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Kurzfassung

Die grundlegende Aufgabe bei der Regelung autonomer mobiler Roboter ist es, den Roboter
zu einer vorgegebenen Zielposition fahren zu lassen. Diese Aufgabe wird in eine Anzahl von
Teilaufgaben zerlegt, die dann hierarchisch ausgeführt werden. Als erstes muss die Bewegung zum
Zielpunkt geplant werden, d.h. eine Referenztrajektorie oder -pfad wird generiert (Trajektorien-
planung). Zweitens muss der Roboter seine aktuelle Position kennen, während er sich bewegt
(Navigation). Drittens soll der Roboter so gesteuert werden, dass die Referenztrajektorie exakt
ausgeführt wird (Bahnfolgeregelung).

Im Zuge der vorliegenden Arbeit wurden neuartige Konzepte für alle drei Teilaufgaben entwickelt
und getestet:

Zur Trajektoriengenerierung werden verschiedene Kriterien gegeneinander abgewogen. Die
Querbeschleunigungen während enger Kurven, die Zeitdauer bis zum Erreichen des Ziels, die
gesamte Bogenlänge und die Glattheit der Kurve werden simultan optimiert, während harte
Randbedingungen wie Maximalgeschwindigkeit, minimaler Kurvenradius (also maximaler Lenkein-
schlag), Maximalbeschleunigung sowie minimaler Sicherheitsabstand zu Hindernissen genau
eingehalten werden. Die vereinheitlichte mathematische Formulierung dieses Problems und seine
numerische Lösung stellen eine neue Errungenschaft dar.

Der entwickelte Navigationsalgorithmus leitet sich von einer bereits existierenden Idee her, wurde
aber zu einem umfassenderen Konzept weiterentwickelt. Die Grundidee ist es, auf Grundlage der
Raddrehungen zu navigieren, während das Durchrutschen der Räder ständig überwacht wird. Tritt
übermäßiges Rutschen auf, wodurch die Navigation auf Basis der Raddrehungen unzuverlässig
wird, wird auf Inertialsensoren wie Beschleunigungs- oder Gyrosensoren umgeschaltet, deren
Genauigkeit ansonsten unzureichend ist. Die Überwachung ermöglicht auch Maßnahmen zur
Beschränkung des Rutschens.

Die Anwendung von prädiktiver Regelung auf die Bahnfolgeregelung stellt eine neuartige Methode
dar, mit gewissen mathematischen Schwierigkeiten bei der Regelung von mobilen Robotern
umzugehen. Der Roboter ist in der Lage, seine Steuersignale auf Basis prädizierter Bewegungen zu
optimieren. Dieses Konzept hat große Ähnlichkeit mit dem Verhalten eines menschlichen Lenkers.

Mögliche Anwendungen der präsentierten Algorithmen sind autonome industrielle Transporteinrich-
tungen, autonome Fahrzeuge für den Einsatz in gefährlichen Umgebungen nach Naturkatastrophen
oder Fahrerassistenzsyteme in der Automobilindustrie.
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Abstract

The fundamental task in autonomous mobile robot motion control is to make the robot move to
a specified goal position. This task is divided into a number of sub-tasks, which are executed
in a hierarchical manner. Firstly, it is necessary to plan the motion to the goal, i.e. a reference
trajectory or path is generated (trajectory generation). Secondly, the robot needs to keep track
of its position while in motion (navigation). Thirdly, the robot needs to be driven such that the
reference trajectory is accurately executed (tracking control).

In the course of this work novel concepts for all three sub-tasks were developed and tested:

For trajectory generation, various criteria are weighed against each other. Lateral accelerations
during sharp turns, time to reach the goal, total arc length and smoothness of the curve are
simultaneously minimised, while hard constraints such as maximum speed, minimum turning
radius, maximum acceleration and minimum safety distance to obstacles are accurately met. The
unified mathematical formulation of this problem and its numerical solution constitutes a novel
achievement.

The developed navigation algorithm is derived from an existing idea but is extended to a more
comprehensive concept. The idea is to navigate based on the wheel revolutions, while constantly
monitoring the wheel slip. In case of excessive slip, which makes navigation based on wheel
revolutions unreliable, inertial sensors such as acceleration and gyro sensors are substituted, whose
accuracy is otherwise unsatisfactory. Monitoring also enables control measures to limit the slip.

The application of predictive control to trajectory tracking control constitutes an innovative way
to deal with certain mathematical problems in mobile robot control. The robot is capable of
optimising its control inputs based on a prediction of its movement. This resembles closely the
behaviour of a human driver.

Possible applications of the presented algorithms are autonomous industrial transport devices,
autonomous vehicles for deployment to dangerous environments in case of natural disasters or
driver-assist systems in automotive applications.

v



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Modelling 2
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Mathematical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Simplification of the model for analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Trajectory tracking control 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Analysis of the control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Introduction to nonlinear predictive control . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Linear control of the inner loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Nonlinear predictive control of the outer loop . . . . . . . . . . . . . . . . . . . . . . 30

4 Navigation 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Available sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Introduction to the developed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Slip control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Motion planning 48
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Introduction to the developed algorithms . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Trajectory generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.5 Map-building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Waypoint generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



CONTENTS vii

6 Results 63
6.1 Trajectory tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Point stabilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Conclusion and outlook 73

A Technical specifications 74
A.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B The Extended Kalman Filter 79
B.1 Analytical derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2 Practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Curriculum Vitae 89



Chapter 1

Introduction

1.1 Motivation

Research on autonomous mobile robots or vehicles is one of the most seminal subjects at the
moment. Economically leading nations like the USA and Japan have adopted it to one of their
national research topics. The reason for this considerable research interest is a number of possible
applications in various fields. Autonomous transport devices could increase the degree of automa-
tion of complex production processes, thus significantly improving productivity. In case of natural
disasters, autonomous vehicles could be deployed to dangerous environments without risking harm
to human operators, and perform rescue missions. Furthermore, autonomous vehicles could be
helpful in difficult construction problems as transport or operating devices in environments which
are dangerous or difficult to access. Finally, an expanded degree of autonomy in automotive appli-
cations alleviates the burden on the driver and can increase safety. This is especially interesting
for physically disabled drivers.

1.2 Scope

According to a definition found in Wikipedia [99], the term autonomous stems from the greek
words auto, meaning by oneself, and nomos, meaning law. It can therefore be translated as giving
oneself his own law, or behaviour free from external authority. This means that an autonomous
robot must be capable of performing its mission without any interaction with a human operator.
A still more restrictive interpretation, especially targeting the aspect of self-localisation, forbids
the dependency on artificial external devices for fully autonomous operation.

Autonomous operation requires some implementation of artificial intelligence. This is, however, not
the focus of this work. This work focuses on motion control for autonomous vehicles, comparable
to the subconscious motoric capabilities of a human being, as opposed to the conscious and very
abstract process of deciding over one’s actions.
As the product of some superordinate decision-making process, a goal is specified. At this point,
motion control comes into effect, which can be subdivided into motion planning, tracking control
and navigation: A motion to reach the goal is planned (motion planning). This motion is executed
(tracking control) while verifying the accurateness of its execution (navigation).

In the course of this work, for each of the specified subtasks algorithms were developed, using a
tiny two-wheeled mobile robot called Tinyphoon. In the following those algorithms are presented
and experimentally evaluated.
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Chapter 2

Modelling

2.1 Introduction

A mathematical model of a dynamic system, in this context called plant, to be controlled is required
for two reasons:
On the one hand it serves for a numerical simulation of the plant’s behaviour, which allows the
virtual assessment of developed controller concepts during the design process without risk to the
hardware. Furthermore, the implementation of control algorithms in a simulation instead of on the
hardware itself is usually much more convenient and less time-consuming. A simulation, however,
cannot entirely replace thorough testing of a control concept on the hardware.
On the other hand, the model is the basis for mathematical analysis, which provides detailed
information about the plant’s dynamical properties and forms the starting point for conceptual
controller design.
A mathematical model can never fully describe physical reality, no matter how complex it becomes.
Therefore, its complexity and its level of accuracy is more or less subject to a trade-off between
objective and expenditure.

Not many publications exclusively concerned with mobile robot modelling are found in the litera-
ture. Obviously most authors working in the field do not put much effort into modelling, usually
wheel slippage is not included in their models. Among the publications explicitly addressing wheel
slippage, which is the crucial difficulty in wheeled mobile robot modelling, are the works of Bal-
akrishna and Ghosal [8] and Williams et al. [100], performing modelling of omnidirectional robots.
Muir and Newman develop a formalism in [69] to model mobile robots with an arbitrary number
of wheels.
To find more elaborate friction models, the literature on vehicle dynamics has to be consulted. Liu
and Peng for example present the so-called brush model in [65]. The famous magic formula model
is described by Pacejka in [76].

2.2 Mathematical description

The robot, which is depicted in Fig. 2.1, has two wheels with rubber tyres and two felt shoes,
one at the front and one at the rear to stabilise it around the pitch axis. The two wheels are
supported by ball bearings and powered by two individual DC-motors via one-stage transmissions.
A microcontroller (µC) produces two pulse-width modulated (PWM) constant voltage signals,
which are amplified by a dual full bridge driver and applied to the two DC-motors. The algorithms

2



CHAPTER 2. MODELLING 3

are executed on the digital signal processor (DSP) and the resulting PWM-duty cycle values are
sent to the µC for execution. The µC also collects the sensor signals and provides them to the DSP.
Detailed technical specifications of the robot hardware can be found in Appendix A.

Yaw-axis

Pitch-axis

Roll-axis

t
n

z

Figure 2.1: Mini-robot Tinyphoon.

2.2.1 Mechanical system component

The mechanical part of the robot consists of the wheels, the chassis, the ball bearings, the trans-
missions and the DC-motors. A local coordinate system is introduced as depicted in Fig. 2.1.
In the following, the symbols as listed in Table 2.1 are used.
A number of simplifying assumptions are made:

1. The chassis is treated as a homogeneous cuboid, its moment of inertia is calculated from the
edge lengths and its mass. The position of the center of gravity, however, is measured.

2. The wheels, too, are treated as homogeneous cylinders, their moment of inertia is calculated
as above.

3. It is assumed that there is no rotation around the pitch-axis, i.e. the felt shoes are free of
play.

4. The wheels stay in contact with the surface at all times, i.e. the contact forces are always
greater than zero. The weight of the robot is entirely carried by the wheels’ contact surfaces,
the contact forces of the felt shoes are assumed to be zero. Nevertheless, it is assumed that
the felt shoes produce linearly velocity-dependent friction forces.

5. There is no coupling between the tangential slip and the normal slip of the wheels. The
tangential force depends on the tangential slip st,R and st,L, respectively, whereas the normal
force depends on the side-slip velocity vn.

6. The normal force Fn can be calculated without respect to the individual contact forces for
the cumulative contact area of both wheels.
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Table 2.1: Symbols
Symbol Description Unit
x, y inertial coordinates m
ϕ orientation rad
m mass of the chassis plus both wheels kg
I moment of inertia of the chassis kgm2

a width and length of the robot’s chassis m
b distance between the two wheels’ contact points m
s position of the center of gravity in z-direction m
g gravitational constant ms−2

F force N
M moment Nm
v velocity ms−1

ω angular velocity rads−1

r radius of a wheel m
mw mass of a wheel m
Iw moment of inertia of a wheel kgm2

Im moment of inertia of a DC-motor kgm2

Iw,tot. moment of inertia of a wheel plus the reduced
moment of inertia of a DC-motor

kgm2

n gear ratio 1
B, C, D, E parameters for a simplified magic formula model [76]. various

st tangential wheel-slip 1
Kt, Kn friction coefficients of the felt-shoes in tangential

and normal direction
Nsm−1

R index for right
L index for left
t index for tangential
n index for normal
N index for normal to the surface
w index for wheel
m index for motor
f index for friction
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The relevant dynamic and kinematic quantities are introduced in Fig. 2.2.

Ktvt/2Ktvt/2

Ktvt/2

Ktvt/2

Kn(vn − ω b/2)

Kn(vn + ω b/2)

ωFn/2 Fn/2

Ft,R

Ft,L

Ft,L

mgmg

FN,R
FN,L

FN,L

Mw
ωw

2r

bb

aa

s

v

vn

vn

vn < 0

vt

vt

vt

vR

vL

x

y

ϕ

θ

a b

ω
α < 0

Figure 2.2: Kinematic and dynamic quantities and geometric dimensions of the robot.

The kinematics of the robot are given by

ẋ = vt cosϕ− vn sinϕ
ẏ = vt sinϕ+ vn cosϕ

ϕ̇ = ω,
(2.1)

which is equivalent to

ẋ = v cos(ϕ+ α) = v cos θ
ẏ = v sin(ϕ+ α) = v sin θ

ϕ̇ = ω
(2.2)

via vt = v cosα and vn = v sinα and the theorems of addition of the trigonometric functions.
To describe the motion of the system, the principles of conservation of translational and angu-
lar momentum are written in the local body-fixed frame of the robot. Therefore, the absolute
accelerations are needed.
Differentiating (2.1) yields

ẍ = v̇t cosϕ− vt sinϕ ω − v̇n sinϕ− vn cosϕ ω
ÿ = v̇t sinϕ+ vt cosϕ ω + v̇n cosϕ− vn sinϕ ω,

(2.3)

which can be rearranged into [
ẍ
ÿ

]
=
[

cosϕ − sinϕ
sinϕ cosϕ

]
︸ ︷︷ ︸

T

[
v̇t − vnω
v̇n + vtω

]
. (2.4)
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Since the matrix T performs the rotational transformation from the local into the global frame,
the absolute accelerations in the local frame are found to be[

at

an

]
=
[
v̇t − vnω
v̇n + vtω

]
. (2.5)

Conservation of translational momentum in t-direction then yields

v̇t =
1
m

(Ft,R + Ft,L −Ktvt) + vnω, (2.6)

and in n-direction

v̇n =
1
m

(Fn − 2Knvn) − vtω. (2.7)

Conservation of angular momentum around the z-axis is written as

ω̇ =
b

2I
(Ft,R − Ft,L −Knb ω) , (2.8)

where the polar moment of inertia is found as I = ma2/6.
With these equations, the three degrees of freedom of planar motion of a rigid body are covered.
Under the given assumptions, the robot exhibits two more degrees of freedom, that is to say the
rotation of both wheels. The principle of conservation of angular momentum for each of the two
wheels reads

ω̇w =
1

Iw,tot.
(Mm −Mf − Ftr), (2.9)

where Iw,tot. = Iw + Imn
2 = mwr

2/2 + Imn
2.

To complete the equations of motion, expressions for the forces Fn, Ft,R and Ft,L and the friction
moment Mf acting on the system have to be found. At this stage, the motor moments are regarded
as the inputs to the system. The normal force Fn acting on the wheels’ consummate contact area
is assumed to be a function of the side-slip velocity and modelled using the basic structure of the
well-known magic formula [76],

Fn = −mgD sin(Catan(Bvn − E(Bvn − atan(Bvn)))). (2.10)

The tangential forces Ft,R and Ft,L are assumed to depend on the contact force of the respective
wheel and the wheel slip. The contact forces FN,R and FN,L are found by combining equilibrium of
moments around the roll-axis and equilibrium of forces in z-direction,

FN,R =
mg

2
− s

b
(Fn + 2Knvn)

FN,L =
mg

2
+
s

b
(Fn + 2Knvn)

(2.11)

The tangential wheel slip is defined as the relative difference between the wheel’s circumferential
velocity and the velocity of its hub,

st,R =
ωw,Rr − (vt + ωb/2)

|vt + ωb/2|
st,L =

ωw,Lr − (vt − ωb/2)
|vt − ωb/2| .

(2.12)
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To avoid problems in the numerical simulation due to the singularity at |vt ± ωb/2| → 0, (2.12) is
replaced by

st,R =
ωw,Rr − (vt + ωb/2)

δ

st,L =
ωw,Lr − (vt − ωb/2)

δ
.

(2.13)

whenever |vt ± ωb/2| < δ. Moreover, the absolute value of the slip is limited to one.
The tangential forces as a function of tangential slip st and the contact forces are formulated using
the magic formula,

Ft = max(FN, 0)D sin(Catan(Bst − E(Bst − atan(Bst)))), (2.14)

where the parameters B through E are different from those used in (2.10).
The magic formula characteristics are depicted in Fig. 2.3.
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Figure 2.3: Magic formula model for tangential and lateral slip.

To obtain a sufficiently accurate but simple model for the friction moment Mf a characteristic
containing linear and parabolic sections is fitted to a number of data points obtained by stationary
measurement, as illustrated in Fig. 2.4.
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Figure 2.4: Bearing friction moment characteristic.
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To avoid problems in the numerical simulation, the discontinuity at ωw = 0 is replaced by a linear
section, and the peaks are reduced.

Inserting equations (2.10) through (2.14) into the differential equations (2.6) through (2.9) yields
a closed system of five differential equations for five degrees of freedom.
Finally, the inertial coordinates and the orientation are calculated by integrating (2.1).

2.2.2 Electrical system component

The robot’s DC-motors are driven by pulse width modulated (PWM) voltage signals with constant
amplitude. To characterise a PWM-signal the proportion between the pulse width and the periodic
time rPWM = Ton/TPWM is used. Since the original signals are generated by the microcontroller,
which cannot supply sufficient energy to actually drive the DC-motors, the signals are amplified by
a dual full bridge driver.
The symbols used in this section and their interpretations are listed in Table 2.2.
Fig. 2.5 shows the electrical circuit to be modelled. Technical specifications are to be found in
Appendix A.

utrutr

utr utr

ud

ud

ud

ud

uemf

us

usus

uL

uRum

nωw

Grd Grd

Grd

NotNot

In2: backwards In1: forward

Motor

L

R

i

i

T1

T2

T3

T4

D1

D2

D3

D4

Figure 2.5: Electrical circuit with transistors T1-T4 and diodes D1-D4.

For the electrical model, the following simplifying assumptions are made:

1. The internal resistance of the voltage source is neglected, i.e. the supply voltage is assumed
constant.

2. The voltage drops of the transistors and the diodes are assumed constant.
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Table 2.2: Symbols
Symbol Description Unit

u voltage V
i current A
n transmission ratio 1
R resistance Ω
L inductance Ωs
K electromagnetic force (emf) constant or motor constant Vs or NmA−1

TPWM PWM-period s
Ton active part of the PWM-period s
rPWM PWM-ratio 1

tr index for transistor
d index for diode

emf index for electromagnetic force
s index for supply
R index for resistance
L index for inductance
m index for motor

3. The drift of the system due to temperature changes is neglected.

4. Capacities and inductances of the elements in the circuit are neglected (except for the induc-
tance of the motor-coil).

5. The switch-on and switch-off time of the transistors are assumed constant but different. The
diodes are modelled to react instantaneously.

The dynamics of each DC-motor are described by Kirchhoff’s law, introducing the current i as
additional degree of freedom for each wheel,

di
dt

=
1
L

(um −Ri−Knωw). (2.15)

The relationship between the current and the moment produced by the motor is linear,

Mm = Kni. (2.16)

Due to the structure of the circuit, the terminal voltage of the motor um assumes several different
magnitudes as a result of the changing direction of the current and the changing transistor states.
Basically, there are four different scenarios, here illustrated for a PWM-signal at In1 and low at
In2, this means that the motor is driven in forward direction. For the opposite direction the labels
of the diodes and transistors would have to be exchanged with their symmetric counterparts (T1
with T3, T2 with T4) in the following description.

1. T1 and T4 are conductive, T2 and T3 are non-conductive and i > 0. This is normally the
case at the end of the active part of the PWM-period, when the wheel is actually driven by
the motor. Then the current passes through T1, the motor and T3. The terminal voltage in
this case is um = us − 2utr.
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2. T2 and T4 are conductive, T1 and T3 are non-conductive and i > 0. This is normally the
case at the beginning of the passive part of the PWM-period. The motor works as a generator
in this case. Here, the current passes through D2, the motor and T3. The terminal voltage
then results to um = −ud − utr.

3. T2 and T4 are conductive, T1 and T3 are non-conductive and i > 0. This situation occurs
during the passive part of the PWM-period, after the generator-effect of the motor turns the
current over to the opposite direction. Then the current goes through D4, the motor and T2.
The terminal voltage becomes um = ud + utr.

4. T1 and T4 are conductive, T2 and T3 non-conductive, i > 0. This happens at the beginning
of the active part of the PWM-period, when the current is still negative. The current then
passes through D4, the motor and D1. The terminal voltage becomes um = us + 2ud.

However, there are some more effects which lead to a number of additional scenarios:

1b. Since the switch-on time of the transistors is larger than the switch-off time the following
effect can occur: At the beginning of the active part of the PWM-period T2 becomes non-
conductive, but T1 is not yet conductive. If in this situation the current becomes already
positive, the circuit is interrupted, both um and i are equal to zero.

This ends as soon as T1 becomes conductive, then scenario 1 comes into effect.

All the situations so far are illustrated in the left part of Fig. 2.6.
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Figure 2.6: Current and Voltage during a PWM-period, 1-4 and 1b, left, and 1-3b, right. T1 denotes
the switch-on time of a transistor, T2 the switch-off time after high voltage and T3 the switch-off
time after low voltage.

3b. For scenario 3 a different situation can arise: If um > uemf , the current grows, but then
scenario 2 comes into effect and the current decreases, asf. The result is a high-frequency
low-amplitude oscillation, which is modelled by holding the current equal to zero as shown in
the right part of Fig. 2.6.

1.,2. If the angular velocity is smaller than a certain margin (or negative) the current will not cross
zero, it will remain positive during the whole PWM-period. In this case, only scenarios 1 and
2 come into effect, as illustrated in the right part of Fig. 2.7.
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Figure 2.7: Current and Voltage during a PWM-period, 1 and 2, left, and 3 and 4, right.

3.,4. If the angular velocity is greater than a certain margin, the current will not cross zero, too.
It will remain negative throughout the period such that only scenarios 3 and 4 take place, see
the left part of Fig. 2.7.

2.3 Numerical simulation

By combining the electrical and the mechanical model, the movement of the robot as a response
to two PWM-input signals can be simulated. The combined dynamics, which comprise seven de-
grees of freedom, exhibit time constants of strongly differing orders of magnitude: electrodynamics
O(10−5s), mechanics O(100s). Therefore, a complete numerical simulation is very inefficient. How-
ever, the two parts can be decoupled by the following assumptions:

• The wheels’ angular velocities are assumed to remain constant during a PWM-period, which
is justified because the wheels’ dynamics are much slower than the electrodynamics.

• The current at the end of a PWM-period is assumed to be equal to the current at the
beginning, i.e. the system is assumed to be stationary. This assumption is very accurately
fulfilled as long as the PWM-input is continuous. If it is not continuous, the stationarity
assumption is violated at most for a few PWM-periods after the discontinuity.

Then the integral mean value of the current, and thereby the moment over one PWM-period can be
calculated analytically according to the different scenarios. The integral mean value of the moment
is then a function of the PWM-ratio rPWM, the wheel angular rate ωw and the supply voltage us

as a parameter.
The numerical simulation is thereby reduced to the five mechanical degrees of freedom with the two
motor moments as inputs. By this method the calculation time is decreased by a factor of around
100, while no difference to the full simulation can be observed.

2.4 Measurements

A number of physical parameters have to be adjusted. Some can be measured directly, see Appendix
A, others have to be obtained indirectly, i.e. they have to be calculated from other results or in the
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worst case be found by systematic variation and validation. In Table 2.3 the physical parameters
and their respective measurement methods are listed.

Table 2.3: Measurement methods
Quantity Method Direct/indirect
mass weighing direct
radius/edge length measuring direct
moment of inertia weighing/measuring indirect: calculated from

mass and lengths
position of the center

of gravity
balancing direct

transmission ratio known from design direct
inductance oscilloscope and

signal generator
direct

resistance multimeter direct
switching times oscilloscope direct
diode and transistor

voltage drops
oscilloscope direct

supply voltage multimeter direct
bearing friction moment measurement of unloaded

stationary wheel angular
velocities

indirect: calculated from
integral mean of
the current

side-slip and tangential
slip parameters

video processing system indirect: adjustment and
validation

dynamic friction parameters video processing system indirect: adjustment and
validation

2.4.1 Video measurement

To obtain data describing the movement of the robot for validation purposes, a video measurement
system is developed. The CCD-camera records a video of the moving robot from above at 25
frames per second (fps), corresponding to a sampling time of TV = 0.04s, in 640×480pixels .avi-
format. Detailed information about hardware and software used for the video measurement system
is compiled in Appendix A.
The video is decomposed into its individual frames in 24bit bitmap (8bit each for red, green and
blue colour channel) format and subsequently processed.
To measure position and orientation of the robot in 2D, at least two points on top of the robot must
be identified in each frame. Therefore, the robot is covered by a colour marker with two rectangular
panels of different colour (red and white), which can be identified by differential keying: A reference
image is subtracted from the current image such that the two rectangles are the remaining features,
see Fig. 2.9. The white marker appears equally on all three colour channels, the red marker
predominantly on the red channel.
Then all colour values exceeding an upper bound are equalised and all colour values below a lower
bound are replaced by zero. The centroid of the white marker is calculated from the arithmetic
mean of the green and the blue channel, the centroid of the overall area is calculated from the red
channel.
The colour strength of each of the three colour channels, an 8bit integer for each pixel is arranged
in three matrices, R,G,B ∈ R480×640 in a left-handed coordinate system, i.e. the y-coordinate is
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mirrored and the origin of the coordinate system is in the upper left corner of the image. Then the
left-handed coordinates of the centroid of a colour channel, exemplarily written for the red channel,
are given by

xR =
(

1T︸︷︷︸
[1×480]

R︸︷︷︸
[480×640]

[1 . . . 640]T︸ ︷︷ ︸
[640×1]

)/(
1T︸︷︷︸

[1×480]

R︸︷︷︸
[480×640]

1︸︷︷︸
[640×1]

)

yR =
(

1T︸︷︷︸
[1×640]

RT︸︷︷︸
[640×480]

[1 . . . 480]T︸ ︷︷ ︸
[480×1]

)/(
1T︸︷︷︸

[1×480]

R︸︷︷︸
[480×640]

1︸︷︷︸
[640×1]

)
.

(2.17)

Due to the deviation from the camera’s central axis and the mounting height of the colour marker,
the centroid coordinates are subject to a systematic error as shown in Fig. 2.8, which is corrected
by applying the theorem on intersecting lines twice,

x =
H − h

H
(x̃− 320) + 320

y =
H − h

H
(ỹ − 240) + 240.

(2.18)

Camera

Camera axis

app.

true

H

h

x

x̃

Figure 2.8: Systematic error due to the panel’s mounting height h: Apparent and true location of
the panel. H denotes the distance between ground and camera.

Next, a scaling factor in meters per pixel, which is found by measuring the display window’s
dimensions, is used to obtain the coordinates of the robot’s centroid x and y and the coordinates
of the centroid of the white marker xw and yw in SI-units.
The orientation is incrementally calculated using the four-quadrant inverse tangent,

ϕ1 = atan2(−yw1 + y1, xw1 − x1), (2.19)

and

ϕi = ϕi−1 + atan2(∆̃yi, ∆̃xi), (2.20)

where [
∆̃xi

∆̃yi

]
=
[

cosϕi−1 sinϕi−1

− sinϕi−1 cosϕi−1

] [
xw,i − xi

−yw,i + yi

]
. (2.21)

The integer i denotes the currently processed frame and the index 1 denotes the first frame. The sign
of y is inverted to compensate the original left-handed coordinate system. For each frame, the vector
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pointing from the robot’s centroid towards the centroid of the white marker is transformed into the
local coordinate system of the previous frame, the orientation angle increment is calculated and
added to the orientation angle of the previous frame. Thereby the orientation angle evolves on R,
instead of being limited to the definition interval of the four-quadrant inverse tangent, [−π, π], and
thereby possibly exhibiting discontinuities. This procedure works under the reasonable assumption
that no rotation through more than π radians takes place between two subsequent frames.
Finally, position and orientation are transformed such that the initial posture of the robot represents
the origin of the coordinate system,⎡

⎣ xi

yi

ϕi

⎤
⎦ =

⎡
⎣ cosϕC,1 sinϕC,1 0
− sinϕC,1 cosϕC,1 0

0 0 1

⎤
⎦
⎡
⎣ xC,i − xC,1

−yC,i + yC,1

ϕC,i − ϕC,1

⎤
⎦ , (2.22)

where the index C denotes the original frame of reference of the camera. Again, the sign of y is
inverted.

a b

c d

x

y

ϕ

Figure 2.9: Original image (a), red channel with centroid and correction (b), blue and green channel
with centroid of the white marker and correction (c) and original image overlayed with measure-
ments (d). The lower left corner of the image corresponds to the camera’s central axis.

To obtain the velocity components vn and vt and the yaw rate ω, the coordinates x and y and the
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orientation ϕ are approximated piecewise by quadratic splines, which are subsequently differentiated
analytically. In the sequel the procedure is illustrated for the coordinate x.
An approximation by quadratic spline is given by

x = p0 + p1τ + p2τ
2. (2.23)

To obtain the derivative at position i, a spline is calculated using values at positions i − 1, i and
i+ 1, τ is defined on the interval [−1; 1]. Then the parameters are calculated according to⎡

⎣ p0

p1

p2

⎤
⎦ =

⎡
⎣ 1 −1 1

1 0 0
1 1 1

⎤
⎦−1 ⎡⎣xi−1

xi

xi+1

⎤
⎦ , (2.24)

and the derivative is obtained as

ẋi = ẋ(τ = 0) = p1
1
TV

. (2.25)

The derivatives at the initial position i = 1 are assumed to be zero, i.e. the robot is assumed to be
initially at rest, whereas the derivatives at the final position are set equal to those at the second to
last position.
The path angle θ is calculated using the same incremental procedure as for the orientation angle
in (2.19) through (2.21),

θ = atan2(ẏ, ẋ). (2.26)

The velocity components are given by transformation into the local frame

vt,i = cos(θi − ϕi)
√
ẋ2 + ẏ2

vn,i = sin(θi − ϕi)
√
ẋ2 + ẏ2

ωi = ϕ̇i.

(2.27)

The difference θi − ϕi is defined on R, its magnitude also depends on the direction of motion,
whereas the side-slip angle is only defined on the interval [−π

2 ,
π
2 ]. The side-slip angle is calculated

according to

αi = atan
(
vn,i

vt,i

)
f

(√
ẋ2

i + ẏ2
i , ωi

)
(2.28)

with the linear validity function

f

(√
ẋ2

i + ẏ2
i , ωi

)
=

⎧⎪⎪⎨
⎪⎪⎩

0 :
√
ẋ2 + ẏ2|ωi| < c√

ẋ2 + ẏ2|ωi| − c

d− c
: c <

√
ẋ2 + ẏ2|ωi| < d

1 : d <
√
ẋ2 + ẏ2|ωi|

(2.29)

enforcing the side-slip angle to vanish for low track speed and/or low curvature, where otherwise
no meaningful results can be obtained due to numerical reasons, and the side-slip can reasonably
be assumed to be very small.
The parameters c and d are found by systematic adjustment.
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2.5 Validation

After adjustment of the parameters, the model is validated by applying a random sequence of PWM-
inputs to each motor. The resulting movement is recorded and compared with the simulation results
for the same inputs, see Fig. 2.10 and Fig. 2.11. The wheel angular velocities as measured by the
wheel encoders are stored in a log-file on the microcontroller and are also used for validation.
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Figure 2.10: Model validation: Orientation angle (left) and yaw rate (right), simulation in black
and video measurement in grey.
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Figure 2.11: Model validation: Tangential and normal velocity components (left) and wheel angular
velocities (right), simulation in black and measurement in grey.

Individual validation of the model of the electrical circuit is carried out by measuring the PWM
input signal, the motor voltage um and the current i via a serial resistor in steady state using a
standard four-channel oscilloscope, see Fig. 2.12.

2.6 Simplification of the model for analysis

To obtain a closed-form analytical model description which is suitable for controller design, the
original model derived for numerical simulation is further simplified by undertaking the following
steps:

1. The rolling condition in tangential direction is assumed to be fulfilled, i.e. the tangential slip
is neglected.



CHAPTER 2. MODELLING 17

Time t [s] Time t [s]

[V
] ∝ i
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PWM
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Figure 2.12: Model validation: Input voltage, motor voltage and current-proportional voltage with
zero at 6V for a PWM-ratio of 0.3. Left: Screenshot of oscilloscope. Right: Simulation.

2. The dynamics of the side-slip velocity (2.7) are neglected.

3. In (2.6) the tangential velocity vt is replaced by the resulting linear velocity v, thereby as-
suming that the side-slip angle remains sufficiently small.

4. To have a model which is as generic as possible, the friction parameters Kn and Kt concerning
individual ground conditions are discarded.

5. The relationship between the integral mean of the motor moment reduced by the friction
moment Mw = Mm −Mf and the PWM-ratio and the wheel angular velocity is numerically
linearised to form a static bilinear characteristic.

6. The rate of change of the side-slip angle is assumed to be small, therefore θ̇ ≈ ϕ̇ = ω instead
of θ̇ = ϕ̇+ α̇.

With assumption 1 the five remaining degrees of freedom are reduced to three, for both wheels
(2.9) is replaced by

Ft =
Mm −Mf

r
=
Mw

r
(2.30)

and

ωw,R =
v + b ω/2

r

ωw,L =
v − b ω/2

r
.

(2.31)

Assumption 2 eliminates one more degree of freedom. According to step 3 and 4 the dynamics of
the resulting track speed v =

√
v2
t + v2

n signvt as the first remaining degree of freedom are described
by
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v̇ =
1

mtot.
(Ft,R + Ft,L) , (2.32)

where mtot. = m+ 2
r2 Iw,tot. denotes the mass of the entire vehicle extended by the equivalent mass

of the polar moment of inertia of wheels and motor, Iw,tot. = Iw + Imn
2. By the definition of

the resulting track speed using the sign of the tangential velocity it is implicitly assumed that the
side-slip angle α is bounded in the interval [−π

2 ; π
2 ].

With step 4 the dynamics of the yaw rate ω as the second degree of freedom are written as

ω̇ =
b

2Itot.
(Ft,R − Ft,L) , (2.33)

with Itot. = I+ b2

2r2 Iw,tot., the moment of inertia of the vehicle extended by the wheels’ and motors’
contribution.

Step 5 is performed by application of the well-known least-squares approximation. The desired
structure of the approximate linear relationship is

Mw = Mw(rPWM, ωw) = p1rPWM + p2ωw, (2.34)

with the two unknown parameters p1 and p2. A constant term p0 can be omitted, since from the
more complex original model it is already known that the characteristic is skew-symmetric. The
parameter estimation problem is formulated as⎡

⎢⎣ rpwm,1 ω1
...

...
rpwm,N ωN

⎤
⎥⎦

︸ ︷︷ ︸
X

[
p1

p2

]
︸ ︷︷ ︸

p

=

⎡
⎢⎣ Mw,1

...
Mw,N

⎤
⎥⎦

︸ ︷︷ ︸
y

+ e, (2.35)

where X denotes the regressor matrix, y the output vector, p the parameter vector and e the
residuals. Then the parameters p that yield minimum sum-of-squared-residuals eTe are given by

p = (XTX)−1XTy. (2.36)

In Fig. 2.13 a comparison between the original model and the bilinear characteristic is depicted.
Combining (2.30) through (2.34) yields

v̇ =
2p2

r2mtot.
v +

p1

rmtot.
rPWM,R +

p1

rmtot.
rPWM,L

ω̇ =
p2b

2

2r2Itot.
ω +

p1b

2rItot.
rPWM,R − p1b

2rItot.
rPWM,L,

(2.37)

rewritten as a continuous time state space system with state vector v := [v ω]T, output vector v
and input vector u := [rPWM,R rPWM,L]T

v̇ =

⎡
⎢⎢⎢⎣

2p2

r2mtot.
0

0
p2b

2

2r2Itot.

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

v +

⎡
⎢⎢⎢⎣

p1

rmtot.

p1

rmtot.

p1b

2rItot.
− p1b

2rItot.

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

u, (2.38)
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Figure 2.13: Original model (mesh) and bilinear characteristic (solid).

where A denotes the system matrix and B the input matrix. This system will be referred to as
the robot’s velocity dynamics. With step 6 (2.2) is approximately written as

ẋ = v cos θ
ẏ = v sin θ
θ̇ = ω.

(2.39)

By this system of equations, in the following referred to as the robot’s kinematics, the motion of
an imaginary vehicle without side-slip moving on the real vehicle’s track is described.

The output of the linear part of the system (2.38) is the input to the nonlinear part (2.39), i.e. the
two parts are in serial connection without any feedback branches, which is very convenient for
controller design.



Chapter 3

Trajectory tracking control

3.1 Introduction

The basic task in planar mobile robot motion control is to move to a specified position and
orientation, together called posture. Quoting a comprehensive article by Canudas de Wit et al.
[21], mobile robot motion control is classified into path tracking, trajectory tracking and point
stabilisation. A trajectory, in cartesian coordinates given by two functions x(t) and y(t), implicitly
contains velocity information, whereas a path is a one-dimensional subset of R2, i.e. purely ge-
ometric. The corresponding orientation angle ϕ is in both cases defined as the tangent to the curve.

Path tracking algorithms rely on previously generated paths, the velocity profile along the path
is chosen by the controller. Trajectory tracking algorithms, too, work with previously calculated
trajectories, where the velocity profile is already determined in the planning stage. The control
problem can be formulated as minimising the error between the actual posture and the momentary
reference posture. Most existing tracking algorithms, however, fail at zero reference velocity,
i.e. they are incapable of compensating residual posture errors after the reference trajectory reaches
a stationary point.

Posture stabilisation does not necessarily involve a pre-planned trajectory or path, it can be
defined as asymptotically stabilising the robot at a given (usually static) target posture. Posture
stabilisation algorithms can be used for trajectory tracking, if the target posture is not static.
Asymptotic posture stabilisation, however, does not guarantee optimal tracking behaviour. A
drawback of posture stabilisation without pre-planned trajectory is that there is no possibility to
influence the way how the target posture is reached, which makes obstacle avoidance impossible.

A quote from Oriolo [74] casts light on the discrepance between the different approaches:

[...] a drawback of many posture stabilizing controllers is a poor transient performance.
Another difficulty which has often been overlooked is the necessity of using two different
control laws for trajectory tracking and posture stabilization.

Therefore, it is most desirable to develop an algorithm exhibiting both satisfactory tracking and
posture stabilisation behaviour. As yet, however, only very few authors have reported the achieve-
ment of that goal.

20
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3.2 Analysis of the control system

The following analysis is mainly taken from Isidori [50], Murray et al.[70] and Brockett [19].

3.2.1 Definitions and classification

The robot’s kinematics (2.39) are a classical example for a nonholonomic system, which is typical
for a knife edge or a rolling wheel, therefore often called unicycle-type kinematics. The particularity
with nonholonomic systems is that the number of global degrees of freedom or states (here: x, y and
θ) exceeds the number of local degrees of freedom or inputs (here: v and ω) due to a non-integrable
kinematic constraint, which is given by

− ẋ sin θ + ẏ cos θ = 0, (3.1)

equivalent to

vn = 0, (3.2)

i.e. no side-slip is possible. This property causes considerable mathematical complexity, which will
become clear throughout the analysis.

The most general form of a control system state space model is given by

ẋ = f(x,u), (3.3)

where x denotes the state vector and u the input vector, f(x,u) is a vector field or nonlinear map
Rn+m → Rn where n is the dimension of the system, i.e. the number of states, and m is the number
of inputs.
A control system which is said to be linear in the inputs can be written as

ẋ = f(x) +
m∑

i=1

gi(x)ui. (3.4)

Again f(x) and gi(x) are vector fields in Rn and f(x) is also called the drift. In a driftless
system, f(x) vanishes, it is therefore immediately at rest if the input vanishes. Any configuration
x represents an equilibrium position in the state space.
The kinematics (2.39) with state vector x := [x y θ]T and inputs v and ω can be written as

ẋ =

⎡
⎣ cos θ

sin θ
0

⎤
⎦

︸ ︷︷ ︸
g1(x)

v +

⎡
⎣ 0

0
1

⎤
⎦

︸ ︷︷ ︸
g2(x)

ω. (3.5)

and belongs therefore to the class of nonlinear nonholonomic driftless systems, linear in the inputs,
dimension n = 3 and number of inputs m = 2.
Because the number of outputs, which are equal to the states, is larger than the number of inputs,
this type of systems is sometimes called an underactuated system.
For the robot’s velocity dynamics (2.38), the drift and the input vector fields are linear in the states,
and can therefore be written with state and input matrices. The velocity dynamics are classified
as a linear system with two states and two inputs.
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3.2.2 Controllability

The first important question in the analysis of a control system is its controllability. A system is
said to be completely state controllable, if for any configuration x0 in the state space there ex-
ists an input u(t) which makes the system reach an arbitrary final configuration xf in arbitrary time.

A controllability criterion for a system of type (2.39) is presented by Murray et al. in [70], based on
results by Isidori [50]. This criterion is called the controllability rank condition and is formulated
as follows:

Controllability rank condition If the controllability Lie algebra has full rank n, or rephrased,
if the distribution spanned by gi is not involutive, the system is controllable.

A Lie bracket [g1, g2] of two vector fields g1 and g2 is given by

[g1, g2] =
∂g1(x)
∂x

g2(x) − ∂g2(x)
∂x

g1(x). (3.6)

The controllability Lie algebra is given by

L(g1, g2) = (g1, g2, [g1, g2]) =

⎡
⎣ cosϕ 0 − sinϕ

sinϕ 0 cosϕ
0 1 0

⎤
⎦ . (3.7)

Its rank is obviously equal to three. Thus the kinematics are controllable.

The controllability of the velocity dynamics can easily be established by checking the rank of the
controllability matrix

C = [B, AB], (3.8)

which clearly has full rank n = 2 because B is already a square matrix with full rank.

Since the velocity dynamics and the kinematics are in serial connection, the controllability of the
entire system is guaranteed by the controllability of its individual parts.

3.2.3 Existence of a smooth stabilising feedback for the kinematics

The controllability only guarantees the existence of a stabilising input. So far, no conclusion can
be drawn about the existence of a smooth feedback law or control law u(x).
In fact, Brockett [19] showed, that no smooth time-invariant feedback law exists to stabilise the
system (2.39).
Possibilities to circumvent this restriction are therefore:

• Discontinuous control laws.

• Time-varying control laws.

• Hybrid control laws, basically employing different controllers for different domains of the state
space.

Trajectory tracking and path tracking algorithms pose less mathematical difficulties, because they
are mostly based on the tracking error dynamics of the system, which exhibit more convenient
mathematical properties.
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3.2.4 Decoupling of the velocity dynamics

Decoupling of the states yields two independent first-order single-input-single-output systems, which
are very easy to handle. The system matrix A of the velocity dynamics (2.38) is already of diagonal
structure, therefore only the input matrix B has to be diagonalised to decouple the two states. An
eigenvector-eigenvalue-transformation could be used to diagonalise B, but due to its structure a
diagonalising transformation is simply found as

B =

⎡
⎢⎢⎢⎣

p1

rmtot.

p1

rmtot.

p1b

2rItot.
− p1b

2rItot.

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p1

rmtot.
0

0
p1b

2rItot.

⎤
⎥⎥⎥⎦
⎡
⎣ 1 1

1 −1

⎤
⎦ = B̃T , (3.9)

with the non-singular transformation matrix T . Then the decoupled system (2.38) reads

v̇ = Av + B̃Tu = Av + B̃ũ, (3.10)

where

ũ = Tu =
[
rPWM,R + rPWM,L

rPWM,R − rPWM,L

]
, (3.11)

i.e. the transformed inputs are the sum of both inputs for the track speed and their difference for
the yaw rate, which is a self-evident result.

3.3 State of the art

Kim and Tsiotras [59] give an overview of different discontinuous time-invariant and some
time-variant controllers, together with an experimental validation on a unicycle-type robot, which,
however, seems to operate slow enough to enable the neglection of the velocity dynamics seen
from the time-scale of the kinematics, i.e. the velocity dynamics are fast enough compared to the
kinematics, that their dynamic response can be considered instantaneous. This property is called
perfect velocity tracking condition.

Canudas de Wit et al. [21] give a very comprehensive overview over the basic analysis and the
limitations of the unicycle-type kinematics.
Interesting in this article is the following statement (quoted without proof): The error dynamics
of the trajectory tracking problem can be linearised, linear control design is possible. If either v or
ω vanish, controllability is lost.

Another survey paper by Kolmanovsky and McClamroch [60] summarises the various approaches
to the unicycle type control problem in tutorial style, including an extensive list of relevant publi-
cations.

3.3.1 Posture stabilisation by discontinuous control laws

A type of discontinuous control law is sliding mode control: Following a switching law depending
on the state, the control input assumes one of two possible extrema.
Theoretically, when the switching frequency is infinitely high, the state trajectory evolves on
the switching surface or sliding surface, a manifold of reduced dimension in the state space [94], [25].
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Bloch and Drakunov [13] apply sliding mode control to the so-called Brockett-system, or also called
Heisenberg-system, a different representation of the unicycle-type kinematics, written as

ẋ = u
ẏ = v

ż = xv − yu.
(3.12)

This representation can be obtained by a state and input transformation given by Hespanha et al.
in [44].
The article by Bloch and Drakunov [13] is exclusively concerned with the Brockett-system and
some generalisations (i.e. the kinematic model), but does not take the velocity dynamics of a real
mobile robot into account.

Yang and Kim [102] apply a sliding mode control law to the mobile robot tracking problem written
in polar coordinates, taking the velocity dynamics of the robot into account.
However, it appears that there are restrictions on the type of trajectories due to the chosen
representation in polar coordinates.

Generally, sliding mode control in mobile robot motion control has the advantage of robustness
against modeling uncertainties.

A different type of discontinuous control law is employed by Tanner and Kyriakopoulos in [89],
by combining a discontinuous law for the velocity inputs with integrator backstepping, where the
original inputs are introduced as additional states and their derivatives are considered as the new
inputs.

3.3.2 Posture stabilisation and trajectory tracking by time-varying feedback
laws

Time-varying feedback laws are feedback laws which explicitly depend on the time variable.
Samson [81] and Lee et al. [63] apply time-varying controls both to point stabilisation and
trajectory tracking, whereas Divelbiss and Wen [26], Jiang and Nijmeijer [54] and Fliess et al.
[37] exclusively concentrate on trajectory tracking, the latter making use of a property called
differential flatness of the unicycle-type kinematics.

In the articles of Samson [81] and Jiang and Nijmeijer [54] the unicycle-type kinematics are written
in chained form, another canonical form besides the kinematic or cartesian form (2.39) and the
Brockett-form (3.12),

ż1 = v1
ż2 = v2
ż3 = z2v1.

(3.13)

The transformation to chained form involves a state transformation z = Φ(x) and a feedback
v = β(x)u, the latter being similar to feedback linearisation procedures, [50]. A derivation and
illustrating examples are given by Murray et al. in [70].

In a physical interpretation of the new states z1 denotes the distance along the path, z2 denotes
the orientation angle and z3 the lateral distance to the origin, or if the system is written for the
deviations from a given path (a simple translation in the state space), z3 denotes the lateral distance
to the path.
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If the input v1 (the track speed) is considered as a function of time, the problem is reduced to
finding stabilising controls for the remaining linear time-variant system, which naturally results in
time-varying controls.
On top of that, Samson [81] and Jiang and Nijmeijer [54] derive time-varying controls capable of
point stabilisation.

All beforementioned publications concentrate on the nonholonomic kinematics, some of them
including systems with a higher number of degrees of freedom, which describe the motion of a car
pulling one or more trailers. However, they do not take the velocity dynamics of a nonholonomic
vehicle into account, although Jiang and Nijmeijer [54] state that their algorithm could be
extendend to such systems.

A somewhat different concept is presented by Oriolo et al. [75]. The beforementioned linear
time-variant system is considered as a piecewise linear time-invariant system and the controller
coefficients are determined by a cyclic learning algorithm.

3.3.3 Posture stabilisation by hybrid control laws and invariant manifold tech-
niques

A hybrid system combines continuous feedback laws with discrete logic. Depending on the state
of the system, different continuous, possibly nonlinear, control laws come into effect.

Hespanha and Morse [45, 44] partition the state space in overlapping regions defined by nonlinear
functions. The general idea is to keep the states x1 and x2 of the Brockett-system (3.12) large
enough to enable the state x3 to converge to zero and subsequently apply a different control law to
let x1 and x2 converge to zero. Otherwise, if x1 and x2 were already very small, it would require a
considerable control effort to influence x3.

Aguiar and Pascoal [1] introduce the notion of Extended Nonholonomic Double Integrator (ENDI)
as opposed to NonHolonomic Integrator (NHI), another synonym for the unicycle-type kinematics,
deriving novel state- and input-transformations following the methodology in Isidori [50]. The
ENDI-system contains a simplified version of the dynamics of a nonholonomic mobile robot.

Invariant manifold techniques represent a similar approach. An invariant manifold is a hypersurface
in the state space with reduced dimension. First, the state of the system is driven onto the invariant
manifold, then the origin of the state space is approached on the manifold.
The chained form system (3.13) is subjected to the linear feedback v1 = −kz1 and v2 = −kz2, k
being a positive constant,

ż1 = −kz1
ż2 = −kz2
ż3 = −kz1z2.

(3.14)

This system can be analytically integrated,

z1(t) = z10e
−kt

z2(t) = z20e
−kt

z3(t) = s(z0) +
1
2
z10z20e

−2kt
(3.15)

with s(z) = z3 − 1
2z1z2, zi0 being the initial conditions.
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The manifold M ∈ R2 is now defined by

M = {z ∈ R3 : s(z) = 0}. (3.16)

If the state trajectory evolves on the manifold M, the origin will be approached exponentially.
The manifold M is invariant for (3.14), because

ṡ = ż3 − 1
2
(z1ż2 + ż1z2) = −kz1z2 +

k

2
(z1z2 + z1z2) = 0. (3.17)

Thus, once the state has reached the invariant manifold, it remains there. To reach the manifold,
the control law is modified,

vi = −kzi + βi(z, s) = −kzi ± µ
s(z)
z2
1 + z2

2

zi, µ > 2k, i = 1, 2. (3.18)

This concept by Tsiotras [93] has the drawback of a singularity in the second part of the control
law.
Only nonholonomic kinematics are taken into account, the velocities are considered as inputs to
the system.
A further development is reported by Luo in [66], using a recursive technique for nonholonomic
systems of higher order (e. g. car-trailer-configurations).

It may seem that the proposed control scheme is time-invariant and continuous, which has been
proven to be impossible. As all states approach zero, however, the control law exhibits a disconti-
nuity; it is not defined at the origin.

3.3.4 Trajectory tracking by feedback linearisation

Static state feedback linearisation is an input and state transformation of the form z = Φ(x) and
v = β(x)u + α(x) such that the relationship between v and z is linear.
Full static state feedback linearisation cannot be achieved for the present type of system, as can be
shown by a theorem by Isidori [50] (here stated in a somewhat simplified form):

Theorem (Solvability of the State Space Exact Linearisation Problem for MIMO-
Systems) The State Space Exact Linearisation Problem is solvable if and only if

1. for each 0 ≤ i ≤ n−2, the distribution Gi = span{adk
fgj : 0 ≤ k ≤ i, 1 ≤ j ≤ m} is involutive;

2. the distribution Gn−1 has dimension n;

where adk
fg(x) = [f , adk−1

f g(x)] and ad0
fg(x) = g(x).

Therefore, in the case (2.39), where f vanishes and n = 3

G0 = span{g1, g2}
G1 = span{g1, g2, [f , g1], [f , g2]} = span{g1, g2,0,0}

G2 = span{g1, g2,0,0,0,0}
(3.19)

The first condition is violated, because a distribution spanned by g1, g2 is not involutive, see section
3.2.2. The second condition is violated, because G2 obviously has only dimension 2.
Note that the very same condition that guarantees the system’s controllability prevents it (among
others) from being feedback linearisable.
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By discarding the orientation angle as output variable and introducing a new state by differentia-
tion, this restriction can be avoided, an approach called dynamic feedback linearisation.

Thorough investigations on the subject of feedback linearisation of nonholonomic systems have
been published by d’Andrea-Novel et al. in [23] and previous work, Park et al. in [77] and by De
Luca, Oriolo et al. in [24, 74, 22].
The application of the algorithm in [74] is as follows: The output vector is chosen to be z = [x y]T,
i.e. the orientation angle is omitted. Then, the order of the system is deliberately increased by
differentiating once and considering the input v as a new state, a procedure similar to integrator
backstepping mentioned in Sec. 3.3.1. The desired controllable linear system, where x and y are
fully decoupled, is

z̈ = v, (3.20)

or alternatively written as linear second order state space system[
ẋ
ẍ

]
=
[

0 1
0 0

] [
x
ẋ

]
+
[

0
1

]
v1, (3.21)

and analogously for y, introducing a modified input v, which is given by

v =
[

cos θ −v sin θ
sin θ v cos θ

]
︸ ︷︷ ︸

T (θ,v)

[
v̇
ω

]
. (3.22)

For the modified input v a linear control law is designed applying standard state-feedback design
procedures to the linear controllable single-input-single-output systems (3.21). To obtain the actual
control inputs v and ω, the transformation matrix T (θ, v) is inverted, and v̇ is integrated. To
preserve full rank of T (θ, v) the velocity input v must not become zero, a restriction common to
most trajectory tracking schemes.
Again, the velocity dynamics are not considered.

3.3.5 Trajectory tracking via a nonlinear control law for the error dynamics

Based on a representation of the posture error dynamics in a local (fixed to the robot) frame, a
simple nonlinear control scheme was first developed by Kanayama et al. in [57].
The posture errors in local coordinates are given by⎡

⎣ e1e2
e3

⎤
⎦ =

⎡
⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤
⎦
⎡
⎣xr − x
yr − y
θr − θ

⎤
⎦ , (3.23)

where the index r denotes the respective reference quantities. The derivatives of the errors in the
local frame are then given by

ė =

⎡
⎣ωe2 − v + vr cos e3

−ωe1 + vr sin e3
ωr − ω

⎤
⎦ . (3.24)

Kanayama et al. [57] give a smooth velocity input that lets the posture error e converge to zero,
i.e. enables trajectory tracking,
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[
v
ω

]
=
[

vr cos e3 + k1e1
ωr + k2vre2 + k3vr sin e3

]
. (3.25)

Convergence and stability is guaranteed using Lyapunov-analysis, as long as vr, ωr �= 0.
Fierro and Lewis extend Kanayamas result by including the velocity dynamics through integrator
backstepping in [36], Hu and Yang in [46] include uncertain dynamics and Jiang and Nijmeijer
apply integrator backstepping to a slightly different control law in [53].

3.3.6 Path tracking

Only very few publications deal with pure path tracking, among them are Wu et al. [101], employing
integrator backstepping to a representation of the nonholonomic kinematics in polar coordinates,
Breivik and Fossen [18] and Egerstedt et al. [28].

3.4 Introduction to nonlinear predictive control

In nonlinear predictive control a sequence of optimal future control inputs is iteratively calculated
during every sampling interval using a suitable numerical optimisation algorithm and working with
some discrete dynamic model of the plant. A scalar cost function weighing predicted future control
errors against future control inputs up to a so-called prediction horizon is minimised during every
sampling interval. The principle of nonlinear predictive control is adapted from Norgaard [71],
where a similar procedure is applied to single-input-single-output systems, which are dynamically
modeled by recurrent multilayer perceptron networks.

In this work, predictive control is used in conjunction with linear state feedback control, rep-
resenting a form of cascaded control scheme, see Fig. 3.1. Minimisation is performed using a
Gauss-Newton algorithm. The velocities (i.e. track speed v and yaw rate ω) are controlled by a
linear state feedback control law, representing the cascade’s inner loop, whereas the posture x,
y and ϕ is controlled by predictive control in the outer loop, where the prediction makes use of
a linear closed-loop representation of the inner loop. The choice of a cascaded control scheme
enables the direct incorporation of velocity feedback, whereas a predictive control scheme for the
entire system would only use the measured posture for feedback.

The reference velocities of the inner loop serve as the control inputs in the outer loop, i.e. the
predictive controller calculates a sequence of reference velocities to minimise the predicted future
deviation from the pre-planned trajectory under consideration of the closed-loop dynamics of the
velocity control loop. This implies that future reference postures up to the prediction horizon
must be known.

Since the optimisation is performed during every sampling interval, only the first values of the
calculated sequence of reference velocities are ever actually applied to the system. The velocity
control law is then used to calculate the corresponding PWM-input to the DC-motors.

The algorithm is augmented by integration of the position errors in the outer loop and an
additional measure for the compensation of lateral position errors, which enables posture stabil-
isation on top of trajectory tracking. Moreover, a possible side-slip angle is explicitly accounted for.

The application of nonlinear predictive control to a nonholonomic control problem constitutes a
radically different way to circumvent the beforementioned control restrictions, since it does not
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include any explicit control law. The controllability of the system, however, guarantees a unique
solution to the optimisation procedure.

The explicit incorporation of the side-slip angle in the control algorithm is a novelty and as yet no
similar approach to the problem of lateral wheel slip seems to exist, at least not throughout the
accessible literature on mobile robot motion control.

Closed inner loop
Controller

Predictive
control

Linear state
feedback
control

xref vref u v x
v̇ = Av + Bu

ẋ = v cos(ϕ + α)
ẏ = v sin(ϕ + α)

ϕ̇ = ω

Figure 3.1: Cascaded control scheme.

A preliminary version of the algorithm presented in this chapter is also documented in a conference
contribution to the 2005 International Conference on Informatics in Control, Automation and
Robotics [82] and in the current form in a journal article in Robotics and Autonomous Systems
[52].
The results presented in a conference contribution to the 2005 16th IFAC world congress [85]
concerning neural network predictive control of a mobile robot are omitted in this work.

3.5 Linear control of the inner loop

3.5.1 Discretisation of the linear velocity dynamics

First, the continuous-time state space representation of the robot’s dynamics is discretised for the
sampling time of the control algorithm TC = 0.02s assuming that a zero-order hold acts at the
input. Theoretical background is presented e.g. by Ogata in [73].
The decoupled system (3.9) is then written as

vK+1 =
[
a1 0
0 a2

]
︸ ︷︷ ︸

A

vK +
[
b1 0
0 b2

]
︸ ︷︷ ︸

B̃

TuK︸ ︷︷ ︸
ũK

, (3.26)

where a1, a2, b1, b2 are real-valued constants and K denotes the integer sampling instant.

3.5.2 Linear control law

A linear state feedback control law as shown in Fig. 3.2, of the form

ũ1,K = kw1vref,K − k1vK

ũ2,K = kw2ωref,K − k2ωK ,
(3.27)
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where the index ref denotes the reference quantities, is found by pole assignment and adjustment
of the stationary gain. Inserting (3.27) into (3.26) yields

vK+1 = (a1 − b1k1)︸ ︷︷ ︸
p1

vK + b1kw1︸ ︷︷ ︸
1−p1

vref,K

ωK+1 = (a2 − b2k2)︸ ︷︷ ︸
p2

ωK + b2kw2︸ ︷︷ ︸
1−p2

ωref,K .
(3.28)

The feedback gains k1 and k2 are chosen such that a1 − b1k1 and a2 − b2k2 are equal to the desired
poles p1 and p2, respectively. The pre-gains are calculated according to kw1 = (1 − p1)/b1 and
kw2 = (1 − p2)/b2, thereby the stationary gain of the closed-loop system is equal to one.
Finally, from ũ the original inputs u are recovered according to u = T−1ũ, thus the feedback
matrix

K = T−1

[
k1 0
0 k2

]
∈ R2×2 (3.29)

and the pre-gain matrix

Kw = T−1

[
kw1 0
0 kw2

]
∈ R2×2 (3.30)

are obtained to form the control law

uK = Kw

[
vref,K
ωref,K

]
︸ ︷︷ ︸

vref,K

−KvK . (3.31)

-

v, ωref,K ũ1,2K v, ωK v, ωK−1

a1,2

b1,2

k1,2

kw1,2 q−1

Figure 3.2: Linear control of the inner loop, grey areas symbolise the controller. q−1 denotes a
time-shift.

3.6 Nonlinear predictive control of the outer loop

3.6.1 Discretisation of the nonlinear kinematic model

A simple forward difference approximation (forward Euler scheme) for the first order derivatives is
applied, analogously for y and ϕ,

ẋK =
xK+1 − xK

TC
, (3.32)
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xK+1 = TC vK cos(ϕK + αK) + xK

yK+1 = TC vK sin(ϕK + αK) + yK

ϕK+1 = TC ωK + ϕK .
(3.33)

3.6.2 Cost function

The proposed scalar quadratic cost function contains predicted future position errors P up to the
prediction horizon hp, their cumulative sum Q which corresponds to a discrete integration, and the
control variable increments ∆vref .
In digital control applications it is usually tacitly assumed that the calculation time of the control
algorithm is negligible. Since the presented algorithm, however, must be expected to consume
considerable calculation time, this assumption does not hold. On the contrary, it is assumed
that the calculated control input can only be applied at the next sampling instant, such that the
algorithm can take a full sampling interval to complete the calculations.
Therefore, and because the combination of the dynamics of the inner loop and the kinematics is
of second order, the earliest outputs that can be influenced by the reference velocities calculated
between instant K and instant K + 1 are those at instant K + 3.
The reference velocities up to K + hp − 2 are assumed to be constant. For the initial cycle of the
iteration they are chosen to be equal to those calculated between K − 1 and K. The increment
∆vref therefore denotes the difference of reference velocities between two subsequent cycles of the
iteration. The choice of the reference velocity increment instead of its absolute value aims at
achieving a smooth reference velocity input, i.e. at controlling its bandwidth.
The scalar, positive definite cost function to be minimised reads

V =
1
2
∆vT

refR∆vref +
1

2hp
P TLP P +

1
2
QTT TLQTQ → min

∆vref

. (3.34)

The predicted posture errors from instant K + 3 up to instant K + hp are concatenated in one
vector,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xref,K+3 − x̂K+3
...

xref,K+hp − x̂K+hp

yref,K+3 − ŷK+3
...

yref,K+hp − ŷK+hp

ϕref,K+3 − ϕ̂K+3
...

ϕref,K+hp − ϕ̂K+hp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.35)

The integrated predicted position errors are given by

Q = qK +

⎡
⎢⎢⎢⎢⎣

hp∑
i=1

xref,K+i − x̂K+i

hp∑
i=1

yref,K+i − ŷK+i

⎤
⎥⎥⎥⎥⎦ , (3.36)

where
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qK = qK−1 +
[
xref,K − xK

yref,K − yK

]
. (3.37)

The true position errors are integrated in q, whereas on top of that during every sampling interval
the predicted control errors are integrated in Q but limited to a certain interval to avoid unwanted
windup.
The transformation matrix

T =
[

cosϕref,K sinϕref,K

− sinϕref,K cosϕref,K

]
(3.38)

transforms the integrated predicted position errors into local coordinates, such that they can be
individually weighted.
The weight matrices LP ∈ R3(hp−2)×3(hp−2), LQ ∈ R2×2 and R ∈ R2×2 determine the trade-off
between future control errors, control error integrals and the bandwidth of the reference velocity
inputs.

3.6.3 Prediction

The velocities are predicted using the closed loop dynamic state space representation of the inner
loop,

vK+1 = (A − BK)︸ ︷︷ ︸
Â

vK + BKw︸ ︷︷ ︸
B̂

vref,K , (3.39)

where both the closed-loop system matrix Â and the closed-loop input matrix B̂ have diagonal
structure, i.e. the states are fully decoupled.
Estimates of the future velocities are recursively calculated up to instant K+hp−1. The reference
velocities vref,K are those calculated between K − 1 and K, whereas vref,K+1 through vref,K+hp−2

are updated after every cycle of the iterative optimisation procedure.
The positions are predicted by using (3.33) under the simple assumption that the side-slip angle α
remains constant up to the prediction horizon.

3.6.4 Incorporation of the side-slip angle

A curved path requires centripetal acceleration, which can only be provided by a lateral force
transmitted by the wheels. Due to the wheels’ friction characteristic, a lateral force is a direct
consequence of a certain side-slip velocity. Thus a certain side-slip angle is inevitable while moving
along a curve. It is therefore impossible to keep the robot’s orientation tangential to the curve and
at the same time keep its center of gravity on the curved path. The reference orientation angle must
be modified by subtracting a large fraction rα of the current side-slip angle αK from the reference
path angle θref,K ,

ϕref,K = θref,K − αKrα, rα < 1. (3.40)

This can be interpreted as the two-wheeled equivalent of power-drifting of four-wheeled vehicles.
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3.6.5 Compensation of lateral position errors

To enable compensation of a lateral position error, the attitude angle is further modified. The
reference attitude is rotated by a small angle ψ towards the reference position, see Fig. 3.3. Oth-
erwise a lateral offset from the reference position represents a local minimum of the cost function
(3.34). To reduce the position error, a temporary increase in attitude error would be necessary,
which would in turn increase the value of the cost function.
The final reference attitude is modified according to

ϕref,K + ψ sign(pn,K) sign(vK) exp(−a|vK |), a > 0, (3.41)

where

pn,K = − sin ϕ̃ref,K + cos ϕ̃ref,K (3.42)

denotes the lateral position error. The sign of vK adjusts the direction of the adaptation according
to the direction of motion and the exponential function reduces the effect at higher track speeds.

θref

xref , yref

pn

pt

x, y

ψ

Figure 3.3: Modification of the reference attitude to enable compensation of lateral position errors.

3.6.6 Minimisation

The posture errors P are approximated by a first order Taylor series expansion,

P
.= P 0 +

∂P

∂vref
∆vref = P 0 − ∂X

∂vref
∆vref := P 0 − DP∆vref (3.43)

The matrix DP ∈ R3(hp−2)×2 is given by

DP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂xK+2+i

∂vref,K+j

∂vref,K+j

∂∆vref︸ ︷︷ ︸
1

∂xK+2+i

∂ωref,K+j

∂ωref,K+j

∂∆ωref︸ ︷︷ ︸
1

∂yK+2+i

∂vref,K+j

∂vref,K+j

∂∆vref︸ ︷︷ ︸
1

∂yK+2+i

∂ωref,K+j

∂ωref,K+j

∂∆ωref︸ ︷︷ ︸
1

∂ϕK+2+i

∂vref,K+j

∂vref,K+j

∂∆vref︸ ︷︷ ︸
1

∂ϕK+2+i

∂ωref,K+j

∂ωref,K+j

∂∆ωref︸ ︷︷ ︸
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hp−2∑
j=1

∂xK+2+i

∂vref,K+j

hp−2∑
j=1

∂xK+2+i

∂ωref,K+j

hp−2∑
j=1

∂yK+2+i

∂vref,K+j

hp−2∑
j=1

∂yK+2+i

∂ωref,K+j

hp−2∑
j=1

∂ϕK+2+i

∂vref,K+j

hp−2∑
j=1

∂ϕK+2+i

∂ωref,K+j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.44)

with i, j ∈ [1;hp − 2] and 1 ∈ Rhp−2×1.
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The position error integrals Q are also linearised with respect to the reference velocities, much in
the same way as the posture errors,

Q
.= Q0 +

∂Q

∂vref
∆vref := Q0 − DQ∆vref , (3.45)

and since Q contains the sum of the elements of P , DQ ∈ R2×2 is given by

DQ =

⎡
⎢⎢⎢⎢⎢⎣

hp−2∑
j=1

hp−2∑
i=1

∂xK+2+i

∂vref,K+j

hp−2∑
j=1

hp−2∑
i=1

∂xK+2+i

∂ωref,K+j

hp−2∑
j=1

hp−2∑
i=1

∂yK+2+i

∂vref,K+j

hp−2∑
j=1

hp−2∑
i=1

∂yK+2+i

∂ωref,K+j

⎤
⎥⎥⎥⎥⎥⎦ (3.46)

The derivatives of the positions with respect to the reference velocities are calculated recursively,
here exemplarily conducted for x and vref . From (3.33)

xK+2+i = TCvK+1+i cos(ϕK+1+i + αK) + xK+1+i (3.47)

is found and from (3.39)

vK+1+i = Â11vK+i + B̂11vrefK+i. (3.48)

Three different cases have to be distinguished:

1. If i = j, i.e. the direct influence of the reference velocity vref on the coordinate x two sampling
instants later is calculated, the derivative is directly given by

∂xK+2+i

∂vrefK+j
=
∂xK+2+i

∂vK+1+i

∂vK+1+i

∂vrefK+j
= TC cos(ϕK+1+i + αK)B̂11. (3.49)

2. If i > j, i.e. the indirect influence of the reference velocity on the coordinate more than two
sampling instants later is sought, the derivative includes previously calculated derivatives,

∂xK+2+i

∂vrefK+j
=
∂xK+2+i

∂vK+1+i

∂vK+1+i

∂vrefK+j
+
∂xK+2+i

∂ϕK+1+i

∂ϕK+1+i

∂vrefK+j︸ ︷︷ ︸
prev.

+
∂xK+2+i

∂xK+1+i

∂xK+1+i

∂vrefK+j︸ ︷︷ ︸
prev.

=

= TC cos(ϕK+1+i + αK)B̂11Â
i−j
11 − vK+1+iTC sin(ϕK+1+i + αK)

∂ϕK+1+i

∂vrefK+j︸ ︷︷ ︸
prev.

+1
∂xK+1+i

∂vrefK+j︸ ︷︷ ︸
prev.

(3.50)

3. If i < j obviously all derivatives are equal to zero.

Inserting (3.43) and (3.45) into (3.34) yields

V (∆vref) =
1
2
∆vT

refR∆vref +
1

2hp
(P 0 − DP ∆vref)TLP (P 0 − DP ∆vref)+

+
1
2
(Q0 − DQ∆vref)TT TLQT (Q0 − DQ∆vref).

(3.51)

Differentiation of (3.51) with respect to ∆vref , setting the derivative equal to zero and some algebraic
manipulations yield the linear system of equations with dimension two
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(
R +

1
hp

D
(ν)T
P LP D

(ν)
P + D

(ν)T
Q T TLQTD

(ν)
Q

)
∆v

(ν)
ref = − 1

hp
D

(ν)T
P LP P

(ν)
0 − D

(ν)T
Q T TLQTQ

(ν)
0

(3.52)
written with index ν for the ν-th cycle of the iteration, which can easily be solved for ∆v

(ν)
ref .

The reference velocities are updated according to

v
(ν+1)
ref︸ ︷︷ ︸

[2(hp−1)×1]

= v
(ν)
ref︸︷︷︸

[2(hp−1)×1]

+

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
[2(hp−1)×2]

∆v
(ν)
ref︸ ︷︷ ︸

[2×1]

(3.53)

where the initial estimate v
(0)
ref is given by the reference velocities of the previous sampling instant,

as mentioned before. Then, the updated prediction of the position errors P
(ν+1)
0 , their cumulative

sum Q
(ν+1)
0 and the matrices of derivatives D

(ν+1)
P,Q at the new predicted positions are calculated.

After a specified number of iterations, the algorithm terminates. Only a few cycles are sufficient to
achieve convergence.
The design parameters are:

• The (diagonal) weight matrices LP,Q and R: Determine the trade-off between accuracy and
bandwidth of the system.

• Prediction horizon hp: Chosen as small as possible to save calculation time but large enough
to ensure smooth and stable tracking.

• Sampling time TC: Mainly depending on the hardware. Criteria are time constants of the
robot’s dynamics and its computational abilities.

• Relaxation parameter rα: Determines to what extent a possible side-slip angle is considered.
Chosen as close to one as possible, but small enough to avoid unwanted oversteering.

• Adaptation angle ψ: Chosen large enough to enable compensation of lateral position errors,
but as small as possible.

• Number of iterations performed: Large enough to achieve convergence, but as small as possible
to save calculation time.

3.6.7 Calculation of the control inputs

Finally, the PWM-control inputs to the DC-motors are calculated using the control law (3.31) at
instant K + 1. Therefore, the optimised reference velocities vref,K+1 and the predicted velocities
vK+1 are used in

uK+1 = Kwvref,K+1 − KvK+1. (3.54)

At instant K + 1 the control inputs uK+1 are applied to the DC-motors via the PWM-module of
the microcontroller and held constant for one sampling interval.
To compensate the discrepancy between the nonlinear characteristic and the linear approximation
as shown in Fig. 2.13, at low PWM-values, which can be described as a dead-zone, any control
input with an absolute value below 0.04 but unequal to zero is replaced by 0.04 sign rPWM.



Chapter 4

Navigation

4.1 Introduction

In planar mobile robot motion control navigation is defined as the estimation of the current posture
relative to some world reference frame. According to the type of employed sensors, navigation
can be classified into proprioceptive navigation, also called dead reckoning, and exteroceptive
navigation, as defined by Fabrizi et al. in [32]. Usually it is necessary to combine sensor data from
different types of sensors to obtain reliable posture information, therefore navigation is often called
a sensor fusion problem.

Proprioceptive navigation obtains a posture estimate through continuous update according to a
kinematic model of the robot. Examples for proprioceptive sensors are acceleration sensors or wheel
angular velocity sensors. If the continuity of the sensor information is compromised, the posture
estimation fails and cannot be recovered. The posture estimate contains the entire time-history of
measurement errors, and is therefore invariably subject to unbounded accumulation, i.e. eventually
the vehicle will entirely lose track of its position.

Proprioceptive navigation is further subdivided: Navigation relying on the measurement of wheel
revolutions is called odometry whereas navigation based on the measurement of accelerations and
angular velocities relative to the world reference frame is called inertial navigation.

Exteroceptive navigation relies on instantaneous perception of the surrounding environment, either
by active devices such as GPS satellites and radio beacons, which strictly speaking violates the
conditions for autonomous operation, or passively by vision systems, ultrasonic sensing or laser
scans, combined with some map of the environment. The posture error is only compromised by
a bounded uncertainty as imposed by the sensor’s mode of operation and the uncertainty of the
map, but does not accumulate.

Even though their posture estimate is eventually subject to unbounded error, it is still desirable
to improve proprioceptive navigation systems, since they increase the allowable travel distance
between absolute position updates, as stated by Borenstein and Feng in [15].

4.2 State of the art

The standard method for sensor fusion is the extended Kalman filter (EKF), which goes back to a
famous article by Kalman in 1960, [55]. An EKF provides an optimal estimate in the sense that

36
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the statistical variance of the estimated states is minimised. In most publications concerned with
mobile robot navigation, the EKF is employed.

Fuke and Krotkov use an EKF for sensor fusion in [41] for three-dimensional navigation of a
lunar rover travelling over uneven terrain. Odometric data from wheel angular velocity sensors
and inertial data from acceleration sensors and gyroscopic sensors is fused. Von der Hardt et al.
combine odometry, compass and gyroscopic sensors via EKF in [97], introducing a method for the
compensation of magnetic field influences on the compass.

A number of publications are concerned with a combination of proprioceptive and exteroceptive
navigation. Roumeliotis and Bekey [80] use an EKF to combine dead reckoning with sparse
exteroceptive data from a sensor measuring the relative position of the sun in the navigation
concept of an experimental Mars rover. Fabrizi et al. [33] feed inertial sensor data and ultrasonic
measurement to an EKF.

In [32] Fabrizi et al. enhance the uncertainty modeling of an EKF, which is usually done by
a constant state covariance matrix, by variable state covariances, depending on the linear and
angular velocities and employing fuzzy rules.

None of these publications, however, addresses a fundamental problem in state estimation via
EKF: An EKF aims at the reduction of the statistical variance of the estimated states, but it is
implicitly assumed that the measurements are free of bias. Inertial sensors, however, especially
acceleration sensors, are strongly affected by bias errors, which can also drift over time or depend
on temperature. Moreover, since proprioceptive navigation relies on a kinematic model, an error is
possibly introduced by inaccurate geometric parameters. According to a definition by Borenstein
and Feng in [16], both types of errors belong to the class of systematic errors.

Different approaches have been reported to deal with the problem of systematic measurement
errors. Solda et al. [86] combine odometric and gyroscopic data, where the gyroscope’s bias is
continuously estimated, thus increasing accuracy. Barshan and Durrant-Whyte [10] develop error
models, which are generated offline, and incorporated in a three-dimensional EKF for inertial
navigation. Borenstein and Feng [16] develop a statistical method to calibrate wheel diameter and
wheelbase, which are vital to odometric navigation.

Non-systematic errors are introduced into odometry by discontinuous ground contact or wheel
slip. Borenstein and Feng [15] therefore combine odometric and gyroscopic data in a different way,
called gyrodometry: Most of the time, odometry is used exclusively, while gyro data is substituted
only during the brief instances during which gyro and odometry data differ substantially. Mazl and
Preucil [67] present a yet more comprehensive concept for train localisation, where GPS, inertial
data and odometric data is used for mutual calibration and data validation. They introduce
the term rule-based substitution, which also describes the concept by Borenstein and Feng very well.

A very comprehensive overview of sensors and methods for mobile robot navigation by Borenstein
et al. is found in [14].
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4.3 Available sensors

At the current stage of development, the robot is equipped with two single-chip two-axis acceleration
sensors measuring tangential and lateral acceleration, a single-chip gyro sensor and incremental
shaft encoders for each side, see Fig. 4.1. Thus navigation is limited to purely proprioceptive
navigation.

Acc.1

Acc.2

Enc.L

Enc.R

Gyro

Figure 4.1: Tinyphoon’s on-board sensors.

The sensors’ characteristics such as noise level and measurement range are compiled in Appendix
A.

4.3.1 Calibration of the accelerometers

Under the assumption of a linear sensor characteristic, calibration is performed by determining bias
b and sensitivity k using the gravitational acceleration as reference quantity. The sensor output
is recorded while the robot is put in five different positions, once on each side and upright. Then
the mean value is calculated for each of the five sequences. To account for possible misalignment
of the sensor chip and possible crosstalk of the two perpendicular measurement channels on each
chip, also a cross-sensitivity is modeled.
A simple linear sensor model is given by

yi = bi + ki1x1 + ki2x2, (4.1)

where y denotes the sensor output and x denotes the true quantity to be measured. i ∈ [1; 2]
denotes the considered channel.
Collecting the output of the two channels for the five reference measurements in the vectors y1,y2 ∈
R5×1 yields the over-determined system of equations with full rank three

yi =

⎡
⎢⎢⎢⎢⎣

1 9.81 0
1 0 9.81
1 −9.81 0
1 0 −9.81
1 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

⎡
⎣ bi
ki1

ki2

⎤
⎦

︸ ︷︷ ︸
pi

(4.2)
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whose least-squares solution is given by

pi = (XTX)−1XTyi. (4.3)

To validate the model assumptions, the magnitude of the residuals e is checked,

ei = yi − Xpi. (4.4)

Finally, the true quantities xi are given by[
x1

x2

]
=
[
k11 k12

k21 k22

]−1 [
y1 − b1
y2 − b2

]
, (4.5)

as linear functions of the measurement outputs yi. Full rank of the system matrix is practically
guaranteed since the channels are orthogonal and the crosstalk is within reasonable bounds.

4.3.2 Calibration of the gyro-sensor

Again, a linear characteristic is assumed, the bias is determined as the mean value of the recorded
sensor signal while the robot is not moving. The sensitivity is found by recording the sensor signal
while rotating the robot on a laboratory servo device with adjustable angular velocity. Special
attention has to be directed towards the alignment of the robot during this calibration procedure:
a misalignment of the yaw-axis and the rotation axis of the servo-device would falsify the sensitivity.

4.3.3 Calibration of the encoders

The encoders actually measure the rotation angle of the wheels. Velocity information is only
obtained by numerical differentiation, i.e. by counting the number of steps during one sampling
interval. Therefore, they are definitely bias-free. Their sensitivity k in counted steps per rads−1 is
determined by the number of steps NEnc during one motor revolution, i.e. the encoder resolution,
the transmission ratio n between motor and wheel and the sampling time TN, and is given by

k =
NEnc

2π
nTN. (4.6)

4.4 Introduction to the developed algorithm

Inspired by Borenstein and Feng’s paper about gyrodometry, [15], the general concept of the
developed navigation algorithm is to substitute data from inertial sensors for odometric data only
during periods where odometry is likely to be unreliable, i.e. when tangential slip or side-slip occur.

The primary task is therefore to detect these situations. As functions of appropriate criteria,
mixing ratios are calculated, by which a combination ranging from purely inertial estimation to
purely odometric estimation is defined. Thereby the advantages of both types of sensors are
exploited: Inertial measurement is not affected by wheel slippage, odometric measurement is not
affected by bias, when properly calibrated.

The secondary task is the quantitatively reliable estimation of the track speed, the yaw rate, the
side-slip angle and the posture consisting of the cartesian coordinates and the orientation relative
to some inertial coordinate system to be fed to the predictive control algorithm.
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As a by-product of slip detection, slip control becomes possible. Whenever excessive tangen-
tial slip or side-slip is detected, the pre-planned trajectory is transiently altered to reduce
track speed and accelerations, much in the way as commonly found in modern automotive ap-
plications under notions such as electronic stability program, anti-lock brake or traction slip control.

The most important consequence of slip control is that it also helps increase the accuracy of
navigation, because it narrows the periods where inertial navigation must be substituted for
odometric navigation.

The algorithm presented in this chapter is also documented in a conference contribution to the 2006
IEEE International Conference on Robotics, Automation and Mechatronics [83] and in a journal
article in Robotics and Autonomous Systems [52].

4.5 State estimation

4.5.1 Inertial navigation

Inertial navigation processes the data from the five inertial sensor signals at TN = 0.002s, the
sampling time of the navigation algorithm. The corresponding sampling instants are indicated
by k. The sampling time of the control algorithm is TC = 0.02s and the corresponding sampling
instants are indicated by K.
The redundancy of the two respective acceleration measurements is used to reduce the statisti-
cal variance of its noise by calculating their arithmetic mean, thereby effectively yielding three
measurements instead of five.
The statistical variance of a zero-mean signal is defined as the expectation of its square,

σ2 = E{x2}, (4.7)

where E{·} denotes the expectation operator. Under the assumption that the noise variances of the
two signals are equal, i.e. σ2

1 = σ2
2 and that the noise of the two signals is uncorrelated, the noise

variance of the arithmetic mean of the two signals is shown to be half of the noise variance of the
original signals,

σ2 = E

{(
x1 + x2

2

)2
}

=
1
4
E{(x2

1 + 2x1x2 + x2
2)} =

1
4
(E{x2

1} + E{2x1x2}︸ ︷︷ ︸
0

+E{x2
2}) =

1
4
(σ2

1 + σ2
2) =

σ2
1

2
,

(4.8)

where the linearity property of the expectation operator is used.
The robot’s felt shoes are not entirely free of play. Therefore, the acceleration sensors record a
certain additional acceleration due to gravity whenever the robot is tilted forwards or backwards.
Compensation of this static acceleration contribution is accomplished by

at,comp = signat max(|at| − g sin ε, 0), (4.9)

where ε is a tilt angle of in practice at most a few degrees.
In a preliminary version of the navigation algorithm, Extended Kalman filtering was employed for
inertial navigation. A detailed derivation of the EKF is found in Appendix B.
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To be able to incorporate acceleration information, a dynamic model including the absolute accel-
erations of the robot is needed. A continuous-time dynamic model including all measurements but
with the smallest possible number of states is given by⎡

⎢⎢⎢⎢⎣
v̇t
v̇n
ω̇
ȧt

ȧn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
at + vnω
an − vtω

0
0
0

⎤
⎥⎥⎥⎥⎦ , (4.10)

where vt, vn, ω and the absolute accelerations at and an are chosen as the states. The system’s
inputs are not modelled.
Discretisation using a simple forward-Euler-scheme yields the discrete state prediction

x̂k|k−1 =

⎡
⎢⎢⎢⎢⎣
ât,k−1 + v̂n,k−1ω̂k−1

ân,k−1 − v̂t,k−1ω̂k−1

0
0
0

⎤
⎥⎥⎥⎥⎦TN +

⎡
⎢⎢⎢⎢⎣
v̂t,k−1

v̂n,k−1

ω̂k−1

ât,k−1

ân,k−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x̂k−1

. (4.11)

The index k|k−1 can be spelled out as prediction of the states at instant k, based on data of instant
k − 1.
The measurement vector is

yk =

⎡
⎣ ωk

(at1,k + at2,k)/2
(an1,k + an2,k)/2

⎤
⎦ . (4.12)

The prediction of the measurements at instant k from the state estimate at instant k − 1 is given
as

ŷk|k−1 =

⎡
⎣ ω̂k|k−1

ât,k|k−1

ân,k|k−1

⎤
⎦ . (4.13)

The Jacobian of the nonlinear discrete state space representation (4.11) is given by

Ak−1 =

⎡
⎢⎢⎢⎢⎣

1 ω̂k−1TN v̂n,k−1TN TN 0
−ω̂k−1TN 1 −v̂t,k−1TN 0 TN

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ . (4.14)

The measurement prediction (4.13) is linear in the states and its Jacobian with respect to the states
is therefore given by the constant matrix

C =

⎡
⎣ 0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

⎤
⎦ . (4.15)

The covariance of the prediction x̂k|k−1 is given by

P k|k−1 = Ak−1P k−1A
T
k−1 + Q, (4.16)
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where Q ∈ R5×5 denotes the constant diagonal covariance matrix of the state uncertainty, whose
entries are tuned to be as small as possible but large enough to ensure convergence.
The Kalman gain matrix Kk ∈ R5×3 is obtained by minimisation of the trace of the state covariance
matrix P k ∈ R5×5,

Kk = P k|k−1C
T(CP k|k−1C

T + R)−1, (4.17)

where R ∈ R3×3 is the constant covariance of the sensor noise.
Using the Kalman gain matrix Kk and the difference between predicted and actual measurement,
the states are updated to obtain the final state estimate,

xk = xk|k−1 + Kk(yk − ŷk|k−1). (4.18)

As a last step, the covariance of the updated state estimate

P k = (I − KkC)P k|k−1(I − KkC)T + KkRKT
k (4.19)

is calculated to be used in the next sampling instant.

This concept works well, a closer investigation, however, shows that the statistical variance of
the estimate of the velocity components grows roughly linearly. This behaviour corresponds to a
discrete integration where the integrand is affected by noise, according to a Gauss-Markov-sequence.
Moreover, the entries of the Kalman gain matrix corresponding to the velocity components remain
very close to zero at all times. Therefore, virtually no update takes place. The only information
about the velocity components stems from the prediction step. Again, this corresponds to a pure
integration.
By evaluating the mn× n-observability matrix, whose rank must be equal to the number of states
n = 5,

Ok =

⎡
⎢⎢⎣

C
CAk

...
CAn−1

k

⎤
⎥⎥⎦ (4.20)

a double rank deficiency is observed, which is independent of the state. This is entailed by the
structure of the system Jacobian Ak and the measurement matrix C. This circumstance is common
to all systems containing states which can only be obtained by integration.
Therefore, the application of the EKF does not provide any advantages compared to a simple
discrete integration, given by

v̂tk = v̂tk−1 + TN

(
(at1k−1 + at2k−1)/2 + v̂nk−1ωk−1

)
v̂nk = v̂nk−1 + TN

(
(an1k−1 + an2k−1)/2 − v̂tk−1ωk−1

)
ω̂k = ωk.

(4.21)

With regard to the higher complexity and increased calculation time, the EKF can therefore be
replaced by discrete integration.

4.5.2 Odometry

To obtain tangential velocity vt and yaw rate ω from the measured wheel angular velocities, a
simple geometric relation is applied,
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[
vt,k
ωk

]
=
[
r/2 r/2
r/b −r/b

] [
ωR,k

ωL,k

]
(4.22)

The parameters wheel radius r and wheelbase b have to be calibrated, especially the latter, because
the distance between the wheels’ contact points cannot clearly be defined.
Calibration is performed using Borenstein and Feng’s method [16], where a square-shaped path is
executed both clockwise and counterclockwise a number of times. For both, the centroids of the
end-points are calculated, which should of course be identical with the starting point. From the
positions of the centroids relative to the starting point, the ratio between the wheels’ radii on the
one hand and the wheelbase on the other hand can be determined: Miscalibration of the ratio
between the wheels’ radii causes a curved path instead of a straight line leading to an asymmetric
error with respect to the direction of rotation, whereas miscalibration of the wheelbase causes over-
or understeering in corners leading to a symmetric error.
The mean value of the wheels’ radii is determined by executing a straight path and measuring the
distance between starting point and end point.
As long as no non-systematic errors occur, odometric measurement is very accurate over long
distances by means of the described calibration procedure.
Naturally, from odometric measurement no information about the side-slip velocity vn can be
obtained.

4.5.3 Tangential slip detection

A batch of TC/TN = 10 samples of sensor data is processed. The average tangential velocity
difference of the current batch after an initial reset is calculated by discrete integration of the
arithmetic mean of the tangential accelerations (upper left index O stands for odometric estimate)

∆vK =
TN

TC

TC/TN∑
k=1

(
Ovt,k −Ovt,K−1 −

k∑
j=1

(at1,j + at2,j)
TN

2

)
, (4.23)

which effectively means that a trend is detected, but not a stationary slip. In this approximation,
the Coriolis-term is simply omitted. Thereby the criterion can be explicitly calculated instead of
having to be calculated recursively, which saves calculation time.

4.5.4 Mixing

The final estimate of the states is generated by linear mixing between odometric (upper left index
O) and inertial (upper left index I) estimation.
As the criterion for mixing of the tangential velocity vt the tangential slip is used. The mixing
parameter is calculated every K-th instant by

C1,K = p C1,K−1 + (1 − p)
1

1 + exp(k1(|∆vK | − b1))︸ ︷︷ ︸
C̃1,K

, (4.24)

a double sided logsig-function as depicted in Fig. 4.2. Additionally, C1 is dynamically relaxed
following discrete first order delay behavior. This measure proved necessary during practical testing.
It ensures a greater level of continuity of C1 over time, which has a stabilising effect on the overall
performance.
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Figure 4.2: Double-sided logsig-function as switch between odometric (Odo.) and inertial (INS.)
navigation.

The tuning parameters are obtained as follows:

• k1: Steepness, chosen as steep as possible, but as flat as necessary to avoid limit cycle behavior.

• b1: Threshold, chosen as small as possible, but large enough to exclude spurious slip detection
due to acceleration sensor bias.

• p: Discrete first order delay pole, chosen as close to zero, i.e. as fast as possible, but large
enough to avoid limit cycle behavior.

For the lateral velocity vn, the absolute lateral acceleration is used as a criterion, its mixing pa-
rameter computed every k-th instant by

C2,k =
1

1 + exp(k2(|ân,k|k| − b2))
, (4.25)

where the parameters k2 and b2 are obtained much in the same way as for the tangential velocity.
The criterion for yaw-rate mixing is simply the absolute difference between odometric and inertial
measurement, [15]. If the absolute difference becomes exceedingly large, odometric measurement is
assumed to be unreliable, therefore the mixing parameter is obtained every k-th instant by

C3,k =
1

1 + exp(k3(|Oωk −I ωk| − b3))
(4.26)

with parameters k3 and b3 as above.
The linear mixing laws for tangential velocity vt,

v̂t,k = C O
1,K vt,k + (1 − C1,K)Ivt,k (4.27)

and yaw rate ω,

ω̂k = C O
3,k ωk + (1 − C3,k)Iωk, (4.28)

are straightforward. In contrast, the lateral velocity vn is calculated by

v̂n,k = C2,kv̂n,k−1q + (1 − C2,k)Ivn,k, (4.29)
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so that it is taken fully from inertial navigation when the absolute lateral acceleration is beyond
the threshold b2 but geometrically relaxed towards zero when the lateral acceleration is within the
threshold. This is necessary because no information about the lateral velocity can be obtained from
odometry, i.e. Ovn,k does not exist. Without relaxation, however, frequent crossing of the threshold
due to inevitably noisy lateral acceleration would result in a frequent reset of the lateral velocity
to zero.
The factor q ∈ [0; 1] of geometric decay is chosen as small as possible, i.e. as fast as possible, but
large enough to ensure consistent velocity measurement.

4.5.5 Calculation of the side-slip angle

Every K the tangential and normal velocity are transformed into the equivalent description by track
speed and side-slip angle, which serve as the input to the predictive control algorithm described in
Chapter 3.
The signed track speed is given by

v̂K =
√
v̂2
t,K + v̂2

n,Ksign(v̂t,K), (4.30)

and the side-slip angle, defined in the interval [−π
2 ; π

2 ] is calculated from the velocity components
using the inverse tangent,

αK = atan
(
v̂n,K

v̂t,K

)
f(v̂K , ω̂K), (4.31)

where the same validity function is used as in Section 2.4.1.

4.5.6 Integration of the posture

Finally, the positions and orientations are calculated by integration using a simple-forward-Euler-
discretised representation of the kinematics (2.1),

xk+1 = xk + (vt,k cosϕk − vn,k sinϕk)TN

yk+1 = yk + (vt,k sinϕk + vn,k cosϕk)TN

ϕk+1 = ϕk + ωkTN.
(4.32)

4.6 Slip control

The reference input to the predictive control algorithm executed at a sampling frequency of 1/TC

consists of future reference positions and orientations up to a prediction horizon, which are generated
by a trajectory planning algorithm.
In case of excessive slip, slip control can now transiently override the trajectory given by the planning
algorithm by interpolating the original trajectory points with a reduced step size, thus remaining
on the same geometric path, but with a certain delay and reduced velocity and accelerations. When
no tangential or lateral slip occurs, the step size is increased beyond one to re-match the original
trajectory.
The step size δK , also based on the previous value δK−1 to ensure continuity, is computed every
K-th instant by

δK = min(max(δK−1 ·
(
δmin + min

(
C1,K ,

1
1 + exp(k4 (|αK | − b4))

)
·
(
q − δmin

))
, δmin), δmax,K),

(4.33)
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where the maximum step size δmax,K is given by

δmax,K =

⎧⎨
⎩

δmax(> 1) : K − ΠK > c
1 : c > K − ΠK > d

δrem(< 1) : d > K − ΠK .
(4.34)

The complicated structure enables instantaneous reaction to excessive tangential slip or side-slip,
determined by the expression min (C1,K ,

1
1+exp(k4 (|αK |−b4))), which ranges from zero to one. If this

expression assumes a value of one, i.e. neither tangential nor side-slip occur, the step size grows
geometrically according to δK = δK−1(δmin+1(q−δmin)) = δK−1q. If a value of zero is assumed, the
step size drops according to δK = δK−1δmin. The step size is limited to the interval [δmin, δmax,K ].
Thereby the step size drops instantaneously to δmin if required, whereas its growth can be tuned to
be much slower, thus avoiding excessive acceleration which could in turn lead to repeated occurance
of slip.
The position on the preplanned trajectory is then given as

ΠK+1 = ΠK + δK , (4.35)

whereas the nominal integer position on the preplanned trajectory naturally equals K.
A number of parameters determine the behavior:

• δmin < 1: Minimum step size, determines the reduction of velocity in case of slip.

• δmax > 1: Maximum step size, determines how quickly the original trajectory is recovered.

• q: Factor of geometric growth of the step size after reduction, if it is chosen too large, limit
cycle behavior can occur.

• k4, b4: Steepness and threshold for the side-slip angle criterion.

• δrem < 1: Step size to match reference trajectory after overshoot.

• c, d: Upper and lower threshold for re-matching.

With the notation Txref,i :=Txref(floor(ΠK + iδK)) and Txref,i :=Txref(ceil(ΠK + iδK)) the ref-
erence positions and orientations finally fed to the predictive control algorithm are obtained by
interpolation according to

Cxref,K+i =Txref,i + (ΠK + iδK − floor(ΠK + iδK))(Txref,i −Txref,i), (4.36)

where the upper left index T denotes original data from trajectory planning and C denotes data
finally fed to the control algorithm.
Thus the history of the velocities associated with the reference trajectory is expanded or compressed
according to δK with equal area, which means that both absolute velocity and absolute accelerations
are reduced. In Fig. 4.3 the principle is illustrated for a straight line.
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Figure 4.3: Principle of trajectory interpolation.

4.7 Block diagram

In Fig. 4.4 a complete block diagram of the navigation and slip control algorithm is depicted.
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Figure 4.4: Block diagram, light grey: TN, dark grey: TC.



Chapter 5

Motion planning

5.1 Introduction

Mobile robot motion planning is usually formulated as a hierachical sequence of path planning and
trajectory generation, as stated in a comprehensive volume by Latombe [61]. First, a sequence of
waypoints is generated, which are subsequently linked by trajectory or path sections. In the latter
case, a velocity profile must be superimposed to obtain a trajectory suitable to be fed to a control
algorithm.

For motion planning, some internal representation of the environment is required. For autonomous
operation, however, complete a-priori knowledge of the environment cannot be premised. There-
fore, it is necessary to construct a map of the robot’s surroundings within its memory, based on the
perception of the environment. This procedure is called map-building. Among the possible sensing
mechanisms are laser scanning, ultrasonic range measurement and radar, providing so-called range
images. Another possibility for environment perception is stereo vision.

A completely autonomous mobile robot must therefore be capable of map-building, waypoint gen-
eration and trajectory generation.

5.2 State of the art

5.2.1 Waypoint generation

A vast number of publications address waypoint generation. In principle they can be assigned to
the major strands roadmap methods, cell decomposition methods and potential field methods.
Usually complete knowledge of the environment is required, [61].

Roadmap methods use the vertices of a polygonal representation of the environment to construct a
graph. From this graph, the shortest feasible connection to the goal configuration is sought. Wang
et al. e.g. [98] use a genetic algorithm to find a path. Aydin and Temeltas [7] use the well-known
visibility graph method.

Cell decomposition methods partition the environment into polygons that either belong to the free
space or to obstacles. The centroids of neighbouring free segments can then be used as a sequence
of waypoints. Examples for approximate cell decomposition, often called quadtree decomposition,
are reported by Burlet et al. in [20] and Jacobs and Canny in [51].

48
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Potential field methods construct an artificial potential field around the goal, where the goal
constitutes the global minimum. Obstacles are represented by increasing the value of the potential
field. By evaluating the gradient of the potential field, a sequence of waypoints towards the
goal is found. Hussein and Elnagar exploit the properties of Maxwell’s equations in [48] for
three-dimensional potential field planning, Barraquand et al. [9] use numerically constructed
potential fields. A major problem with potential field methods are local minima generated by
unfavourable obstacle configurations.

Other authors provide results for partially known environments. Elnagar and Basu [29] present a
heuristic approach based on the simultaneous maximisation of a safety function incorporating local
environment information and goal attraction. Ersson and Hu [31] use a grid-based representation
of the local environment to determine a waypoint among a number of discrete candidates. Ferguson
and Stentz [35, 87] present a well-known algorithm called D∗, where an initially generated path is
modified during motion whenever new environment information is acquired. Therefore, this ap-
proach is called path replanning. This algorithm also uses a grid-based environment representation.

5.2.2 Path planning

Many authors employing explicit geometric descriptions for their paths rely on the fundamental
results by Dubins [27] and much later by Reeds and Shepp [79], where terminal configurations
are linked by sequences of circular arcs and straight lines, in the latter case including reversals.
Among those researchers are Mirtich and Canny [68], introducing the notion shortest feasible path,
where the nonholonomic constraints of a wheeled mobile robot are captured in a modified metric.
Fraichard, Scheuer and Laugier in [40] and other work modify the original proposal by Reeds and
Shepp to obtain curves with continuous curvature. Laumond et al. use Reeds and Shepp-curves in
[62] to update a previously generated path such that the nonholonomic constraint is respected.

Piazzi, Guarino lo Bianco et al. in [78] and other work and Villagra and Mounier in [95] use
quintic splines to interpolate the trajectory described by cartesian coordinates between initial and
terminal configuration, while optimising the smoothness of the curve, i.e. minimising the curvature
derivative.
Kanayama and Hartman [56] also employ the curvature and the curvature derivative as optimisation
criteria, but their waypoints are connected by cubic spirals.

5.2.3 Trajectory planning

So far, only path planning has been discussed. Fewer authors address the problem of dynamic
trajectory generation.
Fraichard uses a discretised state-time space in [38] to obtain a dynamic trajectory. Fraichard
and Laugier [39] use an approach called path-velocity decomposition to first plan a path and then
overlay it with a velocity profile.
Haddad et al. [43] present an approach where so-called milestone nodes, a synonym to waypoints,
are connected via splines. The trajectory is represented in cartesian coordinates. The geometry
and the velocity profile is iteratively optimised, but with two distinct optimisation steps.
Hussein and Elnagar [47] use analytical calculus of variations to optimise a trajectory represented
by parameterised arc length and orientation angle. In [30] they present an extension to three-
dimensional environments.
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5.2.4 Map-building

A comprehensive survey by Thrun [91] gives an overview over different existing approaches to map-
building. Virtually all robotic mapping algorithms are probabilistic, some employ Kalman filtering
to incorporate newly acquired data into the map.
A great amount of research effort is being directed towards Simultaneous Localisation and Map-
building (SLAM), where the features in the map are used for exteroceptive navigation and the map
is advanced at the same time. Guivant and Nebot [42] and Kelly and Unnikrishnan [58] present
different approaches to SLAM.
Thrun et al. [92] present a probabilistic map-building algorithm based on a detailed description of
the uncertainty of odometric navigation.
Leonard et al. [64] employ Extended Kalman filtering to map-building, where in addition to the
noise covariance of a measurement a validation procedure is developed.
Borges and Aldon [17] present an alternative approach to SLAM without EKF. They also give some
details and references to feature extraction. From a laser scan, a set of line segments is extracted,
supported by feature extraction from an optical image.

5.3 Introduction to the developed algorithms

The developed motion planning concept consists of a fully dynamic trajectory generation algorithm,
a waypoint generator which works with incomplete environment information and a simplified
map-building scheme. Contrary to most existing approaches, the presented trajectory generator is
capable of simultaneous optimisation of geometric and dynamic properties. This is accomplished
by multi-objective numerical optimisation.

The first crucial novelty is the description of the trajectory by tangential velocity and curvature
as functions of time. The second innovation is to linearly superpose basis functions for these
descriptive quantities. Thereby the problem is transferred from analytical calculus of variations
to multi-objective nonlinear constrained optimisation, thus limiting the otherwise infinite function
space to the set of basis functions.

The choice of tangential velocity and curvature as descriptive quantities has proven to be most
feasible, and is easily motivated by comparison with the behaviour of a human driver, who controls
the motion of a vehicle basically by accelerator and brake, corresponding to the tangential velocity,
and the steering wheel, corresponding to the curvature.

A geometric criterion for optimisation is the total path length, the dynamic criteria are the lateral
acceleration, the tangential acceleration derivative, the curvature derivative corresponding to the
steering wheel’s angular velocity and therefore also called steering rate, and the time to reach the
target.

While those criteria are optimised according to some previously defined trade-off, a number of
hard constraints are exactly met. Naturally, the desired position and orientation of the end-point
have to be met. Velocity, acceleration and curvature at the starting point of the trajectory are
prescribed to ensure continuity, velocity and acceleration at the endpoint are prescribed to enable
jerk-free stopping. Moreover, for any configuration between the starting point and the end point
of the trajectory, the minimal obstacle clearance is met.
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The presented trajectory generation algorithm is generically applicable to any nonholonomic vehi-
cle, this includes the classical car-like vehicle and is not limited to the two-wheeled differentially
driven vehicle so far addressed in this work.

The obstacles are represented by polygons, it is assumed that this type of representation can be
derived e.g. from a laser range image. This assumption is supported by the results of Borges and
Aldon [17]. At each sampling instant the currently visible polygons are merged with previously
known environment information, thereby building a map of the environment whilst moving
within it. This corresponds to a simplified deterministic map-building scheme under disregard of
localisation uncertainty and possibly noisy or spurious sensor data. This serves for the validation
of the waypoint generator and the trajectory planner, but is not by itself a focus of research of
this work.

The waypoint generator is closely connected to the chosen environment representation. It relies
primarily on the currently visible obstacles, but also incorporates already available environment
information. Unlike the majority of documented path planning approaches this concept does not
require full knowledge about the environment, but on the other hand does not necessarily provide
geometric optimality. It is believed that this approach is best suited to the practical requirements
of fully autonomous operation, where changing or entirely unknown environments are inevitable.

The algorithms presented in this chapter are also documented in a conference contribution to the
2007 American Control Conference, [84].

5.4 Trajectory generation

5.4.1 Basis functions and descriptive quantities

The basis functions are defined as functions of dimensionless time τ on the interval τ ∈ [0, 1],
evaluated at m evenly spaced nodes. As basis function prototype the logsig-function is chosen,

logsig(kτ + d) :=
1

1 + exp(−kτ − d)
, (5.1)

whose derivative is given by

d
dτ

logsig(kτ + d) = k logsig(kτ + d)
(
1 − logsig(kτ + d)

)
. (5.2)

where k is the steepness and d is a time-shift. The set of basis functions is composed of a number of
evenly spaced prototypes with equal steepness, as well as possibly a linear and a constant function.
The basic descriptive quantities, given by m-vectors (curvature, steering rate, velocity, acceleration
and acceleration change) are computed straightforward by linear superposition according to the
parameters contained in the nv,κ-parameter-vectors pv and pκ,

κ = F T
κ pκ κ̇ = F ′T

κ pκ

1
T

v = F T
v pv

1
T

at = F ′T
v pv

1
T 2

ȧt = F ′′T
v pv

1
T 3
,

(5.3)

introducing the time dimension by dividing by the entire period T of the trajectory in the correct
power. The matrices F v,κ ∈ Rnv,κ×m and F ′

v,κ ∈ Rnv,κ×m, which are computed off-line, contain
the basis functions and their derivatives respectively, numerically evaluated at the m nodes.
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Yaw rate and lateral acceleration are composite quantities, given by

ω = κ◦v, an = ω◦v = κ◦v◦v, (5.4)

where the symbol ◦ denotes the Schur-Hadamard vector product (elementwise multiplication).
The orientation angle (heading) ϕ is calculated by approximate discrete integration over t ∈ [0;T ],
where the discrete integration step width is given by ∆t = T∆τ and ∆τ = 1/(m− 1), according to

ϕT =

[
0, ω1T∆τ, . . . ,

m−1∑
k=1

ωkT∆τ

]
. (5.5)

The cartesian coordinates x and y are calculated by further integrating the well-known nonholo-
nomic kinematics of the rolling wheel,

xT =

[
0, v1 cosϕ1T∆τ, . . . ,

m−1∑
k=1

vk cosϕkT∆τ

]
,

yT =

[
0, v1 sinϕ1T∆τ, . . . ,

m−1∑
k=1

vk sinϕkT∆τ

]
.

(5.6)

5.4.2 Performance functional

For multi-objective optimisation, a positive definite scalar performance functional J is constructed,
containing the integral mean of the squared lateral acceleration, the squared steering rate and
the squared acceleration rate, the squared total time and the absolute path length, weighted by
coefficients α1 through α5, thus effectively combining dynamic and geometric criteria.
The aim is to link the initial and terminal configurations by trajectories as short (absolute path
length) and smooth (steering rate) as possible in the shortest possible time, while keeping the
(mean) lateral acceleration as low as possible. The n = nv +nκ +1 parameters to be optimised are
pT = [pT

v ,p
T
κ , T ]. J is analytically given by

J = α1
1
T

T∫
0

an(t)2dt+ α2
1
T

T∫
0

κ̇(t)2dt+ α3
1
T

T∫
0

ȧt(t)2dt+ α4

T∫
0

|v(t)|dt+ α5T
2. (5.7)

Its discrete approximation in terms of the descriptive quantities (5.3) and (5.4) then reads

J ≈ α1 aT
n an∆τ︸ ︷︷ ︸
∼T−4

+α2 κ̇Tκ̇∆τ︸ ︷︷ ︸
∼T−2

+α3 ȧt
Tȧt∆τ︸ ︷︷ ︸
∼T−6

+α4 vTsign(v)T∆τ︸ ︷︷ ︸
∼T 0

+α5T
2. (5.8)

The dependencies of the respective terms on the parameter T are either parabolic, hyperbolic or
vanish, but all in even powers of T . Therefore, the profile of J with respect to the T -J-plane is
symmetric with respect to the abscissa and has two minima, see Fig. 5.1. For plausibility reasons
a positive T is required, which can be ensured by choosing a positive starting value and carefully
controlling the convergence behaviour of the optimisation.
The gradient of the performance functional J with respect to the optimisation parameters p is
given by

∂J

∂pv

= 4α1(an◦v◦κ)F T
v

∆τ
T

+ 2α3ȧtF
′′T
v

∆τ
T 3

α4sign(v)F T
v ∆τ︸ ︷︷ ︸

[nv×1]

, (5.9)
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Figure 5.1: Profile of the performance functional with respect to the T -J-plane.

∂J

∂pκ

= 2α1(an◦v◦v)F T
κ ∆τ + 2α2κ̇F ′T

κ

∆τ
T︸ ︷︷ ︸

[nκ×1]

, (5.10)

and

∂J

∂T
= −4α1a

T
n an

∆τ
T

− 2α2κ̇
Tκ̇

∆τ
T

− 6α3ȧt
Tȧt

∆τ
T

+ 2α5T︸ ︷︷ ︸
[1×1]

, (5.11)

and combined

∇JT =
∂J

∂p

T

=
[
∂J

∂pv

T ∂J

∂pκ

T ∂J

∂T

T]T
︸ ︷︷ ︸

[1×n]

. (5.12)

5.4.3 Obstacle avoidance

Only those obstacle edges, represented by the coordinates of their delimiting corner points (Sec. 5.5),
that are visible from the starting point of the trajectory, are considered. Furthermore, as a conse-
quence of how the waypoints are selected (Sec. 5.6) it can be assumed, that no obstacles intersect
the direct connection between starting point 0 and target X1, i.e. the target is visible from the
starting point.
To determine obstacle collision, each visible obstacle edge is classified, see Fig. 5.2,

1. Facing 0X1: For each node all four corners of the assumed rectangular vehicle are checked
for their normal distance from the obstacle edge H1H2. To the current obstacle edge, the
minimal distance δmin. and the index imin of the corresponding node is assigned. A corrected
position Xdes. for the node imin is obtained by moving it perpendicularly towards 0X1.

2. Facing away from 0X1: Each connection between two subsequent nodes is checked for inter-
section with H1H2. If there is an intersection, δmin. is determined as the projection of the
vector from the node before the intersection to the obstacle point H1 or H2 next to 0X1 on
the tangential direction of the obstacle. Xdes. is obtained by moving the node imin along the
obstacle edge towards 0X1.
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If the smallest δmin. encountered is negative, i.e. there is a collision with at least one obstacle, the
constraints are activated for the node with index imin, Sec. 5.4.4.

Obst.

Obst.

1) 2)

H1

H1

H2

H2

0
0

X1

X1

Ximin

Ximin

δmin

δmin

Xdes

Xdes

t
t

nn

Figure 5.2: Obstacle avoidance.

5.4.4 Constraints

A number of equality and inequality constraints can be respected by the proposed algorithm:

1. Initial constraints at starting point A to enable jerk-free transition between two trajectory
sections: Velocity and curvature to ensure continuous lateral acceleration, (5.4), and continu-
ous tangential acceleration. Continuous curvature by itself is required so as to prevent sudden
re-alignment of the wheels.

2. Target (B) position, orientation, velocity and acceleration.

3. Inequality constraints: Curvature within bounds given by maximum steering angle. Maximum
velocity and maximum acceleration given by the vehicle’s dynamic specifications.

4. Position constraints for obstacle avoidance.

The collected constraints are given by
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GT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 − vA

at,1 − at,A

κ1 − κA

⎫⎬
⎭ 1)

ϕm − ϕB

xm − xB

ym − yB

vm − vB

at,m − at,B

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2)

κmax − sign(κmax)κlim

vmax − sign(vmax)vlim
at,max − sign(at,max)at,lim

⎫⎬
⎭ 3)

ximin − xdes

yimin − ydes

}
4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (5.13)

where the inequality constraints for the first at most l nodes at which the constraint is exceeded and
position constraints for obstacle avoidance are activated when appropriate, i.e. when an inequality
or obstacle is violated, respectively. Otherwise they are inactive.
The gradients of initial velocity and acceleration are easily obtained as

∂G1

∂p
=
∂v1
∂p

=
[

F v,1
1
T

0

]
(5.14)

and

∂G2

∂p
=
∂at,1

∂p
=
[

F ′
v,1

1
T 2

0

]
, (5.15)

where the derivatives with respect to T , exhibiting negative powers of T , are deliberately replaced
by zero. Otherwise the algorithm would try to fulfil the constraints by increasing T beyond all
bounds, when the reference values (vA, at,A) are equal to zero. This effect, however, collides with
the result of the optimisation and is not desirable.
Also the gradient of the initial curvature is readily calculated as

∂G3

∂p
=
∂κ1

∂p
=

⎡
⎣ 0

F κ,1

0

⎤
⎦ . (5.16)

The gradient of the terminal orientation reads

∂G4

∂p
=
∂ϕm

∂p
=

⎡
⎣ F v,m−1κm−1∆τ

F κ,m−1vm−1T∆τ
0

⎤
⎦ , (5.17)

while the derivation of the gradients of the terminal coordinates is slightly more involved since it
contains a double discrete integration,

∂G5

∂p
=
∂xm

∂p
=

⎡
⎢⎢⎢⎣

F v,m−1 cos(ϕm−1)∆τ −
∂ϕm−1

∂pv

(vm−1◦sin ϕm−1)T∆τ

−∂ϕm−1

∂pκ

(vm−1◦sin ϕm−1)T∆τ

0

⎤
⎥⎥⎥⎦ (5.18)

and
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∂G6

∂p
=
∂ym

∂p
=

⎡
⎢⎢⎢⎣

F v,m−1 sin(ϕm−1)∆τ +
∂ϕm−1

∂pv

(vm−1◦cos ϕm−1)T∆τ

∂ϕm−1

∂pκ

(vm−1◦cos ϕm−1)T∆τ

0

⎤
⎥⎥⎥⎦ , (5.19)

where a vector (in bold) with index i denotes the full vector truncated after element i and a matrix
with index i denotes the full matrix with every row vector truncated after element i.
The derivatives of the orientations are given by the matrices

∂ϕm−1

∂pv

=

[
0, κ1F v,1∆τ, . . . ,

m−2∑
k=1

κkF v,k∆τ

]
︸ ︷︷ ︸

[nv×m−1]

(5.20)

and

∂ϕm−1

∂pκ

=

[
0, v1F κ,1T∆τ, . . . ,

m−2∑
k=1

vkF κ,kT∆τ

]
︸ ︷︷ ︸

[nκ×m−1]

. (5.21)

The terminal velocity and acceleration are treated in the same way as the initial ones,

∂G7

∂p
=
∂vm

∂p
=
[

F v,m
1
T

0

]
(5.22)

and

∂G8

∂p
=
∂at,m

∂p
=
[

F ′
v,m

1
T 2

0

]
. (5.23)

The inequality constraints’ derivatives read

∂G9

∂p
=
∂κmax.

∂p
=

⎡
⎣ 0

F κ,max.

0

⎤
⎦

︸ ︷︷ ︸
[n×l]

, (5.24)

∂G10

∂p
=
∂vmax.

∂p
=

⎡
⎣F v,max.

1
T

0
− 1

T vmax.

⎤
⎦

︸ ︷︷ ︸
[n×l]

(5.25)

and

∂G11

∂p
=
∂at,max.

∂p
=

⎡
⎣F ′

v,max.
1

T 2

0
− 1

T at,max.

⎤
⎦

︸ ︷︷ ︸
[n×l]

. (5.26)

In this case the time-derivatives do not need to be replaced by zero, because the reference values
(vlim. and at,lim.) are obviously non-zero by definition.
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The gradients of the position constraints for obstacle avoidance are calculated analogously to (5.18)
and (5.19).
The full gradient matrix of all active constraints is given by

∇G =
[
∂G1

∂p
, . . . ,

∂Go

∂p

]
︸ ︷︷ ︸

[n×o]

, (5.27)

where o denotes the indices of the active constraints.

5.4.5 Calculation of the parameter update

In Fig. 5.3 the principle is illustrated in two dimensions: In every step ν of the iteration the squared
Euclidean distance between the negative scaled gradient −δ1◦∇J of the performance functional J
and the parameter update ∆p is minimised while simultaneously approaching the subspace defined
by G = 0.
This procedure could be classified as a constrained gradient method with adaptive step width.

J = const.J = const.

G = 0

pmin.

pconstr.

−δ1◦∇J (ν+1)

p(ν+1)

p(ν+2)

∇G(ν+1)

−δ1◦∇J (ν)

∇G(ν)

p(ν)

G(ν)

Figure 5.3: Nonlinear constrained optimisation.

The problem is formulated as

(∆p + δ1◦∇J)T(∆p + δ1◦∇J) → min
∆p

GT + ∇GT∆p =! 0,
(5.28)

where δ1 denotes the n-vector of positive scaling factors.

To ensure that (5.28) is well-posed, the relative condition number of ∇GT∇G is checked (naturally,
this also implies that the number of constraints must not exceed the number of parameters). If it
falls below a threshold rcond,min, a singular value decomposition of ∇G is calculated according to

USV T = ∇GT. (5.29)
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The columns of U corresponding to the singular values σ (ordered by descending magnitude
along the main diagonal of the square part of S) fulfilling σ2/σ2

max. < rcond,min are removed,

thus obtaining a o × õ-matrix Ũ . The o constraint equations are then left-multiplied with Ũ
T
.

Thus the number of equations is reduced to õ equations which are linearly independent. A linear
combination of the constraint equations defined by Ũ results, which means that either a trade-off
between contradictory constraints is formulated, or redundant constraints are merged.

Forming a scalar Lagrange-function L(∆p,λ)

L(∆p,λ) = (∆p + δ1◦∇J)T(∆p + δ1◦∇J) + 2λT(Ũ
T
GT + Ũ

T∇GT∆p) (5.30)

and setting its derivatives with respect to ∆p and λ equal to zero

∂L
∂∆p

= 2∆p + 2δ1◦∇J + 2∇GŨλ = 0

∂L
∂λ

= 2Ũ
T
GT + 2Ũ

T∇GT∆p = 0
(5.31)

yields the full-rank system of equations of dimension n+ õ[
I ∇GŨ

Ũ
T∇GT 0

] [
∆p
λ

]
=
[−δ1◦∇J

−Ũ
T
GT

]
, (5.32)

which is solved for ∆p and λ during every step of the iteration.

The scaling factors δ1 are determined by a trade-off between potential reduction of the perfor-
mance value and Euclidean norm of the parameter update. The approach is similar to Levenberg-
Marquardt, but aims at adapting the step width to enhance convergence behaviour.
The principle is outlined in the following: A local linearisation of a performance functional is given
by

J (ν+1) .= J (ν) + ∇JT∆p = J (ν) − ∇JT∇Jδ1, (5.33)

and the aforementioned trade-off, employing a weighting factor α is formulated by

J (ν+1) 2
+ α∆pT∆p = J (ν+1) 2

+ α∇JT∇Jδ21 → min
δ1

. (5.34)

Inserting (5.33) into (5.34), differentiating with respect to δ1, setting the derivative equal to zero
and solving for δ1 leads to

δ1 =
J (ν)

∇JT∇J + α
. (5.35)

The thereby calculated variation of the step width is superposed on different basic step widths for
the different groups of parameters to form the n-vector δ1

δ1 =
J

‖∇J‖2
2 + α

⎡
⎣ δ1,v1
δ1,κ1
δ1,T

⎤
⎦ . (5.36)

Finally, the parameters are updated using a relaxation factor δ2 for convergence control
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⎡
⎣ pv

pκ

T

⎤
⎦(ν+1)

=

⎡
⎣ pv

pκ

T

⎤
⎦(ν)

+ δ2∆p, (5.37)

and the descriptive quantities (5.3) through (5.6) are re-calculated.

After a specified number of iterations, or when a combined criterion consisting of the Euclidean of
the parameter update and the mean absolute constraint residuum fulfils

‖∆p‖2 +
1
o

o∑
k=1

|Gk| < c, (5.38)

the algorithm terminates.

5.4.6 Tuning parameters

The relevant parameters used to tune the algorithm are

• Number of nodes m: Large enough to satisfy accuracy requirements, but as small as possible
to save calculation time.

• Number of basis functions nv + nκ: Large enough to ensure sufficient flexibility in difficult
environments, but as small as possible to save calculation time.

• Maximum number of active inequality constraints l: Large enough to enforce accurate fulfil-
ment of the inequalities, as small as possible with regard to calculation time, but in any case
small enough to ensure that the total number of constraints does not exceed the number of
parameters.

• Regularisation parameter α, step widths δ1,v, δ1,κ, δ1,T and δ2: Small enough to avoid oscil-
latory behaviour, but as large as possible to achieve fast convergence.

• Number of iterations performed or termination criterion c: Determine trade-off between ac-
curacy and calculation time.

• Initial values for the parameters: Their suitable choice can significantly influence the calcu-
lation time.

• Weighting factors α1 through α5: Determine the shape of the optimised trajectory.

5.4.7 Post-processing for trajectory tracking control

To be fed to a trajectory tracking controller working at a constant sampling time Ts, the resulting
trajectory is resampled. Therefore, the original total time T is slightly modified to obtain an integer
number of sampling intervals,

dτ̃ = Ts/T̃ = 1/round(T/Ts). (5.39)

With the definitions xi := x(floor(∆τ̃
∆τ (i−1))+1) and xi := x(ceil(∆τ̃

∆τ (i−1))+1) a linear interpolation
of the cartesian trajectory coordinates and the orientation is formulated, exemplarily written for
the x-coordinate

x̃i = xi +
(
xi − xi

)(∆τ̃
∆τ

(i− 1) − floor
(∆τ̃

∆τ
(i− 1)

))
. (5.40)
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5.5 Map-building

As stated in the introduction, it is assumed that obstacle edges are represented by straight lines as
a result of some suitable preprocessing of laser or ultrasonic range data, stereovision measurement,
etc. At each sampling instant currently visible obstacle edges Lvis (given by H1 and H2 in order
of ascending angle, i.e. from right to left) are merged with previously available information L, thus
gradually building a 2D-map of the environment.

FOR all Lvis (index i)
flag = 0
FOR all L (index j)

IF flag == 0: Lvis,i overlaps Lj for the first time
IF collinear

IF H2,j ∈ H1H2i

overwrite H2,j with H2,i

flag = 1
index = j

IF H1,j ∈ H1H2i

overwrite H1,j with H1,i

flag = 1
index = j

IF H1H2i ∈ H1H2j

don’t overwrite
flag = 1
index = j

ELSE: Lvis,i has previously been merged
IF collinear

IF H2,index ∈ H1H2j

overwrite H2,index with H2,j

mark j for deletion
IF H1,index ∈ H1H2j

overwrite H1,index with H1,j

mark j for deletion
IF H1H2j ∈ H1H2index

don’t overwrite
mark j for deletion

delete obsolete L’s if there are any
IF flag == 0: collinear but no overlap or entirely new

add Lvis,i to L

To check for collinearity and overlap, the points H1,j and H2,j under consideration are expressed
in local coordinates α and β,

H1,i = H1,2,j + αt + βn ⇒
[
α
β

]
= [ t n ]−1 (H1,i − H1,2,j), (5.41)

where t and n denote the (not normalised) tangential and normal vectors of obstacle edge i.
If β = 0 for both H1,j and H2,j , the two edges are collinear; if e.g. for H1,j α ∈ [0; 1], H1,j ∈ H1H2i

holds, etc.
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5.6 Waypoint generation

As long as no direct line of sight to the target exists, a waypoint is sought based on the concept
of exterior vertices. From the current position, any visible vertex that is not on both sides con-
nected by visible edges is classified either left or right exterior. The exterior vertices are derived
from the currently visible obstacle edges, whereas otherwise the algorithm makes use of the entire
environment map. These vertices are considered as the originator for potential waypoints, where
a waypoint is found by relocating the vertex by a distance of dmin perpendicularly away from the
connection between current position and vertex, see Fig. 5.4.

IF target visible
waypoint = target

ELSE
candidates = all currently visible exterior vertices
FOR all candidates (index i)

IF candidate(i) has been used twice before
delete candidate(i)

flag = 0
WHILE flag<3

FOR all candidates
calculate corresponding waypoint, Fig. 5.4
IF convex or flag == 2

IF flag == 0

check if connection between way-
point and target intersects any
edges from front to back

check normal distance of waypoint to
all edges
check Euclidean distance of waypoint
to all vertices
check visibility of waypoint
IF all checks o.k.

add waypoint to list
calculate criterion (5.42)

IF list empty
increment flag

ELSE
flag = 3: loop terminated

sort list by criterion
waypoint = first point in list
store waypoint to check for multiple occurence

The current position is connected with the target via a waypoint, i.e. with two legs. At first, the
two legs are required to be convex with respect to the corresponding exterior vertex, i.e. the vertex
is located in the interior of the triangle composed of the two legs and the direct connection from
the current position to the target, as shown in Fig. 5.4. If the second leg intersects any known
obstacle edge from front to back (exterior to interior), this vertex is discarded. Intersections from
back to front are not considered, because in this case it must be assumed that there is a previously
unencountered obstacle edge involved. Furthermore, the distance of the candidate waypoint to all
edges and its visibility from the current position is checked.
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If no vertex fulfils the given conditions, the condition regarding the intersection is dropped. If still
no solution can be found, the convexity condition is dropped as well.
If there are multiple solutions, they are ordered according to a criterion containing the deviation
angle from the current orientation, the deviation from the straight line to the target and the total
length of both legs, see Fig. 5.4,

λ1(l1 + l2) + λ2|∆ϕ| + λ3|∆θ| → min, (5.42)

which is tuned by the weighting factors λ1 through λ3.
Any vertex used as originator for a waypoint is stored, such that it can be excluded from future
candidates, if it was already used twice. This measure serves to avoid infinite oscillation between
two apparently feasible waypoints, but enables to round a corner where the same vertex is used
twice consecutively.

∆θ

∆ϕ

Obstacle

dmin
l1

l2

Waypoint

Target

Current po-
sition

Exterior
vertex

Figure 5.4: Calculation of a waypoint from an exterior vertex.

The desired orientation at the waypoint is normally chosen to be equal to the angle of the direct
connection between current position and waypoint, only when a corner is rounded, i.e. the same
vertex is chosen twice consecutively, the orientation constraint is dropped. The terminal velocity
and acceleration are chosen to be zero to enable jerk-free braking. This choice has proven to be
most feasible considering that at the time of waypoint generation no reliable knowledge about the
direction of motion beyond the waypoint is available.
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Results

To demonstrate the performance of the proposed navigation and control algorithm, two different
trajectories to be tracked have been generated:

• A corner with linear acceleration and deceleration and a cosine-shaped curvature profile, thus
producing large side-accelerations.

• A square with sinusoidal velocity and yaw rate profiles, where the robot turns on the spot at
the vertices, demanding high translative accelerations and decelerations.

In Fig. 6.1 for both trajectories the reference and actual sequence of configurations are depicted.
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Figure 6.1: Reference and actual trajectories (obtained by video measurement) for corner (left) and
square (right).
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6.1 Trajectory tracking

The performance of the predictive tracking control algorithm is demonstrated by comparing the
modified reference trajectory Cxref to the measured posture.

In Fig. 6.2 the effect of side-slip in the tracking control algorithm can be observed: the estimated
side-slip angle α is subtracted from the reference path angle, thus improving the compensation of
the lateral position error pn. A transient deviation, however, cannot entirely be eliminated.
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Figure 6.2: Corner-shaped trajectory: Reference posture after slip control Cxref (black) vs. actual
posture (grey) (top) and tangential and lateral control position error (bottom).
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In Fig. 6.3 (top) the compensation of lateral position errors is pointed out by the two zoom-windows.
This effect can also be observed in Fig. 6.3 (bottom), where a lateral position error after turning
on the spot is compensated while moving along the sides of the square (a). The tangential position
error at the end of the trajectory also converges towards zero (b).
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Figure 6.3: Square-shaped trajectory: Reference posture after slip control Cxref (black) vs. actual
posture (grey) (top) and tangential and lateral control position error (bottom).
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6.2 Point stabilisation

Compensation of a lateral position error at standstill is demonstrated by prescribing a stationary
point in lateral direction of the robot as a reference trajectory. This is an extreme situation designed
for testing purposes. In practice, trajectory tracking will not usually leave the robot with a residual
lateral posture error of such magnitude.
In Fig. 6.4 the measured postures are compared to the reference posture to demonstrate the action
of the control algorithm.
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Figure 6.4: Sequence of configurations (top) and reference and measured posture (bottom) while
compensating a lateral position error at standstill.
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6.3 Navigation

The navigation algorithm was evaluated using the video measurement system described in
Sec. 2.4.1. Its data is processed offline (i.e. after the experiment) and compared with logged
navigation data obtained via the RF-module from the autonomous robot, see Appendix A.

In Figs. 6.5 and 6.6 the effect of the slip control algorithm is obvious during tracking of the corner.
Due to high side-acceleration, a side-slip angle is built up, which is correctly estimated. The slip
control algorithm reduces the step size, resulting in a delay of around five samples. Subsequently,
when circumstances are safe with regard to slip, the step size is increased to catch up with the
original trajectory.
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Figure 6.5: Side slip angle estimate (top), tangential and lateral velocity estimate (bottom) during
tracking of the corner. Ref. indicates the velocities associated with the reference trajectory.
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Figure 6.6: Step size (top) and delay (bottom) during tracking of the corner.
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In Fig. 6.7 the action of the slip control algorithm for tangential wheel slip is demonstrated for
tracking of the square. Whenever tangential slip is detected (indicated by the black circles), the
step size is temporarily reduced. In these situations, also a temporary divergence of the velocity
estimate can be observed (indicated by the light grey areas), which is a consequence of the reaction
time of switching between odometric and inertial estimation.
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Figure 6.7: Tangential velocity estimation (top), step size (middle) and delay (bottom) during
tracking of a square.
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In Figs. 6.8 and 6.9 the absolute navigation position error (Euclidean distance between reference
position and actual position) is depicted for both trajectories. It can be observed that the navigation
errors increase over time, which is inevitable in proprioceptive navigation, as stated in Sec. 4.1. The
final navigation error relating to the geometric length of the trajectory is 2.5% for the corner and
1% for the square.
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Figure 6.8: Navigation error during tracking of the corner-shaped trajectory.
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Figure 6.9: Navigation error during tracking of the square-shaped trajectory.
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6.4 Motion planning

To demonstrate the performance of the proposed motion planning algorithm, enclosed environ-
ments cluttered with randomly distributed and shaped triangles have been generated.

In Fig. 6.10 an overview of map-building and waypoint generation is given. For this environment,
five intermediate waypoints are required, resulting in six trajectory sections.

Obstacle

Waypoint

Waypoint

Target Target

Obstacle edge

Start Start Start

a b c

Figure 6.10: Mapbuilding and waypoint selection (in global coordinates): The solid black lines
indicate the map of the environment at each stage (a-c).

In Fig. 6.11 three planning-stages during optimisation of the trajectory are depicted, showing how
the trajectory is gradually altered to stay clear of an obstacle.

0

Ximin.

Xdes.

XB

a b c

Figure 6.11: Obstacle avoidance for the trajectory in the region indicated by the rectangle in
Fig. 6.10(a): From a-c the trajectory is altered to stay clear of the obstacle, while improving the
fulfilment of the terminal position constraint.
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In Fig. 6.12 various quantities over time are depicted for the trajectory section Fig. 6.11(c), demon-
strating how initial, terminal and inequality constraints are fulfilled.
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Figure 6.12: Descriptive quantities, initial constraints indicated by a square, terminal constraints
by a circle and inequality constraints by a diamond for the trajectory depicted in Fig. 6.11(c).

Finally, in Fig. 6.13 two versions of the section of the trajectory as indicated in Fig. 6.10(b) are
plotted to show how different weighting factors produce differently shaped trajectories.

a b

Figure 6.13: Effect of different weighting for the area indicated by the rectangle in Fig. 6.10(b): In
(a) the weighting factor for the absolute path length is smaller than in (b), resulting in a smoother
but longer path at roughly the same overall time.
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Conclusion and outlook

Novel concepts for each of the three sub-tasks motion planning, tracking and navigation in
autonomous mobile robot motion control have been presented. The performance of the tracking
control algorithm and the navigation algorithm has been practically demonstrated by real-life
experiments. The required calculation time for both tracking control and navigation during
every sampling interval is well within the bound of 20ms, even though the presented algorithms’
complexity exceeds most existing approaches.

As for the motion planning algorithms, for practical evaluation a sensor system for environment
perception would be necessary, as well as a more sophisticated map-building algorithm, accounting
for localisation and perception uncertainties. Moreover, environment perception would enable
simultaneous localisation and map-building (SLAM), thereby introducing an exteroceptive compo-
nent into navigation and enabling reliable long-term navigation.

The calculation time of the motion planning algorithm amounts to roughly 2s per trajectory
section on the desktop PC. Experience from comparing the calculation time of the navigation and
control algorithms in simulation with the calculation time in practical implementation on the DSP
suggests that the execution time on an embedded system would be of the same order of magnitude.
For such a fast system like Tinyphoon this might be too slow, for most practical applications,
however, it would be well within the margin of feasibility.

Aside from the missing possibility for environment perception, it is believed that the presented
algorithms constitute a solid basis for a practically applicable autonomous mobile robot system.
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Appendix A

Technical specifications

A.1 Hardware

A.1.1 Chassis, transmissions and wheels

The chassis, transmissions, wheels, circuit board and RF-module for PC-communication are de-
signed by Bluetechnix (http://www.tinyphoon.com, http://www.bluetechnix.com) and have
been presented by Novak and Mahlknecht in [72]. The relevant parameters are listed in Table
A.1.

Table A.1: Mechanical quantities of chassis, wheels and transmissions
Quantity Symbol Value,unit
Width a 0.075m
Length a 0.075m
Wheel radius r 0.023m
Height of centroid s 0.0275m
Approx. wheelbase b 0.068m
Total mass m 0.39kg
Wheel mass mw 0.02kg
Gear ratio n 100/12 = 8.33

A.1.2 DC-motors and incremental encoders

The DC-motors of type 2224SR are manufactured by Faulhaber [34]. The relevant parameters
are listed in Table A.2. The electrical quantities do not match the specifications given in the
manufacturer’s data sheet very well. 2-channel incremental encoders are directly mounted on the
DC-motor’s shaft, enabling signed velocity measurement.
Due to the finite number of steps per revolution, quantisation noise is introduced into the velocity
measurement. The quantisation step for wheel angular velocity measurement in rads−1 is given by

q =
2π

NEncnTN
. (A.1)

Due to quantisation, any signal value in the interval ± q
2 around a quantisation step is represented

by the value of the quantisation step. Therefore, a rectangular probability density function is
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Table A.2: Mechanical and electrical quantities of the DC-motors
Quantity Symbol Value,unit
Moment of inertia Im 2.7·10−7kgm2

Resistance R 5.8Ω
Inductance L 3.2·10−5Ωs
Motor constant K 6.42·10−3Vs or NmA−1

Encoder resolution NEnc 4×512 steps per revolution
Quantisation noise variance σ2

enc 1.49·10−6(rads−1)2

obtained. The variance of a quantised signal value is obtained by computing the second moment
of the probability density function,

σ2
enc =

1
q

q/2∫
−q/2

ξ2dx =
q2

12
. (A.2)

A.1.3 Amplifier

The dual-full-bridge driver L298N is made by STMicroelectronics [88]. The decisive quantities as
given in Table A.3 are obtained by measurement.

Table A.3: Electrical quantities of the dual-full-bridge driver
Quantity Symbol Value,unit
Voltage drop of a transistor utr 0.6V
Voltage drop of a diode ud 0.35V
Switch-on time of a transistor at low T1 1.8·10−6s
Switch-off time of a transistor at high T2 1.0·10−6s
Switch-off time of a transistor at low T3 0.35·10−6s

A.1.4 Acceleration sensors

The robot’s acceleration sensors ADXL202 are manufactured by Analog Devices [3]. They are
single-chip digital-output piezo-based sensors with two perpendicular channels each. Their output
is PWM-encoded, i.e. the PWM-ratio is proportional to the measured accelerations, where zero
acceleration corresponds to a PWM-ratio of 0.5. The sensor’s characteristics are listed in Table
A.4.
The sensor’s noise variance in (ms−2)2 is calculated according to the data sheet [3] by

σ2
acc =

(
2 · 10−4 · 9.81

√
1.6facc

)2
. (A.3)

The manufacturer’s specifications are validated by evaluating the approximate noise variance of a
recorded sensor signal in steady state.
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Table A.4: Sensor characteristics of the acceleration sensors
Quantity Symbol Value,unit
Measurement range ±2g= ±19.62ms−2

Theoretical PWM period Tacc 2ms
Measured PWM period 1.88ms
Theoretical sensitivity kacc 12.5%/g
Analog bandwidth facc 50Hz
Calculated noise variance σ2

acc 3.08·10−4(ms−2)2

Measured noise variance σ2
acc 3.10·10−4(ms−2)2

A.1.5 Gyro sensor

The robot’s angular rate sensor ADXRS300 by Analog Devices [4] is a single-chip analog-output
resonator gyro. The sensor characteristics are given in Table A.5.

Table A.5: Sensor characteristics of the yaw-rate sensor
Quantity Symbol Value,unit
Theoretical measurement range ±ωmax ±300◦s−1 = ±5.23rads−1

True measurement range ±493◦s−1 = ±8.6rads−1

Analog bandwidth fyaw 40Hz
Calculated noise variance σ2

yaw 1.22·10−4(rads−1)2

Measured noise variance σ2
yaw 1.48·10−4(rads−1)2

The sensor’s noise variance in (rads−1)2 is calculated according to the data sheet [4] by

σ2
yaw =

(
0.1π/180

√
fyaw

)2
. (A.4)

A.1.6 Microcontroller (µC)

The microcontroller is the widely used Infineon XC167CI [49]. Its capture compare unit (CAPCOM)
is used to decode the PWM-encoded acceleration signal and to count the encoder increments while
discerning rising and falling edges. The analog-digital converter (ADC) quantises the analog signal
from the gyro sensor. The PWM-unit is used to output the PWM-signals to drive the DC-motors.
The relevant characteristics are listed in Table A.6.
The theoretical and measured acceleration sensor quantisation steps do not match very well, this is
due to differing sensitivity and to the inaccuracy of the acceleration sensor’s output PWM-period.
The acceleration quantisation step is calculated by

qacc =
100%
kacc

9.81
Tacc/TCC

. (A.5)

The gyro quantisation step is given by

qenc =
2ωmax

NADC
, (A.6)

if the entire input range of the ADC is exploited.
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Table A.6: Characteristics of the µC
Quantity Symbol Value,unit
Processor clock rate 40MHz
CAPCOM counter clock time TCC 2·10−7s
Theoretical acceleration sensor quantisation step 0.0078ms−2

Measured acceleration sensor quantisation step 0.0098ms−2

ADC resolution NADC 10bit = 1024 steps
Theoretical gyro sensor quantisation step 0.017rads−1

Measured gyro sensor quantisation step 0.017rads−1

Sampling time for encoder increment counting TN 2·10−3s
Quantisation step of the PWM-output signal 0.01
Period of the PWM-output signal TPWM 5·10−5s

The original acceleration noise variances are only marginally increased by quantisation and roundoff
errors. The difference between the gyro sensor’s measured and calculated noise variances is due to
the relatively large quantisation step.
The effect of quantisation on the variance of a noisy signal can be verified by a simple simulation.

A.1.7 Digital signal processor (DSP)

The robot is equipped with an Analog Devices Blackfin BF533 digital signal processor, [2]. The
sampling rate of the algorithm executed on the DSP is slaved to the sampling rate of the microcon-
troller. As soon as a full batch of sensor data has been collected by the microcontroller, the DSP
algorithm is triggered. The communication between the microcontroller and the DSP is performed
using an SPI-protocol. The implementation of the algorithm is written in C language, using the
license-free linear algebra package CLAPACK [6].
The characteristics of the DSP are listed in Table A.7.

Table A.7: Characteristics of the DSP
Quantity Symbol Value,unit
Processor clock rate 600MHz
Sampling rate for the control algorithm TC 2·10−2s
SPI data rate 1Mbit/s

A.1.8 Peripheral devices

All simulation and development work is performed on a 3GHz, 1GB RAM desktop PC, running
WindowsXP Professional.
The CCD-camera of type A301FC used for video measurement and validation is manufactured by
Basler, [11]. It is connected via firewire cable to the desktop PC and is well capable of recording
25 frames per second in colour at a resolution of 640×480 pixels.
Wireless communication with the robot for data logging purposes is established via the
robot’s built in RF-module and a custom-built USB-RF-device, made by Bluetechnix
(http://www.tinyphoon.com, http://www.bluetechnix.com).

http://www.tinyphoon.com
http://www.bluetechnix.com
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Programming and online-debugging of the DSP is performed via the Analog Devices JTAG proces-
sor interface, [2].

A.2 Software

Simulation and development work is primarily done using MATLAB 7.0, [90]. The implementa-
tion of the developed algorithms on the DSP is performed using Analog Devices’ development
environment VisualDSP++ 3.5, [5]. For video capture, the Basler BCAM 1394 V1.8 driver
package [12] is used and for the decomposition of the captured video into individual frames the
license-free software VirtualDub [96] is applied. Finally, to log sensor data from the robot’s mi-
crocontroller via RF-module, a custom-built program called Robovis, developed by Bluetechnix
(http://www.tinyphoon.com, http://www.bluetechnix.com) is used.

http://www.tinyphoon.com
http://www.bluetechnix.com


Appendix B

The Extended Kalman Filter

B.1 Analytical derivation

A nonlinear state space system is given by

ẋ = f(x,u,w), (B.1)

where x ∈ Rn denotes the state vector, u ∈ Rp denotes the input vector, w ∈ Rn denotes the system
noise and f(·) is a nonlinear map R2n+p → Rn. The system noise w is white with covariance matrix
Q.
The system’s discretisation according to the simple forward Euler scheme is given by

xk+1 = xk + Tf(xk,uk,wk), (B.2)

where k denotes the integer sampling instant and T denotes the sampling time.
The measurement equation is given by

y = g(x,v), (B.3)

where y ∈ Rm is the measurement vector, v ∈ Rm the white measurement noise with covariance
matrix R and g(·) a possibly nonlinear map Rn → Rm. Its discretisation is trivially obtained by

yk = g(xk,vk). (B.4)

The two-stage Extended Kalman Filter estimates the states of the system in two steps. First, the
states are predicted using the discrete nonlinear representation (B.2). Second, the predicted states
are updated using the difference between the predicted measurements and the actual measurements
under minimisation of the covariance of the updated states.
The states at instant k + 1, based on data of instant k, are predicted by

x̂k+1|k = x̂k + Tf(x̂k,uk). (B.5)

The measurement prediction reads

ŷk+1|k = g(x̂k+1|k). (B.6)

To obtain the covariance of the state prediction x̂k+1|k, the nonlinear representation (B.2) is lin-
earised with respect to the true (deterministic) quantities,

79
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x̂k+1|k
.= xk+1 +

(
T
∂f

∂x

∣∣∣∣
x=x̂k

+ I

)
︸ ︷︷ ︸

Ak

(x̂k − xk) + T
∂f

∂u

∣∣∣∣
u=ûk

(ûk − uk)︸ ︷︷ ︸
0

+T
∂f

∂w

∣∣∣∣
w=wk︸ ︷︷ ︸

I

wk (B.7)

where the variation of the input u vanishes, because it is assumed to be deterministic and the
dependency of the system noise with respect to the states is assumed to be unity without loss of
generality. The evaluation of the Jacobian Ak at the estimated states x̂k instead of the true states
xk is an approximation out of necessity, since the true states are not known.
Then the covariance of the state prediction x̂k+1|k, defined by

P k+1|k := E{x̂k+1|kx̂T
k+1|k}, (B.8)

where E{·} denotes the expectation operator, is given by

P k+1|k = AkP kA
T
k + Q, (B.9)

where the covariances of the true states (without hat) in (B.7) vanish.
The update of the states is given by

x̂k+1 = x̂k+1|k + Kk(yk+1 − ŷk+1|k), (B.10)

where Kk denotes the Kalman gain matrix.
The linearisation of the measurement equation (B.3) with respect to the true quantities is calculated
as

ŷk+1|k
.= yk+1 +

∂g

∂x

∣∣∣∣
x=x̂k+1|k︸ ︷︷ ︸
Ck

(x̂k+1|k − xk+1) +
∂g

∂v

∣∣∣∣
v=vk︸ ︷︷ ︸
I

vk. (B.11)

Again, the evaluation of the Jacobian Ck, also called measurement matrix, is approximately per-
formed for the estimated states, and the derivative of the measurements with respect to the noise
is assumed to be unity.
Inserting (B.11) into (B.10) yields

x̂k+1 = x̂k+1|k − KkCkx̂k+1|k + KkCkxk+1 + Kkvk. (B.12)

Application of the expectation operator on the square of the final estimate leads to its covariance,

P k+1 = (I − KkCk)P k+1|k(I − KkCk)T + KkRKT
k . (B.13)

Now the Kalman gain matrix Kk is calculated by minimisation of the trace of the state covariance
matrix, which is identical to the estimation error covariance matrix. Thereby the variances of the
estimation errors are minimised.
The problem is formulated as

Tr[P k+1] → min
Kk

. (B.14)

Using two equalities known from matrix calculus
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∂Tr[ACAT]
∂A

= 2AC, C symmetric (B.15)

and

∂Tr[ABT]
∂A

= B or
∂Tr[BAT]

∂A
= BT, ABT square, (B.16)

the derivative of the trace of P k+1 with respect to Kk is calculated and set equal to zero,

∂Tr[P k+1]
∂Kk

= 2KkCkP k+1|kCT
k + 2KkR − 2P k+1|kCT

k =! 0. (B.17)

To obtain the latter expression, the symmetry of the covariance matrix is exploited.
Solving for Kk yields

Kk = P k+1|kCT
k (CkP k+1|kCT

k + R)−1. (B.18)

Thereby the equations of the Extended Kalman Filter are complete.

B.2 Practical issues

Sometimes the system noise cannot be obtained from physical modelling. In some cases it can
then be entirely omitted, but sometimes it needs to be systematically increased until convergence
is attained.
The measurement noise is found from the sensor manufacturer’s data sheets, or, more reliably,
from recorded steady-state signals of the sensors. It can, however, improve the performance of the
filter to work with a different noise covariance than actually present. This is subject to systematic
tuning.
For both types of noise the covariances are usually assumed to be constant, but in some cases it
may be advisable to introduce time-dependency.
Another issue is the choice of the initial state covariance. It may influence the performance of the
filter and is also found by systematic tuning.
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