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Matr. Nr. 9525349

geboren am 20. Mai 1975 in St.Pölten

Wien, im Jänner 2007

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 





Kurzfassung

THERMISCHE OXIDATION ist einer der wichtigen Prozessschritte in der Halbleiterher-
stellung, der für die Erzeugung von hochwertigen Isolationsschichten benötigt wird. Die

chemische Reaktion während der Oxidation wandelt Silizium in Siliziumdioxid um. Das dabei
neu entstandene Oxidmaterial hat mehr als doppelt soviel Volumen als das ursprüngliche Sili-
zium. Diese beträchtliche Volumsvergrößerung ist die Hauptursache für mechanische Spannun-
gen und Verschiebungen in der oxidierten Struktur. Es gibt daher ein großes Interesse an der
Simulation von Oxidation. Die Volumsvergrößerung und die Tatsache, dass die Oxidations-
rate von etlichen Parametern und auch von den Spannungen im Material abhängt, machen
es unmöglich, die endgültige Form des Siliziumdioxides in praktisch verwendeten Strukturen
vorherzusagen. Weiters können die mögliche Spannungsverteilung und Verformung, welche durch
den Oxidationsprozess in den benachbarten Strukturen verursacht wird, nur durch Simulation
herausgefunden werden.

Alle herkömmlichen Modelle beruhen auf dem Konzept der Grenzflächenverschiebung. Un-
günstigerweise sind diese Grenzflächenverschiebungen eine kaum meisterbare Herausforderung
für die dreidimensionale Oxidationssimulation, da sie komplizierte Algorithmen und eine Ak-
tualisierung enormer Datenmengen benötigen. Daher sollte ein modernes dreidimensionales
Oxidationsmodell auf einem neuen Konzept basieren, welches die Schwierigkeiten und Nachteile
betreffend der Mechanik vermeidet. Ein zeitgemäßes Modell sollte auch die Simulation von kom-
plexen Strukturen innerhalb einer vernünftigen Zeitspanne mit normalen Computern ermög-
lichen. Weiters sollte ein Oxidationsmodell eine physikalische Basis haben, damit es universell
einsetzbar ist. Das bedeutet, es sollte berücksichtigen, dass thermische Oxidation ein Prozess
ist, in dem eine Diffusion, eine chemische Reaktion und eine Volumsvergrößerung gleichzeitig
stattfinden. Im Verlauf dieser Arbeit wurde ein fortschrittliches dreidimensionales Oxidations-
modell, welches alle angeführten Anforderungen erfüllt, entwickelt. Dieses Modell beruht auf
einem diffusen Übergang von Silizium zu Siliziumdioxid.

Die Implementierung des Modells in ein Simulationsprogramm ist eine wichtige Aufgabe. Die
numerische Lösung der mathematischen Formulierung wird mit der finiten Elementmethode
durchgeführt, da diese am geeignetsten für die mechanischen Verschiebungen ist. Die Diskreti-
sierung der Differentialgleichungen ist ein wichtiger Teil der Modellierung. Für die praktische
Anwendung des Simulationsprogramms wird eine einfache Methode für die Modellkalibrierung
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gezeigt. Trotz des diffusen Übergangkonzepts können die Simulationsergebnisse für eine physi-
kalische Interpretation mit einem scharfen Übergang von Silizium zu Siliziumdioxid dargestellt
werden. Es ist bekannt, dass die mechanische Spannung einen bedeuteten Einfluss auf die
Oxidationsrate hat. Um physikalisch sinnvolle Simulationsergebnisse zu erhalten, wird daher
die Spannungsabhängigkeit im Oxidationsmodell berücksichtigt.

Mechanische Spannungen in Kupferverbindungsleitungen sind eine wichtige Ursache für die
Elektromigration. Der Materialtransport durch die Elektromigration kann zur Entstehung eines
Lunker im Leiter führen. Diese Lunker können eine enorme Widerstandserhöhung oder sogar
eine totale Unterbrechung im Verbindungsleiter verursachen. Thermo-mechanische Spannungen
entstehen durch die Selbsterwärmung der stromdurchflossenen Leiter, da diese in Materialen
mit verschiedenen thermischen Ausdehnungskoeffizienten eingebettet sind. Eine Simulation der
mechanischen Spannung ist die einzige Möglichkeit, um Bereiche mit großen Spannungswerten
und damit kritische Punkte für die Elektromigration in der Verbindungsleitung zu bestimmen.

Während und nach der Herstellung von mikro-elektro-mechanischen Systemen, für welche Dünn-
schichtabscheidung eine weit verbreitete Technik ist, wird eine intrinsische mechanische Span-
nung in den Schichten erzeugt. Bei den mikro-elektro-mechanischen Systemen, welche hauptsäch-
lich als Sensoren verwendet werden, kann die Spannung die elektrischen und magnetischen
Eigenschaften verändern und ungewollte Verformungen in freistehenden Strukturen verursachen.
Daher ist die Bestimmung von intrinsischen Spannungen in den dünnen Schichten erwünscht,
aber eine Anzahl von mikroskopischen Effekten welche zu Spannungen führen gestatten keine
einfache Spannungsberechnung. In dieser Arbeit werden etliche intrinsischen Spannungsquellen
diskutiert. Für die verschiedenen intrinsischen Spannungsquellen, welche die Spannungsentwick-
lung auf Grund von mikroskopischen Effekten beschreiben, werden makroskopische mechanische
Formulierungen angegeben. Weiters wurde eine Methodik entwickelt, die es ermöglicht die Span-
nungsverteilung in der abgelagerten Dünnschicht vorherzusagen.
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Abstract

THERMAL OXIDATION is one of the most important process steps in semiconductur fab-
rication, which is used to produce high quality insolation layers. The chemical reaction

during oxidation converts silicon into silicon dioxide. The formed oxide material has more than
twice of the original volume of silicon. This significant volume increase is the main source for
stress and displacements in the oxidized structure. There is a big interest in the simulation of
oxidation, because the volume increase and the fact that the oxide growth rate depends on a
number of parameters and also on the stress in the material, make it impossible to predict the
final shape of the silicon dioxide without simulation in practically used structures. Furthermore,
the possible stress distribution and deformation which are caused by the oxidation process in
the neighboring structure, can be only evaluated by simulation.

All conventional models are based on the moving boundary concept. Unfortunately moving
boundaries are the most restricting factor for three-dimensional oxidation simulation, because
they need complicated algorithms and an enormous data update. Therefore, a modern three-
dimensional oxidation model should be based on a new concept which avoids the difficulties and
drawbacks regarding the mechanics. An up-to-date model should also enable the simulation of
even complex structures within an acceptable time period on convential computers. Further-
more, for universal application an oxidation model should be physically based, which means
that it takes into account that thermal oxidation is a process where a diffusion, a chemical
reaction, and a volume increase occur simultaneously. In the course of this work an advanced
three-dimensional oxidation model which is able to fulfill all listed requirements, was developed.
This model is based on a diffuse interface concept.

The implementation of the model in a simulation tool is an important task. The numerical
solving of the mathematical formulation is performed with the finite element method which is
most suitable for the mechanical displacement problem. The discretization of the (differential)
equations is an important part of modeling. For the practical application of the simulation tool
a simple method for the model calibration is shown. Despite the diffuse interface concept, the
simulation results can be presented with a sharp interface between silicon and silicon dioxide
for a physical interpretation. It is known that stress has a significant influence on the oxidation
growth rate. For obtaining physically meaningful simulation results, the stress dependence of
the oxidation process is taken into account in the oxidation model.
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ABSTRACT

Stress in copper interconnects is an important promoting factor for electromigration. The ma-
terial transport due to electromigration can lead to void formation in the interconnect. These
voids can cause an enormous increase of the resistance or even a total failure in the intercon-
nect. Thermal stress arises from the self-heating effect of the current flow in the interconnect,
because the copper interconnects are embedded in materials with different thermal expansion
coefficients. A stress simulation is the only possible way to determine high-stress areas in the
interconnect structure in order to locate critical points with respect to electromigration.

During the fabrication of micro-electro-mechanical systems and aftermath, where thin film depo-
sition is a widely used technique, an intrinsic stress is generated in the layers. In micro-electro-
mechanical systems which are mostly used as sensors, the stress can change the electrical and
magnetic characteristics and can also cause unwanted deformation in free standing structures.
The determination of intrinsic stress in thin films is demanded, but a number of microscopic
effects which lead to stress do not allow a straightforward stress calculation. In this work a
number of intrinsic stress sources are discussed. For the different intrinsic stress sources, which
describe the stress development due to the microscopic effects, macroscopic mechanical formu-
lations are given. Furthermore, a methodology which allows to predict the stress distribution in
the deposited thin film, was developed.
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Chapter 1

Introduction

THE SIMULATION of semiconductor processes is used to reduce the development time and
costs of new semiconductor products, because it can replace a number of time-consuming

and expensive experiments. Usually time is a critical factor in the semiconductor industry,
because, if a company can bring a new product earlier to the market, it has a big advantage in
competition and can make more profit.

The strength of simulation tools is that after modeling and calibration the effects of changing
process parameters, materials, and geometries can be predicted in a fast and simple way. The key
for accurate simulation results and all-purpose simulation tools are physically based models. All
important process steps, as listed in Section 1.1, which influence the topology and characteristics
of a device significantly are worth for modeling and simulation. One of these process steps is
thermal oxidation.

Modeling of thermal oxidation has a long tradition. Already in the middle of the 60’s the
Deal-Grove model has been developed which is still used in modern oxidation simulators. The
model is based on two parameters, the so-called linear and parabolic rate constant, in which
all the physics of the oxidation process is included. The rate constants must be determined by
experiments for the respective oxidant species. Later in the 80’s, the Deal-Grove concept has
been extended with additional fitting parameters, in order to describe thin oxide films.

The modeling of stress sources and simulation of its effects in semiconductor devices and micro-
electro-mechanical systems becomes more and more important. Stress in a material or structure
can lead to various negative or undesirable effects. During the fabrication process it can influence
the physics of a process in a unpredictable way. Stress can also impair the electrical characteris-
tics of a device and even reduce the life-time of an integrated circuit. In micro-electro-mechanical
systems, which are mainly used as sensors, stress can not only change the electrical and magnetic
characteristics, it can also cause unwanted deformation in a free standing structure.

The continuously shrinking device dimensions in the state of the art ultra large scale integration
(ulsi) technology brings up three-dimensional effects which can not be investigated with two-
dimensional simulations. However, the industry is still often confined to use two-dimensional
process simulation tools, because of missing three-dimensional alternatives. Therefore, the de-
velopment of universal three-dimensional models is the actual challenge in process simulation.
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INTRODUCTION

1.1 Semiconductor Fabrication Processes

Starting with an uniformly doped silicon wafer, the fabrication of integrated circuits (ic’s)
needs hundreds of sequential process steps. The most important process steps used in the
semiconductor fabrication are [1]:

1.1.1 Lithography

Lithography is used to transfer a pattern from a photomask to the surface of the wafer. For ex-
ample the gate area of a mos transistor is defined by a specific pattern. The pattern information
is recorded on a layer of photoresist which is applied on the top of the wafer. The photoresist
changes its physical properties when exposed to light (often ultraviolet) or another source of
illumination (e.g. x-ray). The photoresist is either developed by (wet or dry) etching or by
conversion to volatile compounds through the exposure itself. The pattern defined by the mask
is either removed or remained after development, depending if the type of resist is positive or
negative. For example the developed photoresist can act as an etching mask for the underlying
layers.

1.1.2 Etching

Etching is used to remove material selectively in order to create patterns. The pattern is defined
by the etching mask, because the parts of the material, which should remain, are protected by
the mask. The unmasked material can be removed either by wet (chemical) or dry (physical)
etching. Wet etching is strongly isotropic which limits its application and the etching time can
be controlled difficultly. Because of the so-called under-etch effect, wet etching is not suited to
transfer patterns with sub-micron feature size. However, wet etching has a high selectivity (the
etch rate strongly depends on the material) and it does not damage the material. On the other
side dry etching is highly anisotropic but less selective. But it is more capable for transfering
small structures.

1.1.3 Deposition

A multitude of layers of different materials have to be deposited during the ic fabrication process.
The two most important deposition methods are the physical vapor deposition (pvd) and the
chemical vapor deposition (cvd). During pvd accelerated gas ions sputter particles from a
sputter target in a low pressure plasma chamber. The principle of cvd is a chemical reaction
of a gas mixture on the substrate surface at high temperatures. The need of high temperatures
is the most restricting factor for applying cvd. This problem can be avoided with plasma
enhanced chemical vapor deposition (pecvd), where the chemical reaction is enhanced with
radio frequencies instead of high temperatures. An important aspect for this technique is the
uniformity of the deposited material, especially the layer thickness. cvd has a better uniformity
than pvd.
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1.1.4 Chemical Mechanical Planarization

Processes like etching, deposition, or oxidation, which modify the topography of the wafer surface
lead to a non-planar surface. Chemical mechanical planarization (cmp) is used to plane the wafer
surface with the help of a chemical slurry. First, a planar surface is necessary for lithography
due to a correct pattern transfer. Furthermore, cmp enables indirect pattering, because the
material removal always starts on the highest areas of the wafer surface. This means that at
defined lower lying regions like a trench the material can be left. Together with the deposition
of non-planar layers, cmp is an effective method to build up IC structures.

1.1.5 Oxidation

Oxidation is a process which converts silicon on the wafer into silicon dioxide. The chemical
reaction of silicon and oxygen already starts at room temperature but stops after a very thin
native oxide film. For an effective oxidation rate the wafer must be settled to a furnace with
oxygen or water vapor at elevated temperatures. Silicon dioxide layers are used as high-quality
insulators or masks for ion implantation. The ability of silicon to form high quality silicon
dioxide is an important reason, why silicon is still the dominating material in ic fabrication.

1.1.6 Ion Implantation

Ion implantation is the dominant technique to introduce dopant impurities into crystalline sil-
icon. This is performed with an electric field which accelerates the ionized atoms or molecules
so that these particles penetrate into the target material until they come to rest because of
interactions with the silicon atoms. Ion implantation is able to control exactly the distribution
and dose of the dopants in silicon, because the penetration depth depends on the kinetic energy
of the ions which is proportional to the electric field. The dopant dose can be controlled by
varying the ion source. Unfortunately, after ion implantation the crystal structure is damaged
which implies worse electrical properties. Another problem is that the implanted dopants are
electrically inactive, because they are situated on interstitial sites. Therefore after ion implan-
tation a thermal process step is necessary which repairs the crystal damage and activates the
dopants.

1.1.7 Diffusion

Diffusion is the movement of impurity atoms in a semiconductor material at high temperatures.
The driving force of diffusion is the concentration gradient. There is a wide range of diffusivities
for the various dopant species, which depend on how easy the respective dopant impurity can
move through the material. Diffusion is applied to anneal the crystal defects after ion implanta-
tion or to introduce dopant atoms into silicon from a chemical vapor source. In the last case the
diffusion time and temperature determine the depth of dopant penetration. Diffusion is used to
form the source, drain, and channel regions in a mos transistor. But diffusion can also be an
unwanted parasitic effect, because it takes place during all high temperature process steps.
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1.2 Isolation Techniques

Thermal grown oxide is mainly used as isolation material in semiconductor fabrication. For the
isolation of neighboring mos transistors there exist two techniques, namely Local Oxidation of
Silicon and Shallow Trench Isolation. The differences in their process flow and their final oxide
shapes are described in the following.

1.2.1 Local Oxidation of Silicon

Local Oxidation of Silicon (locos) is the traditional isolation technique. At first a very thin
silicon oxide layer is grown on the wafer, the so-called pad oxide. Then a layer of silicon
nitride is deposited which is used as an oxide barrier. The pattern transfer is performed by
photolithography. After lithography the pattern is etched into the nitride. The result is the
nitride mask as shown in Fig. 1.1a, which defines the active areas for the oxidation process.
The next step is the main part of the locos process, the growth of the thermal oxide. After
the oxidation process is finished, the last step is the removal of the nitride layer. The main
drawback of this technique is the so-called bird’s beak effect and the surface area which is lost
to this encroachment. The advantages of locos fabrication are the simple process flow and the
high oxide quality, because the whole locos structure is thermally grown.

Oxide

Oxide

Nitride Removal

 Thermal Oxidation

Silicon Wafer

"Bird’s beak"

Nitride NitridePad Oxidea)

b)

c)

Figure 1.1: Process sequence for local oxidation of silicon (locos).

1.2.2 Shallow Trench Isolation

The Shallow Trench Isolation (sti) is the preferred isolation technique for the sub-0.5µm tech-
nology, because it completely avoids the bird’s beak shape characteristic. With its zero oxide
field encroachment sti is more suitable for the increased density requirements, because it allows
to form smaller isolation regions. The sti process starts in the same way as the locos process.
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The first difference compared to locos is that a shallow trench is etched into the silicon sub-
strate, as shown in Fig. 1.2a. After underetching of the oxide pad, also a thermal oxide in the
trench is grown, the so-called liner oxide (see Fig. 1.2c). But unlike with locos, the thermal
oxidation process is stopped after the formation of a thin oxide layer, and the rest of the trench
is filled with a deposited oxide (see Fig. 1.2d). Next, the excessive (deposited) oxide is removed
with chemical mechanical planarization. At last the nitride mask is also removed. The price for
saving space with sti is the larger number of different process steps.

d) CVD Oxide gap fill e) CMP f) Nitride strip

SiliconSilicon

Nitride
OxideResist ResistPad

Nitride

a) Stack and trench etching b) Pad oxide underetching

Liner
Oxide

Isolat.
Oxide

Isolat.
Oxide

Isolat.
Oxide

c) Liner oxidation

Figure 1.2: Steps in a typical shallow trench isolation (sti) process flow.

1.3 Overview and History of Process Simulators for Oxidation

Simulation of oxidation has a long tradition and a lot of people and institutions were active in
oxidation modeling, also the Institute for Microelectronics [2]. Because over the decades a large
number of oxidation simulators has been developed, this section is only focused on commercial
process simulation tools. The history of the commercial tools is close with the history of the
respective tcad company. In principle all the following listed tools use the Deal-Grove concept
(see Section 2.6) with its two rate constants and moving boundaries. The main reason to use the
Deal-Grove model is the existence of the calibrated rate constants for a multitude of different
oxidation conditions, because since Deal and Grove 1965 a lot of other oxidation experiments
has been done. The price for this convenience are the difficulties in handling moving boundaries,
especially in three dimensional geometries.

suprem-iv is a two-dimensional process simulator [3], which was developed at the Stanford
University (Department of Electrical Engineering) in the tcad group of Prof. Robert Dutton [4],
with suprem a pioneer in tcad. For oxidation suprem-iv has a compress and a viscous
mechanical model [5]. The compress model treats the oxide as compressible liquid, while the
viscous model treats the oxide as an incompressible viscous liquid. suprem-iv, the successor of
the one-dimensional version suprem-iii, is the basis for the two commercial tools tsuprem-iv

and athena.

tsuprem-iv [6] was the commercial version of suprem-iv from the company Technology Model-
ing Associates Inc. (tma). tma was founded out of Stanford University 1979 with Prof. Dutton
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as director and started the commercial tcad business [7]. Approximately 20 years later, in 1998
tma was acquired by the 1986 founded company Avant! Corp. In the last Avant! release 2002
tsuprem-iv offers for oxidation a compress, viscous, and also a visco-elastic model [6]. Last
release, because in 2002 Avant! itself was acquired by the company Synopsys Inc.

athena [8] is the commercial version of suprem-iv from the private company Silvaco Interna-
tional [9], which still distributes athena. Silvaco was founded 1984 by Dr. Ivan Pesic [10] and is
since this time successful on the tcad market. athena was never extended to three dimensions
and thus it is still only a two-dimensional tool [11]. athena also has the same compress and
viscous mechanical models like the university version suprem-iv.

In 1992 tma started a project for a new three-dimensional process simulator which is mainly
based on the level-set algorithm. After tma was acquired, Avant! released this product 1998
with the name taurus [12]. The mechanics during oxidation is described with a visco-elastic
model. Because of the problems with moving boundaries in three dimensions, taurus has never
become a complete stable three-dimensional process simulator [13].

The Integrated Systems Laboratories at the eth Zurich also developed a two-dimensional pro-
cess simulator named dios [14], which came out 1992. Later, in December 1993 the company
Integrated Systems Engineering AG (ise) was founded as a spin-off of the university laboratories.
Since this time ise distributed dios as a commercial tool. In the last 2004 ise tcad release, a
viscous, elastic, or visco-elastic model for the mechanical problem can be applied. This was the
last release, because in 2004 ise was also acquired by Synopsys.

In 1993 a first version of the Florida Object-Oriented Process Simulator (floops) was completed.
floops was developed at the University of Florida in the Electrical Engineering Department of
Prof. Mark Law [15]. Already 1996 the PhD student Stephen Cea presented that floops has
been extended from two to three dimensions and three-dimensional oxidation simulation can be
performed [16]. Since 1996 the work has been continued to reach a stable three-dimensional tool,
because even the actual floops version is still a little buggy for three-dimensional oxidation [17].
The 2002 release of floops was commercialized by ise in the same year and henceforth promoted
as the next generation three-dimensional process tool [18]. With the additional developments of
ise the so-called floops-ise became a stable three-dimensional oxidation simulator. floops-ise
has the same mechanical models as dios (viscous, elastic, and viscoelastic), but extended for
three-dimensional structures [19].

The company Synopsys Inc. [20] was founded in 1986. After Synopsys acquired Avant! and
ise, it holds now the licenses for all former Avant! and ise tools and has with 80% market
share nearly a monopoly in the tcad market [13]. Silvaco is the only remaining competitor. For
two-dimensional process simulation Synopsys sells now the packages dios and taurus-tsuprem-

iv [21]. After merging with ise, Synopsys started to transfer the best features of dios, taurus

and tsuprem-iv to the floops-ise platform for generating a new three-dimensional process
simulator [22]. The first release of the new simulator with the name sentaurus [23] was carried
out in 2005 [24].
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1.4 Outline of the Thesis

The topic of this thesis are the three-dimensional modeling and simulation of thermal oxidation,
which is the first and main part, and the three-dimensional modeling and simulation of stress
and its effects in the second part.

In the beginning of Chapter 2 the characteristics, properties, and structure of the material
silicon dioxide and the principle of the oxidation process are described. Next the influence of the
different oxidation parameters on the oxidation process are lighted up. Some aspects of nitrided
oxide films are also listed. At last the concept of the traditional oxidation modeling, which is
still used in state of the art oxidation simulators with more or less extensions, is explained.

In Chapter 3 an advanced oxidation model with an effective and improved modeling concept is
presented. The new concept avoids the drawbacks of the traditional oxidation models, especially
regarding the mechanics in case of complex three-dimensional structures. This chapter includes
mainly the mathematical formulation of the advanced oxidation model, where the mechanics is
an essential part. Thermal oxidation of doped silicon material leads to a redistribution of the
dopands as described in Chapter 4.

Chapter 5 treats the discretization of the mathematical formulation with the finite element
method which starts with some basics. This chapter concentrates on the discretization with
tetrahedrons, which is explained at first in general and then in detail for the used differential
equations of the advanced oxidation model and the mechanics. The chapter continues with
the description of the assembling procedure, also for the needed special cases like mechanical
interfaces, in order to built-up the complete equation system. At the end the solving of this
equation system with the Newton method is described.

Chapter 6 is focused on the simulation of thermal oxidation with the in-house process simulation
tool into which the models were implemented. The architecture and main components of this
tool are depicted and the simulation procedure for oxidation is explained. Since not only the
accuracy, but also the simulation time and computer resources depend on the number of discrete
elements, the used mesh plays a key role for simulation. So in this chapter an effective meshing
strategy is discussed. Furthermore, the procedure for the sharp interface interpretation of the
displayed simulation results is described. Finally the optimal way found for the model calibration
is shown.

In Chapter 7 the developed oxidation model is applied for stress dependent oxidation. A univer-
sal stress calculation concept for the oxidation simulation is presented. In order to demonstrate
the good performance of the model and the simulation tool, representative examples for oxida-
tion are presented.

Because stress is a promoting factor for electromigration, in Chapter 8 the simulation proce-
dure of thermo-mechanical stress in copper interconnect structures is described. The stress
distribution for a demonstrative interconnect layout is simulated.

In Chapter 9 intrinsic stress effects in deposited thin films are discussed. At the beginning a
typical effect, the cantilever deflection problem, is shown. Furthermore, some stress sources are
listed and a macroscopic stress formulation is given. A strain curve predicted by the methodology
is analyzed and calibrated for a multilayer film. The calibrated curve is applied to investigate a
fabricated cantilever structure. The thesis is concluded with a summary in Chapter 10.
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Chapter 2

Physics of Thermal Oxidation

THERMAL OXIDATION is a chemical process, where silicon dioxide (SiO2) is grown in an
ambient with elevated temperatures. A simple form of thermal oxidation even takes place

at room temperature, if silicon is exposed to an oxygen or air ambient. There, a thin native
oxide layer with 0.5–1 nm will form on the surface rapidly. After that, the growth slows down
and effectively stops after a few hours with a final thickness in the order of 1–2 nm, because the
oxygen atoms have too small energy at room temperature to diffuse through the already formed
oxide layer.

SiO2 is used to isolate one device from another, to act as gate oxide in mos structures, and to
serve as a structured mask against implant of dopant atoms. In the beginning of this chapter is
described, why thermal grown SiO2 is the most suitable material for such requirements.

This chapter will focus on thermal oxidation, but it should be mentioned that SiO2 layers can
also be produced by deposition techniques, like chemical vapor deposition. Deposition normally
involves a much smaller thermal budget than thermal oxidation and so it is the only option when
wafers have already metal on them. Usually deposited oxides are not used for thin layers under
10 nm because the control of the deposition process is not so good as the thermal oxidation
process. Another disadvantage is the interface between a deposited oxide and the underlying
silicon, which is electrically not so good as thermal oxide. Furthermore, deposited oxide does
not have the same high density as thermal grown oxide.

Thermal oxidation is a complex process where a diffusion of oxidants, a chemical reaction, and
a volume increase occur simultaneously to convert the silicon substrate into SiO2. This process
is strongly influenced by the used oxidant species, the oxidation ambient with temperature and
pressure, and also the crystal orientation of the substrate. With these parameters the quality
and the growth of the oxide during the manufacturing process can be controlled.

The small dimensions and high performance of modern mos devices require ultrathin SiO2 layers
for gate dielectrics. Apart from the exact thickness control, pure SiO2 has some difficulties to
fulfill all requirements at such thin thicknesses. Especially the dopant penetration and direct
tunneling for ultrathin oxides can not be handled. It was found that silicon oxynitrides are more
suitable materials for such applications. Oxynitrides can be produced by different methods
which depend on the desired nitrogen profile and, therefore, on the application.
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2.1 The Material Silicon Dioxide

SiO2 is one of the most important and attractive materials in semiconductor fabrication, espe-
cially for mos technology. In contrast to other materials which suffer from one or more problems,
SiO2 offers a lot of desired characteristics and advantages [25, 26]:

� SiO2 layers are easily grown thermally on silicon or deposited on many substrates.

� They are resistant to most of the chemicals used in silicon processing and yet can be easily
patterned and selectively etched with specific chemicals or dry etched with plasmas.

� They block the diffusion of dopants and many other unwanted impurities.

� The interface that forms between silicon and SiO2 has very few mechanical or electrical
defects and is stable over time.

� SiO2 has a high-temperature stability (up to 1600 ◦C) indispensable for process and device
integration.

� SiO2 is an excellent insulator with a high dielectric strength and wide band gap.

2.1.1 Properties of SiO2

In Table 2.1 some important properties of SiO2 are listed [27]. The density of thermally grown
dry oxide is a little bit higher than of wet oxide, which leads to a better oxide quality. The
thermal expansion coefficient is a measure of stress or strain, which the oxide exerts on other
materials in contact with it, practicularly during high-temperature cycles. The Young’s modulus
and Poisson’s ratio describe the mechanical behavior of oxide films. In contrast to silicon the
stiffness of SiO2 is approximately only a third.

The thermal conductivity is an important parameter which affects power during circuit opera-
tion. The stability of H2O under high electric fields is expressed as its dielectric strength which
is related to the high resistivity. The bandgap of SiO2 is nearly 8 times wider compared to the
bandgap of silicon. The wide bandgap and the high dielectric strength make oxide films very
suitable for dielectric isolation.

Table 2.1: Important properties of SiO2.

Density (thermal, dry/wet) 2.27/2.18 g/cm−3

Thermal expansion coefficient 5.6 · 10−7 1/K

Young’s modulus 6.6 · 1010 N/m2

Poisson’s ratio 0.17

Thermal conductivity 3.2 · 10−3 W/(cm·K)

Relative dielectric constant 3.7 – 3.9

Dielectric strength 107 V/cm

Energy bandgap 8.9 eV

DC resistivity ≈ 1017 Ω·cm
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2.1.2 Structure of SiO2

SiO2 can be described as a three-dimensional network constructed from tetrahedral cells, with
four oxygen atoms surrounding a silicon atom [25], as shown in a two-dimensional projection in
Fig. 2.1a. The silicon atoms are in the center of each of the tetrahedra. The length of a Si-O
bond is 0.162 nm and the normal distance between oxygen ions is 0.262 nm. The Si-Si bond
distance depends on the particular form of SiO2 with about 0.31 nm. The six-membered ring
structure of SiO2 is shown in Fig. 2.1b. In an ideal network the vertices of the tetrahedra are
joined by a common oxygen atom called a bridging oxygen.

0.262 nm

0.162 nm

Oxygen

Silicon

Bridging oxygen

a) b)

Figure 2.1: Structure of fused silica glass a) and structure of SiO2 b).

In the amorphous forms of SiO2 there can be also some non-bridging oxygen atoms. These
phases are often named as fused silica. Crystalline forms of SiO2 such as quartz contain only
binding oxygen bonds. The various crystalline and amorphous forms of SiO2 arise because of
the ability of the bridging oxygen bonds to rotate, allowing the position of one tetrahedron to
move with respect to its neighbors. This same rotation allows the material to lose long-range
order and hence become amorphous. The rotation and the capability to vary the angle of the
Si-SiO2-Si bond from 120◦ to 180◦ with only a little change in energy play an important role in
matching amorphous SiO2 with crystalline silicon without breaking bonds [28].

2.2 Principles of the Oxidation Process

Thermal oxidation is a process where silicon is converted into SiO2 with the help of oxidants in
an artificial high-temperature ambient. As oxidant source different oxygen compounds can be
used which are supplied by the ambient. Fig. 2.2 illustrates that the oxidants diffuse from the
oxide surface through the already existing oxide to the interface. At the interface the chemical
reaction takes place where the silicon is converted into the SiO2 [29].

In the interface the silicon is converted in principle atom layer after atom layer. In the interface
there is a mixture of silicon, oxygen, and SiO2. The interface thickness is only a few atom
layers. Because of the silicon consumption the interface moves constantly from the surface into
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the silicon substrate during the oxidation process. On the other side the molecule density of
SiO2 is with 2.3 × 1022 molecules/cm3 less than half of the atom density of silicon.

Diffusion

Reaction
Silicon

Oxide

Ambient
Oxidants

Figure 2.2: Basic process for the oxidation of silicon.

Because of the different molecule densities of silicon and SiO2, the newly formed SiO2 has 125%
volume expansion. If the volume expansion takes place only in one direction, as shown in
Fig. 2.3, the thickness of the SiO2 is 225% compared to the original silicon. Without mechanical
boundary conditions the SiO2 would like to expand by 31% in all three dimensions to accomodate
the oxygen atoms.

Consumed Silicon −> Oxide

Silicon
Silicon

new surface 1.25

1.00Oxideold surface

interface

Figure 2.3: Moving interface and volume expansion.

In practice not the whole silicon surface is oxidized. So the areas which should not be oxidized
are masked, usually by a silicon nitride mask, because this mask prevents the oxidant diffusion
to the underlying silicon layer. The oxidants can not diffuse through silicon nitride, because
compared with silicon or oxide this material has a high density. However, the oxidation process
does not stop at the edge of the mask, because the oxidants are able to diffuse through the
already existing oxide into regions under the mask and react there with silicon (see Fig. 2.4).
The finally oxide regions are therefore normally larger than the not masked ones, but there are
also natural mechanisms which strongly restrict or nearly stop the oxidation process under the
mask. In the end the form of the oxide is close to the shape of the mask.
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Silicon

Oxide

Oxidants Oxidants

Mask

Figure 2.4: Defining the oxidation area by masking.

2.3 Rapid Thermal Oxidation

The decreasing size of the semiconductor devices demands very short high-temperature oxidation
steps, because thermal oxidation influences the distribution of impurities in the bulk of silicon
and at the Si/SiO2 interface. Since the movement of impurities affects the device size and its
electrical properties, it is important to control and minimize the effects of oxidation on the
impurity profile. This can be achieved by precisely controlling the oxidation temperature and
reducing the thermal budget of the heat cycle required for an oxide film growth.

Unfortunately, for such applications there is a limitation of the conventional furnace oxidation
due to its inertia to temperature transitions, which results in a higher thermal budget than
required for oxidation. The thermal budget can be reduced considerably by decreasing the
duration of these transitions. As shown in Fig. 2.5, a smaller thermal budget can be achieved
by rapid thermal processing (rtp) [30].

During rtp, the wafer is rapidly heated from a low to a high processing temperature (T >
900 ◦C). It is held at this elevated temperature for a short time and then brought back rapidly to a
low temperature. Typical temperature transition rates range from 10 to 350 ◦C/s, compared with
about 0.1 ◦C/s for furnace processing. So rtp reduces the ramp-up and ramp-down durations.
The rtp durations at high processing temperatures vary from 1 s to 5 min. This makes rtp

very suitable to grow thin oxide films (< 40 nm), where a precise temperature control and short
oxidation times are important.

A schematic rtp system is shown in Fig. 2.6. The heat source is typically an array of lamps in
an optical system. In contrast to conventional furnaces, where a batch of wafers is introduced
into the furnace and oxidized at the same time, rtp systems are single-wafer machines, and only
one wafer is in the chamber and processed. However, due to the high processing temperature
(T > 900 ◦C), the processing time required for oxidation is in rtp systems reduced.

One of the difficult problems in an rtp system is to know exactly the wafer temperature. These
systems usually support the wafer on a small thermal mass in order to heat the wafer rapidly.
This makes it very difficult to use thermocouplers for temperature measurement as is done in
a furnace. Another technique is to measure with an infrared pyrometer from the back side of
the wafer. Precise temperature measurement is rather difficult with this method, because the
“energy reading” depends mainly on the surface condition of the back side. Furthermore, the
wafer temperature can change by approximately 1000 ◦C in a few seconds, which also complicates
an accurate temperature measurement.
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Figure 2.5: Reduction of the thermal budget with rapid thermal processing.
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Figure 2.6: Cross section view of a rtp system.

2.4 Oxidation Parameters

The desired characteristics and requirements of the fabricated oxide can be mainly influenced by
the used oxidant species. For a chosen oxidant species the oxide growth rate usually is controlled
by the temperature. Additionally, it is possible to vary the hydrostatic pressure in the reaction
chamber, if the oxidation system offers such possibilities. Furthermore, the oxidation rate is also
influenced by the crystal orientation of the used silicon substrate.

2.4.1 Oxidant Species

The most important characteristic of oxidant molecules is that they contain oxygen atoms, which
are needed for the transformation from silicon to SiO2. The classical oxidant species are pure
oxygen, which is also declared as dry oxidation, and water vapour, which is also declared as wet
oxidation. In the middle of the 70’s people started to mix pure oxygen mostly with Chlorine or
Hydrocloric Acid to improve oxide quality and speed up growth rate. The state of the art are
nitrided oxides for mos-gates, which are in principle also produced by dry oxidation. Because
of their extension and importance this species is described separately in Section 2.5
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2.4.1.1 Dry Oxidation

During dry oxidation the silicon wafer is settled to a pure oxygen gas atmosphere (O2). The
oxidation rate is low (< 100 nm/hr) and so the final oxide thickness can be controlled accurately.
Compared with other oxides the dry oxide has the best material characteristics and quality. The
chemical reaction between silicon (solid) and oxygen (gas) is

Si + O2 → SiO2. (2.1)

With dry oxidation normally high quality thin oxide films up to 100 nm thickness are produced.
Dry oxides are especially used as gate oxides in mos technology. The actually fabricated gate
oxide thickness is in the magnitude of about only 2 nm in the currently used 90 nm process
technology, whereas the exact thickness depends on the respective manufacturing setup. Unfor-
tunately, at such thicknesses SiO2 generated from pure oxygen does not fulfill all demands for a
good gate oxide.

2.4.1.2 Wet Oxidation

During wet oxidation the silicon wafer is settled to a water vapour atmosphere (H2O). Wet
oxides grow really fast compared to dry oxidation, which is the biggest advantage. The reason
for the much higher growth rate is the oxidant solubility limit in SiO2, which is much higher
for wet (H2O) than for dry oxidation (O2). For 1000 ◦C the typical solubility limit value is
5.2× 1016 cm−3 for dry oxidation compared to 3× 1019 cm−3 for wet oxidation, which is nearly
600 times higher.

Therefore, wet oxidation is applied for thick oxides in insulation and passivation layers, where
thick oxide buffers are needed to suppress electric currents or to ensure high threshold voltage
of parasitic transistors. The chemical reaction is

Si + 2H2O → SiO2 + 2H2. (2.2)

Because of its water content, wet oxide films exhibit a lower dielectric strength and more porosity
to impurity penetration than dry oxides. Therefore, wet oxidation is used when the electrical
and chemical properties of the film are not critical.

2.4.1.3 Mixed Flows of O2 with H2O, HCL, and Cl2

The gas flow of O2 can be mixed in the furnace with H2O, HCL, and Cl2 to get acceptable
oxide quality at a higher growth rate. Besides a higher growth rate, Hydrocloric Acid (HCL) or
Chlorine (Cl2) is often used in oxidation in order to prevent metallic contamination and to help
avoiding defects in the oxidation layer [31]. HCL and Cl2 have a cleaning effect of the furnace
as well as an improvement of the oxide reliability. This means that HCL and Cl2 additions
provide benefits to the resulting device structures such as better ion passivation, higher and
more uniform oxide dielectric strength, and improved junction properties due to lower current
leakage.

The mixed flows were investigated among others by Deal and Hess in the late 70’s, especially
for the influence on the growth rate. The addition of H2O as well as Cl is investigated in [32],
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Figure 2.7: Oxide thickness versus oxidation time for (100) oriented silicon
in various H2O/O2 mixtures at 1000 ◦C.
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Figure 2.8: Oxide thickness versus oxidation time for (100) oriented silicon
in various Cl2/O2 mixtures at 1000 ◦C.

and of HCL in [33]. In order to see the effect of the different mixed flows on the growth rate in
a clear manner, the oxide thickness over time for a (100) oriented Silicon at 1000 ◦C is plotted
in Figs. 2.7 – 2.9. It is notable that a double logarithmic scale of the plots leads to nearly linear
curves also for the mixtures.

The mixture of H2O/O2 has the highest increase of the growth rate, because it is in principle a
combination of wet and dry oxidation. We can see in Fig. 2.7 that the same percentage of H2O
leads to a much thicker oxide at any time than HCL or Cl2. Another interesting aspect is that
the admixture of the same percentage of HCL and Cl2 always leads to the same oxide thickness
(compare Fig. 2.8 with Fig. 2.9).
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Figure 2.9: Oxide thickness versus oxidation time for (100) oriented silicon
in various HCL/O2 mixtures at 1000 ◦C.
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Figure 2.10: Oxidation rate of H2O/O2 mixture compared with HCL/O2

mixture at 1000 ◦C.

The chemical reaction of HCL with oxygen is

4HCL + O2 → 2H2O + 2Cl2. (2.3)

Now it can be said that 2 moles of HCL produce 1 mol of H2O and Cl2. So the mixtures of HCL
can be compared with H2O. From the theoretical aspect the double percentage of HCL should
lead to the same growth effect as the single percentage of H2O. But in the practical experiment,
as shown in Fig. 2.10, 5 vol% H2O results in a considerable thicker oxide than 10 vol% HCL.
There are no more details known about this fact [32], only that the difference between the oxide
thicknesses by H2O and HCL becomes smaller with increasing temperature, so that the theory
comes true for high temperatures (1100 ◦C).
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In wet oxidation the addition of HCL does not increase the oxidation rate, rather the oxidation
rate is decreased for the same percentage as the amount of HCL is added [34]. In H2O-HCL
ambients the thickness uniformity and appearance of these oxides were considerably better than
in pure H2O ambients. Also the defects in the oxide are considerably reduced.

2.4.2 Influence of Temperature

The oxidation rate increases significantly with the temperature in the furnace for dry as well
as for wet oxidation. The temperature dependence of the oxidation rate is plotted in Fig. 2.11
for dry and Fig. 2.12 for wet oxidation. For wet oxidation in Fig. 2.12 it can be seen that
100 ◦C more temperature leads to approximately double the oxidation rate, if the temperature
is increased from 900 to 1000 ◦C. The important temperature effect can also be observed for dry
oxidation in Fig. 2.11, where the same temperature increase from 900 to 1000 ◦C leads to much
more than double the oxidation rate.
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Figure 2.11: Oxide thickness versus oxidation time for (100) oriented silicon
by dry oxidation (O2) for various temperatures.

The main reason of this striking temperature influence on the oxidation rate is the temperature
dependence of the diffusivity of oxygen (O2) and water (H2O) in fused silica. The diffusivity
of the oxidants depends on the temperature T in the way exp(− c

T ). The oxidant diffusivity is
exponentially increased with higher temperature and exponentially decreased with lower tem-
perature. Higher diffusivity means that more oxidants can reach the Si/SiO2 interface and react
there with silicon to form SiO2.

2.4.3 Influence of Pressure

The oxidation rate increases with the hydrostatic pressure in the furnace for dry and wet ox-
idation in nearly the same way. The principal advantages of higher pressure oxidation over
conventional atmospheric oxidation are the faster oxidation rate (see Fig. 2.13) and the lower
processing temperature generally employed [35, 36]. Both lead to less impurity diffusion and
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Figure 2.12: Oxide thickness versus oxidation time for (100) oriented silicon
by wet oxidation (H2O) for various temperatures.

minimum junction movement during the several oxidation steps which are necessary in the man-
ufacturing of high-density multilayer IC devices. The quality and integrity of higher pressure
oxides have been found to be comparable to atmospheric oxides. Oxidation-induced stacking
faults are significantly reduced with higher pressure oxidation [37], which leads to improved
device performance.
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Figure 2.13: Oxide thickness versus oxidation time for (110) oriented silicon
by dry oxidation at 1000 ◦C for various pressures.
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2.4.4 Influence of Crystal Orientation

The studies of oxidation have shown that the oxidation rate also depends on the crystal orienta-
tion of the silicon substrate. Experiments have demonstrated many times that the oxide growth
is faster on (111) oriented surfaces than on (100) oriented at any temperature for dry as well as
wet oxidation. Furthermore, as plotted in Fig. 2.14 for wet oxidation, it was found that the (111)
and (100) orientation represent the upper and the lower bound for oxidation rates, respectively.
Therefore, the growth rate for all other orientations lies between these two extremal values [38].

It is important to understand orientation effects on oxidation more generally because many
structures actually use etched trenches and other shaped silicon regions as part of their structure.
Ligenza [39] suggested that the crystal orientation effect might be caused by differences in the
surface density of silicon atoms on the various crystal faces. He argued that since silicon atoms
are required for the oxidation process, crystal planes that have higher densities of atoms should
oxidize faster. Furthermore, he argued that not only the number of silicon atoms per cm2 is
important, but also the number of bonds matter, since it is necessary for Si-Si bonds to be
broken for proceeding the oxidation. Ligenza calculated the “available” bonds per cm2 on the
various silicon surfaces and concluded that oxidation rates in H2O ambients should be in the
order (111) > (100), which was also observed experimentally.
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Figure 2.14: Oxide thickness versus oxidation time for (100), (110), and
(111) oriented silicon by wet oxidation (H2O).
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2.5 Nitrided Oxide Films

While SiO2 was the main material for gate dielectrics for more than three decades, the use of
traditional SiO2 gate dielectrics becomes questionable for sub-0.25 µm ULSI devices. Increasing
problems with dopant penetration through ultrathin SiO2 layers (< 2 nm) and direct tunneling
for ultrathin oxide films dictate the search for new materials for future gate dielectrics with
better diffusion barrier properties and higher dielectric constants [40]. At this time, ultrathin
silicon oxynitrides (SiOxNy) are the leading candidates to replace pure SiO2 [41].

Nitrogen suppresses boron penetration from the poly-Si gate and reduces hot-electron-induced
degradation. The dielectric constant of the oxynitride increases linearly with the percentage of
nitrogen from εSiO2

= 3.8 to εSi3N4
= 7.8. Because most SiOxNy films are currently grown

by thermal methods, they are only lightly doped with N (< 10 at.%). Therefore, these silicon
oxynitrides have a dielectric constant only slightly higher than that of pure SiO2.

2.5.1 Different Nitridation Methods

The performance of mos-based devices depends on both the concentration and distribution of the
nitrogen atoms incorporated into the gate dielectric. The optimal nitrogen profile is determined
by its application. One possibility is a SiOxNy film with two nitrogen-enhanced layers: at first,
nitrogen is placed at or near the Si/SiO2 interface to improve hot-electron immunity, and second,
an even higher nitrogen concentration is put at the SiO2/polysilicon interface where it is best
used to minimize the penetration of boron from the heavily doped gate electrode [42]. Typical
amounts of nitrogen at each interface are in the order of (0.5 − 1) × 1015 cm−2.

Nitrogen may be incorporated into SiO2 using either thermal oxidation/annealing or chemical
and physical deposition methods. Thermal nitridation of SiO2 in NO or N2O generally results
in a relatively low concentration of nitrogen in the films in the order of 1015 N/cm2 [42]. Since
the nitrogen content increases with temperature, thermal oxynitridation is typically performed
at high temperatures (T > 800 ◦C).

For more heavily N-doped SiOxNy films, other deposition methods, such as chemical vapor
deposition in different variants, or nitridation by energetic nitrogen particles (e.g. N atoms or
ions), can be used. These nitridation methods can be performed at lower temperatures (∼300 –
400 ◦C). Unfortunately, low temperature deposition methods result in non-equilibrium films, and
subsequent thermal processing steps are often required to improve film quality and minimize
defects and induced damage [43].

2.5.2 Diffusion-Barrier Properties of Nitrided Layers

An important property of nitrogen in nitrided oxides is that it forms a barrier against the
diffusion of boron. Concurrent with this, it also lowers the diffusion rates for oxygen and other
dopants, slowing down the growth rate of any further oxidation or nitridation [44]. For example,
for a 2 nm oxynitride with one monolayer of nitrogen 6.8×1014 N/cm2 located near the interface,
the oxidation rate decreases by at least a factor 4 relative to the pure oxide. The decrease in
film growth rate results from a decreased rate of diffusion due to nitrogen.
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One explanation for the lower diffusivity of NO, O2, N2 or other molecular species is the higher
density of nitrides and oxynitrides compared with pure oxide. Furthermore, the lattice involves
N bonds and therefore becomes more rigid. The three bonds connected to each nitrogen as in
Si3N4 are more constrained than the two bonds of each O atom in SiO2, where the Si–O–Si bond
angles can go from 120◦ to 180◦ with little change in energy. These more constrained bonds are
another important reason for decreasing the ability of nitrided lattices to permit the diffusion
of atoms and small molecules.

2.5.3 Nitrogen Incorporation by NO

Oxidation of silicon and annealing of SiO2 in nitric (NO) or nitrous (NO2) oxide are the leading
procedures for making nitrided oxides by conventional thermal processing methods. NO is the
main species responsible for nitrogen incorporation into the film [45]. Oxynitridation in pure
NO should be considered for ultrathin dielectrics, especially in processes where thermal budget
and film thickness issues are crucial. When the temperature increases, the total amounts of
both nitrogen and oxygen increase as well as the ratio of nitrogen to oxygen so that the film
becomes more nitride-like at higher temperatures. For example the ratio increases by 40% if
the temperature changes from 700 to 1000 ◦C [46]. With rising temperature the depth of the
nitrogen profiles and so the width of the containing nitrogen region increase too.

The thicknesses of the films on clean silicon surfaces measured at 700 – 1000 ◦C after one hour
were only ∼1.5 – 2.5 nm [46]. From the practical point of view, the slower growth of oxynitride
compared with pure oxide facilitates good thickness control in the ultrathin regime during high-
temperature processing. To make a thicker film, a thin preoxide (SiO2) of desired thickness can
first be formed and then annealed by NO. However, the nitrogen distribution in NO-annealed
films is different compared to the one in NO-grown filmss (see Fig. 2.15).

2.5.4 Nitrogen Incorporation and Removal by NO2

Under equivalent conditions, oxynitridation in NO2 results in less nitrogen incorporation than
in NO. However, NO2 is particularly attractive, because
1) it allows to incorporate an appropriate amount of nitrogen near the SiOxNy/Si interface

(typically ∼ 5 × 1014 atoms/cm2),
2) its processing with O2 gas permits NO2 to replace oxygen in the oxidation reactors/furnaces.
Among other factors, oxynitridation in NO2 is complicated by the fast gas-phase decomposition
of the molecule into N2, O2, NO, and O at typical oxidation temperatures 800 – 1000 ◦C [47], in
contrast to NO, which is a relatively stable molecule.

The fundamental difference between oxynitridation in NO2 and NO is that, while both incor-
porate nitrogen by NO reactions near the interface, in the NO2 case the nitrogen incorporation
occurs simultaneously with nitrogen removal from the upper layers of the film (see Fig. 2.15).
In experiments it was observed that NO does not effectively remove nitrogen from the oxyni-
tride [48]. So it can be concluded that other products of the NO2 gas-phase decomposition, like
O, are responsible for the nitrogen removal. The final nitrogen concentration and distribution
is influenced by a competition between N incorporation and removal.

NO2 rapidly decomposes in the gas phase to N2 and O, and then the O initiates a further
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series of reaction to form NO, the key oxynitriding agent, and other species. NO, from gas or
decomposition, is similar to O2 when it interacts with silicon or SiO2, in that the dominant
oxynitride growth mechanism involves NO diffusion through a SiOxNy overlayer, followed by a
reaction with silicon at and near the SiOxNy/Si interface [48].
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Figure 2.15: Several nitridation processes and resultant nitrogen profiles.

2.5.5 Nitridation in N2 and NH3

Direct nitridation via reaction of silicon with N2 requires very high temperatures (T ≥ 1200 ◦C)
and, therefore, a too high thermal budget. To reduce the thermal budget, oxynitrides were
grown in pure N2 by rapid thermal processing (rtp). Although the input N2 gas stream is
purified at the point of use and therefore extremely free of contaminants such as N2O, O2, CO2,
and CO (less than 1 ppb each of them), it was found in experiments, that in a cold wall rtp

module, the growth chamber contributes impurities to the ambient through outgasing from the
walls [49].

Therefore, although the Si/N2 system may be inert for T ≤ 1200 ◦C, the de facto oxidation
ambient is not so. Thus, it was observed that N2 reacts with silicon at moderate temperatures
(760 – 1050 ◦C) in an rtp module [49], due to the presence of gas impurities, to form ultrathin
(less than 1.2 nm) SiOxNy films.

Nitridation in ammonia (NH3) was one of the first methods used to incorporate relatively high
concentrations of nitrogen (∼ 10− 15 at.%) into SiO2 films. The nitridation atmosphere of NH3
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introduces high concentrations of hydrogen into SiO2 films, which then can act as traps. One
of the advantages of the thermal nitridation of SiO2 in NH3 is the simultaneous nitridation of
the interface and the SiO2 surface, while one disadvantage is the introduction of hydrogen in
the oxynitride film. This disadvantage can be overcome by performing a thermal reoxidation of
the oxynitride film in dry O2, which completely removes the hydrogen from the film and serves
also to decrease the concentration of nitrogen at the SiO2/Si interface, improving the electrical
characteristics of this interface [50].

The role of hydrogen is crucial, because, if hydrogen is not contained in the nitriding molecule
as in the case of thermal treatments of SiO2 films in N2 or N2/H2 mixtures, incorporation of
nitrogen in the films does not occur. Hydrogen participates in the transport of the nitriding
species from the film surface towards the SiO2/Si interface. Ammonia reacts in the surface
region of silica at temperatures above 650 ◦C as

Si − O − Si + NH3 → SiNH2 + SiOH. (2.4)

At the SiO2/Si interface, because of the existence of free silicon atoms and by considering the
change of free energy of the chemical reactions, the following reactions can take place

SiO2 + 3Si + 4NH3 → 2 Si2N2O + 6H2, (2.5)

2 SiO2 + Si + 4NH3 → Si3N4 + 4H2O + 6H2. (2.6)

In the bulk of the silicon oxide, on the other side, the nitriding species will react mostly with
silicon oxide

2 SiO2 + Si + 4NH3 → Si3N4 + 4H2O + 6H2. (2.7)

The incorporation of a nitrogen atom will often be accompanied by the intake of a hydrogen
atom which removes an oxygen atom (in form of water or OH), the nitridation of the SiO2 films
proceeds essentially by an exchange of N for O atoms [50].

2.6 The Deal-Grove Model

A well established model for thermal oxide growth has been proposed by Deal and Grove [51] in
the middle of the 60’s and because of its simplicity it is still applied frequently. One reason for
this simplicity is that the whole physics of the oxidation process is contained in two so-called
Deal-Grove parameters, which must be extracted from experiments. Furthermore, it is assumed
that the structure is one-dimensional. Therefore, the model can only be applied to oxide films
grown on plane substrates.

2.6.1 Concept and Formulation

If one assumes that the oxidation process is dominated by the inward movement of the oxidant
species, the transported species must go through the following stages:

(1) It is transported from the bulk of the oxidizing gas to the outer surface of oxide, where it is
adsorbed.
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(2) It is transported across the oxide film towards silicon.

(3) It reacts at the interface with silicon and form a new layer of SiO2.

Each of these steps can be described as independent flux equation. The adsorption of oxidants
is written as

F1 = h(C∗ − CO), (2.8)

where h is the gas-phase transport coefficient, C ∗ is the equilibrium concentration of the oxidants
in the surrounding gas atmosphere, and CO is the concentration of oxidants at the oxide surface
at any given time.

It was found experimentally that wide changes in gas flow rates in the oxidation furnaces, changes
in the spacing between wafers on the carrier in the furnace, and a change in wafer orientation
(standing up or lying down) cause only little difference in oxidation rates. These results imply
that h is very large, or that only a small difference between C ∗ and CO is required to provide
the necessary oxidant flux.

C∗ is also the solubility limit in the oxide, which is assumed to be related to the partial pressure
p of the oxidant in the gas atmosphere by Henry’s law

C∗ = H · p. (2.9)

At natural ambient pressure of 1 atm and at a temperature of 1000 ◦C, the solubility limits are
5.2 × 1016 cm−3 for O2, and 3.0 × 1019 cm−3 for H2O.

The flux F2 represents the diffusion of the oxidants through the oxide layer to the Si-SiO2-
interface, which can be expressed as

F2 = D
∂C

∂x
= D

CO − CS

xO
, (2.10)

where D is the oxidant diffusivity in the oxide, CS is the oxidant concentration at the oxide-
silicon interface, and xO represents the oxide thickness. In this expression it is assumed that the
process is in steady state (no changing rapidly with time), and that there is no loss of oxidants
when they diffuse through the oxide. Under these conditions, F2 must be constant through the
oxide and hence the derivative can be replaced simply by a constant gradient.

The third part of the oxidation process is the flux of oxidants consumed by the oxidation reaction
at the oxide-silicon interface given by

F3 = ksCS , (2.11)

with ks as the surface rate constant. ks really represents a number of processes occurring at
the Si/SiO2 interface. These may include oxidant (O2 → 2O), Si-Si bond breaking, and/or
Si-O bond formation. The rate at which this reaction takes place should be proportional to the
oxidant concentration at the interface CS.

Deal and Grove assumed that in the steady state condition these three fluxes are equal, which
allows to express them as

F1 = F2 = F3 = F =
C∗

1
ks

+ 1
h + x0

D0

. (2.12)
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Figure 2.16: One-dimensional model for the oxidation of silicon.

The rate of oxide growth is proportional to the flux of oxidant molecules,

dx0

dt
=

F

N
=

C∗

N
1
ks

+ 1
h + x0

D0

, (2.13)

where N is the number of oxidant molecules incorporated per unit volume.

The differential equation can be simplified as

dx0

dt
=

B

A + 2x0
, (2.14)

with the physically based parameters

A = 2D
( 1

ks
+

1

h

)

, (2.15)

B = 2D
C∗

N
. (2.16)

2.6.2 Analytical Oxidation Relationship

In order to get an analytical relationship between oxide thickness x0 and oxidation time t the
first order differential equation (2.14) must be solved. For this purpose in the first step (2.14)
can be rewritten in the form

(A + 2x0) dx0 = B dt. (2.17)
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Integration of (2.17) from time 0 to t, with the assumption of an initial oxide thickness xi at
time 0, yields a quadratic equation for the oxide thickness x0:

x2
0 + Ax0 = B(t + τ), (2.18)

where the parameter τ is given by

τ =
x2

i + Axi

B
. (2.19)

So τ takes into account any oxide thickness at the start of the oxidation. It can also be used to
provide a better fit to the data in the anomalous thin oxide regime in dry oxidation.

At first with (2.18) the oxidation time for a specific desired oxide thickness can be estimated by

t =
x2

0 − x2
i

B
+

x0 − xi

B/A
. (2.20)

On the other side solving the quadratic equation (2.18) in regard of x0 leads to the following
explicit expression for the oxide thickness in terms of oxidation time:

x0 =
A

2

(

√

1 +
4B

A2
(t + τ) − 1

)

. (2.21)

The formulas (2.44) and (2.20) are a real strength of the Deal-Grove model, because the oxide
thickness for any oxidation time or the needed time for a specific thickness can be determined in
an uncomplicated and fast way. Of course the thickness can be only estimated in one direction
on planar structures, but in practice this fast approach is indeed helpful.

It is interesting to examine two limiting forms of the linear-parabolic relationship (2.44). One
limiting case occurs for long oxidation times when t � τ and t � A2/4B

x0
∼=

√
B · t, (2.22)

where B is the so-called parabolic rate constant

B =
2DC∗

N
. (2.23)

The other limiting case occurs for short oxidation times when t � A2/4B

x0
∼= B

A
(t + τ), (2.24)

where B/A is the so-called linear rate constant

B

A
=

C∗

N
(

1
ks

+ 1
h

)

∼= C∗ks

N
. (2.25)

The linear term (2.24) dominates for small x-values, the parabolic term (2.22) for larger x-values.

The rate constants B and B/A are also termed as Deal-Grove-parameters. In most publications
which use the Deal-Grove model the oxide growth is described with B and B/A. The parameters
B and B/A are normally determined experimentally by extracting them from growth data. The
reason for taking this approach is simply that all parameters in (2.23) and (2.25) are not known.
ks in particular contains a lot of hidden physics associated with the interface reaction.
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2.6.3 Temperature Dependence of B and B/A

In order to model the corresponding growth rate for different temperatures, the values for B and
B/A must change with temperature. As explained in Section 2.4.2, the oxidation rate increases
with higher temperature, and so the values of B and B/A must also increase. It was found
experimentally that both B and B/A are well described by Arrhenius expressions of the form

B = C1 exp
(

− E1

kT

)

(2.26)

B

A
= C2 exp

(

− E2

kT

)

. (2.27)

In these expressions, E1 and E2 are the activation energies associated with the physical process
that B and B/A represents, and C1 and C2 are the pre-exponential constants. Table 2.2 lists the
experimental values for the parameters needed in (2.26) and (2.27) for (111) oriented silicon at
one atmosphere. With these values, in Fig. 2.17 the parameters B and B/A are plotted over the
temperature range 800 – 1000 ◦C for wet and dry oxidation. In order to get the corresponding
values for (100) oriented silicon, only the C2 values must be divided by the factor 1.68, all the
E1,2 and C1 values are the same.

Table 2.2: Arrhenius parameters for B and B/A in (111) oriented silicon [25].

Ambient B B/A

Dry O2 C1 = 7.72 × 102µm2/hr C2 = 6.23 × 106µm/hr

E1 = 1.23 eV E2 = 2.00 eV

Wet H2O C1 = 3.86 × 102µm2/hr C2 = 1.63 × 108µm/hr

E1 = 0.78 eV E2 = 2.05 eV

For the parabolic rate constant B the activation energy E1 is quite different for O2 and H2O
ambients. (2.23) suggests that the physical mechanism responsible for E1 might be the oxidant
diffusion through SiO2, because N is a constant and C∗ is not expected to increase exponentially
with temperature. In fact, independent measurements of the diffusion coefficients of O2 and H2O
in SiO2 show that these parameters vary with temperature in the same way as (2.26) and with E1

values close to those shown in Table 2.2. The clear implication is that B in the linear parabolic
model really represents the oxidant diffusion process.

The E2 values for B/A in the table are all quite close to 2 eV. (2.25) suggests that the physical
origin of E2 is likely connected with the interface reaction rate ks. Traditionally, the 2 eV activa-
tion energy has been associated with the Si-O bound formation process because of measurements
by Pauling [52] that suggested that the Si-O bond energy was in the correct range to explain the
B/A values. However, the interface reaction is very complex and it is likely that other effects
also affect the experimental B/A values. An additional observation supports the idea that it is
somehow associated with the silicon substrate which determines E2, because E2 is essentially
independent of the oxidation ambient. It is also essentially independent of the substrate crystal
orientation, which suggests that E2 represents a fundamental part of the oxidation process, not
something only associated with the substrate.
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Figure 2.17: B and B/A versus temperature for (111) oriented silicon for
wet and dry oxidation.

2.6.4 Pressure Dependence of B and B/A

The linear parabolic model predicts that the oxide growth rate should be directly proportional
to the oxidant pressure as shown in (2.9). If Henry’s law [53] holds and the concentration of
oxidants on the gas/SiO2 interface C∗ is proportional to the pressure p, then both B and B/A
are proportional to p from (2.23) and (2.25), and the oxide growth rate should therefore be
proportional to p.

Experimental measurements have shown that for wet oxidation this prediction is correct, and
for H2O ambients the pressure dependence of the parabolic and linear rate constants are [36]

B(P ) = B(1atm) · p, (2.28)

B/A(P ) = B/A(1atm) · p. (2.29)

In contrast to wet oxidation for dry oxidation the pressure dependence is inconsistent with the
linear parabolic model. A considerable body of data has consistently shown that dry oxidation
can only be modeled with a linear parabolic equation, where B ∝ p and B/A ∝ pn with
n ≈ 0.7 − 0.8 [35]. Hence, to use the model for O2 ambients at any pressure p the parabolic
and linear rate constants should be

B(P ) = B(1atm) · p (2.30)

B/A(P ) = B/A(1atm) · p0.75. (2.31)

Within the context of the model it can be inferred that the pressure dependence of B ∝ p comes
exclusively from C∗, because C∗ as determined in Henry’s law (2.23) must be C∗ ∝ p. Therefore,
the diffusion coefficient D for the oxidants in the solid phase can be assumed constant.

If B/A is not linearly proportional to p, ks from (2.25) must depend on p in a non-linear fashion.
Considering the pressure dependence of B/A and C ∗ above, the chemical surface reaction must
depend on pressure in the way ks ∝ p−0.25.
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2.6.5 Dependence of B and B/A on Crystal Orientation

Even before the development of the Deal-Grove model, it has been observed that crystal orien-
tation affects the oxidation rate [39]. The crystal effects can be incorporated in the following
way: Except perhaps in the region very near the Si/SiO2 interface, the oxide grows on silicon
in an amorphous way. So it does not incorporate any information about the underlying silicon
crystal structure. Therefore, the parabolic rate constant B should not be orientation dependent,
since B represents the oxidant diffusion through the SiO2. If the oxide structure is unrelated to
the underlying substrate, there should be no crystal orientation effect on B. In fact it was found
experimentally by extracting growth data [38], that in context of the model there is no crystal
effect on the rate constant B. The B values are the same for all orientations.

On the other hand B/A should be orientation dependent, because it involves the reaction at
the Si/SiO2 interface. This reaction surely involves silicon atoms and should be affected by the
number of available reaction sites. It was found experimentally [38], that there are two extremes
of the linear rate constant B/A. The minimum was found for (100) oriented silicon whereas
the maximum is at (111) orientation, and all other orientation are normally between these two
extremes. In the context of the model the orientation effect must be incorporated for the rate
constant B/A in the following way [38]:

B/A〈111〉 = 1.68 · B/A〈100〉. (2.32)

2.6.6 Thin Film Oxidation with Deal-Grove Model

It has been observed in many experiments that there is a rapid and non-linear oxide growth in
the initial stage of dry oxidation [54], as presented in Fig. 2.18. One weakness of the model is
the impossibility to predict the initial stage of the oxidation growth. As shown in Fig. 2.18,
even with the best fit, the approximately first 30 nm of the oxide thickness can not be forecasted
with the linear parabolic model, because the oxide growth is fast and non-linear but the model
offers only a linear fit for such thin thicknesses [55] .
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Figure 2.18: Rapid, non-linear growth rate in the inital stage of dry oxidation.

29



PHYSICS OF THERMAL OXIDATION

2.7 The Massoud Model

As described in the Section 2.6.6 the Deal-Grove model can not satisfy the so-called thin film
oxidation. It should be taken into account that in the middle of the 60’s, when Deal and Grove
developed their model, oxide thicknesses under 30 nm were not fabricated in the semiconductor
technology. Hence, there was no need to predict or simulate the growth for such thin oxide films.
But with shrinking device geometry also the oxide thickness is decreasing. Hence, sometime in
the 80’s, mos gates with thin thicknesses were grown and so the problem became important. In
order to handle also thin film oxditation, in this time Massoud and other people, reengineered
the Deal-Grove concept [56]. The yielded model is most suitable for thin oxide films, but it
should be mentioned that it also works well for other oxide thicknesses. The price for this
common validity is the higher complexity of this model.

2.7.1 Experimental Fitting

It was found that the SiO2 growth rate in the thin regime for a wide variety of experimental
conditions can be expressed as [56]

dx0

dt
=

B

2x0 + A
+ C1 exp

(

− x0

L1

)

+ C2 exp
(

− x0

L2

)

. (2.33)

The first term on the right side of (2.33) is the linear-parabolic term where B and B/A are the
parabolic and linear rate constants, respectively, as defined by Deal and Grove, but their values
in the Massoud model are completely different [57]. In Arrhenius-expression the rate constants
can be written in the form

B = CB exp
(

− EB

kT

)

(2.34)

B

A
= CB/A exp

(

−
EB/A

kT

)

. (2.35)

The values for the pre-exponential constants CB , CB/A and the activation energies EB , EB/A

for different crystal orientations are listed in Table 2.3. In this model it is adverse that Cx and
Ex are not valid for the whole temperature range and so Cx and Ex differ from temperatures
less and more than 1000 ◦C.

Table 2.3: Pre-exponential constants and activation energies for B and B/A [57].

Temperature Range T < 1000 ◦C T > 1000 ◦C

Crystal Orientation (100) (111) (110) (100) (111)

CB [nm2/min] 1.70 × 1011 1.34 × 109 3.73 × 108 1.31 × 105 2.56 × 105

EB [eV] 2.22 1.71 1.63 0.68 0.76

CB/A [nm/min] 7.35 × 106 1.32 × 107 4.73 × 108 3.53 × 1012 6.50 × 1011

EB/A [eV] 1.76 1.74 2.10 3.20 2.95

In (2.33) the two exponential terms represent the rate enhancement in the thin regime. They
are defined in terms of pre-exponential constants C1 and C2 and characteristic lengths L1 and
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L2. The first decaying exponential has a characteristic lengths L1 in the order of 1 nm, it is
nonzero for the first 5 nm of oxide growth, and vanishes for oxides thicker than 5 nm. The second
decaying exponential has a characteristic lengths L2 in the order of 7 nm and it is present from
the onset of oxidation to an oxide thickness of about 25 nm, where it decays to zero and the
growth becomes pure linear-parabolic.

Another formulation of (2.33), where the two terms which represent the rate enhancement in
the thin regime are decaying exponentially with time, can be expressed as [58]

dx0

dt
=

B + K1 exp
(

−t
τ1

)

+ K2 exp
(

−t
τ2

)

2x0 + A
, (2.36)

where all four parameters K1, K2, τ1 and τ2 were fitted to an Arrhenius-type expression

K1 = K0
1 exp

(

− EK1

kT

)

, (2.37)

K2 = K0
2 exp

(

− EK2

kT

)

, (2.38)

τ1 = τ0
1 exp

(

− Eτ1

kT

)

, (2.39)

τ2 = τ0
2 exp

(

− Eτ2

kT

)

. (2.40)

The pre-exponential constants and activation energies in the above expressions (2.37)–(2.40) for
different crystal orientations and dry oxidation in the temperature range form 800 – 1000 ◦C are
listed in Table 2.4.

Table 2.4: Arrhenius-expression parameters for the pre-exponential constants K1

and K2, and the time constants τ1 and τ2 in the 800 – 1000 ◦C range [58].

Crystal Orientation (100) (111) (110)

K0
1 [nm2/min] 2.49 × 1011 2.70 × 109 4.07 × 108

EK1 [eV] 2.18 1.74 1.54

K0
2 [nm2/min] 3.72 × 1011 1.33 × 109 1.20 × 108

EK2 [eV] 2.28 1.76 1.56

τ0
1 [min] 4.14 × 10−6 1.72 × 10−6 5.38 × 10−9

Eτ1 [eV] 1.38 1.45 2.02

τ0
1 [min] 2.71 × 10−7 1.56 × 10−7 1.63 × 10−8

Eτ2 [eV] 1.88 1.90 2.12

2.7.2 Analytical Oxidation Relationship

As already mentioned in Section 2.6.2, it would be convenient to have an analytical expression
for the oxide thickness x0. For this purpose (2.36) is rewritten as

(2x0 + A)dx0 =
[

B + K1 exp
(

− t

τ1

)

+ K2 exp
(

− t

τ2

)]

dt. (2.41)
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Integration of (2.41), from time 0 where the native oxide thickness is xi to an oxidation time t
where the oxide thickness x0 results in [58]

x2
0 + Ax0 = Bt + M1

[

1 − exp
(

− t

τ1

)]

+ M2

[

1 − exp
(

− t

τ2

)]

+ M0 (2.42)

with the substitutions

M0 = (x2
i + Axi), M1 = K1τ1, M2 = K2τ2. (2.43)

The equation (2.42) is quadratic and can be solved obtaining an analytic expression for the oxide
thickness as a function of the oxidation time of the form

x0 =

√

(A

2

)2
+ Bt + M1

[

1 − exp
(

− t

τ1

)]

+ M2

[

1 − exp
(

− t

τ2

)]

+ M0 −
A

2
(2.44)

This relationship describes the oxide growth in dry oxygen from the onset oxidation with an
smaller than 1 – 2% compared to the measured data. An example in Fig. 2.19 shows the growth
in thin regime for (100) oriented silicon in temperature range 900 – 1000 ◦C. The oxide thicknesses
were calculated by (2.42) with the parameters from Table 2.3 and 2.4.
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Figure 2.19: Oxide thickness versus oxidation time for (110) oriented silicon
in dry oxygen at 900 ◦C, 950 ◦C, and 1000 ◦C.
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Chapter 3

Advanced Oxidation Model

THE MODEL described in this chapter is designed for a realistic physical and three-dimensional
simulation of thermal oxidation. Advantageously, this model takes into account that the dif-

fusion of oxidants, the chemical reaction, and the volume increase occur simultaneously. Further-
more, this model does not use moving Si/SiO2-interfaces for the SiO2-growth like the standard
models [59, 60], which are all based on the Deal-Grove model. The handling of moving inter-
faces problems in complex three-dimensional structures becomes very complicated and causes
an enormous data update which are the most restricting factors for such applications [61, 62].

In case of oxidation there exist two segments, one for silicon and one for SiO2, with an interface.
It is not a problem to make a mesh for such structures, but the SiO2-growth results in a moving
boundary problem, which means that the interface should move after each simulation step. In
order to reach the new position of the interface, new grid points are inserted and a remeshing
step has to be performed [61, 63]. These mesh operations demand complicated algorithms.

The basic idea of this model is to define the regions of and SiO2 on a single and static mesh
with a separating parameter η. In this model η plays a key role, because the main interest of
oxidation simulation is to predict the shape of the SiO2-domain. Since the newly formed SiO2

leads to a significant volume increase and so to large displacements or stresses, the modeling of
the mechanics also plays an important role. Besides the oxidant diffusion and the change of η,
the mechanics is an important part of the mathematical formulation.

3.1 The Diffuse Interface Concept

The diffuse interface concept avoids a moving interface problem, because there is not a sharp
interface between silicon and SiO2 in contrast to the standard models [64, 65]. Because of the
missing sharp interface there different segments for silicon and SiO2 do not exist. In order to
determine where is silicon and where is SiO2, a parameter named normalized silicon is defined [66]

η(~x, t) =
CSi(~x, t)

C0,Si
. (3.1)

Here CSi(~x, t) is the silicon concentration at time t and point ~x (x, y, z) and C0,Si is the con-
centration in pure silicon. η is 1 in pure silicon and 0 in pure silicon dioxide.
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Instead of a sharp interface there is a so-called reaction layer where the diffusion of oxidants,
the chemical reaction, and the volume increase occur simultaneously. This reaction layer has a
spatial finite width (see Fig. 3.1), where the values of η lie between 0 and 1 [66]. The η curve
always starts with 0 near silicon and ends at 1 near oxide, as shown in Fig. 3.2. The shape of
this curve is given by the calculated η distribution in the reaction layer, which depends on the
parameters in the model.

3.2 Mathematical Formulation

From the mathematical point of view the whole oxidation process can be described by a coupled
system of partial differential equations, one for the diffusion of oxidants through SiO2, the second
for the conversion of Si into SiO2 at the interface, and a third for the mechanical problem of the
complete oxidized structure.

3.2.1 Oxidant Diffusion

The diffusion of oxidants in the domains Ω1, Ω2, and Ω3 according to Fig. 3.1 is described by

D(T )∆C(~x, t) = k(η)C(~x, t), (3.2)

where ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator, C(~x, t) is the oxidant concentration in the

material, and D(T ) is the temperature dependent low stress diffusion coefficient.
The boundary conditions for the diffusion equation (3.2) are

C = C∗ on Γ1 and
∂C

∂n
= 0 on Γ2,Γ3,Γ4, (3.3)

where C∗ is the oxidant concentration in the gas atmosphere. ∂C
∂n = 0 is a Neumann boundary

condition, which means that there does not exist an oxidant flow through these boundaries.
In (3.2) k(η) is the strength of a spatial sink and not just a reaction coefficient at a sharp
interface [67]. k(η)C(~x, t) defines how many particles of oxygen per unit volume are transformed
in a unit time interval to oxide. k(η) is defined to be linearly proportional to η(~x, t)

k(η) = η(~x, t) kmax, (3.4)

where kmax is the maximal possible strength of the sink.

3.2.2 Dynamics of η

Because of the chemical reaction which consumes silicon, the normalized silicon concentration η
is changed. In a test volume ∆V , where is assumed that the oxidant concentration C is constant
during a time interval ∆t there are k(η)C(~x, t)∆V ∆t particles of oxygen which react with
k(η)C(~x, t)∆V ∆t/(λN1) unit volumes of silicon. By this process the silicon concentration is
reduced.
The dynamics of η can be described by [67]

∂η(~x, t)

∂t
= − 1

λ
k(η)C(~x, t)/N1, (3.5)
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Figure 3.1: Schematic domains and boundaries.

where λ is the volume expansion factor (= 2.25) for the reaction from Si to SiO2, and N1 is the
number of oxidant molecules incorporated into one unit volume of SiO2.

In this model the dynamics of η is equivalent with the movement of the sharp Si/SiO2 interface
in the standard model, because η defines the silicon and oxide areas. The only difference is that
here a diffuse interface (Fig. 3.1) moves, where is a mixture of silicon and oxide.

3.2.3 Volume Expansion of the New Oxide

Because of the much lower density of oxide compared with silicon, the conversion from Si to SiO2

leads to a significant volume increase of the new oxide. In the advanced model the conversion is
not performed instantaneously, it needs some finite time. The fraction of SiO2 in a small volume
∆V is expressed by the η value. The new generated oxide in the reaction layer is described by
the change of η. For a time period ∆t the η-value and the silicon fraction decreases with

∆η(~x, t) = − 1

λ
∆t k(η)C(~x, t)/N1. (3.6)

The additional volume in a test volume ∆V is given by

V add = (λ − 1)∆η(~x, t)∆V. (3.7)

Because the maximal volume increase of the oxide is limited to 1.25 times of the volume of
original silicon, V add in (3.7) must be scaled with (λ − 1).

The normalized additional volume with (3.6) and (3.7) after a time ∆t is

V add
rel =

λ − 1

λ
∆t k(η)C(~x, t)/N1. (3.8)

An important aspect of (3.8) is that the sum of V add
rel over all time steps can not be more than

125%, which is the maximal volume increase of the material during oxidation.
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3.2.4 Diffusion Coefficient and Reaction Layer

In contrast to the standard models, where the diffusion coefficient D(T ) is automatically included
in the parabolic rate constant B, in the advanced model D(T ) must be determined separately
for the specific temperature and oxidant species. The most interesting oxidant species come
from dry and wet oxidation.

In general the diffusion coefficient follows the expression

D(T ) = D0 exp
(

− ED

R T

)

, (3.9)

where D0 is a pre-exponential diffusion constant, ED is the activation energy in [cal], T the
temperature in [K], and R is the universal gas constant with R = 1.987 cal/(K·mol).

For dry oxygen ambients the results of Norton [68] can be used, who found that the activation
energy for diffusion of oxygen in vitreous silica is 27 kcal and the diffusion coefficient D(T ) is
4.2× 10−9 cm2/sec (= 0.42 µm2/sec) at a temperature of 950 ◦C. With these data it is possible
to calculate D0, and (3.9) can be written for dry oxidation in the form

D(T ) = 2.82 × 10−4 exp
(

− 27 000

R T

)

cm2/sec. (3.10)

For wet oxidation the results from Moulson and Roberts [69] are most suitable. They have inves-
tigated heated silica glass in water vapour between 600 and 1200 ◦C and found the temperature
dependent diffusion coefficient

D(T ) = 1.0 × 10−6 exp
(

− 18 300

R T

)

cm2/sec. (3.11)

In the advanced model the reaction layer has a spatial finite width dReact, which can vary. This
width is mainly determined by the value of kmax. The bigger kmax, the steeper the concentration
decay and the thinner the reaction layer. Therefore, dReact is inverse proportional to kmax and
so the width can be controlled by kmax. This means that a small value of kmax (e.g. kmax ≈ 50)
leads to a wide reaction layer (e.g dReact ≈ 100 nm) and a big value of kmax (e.g. kmax ≈ 500)
leads to a small reaction layer (e.g dReact ≈ 10 nm).

The layer width is an important and necessary fact, because the thickness of the reaction layer
must be much smaller than the thickness of the oxidized structure or the final oxide thickness.
In order to apply this model also for dry or thin film oxidation with a few nm thickness, wide
reaction layers are unusable.

Another interesting aspect of this model is the value of the diffusion coefficient D0,React in the
reaction layer. In the standard model with a sharp interface the oxidants diffuse with the same
D0 through the oxide to the Si/SiO2-interface where they react. This means that in the standard
model no oxidants diffuse into silicon and a normalized coefficient Dnorm

0 = 0 in the silicon and
Dnorm

0 = 1 in the oxide are appropriate.

In the advanced model the oxidant diffusion must not stop at the beginning of the reaction
layer, because there the oxidants are needed for the chemical reaction. On the other side the
oxidant diffusion should stop at the end of the reaction layer and not continue into the silicon
material. A good approach for this model is that the values of Dnorm

0 run down gradually from
an approximate value of 1 near the oxide area to a value of 0 near the silicon area as schematically
shown in Fig. 3.2.

36



3.2 Mathematical Formulation

Since η defines the domains of oxide, reaction layer as well as silicon, and during the oxidation
process the reaction layer moves into the silicon domain, D0,React must be a function of η.
Because the value of Dnorm

0 must be 1 in SiO2, where η = 0, and 0 in Si, where η = 1 (see
Fig. 3.2), the most plausible function for the diffusion coefficient in the reaction layer is

D0,React(~x) = D0(1 − η(~x)). (3.12)

Another simple but good working formulation for D0,React in the reaction layer was found with

D0,React(~x) =
a

η(~x)
for D0,React ≤ D0. (3.13)

Here a is a small constant and D0,React must be limited to D0 when η → 0.
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3.2.5 Mechanics

The chemical reaction of silicon and oxygen causes a volume increase of about 125%, which leads
to significant displacements in the material. If this volume increase is only partially prevented,
mechanical stress is built up in the materials. In order to calculate these displacements and
stresses a mechanical modeling is needed.

In general, every three-dimensional mechanical problem can be described by the stress equilib-
rium relations [70]

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= fx,

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= fy, (3.14)

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
= fz.

During the oxidation process there are normally no external forces, because a volume increase
caused by a chemical reaction, or a thermal expansion only lead to internal forces. Therefore,
on the right-hand side of (3.14) the external forces are fx = fy = fz = 0.
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3.2.5.1 Elastic Mechanical Model

For linear elastic materials which are described by the Hook’s law, the stress tensor σ̃ from
(3.14) is given by

σ̃ = D(ε̃ − ε̃0) + σ̃0. (3.15)

Here D is the so-called material matrix. Furthermore, ε̃ is the strain tensor, ε̃0 is the residual
strain tensor, and σ̃0 is the residual stress tensor.

For constructing the material matrix D, the components of the stress tensor without residual
stress and strain components can be expressed in Lame’s form by [71]

σij = λ εkk δij + 2µ εij , (3.16)

where εkk is the trace of the strain tensor

εkk = εxx + εyy + εzz, (3.17)

δij is the Kronecker symbol

δij =

{

0 for i 6= j

1 for i = j
, (3.18)

and λ and µ are the so-called Lame’s constants

λ =
ν E

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (3.19)

Thereby E is the Young modulus and ν is the Poisson ratio. Note, the often used shear modulus
G is identical with Lame’s constant µ.

The strain tensor is

ε̃ =







εxx εxy εxz

εyx εyy εyz

εzx εzy εzz






=







εxx
1
2γxy

1
2γxz

1
2γyx εyy

1
2γyz

1
2γzx

1
2γzy εzz






. (3.20)

The elements εii are the first derivatives of the displacements ui so that

εxx =
∂ux

∂x
, εyy =

∂uy

∂y
, and εzz =

∂uz

∂z
. (3.21)

The shear strain components 2εij = γij are given by [72]

γxy =
∂ux

∂y
+

∂uy

∂x
, γxz =

∂ux

∂z
+

∂uz

∂x
, . . . (3.22)

If an isotropic material is assumed, the strain tensor is symmetric due to

εxy = εyx, εxz = εzx, and εyz = εzy, (3.23)

which means that there are only six different values.
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Assuming an isotropic material and after constructing D with the help of (3.16), the stress
tensor without residual stress, can be rewritten in the form



















σxx

σyy

σzz

σxy

σyz

σzx



















=
E (1 − ν)

(1 + ν)(1 − 2ν)





















1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)







































εxx − ε0,xx

εyy − ε0,yy

εzz − ε0,zz

γxy − γ0,xy

γyz − γ0,yz

γzx − γ0,zx



















. (3.24)

3.2.5.2 Visco-Elastic Mechanical Model

The material behavior of oxide and nitride are more realistically described with a visco-elastic
model [73, 74], especially with a so-called Maxwell element (see Fig. 3.3), which consists of a
spring and a dashpot in series. The characteristics of such a Maxwell element is that it takes
the stress relaxation and the stress history into account. Also the actual stress is influenced
from both, the strain and the strain rate, and, therefore, the stress is a function of time. The
Maxwell element can be mathematically formulated with

dε

dt
−

(dσ

dt

1

G
+

σ

γ

)

= 0, (3.25)

where G is the shear modulus and γ is the (shear) viscosity.

Figure 3.3: Maxwell element: a spring and a dashpot in series.

The analytical solution of (3.25) for the temporal stress evolution as a function of the strain
velocity is

σ(t) = σ0 · exp
(

− t−t0
τr

)

+

t
∫

t0

G · exp
(

− t−t0
τr

) dε
dt

dτr, (3.26)

where σ0 is the initial stress at time t0 and τr is the Maxwellian relaxation time constant

τr =
γ

G
. (3.27)

In (3.26) the first term shows that the initial stress relaxes exponentially with time. The evalu-
ation of the integral part leads to

t
∫

t0

G · exp
(

− t−t0
τr

) dε
dt

dτr = τr G
(

1 − exp
(

− t−t0
τr

)

)

dε
dt

. (3.28)
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ADVANCED OXIDATION MODEL

The visco-elastic model is based on the idea that the dilatational components of the stress,
which involve the volumetric expansion or compression, and the deviatoric components which
only include the shape modification, can be decoupled [75]. For this purpose the material matrix
D from (3.24) can be split in a dilatation and a deviatoric part [76]

D = Ddil + Ddev =


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. (3.29)

Here H is the bulk modulus

H =
E

3(1 − 2ν)
, (3.30)

and Geff is the so-called effective shear modulus which is in the elastic case the same as the
standard shear modulus

Geff = G =
E

2(1 + ν)
. (3.31)

In Maxwell’s model the dilatation part is assumed purely elastic, while the deviatoric part is
modeled by the Maxwell element. In order to find an uncomplicated Maxwell formulation for
the deviatoric part in (3.29), it can be assumed in (3.28) that for a short time period ∆T the
strain velocity can be kept constant

dε

dt
=

ε

∆T
, (3.32)

so that (3.28) can be expressed in the form
t

∫

t0

G · exp
(

− t−t0
τr

) dε
dt

dτr = τr G
(

1 − exp
(

− t−t0
τr

)

) ε

∆T
. (3.33)

So in the visco-elastic case Geff can be written in the form [77, 78]

Geff = G
τ

∆T

(

1 − exp
(

− ∆T
τ

)

)

. (3.34)

This relationship shows that the Maxwell visco-elasticity can be expressed by an effective shear
modulus Geff in the deviatoric part of the material matrix D (3.24). This means that the only
difference in the mechanical model between the elastic and visco-elastic case is the different Geff

in the material matrix D. So D depends in the elastic case only on Young’s modulus E and the
Poisson ratio ν, and in the visco-elastic case additionally on the Maxwellian relaxation time τ .

3.2.5.3 Volume Increase and Mechanics

A very important aspect in the oxidation model is, how the volume increase during oxidation can
be brought in relation with the mechanical problem. In three dimensions a volume expansion
can be formulated with

(1 + ε0,xx)(1 + ε0,yy)(1 + ε0,zz) = Vrel + V add
rel , (3.35)
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3.3 Model Overview

where Vrel is the normalized volume before expansion and thus Vrel is always 1.

By assuming that the volume expansion and the strain is small, the strain terms ε0,ii · ε0,jj can
be neglected (i and j stands for x, y or z), because they are much smaller than the terms ε0,ii.
Therefore, with the start volume Vrel = 1, (3.35) can be reduced to the form

ε0,xx + ε0,yy + ε0,zz = V add
rel . (3.36)

The components ε0,ii of the residual strain tensor ε̃0 are linearly proportional to the normalized
additional volume as calculated in (3.8)

ε0,ii =
1
3
V add

rel , (3.37)

which loads the mechanical problem (3.15) for calculating the displacements and stresses.

3.3 Model Overview

The whole advanced oxidation model is based on a few main equations. The first one describes
the oxidant diffusion

D(T )∆C(~x, t) = k(η)C(~x, t), (3.38)

and the next equation treats the dynamics of η with

∂η(~x, t)

∂t
= − 1

λ
k(η)C(~x, t)/N1, (3.39)

as described in Section 3.2.1 and Section 3.2.2, respectively.

Because of the diffuse interface concept the volume increase of the generating oxide occurs only
successively and not abruptly. As explained in Section 3.2.3, the volume increase of the oxidized
material is calculated with the η and C values. After a time ∆t the normalized additional
volume is determined by

V add
rel =

λ − 1

λ
∆t k(η)C(~x, t)/N1. (3.40)

The normalized additional volume directly loads the mechanical problem

σ̃ = D(ε̃ − ε̃0) + σ̃0, (3.41)

because the principal axis components of the residual strain tensor ε̃0 are linearly proportional
to V add

rel in the form

ε0,xx = ε0,yy = ε0,zz =
1

3
V add

rel . (3.42)

The introduced so-called effective shear modulus Geff in D (see Section 3.2.5.2) can handle
elastic and visco-elastic materials.

41



Chapter 4

Oxidation of Doped Silicon

THE DOPANT DISTRIBUTION in silicon is stronly influenced by thermal oxidation, be-
cause the dopants are redistributed by diffusion and segregation, especially near the silicon

wafer surface [79]. However, this dopant redistribution is not the only effect of an oxidation
step. Because of the oxide growth, the upper silicon zones are converted into SiO2 and the
Si/SiO2 interface is moving into deeper silicon zones. Before oxidation, the dopant distribution
exhibits generally a Gaussian-like profile, which means that the dopant concentration decreases
stronly with the distance from the surface. Therefore, oxidation leads to a general decrease
of the dopant concentration at the silicon surface. Furthermore, the formed oxide absorbs the
dopants from the converted silicon material. This oxide doping influences the segregation of the
dopant concentration at the Si/SiO2 interface.

An influence of the dopants on the oxide growth rate was only found at very high dopant
concentrations near the repective solubility limits of the used doping material, which are in the
order of 1020 atoms/cm3 [80]. A high dopant concentration at the silicon surface beneath the
SiO2 (see Fig. 4.1b) causes crystal defects and so the silicon is easier to oxidize. A high number
of dopants in the SiO2 (see Fig. 4.1a) loosens the material and reduces its density, which enables
a better oxidant diffusion through the SiO2 to the interface. In both cases the oxide growth rate
is increased.

Since very high dopant concentrations increase the oxide growth rate, theoretically the acceler-
ated oxide growth at heavily doped zones could be used for selective oxidation. But unfortunately
in practice this effect is too small to obtain noticeable differences in the oxide thickness. How-
ever, the different oxide growth velocities must be taken into account for an etching process. A
faster oxide growth leads to a faster material removal by etching.

4.1 Dopant Redistribution

The redistribution process depends on the ratio of the solubility of the doping material in silicon
and SiO2. At the Si/SiO2 interface the dopants are redistributed by segregation until the ratio of
their concentration at the interface is the same as the ratio of their solubility in both materials.
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4.2 Five-Stream Dunham Diffusion Model

The ratio of dopant solubility is expressed by the segregation coefficient m which is [80]

m =
solubility in silicon

solubility in SiO2
. (4.1)

As listed in Table 4.1 there are dopant species which solubilize better in SiO2 than in silicon
(m < 1) and species which have a reversed behavior (m > 1). In case of m < 1, as for Boron,
the dopant concentration is enhanced at the SiO2 side, whereas beneath the interface, there is
a dopant depletion at the silicon surface (see Fig. 4.1a). For reversed solubility ratios (m > 1,
like Phosphorus), only few dopant atoms penetrate the interface. In order to obtain the by m
determined concentration ratio at the interface, dopant atoms from deeper silicon zones diffuse
back to the surface zone. Therefore, the dopant concentration at the silicon surface is enhanced,
as illustrated in Fig. 4.1b. In Fig. 4.1 Cc denotes the dopant concentration in the silicon surface
zone before oxidation. x is the distance from the silicon surface.

Table 4.1: Segregation coefficients m for important dopant species in silicon [80]

.
Dopant species Bor Phosphor Antimon Arsen Gallium

m 0.1–0.3 10 10 10 20

C I,O

C I,Si

C I,O

C I,Si

1

x

1

b)a)
x

c c
C
C C

C

m < 1 m > 1

Oxide

Oxide

Silicon Silicon

Figure 4.1: Schematic illustration of dopant redistribution.

The dopand redistribution for the moving Si/SiO2 interface can be described with a diffusion
model as presented in the next section.

4.2 Five-Stream Dunham Diffusion Model

Dunham presented 1992 a general model [81] for the coupled diffusion of dopants with point
defects, which includes the reaction of dopant-defect pairs with defects and other pairs, as well
as all posible charge states for both dopants and pairs. It consists of five streams, because the
comprehensive modeling of dopant behavior requires five differential equations, each treating a
different concentration stream: one for the dopant atoms, two for the interstitial and vacancy
point-defects, and two for the dopant-vacancy and dopant-interstitial pairs [24].
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OXIDATION OF DOPED SILICON

4.2.1 Interaction of Dopants

In silicon a dopant diffuses via interactions with point-defects, which can be described by a set
of reactions. First, there are the dopant-defect pairing reactions

A+ + Ii ⇐⇒ (AI)i+1, (4.2)

A+ + V i ⇐⇒ (AV )i+1, (4.3)

where A+ represent the ionized dopant atoms, I and V represent the interstitials and vacancies,
(AI) and (AV ) represent the dopant-defect pairs, and i stands for the charge state of the defect
or pair as −, 0, +. Next, the recombination and generation of Frenkel pairs must be considered

Ii + V j ⇐⇒ (−i − j) e−, (4.4)

where e are electrons. A Frenkel pair is a vacancy-interstitial pair formed when an atom is
displaced from a lattice site to an interstitial site.

Additionally, the pairs can interact directly with the opposite type defect to produce a reaction
which is equivalent to a pair dissociation followed by defect recombination

(AI)i + V j ⇐⇒ A+ + (1 − i − j) e−, (4.5)

(AV )i + Ij ⇐⇒ A+ + (1 − i − j) e−, (4.6)

Finally, two opposite type pairs can recombine leaving two unpaired dopant atoms

(AI)i + (AV )j ⇐⇒ 2A+ + (2 − i − j) e−. (4.7)

The last three reactions provide an alternative path for the recombination and generation of va-
cancies and interstitials with the potential for a significant increase of the effective recombination
rate for Frenkel pairs.

4.2.2 Continuity Equations

The five continuity equations for the total concentrations CX (X stands for A+, AI, AV, I, or
V), over all charge states for a single donor species are [82]

∂CA+

∂t
= −RAI − RAV + RAI+AV + 2RAI+AV , (4.8)

∂CI

∂t
= −∇JI + RAI − RI+V − RAV +I , (4.9)

∂CV

∂t
= −∇JV + RAV − RI+V − RAI+V , (4.10)

∂CAI

∂t
= −∇JAI + RAI − RAI+V − RAI+AV , (4.11)

∂CAV

∂t
= −∇JAV + RAV − RAV +I − RAI+AV . (4.12)
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4.2 Five-Stream Dunham Diffusion Model

RAI and RAV are the net rates of the dopant-defect pairing reactions (4.2) and (4.3) as defined
in [81]:

RAI =
[

∑

i

ki
AIK

i
I

(ni

n

)i][

CA+CI0 −
C(AI)+

K0
A+I

]

, (4.13)

RAV =
[

∑

i

ki
AV Ki

V

(ni

n

)i][

CA+CV 0 −
C(AV )+

K0
A+V

]

. (4.14)

kX are the forward reaction rate coefficients and KX are the equilibrium constants. n and ni

are the local and intrinsic carrier concentrations.

The net rate RI+V of Frenkel pair recombination (4.4) is [81]

RAV =
[

∑

i,j

ki,j
I+V Ki

IK
j
V

(ni

n

)i+j][
CI0CV 0 − C∗

I0C
∗

V 0

]

, (4.15)

where ∗ indicates equilibrium values.

Finally, RAI+V , RAV +I , and RAI+AV are the net rates of the pair-defect (4.5) (4.6) and pair-pair
reactions (4.7) [81]:

RAI+V =
[

∑

i,j

ki,j
AI+V Ki

AIK
j
V

(ni

n

)i+j]
[

C(AI)+CV 0 − K0
A+IC

∗

I0C
∗

V 0CA+

]

, (4.16)

RAV +I =
[

∑

i,j

ki,j
AV +IK

i
AV Kj

I

(ni

n

)i+j]
[

C(AV )+CI0 − K0
A+V C∗

I0C
∗

V 0CA+

]

, (4.17)

RAI+AV =
[

∑

i,j

ki,j
AI+AV Ki

AIK
j
AV

(ni

n

)i+j][
C(AI)+C(AV )+ − K0

A+IK
0
A+V C∗

I0C
∗

V 0(CA+)2
]

.

(4.18)

The continuity equations (4.30)–(4.30) also need the fluxes of mobile dopants, defects, and pairs.
The total flux of interstitials is [81]

JI = −
[

∑

i

DIiKi
I

(ni

n

)i]

∇CI0 , (4.19)

where DIi represents the diffusivity of interstitials of charge state i. Similarly, the total vacancy
flux is [81]

JV = −
[

∑

i

DV iKi
V

(ni

n

)i]

∇CV 0 . (4.20)

The total pair fluxes are [81]

JAI = −
[

∑

i

DAIi+1Ki
AI

(ni

n

)i][

∇C(AI)+ + C(AI)+

(ni

n

)

∇
( n

ni

)]

, (4.21)

JAV = −
[

∑

i

DAV i+1Ki
AV

(ni

n

)i][

∇C(AV )+ + C(AV )+

(ni

n

)

∇
( n

ni

)]

, (4.22)

where DAIi and DAV i are the diffusivities of dopant-defect pairs with charge i.
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OXIDATION OF DOPED SILICON

4.3 Segregation Interface Condition

If at the Si/SiO2 interface there is a dopant concentration CI,O and CI,Si on the oxide and silicon
side, respectively, as illustrated in Fig. 4.1, the segregation coefficient can be written as [83]

m =
CI,Si

CI,O
(4.23)

If it is assumed that CI,O > CI,Si the flux of dopants from the SiO2 segment to the silicon
segment through the interface is [83]

JS = kOCI,O − kSiCI,Si = kO

(

CI,O − kSi

kO

)

= h
(

CI,O − CI,Si

m

)

, (4.24)

where kO and kSi are the reaction rate coefficients in SiO2 and silicon, respectively. h is the
interface transfer coefficien which has units of velocity.

In the steady state the interface flux JS = 0 and (4.24) can be transformed to the relationship

CI,O

CI,Si
=

kO

kSi
. (4.25)

4.4 Model Overview with Coupled Dopant Diffusion

If the advanced oxidation model with its equations for the oxidant diffusion

D(T )∆C(~x, t) = k(η)C(~x, t), (4.26)

dynamics of η

∂η(~x, t)

∂t
= − 1

λ
k(η)C(~x, t)/N1, (4.27)

and mechanical problem

σ̃ = D(ε̃ − ε̃0) + σ̃0, (4.28)

is coupled with the five-stream diffusion model for the dopant diffusion, its five continuity equa-
tions for the species concentrations

∂CA+

∂t
= −RAI − RAV + RAI+AV + 2RAI+AV , (4.29)

∂CI

∂t
= −∇JI + RAI − RI+V − RAV +I , (4.30)

∂CV

∂t
= −∇JV + RAV − RI+V − RAI+V , (4.31)

∂CAI

∂t
= −∇JAI + RAI − RAI+V − RAI+AV , (4.32)

∂CAV

∂t
= −∇JAV + RAV − RAV +I − RAI+AV . (4.33)

must be additionally solved.
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Chapter 5

Discretization with the Finite

Element Method

PARTIAL DIFFERENTIAL EQUATIONS (pdes) are widely used to describe and model
physical phenomena in different engineering fields and so also in microelectronics’ fabrica-

tion. Only for simple and geometrically well-defined problems analytical solutions can be found,
but for the most problems it is impossible. For these problems, also often with several boundary
conditions, the solution of the pdes can only be found with numerical methods.

The most universal numerical method is based on finite elements. This method has a general
mathematical fundament and clear structure. Thereby, it can be relative easily applied for
all kinds of pdes with various boundary conditions in nearly the same way. The finite element
method (fem) has its origin in the mechanics and so it is probably the best method for calculating
the displacements during oxidation processes [84]. The finite element formulation works on a
large number of discretization elements and also on different kinds of meshes within the domain.
Furthermore, it also provides good results for a coarse mesh. It can easily handle complicated
geometries, variable material characteristics, and different accuracy demands.

5.1 Basics

The basic aim of the finite element method is to solve a pde, or a system of coupled pdes,
numerically. Instead of finding the analytic solution of the pde, which is usually a function
of the coordinates, it is tried to determine this function values for discrete coordinates on grid
points. For this purpose the continuum is discretized with a number of so-called finite elements
which results in a mesh with grid nodes. If the finite elements are appropriately small, the
solution of the pde can be approximated with a simple function, the so-called shape function,
in each element, which acts as a contribution to the approximation of the global solution of the
pde. All together a linear or non-linear equation system must be obtained. The real advantage is
that such (non-)linear equation systems can be quite easily solved today by computer programs.
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DISCRETIZATION WITH THE FINITE ELEMENT METHOD

5.1.1 Mesh Aspects

For solving a pde numerically, in the first step the simulation domain Ω is divided into a number
of M (as possible geometrically simple) elements Ei (like tetrahedrons or cubes). The quality
of the approximated solution depends on the size and so on the number of finite elements in the
discretized domain. The elements must be located in such a manner, that there are no empty
spaces between them and that they do not overlap:

Ω =

M
⋃

i=1

Ei and ∀i 6= j : Int(Ei) ∩ Int(Ej) = 0. (5.1)

Here Int(Ei) is the set of all points in the element Ei, except those which are located on the
surface. Furthermore, surface conformity of neighbor elements is demanded. This means that
on each surface of an element inside the domain exact only one neighbor element is bordered.

If P is the set of all grid nodes of the discretized domain Ω, than each grid node pk ∈ P has a
unique global index k = 1, . . . , N . N is the number of all nodes in the whole mesh. A node pk

can also have several local indices.

5.1.2 Shape Function

From the mathematical point of view the shape function shall interpolate the discrete solution
function values between the grid nodes. If a pde is written in the form

D[u](x, y, z) + g(x, y, z) = 0, (5.2)

where D is a second order differential operator, the desired solution of the pde is a function
u(x, y, z), which is approximated by [85]

ũ(x, y, z) =
N

∑

j=1

ujNj(x, y, z) = {uT }{N} (5.3)

The summation is performed over all grid nodes. Thereby, uj is the respective value of the
function at a grid node with the number j and Nj(x, y, z) is the shape function.

The shape function can be chosen quite freely, but it must be appropriate for interpolation.
In addition every shape function Nj(x, y, z) must have a value of 1 on the grid node j (with
coordinates ~pj = {xj , yj , zj}T ) and values of 0 on all other grid nodes:

Nj(xi, yi, zi) =

{

1 for i = j

0 for i 6= j
(5.4)

In practical applications linear shape functions or polynomials of low order are used. The
numbering of the grid nodes should be carried out in a way, that nodes at Dirichlet-boundaries,
where the solution of u(x, y, z) is already known, are ranked behind the others. The nodes
where the value uj must be calculated get the indices j = 1, . . . , NA, the other NB nodes at the
Dirichlet-boundaries are indexed with j = NA + 1, . . . , NA + NB .
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5.2 Discretization with Tetrahedrons

In order to get the solution of the pde, “only” the unknown coefficients uj in (5.3) must be
obtained. For determining the values uj there are two available ways, the method of Ritz or the
method of weighted residuals [86]. The method of Ritz seeks a stationary point of the variational
functional [87]. This variational approach leads to an integral formulation of the pde. The Ritz
method can only be applied, if for the boundary problem an equivalent variational formulation
exists. The more universal method is based on the weighted residuals and therefore it is used
in this work.

5.1.3 Weighted Residual Method

When the approximated solution ũ(x, y, z) is reinserted in the pde (5.2), there exists a residual

R = D[ũ(x, y, z)] + g(x, y, z). (5.5)

If the residual would disappear (R = 0), the exact solution ũ(x, y, z) = u(x, y, z) would have been
found [88]. Since the function space of the approximation solutions Ũ is a subset of the function
space of the exact solutions U , such a solution does not exist for the general case. Therefore,
it is tried to fulfill the residual condition not exactly, but with N weighted or averaged linearly
independent weight functions (also called test functions) Wi(x, y, z), so that [89]

∫

Ω

[Wi(x, y, z)D[ũ(x, y, z)] + Wi(x, y, z)g(x, y, z)] dΩ = 0, for i = 1, 2, 3, . . . N. (5.6)

The weight functions Wi must be chosen in a suitable way, because the quality of the solution
depends on them. If the weight functions are identical with the shape functions (Wi(x, y, z) =
Ni(x, y, z)), this approach is called Galerkin’s method [85].

With the approximated solution (5.3) the weighted residual (5.7) can be rewritten in the form

N
∑

j=1

uj

∫

Ω

Wi(x, y, z)D[Nj(x, y, z)] dΩ +

∫

Ω

Wi(x, y, z)g(x, y, z) dΩ = 0. (5.7)

It is possible to determine the N unknown function values uj on the grid nodes with this system
of N equations.

5.2 Discretization with Tetrahedrons

An often used choice is to discretize the solution domain with tetrahedrons. On the one side a
tetrahedron is a relative simple element, especially regarding meshing aspects, on the other side
it is an efficient element to discretize structures with non-planar surfaces or complex geometries.
As shown in Fig. 5.1, this element is limited by four triangles and has four vertexes which are
in any case grid nodes in the mesh.

5.2.1 Shape Functions for a Tetrahedron

For using the weighted residual method the shape functions must be continuous on the transition
from one element to its neighbor element. Within the elements they must be at least one-time
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DISCRETIZATION WITH THE FINITE ELEMENT METHOD

differentiable. The shape functions will be defined locally on the tetrahedron. It should be
noted that the global shape function Nj(x, y, z) is assembled from the local shape functions of
the elements which share the same node j.

If it is assumed that the discretization is carried out with linear shape functions, the four vertexes
used are the four grid nodes on the element. This means that the shape functions must depend
on the x-, y-, and z-coordinate linearly, so that in general form it can be expressed by [90]

Ni(x, y, z) = ai + bi x + ci y + di z for i = 0, 1, 2, 3. (5.8)

i are the numbers of the local grid node. Since for every grid node a separate shape function is
needed, there are four shape functions on a four node element. The coefficients ai, bi, ci, and di

must be determined in such a manner, that the respective shape function Ni fulfills (5.4). This
means, that for example the value of the shape function N0(x,y,z) must be 1 in node P0 with its
coordinates (x0,y0,z0), and 0 in all other nodes. With this information the following equation
system with N0 on the four nodes can be written:

a0 + b0 x0 + c0 y0 + d0 z0 = 1

a0 + b0 x1 + c0 y1 + d0 z1 = 0

a0 + b0 x2 + c0 y2 + d0 z2 = 0 (5.9)

a0 + b0 x3 + c0 y3 + d0 z3 = 0

With this equation system it is possible to determine the four unknown coefficients a0, b0, c0,
and d0 for the shape function N0(x,y,z).

For calculation of the unknown coefficients Cramer’s rule can be applied, which says: if there is
an equation system A · ~x = ~b, the numbers

xi =
1

Det(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 · · · A1 i−1 b1 A1 i+1 · · · A1n

A21 · · · A2 i−1 b2 A2 i+1 · · · A2n
...

...
...

...
...

...
...

An1 · · · An i−1 bn An i+1 · · · Ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.10)

are the components of the solution ~x.

With Cramer’s rule, for example, the coefficient a0 from the shape function N0(x, y, z) can be
calculated by

a0 =
1

Det(D)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x0 y0 z0

0 x1 y1 z1

0 x2 y2 z2

0 x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (5.11)

where the matrix D is

D =











1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3











. (5.12)
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Figure 5.1: Tetrahedral element in a global
(x, y, z)-coordinate system
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Figure 5.2: Tetrahedral element in a normal-
ized (ξ, η, ζ)-coordinate system

By deleting the row i and the column j of a n-rowed determinant, a new (n-1)-rowed sub-
determinant αij with sign (−1i+j) is constructed

αij = (−1)i+j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1 j−1 a1 j+1 · · · a1n

a21 a22 · · · a2 j−1 a2 j+1 · · · a2n
...

...
...

...
...

...
...

ai−1 1 ai−1 2 · · · ai−1 j−1 ai−1 j+1 · · · ai−1 n

ai+1 1 ai+2 · · · ai+1 j−1 ai+1 j+1 · · · ai+1 n
...

...
...

...
...

...
...

an1 an2 · · · an j−1 an j+1 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.13)

To simplify the arithmetic, a n-rowed determinant can be calculated with the sum of n (n−1)-
rowed sub-determinants (5.13). The determinant can be expanded from a row or column. If for
example k is the number of any column, than the determinant is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

n
∑

i=1

aik αik. (5.14)

With this rule (5.14) the coefficient a0 (5.11) can be simplified, because only a0,11 = 1, and the
rest in the first column is 0. After expanding the determinant from the first row one obtains

a0 =
1

Det(D)

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

. (5.15)
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In the same way all other coefficients of the shape function N0 can be determined

b0 =
−1

Det(D)

∣

∣

∣

∣

∣

∣

∣

1 y1 z1

1 y2 z2

1 y3 z3

∣

∣

∣

∣

∣

∣

∣

, c0 =
1

Det(D)

∣

∣

∣

∣

∣

∣

∣

1 x1 z1

1 x2 z2

1 x3 z3

∣

∣

∣

∣

∣

∣

∣

, d0 =
−1

Det(D)

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

∣

. (5.16)

The coefficients for the other shape functions can be found in the same way, the only difference
leis in the equation system (5.10). Because, for example, N1(x, y, z) = a1 + b1 x + c1 y + d1 z
must be 1 in node P1 and 0 in all other nodes, it can be formulated

a1 + b1 x0 + c1 y0 + d1 z0 = 0

a1 + b1 x1 + c1 y1 + d1 z1 = 1

a1 + b1 x2 + c1 y2 + d1 z2 = 0 (5.17)

a1 + b1 x3 + c1 y3 + d1 z3 = 0

With the above described procedure also the coefficients for N1(x, y, z) can be determined
straightforwardly to

b1 =
1

Det(D)

∣

∣

∣

∣

∣

∣

∣

1 y0 z0

1 y2 z2

1 y3 z3

∣

∣

∣

∣

∣

∣

∣

, and c1 =
−1

Det(D)

∣

∣

∣

∣

∣

∣

∣

1 x0 z0

1 x2 z2

1 x3 z3

∣

∣

∣

∣

∣

∣

∣

. (5.18)

5.2.2 Coordinate Transformation

A coordinate transformation can help to simplify the calculation of integrals. For constructing
the residual the calculation of the following element integral is frequently needed

Ie =

∫

T

Ni(x, y, z)Nj(x, y, z) dz dy dz where i, j = 0, 1, 2, 3. (5.19)

Here the multiplication of two (linear) form functions leads to a more complex polynomial which
complicates the integration over the region. It is more practical to integrate over a normalized
element T n (see Fig. 5.2). For this purpose, a tetrahedron with any location in the global (x,y,z)-
coordinate system must be transformed into a normalized local (ξ, η, ζ)-coordinate system.

Each point (x,y,z) of the tetrahedral element in the global coordinate system can be transformed
to a corresponding point (ξ, η, ζ) in the normalized coordinate system with the following bijective
projection rule

x = x0 + (x1 − x0)ξ + (x2 − x0)η + (x3 − x0)ζ,

y = y0 + (y1 − y0)ξ + (y2 − y0)η + (y3 − y0)ζ,

z = z0 + (z1 − z0)ξ + (z2 − z0)η + (z3 − z0)ζ.

This projection in matrix form leads to

{r} = {r0} + J · {δ} (5.20)
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and the conversion from the global to the normalized coordinates is

{δ} = J−1
(

{r} − {r0}
)

, (5.21)

with {r} = (x, y, z)T and {δ} = (ξ, η, ζ)T .
J is the so-called Jacobian matrix which only depends on the global coordinates (x,y,z)

J =







x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0






. (5.22)

The element integral (5.19) calculated in the normalized coordinate system must be multiplied
with the determinant of the Jacobian matrix

Ie = Det(J)

∫

T n

Nn
i (ξ, η, ζ)Nn

j (ξ, η, ζ) dξ dη dζ where i, j = 0, 1, 2, 3, (5.23)

because the following relationship holds

∂(ξ, η, ζ)

∂(x, y, z)
= Det(J). (5.24)

The shape functions for the normalized tetrahedron T n are simpler than those in the global
coordinates, because they are reduced to [91]

Nn
0 (ξ, η, ζ) = 1 − ξ − η − ζ

Nn
1 (ξ, η, ζ) = ξ (5.25)

Nn
2 (ξ, η, ζ) = η

Nn
3 (ξ, η, ζ) = ζ.

These shape functions lead to a simpler integrand in (5.23). A further advantage is that af-
ter normalization the lower integration limit is always 0, because as shown in Fig. 5.2, the
tetrahedron T n starts in the origin of ordinates.

Also the upper limits can be found straightforwardly. As shown in Fig. 5.2, the element T n is
bounded by a plane which goes through the points P1(1,0,0), P2(0,1,0), and P3(0,0,1). This
plane is described with the equation ξ + η + ζ = 1. The maximum on the ξ-axes is 1. The
limit in the ξ-η-plane (ζ = 0) can be described with η(ξ) = 1 − ξ and the limit in ζ-direction is
ζ(ξ, η) = 1 − ξ − η.

With these limits the element integral of T n can be written in the form

Ie = Det(J)

1
∫

ξ=0

1−ξ
∫

η=0

1−ξ−η
∫

ζ=0

Nn
i Nn

j dζ dη dξ = Det(J) ·
{

2
120 for i = j
1

120 for i 6= j
(5.26)

This is a real advantage of the normalized tetrahedron, because there exists a simple scheme
for Ie. The result from integration over the element T n is either 1

60 or 1
120 , only depending, if

the two functions Ni and Nj are equal or not. So in fact, to calculate the integral Ie in the
normalized coordinate system, only the determinant of the Jacobian matrix must be calculated.
This procedure is much easier than to find the element integral for a common tetrahedron in
the global coordinate system, where each element has a different size. This means that each
integral Ie has a different result and must be calculated separately.
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5.2.3 Differentiation in the Normalized Coordinate System

The differentiation of the whole projection (5.20), with respect to x leads to

1 = (x1 − x0)
∂ξ

∂x
+ (x2 − x0)

∂η

∂x
+ (x3 − x0)

∂ζ

∂x
,

0 = (y1 − y0)
∂ξ

∂x
+ (y2 − y0)

∂η

∂x
+ (y3 − y0)

∂ζ

∂x
, (5.27)

0 = (z1 − z0)
∂ξ

∂x
+ (z2 − z0)

∂η

∂x
+ (z3 − z0)

∂ζ

∂x
,

with respect to y leads to

0 = (x1 − x0)
∂ξ

∂y
+ (x2 − x0)

∂η

∂y
+ (x3 − x0)

∂ζ

∂y
,

1 = (y1 − y0)
∂ξ

∂y
+ (y2 − y0)

∂η

∂y
+ (y3 − y0)

∂ζ

∂y
, (5.28)

0 = (z1 − z0)
∂ξ

∂y
+ (z2 − z0)

∂η

∂y
+ (z3 − z0)

∂ζ

∂y
,

and with respect to z leads to

0 = (x1 − x0)
∂ξ

∂z
+ (x2 − x0)

∂η

∂z
+ (x3 − x0)

∂ζ

∂z
,

0 = (y1 − y0)
∂ξ

∂z
+ (y2 − y0)

∂η

∂z
+ (y3 − y0)

∂ζ

∂z
, (5.29)

1 = (z1 − z0)
∂ξ

∂z
+ (z2 − z0)

∂η

∂z
+ (z3 − z0)

∂ζ

∂z
.

These derivatives can be also expressed in matrix form

I = J×

















∂ξ

∂x

∂ξ

∂y

∂ξ

∂z
∂η

∂x

∂η

∂y

∂η

∂z
∂ζ

∂x

∂ζ

∂y

∂ζ

∂z

















=







x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0






×

















∂ξ

∂x

∂ξ

∂y

∂ξ

∂z
∂η

∂x

∂η

∂y

∂η

∂z
∂ζ

∂x

∂ζ

∂y

∂ζ

∂z

















, (5.30)

and the following relationship for the partial differential operators in the normalized system can
be found with

J−1 =

















∂ξ

∂x

∂ξ

∂y

∂ξ

∂z
∂η

∂x

∂η

∂y

∂η

∂z
∂ζ

∂x

∂ζ

∂y

∂ζ

∂z

















. (5.31)
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The inverse of the Jacobian matrix (5.22) in the global coordinate system is given by

J−1 =
1

Det(J)







L11 L12 L13

L21 L22 L23

L31 L32 L33






, (5.32)

where the components Lij of the inverse matrix are

L11 = −J23 J32 + J22 J33,

L12 = J13 J32 − J12 J33,

L13 = −J13 J22 + J12 J23,

L21 = J23 J31 − J21 J33,

L22 = −J13 J31 + J11 J33 (5.33)

L23 = J13 J21 − J11 J23,

L31 = −J22 J31 + J21 J32

L32 = J12 J31 − J11 J23,

L33 = −J12 J21 + J11 J22.

The components Jij of the Jacobian matrix (5.22) depend only on the location of the tetrahedron
vertices in the global coordinate system. Because of

∂ξ

∂x
=

L11

Det(J)
,

∂ξ

∂y
=

L12

Det(J)
, . . .

∂ζ

∂z
=

L33

Det(J)
, (5.34)

there exists a relationship between the partial differential operators in the normalized system
and the coordinates of the four nodes from the global system.

If any continuous function f(ξ, η, ζ) in the normalized coordinate system is differentiated in
respect to x, then the chain rule must be used so that

∂f

∂x
=

∂f

∂ξ

∂ξ

∂x
+

∂f

∂η

∂η

∂x
+

∂f

∂ζ

∂ζ

∂x
. (5.35)

The gradient of the function f(ξ, η, ζ) in the normalized system becomes to

∇ f(ξ, η, ζ) =

















∂f

∂x
∂f

∂y
∂f

∂z

















=

















∂f

∂ξ

∂ξ

∂x
+

∂f

∂η

∂η

∂x
+

∂f

∂ζ

∂ζ

∂x
∂f

∂ξ

∂ξ

∂y
+

∂f

∂η

∂η

∂y
+

∂f

∂ζ

∂ζ

∂y
∂f

∂ξ

∂ξ

∂z
+

∂f

∂η

∂η

∂z
+

∂f

∂ζ

∂ζ

∂z

















= (J−1)T ×

















∂f

∂ξ
∂f

∂η
∂f

∂ζ

















(5.36)

This means that the gradient operator ∇n in the normalized system must be multiplied with
the transposed of the inverse Jacobian matrix

∇ = (J−1)T ×∇n =
1

Det(J)







L11 L21 L31

L12 L22 L32

L13 L23 L33






×

















∂

∂ξ
∂

∂η
∂

∂ζ

















(5.37)
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5.2.4 Discretization of the Oxidant Diffusion

In the continuum formulation from (3.2), the diffusion of oxidants through the oxide material is
described with

D ∆C = η kmax C. (5.38)

When Galerkin’s method is applied, it is multiplied with a weight function Nj(x, y, z) and inte-
grated over the domain Ω, which leads to

∫

Ω

Nj(x, y, z)D ∆C dΩ =

∫

Ω

Nj(x, y, z) η kmax C dΩ. (5.39)

If there are two functions u(~x) and v(~x) defined on a domain Ω, Green’s theorem says that
∫

Ω

∇u∇v dΩ +

∫

Ω

u∆v dΩ =

∫

Γ

u
∂v

∂n
dΓ, (5.40)

where Γ is the boundary of the domain.

With Green’s theorem the Galerkin formulation from (5.39) can be rewritten in the form

−D

∫

Ω

∇Nj ∇C dΩ +

∫

Γ

Nj
∂C

∂n
dΓ = kmax

∫

Ω

Nj η C dΩ. (5.41)

Here the diffusion coefficient D and the maximal reaction rate kmax do not directly depend on
the location and, therefore, they do not need to be integrated over space and can stand outside of
the integral. Furthermore, it is assumed that there is no flow of oxidants through the boundary
surface and the boundary condition becomes

∫

Γ

Nj
∂C

∂n
dΓ = 0 (5.42)

With this Neumann boundary condition the Galerkin formulation for the oxidant diffusion can
be reduced to

−D

∫

Ω

∇Nj ∇C dΩ = kmax

∫

Ω

Nj η C dΩ for j = 0, 1, 2, 3. (5.43)

With the finite element method it can be assumed that this equation is only valid on a single
tetrahedral element T . Furthermore, the scalar function for the oxidant concentration C(~x, t) is
here approximated linearly with

C(~x, t = tn) =

3
∑

i=0

c
(tn)
i Ni(x, y, z), (5.44)

where c
(tn)
i is the value of the oxidant concentration in node i and at discrete time tn. Ni(x, y, z)

is the respective shape function from this node.
The distribution of the normalized silicon η(~x, t) is approximated in the same way so that

η(~x, t = tn) =

3
∑

i=0

η
(tn)
i Ni(x, y, z), (5.45)
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where η
(tn)
i is the value of the normalized silicon in node i and at discrete time tn. Ni(x, y, z) is

the linear shape function (5.8) for node i.

With the approximation for C(~x, t) and η(~x, t), the oxidant diffusion on a single element T can
be described with

−D

∫

T

∇Nj ∇
(

3
∑

i=0

c
(tn)
i Ni

)

dΩ = kmax

∫

T

Nj

3
∑

i=0

η
(tn)
i Ni

3
∑

i=0

c
(tn)
i Ni dΩ. (5.46)

In the approximation for C(~x, t) and η(~x, t) the shape function Ni(x, y, z) is the same. Since the
values ci and ηi in the nodes do not depend on the spatial location, (5.46) can be rewritten as

−D

3
∑

i=0

(

c
(tn)
i

∫

T

∇Nj ∇Ni dΩ
)

= kmax

3
∑

i=0

(

c
(tn)
i η

(tn)
i

∫

T

Nj Ni dΩ
)

, (5.47)

where it is assumed that
∑

ηi Ni
∑

ci Ni ≈
∑

ηi ci Ni.
By substituting the integrals with

Kij =

∫

T

∇Ni ∇Nj dΩ

Mij =

∫

T

Ni Nj dΩ (5.48)

the discretized equation for the oxidant diffusion is simplified to

−D

3
∑

i=0

Kij c
(tn)
i = kmax

3
∑

i=0

Mij c
(tn)
i η

(tn)
i for j = 0, 1, 2, 3. (5.49)

The components Mij were already calculated in Section 5.2.2. After integration of
∫

T Ni Nj dΩ
in the normalized coordinate system, it was found that

Mij = Det(J) ·
{

2
120 for i = j
1

120 for i 6= j
(5.50)

For calculating the components Kij the integral is also transformed from the global to the
normalized coordinate system, and with (5.24) follows

Kij = Det(J)

1
∫

ξ=0

1−ξ
∫

η=0

1−ξ−η
∫

ζ=0

∇Nn
i ∇Nn

j dζ dη dξ, (5.51)

where Nn
i,j(ξ, η, ζ) are the shape functions for a normalized tetrahedron T n from (5.26).

It was demonstrated in (5.37) that the transformation of the gradient operator ∇ is carried out
by a multiplication with the matrix (J−1)T, so that the integrand from (5.51) becomes

∇Nn
i ∇Nn

j = (J−1)T ∇nNn
i (J−1)T ∇nNn

j =
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=
1

Det(J)







L11 L21 L31

L12 L22 L32

L13 L23 L33






×

















∂Nn
i

∂ξ
∂Nn

i

∂η
∂Nn

i

∂ζ

















· 1

Det(J)







L11 L21 L31

L12 L22 L32

L13 L23 L33






×



















∂Nn
j

∂ξ
∂Nn

j

∂η
∂Nn

j

∂ζ



















= (5.52)

=
1

Det(J)

















L11
∂Nn

i

∂ξ
+ L21

∂Nn
i

∂η
+ L31

∂Nn
i

∂ζ

L12
∂Nn

i

∂ξ
+ L22

∂Nn
i

∂η
+ L32

∂Nn
i

∂ζ

L13
∂Nn

i

∂ξ
+ L23

∂Nn
i

∂η
+ L33

∂Nn
i

∂ζ

















· 1

Det(J)



















L11

∂Nn
j

∂ξ
+ L21

∂Nn
j

∂η
+ L31

∂Nn
j

∂ζ

L12

∂Nn
j

∂ξ
+ L22

∂Nn
j

∂η
+ L32

∂Nn
j

∂ζ

L13

∂Nn
j

∂ξ
+ L23

∂Nn
j

∂η
+ L33

∂Nn
j

∂ζ



















After the multiplication of the two vectors and rearranging of this scalar product, (5.52) is

∂Nn
i

∂ξ

∂Nn
j

∂ξ
(L2

11 + L2
12 + L2

13) +
∂Nn

i

∂ξ

∂Nn
j

∂η
(L11L21 + L12L22 + L13L23)+

+
∂Nn

i

∂ξ

∂Nn
j

∂ζ
(L11L31 + L12L32 + L13L33) +

∂Nn
i

∂η

∂Nn
j

∂ξ
(L21L11 + L22L12 + L23L13)+

+
∂Nn

i

∂η

∂Nn
j

∂η
(L2

21 + L2
22 + L2

23) +
∂Nn

i

∂η

∂Nn
j

∂ζ
(L21L31 + L22L32 + L23L33)+ (5.53)

+
∂Nn

i

∂ζ

∂Nn
j

∂ξ
(L31L11 + L32L12 + L33L13) +

∂Nn
i

∂ζ

∂Nn
j

∂η
(L31L21 + L32L22 + L33L23)+

+
∂Nn

i

∂ζ

∂Nn
j

∂ζ
(L2

31 + L2
32 + L2

33).

Here the Lxy-terms which only depend on the location of the nodes in the global coordinate
system, can be replaced by six constant coefficients GA − GF

GA = L2
11 + L2

12 + L2
13

GB = L11L21 + L12L22 + L13L23

GC = L11L31 + L12L32 + L13L33

GD = L2
21 + L2

22 + L2
23 (5.54)

GE = L21L31 + L22L32 + L23L33

GF = L2
31 + L2

32 + L2
33.

With (5.54) the scalar product (5.53) can be simplified to

∂Nn
i

∂ξ

∂Nn
j

∂ξ
GA +

(∂Nn
i

∂ξ

∂Nn
j

∂η
+

∂Nn
i

∂η

∂Nn
j

∂ξ

)

GB +
(∂Nn

i

∂ξ

∂Nn
j

∂ζ
+

∂Nn
i

∂ζ

∂Nn
j

∂ξ

)

GC+

+
∂Nn

i

∂η

∂Nn
j

∂η
GD +

(∂Nn
i

∂η

∂Nn
j

∂ζ
+

∂Nn
i

∂ζ

∂Nn
j

∂η

)

GE +
∂Nn

i

∂ζ

∂Nn
j

∂ζ
GF . (5.55)

For example, the simplified scalar product (5.55) for i = j = 0, (N0 = 1 − ξ − η − ζ) is

GA + 2GB + 2GC + GD + 2GE + GF , (5.56)
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5.2 Discretization with Tetrahedrons

and for i = 0, j = 1 (N1 = ξ) it is

−GA − GB − GC . (5.57)

For all combinations of i, j = 0, 1, 2, 3 the simplified scalar product can be written in the form

SA GA + SB GB + SC GC + SD GD + SE GE + SF GF , (5.58)

Instead of finding the scalar product (5.55), and the components of the matrices SA − SF for
all combinations of i, j = 0, 1, 2, 3 by the way like in (5.56), it is more comfortable to use

Nn =











1 − ξ − η − ζ

ξ

η

ζ











∂Nn

∂ξ
=











−1

1

0

0











∂Nn

∂η
=











−1

0

1

0











∂Nn

∂ζ
=











−1

0

0

1











, (5.59)

and get the matrices SA − SF with

SA =
∂Nn

∂ξ
×

(∂Nn

∂ξ

)T

=











−1

1

0

0











×











−1

1

0

0











T

=











1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0











, (5.60)

SB =











−1

1

0

0











×











−1

0

1

0











T

+











−1

0

1

0











×











−1

1

0

0











T

=











2 −1 −1 0

−1 0 1 0

−1 1 0 0

0 0 0 0











, . . . (5.61)

Because the derivatives of the linear shape functions N n
i,j(ξ, η, ζ) can only result in the values

−1, 0 or +1, the integral from (5.51) becomes

1
∫

ξ=0

1−ξ
∫

η=0

1−ξ−η
∫

ζ=0

∂Nn
i

∂α

∂Nn
j

∂β
dζ dη dξ =

1
∫

ξ=0

1−ξ
∫

η=0

1−ξ−η
∫

ζ=0

±1 dζ dη dξ = ±1

6
, (5.62)

which means that all matrices SA − SF must be weighted with 1
6 .

After finding ∇Nn
i ∇Nn

j and integration over the (normalized) element, the coefficients Kij are

Kij =
1

6
(SA,ij GA +SB,ij GB +SC,ij GC +SD,ij GD +SE,ij GE +SF,ij GF )/Det(J). (5.63)

Galerkin’s method assumes that the residual from the (discretized) equation of the oxidant
diffusion is zero, and so (5.49) is rewritten in the form

4
∑

i=1

(

D Kij c
(tn)
i + kmax Mij c

(tn)
i η

(tn)
i

)

= 0, j = 0, 1, 2, 3. (5.64)

This is a system with four equations, but with eight unknown variables c
(tn)
i and η

(tn)
i . Because

of more unknowns than equations it is impossible to solve this equation system in present form.
In the next section the required 4 equations introduced.
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5.2.5 Discretization of the η-Dynamics

The dynamics of the normalized silicon concentration η in the continuum formulation (3.5) is
described by

∂η

∂t
= − 1

λ
η kmax C/N1, (5.65)

After applying Galerkin’s method with a weight function Nj(x, y, z) one obtains in a domain Ω
is

∫

Ω

Nj
∂η

∂t
dΩ = −KA

∫

Ω

Nj η C dΩ with KA =
kmax

λN1
and j = 0, 1, 2, 3. (5.66)

Because of the time dependence in this equation an additional time discretization of the term
∂η(~x,t)

∂t is necessary. This time discretization is performed with a simple backward-Euler method
as

∂η(~x, t = tn)

∂t
=

η(~x, tn) − η(~x, tn−1)

∆t
, (5.67)

where tn and tn−1 are two successive discrete times.

For an equation ∂y(t)
∂t = f(y, t) two Euler methods can be applied. The forward-Euler method is

an explicit simple method, because the new value y(tn+1) = ytn +∆t·f(tn, ytn) is defined in terms
of values that are already known [92]. The backward-Euler method comes from using f(y, t) at
the end of a time step, when t = tn+1. It is an implicit method, because in order to obtain the
new discrete value y(tn+1) a linear equation of the form y(tn+1) = ytn + ∆t · f(tn+1, y

(tn+1)) must
be solved [92], which requires additional computing time. But compared with the forward-Euler
method the most important advantage of the backward-Euler method is that a much larger time
step size ∆t can be used. The reason is that implicit methods are usually much more stable for
solving a stiff equation. A stiff equation is a differential equation for which certain numerical
methods for solving the equation are numerically unstable, unless the time step size is taken to
be extremely small [93].

The spatial approximation for the oxdiant concentration C(~x, t) and the normalized silicon η(~x, t)
for one finite element T is the same as in Section 5.2.4

C(~x, t = tn) =

3
∑

i=0

c
(tn)
i Ni(x, y, z), (5.68)

η(~x, t = tn) =
3

∑

i=0

η
(tn)
i Ni(x, y, z). (5.69)

With the time discretization (5.67) and the spatial approximation for C(~x, t) and η(~x, t), the
Galerkin formulation for the η-dynamics on a finite element T becomes

∫

T

Nj
1

∆t

(

3
∑

i=0

η
(tn)
i Ni −

3
∑

i=0

η
(tn−1)
i Ni

)

dΩ = −KA

∫

T

Nj

3
∑

i=0

η
(tn)
i Ni

3
∑

i=0

c
(tn)
i Ni dΩ, (5.70)
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Because of the same shape function Ni for C(~x, t) and η(~x, t) and no spatial dependence of c
(tn)
i

and η
(tn)
i , the last equation can be rearranged to

1

∆t

3
∑

i=0

(

(

η
(tn)
i − η

(tn−1)
i

)

∫

T

Ni Nj dΩ
)

= −KA

3
∑

i=0

(

η
(tn)
i c

(tn)
i

∫

T

Ni Nj dΩ
)

, (5.71)

After substituting Mij =
∫

T Ni Nj dΩ from (5.50) the discretized equation for the η-dynamics is
simplified to

1

∆t

3
∑

i=0

Mij

(

(η
(tn)
i − η

(tn−1)
i

)

= −KA

3
∑

i=0

Mijη
(tn)
i c

(tn)
i . (5.72)

In order to fulfill Galerkin’s demand that the residual should be zero, the last equation can be
rewritten as

3
∑

i=0

(

Mij

(

η
(tn)
i − η

(tn−1)
i

)

+ KA Mij η
(tn)
i c

(tn)
i ∆t

)

= 0 for j = 0, 1, 2, 3, (5.73)

which is also a system with four equations and eight unknown variables c
(tn)
i and η

(tn)
i . The

values for η
(tn−1)
i are already determined at the previous time step.

By combining the two equation systems (5.64) and (5.73), a non-linear but fully determined

equation system for one finite element, with 8 equations and the 8 unknowns c
(tn)
0 − c

(tn)
3 and

η
(tn)
0 −η

(tn)
3 , is obtained. The system is non-linear because of the product η

(tn)
i c

(tn)
i in (5.64) and

in (5.73). The complete equation system can be solved (for example with the Newton method)

at each time point tn and the values for c
(tn)
i and η

(tn)
i can be determined.

5.2.6 Discretization of the Mechanics

The main interest in the continuum mechanics is the deformation of a body by internal or
external forces. The deformation is expressed by the displacements d(x, y, z). The displacement
of a point in a three-dimensional elastic continuum is defined by three displacement components
u(x, y, z), u(x, y, z), and u(x, y, z) in directions of the three coordinates x, y, and z, so that

~d(x, y, z) =











u(x, y, z)

v(x, y, z)

w(x, y, z)











(5.74)

In contrast to the previous differential equations (5.38) and (5.65) for the mechanics Galerkin’s
method is not needed. Instead the virtual work concept is used [94]. The displacement compo-
nents u, v, and w are directly discretized on a finite tetrahedral element

u(x, y, z) =

3
∑

i=0

ui Ni(x, y, z),

v(x, y, z) =

3
∑

i=0

vi Ni(x, y, z), (5.75)
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w(x, y, z) =

3
∑

i=0

wi Ni(x, y, z),

where ui, vi, and wi are the displacement values in x-, y-, and z-direction on node i and Ni is
the linear shape function from (5.8).

The strain components in the elastic case are first order derivatives of the displacement compo-
nents

ε̃e =



































εxx

εyy

εzz

γxy

γyz

γzx



































=















































































∂u

∂x
∂v

∂y
∂w

∂z
∂u

∂y
+

∂v

∂x
∂v

∂z
+

∂w

∂y
∂w

∂x
+

∂u

∂z















































































= B ~de = [B0,B1,B2,B3] ~de. (5.76)

The element displacement is defined by the 12 displacement components of the 4 nodes as

~de =



















~d0

~d1

~d2

~d3



















with ~d0 =











u0

v0

w0











etc. (5.77)

The submatrix Bi of displacement derivatives for the node i is [95]

Bi =









































∂Ni

∂x
0 0

0
∂Ni

∂y
0

0 0
∂Ni

∂z
∂Ni

∂y

∂Ni

∂x
0

0
∂Ni

∂z

∂Ni

∂y
∂Ni

∂z
0

∂Ni

∂x









































=



















bi 0 0

0 ci 0

0 0 di

ci bi 0

0 di ci

di 0 bi



















, where i = 0, 1, 2, 3. (5.78)

The coefficients bi, ci, and di are the same as already presented in (5.16) and (5.18).

The entire inner virtual work on a continuous elastic body, and so also on a finite element is [94]

Winner =

∫

V

{ε̃e}T σedV, (5.79)
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with the stress tensor σ̃ (3.15). Here it is assumed that there is no residual stress σ̃0, and the
stress tensor is

σ̃ = D(ε̃ − ε̃0). (5.80)

In discretized form the transposed strain tensor is

{ε̃e}T = ~de
T

BT (5.81)

After discretization the stress tensor (5.80) can be arranged as a function of the element dis-
placement vector

σe = D(ε̃e − ε̃0
e) = DB ~de −D ε̃0

e. (5.82)

Together with the transposed strain tensor (5.82), this stress tensor leads to the following dis-
cretized form of the equation for the inner virtual work on a finite element

Winner = ~de
T

∫

V

(

BTDB ~de −BTD ε̃0
e
)

dV. (5.83)

The outer virtual work on a finite element, caused by the external nodal forces is

Wouter = ~de
T ~f e

ext
= 0, (5.84)

because it is assumed that during the oxidation process there are not external forces acting.

On any elastic body, and so also on a finite element, the inner work must be equal with the
outer work

Winner = ~de
T

∫

V

(

BTDB ~de −BTD ε̃0
e
)

dV = 0 = Wouter, (5.85)

which can be simplified to
∫

V

BTDB ~de dV =

∫

V

BTD ε̃0
e dV. (5.86)

Here the integrals can be substituted as sketched in [95]

Ke =

∫

V

BTDB dV = BTDBV e, (5.87)

~f e
int =

∫

V

BTD ε̃0
e dV = BTD ε̃0

e V e, (5.88)

where Ke is the so-called stiffness matrix and ~f e
int can be declared as internal force vector. Since

the integrands are not functions of the x-, y-, or z-coordinates, the integration over the volume
is equal with its much more simpler multiplication. The volume of any tetrahedron in the global
coordinate system can be calculated with the determinant of matrix (5.12) by

V e =
1

6
Det(D) (5.89)
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The most important fact is that the residual strain tensor ε̃0
e in (5.88) loads the mechanical

system. Because the residual strain components ε0,ii are directly proportional to the normalized
additional volume (3.37), there is a relationship between the volume expansion and the internal
nodal forces.

With the integral substitutions (5.87) and (5.88), the balance equation (5.86) becomes a linear
equation system for the mechanical problem on one finite element

Ke ~de = ~f e (5.90)

The system is fully determined, because there are 12 equations and also 12 unknown displacement-
components (three on each node) on the tetrahedron.

5.3 Assembling and Solving

Regarding assembling the finite element method is based on the principle that the components
of the local element matrices must be assembled to a global matrix for building up a global
equation system. Only with the global system all unknown variables on the grid nodes in the
discretized domain can be determined. Each global grid node is shared by a varible number
of finite elements which all make a contribution to the solution of the unknown values on the
involved nodes.

5.3.1 Principle of Assembling

The assembling procedure from a local element matrix Ae to a global matrix Ag has the same
routines for two- and three-dimensional structures. Therefore, the assembling procedure is
demonstrated on a simpler two-dimensional example as shown in Fig. 5.3. The dimension of the
local matrix Ae is always nk × nk, where n is the number of grid nodes on the finite element
(n = 3 for triangles and n = 4 for tetrahedrons) and k is the number of unknown variables on
a grid node. The dimension of the global matrix Ag is always N k × N k, where N is the total
number of grid nodes in the discretized domain.
If it is assumed that there is only one sought variable ϕ

Ae ϕe = be, Ag ϕg = bg (5.91)

the dimension of Ae is 3 × 3 in the two-dimensional case and the dimension of Ag is N × N .

The local matrix uses the local node indexes which are 1, 2, and 3 for every finite element. The
global indexes for these grid nodes are different. There must exists a transformation T (Ae)
which projects the local indexes k and l of the components Ae

kl to the global indexes i and j.
For example, the element 66 in Fig. 5.3 with its local nodes 1, 2, and 3 has the global nodes 42,
30, and 25 and the index transformation is

1 → 42, 2 → 30, and 3 → 25. (5.92)

This means that the components of the local matrix A66 from element 66 are transformed to
the global matrix Ag in the way

A66
1,1 → Ag

42,42, A66
1,2 → Ag

42,30, A66
1,3 → Ag

42,25, A66
2,1 → Ag

30,42, . . . (5.93)
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Figure 5.3: Part of a mesh with finite elements and grid nodes.

Another important aspect is that a global grid node is shared by a number of different finite
elements. This fact is taken into account during assembling of the global matrix by the so-
called superposition principle. This means that the components Ag

ij of the global matrix are
summed up from the contributions Ae

kl of the local element matrices. For example, the global
grid node 30 is shared by the five elements 63, 64, 65, 66, and 67 (see Fig. 5.3), which all make
a contribution to the node 30. So the global matrix components Ag

30,j are found with the help
of index transformations by the way

Ag
30,25 = A65

2,1 + A66
2,3, Ag

30,29 = A63
3,2 + A64

1,2, . . . (5.94)

The assembling of the global matrix from all N elements with the index transformation T (Ae)
can be described in the form

Ag =

N
∑

e=1

T (Ae). (5.95)

Sometimes there are more than one variable on the grid nodes. For example, with two variables
the size of the local matrix Ae (two dimensions) is 6 × 6 and 2N × 2N for the global matrix
Ag. If the variables are independent, the offset of the entries for the second variable is 3 in Ae

and N in Ag. For assembling the second variable from the element 66 the index transformation
(5.93) must be modified by adding the respective offset

A66
3+1,3+1 → Ag

N+42,N+42, A66
3+1,3+2 → Ag

N+42,N+30, A66
3+1,3+3 → Ag

N+42,N+25, . . . (5.96)

5.3.2 Dirichlet Boundary Conditions

Through the Dirichlet boundary conditions the values on the surface grid nodes are already
fixed with the so-called Dirichlet value. Therefore, it is not necessary and even not allowed to
recalculate the values on these grid nodes from the global equation system Ag ϕg = bg, because
it is impossible to obtain the same Dirichlet values by solving the equation system. These surface
grid nodes must be treated differently with the Dirichlet value. If on the global node i there is
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a Dirichlet boundary value ϕi = Ci, the global equation system must be changed to
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(5.97)

From the mathematical point of view the global equation system Ag ϕg = bg has m pseudo-
equations if there are m grid nodes with Dirichlet conditions, after setting all m rows and
columns from Dirichlet grid nodes ϕi in Ag to 0.

In practice it is more comfortable to multiplicate Ag with a transformation matrix Tb

Tb Ag ϕg = bg, (5.98)

which sets all rows and columns for the m Dirichlet grid nodes ϕi = Ci in Ag to 0, instead of
doing it componentwise by Ag

ik = 0 and Ag
ki = 0 for k = 1 . . . N . In the beginning Tb is a unit

matrix (Tii = 1 and Tij = 0), but for every Dirichlet grid node i the components Tii are reset to
Tii = 0. Therefore, all m rows and columns in Ag can easily be set to 0 at once with Tb.

5.3.3 Mechanical Interfaces

The simulated structures generally consist of several segments. Normally a segment is a con-
tinuous region of one material and so there are everywhere the same material characteristics.
Therefore, the electrical and mechanical behavior can be described with the same parameters
within a segment.

The used meshing module makes a separated grid for every segment. This means that for
a global grid point at the interface between two different segments there exist two different
indices, because each segment has its own global index, as shown in Fig. 5.4. The two global
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Figure 5.4: Two segments with interface and its grid points.

indices for the same grid point lead to an important aspect for the mechanics with regard to
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finite elements, because in the global stiffness matrix Kg there exist entries for two node indices
for the same grid point. After solving the linear equation system Kg ~dg = ~fg for the mechanical
problem there would be two different, but wrong displacement vectors for the same grid point.

The calculated displacements would be wrong, because the entries from segment A for this
interface points in the global stiffness matrix do not take into account that there is also a
stiffness from the other segment B due to the separate assembling of the segments. The same
but reverse explanation is valid for the entries from segment B. Therefore, the stiffness in matrix
Kg and also the force in ~fg must be corrected in the way that the entries with second index are
added to the first index of the grid point and then all entries with second index are set to 0.

In the following the correcting procedure in Kg is demonstrated for the representative interface
point with Index 35 in Segment A and Index 85 in Segment B (see Fig. 5.4).

Kg =































k1,1 · · · k1,34 k1,35 + k1,85 k1,36 · · · k1,N

k2,1 · · · k2,34 k2,35 + k2,85 k2,36 · · · k2,N
...

...
...

...
...

...
...

k34,1 · · · k34,34 k34,35 + k34,85 k34,36 · · · k34,N

k35,1 + k85,1 · · · k35,34 + k85,34 kSUM k35,36 + k85,36 · · · k35,N + k85,N

k36,1 · · · k36,34 k36,35 + k36,85 k36,36 · · · k36,N
...

...
...

...
...

...
...

kN,1 · · · kN,34 kN,35 + kN,85 kN,36 · · · kN,N































with kSUM = k35,35 + k35,85 + k85,35 + k85,85 (5.99)

After the addition of all entries with Index 85 these components are set to zero: ki,85 = 0 and
k85,i = 0 for i = 1 . . . N . The other interface points are handled in the same way. It is also

necessary to rearrange the force vector ~fg with the same concept so that

~fg =
[

f1 f2 . . . f34 f35 + f85 f36 . . . f84 0 f86 . . . fN

]T
(5.100)

Like in (5.98) Kg and ~fg can be manipulated for all interface points in a faster and simpler
way with the same transformation matrix Tb, because the Dirichlet boundary conditions have
higher priority and must always be fulfilled. With Tb the mechanical system becomes

Tb Kg ~dg = Tb
~fg. (5.101)

For the representative interface point with Index 35/85 the matrix elements from Tb must be
set to T35,85 = 1 and T85,85 = 0 in order to get the required effect.

After solving the linear system for displacements (5.101), d35 has the correct value and d85 = 0.
In order to also have the correct displacement for the second Index 85 (segment B), d85 must
be set to d35.
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5.3.4 Complete Equation System for Oxidation

The oxidation problem induces 5 unknown variables: the oxidation concentration c, the normal-
ized silicon concentration η, and the three components u, v, and w (in x-, y-, and z-direction) of
the displacement vector ~d. If the dopant redistribution is taken into account, than the unknown
variables for the concentrations of the different species have also to be considered. In case of
the five-stream diffusion model these are the 5 variables for CA+, CI , CV , CAI , and CAV (see
Section 4.2).

The following explanation is focused on the pure oxidation problem. Therefore, the discretization
of the simulation domain with N grid nodes leads to 5 variables on each grid node. After
assembling of the whole equation system there are in total 5N unknown variables and, as
already described in Section 5.3.1, the dimension of the global matrix Ag is 5N×5N .

As shown in Fig. 5.5 the global matrix Ag consists of the two sub-matrices Jg and Kg. Jg

contains the coupled entries from the oxidant diffusion (5.64) and the η-dynamics (5.73). Because
of the unknown variables c1 . . . cN and η1 . . . ηN the size of Jg is 2N×2N . Kg is the global
stiffness matrix for the mechanics with the three displacement components u1 . . . uN , v1 . . . vN ,
and w1 . . . wN , and so its dimension is 3N×3N .
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Figure 5.5: Structure of the global equation system for oxidation.

The structure of the local system matrix for one finite element is the same as for the global one
(see Fig. 5.5). The only difference is that N = 4 because of the 4 nodes of a tetrahedron. So
the dimension of the local matrix Ae is 20×20 with the 8×8 Je and 12×12 Ke sub-matrices.

The first part of the equation system which describes the oxidation diffusion and the η-dynamics,
is non-linear because of the coupling between ci and ηi in the form ci ηi (see (5.64) and (5.73)).
The variables in the non-linear system can not be calculated directly, only their increments ∆c i

and ∆ηi. The second part of the system which is responsible for the mechanical problem is
linear, as marked in Fig. 5.5.

For a quasi-stationary time step there is no coupling between the c-η-system and the mechanical
system, because the equations for c and η are not functions of displacements. Although the
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normalized additional volume after a time step is calculated with c and η, the mechanical
equations for the displacements also are not functions of c and η. Because of the missing
coupling the off-diagonal sub-matrices in the global equation system are zero (see Fig. 5.5).

On the right-hand side of the non-linear subsystem are the residuals calculated with the results
from the last Newton iteration as explained in the next section. The right-hand side of the linear
subsystem contains the (internal) forces on the grid nodes.

5.3.5 Solving with the Newton Method

In contrast to the linear mechanical subsystem, where the displacements can be calculated
directly with one of the various standard methods like Gaussian elimination, the solving of the
non-linear part demands other routines like the used Newton Method [96].

The global non-linear subsystem can be written in the form

f1(x1, x2, . . . , x2N ) = 0

f2(x1, x2, . . . , x2N ) = 0
...

f2N (x1, x2, . . . , x2N ) = 0

(5.102)

where x1 . . . xN stand for the variables c1 . . . cN and xN+1 . . . x2N stands for the variables η1 . . . ηN .

With the Newton formula the solution vector for the actual time step n becomes

~xn = ~xn−1 − Jg−1(xn−1) ~R(xn−1), (5.103)

where ~xn−1 is the solution from the previous time step n−1, Jg−1 is the inverse Jacobian matrix,
and ~R are the residuals, both determined by xn−1

i .

Transforming the Newton formula to the form

Jg ~∆x = ~R with ∆xi = xn
i − xn−1

i , (5.104)

leads to a linear equation system for the increments ∆xi (see Fig. 5.5).
After solving this linear system the values for the actual timestep n can be determined by

xn
i = xn−1

i + ∆xi (5.105)

This equation shows that the Newton method demands start values x0
i on all N grid nodes for

the first iteration n = 1.

Because the Newton method is only a first order approximation of the solution, an iteration
never provides the exact results. Therefore the right-hand side of the non-linear system (5.102)
can not be 0, instead there always exist residuals Ri(x

n−1
i ).

The quality of the approximation is increased with each iteration, but the number of iterations
must be limited with termination conditions. With these conditions also the accuracy of the
approximation can be controlled. It makes sense to use the following termination conditions [97]

‖~xn − ~xn−1‖ ≤ τabs, (5.106)

69



DISCRETIZATION WITH THE FINITE ELEMENT METHOD

‖~xn − ~xn−1‖ ≤ τrel‖~xn‖, (5.107)

‖~R(xn)‖ ≤ τf , (5.108)

where τabs, τrel, and τf are given tolerances. ‖ ‖ is the Euclidean norm

‖~xn − ~xn−1‖ =
√

∑

(

xn
i − xn−1

i

)2
and ‖~xn‖ =

√

∑

(

xn
i

)2
. (5.109)

(5.106) and (5.107) are failure criterions, which only work, if the sequence ~xn converges quickly
to the exact solution. If this converging sequence is slow, ‖~xn − ~xn−1‖ can be small but the
demanded accuracy is by far not reached and the Newton loop is terminated too early. Due to
this fact it is recommended to use the additional residual criterion (5.108). The combination of
both criterions ensures good terminating conditions.

For one finite tetrahedral element with its 4 nodes (N = 4) the non-linear system (5.102) is

f1(c
n
1 , cn

2 , cn
3 , cn

4 , ηn
1 , ηn

2 , ηn
3 , ηn

4 ) = 0,

f2(c
n
1 , cn

2 , cn
3 , cn

4 , ηn
1 , ηn

2 , ηn
3 , ηn

4 ) = 0,
...

f8(c
n
1 , cn

2 , cn
3 , cn

4 , ηn
1 , ηn

2 , ηn
3 , ηn

4 ) = 0.

(5.110)

Here f1 . . . f4 come from the oxidant diffusion (5.64)

fj =

4
∑

i=1

(

D Kij cn
i + kmax Mij cn

i ηn
i

)

= 0 for j = 1, 2, 3, 4, (5.111)

and the other equations f5 . . . f8 describe the η-dynamics (5.73)

fj+4 =

4
∑

i=1

(

Mij

(

ηn
i − ηn−1

i

)

+ KA Mij ηn
i cn

i ∆t
)

= 0, for j = 1, 2, 3, 4. (5.112)

The local Jacobian matrix is

Je =
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For calculating the Jacobian matrix and the residuals in the Newton iteration n the results for
ci and ηi from the previous iteration n − 1 are used.
For the equations f1 . . . f4 (5.111) of the Jacobian matrix components are

Ji,j =
∂fi

∂cn
j

= D Kij + kmax Mij ηn−1
i ,

Ji,j+4 =
∂fi

∂ηn
j

= kmax Mij cn−1
i for i, j = 1, 2, 3, 4. (5.114)
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The partial derivatives of the equations f5 . . . f8 (5.112) result in

Ji+4,j =
∂fi+4

∂cn
j

= KA Mij ηn−1
i ∆t,

Ji+4,j+4 =
∂fi+4

∂ηn
j

= Mij + KA Mij cn−1
i for i, j = 1, 2, 3, 4. (5.115)

The local residuals used for the actual Newton iteration n are

Ri =

4
∑

j=1

(

D Kij cn−1
i + kmax Mij cn−1

i ηn−1
i

)

, (5.116)

Ri+4 =

4
∑

j=1
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ηn−1
i − ηn−2
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)

+ KA Mij ηn−1
i cn−1

i ∆t
)

for i = 1, 2, 3, 4. (5.117)

The entries of the global Jacobian matrix Jg and global residual vector ~R as needed for (5.104)
are assembled from the local ones as explained in Section 5.3.1.
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Chapter 6

Simulation of Thermal Oxidation

with FEDOS

Fedos stands for Finite Element Diffusion and Oxidation Simulator and is in principle a
framework for three-dimensional process simulation, which is based on the finite element

method. The name has more traditional character and does not enumerate all its abilities,
because, when fedos was launched, it was only planned to simulate different forms of diffusion
and thermal oxidation processes. Since the concept of fedos allows to simulate all process
phenomena, if the problem can be formulated with the finite element method, it is also used for
the investigation of other process topics like electromigration or stress analysis. In the course of
this doctoral work fedos was extended and modified for the simulation of oxidation and various
kinds of stress analysis.

The finite element method offers some benefits in process simulation compared with other nu-
merical techniques. At first it enables to discretize all kinds of (partial differential) equations in
a similar way and with good mathematical stability. Because fem was developed for mechanical
simulation, it is also most suitable for displacement problems as occur during thermal oxidation.
Another advantage is that after the discretization of the equations which describe the respective
physical phenomenon analytically, fem only needs standardized routines to built up the global
equation system. This means that in fedos the same assembling procedure can be used for all
different process models.

The fem formulation goes hand in hand with the used elements. In the current version fedos

is designed for simulation regions which are exclusively discretized with tetrahedrons and linear
shape functions. Since the accuracy can be increased with a finer mesh, which means more
elements, the linear fem approach meets all requirements and has the advantage that it is the
most simple fem formulation (see Section 5.2). Furthermore, tetrahedrons are qualified for
fitting non-planar surfaces with coarse elements in acceptable quality.

Regarding the implementation aspect an advantage of fedos is that a new model can be included
in a straightforward procedure. It is only necessary that the new model is implemented in C++
with a defined interface in a separate file. For including a model in fedos only a knowledge
about the program interface is demanded, but not about the complex internal fedos routines
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or even other models. The new model must only supply the finite element formulation of the
discretized equations which describe the phenomena on a single element.

6.1 Architecture of FEDOS

The core functions of fedos are the management of the simulation procedure and data flow, the
model execution, and the finite element assembling. Some functions like data- and Inputdeck-file
operations or the solving of the equation system are provided by libraries, but these function
calls are incumbent on fedos. Furthermore, fedos offers a number of operations for mesh
manipulation, especially for (dynamic) mesh refinement and coarsement.

6.1.1 Inputdeck

fedos always asks for a so-called Inputdeck-file (ipd-file) which includes all necessary informa-
tion for a simulation run. In principle the ipd-file contains all changeable process information.
The Inputdeck-file can be read with the Inputdeck-Reader which is a library linked into fedos.
The Inputdeck concept was also developed at the Institute for Microelectronics (see Chapter 3
in [98]) and is also used for other simulators. The ipd-file itself is an Ascii-file which can be
generated with a normal text editor in an evident syntax.

The ipd-file includes the names of the input and the output file. Alternatively sometimes it
is desired to set an attribute to a constant initial value on the whole segment. In the case of
oxidation simulation the normalized silicon concentration η must be set to the initial value 1
in the silicon segment (see Section 3.1). The next important task is to control the simulation
procedure which involves amongst others the

� Maximal time of the simulated process
� Duration of one time step
� Number of time steps
� If the duration of the time steps is constant or increased recursively

In the ipd-file also the accuracy for the Newton solver is determined (see Section 5.3.5) which
is related with the controlling part. For a desired higher accuracy of the results more Newton
loops and so more simulation time is needed for solving a non-linear equation system.

Since fedos contains a number of different models, another necessary part in the ipd-file is
to declare which model is applied on the respective segment by its name. The models can be
divided into the three categories:

� Volume models: describe the physical behavior within a segment. Examples are the models
for oxidation, diffusion, or mechanics. Furthermore, it is obligatory to assign a volume
model to each segment. This means that also on not relevant segments of a more complex
simulation setup a dummy model must be applied.

� Surface models: can be applied on segment surfaces with boundary conditions. The surface
models always contain a Dirichlet or Neumann boundary condition. Boundary conditions
for the mechanics (Dirichlet) or the species flow for diffusion (Neumann) can be listed. On
surfaces without explicit models fem assumes implicitly a Neumann boundary condition
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Figure 6.1: Architecture of fedos and its information flow.

which means that there exists no flow of particles through the surface. In contrast to the
volume models the mathematical formulation in the surface model has to be performed
for triangles, because a surface only has two dimensions.

� Interface models: describe the physical behavior on the interface between two adjacent
segments. Like the surface also an interface only has two dimensions. As depicted in
Section 5.3.3 an interface model is essential for mechanical problems. Another example is
the segregation of species at an interface.

Simulation only makes sense, when the process parameters are changeable and so at least all
volume models have its own parameters. For the oxidation model such parameters are the low
stress diffusion coefficient D0 (see (3.2)) or the maximal strength of the spatial sink kmax (see
(3.4)). In the mechanical models the Young modulus E and the Poisson ratio ν are modifiable.

6.1.2 Wafer-State-Server

For the data management fedos uses the wafer-state-server [99], a program package de-
veloped at the Institute for Microelectronics. All data are saved in the so-called wafer-state-

server-file (wss-file) in an Ascii-format. The wss-format enables straightforward communica-
tion of fedos with other in-house tools as for meshing of the structure or visualization of the
simulation results.

In the wss-file are one or more segments where each segment holds a (tetrahedral) grid. On
the segment grid a unlimited number of constant or distributed attributes can be located. The
wss-file concept has the benefit regarding the file size that the coordinates (x-, y- and z-value) of
each grid point are only saved once although, a grid point is shared by a number of tetrahedrons.
Therefore, the nodes of the tetrahedrons in the segment grid are only references to a point list.
Another memory saving effect is that the distributed attribute values are also saved only once
on the grid points in the respective segment and not on each tetrahedron node.

The wafer-state-server is not merely a file reading and writing tool, it is in principle a data
management tool. In the beginning all grid and attribute information from the input file are read
and then held in the wafer-state-server during the simulation. It achieves an abstraction
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of the physical stored data in the file to logical dats in the program. For fedos the wafer-

state-server supplies a lot of useful grid operations like surface and interface extraction, point
and element location, or attribute updates during the simulation. For simulation with fedos

the wss input file must at least contain the grid information of the discretized structure. The
simulation results are written to the output file in form of distributed attributes. For the
oxidation simulation the results are the distribution of the oxidant concentration C and the
normalized silicon concentration η. For the mechanical problem with its displacements also the
point coordinates are modified in the output file.

6.1.3 QQQ-solver

The solving of the (linear) global equation system is performed with the qqq-solver [100],
also developed at the Institute for Microelectronics. The qqq-solver is based on the Gaus-
sian method [101], which uses a factorization of the matrix Ag in a lower and upper triangular
matrix (A = L · U), so that the equation system A · ~x = ~b can be written as

L · U · ~x = ~b, L · ~y = ~b with ~y = U · ~x. (6.1)

Therefore, the Gaussian algorithm is specified by the following three steps:

1. A = L ·U: Gaussian elimination by factorization (L and U is computed )

2. L · ~y = ~b: forward-substitution (~y is computed )

3. ~y = U · ~x: backward-substitution (~x is computed )

The qqq-solver also supplies a transformation matrix Tb which allows to transform the equation
system A · ~x = ~b to [102]

Tb · A · ~x = Tb ·~b. (6.2)

As depicted in Section 5.3.2 and 5.3.3 the matrix Tb can be used for the elimination of equations
not needed because of Dirichlet boundary conditions or for correcting the equation system in
case of mechanical interfaces.

The assembling of the equation system is performed by fedos by generating the matrices A,
Tb and ~b for the qqq-module. After solving the qqq-module returns the results to fedos. The
complete equation system for the oxidation problem (see Section 5.3.4) consists of the non-linear
(diffusion-reaction) part and the linear (mechanical) part.

The non-linear sub-system requires some Newton iterations, until it fulfills the termination
conditions. It should be mentioned that the qqq-module is not a non-linear solver, it can only
can handle linear systems. As described in Section 5.3.5 fedos assembles the non-linear sub-
system in such a kind that it becomes a linear system for increments ∆xi, which can be solved
by the qqq-module. These increments are computed in a way that fedos can build a solution.
This procedure is repeated until the approximation fulfills the desired terminating conditions.
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6.2 Simulation Procedure

The first step of the simulation procedure is to perform a finite element discretization by splitting
up the three-dimensional structure into tetrahedral elements. A key aspect for the simulation
is the number of elements, because it determines the accuracy of the simulation results and the
demanded computer resources. A finer mesh with more elements means that the larger number
of nodes leads to a larger equation system which needs more time for its assembling and solving
procedure. The mesh generation is performed with the meshing tool which results in the input
data file for fedos. Then the ipd-file with all the simulation parameters is imported with the
Inputdeck-Reader and the file which contains the mesh, geometry, and material information is
read into the wafer-state-server.

In the next step the initial values for the oxidant concentration C and the normalized silicon
concentration η are set on the grid nodes. For example η must be 1 in pure silicon. Because the
oxidation process is time dependent, the actual oxidation time must be reset at the beginning
of the simulation. As shown in Fig. 6.2, fedos iterates over all finite elements and builds the
local equation system for every element at each actual discrete time. The local equation system
describes the oxidation process numerically only for one element. In order to describe the whole
oxidation process on the complete simulation domain the finite element method demands a
global (coupled) equation system. The components of the global equation system are assembled
from the local system by using the superposition principle as depicted in Section 5.3.1.

After the iteration over all elements is finished, the global assembled equation system, with its
non-linear and linear part, is also completed. Now the global equation system can be solved
with the qqq-solver. The assembling and solving procedure is repeated, until the results from
the non-linear sub-system fulfill the termination conditions of the Newton method. After the
Newton system has converged the results for C, η, and displacements for the whole discretized
oxidation process are obtained for the actual time step.

With these results the values for C, η, and the displacement are updated on the grid nodes
such that these values are always keeping pace with the actual simulation time. The actual
displacement vector enables the calculation of the strain tensor as well as the stress tensor for
each element. When the above described procedure is finished, the actual simulation time is
increased and the assembling for the first Newton loop is started again. The same assembling
and solving procedure is repeated for each time step, until the desired end of the simulation.
At the end of the simulation procedure the wafer-state-server writes the final simulation
results to the output file.
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Start simulation

Create a tetrahedral grid with the mesher

Read the ipd-file and the input data file

Initialize the grid values for C and η

Set actual simulation time to 0
�

time = time + timestep

� �

Make the local equation system for one
finite element

Assemble the components form the local
to the global equation system

All elements assembled?
No

Yes

Solve the global equation system

Newton criterion fulfilled?
No

Yes

Update the values for C, η, and
displacements on the grid nodes

Calculate the stress in materials

max. sim. time?
No

Yes

Dump simulation results on output file

End simulation

Figure 6.2: Simulation procedure for oxidation.
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6.3 Meshing Aspects

The mesh generation for the (oxidation) simulation with fedos is an important topic, because
the finite element formulation depends on the used elements. With the actual fedos version
the discretization can be performed only with linear shape functions on tetrahedrons. This
tetrahedral grid generation is performed with the in-house meshing tool laygrid from the
Smart Analysis Programs package [103]. The quality of the numerical solution of the pdes by
the finite element method increases with the number of nodes.

For a desired high accuracy of the simulation results a fine mesh with a high number of elements
and nodes is requested [104]. If the mesh is not fine enough, there is a risk that the Newton
method does not converge for the discretized non-linear equation system because of too large
approximation failure. On the other side a large number of elements and nodes has an unwanted
effect: more computer resources are required, because it must be iterated over more elements
which also must be assembled to the global equation system. In case of the oxidation model there
are five variables on each node, so that an additional node results in five additional equations. A
larger equation system needs more time and memory for its solving. Therefore, the goal for finite
elements is always to obtain a high accuracy with the smallest possible number of elements.

For the oxidation simulation a static grid is used which has the advantage that grid manipulation
procedures are not needed. A grid modification like refining and coarsening in each time step
normally needs complex algorithms with a long computation time and has the risk of element
degeneration [105]. So the best way to reach the above goal with a static grid is to make an
initial mesh with appropriate local resolution. In critical or intersting regions of the investigated
structure, or where the oxidation process really occurs, a finer mesh should be applied than in
the rest of the structure.

The previously discussed meshing strategy is applied to discretize an initial structure as shown
in Fig. 6.3. This demonstrative example is a silicon block with (1.2×0.3) µm floor space and a
height of 0.4 µm. Two thirds of the length are covered with a 0.15 µm thick silicon nitride mask
which prevents the oxidant diffusion on the subjacent silicon block. In principle this chosen
structure is two-dimensional, but it is very suitable for the plausible illustration how the sharp
interface interpretation (see Section 6.4) and the stress calculation strategy (see Section 7.2)
works. The first interesting information regarding meshing is that the oxidation process only
starts at the upper uncovered silicon surface. The next important aspect is that the most critical
region on this structure is along the edge of the Si3N4-mask. This area is of interest, because the
stiffness of the Si3N4-mask prevents the desired volume expansion of the newly formed oxide,
which leads to the well known bird’s beak effect.

Therefore, the finest mesh in the structure was constructed around the mask edge. The distance
of the nodes in the x-direction is 10 nm. For nodes which are located away located from the
edge their distance is successively increased until 50 nm at the end of the active silicon region
(x = 0 µm). At the end of the Si3N4-mask (x = 1.2 µm) the node distance in x-direction is
even 100 nm. Furthermore, on the upper half of the silicon block where the oxidation process
is expected the layer thickness is 10 nm, in the lower half it is doubled (20 nm). Unfortunately
laygrid is limited to produce only layers with constant thickness over the whole x-y-plane.
Therefore, the layer thickness in the less interesting regions somewhere under the mask must
be the same as in the active area. All in all, the mesh shown in Fig. 6.3 has 12 218 nodes and
56 670 (tetrahedral) elements.
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x
y

z

Figure 6.3: Tetrahedral mesh with different fineness on the initial structure.

Figure 6.4: Simulation result of the oxidation process with grid deformation.

The results of the simulated oxidation process, which are the η-distribution and the displace-
ments in the materials, are displayed in Fig. 6.4. Here, blue is pure SiO2 (η = 0), red is the
pure silicon substrate (η = 1), and at the Si/SiO2-interface one can see the reaction layer with
a finite width (0 < η < 1) as explained in Section 3.1. Furthermore, this figure depicts the node
displacements and the grid deformation caused by the considerable volume increase of the newly
formed SiO2.
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6.4 Sharp Interface and Smoothing

Since the η-distribution is only a virtual model parameter, the width of the reaction layer
does not agree with the thickness of the real physical interface between silicon and SiO2. In
the calculated η-distribution the reaction layer normally ranges over some finite elements (see
Fig. 6.4), but in reality the Si/SiO2-interface is only a few atom layers thick. So for a more
physical presentation of the (final) simulation result a sharp interface between silicon and SiO2

must be constructed.

6.4.1 Segment Splitting

The two regions can be extracted from the η-distribution by determining that η ≤ 0.5 is SiO2

and η > 0.5 is silicon. From the meshing aspect this means that the original silicon segment
must be splitted up into two new segments, one for pure silicon and another for pure SiO2, which
can be done by cutting the grid at a virtual surface with η = 0.5.

For the sake of simplicity the splitting procedure is demonstrated on a two-dimensional grid
example. The simulated structures are three-dimensional with a tetrahedral mesh, but the
principle is the same as with triangles. The left side of Fig. 6.5 shows a subarea of a mesh with
the η-values on the nodes. There the η-values on the upper nodes are less than 0.5 and on the
lower nodes are higher than 0.5. This means that the virtual surface with η = 0.5 must be
located somewhere between the upper and lower nodes. The position of η = 0.5 on each element
edge can be calculated with the known values η1 and η2 on the two corresponding nodes

|0.5 − η1|
|0.5 − η2|

=
l1
l2

where l = l1 + l2. (6.3)

l is the length of the element edge, and l1 (l2) is the distance between the location of η = 0.5
and the node with η1 (η2) along this edge. In Fig. 6.5 the location of the 0.5-line is presented
with linear proportions, because its distances to the nodes were calculated with (6.3).

After the position of η = 0.5 is calculated on an edge, a new node is inserted and the edge is split
into two parts. The new nodes are marked with red color in the right side of Fig. 6.5. With the
help of additional nodes, which are not placed on the egdes, a local remeshing of the interface
grid can be performed, which results in two separated segments for silicon and SiO2 with a sharp
interface. The mesh operations for this segment splitting were implemented in fedos.

Another problem associated with segment splitting is that the generated interface is not smooth,
especially in critical regions or where it has a curvature. The reasons are numerical inaccuracies

0.5230.520 0.527 0.539 0.5230.520 0.527 0.539

0.465 0.468 0.478 0.465 0.468 0.478

0.5

Figure 6.5: Principle of the grid operations for the splitting procedure.
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which come from the finite element discretization, but also from the Newton solving method
because both are approximation methods. After a number of simulation loops (see Section 6.2)
the inaccuracies sum up and lead to visible differences in the η-distribution.

The situation after the segment splitting of the oxidized structure from Fig. 6.4 is shown in
Fig. 6.6. Only the silicon segment (with the same proportions) is presented. Although the mesh
has good quality, the interface is craggy because of the previously described problems. For a
more realistic Si/SiO2-interface the quality of its curvature and mesh can be improved with an
additional smoothing routine.

Figure 6.6: The Si/SiO2-interface at the silicon segment after segment splitting.

6.4.2 Smoothing

The smoothing algorithm is implemented in the wafer-state-server in form of advanced gts-
functions [106]. The basic idea of the smoothing model is to move all points which are connected
to artificial edges. An important part is to select which surface points belong to natural edges
of the structure and which to artificial ones [107]. The principle of the point selection method
can be explained with the help of Fig. 6.7. Points on planar surfaces like P1 can be excluded
from the smoothing process, because they are only surrounded by planar triangles. The same
is valid for points like P2, which are located on natural edges, because they are also connected
with at least one planar surface.

The best strategy for finding a point as P3, which needs smoothing, is to check the surface
curvature. A typical property of a point on an artificial edge is that the curvature of at least one
connected other point is opposite. Such switching curvature can be located straightforwardly,
with an angle criterion. As demonstrated in Fig. 6.7 the angle between the triangles at point
P3 is acute (α1 < 180◦), but the angle at the connected point is obtuse (α2 > 180◦). A
plausible criterion for switching curvatures is to analyze, if the angles of connected points switch
between less 180◦ and greater 180◦. It can be found with this criterion that point P4 belongs
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α2
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α3 α4
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Switching curvature
Plane surface

Smooth curvature

Figure 6.7: Principle of the point selection method for different kind of surfaces.

to an already smooth surface, because both angles α3 and α4 have similar values less than 180◦

(α3, α4 < 180◦).

After selection of the points which have to move, their distances and directions of motion are
another important aspects [107]. At first, the maximally allowed sphere of the motion of a point
around its original position is given by the shortest distance to its connected points, as displayed
in Fig. 6.8. Since the smoothing process is performed with a number of iterations, the distance
of motion within each iteration loop is set to 1

10 or less of the respective sphere radius. The
direction of motion for a point for each iteration loop is calculated as the sum of normals of all
triangles connected to this point (see right hand side in Fig. 6.8). The smoothing process for
the selected points is stopped, if the difference of the angles between connected points is within
a (small) tolerance.

l1l1

Direction of motion

Sphere of motion

Figure 6.8: Illustration of the point motion concept in the smoothing process.

The above described method is applied to smoothen the Si/SiO2-interface on the oxidized struc-
ture. The result of the smoothing processs for the silicon segment after approximately 20
iterations is shown in Fig. 6.9. It can be seen that compared with the interface after the sege-
ment splitting (see Fig. 6.6) the roughness of the smoothed interface is negligible because most
artificial edges and unevennesses were removed.

The simulation results of the oxidation process after the previously described segment splitting
and smoothing procedure (see Fig. 6.4), are presented with a more physical sharp interface
between the SiO2- and silicon segment in Fig. 6.10. It is worth mentioning that all pictures of
this oxidation example have same proportions and perspectives for optimal comparison.
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Figure 6.9: The Si/SiO2-interface at the silicon segment after the smoothing process.

Figure 6.10: SiO2-region after oxidation with a sharp and smoothed interface.

6.5 Model Calibration

The simulated oxide thickness after a certain oxidation time must agree with the real physical
thickness under the same assumed process conditions. The goal was to find a universal, but not
complicated calibration method which works for all possible oxidation conditions, as described
in the following.
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6.5.1 Calibration and Parameter Extraction

A look to the model (see Section 3.2.1) shows that there are three available parameters, namely
the diffusion coefficient D0(T, p), the maximal possible strength of the spatial sink kmax, and
the oxidant concentration CSur at surfaces which have contact to the oxidizing atmosphere. As
displayed in (3.9) and (7.1) the diffusion coefficient has a physical background. It is temperature
and stress dependent and its real physical value can be determined correctly. Therefore to use
D0(T, p) for calibration is not appropriate.

The next parameter kmax has more mathematical and modeling origin, but it is also not an
optimal paramenter for calibration. At first the thickness of the reaction layer changes with
kmax, because it is inversely proportional to kmax (see Section 3.2.4). This can be a problem for
small kmax values which lead to thick reaction layers.

For a better understanding of the second trouble with large kmax values the following is worth
mentioning: Simulations have shown that with regard to the finite elements for the value of
kmax the following choice is reasonable

kmax = kglobal/delem. (6.4)

Here, delem is the average diameter of the finite elements in the used mesh, and kglobal is a
constant value independent of the mesh fineness.

Due to the mesh dependence of kmax its variation is limited. In the experiments it was found
out that the value of kmax can not be increased arbitrarily. For larger values than suggested in
(6.4) the numerical formulation becomes instable. In contrast to this, small kmax values are not
a problem. Therefore, kmax is not a suitable parameter for the model calibration of a potentially
because of thick reaction layer (small value) and numerical instability (large value).

After excluding two of the three parameters, the last parameter which is the surface oxidant con-
centration CSur is investigated. On surfaces which have contact with the oxidizing atmosphere
the oxidant concentration is used as a Dirichlet boundary condition. The key idea is to modify
CSur in order to calibrate the oxide thickness of the simulated oxidation process over time for
different oxidation conditions. From the physical aspect a higher surface oxidant concentration
means that a larger number of oxidants diffuse to the Si/SiO2-interface and react with silicon,
which results in a faster oxidation rate.

6.5.2 Calibration Concept and Example

It was found with experiments that the best results are obtained if CSur consists of a constant
part C? CA and an η-dependent part C? CB ηpow so that the effective surface concentration can
be written as a function of η

CSur = C? (CA + CB ηpow). (6.5)

Here C? is the standard oxidant concentration in the gas atmosphere as used in the Deal-Grove
model. CA, CB , and pow are the calibration parameters. Because the value of η is changed
during the oxidation process, the value of CSur is also changing with time. For the onward
process η goes toward 0 on the surface and so the second term for CSur disappears.

84



6.5 Model Calibration

As example for the above described calibration concept a (111) oriented and 0.4 µm height silicon
block is wet oxidized and the oxide thickness over time for different temperatures is calibrated.
The bottom surface is fixed, the lateral surfaces can only move vertically and on the upper
surface a free mechanical boundary condition is applied. Only the upper surface of the body
has contact with the oxidizing atmosphere. The oxide thickness is measured between the upper
surface and the η-level of 0.5.

In the calibration process the values of the parameters CA, CB , and pow are determined with the
help of the in-house tool siesta (Simulation Environment for Semiconductor Technology Anal-
ysis) [108], so that the thickness values of the simulated oxide layers agree with the calculated
physical reference values up to approximately 500 nm at any time for a temperature range of
900 – 1100 ◦C. The temperature dependent diffusion coefficient D(T ) is calculated as explained
in (3.13). The other two model parameter kmax = 60 s−1 and C? = 3·107 part

µm3 are kept constant
over the whole temperature range.

It was found that in case of wet oxidation the value of the parameter pow = 0.16 in (6.5) can
be hold constant for the temperature range of T=900 – 1100 ◦C. Furthermore, the experiments
show that the parameter CA can be brought to a linear and the parameter CB can be brought
to a parabolic dependence on temperature, which is described by

CA(T ) = −3.34 + 4.4 · 10−3 T and (6.6)

CB(T ) = −2.15 + 1.67 exp
(

22.77 · 10−6(T − 900◦C)2
)

. (6.7)

The expressions for CA and CB were found empirically. Their values over temperature are plotted
in Fig. 6.11. CA and CB do not have a physical background, they are pure fitting parameters.
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Figure 6.11: Parameters CA and CB over temperature.

In case of wet oxidation the three Figs. 6.12 – 6.14 show vicegerent for all other temperatures
that the formula for CSur with its parameters CA, CB, and pow leads to an excellent agreement
between the calculated reference curves and the measured simulation curves. The oxide thickness
values for the reference curves are calculated with the Deal-coefficients [51]. The coefficients
CA, CB , and pow can be also found without problems for other process conditions (e.g. dry
oxidation), and so the calibration with CSur always works well.
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Figure 6.12: Oxide thickness over time at T=900 ◦C.
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Figure 6.13: Oxide thickness over time at T=1000 ◦C.
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Figure 6.14: Oxide thickness over time at T=1100 ◦C.
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6.6 Comparison with a Two-Dimensional Simulation

The locos structure shown in Fig. 6.3 is in principle a two-dimensional structure with a 0.4 µm
stripped mask. Therefore, the three-dimensional simulation results from fedos can be compared
with a two-dimensional oxidation simulation. For the stress dependent simulation with fedos

a wet oxidation with a period of 20 minutes at 1000 ◦C was assumed. The same parameters are
used for an oxidation simulation on an equivalent two-dimensional structure with the commercial
process simulation program dios [14]. The dios output is shown in Fig. 6.15. As illustrated in
Fig. 6.10 the results from fedos are in good agreement with dios.

Figure 6.15: Two-dimensional oxidation simulation with dios.
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Chapter 7

Stress Dependent Oxidation

STRESS is essential for thermal oxidation, because the oxidation process is considerably
influenced by stress. Stress is always built up, if the volume increase of the new oxide is

prevented somewhere from expanding as desired. During the oxidation process there can be a
lot of stress sources like nitride masks, adjacent structures or oxidation of concave corners.

The oxidation process is stress dependent, because stress has an impact on the oxidant diffusion
and the chemical reaction, which are both strongly reduced with stress and so the oxidation rate
is also decreased in areas with compressive stress. For high stresses the oxidation process can
be de facto even stopped. Thereby, for the simulation of stress dependent oxidation the model
from Chapter 3 must be extended. In this chapter also the influence of stress is investigated
with this extended model and the simulation results of representative examples are shown.

7.1 Oxidation Modeling with Stress

There are two parameters in the oxidation model, which are influenced by stress. The first one
is the stress dependent diffusion coefficient [109, 110]

D(p, T ) = D0(T ) exp
(

− p VD

kB T

)

. (7.1)

Here D0(T ) is the low stress diffusion coefficient (3.9), p is the pressure in the respective material,
VD is the activation volume, kB is the Boltzmann’s constant, and T is the temperature in Kelvin.
The second parameter is the stress dependent strength of a spatial sink

k(η, p) = η(~x, t) kmax exp
(

− p Vk

kB T

)

. (7.2)

Both parameters are exponentially reduced with pressure, which is only valid for p ≥ 0 [111].

With these two stress dependent parameters the three main equations in the oxidation model,
which describe the oxidant diffusion (3.2), the η-dynamics (3.5), and the volume increase (3.8),
become

D(p, T )∆C(~x, t) = k(η, p)C(~x, t), (7.3)
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∂η(~x, t)

∂t
= − 1

λ
k(η, p)C(~x, t)/N1, and (7.4)

V add
rel =

λ − 1

λ
∆t k(η, p)C(~x, t)/N1. (7.5)

The stress is generally described with the formula

σ̃ = D(ε̃ − ε̃0) + σ̃0, (7.6)

where ε̃0 stands for the desired volume increase

ε0,xx = ε0,yy = ε0,zz =
1

3
V add

rel , (7.7)

and ε̃ represents the actual volume expansion, because εij are the partial derivatives of the

actual displacements (3.21). On a finite element the mechanical problem Ke ~de = ~f e is loaded
by the desired volume increase (ε0,ii-values) which leads to the internal forces

~f e
int = BTD ε̃0

e V e. (7.8)

The actual displacements ~de are obtained after solving the mechanical system (see Fig. 5.5).
With these results the actual strains can be calculated

ε̃e = B ~de, (7.9)

and the stress on an element can be determined with (7.6).

A worth mentioning aspect is the visco-elastic stress computation in the fedos simulation
procedure. For the actual time step n the visco-elastic stress σ̃n is the sum of a dilatation and
a deviatoric part, because D = Ddil + Ddev as depicted in Section 3.2.5.2. Therefore, also the
residual stress σ̃n

0 for the actual time step n consists of a dilatation and a deviatoric part so that

σ̃n
0 = σ̃n

0,dil + σ̃n
0,dev. (7.10)

The components of the actual residual stress tensor are build up from the (n− 1) previous time
steps ∆t according to (7.11) for the dilatation and (7.12) for the deviatoric part [112]

σn
0,dil =

n−1
∑

i=1

σi
dil = σn−1

dil + σn−1
0,dil, (7.11)

σn
0,dev =

n−1
∑

i=1

σi
dev exp

(

− (n−i)·∆t

τ

)

=
(

σn−1
dev + σn−1

0,dev

)

exp
(

− ∆t

τ

)

. (7.12)

An important characteristic of visco-elastic materials is the stress relaxation of the deviatoric
stress components over time with the Maxwellian relaxation time constant τ , as given in (7.12).
The recursive form for residual stress calculation in the right hand side of (7.11) and (7.12) offers
the benefit that the residual stress parts σn

0,dil and σn
0,dev at actual time step n can be simply

computed by adding the components σn−1
dil and σn−1

dev from the last step (n − 1) to the already
existing residual stress parts σn−1

0,dil and σn−1
0,dev determined at previous step (n − 1).

In contrast to stress the pressure needed for (7.1) and (7.2) is a scalar. It is positive, if the com-
pressive stress components which have a negative sign, are predominant. So pressure always has
an opposite sign compared to stress. The pressure is the average of the stress tensors trace

p = −Trace(σ̃)

3
= −σxx + σyy + σzz

3
. (7.13)
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7.2 Stress Calculation Concept for Simulation

Normally only a small part of the whole real structure is investigated by simulation because
of limited computer resources and desired short simulation times. Mostly the simulation of
this small part delivers the needed information, because most structures have only few areas of
interest or they are repeating. Therefore, also for the oxidation process the simulated domain
is a three-dimensional cut of the complete structure.

Such a cut is shown in Fig. 7.1. This example represents a piece of the silicon substrate with
(1.2×0.3) µm floor space where two thirds of the length are covered with a 0.15 µm thick silicon
nitride mask. Only the upper surface has contact with the oxidizing ambient. The body has
plain side walls which must not be deformed by simulation. This means that the four side walls
are not allowed to move in their normal directions, as demonstrated in Fig. 7.2.

For the 125% additional volume of the newly formed oxide in (7.7) an isotropic expansion is
assumed. This means that all strain components ε0,ii are equal. Because of the prevented
movements of the simulation domain in the normal directions of the side walls the volume can
not expand in the xy-plane, only in z-direction. The mechanical boundary conditions and the
isotropic approach build up an enormous stress (pressure) in the whole oxide layer (see Fig. 7.3).
In the mathematical formulation (7.6) this effect can be explained by the fact that εxx = εyy = 0.

x

y

z

Figure 7.1: Structure with plain side walls for oxidation simulation.

ε yyε xx

y
z

x

Figure 7.2: Side walls are restricted in movements to avoid their deformations.
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The resulting high pressure all over the new generated oxide layer has the fatal effect on stress
dependent simulation that the oxidation process is de facto stalled after a few time steps. The
high pressure in the SiO2-layer is in principle a wall for oxidant diffusion and chemical reaction,
because both are decreased exponentially with pressure. Thereby, even for a long oxidation time
the oxide thickness is minimal (see Fig. 7.3), and so the simulation results are totally wrong.

A possibility to solve this problem starts with the following considerations. For a plain surface
(xy-plane) which is oxidized the oxide nearly grows stress-free only in the normal z-direction.
In that case the isotropic approach for the volume increase is not correct, because it should be
ε0,xx = ε0,yy = 0 and ε0,zz = V add

rel in order to get the correct displacements of the new oxide
in z-direction. For this purpose the isotropic approach should be modified. The question is
how this can be performed automatically, because the displacements ~d are the results of the
mechanical problem and the strains ε0,ii are the inputs. On the other side for the simulation of
different structures the isotropic approach is the most general one.

It was found that the best strategy is to calculate the displacements in two steps. In the first step,
denoted with (1), the displacements ~de,(1) on a finite element are calculated with the universal
isotropic approach

ε
e,(1)
0,xx = ε

e,(1)
0,yy = ε

e,(1)
0,zz =

1
3
V add

rel , (7.14)

The actual strains for the first step can be calculated after solving the mechanical problem with
the results ~de,(1) by

ε̃e,(1) = B ~de,(1). (7.15)

The idea now is to use these strains from the first step to load the mechanical problem for the

second step. The actual strain components ε̃
e,(1)
ii show in which directions the volume of a finite

element can expand easily and in which ones it can extend hardly or is even blocked (ε̃
e,(1)
ii = 0).

Figure 7.3: High pressure in the whole oxide layer due to isotropic expanding approach.
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The actual expansion si in each direction x, y, and z can then be expressed by

s
(1)
i =

ε̃
e,(1)
ii

ε̃
e,(1)
xx + ε̃

e,(1)
yy + ε̃

e,(1)
zz

with i = x, y, z. (7.16)

As example it is assumed that sx = 0, sy = 0.2, and sz = 0.8. This means that the volume
expansion is blocked in x- and prevented in y-direction. In z-direction there is the least resistance
and so 80% of the actual volume increase happens there.

The minimal pressure in the elements can be reached, if the ratio of the input strains ε0,ii is
the same as the percentage of the actual expansions si, because the ratio of the input strain
components would be the same like the percentage of possible volume expansion in each direction.
Therefore, the input strains for the second mechanical step are exactly weighted with the actual
expansions from the first step in oder to get a minimal pressure in the increasing volume

ε
e,(2)
0,ii = s

(1)
i V add

rel =
ε̃
e,(1)
ii

ε̃
e,(1)
xx + ε̃

e,(1)
yy + ε̃

e,(1)
zz

V add
rel , with i = x, y, z. (7.17)

The strains ε̃0
e,(2) load the mechanical problem with (7.8) for the second step. After solving

the mechanical system again with (7.15) the actual strains ε̃e,(2) and therefore the final stress
(pressure) for each finite element can be found with the conventional stress formula

σ̃e = D(ε̃e,(2) − ε̃0
e,(2)) + σ̃0

e. (7.18)

With the above described two-step stress calculation concept the pressure distribution in the
simulated oxide domain meets the real physical conditions, as demonstrated in Fig. 7.4, because
it avoids unnatural stresses which only come from the inappropriate modeling approach (isotropic
expansion approach) and a simulation effect (cut structure where the side walls are not allowed
to move in normal direction). Therefore, with this method and its right pressure distribution,
the simulation with stress dependent parameters is treated properly, as displayed in Fig. 6.10.

Figure 7.4: Pressure distribution with the two-step stress calculation concept.
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7.3 Representative Examples

The advanced oxidation model, as described in Chapter 3, 5, and 7, is applied on two different
structures to simulate the oxidation process. In addition to the results for the stress dependent
simulation, as modeled in Section 7.1, also the results without stress dependent parameters as
specified in Section 3.2.1 and 3.2.2 and the pressure distribution in the materials are of interest.

7.3.1 First Example

The first three-dimensional example is an initial silicon block with (0.8 × 0.8)µm floor space
which is covered with a 0.15 µm thick L-shaped Si3N4-mask as shown in Fig. 7.5. The Si3N4-
mask prevents the oxidant diffusion on the subjacent silicon layer, because here only the upper
surface has contact with the oxidizing ambient.

The plain side walls of the body must not be deformed by simulation. Therefore the mechanical
boundary conditions are set such that the four side walls are not allowed to move in their normal
directions. The bottom surface is fixed and on the upper surface a free mechanical boundary
condition is applied.

The simulation result of the oxidation process after a time t1, which is the η-distribution, is
shown in Fig. 7.6. Here blue is pure SiO2 (η = 0), red is the pure silicon substrate (η = 1),
and at the Si/SiO2-interface there is the reaction layer with a spatial finite width (0 < η < 1)
as explained in Section 3.1. Due to the L-shaped mask the effect of the three-dimensional
oxidation process is pronounced, because the shape of the SiO2-region and the deformations are
not continuous in any direction.

For a more physical interpretation of the simulation results with a sharp interface between
silicon and SiO2 the two regions are extracted from the η-distribution by determining that
η ≤ 0.5 is SiO2 and η > 0.5 is silicon as shown in Fig. 7.7. For an optimal comparison of the
geometry before and after oxidation as well as the influence of stress, Figs. 7.5 – 7.10 have the
same perspectives and the same proportions.

7.3.2 Stress Dependence

In order to demonstrate the importance of the stress dependence the results with and without
the impact of stress are compared. Since the oxidant diffusion and the chemical reaction are
exponentially reduced with the hydrostatic pressure in the material, the oxidation process itself
is highly stress dependent.

Fig. 7.8 shows the pressure distribution in the materials, where the positive pressure regions
are displayed in red (more red means more pressure). It can be seen that the highest pressure
in SiO2 is under the edge of the Si3N4-mask, because in this area the stiffness of the mask
prevents the desired volume expansion of the newly formed SiO2. Due to the mentioned stress
dependence the oxidation rate in these areas is considerably reduced (see Fig. 7.7). The stiffness
of the Si3N4-mask is approximately six times larger than the stiffness of SiO2 and therefore the
displacements in SiO2 are also much more larger than in the Si3N4-mask which leads to the well
known bird’s beak effect.
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Figure 7.5: Initial structure of the Si-Si3N4-body before thermal oxidation.

Figure 7.6: η-distribution and reaction layer after thermal oxidation at time t1.

If the stress dependence is not taken into account for the simulation of the oxidation process,
the simulation results do not agree with the real physical behavior, because the oxide region
is too large. In this case the oxidant diffusion and the chemical reaction also occur under the
Si3N4-mask without restriction and therefore the SiO2-region at the same oxidation conditions is
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Figure 7.7: SiO2-region (sharp interface) with stress dependent oxidation at time t1.

Figure 7.8: Pressure distribution with stress dependent oxidation at time t1.

much more expanded than with the stress dependence as demonstrated in Fig. 7.9. In addition,
the larger forces under the Si3N4-mask, which result from the larger pressure domain in this
area (see Fig. 7.10), cause larger displacements of the mask.
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Figure 7.9: SiO2-region (sharp interface) without stress dependent oxidation at time t1.

Figure 7.10: Pressure distribution without stress dependent oxidation at time t1.
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7.3.3 Second Example

The second example is a commercially fabricated eeprom-cell where thermal oxidation is an
inherently important step in the production procedure. Fig. 7.11 is the top view of a sem picture
which shows a field of 6 eeprom-cells a few process steps after oxidation. In this picture A is
the active area of the cell which is crossed by the unshaped floating gate C. The rest of the
cell area is the field oxide B made by the oxidation process. The swells of the active area are
provided for the contacts. In Fig. 7.11 the active area A is surrounded by a light line. This line
marks the original area of the already removed Si3N4-mask. Because of the bird’s beak effect
during the oxidation step the active area is smaller than the masked one.

The oxidation process is only simulated on a cut of the whole field of eeprom-cells, because
the structure is repeating. The analyzed structure which is part of a cell, is marked with the
rectangle in Fig. 7.11 and has (1.5× 1.0)µm floor space. This complex structure is displayed
on Fig. 7.12 before oxidation, where the upper layer is a 0.15 µm thick Si3N4-mask. The area
which is masked with Si3N4 is not oxidized, and results in the active area A of the eeprom-cell
after removal of the mask (see Fig. 7.11).

Fig. 7.13 shows the results of the simulated oxidation process on the eeprom-structure after
a time ta. For an optimal illustration of the stress dependence effect in the simulation results
a 45◦-cut in the area of the convex mask curve (see Fig. 7.12) is performed. With this three-
dimensional example it is demonstrated again that the stress dependence must be taken into
account in the oxidation model (see Fig. 7.14). Otherwise the oxidation rate is not reduced in
the pressure domains, which leads to wrong simulation results because of the too large oxide
region and deformations (see Fig. 7.16).

Figure 7.11: SEM picture (top view) of the EEPROM-cell field.
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Figure 7.12: Initial structure of the analyzed structure before thermal oxidation.

Figure 7.13: SiO2-region with stress dependent oxidation at time ta.
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Figure 7.14: SiO2-region and deformation with stress dependent oxidation at time ta.

Figure 7.15: Pressure distribution with stress dependent oxidation at time ta.
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Figure 7.16: SiO2-region and deformation without stress dependent oxidation at time ta.

Figure 7.17: Pressure distribution without stress dependent oxidation at time ta.
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Chapter 8

Thermo-Mechanical Stress in

Interconnect Layouts

THERMO-MECHANICAL STRESS plays an important role in the development of electromi-
gration failure mechanisms in interconnect layouts. Electromigration is the main reliability

factor in integrated circuits, because it can cause a system failure after some undetermined
operating time [113]. Electromigration is the mass transport of a metal due to the momen-
tum transfer between conducting electrons and diffusing metal atoms [114]. Electromigration
in principle exists, whenever a current flows through a metal wire, because the electrons which
flow through a metal wire collide with metal atoms. This collisions produce a force on the
metal atoms in the direction of the electron flow (for n-type materials and opposite for p-type
materials).

Electromigration is only significant at high current densities (e.g. 106 A/cm2) in metals [115].
The magnitude of its force is proportional to the current density [116]. Because of its ma-
terial transport, electromigration leads to void formation and void growth where material is
depleted [117]. The void causes a large increase in the electric resistance [118], even up to val-
ues that the connection practically fails. The void can also reach so large dimensions that the
interconnect is broken [119]. Opposite, in points with material accumulation a cracking of the
dielectric and a formation of an extrusion can occur which results in a short between adjacent
lines.

In advanced semiconductor manufacturing processes, copper has replaced aluminum as the in-
terconnect material of choice. Despite its greater fragility in the fabrication process [120], copper
is preferred for its superior conductivity. It is also intrinsically less susceptible to electromigra-
tion [121], but electromigration is still an everpresent challenge for device fabrication. Since
copper diffuses into silicon and most dielectrics, copper lines must be encapsulated with metal-
lic (like TaN or TiN) and dielectric (such as SiN or SiC) diffusion barriers in order to prevent
corrosion and electrical leakage between adjacent copper leads. Because of the different adja-
cent materials with its different thermal expansion coefficients, thermo-mechanical stresses are
preassigned.

Besides the current density and high temperature, latter one caused by Joule self-heating,
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thermo-mechanical stress is one of the important electromigration promoting factors [115, 122].
For the accurate simulation of the electromigration reliability, the influence of mechanical stress
should be taken into account, but state of the art simulators lack this capability. The simulation
should predict the time to failure and should locate possible critical points in an interconnect
structure. Critical points are locations where electromigration promoting factors like current
density, temperature and thermo-mechanical stress have high values. Furthermore, intercon-
nect simulation also includes the prediction of void nucleation, void evolution and resistance
change. All these above listed problems about electromigration and its modeling are already
described in Chapter 4 in [123]. Therefore, this chapter is only focused on the simulation of
thermo-mechanical stress.

8.1 Simulation Procedure

Thermo-mechanical simulation demands a temperature distribution in the structure. It was
found out that the electrical characteristics of the complete system do not considerably change
with stress during standard operation. Therefore, the simulation can be separated into an
electro-thermal and a thermo-mechanical part within small time periods as long as there is no
void nucleation in the interconnect lines or the passivation is not broken.

In the simulation sequence as displayed in Fig. 8.1, the first part is the three-dimensional tran-
sient electro-thermal simulation of the interconnect structure in order to calculate the temper-
ature distribution. Additionally this simulation delivers the potential and the current density.
With the temperature distribution from the first part, the three-dimensional thermo-mechanical
simulation can be performed subsequently. With the electro-thermal and the thermo-mechanical
simulation all necessary capabilities for the rigorous simulation of electromigration are available.

WSS WSSWSS
WSS

Simulation

ElectromigrationThermo−mech.

SimulationSimulation

Electro−therm.INPUT OUTPUT

Figure 8.1: Simulation sequence and data flow.

For the electro-thermal investigation the simulator stap [124] from the Smart Analysis Pro-
grams package, which has also been developed at the Institute for Microelectronics, is used.
The other simulations can be carried out by the diffusion and oxidation simulator fedos. For
the straightforward data exchange between the different simulators, wss files are used, because
stap as well as fedos can handle the wss format.

Although stap is also based on fem, it is not appropriate to use it for thermo-mechanical
simulations, because stap is specialized and optimized for fast and accurate electro-thermal
simulations. An extension of stap to a more universal tool which can also handle mechanical
problems would reduce its performance significantly. So even with the necessary data exchange
the decoupled simulations with stap and fedos are more efficient than a coupled simulation
only performed by stap.
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8.1.1 Electro-Thermal Simulation

The electro-thermal simulation is performed with the simulator stap which uses also the finite
element method for the calculation of the electric potential and temperature distribution. For
the numerical calculation of Joule self-heating effects, caused by the electric current flow through
the wire, two partial differential equations have to be solved [125, 126]. The first one describes
the electric subproblem

div(γE grad ϕ) = 0. (8.1)

The electric potential ϕ needs to be solved only inside domains composed of electrically con-
ducting material (γE represents the electrical conductivity). On the surface of the conductors
three types of boundary conditions are allowed:

• Dirichlet - a constant potential is specified
• Neumann - vanishing current density is specified
• Floating potential - the total current is specified and the potential is forced to be the same

all over the boundary area.

The next step is to compute the power loss density pD described by

pD = γE (gradϕ)2. (8.2)

In addition the heat conduction equation has to be solved in order to obtain the distribution of
the temperature T in the whole interconnect structure

div(γT gradT ) = cp ρm
∂T

∂t
− pD, (8.3)

where γT represents the thermal conductivity, cp the specific heat, and ρm the mass density.

The temperature dependence of the thermal and electrical conductivities is modeled with second
order approximations:

γ(T ) = γ0
1

1 + α(T − T0) + β(T − T0)2
. (8.4)

In (8.4) γ0 is the electrical or thermal conductivity at a temperature T0 of 300 K, α and β are
the linear and quadratic temperature coefficients. This makes the problem non-linear. Since
the non-linearity is relatively weak, a simple iterative relaxation method is used which quickly
converges to the solution, usually after 3-6 iterations.

8.1.2 Thermo-Mechanical Stress Simulation

High tensile stresses in the copper interconnects can cause break-up of the material and de-
velopment of voids [127]. On the other side compressive stresses can induce the generation of
extrusions. In case of temperature changes thermo-mechanical stress is build up because of
(significant) different thermal expansion coefficients of adjacent materials.

The thermo-mechanical stress simulation is carried out with the program package fedos. The
modeling of thermo-mechanical stress is similar to the stress calculation during thermal oxidation
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as described in Section 7.1. For the assumed elastic materials the stress tensor can be written
in the form

σ̃ = D(ε̃ − ε̃0) + σ̃0. (8.5)

The main components of the residual stress tensor ε̃0 include the desired volume change of the
material caused by the temperature change. The strain components ε0,ii (i stands for x, y, and
z) are linearly proportional to the temperature T in the material

ε0,ii = αm (T − T0), (8.6)

where αm is the thermal expansion coefficient for the respective material and T0 is the ambient
temperature assumed with 300 K.

The temperature change loads the mechanical problem Ke ~de = ~f e on every finite element,
because the internal force vector is

~f e
int = BTD ε̃0

e V e. (8.7)

The actual displacements ~de are obtained after solving the linear global equation system for the
mechanics. With these results the actual strains can be calculated with ε̃e = B ~de and so the
stress on an element can be determined with (8.5).

With the stress in principle also the hydrostatic pressure is given with the formula

p = −Trace(σ̃)

3
= −σxx + σyy + σzz

3
. (8.8)

8.2 Demonstrative Example

A three-dimensional interconnect layout with (3.0× 4.2) µm floor space, as displayed in Fig. 8.2,
is investigated by the two previously defined models. In this structure the bottom layer material
is silicon (Si). Above the silicon layer there is a silicon dioxide (SiO2) layer, where two copper
(Cu) lines are embedded. Between the copper lines and the silicon dioxide is a very thin titanium
nitride (TiN) passiviation layer. This passiviation layer prevents the diffusion of copper into the
silicon dioxide during the manufacturing process [128].

As shown in Fig. 8.2, the silicon dioxide layer and the copper lines are covered by a silicon
nitride (Si3N4) layer which separates the next upper located SiO2 layer from the lower one. In
the second upper SiO2 layer three copper lines are embedded. These three copper lines are
transverse compared to the two subjacent copper lines. This upper SiO2 layer is also covered
with silicon nitride. On the top of the layout is a third SiO2 layer.

In Fig. 8.3 a cut through the interconnect structure given in Fig. 8.2 is presented. As evident
from Fig. 8.3 an upper transverse copper line is connected with a lower copper line by a so-called
via. The other two copper lines shown in this figure are connected in the same way. The third
transverse upper copper line (see Fig. 8.2) does not have an interconnection to another line.
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Figure 8.2: Investigated complete interconnect structure.

Figure 8.3: Cut through the interconnect layout.
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8.2.1 Simulation Results

From the simulation aspect the temperature and stress distribution in the given interconnect
structure at two different points of time are of interest. For the simulation a potential difference
of 7 mV between point A and B in the first interconnect, as marked in Fig. 8.2, is assumed. The
other interconnects are assumed to be inactive.

8.2.1.1 Temperature Distribution

If stap with its electro-thermal model is applied to this interconnect structure, the obtained
output is the temperature distribution in the structure. In this analysis it is assumed that the
bottom of the silicon layer is connected with a cooling element which holds the temperature at
320 K. For the simulation the electric and thermal conductivities given in Table 8.1 are used.
Because copper is a metal and an excellent conductor, it has the best thermal and electric
conductivity regarding feasible materials for interconnect metals.

Table 8.1: Electric and thermal conductivities at 300 K [129].

Cu Si SiO2 Si3N4 TiN

γE [S/m] 5.26×107 0.0 0.0 0.0 1.66×105

γT [W/mK] 400.0 1.35 1.39 12.07 48.25

Due to the Joule self-heating in wires with a current flow, the hottest regions are around the
active copper line. This is the reason, why after a time of 30 µs the highest temperature (351 K)
is in the inner layers which are surrounded by the active copper line, as shown in Fig. 8.4. The
relatively high thermal conductivity of copper causes that the temperature values in the copper
lines are rather uniform, and so they are not included in Fig. 8.4. In Fig. 8.5 it is demonstrated
that after a longer operating time of 100 µs the self-heating has increased the temperature to
376 K.

In Fig. 8.7 the maximal temperature versus operating time in the interconnect structure is
plotted. It can be seen that after approximately 450 µs the self heating effect reaches a stable
steady state. Fig. 8.6 shows the temperature distribution in the steady state where the maximal
temperature has reached a steady value of 396 K.

8.2.1.2 Pressure Distribution

For the pressure calculation, the influence of the temperature on the mechanical parameters can
be neglected, because the temperatures are so low that they do not change the material con-
dition perceivably [130]. Also the influence of pressure on the electric and thermal parameters
can be neglected for such pressure values [131]. Therefore, a coupling of the electro-thermal and
thermo-mechanical system is not necessary and the decoupled alternating solving of the temper-
ature and pressure distribution is acceptable here. With the obtained temperature distribution
the mechanical problem can be set up as described in Section 8.1.2. As applied mechanical
boundary conditions the bottom surface is fixed and the other surfaces are free. For the sim-
ulation the Young modulus E, Poisson ratio ν, and the thermal expansion factor αm given in
Table 8.2 are used.
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Table 8.2: Mechanical parameters

Cu Si SiO2 Si3N4 TiN

E [GPa] 115 180 73 380 600

ν [ - ] 0.34 0.22 0.17 0.27 0.25

αm [10−6/K] 17.7 2.7 0.55 3.3 9.4

The distribution of pressure is an important quantity for electromigration, because failure risks
are increasing with larger pressure. Therefore, the copper lines and their vias are the most
interesting regions. The thermal expansion coefficient of copper is the largest and it is enormous
compared with the main embedding material silicon dioxide (see Table 8.2). This larger coeffi-
cient of the copper lines demands more volume expansion than the other surrounding materials
in the heated structure. This means that the copper lines with their vias can not expand as
desired and compressive stress is built up.

Fig. 8.8 shows the simulation results of the pressure distribution in the copper lines and their
vias at time 30 µs. It can be seen that the via is a high pressure region. The first reason is that
the via has less chance to expand in vertical direction because of the over- and underlying copper
lines which also have the same demand to extend. The other explanation is the confinement of
the via by the passivation layer (see Fig. 8.3) which was made of titanium nitride (TiN). The
passivation layer is thin, but the stiffness (Young modulus) of TiN is more than five times larger
than the copper one and so this layer is able to prevent the volume increase. The proof is that
the largest pressure (188 MPa) develops at the bottom of the vias, because it is confined with
the passivation layer. The pressure in the bottom region is larger than on the top, where is no
limiting TiN-layer.

After a longer operating time of 100 µs the higher temperature in the structure (see Fig. 8.5),
causes that the maximum pressure in the via is increased to 354 MPa, as displayed in Fig. 8.9.
The pressure distribution in the copper lines and vias is nearly the same as at time 30 µs. As
illustrated in Fig. 8.10 the pressure reaches a maximum of 479 MPa in the steady state.
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Figure 8.4: Temperature distribution in the silicon dioxide (SiO2) and silicon nitride
(Si3N4) layers in Kelvin [K] at time 30 µs.

Figure 8.5: Temperature distribution in the silicon dioxide (SiO2) and silicon nitride
(Si3N4) layers in Kelvin [K] at time 100 µs.
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Figure 8.6: Temperature distribution in the silicon dioxide (SiO2) and silicon nitride
(Si3N4) layers in Kelvin [K] in the steady state.
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Figure 8.7: Maximal temperature versus time in the interconnect structure.
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Figure 8.8: Pressure distribution in the copper lines and their vias in Pascal [Pa] at
time 30 µs.

Figure 8.9: Pressure distribution in the copper lines and their vias in Pascal [Pa] at
time 100 µs.

Figure 8.10: Pressure distribution in the copper lines and their vias in Pascal [Pa] in
the steady state.
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Chapter 9

Intrinsic Stress Effects in Deposited

Thin Films

THIN FILM DEPOSITION is a widely used technique for the fabrication of mems (Micro-
Electro-Mechanical Systems). This technique is required to manufacture free-standing

structures which can induce or sense a mechanical movement. During the deposition process
of thin layers and aftermath an intrinsic stress is generated. In subsequent process steps, after
removal of the underlying sacrificial layer, the (stressed) deposited layer which is an important
component of the desired mems device, is left free-standing. As a consequence the process
induced stress can relax and deform the deposited layer in an undesirable way.

Polycrystalline silicon-germanium (poly-SiGe) has been promoted as an attractive material suit-
able as structural layer for several mems applications [132]. Poly-SiGe is a good alternative to
polycrystalline silicon (poly-Si), because it has similar properties. The same good mechanical
and electrical properties can be obtained with poly-SiGe at much lower temperatures (down to
400 ◦C) compared to poly-Si (above 800 ◦C). These low processing temperatures enable mems

post-processing on top of mos without introducing significant changes in the existing mos fab-
rication processes. The sacrificial layer is normally made of silicon dioxide (SiO2), because this
material can then be etched with a high selectivity towards the structural layer by the use of
hydrogen fluoride (HF).

Different aspects of the connection between microstructure and stress have been investigated in
the past 30 years. The focus was mostly on some specific grain-grain boundary configurations in
early or mature stages of microstructure evolution [133]. As a result there exist numerous models
derived on the basis of continuum mechanics, which are applicable only for highly simplified
situations. On the other side a group of researchers, mostly mathematicians, has developed
complex models for describing morphology of the microstructural evolution, a development
which culminates in multi-level set models of grain evolution [134, 135]. These models can
reproduce the realistic grain boundary network in a high degree, but they do not include stress
[135]. The goal of this work is the integration of microstructure models which describe strain
development due to grain dynamics in a macroscopic mechanical formulation. This strain loads
the mechanical problem which provides a distribution of the mechanical stress and enables the
calculation of displacements in the mems structure.
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9.1 Cantilever Deflection Problem

An everlasting challenge for mems engineering is to fabricate a free-standing cantilever without
any unwanted deflection, but in practice the thin films can not be deposited stress free. These
effects of stress in free-standing mems structures can be demonstrated most plausibly with the
cantilever deflection problem. Such a deflection of a 400 µm long and 10 µm thick fabricated
cantilever is shown in Fig. 9.1.

Figure 9.1: Cantilever deflection. Courtesy of IMEC/Gregory van Barel.

9.1.1 Principle of Cantilever Deflection

Fig. 9.2 shows the schematic structure of a free-standing cantilever, where the SiGe structural
layer is deposited on the SiO2 sacrificial layer. In this case it is assumed that there does not
exist any stress gradient in the SiGe film, and so no deformation of the released cantilever occurs
after removal of the underlying sacrificial material by etching.

x

y
z

Substrate (Si)

Sacrificial Layer (SiO2) 

Structural Layer (SiGe)

Figure 9.2: Structure of a free-standing cantilever without stress gradient.

Normally the structural layer is not deposited stress free and therefore the bending of the
released cantilever depends on the stress distribution over the layer thickness before release.
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9.1 Cantilever Deflection Problem

In this context only the stress above and under the neutral bending line is responsible for the
direction of the deflection, because stress causes forces which result in the bending moments
regarding the neutral bending line. If the sum of the moments under the neutral bending line
is larger than the above one, than the deflection is upward, otherwise downward. The neutral
bending line is always located in the middle of the cantilever and, therefore, its location is
changing with the layer thickness.

For an assumed linear stress gradient Γ over thickness and a rectangular cross-section area A of
the beam with a width w and thickness t, the deflection of the cantilever δ(x) at position x is

δ(x) =
Mx2

2EI
=

Γ

2E
x2, (9.1)

where E is the Young modulus, M = Γwt3

12 is the bending moment and I = wt3

12 is the moment
of inertia. In (9.1) it can be seen that for a constant Γ the deflection at the end of the cantilever
(x=l) increases quadratically with the length l and so δ(l) = Γ

2E l2.

Fig. 9.3 shows three possible forms of stress distribution and gradients in the fixed cantilever on
the left and the corresponding direction of deflection on the right.

a)

+

−

compressive

tensile

contraction

dilatation

b)

−
−

fewer compressive

more compressive

bigger dilatation

smaller dilatation

c)

+

− dilatation

contraction

compressive

tensile

Figure 9.3: Various stress distributions and gradients in the fixed cantilever and their
respective deflections after release.

In the first situation with a positive stress gradient (Fig. 9.3a), the part of the beam above the
neutral bending line is in a tensile state while the part below is in a dominant compressive state.
Compressive stress in a body is an indication that the material has desire to expand, but the
expansion is prevented. In the conventional declaration compressive stress always has a negative
sign, so that the pressure can be positive as quoted in (7.14). Therefore, after release of the
beam the upper tensile part can contract and the compressive one can dilate and, therefore, it
is comprehensible that the deflection can only go upward.
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The next case in Fig. 9.3b demonstrates that is is not necessary to have stresses with opposite sign
on the two sides of the neutral bending line for a deflection. Here all stresses have compressive
character, but due to the positive stress gradient the compressive stress values and the moments
below the neutral bending line are larger than above. Therefore, there is also a deflection in
the upward direction. In contrast to the previous configurations the stress gradient in the last
case (see Fig. 9.3c) is negative. This situation is inverse to the first one, because there is an
upper compressive part and a bottom tensile part. In consequence the cantilever deflection goes
downward after release.

9.1.2 Stress Distribution and Relaxation

As example for a positive stress gradient in thin films (see Fig. 9.3a), where only tensile stress
was assumed, the stress distributions for a 1 mm long and 10 µm thick cantilever structure were
simulated. As long as the cantilever is attached with the underlying SiO2-layer, the deposited
SiGe film is under stress and the cantilever can not deform. Because of the positive stress
gradient the highest tensile stress, marked with red color, is on the top of the fixed cantilever as
demonstrated in Fig. 9.4a. After removal of the sacrificial SiO2-layer by etching, the SiGe beam
is free standing. Now the cantilever can deform and the stress is relaxed, as shown in Fig. 9.4b.
The intrinsic stress in the deposited SiGe layer is the driving force for the cantilever deflection.
As listed in the next Section 9.2, there are a number of intrinsic stress sources.

a)

b)

Figure 9.4: Stress distribution for the fixed a) and released b) 1 mm long cantilever.
High stress areas are marked with red color.
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9.2 Sources of Intrinsic Stress

In the first phase of the SiGe deposition process, islands with varying crystal orientation are
formed and grow isotropically. These individual islands which first form on a substrate usually
exhibit compressive stress [136]. In the course of further deposition these islands start to coa-
lescence, which forces the islands to grow in the height instead of in a direction parallel to the
substrate surface. The islands are subsequently transformed from an island shape to a grain-like
shape. The orientation of the crystal structure in a single grain (e.g. perpendicular to the sub-
strate surface) is independent of the neighboring grains, since due to the amorphous substrate,
it is not possible to evolve a perfect crystal structure in the first atom layers [137].

For the stress aspect the deposition process plays a key role. At first it should be noted that
the deposition takes place at elevated temperatures. When the temperature is decreased, the
volumes of the grains shrink and the stresses in the material increase. Furthermore, the stress
gradient and the average stress in the SiGe film depend on the Si-Ge ratio which can be controlled
by the silane (SiH4) and germane (GeH4) flow, the substrate temperature, and the deposition
technique which is usually lpcvd (low pressure chemical vapor deposition) or pecvd (plasma
enhanced chemical vapor deposition). It was observed that the average stress becomes more
compressive, if the Ge concentration decreases [138]. Thus it is expected that a film with higher
Ge concentration has a higher degree of crystallinity and larger grains, which leads to higher
film density and to higher tensile stress.

The intrinsic stress observed in thin films has generally the following main sources [133]:
� Coalescence of Grain Boundaries:

In the early stage of the film growth the individual grain islands grow, until they make
contact to adjacent islands (see Fig. 9.5a). The isolated islands have a relatively high
surface energy γs compared to the relatively low energy γi between the island interfaces.
Therefore, the net free energy in the system can be reduced by replacing the surfaces by
interfaces. If the gaps between the islands are small enough, cohesion begins to develop
between the islands, and the system can lower its net free energy by closing up these gaps
as depicted in Fig. 9.5b. In the course of zipping up the interfaces, the participating islands
become elastically strained and a tensile stress is generated [139].

a)

R

Substrate
b)

σ σ

Substrate

Figure 9.5: Principle of coalescence. Structure of the grain island before a) and after
b) coalescence.

� Misfit Stress:
The lattice constants for the thin film as and the substrate af are generally different (see
Fig. 9.6a). Because of the deposition process the crystal lattice of the thin film and the
substrate are forced to line up perfectly at the interface and stress arises as shown in
Fig. 9.6b. The influence of these misfit stresses is only significant in the initial phase
of thin film deposition [140], because of the local lattice adaption at the interface area.
Furthermore, misfit stress can arise between the grain boundaries because of a different
crystal orientation of neighboring grains.
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b)a)

af

as

σmfσmf

Figure 9.6: Different lattice constants a) leads to misfit stress in the film b).

� Annealing of the Film:
An annealing step after deposition of metal films produces a better crystalline arrangement
and an increase of the material density, which results in a shrinkage of the film [141]. As
long as the film is attached to the substrate the film is prevented to shrink and a tensile
stress is developed.

� Grain Growth:
Due to the elimination of grain boundaries a minimum in the total energy of the system
can be reached. So grain growth means that the volumes of the individual grains become
larger and the number of grains and its boundaries decrease. The grain growth stops at
this minimum energy. Since grain boundaries are less dense than the grain lattice [142],
the elimination of grain boundaries leads to a densification of the film and, therefore, to a
build up of tensile stress.

� Annihilation of Excess Vacancies:
The annihilation and the dynamics of the crystal vacancies produce a local volume change
which leads to stresses in the film when it is attached to the substrate. The vacancies
annihilate in the grains, at the grain boundaries, at the free surface of the film, and at
the surface of the internal cavities. If vacancies are annihilated at the free surface and at
internal cavities, no stress is produced. When vacancies annihilate at a grain boundary,
there is a gap. In addition vacancy annihilation in the grains leads to removal of atoms
from the grain boundaries to the interior of the grains, which also leads to a gap. Both
cases cause a motion of the crystals towards each other in order to close the gap. This
would produce a planar contraction of the film, if it is not attached to the substrate. But
since the substrate prevents contraction, a tensile stress is built up instead [133].

� Thermal Stress:
This stress is caused by the different thermal expansion coefficients of the thin film and
the substrate in case of a temperature change after deposition and the fact that at least
a part of the film’s base area is attached with the substrate. Therefore, thermal stress
develops during cooling down to room temperature.

� Insertion of Excess Atoms:
It is assumend that the film growth process can add atoms to the film in two ways [143].
Most of the material is added on the top surface by traditional crystal growth mechanisms,
where each layer of atoms is deposited onto the underlying crystalline lattice. The second
mechanism is the incorporation of excess atoms into the grain boundaries, which creates
a compressive stress in the film [144].
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9.3 Modeling of the Stress Sources

The goal of the modeling is to express the previous described microscopic stress phenomena
with a macroscopic stress formulation for the respective source.

• Coalescence of Grain Boundaries:
The force which is generated by grain island impingement is [145]

f =
4π

3
Rγ, (9.2)

where R is the radius of the hemispherical island (see Fig. 9.5a) and γ is the surface energy of
the contacting spheres.

The volume of material included in a hemispherical island upon coalescence is 2
3πR3. If the

material in each island would spread uniformly over a 2R × 2R square area on the substrate,
the uniform depth hc would be hc = 1

6πR. The area of a lateral face of this equivalent material
block is 2R × hc, so that the uniform tensile stress on this surface which produces the same
resultant force as in (9.2) is f/2Rhc or 4γ/R. Therefore, the average intrinsic stress caused by
coalescence in the film with thickness hc is [145]

σin
xx = σin

yy = 4
γ

R
=

2πγ

3hc
, σin

zz = 0. (9.3)

• Misfit Stress:
Misfit stresses occur in crystalline films because of the lattice mismatch at the interface between
film and substrate. If only the film lattice would adjust to the substrate lattice as demonstrated
in Fig. 9.6b, the misfit strain in the film would be εmf =

as−af

af
. But in reality the lattice of the

film as well as the substrate are both adapted at the interface, which is characterized by the
misfit parameter [146]

m = 2
af − as

af + as
, (9.4)

where af and as are the lattice constants of the film and substrate (see Fig. 9.6a), respectively.
The nonzero components of the misfit stress tensor are [140]

σin
xx = σin

yy =
E m

1 − ν2
, σin

zz = νσin
xx. (9.5)

• Grain Growth:
During grain growth some grain boundaries and their volumes disappear. Assume that V0 is the
pure crystal volume, where the excess volume of the grain boundaries is not included, and L1 is
the average grain diameter. Then the grain boundary area per unit volume is 6/L1 for spherical
grains. If ∆a is the excess volume per unit area of the grain boundary, the total excess volume
for the grain boundaries in a volume V0 is [133]

V xs = V0
6

L1
∆a (9.6)

The total grain volume is

Vt = V0 + V xs = V0

(

1 +
6∆a

L1

)

. (9.7)
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The normalized volume change due to the disappearence of grain boundaries would be

∆V ∗

n =
Vt − V0

V0
=

6∆a

L1
. (9.8)

If the grain grows to a new diameter L2, the normalized volume change is [133]

∆Vn = 6∆a
( 1

L2
− 1

L1

)

. (9.9)

As defined in (3.37) the strain components εxx, εyy, and εzz are one third of the normalized
volume change εxx = εyy = εzz = ∆Vn

3 . Therefore the intrinsic tensile stress associated with the
grain growth is [133]

σin
xx = σin

yy = σin
zz =

2E

1 − ν

( 1

L2
− 1

L1

)

∆a. (9.10)

• Excess Vacancy Annihilation:
The gaps at the grain boundaries are closed by stretching the grains. The stress calculation
is in principle the same as for the grain growth. If Ωv is the vacancy volume and Ωa is the
atomic volume, then for a number of ∆C vacancies which annihilate per unit volume, the
normalized volume change ∆Vn = ∆C(Ωa − Ωv). Therefore, the intrinsic stress caused by
vacancy annihilation is given by [133]

σin
xx = σin

yy = σin
zz =

E

1 − ν

∆C(Ωa − Ωv)

3
. (9.11)

Since during vacancy annihilation the vacancies diffuse to grain boundaries, the intrinsic stress
can also be described with the more detailed and diffusion affiliated formulation [133]

σin
xx = σin

yy = σin
zz =

4E Ωa

L(1 − ν)

√

DV t

π
(Ci − Cgb). (9.12)

Here DV is the vacancy diffusivity within the grain and L is the grain diameter. Ci is the
vacancy concentration inside the grain and Cgb in the grain boundary, respectively.

• Thermal Stress:
The developed intrinsic stress due to thermal mismatch in the film and in the substrate material
is

σin
xx = σin

yy = σin
zz = Bα(T − T0), (9.13)

where B = (3λ + 2µ)/3 is the bulk modulus with the Lame constants λ and µ, α is the thermal
expansion coefficient, and T0 is the ambient temperature.
For a uniform film the thermal stress is also uniform over the thickness. As in case of cantilevers,
where after release still a part of the beam length is clamped at the bottom (see Fig. 9.2), this
uniform stress has also a bending effect.

• Insertion of Excess Atoms:
The insertion of excess atoms into the grain boundaries creates a compressive stress in the
film [144]

σin
xx = σin

yy = σin
zz =

E

1 − ν

∆Ci Ωe

3
, (9.14)

where Ωe is the volume of an excess atom and ∆Ci is the number of excess atoms which are
inserted per unit volume.
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In this work a methodology to predict a qualitative strain or stress curve over the film thickness
was found. This methodology is based on the knowledge of the different intrinsic stress sources,
the observed deflection characteristic of the deposited thin film material, and human mind. In
the state of the art of development this methodology can not weight the influence of the different
single stress sources in the different film thicknesses automatically. In order to find the strain or
stress curve automatically a more advanced thin film stress model is necessary. The development
of a thin film model, which takes all stress sources into account and weights them for different
film materials and process conditions automatically, should be done in future work.

9.4 Investigation of Fabricated Cantilevers

The main purpose of cantilever simulation is to predict the deflection for different geometries
(e.g. length and thickness), mechanical boundary conditions, and deposition process parameters.
In the following, fabricated cantilevers with a cross section as described in Section 9.4.1 are
investigated.

9.4.1 Cross Section

The cross section of the investigated cantilever structures is shown in Fig. 9.7. At the lower part
of this sem picture one can see the silicon substrate with a 250 nm thick sacrificial SiO2-layer
on it. Above the SiO2-layer the picture shows the bottom part of the deposited poly-SiGe film.
This multilayer film has a germanium concentration x between 62 and 65% in the layers. The
Young modulus for silicon germanium ESiGe = ESi(1− x) + EGe x varies only between 146 and
148 GPa under the assumption that ESi is 173 GPa and EGe is 132 GPa, respectively.

The multilayer SiGe film is deposited in three steps:

1) At first a pecvd seedlayer with 95 nm thickness is deposited as nucleation layer for the
following lpcvd layer, because the nucleation on the substrate with lpcvd needs much
more time.

Figure 9.7: Cross section of the poly-SiGe multilayer. Courtesy of IMEC/Gregory
van Barel.
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2) Then a 370 nm thick lpcvd layer is deposited in order to help crystallizing the top pecvd

layer. Crystalline material has much more the desired properties than an amorphous one.

3) In the last step a pecvd layer with the desired film thickness (for example 10 µm) is deposited.
pecvd films grow very fast, namely at 120 – 130 nm/min, while lpcvd films have only a
deposition rate between 16 – 19 nm/min [138].

9.4.2 Strain Curve

The developed methodology to treat thin film stress is applied to the experimental setting pre-
sented in [147]. In this experiment a 10 µm thick SiGe film was deposited on a SiO2 sacrificial
layer, as described above. After removal of this sacrificial layer, the deflection of the free 1 mm
long cantilever was measured at different thicknesses from 10 down to 1 µm. The smaller thick-
nesses were made by thinning. It was observed that the deflection increases exponentially with
reduced thickness.

The intrinsic strain curve for this SiGe multilayer film (see Fig. 9.8), which is qualitatively
predicted by the found methodology, was calibrated according to the measurement results.
Since the SiO2 layer is amorphous, no misfit stress can arise here. It is worth mentioning that
intrinsic compressive strain which loads a mechanical problem, must have a positive sign, because
compressive materials want to expand. Compressive strain has only the same negative sign as
stress, if a material is compressed by external forces.

The highest intrinsic compressive strain value with 0.08 is at the bottom of the SiGe film. This
can be explained with a compressive stress exhibition of the individual islands which first form
on the sacrificial layer [136], and with the insertion of excess atoms. Thermal stress can also
be compressive. Within the next 800 nm of the film the strain plunges down to a minimum of
1.3×10−3 because of the tensile stress source in the deposited material, namely the coalescence
of grain boundaries, the grain growth, and the excess vacancy annihilation. In the rest of the
film there is a slow increase of the compressive part. For this phenomenon it is assumed that the
grains tend to grow isotropically, but due to their neighbors they are prevented to extend in the
plane and they are forced to grow into the height instead, which leads to compressive stress.
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Figure 9.8: Strain versus thickness in the SiGe multilayer thin film.
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The large compressive strain at the bottom of the SiGe film explains the very large deflections
for thin cantilevers. At first the neutral bending line which is located midway, is moving with the
cantilever thickness, and secondly the stiffness is decreased for thinner cantilevers. This strain
curve was used to simulate the deflections for various thicknesses for the 1 mm long cantilever
structure as shown in Fig. 9.4. As demonstrated in Fig. 9.9, the simulated cantilever deflections
show good agreement with the experimentally determined deflections.
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Figure 9.9: Measured and simulated cantilever deflections for different thicknesses.

9.4.3 Practical Example

As practical example for the simulation procedure a fabricated cantilever as shown in Fig. 9.10
is used. In this SEM picture which shows an array of unreleased cantilevers with different
lengths, the surrounded SiO2 is already removed so that the side walls of the cantilevers lie free.
The etching process was stopped before the sacrificial layer is removed and, therefore, the SiGe
cantilevers are still fixed. The light material which separates and frames the cantilevers is also
SiGe with the same composition as for the cantilevers. In Fig. 9.10 the selected structure is
marked with a yellow rectangle. This cantilever is 900 µm long, 50 µm wide, and 6 µm thick.
The multilayer cross section of this SiGe cantilever is the same as displayed in Fig. 9.7 and
described in Section 9.4.1.

Fig. 9.11 shows the initial structure for the simulation with fedos, where the silicon substrate
is green, the SiGe frame is blue and the cantilever is red. The dimensions of the simulated
geometry are identical with the yellow framed structure in Fig. 9.10. The structure has a floor
space of (1120× 220) µm. The strain curve (see Fig. 9.8) loads the deflection problem. The
simulated deflection at the end of the 900 µm long and 6 µm thick cantilever is 44.6 µm. The
structure after simulation with the deflected cantilever is displayed in Fig. 9.12. A cut of this
deflected cantilever structure is shown in Fig. 9.13.
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Figure 9.10: Array of unreleased cantilevers. Courtesy of IMEC/Gregory van Barel.

Figure 9.11: Initial structure with unreleased cantilever.

Figure 9.12: Cantilever structure after simulated deflection.

Figure 9.13: Cut of the deflected cantilever structure.
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Chapter 10

Summary and Conclusions

THE THERMAL OXIDATION PROCESS was described, modeled, and simulated. The two
main isolation techniques for neighboring mos transistors were described as introduction.

The differences in the process flow and final oxide shape of locos and sti were demonstrated.
The main feature of the locos process is the bird’s beak effect with its oxide field encroachment.

During the oxidation process a chemical reaction converts silicon into SiO2 and the nearly sharp
Si/SiO2-interface moves from the surface into the silicon substrate. The formed SiO2 has more
than twice of the original volume of silicon, which is the main source of stress and displacements
in the materials. The oxidation process depends on four parameters: the used oxidant species,
the temperature and the pressure in the furnace, and the crystal orientation of the silicon
substrate. Since the oxide growth rate is strongly temperature dependent for all species, in
practice the oxide growth is mainly controlled only by the temperature.

An enhanced three-dimensional oxidation model was developed which is based on a diffuse
interface with a reaction layer. This model takes into account that during oxidation the oxidant
diffusion, the chemical reaction, and the volume increase occur simultaneously. The diffuse
interface concept avoids the drawbacks of the moving boundary problem, complicated mesh
algorithms, and enormous data update. Therefore, the enhanced model enables the simulation
of even complex structures with a moderate demand on computer resources. Since SiO2 and
Si3N4 show visco-elastic behavior, besides an elastic also a visco-elastic formulation with a so-
called effective shear modulus was introduced for the mechanics.

The effects of thermal oxidation of doped silicon material were described. Because of the built-
up Si/SiO2-interface segregation leads also to a redistribution of the dopands. For modeling this
redistribution the five-stream diffusion model from Dunham was introduced.

In order to solve the mathematical formulation numerically, the finite element method was
applied. The finite element discretization with tetrahedrons for the oxidant diffusion, the η-
dynamics, and the mechanics was explained in detail. The principle of the assembling in order
to built up a complete equation system and the handling of Dirichlet boundary conditions and
mechanical interfaces was described.

The enhanced oxidation model was implemented in the in-house process simulation tool fedos.
The architecture and main components of fedos were depicted and the simulation procedure
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for oxidation was explained. The mesh plays a key role for simulation, because the number of
finite elements is always a compromise between accuracy and simulation time. This means that
an acceptable accuracy should be reached with as small as possible number of elements. The
most effective strategy found is to use a static mesh. It was demonstrated that in critical regions,
e.g. along the edge of a mask, the mesh should be finer than in the rest of the structure. Due
to the diffuse interface concept of the enhanced oxidation model, the procedure for a physical
interpretation of the displayed simulation results with a sharp Si/SiO2-interface was described.
For practical applications of the oxidation model, the simple but effective model calibration with
the surface oxidant concentration was shown.

Stress has a significant influence on the oxidant diffusion and the chemical reaction, and so also
on the resulting oxide growth rate. A universal stress calculation concept for the simulation of
stress dependent oxidation, where the stress in the structure is determined in two steps, was
presented. The enhanced oxidation model was applied to simulate two three-dimensional (fab-
ricated) structures. It was demonstrated that only when the stress dependence of the oxidation
process is taken into account, the simulation results agree with the real physical behavior.

In copper interconnects stress is an important promoting factor for electromigration, which can
lead to void formation and to failure of the interconnect. The procedure for the simulation of
thermal stress in a representative interconnect structure was described. First, a electro-thermal
simulation was performed in order to obtain the temperature distribution in the interconnect
layout due to Joule self-heating. With this temperature distribution the thermal stress can
be simulated. The reason for thermal stress are the different thermal expansion coefficients of
the respective materials in the adjacent layers. The highest stress values in the interconnect
structure were predicted at the bottom of the vias. Therefore, this is the most critical region
for electromigration.

The effects of intrinsic stress in deposited thin films were discussed. A negative effect of stress
in free-standing mems structures was demonstrated with the unwanted deflection of cantilever.
For a linear stress gradient the deflection of the cantilever increases quadratically with the
length. A number of sources which can generate tensile or compressive stress in the film were
described. The whole intrinsic stress comes from microscopic effects like grain dynamics. Macro-
scopic mechanical formulations for the different intrinsic stress sources, which describe the stress
development due to the microscopic effects, were listed. A methodology which can predict a
qualitative strain or stress curve over the film thickness was developed. This methodology was
applied to determine qualitatively the strain curve for a deposited multilayer SiGe film. The
found strain curve was calibrated and applied to simulate the stress and deflection in a fabricated
cantilever structure.
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