider_Entry.py

67

No. Start Modules

78 _TGW/_U_Test/Test_Add_on_Feedback.py

79 _TGW/_U_Test/Test_Tooltips.py

80 _TGW/_U_Test/Test_Add_on_File_Dialog.py

81 _TGW/_U_Test/Test_Toolbar.py

82 _TGW/_U_Test/Test_Add_on_History.py

83 _TGW/_U_Test/Test_Toplevel.py

84 _TGW/_U_Test/Test_Add_on_Led.py

85 _TGW/_U_Test/Test_Treeview.py

86 _TGW/_U_Test/Test_Add_on_Text_View.py

87 _TGW/_U_Test/Test_Window.py

88 _TGW/_U_Test/Test_Alignment.py

89 _TGW/_U_Test/Test_Box.py

90 _TGW/_U_Test/Test_Button.py

91 _TGW/_U_Test/Test_Button_Box.py

92 _TGW/_U_Test/Test_Check_Button.py

93 _TGW/_U_Test/Test_Clipboard.py

94 _TGW/_U_Test/Test_Combo_Box.py

95 _TGW/_U_Test/Test_Combo_Box_Entry.py

96 _TGW/_U_Test/Test_Composite_Entry.py

97 _TGW/_U_Test/Test_Cursor.py

98 _TGW/_U_Test/Test_Data_Model.py

99 _TGW/_U_Test/Test_Dialog.py

101 _TGW/_U_Test/Test_Entry.py

102 _TGW/_U_Test/Test_Event_Box.py

103 _TGW/_U_Test/Test_Expander.py

104 _TGW/_U_Test/Test_File_Dialog.py

105 _TGW/_U_Test/Test_Frame.py

106 _TGW/_U_Test/Test_Gtk_Object.py

107 _TGW/_U_Test/Test_Handle_Box.py

108 _TGW/_U_Test/Test_History.py

109 _TGW/_U_Test/Test_History_Manager.py

110 _TGW/_U_Test/Test_Icon_Pool.py

111 _TGW/_U_Test/Test_Image.py

112 _TGW/_U_Test/Test_Image_Manager.py

113 _TGW/_U_Test/Test_Interpreter_Entry.py

114 _TGW/_U_Test/Test_Label.py

68

No. Start Modules

115 _TGW/_U_Test/Test_Label_Separator.py

116 _TGW/_U_Test/Test_Layout.py

117 _TGW/_U_Test/Test_List.py

118 _TGW/_U_Test/Test_List_Entry.py

119 _TGW/_U_Test/Test_Menu.py

121 _TGW/_U_Test/Test_Message_Window.py

122 _TGW/_U_Test/Test_Notebook.py

123 _TGW/_U_Test/Test_Pane.py

124 _TGW/_U_Test/Test_Popup_Window.py

125 _TGW/_U_Test/Test_Progress_Bar.py

126 _TGW/_U_Test/Test_Progress_Window.py

127 _TGW/_U_Test/Test_Radio_Button.py

128 _TGW/_U_Test/Test_Radio_Group.py

129 _TGW/_U_Test/Test_Screen.py

130 _TGW/_U_Test/Test_Scroll_Bar.py

131 _TGW/_U_Test/Test_Scrolled_Window.py

132 _TGW/_U_Test/Test_Separator.py

133 _TGW/_U_Test/Test_Sheet.py

134 _TGW/_U_Test/Test_Signal.py

135 _TGW/_U_Test/Test_Size_Group.py

136 _TGW/_U_Test/Test_Slider.py

137 _TGW/_U_Test/Test_Spinner.py

138 _TGW/_U_Test/Test_Statusbar.py

139 _TGW/_U_Test/Test_T_Box.py

140 _TGW/_U_Test/Test_Table.py

141 _TGW/_U_Test/Test_Text_Buffer.py

142 _TGW/_U_Test/Test_Text_View.py

143 _TGW/_U_Test/Test_Text_Window.py

144 _TGW/_U_Test/Test_Toggle_Button.py

145 _TIM/_U_Test/Test_Config_Data.py

146 _TIM/_U_Test/Test_File.py

147 _TIM/_U_Test/Test_Installer.py

148 _TIM/_U_Test/Test_Manifest.py

149 _TIM/_U_Test/Test_Persistent_Info.py

150 _TIM/_U_Test/Test_Plugin.py

151 _TTA/_FBX/_U_Test/Test_XML_Exporter.py

69

No. Start Modules

152 _TTA/_FBX/_U_Test/Test_XML_Importer.py

153 _TTA/_FBX/_U_Test/Test_XML_Structure.py

154 _TTA/_FBX/_U_Test/Test_XML_Structure_With_ID.py

155 _TTA/_FBX/_U_Test/Test_XML_Structure_With_IDREF.py

156 _TTA/_FTC/_TDCOM/_U_Test/Test_Frame.py

157 _TTA/_FTC/_TDCOM/_U_Test/Test_Interrupt_Schedule.py

158 _TTA/_FTC/_TDCOM/_U_Test/Test_Interrupt_Scheduler.py

159 _TTA/_FTC/_TDCOM/_U_Test/Test_Table_Checker.py

160 _XCD/_Sched/Test_FA.py

161 _XSS/_GEN/_U_Test/Test_Parameter_Object.py

Table 5: Start Modules

6.1 Metrics Evaluation

Table 6.1 on page 71 shows all metrics results for all used start mod-
ules found. The column headers have the following meanings.

No. The reference number of the respective start module. See Table 5.

Tracked The number of modules tracked. It is a set of all modules
successfully executed during test. In other words, Tracked is the
number of modules successfully passing step 3, which is shown
in Figure 12 on page 60.

Parsed The number of modules parsed, i.e., the number of modules
successfully passing steps 4, 5, 6, 7, which is shown in Fig-
ure 12 on page 60.

Lines The total number of lines of all the modules parsed.

Errors The number of modules containing at least one error message.

Warnings The number of modules containing at least one warning.
There is only one warning which says that the coding guidelines
have been violated by placing more than one statement in a line.

LC The total line coverage of all modules. See Section 5.3.3 on page 47.

SC The total statement coverage of all modules. See Section 5.3.1 on
page 44.

DC The total decision coverage of all modules. See Section 5.3.2 on
page 45.

Size The total code size of all modules. The unit is AST node. See Sec-
tion 5.3.3 on page 47.

70

WMC The total weighted method per class of all modules. See Sec-
tion 5.3.5 on page 47.

RFC The total response for a class of all modules. See See Sec-
tion 5.3.6 on page 48.

ETM min The sum of the minimum execution times per method of all
modules. See Section 5.3.4 on page 47.

ETM avg The sum of the average execution times per method of all
modules. See Section 5.3.4 on page 47.

ETM max The sum of the maximum execution times per method of all
modules. See Section 5.3.4 on page 47.

71

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

0
2
2

2
2

2
1
8
3

0
0

2
6

2
6

8
1
0
3
8
1

6
2
2

6
8
6

0
.1

9
0
.2

1
0
.3

8

1
2
0

2
0

2
1
0
5

0
0

2
6

2
7

8
1
0
0
2
1

6
2
2

6
8
6

0
.1

9
0
.2

1
0
.3

6

2
1
8

1
8

2
3
4
3

0
3

2
6

2
6

6
1
1
4
6
0

6
5
3

6
5
9

0
.2

0
0
.2

1
0
.3

0

3
2
8

2
8

3
8
2
9

1
7

2
0

2
0

5
1
8
8
8
2

1
2
6
0

1
2
6
0

0
.2

0
0
.2

3
0
.3

5

4
2
3

2
3

2
9
2
9

0
4

2
5

2
5

7
1
4
3
9
5

8
5
4

9
4
9

0
.1

9
0
.2

1
0
.3

4

5
1
4

1
4

1
2
1
0

0
1

2
8

2
8

9
5
5
9
0

2
2
8

2
1
6

0
.1

1
0
.1

2
0
.1

8

6
7

7
5
7
2

1
1

1
2

1
3

4
2
5
6
2

1
9
1

1
9
1

0
.0

2
0
.0

2
0
.0

2

7
2
9

2
9

3
9
9
7

1
8

2
0

1
9

4
1
9
7
3
7

1
3
6
6

1
3
6
2

0
.1

6
0
.1

9
0
.3

3

8
6

6
5
3
7

0
1

1
9

2
0

9
2
4
8
8

1
7
8

1
8
8

0
.0

1
0
.0

1
0
.0

2

9
2
2

2
2

2
3
8
0

0
2

2
9

3
0

9
1
1
1
9
5

7
1
5

9
3
4

0
.1

7
0
.2

1
0
.4

1

1
0

8
2

8
2

7
2
5
6

1
0

2
7

2
8

7
3
2
0
0
4

2
4
3
5

2
7
9
9

0
.5

4
0
.5

9
0
.9

5

1
1

4
3

4
3

3
8
0
1

0
0

2
9

3
1

1
2

1
8
4
6
9

1
2
2
3

1
3
4
7

0
.2

7
0
.2

8
0
.7

0

1
2

1
5

1
5

1
2
7
1

0
0

3
7

3
7

1
8

6
1
6
2

3
7
7

4
6
7

0
.0

7
0
.0

8
0
.2

8

1
3

1
1

1
1

7
8
8

0
0

3
9

4
1

2
5

3
7
4
3

2
7
5

3
8
3

0
.0

6
0
.0

7
0
.2

1

1
4

1
0

1
0

7
0
1

0
0

3
2

3
4

2
2

3
2
5
9

2
2
5

3
2
5

0
.0

3
0
.0

3
0
.0

8

1
5

1
4

1
4

1
4
0
6

0
0

6
4

6
0

3
8

7
5
1
8

6
5
7

7
6
3

0
.2

0
0
.1

9
0
.5

0

72

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

1
6

4
8

4
8

4
0
2
6

0
0

2
9

2
9

1
2

1
8
6
3
8

1
1
3
3

1
3
5
7

0
.2

0
0
.2

1
0
.5

6

1
7

2
8

2
8

2
6
2
3

0
0

2
9

3
1

1
2

1
3
0
7
3

6
8
8

7
3
8

0
.1

9
0
.2

2
0
.4

2

1
8

5
5

3
9
4

1
0

2
0

2
1

7
1
8
3
4

7
6

9
5

0
.0

1
0
.0

1
0
.0

1

1
9

1
1

1
9

1
0

5
5

0
8
3

1
8

0
.0

0
0
.0

0
0
.0

0

2
0

2
0

2
0

1
4
0
3

0
0

4
6

4
6

2
5

6
4
4
5

5
0
7

6
0
2

0
.1

7
0
.1

5
0
.4

5

2
1

4
3

4
3

2
7
3
6

1
0

3
3

3
4

1
2

1
1
9
1
3

8
3
4

9
3
0

0
.2

2
0
.2

8
0
.4

8

2
2

5
5

3
8
7

1
0

6
7

2
1
7
8
9

1
5
4

1
6
5

0
.0

1
0
.0

1
0
.0

1

2
3

1
1

1
8

1
0

5
5

0
7
9

2
6

0
.0

0
0
.0

0
0
.0

0

2
4

1
1

1
8

1
0

5
5

0
7
4

1
8

0
.0

0
0
.0

0
0
.0

0

2
5

1
1

5
5

1
0

1
1

0
2
7
2

2
3
4

0
.0

1
0
.0

1
0
.0

1

2
6

1
1

1
2
7

1
0

0
0

0
5
9
7

8
9
7

0
.0

0
0
.0

0
0
.0

0

2
7

1
1

2
2

1
0

4
4

0
8
2

1
9

0
.0

1
0
.0

1
0
.0

1

2
8

1
1

1
4
5

1
0

0
0

0
7
0
3

1
9

8
6

0
.0

0
0
.0

0
0
.0

0

2
9

1
1

2
0
6

1
0

0
0

0
1
1
6
5

1
2
1

1
0
3

0
.0

0
0
.0

0
0
.0

0

3
0

1
1

6
7

1
0

1
1

0
3
0
7

6
4
0

0
.0

1
0
.0

1
0
.0

1

3
1

1
1

1
8
1

1
0

0
0

0
1
3
0
5

6
4

1
0
8

0
.0

0
0
.0

0
0
.0

0

73

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

3
2

1
1

2
4

1
0

4
5

0
9
4

2
1
0

0
.0

0
0
.0

0
0
.0

0

3
3

1
1

9
9

1
0

1
1

0
5
4
2

7
7
2

0
.0

0
0
.0

0
0
.0

0

3
4

1
1

3
0

1
0

3
4

0
1
1
3

3
1
1

0
.0

0
0
.0

0
0
.0

0

3
5

1
1

9
3

1
0

1
1

0
4
3
0

4
7
5

0
.0

0
0
.0

0
0
.0

0

3
6

1
1

3
2

1
0

3
3

0
1
6
1

1
2
0

0
.0

0
0
.0

0
0
.0

0

3
7

1
1

2
0

1
0

5
5

0
9
3

2
1
1

0
.0

0
0
.0

0
0
.0

0

3
8

1
1

1
4

1
0

7
7

0
5
4

2
5

0
.0

0
0
.0

0
0
.0

0

3
9

1
1

3
4

1
0

2
3

0
1
5
9

3
2
1

0
.0

0
0
.0

0
0
.0

0

4
0

1
1

3
4

1
0

2
3

0
1
6
1

2
2
0

0
.0

1
0
.0

1
0
.0

1

4
1

1
1

1
2
4

1
0

0
1

0
5
8
0

8
7
7

0
.0

0
0
.0

0
0
.0

0

4
2

1
1

5
0

1
0

2
3

0
2
0
3

6
1
9

0
.0

0
0
.0

0
0
.0

0

4
3

2
2

1
6
0

1
0

2
0

2
9

1
5

5
9
6

2
4

6
1

0
.0

0
0
.0

0
0
.0

0

4
4

1
1

6
8

1
0

1
3

0
2
2
5

7
2
3

0
.0

0
0
.0

0
0
.0

0

4
5

1
1

1
4

1
0

7
7

0
5
5

2
5

0
.0

1
0
.0

1
0
.0

1

4
6

1
1

1
4

1
0

7
7

0
5
3

1
4

0
.0

0
0
.0

0
0
.0

0

4
7

1
1

1
4

1
0

7
7

0
5
3

1
4

0
.0

0
0
.0

0
0
.0

0

74

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

4
8

1
1

2
0

1
0

5
5

0
7
8

3
7

0
.0

0
0
.0

0
0
.0

0

4
9

1
1

3
8

1
0

2
4

0
1
2
2

3
1
2

0
.0

0
0
.0

0
0
.0

0

5
0

1
1

1
8
0

1
0

0
1

0
7
0
2

1
1

9
0

0
.0

0
0
.0

0
0
.0

0

5
1

1
1

2
1

1
0

4
5

0
8
6

1
8

0
.0

0
0
.0

0
0
.0

0

5
2

2
2

9
6

1
0

3
4

3
6

1
5

3
9
3

2
2

3
8

0
.0

1
0
.0

1
0
.0

1

5
3

1
1

5
3

1
0

1
2

0
2
5
2

6
3
6

0
.0

0
0
.0

0
0
.0

0

5
4

2
2

9
2

1
0

3
5

3
8

1
5

3
6
8

2
1

3
6

0
.0

1
0
.0

1
0
.0

1

5
5

1
1

3
6

1
0

2
3

0
1
4
7

4
1
7

0
.0

0
0
.0

0
0
.0

0

5
6

1
1

4
5

1
0

2
2

0
2
0
9

6
2
6

0
.0

0
0
.0

0
0
.0

0

5
7

1
1

1
1
0

1
0

0
1

0
5
8
7

1
1

8
8

0
.0

0
0
.0

0
0
.0

0

5
8

1
1

4
0

1
0

2
2

0
1
9
4

2
2
7

0
.0

0
0
.0

0
0
.0

0

5
9

1
1

4
5

1
0

2
3

0
1
6
7

3
2
1

0
.0

0
0
.0

0
0
.0

0

6
0

1
1

4
9

1
0

2
2

0
2
0
3

4
2
7

0
.0

1
0
.0

1
0
.0

1

6
1

1
1

4
3

1
0

2
3

0
1
6
7

3
2
1

0
.0

0
0
.0

0
0
.0

0

6
2

1
1

4
9

1
0

2
2

0
2
6
4

2
3
9

0
.0

0
0
.0

0
0
.0

0

6
3

1
1

1
8
2

1
0

0
0

0
8
8
4

2
0

1
1
9

0
.0

0
0
.0

0
0
.0

0

75

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

6
4

1
1

4
7

1
0

2
2

0
2
3
1

5
2
7

0
.0

0
0
.0

0
0
.0

0

6
5

1
1

1
1
9

1
0

0
1

0
4
5
1

1
5

5
2

0
.0

0
0
.0

0
0
.0

0

6
6

1
1

3
3

1
0

3
3

0
1
6
6

3
2
1

0
.0

0
0
.0

0
0
.0

0

6
7

1
1

2
1

1
0

4
5

0
8
5

1
8

0
.0

0
0
.0

0
0
.0

0

6
8

1
1

1
3

1
0

7
9

0
4
2

1
2

0
.0

0
0
.0

0
0
.0

0

6
9

1
1

5
6

1
0

1
1

0
3
0
9

4
4
3

0
.0

0
0
.0

0
0
.0

0

7
0

1
1

1
7

1
0

5
5

0
8
1

1
7

0
.0

0
0
.0

0
0
.0

0

7
1

7
8

7
8

5
7
1
8

0
1

2
8

3
1

8
2
6
3
8
6

1
8
1
9

2
0
1
5

0
.3

7
0
.3

8
0
.6

7

7
2

1
6

1
6

1
1
5
6

0
0

2
5

2
6

1
1

5
3
0
0

2
5
9

3
1
4

0
.0

2
0
.0

3
0
.1

1

7
3

1
1

1
0
6

0
0

9
3

9
3

0
3
9
2

2
0

4
7

0
.0

1
0
.0

0
0
.0

2

7
4

1
1

3
0

1
0

8
0

8
0

7
5

1
0
4

1
6

1
0

0
.0

0
0
.0

0
0
.0

1

7
5

1
1

2
7

1
0

7
4

7
4

0
1
1
6

8
2
0

0
.0

0
0
.0

0
0
.0

0

7
6

2
5

1
9

2
3
7
7

6
0

3
3

2
7

9
9
9
8
4

6
3
2

7
1
8

0
.1

3
0
.1

4
0
.2

7

7
7

2
5

1
9

2
3
4
6

6
0

3
3

2
7

9
9
8
5
3

6
2
8

6
9
5

0
.1

1
0
.1

3
0
.2

8

7
8

2
5

1
9

2
3
4
4

6
0

3
3

2
7

9
9
8
3
2

6
2
8

6
9
3

0
.1

3
0
.1

5
0
.2

8

7
9

2
5

1
9

2
3
5
0

6
0

3
3

2
7

9
9
8
7
2

6
2
6

7
0
1

0
.1

4
0
.1

5
0
.2

7

76

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

8
0

2
5

1
9

2
3
4
0

6
0

3
4

2
7

9
9
8
1
8

6
2
6

6
9
2

0
.1

5
0
.1

7
0
.2

9

8
1

2
5

1
9

2
4
0
1

6
0

3
3

2
7

9
1
0
0
3
1

6
3
4

7
1
9

0
.1

2
0
.1

3
0
.2

5

8
2

2
5

1
9

2
3
5
4

6
0

3
3

2
7

9
9
8
8
2

6
2
6

7
0
1

0
.1

3
0
.1

4
0
.2

7

8
3

2
5

1
9

2
3
4
7

6
0

3
3

2
7

9
9
8
4
1

6
2
6

6
9
7

0
.1

5
0
.1

7
0
.3

1

8
4

2
5

1
9

2
3
4
0

6
0

3
4

2
7

9
9
8
1
9

6
2
6

6
9
2

0
.1

7
0
.1

6
0
.3

1

8
5

2
4

1
8

2
3
8
7

6
0

3
2

2
5

8
1
0
3
4
8

6
2
1

7
4
2

0
.1

5
0
.1

6
0
.2

8

8
6

2
5

1
9

2
3
4
0

6
0

3
4

2
7

9
9
8
1
8

6
2
6

6
9
2

0
.1

4
0
.1

5
0
.2

7

8
7

2
4

1
8

2
3
1
2

6
0

3
3

2
6

8
9
7
0
2

6
1
9

6
8
6

0
.1

8
0
.1

9
0
.3

1

8
8

2
5

1
9

2
3
4
4

6
0

3
3

2
7

9
9
8
4
0

6
2
7

6
9
6

0
.1

3
0
.1

3
0
.2

7

8
9

2
5

1
9

2
3
5
8

6
0

3
3

2
7

9
9
9
1
0

6
3
2

7
0
3

0
.1

9
0
.1

9
0
.3

3

9
0

2
5

1
9

2
3
8
8

6
0

3
3

2
6

9
1
0
0
8
5

6
3
7

7
3
4

0
.1

2
0
.1

3
0
.2

3

9
1

2
5

1
9

2
3
7
5

6
0

3
3

2
7

9
9
9
8
4

6
3
3

7
1
7

0
.1

6
0
.1

6
0
.3

3

9
2

2
5

1
9

2
3
7
0

6
0

3
3

2
7

9
9
9
9
4

6
3
6

7
1
7

0
.1

7
0
.1

9
0
.3

1

9
3

2
4

1
8

2
2
7
1

6
0

3
3

2
6

8
9
5
4
4

6
0
9

6
6
5

0
.1

4
0
.1

5
0
.2

9

9
4

2
5

1
9

2
3
5
3

6
0

3
3

2
7

9
9
8
8
1

6
3
0

7
0
0

0
.1

6
0
.1

8
0
.3

2

9
5

2
5

1
9

2
3
7
4

6
0

3
3

2
7

9
1
0
0
1
0

6
3
4

7
1
5

0
.1

4
0
.1

5
0
.3

1

77

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

9
6

2
5

1
9

2
3
5
9

6
0

3
3

2
7

9
9
8
9
1

6
3
0

7
0
0

0
.1

0
0
.1

2
0
.2

4

9
7

2
6

2
0

2
4
3
4

6
0

3
2

2
6

8
1
0
2
3
2

6
7
7

7
3
4

0
.1

5
0
.1

5
0
.2

6

9
8

2
5

1
9

2
3
6
8

6
0

3
3

2
7

9
1
0
0
1
7

6
2
8

7
1
0

0
.1

5
0
.1

4
0
.2

5

9
9

2
5

1
9

2
3
5
1

6
0

3
3

2
7

9
9
8
5
5

6
2
7

6
9
6

0
.1

4
0
.1

4
0
.3

0

1
0
1

2
5

1
9

2
3
5
9

6
0

3
3

2
7

9
9
8
7
6

6
2
8

7
0
0

0
.1

2
0
.1

2
0
.2

5

1
0
2

2
5

1
9

2
3
4
6

6
0

3
3

2
7

9
9
8
3
4

6
2
7

6
9
5

0
.1

4
0
.1

4
0
.2

5

1
0
3

2
5

1
9

2
3
5
3

6
0

3
3

2
7

9
9
8
6
9

6
2
7

7
0
0

0
.1

2
0
.1

3
0
.2

8

1
0
4

2
5

1
9

2
3
6
5

6
0

3
3

2
7

9
9
9
5
6

6
3
4

7
1
7

0
.1

9
0
.1

9
0
.3

1

1
0
5

2
5

1
9

2
3
7
3

6
0

3
3

2
7

9
9
9
8
9

6
3
1

7
1
3

0
.1

5
0
.1

6
0
.2

8

1
0
6

2
5

1
9

2
3
5
6

6
0

3
3

2
7

9
9
9
2
0

6
2
8

7
0
6

0
.1

3
0
.1

4
0
.2

7

1
0
7

2
5

1
9

2
3
4
3

6
0

3
3

2
7

9
9
8
2
6

6
2
6

6
9
5

0
.1

3
0
.1

4
0
.2

7

1
0
8

2
5

1
9

2
3
4
9

6
0

3
3

2
7

9
9
8
4
4

6
2
7

6
9
6

0
.1

6
0
.1

5
0
.2

9

1
0
9

2
5

1
9

2
3
5
5

6
0

3
3

2
7

9
9
8
6
6

6
2
6

6
9
7

0
.1

6
0
.1

7
0
.3

1

1
1
0

2
5

1
9

2
3
6
3

6
0

3
3

2
7

9
9
9
6
3

6
2
9

7
1
0

0
.1

2
0
.1

4
0
.2

7

1
1
1

2
5

1
9

2
3
4
0

6
0

3
4

2
7

9
9
8
1
1

6
2
6

6
9
1

0
.1

3
0
.1

3
0
.2

7

1
1
2

2
5

1
9

2
3
4
2

6
0

3
3

2
7

9
9
8
2
0

6
2
6

6
9
1

0
.1

6
0
.1

6
0
.3

1

78

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

1
1
3

2
5

1
9

2
3
4
3

6
0

3
3

2
7

9
9
8
2
6

6
2
6

6
9
6

0
.1

4
0
.1

5
0
.2

4

1
1
4

2
5

1
9

2
3
4
7

6
0

3
3

2
7

9
9
8
5
3

6
2
7

6
9
7

0
.1

4
0
.1

4
0
.2

9

1
1
5

2
5

1
9

2
3
4
1

6
0

3
4

2
7

9
9
8
2
6

6
2
6

6
9
5

0
.1

4
0
.1

5
0
.2

8

1
1
6

2
5

1
9

2
3
6
6

6
0

3
3

2
7

9
9
9
7
4

6
3
5

7
1
3

0
.1

5
0
.1

6
0
.2

8

1
1
7

2
5

1
9

2
3
7
0

6
0

3
3

2
7

9
9
9
4
6

6
2
8

7
1
4

0
.2

2
0
.2

3
0
.3

4

1
1
8

2
5

1
9

2
3
4
3

6
0

3
3

2
7

9
9
8
2
8

6
2
6

6
9
5

0
.1

4
0
.1

3
0
.2

3

1
1
9

2
4

1
8

2
4
3
5

6
0

3
1

2
4

8
1
0
4
1
3

6
1
8

7
9
7

0
.1

5
0
.1

5
0
.2

4

1
2
1

2
5

1
9

2
3
5
8

6
0

3
3

2
7

9
9
9
2
2

6
3
3

7
0
7

0
.1

5
0
.1

5
0
.3

1

1
2
2

2
5

1
9

2
4
1
1

6
0

3
3

2
6

9
1
0
2
6
5

6
3
4

7
7
1

0
.1

5
0
.1

7
0
.3

0

1
2
3

2
5

1
9

2
3
5
5

6
0

3
3

2
7

9
9
9
0
2

6
2
9

7
0
5

0
.1

3
0
.1

4
0
.2

5

1
2
4

2
5

1
9

2
3
5
5

6
0

3
3

2
7

9
9
8
7
3

6
2
7

7
0
1

0
.1

6
0
.1

6
0
.2

9

1
2
5

2
5

1
9

2
3
4
9

6
0

3
3

2
7

9
9
8
4
1

6
2
6

6
9
3

0
.1

4
0
.1

4
0
.2

4

1
2
6

2
5

1
9

2
3
5
0

6
0

3
3

2
7

9
9
8
5
0

6
2
7

6
9
6

0
.1

3
0
.1

4
0
.2

7

1
2
7

2
5

1
9

2
3
5
8

6
0

3
3

2
7

9
9
9
1
1

6
2
7

7
0
6

0
.1

4
0
.1

6
0
.3

1

1
2
8

2
5

1
9

2
3
5
9

6
0

3
3

2
7

9
9
9
1
1

6
3
0

7
0
5

0
.1

6
0
.1

7
0
.3

2

1
2
9

2
5

1
9

2
3
4
2

7
0

3
3

2
7

9
9
8
2
4

6
2
6

6
9
4

0
.1

4
0
.1

5
0
.2

5

79

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

1
3
0

2
5

1
9

2
3
3
8

6
0

3
4

2
7

9
9
8
1
3

6
2
6

6
9
1

0
.1

6
0
.1

7
0
.2

8

1
3
1

2
5

1
9

2
3
5
9

6
0

3
3

2
7

9
9
9
1
6

6
3
4

7
0
5

0
.1

3
0
.1

6
0
.2

6

1
3
2

2
5

1
9

2
3
3
8

6
0

3
4

2
7

9
9
8
1
0

6
2
6

6
9
2

0
.1

4
0
.1

6
0
.2

9

1
3
3

2
5

1
9

2
4
0
5

7
0

3
3

2
6

9
1
0
0
9
6

6
3
4

7
2
2

0
.1

7
0
.1

8
0
.3

2

1
3
4

2
5

1
9

2
3
5
9

6
0

3
3

2
7

9
9
9
2
9

6
3
2

7
0
6

0
.1

4
0
.1

6
0
.3

0

1
3
5

2
4

1
8

2
3
0
4

6
0

3
3

2
6

8
9
7
3
3

6
1
7

6
9
5

0
.1

3
0
.1

5
0
.2

8

1
3
6

2
5

1
9

2
3
5
9

6
0

3
3

2
7

9
9
9
2
5

6
3
0

7
0
7

0
.1

7
0
.1

6
0
.2

8

1
3
7

2
5

1
9

2
3
5
1

6
0

3
3

2
7

9
9
8
6
3

6
2
8

6
9
8

0
.1

3
0
.1

4
0
.3

0

1
3
8

2
5

1
9

2
3
6
3

6
0

3
3

2
7

9
9
9
3
7

6
2
8

7
1
4

0
.1

0
0
.1

1
0
.2

7

1
3
9

2
5

1
9

2
3
7
5

6
0

3
3

2
7

9
1
0
0
3
3

6
3
7

7
2
2

0
.1

8
0
.1

8
0
.3

1

1
4
0

2
5

1
9

2
3
9
6

6
0

3
3

2
6

9
1
0
1
8
6

6
5
4

7
3
5

0
.1

9
0
.1

8
0
.2

9

1
4
1

2
4

1
8

2
4
0
0

6
0

3
1

2
5

8
1
0
4
9
3

6
6
7

7
9
1

0
.1

1
0
.1

2
0
.2

4

1
4
2

2
4

1
8

2
3
1
1

6
0

3
3

2
6

8
9
7
8
8

6
1
1

7
0
4

0
.1

4
0
.1

6
0
.2

7

1
4
3

2
5

1
9

2
3
4
0

6
0

3
4

2
7

9
9
8
1
3

6
2
8

6
9
1

0
.1

4
0
.1

5
0
.2

7

1
4
4

2
5

1
9

2
3
5
7

6
0

3
3

2
7

9
9
9
2
3

6
2
8

7
0
8

0
.1

5
0
.1

5
0
.2

7

1
4
5

1
6

1
6

1
4
7
2

0
0

2
9

2
9

1
2

6
6
0
0

4
9
7

5
1
6

0
.1

7
0
.1

8
0
.2

8

80

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

1
4
6

1
7

1
7

1
2
4
9

0
0

2
9

3
0

1
3

5
7
1
9

3
8
7

4
6
9

0
.1

5
0
.1

5
0
.2

1

1
4
7

4
5

4
5

6
1
0
0

1
0

4
0

4
1

6
2
9
9
6
8

1
5
7
3

1
7
5
6

0
.5

8
0
.6

2
0
.8

7

1
4
8

1
6

1
6

1
5
0
4

0
0

2
6

2
5

1
0

6
9
6
0

4
9
8

6
1
1

0
.1

5
0
.1

5
0
.2

2

1
4
9

1
4

1
4

1
3
4
1

0
0

4
0

4
2

2
6

6
1
9
4

4
2
5

5
0
7

0
.1

7
0
.2

0
0
.3

5

1
5
0

1
7

1
7

1
9
2
4

0
0

2
7

2
8

1
2

8
6
2
6

6
8
2

7
0
3

0
.1

6
0
.1

6
0
.2

6

1
5
1

1
1

8
4

1
0

2
2

0
3
4
9

1
7

3
4

0
.0

0
0
.0

0
0
.0

0

1
5
2

1
1

1
4
9

1
0

1
1

0
7
0
3

2
1

8
3

0
.0

0
0
.0

0
0
.0

0

1
5
3

1
1

1
0
3

1
0

1
2

0
4
3
5

2
2

4
8

0
.0

0
0
.0

0
0
.0

0

1
5
4

1
1

2
8

1
0

7
8

0
1
1
7

6
1
3

0
.0

0
0
.0

0
0
.0

0

1
5
5

1
1

2
4

1
0

8
9

0
9
3

3
9

0
.0

1
0
.0

1
0
.0

1

1
5
6

5
5

5
5

5
6
8
1

0
0

2
2

2
3

6
2
5
1
0
4

1
9
5
8

2
1
5
2

0
.2

4
0
.2

8
0
.6

1

1
5
7

5
5

5
5

5
6
4
1

0
0

2
3

2
4

7
2
5
0
3
8

1
9
4
0

2
1
4
0

0
.2

1
0
.2

8
0
.6

4

1
5
8

5
5

5
5

5
7
0
9

0
0

2
7

2
7

1
1

2
5
3
5
6

1
9
9
6

2
1
3
7

0
.3

1
0
.3

9
0
.9

6

1
5
9

4
0

4
0

3
3
1
3

0
0

2
4

2
6

1
4

1
4
8
2
8

1
1
0
9

1
2
2
5

0
.1

7
0
.2

6
0
.7

8

1
6
0

2
0

2
0

2
3
5
8

0
2

2
9

2
9

9
1
1
1
1
5

7
1
1

9
2
5

0
.2

1
0
.2

3
0
.4

4

1
6
1

1
4

1
4

9
3
4

0
0

5
2

5
2

3
0

4
4
1
3

3
0
1

4
5
2

0
.2

3
0
.2

1
0
.4

4

81

N
o
.

M
o
d
u
le

s
M

e
tr

ic
s

Tracked

Parsed

Lines

Errors

Warnings

LC[%]

SC[%]

DC[%]

Size[Node]

WMC[wmc]

RFC[rfc]

ETMmin[s]

ETMavg[s]

ETMmax[s]

T
a
b
le

6
:

M
e
tr

ic
s

E
v
a
lu

a
ti

o
n

82

The most important piece of information listed in Table 6.1 on page 71
is the results of the statement coverage metrics, the decision coverage
metrics and the less important line coverage metrics, which serves for
comparison. According to Table 6.1 on page 71, the SC averages 21,1%,
the DC averagess 7,2% and the LC averages 23,3%. These values are
not surprising, because they were expected by TTTech ’s developers.
The WMC metrics and the RFC metrics are newly introduced metrics,
thus we cannot score their values. We can only watch their behavior
in relation to the size of the modules parsed. The last metrics, ETM,
is remarkable, because the sum of the ETM max is only 24 seconds, al-
though the entire test took more than 3 hours. This large discrepancy
was caused by the instrumentation of the unit test framework code.

To correctly read Table 6.1 on page 71, we have to focus on the Errors
and Warnings columns. Note that the Errors column states how many
modules failed during test and not how many errors occurred. The
LC, SC and DC metrics might be strongly affected when the respective
columns are non-zero, because the test did not finish.

The warning column states the number of modules where the TTTech
coding guidelines were violated. As is the case with the Errors column,
the warning column does not state how many times the coding guide-
lines were violated. The non-zero value can influence the LC, the SC
and the DC metrics. Details about this problem are presented in Sec-
tion 5.2.1 on page 42.

We also want to know the origin of the warnings and errors that make
the results incorrect. In the event of the warnings, there is only one
cause, namely the violated coding guidelines. According to the cod-
ing guidelines, no body statement may follow after if, for, while and
except conditions (that is, after “:”).

The errors that occurred during the tests were mostly import module
errors. As the appropriate environment is not saved in the repository,
its preparation is out of the scope of this thesis. Furthermore, there
were a few other errors where the unit tests failed.

If errors occur during a test, the values of the metrics can be surpris-
ing. Two such cases are listed in Table 6.1 on page 71. An example of
the first case is test No. 65. The SC is non-zero, although the LC is
zero. This might happen due to rounding the results down to integers.
In this example, the LC = 1/119 (covered / total) = 0%, and the SC = 1/62
(covered / total) = 1%. The number of lines is higher than the number
of statements, beause lots of statements extend over multiple lines.

The second case is represented by test No. 75. The SC=20/27 (covered
/ total) = 74%, whereas the DC = 0/0 (covered / total) is interpreted as
0%. At first glance, it is impossible that the DC is 0% when the SC is
so high. But, examining this case, we can see that this scenario, with
no decision covered within 27 statements, is probable. The value 0% of

83

the DC means either no decision was covered or there are no decision
in code at all.

6.2 Internal Data Structures Evaluation

This section gives an overview of performance data listed in Table 6.2 on
the next page. The columns are described below.

Max. Depth The maximum size of the internal stack reached during
execution. See Section 5.5.1 on page 60.

Shortest The number of nodes in the shortest path tracked in the
tracks data structure, shown in Figure 13 on page 61.

Average The average number of nodes in the paths in the tracks data
structure, shown in Figure 13 on page 61.

Longest The number of nodes in the longest path tracked in the tracks
data structure, shown in Figure 13 on page 61.

Number The number of all the individual paths tracked.

Min. The smallest AST generated from all the modules parsed.

Avg. The average number of nodes per AST generated from all the
modules parsed.

Max. The largest AST generated from all the modules parsed.

Measure. The number of all time measurements of all method calls
during test.

Tracker The size of the tracks data structure Figure 13 on page 61
and the final size of the internal stack.

Parser The average size of all AST structures of all the modules parsed.

Total The sum of the tracker and parser sizes.

84

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Number

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

0
1
1

1
3
9

8
6

4
4

3
4
7
1

2
7
0
4

6
3

1
3
1
1
7
7

7
9
7

1
3
1
9
7
4

1
1
1

1
3
9

8
6

4
0

3
5
0
1

2
7
0
4

6
1

1
2
8
1
4
5

7
9
7

1
2
8
9
4
2

2
9

1
3
9

8
6

3
6

3
6
3
6

5
2
2
2

7
1

1
4
1
9
7
2

1
6
6
2
1
0
7

1
8
0
4
0
7
9

3
1
1

1
3
9

8
8

5
6

3
6
7
4

5
2
2
2

9
7

1
5
2
7
1
7

2
7
9
1
5
0
6

2
9
4
4
2
2
3

4
1
0

1
3
9

8
8

4
6

3
6
2
5

5
2
2
2

8
9

1
4
8
8
8
9

2
7
6
8
7
6
6

2
9
1
7
6
5
5

5
8

1
3
9

8
6

2
8

3
3
9
9

1
2
5
9

4
3

9
0
7
3
8

2
5
9
1
0
2

3
4
9
8
4
0

6
6

1
4
0

8
6

1
4

3
3
6
6

9
3
3

1
2

1
6
8
1
6

1
0
9

1
6
9
2
5

7
1
0

1
4
0

8
8

5
8

3
6
8
0

5
2
2
2

9
8

1
5
0
5
7
6

3
1
0
9
9
5
2

3
2
6
0
5
2
8

8
6

1
3
9

8
6

1
2

3
4
1
4

9
3
3

1
7

2
5
3
7
9

7
9
7

2
6
1
7
6

9
1
1

1
4
0

8
8

4
4

3
5
0
8

1
7
6
4

9
1

1
4
8
8
9
8

2
0
9
5
2
7
8

2
2
4
4
1
7
6

1
0

1
8

1
4
2

1
3
9

1
6
4

3
3
9
0

4
1
5
9

2
9
6

4
0
5
1
3
2
2

1
0
9

4
0
5
1
4
3
1

1
1

2
3

1
4
5

9
5

8
6

3
4
2
9

1
7
0
5

1
6
9

8
9
3
1
2
5

7
9
7

8
9
3
9
2
2

1
2

1
1

1
4
3

9
2

3
0

8
4
1
0

1
2
5
9

7
3

8
4
6
7
6

7
9
7

8
5
4
7
3

1
3

1
0

1
5
3

1
9
0

2
2

8
3
4
0

9
3
3

5
1

3
3
9
6
3

7
9
7

3
4
7
6
0

1
4

9
1

4
3

9
5

2
0

8
3
2
5

9
3
3

3
7

2
4
3
6
5

7
9
7

2
5
1
6
2

85

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

1
5

1
1

1
8
7

8
2
0

2
8

8
5
3
7

2
9
1
4

9
8

5
6
4
7
3

7
9
7

5
7
2
7
0

1
6

2
1

1
4
2

9
9

9
6

3
3
8
8

1
7
0
5

1
5
0

1
0
9
5
4
0
9

1
4
6
9

1
0
9
6
8
7
8

1
7

1
2

1
4
1

9
3

5
6

3
4
6
6

1
7
0
5

1
1
1

2
1
6
6
4
2

7
9
7

2
1
7
4
3
9

1
8

7
1

4
1

9
3

1
0

3
3
6
6

7
1
9

1
0

1
7
6
7
0

1
0
9

1
7
7
7
9

1
9

1
1

5
4

1
0
7

2
8
3

8
3

8
3

1
5
0
2
4

1
0
9

5
1
3
3

2
0

1
2

1
5
3

1
2
0

4
0

8
3
2
2

9
3
3

1
2
1

1
2
3
9
3
6

1
0
9

1
2
4
0
4
5

2
1

1
4

1
4
2

1
1
6

8
6

3
2
7
7

1
2
5
9

1
1
7

3
3
3
0
2
4
4

1
4
5
3

3
3
3
1
6
9
7

2
2

4
1

4
2

1
0
2

1
0

8
3
5
7

9
3
3

6
7
4
0
3

1
0
9

7
5
1
2

2
3

1
1

4
9

9
7

2
7
9

7
9

7
9

1
5
0
0
9

1
0
9

5
1
1
8

2
4

1
1

4
9

9
8

2
7
4

7
4

7
4

1
5
0
1
0

1
0
9

5
1
1
9

2
5

1
1

5
0

1
0
0

2
2
7
2

2
7
2

2
7
2

1
5
0
1
2

1
0
9

5
1
2
1

2
6

1
1

5
1

1
0
2

2
5
9
7

5
9
7

5
9
7

1
5
0
1
4

1
0
9

5
1
2
3

2
7

1
1

5
1

1
0
1

2
8
2

8
2

8
2

1
5
0
1
3

1
0
9

5
1
2
2

2
8

1
1

4
6

9
2

2
7
0
3

7
0
3

7
0
3

1
5
0
0
4

1
0
9

5
1
1
3

2
9

1
1

5
4

1
0
7

2
1
1
6
5

1
1
6
5

1
1
6
5

1
5
0
1
7

1
0
9

5
1
2
6

86

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

3
0

1
1

5
2

1
0
3

2
3
0
7

3
0
7

3
0
7

1
5
0
1
3

1
0
9

5
1
2
2

3
1

1
1

4
9

9
8

2
1
3
0
5

1
3
0
5

1
3
0
5

1
5
0
0
8

1
0
9

5
1
1
7

3
2

1
1

5
3

1
0
5

2
9
4

9
4

9
4

1
5
0
1
5

1
0
9

5
1
2
4

3
3

1
1

4
9

9
7

2
5
4
2

5
4
2

5
4
2

1
5
0
0
7

1
0
9

5
1
1
6

3
4

1
1

4
8

9
6

2
1
1
3

1
1
3

1
1
3

1
5
0
0
6

1
0
9

5
1
1
5

3
5

1
1

5
0

1
0
0

2
4
3
0

4
3
0

4
3
0

1
5
0
1
0

1
0
9

5
1
1
9

3
6

1
1

6
1

1
2
2

2
1
6
1

1
6
1

1
6
1

1
5
0
3
2

1
0
9

5
1
4
1

3
7

1
1

5
5

1
0
9

2
9
3

9
3

9
3

1
5
0
1
9

1
0
9

5
1
2
8

3
8

1
1

5
5

1
0
9

2
5
4

5
4

5
4

1
5
0
1
9

1
0
9

5
1
2
8

3
9

1
1

5
2

1
0
3

2
1
5
9

1
5
9

1
5
9

1
5
0
1
3

1
0
9

5
1
2
2

4
0

1
1

6
6

1
3
1

2
1
6
1

1
6
1

1
6
1

1
5
0
4
1

1
0
9

5
1
5
0

4
1

1
1

5
4

1
0
8

2
5
8
0

5
8
0

5
8
0

1
5
0
1
8

1
0
9

5
1
2
7

4
2

1
1

4
9

9
7

2
2
0
3

2
0
3

2
0
3

1
5
0
0
9

1
0
9

5
1
1
8

4
3

3
1

4
2

9
8

4
2
8
2

2
9
8

3
1
4

5
9
7
1
4

1
0
9

9
8
2
3

4
4

1
1

6
1

1
2
1

2
2
2
5

2
2
5

2
2
5

1
5
0
3
3

1
0
9

5
1
4
2

87

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

4
5

1
1

5
2

1
0
4

2
5
5

5
5

5
5

1
5
0
1
6

1
0
9

5
1
2
5

4
6

1
1

5
1

1
0
1

2
5
3

5
3

5
3

1
5
0
1
3

1
0
9

5
1
2
2

4
7

1
1

5
0

9
9

2
5
3

5
3

5
3

1
5
0
1
1

1
0
9

5
1
2
0

4
8

1
1

4
9

9
7

2
7
8

7
8

7
8

1
5
0
0
9

1
0
9

5
1
1
8

4
9

1
1

5
0

9
9

2
1
2
2

1
2
2

1
2
2

1
5
0
1
1

1
0
9

5
1
2
0

5
0

1
1

5
0

1
0
0

2
7
0
2

7
0
2

7
0
2

1
5
0
1
2

1
0
9

5
1
2
1

5
1

1
1

6
1

1
2
1

2
8
6

8
6

8
6

1
5
0
3
3

1
0
9

5
1
4
2

5
2

3
1

4
1

9
3

4
1
1
1

1
9
6

2
8
2

5
9
7
0
9

1
0
9

9
8
1
8

5
3

1
1

5
1

1
0
2

2
2
5
2

2
5
2

2
5
2

1
5
0
1
4

1
0
9

5
1
2
3

5
4

3
1

4
7

1
1
6

4
8
6

1
8
4

2
8
2

5
9
7
3
2

1
0
9

9
8
4
1

5
5

1
1

4
6

9
1

2
1
4
7

1
4
7

1
4
7

1
5
0
0
8

1
0
9

5
1
1
7

5
6

1
1

4
4

8
8

2
2
0
9

2
0
9

2
0
9

1
5
0
0
5

1
0
9

5
1
1
4

5
7

1
1

4
7

9
3

2
5
8
7

5
8
7

5
8
7

1
5
0
1
0

1
0
9

5
1
1
9

5
8

1
1

5
9

1
1
8

2
1
9
4

1
9
4

1
9
4

1
5
0
3
5

1
0
9

5
1
4
4

5
9

1
1

5
5

1
1
0

2
1
6
7

1
6
7

1
6
7

1
5
0
2
7

1
0
9

5
1
3
6

88

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

6
0

1
1

5
3

1
0
6

2
2
0
3

2
0
3

2
0
3

1
5
0
2
3

1
0
9

5
1
3
2

6
1

1
1

5
6

1
1
2

2
1
6
7

1
6
7

1
6
7

1
5
0
2
9

1
0
9

5
1
3
8

6
2

1
1

4
8

9
5

2
2
6
4

2
6
4

2
6
4

1
5
0
1
2

1
0
9

5
1
2
1

6
3

1
1

5
8

1
1
6

2
8
8
4

8
8
4

8
8
4

1
5
0
3
3

1
0
9

5
1
4
2

6
4

1
1

6
0

1
1
9

2
2
3
1

2
3
1

2
3
1

1
5
0
3
6

1
0
9

5
1
4
5

6
5

1
1

4
6

9
1

2
4
5
1

4
5
1

4
5
1

1
5
0
0
8

1
0
9

5
1
1
7

6
6

1
1

5
6

1
1
1

2
1
6
6

1
6
6

1
6
6

1
5
0
2
8

1
0
9

5
1
3
7

6
7

1
1

5
6

1
1
1

2
8
5

8
5

8
5

1
5
0
2
8

1
0
9

5
1
3
7

6
8

1
1

5
4

1
0
7

2
4
2

4
2

4
2

1
5
0
2
4

1
0
9

5
1
3
3

6
9

1
1

4
4

8
8

2
3
0
9

3
0
9

3
0
9

1
5
0
0
5

1
0
9

5
1
1
4

7
0

1
1

4
9

9
8

2
8
1

8
1

8
1

1
5
0
1
5

1
0
9

5
1
2
4

7
1

2
3

1
4
1

9
7

1
5
6

3
3
3
8

1
7
0
5

2
2
3

1
1
1
0
6
1
2

5
4
1
9
5
8
5

6
5
3
0
1
9
7

7
2

9
1

4
2

9
9

3
2

3
3
3
1

1
2
5
9

3
8

7
3
6
1
1

7
9
7

7
4
4
0
8

7
3

5
1

4
0

7
9

2
3
9
2

3
9
2

3
9
2

9
2
3
5
1
6

7
9
7

2
4
3
1
3

7
4

2
1

4
1

8
1

2
1
0
4

1
0
4

1
0
4

6
8
1
8
2

2
1
2
5

1
0
3
0
7

89

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

7
5

3
1

4
1

8
1

2
1
1
6

1
1
6

1
1
6

7
7
3
2
7

7
8
1

8
1
0
8

7
6

1
5

1
3
7

9
1

5
0

3
8

5
2
5

1
2
5
9

7
8

1
0
7
1
7
1
0

1
7
6
8
1
4
5

2
8
3
9
8
5
5

7
7

1
5

1
3
7

9
4

5
0

3
8

5
1
8

1
2
5
9

7
8

1
0
0
9
5
2
0

1
6
9
2
5
1
1

2
7
0
2
0
3
1

7
8

1
5

1
3
7

9
7

5
0

3
8

5
1
7

1
2
5
9

7
8

1
0
2
1
9
0
0

1
7
2
1
9
3
7

2
7
4
3
8
3
7

7
9

1
5

1
3
7

9
0

5
0

3
8

5
1
9

1
2
5
9

7
8

1
0
0
2
0
4
7

1
6
5
9
3
5
4

2
6
6
1
4
0
1

8
0

1
5

1
3
7

1
0
0

5
0

3
8

5
1
6

1
2
5
9

7
8

1
0
2
5
1
1
1

1
7
1
9
2
6
9

2
7
4
4
3
8
0

8
1

1
5

1
3
7

8
9

5
0

3
8

5
2
7

1
2
5
9

7
8

1
0
3
1
0
7
3

1
6
3
1
8
4
9

2
6
6
2
9
2
2

8
2

1
5

1
3
7

9
6

5
0

3
8

5
2
0

1
2
5
9

7
8

1
0
5
2
9
9
9

1
7
3
0
7
2
1

2
7
8
3
7
2
0

8
3

1
5

1
3
7

9
0

5
0

3
8

5
1
7

1
2
5
9

7
8

1
0
0
2
5
1
9

1
7
5
5
1
5
9

2
7
5
7
6
7
8

8
4

1
5

1
3
7

9
2

5
0

3
8

5
1
6

1
2
5
9

7
8

1
0
1
0
4
5
0

1
7
2
2
1
5
1

2
7
3
2
6
0
1

8
5

1
5

1
3
7

9
0

4
8

3
8

5
7
4

1
2
5
9

7
4

1
0
3
1
3
5
6

1
7
6
9
8
8
9

2
8
0
1
2
4
5

8
6

1
5

1
3
7

9
8

5
0

3
8

5
1
6

1
2
5
9

7
8

1
1
1
5
9
4
6

1
7
0
8
9
6
0

2
8
2
4
9
0
6

8
7

1
5

1
3
7

8
8

4
8

3
8

5
3
9

1
2
5
9

7
4

9
9
4
0
7
2

1
7
1
9
7
9
4

2
7
1
3
8
6
6

8
8

1
5

1
3
7

9
1

5
0

3
8

5
1
7

1
2
5
9

7
8

9
9
8
8
3
9

1
7
5
5
1
4
2

2
7
5
3
9
8
1

8
9

1
5

1
3
7

8
6

5
0

3
8

5
2
1

1
2
5
9

7
8

9
9
6
2
3
8

1
7
3
5
6
5
9

2
7
3
1
8
9
7

90

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

9
0

1
5

1
3
7

8
8

5
0

3
8

5
3
0

1
2
5
9

7
8

9
9
9
9
9
8

1
7
8
2
7
2
5

2
7
8
2
7
2
3

9
1

1
5

1
3
7

9
2

5
0

3
8

5
2
5

1
2
5
9

7
8

1
0
1
8
0
5
7

1
7
6
7
6
4
3

2
7
8
5
7
0
0

9
2

1
5

1
3
7

9
4

5
0

3
8

5
2
6

1
2
5
9

7
8

1
0
0
1
0
0
0

1
7
6
8
9
4
6

2
7
6
9
9
4
6

9
3

1
5

1
3
7

9
1

4
8

3
8

5
3
0

1
2
5
9

7
4

9
9
9
9
6
5

1
6
9
1
8
4
5

2
6
9
1
8
1
0

9
4

1
5

1
3
7

9
1

5
0

3
8

5
2
0

1
2
5
9

7
8

9
9
6
3
7
5

1
7
5
8
8
7
1

2
7
5
5
2
4
6

9
5

1
5

1
3
7

9
7

5
0

3
8

5
2
6

1
2
5
9

7
8

1
0
6
0
3
8
5

1
7
6
5
7
5
8

2
8
2
6
1
4
3

9
6

1
5

1
3
7

9
7

5
0

3
8

5
2
0

1
2
5
9

7
8

1
0
2
0
0
5
4

1
7
3
2
5
4
4

2
7
5
2
5
9
8

9
7

1
5

1
3
7

8
8

5
2

3
8

5
1
1

1
2
5
9

7
9

1
0
2
2
4
1
9

1
7
6
0
2
2
1

2
7
8
2
6
4
0

9
8

1
5

1
3
7

9
2

5
0

3
8

5
2
7

1
2
5
9

7
8

1
0
1
6
2
5
6

1
7
7
0
8
2
7

2
7
8
7
0
8
3

9
9

1
5

1
3
7

8
8

5
0

3
8

5
1
8

1
2
5
9

7
8

9
9
9
3
0
8

1
7
5
5
6
7
3

2
7
5
4
9
8
1

1
0
1

1
5

1
3
7

8
7

5
0

3
8

5
1
9

1
2
5
9

7
8

1
0
2
7
0
6
2

1
7
2
9
7
7
6

2
7
5
6
8
3
8

1
0
2

1
5

1
3
7

9
1

5
0

3
8

5
1
7

1
2
5
9

7
8

9
9
6
3
1
0

1
7
7
8
0
4
3

2
7
7
4
3
5
3

1
0
3

1
5

1
3
7

9
0

5
0

3
8

5
1
9

1
2
5
9

7
8

9
9
9
3
1
8

1
7
8
9
2
8
7

2
7
8
8
6
0
5

1
0
4

1
5

1
3
7

9
3

5
0

3
8

5
2
4

1
2
5
9

7
8

1
0
0
7
7
4
3

1
7
6
5
7
9
3

2
7
7
3
5
3
6

1
0
5

1
5

1
3
7

8
7

5
0

3
8

5
2
5

1
2
5
9

7
8

9
9
9
2
9
0

1
7
6
2
8
8
3

2
7
6
2
1
7
3

91

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

1
0
6

1
5

1
3
7

9
2

5
0

3
8

5
2
2

1
2
5
9

7
8

1
0
1
5
9
8
8

1
7
6
2
1
9
6

2
7
7
8
1
8
4

1
0
7

1
5

1
3
7

9
2

5
0

3
8

5
1
7

1
2
5
9

7
8

9
9
8
2
0
5

1
6
8
4
6
6
4

2
6
8
2
8
6
9

1
0
8

1
5

1
3
7

8
9

5
0

3
8

5
1
8

1
2
5
9

7
8

9
9
8
5
5
0

1
7
2
3
7
4
0

2
7
2
2
2
9
0

1
0
9

1
5

1
3
7

9
7

5
0

3
8

5
1
9

1
2
5
9

7
8

1
0
0
2
7
8
9

1
7
2
7
7
3
0

2
7
3
0
5
1
9

1
1
0

1
5

1
3
7

9
1

5
0

3
8

5
2
4

1
2
5
9

7
8

1
0
0
5
6
1
0

1
8
0
1
0
1
2

2
8
0
6
6
2
2

1
1
1

1
5

1
3
7

8
7

5
0

3
8

5
1
6

1
2
5
9

7
8

1
0
0
4
0
4
9

1
7
6
1
3
0
8

2
7
6
5
3
5
7

1
1
2

1
5

1
3
7

9
5

5
0

3
8

5
1
6

1
2
5
9

7
8

1
0
1
5
8
9
0

1
7
1
9
6
7
9

2
7
3
5
5
6
9

1
1
3

1
5

1
3
7

9
9

5
0

3
8

5
1
7

1
2
5
9

7
8

1
1
4
0
7
2
3

1
7
4
3
6
4
4

2
8
8
4
3
6
7

1
1
4

1
5

1
3
7

8
7

5
0

3
8

5
1
8

1
2
5
9

7
8

9
9
6
0
1
3

1
7
2
5
4
7
3

2
7
2
1
4
8
6

1
1
5

1
5

1
3
7

9
7

5
0

3
8

5
1
7

1
2
5
9

7
8

1
0
0
1
1
3
7

1
7
2
0
6
7
2

2
7
2
1
8
0
9

1
1
6

1
5

1
3
7

8
8

5
0

3
8

5
2
4

1
2
5
9

7
8

1
0
5
5
3
1
7

1
7
6
1
6
7
5

2
8
1
6
9
9
2

1
1
7

1
5

1
3
7

8
6

5
0

3
8

5
2
3

1
2
5
9

7
8

1
0
0
7
8
7
3

1
7
5
4
9
7
3

2
7
6
2
8
4
6

1
1
8

1
5

1
3
7

9
2

5
0

3
8

5
1
7

1
2
5
9

7
8

1
0
3
0
9
9
1

1
7
2
1
0
9
6

2
7
5
2
0
8
7

1
1
9

1
5

1
3
7

8
6

4
8

3
8

5
7
8

1
2
5
9

7
4

1
0
8
6
5
4
9

1
8
6
2
3
9
0

2
9
4
8
9
3
9

1
2
1

1
5

1
3
7

9
6

5
0

3
8

5
2
2

1
2
5
9

7
8

1
0
9
4
1
1
7

1
7
1
4
9
8
1

2
8
0
9
0
9
8

92

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

1
2
2

1
5

1
3
7

9
0

5
0

3
8

5
4
0

1
2
5
9

7
8

1
0
1
4
3
5
0

1
7
9
0
5
0
6

2
8
0
4
8
5
6

1
2
3

1
5

1
3
7

8
6

5
0

3
8

5
2
1

1
2
5
9

7
8

1
0
0
4
1
7
7

1
5
6
3
7
1
3

2
5
6
7
8
9
0

1
2
4

1
5

1
3
7

9
4

5
0

3
8

5
1
9

1
2
5
9

7
8

9
9
7
9
5
4

1
7
2
9
2
0
6

2
7
2
7
1
6
0

1
2
5

1
5

1
3
7

9
4

5
0

3
8

5
1
7

1
2
5
9

7
8

1
0
0
7
3
8
5

1
7
5
5
1
5
8

2
7
6
2
5
4
3

1
2
6

1
5

1
3
7

9
7

5
0

3
8

5
1
8

1
2
5
9

7
8

1
0
3
3
6
8
8

1
7
2
5
0
9
7

2
7
5
8
7
8
5

1
2
7

1
5

1
3
7

9
4

5
0

3
8

5
2
1

1
2
5
9

7
8

1
0
0
1
0
8
9

1
7
7
9
4
4
0

2
7
8
0
5
2
9

1
2
8

1
5

1
3
7

9
3

5
0

3
8

5
2
1

1
2
5
9

7
8

1
0
1
4
8
7
8

1
7
6
1
5
3
2

2
7
7
6
4
1
0

1
2
9

1
5

1
3
7

8
8

5
0

3
8

5
1
7

1
2
5
9

7
8

9
8
8
0
6
3

1
7
2
2
5
3
2

2
7
1
0
5
9
5

1
3
0

1
5

1
3
7

9
2

5
0

3
8

5
1
6

1
2
5
9

7
8

9
9
9
8
1
7

1
7
2
0
7
7
6

2
7
2
0
5
9
3

1
3
1

1
5

1
3
7

9
7

5
0

3
8

5
2
1

1
2
5
9

7
8

9
9
9
6
6
9

1
7
4
0
7
6
6

2
7
4
0
4
3
5

1
3
2

1
5

1
3
7

9
1

5
0

3
8

5
1
6

1
2
5
9

7
8

9
9
9
3
5
4

1
7
1
8
9
7
9

2
7
1
8
3
3
3

1
3
3

1
5

1
3
7

8
7

5
0

3
8

5
3
1

1
2
5
9

7
8

9
8
8
0
6
2

1
7
7
3
5
9
0

2
7
6
1
6
5
2

1
3
4

1
5

1
3
7

8
8

5
0

3
8

5
2
2

1
2
5
9

7
8

9
9
6
8
1
3

1
7
1
6
2
4
8

2
7
1
3
0
6
1

1
3
5

1
5

1
3
7

9
2

4
8

3
8

5
4
0

1
2
5
9

7
4

1
0
0
1
7
4
1

1
6
9
2
8
7
6

2
6
9
4
6
1
7

1
3
6

1
5

1
3
7

8
8

5
0

3
8

5
2
2

1
2
5
9

7
8

1
0
0
2
0
5
0

1
6
8
1
0
6
1

2
6
8
3
1
1
1

93

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

1
3
7

1
5

1
3
7

8
9

5
0

3
8

5
1
9

1
2
5
9

7
8

1
0
5
1
6
3
9

1
7
5
7
1
0
1

2
8
0
8
7
4
0

1
3
8

1
5

1
3
7

9
1

5
0

3
8

5
2
3

1
2
5
9

7
8

1
0
0
0
1
1
6

1
7
4
6
1
3
5

2
7
4
6
2
5
1

1
3
9

1
5

1
3
7

8
7

5
0

3
8

5
2
8

1
2
5
9

7
8

1
0
0
9
9
9
8

1
7
5
8
0
4
0

2
7
6
8
0
3
8

1
4
0

1
5

1
3
7

8
7

5
0

3
8

5
3
6

1
2
5
9

7
8

1
0
0
3
1
1
5

1
7
8
6
4
3
1

2
7
8
9
5
4
6

1
4
1

1
5

1
3
7

9
3

4
8

3
8

5
8
2

1
2
5
9

7
4

1
0
4
9
4
5
0

1
8
7
1
1
9
2

2
9
2
0
6
4
2

1
4
2

1
5

1
3
7

9
1

4
8

3
8

5
4
3

1
2
5
9

7
4

1
0
8
7
4
7
3

1
4
9
4
5
5
4

2
5
8
2
0
2
7

1
4
3

1
5

1
3
7

9
3

5
0

3
8

5
1
6

1
2
5
9

7
8

1
1
0
0
3
7
7

1
7
3
0
2
7
9

2
8
3
0
6
5
6

1
4
4

1
5

1
3
7

9
5

5
0

3
8

5
2
2

1
2
5
9

7
8

1
0
0
0
6
6
0

1
7
1
4
0
8
5

2
7
1
4
7
4
5

1
4
5

1
0

1
4
0

9
3

3
2

3
4
1
2

1
6
0
6

6
1

8
3
2
4
7

2
1
4
1

8
5
3
8
8

1
4
6

1
0

1
4
0

8
6

3
4

3
3
3
6

1
4
8
1

6
1

1
5
4
7
1
0

1
0
9

1
5
4
8
1
9

1
4
7

1
5

1
5
5

1
3
4
5

9
0

3
6
6
5

8
9
6
5

1
0
5

5
5
4
4
9
6

1
0
9

5
5
4
6
0
5

1
4
8

1
0

1
4
0

9
0

3
2

3
4
3
5

1
4
8
1

5
7

1
6
3
6
0
1

1
0
9

1
6
3
7
1
0

1
4
9

1
0

1
4
3

9
7

2
8

3
4
4
2

1
6
0
6

8
1

8
0
5
7
3

2
8
1
3

8
3
3
8
6

1
5
0

1
1

1
4
1

8
8

3
4

3
5
0
7

1
8
9
3

6
8

1
4
6
9
6
1

2
1
4
1

1
4
9
1
0
2

1
5
1

1
1

5
0

9
9

2
3
4
9

3
4
9

3
4
9

1
5
0
1
1

1
0
9

5
1
2
0

94

N
o
.

S
ta

c
k

T
ra

c
k
e
d

P
a
th

s
A

S
T

T
im

in
g
s

S
iz

e

Max.Depth

Shortest[line]

Average[line]

Longest[line]

Entries

Min[Node]

Avg[Node]

Max[Node]

Measure.

Tracker[Byte]

Parser[Byte]

Total[Byte]

1
5
2

1
1

5
0

9
9

2
7
0
3

7
0
3

7
0
3

1
5
0
1
1

1
0
9

5
1
2
0

1
5
3

1
1

5
0

1
0
0

2
4
3
5

4
3
5

4
3
5

1
5
0
1
2

1
0
9

5
1
2
1

1
5
4

1
1

5
4

1
0
8

2
1
1
7

1
1
7

1
1
7

1
5
0
2
0

1
0
9

5
1
2
9

1
5
5

1
1

5
6

1
1
1

2
9
3

9
3

9
3

1
5
0
2
3

1
0
9

5
1
3
2

1
5
6

1
9

1
4
3

1
1
5

1
1
0

3
4
5
6

3
8
1
5

1
8
6

1
8
4
6
2
5
0

1
0
9

1
8
4
6
3
5
9

1
5
7

1
8

1
4
4

1
1
5

1
1
0

3
4
5
5

3
8
1
5

1
8
0

1
8
3
6
8
4
6

1
0
9

1
8
3
6
9
5
5

1
5
8

2
1

1
5
8

1
2
4
1

1
1
0

3
4
6
1

3
8
1
5

2
0
5

1
8
3
8
4
6
6

1
0
9

1
8
3
8
5
7
5

1
5
9

1
9

1
4
5

1
0
7

8
0

3
3
7
0

1
3
1
5

1
0
6

5
0
1
6
1
7
4

1
0
9

5
0
1
6
2
8
3

1
6
0

1
1

1
4
0

8
8

4
0

3
8

5
5
5

1
7
6
4

8
7

1
4
6
3
2
4

1
9
2
6
3
6
4

2
0
7
2
6
8
8

1
6
1

1
1

1
5
0

1
3
8

2
8

8
3
1
5

1
0
1
3

9
6

7
7
1
7
8

7
9
7

7
7
9
7
5

T
a
b
le

7
:

In
te

rn
a
ls

E
v
a
lu

a
ti

o
n

95

Table 6.2 on page 84 shows the sizes of the important data structures
used by the new unit test framework. The most important information
is the total memory size allocated for these data structures. It is up to
6.5 MB (start module No. 71). This result contradicts the bottleneck
assumption made in Section 5.5 on page 57. What is also very inter-
esting is the relation between the tracker memory size and the parser
memory size. The tracker memory size depends on the amount of par-
tial execution paths, the length of paths and the number of time mea-
surements, which is equal to the number of function calls. The parser
memory size shows the length of the source code, thus it is in direct
relation to the code complexity. Comparing the tracker memory size
column and the parser memory size column, we can see some degree
of code reusability. This can be explained very simple. If the tracker
memory size is large, then we can conclude that the whole execution
path is long. On the other hand, if the parser memory size is relative
small, then we know that the code is small. From these two facts we
can conclude that the degree of the code reusability is the higher, the
longer the exceution path and the smaller the code size is.

6.3 Time Measurement Precision

Duration The nominal execution time of interval (time_in_ms)
function. The interval function is implemented in
code/Unit_Test_FW/tst/Times.py. We did ten measurements
for each nominal value.

Min. The minimal real execution time.

Avg. The average execution time.

Max. The maximum real execution time.

Abs. Diff. The absolute difference between the minimum and maxi-
mum execution times.

Rel. Diff. The relative difference between the minimum and maxi-
mum execution times relative to the average execution time.

Duration Min. [ms] Avg. [ms] Max. [ms] Abs. Diff. [ms] Rel. Diff.[%]

1 ms 0,718 0,954 1,19 0,472 49

10 ms 9,595 9,879 10,163 0,568 6

100 ms 99,633 100,0415 100,45 0,817 0,8

1 s 999,571 999,889 1000,207 0,636 0,06

10 s 9999,655 10000,0045 10000,354 0,699 0,007

Table 8: ETM precision Evaluation

Table 8 shows the precision that can be achieved when measuring the
execution time of a function. The most important column is the Rel.

96

Diff. column, which shows potential measurement error. However, the
degree of precision that can be achieved in the new unit test framework
is sufficient, because a precision degree expressed in seconds suffices
to find performance bottlenecks.

6.4 Summary

This chapter covered all the metrics results calculated from the direc-
tory projects/SW/lib/python. These results were in the expected
range. A lot of test cases failed due to the incomplete fixture main-
tained by the version control system.

The new unit test framework was also examined for performance bot-
tlenecks. On the basis of the measurements carried out we can say
that the assumption described in Section 5.5 on page 57 did not prove
true.

The last point was an example that showed the precision of the execu-
tion time of a function.

97

7 Conclusion

The goal of this master’s thesis was to design a new unit test frame-
work with additional coverage metrics. For this purpose, a research
on testing methods and coverage metrics were necessary. Before de-
signing the new unit test framework we inspected the old one. The old
framework used two testing methods - the unit test and the integration
test. As far as the coverage metrics integrated in the framework con-
cerns, there were two metrics - the line coverage (LC) and the code size
- measured in SLOCs. Because the layout of the source code depended
on the coding style of developers, the coverage results also depended
on their coding style. In such a way the metrics results were not com-
parable.

The second weak point of this framework was the calculation of the
metrics results. If a module was not executed directly from the frame-
work but indirectly by another module, the executed lines of code in
the module were ignored. As a consequence the modules executed in
most cases indirectly, had much lower metrics results.

The next step was the research on testing methods. We found out that
the usage of most of the testing methods depends only on the test case
implementations. And therefore the quality of the testing methods are
predetermined by the test case implementations and not by the testing
methods themselves. The anomaly detection, the walk-through veri-
fication, and the mathematical verification could not be implemented
as test case implementations. We also found out that the automated
testing methods (the program spectra analysis and the adaptive test)
were difficult to implement, since the exact input specification of soft-
ware systems in TTTech (e.g. the user interfaces) were impossible to
perform, due to a huge number of combinations of the input behavior.

To accomplish our task, we researched the code metrics which should
measure the quality of the test case implementations. There were fol-
lowing three groups of code metrics: the control-flow code coverage
metrics, the data-flow code coverage metrics, and the code complexity
metrics.

Having collected the necessary knowledge, we designed the new unit
test framework. This new framework should have implemented as
many code metrics as possible. Unfortunately, this was not possible.
From the control-flow code coverage metrics only the (SC), (DC) and
the (LC) metrics were accepted to implementation, since the other met-
rics were too complex, concerning the company’s requirements. Even
the (SC) and the (DC) could not be implemented in the Python lan-
guage due to the line resolution of the Python tracking system unless
the coding guidelines existed. The data-flow code coverage metrics had
to be completely refused, because the Python language is a dynamic
language and therefore the necessary data for these metrics have been
unavailable at compile time. The same problem occurred with the code

98

complexity metrics as well. However, some code complexity metrics
were chosen, because they could help to measure the static complexity
of the source code. These metrics are the WMC, the Code Size, and the
RFC. The last metrics, added to the new framework, was the ETM for
measuring the execution times.

To solve the code coverage problem concerning the indirectly executed
modules, the internal data structures were implemented in the new
unit test framework. However, these internal data structures were ex-
pected to be a serious limitation in the situations when the new frame-
work had to evaluate a huge number of Python modules.

The evaluation showed both the positive as well as the negative aspects
of the new framework and of the test case implementations. The pos-
itive aspect was the fact that the size of the internal data structures
was relatively small and therefore the new framework could evaluate a
huge number of modules too.

As the evaluation of the test case implementations by the new unit test
framework has shown, a noticable number of test case implementa-
tions which did not work, was discovered. Also the coding guidelines
were broken at a number of locations. Paradoxically, these disclosed
problems have been, in fact, the first fruit of the new unit test frame-
work.

99

Glossary

AOSD Atomic Object State Diagram

AST Abstract Syntax Tree

CBO Coupling Between Object Classes

CC Condition Coverage metrics

COSD Composite Object State Diagram

DC Decision Coverage metrics

DCC Decision Condition Coverage metrics

DIT Depth of Inheritance Tree metrics

EDC Elementary Data Context

EDCM Elementary Data Context Metrics

ETM Execution Time per Method metrics

LC Line Coverage metrics

LCOM Lack of Cohesion in Method metrics

LCSAJ Linear Code Sequence And jump

MCC Multiple Condition Coverage metrics

MCDC Modified Condition Decision Coverage metrics

NOC Number Of Children metrics

ODC Ordered Data Context

ODCM Ordered Data Context Metrics

PC Path Coverage metrics

RFC Response For a Class metrics

SC Statement Coverage metrics

SLOC Single Line Of Code

TER Test Effectiveness Ratios

WMC Weighted Method per Class

100

References

[AB81] Dorothy M. Andrews and Jeoffrey P. Benson. An automated pro-
gram testing methodology and its implementation. In ICSE ’81: Pro-

ceedings of the 5th international conference on Software engineering,
pages 254–261, Piscataway, NJ, USA, 1981. IEEE Press.

[BBB+04] Ralf Buschermöhle, Mark Brörkens, Ingo Brückner, Werner Damm,
Wilhelm Hasselbring, Bernhard Josko, Christoph Schulte, and
Thomas Wolf. Model checking grundlagen und praxiserfahrungen.
Informatik Spektrum, April 2004.

[BI87] Farokh B. Bastani and S. Sitharama Iyengar. The effect of data
structures on the logical complexity of programs. Commun. ACM,
30(3):250–259, 1987.

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner, editors. Model-based Testing of Reac-

tive Systems, volume 3472 of Lecture Notes in Computer Science.
Springer, July 2005. ISBN 3-540-26278-4.

[BN04] Bart Broekman and Edwin Notenboom. Testing Embedded Soft-

ware. Addison-Wesley, 2004. ISBN 0-321-15986-1.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software Engineering,
Vol. 20(6):476–493, June 1994.

[CPRZ85] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J.
Zeil. A comparison of data flow path selection criteria. In ICSE ’85:

Proceedings of the 8th international conference on Software engineer-

ing, pages 244–251, Los Alamitos, CA, USA, 1985. IEEE Computer
Society Press.

[Fag76] Michael E. Fagan. Design and code inspection to reduce errors in
program development. IBM Systems Journal, pages 15(3):182–211,
March 1976.

[FW88] Phyllis G. Frankl and Elaine J. Weyuker. An applicable family of
data flow testing criteria. IEEE Transactions on Software Engineer-

ing, Vol. 14(10):1483–1498, October 1988.

[GS04] Christophe Gaston and Dirk Seifert. Evaluating coverage based
testing. In Broy et al. [BJK+05], pages 293–322. ISBN 3-540-26278-
4.

[Gut99] Walter J. Gutjahr. Partition testing vs. random testing: The influ-
ence of uncertainty. IEEE Trans. Softw. Eng., 25(5):661–674, 1999.

[Har00] Mary Jean Harrold. Testing: Roadmap. harrold@gatech.edu, June
2000. 22nd International Conference on Software Engineering.

[HRWY98] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. An em-
pirical investigation of program spectra. In PASTE ’98: Proceedings

of the 1998 ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, pages 83–90, New York, NY, USA,
1998. ACM Press.

[KSGH94] D.C. Kung, N. Suchak, J. Gao, and P. Hsia. On object state testing.
In COMPSAC’94 Conference, Arlington, TX, USA, 1994.

[KST+86] Joseph P. Kearney, Robert L. Sedlmeyer, William B. Thompson,
Michael A. Gray, and Michael A. Adler. Software complexity mea-
surement. Commun. ACM, 29(11):1044–1050, 1986.

101

[Lap92] Laprie, Jean-Claude. Dependability: Basic Concepts and Terminol-

ogy. Springer-Verlag Wien-New York, 1992.

[Las82] Janusz Laski. On data flow guided program testing. SIGPLAN Not.,
17(9):62–71, 1982.

[Lin05] Johannes Link. Softwaretests mit JUnit. dpunkt.verlag, 2005. ISBN
3-89864-325-5.

[NF00] Martin Neil Norman Fenton. Software metrics: Roadmap. In
The Future of Software Engineering, editor, Anthony Finkel-

stein, number ISBN 1-58113-253-0, pages 357–370, nor-
man@dcs.qmw.ac.uk, martin@dcs.qmw.ac.uk, 2000. 22nd Interna-
tional Conference on Software Engineering, ACM Press.

[Nta84] Simeon C. Ntafos. An evaluation of required element testing strate-
gies. In ICSE ’84: Proceedings of the 7th international conference on

Software engineering, pages 250–256, Piscataway, NJ, USA, 1984.
IEEE Press.

[Nta88] S. C. Ntafos. A comparison of some structural testing strategies.
IEEE Trans. Softw. Eng., 14(6):868–874, 1988.

[Rus91] John Rushby. Measures and techniques for software quality assur-
ance. Technical report, The National Aeronautics and Space Ad-
ministration, September 1991. contract NAS1 17067.

[SL05] Andres Spillner and Tilo Linz. Basiswissen Softwaretest.
dpunkt.verlag, 2005. ISBN 3-89864-358-1.

[VB01] Sergiy A. Vilkomir and Jonathan P. Bowen. Formalization of soft-
ware testing criteria using the Z notation. In COMPSAC ’01: Pro-

ceedings of the 25th International Computer Software and Applica-

tions Conference on Invigorating Software Development, pages 351–
356, Washington, DC, USA, 2001. IEEE Computer Society.

[Vig05] Uwe Vigenschow. Objektorientiertes Testen und Testautomatisierung

in der Praxis. dpunkt.verlag, 2005. ISBN 3-89864-305-0.

[ZHM97] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit
test coverage and adequacy. ACM Comput. Surv., 29(4):366–427,
1997.

102

Index

Symbols
$CASE_DIR. .4
$ROOT_DIR . 4

A
abstract model.15
abstract syntax tree 38

AST, 38, 41–43, 45–47, 49,
52, 55, 56, 59, 60, 81

CONST, 38
MODULE, 38
NAME, 38
SIZE, 61
STMT, 38
SUB, 38

AOSD.. .23
apriori knowledge criterion 14
assertion evaluator 23

B

basic test data.22, 23
boundary testing 29
branch . 43

branch, 49, 50
branch point, 43
false branch, 44
true branch, 44

branch point . 43
branch spectra 20
branch testing 32

C
c-use . 30–32
class. .34

CoverageResults, 5, 6
DocTest, 10
Example, 10
ModuleTestCase, 8
TestCase, 7–9, 11
TestLoader, 8
TestResult, 9
TestSuite, 9
Trace, 5, 6

code complexity metrics. . .27, 34,
36, 41, 42, 95, 96

CBO, 35, 41, 42
Code Size, 96
code size metrics, 42, 45
coupling between object classes,

35
depth of inheritance tree, 35

DIT, 35, 41, 61
lack of cohesion in methods,

36
LCOM, 36, 42
NOC, 35, 41, 61
number of children, 35
response for a class, 35, 46,

67
RFC, 35, 36, 42, 46, 61, 80,

96
weighted method per class, 67
weighted methods per class,

34, 45
WMC, 34, 35, 41, 42, 45, 46,

61, 80, 96
code coverage 4, 6
code coverage metrics.27, 34
code metrics . 27
code review 16, 21
code size11, 67, 95
coder . 21
cohesion . 34
compiler. .38
compiler.ast. .38
complete-path spectrum 20
composite object state diagram23
computational use occurrence.30
condition. 28
control flow graph 27–29
control-flow code coverage metrics

40, 95
boundary-interior metrics, 29,

41
branch condition coverage met-

rics, 28
branch coverage metrics, 28
CC, 28, 41
code size metrics, 36
condition coverage metrics, 28
DC, 28, 41–45, 61, 80, 95
DCC, 28, 41
decision condition coverage met-

rics, 28
decision coverage metrics, 28,

30, 41, 80
LC, 45, 61, 80, 95
line coverage metrics, 45, 80
MCC, 28, 41
MCDC, 29, 41
modified condition decision cov-

erage metrics, 29

103

multiple condition coverage met-
rics, 28, 29

path coverage metrics, 29
PC, 29
SC, 28, 41–43, 61, 62, 80, 95
statement coverage, 67
statement coverage metrics, 28,

30, 41, 80
structured path coverage met-

rics, 29
TER, 30, 41
test effectiveness ratios, 30

COSD .. 23, 24
coupling . 34, 35
coverage file.3–7
coverage tool . 5

D
data flow graph 30, 31, 41
data-dependence spectra 20
data-flow code coverage metrics41,

95
2-dr interaction, 33
all-c-uses some-p-uses met-

rics, 32
all-defs metrics, 32
all-du-path, 32
all-p-uses metrics, 32
all-p-uses some-c-uses met-

rics, 32
all-paths, 29
all-uses metrics, 32
EDCM, 33
elementary data context met-

rics, 33
ODCM, 33
ordered data context metrics,

33
required pairs metrics, 33

decision 28, 43, 44, 49
decision coverage 43, 58, 67
decision testing 32
def 30–32, 34, 41
definition . 2
definition context 33
definition occurrence 30, 31
definition occurrence liveness . 31
designer . 21
docstring . 9, 10
docstrings. .10
docTest. .10
doctest.3, 5, 7, 10
doctest.py 3, 5, 10
docTestFinder 10

docTestParser.10
docTestRunner 10

E
EDC .. 33
elementary data context 33
end time. .59
ETM .. . 37, 42, 45, 58, 61, 80, 96
event

call event, 39
exception event, 39
global scope event, 39
line event, 38, 39
local scope event, 39
return event, 39

Example. .10
execution time per method.37
execution times per method . . . 68
execution-trace spectrum.. 20

F
fixture .. 8, 94
flat state machines 23
function name 39

G
globaltrace_cb() 5
gross execution time 37
gross time 45, 50, 59

I

independent path.58
inheritance tree..34
input criterion 14
input options

–debug, -g, 47
–details, -d, 47
–ignore, -i, 46
–label, -l, 47
–output, -o, 47
–verbose, -b, 47
–version, -v, 47

instance. .34
interface. .14
interior testing.29

K
k-dr interaction.33
k-tuple . 33

L

LCSAJ. .30
left .38
line . 38, 39
line coverage 11, 67, 95

104

line number. .39
linear code sequence and jump30
lineno . 38
live . 31, 33
loadTestFromTestCase() 8

M
method. 34
moderator .21
modtc1..N . 8
modtc2 . 8
modtc2() . 8
modtc2.run() . 8
module name 39
ModuleTestCase 8
ModuleTestCase1..N. 8

N
nature criterion.16
net execution time.37
net time.45, 50, 59
nightly test . 5

O
obj() . 8
obj.run() . 8
object .2, 34
ODC... 33
ordered data context 33
output spectrum.20

P
p-use . 30–32
path coverage metrics 41
path spectra . 20
Path testing . 32
predicate use occurrence 30
program spectra 20
program spectrum.20
Python interpreter 5, 6, 10

R
reach .. 30–32
required pair.33
right . 38
run() . 8, 9
runTest(). .7, 8

S
segment testing.32
setUp() . 8
similarity.36, 42
single line of code.36
SLOC 11, 36, 42, 95
source .. 10

start gross time.59
start net time 59
statement . 42
statement coverage..42, 58
statement testing 32
structured path coverage metrics

41
subclass. .34
subsume 28, 29, 32, 34
sys . 38, 39

T

tcfn . 8
tearDown(). .8
test . 18

adaptive test, 22, 23, 95
adaptive tester, 23
docstring test, 3, 7, 9–11, 46,

47, 52, 55, 61
executable assertion, 22
executable assertions, 22
functional test, 19
integration test, 24
object state testing, 23
random test, 18
regression test, 18, 19
structural test, 19
symbolic execution, 19, 20

test case 1, 4, 6, 9–11, 14–16, 18,
19, 23, 27, 34, 94

test case function.1, 3, 6–8
test case implementation. .1, 3–7,

11, 62, 95
test case string pair .1, 3, 6, 9, 10
test driver . 23
test results file.23
test suite . 32
test_1..N(). .8, 9
test_2(). .8
tester . 21
testing method. 13, 15, 17–20, 27

adaptive testing method, 22,
23

anomaly detection, 21, 95
atomic object state diagram,

23
automated testing method, 16,

18–20, 22, 24, 95
black-box testing method, 15,

18, 19, 23, 24
code size, 16
difference-related testing method,

20

105

dynamic testing method, 16–
18, 22

executable assertion, 23
executable assertions method,

22
formal verification, 16–18, 21–

24
full testing method, 14
full testing testing method, 14
fully automated testing method,

16
functional testing method, 15,

17, 18, 23
gray-box testing method, 15,

19, 24
implementation stage testing

method, 13
interface testing method, 15
manual testing method, 16,

19, 22, 24
mathematical verification, 21
partition testing method, 14,

19, 21
path testing metrics, 29
program spectra analysis, 20,

95
random testing method, 14,

19
static testing method, 16, 23
structural testing method, 15,

17, 18, 23
walk-through verification, 21
white-box testing method, 14,

15, 19, 20, 22, 24
testRunner . 9
time.clock(). .45
traceback .. 10
tracked. 56
tst2 (2) . 39

U
unit. .24
unit test . . . 3, 7, 9–11, 24, 46, 47,

52, 55, 61
unit test framework. .3, 5, 11, 26,

37, 38, 40, 42, 45, 46,
52, 60–62, 80, 93–95

Errors, 80
global_xml_file, 47
localtrace_cb(), 6
Metrics.py, 55
nightly-test.sh, 5
no_utest.txt, 4
Output.py, 55

Parser.py, 55, 59
test suite, 27–29, 32–34, 36
trace.py, 4, 5
Tracker.py, 55, 58
U_Test.py, 5
unit.py, 4–6
Unit_Test_FW_Tool.py, 46, 55
utest.txt, 3, 4
utest_coverage.txt, 3, 4

unittest.3, 5–7, 9
unittest.py 3, 5, 7
use.30–32, 34, 41
use occurrence 30

W
want. .10
warning . 80
while . 39

	Title Page
	Acknowledgement
	Abstract
	Contents
	1 Introduction
	1.1 Definition of Test Case
	1.2 Scope
	1.3 Typographic Conventions

	2 Current Software Testing Framework
	2.1 The Unit Test Framework
	2.2 The Mechanism of the Unit Test Framework
	2.3 The Analysis of the Unit Test Framework
	2.4 The Unit Test Mechanism
	2.5 The Analysis of the Unit Test
	2.6 The Docstring Test Mechanism
	2.7 The Analysis of the Docstring Test
	2.8 Summary

	3 Overview of Testing Methods
	3.1 Criteria
	3.1.1 The Input Criterion
	3.1.2 The Apriori Knowledge Criterion
	3.1.3 The Test Control Criterion
	3.1.4 The Test Nature Criterion
	3.1.5 The Test Scope Criterion
	3.1.6 The Tested Items Criterion

	3.2 A List of Known Testing Methods
	3.2.1 Random Test
	3.2.2 Regression Test
	3.2.3 Functional Test
	3.2.4 Structural Test
	3.2.5 Symbolic Execution
	3.2.6 Program Spectra Analysis
	3.2.7 Anomaly Detection
	3.2.8 Walk-Through Verification
	3.2.9 Mathematical Verification
	3.2.10 Executable Assertions
	3.2.11 Adaptive Test
	3.2.12 Object State Testing
	3.2.13 Unit Test
	3.2.14 Integration Test

	3.3 Summary

	4 Research of Code Metrics
	4.1 Introduction
	4.2 Control Flow Code Coverage Metrics
	4.2.1 Statement Coverage Metrics
	4.2.2 Decision Coverage Metrics
	4.2.3 Condition Coverage Metrics
	4.2.4 Decision Condition Coverage Metrics
	4.2.5 Multiple Condition Coverage Metrics
	4.2.6 Path Coverage Metrics
	4.2.7 Modified Condition Decision Coverage Metrics
	4.2.8 Boundary-Interior Metrics
	4.2.9 Structured Path Coverage Metrics
	4.2.10 TER Metrics

	4.3 Data Flow Code Coverage Metrics
	4.3.1 All-P-Uses Metrics
	4.3.2 All-Defs Metrics
	4.3.3 All-P-Uses Some-C-Uses Metrics
	4.3.4 All-C-Uses Some-P-Uses Metrics
	4.3.5 All-Uses Metrics
	4.3.6 All-DU-Paths Metrics
	4.3.7 2-DR Interaction Metrics
	4.3.8 Elementary Data Context Metrics
	4.3.9 Ordered Data Context Metrics
	4.3.10 Required Pairs Metrics
	4.3.11 Required k-tuples Metrics

	4.4 Code Complexity Metrics
	4.4.1 Weighted Methods Per Class
	4.4.2 Depth Of Inheritance Tree
	4.4.3 Number Of Children
	4.4.4 Coupling Between Object Classes
	4.4.5 Response For A Class
	4.4.6 Lack Of Cohesion In Methods
	4.4.7 Code Size

	4.5 Summary

	5 The New Unit Test Framework
	5.1 The Requirements and the Limitations Concerning Metrics
	5.1.1 The Company Requirements for the new Unit Test Framework
	5.1.2 The Abstract Syntax Tree
	5.1.3 The Tracking System

	5.2 The Arguments About the Metrics
	5.2.1 The Chosen Control Flow Code Coverage Metrics
	5.2.2 The Rejection of The Data Flow Code Coverage Metrics
	5.2.3 The Problems With The Code Complexity Metrics

	5.3 The Design of the Metrics
	5.3.1 The Statement Coverage
	5.3.2 The Decision Coverage
	5.3.3 The Code Size
	5.3.4 The Execution Time Per Method
	5.3.5 The Weighted Method Per Class
	5.3.6 The Response For A Class

	5.4 The Input and The Output of The New Unit Test Framework
	5.4.1 Framework Command Line Input
	5.4.2 Framework XML Output

	5.5 The Architecture of the new Unit Test Framework
	5.5.1 The Tracker Component
	5.5.2 The Parser Component

	5.6 Summary

	6 Evaluation
	6.1 Metrics Evaluation
	6.2 Internal Data Structures Evaluation
	6.3 Time Measurement Precision
	6.4 Summary

	7 Conclusion
	Glossary
	References
	Index

