
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reinhard Pichler

M.Sc. Arbeit

Implementing Core Computation
for Data Exchange

ausgeführt am

Institut für Informationssysteme

Abteilung für Datenbanken und Artificial Intelligence

der Technischen Universität Wien

unter der Anleitung von

Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler

durch

Vadim Savenkov

Wien, 11. Oktober 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vadim Savenkov

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reinhard Pichler

Master Thesis

Implementing Core Computation
for Data Exchange

carried out at the

Institute of Information Systems

Database and Artificial Intelligence Group

of the Vienna University of Technology

under the instruction of

Univ.Prof. Mag.rer.nat. Dr.techn. Reihard Pichler

by

Vadim Savenkov

Vienna, October 11, 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vadim Savenkov



Kurzfassung

Datenaustausch (engl. Data exchange) beschäftigt sich mit dem Datentransfer zwischen
Datenbanken mit unterschiedlichen Schemata, wobei die Quelldaten durch die Zieldaten
so genau wie möglich dargestellt werden sollten. Zu einer gegebenen Quellinstanz gibt es
normalerweise viele Lösungen (d.h. Zielinstanzen) für das Datenaustauschproblem. Fagin
et al. [FKP03] gaben überzeugende Argumente, dass in vielen Fällen der “Kern” (engl.
Core) als Zieldatenbank gewählt werden sollte. Der allgemeinste Algorithmus, um den
Kern eines Datenaustauschproblems in polynomieller Zeit zu berechnen, ist der FindCore
Algorithmus von Gottlob und Nash [GN06]. Er lässt sich auf Datenaustauschprobleme
anwenden, die folgende Abhängigkeiten verwenden: zwischen Quell- und Zielschema beste-
hen tupel-erzeugende Abhängigkeiten, und auf dem Zielschema bestehen sowohl schwach
azyklische tupel-erzeugende als auch gleichheits-erzeugende Abhängigkeiten.

Ein wesentliches Merkmal des FindCore Algorithmus ist die Simulation der gleichheits-
erzeugenden Abhängigkeiten durch tupel-erzeugende Abhängigkeiten. In dieser Diplomar-
beit wird eine verbesserte Version dieses Algorithmus vorgestellt, die anstelle der Simula-
tion mittels tupel-erzeugenden Abhängigkeiten die gleichheits-erzeugenden Abhängigkeiten
direkt behandelt. Außerdem wurde im Rahmen dieser Arbeit der veresserte Algorithmus
implementiert. Die Diplomarbeit enthält auch eine Beschreibung der Implementierung
sowie erste experimentelle Resultate.



Abstract

Data exchange is concerned with the transfer of data between databases with different
schemas, whereby the source data should be reflected as accurately as possible by the
target data. Given a source instance, there may be many solutions (i.e., target instances)
to the data exchange problem. The most compact one among the most general (universal)
solutions is called a core. Fagin et al. [FKP03] gave convincing arguments that, in many
cases, the core should be the database to be materialized. The most general to-date
polynomial time algorithm for core computation is the FindCore algorithm developed
by Gottlob and Nash [GN06]. It tackles data exchange problems where dependencies
between source and target schemas are arbitrary tuple generating dependencies (TGDs),
and target constraints consist of equality generating dependencies (EGDs) and weakly-
acyclic TGDs.
One important feature of the FindCore algorithm is that the EGDs are simulated by
TGDs. In this paper, we present an enhanced version of this algorithm, which includes
EGDs directly in the target chase and avoids the simulation with TGDs. We have de-
veloped a prototype implementation of the enhanced algorithm. The thesis contains its
description, as well as a summary of the first experimental results.

Category and Subject Descriptors:
H.2.5 [Heterogenous Databases]: Data Translation; H.2.4 [Systems]: Relational databases;
H.2.4[Systems]: Rule-based databases; H.2.4 [Systems]: Query Processing; D.2.12 [Inter-
operability]: Data mapping.

General terms:
Algorithms, Theory, Database

Additional Key Words and Phrases:
Chase, core, complexity, conjunctive queries, constraints, data exchange, data integration,
dependencies, query evaluation, tractability, universal solutions



Dedication

I dedicate this work to my parents, Anatoly Savenkov and Lidia Levchenkova, to whom I
owe any success I’ve ever had in my life, and to my dear wife Aleksandra whose immense
love and patience I constantly feel.



Acknowledgments

This thesis would be impossible without sustained support, advice and encouragement of
my supervisor, Prof. Reinhard Pichler. I am extremely grateful to him for all the time and
effort he invested in this work. I would also like to thank Prof. Georg Gottlob for sharing
his insightful ideas both in personal conversation and through his published research.

My Master’s studies were funded by the generous Erasmus Mundus Scholarship, which
I was awarded as a member of European Master’s Program in Computational Logic. I
would like to thank the Head of the Program, Prof. Steffen Hölldobler, for giving me this
opportunity, and the Program coordinator in Vienna, Prof. Alexander Leitsch for kind
support in all academic and organizational issues.

Finally, I am grateful to all my friends and colleagues who made these last two years
abroad a really enjoyable and enriching time for me.



Contents

1 Introduction 1
1.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 4
2.1 The data exchange problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Relations between instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Universal solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Chase and canonical universal solutions . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Additional definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Core computation 10
3.1 Development of the core computation algorithms . . . . . . . . . . . . . . . 10

3.1.1 Computing a core in absence of target dependencies . . . . . . . . . 11
3.1.2 Computing a core in presence of target EGDs . . . . . . . . . . . . . 13
3.1.3 Adding restricted target TGDs . . . . . . . . . . . . . . . . . . . . . 14

3.2 The FindCore algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Basic ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Tackling weakly acyclic target TGDs . . . . . . . . . . . . . . . . . . 18

3.3 Discussion of the FindCore algorithm . . . . . . . . . . . . . . . . . . . . . . 21

4 The enhanced core computation algorithm 22
4.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Introduction of an id . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Source position and origin . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Normalization of TGDs . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.4 The parent and sibling relations over facts . . . . . . . . . . . . . . . 26

4.2 Enhancing the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Algorithm Implementation 34
5.1 General system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Labeled nulls support . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Blocks and disjoint sets . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 Unlabeled nulls in the source instance . . . . . . . . . . . . . . . . . 38
5.2.4 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.5 Chase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5



5.2.6 Computing non-rigid blocks . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.7 Tracking variable families . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.8 Computing a characteristic homomorphism . . . . . . . . . . . . . . 43
5.2.9 Homomorphism extension . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.10 Choosing the optimal mapping . . . . . . . . . . . . . . . . . . . . . 45
5.2.11 Obtaining the retraction . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Database manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.3 Main system classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 System tests and evaluation 52
6.1 Redundant tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 3-level target TGDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 4-level target TGDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.3 3-level target TGDs and an EGD . . . . . . . . . . . . . . . . . . . . 57

6.2 Normalization and denormalization . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Introducing a new relation with nulls . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Summary and evaluation of results . . . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusions 64
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 66

6



Chapter 1

Introduction

Due to the rapid progress of business process automatization, companies and organizations
are today, more than ever before, faced with the problem of transferring data between and
answering queries over heterogeneous systems. In particular, there is a need of transferring
data between databases with different schemas. Consequently, two closely-related areas,
both dealing with schema mappings, have emerged in database research: data integration
and data exchange. In data integration (see e.g. [HRO06; Kol05; Len02]), the target
(global) instance serves mainly for encapsulation of the source schemas. The queries
against the target database are being rewritten in terms of the encompassed source schemas
and passed to the respective databases. Then the data integration system combines the
results of the dispatched queries in a single result set, which is returned to the client.
Since data are distributed among the source databases, the global system is only a virtual
database: an interface, translating the queries over the virtual global schema into queries
over local schemas.

Conversely, data exchange is concerned with physical materialization of the source
data in the target storage, according to the source-to-target dependencies (STDs). More
specifically, STDs are tuple generating dependencies (TGD), which are implications with a
conjunction of atoms both in the premise and in the conclusion. Notably, source-to-target
implicational dependencies generalize global-as-view (GAV) mappings and local-as view
(LAV) mappings and are sometimes referred to as GLAV mappings [FKMP03; Len02].

In data exchange, the target database is also allowed to impose additional data con-
straints called target dependencies (TDs), and expressed by the TGDs, and additionally
equality generating dependencies (EGDs), which are implications with a conjunction of
atoms in the premise, and equations between premise terms in the conclusion. TGDs and
EGDs can express the most important dependencies used in database design like functional
dependencies, inclusion dependencies, multi-valued dependencies, and join dependencies
[Fag82].

The transferring of data between two databases is a routine task solved by a host
of tools available on the market. However, the problem of semantics of data exchange
only recently received the due attention. Since a materialized target database reflects
the source data, what is the meaning of a target query in terms of a source schema?
Of an answer to such query? Usually, there are many possible materializations of the
source data in the target storage that satisfy source-to-target dependencies. Given an
answer to a target query, does it reflect the source data and the dependencies, or just
some particular materialization? These and many further questions were explored in
[FKMP03; FKP03; Lib06].

Particularly, in [FKMP03] the data exchange problem was defined, and important
properties of solutions to such problems were identified. Informally, the source and target

1



schemas, as well as STDs and TDs, are considered fixed, and are called the data exchange
setting. The corresponding data exchange problem consists of finding such a target instance
(a materialization of the source data in the target schema), that, together with a given
source instance, satisfies all the dependencies. It was shown [FKMP03; FKP03] that
the good solution must be as general as possible: a notion of universal solution was
introduced to capture this. As shown by Fagin et al., a universal solution for a data
exchange problem can be obtained with the chase procedure [BV84], which is essentially a
systematic modification of the target instance via the STDs and TDs until all dependencies
are satisfied, or impossibility of the satisfaction is witnessed. The result of the chase is
called the canonical universal solution.

Since (canonical) universal solutions are generally not unique, the most compact of
them are preferred. It turned out [FKP03], that the concept of core, well known in graph
theory, perfectly captures such a minimality property. Moreover, Fagin et al. argued that
cores of the universal solutions have advantageous properties w.r.t. semantics of data
exchange, and therefore must be preferred for materialization.

Research in the area of data integration is already resulting in practical applications.
The best example is perhaps IBM’s research project “Clio” [HHH+05]. For data exchange,
the vast majority of Extract-Transform-Load (ETL for short) systems available on the
market follow a procedural approach to specification of data transfers. Consequently, it is
by no means easy to relate the transformation procedures featuring most ETL systems,
to the data exchange semantics. What kind of solution do they compute? Furthermore,
target constraints are often not supported by such tools, and not even research prototypes
are available for core computation. A major goal of our work is to initiate the development
of such a tool.

In a series of papers ([FKP03; Got05; GN06]) the complexity of core computation was
investigated. The most general to-date polynomial time algorithm for core computation is
the FindCore algorithm developed by Gottlob and Nash [GN06]. It tackles data exchange
problems where target dependencies can include EGDs and weakly-acyclic TGDs (a precise
definition of weak acyclicity is given in Chapter 2).

One of the specifics of FindCore is that EGDs are simulated by TGDs, by introduc-
ing additional target relation for storing equal terms, and adding the number of additional
TGDs. As a consequence, the core computation becomes an integral part of finding any
solution to the data exchange problem. In fact, there are data exchange semantics [Lib06]
that favor the materialization of canonical universal solutions rather than cores. Hence,
the core computation should be treated as an optional service of a data exchange frame-
work and, therefore, integrating it into the process of finding any solution is conceptually
problematical. Moreover, as we shall point out in the Section 4.3, the simulation of EGDs
by TGDs is also computationally problematical.

1.1 Summary of results

The main contribution of this work is twofold: (1) We present an enhanced version of
the FindCore algorithm. The most significant advantage of our algorithm (which we
shall refer to as FindCoreE) is that EGDs are treated directly in the target chase. This
allows us to obtain the canonical universal solution first and to minimize it to the core
only if this is requested. (2) We also report on a proof-of-concept implementation of the
enhanced algorithm. It is built on top of a relational database system and mimics data
exchange-specific features by automatically generated views and SQL queries. This gives
the implementation a lot of flexibility and avoids rebuilding functionality which is provided
by any RDBMS anyway.

2



1.2 Organization

The thesis is organized as follows. In Chapter 2, we formalize some basic notions of data
exchange, then Chapter 3 presents the existing core computation algorithms and in par-
ticular, FindCore [GN06]. In Chapter 4 we define and justify FindCoreE , our version
of FindCore which does not need to simulate EGDs with TGDs. The comparison of
the two procedures is given in Section 4.3. Chapter 5 describes our implementation of
FindCoreE , in particular, some further optimizations of the algorithm. First experimen-
tal results are presented in Chapter 6. We conclude with Chapter 7.

3



Chapter 2

Preliminaries

In this chapter, we formally present the basic definitions of data exchange, generally
following the works of Fagin et al. [FKMP03] and [FKP03].

2.1 The data exchange problem

A schema is a finite set of relation symbols, having a name and a positive integer arity.
Relation instance is a function mapping relation symbols into relations of the same arity.
Relation symbols are often abused to denote relations themselves, especially when relation
instance is clear from the context or is not important.

Tuples of the relations may contain two types of terms: constants and variables. The
latter are also called labeled nulls. Two nulls are equal iff they have the same label. For
every instance J , dom(J) denotes the set of terms of J , var(J) denotes the set of variables,
and const(J) denotes the set of constants. Clearly, we have dom(J) = var(J) ∪ const(J)
and var(J) ∩ const(J) = ∅. If a tuple (x1, x2, . . . , xn) belongs to the relation R, we say
that J contains the fact R(x1, x2, . . . , xn). We also write ~x for a tuple (x1, x2, . . . , xn) and
if xi ∈ X for every 1 ≤ i ≤ n, then we also write ~x ∈ X instead of ~x ∈ Xn. Likewise, we
write r ∈ ~x if r = xi for some xi.

In data exchange, there are two participating schemas: S = {S1, S2, ...Sn} and T =
{T1, T2, ...Tn}, which are respectively called source and target schemas. It is required that
S and T were disjoint. Relations, associated with symbols Si are called source relations
and constitute source schema instance. Similarly, target schema instance is represented
by the set of target relations Ti.

Source-to-target dependencies (STDs for short) are dependencies of the form

∀~x (φS(~x)→ ∃~y ψT(~x, ~y)) ,

where φS(~x) with free variables ~x is a logical formula over the source schema, and ψT(~x)
is a logical formula over the target schema with free variables ~x. Target dependencies are
closed formulas over the target schema T. Since STDs span over two different schemas,
it is sometimes useful to view the two as a unit (this also applies to instances). We use
angle brackets to express this, writing 〈I, J〉 |= τ when a formula τ over two schemas is
satisfied by the combination of instances I and J .

The terms dependency and constraint are synonyms in the context of data exchange.
Intuitively, they allow to distinguish between two modes of usage: in the first, we want
to stress that one relation depends on another. For instance, source-to-target dependency
prescribes that whenever a certain tuple combination occurs in the source instance, some
dependent tuples should be also present to the target instance. The term constraint con-
veys a different meaning: they restrict a schema instance preventing certain data patterns

4



from appearing in it. To find a solution of a data exchange problem, we build a target
schema instance, thus the term “dependency” better fits here. On the other hand, it might
be not possible to enforce a dependency on a target schema, which results in failure of
a data exchange process. In this situation, the term ”constraint” is appropriate. In the
following, we use both terms and do not draw any formal distinction between them.

Definition 2.1.1 A data exchange setting is a quadruple (S, T,Σst,Σt) consisting of a
source schema S, a set Σst of source-to-target dependencies and a set Σt of target depen-
dencies. The data exchange problem for this setting is the following: given a finite source
instance I, find a finite target instance J such that 〈I, J〉 satisfies Σst and J satisfies Σt.
Such J is called a solution for I.

In this thesis we deal only with two classes of dependencies: tuple generating dependen-
cies (TGDs) and equality generating dependencies (EGDs). A tuple generating dependency
is a logical sentence of the form:

∀~x (φ(~x)→ ∃~y ψ(~x, ~y))

where both φ and ψ are conjunctions of atoms. An equality generating dependency is a
logical sentence of the form:

∀~x (φ(~x)→ xi = xj), such that i, j ≤ |~x|.

We call the left-hand side of an implication a premise, and the right-hand side — a
conclusion. For both EGDs and TGDs, it is required that all the variables of ~x occur in the
premise of the dependency, though some elements of ~x can be missing in the conclusion, as
justified in [FKMP03]. In the following, we will omit the (outermost) universal quantifier
when specifying dependencies, and consider all the variables universally quantified by
default, unless existential quantification is explicitly specified for a variable.

Source-to-target constraints are restricted to TGDs (with premise query over the source
schema, and conclusion over the target schema), while target constraints can be either
TGDs or EGDs (over the target schema only). EGDs and TGDs are called embedded
implicational dependencies [Fag82], and can express the most important types of database
constraints, like functional dependencies, inclusion dependencies, multi-valued dependen-
cies, and join dependencies.

2.2 Relations between instances

Given two instances of the same schema, it is often necessary to compare the two, in par-
ticular, with respect to generality. To do so, relations based on a notion of homomorphism
are commonly used. All relations we deal with are functions, i.e., deterministic mappings,
defined on the domains of two instances. Besides, they are all constant-preserving in a
sense that, while variables can be mapped on arbitrary terms, an image of a constant can
be only the constant itself. Let r be a relation between the domains of two instances I and
J , mapping dom(I) onto dom(J). Then dom(I) is also the domain of r, and r(dom(I)) ⊆ J
— a range of r.

For two instances I and J , a relation h between dom(I) and dom(J) is a homomorphism
(written h : I → J) if, whenever a fact S(x1, . . . xn) of the relation S/n is present in I, a
fact S(h(x1), . . . h(xn)) is in J . A homomorphism mapping an instance on itself is called
endomorphism. Furthermore, one class of endomorphisms will be very useful for our
further discussion, namely idempotent endomorphisms. That is, for an endomorphism r,

5



∀x ∈ dom(r) r(r(x)) = r(x). Such endomorphisms are called retractions. If there is a
retraction mapping an instance K onto its subinstance K ′ ⊆ K, we also say that K ′ is a
retract of K, denoting it as K ↪→ K ′.

2.3 Universal solutions

Data exchange problems can have infinite number of solutions. For example, consider the
case where the source instance consists of the single fact S(a), the set of STDs Σst =
{S(x) → ∃yR(x, y)}, and the set Σt of TDs is empty. Then all of the sets {R(a, a)},
{R(a, x1)}, {R(a, x1), R(a, x2)}, etc. are solutions to the corresponding data exchange
problem. Quite naturally, the question of optimality of the solution arises. A criterion
proposed in [FKMP03] is universality, that is, there should be a homomorphism from the
universal solution to any other solution possible. That is, a universal solution is general
enough to “encompass” all possible materializations.

Example 2.3.1 Suppose that the source instance consists of two relations Tutorial(course,
tutor): {(’java’, ’Yves’)} and BasicUnit(course): {’java’}. Moreover, let the target schema
have four relation symbols NeedsLab(id tutor,lab), Tutor(idt,tutor), Teaches(id tutor, id course)
and Course(idc, course). Now suppose that we have the following STDs:

1. BasicUnit(C)→ Course(Idc, C).
2. Tutorial(C, T )→ Course(Idc, C),Tutor(Idt, T ),Teaches(Idt, Itc).

and the TDs are given by the two TGDs:

3. Course(Idc, C)→ Tutor(Idt, T ),Teaches(Idt, Idc).
4. Teaches(Idt, Idc)→ NeedsLab(Idt, L).
5. Course(Id1, Course),Course(Id2, Course)→ Id1 = Id2.

Then the following instances are all valid solutions:
J = {Course(C1,’java’), Tutor(T1,’Yves’), Tutor(T2,N1), Teaches(T1,C1), Teaches(T2,C1),

NeedsLab(T1,L1), NeedsLab(T2,L2)},

Jc = {Course(C1,’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1)},

J ′ = {Course(’java’,’java’), Tutor(T1,’Yves’), Teaches(T1,’java’), NeedsLab(T1,L1)}

Note that J ′ is not universal, since there exists no homomorphism h : J ′ → J . Indeed,
a homomorphism maps any constant onto itself and, therefore, the fact Course(’java’,’java’)
cannot be mapped onto a fact in J .

Intuitively, one can say that non-universal solutions are “not induced” by the source
database and the set of dependencies: there is no formal reason to prefer one non-universal
solution over another (e.g., there is no reason to instantiate the variable of Course.idc
necessarily with the constant “java”). Conversely, there is a universal solution which
is logically forced [BV84] by a source instance and a set of dependencies and is called
canonical. A procedure capable of finding such a logically justified solution is called the
chase. It is presented in the following section.

6



2.4 Chase and canonical universal solutions

The task of computing a solution for a data exchange problem can be accomplished by the
chase [BV84], a sequence of steps, each enforcing a single constraint within some limited
set of tuples.

In case of enforcing source-to-target dependencies, we start with a pair of instances
〈S, ∅〉, where S is a source instance, and ∅ is an empty target instance T . Then the chase
procedure updates T , ultimately yielding a preuniversal instance.

The target chase starts with a single target instance, which is then being updated,
until the canonical universal solution is reached.

More precisely, suppose that Σ contains a TGD τ : φ(~x) → ∃~y ψ(~x, ~y), s.t. I |= φ(~a )
for some assignment ~a on ~x and I 2 ∃~yψ(~a, ~y ). Then we have to extend I with facts
corresponding to ψ(~a, ~z ), where the elements of ~z are fresh labeled nulls.

Likewise, suppose that Σ contains an EGD ξ : φ(~x ) → xi = xj , s.t. I |= φ(~a ) for
some assignment ~a on ~x. Then this EGD enforces the equality ai = aj . We thus choose
a variable v among {ai, aj} and replace every occurrence of v in I by the other term; if
ai, aj ∈ const(I) and ai 6= aj , the chase halts with failure. The result of chasing I with
the dependencies Σ is denoted as IΣ.

Since TGDs introduce new tuples in the instance, which can in turn lead to further
chase steps, the termination of the procedure is an important question. As proposed
in [FKMP03], the weak-acyclicity property of target TGDs is necessary for preventing
infinite chase sequences. To define it formally, a notion of dependency graph of a set of
dependencies Σ was introduced by Fagin et al.

The vertices of the graph are fields (“attributes”) of relations referenced by the de-
pendencies of Σ. We specify the fields as Ri, where R is a relation symbol, and i is a field
(attribute) index.

For every TGD φ(~x)→ ∃~y ψ(~x, ~y) of Σ, the edge
(
Ri, Sj

)
is present in GD whenever a

variable r ∈ ~x occurs both in ψ and in the field Ri in φ(~x ) and (1) Sj is a field of ψ(~x, ~y )
occupied by r, or (2) Sj is a field of ψ(~x, ~y ) occupied by a variable v ∈ ~y . Edges resulting
from rule (2) are called special.

A set of TGDs is weakly-acyclic if there is no cycle containing a special edge. A full
TGD is a TGD without existentially quantified variables, i.e. of the form τ : φ(~x )→ ψ(~x ).
Figure 2.1 below shows the dependency graph for the target TGDs in Example 2.3.1, where
special edges are marked with *. Clearly, this graph has no cycle containing a special edge
(actually, it contains no cycle at all). Hence, these TGDs are weakly-acyclic.

Tutortutor

idt

Course

course

idc
Teaches

id_tutor

id_course

NeedsLab

id_tutor

lab

*
 
*

  * *

Figure 2.1: Dependency graph.

The depth of a field Rj of a relation symbol R is the maximal number of special edges
in any path of GD that ends in Rj . The depth of a set of dependencies Σ is the maximal
depth of any field occurring in Σ.

Given a dependency τ : φ(~x) → ∃~y ψ(~x, ~y), we define the width of τ to be |~x|, and
the height as |~y|. The width (resp. the height) of a set of dependencies Σ is the maximal
width (resp. height) of the dependencies in Σ.

7



Fitness of chase for solving data exchange problems was shown in [FKMP03] by proving
the following

Theorem 2.4.1 [FKMP03] If Σ = Σst ∪ Σt, where

• Σst is the set of source-to-target embedded dependencies and

• Σt is the set of weakly-acyclic set of TGDs, and

(S, ∅)Σ is defined and equals (S,U) for some U , then U is a universal solution for S under
Σ.

For the computational cost of the chase, we have

Theorem 2.4.2 [FKMP03] For every weakly-acyclic set Σ of TGDs and EGDs, there are
b and c such that, for any A, regardless of the order of the chase and except for the case
where the chase fails due to EGDs,

• AΣ is defined, and

• AΣ can be computed in O(|A|b) steps and in time O(|A|c).

The chase is thus a procedure having a polynomial running time, guarantied to produce
a universal solution for a data exchange problem, if a problem can be solved in principle.

2.4.1 Additional definitions

To reason about the effects of EGDs it is convenient to introduce some additional nota-
tion, following [FKP03]. Let J be a canonical preuniversal instance and J ′ the canonical
universal solution, resulting from chasing J with a set of target dependencies Σt. Let
t = S(u1, u2...us) be a fixed fact in the relation S of J . By [ui] we denote terms at corre-
sponding positions of the same fact t in J ′, which is now S([u1], [u2]...[us]). If Σt contains
no EGDs, then ∀u ∈ dom(J)u = [u]. For arbitrary sets of dependencies, constants are
mapped onto themselves: ∀c ∈ const(J)c = [c]. For u, v ∈ dom(J), we write u ∼ v if
[u] = [v], i.e. two terms have the same image in J ′.

Property 2.4.1 The [·] relation on terms is a homomorphism.

Proof Let instance JΣ
s result from the sth chase step of J with the set of dependencies

Σ. By definition of [·], if a fact S(u1, u2, ...un) is in JΣ
s , then S([u1], [u2], ...[un]) is in JΣ.

By definition of the chase, [·] is a function (since it represents a variable substitution at all
positions of JΣ

s ), which preserves the constants. Then correctness of the property follows.
�

2.5 Cores

In [HN92], studying cores of graphs, the notion of structure is considered, which is very
close to the relational instance. A structure is determined as a tuple A = {A,R1, . . . Rn},
where A is a explicit universe (which in case of relational instances is the active domain),
and Ri are relation symbols representing relations over A. In case of structures, there are
no special elements of the universe as constants, which should be preserved by homomor-
phisms.

8



Definition 2.5.1 A substructure C of structure A is called a core of A if there is a
homomorphism from A to C, but there is no homomorphism from A to a proper substruc-
ture of C. A structure C is called a core if it is a core of itself, that is, if there is no
homomorphism from C to a proper substructure of C.

As shown in [HN92], the following propositions concerning the cores of structures hold:

• Every finite structure has a core, and the two cores of the same structure are iso-
morphic.

• If C is a core of a finite structure A, then there is a homomorphism h : A→ C such
that h(v) = v for every member v of the universe C of C.

Following [FKP03], one then can identify instances with structures, active domain of
an instance being a universe, and additionally distinguish part of the elements of the
universe as constants. Then, core of an instance can be defined analogously to the core of
a structure, and the properties of the latter carry over to relational instances.

Furthermore, the following theorem is proved in [FKP03], which justifies the use of
cores in data exchange:

Theorem 2.5.1 [FKP03] Let (S,T,Σst,Σt) be a data exchange setting, in which Σst is a
set of TGDs and Σt consists of TGDs and EGDs. If J is a solution for a source instance
I, then core(J) is a solution for I as well. Consequently, if J is a universal solution for
I, then also core(J) is a universal solution.

9



Chapter 3

Core computation

For an arbitrary relational instance with variables, core computation is NP-complete, be-
ing equivalent to some well-known NP-complete problems, like computing the core of an
arbitrary graph [HN92], or computing the smallest equivalent subquery contained in a
conjunctive query [CM77]. However, in the case of data exchange we are dealing with in-
stances generated by the well-defined procedure, namely the chase. Therefore, the target
instance is fully determined by the source instance (which is free of variables) together
with the dependencies, and for each labeled null in the target instance, it is always pos-
sible to say which dependency has forced its creation. One may ask if there is a way
to employ this information for effective core computation. Gottlob and Nash showed,
that the answer is positive [GN06]. It is not surprising, however, that the complexity of
core identification depends the classes of allowed target dependencies. Thus, in absence
of target dependencies, the core computation was proven to be tractable by Fagin et al.
[FKP03], shortly after the first formulation of data exchange problem as such. It was first
shown in [GN06] that the target dependencies can comprise both weakly-acyclic TGDs and
EGDs, without ruining the tractability of core computation. In this chapter we present
and discuss the core computation algorithm FindCore [GN06]. It will then become the
basis of our further development, including algorithmic improvements, and the prototype
implementation.

3.1 Development of the core computation algorithms

This section presents the core computation algorithms dealing with different kinds of target
dependencies. Although some of the procedures presented here can only tackle restricted
classes of target dependencies, their underlying ideas (e.g. the notions of blocks, or rigidity
of variables) will be very helpful for us later.

In all of the mentioned algorithms, the core computation problem is being approached
in a similar way. Since the core of an instance I is its minimal homomorphic subinstance
I ′ ⊆ I, all algorithms perform a descent from the universal solution produced by the chase,
via the series of its nested endomorphic images (each being more and more tight core ap-
proximation), to a final subinstance, which cannot be further shrunk by an endomorphism.
Fig. 3.1 illustrates this approach.

It was shown in [FKP03] that cores are unique up to isomorphism. That is, no matter
what sequence of nested subinstances led to it, the minimal subinstance will have the
same number of facts as any other minimal subinstance, and one can be transformed into
another just with a renaming of variables. Therefore, sometimes we speak about the core
of an instance.

10



?

U = TΣ

U´

U´´
endomorphisms

core 
candidates

Does a smaller endomorphic 
instance U'' (satisfying ∑) exist?

Figure 3.1: A descent to the core

3.1.1 Computing a core in absence of target dependencies

In absence of target dependencies, every endomorphic subinstance of a universal solution
trivially satisfies the dependencies, so there is no need to check this at every iteration of the
core computation algorithm. The first paper on cores in Data Exchange, [FKP03] provided
two algorithms for such a case: a naive one (the Greedy algorithm) and the Blocks
algorithm, utilizing the fact, that a homomorphism for an instance can be found as a
union of homomorphisms of its subinstances, if those subinstances share no variables with
each other. The importance of this idea is easy to understand, since the search space for
constructing a homomorhpism h : I → J is |dom(J)||var(I)|. By partitioning the variables
of I, one reduces the search space exponentially. Because of the importance of this idea
for our further developments, we cite the Blocks algorithm here, as it was described
in [FKP03].

Definition 3.1.1 The Gaifman graph G(I) of an instance I is an undirected graph whose
vertices are variables of an instance I and whenever two variables v1 and v2 share a tuple
in I, there is an edge (v1, v2) in G(I). A block is a connected component of G(I). Every
variable v of I belongs exactly to one block, denoted as block(v, I). The block size of
instance I is the maximal number of variables in any of its blocks.

It is thus possible to represent any homomorphism A → C as a union of homomor-
phisms hi : BA

i → C, where BA
i is the ith block of A. Since blocks share no variables, one

can construct hi independently of other homomorphisms hj , j 6= i. The following theorem
of [FKP03] relies on blocks to give a rough estimation of the homomorphism computation
complexity for arbitrary instances.

Theorem 3.1.1 [FKP03] Let A and B be instances, and suppose that blocksize(A) ≤ c
holds. Then the check if a homomorphism h : A → B exists and, if so, the computation
of h can both be done in time O(|A| · |B|c).

Proof (Sketch) The crucial observation is that, in order to search for a homomorphism
h : A → B, we may search for homomorphisms from every block of A onto B separately.
Note that A has ≤ |A| blocks, each containing ≤ c variables. Hence, from each block of A
we have to consider ≤ |B|c possible mappings onto B. �

In absence of target dependencies, it is easy to see, that the blocks of a canonical
universal solution are bounded, since a source-to-target dependency of height e can only
generate tuples sharing at most e variables (there are no labeled nulls in the source schema).

11



Theorem 3.1.2 [FKP03] If Σ is a set of source-to-target constraints of height e, S is
ground, and (S, T ) = (S, ∅)Σ, then blocksize(T ) ≤ e.

Now the Blocks algorithm itself can be presented. Its general idea agrees with that
depicted on Fig. 3.1. The algorithm starts with a canonical universal solution U = TΣ

as the first core candidate. At every step, the algorithm systematically tries to eliminate
a variable from the domain of the last core candidate U ′ with a proper endomorphism.
That is, an endomorphism must eliminate at least one variable from the domain of U ′.
Let y be such a variable, then a desired endomorphism can be computed as a union of
homomorphisms hi : BU ′

i → U ′, where hj is an identity mapping if y /∈ BU ′
j . Thus, to get

rid of a variable y with the help of an endomorphism, it suffices to search only a mapping
for the block of y. As the Lemma 3.1.1 shows, the blocks can be calculated only once.

Definition 3.1.2 [FKP03] Let K and K ′ be two instances, such that var(K ′) ⊆ var(K).
Let h be some endomorphism of K ′, and let B be a block of nulls of K. We say that h
is K-local for B, if h(x) = x whenever x /∈ B. We say that h is K − local for K if h is
K − local for some block B of K.

blocks of UU = TΣ

U'

U U''

U

endomorphism U→U'

endomorphism U'→U''

Figure 3.2: Blocks algorithm. Reusing the blocks of the universal solution

For every block BU ′
of U ′ ⊆ U , there exists block BU of U , such that BU ′ ⊆ BU . Thus,

the endomorphism eliminating a variable y can be build by only considering variables of
U ′ restricted to a block BU

y of U :

Lemma 3.1.1 [FKP03] Assume a data exchange setting where Σst is a set of TGDs and
Σt = ∅. Let U ′ be a subinstance of a canonical universal solution U . If there exists a
proper endomorphism of U ′, then there exists a proper U-local endomorphism of U ′.

Fig. 3.2 illustrates the idea of reuse of blocks, computed after the chase, at later
iterations of the core computation algorithm.

12



3.1.2 Computing a core in presence of target EGDs

It was shown in the previous subsection that the notion of blocks is very important for
homomorphism computation. It was thus very comforting to find out, that source-to-
target dependencies can only generate instances with the fixed block size. Unfortunately,
when target dependencies come into play, this is no longer the case. Figure 3.3 shows how
blocks are merged by different kinds of dependencies.

x 7 y 7

R(x,z),P(y,z) → x=y

y 7 y 7

x 7

y 7

R(x,z),P(y,z) →P(x,y)

x y

 R(x,z),P(y,z) →∃u P(x,u),P(y,u)

x 7

y 7

x u

y u

R P

EGD

non-
full 

TGD

R P

R

P

P

P

R

P

P

separate 
blocks

merged 
blocks

full 
TGD

merged 
block

Figure 3.3: Different types of block merges

Of all possible merge types, the effects of EGDs seem to be the most “evil”, since they
substitute variables in-place, and thus leave little hope to find even a part of an instance
with a block size independent of the number of facts in it.

However, it was a bright idea of Fagin et al. [FKP03] to show that one can disregard
the effects that target EGDs have on the blocks of the preuniversal instance (i.e. the one
created by the source-to-target chase). Thus, when the target dependencies contain the
EGDs only, one may rely on the fixed block size property of the canonical solution. This
is captured by the notion of rigid variables, explained below.

Definition 3.1.3 Let K be an instance whose elements are constants and nulls. Let y be
some element of K. We say that y is rigid if h(y) = y for every endomorphism h of K.
(In particular, all constants of K are rigid.)

The rigidity of a variable implies, that with regard to homomorphisms it behaves
like a constant: it can be mapped only on itself, and hence, can be safely overlooked
when computing blocks of the instance. The block is called non-rigid, if it was computed
considering only non-rigid variables. The following Rigidity Lemma [FKP03] relates the
concept to the solutions of data exchange problems. The original lemma applies only to
the case of target EGDs, but the close inspection of its proof shows, that it remains valid
when the target constraints include TGDs.

13



Lemma 3.1.2 (Rigidity Lemma) Assume a data exchange setting where Σst is a set of
tgds and Σt is a set of egds and tgds. Let J be the canonical preuniversal instance, and
let J ′ be the result of chasing J with the set Σt of egds. Let x and y be nulls of J such
that x v y, and such that [x] is a nonrigid null of J ′. Then x and y are in the same block
of J .

Proof sketch (adopted from [FKP03]). Unifications performed while chasing EGDs are
logically forced [BV84] formula τ : φ → x = y where φ is a diagram of the instance J ,
that is, the conjunction of all its facts, Σt |= φ → x = y. Given the formula τ and an
endomorphism h : J ′ → B where B ⊆ J ′, one can show that a valuation V for the terms
of φ can be constructed, s.t. V (z) = [z] if z ∈ block(x) and V (z) = h([z]) otherwise. This
is possible because whenever a fact R(x1, ...xn) is present in J , the fact R([x1], ...[xn]) is in
J ′ by definition of [·]. The fact R(h([x1]), ...h([xn])) is also present in B ⊆ J ′, because h is
an endomorphism. Therefore, V makes φ applicable to J ′, that is, J ′ |= φ. Since J ′ |= Σt

and Σt |= τ it must be the case that J ′ |= τ , that is V (x) = V (y). If x and y belong to
different blocks of J , by the construction of V we have [x] = h([y]) = h([x]), i.e. [x] is
rigid. This contradicts the assumption of the lemma, and thus x and y should originate
from the same block of J .�

As the Rigidity Lemma shows, when EGD unifies variables belonging to different
blocks of a preuniversal instance J , the resulting variable is rigid. That allows to adapt a
blocks method to a case with target EGDs, as the following lemma shows.

Lemma 3.1.3 [FKP03] Assume a data exchange setting where Σst is a set of tgds and Σt

is a set of egds. Let J be the canonical preuniversal instance, and let J ′′ be an endomorphic
image of the canonical universal solution J ′. If there exists a useful endomorphism of J ′′,
then there exists a useful J-local endomorphism of J ′′.

3.1.3 Adding restricted target TGDs

In [Got05] two further algorithms were introduced, capable of dealing with some more
expressive target constraints, namely

• EGDs and weakly-acyclic simple TGDs and

• EGDs and full TGDs.

A TGD is called simple if its premise consists of a single atom and having no variable
occuring more than once, i.e. simple TGDs are of the form:

∀x1 . . . ∀xkR(x1, . . . xk)→ ∃y1 . . . ∃yn(R1(x1, . . . xk, y1 . . . yn)∧. . . Rm(x1, . . . xk, y1 . . . yn)).

Clearly, simple TGDs cannot merge blocks, therefore blocksize of a canonical universal
solution is determined by the dependencies (since the depth of each variable is no bigger
than the depth of target dependencies, and hence, target chase can only add a fixed number
of variables to each block of a preuniversal instance).

The algorithm tackling full TGDs [Got05] is quite involved, and requires some addi-
tional definitions and theorems. Since it is not directly relevant for the main matter of
our discussion, we omit its description here, postponing the treatment of full TGDs until
the next chapter.

Instead, we describe an approach to covering target EGDs (in addition to full TGDs)
which carries over to the FindCore algorithm – a basis for our implementation. The
trick is to mimic the effect of EGDs with full TGDs: the new ”equality” relation E is

14



introduced, and all terms that would have been equated by EGDs are stored there. Then,
for each fact that holds a variable x, such that (x, y) ∈ E or (y, x) ∈ E, a new variant
holding y instead of x is introduced by full TGDs. Thus, among different instantiations,
there is a fact that the original EGD would have generated.

As explained in [GN06], every EGD ϕ(~x) → xi = xj , where i, j ≤ |~x|, is replaced by
a TGD: ϕ(~x) → E(xi, xj). Besides, there are additional TGDs that reflect the equality
axioms:

• E(x, y)→ E(y, x) (symmetry),

• E(x, y), E(y, z)→ E(x, z) (transitivity), and

• R(x1, . . . xx) → E(xi, xi) (reflexivity) for each target relation R of arity k and for
every its field i ≤ k.

Finally the following consistency constraints ensure that all possible instantiations of tu-
ples including terms affected by EGD are present in the target instance:

• R(x1, . . . , xj , . . . , xn), E(xj , y)→ R(x1, . . . , y, . . . , xn)

For the case, when only full TGDs are allowed along with EGDs, such a simulation requires
no additional precautions, and the usual chase procedure can be used to enforce them.
As shown in [GN06], this is not the case with weakly-acyclic TGDs and EGDs: after the
simulation, the weak acyclicity property can be lost.

3.2 The FindCore algorithm

The previous subsections of this chapter presented the core computation algorithms ca-
pable of dealing with some limited classes of embedded target dependencies. We quoted
them to demonstrate core computational aspects, which play an important role also the
procedure we present next, namely the FindCore algorithm by G.Gottlob and A.Nash
[GN06]. It contains a number of elegant ideas allowing to compute the cores of canonical
universal solutions produced by chasing both weakly-acyclic TGDs and EGDs.

3.2.1 Prerequisites

Consider the chase of the preuniversal instance T with the target dependencies Σt. If ~y is
a tuple of variables created by enforcing a TGD φ(~x) → ∃~y ψ(~x, ~y) in Σt, such that the
precondition φ(~x) was satisfied with a tuple ~a, then

• the elements of ~y are siblings of each other;
• every variable of ~a is a parent of every element of ~y;
• the ancestor relation is the transitive closure of the parent relation.

3.2.2 Basic ideas

Use of retractions

One of the insightful results of [GN06] was demonstrating the role of retractions for en-
abling the iterative core computation algorithm (Fig. 3.1) that computes a sequence of
subinstances. The problem with such an approach when target dependencies including
TGDs, is that if an instance U satisfies the set of dependencies Σ including TGDs, an
endomorphic image h(U) of U may not satisfy Σ [GN06]. To remedy this, a very elegant
solution was proposed: it suffices to use retractions instead of endomorphisms, to ensure
that resulting subinstances satisfy the same embedded dependencies as the instance itself.

15



Theorem 3.2.1 If Σ is the set of embedded dependencies, then Σ is closed under retrac-
tions. That is: if A |= Σ and A ↪→ B, then B |= Σ.

But how to compute the retraction? The answer is given by the following theorem:

Theorem 3.2.2 [GN06] Given an endomorphism h : A → A such that h(x) = h(y) for
some x, y ∈ dom(A), there is a proper retraction r on A s.t. r(x) = r(y). Moreover, such
a retraction can be found in time O(|dom(A)|2).

Proof [GN06] Assume h is as in the hypothesis. We write hq for the composition of h
with itself q times. Since h is an endomorphism, h(A) ⊆ A. Since also B ⊆ A implies
h(B) ⊆ h(A), it follows that h1(A) ⊇ h2(A) ⊇ h3(A) ⊇ . . . . This sequence can not
decrease forever, so there must be some q ≤ |dom(A)| such that h ◦ hq(A) = hq(A).

Set g := hq and B := g(A). Then h(g(A)) = g(A), and thus g(B) = hq(g(A)) = g(A) =
B. That is, g is an automorphism on B. Denote by G the graph of g on B, i.e., the digraph
whose set of vertices is B and whose set of arcs is {(u, v) : u, v ∈ B ∧ g(u) = v}. Since
g is a permutation, G consists of a collection C1, C2, . . . , Ck of disjoint cycles or loops
Ci of respective lengths c1, . . . , ck. These cycles correspond to the strongly connected
components of G and can thus be identified in linear time. Obviously, we have

k∑
i=1

ci = |dom(B)| ≤ |dom(A)|

Let g0 = g and for 0 ≤ i ≤ k − 1, let gi+1 := gci
i . Set r = gk. We thus have:

r = (((gc1)c2) . . . )ck

Note that for 0 ≤ i ≤ k, gi is the identity on vertices of all cycles C1, C2, . . . Ck. Thus r
restricted to B is the identity on B. Moreover, r(A) = g(A) = B, so r is a retraction of
A. Note that r, arising from compositions of endomorphisms, is itself an endomorphism.
Furthermore, r = (hq)c1·c2·····ck and therefore, since h(x) = h(y), it also holds that r(x) =
r(y). Thus r is the desired retraction. Computing r as described requires no more than
|dom(A)| +

∑k
i=1 ci ≤ 2|dom(A)| compositions. Each single composition is feasible in

linear time in |dom(A)|, and therefore r can be done in time quadratic in |dom(A)|. �

Nice chase

We already mentioned in the previous chapter, that the FindCore algorithm employees
the approach of simulating EGDs with TGDs. However, when there are non-full TGD
permitted in the target constraints, the resulting set of dependencies might become not
weakly-acyclic [GN06]. To tackle this, Gottlob and Nash proposed the following: modify
the classic chase procedure (terminating independently on the order of application of
dependencies) by the chase, preserving the so-called nice chase order. Prior to defining it,
yet another notion of good tuples w.r.t. a dependency must be introduced.

Definition 3.2.1 [GN06] Fix some weakly-acyclic set Σ of TGDs and EGDs. Consider
the dependency graph associated with the TGDs in Σ. If R is a relation, we say that a
tuple ~a is good for R if the depth of every value in it is smaller than or equal to the depth
of the corresponding field in R. That is, depth(ai) ≤ depth(Ri). If ϕ(~x) is a conjunction
of atoms with variables ~x, we say that a tuple ~a of the same arity as ~x is good for ϕ if the
depth of every value ai in it is smaller than or equal to the the depth of every position in
ϕ where xi appears.

16



Now, when several dependencies apply, the nice chase preserves the following order:

1. an equality constraint (see section 3.1.3)

2. a consistency constraint

3. a constraint firing on a tuple which is good for its premise

4. any other constraint

It is shown in [GN06], that any nice chase terminates on a set of weakly-acyclic depen-
dencies and full TGDs simulating EGDs. Moreover, it is easy to see that, the nice chase
makes only a fixed number of tests before each chase step, and hence it is only by some
multiplicative constant less efficient than a usual, non-deterministic chase.

Gottlob and Nash show, that there are no other measures except the transformation
of the target dependencies and preserving the chase order that are necessary to embrace
target EGDs. Moreover, the core computation algorithm they propose allows to ignore the
changes in the original target schema (i.e., the E-relation) as well as the host of simulating
TGDs. Therefore, in the rest of this chapter, we only discuss the target dependencies
consisting of weakly-acyclic TGDs.

Search for local endomorphism

According to the approach, illustrated by Fig. 3.1, the core can be found via series of proper
endomorphisms. For any instance K, there can be no more than |var(K)| elements in any
such endomorhpism sequence. Consequently, what is left to find out is how to compute
a local proper endomorphism effectively. Every proper endomorphism necessarily maps
some two terms on one target. The algorithm idea is to systematically test all the pairs
of terms (one of which must be a variable) and check if there exist an endomorphism
”lumping” them together. The range of such an endomorphism is always the last found
retract (a current core candidate), so the sequence of subinstances is shrinking and is
guaranteed to eventually reach the core.

The effective way of computing a local proper endomorphism constitutes yet another
bright finding of [GN06]. As it became clear from the previous chapters, blocks are the key
factor for this. However, in presence of the target TGDs, blocks of the universal solutions
are unbounded. Rigid variables are of limited help here, as they must occur in the facts
of the preuniversal instance, while other variables (from the facts that were introduced
by the target chase) can still form huge non-rigid blocks. To cope with this, one needs
to further limit the number of variables participating in the generate-and-test process of
endomorphism search.

The idea of [GN06] was to use the fact, that every step of the target chase is determined
by the target dependencies and the instance that has been developed by the preceding
chase sequence. If we are interested in a homomorphism treating a variable x in some
specific way, we may trace back the chase steps that led to creation of x, select the facts
participating in these steps, and hope that these facts will allow us to test if a desired
homomorphism exists.

If such an instance segment, relevant w.r.t. some variable x could be built from facts
over ancestor and sibling variables of x, it would be enough to make checking for existence
of a local proper endomorphism tractable, as the number of ancestors and siblings for each
variable is fixed for each set of target dependencies Σ.

This is exactly the idea implemented in the FindCore algorithm, which we present
next.

17



3.2.3 Tackling weakly acyclic target TGDs

The FindCore algorithm is defined as follows:

Procedure FindCore

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S, T ) := (S, ∅)Σst ;
(2) Compute Σ̄t from Σt;
(3) Chase T with Σ̄t (using a nice order) to get U := T Σ̄t ;
(4) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(5) Compute Txy; (Lemma 3.2.1)
(6) Look for h : Txy → U s.t. h(x) = h(y); (Lemma 3.2.3)
(7) if there is such h then
(8) Extend h to an endomorphism h′ on U ; (Theorem 3.2.3)
(9) Transform h′ into a retraction r; (Theorem 3.2.2)
(10) Set U := r(U);
(11) return U.

The first three steps are responsible of enforcing all the necessary constraints. As
explained earlier, the target EGDs are simulated by full TGDs (step 1) which together
with the weakly-acyclic TGDs of Σ constitutes the new set of target dependencies Σ̄.
After the target chase, the instance produced by the step 3 is guaranteed to satisfy Σ̄,
and the descent to a core begins. We illustrate an individual iteration of such descent,
corresponding to steps (4)–(10) of the algorithm, with the Fig. 3.4.

The following theorem is essential for the described compuation method. It proves that
given a subinstance W of a canonical universal solution TΣ that includes a preuniversal
instance T and is closed under parents and siblings, it is possible to extend any homo-
morphism W → B to a homomorphism TΣ → B, provided that the instance B satisfies
Σ.

Recalling the core computation ideas outlined before, at each iteration of the algorithm
we check if a further minimization of a locally minimal solution U ′ is possible, i.e., if a
proper retraction r of U ′ exists, s.t. r(x) = r(y) for some x, y ∈ dom(U ′). We check this
by constructing a characteristic segment Txy of a canonical solution TΣ, and searching for
a homomorphism h : Txy → U ′ (see Lemma 3.2.2 for the justification). Such a check is
effective, since Txy has the domain only by a constant larger than dom(T ) (Lemma 3.2.1),
and thus enjoying a bounded block size property (see also Lemma 3.2.3).

Identifying Txy with the instance W , and U ′ with the instance B of the Theorem 3.2.3
below, we obtain an important proof contribution for the chosen approach (step 8 of the
algorithm): the theorem shows that a homomorphism TΣ → U ′, which trivially converts
into a desired endomorphism of U ′ ⊆ TΣ, can be built effectively.

Theorem 3.2.3 Let TΣ be a universal solution of a data exchange problem obtained by
chasing a preuniversal instance T with the weakly-acylclic set Σt of target TGDs. If B
and W are instances such that:

1. B |= Σ,
2. T ⊆W ⊆ TΣ, and
3. dom(W ) is closed under ancestors and siblings,

18



T

?

xy

U'

h'(U')U=T

T

Exists h?

FindCore, step 5
Lemma 3.2.1

1

2 3 4

57

2

yes

no

U = T  (canonical solution)Σ

x
y x y

z

U'  

T
(preuniversal instance)

FindCore, step 4 

(current core approximation)

Ex Ey

Txy = 
Ex ∪ Ey  ∪ TEx Ey

T

x y

Choose x,y ∈ dom(U') Build Txy Test Txy →U'

x y
h(Txy) ⊆ U'

h(x) = h(y)

FindCore, step 6
Lemma 3.2.3

Lift h: Txy →U'  to 
 h': U' →U'

(a tighter core 
 approximation)

Set U' := r(U')

r(U')

Txy

h(Txy)

FindCore, step 10 FindCore, step 8
Theorem 3.2.3

6 transform h'  into 
    a retraction r:U' →U'

FindCore, step 9
Theorem 3.2.2

h': U' →U' 

r: U' →U' , such 
that r   r (x) = r(x)

Figure 3.4: An iteration of the FindCore algorithm

then any homomorphism h : W → B can be extended in time O(|dom(T )|b) to a homo-
morphism h′ : TΣ → B where B depends only on Σ.

The proof is postponed until the next chapter, where we prove a more general theorem,
supporting EGDs in the set Σ, along with weakly-acyclic TGDs. For now, we just mention
that the extension procedure replays all the non-full TGDs (the only type of dependencies
that introduce new variables), and after every such TGD extending the homomorphism
to the nulls it has generated. The full TGDs are ignored by this process.

Next, the Lemma 3.2.1 shows how that given a terms x and y, chosen on the step 4,
it is possible to find a subinstance Txy including all the facts that induced their creation
by the chase. Such a subinstance is computed on the step 5.

More precisely, first the sets Ex and Ey of nulls closed under ancestors and siblings of

19



x and y respectively are built, and then a subinstance Txy = T ∪ TΣ
Ex∪Ey is extracted

from TΣ, as illustrated by Fig. 3.4.

Lemma 3.2.1 For every weakly-acyclic set Σ of TGDs of depth d, width w, and height
e, instance T and x, y ∈ dom(TΣ), there is an instance Txy satisfying

1. x, y ∈ dom(Txy),

2. T ⊆ Txy ⊆ TΣ,

3. dom(Txy) is closed under parents and siblings, and

4. |dom(Txy)| ≤ |dom(T )|+ 2edwd,

then Txy can be computed in time O(|dom(T )|c) for some c which depends only on Σ.

A proof of the lemma can be found in [GN06]. We will prove an analogous statement
in the next chapter, adopted for our version of the core computation algorithm.

It is important, that the domain of Txy is only by a constant larger than a domain
of a preuniversal instance. Thus, the block size of Txy is determined by the block size of
the preuniversal instance T (that is, by Σst) and by the target dependencies. That is, the
block size of Txy is fixed for a given data exchange setting. The next lemma demonstrates
the role of such a characteristic subinstance for testing of existence of a local retraction.

Lemma 3.2.2 [GN06, Theorem 8, Claim 2] Let T be an instance, Σ – a set of weakly-
acyclic TGDs and EGDs, U ′ – a retract of U = TΣ, and x and y – two terms from
dom(U ′). Then a proper retraction r of U ′, s.t. r(x) = r(y), exists iff there is a homo-
morphism h : Txy → U , s.t. h(x) = h(y).

Proof If there is such a homomorphism h, a proper endomorphism of U ′ can be built as
a restriction of an endomorphism h′ : TΣ → U ′ (which exists by Theorem 3.2.3) to the
domain of U ′. The desired retraction then can be obtained by Theorem 3.2.2.

In the other direction, let r be retraction of U ′, r(x) = r(y).By assumption, U ↪→ U ′

i.e., there is a retraction r′ : U → U ′. Then r′′ = r′ ◦ r is a retraction U → U ′ as well and
besides, r′′(x) = r′′(y). We then get a homomorphism h = r′′domTxy . �

To check for a homomorphism h : Txy → U on step 6 of FindCore, it suffices to
examine all the blocks of Txy independently of each other. In [GN06] the following lemma
is proved.

Lemma 3.2.3 Let T and U be instances, Σ – a set of weakly-acyclic TGDs. Given
two terms x, y ∈ dom(TΣ), let Txy be an instance closed under parents and siblings,
s.t. T ⊆ Txy ⊆ TΣ and x, y ∈ dom(Txy). It is then possible to check if there exists a
homomorphism h : Txy → U s.t. h(x) = h(y) in the time O(|dom(U)|c) for some c which
depends only on Σ and blocksize(T ).

In the next chapter, we prove the similar Theorem 4.2.2 tailored for our version of
the algorithm. Based on the above theorems and lemmata, the following theorem is proved
in [GN06].

Theorem 3.2.4 [FKMP03] For every Σ = Σst ∪ Σt, where

• Σst is the set of source-to-target embedded dependencies and

• Σt is the set of weakly-acyclic set of TGDs and EGDs, and

20



every ground instance S, a core for a canonical universal solution U under Σ can be
computed in time O(|dom(S)|b) for some b that depends only on Σ.

We give our proof for this statement, based on the algorithm FindCoreE which is
presented in the next chapter.

3.3 Discussion of the FindCore algorithm

The essence of this chapter was presentation of the FindCore algorithm, capable of
computing the minimal universal solution for a data exchange problem. It follows the
iterative approach to the minimization of a target instance, at each iteration shrinking
the range of an endomorphism, which projects the instance onto its part. It is the first
polynomial algorithm capable of tackling data exchange problems with target dependencies
consisting of weakly-acyclic TGDs as well as of EGDs. Though it runs in polynomial time,
there is a room for improvement. In particular, we do not find simulating EGDs with TGDs
the optimal choice for implementation. There are two main reasons for this:

• Chase does not produce a solution for a data exchange problem. It is the core com-
putation which first outputs a universal solution in presence of target EGDs. This
is rather a conceptual issue, since computing a core is quite an expensive procedure,
in contrast to the chase. Additionally, there are arguments in favor of materializa-
tion of canonical universal solutions rather then cores, based on alternative query
answering semantics [Lib06].

• A lots of redundant tuples are added to the target instance, by full TGDs simulating
EGDs.

Hence, we are confident that, unless the core computation is as easy as producing the
universal solution by the chase, it should be regarded as an optional service of a data
exchange engine. In many cases, canonical universal solutions are already usable options
for materialization, and we argue that it is desirable to first produce a comparatively cheap
yet useful result, and then refine it, when necessary.

Therefore, in the next chapter we present our version of the FindCore algorithm,
capable of applying EGDs in the target chase, and thus better fitting our vision of the
place of core computation in data exchange. There are other arguments in favor of our
approach, which we present in the Discussion section of the next chapter.

21



Chapter 4

The enhanced core computation
algorithm

As it was shown in the previous chapter, simulating EGDs with TGDs is rather a disad-
vantage for the FindCore algorithm. In this chapter, we propose a solution fixing this.
The crucial point of our enhanced core computation procedure, FindCoreE is the direct
treatment of the EGDs, rather than simulating them by TGDs. Hence, our algorithm
produces the canonical universal solution U first (or detects that no solution exists), and
then successively minimizes U to the core.

We observe that EGDs may have both a positive and a negative effect on this core
computation: Positively, the EGDs eliminate variables, thus leaving less work. Negatively,
the EGDs may merge different blocks of the preuniversal instance T . Hence, without
further measures, this would destroy the tractability of the homomorphism search, which
is a basis of the FindCore algorithm. The required adaptations comprise both the actual
computation and the proofs to establish the correctness and the polynomial time upper
bound.

In this chapter, we present a FindCoreE algorithm, which seemingly proceeds exactly
as the FindCore algorithm from Section 3.2, i.e.:

• compute an instance Txy

• search for a non-injective homomorphism h : Txy → U

• lift h to a proper endomorphism h′ : U → U

• construct a proper retraction r from h′.

However, many of these steps cannot accommodate canonical solutions computed by the
chase with EGDs. Actually, only the construction of a retraction r via Theorem 3.2.2
and the closure of embedded dependencies w.r.t. retractions according to Theorem 3.2.1
are general enough to carry over to the new environment without any changes. In contrast,
the first 3 steps above require significant adaptations, e.g.:

• Txy in Section 3.2 is obtained by considering only a small portion of the target chase,
thus producing a subinstance of U . Now that EGDs are involved, the domain of U
may no longer contain all elements that were present in T or in some intermediate
result of the chase. Hence, we will need to define Txy differently.

• The computational cost of the search for a homomorphism h : Txy → U depends
on the block size of Txy which in turn depends on the block size of the preuniversal
instance T . EGDs have a positive effect in that they eliminate variables, thus leaving
less work. Conversely, EGDs may also have a negative effect in that they may merge

22



different blocks of the preuniversal instance T . Hence, without further measures,
this would destroy the tractability of the search for a homomorphism h : Txy → U .

• Since we have to define Txy differently from Section 3.2, also the lifting of h : Txy → U
to a proper endomorphism h′ : U → U will have to be modified. Moreover, it will
turn out that a completely new approach is needed to prove the correctness of this
lifting.

The details of the FindCoreE algorithm and of the required modifications compared
with Section 3.2 are worked out below.

4.1 Preliminary definitions

4.1.1 Introduction of an id

Chasing with EGDs results in the substitution of variables. Hence, the application of an
EGD to an instance J produces a syntactically different instance J ′. However, we find
it convenient to regard the instance J ′ after enforcement of an EGD as a new version of
the instance J rather than as a completely new instance. In other words, the substitution
of a variable produces new versions of facts that have held that variable, but the facts
themselves persist. We formalize this idea as follows.

Given a data exchange setting S = (S,T,Σst,Σt), we define an id-aware data exchange
setting Sid by augmenting each relation R ∈ T with an additional id field inserted at
the first position. Hence, in the atoms of the conclusions of STDs and in all atoms
occurring in TDs, we have to add a unique existentially-quantified variable at the first
position. For example, the source-to-target TGD τ : S(x)→ ∃yR(x, y) is transformed into
τ id : S(x)→ ∃t, yRid(t, x, y).

These changes neither have an effect on the chase nor on the core computation (apart
from increasing the variable domains of target instances), as no rules rely on values in
the added columns. It is immediate that a fact R(x1, x2, . . . , xn) s present in the tar-
get instance at some phase of solving the original data exchange problem iff the fact
Rid(id, x1, x2, . . . , xn) is present at the same phase of solving its id-aware version. In fact,
this modification does not even need to be implemented - we just introduce it to allow the
addressing of facts in an unambiguous way.

During the chase, every fact of the target instance is assigned a unique id variable,
which is never substituted by an EGD. We can therefore identify a fact with this variable:

1. If Rid(t1, x1, . . . , xn) is a fact of a target instance T, then we refer to it as fact t1.

2. We define equality on facts as equality between their id terms: Rid(t1, x1, . . . , xn) =
Rid(t2, y1, . . . , yn) iff t1 = t2

We also define a position by means of the id of a fact plus a positive integer indicating
the place of this position inside the fact. Thus, if J is an instance and R(idR, x1, x2, . . . , xn)
is an id-aware version of R(x1, . . . , xn) ∈ J , then we say that the term xi occurs at the
position (idR, i) in J .

4.1.2 Source position and origin

By the above considerations, facts and positions in an id-aware data exchange setting,
persist in the instance once they have been created – in spite of possible modifications of
the variables. New facts and, therefore, new positions in the target instance are introduced
by TGDs. If a position p = (idR, i) occurring in the fact R(idR, x1, . . . , xn) was created

23



to hold a fresh null, we call p native to its fact idR. Otherwise, if an already existing
variable was copied from some position p′ in the premise of the TGD to p, then we say
that p is foreign to its fact idR. Moreover, we call p′ the source position of p. Note that
there may be multiple choices for a source position. For instance, in the case of the TGD
R(y, x) ∧ S(x)→ P (x): a term of P/1 may be copied either from R/2 or from S/1. Any
possibility can be taken in such a case: the choice is don’t care non-deterministic.

Of course, a source position may itself be foreign to its fact. Tracing the chain of source
positions back until we reach a native position leads to the notion of origin position,
which we define recursively as follows: If a position p = (idR, i) is native to the fact
R(idR, x1, . . . , xn), then its origin position is p itself. Otherwise, if p is foreign, then the
origin of p is the origin of the source position of p.

The fact holding the origin position of p is referred to as the origin fact of the position
p. Finally, we define the origin fact of a variable x, denoted as Originx, as the origin fact of
one of the positions where it was first introduced (again in a don’t care non-deterministic
way).

Example 4.1.1 Let J = {S(idS1, x1, y1)} be a preuniversal instance and consider the
following target dependencies:

1. S(idS , x, y)→ ∃z P (idP , y, z)

2. P (idP , y, z)→ ∃v Q(idQ, y, v),

yielding the canonical universal solution JΣ shown in Figure 4.1:

JΣ = {S(idS1, x1, y1), P (idP1, y1, z1), Q(idQ1, y1, v1)}

.
Every position of J is native, being created by the source-to-target chase, which never

copies labeled nulls. Thus the origin positions of (idS1, 1) and (idS1, 2) are these positions
themselves. The latter is also the origin position for the two foreign positions (idP1, 1) and
(idQ1, 1), introduced by the target chase. The remaining two positions of the facts idP1

and idQ1 are native.
The origin positions of the variables are as follows: (idS1, 1) for x1, (idS1, 2) for y1,

(idP1, 2) for z1, and (idQ1, 2) for v1.

ZY Y V

S(X,Y)→∃Z. P(Y,Z)  P(Y,Z)→∃V. Q(Y,V)  

X Y
S.a

S.b P.b Q.b

P.a Q.a

*
*

S.a S.b P.a P.b Q.a Q.b
(a) (b)

source & origin source

origin

1 1 1 1 1 1

Figure 4.1: Positions of the instance JΣ (foreign positions are dashed) (a) and the dependency
graph of Σ (b).

Lemma 4.1.1 Let I be an instance. Moreover, let p a position in I and op its origin
position. Then p and op always contain the same term.

Proof If p is native to its fact, then p = op by definition. Hence, in this case, p and op

trivially hold the same term.

24



Otherwise, let p 6= op. Then there exists a chain p0, p1, . . . , pn of positions, s.t. pi−1

is the source position of pi for every i ∈ {1, . . . , n} and p0 = op and pn = p. We proceed
by induction on i: Of course, p0 always contains the same term as op, since p0 = op. Now
suppose that, at any stage of the chase, pi−1 contains the same term as op. By definition,
pi−1 is the source position of pi, i.e.: When pi is created by firing a TGD, then the term
contained in pi−1 is copied to pi. Hence, pi will always contain the same term as pi−1,
no matter which EGDs are applied in the course of the chase. Thus, by the induction
hypothesis, it will always contain the same term as op. �

4.1.3 Normalization of TGDs

Let τ : φ(~x) → ∃~y ψ(~x, ~y) be a non-full TGD, i.e., ~y is non-empty. Then we can set up
the Gaifman graph G(τ) of the atoms in the conclusion ψ(~x, ~y), considering only the new
variables ~y, i.e., G(τ) contains as vertices the variables in ~y. Moreover, two variables yi

and yj are adjacent (by slight abuse of notation, we identify vertices and variables), if
they jointly occur in some atom of ψ(~x, ~y). Let G(τ) contain the connected components
~y1, . . . , ~yn. Then the conclusion ψ(~x, ~y ) is of the form

ψ(~x, ~y ) = ψ0(~x ) ∧ ψ1(~x, ~y1) ∧ · · · ∧ ψn(~x, ~yn),

where the subformula ψ0(~x ) contains all atoms of ψ(~x, ~y ) without variables from ~y and
each subformula ψi(~x, ~yi) contains exactly the atoms of ψ(~x, ~y ) containing at least one
variable from the connected component ~yi.

Now let the full TGD τ0 be defined as τ0 : φ(~x )→ ψ(~x ) and let the non-full TGDs τi
with i ∈ {1, . . . , n} be defined as τi : φ(~x )→ ψ(~x, ~yi). Then τ is clearly logically equivalent
to the conjunction τ0 ∧ τ1 ∧ · · · ∧ τn. Hence, τ in the set Σt of target dependencies may be
replaced by the dependencies τ0 ∧ τ1 ∧ · · · ∧ τn.

We say that Σt is in normal form if every TGDs τ in Σt is either full or its Gaifman
graph G(τ) has exactly 1 connected component. By the above considerations, we may
assume w.l.o.g., that Σt is in normal form. Henceforth, we only consider TDs Σt in
normal form.

Example 4.1.2 Consider the non-full TGD

τ : S(x, y)→ ∃z, v(P (x, z) ∧R(x, y) ∧Q(y, v)).

Then τ is logically equivalent to the conjunction of the three TGDs: τ0 : S(x, y)→ R(x, y),
τ1 : S(x, y) → ∃z P (x, z), and τ2 : S(x, y) → ∃v Q(y, v). Clearly, these dependencies τ0,
τ1, and τ2 are normalized in the sense above.

The following property will play an important role when it comes to lifting a homo-
morphism h defined on Txy to a homomorphism h′ on TΣt in Theorem 4.2.1.

Lemma 4.1.2 Let the preuniversal instance J be chased with the set Σt of TDs in normal
form. Suppose that at some step in the chase, the non-full TGD τ : φ(~x)→ ∃~y ψ(~x, ~y) fires.
Then τ introduces a new fact for every atom in the conclusion ψ(~x, ~y ). More precisely,
suppose that τ fires with the assignment ~a on ~x and assignment ~z on ~y. Then all atoms
in ψ(~a, ~z ) are newly created by this chase step.

Proof Let J ′ denote the instance prior to this chase step. The TGD τ is only fired if
it introduces at least one new fact. Let ρ(~a, ~z ) denote the subformula of ψ(~a, ~z ), s.t. all
atoms in ρ(~a, ~z ) are newly created by this chase step, while all atoms in the remaining

25



subformula ρ′(~a, ~z ) of ψ(~a, ~z ) already exist in J ′. We have to show that ρ(~a, ~z ) comprises
all atoms of ψ(~a, ~z ).

Suppose to the contrary that ρ(~a, ~z ) is a proper subformula of ψ(~a, ~z ). Since this
application of τ creates new facts for every atom in ρ(~a, ~z ), the assignment ~z instantiates
all variables in ~y occurring in ρ(~a, ~z ) to fresh nulls. By the normalization of τ , the Gaifman
graph G(τ) has exactly 1 connected component. Hence, there exists at least one atom A
in ρ′(~a, ~y ), s.t. A shares with ρ(~a, ~y ) a variable from ~y. Hence, the atom A[~y ← ~z ] in
ρ′(~a, ~z ) contains at least one fresh null. But this contradicts the assumption that A[~y ← ~z ]
already existed in J ′. �

4.1.4 The parent and sibling relations over facts

Let I be an instance after the jth chase step and suppose that in the next chase step,
the non-full TGD τ : φ(~x) → ∃~y ψ(~x, ~y) is enforced, i.e.: I |= φ(~a ) for some assignment
~a on ~x and I 2 ∃~yψ(~a, ~y ), s.t. the facts corresponding to ψ(~a, ~z ), where the elements of
~z are fresh labeled nulls, are added. Let t be a fact introduced by this chase step, i.e.,
t is an atom of ψ(~a, ~z ). Then all other facts introduced by the same chase step (i.e., by
Lemma 4.1.2, all other atoms of ψ(~a, ~z )) are the siblings of t. Given a fact t, its parent
set consists of the origin facts for any foreign position in t or in any of its siblings. The
ancestor relation on facts is the transitive closure of the parent relation.

This definition of siblings and parents implies that facts introducing no fresh nulls
(since we are assuming the above normal form, these are the facts created by a full TGD)
can be neither parents nor siblings.

Recall that we identify facts by their ids rather than by their concrete values. Hence,
any substitutions of nulls that happen in the course of the chase do not change the set of
siblings, the set of parents, or the set of ancestors of a facts.

Example 4.1.3 Let us revisit the two TGDs S(idS , x, y)→ ∃z P (idP , y, z) and P (idP , y, z)→
∃v Q(idQ, y, v) from Example 4.1.1, see also Figure 4.1. Although the creation of the atom
Q(y1, v1) was triggered by the atom P (y1, z1), the only parent of Q(y1, v1) is the origin fact
of y1, namely S(x1, y1).

4.2 Enhancing the algorithm

We are now ready to prove the main results underlying the FindCoreE algorithm, i.e.:
Definition of Txy (Lemma 4.2.1), search for a homomorphism h : Txy → U (Lemma
Lemma 3.1.2 and Theorem Theorem 4.2.2), and lifting a homomorphism h : Txy → U
to a non-injective homomorphism TΣst → U (Theorem Theorem 4.2.1).

Lemma 4.2.1 For every weakly-acyclic set Σt of TGDs and EGDs, instance T , and x, y ∈
dom(TΣt), there exist constants b, c which depend only on Σ = Σst ∪ Σt and an instance
Txy satisfying

1. Originx,Originy ⊆ Txy,

2. All facts of T are in Txy, and Txy ⊆ TΣt,

3. Txy is closed under parents and siblings over facts,

4. |dom(Txy)| ≤ |dom(T )|+ b.

Moreover, Txy can be computed in time O(|dom(T )|c).

26



Proof Let d denote the depth of Σt. Given variable x, let the set Fx (= the “family”
of x) denote the set of facts obtained as follows: At the deepest level j (with j ≤ d), Fx

contains Originx and all siblings thereof. On the next higher level j − 1, Fx contains all
parents of facts on level j plus all siblings thereof. This procedure is continued until the
top level is reached. Thus, Fx contains Originx and is closed under the parent and sibling
relations. Then the set Txy := TΣst ∪ Fx ∪ Fy satisfies the conditions 1–3.

The desired upper bound on the domain size of Fx and, therefore, of Txy is obtained
as follows: On every level, every fact has at most constantly many siblings with at most
constantly many variables, where this constant only depends on Σ. Likewise, for the
transition from one level to the next higher one, we observe that every fact has at most
constantly many foreign positions, each with at most constantly many parents. Hence,
since also the depth d of Σt is a constant of Σ, Txy contains only constantly many facts
in addition to the facts of T , and each new fact introduces only constantly many new
variables. Note that EGDs cannot augment the domain size of any set of facts, since they
result only in replacements of some variable u with some already present term v at all
occurrences of u. Finally, the polynomial upper bound on the computation time needed
to construct Txy is clear, once we have the bound on the facts of Txy. �

Having a homomorphism h : Txy → U , we want to extend it to a homomorphism
h′ : TΣst → U , analogously to Theorem 3.2.3. However, compared with Lemma 3.2.1, we
had to redefine the set Txy. Moreover, the unification of variables caused by EGDs in
the chase invalidates some essential assumptions in the proof of the corresponding result
in [GN06, Theorem 7]. At any rate, the following theorem shows that also in our case,
the lifting can be performed efficiently by essentially the same procedure as described in
[GN06].

Theorem 4.2.1 ( Lifting) Let TΣt be a universal solution of a data exchange problem
obtained by chasing a preuniversal instance T with the weakly-acyclic set Σt of TGDs and
EGDs. If B and W are instances such that:

1. B |= Σ with Σ = Σst ∪ Σt;

2. All facts of T are in W (i.e. W contains facts with the same ids) and W ⊆ TΣt,
and

3. W is closed under ancestors and siblings (over facts),

then any homomorphism h : W → B can be transformed in time O(|dom(T )|b) into a
homomorphism h′ : TΣt → B, s.t. ∀x ∈ dom(h) : h(x) = h′(x), where b depends only on
Σ.

Proof Although every fact of T is in W , there may of course be variables in dom(T )
which are not in dom(W ), because of the EGDs. Hence, ∀x ∈ dom(T )\dom(W ) : x 6= [x],
and ∀x ∈ dom(T ) ∩ dom(W ) : x = [x].

Suppose that the chase of a preuniversal instance T with Σt has length n. Then we
write Ts with 0 ≤ s ≤ n to denote the result after step s of the chase. In particular, we
have T0 = T and Tn = TΣt . For every s, we say that a homomorphism hs : Ts → B is
consistent with h if ∀x ∈ dom(hs), such that [x] ∈ dom(h), hs(x) = h([x]) holds. We claim
that for every s ∈ {0, . . . , n}, such a homomorphism hs consistent with h exists. Then
h′ = hn is the desired homomorphism. We prove the claim by induction on s.

[induction begin.] We define h0 : T = T0 → B by setting h0(x) = h([x]) for all
x ∈ dom(T ). Then h0 is consistent with h by definition. By condition 2 of the theorem,
all facts of T are in W and W ⊆ TΣt . Hence, for every fact P (u1, . . . , uk) ∈ T0, we have

27



P ([u1], . . . , [uk]) ∈ W and, therefore, P (h(u1), . . . , h(uk)) = P (h([u1]), . . . , h([uk])) ∈ B.
Hence h0 is the desired homomorphism.

[induction step.] Let hs−1 : Ts−1 → B be a homomorphism, s.t. hs−1 is consistent with
h. At step s of the chase, there are four types of dependencies that can be enforced:

1. an EGD,

2. a full TGD,

3. a non-full TGD, introducing facts not present in W .

4. a non-full TGD, introducing facts present in W .

Note that cases 3 and 4 do not intersect, by Lemma 4.1.2 and by the fact that W is closed
under siblings.

Below we show that in each of these 4 cases, it is indeed possible to transform
hs−1 : Ts−1 → B into a homomorphism hs : Ts → B consistent with h. The following
simple fact is used throughout the proof: if there is an assignment ~a ∈ dom(Ti) for some
conjunction φ(~x ) s.t. Ti |= φ(~a ), and hi : Ti → B is a homomorphism, then B |= φ(hi(~a )).

Case 1. Ts is obtained from Ts−1 via the EGD ϕ(~x) → xi = xj , where i, j ≤ |~x|
s.t. Ts−1 |= φ(~a ). W.l.o.g., ai ∈ var(Ts−1) is a variable and Ts is obtained from Ts−1 by
replacing every occurrence of ai by aj . Clearly, dom(Ts) = dom(Ts−1) \ {ai}. We claim
that hs = hs−1|dom(Ts) is the desired homomorphism, i.e. hs is obtained from hs−1 simply
by restricting its domain.

Let P (~b ) be a fact in Ts. Then either P (~b ) is also a fact in Ts−1 (not containing
the variable ai) or Ts−1 contains some fact P (~c ), s.t. ~b = ~c [ai ← aj ], i.e., ~b is obtained
from ~c by replacing all occurrences of ai with aj . In the former case, we clearly have
P (hs(~b )) = P (hs−1(~b )) ∈ B. It remains to consider the latter case: We again have
P (hs−1(~c )) ∈ B. In order to show that also P (hs(~b )) = P (hs−1(~c )) ∈ B, it suffices to show
that hs−1(ai) = hs−1(aj). Indeed, we have Ts−1 |= φ(~a ), since the EGD ϕ(~x ) → xi = xj

fires with this assignment in step s of the chase. Then B |= φ(hs−1(~a )), since hs−1 is
a homomorphism. By condition 1 of the Theorem, B |= Σ. In particular, the EGD
ϕ(~x )→ xi = xj holds in B. But then hs−1(ai) = hs−1(aj).

Case 2. A full TGD φ(~x )→ ψ(~x ) leaves the domain unchanged. Thus, we simply set
hs = hs−1. Suppose that φ(~x ) was satisfied by Ts−1 with some assignment ~a. Hence, the
only facts introduced by this chase step are atoms ψ(~a ). We have to show that ψ(hs(~a )),
which is identical to ψ(hs−1(~a )), holds in B. We use the same argument as above: Ts−1 |=
φ(~a ) holds, since the TGD τ fires with this assignment on ~x. Hence, B |= φ(hs−1(~a )),
since hs−1 is a homomorphism Finally, since B |= Σ, also B |= ψ(hs−1(~a )) holds.

Case 3. Ts is obtained from Ts−1 via the non-full TGD φ(~x) → ∃~y ψ(~x, ~y) with
assignment ~a on ~x and assignment ~z on ~y. Moreover, all atoms in ψ(~a, ~z ) are outside
W . As above, we have Ts−1 |= φ(~a ) and B |= φ(hs−1(~a )). Moreover, by B |= Σ, there
exist a vector ~c of terms in dom(B), s.t. ψ(h(~a ),~c ) ⊆ B. By Lemma 4.1.2, all atoms in
ψ(h(~a ),~c ) are newly created in Ts and, hence, all terms in ~z are fresh nulls. We extend
hs−1 to hs by setting hs(~z ) := ~c. Then hs is a homomorphism, since the image ψ(h(~a ),~c )
of the new atoms ψ(h(~a ), ~z ) in Ts is in B by definition. Perhaps, for some z ∈ ~z also
[z] ∈ dom(h) = dom(W ) holds. Since all facts of W are handled by the next case, it has
to be an effect of some EGDs triggering later in the chase. By Case 1, a term y replaces
a variable x only if their homomorphic images coincide. Hence, hs is consistent with h.

Case 4. Ts is obtained from Ts−1 via the non-full TGD φ(~x) → ∃~y ψ(~x, ~y) with
assignment ~a on ~x and assignment ~z on ~y. Moreover, W already contains a fact for
every atom in ψ(~a, ~z ). Analogously to case 3, the vector ~z consists of fresh nulls. More-
over, since all atoms of ψ([~a ], [~z ]) are contained in W , the homomorphism h : W → B

28



is defined on all variables occurring in ψ([~a ], [~z ]). Since h is a homomorphism, we
have B |= ψ(h([~a ]), h([~z ])). We extend hs−1 to hs by setting hs(~z ) := h([~z ]) and
hs(x) := hs−1(x) for all variables x ∈ dom(hs−1). In other words, native positions in
ψ(~a, ~z ) are mapped consistently with h. In order to show that hs is a homomorphism, it
remains to prove that all atoms in ψ(hs(~a ), hs(~z )) are contained in B. By definition, we
have hs(~z ) = h([~z ]). Hence, it suffices to show that hs−1(~a ) = h([~a ]) holds.

W is closed under parents and siblings and, therefore, the origin of every position of
ψ(~a, ~z ) is contained in W , by the definition of the parent relation over facts. According to
Lemma 4.1.1, a position p and its origin position op (which is either contained in some fact
in T or which was introduced previously at some chase step k < s) are always occupied
by the same term. If the position op is contained in some fact in T , then the term u at op

was mapped to h([u]) by h0 according to the induction begin. If op is contained in some
fact introduced at some chase step k < s, then the term u at op was mapped to h([u]) by
hk according to Case 4. Note that none of the four cases considered by the induction step
modifies a previously chosen image. Hence, op is mapped to h([u]) also by hs−1. Hence,
we indeed have hs−1(~a ) = h([~a ]), as required.

This concludes the induction proof. In order to actually construct the homomorphism
h′ = hn, we may thus simply replay the chase and construct hs for every s ∈ {0, . . . , n}.
The length n of the chase is polynomially bounded by Theorem 2.4.2. The action required
to construct hs from hs−1 by the above case distinction clearly fits into polynomial time
as well. We thus get the desired upper bound on the time needed for the construction of
h′. �

The only ingredient missing for our FindCoreE algorithm is an efficient search for
a homomorphism h : Txy → U with U ⊆ TΣt . By the construction of Txy according to
Lemma 4.2.1, the domain size of Txy as well as the number of facts in it are only by a
constant larger than those of the corresponding preuniversal instance T . By Theorem 3.1.1,
the complexity of searching for a homomorphism is determined by the block size. The
problem with EGDs in the target chase is that they may destroy the block structure of T
by equating variables from different blocks of T . However, we show below that the search
for a homomorphism on Txy may still use the blocks of TΣst computed before the target
chase. To achieve this, we adapt the Rigidity Lemma from [FKP03] to our purposes,
which was presented in the previous chapter. As we already pointed out, although the
original Rigidity Lemma was formulated for the data exchange scenarios with target
dependencies restricted to EGDs only, it remains valid in presence of target TGDs as well.
The lemma shows that if two blocks of variables of the preuniversal instance are merged
by an EGD, i.e., two distinct variables are replaced by a single one, then the variable
resulting from a substitution can only be mapped on itself by any endomorphism. Our
intention to use rigidity can be captured with the following definition:

Definition 4.2.1 The non-rigid Gaifman graph G′(I) of an instance I is a usual Gaif-
man graph restricted to vertices corresponding to non-rigid variables. We define non-rigid
blocks of an instance I as the connected components of the non-rigid Gaifman graph G′(I).

Clearly, the non-rigid blocks can be much more advantageous for testing homomor-
phisms in presence of EGDs. It is important to note, that they are not just usual blocks
modulo rigid variables, but rather blocks constructed while completely ignoring those vari-
ables. As a simple example, suppose that the variable y in the instance {R(x, y), R(z, y), R(w, y)}
is rigid. Then the non-rigid blocks are {x}, {z} and {w}, which is much better than a
usual block modulo y, containing 3 elements: {x, z, w}. The following lemma shows how
the concept can be used.

29



Theorem 4.2.2 Let T be a preuniversal instance obtained via the STDs Σst. Let Σt

be a set of weakly-acyclic TGDs and EGDs, and let U be a retract of TΣt. Moreover, let
x, y ∈ dom(TΣt) and let Txy ⊆ TΣt be constructed according to Lemma 4.2.1. Then we can
check if there exists a homomorphism h : Txy → U , s.t. h(x) = h(y) in time O(|dom(U)|c)
for some c which depends only on Σ = Σst ∪ Σt.

Proof First, we prove that the rigid variables of TΣt are also rigid in Txy. Assume
to the contrary that x ∈ var(Txy) is rigid in TΣt and that there exists a homomorphism
h : Txy → U s.t. h(x) 6= x. By Theorem 4.2.1, h can be transformed into an endomorphism
h′ : TΣ → U , s.t. ∀x ∈ dom(h) : h(x) = h′(x). Thus, we get h′(x) = h(x) 6= x, which
contradicts the assumption that x is rigid in TΣ.

Hence, the search for a homomorphism h : Txy → U proceeds by checking all pos-
sible homomorphisms on the non-rigid blocks of Txy individually. This is justified by
the following observation: Let B1, . . . , Bn denote the non-rigid blocks of Txy. More-
over, for every i ∈ {1, . . . , n}, let hi : Bi → U be a homomorphism. Then the mapping
h : Txy → U defined as follows is well-defined and a homomorphism: For every x ∈ Bi, we
set h(x) := hi(x) and for all x outside all Bi (i.e, x is rigid), we set h(x) := [x].

Recall from Lemma 4.2.1 that Txy has only constantly many variables in addition to
T . By Theorem 3.1.2, the block size of T depends only on Σst. Hence, also the non-rigid
block size of Txy is bounded by a constant depending only on Σ.

Moreover, we did not need to consider all the blocks of Txy to find a desired homomor-
phism, since we only should care that h(x) = h(y), and therefore only two blocks, the one
of x and the one of y are of particular interest, while other blocks of Txy can be mapped
no matter how. Recall that by a theorem assumption, U is a retract of TΣ, i.e. there
exists a retraction r : TΣ → U . (In the descent to a core, the first such retraction is just
the identity mapping, and every subsequent optimization step results in a new retraction
with a tighter range). Hence, we use already existent retraction r for mapping the blocks
containing neither x nor y.

Hence, the problem boils down to finding a homomorphism for at most two blocks of
fixed size, which depends on Σ only. The claim of the theorem then follows immediately.
�

Prior to finally defining FindCoreE , we would like to revisit the procedure of lifting a
homomorphism on the set Txy into an endomorphism on the last found core approximation.
Recall that the proof of Theorem 4.2.1 directly yields an algorithm for transforming a
homomorphism h : W → B to an appropriate homomorphism h′ : TΣt → B in that we
simply replay all n steps of the chase from T to TΣt and construct intermediate homo-
morphisms hs : Ts → B for s ∈ {0, . . . , n}. Even though this algorithm has a polynomial
time upper bound, it is slightly unsatisfactory since, as intermediate steps, it may process
variables which are not present any more in dom(Ts). Naturally, it would be desirable
to skip such unnecessary steps. We have therefore implemented the following simplified
procedure Extend, where only chase steps corresponding to Case 4 in the proof of The-
orem 4.2.1 are replayed. This procedure allows us to literally extend h to h′ : TΣt → B
starting with W and considering only the variables present in TΣt .

The correctness of this simplified procedure for extending h to h′ is shown in the
following lemma.

Lemma 4.2.2 Let T , TΣt, B, W , and h : W → B be as in Theorem 4.2.1. Then the
procedure Extend extends h to a homomorphism h′ : TΣ → B.

Proof Let Wj with j ≥ 1 denote the set W when the while-loop in the Extend procedure
is entered for the j-th time. We claim that Wj fulfills the following properties: Wj ⊆ TΣt ,

30



Procedure Extend

Input: Canonical universal solution TΣt

Input: Subinstance W ⊆ TΣt closed under parents and
siblings, s.t. W contains all facts of T

Input: Homomorphism h : W → B with B |= Σ
Output: Homomorphism h′ : TΣt → B such that ∀x ∈ dom(W ) h′(x) = h(x)

(1) Set h′ := h;
(2) while exists a fact A ∈ TΣt \W , s.t. Parents(A) ⊆W
(3) Set P := Parents(A)
(4) Set S := {A} ∪ Siblings(A)
(5) Find homomorphism g : S ∪ P → B,

such that ∀x ∈ dom(g) ∩ dom(h′) : g(x) = h′(x);
(6) Set h′ := h′ ∪ g;
(7) Set W := W ∪ S;
(8) return h′.

Wj contains all facts from T , Wj is closed under parents and siblings, and hj : Wj → B is a
homomorphism s.t. ∀x ∈ dom(W ) : h′(x) = h(x) holds. We prove this claim by induction
on j:

[induction begin.] When the while-loop is entered for the first time, we have W1 = W
and the above properties are trivially fulfilled.

[induction step.] Suppose that the while-loop is entered for the (j + 1)-st time. By
the induction hypothesis, Wj together with the homomorphism hj : Wj → B fulfills the
assumptions on W in Theorem 4.2.1. Hence, hj can be extended to a homomorphism
h : TΣt → B, s.t. ∀x ∈ dom(hj) : h′(x) = hj(x). Then it is of course also possible to
extend hj to the homomorphism hj+1 : Wj+1 → B where Wj+1 = W ∪ S ⊆ TΣt , s.t. S is
a set of siblings whose parents are in Wj .

This concludes the induction. Clearly, for every j, the transition from Wj to Wj+1

corresponds to the application of a non-full TGD in the course of the target chase. Hence,
the number of iterations of the while-loop is bounded by the length n of the chase. �

Procedure FindCoreE

Input: Source ground instance S
Output: Core of a universal solution for S

(1) Chase (S,∅) with Σst to obtain (S, T ) := (S, ∅)Σst ;
(2) Chase T with Σt to obtain U := TΣt ;
(3) for each x ∈ var(U), y ∈ dom(U), x 6= y do
(4) Compute Txy;
(5) Look for h : Txy → U s.t. h(x) = h(y);
(6) if there is such h then
(7) Call Extend to lift h to an endomorphism h′ on U ;
(8) Transform h′ into a retraction r;
(9) Set U := r(U);
(10) return U.

31



Putting all these pieces together, we get the FindCoreE algorithm. It has basically
the same overall structure as the FindCore algorithm of [GN06], which we recalled in
Section 3.2. Of course, the correctness of our algorithm and its polynomial time upper
bound are now based on the new results proved in this section. In particular, step (4) is
based on Lemma 4.2.1, step (5) is based on Lemma 3.1.2 and Theorem 4.2.2, and step
(7) is based on Theorem 4.2.1. Analogously to Theorem 3.2.4, we thus get

Theorem 4.2.3 Let (S,T,Σst,Σt) be a data exchange setting with STDs Σst and TDs Σt.
Moreover, let S be a ground instance of the target schema S. If this data exchange problem
has a solution, then FindCoreE correctly computes the core of a canonical universal
solution in time O(|dom(S)|b) for some b that depends only on Σst ∪ Σt.

4.3 Discussion

The FindCore and FindCoreE algorithm look very similar in structure and have essen-
tially the same asymptotic worst-case behavior (see Theorem 3.2.4 and 4.2.3). Neverthe-
less, there are some fundamental differences between these two algorithms, which we want
to outline in this section.

Canonical solution vs. core. In our implementation of the FindCoreE algorithm, the
chase first produces a solution of the data exchange problem, while the core computation is
considered as an optional add-on. In many cases, a canonical universal solution is already
a viable option for materialization. Since the minimization step is usually much more
complex than the chase, it might be desirable first to obtain an already usable canonical
universal solution, and to defer the costly core computation to a later time, e.g., to periods
of low database user activity. Moreover, as was already mentioned in Chapter 1, there
are data exchange semantics [Lib06] that favor the materialization of canonical universal
solutions rather than cores. To support these scenarios, it is important that solving a data
exchange problem and computing a core are two cleanly separated steps – which is the
case with FindCoreE . In contrast, the FindCore algorithm never computes a canonical
solution; the core computation thus becomes an integral part of solving the data exchange
problem.

Chase order. The FindCoreE algorithm applies the target chase in a don’t care non-
deterministic manner, while the FindCore algorithm requires a particular chase order
referred to as “nice chase”. In theory, the additional cost of the nice chase is just a
multiplicative constant (before each rule application, we ensure that no rule with higher
priority applies, every time checking some fixed number of preconditions). In practice,
however, there are other concerns. In our implementation, we take advantage of the fact
that the non-deterministic chase can be run in a kind of “batch mode”, where several
instantiations of a single dependency can be enforced simultaneously. In contrast, if a
nice chase order has to be followed, then a separate statement has to be issued for every
individual rule application.

Simulation of the EGDs by TGDs. In order to simulate the EGDs in Σt, the FindCore
algorithm has to introduce TGDs which ultimately enforce the desired equalities along
the core computation. In theory, the number of additional TGDs needed is bounded by a
constant. Nevertheless, the extra effort thus needed can be considerable, as the following
simple example illustrates:

Example 4.3.1 Let J = {R(x, y), P (y, x)} be a preuniversal instance, and a single EGD
R(z, v), P (v, z) → z = v constitute Σt. In order to simulate this EGD by TGDs, the
following set of dependencies Σ̄t has to be constructed according to the algorithm in [GN06]:

32



1. R(z, v), P (v, z)→ E(z, v)
2. E(x, y)→ E(y, x)
3. E(x, y), E(y, z)→ E(x, z)
4. R(x, y)→ E(x, x)
5. R(x, y)→ E(y, y)
6. P (x, y)→ E(x, x)
7. P (x, y)→ E(y, y)
8. R(x, y), E(x, z)→ R(z, y)
9. R(x, y), E(y, z)→ R(x, z)

10. P (x, y), E(x, z)→ P (z, y)
11. P (x, y), E(y, z)→ P (x, z)

where E is the auxiliary predicate representing equality.
Chasing J with Σ̄t (in a nice order), yields the instance

J Σ̄t = {R(x, y), R(x, x), R(y, x), R(y, y), P (y, x), P (y, y),
P (x, y), P (x, x), E(x, x), E(x, y), E(y, x), E(y, y)}.

Note that, if a fact contains k occurrences of any of the two terms that have to be unified
(in our case, the variables x and y), then the chase produces 2k variants of this fact.

The core computation applied to J Σ̄t will produce either the solution {R(x, x), P (x, x)}
or {R(y, y), P (y, y)}.

On the other hand, if EGDs are directly enforced by the target chase, then the chase
ends with the canonical universal solution JΣt = {R(x, x), P (x, x)}. In this case, the core
computation is only needed to check that this solution is already a core.

The most common use of EGDs is, perhaps, to enforce functional dependencies and, in
particular, key constraints. That is, given two facts with equal keys, unify the rest of
the fields. This is exactly the case when the simulation approach causes the blow-up of a
target database, as demonstrated by the above example. Additional TGDs and redundant
tuples thus generated have a negative effect on the performance of both the chase and the
core computation.

33



Chapter 5

Algorithm Implementation

We have implemented a prototype system based on the FindCoreE algorithm presented in
Chapter 4, relying on a DBMS back-end. This approach allowed us to delegate the storage
and querying of relational data to the systems best suited for that and concentrate on the
core computation itself. Currently, the implementation works with the freely available
HSQLDB and PostgreSQL, but it can be easily adapted to any other RDBMS.

5.1 General system architecture

The overall system architecture is shown on Figure 5.1. The data exchange scenario,
namely, the source and target databases, the target schema and the dependencies are
specified with an XML configuration file. The source schema is fetched from a database.

The XML configuration data is passed to a Java program, which uses XSLT templates
to automatically generate the SQL-statements for managing the target database (creating
tables and views, transferring data between tables etc.). Every SQL command can be
customized for the specific database platform if it uses an SQL dialect different from the
default implementation (the generation of SQL from the configuration files is explained
in the Section 5.3 “Implementation”). For the source data, every JDBC-compatible data
source is fine.

Our prototype provides no graphical interface, since the use of a database allows to
track data transfers with the help of any graphical database management tool, that sup-
ports JDBC. The configuration can be performed with a single XML file.

Source 
Database

Data 
Exchange 
engine XSLT

Target 
Database
(HSQLDB,
Postgre)

<XML/>
Data

Exchange 
Scenario

SQL

Figure 5.1: Overview of the implementation.

34



NULL Yves

idt tutor

T1

idt_var

NULL

tutor_var

NULL NULLT2 N

Tutor (table with null labels)

T1

var_id

T2

Map (a homomorphism)

Tutor_Mapped view

NULL Yves

idt tutor

T1

idt_var

NULL

tutor_var

NULL YvesT1 NULL

T1

var

T1

NULL

const

NULL

N NULL Yves

Duplicate row

1

id

2

1

id

2

Figure 5.2: Modeling labeled nulls.

5.2 Design decisions

In this section we provide an overview of the system design, clarifying the main deci-
sions, but without going too much into detail, which is the next Implementation section
responsible for. We explain the system based on our running Example 2.3.1. Recall that
we have a source schema containing of the two relations Tutorial(course, tutor): {(’java’,
’Yves’)} and BasicUnit(course): {’java’}, and the target schema of four relation symbols
NeedsLab(id tutor,lab), Tutor(idt,tutor), Teaches(id tutor, id course) and Course(idc, course).
The STDs are:

1. BasicUnit(C)→ Course(Idc, C).
2. Tutorial(C, T )→ Course(Idc, C),Tutor(Idt, T ),Teaches(Idt, Itc).

The target dependencies consist of two TGDs and one EGD:

3. Course(Idc, C)→ Tutor(Idt, T ),Teaches(Idt, Idc).
4. Teaches(Idt, Idc)→ NeedsLab(Idt, L).
5. Course(Id1, Course),Course(Id2, Course)→ Id1 = Id2.

5.2.1 Labeled nulls support

None of the common database management systems to-date support labeled nulls. There-
fore, to implement this feature on top of the usual RDBMS, we augmented every target
relation (i.e., table) with additional columns, storing null labels. For instance, for a column
tutor of the Tutor table, a column tutor var is created to store the labels for nulls of
tutor. To simulate homomorphisms, we use a table called Map storing variable mappings,
and views that substitute labeled nulls in the data tables with their images given by a
homomorphism. Fig. 5.2 gives a flavor of what this part of the database looks like. Each
target relation has a unique id attribute, which is not present anywhere in the dependen-
cies, but is used internally to reference the facts (i.e., the table rows). The values for the
id attribute are generated by the usual database auto-increment mechanism and are not
part of the target domain considered for core computation.

The relation under a homomorphism is simulated by a view. To implement it, it suffices
to perform an outer join for each field of the relation with the Map table, and then glue
the the column mappings together with the help of inner join on the id field.

35



We give an example definition of Tutor Mapped view that simulates a Tutor relation
under a homomorphism stored in the table Map.

CREATE Tutor Mapped AS
SELECT COALESCE(Tutor1.idt, Map1.const), Map1.var,

COALESCE(Tutor2.tutor, Map2.const), Map2.var,
Tutor1.id

FROMTutor AS Tutor1 LEFT JOIN Map AS Map1 ON Tutor.idt var = Map1.var id
INNER JOIN Tutor AS Tutor2 ON Tutor1.id = Tutor2.id
LEFT JOIN Map AS Map2 ON Tutor2.tutor var = Map2.var id;

Our approach of simulating labeled nulls in a “normal” RDBMS is probably not the
most efficient solution and, thus, not suitable for real-world applications (especially, when
the number of columns is large). However, the flexibility of such a design proved very
convenient for the prototype development.

5.2.2 Blocks and disjoint sets

Block computation problem arises at different steps of the FindCoreE algorithm. More-
over, in this chapter we show, that some other tasks which are necessary for algorithm
implementation can be reduced to block computation, so it becomes one of the central
routines of the system.

One approach to compute the connected components of undirected graphs is to reduce
it to the well-known set union problem [GF64]. It consists of maintaining a collection of
disjoint sets under the operation of union. That is, starting with some initial collection of
disjoint sets, perform one of the two operation on them:

• Union(A,B) merges the sets A and B in one,

• Find(x) returns the identifier of a unique set containing x.

Additionally, one can introduce an initialization operation, MakeSet(x) that constructs
a singleton set given an element.

Let now start with the elementary sets containing the variables of some instance K.
Perform Union (Find(x),Find(y)) whenever variables x and y occur together in the same
tuple, for all pairs of variables in var(K). Having done this for every pair of variables of
each tuple in K, the disjoint set of a variable is exactly its block. Alternatively, we could
build the sets over tuples and join them whenever two tuples have a variable in common.
We illustrate this in the Example 5.2.1.

We refer to the algorithm allowing to maintain such a structure as to DisjointSets
and give only its outline here. The detailed description and discussion of this technique is
contained, for example, in [GI91] and in [RL90].

To implement the find and union operation effectively, the disjoint sets are represented
as trees. The root of the tree serves a set identifier. The Find operation is then just
following the parent references up to the root element. And to combine two disjoint sets it
suffices to update the parent reference of the root of one tree, so that it become a branch
of another tree.

function MakeSet(x)
x.parent = x;

36



function Find(x)
if x.parent == x

return x;
else

return Find(x.parent);

function Union(x,y)
xRoot = Find(x);
yRoot = Find(y);
xRoot.parent = yRoot;

This is rather a naive approach, since the trees can become highly unbalanced after a
series of random Uion operations. Two simple improvements allow to tackle this: firstly,
take care to append the smaller trees to larger ones and not vice versa. Secondly, a side
effect of Find operation is introduced: namely, it flattens the tree while traversing it. The
last improvement is called path compression and it is quite easy to implement:

function Find(x)
if x.parent == x

return x;
else

x.parent = Find(x.parent);
return x.parent;

Back to the first improvement, we need to effectively estimate the tree size. To do so,
the rank heuristic can be used:

function MakeSet(x)
x.parent = x;
x.rank = 0;

function Union(x,y)
xRoot = Find(x);
yRoot = Find(y);
if xRoot.rank > yRoot.rank

yRoot.parent = xRoot;
elseif xRoot.rank < yRoot.rank

xRoot.parent = yRoot;
elseif xRoot.rank == yRoot.rank

yRoot.parent = xRoot;
xRoot.rank = xRoot.rank + 1;

In the worst case, the running time per operation in this approach is O(A(n, n)−1)
[RL90], where A(n, n) is an extremely quickly-growing Ackermann function. It was shown
in [FS89] that any disjoint sets algorithm representing collections of sets as forests, ac-
cesses Ω(A(n, n)−1) words per operation, so it is hardly possible to obtain a more effective
algorithm.

37



Example 5.2.1 We illustrate the usage of the DisjointSets algorithm by the following
example. Let K = {S(x, y), P (y, z), S(v, w)} be an instance. Suppose that we want to
check if there exists an endomorphism h of K mapping x onto v. To do so, we need to
check if it is possible to construct an endomorphism, mapping all tuples over variables of
block(x) onto tuples of K over h(block(X)). That is, we need to select the facts of K
which are relevant for checking the existence of a homomorphism.

We start with three singletons, constructed by MakeSet: {S(x, y)}, {P (y, z)} and {S(v, z)}.
Then we call Union (Find(t1),Find(t2)) for each pair 〈t1, t2〉 of facts, whenever t1 and t2
share a variable, but belong to different sets, i.e., Find(t1) 6= Find(t2).

Let us start with the pair 〈S(x, y), P (y, z)〉. The two facts have a common variable y
but belong to different sets, so the Union operation yields the superset {S(x, y), P (y, z)}.
Then, after processing the pair 〈S(v, z), P (y, z)〉, all the three facts become elements of the
same (trivially disjoint) set. Hence, one needs to consider all the facts of K to check if a
desired endomorphism exists. It is easy to see that the result is negative, since y has to be
mapped on z, and there is no such P -fact in K.

5.2.3 Unlabeled nulls in the source instance

The FindCoreE algorithm, as well as FindCore, is defined on ground source instances
only. The reason for that is that the bounded block size of the source instance is critical
for the tractability of core computation, as shown in previous chapters. Since our im-
plementation takes the data from arbitrary JDBC databases, we opted to make this quite
restrictive requirement a little weaker. That is, we allow the usual, not labeled nulls to
appear in the source instance. Source-to-target chase then assigns a unique label to ev-
ery such non-labeled null, should it be copied from the source into the target database.
Clearly, this affects the preuniversal instance block size, which nonetheless remains fixed
and being determined by the source-to-target dependencies only. More precisely, if h is
the height of STDs, and w — their width, then by allowing unlabeled source nulls we
increase the maximal block size of the preuniversal instance from h to h+ w.

Additional argument in favor of such a decision is that it facilitates the performance
evaluation. By adding the incomplete duplicates of the source tuples to the source in-
stance, one can easily vary the load on the core computation. By incomplete duplicate we
understand a variant of the tuple with some values replaced by a NULL. For example, let
Tutorial(’Yves’,’java’) be the ground fact. Then Tutorial(’Yves’,NULL), Tutorial(NULL,’java’) are
both its incomplete duplicates.

Since the target counterparts of such incomplete source tuples, produced by the source-
to-target chase, are guaranteed to be homomorphic to the facts induced by the original
source tuples without nulls, the former can never appear in the core of the canonical
solution. We used this approach for experimenting with the system, however, it could be
a viable option for implementing in any data exchange tool, since NULL values are quite
common in real-world databases.

5.2.4 Partitions

At every iteration, the algorithm tries to find an endomorphism that would map a variable
on some other term. Since all the variables are distributed among the facts by the chase,
we may analyze the dependencies to prune impossible substitutions (thus, in our example
it makes no sense to try to unify a variable from the Tutor.tutor column with any term
from Course.idc). We capture this with the notion of field partitions, i.e., sets of fields
that possibly share terms. Two fields f1 and f2 belong to the same partition, if there is
either

38



1. a variable shared between f1 in the premise and f2 in the conclusion of the same
TGD, or

2. a variable shared by f1 and f2 in the conclusion of a TGD, or
3. an EGD unifying two variables occurring at fields f1 and f2 in its premise.

All the three rules partition the fields occurring in an individual dependency (let us
call them local partitions). To compute the global partitions from the local ones, it suffices
to feed them to the above described DisjointSets algorithm. Back to our example, the
target field partitions are

1. {Course.course},
2. {Tutor.tutor},
3. {NeedsLab.lab},
4. {Course.idc, Teaches.id course} and
5. {Tutor.idt, Teaches.id tutor, NeedsLab.id tutor}.

5.2.5 Chase

Chase means, essentially, the search of term assignments leading to constraint violation,
and the usage of those found terms (together with fresh nulls, in case of non-full TGDs) for
repairing the target instance, so that the constraints became satisfied. Since the premise
of every constraint is a query, it is natural to convert it in SQL and pass to a DBMS to
retrieve such violating assignments.

For example, consider the source instance of our example: { Tutorial(’java’, ’Yves’),
BasicUnit(’java’) }, and suppose that the target instance is empty. Then the following
SQL query, representing the first STD

BasicUnit(C)→ Course(Idc, C)

retrieves a unary tuple (’java’):

SELECT BasicUnit.course FROM BasicUnit
WHERE NOT EXISTS (SELECT 1 FROM Course WHERE Course.course = BasicUnit.course )

As a slightly more complex case, we take the second STD:

Tutorial(C, T )→ Course(Idc, C),Tutor(Idt, T ),Teaches(Idt, Itc)

The corresponding SQL query returns (’java’, ’Yves’), as expected:

SELECT Tutorial.course, Tutorial.tutor FROM Tutorial
WHERE NOT EXISTS (SELECT 1 FROM Course

JOIN Teaches ON Course.idc = Teaches.id course
JOIN Tutor ON Teaches.id tutor = Tutor.idt
WHERE Course.course = Tutorial.course AND Tutor.tutor = Tutorial.tutor)

The results of the above queries are then used to generate new facts in the target in-
stance. If executed one after another, they yield the following target preuniversal instance:

J = {Course(C1, ’java’), Course(C2, ’java’), Tutor(T1,’Yves’), Teaches(T1,C2) }

39



Since target TGDs are enforced essentially in the same way as source-to-target ones, we
omit the first two target dependencies, and illustrate the application of EGDs, based on the
same idea of SQL representation. The only thing that is different for target dependencies,
is how the equality between terms is expressed: two terms are equal if they represent the
same constant, or if they are both nulls with the same label. This differs from the usual
SQL behavior, when two NULLs are never equal (in fact, any logical operation over a NULL
operand must return “undefined”, i.e. is neither true nor false). We first give the query
retrieving all pairs of terms that violate the last target dependency

Course(Id1, Course),Course(Id2, Course)→ Id1 = Id2 :

SELECT Course1.course, Course1.course var, Course2.course, Course2.course var
FROM Course AS Course1 JOIN Course AS Course1 ON Course1.course = Course2.course
WHERE ( (Course1.idc IS NULL) != (Course2.idc IS NULL) )

OR Course1.idc != Course2.idc OR Course1.idc var != Course2.idc var

We cannot, of course, just write Course1.idc != Course2.idc OR Course1.idc var != Course2.idc var

to test that two values are distinct, because of the special treatment of NULL values by most
database systems: when testing a variable (Course1.idc is NULL and Course1.idc var
is not null) and a constant (Course2.idc is not null and Course2.idc var is NULL) both
inequalities retrun “undefined”, and the search condition fails, leaving the not equal pair
undetected.

Note that the above queries retrieve all the assignments violating a given dependency.
Thus, so to say, a “batch mode” of dependency enforcement is implemented (we may do
so, as the success of the chase does not depend on the order of rules application: this
would clearly be impossible with the nice chase proposed in [GN06]).

There is an additional subtle aspect to consider, when using such a batch enforcement
of EGDs. Consider the EGD of our example and the following instance:

K = {Course(C1, ’java’), Course(C2, ’java’), Course(C3, ’java’)}

The above SQL query will retrieve the all three IDs in all possible combinations:
{(C1, C2), (C1, C3), (C2, C3), (C2, C1), (C3, C1), (C3, C2)}. After pruning the symmetric
pairs, we are left with {(C1, C2), (C2, C3), (C3, C1)}. Clearly, if performed independently,
the three substitutions would lead just to different distribution of the same nulls among
the facts.

One solution allowing to prevent such circular assignments is first to find the set of
the terms E which are equal according to some EGD τ (there may be no more than one
constant in E, otherwise chase must fail), then choose one element ts ∈ E to serve a
substitution (obviously, if there is a constant in E, it should be chosen), and replace every
variable in E\{ts} with ts. There are different ways of identifying such sets of equal terms,
and one of them is to view the pairs of terms as edges of the graph, while terms being its
vertices (it is thus not a Gaifman graph, as we allow constants to serve as vertices). Its
connected components are then the terms that should be set equal. Quite naturally, to
compute these connected components we use the Disjoint-Sets algorithm described above,
similarly to computing blocks and partitions.

During the chase, it is also necessary to store some additional information. In partic-
ular, we need

• track variables and origin of their positions (see Section 5.2.7 for implementation de-
tails), which is needed to construct the subinstance Txy, as described in Lemma 4.2.1;

• chase history required for the homomorphism extension, according to the procedure
Extend from Chapter 4 (see Section 5.2.9)

40



5.2.6 Computing non-rigid blocks

We use the Nrblock(blockid, varid) table to store the non-rigid blocks, where the
blockid field stores the block identifier, and the varid — variables belonging to the
block. To compute them, it suffices

1. during the source-to-target chase, create a new block in the Nrblock table for each
TGD firing, and add to it all the introduced variables;

2. reflect in Nrblock each variable replacement caused by a target EGD (i.e., substitute
the values in varid field with the same term as in target tables);

3. after the target chase, mark all the variables that occur more than in one block of
Nrblock as rigid (use an appropriate bit field in the Var table). Delete rigid variables
from Nrblock.

To illustrate this process, let us step through the target chase (the creation of the
preuniversal instance was already demonstrated in the previous subsection). We start
with a preuniversal instance

J = {Course(C1, ’java’), Course(C2, ’java’), Tutor(T1,’Yves’), Teaches(T1,C2) }

First, we compute the blocks of J . They are: {{C1}, {C2, T1}}. The first TDG

Course(Idc, C)→ Tutor(Idt, T ),Teaches(Idt, Idc)

generates another pair of Tutor and Teaches facts for the course C1: Tutor(T2,N) and
Teaches(T2,C1). Then, the second TGD

Teaches(Idt, Idc)→ NeedsLab(Idt, L)

adds two facts NeedsLab(T1,L1) and NeedsLab(T2,L2). Finally, the EGD sets the C1 and
C2 equal, which is reflected in the blocks {{C1}, {C1, T1}}. Since C1 occurs more than in
one block (of course, we could have left C2 instead), we mark it as rigid, and exclude from
the non-rigid blocks citizens. Thus, the only non-rigid block left is {T1}, which is trivial
and can be ignored. A canonical universal solution is:

J ′ = {Course(C1, ’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1),
Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2)}.

5.2.7 Tracking variable families

As explained in the Chapter 4, the family of a variable is the minimal set of facts, including
its origin and closed under parents and siblings. As shown by the Lemma 4.1.1, every
position of an instance always has the same contents as its origin. Thus, if we think of
facts as of position vectors (or, better yet, of variable placeholder vectors), we can also
regard a foreign position p as another instantiation of its origin position op.

For the implementation, we found this idea more intuitive, and moreover, more effec-
tive, than tracking an origin of every position. To avoid overloading of the word “position”
with yet another meaning of a variable placeholder, we call them cells. Now, when a fresh
null x is introduced by the chase, we create a new cell cx for it, and say that this cell is
used by all facts that were created to store x, i.e.,every origin position of x is identified
with cx; we also call them origin positions of a cell cx. When later a position ps, with
which a cell cps is identified, serves as a source for some position p (i.e. a value from ps

is copied into p by a TGD), we identify with p the same cell cps . Hence, foreign positions
are always identified with the same cell as their origin positions. To track the variable of
the target instance, we use the following tables (Fig. 5.3):

41



id      VARCHAR
rigid   BIT

Var id        VARCHAR
varid     VARCHAR
isorigin  BIT

Cell
cellid        VARCHAR
tuprel        VARCHAR
tupfield      VARCHAR
tupid         BIGINT
isorigin      BIT

CellBackref

groupid  BIGINT
tuprel   VARCHAR
tupid    BIGINT

Sibling
blockid   BIGINT
vid       VARCHAR

Nrblock

Figure 5.3: Database representation of cells.

• Var(id VARCHAR, rigid BIT), where id stores a unique variable id (we use a char-
acter data type to facilitate debugging: it is easier to track visually character iden-
tifiers in the database than numbers), rigid is true for rigid variables only.

• Cell(id VARCHAR, varid VARCHAR, isorigin BIT), where Cell.isorigin is set
to true initially, when a new cell is created to store a fresh variable; if a variable is
replaced with another variable by an EGD, the respective Cell.isorigin field is
set to false.

• CellBackref(cellid VARCHAR, tuprel VARCHAR, tupfield VARCHAR, tupid BIGINT,
isorigin BIT) enumerating all occurrences of a cell cellid. Occurrences are rep-
resented by a triple: a relation name tuprel, a relation field tupfield and a tuple
id tupid. CellBackref.isorigin is true for origin positions (occurrences) of the
cells, and false otherwise.

• Sibling(groupid BIGINT, tuprel VARCHAR, tupid BIGINT) storing the sibling
relation over facts. Each group of siblings has a unique identifier cellid. Facts
(tuples) are referenced by the relation name tuprel, and a row id tupid.

• Nrblock(blockid BIGINT, vid VARCHAR) enumerates a non-rigid blocks over the
facts belonging to the preuniversal instance.

Let us recall our running example. A canonical universal solution is

J ′ = {Course(C1, ’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1),
Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2)}.

Fig. 5.4 shows the snapshot of tables in the target database, representing this instance.
Now, let us get the family of variable N , i.e. the set of facts FN .

1. Fetch the origin cell cN of variable N (initially, cell names coincide with the labels
of nulls stored in them, until an EGD changes the cell’s contents).

2. Fetch from CellBackRef and store in FN the origin facts of the cell cN and their
siblings: FN := {(Tutor,2), (Teaches,2)}. Let CN be a set of cells of FN : CN =
{N,T2, C1}.

3. Fetch from CellBackRef and add to FN the origin facts of the cells in CN , which are
not yet there. Repeat this step until there are such facts. FN := FN ∪ {(Course,1)}.

Finally, we obtain the family of N : FN = {(Tutor,2), (Teaches,2), (Course,1)}, that is,
the facts Tutor(T2,N), Teaches(T2,C1), and Course(C1,’java’).

42



NULL Yves

idt tutor

T1

idt_var

NULL

tutor_var
Course 

NULL java

idc course

C1

idc_var

NULL

course_var

NULL javaC1 NULL

Tutor 

T1

id_tutor_var

C1

id_course_var

Teaches 

C1

id

true

rigid

T1 false

Var 

C1

id

C1

varid

true

isorigin

T1 T1 true

Cell 

C1 1

cellid tupid

Course

tuprel

idc

tupfield

T1 1Tutor idt

CellBackRef 

true

isorigin

true

1

id

1

id

2

1

id

C2 C1 false

C2 2Course idc true

T1 1Teaches id_tutor true

C2 1Teaches id_course true

NULL

id_tutor

NULL

id_course
1

groupid

2

Sibling 

2

Course

tuprel

Tutor

Course

1

tupid

1

2

2 Teaches 1

vidblockid

T12

Nrblock 

NULL NULLT2 N 2

Duplicate row

T2 C1 2NULL NULL

T2 2Teaches id_tutor true

C1 2Teaches id_course false

T1

id_tutor_var

L1

lab_var

NeedsLab 

1

id

NULL

id_tutor

NULL

lab

T2 L2 2NULL NULL

T2 2Tutor idt true

3 Tutor 2

3 Teaches 2

4 NeedsLab 1

5 NeedsLab 2

T1 1NeedsLab id_tutor false

L1 1NeedsLab lab true

T2 2NeedsLab id_tutor false

L2 2NeedsLab lab true

N 2Tutor tutor true

N true

T2 true

L2 true

L1 true

N true

T2 true

L2 true

L1 true

true

true

true

true

Figure 5.4: Database representation of the target instance.

5.2.8 Computing a characteristic homomorphism

The homomorphism computation in step 5 of FindCoreE is performed in the following
way. Let a variable x and a term y be selected at step 3 of the algorithm, and let the
set Txy be computed at step 4. We want to build a homomorphism h : Txy → U , s.t.
h(x) = h(y). To do so, we need to inspect all possible mappings from the block of x and
from the block of y. Each of these steps boils down to generating and executing a database
query, that fetches all possible instantiations for the variables in each block.

We demonstrate that on a canonical universal solution J ′ obtained previously (see the
last paragraph of the previous subsection). Suppose that we look for a proper endomor-

43



phism h′ on J ′. Step 4 of FindCoreE then yields the set TN,′Yves′ = J ∪FN , where FN is
a family of the variable N found in the previous section, and J — a preuniversal instance
(see Section 5.2.5).

TN,′Yves′ = {Tutor(T1,’Yves’), Teaches(T1,C1), Course(C1,’java’),
Tutor(T2, N), Teaches(T2, C1)}.

At step 5, a homomorphism h : Txy → J (with x = N and y =’Yves’), s.t. h(N) = ’Yves’
has to be found. As we found out, non-rigid blocks of a preuniversal instance can be
trivially ignored. Moreover, we disregard the rigid variable C1 when calculating non-rigid
blocks of TN,′Yves′ .

The usual block of N in TN,′Yves′ is {N,T2, C1, T1}, since there are edges (T2, N) and
(T2, C1) in the Gaifman graph of J ′. The non-rigid block is induced by a non-rigid Gaifman
graph with no C1 vertex, thus the non-rigid block of N is {N,T2}. The following SQL
query returns all possible instantiations of the variable T2 compatible with the mapping
h(N) = ′Yves′:

SELECT Tutor.idt var AS T2 FROM Tutor WHERE Tutor.tutor = ’Yves’

In our example, the result is {T2 → T1}. The rest of the variables of TN,′Yves′ , namely
T1 and C1, is mapped using the following considerations:

• C1 is rigid, hence the only possible mapping is C1 → C1;

• T1 do not belong to the non-rigid block of N , hence can be mapped independently. In
particular, we may reuse the endomorphism of J , computed on the previous iteration
of the algorithm. We assume, that there were a zero iteration, producing an identity
endomorphism of J , and the roughest core approximation, which is J itself. Hence,
we use this identity mapping for T1, setting T1 → T1.

Note, that excluding of the rigid variable have led to a notable simplification of the query.
Imagine the same example without the target EGD. We would obtain a canonical universal
solution

J̄ ′ = {Course(C1, ’java’), Tutor(T1,’Yves’), Teaches(T1,C1), NeedsLab(T1,L1),
Course(C2, ’java’) Tutor(T2,N), Teaches(T2,C1), NeedsLab(T2,L2)}.

Similarly, trying to get rid of N , we should have used its non-rigid block in TN,′Yves′ ,
which in the absence of EGD coincides with the usual block of N : {N,T2, C1, T1}. The
corresponding SQL query would then contain several joins:

SELECT Tutor1.idt var AS T2, Course.idc var AS C1, Tutor2.idt var AS T1
FROM Tutor AS Tutor1

JOIN Teaches AS Teaches1 ON Tutor1.idt var = Teaches1.id tutor var
JOIN Course ON Teaches1.id course var = Course.idc var
JOIN Teaches AS Teaches2 ON Teaches2.id course var = Course.idc var
JOIN Tutor AS Tutor2 ON Teaches2.id tutor var = Tutor2.idt var

WHERE Tutor1.tutor = ’Yves’ AND Course.course = ’java’ AND Tutor2.tutor = ’Yves’

The above query leads to the same mappings of variables, but in a far less efficient way
(especially if a database is large). This example shows, that due to rigidity property, EGDs
can make the homomorphism computation remarkably faster. This would be impossible
with the approach of EGD simulation, employed by the original FindCore.

44



5.2.9 Homomorphism extension

Extension of the homomorphism at step 7 of the FindCoreE , proceeds according to the
iterative procedure Extend (Section 4.2). At each step, we choose a set of sibling facts
S which contain variables not yet covered by a homomorphism, such that all parents of
facts in S are fully covered. Then we extend the homomorphism to cover tuples in S as
well.

It is not difficult to show, that if we follow the order in which the non-full TGDs were
applied by the target chase, we can use not the parent facts of S, but the facts, that
satisfied the premise of TGD which in turn led to the creation of siblings S.

Therefore, for each chase step enforcing a non-full TGD, we track the ids of facts that
have satisfied the dependency, and the ids of facts that have been created. Fig. 5.5 shows
such chase logs for the two target TGDs of our running example.

id_parent_course id_tutor
ChaseLog_3 

2

id_teaches

1 2

id_parent_teaches id_needslab
ChaseLog_4 

2 2

1 1

Log of the first target TGD (dependency #3):

Course(Idc,C) →Tutor(Idt,T),Teaches(T,C)

Log of the dependency #4:

Teaches(Idt,Idc) → NeedsLab(Idt,L)

Figure 5.5: Logs of non-full TGD application.

Having such a log, it is not difficult to choose a pair of fact sets P and S, such that
the creation of S was triggered by the facts in P , and all variables of P are covered by
a homomorpism, but not all variables of S are. Then, we use the same approach as in
the previous section, to find the mappings for the variables of S, consistent with already
found mappings for P .

For our example, we know that {C1 → C1, N → ’Yves’, T2 → T1, T1 → T1} is a valid
homomorphism TN,′Y ves′ → J ′. To obtain an endomorphism on J ′, it suffices to map the
variables L1 and L2, generated by the dependency #4. The following SQL query finds
an image for variable L1 consistent with the previously found mappings T1 → T1 and
C1 → C1:

SELECT NeedsLab.lab var AS L1

FROM NeedsLab JOIN Teaches ON NeedsLab.id tutor var = Teaches.id tutor var

WHERE Teaches.id tutor var = ’T1’ AND Teaches.id course var = ’C1’

The query returns L1, as expected. The mapping L2 → L1, retrieved with the same
query (since T2 is also mapped on T1), finalizes the creation of a proper endomorphism of
J .

5.2.10 Choosing the optimal mapping

As shown previously, to construct or to extend a homomorphism, SQL queries are used,
retrieving all possible mappings for a set of variables. If several such mappings are possible,
how can we choose the optimal one? Let h be a homomorphism to be built (or extended).
W.l.o.g. assume that we already know some its part hi ⊆ h (it is evident for homomorphism
extension; if h is constructed from scratch, it is done blockwise, and hi could be a mapping

45



for some already processed block). To choose between several possible images, we use the
following simple heuristic: if two mappings ~a and ~b are possible for some tuple of variables
~x ∈ dom(h), we choose ~a, whenever

• number of constants in ~a is greater than in ~b (prefer constants), or

• number of terms, belonging to the range(hi) in ~a is greater than in ~b (reuse images).

As shown in the next chapter (“System tests and evaluation”), these two simple heuris-
tic rules often suffice to obtain a core after the first successful iteration of the FindCoreE

(that is, after an iteration resulting in creation of a proper retraction).

5.2.11 Obtaining the retraction

According to the Theorem 3.2.2, to obtain a retraction r from an arbitrary endomor-
phism h on some instance B, it suffices first to iterate h some q < |dom(B)| times until
the fix-point is reached, i.e. hq(B) = B. Then, the g = hq is iterated another c times,
where c is polynomial in the |dom(B)|, as the following procedure shows:

Procedure TransformToRetraction

Input: Endomorphism h on some instance B
Output: Retraction r on B s.t. ∀x, y ∈ dom(B) : h(x) = h(y) implies r(x) = r(y)

(1) Set g := h;
(2) while |range(g)| > |range(h ◦ g)| do
(3) Set g := h ◦ g
(4) od
(5) Set r := g
(6) while ∃x ∈ dom(r) : r(x) 6= r(r(x)) do
(7) Set r := g ◦ r
(8) od
(9) return r.

The correctness of this algorithm follows immediately from the Theorem 3.2.2. The
second iteration could have been implemented more efficiently (now we compute gc per-
forming c iterations; however, Theorem 3.2.2 shows that c could be factored on some k
multipliers ci, 1 ≤ i ≤ k; it then suffices to perform

∑
1≤i≤k ci compositions). However,

our experiments showed that in practice this part of an algorithm is by far not a bottleneck
(taking at least by two orders of magnitude less time than the search and extension of
the homomorphism on previous steps of FindCoreE), so we have found improving this
procedure unnecessary.

5.3 Implementation

5.3.1 Database manipulation

For database manipulation, like copying of data from source to target, target schema
creation, updating and deletion, we used an open-source library, Apache DDL Utils.

Therefore, the target schema must be specified in the XML format used by this library,
which is called Turbine XML or Torque XML in the Apache documentation. Though it

46



supports different types of database objects, as indexes and constraints, we use only the
most basic constructions, for specifying table and field names. It is also possible to provide
more information within a database schema (like different field data types, public and
foreign keys etc.), though everything but table and field names will be ignored. Moreover,
only string (VARCHAR) fields are currently supported in the target tables. The following
XML file represents the target schema in our running example:

<!DOCTYPE database SYSTEM "http://db.apache.org/torque/dtd/database.dtd">

<database name="default-source-databse">
<table name="Course">

<column name="idc"/>
<column name="course"/>

</table>

<table name="Tutor">
<column name="idt"/>
<column name="tutor"/>

</table>

<table name="Teaches">
<column name="id tutor"/>
<column name="id course"/>

</table>

<table name="NeedsLab">
<column name="id tutor"/>
<column name="lab"/>

</table>
</database>

The source schema is normally must not be specified, as Apache DDL Utils can obtain it
by means of JDBC. We use this library also for creation and updating the target database
schema, and for transferring the data between source and target databases. For other
operations on the target database, classes of the Spring Framework [spr] are used, which is
much more convenient than the standard Java JDBC implementation. The use of Spring
Framework for system configuration is further explained in Section 5.3.2.

5.3.2 Configuration

For specifying data exchange scenarios, we use XML configuration files. The schema of
the source and target database as well as the STDs and TDs can thus be comfortably
represented, and they are cleanly separated from the scenario-independent Java code of
the core computation.

For instance, for our running example of this chapter, the source-to-target dependencies

1. BasicUnit(C)→ Course(Idc, C)
2. Tutorial(C, T )→ Course(Idc, C),Tutor(Idt, T ),Teaches(Idt, Itc).

are represented by the following XML code fragment:

47



<dx:sourceToTargetDependencies>
<dx:dependency>

<dx:premise>
<BasicUnit course="C"/>

</dx:premise>
<dx:conclusion>

<Course course="C"/>
</dx:conclusion>

</dx:dependency>
<dx:dependency>

<dx:premise>
<Tutorial tutor="T" course="C"/>

</dx:premise>
<dx:conclusion>

<Course idc="Idc" course="C"/>
<Tutor idt="Idt" tutor="T"/>
<Teaches id tutor="Idt" id course="Idc"/>

</dx:conclusion>
</dx:dependency>

</dx:sourceToTargetDepenencies>

Note that for the first TGD, the variable Idc which is unique for the conclusion, has not
to be specified. By default, all the omitted fields are instantiated by fresh unique labeled
nulls. The XML consists of two schemata: one, denoted by the prefix "dx" sets the struc-
ture of dependencies, another is used to specify the premise and conclusion queries. The
second schema is flexible: the field/value pairs can be represented either as arguments or
as elements, or both: <Tutorial tutor="T" course="C"/> denotes the same as <Tutorial

tutor="T"> <course>C</course></Tutorial>. The target dependencies

3. Course(Idc, C)→ Tutor(Idt, T ),Teaches(Idt, Idc),
4. Teaches(Idt, Idc)→ NeedsLab(Idt, L) and
5. Course(Id1, Course),Course(Id2, Course)→ Id1 = Id2

are specified in the same way:

<dx:targetDependencies>
<dx:dependency>

<dx:premise>
<Course idc="Idc"/>

</dx:premise>
<dx:conclusion>

<Tutor idt="Idt"/>
<Teaches id tutor="Idt" id course = "Idc"/>

</dx:conclusion>
</dx:dependency>
<dx:dependency>

<dx:premise>
<Teaches id tutor="Idt"/>

</dx:premise>
<dx:conclusion>

<NeedsLab id tutor="Idt"/>
</dx:conclusion>

</dx:dependency>

48



Data 
Exchange 
scenario

             

<XML/>

Spring 
Framework

context

                 

<XML/>

XSLT Spring 
Framework

SourceSchemaInstance

TargetSchemaInstance

Initialized Java classes of the Data Exchange engine:

Dependencies

TargetOptimizer

SourceSchema

TargetSchema

Figure 5.6: Configuration of the system.

<dx:dependency>
<dx:premise>

<Course id course="Id1" course="C"/>
<Course id course="Id2" course="C"/>

</dx:premise>
<dx:conclusion>

<dx:eq dx:a="Id1" dx:b="Id2"/>
</dx:conclusion>

</dx:dependency>
</dx:targetDepenencies>

Also in the premise query, if a variable occurs only once, and also not present in the
conclusion it can be omitted (variable C in the TGD #3, and Idc in the TGD #4).
Equality is specified by the tag dx:eq with two obligartory attributes dx:a and dx:b for
the left- and right-hand sides of the equation respectively.

The free XML schema is convenient for specifying queries, but not for further pro-
cessing. To facilitate XSL transformations, configuration data is encoded in the internal
format, better suited for XSLT. Thus, the last target TGD (dependency #4) looks in
the following way in the intermediate XML schema (the attribute partId corresponds to
partition id: see Section 5.2.4):

<dependency id="4">
<premise>

<tuples>
<tuple rel="Teaches">

<term field="id tutor" isRelevant="true" partId="5">Idt</term>
<term field="id course" isRelevant="false" partId="4">Idc</term>

</tuple>
</tuples>

</premise>

49



<conclusion>
<tuples>

<tuple rel="NeedsLab">
<term field="id tutor" partId="5">Idt</term>
<term field="lab" isVar="true" partId="3">Idc</term>

</tuple>
</tuples>

</conclusion>
</dependency>

Based on the data schema and dependies, the java classes are constructed and initial-
ized. To facilitate this, we use the Spring Framework [spr]. This framework allows to set
up properties of Java objects and the dependencies between them via XML files, called
contexts. We obtain such a context from the above described configuration file with the
help of XSL transformations. Fig. 5.6 illustrates this.

5.3.3 Main system classes

Here we present the essential part of the class diagram of the system (Fig. 5.7), and outline
the functionality of each class, along with the way they cooperate.

• DataExchangeScenario — a class representing the system configuration, either as
individual properties, or via XML fragments, fitted for further XSL transformations.

• Schema — a relational schema representation.

• TupleGeneratingDependency, EqualityGeneratingDependency — the subclasses
of the Dependency class, representing individual constraints. Provide convenience
methods for analyzing the dependency structure: variables shared by the premise
and the conclusion, compatible fields, etc.

• SchemaInstance — represents the schema instance. Most of the functionality is im-
plemented in the subclasses: SourceSchemaInstance and ParentSchemaInstance.

• SourceSchemaInstance — determines the relevant objects of the source database
for the data exchange session. Used by the SourceToTargetLink object.

• TargetSchemaInstance is responsible for construction and manipulating the target
schema instance. Implements the chase.

• SourceToTargetLink — ensures that the source data is accessible from the target
one. As the most straightforward scenario, a bulk copy of the source tables into the
target database is performed. If a target database supports linking external data
sources, the copying can be avoided.

• TargetOptimizer — computes the core of a canonical universal solution (computed
and encapsulated by the TargetSchemaInstance object).

• DbTool is responsible for the platform-specific database operations (creating/dropping
objects, translating data types, handling auto-incremental values etc.) Implements
a SqlStatementProvider interface, constructing SQL statements from the XML
scenario fragments with the help of XSLT.

• Driver — parses command line and runs the data exchange process.

50



prepareSchema()

SourceSchemaInstance

prepareSchema()

SchemaInstance

prepareDatabase()
chase()
cleanUp()

TargetSchemaInstance

prepareDatabase()

SourceToTargetLink

createTable()
dropTable()
createView()
dropView()
getNextUniqueId()

DbTool

getSql()

SqlStatementProvider

HsqlDbTool PostgreSqlDbTool

Apache DDL 
Utils

findCore()
cleanUp()

TargetOptimizer

getSourceInstance()
getTargetInstance()
getDependencies()
...
getAsXml()

DataExchangeScenario

<uses>

createDocument()
transformDocument()
createTransformer()
...

XmlTool

decideDatabasePlatform()

ConfigurationTool

getRelations()
...

Schema

Relation

Field

getTerms()
getReferencedRelations()
...

Dependency

TupleGeneratingDep. EqualityGeneratingDep.

<uses>

<uses>

<uses>

<uses>

<uses>

Data Exchange Domain Model

Instrumentation Classes

Core Computation Logic

Figure 5.7: Main classes of the system.

51



Chapter 6

System tests and evaluation

We have implemented the prototype of a data exchange engine with core computation
support. This chapter presents the test results of our system, as well as their evaluation.
Testing the algorithm on different data sets revealed predictable limitations of the current
implementation: as labeled nulls are modeled by views with large amount of joins (see
Section 5.2.1), queries against them are much slower than against usual tables.

A rough estimation for data exchange scenarios that can be tackled by the current
implementation, is 10 tables, with no more than 100 rows per input table and total of 1000
of labeled nulls generated by the chase. Though very far from the requirements of practical
applications, these performance bounds allow to run diverse data exchange scenarios and
to Analise the performance trends varying dependencies and the input. We believe that the
current implementation as it is (i.e. using a database back-end and simulating labeled nulls
with views), can still be improved to handle times as much data as it does now. However,
a more detailed bottleneck analysis and most probably further algorithmic improvements
are needed to approach any practically relevant database sizes. For a prototype, our main
goal was to develop a system which is easy to run and to configure and which provides for
easy inspection of internal data transfers for the debugging purposes.

The test configuration for this chapter:

• Hardware: MacBook Core 2 Duo 2GHz and 2Gb RAM.

• Operating System: Mac OS X 1.4 Tiger.

• Target database: PostgreSQL 8.1.

• Source database: Hypersonic SQL.

We start with a test set with tiny relations of arity less or equal than 3, and including
TGDs that introduce redundant tuples to be removed at the core computation phase. In
the following test sets, we create redundancy in target relations by adding incomplete du-
plicates to the source data, i.e., the variants of ground source tuples with some constants
replaced by nulls (see the previous chapter for the discussion). The second test set con-
centrates on normalization and denormalization, and the third test set first splits a table
into smaller slices and than restructures them.

For this chapter, we adopt the following naming convention: if a term starts with a
capital letter, it denotes a variable (sometimes we also use subscripts), otherwise, the term
is a constant. For example, in the dependency S(A,C1)→ ∃Cm P (A, b, C1, Cm) A, C1 and
Cm are variables, and b is a constant.

52



6.1 Redundant tuples

The first test set was built to be as simple as possible. It deals with five small relations:
F/1, S/1, R/3, P/2 and Q/2. The fields of each relation are named alphabetically (e.g.
S/1 has the only field ”a”, Q/2 has fields ”a” and ”b” etc.). F/1 belongs to the source
schema, and the rest are target relations. In all tests data transfer proceeds as shown by

S

a

R

a

b

F

a

c

P

a

b

Q

a

b

Figure 6.1: Schema of the first test set.

arrows. The source-to-target constraint is always the same: F (X)→ S(X).

6.1.1 3-level target TGDs

The set Σt of target constraints in this case is the following (we do not use the relation Q/2
in this test set; also note that according to our naming convention, w denotes a constant):

1. S(A)→ ∃X,Y, Z R(w,A,X) ∧R(X,Y, Z)

2. R(A,B,C)→ ∃X,Y P (C,X) ∧ P (Y,X)

Here the second rule generates redundant tuples in the relation P/2. In principle,
it is possible to analyze the dependencies before chasing them in order to prune such
“meaningless” tuples. A possible solution could be to compute a core of a query in the
conclusion of a TGD, and use it for chase instead of the original dependency conclusion.
It is easy to show, that tuples generated by those atoms of a TGD, which are not part of
the core of its conclusion, can never be present in the core of the canonical solution.

However, we deliberately use suboptimal dependencies for our tests, just to provide
enough work for the core computation algorithm, and, consequently, more material for
the performance analysis. The possible optimization would be elimination the second
atom P (Y,X) from the conclusion of the last TGD, since there is a homomorphism from
P (Y,X) onto P (C,X); variables carried from the premise act as constants in computing
the core of such a conclusion query.

The results of the first test are presented in table 6.1. The obscure abbreviations in
the header of this and the following similar tables need to be explained:

#Src total number of tuples in source relations
#Var number of variables (labeled nulls) generated by a chase
#Occur number of variable occurences
#Tgt total number of tuples generated by a chase in target relations
#CoreVar number of variables (labeled nulls) in a core
#1stit number of variables, mapped out after the first iteration of the algorithm
Chase chase running time time in seconds
Core core computation time time in seconds

53



Table 6.1: Run-time of the 3-level TGD test case

#Src #Var #Occur #Tgt #CoreVar #1stit Chase, s. Core, s.
10 70 120 70 50 20 2 10
30 210 360 210 150 60 4 17
50 350 600 350 250 100 7 31
70 490 840 490 350 140 5 52
80 560 960 560 400 160 6 67

100 700 1200 700 500 200 8 104

The graphical representation of the performance results are presented below, on Fig. 6.3.
As follows from the results summary in Table 6.1, the core was found already after the
first successful iteration of the algorithm (the sum of the columns #CoreVar and #1stit
equals the total number of variables). This was possible due to the usage of the mapping
choosing heuristics: reuse images and prefer constants (see Section 5.2.10). Let us illus-
trate by example how one of these heuristics works.

Let the source instance contain the only fact F (1). Then STD generates the fact S(1)
in the target instance, and the target chase then creates the R- and P-facts, as shown on
Fig. 6.2. The canonical universal solution consists of the following facts:

T = {S(1), R(w, 1, X1), R(X1, Y1, Z1), P (X1, X2), P (Y2, X2), P (Z1, X3), P (Y3, X3)}

Both R-facts must necessarily be in the core, as well as the two P-facts sharing a
variable with them, but the algorithm has to exclude the facts P (Y2, X2) and P (Y3, X3).
Fig. 6.2 shows the iteration of a FindCoreE , which tries to build a proper endomorphism
h, such that h(Y2) = h(X1) = X1. The “reuse images” heuristic helps to get rid of the
variable Y3 already at the lifting step (step 7 of FindCoreE , procedure Extend).

6.1.2 4-level target TGDs

In this test we add another target relation Q/2, and the set Σt of target constraints grows
appropriately:

1. S(A)→ ∃X,Y R(A,w,X) ∧R(A, Y,X)

2. R(A,w,C)→ ∃X,Y P (C,X) ∧ P (Y,X)

3. P (A,B)→ ∃X,Y Q(A,X) ∧Q(Y,X)

The number of variables in this example doesn’t change significantly, as now the second
rule creates two times less tuples as in the previous test. This allows to evaluate the
increase of processing time caused solely by the introduction of a new rule. We could also
add a TGD that doesn’t introduce any variables, i.e. a full TGD, but such full TGDs are
ignored by the homomorphism extension routine, and thus do not contribute to the core
computation time.

Again in this example, we were able to find the core already with the first run of the
algorithm.

The test demonstrates a clear increase of the core computation time. This is partially
due to a slightly greater number of labeled nulls and target tuples generated by the chase,
but there is also another reason: the greater depth of a variable, the higher cost of trying
to unify it with another term (step 3 of the FindCoreE algorithm in Chapter 4).

54



Trying to map Y2 → X1

1: T  Y2,X1

S(1) R(w, 1, X1),    R(X1, Y1, Z1)

P(X1, X2),   P(Y2, X2) P(Z1, X3),  P(Y3, X3)

2: Find h: T         → T  Y2,X1

3: Extend h to h': T → T, i.e, find images for X3 and Y3
      Possible extensions: 
           {X3 → X3 , Y3 → Y3}
           {X3 → X3 , Y3 → Z1}  reuse images! 

S(1) R(w, 1, X1),    R(X1, Y1, Z1)

P(X1, X2),   P(Y2, X2) P(Z1, X3),  P(Y3, X3)

S(1) R(w, 1, X1),    R(X1, Y1, Z1)

P(X1, X2),   P(Y2, X2)

P(Z1, X3),  P(Y3, X3)

Canonical solution T:

S(1) R(w, 1, X1),    R(X1, Y1, Z1)

P(X1, X2) P(Z1, X3)

The core of T:

Z1 was 
already 
used

Figure 6.2: “Reuse images” heuristic prefers Z1 over Y3 on step 3

55



Table 6.2: Run-time of the 4-level TGD test case

#Src #Var #Occur #Tgt #CoreVar #1stit Chase, s. Core, s.
10 80 150 90 30 50 3 13
30 240 400 270 90 150 2 25
50 400 750 450 150 250 7 44
70 560 1050 630 210 350 4 75
80 640 1200 720 240 400 5 95

100 800 1500 900 300 500 16 140

Figure 6.3: Core computation time as a function of input size, 4-level TGDs test set

However, currently the algorithm picks the variables for elimination at random. The
bigger depth of a chosen variable, the more tuples are needed to check existence of an
endomorphism that maps it out, and the larger joins are needed to perform such a check.

This can he illustrated by a slight modification of the first TGD:

S(A)→ ∃X,Y R(A,w,X) ∧R(A, Y,X)

is changed to
S(A)→ ∃X,Y R(A,w,X) ∧R(A, Y,A)

(note the change in the last atom). Now the tuples of R/3, produced by the last atom of
the dependency 2 can no longer be mapped on those generated by the atom R(A,w,X).
The algorithm can only discover this by a systematic search, which results in loss of speed
(see Fig. 6.3).

56



Figure 6.4: Core computation time vs. size of the input

6.1.3 3-level target TGDs and an EGD

In this test case, the set Σt of target constraints includes an EGD, turning tuples generated
by the first TGD to be equal.

1. S(A)→ ∃X,Y R(A,w,X) ∧R(A, Y,X)

2. R(A,B,C)→ ∃X,Y P (B,X) ∧ P (Y,X)

3. R(A,B1, C1) ∧R(A,B2, C2)→ B1 = B2 ∧ C1 = C2

The EGD reduces the number of labeled nulls, and tuples in the target instance, leaving
less work for core computation. So we see a better performance in comparison with the first
example with the similar target TGDs (see Table 6.1 and Table 6.3). Fig. 6.4 summarizes
the results of this test set.

Table 6.3: Run-time of the 3-level TGD test case

#Source #Var #Occur #Target Chase, sec. Core, sec.
10 50 70 60 3 9
20 100 140 120 4 10
30 150 210 180 5 14
50 250 350 300 8 25
70 350 490 420 10 41
80 400 560 480 11 53

100 500 700 600 11 85

57



6.2 Normalization and denormalization

This test set works with two database schemata: a denormalized and a normalized one. A
denormalized schema shown on Fig. 6.2 consists of a single table ArticleHeap, enumerating
articles, authors, and publication details.

ArticleHeap

Author

ISBN

Journal

Issue_no
Issue_date

Keyword
Article

Figure 6.5: Denormalized schema: article heap

A normalized schema includes 7 relations, as shown on Fig. 6.2. Each table has an an
Id field used for establishing references. There is an option of the system which allows to
instantiate those Id fields with unique values after computing the core, thus “materializ-
ing” the references. This allowed us to run the test in the reverse direction, performing
denormalization of data. We do not include charts for denormalization, since it is less
relevant with respect to core computation: minimization of a single table is almost trivial
compared to the normalization case. Though such an option is useful to to verify the
correctness of transformations.

Journal

JouralIssue

Name ISBN

ArticlePublication

ArticleKeyword

Id Id

Id

Keyword

Author

Id

Word Id

Issue_no Issue_date Title

Name

Figure 6.6: Normalized article database

The following two lengthy source-to-target dependencies are used for normalization:

1. ArticleHeap(Title, Auth, JN, ISBN, IssNo, IssDate,KW )→
∃ArtId, ∃AuthId, ∃JnId, ∃IssId, ∃PubId
(Article(ArtId, T itle) ∧Author(AuthId,Name) ∧
Journal(JnId, JN, ISBN) ∧ JournalIssue(IssId, JnId, IssDate) ∧
Publication(PubId,ArtId,AuthId, IssId))

58



2. ArticleHeap(Title, Auth, JN, ISBN, IssNo, IssDate,KW )→
∃ArtId, ∃KWId (Article(ArtId, T itle) ∧Keyword(KWId,KW ) ∧
ArticleKeyword(ArtId,KWId) )

Since all key values are generated by the source-to-target chase, every new key is a unique
labeled null. For example, two authors with the same name will have different key values,
shared with a Publication fact (the AuthorId field), which in its turn references facts of
JournalIssue and Article etc. Thus, unless two tuples in the source relation were equal,
no mapping exist between any of the correspondent tuples in the target relations. To
enforce equal identifiers for equal target tuples we need EGDs:

1. Author(Id1, Name) ∧Author(Id2, Name)→ Id1 = Id2

2. Keyword(Id1,Word) ∧Keyword(Id2,Word)→ Id1 = Id2

3. Article(Id1, T itle) ∧Article(Id2, T itle)→ Id1 = Id2

4. Journal(Id1, Name, ISBN) ∧ Journal(Id2, Name, ISBN)→ Id1 = Id2

5. JournalIssue(Id1, JournalId,Date,No) ∧
JournalIssue(Id2, JournalId,Date,No)→ Id1 = Id2

6. Publication(Id1, ArticleId,AuthorId, IssueId) ∧
Publication(Id2, ArticleId,AuthorId, IssueId)→ Id1 = Id2

There are no target inclusion dependencies asserting the correctness of foreign keys.
But since we know that target relations are filled exclusively by the two source-to-target
dependencies, which set the references right, we omitted them.

After introduction of target EDGs, however, the chase alone now produces a minimal
solution, i.e., the core. Nevertheless, we consider this example relevant from the practical
point of view. Generation of id values and foreign keys is a quite probable application of
labeled nulls. Normally, these key values do not occur in other, non-key fields. Since we
use field partitioning (see Section 5.2.4) for endomorphism search, these “key” variables
are separated from the rest of the domain, and even if other, “non-key” nulls are present
in the target database, the core computation for them will not be hindered by these key
variables. Imagine such a scenario, when keys are generated by the labeled nulls, but there
are also other null values possible. How big is the impact of this id-generation strategy on
the overall core computation time? This test allows to answer this question.

As we see on Fig. 6.7, the impact of labeled null-based id generation on core compu-
tation is of the same order of magnitude as the chase (in fact, core checking is faster).
Considering the usual discrepancy between the chase time and the core computation time
(see Tables 6.1, 6.2 and 6.4), this is rather a mild effect.

6.3 Introducing a new relation with nulls

The last test set combines normalization and schema restructuring. As in the previous
example, the source schema consists only of a single relation symbol, ProjHeap (Fig. 6.8).
The target schema has two layers: first operates only with input data, the second intro-
duces the Dept (i.e. department) relation between the employee and the projects he is
responsible for. This is by no means a sensical transformation (for instance, a connection
between cities and a projects is lost with such source-to-target dependencies), rather yet
another test case for performance benchmarking.

59



Figure 6.7: Times of core checking and chase on the article database

ProjHeapEmployee Emp_home

Project

Employed_in

Figure 6.8: Project heap: the source schema

There is only one source-to-target dependency:

ProjHeap(Empl, LivesIn,WorksIn, Proj)→
EmpCity(Empl,WorksIn) ∧ EmpProj(Empl, Proj) ∧Home(Empl, LivesIn)

The set Σt consists of six dependencies:

1. EmpCity(Empl, City)→ Home(Empl, City)

2. EmpCity(Empl, City)→ ∃Dept (EmpDept(Empl,Dept) ∧DeptCity(Dept, City))

3. Home(Empl, City)→ ∃Dept (EmpDept(Empl,Dept) ∧DeptCity(Dept, City))

4. EmpProj(Empl, Proj)→ ∃Dept (EmpDept(Empl,Dept)∧ProjDept(Proj,Dept))

5. EmpProj(Empl, Proj) ∧ EmpCity(Empl, City)→
∃Dept (EmpDept(Empl,Dept) ∧ ProjDept(Proj,Dept) ∧DeptCity(Dept, City))

6. EmpDept(Empl,Dept)→ ∃City DeptCity(Dept, City)

Here the TGD 5 generates a full set of target tuples (knowing the source schema,
one might suggest that the rule 5 alone is enough). Without this rule, all tuples gen-
erated by TGDs 2 and 4 would persist in the core, as Fig. 6.10 explains. It is a prop-
erty of cores that can seem counter-intuitive at the first sight. For example, two tuples

60



EmpCity

Employee

City EmpProj

Employee Project

Home

Employee

City

EmpDeptEmployee

Department

DeptCity

Department City

ProjDept

Department

City

Figure 6.9: Target project database schema

EmpDept(′Mary′, D1) and EmpDept(′Mary′, D2) cannot be mapped one onto another,
since D1 is shared with a DeptCity fact but not with ProjDept one, and D2 is shared
with a fact in the ProjDept relation. But the two EmpDept tuples were induced by the
same source relation.

To get rid of D2 and D1, we need a set of three facts: DeptCity, EmpDept and
ProjDept sharing the same “department” value.

There is certain duality between the roles of EGDs and of the core computation with
regard to instance minimization. Both reduce the number of variables, and EGDs can also
eventually make two tuples identical. In our example, should we have an EGD

EmpDept(Name,Dep1) ∧ EmpDept(Name,Dep2)→ Dep1 = Dep2,

then D1 would be immediately identified with D2, which is something one can intuitively
expect, looking on the source data. This is possible, because the employee name is a
natural key of the EmpDept relation: we assume, that one employee can not work in two
different departments at once. However, if this assumption is false, then EGD cannot be
applied, while it is still possible to compact the instance with the help of core computation.

EmpDeptMary D2EmpDept Mary D1

ProjDeptD2 Project MDeptCity D1 LA

EmpCityMary LA EmpProjMary Project M

EmpDept
Mary D3

DeptCity
D3 LA

ProjDept
D3 Project M

By TGD 2:

By TGD 5:

By TGD 4:

Figure 6.10: Possible homomorphisms between variables of EmpDept relation

At this time, the experiment consisted of two parts. In the first, no input tuple
contained null values. This allowed us to test the removal of tuples introduced by all target
TGDs other than TGD 5. The results of this experiment are summarized in Table 6.4.

61



Figure 6.11: Core computation time for the Projects testcase

For the second part, half of the input tuples were incomplete duplicates of some other
tuples in the source relation, thus reducing the core size and ensuring more work for the
algorithm. For instance, we had

ProjHeap(’Mary’, ’New York’, ’New Jersey’, ’Tax consulting’)
ProjHeap(’Mary’,NULL,’New Jersey’,NULL)

the second two rows being a duplicate of the first one with some constant values replaced
by nulls.

As expected, processing time was higher in the second case (see Fig. 6.11 for com-
parison). Adding a single duplicate per ground fact, led to some 30% of performance
loss.

Table 6.4: Core computation over the Projects database - no incomplete input tuples

#Source #Var #Occur #Target Chase, sec. Core, sec.
10 22 51 61 3 16
20 40 90 110 3 22
30 90 210 250 4 35
50 162 396 456 5 52
70 248 594 694 6 87
80 420 1050 1190 15 126

100 460 1140 1300 15 205

62



6.4 Summary and evaluation of results

In this chapter, we have described a few first tests of a prototype system, supporting core
computation for data exchange. Though its current performance is quite far from the real-
world requirements, the prototype serves its aim, being a indispensable experimentation
tool for a new algorithm. We believe that this was the first step towards creation a
practically useful core application. After first series of experiments with the prototype,
we can conclude the following:

• Chosen XML-based configuration approach facilitates the rapid development of dif-
ferent data exchange scenarios. Moreover, the usage of a familiar DBMS-based back-
end provides for easy monitoring of data transfers, which is important for validation
and debugging the data exchange applications.

• The prototype currently tackles scenarios with roughly 10 tables and 100 rows per
table.

• From our experiments it became clear, that for many scenarios it is impossible to
obtain an intuitively expected solution without target EGDs. Therefore, our algo-
rithmic improvement, concerning direct application of EGDs, is of practical impor-
tance.

• We have shown a feasibility of a possible application of labeled nulls, namely, gener-
ation of row id values and foreign keys. Due to field partitioning, it does not hinder
the core computation performance.

• For some scenarios, already the first approximation found by FindCoreE can be the
core itself, or be very close to it. This became possible due to quite simple heuristics
used for homomorphism construction.

Based on this results, we outline the future work directions in the next chapter.

63



Chapter 7

Conclusions

In this thesis we have revisited the core computation, which is an essential problem in the
area of data exchange. On the one hand, we have presented an enhanced version of the
FindCore algorithm from [GN06], which avoids the simulation of EGDs by TGDs. On
the other hand, we have actually implemented this algorithm and drawn first conclusions
from the experiments carried out with this implementation. In particular, we have thus
identified possible directions for further improvements.

7.1 Future work

As a first task for the future development of the system, we consider a more detailed
bottleneck analysis of our current implementation. Our ultimate goal is to build a system
making use of cores for industrial-size databases.

Even being polynomial, the core computation procedure seems to be highly computa-
tionally expensive, and hence hardly applicable to the large real-world databases. However,
it could be useful to develop an algorithm for effective computation of core approximations.
In our experiments, already the first successful iteration of the algorithm often produced
a very good result.

There exist practical cases, when any reasonable minimization of the target instance
is valuable, not necessarily the ultimate one (e.g., to save the disk space used by the
target instance, and to improve its query performance). Therefore, we consider the core
approximation approach among the most important directions for future development.

Summarizing, the following ideas seem worth investigating to us:

• Dependency preprocessing

– Compute the cores of the queries in the conclusions of TGDs.

– Consider using the hypertree decomposition techniques for optimizing depen-
dencies.

– Source dependencies, which are often available as database metadata, can be
used to automatically derive target constraints (especially, functional depen-
dencies, expressed by EGDs).

• The variables with smaller depth must be tried first by the algorithm. In conjunction
with heuristics for construction of homomorphisms, this approach proved effective
for fast elimination of redundant variables, and consequently, for faster core identi-
fication.

64



• It would be interesting to find a (perhaps, heuristic-based) technique for estimating
redundancy in the database. So far, the core computation is a “blind” process,
having no cue how far from minimal the current instance is, and which part of
an instance contains the most of redundant information. This led to suboptimal
performance in the majority of experiments.

65



Bibliography

[BV84] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies.
J. ACM, 31(4):718–741, 1984.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunc-
tive queries in relational data bases. In Proc. STOC’77, pages 77–90. ACM
Press, 1977.

[Fag82] Ronald Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–
985, 1982.

[FKMP03] Ronald Fagin, Phokion G. Kolaitis, Rene J. Miller, and Lucian Popa. Data
exchange: Semantics and query answering. In Proc. ICDT’03, pages 207–224.
Springer, 2003.

[FKP03] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: Getting
to the core. In ACM PODS 2003, San Diego, CA, 2003.

[FS89] M. Fredman and M. Saks. The cell probe complexity of dynamic data struc-
tures. In STOC ’89: Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 345–354, New York, NY, USA, 1989. ACM
Press.

[GF64] Benrard A. Galler and Michael J. Fisher. An improved equivalence algorithm.
Commun. ACM, 7(5):301–303, 1964.

[GI91] Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for disjoint
set union problems. ACM Comput. Surv., 23(3):319–344, 1991.

[GN06] Georg Gottlob and Alan Nash. Data exchange: computing cores in polynomial
time. In Proc. PODS’06, pages 40–49. ACM Press, 2006.

[Got05] Georg Gottlob. Computing cores for data exchange: new algorithms and
practical solutions. In Proc. PODS’05, pages 148–159. ACM Press, 2005.

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, and Mary
Roth. Clio grows up: from research prototype to industrial tool. In Proc.
SIGMOD’05, pages 805–810. ACM, 2005.

[HN92] Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Mathematics,
109(1-3):117–126, 1992.

[HRO06] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration:
The teenage years. In Proc. VLDB’06, pages 9–16. ACM, 2006.

66



[Kol05] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata man-
agement. In Proc. PODS’05, pages 61–75. ACM, 2005.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc.
PODS’02, pages 233–246. ACM, 2002.

[Lib06] Leonid Libkin. Data exchange and incomplete information. In Proc. PODS’06,
pages 60–69. ACM Press, 2006.

[RL90] Ronald L. Rivest and Charles E. Leiserson. Introduction to Algorithms.
McGraw-Hill, Inc., New York, NY, USA, 1990.

[spr] Spring framework (www.springframework.org).

67


