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Abstract

The aim of the present work is to study the magnetic properties of seminal materials such

as magnetic semiconductors (part II) and weak itinerant ferromagnets (part III). Recently

magnetic semiconductors are very much in the center of attention, in particular in the

emerging field of spin-based electronics. Researchers try to exploit the electrons’ magnetic

properties (e.g. their spin) to transport information. Weak itinerant ferromagnets are also

very promising materials because their ferromagnetism is not very stable and can easily be

tuned by external parameters like pressure or stoichiometry. Weak itinerant ferromagnets

can be used for example in magneto-caloric applications like refrigerators. The investi-

gations are done by applying density functional theory (DFT), one of the most powerful

techniques for gaining a detailled understanding of real materials. In general, computer

simulations have several advantages if done supplementary to experiment. For example

one can study ”hypothetical” materials with crystal structures or magnetic states usually

not found in nature. In such an approach questions can be answered beyond the scope of

experiment, e.g. why certain structures are found in nature and others are not. A thorough

understanding of the relation between atomic structure and macroscopic, physical proper-

ties is the key requirement for the success in the design of so-called functional materials.

In part I of this work a short introduction into the theory of electronic structure methods

and magnetism is given. In part II two completely different magnetic semiconductors are

discussed. The binary I/II-V compounds (prototype CaAs) in the hypothetical zinc-blende

structure belong to the so-called concentrated magnetic semiconductors (CMS). CaAs and

related I/II-V compounds might be prepared as thin films and in that form were very

promising materials for spintronics [A]. The second class of materials investigated, Cu2O

doped with Mn, Fe, Co, and Ni, belongs to the dilute magnetic semiconductors (DMS).

The compounds derived from Cu2O have already been prepared in experiment. They

yield very diverse physical properties ranging from room-temperature ferromagnetism to

spin-glass behavior [D]. In part III metals in the perovskite structure are in the center of

attention. First the series TCu3N with T=Pd, Rh, and Ru is investigated [B]. It is demon-

strated that electron localization and magnetism can occur also for a material having 4d

electrons, which is a very rare phenomenon. Subsequently AlCNi3 and GaCNi3 serve as

examples demonstrating how tightly carbon stoichiometry and magnetism are connected

[C]. Mo-cluster compounds (prototype GaMo4S8) studied in [E] owe their interesting mag-

netic properties to well-separated Mo4 clusters and narrow, partially filled Mo 4d cluster

orbitals. Finally non-collinear magnetism, a highly challenging field, is touched by studying

TNMn3 with T=Cu, Zn, Ga, and Ge.

iv



The following publications were written in the context of this work:

A M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Ferromagnetism in

tetrahedrally coordinated compounds of I/II-V elements: Ab initio calculations,

Phys. Rev. B 73, 024404 (2006).

B M. Sieberer, S. Khmelevskyi, and P. Mohn, Magnetic instability within the series

TCu3N (T=Pd, Rh, and Ru): A first-principles study, Phys. Rev. B 74,

014416 (2006).

C M. Sieberer, P. Mohn, and J. Redinger, Role of carbon in AlCNi3 and GaCNi3:

A density functional theory study, Phys. Rev. B 75, 024431 (2007).

D M. Sieberer, J. Redinger, and P. Mohn, Electronic and magnetic structure of

cuprous oxide Cu2O doped with Mn, Fe, Co, and Ni: A density-functional theory

study, Phys. Rev. B 75, 035203 (2007).

E M. Sieberer, S. Turnovszky, J. Redinger, and P. Mohn, The importance of

cluster-distortions in the tetrahedral cluster compounds: Ab initio investigations,

to be published in PRB (2007).

At this point I want to thank the Austrian Science Fund (FWF) in terms of the Science

College ”Computational Materials Science”, project No. W004, for the financial support.

v



Kurzfassung

Ziel der hier vorliegenden Arbeit ist es, zukunftsträchtige Materialien wie beispielsweise

magnetische Halbleiter (Teil II) oder schwach itinerante Ferromagnete (Teil III) hinsichtlich

ihrer magnetischen Eigenschaften zu untersuchen. Besonders magnetische Halbleiter ste-

hen in der letzten Zeit im Zentrum der Aufmerksamkeit. Forscher auf dem Gebiet der

spin-basierten Elektronik verwenden diese um die magnetischen Eigenschaften der Elek-

tronen (deren Spin) für den Informationstransport zu nutzen. Schwach itinerante Fer-

romagnete sind ebenfalls sehr vielversprechende Materialien, besonders deshalb weil ihr

Ferromagnetismus nicht sehr ”stabil” ist und somit gezielt durch äußere Einflüsse wie

Druck oder Stöchiometrie verändert werden kann. Schwach itinerante Ferromagnete kön-

nen beispielsweise in magneto-kalorischen Anwendungen (z.B. Kältetechnik) verwendet

werden. Zur Untersuchung wird die Dichte-Funktional Theorie (DFT) herangezogen, eine

der leistungsstärksten Techniken zur Beschreibung realer Materialien. Im Allgemeinen

haben Computersimulationen viele Vorteile, vorausgesetzt sie werden als Ergänzung zum

Experiment genutzt. Beispielsweise können hypothetische Materialien untersucht werden.

Dazu zählen Verbindungen mit Kristallstrukturen oder in magnetischen Zuständen, die in

der Natur gewöhnlich nicht vorkommen. Dies gestattet es, Fragen zu beantworten die das

Experiment nicht oder nur sehr schwer beantworten kann, z.B. warum gewisse Strukturen

in der Natur vorkommen und andere nicht. Ein tiefes Verständnis für den Zusammenhang

zwischen der atomaren Struktur und den makroskopischen, physikalischen Eigenschaften

ist die zentrale Voraussetzung für den Erfolg im Design sogenannter funktioneller Materi-

alien.

Im ersten Teil dieser Arbeit wird eine kurze Einführung in die Theorie der Elektronenstruk-

tur und des Magnetismus gegeben. In Teil II werden zwei völlig verschiedene magnetische

Halbleiter vorgestellt. Die binären Verbindungen vom Typ I/II-V (Prototyp CaAs) in der

hypothetischen Zinkblende Struktur gehören zu den sogenannten konzentrierten magnetis-

chen Halbleitern (CMS). CaAs und verwandte I/II-V Verbindungen könnten in der Form

dünner Schichten hergestellt werden und wären vielversprechende Materialien für die spin-

basierte Elektronik [A]. Die zweite untersuchte Materialklasse, Cu2O dotiert mit geringen

Konzentrationen von Mn, Fe, Co und Ni, gehört zu den verdünnten magnetischen Hal-

bleitern (DMS) und wurde bereits experimentell hergestellt. Die von Cu2O abgeleiteten

Verbindungen zeigen vielfältige physikalische Eigenschaften wie z.B. Ferromagnetismus bei

Raumtemperatur sowie Spin-Glas Verhalten [D]. In Teil III stehen Metalle in der Perovskit-

Struktur im Zentrum der Aufmerksamkeit. Zuerst wird die Serie TCu3N mit T=Pd, Rh

und Ru untersucht [B]. Es wird gezeigt, dass die Lokalisierung von Elektronen und der

daraus resultierende Magnetismus auch in einem Material mit 4d Elektronen auftreten
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kann, ein Phänomen das extrem selten ist. Anschließend dienen AlCNi3 and GaCNi3 als

Beispiel dafür, wie eng Kohlenstoff-Stöchiometrie und Magnetismus miteinander verknüpft

sein können [C]. Schließlich werden die sogenannten Mo-Cluster Verbindungen (Proto-

typ GaMo4S8) untersucht. Deren interessante magnetische Eigenschaften ergeben sich

aus räumlich weit voneinander getrennten Mo4 Clustern und den daraus resultierenden

schmalen Mo 4d-Bändern [E]. Der letzte Teil der vorliegenden Arbeit ist ein kurzer Exkurs

in das für die Forschung sehr interessante Gebiet des nicht-kollinearen Magnetismus, wobei

die Serie TNMn3 mit T=Cu, Zn, Ga und Ge als Beispiel herangezogen wird.
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Part I

Introduction
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The history of magnetism reaches back far into the past. The first known application of a

magnetic material is the compass. The oldest description of such a device was discovered

in a chinese book of the year 1086. Nowadays a world without magnetic materials is not

to be imagined. Their applications range from magnetic layers in hard discs, permanent

magnets in electric motors to soft magnets in magnetic cores of transformers. Magnetism

not only has great influence in our everyday lives, it is also of central interest for many

research groups all over the world. The key issue of magnetism in solid state physics is

to understand, predict and finally improve the magnetic properties of certain materials

in order to improve or guarantee their applicability in particular devices. Examples for

active research fields are numerous. Recently researchers try to combine the properties of

conventional semiconductors with those of magnets. The aim is to develop a new kind of

electronics, so-called spin-based electronics or shorter spintronics. In spintronics materials

the electron spin in addition to its charge is actively used to process information. Also

magnetic thin films are in the center of attention nowadays. They are used to store infor-

mation on hard disks. One of their key quantity is the magnetic anisotropy, a measure for

the energy (or temperature) required to change the magnetization direcion of a single bit

stored within the magnetic layer. Many more examples for magnetic materials as part of

technologically important devices could be listed. Those mentioned above were just meant

to demonstrate that magnetism is not only a very interesting academic problem. It is also

of great technological importance now and probably even more in the future.
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Chapter 1

Basic theoretical background

Modern computational approaches are getting more and more successful in solving the

solid state many-body problem. However, up to now there is no complete, unified theory

of magnetism in matter. On the one hand this is due to the huge diversity of materials

we know nowadays, ranging from metals over (magnetic) semiconductors or insulators to

so-called strongly correlated and low-dimensional systems. On the other hand it is due

to the difficulty coming from the many-body problem itself. As it is outlined below, the

Schrödinger equation can only be solved after having performed many approximations. The

most frequently used one assumes the electrons to be independent, feeling each others only

in an averaged way. However, even though the computer can calculate many important

quantities like for example the charge density, spin density, core level spectra, optical

properties, etc. it is the scientist’s job to interpret the results. The difficulty is to reduce

the degrees of freedom in a way the results can be understood in terms of ”simpler”

models. Understanding is only possible if on the one hand the computational approach is

appropriate for the description of the material of interest, and on the other hand if the

scientist is already familiar with the huge number of phenomenological models being on

the market nowadays. The following introduction is by no means complete, it is intended

for making the reader familiar with the basic techniques.

1.1 The Schrödinger equation for a solid

One of the most important equations of theoretical solid state physics is the Schrödinger

equation of electrons and nuclei combined in the solid. Throughout the work a time-

independent formalism is used. This is not a serious restriction if one is interested in static

properties like e.g. chemical bonding and static magnetic properties, which usually are

measured on a time scale much larger than that of the internal degrees of freedom. In
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order to keep notation simple and to introduce as much physics as possible without going

deep into the mathematical formalism a non-relativistic description suitable for light ele-

ments (e.g. up to Z=50) is used. For the latter a fully relativistic treatment in the scope of

the Dirac equation is not absolutely necessary. The most important relativistic corrections

will be introduced in the context of the Hund rules.

In order to keep notation simpler, unless otherwise noted atomic units are used throughout

the text. That implies the quantum of action ~, the electron mass me, and the elementary

charge e to be unity. The naturally arising unit of energy is then called the Hartree (1

hartree = 27.208 eV) and the unit-length is called atomic unit (a.u.) or bohr, 1 bohr is

equivalent to the first Bohr radius (1a.u. = 0.529177×10−10 m).

The desired solution of the time-independent, non-relativistic Schrödinger equation is the

wavefunction Ψ = Ψ(r1, r2, · · · , rN ;R1,R2, · · · ,RM). It depends on the coordinates of all

N electrons and M nuclei, in a bulk typically involving 1019 to 1023 particles. The first

thing one knows about the solution is its symmetry due to electron exchange. In principle

one can not distinguish between electrons. This has the important consequence that the

wavefunction can either change sign upon an arbitrary exchange of 2 electrons (antisym-

metric character) or remain unchanged (symmetric character). The spin statistics theorem

says that the wavefunction has to be antisymmetric for half-spin particles (fermions) like

the electron, and symmetric for integer-spin particles (bosons). This information, however,

is not enough to make the problem tractable. The wavefunction still describes a system

of typically 1019 to 1023 atoms and similarly many electrons mutually depending on each

others. It is easy to accept that the full solution can not be obtained and approximations

are absolutely necessary.

If one is interested mainly in the electronic properties of solids (excluding e.g. superconduc-

tivity), the first simplification usually performed is the Born-Oppenheimer approximation.

An electron is approximately 1800 times lighter than a single proton or neutron. From

the viewpoint of an electron the nucleus is only very slowly moving and its movement in a

good approximation can be neglected at all. This is an enormous simplification because it

allows for a decomposition of the full Hamiltonian into an independent electronic and ionic

part. Without that separation electron-ion scattering would automatically be included also

in the defect free, perfect solid and the electron quantum number k would no longer be

conserved.

Thus the Hamilton Operator Ĥ of a solid containing N electrons and M nuclei (in atomic

4



units) is given by

Ĥ(ri; Zµ,Rµ) = T̂ + V̂Coul = −1

2

N∑
i=1

∇2
i +

1

2

N∑

i6=j

1

|ri − rj|

−
N∑

i=1

M∑
µ=1

Zµ

|ri −Rµ| +
1

2

M∑

µ 6=ν

ZµZν

|Rµ −Rν | . (1.1)

The first term on the right hand side is the kinetic energy, the second one the Coulomb

interaction between different electrons, followed by the Coulomb interaction between elec-

trons and nuclei and between nuclei. Due to the Born-Oppenheimer approximation the

ionic coordinates already enter the equation as fixed parameters. Thus one can neglect

the last and constant term in above equation. Of course, after having solved the electronic

problem this constant term will be added again in order to get the correct result for the

total energy. More conveniently the Hamilton operator is often written as

Ĥ(ri) = T̂ + V̂ext + V̂Coul =

−1

2

N∑
i=1

∇2
i +

N∑
i=1

vext(ri) +
1

2

N∑

i 6=j

w(|ri − rj|). (1.2)

This form will be referred to in the following. The second expression, vext, includes the

interaction of the electrons with all M nuclei and (if present) with an external electric field.

The third term is the electron-electron Coulomb interaction, equivalent to the second term

on the right hand side of equation 1.1.

1.2 Consequences of periodicity

Above simplifications are still not enough to solve the many-body Schrödinger equation.

We thus assume that the solids we are interested in are perfect single crystals or at least

polycrystalline materials, with physical properties mainly determined by regions with a

highly symmetric arrangement of atoms (neglecting grain boundaries, etc.). Consequently

also the electrons feel a highly symmetric potential vext. A perfect single crystal can

be divided into regions in space repeating each others. These unit cells can formally be

accounted for by introducing primitive lattice translations Rj = lja + mjb + njc. In three

dimensions the lattice must belong to one out of the 14 Bravais lattices. The Bravais

lattices have one conceptual advantage. Within the proper basis of the Bravais lattice the

symmetry operations of the solid can be written as matrices containing simplify 0,+1 and

-1 as elements. For a proper characterization of a material in addition to the lattice one

5



needs to specify the basis, the positions of the atoms within one unit cell relative to its

origin. The more complex a material is the higher is the number of basis atoms within one

cell. It is important to keep in mind that there are always several ways to describe the

solid, usually the simplest combination of lattice and basis is used. Deviding the solid into

repeating, identical unit cells has the advantage that one needs to consider only one out of

1019 to 1023 cells. The rest of the solid, which is assumed to be a perfect single-crystal from

now on, can be neglected because it contributes no significant information. Mathematically

this is expressed in Bloch’s theorem:

vext(r + Rj) = vext(r), Rj = lja + mjb + njc −→
Ψn k(r + Rj) = eikRj Ψn k(r). (1.3)

The only difference in the wavefunction when going from one unit cell to the next can be a

phase factor. This ensures that the charge density, which is insensitive to the phase factor,

has the full symmetry of the crystal. The only requirement is that Rj = lja + mjb + njc

is a lattice translation, mapping atoms of one unit cell to equivalent ones in other cells.

The next important step is to fix the boundary conditions. For the simplest case of free

electrons it would be possible to demand Ψn k(r) = 0 at the border of the solid. However,

this would destroy the above made assumption of translational symmetry and k would

no longer be a conserved quantum number. Thus one usually assumes periodic boundary

consitions:

Ψn k(r + N1a) = Ψn k(r) = Ψn k(r + N2b) = Ψn k(r + N3c) (1.4)

The total number of unit cells is N = N1N2N3, a, b, c are the primitive translations

building up the lattice. Perfect periodicity leads to special solutions of the Schrödinger

equation, so-called Bloch waves. In their most general form they can be expressed as

Ψn k(r) =
1√
V

un k(r) eikr, (1.5)

un k(r) is a plane wave coefficient that in its most general form depends on the coordinate r.

The phase factor k is called the electron wavenumber or electron quasi-momentum and is a

conserved quantity. This is valid as long as there are no terms in the Hamiltonian coupling

electronic states with different k. Periodicity not only leads to the formal division of the

crystal into unit cells, also in reciprocal space a lattice can be defined with the end points

Gj = ujA + vjB + wjC. A, B, and C are the primitive translation vectors connected to

the real space vectors a,b, and c via

A = 2π
b× c

a · (b× c)
, B = 2π

c× a

a · (b× c)
, C = 2π

a× b

a · (b× c)
. (1.6)

6



The reciprocal lattice is very useful because all quantities having the full symmetry of

the crystal (e.g. charge density, potential) can be expanded in a Fourier series with a

sum extending only over reciprocal lattice vectors Gj. Moreover, all relevant information

regarding E(k) can be folded back into the first Brillouin zone due to E(k) = E(k + Gj)

for all j. Moreover, if time-inversion symmetry holds one can further assume only positive

k because of E(k) = E(−k).

1.3 Electrons in a weakly varying potential

In the free electron model the potentials of the atomic cores are completely neglected and

so are the electron-electron interactions. The solutions of the free electron Schrödinger

equation,

−1

2
4Ψ(r) = EΨ(r), (1.7)

are plane waves normalized to the volume V . The solutions are the eigenstates of the

momentum operator ∇/i:

Ψ(r) =
1√
V

eikr. (1.8)

The free electron dispersion relation is a parabola, E = k2

2
. By imposing periodicity and

introducing unit cells, even though there is no potential which would really motivate this

step, one can plot the simplest form of a bandstructure possible. This is done by simply

folding back the free electron bands into the (first) Brillouin zone, of course upon taking

into account the correct crystal structure and hence the correct form of the Brillouin zone.

This free electron empty lattice model can easily be improved by treating the nuclear po-

tentials as a weak perturbation. This ansatz, however, is at best justified in a few cases

like Cu or Al, for which more sophisticated approaches like the orthogonalized plane wave

(OPW) technique and the pseudopotential (PP) approach showed that screening of al-

most fully occupied shells significantly reduces the positive core potentials. In those cases

screening can be sufficient for free-electron like behavior to occur, explaining why Cu (3d10

+ 1× 4s) and Al (3s2 + 1× 3p) with only one electron outside a filled shell roughly obey

this description.

However, the perturbative treatment of V (r) as a whole has turned out to be rather dis-

appointing in general. In particular for materials with more strongly varying potentials

(e.g. semiconductors) it is more successful to look at a particular region of the bandstruc-

ture in which E(k) has an extremum, and to develop the energy around this extremum.

This method is called kp method and usually applied to semiconductors. The name be-

comes obvious when inserting the general Bloch wave into the Schrödinger equation for
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free electrons plus external potential vext:

−1

2
4 un k(r) + [vext(r) + k · p] un k(r) = Enun k(r). (1.9)

The presence of the term k ·p has important consequences. The symmetry of this ”pseudo”

Schrödinger equation for the periodic part of the solution, un k(r), depends on k and hence

on the direction of the running wave of the electron (simply speaking). This k depen-

dency reminds of the hydrogen atom, where spherical symmetry allows a decomposition

of angular and radial differential equations. The coupling between both equations is due

to the centrifugal term -l(l+1)/r2 in the radial equation, coupling the spherical symme-

try (l-quantum number) to the energy. Since symmetry depends on the direction of k,

bandstructure plots En(k) are usually performed for high symmetry directions.

1.4 Tightly bound electrons

The opposite border-case of nearly free electrons are almost localized, tightly bound elec-

trons. This behavior is found if the wavefunction overlap of neighboring atoms is sufficiently

small, e.g. for d or f-electrons with small radial expansion compared to internuclear dis-

tances. The tight binding approximation so as the free electron approximation neglects

electron-electron interactions. The kinetic energy and the interaction with the external

potential arising from the atomic cores are included. It is quite natural to start from

solutions of the isolated atom centered at Rl, φ(r −Rl), and to combine these solutions

linearly in the solid,

Ψn k(r) =
∑

l

eikRl φ(r−Rl). (1.10)

The functions φ(r−Rl) are called Wannier functions and the phase factor is necessary in

order to fullfill the Bloch condition. While the Schrödinger equation for the isolated atom

(one band, band index omitted) is

[
−1

2
4+U(r)

]
φ(r) = E0φ(r), (1.11)

the solution of the whole crystal is assumed to be

[
−1

2
4+V (r)

]
φ(r) = Eφ(r), (1.12)

with the crystal potential denoted as V (r). One now can evaluate the expectation value

of the energy with respect to the basis functions 1.10 and express the result in terms of
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(V -U), the deviation of the true crystal potential from the simple, combined atomic one.

This yields

E = E0 +
1

N

∑
R=0,nn

eikR

∫
φ∗(r−R)(V (r)− U(r))φ(r) d3r. (1.13)

Since the atomic solutions (Wannier functions) are spatially localized, the summation over

R extends usually only up to the nearest or next nearest neighborhood. This is the

main advantage of the tight binding technique. The matrix of the Hamiltonian becomes

larger the more atomic shells and neighbor-shells are included. The eigenvalues are simply

determined by diagonalizing the Hamilton matrix, which has to be done separately for

each k of interest. The summation in equ. 1.13 comprises two types of integrals, on-site

integrals

−A =

∫
φ∗(r)(V (r)− U(r))φ(r) d3r, (1.14)

and so-called ”hopping” integrals

−B =

∫
φ∗(r−R)(V (r)− U(r))φ(r) d3r. (1.15)

While the former are a measure of the crystal field effect, reflecting the change in on-site

energy due to the presence of neighboring atoms, the hopping integrals are proportional

to the overlap of the wavefunctions centered on two different sites. While parameter A

changes the energetic position of a band, parameter B determines the band-width. Large

B means large overlap and broad bands. There are two reasons for the occurrance of a

dispersionless band having B=0. Either the sites (r−R) and (r) are too far apart for any

interaction, or the corresponding wavefunctions are orthogonal. This means that symmetry

arguments (the sign of the wave-function) lead to a cancellation of the integral even though

there is charge overlap (e.g. one s and one pz orbital shifted by (1,0,0)). One should be

aware of the fact that while A contains one and two center integrals, B even contains

three center integrals. In the latter, φ∗,(V − U), and φ are centered on three different

sites. Three-center integrals are often neglected, also in the present work the Slater-Koster

technique [1], a well-known two-center approximation, has been applied. Above integrals

are usually not calculated but fitted to band-structure results obtained by more accurate

but much slower methods. Once the matrix elements are parameterized, the method is

very fast and if sufficiently many neighbors are included also surprisingly accurate.

1.5 The variational principle and Hartree-Fock theory

Both border-cases mentioned above neglected electron-electron interactions. Even though

the empirical tight binding parameters can be adopted to yield good results even for com-
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plex materials, the agreement is due to the fact that the tight binding parameters absorb

the many body effects. This, however, is not very physical because it is desired to resolve

as many contributions to the total energy as possible. The methods discussed from now

on have the advantage that they exploit the extremely useful quantum mechanically vari-

ational principle. It says that if the Hamiltonian Ĥ of a system is known, the expectation

value Et of Ĥ using trial wavefunctions |Ψt〉 as basis is always larger or equal the energy

of the true ground state E:

E ≤ 〈Ψt|Ĥ|Ψt〉 (1.16)

This opens the door to computer ab-initio methods. The only input parameters are the

types of atoms involved and their position within the unit cell. The orbital occupation

(Hartree Fock) or the charge density (Density functional theory, see later) is successively

adopted until the minimal energy configuration is found.

One widely used technique to solve the many-body Schrödinger equation including electron-

electron interactions explicitly is the Hartree-Fock (HF) self consistent field method. Even

though the electron spin is not included from the beginning, HF theory is sophisticated

enough for magnetism to occur. Starting point is the Hamiltonian 1.2. Since the correct

wave-function has to be antisymmetric, a possible ansatz for a trial wave function would

be

ΨHF (r1, r2, · · · , rN) =
1

N !

∑
s

(−1)s

N∏
i=1

Φs,i(ri), (1.17)

the sum runs over all possible N ! permutations s. The Φ typically are a set of localized

wavefunctions such as Slater or Gaussian type orbitals. The antisymmetric form allows a

formulation of the wave-function also as a so-called Slater determinant. In HF theory one

asks for the best antisymmetric product wave-function (or Slater determinant) approxi-

mating the true N-particle ground state as that one which minimizes the expectation value

of the Hamiltonian. In its simplest form (restricted HF technique) the Slater determinant

of N electrons is built up from N/2 orbitals with 2 electrons each, being in a S=0 singulett

configuration. This is necessary if both electrons are assumed to be in the same quantum

state. The expectation value of the Hamiltonian becomes

EHF = 〈ΨHF | Ĥ |ΨHF 〉 = 2

N/2∑
i=1

〈i| ĥ |i〉+ 2

N/2∑
i,j=1

〈ij|w |ij〉 −
N/2∑
i,j=1

〈ij|w |ji〉 , (1.18)

ĥ consists of the kinetic energy and the potential energy of one electron in the external

potential vext. Consequently the first term on the right hand side of equation 1.18 is

an expectation value of a one-particle operator. The next two contributions in 1.18 are

expectation values of the electron-electron interaction involving two particles, the first
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one is called Hartree term, the second one exchange term. Explicitly writing out above

abbreviations results in the following:

〈ij|w |ij〉 =

∫
d3rid

3rj Φ∗
i (ri)Φ

∗
j(rj)

1

|ri − rj|Φi(ri)Φj(rj)

〈ij|w |ji〉 =

∫
d3rid

3rj Φ∗
i (ri)Φ

∗
j(rj)

1

|ri − rj|Φj(ri)Φi(rj) (1.19)

While the Hartree term (first line) can be understood classically as the Coulomb inter-

action of the charge densities of two electrons, the exchange term (second line) is a pure

quantum effect and as such can not be understood classically. It is the starting point for

the discussion of magnetism. Even though HF theory starts initially without any explicit

spin-dependent contribution to the Hamiltonian, the Pauli principle in combination with

the indistinguishability of electrons leads to the exchange term, the so-called direct ex-

change between overlapping wavefunctions. It is responsible e.g. for the triplet ground

state of the O2 molecule. However, HF has two major drawbacks. First, it is computa-

tionally expensive because the expression for the exchange energy is non-local. This means

that the exchange energy for one orbital depends on all the other orbitals. The second

major problem is that HF in its original form does not include electron-electron correla-

tions. These correlations are defined as the energy difference between the result of a single

determinant HF calculation and the exact electronic energy determined e.g. via Quantum

monte carlo techniques. Correlations have the effect that the electrons tend to avoid each

others more than HF theory would predict and thus correlations reduce the energy of the

system. They always play a role when electrons do not feel an average potential of all

the other electrons in the neighborhood but a potential of electrons belonging to distinct

orbitals (e.g. the same d/f orbital or a spatially localized bonding orbital). This neglect of

correlation energy is the reason why single-determinant HF fails to describe metals. One

prominent failure is the free electron gas which is predicted to have a vanishing density

of states (DOS) at the Fermi energy. On the other side, HF gives good results for atoms

and molecules, where screening is not so pronounced. In order to account for correlations

in HF, further determinants, in which one orbital has been replaced by a corresponding

excited state orbital, have to be used. The addition of further determinants increases the

variational freedom and hence reduces the total energy of the system. This technique is

called configuration interaction (CI) and belongs to so-called post-HF methods.

1.6 Density matrices and the Fermi-hole

While HF is a method designed for molecules and weakly screened materials, one of the

most successful ways to calculate the electronic properties of metals is Density Functional
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theory (DFT). The concept is based on the idea of describing as system mainly using its

charge density as the fundamental quantity, instead of orbitals like in HF. This speeds up

the calculation, because the charge density is a local quantity. Before DFT can be discussed,

it is useful to start with Thomas-Fermi theory and density matrices. The reduced single

particle density matrices related to a pure N-particle wave-function is defined as

γ1(x; x′) = N

∫
dx2 . . . dxN Ψ(x, x2, . . . , xN)Ψ∗(x′, x2, . . . , xN), (1.20)

where x = (r; s) combines space and spin coordinates [2]. For the spin-independent form

one has to sum over the spin

γ1(r, r
′) =

∑
s

γ1(r, s; r
′, s). (1.21)

The prefactor N ensures that the diagonal of γ1(r, s; r
′, s) with r = r′ equals the electron

density n(r). In analogy the (spin dependent) two-particle density matrix can be defined

as

γ2(x1, x2; x
′
1, x

′
2) =

N(N − 1)

2!

∫
dx3 . . . dxN Ψ(x1, x2, x3 . . . , xN)Ψ∗(x′1, x

′
2, x3 . . . , xN).

(1.22)

It is related to the the single-particle density via the relation

γ1(x; x′) =
2

N − 1

∫
dx2 γ2(x, x2; x

′, x2). (1.23)

The pair density n2(x1, x2) is the diagonal of the two-particle density matrix γ2 and gives

the probability density to find one particle at x1 and another one at x2. Within a fixed

basis of single-particle spin-orbitals Φi(x) (like in HF) the Heisenberg representation of the

one particle density matrix is

〈i|γ1|j〉 =

∫
dxdx′ Φ?

i (x)γ1(x, x′)Φj(x
′). (1.24)

Finally two different pair correlation functions can be defined,

g(r1, r2) =
n2(r1, r2)

n(r1)n(r2)
, h(r1, r1) = n2(r1, r2)− n(r1)n(r2). (1.25)

Assuming that Ψ in equ. 1.20 and 1.22 is an anti-symmetrized product of plane waves (no

interactions, only symmetry constraints), the pair correlation functions exhibit interesting

properties. For large distances |r1 − r2|, g goes to unity and h goes to zero. This is the

limit in which the electons do not ”feel” each others any more and become independent.
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The other limit, g(r1 = r2) = 1/2, reflects the Pauli exclusion principle which has been

put into the symmetry constraint of the wave-function. If there is an electron at r1, no

other electron with the same spin can be at r2 = r1. This so-called Fermi-hole in the pair

correlation function g(r = |r1 − r2|) takes the form

g(r) = 1− 9

2

[
sin(kfr)− kfrcos(kfr)

(kfr)3

]2

. (1.26)

g(r) increases from 1/2 at r = 0 to 1, weakly oscillating when approaching the limit

g(r) →1. Using above definitions the expectation values of quantum mechanical operators

can conveniently be defined now. Expectation values of one particle operators such as the

kinetic energy can be expressed by

〈T̂ 〉 = −1

2

∫
d3r [4γ1(r; r

′), ]r′=r (1.27)

and those for two-particle Coulomb interactions such as w(ri, rj) (1.2) yield

〈ŵ〉 =
1

2

∫
d3rd3r′ w(r, r′)n2(r, r

′). (1.28)

Since the Schrödinger equation consists only of one- and two- particle operators, the knowl-

edge of γ1 and n2 suffices to calculate the total energy of a system as the expectation value

of its Hamiltonian. The decomposition of 1.2 can now be performed:

E = 〈Ĥ〉 = −1

2

∫
d3r [4γ1(r, r

′)]r′=r +

+

∫
dx vext(x)n(x) +

+
1

2

∫
d3rd3r′ n(r′)w(|r′ − r|)n(r) +

+
1

2

∫
d3rd3r′ w(|r′ − r|)h(r′, r) =

= Ekin + Epot + EH + EXC . (1.29)

The energy can be decomposed into the kinetic energy Ekin, the interaction energy with an

external potential due to ionic cores or an applied external field Epot, the classical Hartree

energy EH , and the exchange and correlation energy EXC .

1.7 Density functional theory (DFT)

The first approach based completely on the density n(r) and not on either two-particle

density matrices or orbitals was Thomas-Fermi theory [3, 4]. In that approximation ex-

change interactions were neglected. Since the kinetic energy is the only contribution that
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is not explicitly expressed in terms of the electron density (see equ. 1.29), Thomas and

Fermi approximated εkin of the interacting system through an expression valid for the

homogeneous, interaction-free Fermi-gas:

εkin = CF n(r)2/3 with CF =
3

10
(3π2)2/3 ≈ 2.8712 (1.30)

Ekin ≈
∫

d3r n(r)εkin(r) = CF

∫
d3r n5/3(r) (1.31)

This simplification, however, turned out to be the reason why Thomas-Fermi theory is

neither able to describe the shell structure of atoms nor negatively charged ions at all.

The breakthrough in finding a suitable parameterization for the energy as a functional of

electron density was Density functional theory (DFT)[5]. It is based on two theorems of

Hohenberg and Kohn [6]. The first HK theorem states that the external potential vext is

apart from a trivial constant uniquely determined by the electron density n(r). The use

of this is to transform every functional dependence on vext into a functional dependence

on n(r) via vext[n(r)]. The first HK theorem allows to define a ”universal” functional

not depending on the external potential and hence not on any particular material-specific

quantity:

E[n] = T [n] + vext[n] + w[n] = FHK [n] +

∫
n(r)vext(r)d

3r (1.32)

The second HK theorem proves that trial densities n(r), if they are correctly normalized

to the total number N of electrons, N =
∫

n(r)d3r, always yield energies Etrial higher or

equal to that determined via the true ground state density n0(r):

E0 ≤ Etrial[n]. (1.33)

The HK theorems open the door to new techniques in solving the many-body Hamiltonian.

By exploiting the one to one correspondence between the electron density n(r) and the

many-body wave-function Ψ(x1, x2, . . . , xn) of groundstates (via the potential, HK-1), one

tries to express the ground state energy E0 through the ground-state density n0(r) instead

of using the two particle density matrix. Even though the Hohenberg Kohn theorems give

no information of how the energy functional E[n(r)] can be approximated, the theorems

prove its existence and its variational character.

Kohn and Sham suggested to decompose the HK functional FHK as follows:

FHK [n] = T [n] + EH [n] + EXC [n]. (1.34)

Their great idea was to map the real system onto a hypothetical system of non-interacting

electrons having a kinetic energy T [n] of non-interacting electrons. EH [n] is the Hartree

energy as introduced in 1.29 and EXC is now defined as the exchange and correlation energy
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plus the interaction-part of the kinetic energy. This quantity will be referred to as (Kohn-

Sham) exchange-correlation energy EXC in the following. Assuming the density n(r) =∑N
i=1 φ?

i (x)φi(x) of a determinantal state Ψ0(x1, . . . , xN) = 1√
N

det||φi(xk)||, 〈φi|φj〉 = δij

the Kohn-Sham (KS) equations are given as

(
−1

2
4 +veff (x)

)
φi(x) = φi(x)εi, veff = vext + vH + vXC . (1.35)

The Kohn-Sham exchange correlation potential vXC is defined as

vXC =
δEXC

δn(x)
. (1.36)

Equation 1.35 is a single-particle equation with the external potential vext replaced by the

effective potential veff . The latter depends on the KS orbitals φi so that the problem must

be solved iteratively (self-consistently) similar to the HF equations. The whole success

of DFT now depends on the quality of the exchange-correlation energy EXC . It is a

functional of the electron density and a priori unknown. It can easily be generalized to

the spin-polarized case if the spin density matrix is diagonal, meaning that spin-up and

spin-down bands do not mix. One of the oldest but still very successful approximation

is the local density approximation (LDA). The exchange-correlation energy is assumed to

be a local function and not a functional of the electron density n(r). EXC is obtained by

integrating the density n(r) over the whole system, weighted locally with εxc, the exchange

correlation energy of a interacting, homogeneous electron gas having the same electron

density as the real system.

ELDA
XC =

∫
n(r)εxc(n(r))d3r. (1.37)

The exchange-correlation energy for the free electron gas, εxc, consists of an exchange part

εx that can exactly be determined from Hartree-Fock

εx = −3

(
3

4π

)1/3
1

n
(n

4/3
↑ + n

4/3
↓ ), (1.38)

and the correlation part εc that can be determined only numerically, although to a rather

high accuracy. The LDA is exact in the limit of slowly-varying and high electron densi-

ties. In real systems LDA tends to overbind materials, meaning that lattice constants are

underestimated and Bulk moduli are overestimated. The sizes of the magnetic moments

in weak, itinerant ferromagnets calculated at the equilibrium lattice constant usually are

underestimated within LDA. One historically important case is Fe, which comes out fcc
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and non-magnetic in LDA instead of bcc and ferromagnetic. This led to several corrections

of LDA, most important is the generalized gradient approximation (GGA).

EGGA
XC =

∫
f(n↑, n↓,5n↑,5n↓)d3r. (1.39)

GGA is better suited for 3d transition metals, however, in general one should compare

both approximations and rely on that one being in better agreement with experiment.

The gain of above simplifications is enormous. Instead of a non-local exchange operator like

in HF theory one can now express the total energy of the system as a local (or semi-local

in the case of GGA) function of its density. Moreover, DFT allows to take into account

correlations that are not present within single-determinant HF techniques. This is because

one can approximate εxc for the interacting, free electron gas much better than plain HF

is able to. A plausible reason for the success of the local character of DFT is screening.

Even though the Coulomb interaction reaches to infinity, the electron is screened by a

surrounding electron cloud. The effective potential vTF can be expressed e.g. through the

Thomas Fermi screening length λTF = (π/12)1/3r
1/2
s with 4πr3

s/3 being the average volume

per atom:

vTF = −2Z

r
e−r/λTF . (1.40)

This potential is much-less far-reaching than the bare Coulomb potential.

One drawback of DFT in particular for non-metallic systems is that the KS orbitals φi

as well as the energy eigenvalues not necessarily have a physical meaning. The energy

eigenvalues are not quasi-particle energies in the sense of many-body perturbation theory.

As mentioned above LDA is exact for either slowly varying densities or high densities. In

the language of many-body theory DFT is an approximation for the self energy Σ like

ε(k) = k2 + Σ(kF , E(k)), (1.41)

being accurate if the variations of Σ with respect to k and the energy are small [7]. This

is equivalent to postulating that the effective mass of the quasi-particles m? should not be

much enhanced compared to m because m?/m can be written as

m?

m
=

1− ∂Σ(k,ω)
∂ω

1 + m
kF

∂Σ(k,ω)
∂k

. (1.42)

However, one has to distinguish between the quality of DFT eigenvalues (e.g. the band-

gap) and the quality of DFT total energies [8]. It is well-known that the total energies,

determining e.g. lattice constants or the Bulk moduli, are in very good agreement with

experiment also for semiconductors, insulators and materials with more localized and ”cor-

related” electrons. Moreover, one usually is not too far off when interpreting the calculated
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eigenvalues as excitation energies. The energy gaps of semiconductors and insulators cal-

culated within DFT typically come out too small by about 40%.

There are several approaches trying to improve upon DFT in the case of strong electron

localization and hence strong variations of the electron density. One of the most natural

ways to address this problem is the self-interaction-correction (SIC) [9]. While HF-theory

is self-interaction free because direct and exchange Coulomb interaction exactly cancel

each others, in LDA and GGA the self-interaction is only partially canceled. The error is

the larger the more localized the orbitals become. A similar approach trying to improve

the description of localized orbitals is LDA+U [10]. The technique exploits the fact that

HF is better suited for the description of the so-called atomic limit [11] and a penalty

functional is introduced that energetically disfavors non-integer occupations of certain,

localized orbitals. Typically the parameter U is situated between 2eV and 8 eV. Within so-

called constrained LDA [12] U can in principle be determined through the energy necessary

to change the orbital occupation while at the same time isolating the orbital of interest

from the environment. By construction U is not variational and can not be determined by

minimizing the total energy w.r.t. U. In order to improve the band-gap for semiconductors

a rather successful technique is to mix the DFT exchange-correlation energy with a small

portion (usually 1/3) of exact Hartree-Fock exchange [13]. These functionals are called

hybrid functionals (e.g. B3LYP). A completely different way to improve upon the gap in

semiconductors is to explicitly calculate the single partice Green’s function and the self

energy Σ within the RPA approximation (L. Hedin, [14]). Even though this approach is

very time-consuming it seems to yield very good results for quasiparticle energies (e.g.

[15]), provided that very high-lying, unoccupied states are treated with high accuracy.

1.8 Computational approaches

Most computational approaches expand charge density and potential in a suitable set of

functions φj(r). Suitable means physically motivated, e.g. plane waves for slowly varying

potentials and localized functions for atomic-like potentials. In a general form the Bloch

wave Ψk(r) can be written as

Ψk(r) =
∑

j

aj(k)φj(r). (1.43)

The expansion coefficients aj(k) are obtained in a variational procedure leading to the

secular equation:

∑
j

[∫
φ?

i (r)Hφj(r)d
3r − εk

∫
φ?

i (r)φj(r)d
3r

]
aj(k) = 0 (1.44)
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H denotes the KS single-particle Hamiltonian. The solutions are found by setting the

determinant (in [ ] brackets) to zero and finding the roots. In the computer this is done

in diagonalizing a (huge) matrix. If the functions φi(r) do not depend on the eigenvalues

εk, one faces a linear eigenvalue problem and the corresponding method is called linearized

method [16]. Most approaches divide the real space unit cell into two regions, the core

or also called muffin tin (MT) regions around the atomic sites and the rest of the unit

cell, the interstitial (IS). The reason is that plane waves describe the interstitial well but

their strong oscillations close to the nuclei require the inclusion of a huge number of plane

waves up to very high energies. On the other hand, local basis sets slowly converge for e.g.

far-reaching s- or p-states.

In the Augmented Plane Wave (APW) method the basis functions are twofold: Plane

waves are used in the interstitial and spherical harmonics Ylm inside the MT-spheres:

IS: Ψ(r) =
∑
Gi

ei(k+Gi)·r, (1.45)

MTs: Ψ(r) =
∑

lm

AlmRl(r) Ylm(θ, φ),

The functions Rlm(r) are solutions of the radial Schrödinger equation with energy E regular

at the origin but usually not vanishing (because continued) for r →∞:

− 1

2r2

d

dr

[
r2dRl(r)

dr

]
+

[
l(l + 1)

2r2
+ V (r)

]
Rl(r) = ERl(r). (1.46)

The expansion coefficients Alm are found by matching the solutions inside the MTs to the

plane waves outside, yielding the necessary boundary condition for the solutions of the

radial equation. The APW method is not a linear method because the basis set is energy

dependent through the radial equation. Within the domain of LDA, the APW method can

be made arbitrarily exact. The price to pay is its computational effort. For this purpose

the APW method has been linearized. In the LAPW method the energy in equ. 1.46 enters

as a parameter Ep that is fixed at the approximate band center. The basis set becomes

energy-independent, but one has to include a correction term including the derivative of

the radial function with respect to the energy Ṙl(r):

Rl(r, E) = Rl(r, Ep) + (E − Ep)Ṙl(r, Ep). (1.47)

The solutions inside the MTs are now given as

Ψ(r) =
∑

lm

[
AlmRl(r, Ep) + BlmṘl(r, Ep)

]
Ylm(θ, φ), (1.48)
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The MT wavefunctions have to match continuously in value and first derivative to the

plain waves outside. This allows to determine the coefficients Blm. The LAPW method

is usually a very good approximation to the APW one, only in the case energies far from

the linearization energy are considered it can differ significantly from the APW. This

problem can be circumvented by including several energy windows for one and the same

l quantum number. Regarding the potential several levels of sophistication exist. In the

(oldest) muffin-tin approximation the series expansion of the potential is truncated early:

The potential is assumed to be constant in the IS and spherical symmetric within the

MTs. Nowadays full-potential approaches are used (FLAPW, [17, 18]) imposing no shape

restriction on the potential. In principle one could expand it up to arbitrary high partial

waves l. Usually l=8 is enough, only in cases of high crystal symmetry the series should

be truncated later because the first correction terms are already those for l=8.

An alternative to the (all-electron) FLAPW method is the pseudopotential method

using exclusively plane waves as basis set. This can only be done efficiently if the core po-

tential has been substituted by a softer ”pseudo-potential”, calculated from the constraint

that the resulting valence-electron wave-function Ψpseudo(r) must agree with the exact one

Ψexact(r) outside a core radius rcore. There exist several types of implementations. Norm-

conserving pseudopotentials must accumulate the same valence electron charge inside rcore

as the exact potential does, ultra-soft pseudopotentials relax this condition and allow for

larger core radii rcore and fewer plane-waves. The PAW (projector-augmented wave) tech-

nique is the most elegant one. It combines the augmentation concept of the all-electron

methods with the plane wave formalism ([19, 20, 21]). During the generation of PAW-

potentials additionally so-called projectors are stored. These projectors are only defined

inside rcore, the augmentation region, and are used during the solid-state calculation to re-

store the correct l partial waves and hence the correct all-electron wave-function inside of

rcore. As a consequence, not only the error introduced by the neglect of norm-conservation

is eliminated, also the restoration of the correct form of the wave-function in the augmen-

tation region via a radial grid make the PAW method equivalent to all-electron methods.
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Chapter 2

Magnetism

2.1 The origin of magnetism

In classical electrodynamics the sources of magnetic fields are either time-dependent elec-

trical fields E or currents I. If an electrical current flows through a straight wire running

along the z-axis from −∞ to ∞, a magnetic field H given by

H =
µ0

2π

I

r
êφ (SI units) (2.1)

is created. This H-field depends only on the radial distance to the wire r = (x2+y2)1/2. The

constant µ0 is the permeability of vacuum (µ0 = 4π10−7 N/A2) and H has the dimension

N/(Am)=Vs/m2=1 Tesla (T). If the region inside a material is considered, the quantity

H must be substituted by the more physical magnetic induction B. Only in vacuum

both quantities are equivalent (up to a factor), in matter B additionally includes the

magnetization of the material, M:

B = µ0(H + M) (SI units), (2.2)

The magnetization is also defined as the derivative of the free energy F with respect to

the external field H:

M = − ∂F

∂H
. (2.3)

In the limit of weak external fields the strength of the material’s response to an applied

field H is usually characterized by the magnetic susceptibility χ:

χ =
M

H
. (2.4)

In its most general form χ is a tensor because both, H and M, are vectors. However,
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this will be neglected and M is assumed to be either parallel (χ positive) or antiparallel

(χ negative) to the applied field. It is further assumed that the probing magnetic field

is constant in space and time, which is equivalent to neglecting the wavevector- q and

frequency- ω dependence of χ = χ(q, ω).

Even though the origin of magnetism can somehow be understood classically, magnetism

can be fully understood only if quantum mechanics is applied. This has first been pointed

out by van Leeuwen, who showed that the classical partition function Zc is independent of

the applied magnetic field H. This makes a finite magnetization M = −(∂F )/(∂H) with

the free energy F = −kBT lnZc classically impossible, even in the presence of an external

magnetic field.

2.2 The atomic limit

In the simplest case of the isolated hydrogen atom the single electron is subject to a

potential having full rotational symmetry. The electron’s orbital quantum number L is

conserved and quantized in units of ~. It is hence plausible that also the magnetic moment

µ caused by its orbital motion is quantized. The proportionality between the orbital

magnetic moment µ and the angular orbital moment L can be determined classically via

the current of the ”orbiting” electron and its resulting magnetic moment. It is given as

µ = gLµBL. (2.5)

The gyromagnetic ratio gL for orbital motion is -1, the quantity

µB =
e~

2mec
(SI) =

1

2c
(a.u.) = 5.78838 10−5eV/T (2.6)

is the so-called Bohr magneton, the smallest possible unit of magnetization. This, how-

ever, is not the full story. When solving the Dirac equation one finds that the electron

additionally has an intrinsic angular moment with ~/2 quantization, the electron spin S.

This is the second source of magnetism. In contrast to orbital motion the spin S has an

”anomalous” gyromagnetic ratio gS of roughly -2. The change in the Hamiltonian ∆H for

an isolated atom due to the presence of an external magnetic field Hext (assuming trans-

verse gauge (div A=0) and a homogeneous magnetic field Hext pointing in the z-direction)

is given (in SI) as [22]:

∆H = µB(L + 2S)Hext +
e2

8mec2

∑
i

(x2
i + y2

i ). (2.7)

The prefactor 2 for S is again the gyromagnetic ratio of the spin. The first term is the

Zeeman term. It is the source of paramagnetism (positive χ). The second contribution
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is the origin of diamagnetism, giving rise to a small but negative susceptibility χ. The

summation runs over all electrons. The quantity (x2
i +y2

i ) is related to the average distance

between the electrons and the nucleus. This contribution is the classical analog of Lenz’

rule. The H field slightly changes the electron’s orbital motion, similar to a field that via

induction reduces the current that generated it. Due to the smallness of the Bohr magneton

µB and the term e2/(8mc2) the field induced energy shifts ∆En are small. Second order

perturbation theory yields (SI)

∆En = µBH 〈n|L + 2S|n〉+
e2

8mec2
H2 〈n|

∑
i

(x2
i + y2

i )|n〉+
∑

n′ 6=n

| 〈n|µBH(L + 2S)|n′〉 |2
En − En′

.

(2.8)

The most important contribution is the Zeeman term because it is linear in H, however, it is

only present if the electron shell has a non-vanishing L or S. The diamagnetic contribution

is always present but very weak. The third term is the Van Vleck contribution. It involves

excited states and thus can give rise to a weak response χ in the case the ground-state is

non-magnetic and the first excited state is thermally accessible.

The crucial question now is how to add the spins Si and the orbital momenta Li of

the individual electrons for a many-electron atom. In order to answer this it is useful to

discuss the relativistic corrections arising from the solution of the Dirac equation. With

exception of the electron spin S three further corrections can be identified. Most easy to

understand is the relativistic mass-enhancement due to the electron’s velocity. Instead of

the constant electron mass me a relativistic, velocity-dependent mass Mrel appears: Mrel =

me +ε−mec
2−vext/(2c

2). Moreover, two terms without non-relativistic counterparts show

up: The Darwin term, proportional to dV/dr dg/dr, g(r) denoting the radial wavefunction,

and the spin-orbit or also called LS coupling, being proportional to 1/r dV/dr L · S. If

the LS coupling is weak, the quantum numbers L and S can in good approximation be

considered as conserved. If the LS-coupling is added to the (non-relativistic) Schrödinger

equation as a perturbation, it is the only term that couples the spin S to the lattice. Hence

the LS-term is responsible for the magnetocrystalline anisotropy. For light atoms with weak

spin-orbit coupling the appropriate coupling is thus the Russel Saunders coupling. Li and

Si are first added up to yield a resulting L and S and then combined to a total angular

moment J. The ground-sates of an isolated atom is given by the three Hund rules. The

ground state . . .

1. has the largest value of the total spin S.

2. has the largest value of the total orbital angular momentum L permitted by the first

rule.
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3. The total angular moment is J=| L−S | for less than half filled shells, and J=| L+S |
for more than half filled shells.

The first Hund rule is the strongest restriction. Its origin is exchange, favoring electrons

that avoid each others as much as possible. This is easiest if they have like-spin because

then the Pauli principle automatically excludes double occupations of an orbital. The

second Hund rule is already a weaker restriction. Using a strongly simplified classical

analog one could say that in a state with maximum total L the electrons orbit in the same

sense around the nucleus thus avoiding each others best. The third rule is a consequence

of spin-orbit coupling. Since it comes from a relativistic effect it is the weakest rule. The

most important consequence of the Hund rules is that an isolated atoms has a permanent

magnetic moment if it has incompletely filled shells. Assuming that a solid is built from

non-interacting atoms, above equations explain both, diamagnetic behavior if the highest-

lying electronic shell is completely filled (Ar,Ne etc.), and paramagnetic behavior if S or

L (or both) do not vanish. In that case the paramagnetic contribution is by orders of

magnitude larger than the diamagnetic one.

2.3 Mean field approaches

In analogy to the two simple limits in electronic structure theory, tightly bound and almost

free electrons, also in the field of magnetism two border-cases have developed historically

(see e.g. [23]). The Stoner theory was originally developed for parabolic bands, so to

say for free or ”itinerant” electrons. On the other hand the Hubbard and the Heisenberg

model assume perfect localization of the magnetic moments on lattice sites. The Hund

rules are only valid for the isolated (or weakly interacting) atom. They always predict a

local magnetic moment if a shell is partially filled. In the localized picture it is a matter

of interactions whether the solid exhibits long-range order and if so, which type of mag-

netic order is favored. The important assumption in the localized regime is that the size

of the (local) moments is independent of temperature and type of magnetic order. The

macroscopic magnetization, averaged over all atoms, in the case of a ferromagnet is re-

duced only by thermal fluctuations. Above a critical temperature Tc the material is then

called paramagnetic and exhibits no spontaneous, macroscopic magnetization any more.

In a band-structure picture one speaks about a local moment if the bands-width W of

the state responsible for magnetism is smaller that the exchange splitting, separating the

spin-up band from its corresponding spin-down counterpart. In the itinerant picture one

is in the domain of band electrons (Bloch electrons). They spread over the whole solid

and thus the question whether magnetism arises or not is closely related to the type of
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Figure 2.1: Stoner Theory: In the non-magnetic state spin-up and spin-down electrons

are degenerate. If an external field H (or mean field HM) is present, the bands shift by

µBH up/down. While field energy is gained the redistribution of spin-down states into the

spin-up band costs kinetic energy. This is because the spin-up electrons occupy the band

up to higher energies than before the redistribution. In the case the density of states at EF

is high, the cost in kinetic energy is small and the spin-split states is energetically favored.

order being favored. If for a particular type of order the density of states exceeds a certain

limit (the Stoner criterion), magnetic moments as well as long-range order set in. Upon

raising the temperature, the size of the moments decreases. Ideal, itinerant magnets have

no magnetic moments above the Curie temperature. This is in complete contrast to local

systems having disordered moments above Tc. Itinerant magnets exhibit broad bands and

small spin-splitting, so that spin-up and spin-down parts of one band overlap strongly.

Unfortunately, the vast majority of magnetic materials including such wide-spread cases

like Fe or Ni lies inbetween these border-cases. Their magnetic moments change slightly

with temperature but do not completely vanish above the ordering temperature. In DFT

calculations the ordered magnetic and the non-magnetic state are easily accessible. The

paramagnetic state requires the inclusion of disorder and is usually treated in the disor-

dered local moment approach (DLM) [24] within the coherent potential approximation

[25]. In the present work only the non-magnetic states as well as certain, ordered mag-

netic configurations are taken into account. When the atoms come close to form the solid

interactions between the electrons set in. In the section about HF-theory direct exchange

was introduced. This interaction is of Coulomb-type and much stronger than for exam-

ple classical dipole-dipole interactions between local atomic moments. However, when the

first models explaining spontaneous magnetization appeared (e.g. Weiss, Stoner), direct

exchange was unknown. For this reason in many models very strong, phenomenological
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”molecular fields” were introduced in order to explain spontaneous magnetization. These

molecular fields HM were treated on the same footing as external fields Hext with the only

difference that the former were considered as intrinsic material properties being at best

temperature dependent. These molecular fields turned out to be unrealistically large and

it took some time until it was recognized that it is not really a magnetic field that aligns

the moments but rather an interaction of Coulomb type.

In the following paragraph the most important results of well-known mean-field approaches

for both, the local moments and the itinerant moments, are listed. Since all directions are

either parallel or anti-parallel to the quantization axis (z-axis), no vector notation is used.

In the Weiss model the local moments are assumed to interact only via the mean-field

HM , given as

HM = NM, (2.9)

N is the molecular field constant relating the magnetization M with HM . The magnetic

moment of a particle with total angular momentum quantum number J and projection mJ

in the quantization direction is given as

µ = mJgJµB, for − J ≤ mj ≤ +J, (2.10)

gJ denotes the gyromagnetic ratio. The energy in a field H (external or mean field) is W =

−mjgJµBH and the thermal energy is kBT . By assuming independent, localized magnetic

moments and by using Boltzmann statistics, the statistical average of the magnetization M

normalized to the saturation magnetization M0 (all moments having mJ = −J) is known

as the Brillouin function B(a, J):

M

M0

= B(a, J) =
2J + 1

2J
coth

(
a
2J + 1

2J

)
− 1

2J
coth

( a

2J

)
, (2.11)

The quantity a denotes the ratio between maximum magnetic and maximum thermal

energy, a = (JgjµBH)/(kBT ). In the presence of a mean-field HM a phase transition

to a ferromagnetic state occurs at the critical temperature Tc and spontaneous magnetic

order sets in. The high temperature limit of the Brillouin function gives the well-known

Curie-Weiss law, the 1/T dependency of the susceptibility χ above Tc:

χ =
C

T − θ
with the Curie constant C =

J(J + 1)g2
Jµ2

B

3kB

, (2.12)

In above expression θ is the paramagnetic Curie temperature. It can be estimated from

the high temperature behavior of the susceptibility. Negative θ is an indication of antifer-

romagnetic order, positive θ usually is found in ferromagnets. In the latter case θ is usually

close to the ferromagnetic Curie temperature at which spontaneous long-range order sets
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in. The quantity
√

J(J + 1)gJµB is called effective moment. It can easily be obtained

from experiment by fitting the Curie-Weiss law well above Tc.

In the Stoner model for itinerant electrons at T=0 one again introduces a molecular field

HM and a constant N connecting it with the relative magnetization ζ:

HM = NM = NM0ζ, with ζ =
M

M0

. (2.13)

The electrons are considered as non-interacting, all interaction is absorbed in the molecular

field. The density of states N(E) for free electrons are parabolas. For Bloch waves only k

and the spin S are assumed to be good quantum numbers and hence the magnetic field is

assumed to couple only to the electron spin. This leads to a splitting into two spin-bands,

spin up and spin down. The corresponding parabola are shifted against each others and

the total magnetization, defined as the difference between the number of spin up (n+) and

spin down electrons (n−), is different from zero. The energy shift due to the molecular

field is given by

εm = −µBHM = −µBNM0ζ = −kBθζ, (2.14)

θ = (µBNM0)/kB defines a characteristic temperature. The redistribution of initially

n = n+ + n− = 2
∫ EF

0
N(ε)dε spin-degenerate electrons from the spin-down to the spin-up

channel costs kinetic energy (see fig. 2.1). This is because the Pauli exclusion principle

forbids double-occupations of one state and higher energy states have to be populated.

On the other hand the spin-polarization gives a negative energy contribution due to the

(Zeeman-like) interaction with the external (or mean-) field. For parabolic bands the

total energy as a function of ζ has two contributions, the positive, kinetic energy cost due

to filling the spin-up band and the negative energy gain due to the interaction with the

mean-field:

E = Eb + Em = E(ζ) =
3

10
nEF

[
(1 + ζ)5/3 + (1− ζ)5/3

]− 1

2
nkBθζ2 + const. (2.15)

The higher the DOS at EF (N(EF )), the easier is the redistribution of spin-down to spin-

up states and the more likely ferromagnetism occurs. Thus one can formulate a criterion

yielding the instability (or tendency) towards the onset of ferromagnetism. This is the

Stoner criterion:

2N↑(EF )I ≥ 1, (2.16)

N↑(EF ) denotes the density of states at EF in the non-magnetic state for one spin di-

rection (N↑(EF ) = N↓(EF ) = N(EF )/2). The Stoner I changes only slowly throughout

the periodic table and as a quasi-atomic property it is rather insensitive to the chemical

environment [23]. Unfortunately, there appear two definitions of I in literature differing

by a factor of two, depending on the initial contribution of I to the Landau expansion
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of the total energy. In the present work I is assumed to contribute E = −IM2/2 to

the total energy. A generalization of equ. 2.16 for antiferromagnetism is given in a later

section. Another important effect is observed if N(EF ) increases and reaches the Stoner

criterion from below. The electron-electron interaction leads to an enhancement of the

temperature-independent, bare Pauli susceptibility χP by a factor of S:

χ =
2µ2

BN↑(EF )

1− 2µ2
B I N↑(EF )

=
χP

1− 2µ2
B I N↑(EF )

= χP S. (2.17)

N↑ always denotes the DOS at EF taken from the non-magnetic calculation but given per

spin channel. A non-magnetic metal with a strongly enhanced, magnetic susceptibility

(e.g. Pd) is thus close to a magnetic transition. The value of I can be calculated using

DFT by fitting the total energy versus the total magnetic moment. This is called fixed

spin moment (FSM) method [23] and will be applied in a later section in order to probe a

material’s proximity to magnetism

2.4 From energy differences to effective Hamiltonians

One very successful technique to study the finite temperature behavior of a magnetic system

is to map the results of ab-initio calculations on effective Hamiltonians. This generates a

model system containing only the most relevant degrees of freedom. The model system

can then be studied e.g. in a Monte-Carlo simulation and thermal properties such as the

Curie temperature Tc can be determined. Very often the Heisenberg Hamiltonian is used

[26]:

H = −1

2

∑

i 6=j

JijSiSj −
∑

i

k[Si]
2, (2.18)

k denotes the single-ion anisotropy. It is large if changes in the size of the moment Si

are energetically expensive. In the case of semiconductors the anisotropy is assumed to

be large enough so that in a good approximation the moments can be considered constant

in size. The remaining part contains the exchange constants Jij, functions of the distance

| ri−rj | and proportional to the energy required to change the angle between two spins Si

and Sj at sites i and j. Positive Jij results in FM whereas negative Jij cause AFM order. In

principle there are two ways to determine the exchange constants Jij within DFT [27]. One

technique exploits the force theorem and calculates Jij by infinitesimal rotations of single

spins and pairs of spins away from their ground-state configuration [28]. This is appropriate

for metals where the Jij in general depend on the magnetic configuration. Thus small

deviations from the ground state can be expected to give the best agreement, in particular

at low temperatures. In the second technique one has to set up a supercell and compare
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the total energies between the FM and certain AFM, collinear magnetic configurations for

pairs of spins while fixing the rest of the system. In metals both methods are expected

to differ [26]. While in the former technique only a slight rotation is performed without

changing the potentials, in the latter two completely different configurations are calculated

self-consistently. In semiconductors and local moment systems in general, however, both

techniques are expected to give reasonable results. Even without performing a Monte-

Carlo simulation the Curie temperature Tc can be estimated. Most frequently the mean-

field approximation (MFA) [29] is used. It is based on rewriting the product of quantum

mechanical operators Â and B̂ as

Â · B̂ → Â · 〈B̂〉+ 〈Â〉 · B̂ − 〈Â〉 · 〈B̂〉+ (Â− 〈Â〉)(B̂ − 〈B̂〉). (2.19)

The brackets 〈 〉 denote a thermodynamical average. In the MFA the last term in expression

2.19 is neglected. It accounts for the fluctuations of the operators around their averages.

The neglect of fluctuations has the effect that the estimates for Tc are too high and should

rather be seen as upper bounds. However, Tc can successfully be estimated from above

using the simple formula:

Tc =
2S(S + 1)

3kB

1

N

∑

i6=j

Jij, (2.20)

the Boltzmann constant is denoted as kB and N is the number of atoms included [23].

Above expression will be used in a later section to estimate the Curie temperature of

zincblende CaAs.

2.5 Non-collinear magnetic order

There are mainly two models trying to explain the occurrance of non-collinear magnetic

order. For a system with local moments and short range interactions non-collinearity

usually is due to geometric frustration of AFM interactions. Frustration occurs if the

magnetic interactions strongly prefer a certain spin-alignment (in most cases AFM) that

is not compatible with the geometry of the lattice. For example in an fcc lattice collinear

AFM is always frustrated. This is because the fcc lattice is no two-sublattice structure.

In other words it is not possible to distribute the atoms into groups A and B so that all

atoms in A have only neighbors of type B and vice versa. A simpler example of frustration

is drawn in fig. 2.2. Even in a regular triangle it is impossible to align all atoms in a

collinear AFM fashion. Prominent examples for frustrated systems are elemental Mn [30]

and Mn/Cr on a Cu(111) surface [31]. Mn is particularly well suited for the occurrance

of frustration because it usually strongly favors AFM due to its roughly half filled 3d-

shell. However, geometric frustration does not necessarily lead to non-collinear order. One
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Figure 2.2: Upper left triangle: Geometric frustration of AFM interactions: Atoms 1 and

atom 2 are coupled AFM, however, atom 3 can either be aligned AFM with 1 or with 2,

but never with both at the same time. Frustration can be reduced either by distortion (A)

or by non-collinear order (B).

alternative way to overcome frustration are lattice distortions. For the triangle this means

that one pair of atoms approaches each others and two pairs increase their mutual distance.

Since the magnetic interactions usually are strongly dependent on the inter-atomic distance,

distortion can significantly reduce the degree of frustration. Another alternative is that no

magnetic order arises at all. In that case the material either freezes below a certain freezing

temperature into an arbitrary snap-shot of one of its highly degenerate spin-configurations

(spin glass), or it remains a so-called spin liquid [32]. These cases, however, are very rare

and at best found in low-dimensional (e.g. layered) materials.

Apart from frustration one can access the problem of non-collinear order also in a reciprocal

space picture. As demonstrated in the previous section, the Stoner criterion yields possible

instabilities against ferromagnetism. However, the criterion can be generalized to the cases

of collinear AFM and spin-spiral states. For that purpose the bare susceptibility χ0 for
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Bloch states labeled with k,k′ and band-indices µ and ν is required:

χ0(q) =
∑

kνµ

[f(εkν)− f(εk−qµ)]

εk−qµ − εkν + iδ
· | 〈kν|eiqr|k− qµ〉 |2 . (2.21)

The functions f(ε) denote the Fermi distribution function. The criterion now reads

χ0I ≥ 1. (2.22)

The enhanced susceptibility is defined by

χ =
χ0(q)

1− χ0(q)I
. (2.23)

This generalized Stoner criterion (2.22) says that if a q-vector exists for which χ0 exceeds

1/I, the system will be unstable with respect to magnetic order. The corresponding type

of order might be a spin-spiral with propagation vector q and a magnetization vector at

the site ν of magnitude mν :

mnν = mν [cos(qRn + φν)sin(θν), sin(qRn + φν)sin(θν), cos(θν)] . (2.24)

The index n labels the atom at Rn and θ is the azimuthal angle with θ=0 being equivalent

to ferromagnetism. The criterion can be made plausible by recalling the generalized Bloch

theorem [7]. It exploits the fact that if one combines a lattice translation Rn and a spin-

rotation by the angle qRn, the spin structure remains unchanged [7]. As a consequence

certain k-states, even though belonging to different spin-channels (up and down), start to

hybridize. (
k− 1

2
q, ↑

)
and

(
k +

1

2
q, ↓

)
. (2.25)

This hybridization can significantly reduce the total energy of a system if the Fermi-surface

has nesting features. Nesting means that there are large regions on the Fermi-surface that

can be connected via one and the same q-vector. They cause local or global maxima in the

generalized susceptibility χ0 and instabilities against spin-spiral or non-collinear structures.
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Part II

Semiconductors
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Chapter 3

Magnetic Semiconductors

In conventual electronic devices the charge of the electron is the only property being

exploited. This might change in the future. Recently a new technology called spintronics

(short form for spin-based electronics) has emerged that uses the electron-spin as additional

source of information. This opens the door to many new and promising devices. The new

possibilities range from non-volatile storage, increased data processing speed, decreased

electrical power consumption and increased integration densities compared to conventual,

charge-based semiconductor devices [33, 34]. One of the key ingredients of spintronic

devices are so-called spin filters. They are ferromagnetic and conduct only electrons of

one, defined spin direction. This is why they are also called half-metals, being metallic

for a preferred spin-direction and insulating (semiconducting) for the other. The word

”half-metal” has first been used by de Groot et al. [35] in the case of the half-metallic

Heusler-alloy NiMnSb. One of the hopes of the physicists is now to find new half-metals

and magnetic semiconductors in general with Curie temperatures Tc as high as possible,

but at least above room temperature. This, however, is a very challenging task. There exist

two types of magnetic semiconductors. The concentrated magnetic semiconductors (CMS)

are already known for some time. The prototype is CrBr3 with Tc=37 K [36], well-known

are also the Eu chalcogenides (EuO and EuS) and the Cr spinels (e.g. CdCr4S4). They

are stoichiometric and their properties are rather insensitive to external influences such

as e.g. doping. Unfortunately, the CMS often do not meet the requirements imposed by

semiconductor engineers. Spintronic applications require thick films, layers, quantum dots,

etc. retaining the useful physical as well as chemical properties of semiconductors. One

hence needs materials being compatible with tetrahedrally coordinated semiconductors.

As a consequence so-called dilute magnetic semiconductors (DMS) are in the center of

interest now. DMS are semiconductors with a small amount (several percent) of defects.

These defects are either alien atoms expected to carry a local moment (e.g. substitutional
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Mn in GaAs) or designed intrinsic (or extrinsic) defects of the host itself, such as vacancies

or interstitial atoms (e.g. O vacancies in In2O3). Unfortunately, ferromagnetic long range

order with reasonably high Tc requires a subtle interplay between local moments usually

carried by conventual magnetic elements (Mn,Fe,Co,etc) and defects (e.g. O-vacancies)

mediating the magnetic interaction. The challenge is to insert magnetic impurities in a

concentration as high as possible without destroying the host’s semiconducting properties.

The high concentration (several percent), however, is required in order to reach magnetic

percolation, making collective ferromagnetism only possible. The final question is whether

the dominant magnetic coupling is indeed ferromagnetic. In the present work transition

metal doped Cu2O, a representative of the DMS, and CaAs, a (hypothetical) member of

the CMS having the highly desired zinc-blende structure combined with a high Tc, will be

discussed in detail.

3.1 Basic physical properties

In contrast to metals semiconductors are materials with an energy gap at the Fermi energy

EF . If this gap is larger than 2 eV one already speaks about an insulator. The gap sepa-

rates the occupied valence bands (VB) from the unoccupied conduction bands (CB), it is

situated between the so-called valence band maximum (VBM) and the conduction band

minimum (CBM). The most common semiconductors are Si and Ge. They crystallize in

the cubic diamond structure. Also the III-V (GaAs, InSb) and II-VI (CdTe) semiconduc-

tors are of great technological importance. There is a clear structural trend for the binary

AB semiconductors. When the electronegativity difference between A and B increases, the

structure changes from diamond (and zinc-blende) over wurtzite to rock-salt (e.g. for I-VII

CuBr). The reason is that the electrostatic interaction, favoring closed-packed structures,

becomes increasingly important. The gap in elemental, tetrahedral semiconductors is nei-

ther a consequence of long-range periodicity ([37]) nor a result of energy bands being too

narrow to form a continuous band. It instead comes from the covalent bond itself (see

below). Only in very ionic compounds the gap is rather determined by the difference in

the atomic energy levels of cation and anion, the electronegativity-difference. A simple

expression for the gap Eg in a s-valent dimer with s-level mismatch ∆E is given as

Eg = (4h2 + (∆E)2)1/2, (3.1)

h is the covalent bond integral [38], a quantity similar to the hopping term in tight bind-

ing. Since the anti-bonding orbitals are empty, semiconductors exhibit strong cohesion

and are hard but brittle materials. If impurities are inserted deliberately one speaks about

doping. In the limit of low concentrations the impurities form sharp levels usually inside

33



the host band-gap (non-degenerate semiconductor), in the case of higher concentrations

the impurities form bands (degenerate semiconductor). If the impurity states are situ-

ated close to the CBM (VBM) one speaks about n-type doping and donors (p-type doping

and acceptors). Doping with either electrons or holes significantly changes the electrical

conductivity because in doped materials thermal activation allows for an increase of the

carrier concentration. Consequently the conductivity increases with increasing tempera-

ture. If the impurity states are close to (far from) the band-edges one speaks about shallow

(deep) levels. In a non-degenerate, doped semiconductor shallow donors (acceptors) can be

seen as electrons (holes) occupying effective Bohr orbits similar to the single electron in the

H-atom. The only difference is that in the semiconductor one has to take into account the

effective mass m? of the carrier as well as the electrical polarizability of the host, expressed

in the dielectric constant ε. The radial extension r0 of this effective Bohr orbit is given by

r0 = εrB
1

m?
, (3.2)

with the first Bohr radius rB = 1 (atomic units). The effective mass of the carrier m?

is given in multiples of the electron mass me. Typical values of r0 are around 100Å. In

tetrahedral III-V and II-VI semiconductors holes usually have p-like character and high

effective masses m? due to a low dispersion at the VBM. Contrarily, electrons tend to be

s-like having much smaller m? (higher dispersion at the CBM).

In order to understand the diamagnetic nature of covalent semiconductors it is useful to

recall that the covalent bond can be seen as a quantum interference effect between over-

lapping wavefunctions in the region between the corresponding atoms. In a two-sublattice

structure, where all atoms of type A have only neighbors of type B and vice versa, one

can speak about bonding and anti-bonding orbitals [39]. The bonding orbitals accumu-

late charge between the atoms weakening the electrostatic core-core repulsion. The anti-

bonding ones pull the atoms further apart. For this reason the spin-paired singulett is

energetically favored because the electrons can come arbitrarily close to each others (no

Pauli exclusion) and together occupy the (even) bonding orbital. It has been first pointed

out by Pauling [40] that those structures that avoid the necessity of electron exclusion

in the region of orbital overlap are stabilized relative to those that do not. Following

Goodenough, if the near neighbor overlapping atomic orbitals of a two-sublattice structure

are half filled, optimum binding occurs when the electron pairs are singuletts [39]. This

explains why the classical, elemental semiconductors have tetrahedral coordination with

four nearest neighbors and also four outer electrons contributing to the bond (octet rule).

Due to this singulett pairing there is no resulting magnetic moment on the atoms. It is

important to recall that the covalent bond is an exception and only found in isovalent ma-

terials. If two different elements are involved, one can speak about cation (+) and anion
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(-). Nevertheless, above argumentation regarding orbital overlap as well as bonding and

anti-bonding orbitals is assumed to be valid also for moderately ionic compounds.

3.2 Defects and formation energies

In DMS long range order often crucially depends on defect-related free carriers. This is

why a controlled preparation process is desired. The most common defects are vacancies of

either anions Va or cations Vc, the former acting as donors, creating impurity states close

to the CBM, the latter as acceptors. Also anti-sites AB, with type A atoms occupying a B

site, and alien atoms - either isovalent or with different valency - are common. A measure

of how easy it is to incorporate a particular defect into a material is the the formation

enthalpy ∆H. It can actively be influenced by the conditions under which the material

is prepared, by the so-called growth conditions. The formation enthalpy ∆HD,q(EF , µ) is

given by [41]:

∆HD,q(EF , µ) = (ED,q − EH) +
∑

α

nα(∆µα + µsolid
α ) + q(Ev + EF ). (3.3)

The terms ED,q and EH denote the total energy with and without defect D having the

charge state q. The second term accounts for the energy change due to the exchange of

atoms with the chemical reservoir, nα being -1 if an atom is added and +1 if an atom is

removed. The ∆µα are defined as the energy difference between the chemical potential of

the corresponding element α, µsolid
α , and the atomic chemical potentials µα in the compound

of interest. The ∆µα are always negative guaranteeing that compound is more stable than

its constituents alone. Considering for example the binary compound AB2, the sum of the

chemical potentials of its constituents must equal the formation enthalpy of the compound

AB2:

∆µA + 2∆µB = ∆H(AB2). (3.4)

However, one has a degree of freedom in the choice of the ∆µα. This can be exploited

during the preparation process in order to favor particular types of defects. The ∆µα

can be chosen to lie between two border cases, the A-rich preparation using ∆µA=0 and

∆µB = ∆H(AB2)/2 and the B-rich preparation ∆µB=0 and ∆µA = ∆H(AB2). The

chemical potentials can be further restricted by competing phases, which is in particular

important for ternary compounds. The third term in equ. 3.3 is only important for charged

defects with q 6= 0. It accounts for the fact that the formation enthalpy and consequently

the probability for a charged defect to be present depends on the position of EF within the

band-gap of the host, measured relative to the energy of the VBM, Ev. Positively charged

defects (donors, q positive) are more stable if EF is situated as low as possible within the
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gap, negatively charged defects (acceptors, q negative) require EF to be situated close to the

CBM. Some more rules of thumb for doping are outlined in ref. [42]. The equilibrium defect

concentration can be related to the formation enthalpies via the Boltzmann distribution:

cD,q(EF , µα, T ) = Nexp[−∆HD,q(EF , µα)/(kBT )], (3.5)

where N is the concentration of atomic sites substituted by the defect D having charge

state q. Thus the equilibrium defect concentration has to be solved self-consistently using

equ. 3.3 and equ. 3.5.

However, when dealing with semiconductors one has to apply several corrections in order to

determine formation enthalpies reliably. If LDA/GGA is used, first of all the gap has to be

corrected. If charged defects in supercells are considered, the potential is determined only

up to a constant. For this reason it has been suggested that different calculations should

be made comparable by aligning the potential at a reference point far from the defect.

Moreover, image charge corrections as well as band-filling corrections are sometimes applied

in order to cope with the finite size of the supercell and the resulting spurious interaction

of the impurity with its counterparts in the periodically continued solid. A good review

regarding above mentioned corrections can be found in ref. [41, 43].

3.3 Exchange interactions

Ferromagnetism in CMS/DMS can be invested theoretically either by model Hamiltoni-

ans such as the Kondo Hamiltonian and the Anderson Hamiltonian (for an overview see

[44]) or by ab-initio methods, employing either ordered super-cell calculations or the CPA

approximation [25]. However, it is rather hard to translate the results of model Hamil-

tonians into the language of band-structure methods and vice versa. Up to now there is

no complete theory explaining magnetism in DMS, only several models have developed

being rather restricted regarding their range of applicability. In the following several ex-

change mechanisms will be discussed. Even though direct exchange is not so important for

semiconductors it is included because it is a good starting point for the indirect exchange

mechanisms.

3.3.1 Direct exchange

Two simple cases can be studied in order get a feeling of how direct exchange works [45].

In the first model-system one consideres two electrons occupying the same shell, e.g. a

3d-shell. The two-electron Hamiltonian is of the form

H = h0(r1) + h0(r2) +
1

| r1 − r2 | , (3.6)
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h0(r) are the (spin-independent) one-electron Hamiltonians, and the last term is the

Coulomb interaction. The electrons occupy the orthogonal orbitals φa and φb, eigenstates

of h0 with the one-electron eigenenergies εa and εb. The total wavefunction is a Slater de-

terminant of spin-orbitals, orbital functions φ combined with the spin functions for either

spin up α or spin down β. All combinations of (φa, φb) with (α, β) are allowed, provided

that there is always one singly occupied orbital φa and one singly occupied orbital φb. Only

the spins can be varied allowing for 4 different Slater determinants, two with spin-parallel

and two with spin anti-parallel. The energy difference between singulett εs and triplett εtr

is given by

εtr − εs = (εa + εb + Cab − Jab)− (εa + εb + Cab + Jab) = −2Jab, (3.7)

with the Coulomb integral Cab

Cab =

∫
d3r1

∫
d3r2

|φa(r1)|2 |φb(r2)|2
|r1 − r2| , (3.8)

and the exchange integral Jab

Jab =

∫
d3r1

∫
d3r2

φ?
a(r1)φb(r1)φ

?
b(r2)φa(r2)

|r1 − r2| . (3.9)

The most important result is that Jab is always positive and the triplet state lower in

energy. Generally speaking, direct exchange of electrons occupying mutually orthogonal

orbitals is always ferromagnetic [45]. This is a mathematical justification of the first Hund

rule.

The second model-example is the LCAO treatment of the H2 molecule, with the simpli-

fication that only charge neutral configurations with not more than one electron at one

nucleus are considered (Heitler-London treatment). Since the one electron orbitals φa and

φb are shifted by the nuclear separation Rab and supposed to describe binding, they can no

longer be orthogonal and the corresponding overlap integral is defined as l =
∫

φ?
a(r)φb(r).

The energy difference between singulett and triplett state is given by

εtr − εs = 2
l2CAB − JAB

1− l4
, (3.10)

with the Coulomb term Cab and the exchange term Jab defined as above, with the only

difference that there are additional terms due to the interaction of electrons with the

neighboring core. Due to the overlap the energy difference between singulett and triplett

now can change sign. The case of orthogonal orbitals is restored for l = 0, yielding the

triplet state. If the overlap is sufficiently large (l2Cab ≥ Jab) the exchange coupling is

anti-ferromagnetic yielding a singulett state. Thus one expects AF coupling of spins in

37



Table 3.1: Percolation treshholds for various lattices and lengths of interactions. The

distances are the effective interaction radii dij/v
1/3
atom, taking into account also the volume

of the non-magnetic counterparts (e.g. there is 1 anion and 1 cation within the CsCl

unit-cell, but only the cation sublattice plays a role for percolation) [48].

NaCl-fcc sublattice CsCl-sc sublattice diamond

# NN (dist) 12 (1.414) 6 (1.260) 4 (0.866)

# NN2 (dist) 6 (2.000) 12 (1.782) 12 (1.414)

# NN3 (dist) 24 (2.450) 8 (2.182) 12 (1.658)

# NN4 (dist) 12 (2.829) 6 (2.520) 6 (2.000)

# NN5 (dist) 24 (3.162) 24 (2.817) 12 (2.180)

Perc. NN [%] 19.8 31.2 43.1

Perc. NN2 [%] 13.7 13.8 14.7

Perc. NN3 [%] 6.2 9.8 9.3

Perc. NN4 [%] 4.9 8.0 7.6

Perc. NN5 [%] 3.4 4.6 5.7

cases of strong covalent bond, being in agreement with the discussions made above about

the non-existence of magnetic moments in semiconductors. However, in semiconductors

direct exchange between local d(f) orbitals originating from magnetic elements is short-

ranged. Consequently this mechanism is not important if the concentration of the magnetic

impurities is low and the mean-distances amongst them is large. Only in CMS or in DMS

exhibiting strong, unwanted clustering one expects direct exchange to play a role. Much

more important are indirect exchange interactions. They need an intermediate partner

transferring the information regarding the spin-orientation of one impurity site to another

site. These intermediate states have to be weakly localized and can be either holes [46]

or electrons [47]. Thus the appropriate doping with either intrinsic or extrinsic defects is

crucial for the occurrance of magnetic long range order. In order to get a feeling of how far-

reaching the interactions have to be for a fixed concentration of impurities, the percolation

treshholds for various simple lattices are listened in tab. 3.1 taken out of ref. [48]. One finds

that e.g. in the diamond lattice 7.6 % of substitutional impurities are required in order to

allow for percolation if the magnetic interactions range until the 4th nearest neighbor-shell.

For the fcc lattice the percolation concentration is lowest for a given range of interaction.
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3.3.2 RKKY interaction

The RKKY interaction was first proposed by Ruderman and Kittel [49] and later extended

by Kasuya and Yoshida. It has originally been developed for nuclear magnetic moments in

a metal. It is an indirect interaction of local moments via conduction electrons. If one puts

an impurity into the free electron gas, slowly decaying oscillations of the electron charge

density centered around the perturbation are found. These so-called Friedel oscillations

are a consequence of screening. If the oscillations are different for spin-up and spin-down

electrons one expects oscillations of the magnetization density. The mutual interaction of

two impurities via the oscillations of their corresponding magnetization densities is then

called RKKY interaction. For an impurity within a simple cubic lattice assuming the free

electron dispersion and zero temperature, the interaction is of the form [45]

I(Ri −Rj) = −J2

π3

(
kF a0

2

)6
sin2kF Rij − 2kF Rij cos2kF Rij

(2kF Rij)4
, (3.11)

and the corresponding Hamiltonian is given by

HRKKY =
∑

k,σ

εkn̂k,σ +
1

2

∑

i 6=j

I(Ri −Rj) SiSj. (3.12)

The argument of I, Rij = Ri − Rj, denotes the distance between the magnetic impuri-

ties, a0 the simple cubic lattice constant and J the direct exchange constant between the

impurity and the conduction electrons. The period of the oscillation is determined by the

Fermi-surface diameter kF . There exist two important limits. In the limit of high carrier

concentrations and low concentrations of magnetic impurities (2kF Rij À 1) the RKKY

interaction changes sign and spin-glass behavior can be found. In the other limit, namely

low carrier concentrations and high concentrations of magnetic impurities (2kF Rij ¿ 1),

the RKKY interaction is always FM. In undoped semiconductors the lack of free carriers

leads to an exponential decay of the RKKY interaction and it becomes insignificant. For

systems with a higher concentration of carriers the role of the RKKY interaction (e.g. as

part of the mean-field Zener model) is still under debate [50].

3.3.3 Superexchange

One important magnetic exchange interaction in insulators and semiconductors is superex-

change [51]. The word ”super” comes from the peculiarity that the magnetic coupling of

local moments on the cation M (usually a metal like Mn, Fe, ..) is mediated by an anion

X (e.g. N,O,F), which has a formally filled shell and plays the role of an intermediary. Su-

perexchange is no direct cation-cation but a cation-anion-cation interaction. In most cases
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Figure 3.1: Kinetic superexchange: If the cations couple AF not only the ground state

(GS) but also the 2 excited states (ES) are virtually accessible through virtual electron

hopping without spin-change.

AFM alignment is favored. Following Goodenough [39] there are (mainly) two important

sources of superexchange: Correlation superexchange and delocalization (or kinetic) su-

perexchange. The former mirrors the fact that the cation spins are likely to be coupled in

a way that bond formation on both sides of the anion is possible simultaneously. Delocal-

ization or sometimes also called kinetic superexchange exploits the fact that if the electron

is allowed to virtually hop from one cation to the other the energy is lowered because

excited states are mixed to the ground state. The higher the symmetry of the bond, the

easier is the analysis, e.g. for bond angles different from 180◦ the analysis is much more

complicated because mixed σ- and π- bonding occurs. For the following considerations

always 180◦ superexchange will be assumed. Qualitatively one can say that superexchange

usually causes orbitals having strong overlap to couple AFM and orthogonal (eg and t2g

on the same atom) or weakly overlapping orbitals to couple FM due to intra-atomic ex-

change. In principle the higher the orbital overlap is, the stronger is the interaction. In a

simple picture superexchange interactions become weaker if the ionicity of the cation-anion

bond increases. If half filled orbitals are involved superexchange leads to strong, effective

AFM coupling of cations. The AFM state is lowered compared to the FM by the energy
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Figure 3.2: Superexchange involving two orthogonal orbitals on the cation: Only in one

case FM occurs because the electron on the anion can virtually hop to the cation on

the right hand side because intra-cation exchange favors FM alignment of the transferred

electron to that already present on the cation.

∆E = EFM − EAFM = −2J

J ∝ − t2

U
, (3.13)

U is the intra-atomic energy cost for a double-occupation of a single orbital and t is a

quantity related to the tight-binding hopping term, proportional to the band-width or

alternatively to the probability that the electron hops from the cation to the anion or vice

versa. It can be derived from second order perturbation theory. In fig. 3.1 (left panel) a

simplified picture of superexchange is shown. The AFM configuration is lower in energy

because for that configuration not only the ground-state (GS) with both electrons being

attributed to the anion but also 2 excited states (ES) being in accordance with Pauli’s

principle are possible. In special cases superexchange can lead to ferromagnetism. For

this it is necessary that two orbitals on the cation are involved. One cation must have a

half-filled orbital and the other one an empty one, which is only possible if the magnetic

moment comes from an orbital not participating in the bond. In that case FM is found

because of intra-cation, direct exchange between the virtually transferred electron and the

electron in the non-bonding orbital. For semiconductors superexchange is often described

in a band-picture [44]. The free carriers (e.g. holes in the valence band) have now the role

of the anions and superexchange can be seen as an interaction in which the local spins

on two ions (e.g. impurity d-states) are correlated due to the spin-dependent exchange

interaction between each of the ions and the valence p-band (or conductions s-band).

Examples for semiconductors which are believed to couple FM via superexchange are the

II-VI compounds such as Cr doped ZnTe[52, 53]. Zn1−xCrxTe with x=0.035 for example,
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Figure 3.3: Left panel: Double exchange favors FM because it allows charge transfer

between the left and the right magnetic ion. Right panel: The trend within the series

(Ga,Mn)X with X=N, P, As, and Sb goes from double exchange in (Ga,Mn)N to mean-

field Zener exchange in (Ga,Mn)Sb.

even though suffering from rather low Tc ≈ 15K, has the advantage that low carrier

concentrations are required. In contrast to many other systems like (Ga,Mn)As (see later)

magnetism is not primarily dependent on the carrier concentration because superexchange

works via virtual charge fluctuations and not via real electron transfer.

3.3.4 Double exchange

Double exchange in its original form of Zener [54] occurs in compounds having mixed

valence. One of the prototypes is the perovskite (La,A+2)MnO3, with Mn+3 coexisting

with Mn+4 in the case La is partially substituted by a divalent element A. Double exchange

always favors a spin-alignment that allows for charge transport. This charge transport

involves a real hopping process and not a virtual transition like in the case of superexchange.

While superexchange lifts the degeneracy of the two, virtual excited states (ES) at energy

U while keeping fixed the charge on the magnetic element, double exchange occurs between

differently charged ions (e.g. Mn+3 and Mn+4) and involves delocalized electrons. The left

panel of fig. 3.3 illustrates double exchange. There are two types of orbitals involved,

localized ones and orbitals that allow electron hopping from one magnetic ion to the other.

Charge transfer can only occur if the magnetic moments are aligned ferromagnetically.
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This is because intra-atomic exchange favors FM alignment between the itinerant electrons

and the localized ones not participating in the bond. Double exchange always favors

ferromagnetism. In a band-picture double exchange can be identified by comparing the

AFM and the FM bandstructure. While superexchange favors situations with a gap at

the Fermi energy and AFM alignment, double exchange broadens the bands at EF in the

FM state. This band-broadening lowers the total energy. It is hence necessary that EF

falls into a partially filled impurity band if a FM set-up is assumed. In (In,Mn)As it was

proposed by Akai that double exchange leads to ferromagnetism [55]. Sato et al. argued

that there is a trend within the series (Ga,Mn)N → (Ga,Mn)Sb from double exchange in

the former to the Zener p-d exchange (next paragraph) for the latter. This is also shown

in the right panel of fig. 3.3. The energy gain due to double exchange is proportional to

the band width W of the band at EF , which in a mean-field approximation results in a
√

c

dependence of the Curie Temperature Tc on the impurity concentration c. The higher the

impurity concentration the more relevant double exchange becomes.

3.3.5 Models based on host polarization

The mean-field Zener model (or Zener p-d exchange) was proposed by Dietl et al. [46].

It was successful in explaining the transition temperatures for p-type (Ga,Mn)As and

(Zn,Mn)Te. The mean-field Zener model is based on the original model by Zener but it

includes the RKKY interaction. It also takes into account the anisotropy of the carrier-

mediated (hole-mediated) exchange interaction due to spin-orbit interaction in the host.

It is only applicable to systems exhibiting a significant p-d interaction. For the model

to work it is necessary that the strong p-d interaction leads to a spin-polarization of the

valence band and to weakly localized, uncompensated holes. In the bottom right panel of

fig. 3.3 the mean-field Zener mechanism is demonstrated for the case of (Ga,Mn)Sb. In

contrast to (Ga,Mn)N, which has a larger gap and impurity Mn-states lying completely

within the gap, in (Ga,Mn)Sb the Mn spin-up states lie deep within the host valence states.

The strong localization of the Mn d-states leads to an up-shift of the valence band for the

minority electrons and hence to an effective (AFM) spin-polarization of the host [56]. This

polarization of the host makes a long-range interaction between magnetic impurities in

DMS possible. One of the key elements of the model is the mean-field Kondo-like coupling

between the host valence band and the magnetic impurity

Hsp−d = −N0βS · s, (3.14)

with the exchange constant β, the concentration of magnetic sites N0, the impurity spin

S and the the carrier spin s. The Curie temperature Tc increases quadratically with the
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exchange constant β:

Tc =
xN0S(S + 1)β2χs

3kB(g?µB)2
, (3.15)

with the spin concentration xN0, the magnetic susceptibility of the free carriers χs, their

gyromagnetic ratio g?, the Boltzmann constant kB and the Bohr magneton µB. Another

result of the mean-field Zener model is that semiconductors with light anions (C,GaN, InN)

are expected to have higher Tc than representatives with heavier anions (GaSb). Dietl et

al. also observed a principal difference between the II-VI and III-V compounds, the II-VI

ones having reduced Tc due to stronger superexchange counteracting the FM interaction.

Unfortunately, in contrast to the II-VI compounds the experimental determination of β for

the III-V compounds seems to be not conclusive. Both, sign and the magnitude are not

well known, in particular for large Mn concentrations.

A different mechanism responsible for FM in n-type materials has been put forward by

J. M. D. Coey et al. [47]. They assume an impurity band at the CBM. This impurity band

becomes significantly polarized if it coincides energetically with empty d-states, either for

spin-up (early TM) or spin-down (late TM). The polarization of the impurity band then

mediates the long range interaction, similar to the case of holes in the mean-field Zener

model.
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Chapter 4

Tetrahedral CaAs and related I/II-V

compounds

Many of the CMS systems have crystal structures incompatible to semiconductor struc-

tures. In this chapter a possible, new route for designing CMS is introduced [57]. It is

based on forcing a material into a structure that is not its equilibrium ground state struc-

ture. Recent developments in non-equilibrium (low temperature), epitaxial growth (e.g.

thin films) are getting increasingly successful. This opens the door to new, completely

different techniques in materials design.

Recently Kusakabe et al. [58] proposed magnetic zinc-blende CaAs as a possible material

for spintronics application. Their proposal was motivated by the need for half metallic

ferromagnets in spintronic devices [59], which are seen as key ingredients. However, apart

from the technological application the magnetic I/II-V compounds represent a new class

of ferromagnetic materials where magnetic order is carried by the anion p-electrons with-

out any direct involvement of d-electrons as in the magnetic transition metals and their

compounds. The p-electron magnetism in CaAs and the other I/II-V systems appears in

the fully ordered stoichiometric compounds and their magnetic order is intrinsic and not

triggered by the presence of crystal defects of various kinds. Examples for this defect trig-

gered p-electron magnetism are irradiated pyrolytic graphite containing defects [60, 61, 62]

or CaB6 doped with La [63].

In this chapter we calculate the magnetic and electronic properties of this class of com-

pounds. For the prototypical representative CaAs we study the stability of the zinc-blende

and wurtzite phase with respect to i) the true equilibrium structure and ii) tetragonal

distortions. For the possible combinations of I/II-V zinc-blende compounds we investigate

the occurrance of magnetic order at the respective equilibrium volumes. The appearance

of the flat band in the all-electron calculation is confirmed on the basis of a model tight-
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binding Hamiltonian of Slater-Koster type. We find that all I/II-V compounds have a

tendency toward a ferromagnetic ground state, and the origin of the exchange is neither

double exchange nor p-d exchange. In addition, CaAs exhibits an extremely flat, half filled

band at the Fermi energy.

The calculations were performed using the FLAIR [18] code, an implementation of the

full potential linearized augmented plane wave (FLAPW) method [17]. Exchange and

correlation was treated within the local density functional formalism [64] using the gen-

eralized gradient approximation of Perdew, Burke and Ernzerhof [65]. The valence states

are solutions of a semi-relativistic Hamiltonian, while for core states spin-orbit coupling is

included as well. To ensure converged results for the electronic and magnetic properties of

all the compounds investigated, potential and charge density were expanded up to l = 8

and Gmax = 13 a.u.−1. Inside the spheres the wave-functions are expanded up to l = 8

and a plane-wave cutoff kmax of 8/min(rMT ) is used, where min(rMT ) denotes the radius of

the smallest muffin-tin sphere in the cell. In calculations involving larger unit cells a kmax

of 6/min(rMT ) turned out to be sufficiently large. A k-mesh sampling with 24×24×24 k-

points within the full Brillouin zone was found to be satisfactory in most cases. The muffin

tin radii rMT were chosen as touching spheres, adapted to the approximate atomic radius

to keep as much core charge inside the muffin tin sphere as possible. For comparisons of

total energies e.g. in order to optimize lattice constants, the muffin tin radii were chosen

as touching spheres for the smallest volume investigated and held constant otherwise. The

energy was converged better than 2.7×10−6 eV (10−7 Hartree).

4.1 Total energy

Since CaAs is the prototype of the half-metallic-ferromagnetic (HMF) systems among the

II/V compounds, its total energy has been calculated for several crystal structures:

i) The zinc-blende (ZB) structure (I 43m, Nr. 216) consists of two inter-penetrating fcc

lattices, one of them shifted by the vector [1
4
, 1

4
, 1

4
], resulting in a two component analog of

the diamond structure. Each atom of one kind is situated in an ideal tetrahedron made

up of atoms of the other kind. As most semiconductors crystallize in this structure, it is

of great technological importance.

ii) The wurtzite (WZ) structure (P 63mc, Nr. 186) is the hexagonal analog to the ZB

structure and has the same local environment if one assumes the ideal c/a ratio of
√

8/3

and an internal u-parameter of 3/8 for the anion site and 0 for the cation site at the (2b)

Wyckoff position [66]. The following discussion is limited to this ideal set-up.

iii) CaAs is rather ionic and thus might favor a higher coordinated atomic arrangement

in order to reduce its electrostatic energy. For this reason also the sodium chloride (NaCl)
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Figure 4.1: (Left panel) Cubic zinc-blende structure. Both, Ca (large, dark spheres) and

As (small, light), are tetrahedrally coordinated. The structure is a typical two-subattice

structure with Ca having only As nearest neighbors and vice versa. (Right panel) Total

energy for CaAs in different crystal structures. Energies and volumes are given per formula

unit.

structure (F m3m, Nr. 225) has been investigated. It consists of two face centered cubic

lattices, shifted by the vector [1
2
, 1

2
, 1

2
], which results in an octahedral coordination for both,

cation and anion.

iv) The equilibrium modification for CaAs as reported by P. L’Haridon et al. [67] is

the NaO structure (P 62m, Nr. 189), (a=14.84(2) bohr, c=11.19(1) bohr), which places

the As atoms in face-sharing, distorted octahedra. This structure can be derived from the

ideal NiAs structure by an exchange of Ni and As atoms, a 30 degree rotation clockwise

about the z-axis, a shift of [0,0,0.25] in z direction and finally an increase of the a=b cell

parameter by a factor of
√

3. Moreover, the symmetry is reduced due to a distortion of

the Ca octahedra, which leads to an enhancement of the mean As-Ca distance by approxi-

mately 0.37 %, and a reduction of the mean As-As distance by approximately 3.29 % with

respect to the undistorted anti-NiAs parent lattice. To ensure that both, the ZB and WZ

structure are calculated with the same accuracy, the ZB structure was transformed into

a translational equivalent hexagonal (or trigonal) modification (R3m, Nr. 160) (see [68]).

For the former, a k-mesh of 8×8×4 and for the latter a mesh with 8×8×6 points was used.

This ensures the same k-point density in the Brillouin zone (BZ) so that the numerical

errors for different structures due to the limited set of BZ sampling points will cancel. The
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Table 4.1: Cell volume V /f.u., bulk modulus B, magnetic moment M per f.u., band gap at

EF for spin-up/spin-down and spin splitting ∆E for CaAs in different crystal structures.

ZB WZ NaO NaCl

V [bohr3/f.u.] 531 523 369 374

B [GPa] 26 26 46 41

M [µB/f.u.] 1 1 0 0

Gap [eV] 2.78/2.30 2.80/2.30 0 0

∆E [eV] 0.58 0.58 0 0

calculations show (fig. 4.1) that the compounds with the octahedral coordination for the

anion – like in NaCl and NaO – are energetically favored. They have a smaller cell volume

and a higher bulk modulus, indicating that the bonding is stronger due to the smaller

interatomic distances. The experimentally observed NaO structure has indeed the lowest

total energy, the calculated lattice constant of 15.03 bohr is in good agreement with the

experimentally found value of 14.89 bohr. If one starts a calculation with the correspond-

ing ideal anti-NiAs structure and allows for a relaxation of the atoms, the distortion found

is less pronounced as in experiment, and reduces the total energy only slightly (by ≈ 16

meV/f.u.). The comparison of ZB and WZ structure shows that the hexagonal arrange-

ment is lower in energy by approximately 46 meV/f.u., but both exhibit HMF. In contrast

to that, CaAs in the NaO as well as the NaCl arrangement is nonmagnetic and metallic

at the equilibrium cell volume. Table 4.1 lists the cell parameters, the bulk modulus B

(determined from a Murnaghan equation fit [69]), the magnetic moment M , the energy

gap, and the spin splitting. Recently Geshi et al. [70] investigated the stability of half

metallicity in the ZB structure against tetragonal distortion. They fixed the cell volume

to the ZB equilibrium and found two local minima in the total energy for a c/a ratio of ≈
1.47 and 0.66, respectively, where only for the latter half metallicity occurred. The results

of a more detailed calculation, including a variation of the cell volume V for each c/a, are

shown in fig. 4.2. Our results are only in partial agreement with the findings of Geshi et

al. [70], insofar as the cubic structure (c/a = 1) is always at a local maximum in energy,

but there is no stable solution within the half metallic regime. This becomes evident by

comparing the total energy surface with the magnetic moment contour plot in the center

panel of fig. 4.2. We find that HMF is present near the cubic symmetry, but vanishes for

increasing tetragonal distortion and in general becomes favored only for large cell volumes.

The dots crossing the HMF regime mark the equilibrium cell volume at a given c/a-ratio.

We find that half metallicity is found for 0.8 . c/a . 1.15 and that the maximum energy
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Figure 4.2: Left panel: total energy for CaAs in a tetragonal distorted ZB structure for

various values of c/a and volume V/f.u. Center panel: The dashed line marks the existence

region of HMF solutions in the c/a vs. V plane; the dotted line denotes the equilibrium

cell volume for a given c/a-ratio. Right panel: total energy as a function of c/a and the

respective equilibrium volume (minimal energy path in the c/a vs. V plane).

gain within the HMF regime due to the distortion is 0.15 - 0.2 eV/f.u. In the right panel of

fig. 4.2 the lowest energy for each c/a ratio is shown. There exists a local (non-magnetic)

minimum around 1.55, in the limit of small c/a no stable solution has been found within

the investigated c/a-range. These results show that the ground state of CaAs found ex-

perimentally is energetically rather far away (≈ 1.4 eV/f.u.) from the structures which

are expected to exhibit HMF. Nevertheless, a preparation as a thin film on a substrate

may be possible. Due to the large lattice constant of CaAs it might be grown as a kind

of superstructure on a ZB-host (related to the host lattice constant by a factor of
√

2),

or as a intermediate layer between two stable structures. For the lighter representatives

discussed in the following paragraph, a greater variety of substrates is available. However,

further investigations into this direction might be very useful.

However, the occurrance of p-electron magnetism in these materials clearly distinguishes

them from the transition-metal pnictides and chalcogenides ([71, 68, 72]) where the tran-

sition metals carry the magnetic moments. In the present systems the magnetic moments

appear in the anion p-band, and therefore makes them a new and technologically challeng-

ing research area.
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Figure 4.3: Band structure of ZB-CaAs for both spin channels.

4.2 Magnetism in II-V zinc-blende compounds

In the following detailed investigation we present our results for the ZB structure, however,

due to their close similarity an equivalent behavior can be expected for the respective

compounds in the WZ structure. The half metallic ferromagnets ZB-CaX with X=P, As

and Sb exhibit a magnetic moment of 1 µB, caused by a curious, almost dispersionless band

(see fig. 4.3) [58]. The band structure for CaAs (a0=12.86 bohr) is shown in fig. 4.3, the

site and orbital projected density of states (DOS) is given in fig. 4.4. It has been argued

that the reason for this flat band is a mixing of Ca t2g and As-p like states, and that the flat

band is essential for the HMF. In order to study the mechanism behind this phenomenon

and to explore other candidates for half metallicity several other combinations of group II

elements with group V elements have been investigated, table 4.2 lists the results for the

ground states and the respective equilibrium lattice constants a0. For the half metallic

compounds investigated here, a0 varies in a wide range between 9.15 bohr for MgN to

15.37 bohr for BaSb. Compared to conventional ZB III-V semiconductors with values up

to 12.25 bohr (CdTe), the II-V compounds tend towards large interatomic spacings, which

can be attributed to the comparably big cations. Thus the lighter representatives such as

MgN or CaN having lattice constants in a physically reasonable range, might be of great

technological importance and will warrant further experimental investigation.
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Figure 4.4: Orbital and symmetry projected DOS of ZB-CaAs. The main contribution at

EF comes from As-p with a small admixture from Ca-d (t2g) and Ca-p.

4.3 The origin of magnetism

As expected, all HMF compounds investigated exhibit a magnetic moment M of 1 µB per

formula unit. This integer value comes about because for the majority spin direction the

Fermi energy EF is situated within a gap, which means that the bands below are occupied

by an integer number of spin-up electrons. Since the total number of electrons is integer as

well, a resulting magnetic moment has to be integer, too. The magnitude of the magnetic

moment can be determined by the |(8-n)| rule, where n denotes the total number of valence

electrons per formula unit. In other words, the rather localized anion p-band is completely

filled with the exception of one hole, which is responsible for the magnetic moment of 1

µB. Comparing tables 4.3 and 4.2, one finds a clear correlation between the DOS at EF

and the ground state of the corresponding compound. A high DOS at the Fermi energy –
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Table 4.2: Left part: Ground state calculated at the equilibrium lattice constants a0 for

several II-V compounds in the ZB structure. ’+‘ denotes a half metallic, ’-‘ a non-magnetic

metallic ground state and ’m‘ a system at the verge of a magnetic state. Right part:

equilibrium lattice constants (given for an fcc unit cell containing four formula units) for

the various systems investigated.

It is remarkable how widespread HMF is found within this class of compounds. All repre-

sentatives having Ca, Sr or Ba as cations exhibit HMF, additionally also MgN. All have

in common that their band structure exhibits a gap separating the anion- and the cation-

states. This feature is different for the 3d pnictides where the gap appears only in the

minority states, an asymmetry which is caused by the large exchange splitting of the d

bands [35].

ground state lattice constant a0 [bohr]

N P As Sb N P As Sb

Be - - - - 7.49 9.38 9.82 10.69

Mg + m m - 9.15 11.16 11.54 12.45

Ca + + + + 10.57 12.45 12.86 13.71

Sr + + + + 11.34 13.29 13.62 14.55

Ba + + + + 12.20 14.11 14.43 15.37

Table 4.3: DOS at EF assuming a hypothetical non-magnetic state.

N(EF ) states/(eV f.u.)

N P As Sb

Be 1.30 1.16 1.17 1.19

Mg 3.47 2.39 2.28 1.10

Ca 5.30 5.52 5.38 5.17

Sr 5.10 5.64 5.70 5.79

Ba 4.52 5.23 5.55 5.64

in these compounds created by a narrow anion p-band – appears to be sufficient to cause

an instability of the non-magnetic state within the framework of the Stoner criterion.

The application of this criterion is justified because in the non-magnetic state, all these

compounds are good metals. However, the criterion itself does not say anything about the

type of magnetism which might appear in the magnetically ordered equilibrium state. In

the present case the magnetic state is, however, not an itinerant electron state but rather
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in the fcc cell.

a localized one where the unpaired spins are located in well defined orbitals. The flat band

magnetism appearing in this class of compounds can be seen as the magnetism of unpaired

electrons occupying an atomic like state, which in the language of band structure appears

as a flat (undispersed) band. The resulting magnetic band splitting is much larger that

the respective band width, which is a typical sign for a well localized magnetic moment.

MgP and MgAs (M ≈ 0.08 and 0.02 µB/f.u.) are the boarderline cases where the DOS

value is on the verge to produce a spin splitting, which is smaller than the width of the

p-band, so that in the magnetic state both spin channels have a nonvanishing DOS at EF .

These systems are typical for itinerant electron magnetism with small magnetic moments

and a magnetic band splitting which is smaller than the respective band width. For all

II/V compounds investigated the magnetic moment can be attributed mainly to the anion

(0.6 to 0.8 µB/atom), the cation plays only a minor role. The cation moment is always

aligned parallel to that of the anion and always smaller than 0.1 µB/atom. The relatively

large contribution of the interstitial region to magnetism is typically for a structure with

large voids. A plot of the charge and spin density of CaAs is shown in fig. 4.5. The spin

density is well localized at the As site, whereas everywhere else only a small diffuse induced

spin-density occurs. The mechanism for this parallel alignment between the anion- and

the cation-moment can be understood in terms of the model of covalent polarization [23].

The cation states mix weakly with the flat anion p-band, which is spin split and almost of

equal shape in both spin channels. As the hybridization is of similar strength for both spin

directions, the cation has less occupied states in the spin down channel, which results in a

parallel polarization of the latter. This becomes evident by inspecting the orbital-projected
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DOS in fig. 4.4: there are fewer Ca-d states below EF in the minority than in the majority

direction.

Recapitulating, two simple conditions have to be fullfilled in order to have HMF present

in the ZB structure, i) there must exist a gap between anion and cation states and ii) the

band at the Fermi energy must be flat. In this case the spin splitting will automatically

shift the majority states below EF and create HMF.

4.3.1 Volume dependence of HMF

Since the cell volume controls the dispersion of the electronic bands it has probably the

largest influence on the formation of HMF. Fig. 4.6 compares the magnetic moment, the

energy gap and the bandwidth along the path L-Γ-X-U-Γ for CaAs and BeN versus the

fcc lattice constant a. CaAs has been chosen as a typical representative of the heavier

compounds, while BeN is nonmagnetic and the lightest system investigated. The magnetic

moment of CaAs is surprisingly stable, it retains its integer value down to a cell volume of

58 % from its equilibrium. BeN on the contrary becomes half metallic only if the cell volume

is increased by 62 %, a volume change which is probably beyond physical realizability. This

behavior is not surprising as it also has been found among the 3d-pnictides, e.g. in CrAs

[73]. For BeN the bandwidth of the anion p-like band at EF is reduced with increasing

interatomic separation, which explains the HMF state appearing at a ≈ 8.8 bohr. The

trend is the same for CaAs, which, however, has an initially much smaller bandwidth.

The behavior of the electronic gap has been studied, too. Coming from large volumes it first

increases due to the repulsion of anion and cation states. This effect becomes increasingly

reduced (BeN) or even overcompensated (CaAs) by the broadening of the bands forming

the gap. The gap values plotted represent the smallest value along the path L-Γ-X-U-Γ,

irrespectively whether they were due to a direct or an indirect gap.

4.3.2 Ionicity

Another quantity that plays an important role for magnetism is the ionicity of the com-

pound. This can be seen best if one investigates the non-magnetic to magnetic transition

by a stepwise increase of the anion-electronegativity, e.g. in the series MgX with X=As, P

and N. Even though the cell volume is smallest for MgN, it is the only magnetic compound

in this series. This behavior is due to the stronger localization of the N 2p states compared

to the P 3p states. In fig. 4.7 the site and symmetry projected DOS for MgP and MgN is

compared. In both cases the admixture of cation states at EF is negligible, but there is a

difference in the shape of the anion p-orbital, resulting in a clearly higher DOS at EF for

MgN.
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Figure 4.6: Comparison of the magnetic moment, the width of the gap and the maximum

bandwidth of the anion p-like band along the path L-Γ-X-U-Γ for CaAs and BeN. The

vertical line marks the equilibrium lattice constant.

Table 4.4: Energy gap in eV (d . . . direct, i . . . indirect), for magnetic members ’+’ denotes

spin up and ’-’ spin down.

Energy gap [eV]

N P As Sb

Be 8.07/5.32 (d/i) 3.79/1.63 (d/i) 3.69/1.45 (d/i) 2.92/1.26 (d/i)

Mg 3.86/2.82 (+d/-d) 2.61/2.50 (+i/-i) 2.08/2.05 (+d/-d) 1.91 (d)

Ca 3.2/2.17 (+i/-i) 2.96/2.42 (+i/-i) 2.72/2.23 (+i/-i) 2.67/2.26 (i+/-i)

Sr 2.45/1.37 (+i/-i) 2.62/2.10 (+i/-i) 2.27/1.77 (+i/-i) 2.32/1.92 (+i/-1)

Ba 2.13/1.08 (+i/-i) 2.31/1.80 (+i/-i) 2.04/1.56 (+i/-i) 2.09/1.70 (+i/-i)

The ionicity also has an influence on the energy gap. Table 4.4 lists type (direct or indirect)

and magnitude of the gap for the II-V compounds investigated. As discussed in the previ-

ous section, the gap becomes increasingly smaller for systems with large lattice constants

because the energy bands retain their atomic energies due to the weakened repulsion be-
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Figure 4.7: Total, site and symmetry projected DOS for MgP and MgN. The muffin tin

radii rMT were chosen as touching spheres, rMT for Mg was 2.2 bohr.

tween anion and cation states. The ionicity is thus responsible for the exceptional position

of BeN, which has the largest gap of all.

4.3.3 The importance of d-orbitals at the cation

Along the series XAs with X=Ca,Mg and Be, the ionicity varies not so strong as it is

the case for MgX discussed at the beginning of the last section. However, there is a clear

difference between the bonding in CaAs and MgAs, which cannot be explained by the

small volume change (fig. 4.8). These differences in bonding are a consequence of the d-

orbitals, which in the case of Ca are energetically close enough to the anion bands for a

hybridization to occur. This hybridization leads to an anomalously flat anion p-band near

EF , a more detailled discussion in the scope of a tight binding calculation is given in a

later section. Even though these d-orbitals favor this type of flat band magnetism, their
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Figure 4.8: Total, site and symmetry projected DOS for CaAs and MgAs.

presence is not conditional for the described mechanism of HMF. For example in the case

of MgN, which is a HMF, they play a negligible role. Furthermore, the comparison of the

band structure of CaAs and hypothetical fcc As for the same lattice constant, which was

first suggested by Kusakabe et al. [58], in fact shows a broader band for fcc As. In addition

to the results shown by Kusakabe et al. [58] it should be pointed out, that fcc As at this

volume is magnetic anyway. On the other hand, the hybridization with the d-states can

induce a magnetic state into compounds that otherwise would become magnetic only at

larger, often unphysical lattice constants.

4.3.4 Stability of FM versus AFM order

In order to estimate the stability of the FM against a simple antiferromagnetic (AFM)

alignment of the spins, the II-V compounds were investigated in an eight atom cell with

cubic primitive lattice vectors and a layer geometry along the [0,0,1] direction. Two an-
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Table 4.5: Total energy difference in meV/f.u. between FM and AFM ground state (∆1 =

EAFM−EFM) and between FM and a hypothetical nonmagnetic state (∆2 = ENM−EFM).

The resulting values are given as ∆1/∆2

N P As Sb

Be 0 0 0 0

Mg 114/189 ≈ 0 ≈ 0 0

Ca 92/222 71/123 70/178 60/80

Sr 96/189 67/118 64/111 58/93

Ba 90/166 56/77 49/71 63/63

ions are situated in the z=0 plane, two in the plane z=a/2, which can be assumed during

the calculation to have an antiparallel magnetization. Table 4.5 lists the calculated total

energy differences between the non-magnetic (NM), the FM and a possible AFM solution.

In all magnetic cases, the FM alignment is most stable, followed by AF and finally by

the nonmagnetic solution. In general, the materials containing light elements show higher

energy differences, probably because their bonding is more direction-dependent leading

to a stronger inter-atomic exchange. Even though the corresponding values for the 3d-

metal-pnictides are two or three times larger [71], the results found here are remarkable

considering that they come from p-electron exchange.

Motivated by earlier investigations [74] on magnetic stability of fcc alloys we tried to

estimate the paramagnetic Curie temperature. To this end we performed spin-spiral calcu-

lations [75] employing the Augmented Spherical Wave (ASW) Method [76] for CaAs along

two directions in k-space. We find (see fig. 4.9) a smooth variation of the total energy as a

function of the spin spiral q-vector with an energy minimum at the FM case q = [0, 0, 0].

The value q = [0, 0, 1] describes a spin ordering of the AFI type and q = [0.5, 0.5, 0.5] one

of the AFII type. For the definition of AFI and AFII spin ordering in the fcc lattice see

ref. [74]. In the mean field approximation the paramagnetic Curie temperature Θ can be

written as

kBΘ =
1

8
(3∆E1 + 4∆E2) . (4.1)

In equ. 4.1 we assume a spin of S = 1/2 (1µB) and first nearest neighbor interaction on a

anion fcc sublattice only. ∆E1 = E(AFI) − E(FM) = 77 meV and ∆E2 = E(AFII) −
E(FM) = 59 meV. The resulting paramagnetic Curie temperature amounts to Θ = 680K,

which would be a temperature well suited for technological application. The magnitude

of ∆E1 from the ASW calculation is in fair agreement with the FLAPW results. The size
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Figure 4.9: Upper panel: total energy as a function of the spin spiral in [ζ,ζ,ζ] and [0,0,ζ]

direction, respectively. The spin spiral propagation vector q is given in multiples of 2π/a.

Lower panel: magnetic moment of Ca and As.

of the magnetic moment (lower panel of fig. 4.9) changes only slightly for different spin

propagation vectors, which can be expected for a localized moment.

4.4 ZB compounds containing alkali metals

From the analysis given above one can expect HMF also among I/V compounds if the

ZB structure is assumed. Even though no investigation towards their structural stability

has been made, some of them have been investigated simply for the sake of interest. In

all cases the magnetic moment is 2 µB, because there are 2 electrons missing in the anion

p-band instead of 1 for the group II elements. Since the alkali s levels are situated at higher

energies than those of the alkaline earth elements, the ionicity is slightly increased, thus

already NaP is half metallic whereas the analog MgP is not. LiP as well as LiAs are not

listed because they are nonmagnetic. The band structure of NaP as a representative can

be seen in fig. 4.10. It is analogous to that of the II-V compounds, the high DOS at EF

is again the reason for the occurrance of the spin splitting. All systems listed in table 4.6

exhibit a direct gap at the center of the Brillouin zone Γ.
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Table 4.6: Half metallic members among the alkali-pnictides in the ZB structure. Listed

are the optimized lattice constant a0, the bulk modulus B, the magnetic moment per f.u.

M/f.u., the width of the gap along L-Γ-X-U-Γ for spin up/down channel, the magnetic

band splitting Em and the energy difference ∆1 = EAFM − EFM and ∆2 = ENM − EFM

per f.u.
KAs KP NaAs NaP LiN

a0 [bohr] 14.87 14.57 12.91 12.58 8.86

B [GPa] 8.6 8.9 11.0 12.0 38.2

M/f.u. [µB] 2 2 2 2 2

Gap [eV] 2.81/1.76 3.21/2.08 2.8/1.6 3.4/2.23 6.77/4.68

Em [eV] 1.33 1.44 1.41 1.54 2.66

∆1/∆2 [meV] 107/514 96/582 102/248 119/345 212/688
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Figure 4.10: Bandstructure of NaP

4.5 The flat band

The so-called flat-band responsible for the instability towards magnetic ordering is mainly

anion p-like and located around EF . Symmetry considerations allow to draw some con-
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Table 4.7: Tight binding parameters for CaAs given in units of eV.

V(ss) V(sp) V(pp σ) V(pp π) V(sd) V(pd σ) V(pd π)

As-Ca -0.37 0.48 1.42 -0.35 -0.55 -1.03 0.48

Ca-As 0.97

Ca-Ca -0.16 0.21 0.37 -0.09

As-As -0.012 0.09 0.16 -0.04

on-site As(s) As(p) Ca(s) Ca(d) Ca(p)

energy -8.3 0.65 3.8 4.0 10.0

clusions already in advance. The center of the Brillouin zone, Γ, has the full symmetry of

the crystal Td(43m) and hence only mixing between As p and Ca t2g states belonging to

the same representation T2 occurs. Along the direction Λ (Γ to L) symmetry reduces to

3m, and one p-band splits off towards lower energies due to s-pz and pz-pz hybridization

creating a second peak in the DOS at approximately -1.6 eV (spin up) (see e.g. figure

4.3). A further lifting of the remaining degeneracy in the p-band close to EF occurs, e.g.

at U (mm2 symmetry), where py-dyz, px-dxz, and pz-s-eg mixing is allowed. For a better

understanding of the nature of the flat-band a tight binding (TB) analysis of Slater-Koster

type has been performed [77]. Nearest and next nearest neighbor (s,p)-interactions suffice

to yield a satisfactory agreement with the DFT FLAPW results, provided that Ca-d states

take part in the Ca-As interaction, whereas Ca d-d interactions may be neglected. The

TB parameters, i.e. interatomic matrix elements and on-site energies, are given in table

4.7. They were obtained in the following way: Parameters for the next nearest neighbor

(s,p)-interaction (As-As and Ca-Ca) were determined from the respective As and Ca fcc

DFT FLAPW sub-lattice band-structures calculated at the CaAs lattice constant. The

on-site energies have been chosen in accordance to the respective band centers of the CaAs

DFT FLAPW band-structure. Analogous to the next nearest neighbor (As-As, Ca-Ca)

interactions, all nearest neighbor Ca(s,p)-As(s,p) matrix elements were chosen to correctly

reproduce the rather narrow As-s band at ≈ -9 eV and the width of the anion p-band.

In all cases the ratio between π and σ interactions both for p-p and p-d bonding was

set according to Harrison [78]. Concerning the As (s,p)-Ca d interaction, its value could

be reduced if Ca d-Ca d interactions are included. These interactions broaden the Ca-d

bands and thus also increase the p-d interaction. The TB band structure calculated for the

symmetry L-Γ-X-U-Γ containing the five lowest lying bands is shown in the left panel of

fig. 4.11 and is in good agreement with the FLAPW results, as already stated above. The

other two band structures in fig. 4.11 have been calculated by switching off the d orbitals
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Figure 4.11: Model tight binding (TB) band structure containing the five lowest bands,

plotted along the k-points L-Γ-X-U-Γ. Left panel: full TB simulation; center panel: p-d

interaction switched off; right panel: p-p interaction switched off.

on Ca and the As p-Ca p mixing, respectively. Quite clearly, the Ca-p As-p interaction

generates a dispersion of the flat-band with a trend opposite to the one caused by the

Ca-d As-p interaction. For the existence of the magnetically active flat-band, this means

that the influences of both interactions cancel each other, rendering one anion p-band

dispersionless. The same differences in p-p and p-d interaction also explains the negative

curvature of the uppermost p-band at Γ for compounds with mainly or exclusively s-p like

interactions (e.g. ordinary semiconductors such as InSb), and the positive one if p-d inter-

action dominates, as it is the case for some 3d-pnictides like CrAs or MnBi [79, 73] whose

minority band structure is at least partially comparable to those of the II/V compounds

because all d states are situated well above the gap. Since the magnetism in all these

compounds relies on the existence of a flat anion p-band, they might serve as examples for

the flat band (ferro-) ferrimagnetism, which has been proposed on the basis of the Hub-

bard model [80]. Rigorous examples of ferromagnetism (or ferrimagnetism) in the Hubbard
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model - at least in the past - have been limited to singular models with infinite Coulomb

interaction U [81], or systems in which the magnetization is supported by a nearly flat

[82, 83] band (large ratio U/W ). Within the Hartree-Fock approximation the Hubbard-

and the Stoner-model become equivalent so that the Hubbard U can be determined from

the magnetic splitting of the flat band. Given a flat band dispersion of about W = 0.07

eV yields the ratio U/W to be about 12, much larger than for ordinary d-electron magnets.

In conclusion it was found that half metallicity is very common among ionic compounds

composed of alkaline earth/alkali metals and group V elements if a tetrahedrally coordi-

nated crystal structure like the ZB or WZ structure is assumed. Magnetic order is favored

by large lattice constants, high ionicity and empty 3d orbitals present on the cation like

in CaAs. The resulting spin splitting yields a half metallic state, because a gap is always

present in both spin channels. The origin of ferromagnetic order of these materials de-

pends on the appearance of a flat p-electron band at the Fermi energy in the fully ordered

compound. This is in contrast to most other magnetic semiconductors (e.g. Mn doped

GaAs, Mn doped Chalcopyrites), where magnetic transition metal impurities are inserted

into a semiconductor host. Employing a tight-binding model we show that the flat anion

p-band is a property of the crystal structure and its formation depends on the nearest

neighbor s-p and p-d interaction. Calculations of the total energy show that this class of

materials exists as bulk phases at best in metastable form. However, their highly interest-

ing magnetic properties including a reasonably large Curie temperature might warrant also

experimental efforts to stabilize these materials in a fourfold coordinated structure such as

ZB or WZ (e.g. via vacuum laser deposition) on suitable substrates.
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Chapter 5

Dilute magnetic semiconductors

(DMS) based on Cu2O

There is considerable recent interest in the exploration of new, suitable semiconductor

hosts as a basis fer new DMS systems. A rather new family, namely the oxide-based

diluted magnetic semiconductors are attracting increasing attention, following reports of

room temperature ferromagnetism in anatase TiO2 and wurtzite ZnO doped with a range

of transition metal ions. In this paper we explore a new suitable host, namely cuprous

oxide (Cu2O), which has already been prepared with a small concentration of Mn, Co and

Ni on the copper sites. In Mn doped Cu2O the experimental results disagree in the context

of room temperature ferromagnetism [84, 85, 86], in the Co doped compound only the

results of the group of Kale et al. [87] are available, pointing towards room temperature

ferromagnetism if in addition Al codoping is performed. On the theoretical side Ag, Ni and

Zn doping has been investigated [88], but magnetic properties were not mentioned. Thus

we study Mn, Fe, Co and Ni inserted in Cu2O by the means of density functional theory

(GGA and GGA+U) using the VASP code. By setting up 48-atom supercells (2×2×2

fcc cells) as well as 18-atom trigonal cells (simplest trigonal unit cells) with one or two

copper atoms being replaced, we are already within the experimental doping regime. Cor-

relations beyond GGA as well as geometrical relaxations around the impurity are taken

into account. We analyze energy differences between ferromagnetic and antiferromagnetic

coupling of spins situated on the substituents Co and Mn, in order to obtain better insights

into the magnetic exchange mechanisms in these compounds.

The calculations were performed using the VASP package [21], which implements a plane

wave basis and a projector augmented wave (PAW) technique [20]. Exchange and cor-

relation were treated within the density functional formalism [64] using the generalized

gradient approximation of Perdew, Burke and Ernzerhof [65]. Effects of electron correla-
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tion beyond GGA were taken into account within the framework of GGA+U. To this end

the simplified (rotationally invariant) approach of Dudarev has been used [89]. Since no

data from spectroscopic measurements were available, values of U=5 eV and J=0.95 eV

have been applied for Mn, Fe, Co and Ni. PAW potentials have been used, with 4s, 3d

and 4p electrons in valence for copper and 2s and 2p electrons in valence for oxygen. A

plane-wave expansion up to 400 eV was sufficient. For the supercell calculations (48 atoms)

a k-mesh of 8×8×8 within the full Brillouin zone has been used, only in the cases where

symmetry constraints were switched off a 6×6×6 mesh has been utilized. For the trigonal

cells a k-mesh of 18×18×14 within the full Brillouin zone turned out to yield good results.

5.1 Pure cuprous oxide

Cuprous oxide (Cu2O) is a p-type semiconducting oxide with a direct band-gap of approx-

imately 2.1 eV [90] that crystallizes in a cubic structure (Pn3m, No. 224) built up from

Cu atoms located on a conventional fcc lattice and oxygens at the positions (1
4
,1
4
,1
4
) and

(3
4
,3
4
,3
4
). While the coppers are linearly (twofold) coordinated, the oxygens are situated in

the center of ideal tetrahedra (Fig. 5.1). This structure may also be viewed as consisting of

two independent and interpenetrating O-Cu-O zig-zag frameworks, each one equivalent to

the cristobalite structure. The calculated lattice constant is 8.14 a.u., in good agreement

with the experimentally found lattice constant of a0=8.07 bohr [91]. The calculated gap

Figure 5.1: Left panel: Cubic unit cell of Cu2O containing 6 atoms. The big bright spheres

are Cu atoms, the small dark ones are oxygens. Right panel: Trigonal unit cell Cu12O6.

is too small (0.48 eV), but otherwise - due to the formally fully occupied 3d shell - one

expects band theory to give good results. This has been confirmed by Ghijsen et al. [92]

by performing several types of spectroscopies. Laskowski et al. [93] found out that LDA
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Figure 5.2: Density of states for Cu2O.

as well as GGA slightly overestimate the s-d hybridization, but this effect can be assumed

to play a minor role in the following discussion. The density of states (DOS) of Cu2O is

shown in Fig. 5.2. In addition to the total DOS per formula unit, Cu-d and O-p states

are shown. The DOS below EF has mainly three features, a main Cu d-block situated at

≈ -2 eV, a broad oxygen p-peak around ≈ -7 eV and one narrow peak at the upper edge

of the Cu d-block, which is mainly built up from Cu dz2 , dxz and dyz orbitals. One of the

reasons for the stability of Cu2O is its incompletely filled dz2 orbital. In the Orgel model

[94] this is justified by the formation of a s-dz2 hybrid orbital on Cu, resulting in the ten-

dency to occupy Cu s-like states and to emtpy (anti-bonding) Cu dz2 states. More detailled

discussions on the electronic structure of Cu2O can be found e.g. in Ref. [95, 96, 97, 98].

5.2 Transition metal substitution

Experimentally much effort was put into the preparation of transition metal doped Cu2O.

At the moment there is some controversy about room temperature ferromagnetism in Mn

doped Cu2O. Wei et al. [84] reported a Tc of more than 300 K for bulk Cu2O and thin films

if doped with 1.7 % of Mn, whereas Pan et al. [85] identified only paramagnetic behavior.

For higher doping (nominal Cu1.9Mn0.1O) Ivill et al. [86] reported no magnetic signal ex-

cept that of a ferromagnetic Mn3O4 impurity phase with a Tc of ≈ 46 K. Also Co-doped
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Table 5.1: ∆rNN denotes the changes in the TM -O bond length relative to the pure host,

d/dideal is the relative change of the TM -Cu distance, equivalent to nearest neighbor sites

in an fcc lattice.
Mn Fe Co Ni

U=0, 48 atoms

∆rNN [%] +2.5 +0.4 -1.2 +0.5

d/dideal [%] -0.74 -1.26 -1.50 -1.11

U=5 eV, 48 atoms

∆rNN [%] +5.2 +2.3 +0.6 +2.6

d/dideal [%] +1.91 -0.35 -0.12 +1.37

thin films were prepared, room temperature ferromagnetism was indeed reported, but only

if 0.5% Al were co-doped [87], otherwise some hints pointing towards spin-glass behavior

were found. Ni-doped films were also synthesized [99], but without analyzing their mag-

netic properties. Even though band-structure calculations for Ag, Ni and Zn doped Cu2O

with a rate of substitution of 12.5 % were done [88], nothing is known about more dilute

systems and about magnetism.

5.2.1 Relaxations

In order to be close to experimental doping concentrations, supercells containing 48 atoms

(8 fcc cells with 6 atoms each) have been set up, assuming the transition metal (TM)

to be located at the origin. This is equivalent to a substitution of 3.125 % of the copper

atoms and yields a TM -TM distance of 8.614 Å. For a realistic description of TM1Cu31O16,

in VASP all symmetry (D3d) conserving relaxations have been taken into account. The

ionic degrees of freedom were converged better than 1 meV, all forces better than at least

0.06 eV/Å. The lattice constant has been fixed at the (GGA) optimized value of the host

material (16.28 a.u.), and from now on will be used in all calculations. In Table 5.1 the

relative changes in the bond length as compared to the pure Cu2O host as well as the

relative changes in the TM -Cu distance (fcc nearest neighbor sites) are listed. For U=0

all calculations agree that the nearest neighbor relaxations are most important for Mn and

Co, but only small for Fe and Ni. In all cases the Cu ions come closer to the substituent

and it is found that this relaxation is strongest for Co and Fe. This feature is reasoned by

the deviation from the d10 configuration, which causes stronger TM -Cu bonds. There is

a clear trend towards a strengthening of the bond between TM -O and TM -Cu for both,
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Table 5.2: Magnetic moments in µB for 3.2% and 9.1% (in brackets) of transition metal

(TM) substitution in Cu2O, assuming TM to be situated on the Cu site. Listed are

the total and site projected magnetic moments, the radii of integration were chosen to

be r=2.5 bohr for TM and r=1.55 bohr for the oxygens (only those closest to the sub-

stituent were considered). The upper/lower part of the table is valid for U=0 eV/U=5 eV,

respectively.
Mn Fe Co Ni

Moment (U=0 eV)

Total [µB/cell] 4.02 (4.05) 3.00 (3.08) 2.00 (2.00) 1.00 (1.00)

on TM [µB/atom] 3.85 (3.73) 2.88 (2.87) 1.89 (1.90) 0.56 (0.57)

on O [µB/atom] 0.01 (0.02) 0.04 (0.04) 0.05 (0.05) 0.02 (0.03)

Moment (U=5 eV)

Total [µB/cell] 4.34 (4.24) 3.07 (3.18) 2.00 (2.00) 1.00 (1.00)

on TM [µB/atom] 4.40 (4.29) 3.39 (3.28) 2.16 (2.11) 0.78 (0.76)

on O [µB/atom] -0.01 (0.02) 0.02 (0.01) 0.02 (0.03) -0.02 (0.01)

U=0 and U=5 eV when going from Mn to Co, but a weakening of the bond for Ni. A finite

Hubbard U always leeds to an increase of the bond length, which is a consequence of the

localization of the d-states which prevents them from participating in the chemical bond.

The fact that the Co-O bond length is shortest can be explained by the approximately half

filled d↓ shell of Co and will be discussed in the following section.

5.2.2 Ground states for Mn, Fe, Co, and Ni doped Cu2O

In cuprous oxide a substituent (e.g. Co) on the Cu-site has site symmetry D3d (3m). Thus

the d-orbitals can be characterized by two different irreducible representations, namely

A1g with d2z2−x2−y2 and Eg with (dxy, dx2−y2), respectively (dxz, dyz) as symmetrized

basis functions. These functions are given in a coordinate system with the z-axis pointing

towards one of the two nearest neighbor oxygens. Thus we performed not only calculations

for cubic TM1Cu31O16 but also for equivalent trigonal cells (R3m, No. 166), having a

z-axis pointing along the cubic (1,1,1) direction (see Fig. 5.1). These trigonal cells contain

18 atoms and the orbital projected DOS shown in Fig. 5.3 is useful for understanding the

trends in bonding. In all calculations relaxations of the atomic positions were allowed as

long as symmetry was not reduced. The results for the magnetic moments determined for

low TM concentrations (3.2 %) as well as for high concentrations (9.1%) (given in brackets)

are listed in Tab. 5.2.
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From the DOS in Fig. 5.3 one can see that for Mn1Cu11O6 the Fermi energy Ef is

situated (slightly) within the conduction band for the spin up electrons and within a gap

for the spin down electrons. In the spin down channel the peak below Ef is predominantly

composed of dz2-like states, with contributions of (dxy,dx2−y2). This peak originally comes

from Mn-O anti-bonding states that in pure Cu2O are responsible for the uppermost peak

in the Cu-d DOS at the valence band maximum (see Fig. 5.2). These anti-bonding states

can be attributed rather to the Mn atom, and in a simple covalent bond picture (Cu2O is

not purely ionic) the electron on Mn (dz2) prefers being spin-paired with the electron on

oxygen that is in an orbital pointing towards Mn. Hence the dz2 state does not contribute to

magnetism, which can be seen in the DOS. Some of the spin-down dz2-like states (including

the peak) are occupied and compared to the undoped host the peak is shifted away by

intraatomic exchange interactions from the valence band edge to slightly below Ef . If the

Hubbard U is set to a value of 5 eV, minority (dxy,dx2−y2)-like states are no longer occupied

and the number of Mn spin down dz2-like electrons also goes down. The peak itself is

slightly shifted upwards. Regarding site-projected charges, within a radius rTM of 2.5 bohr

around Mn the number of minority electrons reduces from 0.6 for U=0 to approximately

0.3 for U=5 eV. The total d-like charge within this radius decreases slightly from 4.95 to

4.92 electrons. A Bader charge analysis for the present material using an algorithm of

G. Henkelman et al. [100, 101] results in a total charge on Cu of 10.5 (s+d), on O of 7.1

(s+p) and on Mn of 6.1 (s+d) electrons (U=0). In conclusion, the total magnetic moment

of ≈4 µB can be explained by the fact that all orbitals except the dz2 are spin polarized.

The minority dz2-like states are emptied if on-site correlations beyond GGA are introduced

(e.g. by U), causing an increase of the total and site-projected magnetic moment.

The one additional electron in Fe1Cu11O6 goes into the (dxy,dx2−y2) orbitals, which

are non-bonding with respect to the nearest neighbor oxygens. These orbitals spread out

within the trigonal z=0 plane. The local coordination of the TM atom within this plane is

a hexagon built up from 6 nearest neighbor Cu atoms and another hexagon (rotated by 30◦

with respect to the Cu hexagon) built up from second nearest neighbor oxygens, alternating

above and below the z=0 plane. The magnetic moment is approximately 3 µB and changes

slightly upon a change in the Fe concentration and moderately upon an increase in U.

For the spin-up electrons Ef is situated within the bottom of the conduction band and

contrarily to the Mn compound spin-down Ef is situated within the (dxy,dx2−y2)-like states

(see Fig. 5.3), broadened by spurious TM -TM interactions due to the limited size of the

supercell. The Bader charge for U=0 on Fe is 7.3 (s+d), larger by 1.2 compared to Mn. Also

the total d-like charge within rTM=2.5 bohr around Fe increases by 1.1 (U=0), indicating

that the charge is slightly more localized on the Fe atom than it is on the Mn. When the

total DOS of the 48 atom cubic supercells (not shown) is taken into consideration, one

69



finds that the energetic position of the spin up conduction band is slightly higher in Fe

than in Mn doped Cu2O. If U is set to 5 eV, the spin up conduction bands (for the cases

Mn and Fe) are clearly shifted downwards. This is similar to n-type doping, which usually

shifts Ef inside the conduction band.

The situation changes significantly if one additional electron is present at the TM site.

Co1Cu11O6 is the first compound within the series exhibiting a stable integer magnetic

moment of 2 µB. It has a vanishing DOS at Ef for both spin channels. Compared to the

representatives discussed above, in the Co-doped system Ef for spin-up is no longer inside

the conduction band. For the other spin channel, the anti-bonding dz2 peak is occupied

as well as a second set of orbitals, namely (dxy,dx2−y2). This allows Ef being situated

inside a crystal field gap, separating the occupied orbitals from the empty ones that have

predominantly (dxz,dyz) symmetry. The Bader charge on Co is 8.4 (s+d) (for U=0), by 1.1

electron more than on Fe. This increase relative to the core charge reflects the increase in

electronegativity when the d-shell is being filled. The d-like charge within rTM (2.5 bohr)

is 7.23, which relative to the core charge is largest among all members of the series. In

the previous section about relaxations it was found that the TM -TM and TM -O bond

length are smallest for the Co doped compound. This stronger binding may be attributed

to Ef falling just inside a gap, which very often is energetically favored. Moreover, the

approximately half filled d↓ shell is also optimal for binding, because (for spin down) the

energetically favored orbitals are occupied whereas the others are still empty. When the

Hubbard U is increased, the local moment increases from 1.89 µB to 2.16 µB, and since

the total moment does not change, the neighbors have to contribute antiferromagnetically

to the total moment.

The compound Ni1Cu11O6 is either half metallic (U=0 eV) with a high DOS at Ef

in the spin down channel, or it has no states at Ef in both spin directions (U=5 eV). In

both cases the total magnetic moment is integer 1, with a local moment of 0.56 and 0.78

for U=0 and 5 eV, respectively. The Bader charge of Ni for U=0 is 9.5, reflecting the

fact that Ni has a similar tendency to fill its d-shell (a similar electronegativity) as Cu

with a Bader charge of 10.5 (s+d). The total d-like charge inside rTM is 8.07 (U=0). A

more detailled investigation of the DOS shows that for U=0 eV the energetic sequence of

d-orbitals has changed compared to the compounds discussed earlier. Energetically lowest

are (dxy,dx2−y2), followed by (dxz,dyz). The minority spin dz2 peak is situated above Ef for

the first time. This might come from the tendency of Ef being situated within a region

of vanishing DOS. If the non-degenerate spin-down dz2-like peak were below Ef as for all

the other representatives, the two-fold degenerate set (dxz,dyz) would have to be half-filled

and Ef would fall into a peak. Only in the Fe compound Ef is situated within a spin-down

peak. This is because in that case the larger spin splitting makes a rearrangement of the
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Figure 5.3: Density of states (DOS) for TM1Cu11O6 with TM=Mn (a), Fe (b), Co (c),

and Ni (d). The TM d-like DOS (radius of integration: rTM=2.5 bohr) is splitted in its

irreducible representations, and the total DOS of oxygen (r=1.55 bohr) has been multiplied

by 20. One should keep in mind that the main oxygen (bonding) states are situated at

energies of about -7 eV. All upper panels display standard DFT results, U=0, while all

lower panels show GGA+U results for U=5eV.

spin down orbitals unfavorabale. The Hubbard U further empties the dz2-like states, most

probably due to Coulomb repulsion arising from the occupied (dxz,dyz) states.
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Regarding structural properties, the contraction of the TM -O bond length when going

from the Mn to the Co doped compound might originate from the fact that a half filled

d↓ shell is favored, since the bonding part is occupied and the unfavored states are empty.

The position of Ef within a crystal field gap as in the case of the Co system is also

favorable, explaining the exceptional small Co-O bond length. When it comes to the

magnetic properties, the earlier members of the series (Mn, Fe) are close to a half metallic

state, however, their total magnetic moment depends on the Hubbard U as well as slightly

on the TM concentration (see Tab. 5.2). This sensitivity is due to the fact that upon e.g. an

increase of U it rather comes to an emptying of minority d-states than to a rearrangement

of occupied states as in the case of Co. Since approximately one d-orbital (dz2) does not

contribute to magnetism due to its strong overlap with non spin-polarized oxygen, the total

moment for Mn and Fe doped Cu2O is about 4 and 3 µB, respectively. The compounds

containing Co and Ni are clearly either half metallic (Co: U=0/5 eV, Ni: U=0 eV) or

insulating (Ni, U=5 eV), meaning that there are no states at Ef in either one or even both

spin directions. As one would expect, due to the filling of minority d-states on TM the

total magnetic moment is 2 and 1 µB for Co and Ni doped Cu2O, respectively. If Cu is

substituted by lighter transition metals, the lower electronegativity compared to Cu acts

similar as n-type doping. The charge that can not be localized is no longer spin polarized,

explaining why for the spin up channel Ef is situated within the conduction band (Mn/Fe).

By adding further electrons on TM , Ef then successively moves away from the spin-up

conduction band, until it almost reaches the valence band edge in the case of Ni, which

has an electronegativity similar to Cu.

5.2.3 Magnetic exchange in Co and Mn doped Cu2O

In order to investigate the effective magnetic exchange between two substituents, the energy

difference between a ferromagnetic (FM) and an antiferromagnetic (AF) spin arrangement

for two TM atoms in TM2Cu30O16 (6.7 % doping-rate) has been determined. One TM was

put at the origin (0,0,0), the other one was assumed to occupy either the nearest neighbor

(1
4
,1
4
,0), the second nearest neighbor (1

2
,0,0), the third nearest neighbor (1

2
,1
4
,1
4
), the fourth

nearest neighbor (1
2
,1
2
,0), or the fifth nearest neighbor (1

2
,1
2
,1
2
) positions, the fractional

coordinates refer to the supercell. Again geometric relaxations were taken into account.

In order to analyze possible clustering, the energetically favored spin-arrangement (AF

or FM) has been recalculated without any symmetry-related constraints. This improves

the total energy predominantly for the nearest neighbor arrangement, typically by several

meV.

In the compound Co2Cu30O16 FM alignment is favored up to the fourth nearest neigh-
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Table 5.3: ∆E = EAF − EFM gives the energy differences in meV between AF and FM

arrangement of two spins for interactions up to the fifth neighborshell. The TM -TM dis-

tance in multiples of the fcc nearest neighbor distance is given in brackets in the head

of the table. Positive values of ∆E indicate FM ordering. The magnetic moments are

determined inside a sphere of 2.0 a.u. CE stands for clustering energy, which is the en-

ergy of a given atomic arrangement (2nd to 5th nearest neighbor position) relative to the

ground state energy of a system with nearest neighbor TM substituents. Negative values

indicate that the given configuration is lower in energy than the nearest neighbor refer-

ence.
1st (1) 2nd (

√
2) 3rd (

√
3) 4th (2) 5th (

√
6)

Mn U=5 eV ∆E [meV] -106 -70 -53 -53 -64
Moment (FM/AF) [µB ] 4.42/4.38 4.42/4.38 4.36/4.37 4.35/4.35 4.38/4.38

U=0 eV ∆E [meV] -64 -59 -33 -1 -20
Moment (FM/AF) [µB ] 3.79/3.85 3.79/3.85 3.83/3.86 3.78/3.85 3.83/3.88
CE [meV] - 0 0 +34 +72

Co U=5 eV ∆E [meV] -73 +1 +14 +3 -5
Moment (FM/AF) [µB ] 2.13/2.16 2.15/2.16 2.15/2.15 2.16/2.16 2.15/2.16

U=0 eV ∆E [meV] +60 +47 +33 +7 -3
Moment (FM/AF) [µB ] 1.87/1.85 1.86/1.87 1.88/1.88 1.90/1.90 1.90/1.90
CE [meV] - +2 +35 +110 +108

bor interaction, only the distant fifth nearest neighbor interaction is weakly antiferromag-

netic. An oscillatory behavior is found when correlations are switched on (U=5 eV). Since

the on-site Coulomb repulsion directly influences only the local environment around Co,

predominantly the shorter interactions are modified towards antiferromagnetic coupling.

A very important fact is that the magnetic interactions decay rather rapidly when the

distance between the Co substituents is increased, regardless of the strength of U. This

suggests that magnetic exchange is not carrier mediated in Co2Cu30O16, which is in good

agreement with the DOS discussed in the previous section. The Fermi energy is situated

clearly inside the host gap for the majority spin direction and inside a d band-gap for the

spin down electrons, which is stable against all values of U investigated. Thus no host

states are available at EF and long range Zener p-d exchange [46] between well localized

magnetic moments, mediated by host hole-states, is probably not responsible for magnetic

exchange. The values of the clustering energies (CE) suggest that it is most favorable for

Co to occupy nearest or next nearest neighbor sites, thus for the real Co doped material

rather strong clustering can be expected if produced at too high temperatures where the

mobility of the atoms is rather large. A comparison of the local magnetic moments at the

73



-100

-50

 0

 50

 100

 150

 200

 250

 1  2  3  4  5

∆ 
E

 [
m

e
V

/f
.u

.]

fcc neighbor-shell

FM

AF

Mn U=0 eV
U=5 eV
Cu-vac.
O-vac.

-100

-50

 0

 50

 100

 150

 200

 250

 1  2  3  4  5
∆ 

E
 [

m
e

V
/f

.u
.]

fcc neighbor-shell

FM

AF

Co U=0 eV
U=5 eV
Cu-vac.
O-vac.

Figure 5.4: Energy difference in meV between AF and FM coupling (EAF -EFM) as a

function of fcc neighbor-shell distance. The solid lines show the data for Mn (left hand

side) and Co (right hand side) doping of perfect Cu2O, the dashed lines represent Mn/Co

doping of Cu2O exhibiting intrinsic defects, such as copper vacancies (Cu-vac.) and oxygen

vacancies (O-vac.).

substituents for the FM and AF configuration exhibits only minor differences.

In Mn2Cu30O16 magnetic exchange is exclusively antiferromagnetic for all pairs of

substituents investigated. When the Hubbard U is increased, the antiferromagnetic char-

acter becomes even stronger. This shows that ferromagnetism, which would be desirable

for spintronics applications, is not an intrinsic property of this compound. The strength of

the magnetic interactions decays much more slowly with increasing distance than for the

Co doped oxide, especially when correlations are introduced. Clustering is less pronounced

than in the corresponding Co compound.

Both compounds have in common that there is a continuous change in the exchange con-

stants between nearest neighbors and between impurities more far-off. Since only the

nearest and fourth nearest neighbor sites belong to the same Cu-O-Cu zig-zag chain, which

allows for a interaction of the substituents via the oxygens, indirect superexchange via the

closed shell oxygen is not the only interaction present. This is obvious because the cation

sublattice is of fcc type and a deviation from a d10 configuration in such a lattice introduces

cation-cation bonding without the direct involvement of oxygen. Due to the ongoing dis-

cussion about the realizeability of room temperature ferromagnetism in Mn doped cuprous
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oxide, we additionally took into account defects, which in a semiconductor are expected

to play an important role. We assumed single copper as well as oxygen vacancies, the

most relevant defects in Cu2O [102, 103]. For this purpose we removed one atom of our

supercell (Cu at (0,1
4
,1
4
) or O at (1

8
,1
8
,1
8
)) and allowed for a relaxation of all other atoms but

with a fixed lattice constant. All calculations were performed applying GGA only (U=0).

Our results are shown in Fig. 5.4, presented together with the exchange constants of the

defect-free oxide discussed above.

On the left hand side the results for Mn doped Cu2O clearly show that both, copper and

oxygen vacancies strongly enhance the FM character of the Mn-Mn interactions. How-

ever, while Cu-vacancies cause Mn to couple predominantly FM, except for a small AF 3rd

nearest neighbor interaction, the effect of oxygen vacancies is more complex. Even though

the removal of oxygen affects magnetic exchange much stronger (e.g. huge Mn-Mn nn

interaction of 252 meV), Fig. 5.4 indicates that the Mn-Mn interactions in this case change

sign towards AF coupling with increasing TM -TM separation. Due to the limitation of

the supercell size we can only estimate the behavior of Mn-Mn pairs more far off, but

further AF interactions can be expected. Thus it is not clear which type of defect is suited

best for achieving a Tc as high as possible, however, the important finding is that defects,

regardless whether oxygen or copper vacancies, are an important ingredient to stabilize

FM Mn-Mn interactions.

In the Co-doped system oxygen vacancies again have a much stronger influence on mag-

netism. While Cu-holes slightly stabilize FM interactions, O-holes induce extremely strong

oscillations, which are not desirebale for long range FM. As a consequence, in this system

one can expect that Cu-holes, which might appear under Cu-poor preparation conditions,

increase the Curie temperature. Contrarily, the lack of oxygen and the resulting short-

ranged oscillations in the Co-Co magnetic interaction might be one prerequisite for the

spin-glass behavior in Co doped Cu2O found in experiment [87].

To summarize, cuprous oxide Cu2O with transition metals substituted on the copper

site exhibits a great variety of magnetic ground states. Ni and Co substitution introduces

stable integer magnetic moments per cell, and thus results in either insulating (Co, Ni U=5

eV) or half metallic (Ni U=0) ground states. In semi-metallic, defect-free Mn2Cu30O16

,independently of U, antiferromagnetic spin arrangement is favored. Long range ferro-

magnetism might occur when defects (copper or oxygen vacancies) are present. The huge

difference between the magnetic properties of perfect and imperfect Cu2O resolves the dis-

cussion about room temperature ferromagnetism, and explains why some groups find long

range FM and others not. On the other hand, in insulating defect-free Co2Cu30O16 most of

the exchange constants already favor ferromagnetism, only the exchange between nearest
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neighbor sites changes towards an AF coupling when the Hubbard U is increased. When

defects are taken into account, it turns out that copper vacancies are very likely to increase

Tc while a lack of oxygen introduces strong oscillations in the magnetic exchange, favoring

a more complex type of ordering. This is in fair agreement with experiment, which even

suggests spin-glass behavior in Co doped Cu2O, if no additional Al-doping is performed.

Our calculations further revealed that magnetic interactions are relatively short-ranged in

the Co doped system but longer-ranged in the Mn doped compound.
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Part III

Metals

77



Chapter 6

Making metals magnetic

In the previous chapter magnetism in semiconductors was investigated. Now metals are in

the center of attention. The interesting question is how to make otherwise non-magnetic

materials magnetic. Three examples will be discussed. The first one is TCu3N with

T =Pd, Rh and Ru [104]. The host, Cu3N, serves as non-magnetic cage accommodating

well separated 4d elements like Pd, Rh, and Ru. Even though the latter are usually non-

magnetic, their large mutual separation within the cage of Cu3N significantly reduces the

4d band-width so that for T =Rh and Ru the Stoner criterion for FM is fullfilled. Thus in

particular the compound RhCu3N, which was found to be stable, might be a good candidate

for the investigation of possible quantum critical behavior. AlCxNi3 and GaCxNi3 with

0 ≤ x ≤ 1 belong to the second class of materials studied [105]. These compounds change

from a non-magnetic to an almost magnetic ground state upon the removal of carbon. It

will be shown that AlCxNi3 and GaCxNi3 are non-magnetic in their stoichiometric form

(x = 1). This was not completely clarified up to now due to uncertainties in the sample

characterization. However, when carbon is removed bonds break up and the resulting

reduction in the band-width again brings the compound close to or even beyond the Stoner

limit. The third class of materials are GaM4X8 with M=Mo, V, Nb, Ta and X=S and

Se. They are called Mo-cluster compounds because of their prototype GaMo4S8. Their

characteristic feature are well-separated, tetrahedral M4 clusters. In a simple ionic picture

one can easily explain their integer magnetic moment of 1 µB. After removing those

electrons that can be considered as completely transferred to the X p-shell, the remaining

electrons on M contribute to a metallic bond within the M4 cluster. In the case of GaMo4S8

(GaV4S8) exactly one electron per Mo4 cluster is missing (present) within the narrow, t2g

cluster orbital. This yields a magnetic moment of 1 µB per cluster (f.u.). Since the M4

clusters are well-separated, correlations are believed to play an important role. We show

that there are huge differences between the M=Mo,V and the M=Nb,Ta representatives.
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It will be demonstrated that the former (M=Mo,V) can correctly be described within plain

GGA, if the atomic positions are allowed to relax properly. The role of distortions has been

underestimated up to now. We show that in particular the compound GaMo4S8 is not a

Mott insulator as reported elsewhere. Its gap opens up due to cluster-distortions already

by using plain GGA, without the need for post-DFT methods like LDA+U that are usually

required in the case of a Mott insulator.
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6.1 The onset of weak itinerant magnetism in TCu3N

(T =Pd, Rh and Ru)

Weak itinerant magnetism (WIM) in metallic alloys and compounds has attracted consid-

erable interest over decades since it represents a limiting case, opposite to localized mag-

netism, providing a background for the development and testing of various spin-fluctuation

models [106, 107]. Recently the experimental and theoretical activity in this field was dra-

matically increased, mainly because of two reasons:

i) It was recognized that weak itinerant magnets are a model class of materials ap-

plicable for studying phenomena that come along with the critical fluctuations near the

so-called quantum critical point (QCP). The latter may be achieved in these compounds

by applying pressure, field or performing suitably chosen chemical substitutions [108, 109].

ii) The giant magnetocaloric effects present in itinerant electron metamagnets [110]

make these materials very promising for magnetic refrigeration technology [111].

It is interesting to note that the itinerant metamagnetic scenario [112, 113], case ii),

almost always rules out the presence of quantum criticality, case i). It thus appears that

a study of materials exhibiting WIM is motivated by the non-trivial interest not only in

the character of the critical point but also in the dependence on external parameters. The

interest in this field triggered an intensive experimental search for new metallic materials

which may be on the border of a magnetic instability. A couple of new metamagnetic ma-

terials with very intriguing properties were found. First of all, there are those compounds

exhibiting very low critical magnetic fields compared to ”conventional” stoichiometric itin-

erant electron metamagnets (IEM) like YCo2 [114]. To this group belong the recently

discovered LaCo9Si4 [115] as well as UCoAl [116]. In addition, giant magnetocaloric and

magnetovolume effects were observed in La(FexSi1−x)13 [117]. Another example includes

non-Fermi liquid behavior in Pd-Ni alloys in a composition range close to the magnetic

critical concentration, studied by Nicklas et al. [118]. The last examples are more closely

related to the compounds we have studied, namely those that are composed of usually

non-magnetic metals such as fcc Pd, which is however very close to the onset of magnetic

order. Moreover, the probably best studied WIM material is ZrZn2 [106, 107, 108], which

has only non-magnetic metals as constituents. Even though there exist some more exam-

ples of that type e.g. Sc3In and VAu4, which for a long time have been regarded as WIM

prototypes [106], there is no common route for designing weak itinerant magnetic systems

out of usually non-magnetic elements. Thus only a limited number of such compounds

is known up to date. In this work we exploit an idea similar to that which nowadays

very fruitfully is used to produce strongly correlated materials having unusual magnetic

and transport properties, namely that of filled scutterudites. In these materials the cages
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Figure 6.1: Unit cell of TCu3N, the small spheres in the corners are nitrogen atoms, the

bigger ones situated at the edges are copper atoms and in the center e.g. T=Pd has been

added.

created by a network of covalently bound p-elements can be filled with magnetic atoms

(usually rare-earth elements [119]) leading to a number of phenomena intensely studied in

the last years (see e.g. Ref. [120] for a recent review). As a candidate for filling with a 4d

metal we chose Cu3N, which has a rather open crystal structure and rigid, perpendicular

Cu-N-Cu covalent bonds (Fig. 6.1). However, most important for our choice has been the

earlier experimental evidence [121] for the stability of this structure with Pd incorporated

into the Cu3N cage. The resulting stoichiometric compound PdCu3N (see Fig. 6.1) has

antiperovskite crystal structure and a dissociation temperature of approximately 740 K,

similar to that of the host [121].

In this work we have performed first principles studies of the electronic structure and

the magnetic properties of the series TCu3N with T =Pd, Rh and Ru. In order to estimate

the stability of these compounds we calculated their formation energies. It will be shown

that both, the Rh and the Ru antiperovskite, become magnetically unstable, however, only

RhCu3N probably can be stabilized since it has a negative formation energy similarly to

PdCu3N. Moreover, RhCu3N is found to be very close to a magnetic critical point, which

makes it to an excellent candidate for exhibiting quantum criticality.

Our calculations were performed using the VASP package [21], which implements den-

sity functional theory with a plane wave basis and a projector augmented wave (PAW)
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Table 6.1: EH [eV] denotes the formation energy, calculated as the difference between the

energy of the ternary compound Eco minus the energy ET of its constituents T (Pd, Rh or

Ru) and the energy of pure Cu3N. Negative values of EH indicate that the formation of

TCu3N is energetically preferred.

Cu3N PdCu3N RhCu3N RuCu3N

Eco [eV] -19.514 -25.516 -26.380 -27.010

ET [eV] - -5.001 -6.675 -9.274

EH [eV] - -1.001 -0.191 +1.778

technique [20]. Exchange and correlation were treated within the local density functional

formalism [64], using either LDA (as parameterized by Perdew and Zunger) or GGA

(PW91) [65]. A copper potential with 4s, 3d and 4p electrons as valence states and a

nitrogen potential with 2s and 2p electrons as valence states has been used. A plane-wave

expansion up to 400 eV was applied during all calculations. Since the system of interest is

metallic and accurate results were required (total energies converged better than 1 meV),

a k-mesh of 38×38×38 within the full Brillouin zone has been employed.

6.1.1 Results and discussion

Our parent compound is Cu3N, a narrow gap semiconductor with an open crystal structure

(αReO3, Pm3m, No. 221) [122]. The calculated lattice constant is 3.83 Å and 3.72 Å

within GGA and LDA, respectively. The GGA result is in very good agreement with

experiment (a0 =3.817 Å), but LDA underestimates the lattice constant, a well-known

problem which will be discussed in a later section. The cubic unit cell of filled Cu3N is shown

in Fig. 6.1. Pure Cu3N is built up from nitrogen atoms situated in the corner positions

of a cube with copper atoms occupying all 12 edges. While Cu is linearly coordinated

by nitrogen, and hence essentially in a valence state +1, N is situated in the center of

an ideal octahedron. The unusual Cu(I) state has attracted some interest in the past

(see Ref. [123] and references therein). As already mentioned in the introduction, the

stoichiometric ternary compound PdCu3N (see Fig. 6.1), which is obtained when Pd is

inserted into Cu3N, has antiperovskite crystal structure and is stable at room temperature,

with a dissociation temperature of approximately 740 K. First-principles calculations on

this ternary antiperovskite by Hahn and Weber [124] have shown that the Pd d -states

only weakly interact with their environment, resulting in semimetallic behavior and an

electronic structure that is in principle maintained under Pd doping. From a geometrical
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point of view, the voids in Cu3N (especially the 1b Wyckoff positions) are large enough

for the incorporation of Rh or Ru into the structure. However, the situation may be quite

different from a simple ”rigid” band picture, e.g. due to an increased 3d-4d hybridization

when exchanging Pd by Rh or Ru. Since the question of overall structural stability of

RhCu3N and RuCu3N is crucial, we first compared the total energy of TCu3N with that of

its constituents Cu3N and T . Even though this is only a rough estimation, because we do

not take into account the maybe more realistic decomposition into bound N2 and possible

alloys of type TxCuy, one gains some insight into the relative stability of these compounds

compared to that of PdCu3N. The results are listed in Tab. 6.1 and show that indeed most

stable is PdCu3N with a formation energy EH of approximately -1 eV, followed by RhCu3N

with an EH of -191 meV. The compound RuCu3N seems to be unstable due to its strong

tendency to separate into metallic Ru and Cu3N (1.78 eV).

For a better insight into bonding and magnetism in these compounds, the non spin-

polarized DOS for Cu3N and TCu3N with T = Pd, Rh and Ru is shown in Fig. 6.2. The

most significant features in the DOS of Cu3N are the rather narrow Cu d states at ∼ -3

eV, as well as two smaller peaks: one bonding combination between Cu d and N p orbitals

at ∼ -7 eV and one antibonding combination at ∼ -1 eV; The structure of this DOS is very

similar to that of other linearly coordinated Cu(I) compounds, e.g. Cu2O. In PdCu3N the

gap closes and its small DOS at EF makes this material semi-metallic. Moreover, the Pd

d states all seem to be occupied, indicating that Pd is at least close to a d10 configuration.

This phenomenon has been studied in more detail by Hahn et al. [124]. They found

out that there is on the one hand a slight accumulation of negative charge on Pd (-0.1

to -0.4 electrons), giving the bonds some ionic character, and on the other hand there

are covalent contributions to bonding carried by s and p states on Cu and Pd (so-called

d10-d10 bonding). The large formation energy (1 eV) of PdCu3N might alternatively be

explained by the accidental ”resonance” between Pd 4d states and (mainly) antibonding Cu

3d states, creating the peak at -1.9 eV. This resonance is successively reduced in RhCu3N

and in particular in RuCu3N, where a strong broadening of the Cu d bands sets in. This

broadening shifts the uppermost parts of the Cu d states above EF . This decreases the

overall stability of RhCu3N and in particular of RuCu3N, which is no longer stable.

Due to the large T -T distance the 4d electrons are expected to interact only weakly

with each other, and the DOS shown in the preceeding paragraph indicates that they also

weakly interact with the host. Since the Fermi level moves towards a sharp peak in the DOS

when replacing Pd by Rh and finally Ru, the Stoner factor is expected to increase, driving

the system into the region of magnetic instability. Thus we have calculated the energy

as a function of the magnetic moment per formula unit (fixed spin moment calculation
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Figure 6.2: Non spin-polarized density of states (DOS) for Cu3N and TCu3N with T=Pd,

Rh and Ru. While PdCu3N is semi-metallic, RhCu3N is close to a Stoner instability (5.12

states/(eV cell)). RuCu3N has the highest DOS at Ef and thus already a stable magnetic

moment.
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Figure 6.3: Fixed moment calculation of the total energy for the antiperovskites TCu3N

with T =Pd, Rh and Ru. The energies are given relative to the non spin-polarized state.

In the upper panel LDA results, in the lower one GGA results are plotted.

Table 6.2: This table lists the equilibrium lattice constants a0, the bulk moduli B (deter-

mined via the Murnaghan equation [69]), the magnetic moments per formula unit M/f.u.

and per T -site M/T (inside a radius of 2.0 bohr), and the total DOS at EF N(EF ) in the

non spin-polarized state.

Cu3N PdCu3N RhCu3N RuCu3N
LDA GGA LDA GGA LDA GGA LDA GGA

a0 [Å] 3.724 3.833 3.783 3.894 3.768 3.872 3.774 3.885
B [GPa] 148 111 209 155 224 164 216 162
M/f.u. [µB] 0 0 0 0 0 0.45 1.04 1.70
M/T [µB] - - 0 0 0 0.36 0.89 1.46
N(EF ) [states/(eV f.u.)] 0 0 0.07 0.64 4.43 5.11 5.71 6.72
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(FSM)), the results are shown in Fig. 6.3. While in PdCu3N the low DOS near EF makes

it energetically unfavorable to split the spin subbands and to create a magnetic moment,

the Rh antiperovskite is near to a quantum critical point, and hence an excellent candidate

for studying critical behavior. While LDA favors a non-magnetic state, GGA results in a

magnetic state with an equilibrium magnetic moment of ≈0.45 µB, determined from the

minimum in the E vs. M curve. It is remarkable that this minimum is situated energetically

only 1.7 meV (≈ 20 K) below the non-magnetic state! For the last member of the series,

RuCu3N, the magnetic ground state is favored in both approximations, GGA and LDA,

with total magnetic moments of 1.04 µB and 1.70 µB, respectively. It is worth mentioning

that a comparative analysis of LDA and corresponding GGA results is crucial for a metallic

system on the border of a magnetic instability. It has been shown for a number of weak

itinerant magnetic systems like ZrZn2 [125], MnSi [126], nearly ferromagnetic YCo2 [127],

fcc Pd [128], and Ni3Al [129], that GGA always overshoots the values for magnetic moments

compared to experiment. In contrast to that, LSDA, on its equilibrium lattice constant,

underestimates magnetism and consequently, in the case of NFS, overestimates the values

of the metamagnetic critical fields. However, the following empirical rule can be applied

when analyzing LSDA calculations for metals: If both, GGA and pure LSDA predict a

magnetic ground state at their equilibrium lattice constants, then the system is magnetic.

If GGA predicts magnetism and LSDA a nearly ferromagnetic state, then the system is at

the border of a magnetic instability (for more details see ref. [130]). This seems to be the

case in RhCu3N.

A list of our results (within LDA and GGA) including equilibrium lattice constants, bulk

moduli, magnetic moments on the T -site and per formula unit as well as the total DOS

at EF is given in Tab. 6.2. The lattice constants a0 of the antiperovskites are only slightly

larger than that of Cu3N, the least change is present when Rh is added to Cu3N (1.1

%), followed by Ru and Pd, which has the largest effect on the lattice spacing (1.6 %).

The trend in the bulk moduli for the filled compounds is inverse to that of the lattice

constants, hence the Rh compound exhibits the hardest lattice with a bulk modulus of

164 GPa and 224 GPa within GGA and LDA, respectively. The values for the total DOS

at EF in the bottom row of Tab. 6.2 show the increase when Pd is replaced by Rh and

Ru. From our FSM calculations we can estimate the value of the Stoner enhancement

factor by fitting the free energy E vs. M for RhCu3N (GGA results) with a polynomial

expansion E = E0 + a2M
2 + a4M

4, where a2 is directly related to the Stoner parameter Is

via a2 = 1/N(EF )− Is [106]. Our fit yields a2 =-0.027(4) eV and a4 =0.080(4) eV, and by

using the DOS at EF originating from the Rh d -states N(EF )∼ 1.6 states/(eV spin) one

can determine the value of the Stoner integral Is for Rh. We find a value of about 646(4)

meV, which is in rather good agreement with values taken from literature (653 meV [23]).
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The small negative value of the parameter a2 reflects the fact that RhCu3N is close to a

magnetic critical point, with a resulting Stoner product N(EF ) ∗ Is of 1.03.

In conclusion, we have studied the magnetic properties of a new family of ternary nitride

antiperovskites, TCu3N, with T = Pd, Rh and Ru. PdCu3N has already been prepared

successfully, and our calculations suggest also RhCu3N to be stable, only RuCu3N, however,

seems to be energetically unfavorable. Stoichiometric RhCu3N is the most interesting

representative investigated because it is found to be close to a magnetic critical point and

thus may be an excellent candidate for possible quantum critical behavior.

87



6.2 The perovskites AlCxNi3 and GaCxNi3:

carbon stoichiometry and magnetism

Since the discovery of superconductivity in MgCNi3 [131] there is great interest in related,

isostructural so-called cubic anti-perovskites of the type TCNi3, where T denotes either

divalent (Zn) or trivalent (Al, Mg) elements. ZnCNi3 has already been investigated inten-

sively [132, 59], mainly due to its close similarity to the superconductor MgCNi3. However,

the situation is different for AlCNi3 and GaCNi3. Even though experimental results have

been published, to our knowledge no theoretical investigation on the magnetic properties

of AlCNi3 and in particular no theoretical investigation on GaCNi3 has been done. For

GaCNi3 Tong et al. [133] performed specific heat measurements indicating the presence

of strong electron-electron correlations, whereas for AlCNi3, Dong et al. [134] did mag-

netization measurements revealing weak ferromagnetism. Our motivation is not only to

investigate the ground states of these compounds, we also want to clarify several unre-

solved issues found in literature: The lattice constant of AlCNi3 determined by Dong et

al. [134] is significantly smaller (by 5.6%) than the value reported earlier by Goodenough

et al. [135], who did systematic studies on this class of compounds. For GaCNi3 Tong et

al. [133] recently published a lattice constant of 3.6 Å, which curiously is almost identical to

the older value of L’Heritier et al. for a sample with nominal composition GaC0.1Ni3 [136].

Thus there seems to be a disagreement between old data and some of the new experiments.

In DFT calculations Okoye et al. [137] reported a rather huge disagreement between their

calculated (LDA) lattice constant and the experimental one for AlCNi3 [134]. LDA seems

to overestimate the cell volume, which is very unusual. For ZnCNi3 a similar but less

pronounced disagreement regarding lattice constants exists. In this context Johannes et

al. [132] argued that carbon deficiencies could be the reason.

Employing the full potential linearized augmented plane wave (FLAPW) method [17] we

perform fixed spin moment (FSM) calculations for TCNi3 with T=Al, Ga, Mg, and Zn in

order to probe these systems’ response to an external magnetic field. We find that GaCNi3
and AlCNi3 are non-magnetic metals with a low Stoner enhancement factor S and thus

far away from a magnetic ground state. This behavior is found within both LDA and

GGA. It is important to mention that a comparative analysis between LDA and GGA is

crucial for a metallic system at the border of a magnetic instability (for more details see

our recent paper [104]). In addition we investigate carbon deficient samples and will show

that the lack of carbon leads to an enhancement of the tendency towards magnetism. This

is not surprising if one bears in mind that isostructural AlNi3 and GaNi3, which can be

obtained from the ternary anti-perovskites by the complete removal of carbon, are close to

a ferromagnetic quantum critical point. In order to show the similarities and differences
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Figure 6.4: Unit cell of the cubic anti-perovskites TCNi3. T is situated in the corner,

carbon in the center and Ni occupies the face centers similar to fcc Ni.

between the compounds with and without carbon from the viewpoint of powder X-ray

diffraction, we finally discuss theoretical X-ray spectra. With this additional information

we have another hint at hand indicating that the tendency towards magnetism found in

recent experiments for GaCNi3 and AlCNi3 is an artefact stemming from carbon deficient

samples, and that truly stoichiometric ones are not at the border of magnetism. The in-

teresting physical properties of the carbon free compounds AlNi3 and GaNi3, including

strong magnetic fluctuations due to the proximity to a ferromagnetic quantum critical

point (QCP), make also TCNi3 highly interesting materials. One could for example tune

them very slowly towards this QCP by changing the carbon concentration.

The calculations were performed using the FLAIR [18] code, an implementation of the

full potential linearized augmented plane wave (FLAPW) method [17]. Exchange and

correlation were treated within the local density functional formalism [64] using either

the parameterization of Perdew and Zunger (Ceperley Alder) [138, 139] (LDA) or that of

Perdew, Burke and Ernzerhof [65](GGA). Potential and charge density were expanded up

to l = 8 and Gmax = 12 a.u.−1. Inside the muffin tin spheres (r=2.5 bohr for Ga/Al, r=1.4

bohr for carbon, and r=2.05 bohr for Ni) the wave-functions were expanded up to l = 8

and a plane-wave cutoff kmax of 7/min(rMT ) was used, where min(rMT ) denotes the radius

of the smallest muffin-tin sphere in the cell (carbon). A k-mesh sampling with at least

120 k-points in the irreducible wedge of the Brillouin zone for lattice optimizations and at
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Figure 6.5: Density of states (DOS) for AlCNi3 (top) and GaCNi3 (bottom). In part a),

GGA results for the total and Ni-d resolved DOS are shown. In part b) the Al/Ga-p and

C-p states multiplied by 10 are plotted.

least 220 irreducible k-points for fixed spin moment (FSM) calculations were used.

6.2.1 Results and discussion for AlCNi3 an GaCNi3

The anti-perovskite unit cell of TCNi3 with T =Mg, Zn, Al, and Ga contains one formula

unit and is shown in Fig.6.4. The T element is situated in the corner of the cube, C in

the center, and Ni occupies the face centers. All compounds are metals, and the Ni d-shell

is partially filled also if the T -cation is formally trivalent. The density of states (DOS)

is plotted in Fig. 6.5. Carbon-p and T -p states have been multiplied by a factor of 10

and are shown in part b) of the corresponding plots. In both materials, EF is situated

in a region with predominantly Ni-d states (mainly (dxz,dyz) and dx2−y2), followed by C-p

and small contributions of T -p states. The peak below EF , which is responsible for the

tendency towards magnetism in ZnCNi3 and especially MgCNi3 [142, 143, 144], has mainly

(dxz,dyz) character. In GaCNi3, the carbon states are situated slightly higher in energy
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Table 6.3: Calculated (aDFT ) and measured (aexp) lattice constants of the cubic anti-

perovskites TCNi3 with T =Mg, Zn, Al, and Ga as well as of AlNi3 and GaNi3, which can

be obtained from the former by removing carbon. In brackets theoretical results obtained

by other groups are listed.

MgCNi3 ZnCNi3 AlCNi3 GaCNi3
aexp [Å] 3.81 [131] 3.66 [59], 3.77 [135] 3.587 [134], 3.80 [135] 3.604 [133]
aDFT [Å] LDA 3.74 3.69 (3.679 [132]) 3.70 (3.697 [137]) 3.71

GGA 3.82 3.78 3.78 (3.774[137]) 3.79

Table 6.4: Calculated (aDFT ) and measured (aexp) lattice constants of the cubic binary

compound AlNi3 and GaNi3, obtained from the former by completely removing carbon. In

brackets theoretical results obtained by other groups are listed.

AlNi3 GaNi3
aexp [Å] 3.568 [140] 3.576 [140]
aDFT [Å] LDA 3.47 3.49

GGA 3.56 (3.574 [141]) 3.58 (3.591 [141])

than in the Al compound, and the reduced lattice constant causes the d-states to be slightly

narrower (≈70 meV). While in AlCNi3 EF is situated within a local minimum in LDA and

GGA, in GaCNi3 EF is situated in a local maximim and a local minimum within LDA and

GGA, respectively. Nevertheless, the absolute values in all cases are much below the value

necessary for magnetic instabilities.

A list of lattice constants for the series TCNi3, obtained via a fit to the Murnaghan equation

[69], is given in the tables 6.3 and 6.4. With aDFT we denote theoretical results and with

aexp measured ones. AlNi3 and GaNi3 are given on the right hand side of the table.

While for MgCNi3 calculated and measured lattice constants are in good agreement (in

particular for GGA), already in the case of ZnCNi3 deviations occur. This has already

been addressed by Johannes et al. [132], who argued that carbon deficiencies might be

responsible. Regarding AlCNi3, the biggest discrepancy among experimental values has

been found. A comparison with AlNi3 shows that the additional carbon in the perovskites

unambiguously leads to an increase in the cell volume. Thus it is plausible to compare

calculated results with those of Goodenough et al. [135], whose lattice constant for AlCNi3
is the bigger one of the two values listed. This value (3.80 Å), however, is in good agreement
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Table 6.5: Total DOS (Ntot(EF )) as well as total Ni-d DOS (NNi−d(EF )) (for 3 Ni) at

EF for one spin direction calculated for the ternary anti-perovskites. Listed are further I

and S determined via the spin splitting. In the bottom the calculated molar Pauli para-

magnetic susceptibility χ [10−4emu/mol] and the calculated γ coefficient of the electronic

contribution to the specific heat [mJ/(mol f.u. K2)] are given.

MgCNi3 ZnCNi3 AlCNi3 GaCNi3
LDA GGA LDA GGA LDA GGA LDA GGA

Ntot(EF ) [states/(eV f.u. spin)] 2.67 2.07 2.18 2.29 0.84 1.04 1.18 0.91
NNi−d(EF ) [states/(eV Ni-d spin)] 1.97 1.52 1.64 1.72 0.58 0.73 0.82 0.63
I [eV] 0.99 1.16 1.01 1.17 1.03 1.15 1.01 1.11
S 2.9 2.4 2.2 4.3 1.2 1.4 1.4 1.3
χmol [10−4 emu/mol] 1.73 1.34 1.41 1.48 0.54 0.67 0.76 0.59
γ [mJ/(mol f.u. K2)] 12.6 9.8 10.3 10.8 4.0 4.9 5.6 4.3

with our GGA result, only LDA underestimates the lattice constant more strongly than

one would expect. When GaCNi3 is considered, there is - to our knowledge - only one

experimental value available (3.6 Å), which is almost identical to that of L’Heritier et

al. [136], who give a stoichiometry GaC0.1Ni3. Thus we expect the truly stoichiometric

compound GaC1Ni3 to have a lattice constant of approximately 3.78(4) Å, close to our GGA

result. For the border-compounds AlNi3 and GaNi3, listed in the right hand side of the

table, again our GGA calculations yield a cell volume almost identical to the experimental

one, whereas LDA calculations as usual underestimate the experimental lattice constants

by 2.7 % and 2.4 % for AlNi3 and GaNi3, respectively. These findings clearly show that

GGA is much better suited for a proper description of these compounds.

In our DFT-based calculations AlCNi3 and GaCNi3 are clearly non-magnetic at their

equilibrium lattice constants in both LDA and GGA. In order to assess whether these com-

pounds are close to magnetism or not we performed fixed spin moment (FSM) calculations,

which allow for an estimation of the Stoner enhancement factors S. First we tried to fit the

total energy E (in eV) vs. the total magnetization per unit-cell M (in µB) via a quadratic

function of the form E = E0 + aM2. This method yields rather unsatisfactory results. For

the divalent compounds, T= Zn and Mg, the pre-factor a depends sensitively on the fit

interval. For small magnetic moments a is much smaller and the system much closer to

magnetism than for large moments. This problem is also present in the compounds with

trivalent Al and Ga, even though much weaker. In literature the deviation of E(M) from

a quadratic behavior is a well-known problem (e.g. in MgCNi3 [142]) and it can be circum-

vented by applying extended Stoner theory [145], in which Ñ(m), an average between the
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DOS at Ef for spin-up and spin-down electrons is used. However, we used a different and

very successful technique, which exploits the spin splitting ∆ between spin-up and spin-

down states on Ni and the relation ∆ = MlocI. Mloc (in µB) denotes the local magnetic

moment inside one Ni muffin tin sphere (r=2.05 a.u.), ∆ is the spin splitting given in eV

and I is the so-called Stoner I. In this method the DOS at EF and I are related to one

Ni atom. As required for a proper analysis, I turned out to be rather insensitive to the

chemical environment, not only among all the ternary compounds but also in comparison

to elemental Ni (INi=1.18). For all compounds the Ni-d peak situated approximately 0.5

eV below EF has been used as a reference state for the determination of ∆. In order

to get accurate results we averaged I=∆/Mloc over 10 different values of Mloc (for each

compound), and Mloc was tuned by fixing several values of the total magnetic moment

per cell. Finally S was determined via the relation S=1/(1-N1×Ni−d(Ef )I), N1×Ni−d(Ef )

denoting the d-like DOS at Ef attributed to one Ni atom and one spin channel. The

results of this analysis are listed in table 6.5. One can easily see that in the compounds

with trivalent Al and Ga the Stoner enhancement factor S is even slightly smaller than for

T=Mg and Zn, which are known to be non-magnetic. The strong differences between Mg

and Zn and between LDA and GGA are due to the proximity of the sharp Ni-peak to EF .

The DOS at EF is very sensitive to computational approximations (exchange correlation

potential, potential and charge density expansion, ..) and hence the results of different

groups scatter strongly. Moreover, the error in S is huge when the product NI approaches

one. The compounds with T=Al and Ga, however, do not exhibit this sensitivity since

they are much further away from a magnetic instability. They all have S values below 1.5.

In order to allow for an easier comparison with experiment, we also listed the Sommerfeld

constant γth and the Pauli paramagnetic susceptibility χth
p for the non-interacting electron

gas, given by γth=π2/3 k2
BN(Ef ) and χth

p = µ2
BN(EF ), N(EF ) denoting the total DOS at

EF for both spin channels. In experiment Tong et al. determined for GaCNi3 a γ value

of 30 mJ/(mol K2) and a χth
p around 3.9×10−3 emu/mol. They estimated N(EF ) to be

around 1.6 states/(eV spin unit) resulting in a Stoner enhancement S around 30. This is

in disagreement with our calculations showing no signs of magnetic fluctuations. When

AlCNi3 is concerned, our N(EF ) is in agreement with calculations made by Okoye et al.,

but weak ferromagnetism as suggested by Dong et al. seems to be unlikely, provided that

stoichiometric samples are considered.

In conclusion, in the compounds with trivalent elements (Al and Ga) the Fermi energy is

well separated from the uppermost Ni-d peak and consequently the DOS at EF is situated

between 0.8 to 1.2 states/(eV cell spin). Since the Stoner I is almost constant (as it should

be) also the Stoner enhancement factors S, independently whether the LDA or the much

more appropriate GGA approximation is used, are below 1.5.
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Figure 6.6: Left panel: Total as well as projected DOS for Al2CNi6 (top) and Ga2CNi6
(bottom). Ni-d sites with no (A), one (B) and two (C) neighrest neighbor carbon sites

are splitted, p-states are plotted in the y<0 regime. Right panels: DOS of the compounds

AlNi3 and GaNi3, Al/Ga-p states are plotted in the y<0 regime.

6.2.2 The role of carbon in TCNi3

In order to figure out the role of carbon for magnetism we compared the results above

with those obtained for T2CNi6 (doubled unit cell) and the carbon-free compounds TNi3.

It is well known that GaNi3 is an enhanced Pauli paramagnet, whereas AlNi3 is a weak

ferromagnet [146, 147]. Both are ferromagnetic in our calculations, but this is a well known

problem. The failure of LDA particularly for GaNi3 is due to the unsatisfactory description

of spin fluctuations, which are associated with the ferromagnetic quantum critical point

(QCP)[147]. These fluctuations are stronger in the Ga compound, and even though (from

experiment) AlNi3 is closer to magnetism (actually it is magnetic) than GaNi3, calculations

result in the opposite. For the further discussion we will neglect these difficulties since it

is only important to realize that in the present case LDA and in particular GGA at their

equilibrium lattice constants overestimate but never underestimate the tendency towards

magnetism. In Fig. 6.6 one can see easily the increase of the DOS at EF when carbon is
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removed. The lack of one carbon atom in T2CNi6 splits the 6 Ni atoms into three groups

of 2 members each. Ni of the first type (labeled as A) has no nearest neighbor carbon, Ni

of the second type (B) has one nearest neighbor carbon and the third type of Ni (C) has 2

carbon atoms as nearest neighbors. The DOS for type A, B, and C is plotted separately in

Fig. 6.6. The lower the number of carbon atoms in the neighborhood of Ni becomes, the

higher is the DOS at EF . This is due to the reduced Ni-C hybridization and the resulting

narrowing of the Ni-d bands. We further examined the total DOS at EF for GaCxNi3
with x=1, 0.5, and 0 (GGA results only) by setting up tetragonal super-cells with doubled

dimension in z direction. We found out that N(EF ) varies about linearly with the carbon

concentration, increasing by about 1.10(2) states/(AlNi3 spin) upon a reduction of x by

0.5. On the basis of these considerations we believe that within the series GaCxNi3 no

magnetism will be found, only strong spin fluctuations are expected close to x ≈ 0. For

AlCxNi3 N(EF ) also increases linearly by about 0.89(3) states/(AlNi3 spin) when 50% of C

are removed. However, since AlNi3 is a weak ferromagnet, also AlCxNi3 with x sufficiently

close to 0 will be magnetic. In the super-cell calculations described above we neglected

relaxations and assumed a linear variation of the lattice constants upon a variation of

the carbon concentration. As a reference we used our GGA-based values for AlNi3 and

GaNi3 (3.56 Å and 3.58 Å) as well as AlCNi3 and GaCNi3 (3.78 Å and 3.79 Å). These

approximations are reasonable and allow us to roughly estimate the carbon concentration

of the samples measured in experiment [134, 133], provided that these samples indeed were

homogeneous and substoichiometric with respect to carbon. In the case of GaCNi3, Tong

et al. [133] find a lattice constant of 3.587 Å, which would result in a C concentration of

11 %, if based on our GGA results and the above approximations. However, for a carbon

concentration as low as ≈ 11 % strong spin fluctuations are plausible due to the proximity

to the quantum critical border-compound GaNi3. For AlCNi3 the same analysis results in

an estimation of 14 % of carbon in the sample measured in Ref. [134], being a possible

explanation why they find weakly itinerant magnetic order.

6.2.3 Powder X-ray diffraction

From the viewpoint of powder X-ray diffraction experiments, Cu3Au-type TNi3 and anti-

perovskite type TCNi3 are closely related. Both belong to the same space group (Pm3m)

and consequently have the same selection rules for Bragg peaks. Thus we calculated theo-

retical powder X-ray spectra of TCNi3 and TNi3 for T=Mg and Al by using the program

”Powdercell” [148]. In all simulations we fixed the lattice constant to a value of 3.62 Å.

While the differences between the Al and Mg compound are negligible, the presence of

carbon is clearly visible and can best be observed by comparing the intensity of the (1 0 0)
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and the (1 1 0) peak. Assuming coherent X-ray scattering, the intensity of a certain peak

is proportional to the absolute square of the structure factor, which itself is a sum over

atomic form factors (assumed to be specific for one atomic species) multiplied with a phase

factor. The crucial point is the phase factor of carbon, which changes sign from -1 to +1

when changing from the (1 0 0) to the (1 1 0) peak. Thus the additional presence of

carbon will lead to a higher intensity of the (1 0 0) and a reduced intensity of the (1 1 0)

peak. For the further discussion we define R as the ratio between these intensities, namely

R = I(1 0 0)/I(1 1 0). While R is approximately 1.2 and 1.3 for the carbon-free compounds

AlNi3 and (hypothetical) MgNi3, respectively, it increases to 3.6 for AlCNi3 and 4.0 for

MgCNi3. In other words, the (1 0 0) peak clearly dominates over the (1 1 0) one for the

carbon-rich compounds. This trend in R is a useful guideline and could possibly help to

evaluate the quality of samples in future experiments, in particular if a comparison to a

spectrum of a stoichiometric sample (e.g. MgCNi3) is available.

Applying these results to the X-ray data of Dong et al. [134] we find another hint that the

AlCNi3 sample might be carbon-deficient. While in the spectrum of MgCNi3, which can

be considered as stoichiometric, the (1 0 0) peak is clearly dominant, in the spectrum of

AlCNi3 it is not. It has a higher intensity than the (1 1 0) peak, but much less pronounced

than one would expect from a comparison to MgCNi3. From the viewpoint of our calcula-

tions, R should be similar for AlCNi3 and MgCNi3. Since not stated explicitly in Ref. [134]

we have to assume that both measurements were performed on the same equipment. Thus

one can directly compare the spectra and deviations between our calculations and the

measurements should no longer play a role. A similar analysis for GaCNi3 is much harder

because the spectrum presented in Ref. [133] is rather noisy. Moreover, no comparison to

a stoichiometric sample (e.g. MgCNi3) is given.

In conclusion, our full-potential DFT calculations employing both, the LDA and GGA

approximation, clearly show that stoichiometric AlCNi3 and GaCNi3 in the cubic anti-

perovskite structure are non-magnetic metals with a low Stoner enhancement factor and

energetically far away from a magnetic ground state. However, the DOS at Ef increases

about linearly when the carbon concentration is lowered, strongly enhancing the tendency

towards magnetism. A comparison of our calculated lattice constants with some older,

experimentally determined ones [135] shows that GGA is much better suited for a proper

description of these compounds than LDA. Moreover, a comparison of calculated X-ray

spectra for samples with and without carbon shows a change in the relative peak intensity

between the (1 0 0) and the (1 1 0) peak, caused by the presence of carbon. In future

experiments this could be used to roughly estimate the sample quality. Taking all above

results into consideration we also have evidence that some recent measurements on GaCNi3
and AlCNi3 [133, 134] were performed on carbon deficient samples. Both times tendencies
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towards magnetism were found, namely strong electron-electron correlations in GaCNi3
and weak ferromagnetism in AlCNi3, which clearly were absent in our calculations. In

future experimental work it is important to put great emphasis on the correct carbon stoi-

chiometry. A controlled reduction of x in TCxNi3 with T=Al and Ga would be desireable,

in particular due to the interesting physical properties at x ≈ 0.
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6.3 The importance of cluster-distortions in the tetra-

hedral cluster compounds: Ab initio investiga-

tions

In this section we study the structural properties of selected representatives of the so-called

Molybdenum cluster compounds. Belonging to this family are GaM4X8 with M=Mo as

a group VIB element and V, Nb, Ta as a group VB element. X denotes either S or Se.

These compounds are known to exhibit semiconducting behavior in the electrical resistivity,

caused by hopping of electrons between well-separated metal clusters. The large separation

of the tetrahedral metal (M4) clusters is believed to be the origin of strong correlations. We

show that recent calculations neglected an important type of structural distortions, namely

those happening only within the M4 unit upon a fixed angle α = 60◦ of the trigonal (fcc-

like) cell. These internal distortions gain a significant amount of energy compared to the

cubic cell and they are - to our knowledge - almost undetectable within powder x-ray

diffraction. However, they strongly influence the band-structure by opening up a gap at

the Fermi-energy. This, however, puts into question whether all compounds of this family

are really called Mott insulators as stated elsewhere. In particular ferromagnetic GaMo4S8

and GaV4S8 are well described within DFT. Only the Nb and Ta-based representatives

require a large effort due to the lack of magnetic long range order caused by frustrated AF

M -M interactions.

6.3.1 Introduction

The Molybdenum cluster compounds GaM4X8 with M=Mo (group VIB), V, Nb, Ta (group

VB) and X=S and Se are known to exhibit semiconducting behavior in the electrical

resistivity. Regarding the crystal structure, GaMo4X8 with X=S,Se and GaV4S8 show a

structural phase transitions from a cubic to a slightly distorted trigonal structure around

TS ≈ 50K [149]. Well below TS at temperatures Tc ≈ around 20 K ferromagnetism sets in.

Contrarily, GaNb4Se8 and GaTa4Se8 are known to remain cubic and paramagnetic without

magnetic long range order down to lowest temperatures. The latter compounds have been

reported to be Mott insulators and to become superconducting under external pressure

[150]. In this paper we show that recent calculations neglected an important structural

degree of freedom [151, 149, 152, 153, 150]. Even though the change from cubic to trigonal

structure has been correctly ascribed to a Peierls distortion originating from the M4 clusters

[151, 149], no notion has been taken the fact that the M4 clusters can also distort in a

geometry with ideal, fcc-like axes spanning an angle of α = 60.0◦. To our knowledge, small

distortions of roughly 3% occurring only within the M4 units are practically undetectable
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within powder x-ray diffraction, in contrast to the strong broadening of the peaks in the

case when the angle α deviates from 60◦. In our calculations, however, the energy gain

of distorting the M4 units while fixing α = 60◦ in the cases of GaMo4S8 and GaV4S8 is

significant, making it very likely that the M4 tetrahedra also distort above the structural

phase transition. This would be hardly detectable experimentally. Moreover, we believe

that the neglect of these degrees of freedom in previous DFT investigations [151, 149, 152,

153, 150] led to an overestimation of the importance of electron-electron correlations. We

find that M4 distortions alone are enough to open up a gap at EF . This shows that not all

representatives of this family, in particular ferromagnetic GaMo4S8 and GaV4S8, can be

called Mott insulators. If relaxations are performed properly, all compounds investigated

exhibit a vanishing DOS at the Fermi energy, in agreement with experiment. Only the

Nb and Ta based representatives have to be treated with care. Their strong AF M -M

interactions prohibit long range order and the strong coupling between cluster geometry

and magnetic configuration makes the investigation very difficult.

6.3.2 Results and discussion

All calculations were performed using the PAW-technique [20] as implemented in the VASP

package [21]. For Ga a PAW potential with s, p and d electrons as valence states has been

chosen, for X (S,Se) s and p electrons were treated as valence states. During all calculations

a plane-wave expansion up to 400 eV was applied and at least 85 irreducible k -points (for

trigonal set-up) were used. In all cases the Wyckoff-positions were relaxed upon fixed

volume and fixed cut-off. In the low-symmetry set-up the trigonal angle α was changed by

hand and never relaxed automatically, avoiding too many degrees of freedom.

At high temperatures all cluster compounds of the type GaM4X8 with M=Mo,V,Nb, and

Ta and X=S, Se crystallize in a face-centered cubic (fcc) phase (F43m) that can be derived

from the spinel structure (Fd3m, hypothetical Ga2M4X8) by removing half of the Ga atoms.

Complete ordering of the resulting vacancies finally results in the present structure having

symmetry F43m. Some representatives like Mo-based GaMo4X8 with X=S, Se and V-

based GaV4S8, however, undergo a structural phase transition upon cooling into a slightly

distorted, trigonal structure (R3m). While the Mo-based compounds distort towards a

trigonal angle α larger than the ideal (fcc) one of 60.0◦ (αexp=60.53◦ for GaMo4S8), the

V-based compounds distort in the opposite direction (αexp=59.6 ◦ for GaV4S8). Both types

order ferromagnetically below a Tc of 19.5 K, 26.7 K and 10 K for GaMo4S8, GaMo4Se8, and

GaV4S8, respectively. For the Mo compounds metamagnetism with rather low magnetic

critical fields has been reported [154]. Different from the above representatives, the Nb

and Ta-based cluster compounds not only remain cubic down to lowest temperatures, they
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Figure 6.7: Doubled fcc unit cell. The corner atoms are Ga, the small bright atoms form

the tetrahedral M4 clusters and the small dark spheres are X. One can easily see the bridge

between two M4 clusters mediated by two X-atoms and a M -X-M angle of ≈ 104.6◦.

also exhibit no magnetic long-range order even though from the Curie law a magnetic

moment of roughly 1 µB/f.u. has been extrapolated. A doubled unit-cell cell containing

two formula units is shown in Fig. 6.7. In the cubic geometry the M4 units build a fcc

lattice and one M atom is connected via 2 X atoms with the neighboring cluster. For the

low-temperature phase R3m trigonal axes were used. In the trigonal geometry all lengths

are equivalent (a=b=c) and only the angle α = β = γ can be changed. The basis vectors
~b1, ~b2, and ~b3 are related to the simple cubic axes ~A, ~B, and ~C via




~b1

~b2

~b3


 =

b√
1 + 2x + 3x2




1 + x x x

x 1 + x x

x x 1 + x







~A
~B
~C


 .

The length of all basis vectors is b. These vectors span the volume of the trigonal unit

cell, VT , given by

VT = b3 (1 + 3x)

(1 + 2x + 3x2)3/2
. (6.1)

The quantity x is related to the angle α via the equation

x = −1

3
+

√
1

9
− u

3(u− 1)
, (6.2)

u denotes the cosine of α. An angle of α = 60◦ (u=0.5, equivalent to fcc axes) results in

x = 1/3. For simplicity, only α and the corresponding simple cubic lattice constant a0 will

be used. The quantity a0 is related to the cell volume VT via a0=(4VT )1/3. The results for

the cubic geometry are listed in Tab. 6.6. The optimized, cubic lattice constants a0 are in
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Table 6.6: Tabulated are the s.c. lattice constants a0 [bohr], the intra (dintra) and inter

(dinter) cluster M -M distances, the density of states at EF (N(EF )) [states/(eV f.u.)], the

band-widths W in the FM state [eV] and the dimensionless ratios I/W relating Stoner I

[eV] and band-width W [eV]. In all cases the cubic high-temperature phase was assumed.

Compound a0 dintra/dinter N(EF ) W [eV] I/W

GaMo4S8 9.84(9.73) 2.85/4.10 45 0.570 1.09

GaMo4Se8 10.30 2.91/4.37 59 0.426 1.46

GaV4S8 9.68 (9.66) 2.84/4.00 10.3 0.401 1.76

GaV4Se8 10.19 2.93/4.27 12.4 0.296 2.39

GaNb4S8 10.06 (10.02) 2.99/4.12 7.1 0.689 0.87

GaNb4Se8 10.53 (10.42) 3.06/4.39 8.9 0.500 1.20

GaTa4S8 10.04 2.98/4.12 6.3 0.827 0.6

GaTa4Se8 10.51 (10.37) 3.04/4.39 8.9 0.604 0.8

good agreement with experiment, due to GGA they slightly overestimate the true volume.

The DOS for the cubic compounds of interest is compared in fig. 6.8. It confirms that for

all compounds only M -states are situated at EF . While the cluster orbitals are almost

filled for GaMo4X8 they are almost empty in the cases M=V, Nb, and Ta. Recently it

has been pointed out that the cluster orbitals at EF stem from bonding combinations of

atomic, M -like t2g orbitals [155]. For example in GaMo4X8 6 electrons per Mo (6×4=24

per cluster) and the 3 electrons per Ga, yielding a total number of 27 valence electrons, are

available. From those 8×2=16 can be attributed to X, since it is most electronegative. The

remaining 11 electrons per cluster almost completely fill the (4×3) Mo t2g cluster orbitals.

6.3.3 Results for GaMo4S8, GaV4S8, GaNb4Se8, and GaTa4Se8

In the following paragraph the magnetic properties of the compounds GaMo4S8, GaV4S8,

GaNb4Se8, and GaTa4Se8 will be compared. In order to describe the low-temperature

phase (R3m) two types of distortions were taken into account. On the one hand the M4

tetrahedra were allowed to distort and on the other hand the angles α spanned by the

trigonal axes were modified by hand.

In the cubic structure only GaMo4S8 and GaV4S8 develop an integer magnetic moment of 1

µB per cluster. This is in agreement with experiments yielding FM states below Tc for the

Mo- and V-based compounds. The Nb and Ta based representatives end up non-magnetic

in our calculations, only in an AFM (1,0,0) set-up (the only one tested) small magnetic
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Figure 6.8: Total and M projected density of states (DOS) for the cubic compounds

GaM4X8 with X=S (left panel) and Se (right panel) as well as M=Mo, V, Nb, and Ta.

moments on Nb/Ta arise. This is an indication of strong but frustrated AFM interactions

present in cubic compounds GaNb4X8 and GaTa4X8. The plots of the energy versus the

angle α for the compounds of interest are shown in fig. 6.9. Most easy to understand is

GaMo4S8. In the cubic geometry the compound is clearly FM with an integer moment of

1 µB. This is due to one hole in the almost filled cluster orbital complex. Energetically

the non-magnetic state is roughly 30 meV above the cubic FM state. The compound is
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Figure 6.9: Energy versus trigonal angle α for selected compounds. Except for GaMo4S8,

in addition to the cubic FM states also the cubic non-magnetic (NM) configurations are

plotted.

a half-metal because of its vanishing DOS at EF in the majority spin channel. When

the Mo4 tetrahedra are allowed to distort (transition from F43m to R3m) upon fixed unit

cell axes (α = 60.0◦), the total energy can already be lowered by 16 meV. Relaxing also

the angle α further reduces the total energy by approximately 12 meV (see fig. 6.9). The

angle found in our calculations (α=60.6◦) is in very good agreement with the experimental

one (αexp=60.53◦). Most impressive is the effect of the distortions on the DOS. We found

that the cluster distortions alone are enough to open up the gap at EF . A comparison

between cubic and trigonal DOS is given in fig. 6.10. The gap in trigonal GaMo4S8 has

a width of roughly 0.08 eV. It changes only slightly when α is modified but it is very

sensitive to the degree of Mo4 cluster distortion. Regarding the physical properties, the

compound closest to GaMo4S8 is GaV4S8. However, in its cubic form the non-magnetic
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Figure 6.10: Comparison between total DOS for trigonal (always α = 60◦!) and cubic

GaMo4S8 (upper left panel), GaV4S8 (upper right panel), GaNb4Se8 (bottom left panel),

and GaTa4Se8 (bottom right panel). Only ferromagnetic configurations are compared, for

M=Nb and Ta this is not the experimental ground state.

state is situated energetically only 10 meV above the FM one. Hence its FM state is

strongly destabilized compared to GaMo4S8 (30 meV). Our calculations yield α ≈ 59.6◦,
again in very good agreement with experiment. The R3m configuration (distorted M4

tetrahedron) with α = 60.0 is more stable than the ideal, cubic (fcc) one by approximately

11 meV. Further relaxations of α yield only a lowering of the energy by 5 meV. This is again

lower than the corresponding relaxation energy for GaMo4S8 (12 meV). The behavior of

GaNb4Se8 and GaTa4Se8 is much more complex. In their cubic form they strongly disfavor
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the FM state. Their cubic, non-magnetic state is lower in energy by 26 meV and 30 meV

for Nb and Ta, respectively. The situation changes when cluster relaxations are taken into

account. In that case the FM configuration can be stabilized without fixing the moment

artificially. The internal Nb4 and Ta4 relaxations gain an energy of about 40 meV and 50

meV with respect to the cubic FM state. This is large compared to the change in the total

energy when the angle α is modified (3 meV and 11 meV for M=Nb and Ta, respectively).

However, this huge energy gain related to internal distortions is expected to be an artefact

of assuming a FM state, which is not the experimental ground state. A comparison of the

DOS between cubic and trigonal (α = 60◦!) geometry for the compounds of interest is

given in fig. 6.10. In all cases M4 distortions of about 3-4% significantly change the DOS.

Thus also for M=Mo and V a strong pressure dependence of the electrical resistivity is

expected.

In conclusion there is a big difference between the Mo/V based and the Nb/Ta-based

compounds. Within the series Mo-V-Nb-Ta the DOS at EF determined from the non-

magnetic state steadily decreases. This reduction in N(EF ) weakens the tendencies of

structural distortions. As a consequence only the Mo and V-based representatives deviate

from α = 60◦. However, it has to be checked whether M4 distortions not also occur upon

a fixed angle α = 60 above the structural phase transition Ts. This is because powder

X-ray diffraction is very insensitive to these types of structural changes, in contrast to

changes in α, which are easy to identify. All compounds require a proper treatment of

the internal degrees of freedom. This has not been taken into account up to now, but it

must be included in all future DFT calculations. Moreover, our (plain) GGA calculations

clearly yield a gap at EF for trigonal GaMo4S8, indicating that this compound is not a

Mott insulator as stated elsewhere [149]. This is because in the trigonal structure not

correlations but cluster distortions create the gap at EF . Hence correlation corrections like

LDA+U are not necessary for trigonal GaMo4S8 to reproduce the gap. A similar situation

is found for GaV4S8, even though its tendency to FM order is reduced compared to the

Mo-based compound. The situation changes strongly for GaNb4Se8 and GaTa4Se8. Their

(non-magnetic) DOS at EF is of intermediate height. On the one hand it is not high enough

to distort the lattice and to stabilize FM order in the cubic state, on the other hand the

ratio of I/W for the cubic state is 1.2 and 0.8 for GaNb4Se8 and GaTa4Se8, placing them in

the moderately correlated regime. While GaMo4S8 and GaV4S8 can be treated reasonably

well within GGA, assuming a FM ground state, the Nb and Ta related compounds can

only be treated reasonably if their magnetic configuration is accounted for correctly. Since

these compounds show no long-range order and seem to have an extremely strong interplay

between cluster distortions and magnetism, their description is difficult and would require

a disordered local moment picture.
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(a) (b) (c)

Figure 6.11: (a) Cubic unit cell of TNMn3 accomodating one formula unit (f.u.). Mn is

situated on the face centers, N in the center and T in the corner position of the cube. Only

Mn-Mn bonds are plotted. The small spheres are N, the big unconnected ones are T . (b)

Hexagonal cell with the c-axis pointing in the former, simple cubic (1,1,1) direction. (c)

One layer (e.g. z=0) of the hexagonal cell, the Mn-Mn bonds form hexagons and triangles.

6.4 Mn-based anti-perovskites: The series TNMn3

In the following section Mn-based perovskites will be discussed. Even though their crystal

structure is very simple, the high concentration of Mn complicates their magnetic struc-

tures significantly. The Mn-based anti-perovskites TXMn3 can roughly be divided into

two groups, carbides and nitrides. Among the carbides most famous is probably GaCMn3.

It shows a first order phase transition around 160 K from an AFM ground state (FM

planes couple AFM along the (1,1,1) direction) over an intermediate state (mixed AFM

and FM) to a ferromagnetic phase above ≈ 164 K. Upon further heating GaCMn3 becomes

paramagnetic (around 249 K). This diversity of magnetic phases accompanies several in-

teresting phenomena, e.g. a GMR effect [156] and a negative magnetocaloric effect [157].

Regarding their physical properties, the nitrides exhibit a similar complexity and richness.

However, they have been studied less intensively in the past. Most challenging is ZnNMn3.

It exhibits a phase transition around 160 K from a non-collinear triangular magnetic state

(similar to that in fig. 2.2) to a paramagnetic state with a resulting volume-change that

is so abrupt that microcracks form. This can even be seen in the electrical resistivity,

increasing stepwise with the number of thermic cycles [158]. Recently, Takenaga et al.

[159, 160] showed that it is possible to broaden the phase-transition mediated jump in the
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cell-volume by Ge doping in Mn3(Cu1−xGex)N, so that a material highly desireable from a

technical point of view having a large and continuous negative thermal expansion (NTE)

can be obtained. Interestingly, in experiments D. Fruchart and E. F. Bertraut [161] found

out that while nitrides tend towards non-collinear triangular magnetic structures carbides

seem to prefer collinear structures.

In this section calculations for the nitride series TNMn3, T=Cu, Zn, Ga, and Ge will

be presented. For the first time also non-collinear magnetic configurations are taken into

consideration. However, since the experimentally determined ground states are complex

mixtures between collinear and triangular states (e.g. CuNMn3) we concentrate on either

purely collinear or triangular configurations. All calculations were performed using the

VASP package [21]. For Mn and T (Cu, Zn, Ga and Ge) PAW potentials with s, d and

p electrons as valence states have been chosen, for nitrogen a potential with 2s and 2p

electrons as valence states was satisfactory. During all calculations a plane-wave expansion

up to 400 eV was applied.

6.4.1 Bonding in non-magnetic TNMn3 and TCMn3

It is useful to start with an investigation of the non-magnetic trends in bonding within

the nitride and carbide series TNMn3 and TCMn3, T denoting elements from Cu to Ge.

Most of the compounds of interest crystallize in the ideal anti-perovskite structure (proto-

type CaTiO3, No. 221, Pm3m). Mn occupies the face centers of the cube, T the corners

and N the center (see fig. 6.11). The structure is called anti-perovskite because the high-

symmetry octahedral site is occupied by an anion (N/C) and not by a cation (Mn). The

site symmetry of Mn is only tetragonal, only its dxz and dyz orbitals remain degenerate.

From experiments D. Fruchart and E. F. Bertraut identified several trends in the physi-

cal properties within the series Cu1−xGexNMn3, depending on the electron number on T

[161]. For increasing x there is a transition from a tetragonal structure with c/a<1 (called

T−) over a cubic phase (C) to a tetragonal structure with c/a>1 (called T+). A similar

trend is also present in the carbide series, only the T+ phase is absent. When nitrogen is

substituted by carbon it turned out to be necessary to use higher Z numbers in order to

obtain equivalent results. They also observed that the magnetic moment on Mn exhibits

a peak at T=Ni and reduces linearly when the electron number Z on T increases. The

density of states (DOS) for the Mn-based perovskites is shown in Fig. 6.12. EF is situated

roughly in the middle of the Mn-d states. While the s-like states of N/C are beyond the

plotting region (typically around -12 eV for C and -16 eV for N), the N/C p-like states are

situated between -8 eV and -5 eV. They play an important role in bonding. Compared to

fcc Mn, the perovskites have one additional N/C atom in the center of the cubic unit-cell.
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Table 6.7: Bader charges for T (s+d), N/C (s+p) and Mn (s+p+d) in the (hypothetical)

non-magnetic state assuming a lattice constant of 3.8 Å.

compound T N / C Mn

CuNMn3 11.39 6.63 12.33

ZnNMn3 12.00 6.65 12.45

GaNMn3 13.07 6.62 12.44

GeNMn3 14.28 6.57 12.38

CuCMn3 11.31 5.74 12.31

ZnCMn3 12.10 5.76 12.38

GaCMn3 13.02 5.65 12.44

GeCMn3 14.25 5.56 12.40

Thus each Mn has two N/C nearest neighbors at a very short distance. As a consequence

the Mn dz2-like electron pointing towards N/C does not contribute to magnetism. In a

molecular orbital picture it forms a σ bond with p-states on N/C creating bonding states

around -8 eV (lower edge of N-p block) and antibonding ones above EF . There also exists a

π bond between N/C p and degenerate Mn (dxz,dyz) states being responsible for the bond-

ing peak around -6 eV (upper edge of N-p block) and the corresponding anti-bonding one

situated around 1.5 eV. Due to symmetry, the dxy and the dx2−y2 states are non-bonding

with respect to the nearest neighbor N/C p states. While for T=Cu and Zn the shape of

the Mn-DOS is similar to a typical fcc element, the compounds with T=Ga and Ge have

a clear triple-peak structure typical for bcc elements. This is because the Mn dxy states

point towards the T element, which deviates more and more from a transition metal the

higher the number of p-electrons becomes (like in Ga and Ge).

From the shape of the Mn-d DOS carbides and nitrides are very similar. The only differ-

ences are the energetic positions of the p states, being situated at higher energies for the

carbides. This implies that the Mn-C bond has more covalent character with a stronger

admixture of Mn attributed states in the bondong band and a stronger admixture of

carbon-like states in the anti-bonding band.

In table 6.7 the Bader charges [162] for the compounds of interest are listed. They were

determined for a fixed lattice constant of 3.8 Å on a 60x60x60 grid using a numerical ap-

proach of G. Henkelman et al. [163] developed for the VASP code. By inspecting table 6.7

one finds that the charges on Mn and on N/C are rather insensitive to the choice of the T

element. This is due to the fact that the main bonding in these compounds occurs between

Mn and C/N, while T plays a minor role. Additional electrons on T stay localized at T and
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are not transferred to Mn, since this would result in the occupation of anti-bonding states.

This agrees well with earlier observations indicating that these compounds can well be

described within a covalent picture [39]. The compounds of interest can roughly be seen as

T 0(C/N)−1.5Mn+0.5. While amongst the nitrides the T=Zn member has the highest charge

on Mn, amongst the carbides this is found for the T=Ga representative. This agrees well

with the trend observed by D. Fruchart et al.[161], stating that the replacement of carbon

by nitrogen seems to require the use of higher atomic numbers Z on T in order to obtain

similar diagrams (e.g. for lattice distortions). Plotting differences in the charge densities

revealed that the major change in the Mn d-DOS upon an increase of Z on T occurs for

the non-bonding dxy states of Mn. The latter become increasingly stable within the series

T=Cu, Zn, Ga, and Ge and successively move through the Fermi energy (see Fig. 6.12).

This is plausible because the dxy-like charge spreads out towards T . Even though the

coordination of 12 for T is much too high for conventional p-states to be strongly involved

in bonding (e.g. elemental Ge has a coordination of 4), above results can be interpreted

as weak signatures indicating a chemical bond between Ge and Mn.

6.4.2 Magnetic properties of the nitrides

For the study of the magnetic properties three different antiferromagnetic (AFM) con-

figurations were adopted in our calculations. All directions are given with respect to the

simple-cubic (s.c.) unit cell. The AFM (0,0,1) set-up is characterized by a spin propagation

vector in the (0,0,1) direction. AF 120◦ denotes a triangular configuration with neighboring

spins on the (1,1,1) plane rotated by 120◦. Both of the latter can be implemented in the s.c.

cell. For the third configuration, AFM (1,1,1) with propagation vector in (1,1,1) direction,

a hexagonal cell containing 6 f.u. having its c-axis pointing in the s.c. (1,1,1) direction

had to be used. In that geometry the characteristic layers built up from hexagons and

triangles can be seen impressively (right panel of fig. 6.11). The coupling between layers is

mediated either by Mn-Mn bonds (all Mn-Mn bonds are equidistant), or in particular by

short Mn-N-Mn bonds. The number of FM (⊕) and AFM (ª) aligned neighbors relative

to one Mn are listed in table 6.8. It shows that the perovskite lattice is strongly frustrated.

Mn has - unlike in fcc - only 8 Mn neighrest neighbors. In the case of AFM I one out of

three Mn, lets say that one in the s.c z=0 plane, has all neighrest neighbors aligned AFM,

whereas those two Mn on the face centers (z=0.5a) have at best 4 ª and 4 ⊕ neighbors.

This differentiation between two types of Mn is because the magnetic configuration breaks

the symmetry of the lattice. In the AFM II configuration all three Mn have half of their

neighbors coupled AFM. Thus if all interactions were AFM the Heisenberg model would

predict the AFM I configuration to be more stable than the AF II. However, one has to
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Table 6.8: Number and type (⊕ · · · parallel, ª · · · anti-parallel) of neighbors in the most

common AFM configurations, relative to one particular Mn atom in the center.

interaction FM AFM I (1,0,0) AFM II (111) 120 ◦

1st (1/
√

2) a 8 ⊕ 2x 4 ⊕ / 4 ª 4 ⊕ / 4 ª 8x120

1x 8 ª
2nd a (via N) 2 ⊕ 2 ⊕ 2 ª 2 ⊕
2nd a (direct) 4 ⊕ 4 ⊕ 4 ⊕ 4 ⊕
3rd

√
3/2 a 16 ⊕ 2x 8 ⊕ / 8 ª 8 ⊕ / 8 ª 16x120

1x 16 ª -

4th
√

2 a 12 ⊕ 12 ⊕ 12 ⊕ 12 ⊕

account for the strong Mn-(C/N)-Mn nearest neighbor interactions.

In fig. 6.13 the total energies (left panel) and magnetic moments on Mn (right panel) for

various magnetic configurations are plotted versus the lattice constant. For all cubic ni-

trides the non-collinear configuration has the lowest energy. This is because of the high Mn

concentration and the fact that even the parent compound Mn4N is strongly influenced

by AFM Mn-Mn interactions. While in CuNMn3 the FM configuration is energetically

comparable to AFM (1,1,1), it is the most unfavorable set-up in the compound GeNMn3.

This is because of a triple-peak structure in the DOS for the representatives with T=Ga

and Ge (see fig. 6.12), pinning the exchange splitting and thus the moment on Mn at

too low values. Consequently the FM set-up is energetically destabilized. The reduced

magnetic moment for FM GaNMn3 and GeNMn3 is clearly visible in the right panel of

fig. 6.13. Regarding the AFM states, the AFM (0,0,1) configuration is destabilized and the

AFM (1,1,1) one stabilized when passing from T=Cu to T=Ge. Comparing this with ta-

ble 6.8 suggests that the early compounds (T=Cu,Zn) have FM 180◦ Mn-N-Mn exchange

coupling, while the later compounds (T=Ga,Ge) have either much weaker FM or even

AFM Mn-N-Mn coupling. Moreover, the compounds with T=Zn and Ga are expected to

exhibit the strongest magneto-volume coupling because their equilibrium lattice constants

are most sensitive to the magnetic configuration. The jumps in the Mn moments are most

pronounced for GaNMn3, indicating a transition from a low-moment to a high-moment

state.

In conclusion, above results show that the main changes in the electronic structure for

carbides and nitrides when passing through the series T=Cu, Zn, Ga, and Ge come from

the increase in the number of p-electrons on T . This shifts the peak in the non-bonding

Mn dxy DOS through EF , causing an intra-Mn charge redistribution since the total charge
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remains almost constant. Moreover, the change in the shape of the DOS due to the in-

creased importance of p-orbitals make a FM configuration more and more unfavorable. The

Bader charges on Mn taken from the non-magnetic state are highest for the compounds

ZnNMn3 (12.45) and GaCMn3 (12.44). The equivalence between ZnNMn3 and GaCMn3

mirrors the experimental observation that certain trends within carbides and nitrides (e.g.

the structure) are similar, required that carbides containing T with atomic number Z are

compared to nitrides with T having atomic number Z-1. This shift balances that C has

one electron less than N. Above calculations also indicate that the nitrides are strongly in-

fluenced by short-ranged AFM interactions. This is plausible not only because the nitrides

are closely related to ferri-magnetic Mn4N, it would also explain the extreme sensitivity of

the magnetic configuration on the intra-Mn charge distribution. Why nitrides tend to be

non-collinear antiferromagnets and carbides rather collinear antiferromagnets could not be

clarified yet and warrants further investigations. However, it must be related to the more

ionic character of the Mn-N bond compared to the Mn-C bond. In order to make more

precise predictions, however, more calculations including more of the complex, experimen-

tal crystal structures (like that for CuNMn3) are required. Since nitrides/carbides exhibit

a strong coupling between structure and magnetism, a high accuracy not only with respect

to magnetic configurations but also with respect to structural relaxations is necessary.
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Figure 6.12: Site and symmetry projected density of states (DOS) for the compounds

TNMn3 (left column) and TCMn3 (right column), with T ranging from Cu (uppermost

row) to Ge (lowermost row). All p-like states have been multiplied by 5.
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Figure 6.13: (Left panel) Energy versus s.c. lattice constant for various magnetic configu-

rations: FM, AF(1,1,1) and AF(0,0,1) are collinear configurations, AF 120 denotes a state

with neighboring Mn spins rotated by 120◦. (Right panel) Moment on Mn (inside r=2.1

a.u.)
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[7] Jürgen Kübler, Theory of Itinerant Electron Magnetism, Oxford University Press,

New York, 2000.

[8] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).

[9] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1980).

[10] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

[11] I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, Phys. Rev. B 50, 16861

(1994).
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