
DISSERTATION

Real-Time Mobile Robot Self-localization

A Stereo Vision Based Approach

Submitted at the Faculty of Electrical Engineering and Information Technology,
Vienna University of Technology in partial fulfillment of the requirements for the

degree of Doctor of Technical Sciences

under supervision of

Prof. Dr. Dietmar Dietrich
Institute of Computer Technology
Vienna University of Technology

1040 Vienna

and

Prof. Dr. Robert Sablatnig
Pattern Recognition and Image Processing Group

Institute of Computer Aided Automation
Vienna University of Technology

1040 Vienna

by

Abdul Bais
Matr. Nr. 0357233

Elisenstraße 1
1230 Vienna

June 2007

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



Kurzfassung

Das Ziel dieser Arbeit ist die Echtzeit-Selbstlokalisation von kleinen, autonomen, mobilen
Robotern in bekannten, aber hochdynamischen Umgebungen basierend auf Bildverarbeitung.
Dabei wird eine erste Schätzung der Position kontinuierlich aktualisiert. Für den Algorithmus
zur Lokalisierung ist es nicht notwendig, zusätzliche künstliche Markierungen oder spezielle
Strukturen in der Umgebung anzubringen. Weiters ist es nicht notwendig, dass sich Ori-
entierungspunkte direkt am Boden oder in Bodennähe befinden. Der Algorithmus erlaubt
dem Roboter, seine Ausgangsposition zu bestimmen und seine aktuelle Position während der
Bewegung ständig zu aktualisieren.
Eine Schätzung der Position in einer gleichbleibenden Umgebung erfolgt normalerweise von
der Roboterposition aus über Entfernungs-oder Winkelmessungen zwischen bekannten Orien-
tierungspunkten. Eine andere Möglichkeit ist der Vergleich einer lokal aus Sensordaten erstell-
ten Landkarte mit einer vorab gespeicherten, globalen Karte der Umgebung. Im Gegensatz
zu anderen Lokalisationsalgorithmen werden in dieser Arbeit aus der Stereobildverarbeitung
gewonnene Tiefeninformationen verwendet. Erkannte Orientierungspunkte werden mit Tri-
laterationsverfahren in eine unvollständige 3D-Karte der unmittelbaren Umgebung trans-
formiert, die dann mit dem globalen Modell verglichen wird. Für die Modellerstellung werden
Längeninformationen verwendet, da man bei dieser Methode weniger Orientierungspunkte als
bei der winkelbasierten benötigt. Das Stereobildverarbeitungssystem ist an einen drehbaren
Kopf des Roboters montiert.
In dieser Arbeit wird Gradient Based Hough Transform (GBHT) als Basis für die Merkmal-
sextraktion verwendet. GBHT wurde gewählt, da es die stärkste Gruppierung von kolinearen
Pixel mit ähnlicher Kantenausrichtung erlaubt. Eine kontinuierliche, vollständige Bestim-
mung der eigenen Position wäre sehr rechenintensiv und nur bei genügend sichtbaren Orien-
tierungspunkten möglich. Daher wird die einmal bestimmte Position durch die robotereige-
nen Sensorwerte aktualisiert. Diese Methode ist viel schneller und ausreichend genau, da
sich die Summenfehler innerhalb kurzer Zeitintervalle unterdrücken lassen. Zum Vereinigen
der verschiedenen Sensorwerte wird der Extended-Kalman-Filter verwendet. Eine aus den
Sensordaten gewonnene grobe Schätzung der Position wird als Eingangsgröße bei der Merk-
malsextraktion und dem Vergleich mit ein Weltkarte verwendet und erhöht die Genauigkeit.
Bedeutende Leistungsverbesserungen sind mit einer neuen hybriden Methode erzielt worden,
die die globale Positionsschätzung mit der Spurhaltung kombiniert. Simulationsergebnisse
der Kartenerstellung, Merkmalsextraktion, Berechnung der Tiefeninformation, kombinierten
Informationsverarbeitung mehrerer Sensorwerte und ein Test der Programmstruktur sind der
Arbeit beigefügt. Die Ergebnisse dieser Arbeit können verwendet werden, um die Anzahl der
notwendigen Orientierungspunkte für einen Roboter mit Bildverarbeitung zu minimieren.



Abstract

The main focus of this thesis is vision based real time self-localization of tiny autonomous
mobile robots in a known but highly dynamic environment. The problem covers tracking the
position with an initial estimate to global self-localization. The localization algorithm is not
dependent on the presence of artificial landmarks or special structures in the environment
nor does it require that features should lie on or close to the ground plane. The algorithm
enables the robot to find its initial position and to verify its location during every movement.
Global position estimation in unmodified environments normally involves measuring distance
to or angles between distinct features (natural landmarks) from the robot position or match-
ing a local map constructed from sensor readings to a global map of the environment. On
contrary to other localization algorithms stereo vision based depth computation is used for
self-localization. A localization framework is in progress that uses trilateration based tech-
niques whenever distinct landmark features are extracted. The trilateration based method
is complemented by a sparse 3D map of the local environment constructed based on sensor
data and matching it with the environment model. The stereo vision system is mounted on
a pivoted head as an aid in feature exploration. Distance measurements are used as they
require fewer landmarks compared to methods using angle measurements.
Visual features are extracted using Gradient Based Hough Transform (GBHT), which pro-
vides the strongest groupings of collinear pixels having roughly the same edge orientation.
Global self-localization is computationally slow and sometimes impossible if enough features
are not available. Therefore, once the robot position is computed it is tracked with local sen-
sors. This is fast and reasonably accurate as the accumulating error is suppressed after short
intervals. Extended Kalman filter is used to fuse information from multiple heterogeneous
sensors. Keeping a rough estimate of the robot position helps in features extraction and
matching with the global map. Significant performance improvements have been achieved
with a new hybrid method that combines the global position estimation with tracking. Sim-
ulation results for the robot environment modeling, feature extraction, depth computation,
information fusion, and initial test of the framework have been reported. As such marked
minimization of landmarks for vision based self-localization of robots has been achieved.
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Chapter 1

Introduction

The primary task of this work is to address the self-localization problem of an autonomous
mobile robot.

1.1 Motivation

To illustrate the importance of localization in robot navigation, let us take the example of a
man somewhere in a large office building with a labyrinth of corridors and passages leading to
various departments1. He knows the address to the room which he wishes to visit. In order
to reach that office, the logical order of sequences would be that he must in the first instance,
determine where he is himself located at that moment. Once he knows his own location, then
he can look for signs, like an information notice board, indicating which department lies in
which direction. He can then follow that lead and turn corners and passages until he reaches
the right department. He must then look for more landmarks like the number of the rooms
on his left and right. He can judge then whether those numbers are in ascending order or in
descending order. From their order he can then draw inference whether he has to move up
the corridor or down it. In this manner the man must continue to move on until he reaches
the desired office.

Thus, it is clear from the above example that the first step the man has to do in order
to reach his final destination is to find his own position. To find his position he can look
around and compare his observation with the information represented in the building map.
An example of observation could be a room number or a name plate. A single observation
may not be enough since many locations in the environment may look a like. The problem of
ambiguities is an inherent part of the problem of localization. In order to distinguish between
the different possible locations, one has to keep these locations in mind and collect additional
information within the same locality. Once the person knows where he is, he must continue
to keep track of his position as he moves on. The task of tracking can be efficiently achieved
by continuously comparing the observations with the places expected in the building map.
However, as soon as the person loses his position, he has to re-localize himself, which often
requires similar steps to those performed on arrival in the office building.

1A similar example is given in [FBTC98]
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Chapter 1 Introduction

From the above given example it is obvious that estimation of one’s position in the given
environment is essential for using a map. Autonomous indoor mobile robots face the same
problems as the person in the above example when performing their tasks. Hence, effective
navigation is essential for successful mobile robot applications and in order to carry out navi-
gation plans, the prerequisite is mobile robot’s localization [FBTC98]. Therefore, localization
is one of the fundamental problems in mobile robotics [Cox91]. Similarly, in an application
where multiple robots are working on a common global task, knowledge of the position of
individual robots turns out to be a very basic requirement for its execution. A successful
global strategy for navigating can only be devised if the robot knows its own position and
those of other robots with whom it has to coordinate. Our robots have been designed to play
soccer and during the game they need to keep track of the ball, avoid collisions with other
players (also robots) and to successfully make goal hits. Tasks such as playing the ball and
hitting the goal assume that all objects are in the same coordinate system.

For an autonomous robot it is essential to gather as much information about its environment
as possible to act intelligently. Therefore, they need to determine depth information of objects
they want to interact with. This can be done with a wide range of sensors. A sonar sensor
can also calculate depth but the resulting depth-information is noisy due to interference of
the outgoing signal with the reflected signal. The most accurate sensor to compute a depth
map of the environment is a Laser Range Finder (LRF). However, this sensor is too large to
encapsulate in our robot and also takes a long time to generate a complete three dimensional
map of the environment. A stereo vision system can also be used to obtain a three dimensional
map and can be built small enough to fit the dimensions needed. A detailed discussion on
these sensors is given in the next chapter.

Stereo vision tasks try to imitate the capability to see objects, to estimate their three-
dimensional position in the world, and to identify the objects for grasping them. The tasks of
perceiving depth, identifying objects and grasping are performed by humans in real time for
everyday purposes, without being aware of this complex process. One example of a complex
vision task involved in solving a particular problem is the action and reaction taken if humans
are playing soccer. Here scene understanding is essential, one has to know position of the
ball, of other players and of the goal in order to perform the best. This is a typical application
where range is more important than recognition, all objects on the playground are known
and limited. The two main tasks are localization (both self-localization and localization of
other moving objects) and continuous range estimation for all moving objects. Such kind of
applications are an ideal testbed for computer vision tasks involved with range estimation
rather than object recognition.

If a single camera observes a real world object, the three-dimensional information is projected
into a two-dimensional image plane. In this case the information of depth is lost during the
projection process. In order to reconstruct the three-dimensional information of a scene,
computer vision tries to imitate the human visual system to use two different views of the
same scene. This technique is known under the term stereo vision or binocular vision [BF82].
In a static environment it is possible to obtain range information from one camera if its
position is changing and the geometric relations between two or more images are known. On
a mobile robot without a static environment a stereo vision system with two or more cameras
has to be used to obtain stereo information. If the images are taken simultaneously, a static
environment is guaranteed [Ent05]. The goal of a stereo analysis method is the calculation
of depth information due to geometric relations. Therefore, a stereo vision system is used on
moving platforms playing soccer.

2



Chapter 1 Introduction

1.2 Problem Statement

Localization entails positioning the robot relative to its environment during navigational ses-
sions and can be defined as computing and updating three parameters (x, y, θ), which, respec-
tively, define the position and orientation of the robot within the environmental frame [AHC05].
This thesis addresses this problem keeping in view the minimum requirements and constraints
listed in this section.

1.2.1 The Robot Environment

The robot environment is supposed to be known but highly dynamic. It could be de-
scribed with visual landmarks i.e. lines, corners, junctions, line intersections and color tran-
sitions [BSN05]. A simple test environment model is shown in Fig. 1.1(a). Objects in the
robot environment are few and known. The height of the surrounding walls is less than the
robot’s height and can be removed in future. Objects in the form of isosceles triangles are
placed in the four corners formed by the surrounding wall so that the ball is not trapped
in the corner. This makes these corners blunt. A sample image by a hypothetical onboard
camera is shown in Fig. 1.1(b). Field markings and the blue goal can be seen in the image.
Further details about dimensions of the field and model representation in robot memory can
be found in [Deu07].

(a) (b)

Figure 1.1: The robot environment

1.2.2 Constraints About the Robot

In our application the robots has to be within a pre-defined size limit. Since they need to work
autonomously, all processing is done by the on-board processors. The robot is battery driven
and thus the power consumption should be less so that it can work for extended duration of
time. It should be able to communicate with its team-mates in order solve a global strategy
of operation. The robot is supposed to perform multiple tasks and it should be fitted with
multi-purpose sensors.

3



Chapter 1 Introduction

1.2.3 Requirements for Self-localization

There are certain requirements which the localization algorithm should fulfil. They are listed
below:

• The localization algorithm should not enforce the constraint that all features are lying
on or close to the ground plain.

• The environment is not necessarily surrounded by rectangular walls.

• The environment can not be modified with artificial landmarks or by placing active
beacons as an aid in navigation.

• Globally distinct landmarks are few and they are frequently occluded by other moving
objects in the environment.

• The environment is highly dynamic. For example in the test application there are 8
high speed robots and an even higher speed ball. Tinyphoon can reach a speed of 3.5
m/s with an acceleration of 5 m/s2 [Deu07].

• The localization algorithm should be able to address the kidnapped robot problem [EM92,
TFBD01] as well as the bootstrap problem [Ren93]. In kidnapped robot problem, the
robot is displaced without information, while the bootstrap problem is a special case
of the kidnapped robot problem where the robot is aware that it has to do global
localization [FBDT99a].

It is assumed that there exist features that are globally distinct. However, such features are
supposed to be scarce and often occluded by other objects in the environment. The robot
motion is on a flat surface where the robot pose has three degrees of freedom (x, y, and
θ). (x, y) indicate position of the robot and θ is its orientation. The dynamic nature of
of the target application environment and requirement of onboard processing warrants that
algorithms should be developed/selected so that they require less computation time.

1.3 Proposed Methodology

A simple solution for robot position estimation would be to start at a known location and track
the robot position locally using methods such as odometry or inertial navigation [COB01].
These methods have proven to be efficient and provide good short term position estimates but
suffer from unbounded error growth due to integration of minute measurements to obtain the
final estimate [Bor98]. The failure of local methods to track the robot position over extended
periods of time and the requirement of an initial estimate makes global position estimation a
necessity. In global position estimation robots use external2 sensors to sense their environment
and calculate position [AR98].

The process of global position estimation is often simplified by engineering the robot envi-
ronment with active beacons or other artificial landmarks such as bar code reflectors and

2External sensors are gathering information from the robot’s environment. Examples of such sensors are
the stereo vision, laser range finder and sonar.

4



Chapter 1 Introduction

visual patterns [SN04]. Methods that don’t require modification of the environment are less
accurate and demand significantly more computational power [BEF96]. Additionally min-
imum number of features required to determine a unique global position are normally not
available through the entire state space [BS06, BSGM06]. This leads to techniques where
robot (with a known initial position) tracks its position and the accumulating position errors
are mitigated by gathering information from the robot environment and applying corrections
to the position estimate [BSGK07]. However, it is not always possible or at least desirable to
provide the robot with a start point. Hence, the robot must be able to estimate its position
from the very beginning or when/if it loses track of its position during navigation.

It is proposed to use range information to distinctive environment features. Feature extraction
and range estimation is done with a binocular stereo vision system. To extend the robot
field of view the cameras are mounted on a pivoted head. This aids in feature exploration
which are assumed to be scarce. Unlike methods based on angle measurements, this method
requires only two distinct landmarks [BS06]. Distinct landmark features are sparse in our
application domain, which makes simultaneous acquisition of two or more landmarks difficult.
Therefore, another method is proposed that requires only one distinct landmark [BSG06].
The method, however, requires independent estimation of the robot absolute orientation. To
enable the robot to estimate its absolute orientation it is equipped with a compass in addition
to odometry and the stereo vision system [NM05, NCB+06].

However, instantaneous acquisition of distinct landmarks at all times through the entire state
space is not possible as landmarks are few in number and are frequently occluded [BS06,
BSG06, BSGM06]. Furthermore, global position estimation using only external sensors is
time consuming [BEF96]. Similarly, only local sensors3 are not enough for position estimation
as they require knowledge of initial position and the errors accumulate unbounded [BDN07].
Therefore, it is required to use a combination of local and external sensors and fuse the
information obtained from them. The growing position error is suppressed by acquiring
features from the robot environment whenever possible.

Features found in the application environment are line based and color transitions. Lines are
determined by a large number of pixels which makes it possible to locate them accurately
and are natural in the sense that a number of lines can be found in structured environ-
ments [DYOC04]. The primary target is to extract the global structure of the line segments,
in the presence of heavy occlusions. Line segments are extracted using Gradient Based Hough
Transform (GBHT) which provide the strongest groupings of collinear pixels having roughly
the same edge orientation [BSN05]. These groups are further processed to compute length
and end points of line segments, which together with the length and direction of the normal
completes the description of the line segments [AA94]. This is followed by classification of
line segments into different groups based on width, color and the presence of parallel edges
of opposite gradient. Corners, junctions and line intersections are determined by semantic
interpretation of detected line segments. The motivation behind using GBHT and the se-
mantic interpretation of line segments to extract corners, line intersections and junction can
be found in Chapter 3.

The information obtained from both the internal and external sensors is uncertain and incom-
plete. These uncertainties are represented by probability models. The robot’s local sensors
are calibrated for systematic errors, whereas, for the non-systematic error, it is assumed that
it can be represented by zero mean Gaussian distribution [BSGK07]. Similarly, the robot

3Examples of internal or local sensors are digital encoders and gyroscopes.
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observations are also represented by a Gaussian distribution [BSKN07]. Information from
internal and external sensors is fused using Extended Kalman Filter (EKF). Alternative ap-
proaches are discussed in Chapter 2. Maintaining a rough estimate of the robot position helps
in features extraction and matching with the global map of the robot environment [CKKK94].
With an estimate of its current pose, the robot will search for features within a local area
instead of searching over the whole image [TRM+05].

The proposed system is shown in Fig. 1.2. In stereo vision it is preferable that the two
image planes are coplanar and parallel to their baseline (line between the two centers of
projection) [Bra96]. Given the case that two stereo images are coplanar and parallel to their
baseline they are rectified [HS93]. In rectified images the epipolar lines are the scan lines
in both images. One can produce rectified images either by placing two cameras exactly
parallel or compute virtual parallel images planes in order to have rectified images. Features
extracted from intensity images are used for correspondence analysis and depth computation.
Three dimensional position of features along with their descriptions is fed into the localization
module. The localization module is fusing this information with the one from local sensors
and map of the environment to deduce its own position and position of other moving objects.
The dead reckoning information consist of the output of the wheel encoders, gyroscopes and
the compass. However, this work is using only information from the digital encoders and
the compass. Properties of the landmarks such as their global location and type etc can
be obtained from the environment model. The localization module has access to one of the
intensity image. This is used for extracting information such as color or re-confirming the
presence or absence of certain features.

Figure 1.2: The proposed system
As stated earlier the robot location is estimated using landmark based global localization
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methods which also provide uncertainty. The globally estimated position and its uncertainty
is combined with the local information using a new hybrid method. This approach results in
significant performance improvements. Further discussion on the method and experimental
results are provided in Chapter 5 and Chapter 6. The use of stereo vision system enables
range computation to distinct landmarks and the use of the range based methods. With
this framework reduction in minimum number of landmarks required for vision based global
self-localization is achieved.
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Related Work

The position estimation problem is not new. Leonard et al. [LDW91] put this problem as:
”The problem of position determination has been of considerable interest over the last 4000
years. Today, navigation is a well-known quantitative science, used routinely in maritime
and aviation applications. Given this, the question must be asked as to why robust and
reliable autonomous mobile robot navigation remains such a difficult problem. In our view,
the reason for this is clear, it is not the navigation process per se that is a problem, it is the
reliable acquisition or extraction of information navigation beacons, from sensor information,
and the automatic correlation or correspondence of these with some navigation map that
makes the autonomous navigation problem so difficult”.

Methods addressing the localization problem are reviewed in this chapter. Different alter-
natives dealing with sub-problems are discussed in the related chapters. The presentation
of the chapter is primarily based on categorization of localization systems by Borenstein
et al. [BEF96]. However, the review is not limited to methods that explicitly fall in those
categories.

2.1 Relative Position Estimation

In relative position estimation, the robot is given initial estimate of its position, which is
tracked as the robot moves in its environment. Methods in this category are based on
integration of minute motion information for position update and can be divided into two
groups based on the type of measurements [BEF96]. This section provides further details on
the two groups of relative position estimation.

2.1.1 Odometry

Odometry is based on the fundamental assumption that wheel revolutions can be translated
into linear displacement relative to the floor. Odometry provides good short-term accuracy,
is inexpensive, and allows high sampling rates [BF96, Bor98]. However, errors in odometry
limit the validity of the fundamental assumption. These errors can be put into two categories:
systematic errors and non-systematic errors [BEF96].
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Systematic errors could be due to the fact that different wheels of the robot have different
diameters and the actual wheel diameter is different from the nominal one. The separation of
the wheels, called wheelbase, may also be different from its nominal value. Misalignment of
the wheels and finite encoder resolution also account for systematic errors in robot odometry.

Systematic errors accumulate constantly, whereas, non-systematic errors appear unexpect-
edly, and may cause large position errors. These errors appear due to a variety of reasons
such as traveling on uneven floors and moving over unexpected objects on the floor. Further-
more, wheel-slippage due to slippery floors, over acceleration, fast turning, non-point wheel
contact with the floor and interaction with external bodies in the robot environment could
cause large errors in the position estimate.

Fig. 2.1 illustrates the difference between systematic and non-systematic odometry errors.
The robot starts on the right side and travels towards the left. The start and end of the true
path are marked as ’A’ and ’B’ respectively. The true path of the robot is shown in red color,
whereas, the estimated path is shown in blue color. The ellipses represent the uncertainty in
the robot position. Fig. 2.1(a) simulates the effect when one of the wheel’s diameter is larger
than its nominal value, which causes it travel more distance than the other. The result is
that the robot is following a circular path instead of moving on a straight line.

(a) (b)

Figure 2.1: Simulated run representing errors in robot odometry (a) systematic error: sim-
ulating effect incorrect wheel diameter (b) non-systematic error: simulating
robot motion over an uneven floor. The start and end points are marked ’A’
and ’B’, respectively. The true path of the robot is shown in red color, whereas,
the estimated path is shown in blue color. The ellipses represent the uncertainty
in the robot position

The effect of moving over a slightly uneven floor is simulated in Fig. 2.1(b). The irregular
shape of the resultant path of the robot is due to the random error in odometry. The growing
ellipses indicate that the robot position uncertainty is increasing as the error at every time
step is accumulating with the existing error in position. There is no feedback in the process
and the error accumulation continues without bounds.
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The robot odometry can be calibrated for systematic errors using methods such as the Uni-
versity of Michigan Benchmark (UMBmark) [BF96], whereas, the non-systematic errors are
modeled probabilistically [Wan88]. Chong and Kleeman [CK97] report a detailed analysis
of uncertainty in the odometry of a differential drive robot. To take into account the error
difference for different length of travel, they assume that uncertainty in distance covered by
each wheel is proportional to its absolute value. The curve traversed by the robot between
the two time intervals is divided into infinite number of small steps, where the size of each
step tends to zero. They assume that the radius of curvature for all the intermediate steps
remains constant. This way the uncertainty in final position of the robot stays the same
irrespective of the number of steps in which the distance is covered. It is observed that if the
radius of curvature is assumed to be constant then this division is not required. The problem
of traveling the same distance with different time steps resulting in different uncertainty, is
solved by making the uncertainty proportional to the distance covered and if one starts at
the low level of wheel counts and distance covered. Other methods to reduce odometry error
are reported in [Bor98, TTA94, KO94]. The only thing that can be achieved is to reduce the
rate of divergence.

Even though errors are accumulated and grow without bounds, odometry is used in almost
all mobile robots [BEF96]. The reason for the widespread use of odometry is that better
and more reliable position estimation can be achieved by fusing odometry data with absolute
position measurements [Cox91, CC92]. Similarly, many model based approaches to position
estimation such as [GSO92, CC92] assume that the robot can maintain its position well
enough to allow the robot to look for landmarks in a limited area to achieve short processing
time and to improve matching correctness [Cox91].

2.1.2 Inertial Navigation

An alternative method for relative position estimation is inertial navigation, which involves
continuous sensing of angular rate information and accelerations in each of the three di-
rectional axes. The angular rate information and acceleration can be obtained by direct
measurements using gyroscopes and accelerometers, respectively. The robot orientation can
be estimated by integrating the angular rate information, whereas, the velocity rate measure-
ments need to be integrated twice to obtain position. Sensors used for inertial navigation
have error sources that are independent from the external sensors. Furthermore, these sensors
are non radiating and non-jammable [BEF96].

Inertial sensor data drift with time, which is the most important contributor to navigation
errors, and is dependent on the device technology [BDW93]. Because of the need to integrate
rate data, even very small errors can cause an unbounded growth in the error of integrated
measurements [BEF96]. This makes inertial sensors unsuitable for accurate positioning over
an extended period of time.

Accelerometers are also sensitive to uneven grounds, as any disturbance from the perfectly
horizontal position will cause the sensor to detect the gravitational acceleration. Barshan
and Durrant-Whyte aim at overcoming this problem by using a tilt sensor [BDW93]. The
information provided by the tilt sensor is used to cancel the effect of the gravitational accel-
eration. However, the information from the tilt sensor can be used only when the robot is
stationary, since tilt sensors are sensitive to acceleration [BDW93].
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Barshall and Durrant-Whyte [BDW93] evaluate performance of inertial navigation systems for
robot location estimation. They report a five to six fold reduction in the angular measurement
error by using an error model for the gyroscope within an EKF [May79] framework. However,
even with the usage of the error model, a drift rate of 1 to 3 ◦/min could still be unacceptable
for most mobile robot applications [BEF96]. Using tilt-compensated accelerometer a position
drift rate of 1-8 cm/sec, depending on the frequency of acceleration changes, was achieved.

To reduce odometry errors and improve the overall accuracy of position estimation, Komoriya
and Oyama [KO94] report fusion of information from a fiber optic gyroscope with odometry
information. Since in odometry based methods change in robot orientation is computed based
on the distance covered by different wheels, they propose that error in robot orientation can
be reduced by directly measuring the angular velocity with a fiber-optic gyroscope. The
information from two different sensors is fused through a Kalman Filter (KF).

The EKF uses the encoder and the gyroscope exclusively and does not correct their errors
mutually but only attempts to reduce errors based on the independent models [PCCL96]. An
alternative approach for reducing systematic odometry errors with the help of a gyroscope
is proposed by Chung et al. [COB01] and Park et al. [PHL98]. They use the difference
between the angle from the differential encoder and the gyroscope in an indirect KF [PCCL96]
to compensate the encoder error and the gyroscope error mutually. However, as stated
earlier, even small errors grow unbounded and it is necessary to reset them using absolute
measurements from the robot environment [BDW93].

2.2 Landmark-Based Methods

Landmarks are distinct features that a robot can recognize from its observations. Land-
marks can be geometric shapes such as lines and circles, and can be tagged with additional
information such as adding a bar code. Normally, they have fixed position in the robot envi-
ronment, with respect to which the robot estimates its position. The types of features used for
localization play an important role in the success or failure of a method. Features used for lo-
calization can broadly be divided into two groups; natural and artificial. Artificial landmarks
are specially designed and placed in the environment as an aid in robot navigation [BEF96].

Two different techniques are used for landmark based positioning, which differ in the type of
input data. These techniques are called triangulation and trilateration. Trilateration is the
determination of a robot’s position based on distance measurements to known landmarks.
Whereas, in triangulation, bearing to different landmarks in the environment is measured.
The remainder of this section discusses state of the art position estimation methods using
natural and artificial landmarks. Additionally, the use of active beacons is discussed for
position estimation.

2.2.1 Natural Landmarks for Localization

In landmark based navigation methods it is most desirable to base the algorithm on natural
landmarks. Data from a variety of sensors can be processed to extract natural landmarks.

Sugihara [Sug88] presented one of the pioneering studies in robot self-localization using angle
measurements from single camera images. This algorithm tries to find the location of the
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robot inside a room using vertical edges extracted from an image taken by an onboard camera
whose optical axis is kept parallel to the ground. He considers two different classes of the
problem. In the first one all vertical edges are identical, whereas, in the second class, the
vertical edges are distinguishable from each other but the exact directions in which they are
seen are not given, only the order of their appearance is given. The algorithm runs in time
O(n3 lg(n)), where n is number of identical landmark points. Sugihara assumed that there is
no error in angle measurements. This work is furthered by Krotkov [Kro89], who also studies
the resulting uncertainty in robot location when angle measurements are erroneous.

In addition to the absolute position estimation, vision based extraction of natural landmarks
have been used to track position of the robot. For example, Panzieri et al. [PPSU01] report
experimental results for a robot navigating in a corridor scene. Ceiling lights are extracted
from vision data as natural landmarks for reducing the accumulating error in the robot po-
sition. They use a topological representation of the environment. Similarly, Howard and
Kitchen [HK99] use walls and doorways as landmarks. They maintain a probability distribu-
tion across all possible robot positions and track them over time using Baye’s rule. Dulimarta
and Jain [DJ97] extract door number plates and ceiling lights in camera images for position
estimation. Their robot is also equipped with ultrasonic sensor ring (24 sensors) and an
infra red proximity sensor. The ultrasonic sensor enhances depth measurements. Chenavier
and Crowley [CC92] apply a triangulation based method to track the robot position using
natural landmarks extracted from single camera images of a known environment. An EKF
is implemented to combine data from the natural landmarks and odometry. Libuda and
Kraiss [LK04] and Braunegg [Bra93] extract natural environment features using a stereo
vision system for robot navigation. The former uses high level interpretation of the scene
to extract walls, door and floor, whereas the latter detects vertical straight lines which are
aggregated into features i.e. doorways, windows, bookcases etc. to identify locations.

As with vision based methods, natural landmarks have been widely used for position esti-
mation using range sensors. Commonly used landmarks extracted from laser range data are
line segments [GS96, GWN01, LFW96, GSO92], points and lines [JC01], corners [ZRJ03].
Lingemann et al. [LNHS05] report a fast method of pose tracking and absolute localization
using laser scan matching. Natural features are extracted and matched between scans. Lars-
son et al. [LFW96] use Range Weighted Hough Transform (RWHT) [FLW95] to extract lines
from range data. The association between the map and extracted features is done in Baye’s
framework. The range of the detected line features is combined with dead-reckoning infor-
mation with the help of a KF. Similarly, naturally occurring geometric beacons in known
environment are extracted from ultrasonic range data [MAG+02]. This system is using a ring
of 24 ultrasonic sensors for sensing the environment.

2.2.2 Artificial Landmarks for Localization

Natural landmarks are desirable but detection and matching characteristic features from
sensor data remains the main problem in navigation that uses naturally occurring landmarks.
Therefore, the environment is often engineered by placing artificial landmarks. Artificial
landmarks make detection process easier [AH93]. They are designed for optimal contrast
and have known size and shape [BEF96]. The selection of features is important since it will
determine the complexity in feature description, detection, and matching. Different types of
features to be detected in camera images have been reported in literature.
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Briggs et al. [BSB+00] use self-similar intensity patterns as landmarks. A binary barcode
is added to distinguish different landmarks. Nested square patterns are used in [CKP95],
whereas Li, So and Tso attach a deep green colored square with a white colored square at
the center and two black colored squares at two corners of a wall [LST02]. They use a vision
system to locate the landmark. After the landmark is detected a LRF is used to calculate its
distance from the robot position. Similarly, a landmark composed of two vertically neighbor-
ing color patches is used in [JKLK02]. Kabuka and Arenas [KA87] localize their robot with
respect to landmarks that consist of two segments; a relative displacement pattern and an
identification code and Borenstein uses a landmark consisting of black rectangles with white
dots [Bor87].

Feng et al. [FFK92] use a circular landmark and apply the Optical Hough Transform (OHT)
to extract the parameters of the ellipse on image plane in real time [SS86]. Lazanas and
Latombe [LL92] use sheets of paper with a unique checkerboard pattern placed at the ceiling
as artificial landmarks.

2.2.3 Active Beacons

To achieve a highly reliable solution and further simplify the problem of detection and match-
ing, an active beacon system is designed and deployed in the target environment [SN04].
Active beacons provide accurate positioning information with minimal processing, which re-
sult in high sampling rates and yields high reliability. However, it also incurs high cost in
installation and maintenance [BEF96].

Multiple type of transmitters could be used i.e. laser pointer [HTMA03], ultrasonic [Kle92]
or ultrasonic and radio frequency [SZO+03] etc. In [HTMA03], the emitter is a laser pointer
that acts as a beacon. The receiver intercepts this signal and calculates its position and
orientation. Kleeman [Kle92] uses ultrasonic beacons mounted at different locations in the
environment. Information from these beacons in fused with information from dead-reckoning
sensors using an iterative EKF. The Global Positioning System (GPS) can be considered as
such a system. A good discussion on placement of beacons to calculate the robot position
using triangulation based methods can be found in [SS00].

Beacons, could also be retro-reflective markers, which can be easily detected by a mobile
robot based on their reflection of energy back to the robot. Given known positions for the
optical retro-reflectors, a mobile robot can identify its position whenever it has three such
beacons in sight simultaneously [SN04].

As noted by Borenstein et al. [BEF96], the main problem with the active beacons is the
need of powerful transmitters to ensure omni-directional transmission over large distances.
However, if such powerful beacons are not feasible, they are focused within a cone-shaped
propagation pattern. This results in beacons not visible in many areas, where position can
not be calculated as at least three beacons must be visible for triangulation.

2.3 Map-Based Positioning

Map-based positioning is a technique in which the robot creates a map of its local environment
using its sensors. This local map is then matched with the global map of the environment.

13



Chapter 2 Related Work

If a match is found the robot position and orientation can be estimated. This method uses
the naturally occurring structure of the environments to derive position information without
modifying the environment. This method can be used to generate an updated map of the
environment which may allow a robot to learn a new environment and to improve positioning
accuracy through exploration [BEF96].

Map-based positioning requires that there be enough stationary, easily distinguishable fea-
tures that can be used for matching, the sensor map be accurate enough to be useful. Addi-
tionally, it requires a significant amount of sensing and processing power [SN04].

The sub-problems in map-based positioning are the map representation and matching. If the
robot is not given a map of its environment it has to build one using its sensors. This is
termed as map building and is the dual of localization. A detailed presentation about map-
based positioning can be found in [BEF96, SN04]. The discussion in this section is partially
adapted from these sources.

2.3.1 Map Representation

The problem of representing the environment is the dual of the problem of representation of
the robot’s possible position or positions. Siegwart and Nourbakhsh [SN04] note that:

1. The precision of the map must appropriately match the precision with which the robot
needs to achieve its goals.

2. The precision of the map and the type of features represented must match the precision
and data type returned by the robot’s sensors.

3. The complexity of the map representation has direct impact on the computational
complexity of reasoning about mapping, localization, and navigation.

The two common representations are geometric maps and topological maps [BEF96]. The
former represents objects according to their absolute geometric relationships, whereas, the
latter approach is based on recording the geometric relationships between the observed fea-
tures with respect to an arbitrary coordinate system.

2.3.1.1 Geometric Representation

Geometric maps can be continuous or discrete.

Continuous representation

In continuous maps, features are represented by their exact position. In this approach one
normally assumes that the representation specifies all environmental objects in the map.
Any area in the map that is devoid of objects has no objects in the corresponding portion
of the environment. Hence, the total storage is proportional to the density of objects in the
environment [LL92].

For example a robot with a range sensor could extract lines from dense range scans. An ap-
propriate continuous mapping approach is to populate the map with a set of infinite lines. The
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continuous nature of the map guarantees that lines can be positioned at arbitrary positions
in the plane and at arbitrary angles.

The CS Freiburg’s self-localization relies on scans of angular distance readings obtained by
a LRF mounted on the robot [GTN99, GHH+99, GS96]. This is the most successful method
in the Robocup domain. Two contributing factors for its success were that the LRF provides
rather precise and reliable measurements of the distance to the walls surrounding the field
and that the scans are dense [UNMK03].

Iocchi & Nardi [IN00] uses field lines as markers for self-localization. The lines are extracted
from the range data using Hough Transform (HT) [Hou62, DH72]. They explicitly extract
symbolic field markings by searching for local maxima in the Hough domain. Their original
algorithm [IN00] considers lines detected locally and use odometry to remove ambiguities. In
a similar approach, Hans Utz et al. [UNMK03] use lines and the center circle of the soccer field
for matching. The key advantage of a continuous map representation is the high accuracy and
expressiveness with respect to the environmental configuration as well as the robot position
within that environment.

Discrete representation

Due to the high cost of continuous representation, more simplifications may be desired. A
form of simplification is abstraction, which is a general decomposition and selection of en-
vironmental features. The decomposition may be geometric or topological. The geometric
decomposition is further divided into exact cell decomposition and fixed cell decomposition.

Exact cell decomposition is a standard lossless form of decomposition. This form of map
representation tessellates the space into areas of free space and stores each of such area as a
single node [SN04, p.204]. This method is useful only in situation where the only requirement
is the robots ability to traverse from each area of free space to the adjacent areas and the exact
position of the robot within each area of free space does not matter. This method becomes
infeasible if information about free-space and obstacles of particular types is unknown or
expensive to collect.

An alternative is fixed cell decomposition, in which the world is represented as a grid and it
is possible for narrow passageways to be lost. There is another approach called adaptive cell
decomposition, where the cell size is variable and not fixed.

One popular version of fixed cell decomposition is called occupancy grid representation [HE85].
In occupancy grid, the environment is represented by a discrete grid, where each cell is either
filled or empty. This method is of particular value when a robot is equipped with range-based
sensors because the range values of each sensor, combined with the absolute position of the
robot, can be used directly to update the filled or empty value of each cell.

The size of the map in robot memory grows with the size of the environment and the approach
is not compatible with the close-world assumption as memory must be set aside for every
cell in the matrix. The occupancy grid (or any other fixed decomposition method) imposes
a geometric grid on the world regardless of the environment details. For these reasons, an
alternative, called topological decomposition, has been the subject of some exploration in
mobile robotics. This approach is discussed in the next subsection.
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2.3.1.2 Topological Representation

If geometry is not a salient feature of the environment, direct measurements of geometric
qualities can be avoided. In topological map representations concentration is instead focused
on characteristics of the environment that are relevant to the robot for localization. The
resulting presentation takes the form of a graph where nodes represent the observed features
and edges represent the relationships between features. Topological maps can be built and
maintained without any estimates for the position of the robot, which makes errors in this
representation independent of any errors in the estimates for the robot position [BEF96].

Topological representation can be effectively used if the environment contains important non
geometric features. These features have no ranging relevance but are useful for localization.
Fennema et al. [FHR+90] outlined a system for robot navigation in a partially modeled
environment. An internal model of the robot environment and models of the robot actions
enable the robot to predict its actions. The environment is represented as a graph of connected
nodes called locale.

2.3.2 Map Building

The robot has to build a map of its own environment if it is not provided with one. The map
building problem may be stated as ”Given the robot’s position and a set of measurements,
what are the sensors seeing?” [Ren93].

The position estimation strategies that use map-based positioning rely on the robot’s ability
to sense the environment and to build a representation of it [TA93]. The construction and
maintenance of the robot map will then be to build an abstract description of the most
recent sensor data, match and determine their correspondence with the current contents of
the composite local model, modify the components of the composite local model and reinforce
the confidences to reflect the results of matching [Cro89].

The robot must explore its environment to map uncovered areas with the assumption that
the robot begins its exploration without having any knowledge of the environment. Then, a
certain motion strategy is followed which aims at maximizing the amount of covered area in
the least amount of time.

2.3.3 Map Matching

One of the important and challenging aspects of map-based navigation is map matching,
which is establishing the correspondence between a current local map and the stored global
map [BEF96]. In the computer vision community, work on map matching is often focused on
the general problem of matching an image of arbitrary position and orientation relative to a
model [TA93].

In order to match the current sensory data to the stored environment model reliably, sev-
eral features must be used simultaneously which decreases the likelihood of a mismatch but
increases the processing. The search to determine the correct correspondence between fea-
tures extracted from the sensor data and model features is usually constrained in some
form [Cox91]. A good estimate of the current position from odometry reduces the space
for feature search. Chenavier and Crowley [CC92] maintain that a realistic model for the
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odometry and its associated uncertainty is the basis for the proper functioning of their sys-
tem. The landmark detection as well as the updated position calculation rely on odometric
estimates.

Schiele and Crowley [SC94] discussed different matching techniques for matching two occu-
pancy grids. The first grid is the local grid that is centered on the robot and models its
vicinity using the most recent sensor readings. The second grid is a global model of the
environment furnished either by learning or by some form of computer-aided design tool.

Rencken [Ren93, Ren94] has made substantial contributions toward solving the bootstrap
problem resulting from the uncertainty in position and environment. This problem ex-
ists when a robot must move around in an unknown environment, with uncertainty in its
odometry-derived position.

Bauer and Rencken [RR95] develop path planning methods that assist a robot in feature-
based navigation. The novel aspect of this method is a behavior that steers the robot in
such a way that the observed features stay longer in view and can thus serve as a navigation
reference for a longer time.

Fennema et al. [FHR+90] use a vision sensor to correct the model’s predictions about current
location or to progress towards some goal. The images are matched to the map by first
matching the two-dimensional projection of landmarks to lines extracted from the image.
The best fit minimizes the difference between the model and the lines in the data. Once
the correspondence between model and two-dimensional image is found, the relation of the
robot to the world coordinate is estimated. This relation is expressed as the rotation and
translation that will match the robot and world coordinate systems.

Talluri and Aggarwal [TA90, TA91] reported their extensive work on model-based positioning.
They use three-dimensional building models as a world model and a tree search is used to
establish a set of consistent correspondences.

Kak et al. [KALAC90] use their robot’s encoders to estimate its position and heading. A
visual sensor in conjunction with a known model of the building is used to derive a more
accurate estimate of the robot’s position and pose. The approximate position from the
encoders is utilized to generate, from the known model, an estimated visual scene that would
be seen. The scene is then matched against the actual scene viewed by the camera. Once
the matches are established between the features of the two images, the position of the robot
can be estimated with a reduced uncertainty. The generation of an estimated visual scene is
necessary as the sensory data and the stored model are in different formats [TA93].

2.4 Probabilistic Methods

Due to noisy measurements and incomplete sensor and environment models, position estima-
tion is not deterministic and hence probabilistic methods are used. During the past decade
there has been a growing interest in probabilistic methods used for mobile robots and a num-
ber of approaches have been reported [Fox98, FBT98, FBDT99a, NPB95, BFHS96, FBTC98,
JK01, ACSS03, KE02, FG03]. In probabilistic localization the task is to estimate probabil-
ity p(pk|d0...k), where pk is a random vector representing state of the robot at time k and
d0...k represent noisy data that the robot has received starting at time 0 to the current time
k. Usually, for robot localization, both relative and absolute measurements are used. The
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relative information is obtained by using the robot encoders, whereas, the absolute informa-
tion is obtained by using the robot’s perceptual sensors such as cameras, sonar, LRF etc.
The relative information is also called motion command or action and is denoted by u. For
instance uk−1 is action executed at k − 1 which will change the robot pose from pk−1 to pk.
The absolute measurements also known as observations are denoted by z [Fox98]. Using this
notation, zk represents information retrieved from the robot environment using the robot
external sensors.

Using the two types of data the robot belief to be at location pk at time k can be written
as [FBT98]:

p(pk|u0...k−1, z1...k) (2.1)

Using Bayes theorem (2.1) can be written as follows:

p(pk|u0...k−1, z1...k) =
p(zk|pk,u0...k−1, z1...k−1)p(pk|u0...k−1, z1...k−1)

p(zk|u0...k−1, z1...k−1)
(2.2)

The denominator in (2.2) is independent of pk and can be replaced by a constant as given by
(2.3). This is a normalizer which makes sure that

∫
p(pk|u0...k−1, z1...k)dpk = 1 [TFBD01].

After this replacement (2.2) can be written as given by (2.4).

η =
1

p(zk|u0...k−1, z1...k−1)
(2.3)

p(pk|u0...k−1, z1...k) = ηp(zk|pk,u0...k−1, z1...k−1)p(pk|u0...k−1, z1...k−1) (2.4)

Using total probability theorem p(pk|u0...k−1, z1...k−1) can be written as follows:

p(pk|u0...k−1, z1...k−1) (2.5)

=
∫
p(pk|pk−1,u0...k−1, z1...k−1)p(pk−1|u0...k−1, z1...k−1)dpk−1 (2.6)

Substitution of (2.6) in (2.4) results in:

p(pk|u0...k−1, z1...k) =

ηp(zk|pk,u0...k−1, z1...k−1)
∫
p(pk|pk−1,u0...k−1, z1...k−1)p(pk−1|u0...k−1, z1...k−1)dpk−1

(2.7)

If this belief is denoted as Bel(pk), then (2.7) can be written as follows:

Bel(pk) =

ηp(zk|pk,u0...k−1, z1...k−1)
∫
p(pk|pk−1,u0...k−1, z1...k−1)Bel(pk−1)dpk−1 (2.8)

Equation (2.8) recursively estimates the robot belief. To be able to use this equation it
is required to specify three probability distributions [TFBD01]. p(pk|pk−1,u0...k−1, z1...k−1),
known as motion model, models the probability of the robot to be at state pk given the current
state pk−1, actions u0...k−1 and observations z1...k−1. The distribution p(zk|pk,u0...k−1, z1...k−1),
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known as observation model, describes the probability of observing zk conditioned on the cur-
rent state, actions u0...k−1 and observations z1...k−1. Finally, it is required to know the belief
Bel(p0). If there is no information of the initial state distribution, Bel(p0) will have a uni-
form distribution over the entire state space. The complexity of (2.8) depends on the number
of independent variables which grow linearly with the passage of time.

The state vector pk is a continuous random vector. The number of components (degrees
of freedom of the robot pose) of the state vector depend on the type of robot motion. For
motion over a flat terrain this vector has three components, whereas, for a 3D motion the state
vector will have six components: three for position and three for rotation. Representation of
arbitrary probability distribution over the entire state space could be a difficult task.

Another issue is the representation of motion and observation models. Making models that
adequately describe real actuator and sensor systems could be a difficult task. This prob-
lem becomes more pronounced when measurements are high-dimensional, for instance when
camera images are used. One way to deal with high modeling complexity is to let the robot
learn the action and sensor models [Thr98].

The remainder of this section discusses different probabilistic algorithms and the methods
they use to deal with the complexity issues mainly the representational complexity. These
methods can be broadly divided into two groups. The first group of methods uses a dis-
cretization of the state space and is based on Partially Observable Markov Decision Processes
(POMDP) [Fox98]. The second group may also be regarded as analogous to the (POMDP),
with the key difference that the state variables are continuous [Wik07b].

For the methods described here, it is supposed the environment satisfies the Markov property,
which means that it has to have two properties. These properties are the conditional inde-
pendence of actions and conditional independence of observations [Fox98]. The independence
of actions means that all states, actions and observations prior to time k−1 do not affect the
state at time k, this means that the state pk at time k only depends on the previous state
pk−1 and the last action uk−1 performed by the robot. This can be stated mathematically
as:

p(pk|p1...k−1,u0...k−1, z1...k−1) = p(pk|pk−1,uk−1) (2.9)

which states that at time k, the state can be predicted with the help of motion models, if
state and motion commands at time k − 1 are known.

Similarly, the independence of observation means that the observation zk at time k depends
only on the state of the world at time k. Once pk is known, all other measurements, prior
states, and actions have no influence on observation zk. This property of the environment
can be stated as follows [Fox98]:

p(zk|p1...k,u0...k−1, z1...k−1) = p(zk|pk) (2.10)

which makes it explicit that at a given time robot observation only depends on the state at
that time and does not depend on observation, action or robot position at any other time or
by another sensor. Substitution of (2.9) and (2.10) in (2.8) results in the following expression
for position belief:

Bel(pk) =

ηp(zk|pk)
∫
p(pk|pk−1,uk−1)Bel(pk−1)dpk−1 (2.11)
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2.4.1 Markov Localization

Markov Localization (ML) is a special case of state estimation within the framework of
POMDP. POMDP consist of a finite set of states, finite set of observation and an initial
state distribution. Each state has a finite set of actions that can be executed on that state.
Furthermore, it consist of a transition and observation functions. The transition function
states the probability of state change from one state to another under certain action, whereas,
the observation function describes observation probability from a state. POMDP also consists
of a reward for executing certain action from a state [KS98].

When applying POMDP to a localization problem, the agent is a mobile robot and state of
the world is the position of the robot within its environment. This state cannot be observed
directly but can only be estimated based on uncertain sensory information, which makes state
estimation based on incoming sensor data an important component of POMDP.

As stated earlier, within the framework of POMDP the states are finite. Therefore, the state
space has to be discretized. After discretization the state pk will be defined only at discrete
locations within the state space and the integrals in (2.8) and (2.11) become summations and
the belief over this space can be computed and stored explicitly [Neg03]. Using the discrete
state space the belief that the robot has to be at location l can be written as follows:

p(pk = l|u0...k−1, z1...k) =
p(zk|pk = l,u0...k−1, z1...k−1)p(pk = l|u0...k−1, z1...k−1)

p(zk|u0...k−1, z1...k−1)
(2.12)

where
Bel(pk = l) = p(pk = l|u0...k−1, z1...k) (2.13)

and the normalizer
η =

1
p(zk|u0...k−1, z1...k−1)

(2.14)

Application of Markov property results in:

p(zk|pk = l,u0...k−1, z1...k−1) = p(zk|pk = l) (2.15)

p(pk = l|pk−1 = l′,u0...k−1, z1...k−1) = p(pk = l|pk−1 = l′,uk−1) (2.16)

Drawing parallels with (2.6) p(pk = l|u0...k−1, z1...k−1) can be written as follows:

p(pk = l|u0...k−1, z1...k−1)

=
∑
l′

p(pk = l|pk−1 = l′,u0...k−1, z1...k−1)p(pk−1 = l′|u0...k−1, z1...k−1)

=
∑
l′

p(pk = l|pk−1 = l′,uk−1)Bel(pk−1 = l′) (2.17)

Equation (2.18) can be obtained by substituting (2.15), (2.16) and (2.17) into (2.12) as follows:

Bel(pk = l) = ηp(zk|pk = l)
∑
l′

p(pk = l|pk−1 = l′,uk−1)Bel(pk−1 = l′) (2.18)
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The normalizer η can also be written in terms of motion and observation models as given by
the following expression [Fox98]:

1
η

=
∑

l

p(zk|pk = l,u1...k, z1...k−1)p(pk = l|u0...k−1, z1...k−1)

=
∑

l

p(zk|pk = l)
∑
l′′

p(pk = l|pk−1 = l′′,uk−1)Bel(pk−1 = l′′) (2.19)

The existing approaches to ML can broadly be divided based on the type of discretization
of the state space i.e. coarse or fine. In coarse discretization the state space is represented
in a topological graph like structure with limited actions and observations. For instance
Cassandra et al. [CKK96] use a topological representation of the state space where in each
state the robot is able to observe if there is a doorway, wall, open area, or it is undetermined
in each of the three nominal directions namely front, left and right. Five abstract actions are
defined for the robot. These actions are turn-left, turn-right, move-forward, no-op and declare
goal. Similarly, Nourbachsh et al. [NPB95] use ML for landmark based corridor navigation
and the state space is organized according to the topological structure of the environment.
Each node in the topological map corresponds to distinctive places in the hallways. Typical
observations of the robot are detection of an open door, close door or an open hallway.
Other approaches of ML using topological representation of the environment can be found
in [SK95, KS98, HK96].

Another famous approach to ML is the grid based representation of the state space in order to
deal with multi-modal and non-Gaussian densities at a fine resolution [FBDT99a, BFHS96,
Fox98, FBT98, Thr98]. This method represents the state space by a fine grained grid with
fixed spatial and angular resolution. An example representation of the state with three degrees
of freedom is shown in Fig. 2.2. In this example, the state space size is 150cm×150cm×360 ◦

and the resolution is 30cm× 30cm× 60 ◦. Four of the cells in the grid are shown dark. The
state here represent position in the xy-plane and orientation of the robot. For a resolution of
2cm× 2cm× 5 ◦ and state space of size 5m× 10m× 360 ◦, 9000000 locations are required to
be updated whenever an action command or an observation is available.

The grid-based representation is more fine-grained as compared to topological approaches and
more accurate position estimates are possible. However, this comes at high computational
costs, which increase with finer resolutions. Another problem is the a priori commitment to
the size of state space. Additionally ML is based on the assumption that the position of the
robot is the only state in the world. Thus, this method is likely to fail in highly dynamic
environments and special extensions are required to filter the damaging effect of sensor data
corrupted by external dynamics [FBTC98].

2.4.2 Monte-Carlo Localization

ML based on topological representation of the state-space is too coarse to be useful for certain
applications, whereas, the precision of the grid based implementation is dependent on the
cell size. For larger environments the precision has to suffer or the calculation time is getting
problematic. To overcome this problem, a new method of discretization the state space is
to represent probability density by a set of weighted samples that are randomly drawn from
it [TFBD01]. Each sample in the set is a location and the weight associated with it indicates
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Figure 2.2: Grid formation in ML

its importance. It has been shown that the density can be approximately reconstructed from
the samples [DFBT99, DBFT99].

This method is known as Particle Filter (PF) [FTBD00, KFM04, GDCT04, Fox03, WP03],
Monte Carlo Localization (MCL) [FBDT99b, FBKT99, WBB05, MZPI04, TFBD01, DFBT99]
or Condensation Algorithm (CA) [JAWA00, DBFT99]. The dense grid representation is re-
placed by a lower number of particles. By adjusting the number of particles taken from the
belief distribution, the balance between accuracy and computational costs can be achieved.

Restating the basic idea of representing the belief by a set of N weighted samples Bel(pk)
can be written as follows [TFBD01]:

Bel (pk) ≈
{
p(i)

k , w(i)
}

i=1...N
(2.20)

where p(i)
k is a sample of the state vector pk. The non-negative weight w(i) represents im-

portance of the sample. The weights are such that
∑

i=1...N w(i) = 1. This way the complete
set of samples define a discrete probability function that approximates the continuous belief
Bel (pk). Higher the number of samples, more closer is the approximation.

The sample set is initialized according to initial knowledge of the state space. For instance in
global localization the robot has a uniform belief over the state space and hence the samples
are drawn from a uniform distribution, where each sample’s weight is 1/N . On the other
hand, if the initial position is known the samples can be selected from Gaussian distribution
centered at the true position.

Following the algorithm outlined in [TFBD01] and using notations introduced in this section,
the recursive update may be summarized as follows:
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1. Sample p(i)
k−1 ∼ Bel (pk−1) from the (weighted) sample set representing Bel (pk−1)

2. Draw sample p(i)
k from distribution p

(
pk|p

(i)
k−1,uk−1

)
. This step accounts for motion

update of each sample. The sample pair < p(i)
k ,p(i)

k−1 > is distributed according to
p(pk|pk−1,uk−1)Bel(pk−1), which is called proposal distribution.

3. The mismatch between the proposal distribution and the correct distribution specified
by (2.11) is accounted for by the following (non-normalized) new importance factor,
which is assigned to ith sample.

w(i) = p(zk|p
(i)
k )

Now the importance of this particle is in accordance with the latest observation. The above
process is repeated N times, after which the weights are normalized by dividing the weight
of each sample by the total sum.

The selection of the new set of particle as discussed above is called Sampling Importance
Resampling (SIR). At each step particles are drawn from the actual set which are used as
basis for the next step. The particles are drawn in accordance with their weight i.e. it is
more likely to pick important particles for the next iteration. This way, areas with a high
probability are gaining more weight by replicating their particles, whereas areas with a low
probability are thinning out. This may introduce a source of degeneration that results from
lack of appropriate particles close to the true state [Deu07, BDN07].

To avoid degeneration some particles are replaced by uniformly distributed new particles
when required. This way empty areas are regularly refilled. Usually, a fixed number of
particles are re-injected each round or when/if the quality of the estimation drops below
a certain threshold [Deu07]. Time required for position estimation is proportional to the
number of particles. More particles are required to resolve a global uncertainty, whereas, an
already known position can be tracked with less number of particles. Reduction in number of
particles can be achieved by dynamically adopting the number of particles [Fox03] or using
techniques such as Rao-Blackwellization [GDCT04]. PFs for position estimation are the state
of the art. In the following paragraphs some of the approaches reported during the past years
are discussed.

Fichtner and Grossmann [FG03] report a sensor model and its use in a Monte Carlo framework
for camera based pose estimation. Röfer and Jüngel [RJ04] extract edges corresponding to
prominent lines in the environment and fuse them with motion input using Monte Carlo
methods. Similarly, samples of the PF are weighted using the properties of the Fourier
transform of omnidirectional images according to the similarity among images [MZPI04].

Kraetzschmar and Enderle [KE02] evaluate the MCL methods in an environment with spo-
radic features. They use angle and distance information of different features in the environ-
ment using single camera images. In this approach, goal posts and field corners are being
used as landmark features, and distances to walls as distance features. The method becomes
computationally expensive for getting high accuracy and is also memory intensive. As this
method is used in the RoboCup environment, Hans Utz et al. [UNMK03], argue that a new
approach is now necessary due to changes to the field geometry.

Lenser and Veloso [LV00] apply Monte Carlo method for localization of Aibo robots in four
legged RoboCup league. They argue that if dead-reckoning position error is high and all
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particles are concentrated around a wrong position then continuing with these particles will
not improve the localization accuracy and hence the robot should be declared lost.

2.4.3 Kalman Filter Based Techniques

KF is a recursive state estimator, which can deal with incomplete and noisy data [WB95,
May79]. In its original form it can be applied to the localization problem when the motion
and observation models are approximately linear with Gaussian error models. The initial
belief of the robot state is also Gaussian, hence, the density remains Gaussian at all times.
The beauty of Gaussian distribution is that only mean and covariance are sufficient for its
complete description. Therefore, in KF based position estimation it is not required to store
probabilities for every location, only parameters (mean and covariance) of the probability
distribution are stored [GBFK98, GS96, SC94, AVT+00, CKS+00, Neg03].

A non-linear version of KF has to be used if the observation or state transition model (motion
model) is non-linear. The EKF and the Unscented Kalman Filter (UKF) [JU97] are the
famous non-linear versions of KF [Neg03]. The EKF does not require the observation and
the state transition models to be linear but may be differentiable functions. The EKF linearize
all the nonlinear models so that the traditional linear KF equations can be applied. EKF
propagate only mean through non-linear functions, whereas, the UKF uses a deterministic
sampling technique to pick a set of sample points around the mean and propagate them
through the non-linear functions. This results in a filter that more accurately captures the
true mean and covariance [Wik07b].

KF is effective in fusing noisy information from multiple sensors and has been used exten-
sively for this purpose in robot navigation problems [Cro95, New05]. Leonard and Durrant-
Whyte [LDW91] formulated the localization algorithm as a tracking problem. They ex-
tract naturally occurring geometric beacons from sonar data as landmarks and match them
to a known navigation map to maintain an estimate of the robot location. Matthies and
Shafer [MS87] apply an EKF for motion estimation. A stereo vision system is used to estimate
translation and rotation between two 3D sets of points. Similarly, Kriegman et al. [KTB89]
use a stereo vision system for robot navigation in indoor environments. They use vertical
edges for correspondence between points in the left and right images. The robot position is
tracked based on information gathered from features between successive frames as the robot
moves from one point to another. The main drawback of such an approach is that without
referencing to features in the global map, the uncertainty increases with the passage of time.

Iocchi and Nardi [LN02] use the HT [DH72] to extract line segments from range data. These
line segments are then matched with a reference map of the environment. The matched
features are used to correct the odometry error using an EKF. The features used are not dis-
tinctive in the global space and the method cannot be used to recover a lost robot. Barshan
and Durrant-Whyte [BDW93] generate error models for inertial sensors (solid state gyroscope
and an accelerometer) and include them in an EKF for estimating the position and orien-
tation of a moving robot. Rencken [Ren94] attacks the bootstrap problem of navigation in
unknown environment. He uses an EKF to fuse odometry and sonar data. Weckesser and
Dillmann [WD96] apply an EKF for fusing information from laser range and intensity im-
ages for position estimation of mobile robots. The intensity image is obtained from a digital
camera.
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Vandorpe et al. [VXBA96] extract natural landmarks from 2D laser range data and fuse them
with information from an inertial navigation system to deduce position of an autonomous
mobile robot. Lee et al. [LSL+03] aim at reducing uncertainty in the robot position by
observing a moving object in image streams captured by a Charge Coupled Device (CCD)
camera attached on top of a mobile robot. The trajectory of the object is assumed to
be known. Information obtained from object observation is fused with the roughly known
position of the robot with the help of an EKF.

Ohno et al. [OTY04] apply a Kalman smoother to fuse data from odometry, LRF and Differ-
ential Global Positioning System (DGPS) to localize a robot in an outdoor environment. A
system for RoboCup robots computes depth using calibrated single camera images [MPS01].
Feature points are clustered and interpolated through a linear regression algorithm in order
to minimize the average square error in different clusters. The uniquely colored regions in the
robot environment are used to help in correspondence analysis. Information from features
and odometry is combined using KF.

The primary disadvantage of using Gaussian for modeling robot belief is due to its unimodal
nature, since only single hypothesis about position can be represented. This makes KF
unsuitable for global localization in recurrent environments. Therefore, the Gaussian repre-
sentation of the state space can only be done when the robot knows its initial position or it
can identify features that are unique globally [BSGK07]. To solve the problem of global local-
ization in repetitive environments, some researchers generate and track multiple hypothesis
to constitute a framework for global KF [JK01, ACSS03, CL94, RB00b]. Multi-hypothesis
KF represent beliefs using mixtures of Gaussians, thereby enabling them to pursue multiple,
distinct hypotheses, each of which is represented by a separate Gaussian [TFBD01]. With
the passage of time correct hypothesis collects more evidence and the wrong ones disappear.

2.5 Hardware for Robot Self-Localization

Range sensors (Laser scanning and sonar) are the sensors of choice for localizing mobile
robots in indoor environment (rooms and corridors) [GS96, GWN01, ZRJ03, JC01, LFW96,
LNHS05, GSO92, MAG+02, MAES99]. Sonar is fast and cheap but crude, whereas, laser
scanning is accurate but slow. These sensors are active, bulky and power consuming. These
systems provide data that can be interpreted with much less computational effort but they
require the environment to consist of reflecting bodies (i.e. rectangular walls) to reflect the
emitted energy back to the robots. In a situation where no sufficient reflecting objects are
available or the environment cannot be modified, they are of limited use. For example walls
have already been removed from the middle-size league of the RoboCup [UNMK03]. Being
limited in range, they cannot be expected to provide accurate localization in large open
areas [HKYR97].

Approaches using single frontal cameras in conjunction with odometric sensors are widely
used for self-localization. These methods are either based on calculating range and bearing
based on known shape and size of landmarks or enforce special constrains on environment
features [SSB03, JCBJ02, BKHS00, CRK99]. Choi et al. [CRK99] present a localization
system for mobile indoor robot (mobot) using a monocular vision system. They use calibrated
camera to acquire depth of features. The mobot’s actual position is computed by referencing
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door corners over the floor edge, and heading by direction of the floor edge lines. Herrero-
Pérez et al. detect features such as goal posts and corners made by the field lines. These
features are treated as landmarks in a technique that uses fuzzy logic to account for errors
and imprecision in visual recognition [HPMBS05a].

Single camera images provide a wealth of information about the environment but not about
range, which is an important factor in position estimation. On the other hand range sensor
can provide this missing information but lack in providing the information that could be
extracted from camera images. This situation has lead many researcher to fuse information
from range and intensity sensors. Nickerson et al. [NJW+98] report a novel system called
LaserEye. In situations where the robot has rectangular walls surrounding, a scan matching
based technique is used for localization. Whereas, in situations when the robot is operating in
large open areas the vision system is used to identify natural landmarks, distance to which is
calculated using a LRF. In the latter case distance measurements between two distinct points
are used for robot localization. Similarly, a laser range sensor is used to estimate depth of an
artificial landmark once it is detected in camera images [LST02]. Arras and Tomatis [AT99]
use LRF and monocular vision for indoor localization.

Similarly, Clerentin et al. [CDPB00] report a perception system for robot self-localization
that is composed of an omni-directional vision system and a panoramic range finder. The
Omni-directional vision system is used to measure the angle between different vertical objects.
However, to calculate depth of these vertical edges, the vision system is associated with range
finding sensor. The angle and depth measurements augment the position estimation process.
Additional approaches that use a combination of LRF with single frontal cameras and omni-
directional cameras can be found in [AT99, ATJS01, ATJS01, WFJ+01, WFJP02]. Whereas,
fusion of vision and ultrasonic sensors is reported in [Wic98, RHD+02, OKK98].

There are several approaches using omni-directional cameras [MZPI04, SB05, JIPB03, BAK04].
A camera looking at a mirror of special shape provides the robot with visual information in
all directions simultaneously [ML01]. The major advantage of these approaches is that the
robot has a panoramic view of its environment and consequently can acquire more landmark
features. For example, Marques and Lima [ML01] detect field lines using the HT [DH72]
and correlate them with the field model to estimate the robot position. The omni-directional
camera assembled on their robot is shown in Fig. 2.3. Wolf and Pinz [WP03] are using the
same panoramic imaging integrated in a Monte Carlo framework for self-localization. This
method can only track the robot position and cannot localize the robot from scratch.

Ji et al. [JIPB03] report a triangulation based method for localization of soccer robots.
Landmarks are extracted with the help of an omni-directional vision system. Wolf and
Pinz integrate features extracted by an omni-vision system in a Monte Carlo framework
for self-localization [WP03]. Similarly, a combination of robust illumination insensitive
eigenspace approach and sensor fusion with odometry data is used as a solution for the
self-localization [SB05]. In [TRM+05] odometry is used to calculate the expected position
of landmarks and then a local search algorithm finds their exact position. Whereas, Moto-
mura et al. localize their robots using dead-reckoning and angle measurements between two
landmarks [MMH04].

Because of the high cost, noise, requirement of sufficient reflecting surfaces, and modifica-
tion requirement of the environment there has been a decreasing importance of using active
sensors in the soccer robots [Nov03]. Although there are approaches to calculate range from
single camera images [BKHS00, CRK99], it is erroneous and cannot be calculated all the
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Figure 2.3: Mobile robot with omni-directional vision system [ML01]

time [NJW+98]. The disadvantage of omni-vision systems is the low resolution of the images
and requirement to fit the mirror at a specific height so that the robot can ”see” its sur-
roundings. Another disadvantage is the high cost of the mirror. Keeping these problems in
mind stereo vision seems to be the only sensor for the purpose of localization in open (wall
free) environments.

For feature detection and range estimation a pivoted stereo vision system is used. This
approach enables the robot to measure the distance to landmarks and to use bi/trilateration
approach to calculate robot position. The pivoted camera head enables the robot to have
a 360 ◦view of its environment. The robot could acquire additional information from the
environment by rotating its head. Together with the odometric sensors and the world model
it should approximate a soccer player such that its own position and its distances to other
objects should be computed automatically and that the robot is able to interact with the
scene.

2.6 Miscellaneous Methods of Localization

Methods that that do not fit in any of the categories discussed before but are related to this
work are presented in this section.

2.6.1 Collaborative Multi-Robot Localization

When teams of robots localize themselves in the same environment, they may synchronize
each others belief whenever one robot detects another. This helps robots to localize them-
selves faster and maintain higher accuracy [FBKT00, FBKT99]. Additionally, high cost sen-
sors may be distributed across multiple robot platforms. Hanek and Schmitt [HS00] report ex-
perimental results of using the collaborative multi-robot localization applied to localize robots
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in the Robocup scenario. Other examples for the Robocup are reported in [RB02, SHB+02].
Similarly, two robots equipped with a stereo vision system are able to localize with respect
to each other in order to have a common reference frame and can work on a common task.
These robots explore their environment autonomously and build occupancy grid maps of
it [JML99].

2.6.2 Global Vision

Yet another approach is the so-called global vision that refers to the use of cameras placed at
fixed locations in a workspace to extend the local sensing available on board each robot [KL92,
KL93]. In global vision methods, characteristic points forming a pattern on the mobile robot
are identified and localized from a single view. A probabilistic method is used to select the
most probable matching according to geometric characteristics of those percepts.

Robots in the RoboCup small size league (F180) [Rob07b] are marked with special mark-
ers [BWN04, DBBD03]. These markers are tracked and localized in images taken by a global
camera as shown in Fig. 2.4 [BV03, TNS03]. Similarly, the FIRA Micro Robot World Cup
Soccer Tournament (MiroSot) robots (see Fig. 2.5) are marked with special color patterns so
that they can be localized with the help of images taken by a global camera [FIR07b]. The
camera setup for FIRA MiroSot is shown in Fig. 2.6 [FIR07a].

Figure 2.4: Camera setup for RoboCup small size league (F180) [Rob07a]

Figure 2.5: FIRA MiroSot robot color markings [FIR07b]
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Figure 2.6: Camera setup for FIRA MiroSot [FIR07a]

2.6.3 Mosaic-Based Localization

The success of mosaic based localization is primarily due to recent advances of high speed
processors, fast cameras, and large storage media [SN04]. A system, reported in [Kel00], uses
a CCD camera [Wik07a] which is fitted to the robot and is pointed towards the floor. The
floor is illuminated by a specialized light pattern off the camera axis to enhance floor texture.
The robot begins by collecting images of the entire floor in the robot’s workspace using this
camera.

Once the complete image mosaic is stored, the robot can travel any trajectory on the floor
while tracking its own position without difficulty. Localization is performed by simply record-
ing one image, performing action update, then performing perception update by matching
the image to the mosaic database using simple techniques based on image database matching.
The main drawback of this method is the requirement of micro-fractures on the floor that
generate sufficient texture for correlation [SN04].

Dellaert et al. [DBFT99] generate an image mosaic of the ceiling of the environment in which
the robot needs to operate, and use it during operation to localize the robot. The distribution
of light intensity is successfully utilized to localize the indoor robot MINERVA. If the light
structure is uniform then such an approach cannot be used [UNMK03].

2.6.4 Position Estimation Based on Camera Calibration Techniques

Research into estimating internal and external camera parameters is quite mature [Zol03].
These methods have been used to localize robots equipped with cameras. Quan and Lan [QL99]
present a camera localization method that requires 5-point correspondences. This method
can be generalized to N-points. Stella and Distante [SD95] report location estimation of the
center of projection (CP) of the camera and orientation of optical axis using 3 landmarks.
Similarly, Liu et al. [LHF90] discuss camera location estimation using line correspondences.
They discuss location estimation using linear and non-linear algorithms. Eight or more line
correspondences are required for the linear algorithm, whereas, three or more line corre-
spondences are required by the non-linear algorithm. First the orientation of the robot is
calculated which is then used to calculate the position.

2.7 Discussion

A review of robot self-localization was presented in this chapter. The scope of the review
was limited to approaches that are applicable in known or partially known environments.
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Approaches that address the localization problem in unknown environments were largely
considered as out of scope.

Due to the requirement of global self-localization it is not possible to use methods that are
only based on local sensors. The environment cannot be modified with navigational aids,
which rules out the possibility of using approaches that use artificial landmarks or active
beacons. The requirements to be able to work in a wall free environment and low power
consumption mean that the robot has to rely on vision sensor. Another reason of using vision
is as stated by Lamon et al. [LNJS01] that ”Simple ranging devices require integration over
time and high-level reasoning to accomplish localization. In contrast, vision has the potential
to provide enough information to uniquely identify the robot’s position”. The constraint on
the maximum size of the robot does not allow the use of an omni-directional vision system.
Furthermore, it is undesirable to enforce constraints on feature locations in the environment.
Features are supposed to be scarce and it is required that the localization is based on as few
features as possible.

Methods that are based on global vision cannot be applied as all sensing and processing
has to be onboard. The maximum size of the robot and the processing power is limited.
Among the existing approaches related ideas in landmark extraction, feature based global self-
localization and probabilistic position estimation could be used in this work. The differences
between existing approaches and the proposed one is the subject of Chapter 3, Chapter 4
and Chapter 5. To the best of our knowledge there is no existing method that can address
the problem in totality.
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Vision Based Feature Extraction

The robot environment consists of features such as line segments, corners, junctions and line
intersections. Additionally, there could be distinct color patches and the transition between
different colors can be used as landmarks. Straight lines are strong candidates to be used
as landmarks since lines are determined by a large number of pixels which makes it possible
to locate them accurately. Line features can be detected even if they are partially occluded,
which makes lines an effective and reliable image feature. Lines are natural in the sense that
a number of prominent lines can be found in indoor environments [DYOH03, DYOC04].

The following chapter presents feature extraction for self-localization using the stereo vision
system. After reviewing the related work done in this field, the stereo vision system will be
introduced.

3.1 Related Work

Currently, soccer robots of the size of Tinyphoon are marked on their top with some color
patterns, which are then tracked for position estimation using a global camera and a host
computer [BWN04, DBBD03]. This work aims at a shift towards complete autonomy, where
all sensing and processing is done by the onboard sensors. However, feature extraction
techniques used for localization of other (bigger and slower) soccer robots and also of indoor
mobile robots with methods that could be applied to this domain are reviewed briefly.

Gutmann and Schlegel [GS96] use LRF mounted on top of the robot with a 360 ◦viewing
angle to obtain dense range scans of the surrounding walls in the environment. The robot
position is estimated by matching a new scan to a reference map of scans. Dead reckoning
information is combined with the measurements from the scan matcher with a KF. Similarly,
Iocchi and Nardi [LN02] use the HT [DH72] to extract line segments from range data. These
line segments are then matched with the reference map of the environment. This match is
then finally integrated with odometry information by means of an EKF. The drawback of
using a range sensor is that it requires the environment to be surrounded by walls. In a more
natural wall free environment, vision seems to be the only effective sensor [UNMK03].

Vision based approaches reported in [ERF+00, MMH04, SSB03] are based on detecting color
marked features such as goal posts and corners. In such context, localization depends highly
on robust recognition of color markings that have to be explored around the field. For robots
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with common cameras, searching these marks distracts them from concentrating on game
objects [Hue04].

Adorni et al. [ACM99] use two wide angle cameras for localization of their goal keeper robot.
The robot uses the white lines of the penalty area as landmarks which are detected by applying
the HT to those image pixels that are segmented as white (after a color segmentation) and
belong to an edge. Lines extracted from both images are symmetric if the robot is at its
default position. The analysis of the asymmetry of the two views make it possible to estimate
the robot’s absolute position. The very specific details of the method make it difficult to be
adopted by other robots and furthermore it is hard for the same robot to localize itself in
other parts of the field.

Utz et al. [UNMK03] detect image pixels belonging to field markings on the basis of color
transition, which are then transformed into the Hough parameter space. Filtering feature
points that may belong to line segments on the basis of color transitions makes the method
dependent on color segmentation.

Jong et al. [JCBJ02] divide the edge image (edges are marked as color transitions in the color
segmented image) into small sub-images. Lines in each sub-image are detected by applying
the HT and selecting the best two peaks from each sub-image. This gives a rough estimate
of the lines. Next, a sub-pixel edge detector is run on the red component of the RGB image
perpendicular to the lines found with the HT. The red component is chosen because it gives
the best contrast between green and white. The edge pixels are then converted to calibrated
camera coordinates and lines are fitted through these points (converted edge pixels) with the
least square method.

Huebner [Hue04] detects pixels belonging to field lines based on their symmetry in the image.
These pixels are then grouped into line segments using local operations. This method can only
detect field markings and can not scale to detect other features such as the field boundary.

Bandlow et al. [BKHS00] detect the field boundary area by a dilatation operation applied on
both the wall and the field region followed by an intersection of the two resulting regions.
They use two different approaches; the first approach transforms the skeleton of the boundary
area into contours, whereas, in the second method a sub-pixel accurate edge filter is applied
to the y-channel within the boundary area. These edges are then transformed into a set of
contours. Contours are mapped into the camera coordinate system to be used for position
estimation of the robot.

Herrero-Pérez et al. [HPMBS05a] detect corner features made by field lines. Corners are
detected using a method from Sojka [Soj02] which is based on the variance of the gradient
of the brightness. Corners produced by this method are then filtered depending on whether
they come from a white line segment or not.

Christensen et al. [CKKK94] use the current position estimate of the robot to make projec-
tions from the known environment corresponding to a prediction of what a camera is expected
to see from a given view-point. These projections are then used for matching against line
segments extracted from images. Line segments in the image are detected by using least
square optimization of edge points along the predicted line. Such method would only work
if the current position estimate is close to the actual one.

Marques et al. [ML01] use an omni-directional camera to get 360 ◦view of the field. They
apply the HT to detect field lines and then correlate them with the field model to deduce the
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robot position. The drawback of such a setup is the low resolution of the camera [UNMK03]
and requirement for the extra-space to fit the camera and mirror.

Different local line detection schemes [BHR86, GSN04, CB03] together with variants of
the HT such as Randomized Hough Transform (RHT) [XOK90], Connective Randomized
Hough Transform (CRHT) [KH97], Extended Connective Randomized Hough Transform
(ECRHT) [KK00], Probabilistic Hough Transform (PHT) [KEB91] (see [Lea93] and [KHXO95])
were reviewed. The probabilistic HT methods are the recent developments but have the draw-
back that they require some stopping criteria, which is utilized to stop the random sampling
of pixel pairs. The stopping criterion could be a specified number of pixel pairs. When the
number of sampled pixel pairs reaches the specified number, the process would stop. In a
practical implementation, a suitable stopping criterion is selected by the users through the
tests of different numbers of pixel pairs [CG99].

The main difference between the proposed method and previous methods lies in detection
of line segments and their classification if they belong to field markings. Corners, junctions
and line intersections are detected using semantic interpretations of these segments. These
features are then put into a stereo algorithm to compute their three dimensional position,
which is finally used in estimation of the robot position and orientation.

3.2 The Stereo Vision System

In the following working of the stereo vision system is discussed. Using the notations and
coordinate systems introduced in Appendix A, the pose of a robot moving on a flat surface
has three degrees of freedom as p =

[
x y θ

]T . The robot pose is estimated by finding
a transformation between landmark features in robot and world coordinate systems. For
detection of landmark features, the robot is equipped with a stereo vision system. Fig. 3.1
shows a simplified construction of the robot vision system. In this figure, the rotation angle
(γ) of the robot head and tilt of the vision system (β) are set to zero, which result in alignment
of C0, C1, and C2. C0 and C1 are overlapping, whereas, C2 is translated along the x-axis.
L and R represent the origins of the left and right cameras coordinate systems, respectively.
Image pixels are denoted by (ul, vl) and (ur, vr), where the subscript l and r refer to the left
and right image. The u and v axes of the image plane are in opposite direction to yC2 and zC2

axes respectively. The separation between the two cameras (the stereo baseline) is denoted
by b and f is the focal length. Assuming identical cameras, parallel image planes and aligned
epipolar lines, a point pC2 =

[
xC2 yC2 zC2

]T in C2 and its projections
[
ul vl

]T and[
ur vr

]T in the left and right image can be related under perspective transformation [TV98].
To illustrate the relationship between pC2 and its projections on the image planes, the similar
triangles of Fig. 3.1 are redrawn in Fig. 3.2. From ∆A3A4A5 and ∆A1A2A4 as shown in
Fig. 3.2, (3.1) can be obtained by equating ratios of the corresponding sides. Similarly, (3.2)
and (3.3) result from equating side ratios from ∆B3B4B5 and ∆B1B2B4 and ∆C3C4C5 and
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Figure 3.1: Geometric construction of the robot’s stereo vision system

∆C1C2C4, respectively.

f

ul − ou
=

xC2

yC2 + b
2

(3.1)

f

ur − ou
=

xC2

yC2 − b
2

(3.2)

f

vr − ov
=

xC2

zC2
(3.3)

Solution of (3.1), (3.2) and (3.3) results in (3.4), which is given as follows:

pC2 =

xC2

yC2

zC2

 = f
([
ul

vl

]
,

[
ur

vr

])
=


fb

ul−ur
−b
2

ul+ur−2ou

ul−ur
−b(vr−ov)

ul−ur

 (3.4)

where [ou ov]T is the image center. Using (A.4), the pC2 is transformed from C2 into C0 as
follows:

pC0 =

xC0

yC0

zC0

 =

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

xC2

yC2

zC2

 +

xc

0
0

 (3.5)

where xc is translation of the origin of C2 along x-axis, γ is the rotation angle of the robot
head and β is the tilt of the vision system about y-axis.

The values xC0 and yC0 with respect to a landmark pl = [xl yl]T are used for calculating
range r and angle ψ as illustrated in Fig. 3.3 and given by (3.6) and (3.7).

r =
√

(xC0)2 + (yC0)2 (3.6)

ψ = atan2(yC0, xC0) (3.7)
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Figure 3.2: Similar triangles from Fig. 3.1 illustrating relationship between pC2 and its
projections on the image planes

Figure 3.3: Illustration of the robot range and angle measurements with respect to a land-
mark
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3.3 Detecting Line Features

The primary target is to extract the global structure of the line segments, in the presence
of heavy occlusions. Local methods were dropped as they could not handle a high level
of occlusion. The GBHT is selected for its relative robustness and soundness against noise
especially occlusion and the need to extract a global line structure [MA98].

3.3.1 Line Detection with Hough Transform

The HT is an effective and robust method for finding straight lines fitting 2D points in
images. When introduced for the first time the slope-intercept representation of line (3.8)
was used [Hou62]. This representation has the disadvantage that both the slope (m) and
intercept (c) tend towards infinity as a line approaches the vertical. Duda and Hart [DH72]
suggested a parametrization of the straight line (3.9), which says that any point (x,y) can be
represented by the length (ρ) and angle (θ) of the normal vector to the line passing through
this point from the center of the coordinate system as shown in Fig. 3.4.

y = mx+ c (3.8)
ρ(θ) = x cos θ + y sin θ (3.9)

Figure 3.4: Line parametrization with ρ and θ

According to (3.9) each point (x, y) in the image corresponds to a curve, of period 2π, in the
parameter space. Curves corresponding to collinear points of a line with parameters (ρ1, θ1)
will cross each other at point (ρ1, θ1) in the parameter space [Imm98]. It is clear from (3.9)
that ρ(θ) = −ρ(θ + π). This means that the parameter space with θ ≥ π is redundant. The
parameter subspace with 0 ≤ θ < π is non-redundant and is sufficient to construct the entire
two-dimensional parameter space [Imm98].

Both θ and ρ are continuous variables which are quantized with step sizes δθ and δρ, respec-
tively. This quantization results in a two-dimensional accumulator array, A. The size of A,
Nθ ×Nρ, for the parameter subspace is given as follows [Imm98]:

Nθ =
π

δθ
(3.10)

Nρ =
ρmax − ρmin

δρ
(3.11)

where ρmin and ρmax are the minimum and maximum values of ρ for any combination of x,
y, and θ. At the start of the process the accumulator array is initialized to all zeros. Then for
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each image point (x, y), the values of ρ(θ) are calculated using (3.9) for 0 ≤ θ < π sampled
at every δθ. For a certain sampled value of θ, say θi, the resulting value of ρ is rounded to ρi.

Each cell in the accumulator array counts the number of sinusoidal curves passing through
the corresponding area (of size δθ× δρ) in the parameter space. From the global perspective,
an image pixel could be part of infinite number of lines which means that (3.9) will be
calculated for all values of θ ranging from 0 to π (excluding π). However, image points that
are supposed to be transformed into the parameter space, are the output of an edge detector
which also gives orientation of the edge passing though that point. This information about
the orientation reduces this range considerably. Hence, it is possible to calculate ρ(θ) for
those values of θ which are close to the direction of edge normal, φ [KBS75]. This closeness
could be determined by a given tolerance.

The use of gradient information is illustrated in Fig. 3.5. A polygonal shaped object is shown
in the gray scale image of Fig. 3.5(a). The gradient information can be computed by passing
the gray scale image through a sobel edge detector [GW02]. The gradient magnitude and
orientation is shown in Fig. 3.5(b) and Fig. 3.5(c). Edge pixels that are transformed into the
Hough parameter space are shown by the white lines in Fig. 3.5(b). In Fig. 3.5(c) the values
are from -180 to 180, with low values shown black. Negative values are transformed into the
range 0 to π before they are used in generation of the parameter space. Fig. 3.5(d) shows the
parameter space being generated with the whole range of θ values, whereas Fig. 3.5(e) shows
the case where the parameter space is generated using only values of θ that are close to φ. In
this particular case the tolerance is within ±15 ◦ of the transformed value of φ. Apart from
the obvious gain in speed this is a major aid in finding peaks in the parameter space as the
interference from other lines is reduced.

3.3.2 Peak Detection

A single point in the image corresponds to a curve in the parameter space. Curves correspond-
ing to multiple collinear points cross each other at one single point. From this perspective,
peak detection could be seen as the inverse of the HT as peaks in the accumulator array rep-
resent collinear points in the image which may belong to lines in the image. Peak detection
is accomplished by searching through the accumulator array and choosing cells that meet
certain criteria. For peak detection, an iterative process is implemented, which proceeds as
outlined in Algorithm 1 [GWE03].

Algorithm 1 PeakDetection(H, n, threshold)
Peaks ⇐ 0
for i = 1 to n do

p ⇐ max(H)
if p.value > threshold then

add p to Peaks
clear neighborhood of p in H

else
return Peaks

end if
end for
return Peaks

In Algorithm 1, H denotes the parameter space, n is the number of line segments sought
and threshold is the threshold used in peak detection. The routine max returns a structure
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(a) Gray scale image (b) Edge gradient magnitude (c) Edge gradient orientation

(d) Without using gradient orientation (e) Parameter space generated taking
gradient orientation into considera-
tion

Figure 3.5: Using edge orientation for calculating HT

containing value, ρ, and θ corresponding to the maximum value in H. The algorithm returns
Peaks, which is a list of (θ, ρ, value) values. Peaks in the parameter subspace represent
potential line segments in the image. Peaks could be spurious. This is a simple way of peak
detection and better results could be achieved by filtering (e.g. the butterfly filter [LB87])
the parameter space before searching for peaks. The threshold is given as input, however, it
can be specified as some percentage of the highest value in the accumulator array. The pre-
defined neighborhood is a rectangular area around the peak. By clearing a window around
the peak, the risk of selecting spurious values close to this peak is reduced. The size of the
window is critical and is difficult to determine [Ågr03]. A too small size will leave spurious
peaks, whereas, a too high value will risk eliminating a true peak.

The next section discusses verification of peaks detected and also completes the line descrip-
tion. The parameters (θ, ρ), length l and the coordinates of the end points (x1, y1) and (x2, y2)
of a straight line constitute the complete line segment description [AA94].
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3.3.3 Peak Verification and Completing Line Segment Description

After peaks are detected in the parameter space, they are tested if they represent true lines.
Input to this process is the list of all feature points (FP ), a list containing the detected peaks
(Peaks) and the minimum length of a segment (Lmin). Pixels in one group are separated
into multiple line segments if their separation is greater than Gapmin, whereas, two line
segments from a group are merged if the separation between them is less than Gapmax.
The parameter list Peaks is sorted in descending order. Verification of peaks is outlined in
Algorithm 2 [BSN05].

For each peak, the loop listing from Line 6 to Line 13 of Algorithm 2, iterates through the
whole list of edge pixels to find pixels that might have resulted in that peak. These pixels
are added to F if their edge orientation is in compliance with θ (see Line 8). If the number
of pixels corresponding to this peak are less than the minimum length, the peak is declared
spurious.

After a successful minimum line length test, all pixels in F are rotated by Ω in Line 20. This is
required to find gaps between pixels since the two dimensional problem of finding separation
between pixels is transformed into a one dimensional problem. The rotated pixels have same
y-value, which is equal to ρ. Pixels in the main group F are divided into multiple sub-groups
if the separation between x-values of the rotated pixels is more than Gapmin. Each sub-group
of pixels is tested against Lmin. Line segments in different sub-groups are merged if there
separation is less than Gapmax. Rotation is in clockwise direction for positive values of Ω.
The process of rotating pixels is illustrated in Fig. 3.6. The actual line segments are shown
by thin solid lines, whereas, their rotated versions are shown by thick solid lines. The dotted
lines show any required extension of the line segments to meet the normal. Fig. 3.6(a) shows
the case for positive value of ρ and θ < 90 ◦. Similarly, the case for θ > 90 ◦ is shown in
Fig. 3.6(c). Here Ω is negative and the rotation is in counter clockwise direction. Finally,
Fig. 3.6(e) shows rotation of a line segment with negative value of ρ and θ > 90 ◦.

The loop from Line 23 to Line 36 divides pixels from the same group into multiple line
segments if separation between the rotated x-values is greater than Gapmin. For each segment
the minimum length is tested in order to remove pixels that could have accidentally aligned
with other pixels. The code from Line 38 to Line 49 merges two line segments if their
separation is less than Gapmax. If two line segments are merged then length of the new line
segment is the length of the two segments plus the gap between them. Removing pixels from
the main list of feature points (see Line 50) helps accelerate the process and reduces the
possible interference that they may cause in the verification of other line segments [Dav92].

The above method of line verification and calculation of additional parameters such as line
length and end points is iterative in nature. There are other state of the art non-iterative
approaches that are based on the fact that the spread of votes in the accumulator array
is dependent on the length and position of line segments. Akhtar and Atiquzzaman [AA92]
determine the extent of the spread of votes in any column of the accumulator array to calculate
the length of a single line segment in the image. The limitation of this algorithm is its inability
to determine the end points of the line segment. Atiquzzaman and Akhtar [AA94] calculate
the complete description of single line segment in an image. They select some arbitrary
column in the accumulator array at a known distance from the detected peak. This column
is then scanned for the first and last non-zero accumulator cells on which the calculation of
end points of the line segment is based. This method can successfully calculate the end points
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Algorithm 2 PeakVerification(FP , Peaks, Lmin, Gapmin, Gapmax)
1: for i = 1 to Peaks.length do
2: F ⇐ 0
3: ρ ⇐ Peaks(i).ρ, θ ⇐ Peaks(i).θ
4: c ⇐ cos θ, s ⇐ sin θ
5: // finding pixels that might have resulted in this peak
6: for j = 1 to PF.length do
7: if PF (j).x× c + PF (j).y × s == ρ then
8: if PF (j).φ− θ ≈ 0 then
9: add PF (j) to F

10: add connected pixels of PF (j) to F if orientation in compliance with θ
11: end if
12: end if
13: end for
14: // test if this peak is spurious
15: if F.length < Lmin then
16: continue
17: end if
18: // all pixel in F are rotated by Ω = 90 ◦ − θ.
19: // after rotation all pixels lie parallel to x-axis as shown in Fig. 3.6
20: F ′ ⇐ rotate (F , Ω)
21: F ′ ⇐ sort (F ′)
22: L′ ⇐ 0, l ⇐ 0, l.x1 ⇐ F ′(1).x, l.y1 ⇐ F ′(1).y
23: for k = 2 to F ′.length− 1 do
24: // pixels with the same ρ and θ are divided into multiple line segments if gap between consecutive

pixels is greater than Gapmin

25: if F ′(k).x− F ′(k − 1).x > Gapmin then
26: l.x2 ⇐ F ′(k − 1).x
27: l.y2 ⇐ F ′(k − 1).y
28: l.length ⇐ l.x2 − l.x1

29: if l.length ≥ Lmin then
30: add l to L′

31: end if
32: l ⇐ 0
33: l.x1 ⇐ F ′(k).x
34: l.y1 ⇐ F ′(k).y
35: end if
36: end for
37: // line segments are merged if their separation is less than Gapmax

38: for k = 1 to L′.length− 1 do
39: if L′(k + 1).x1 − F ′(k).x2 < Gapmax then
40: L′(k + 1).x1 ⇐ L′(k).x1

41: L′(k + 1).length ⇐ L′(k + 1).x2 − L′(k).x1

42: else
43: l ⇐ rotate (L′(k), -Ω)
44: add l to L
45: end if
46: end for
47: // rotation by −Ω brings the lines to their original position
48: l ⇐ rotate (L′(L′.length), -Ω)
49: add l to L
50: remove F from PF
51: end for
52: return L

and consequently the length if there is only one line segment in the image. A more detailed
analysis of the spreading of votes around a peak (formation of the butterfly) is reported by
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Rotating line segments for completing the line segment description

Kamat-Sadekar and Ganesan [KSG98]. This method is an extension of [AA94] to determine
a complete line description of multiple line segments. They select two columns on each side
of the detected peak. These columns are scanned from ρmin(θ) to ρmax(θ), which represent
the limits on ρ for a given θ for an image consisting entirely of feature points.

The non-iterative method of finding end points and line length is computationally efficient
as compared to the iterative method [AA94, KSG98]. However, real world images are too
complex and result in distorted butterflies around peaks in the parameter space.
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3.4 Detecting Field Markings

Classification of line segments detected in an image is discussed in this section. All line
segments extracted are tested if they are field markings or belong to other objects. Field
markings are white lines/arcs drawn on a dark surface. In terms of gray scale gradient, such
markings can be seen as a sequence of a negative gradient followed by an opposite positive
gradient of equal magnitude or vice versa as shown in Fig. 3.7. A synthetic image of the robot
environment is shown in Fig. 3.7(a). Three line segments in this image can be classified as field
markings. Passing the y-channel of this image through a sobel edge detector result in gradient
magnitude and orientation as shown in Fig. 3.7(b) and Fig. 3.7(c), respectively [GW02]. The
resulting dual edge features can be seen from the gradient magnitude and orientation images.
The yellow and white walls also result in such edge points but they can be differentiated
based on their separation. In Fig. 3.7(c) the values are from -180 ◦to 180 ◦, with low values
shown in black.

(a) (b) (c)

Figure 3.7: Differentiating between field marking and other straight lines

Classification of field marking is carried out after a successful minimum length test at Line 15
of Algorithm 2 as discussed in Section 3.3.3. The algorithm is outlined in Algorithm 3.4 and
illustrated in Fig. 3.8. Input to the process of line classification is gradient magnitude Gm,
gradient orientation Go, maximum width of the line segment W ′ and a list L containing pixels
of the line l to be classified. The value of W

′
depends on the maximum allowed width of a

field marking in terms of image pixels.

As the classification is based on the existence of nearly parallel line segments of opposite
gradient orientation, search direction is perpendicular to the line. There are two factors
which help in deciding if a line segment should be classified as field marking or not. The
algorithm tests a certain percentage of total pixels, say ξh%. However, a line segment is
classified as field marking, if ξl% of the total pixels tested have dual edges. The requirement
is 0 < ξl ≤ ξh and ξl ≤ ξh ≤ 1. The values of ξl and ξh are determined empirically.

Fig. 3.8 illustrates the process of classification of a pixel. For a pixel in L, the inner loop
(starting at Line 5) of Algorithm 3.4 iterates from 1 to W ′. x′ is the loop counter for which y′

is calculated as given at Line 6. In each iteration an edge pixel of opposite gradient orientation
is searched. If an edge pixel of opposite gradient orientation is found, it is classified as marking
and the inner loop is terminated. The search is carried out in both directions perpendicular
to l.
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Algorithm 3 LineClassification(Gm, Go, W ′, L)
1: count ⇐ 0
2: for i = 1 to ξh × L.length do
3: x ⇐ L(i).x
4: y ⇐ L(i).y
5: for x′ = 1 to W ′ do
6: y′ ⇐ round(x′ × tan θ)

7: // test if there is a dual edge at (x + x
′
, y + y

′
)

8: if Gm(x + x′, y + y′) 6= 0 & abs(Go(x + x′, y + y′)−Go(x, y)) ≈ 180 ◦ then
9: count ⇐ count + 1

10: // break inner loop
11: break
12: else if Gm(x− x′, y − y′) 6= 0 & abs(Go(x− x′, y − y′)−Go(x, y)) ≈ 180 ◦ then
13: count ⇐ count + 1
14: // break inner loop
15: break
16: end if
17: end for
18: // testing if ”enough” dual edges have been found
19: if count ≥ ξl × L.length then
20: return true
21: end if
22: end for
23: return false

Figure 3.8: Detection of field markings

3.5 Detecting Corners and Junctions

The fully described line segments have end points, length, length of normal and orientation
as attributes, which are used to detect junctions (T -junction and Y -junction), corners and
line intersections. n line segments in an image may result in nC2 = n(n−1)

2 intersection points.
These intersection points can be calculated by solving (3.9) for all combinations of two line
segments. The intersection point p may not lie close to one or both of the line segments.
Fig. 3.9(a) shows an example where p lies on both l1 and l2, whereas, in Fig. 3.9(c) it lies
only on l2. The length of normal and orientation of l1 and l2 are denoted by ρ1 and θ1 and
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ρ2 and θ2, respectively. The process of calculating the intersection point and its verification
for a pair of line segments l1 and l2 is given in Algorithm 4. Illustration of the algorithm is

Algorithm 4 LineIntersection(l1, l2)
p′ ← 0
// calculate intersection p of l1 and l2 using (3.9) for (ρ1,θ1) and (ρ2,θ2)

p.x ⇐ ρ1 sin θ2 − ρ2 sin θ1

cos θ1 sin θ2 − cos θ2 sin θ1
(3.12)

p.y ⇐ ρ1 cos θ2 − ρ2 cos θ1

sin θ1 cos θ2 − sin θ2 cos θ1
(3.13)

if p within image boundary then
// rotate l1 and p by Ω1 = θ1 - 90 ◦

l′1 ⇐
»
l1.x1 l1.y1

l1.x2 l1.y2

– »
cosΩ1 − sinΩ1

sinΩ1 cosΩ1

–
(3.14)

p′ ⇐
ˆ
p.x p.y

˜ »
cosΩ1 − sinΩ1

sinΩ1 cosΩ1

–
(3.15)

if l′1.x1 − δ ≤ p′.x ≤ l′1.x2 + δ then
// rotate end points of l2

l′2 ⇐
»
l2.x1 l2.y1

l2.x2 l2.y2

– »
cosΩ2 − sinΩ2

sinΩ2 cosΩ2

–
(3.16)

if l′2.x1 − δ ≤ p′.x ≤ l′2.x2 + δ then
return p

end if
else

return 0
end if

else
return 0

end if

given in Fig. 3.9. The lines in Fig. 3.9(a) intersect at point p and satisfy all the conditions
of the algorithm. The intersection shown in Fig. 3.9(c) is not real and is detected when the
first line is rotated around the origin.

The tolerance δ is dependent on the amount of distortion that can be tolerated in the position
of an intersection. The position of an intersection point with respect to the end points of
the line segments helps to classify an intersection as a corner or a junction of a given type.
Furthermore, the information about the type of line segments (as a field marking or not) helps
to recognize intersection points uniquely. In case there are m (with m > 2) line segments
meeting at one point there are mC2 = m(m−1)

2 intersection points close to one another. The
average is taken as the required position of the junction if two or more intersections are within
a given tolerance. The rotated line segments are shown by thick solid lines in Fig.3.9. The
information about the end points of line segments allows us to detect corners and junctions
with this method. On the average there are 10− 15 line segments which makes this method
attractive [BSN05].

Davies [Dav88] introduced an approach to corner detection based on the Generalized Hough
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(a) (b)

(c) (d)

Figure 3.9: Finding line intersection (a) line segments intersect each other at p (b) rotated
x-coordinate of p lies in between the x-components of the rotated end points
(c) virtual intersection (d) rotated line together with the virtual intersection

Transform (GHT) [Bal81]. He uses a form of the generalized HT in which the parametrization
is optimized for shapes having straight edges [Dav87]. This method has the advantage that
it can be used to find corners which may be blunt or occluded.

Barret and Peterson [BP01] detect corners, junctions and line intersection by exploiting the
accumulator array of the HT. After the generation of the parameter space and detection of
peaks they perform a second pass through the edge map and compute the line integral over
each sinusoid that corresponds to the current edge point. If a sinusoid passes through more
than 2 peaks, the sum/integral is stored into a new accumulator array which has direct one-
to-one correspondence with the original image. This method could also be applied to detect
a virtual junction if all image pixels are considered as edge pixels in the second pass.

Another approach is that of detecting the corners directly by template matching technique.
However, if the corners are not sharp the templates would be so large that the resulting search
would be intractable. This problem is further complicated if corners of different orientations
and different angles have to be searched. For example Q×M ×N2 × n2 operations have to
be performed to detect corners using M n× n pixel templates corresponding to M possible
orientations of a corner with Q different angles in an N ×N pixel image [Dav88].
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3.6 Detecting Color Transitions

Goals are marked with different colors (blue and yellow). The vertical edges of the goal
corners are normally missed during edge detection and subsequent line segment extraction as
the change in y-channel value between white and yellow is not significant and the length of
the edge is small as compared to other lines in the environment. Therefore, goal corners are
extracted based on color transitions. The process is outlined in the following paragraphs.

In the left camera image, pixels are tested if they belong to either blue or yellow color. This
’segmentation’ is done at a lower scale. Every fourth pixel in a row of every fourth row is
tested, which results in a rectangular window around the blue or yellow color patches, if any.
The neighborhood of this rectangular window is searched for color transition (color transition
from white to yellow, yellow to white, white to blue, or blue to white represents a goal corner),
using a full scale. If a color transition is detected in the left image, the corresponding feature
points are searched in the right image. If the corresponding feature point is detected in the
right image, its distance from the current robot position is calculated. Detection of two such
points determine the robot position as shown in Fig. 4.1(b).

The use of two colors to detect a transition makes the process robust against outliers. All
rows inside the rectangular window are searched for transition pixels. One value in a group
of pixels is taken as the x-component of the edge between the wall and the colored goal.
Outliers in the group are eliminated using simple statistical measures. The calculated stereo
range is used to estimate robot position and orientation as discussed in the next chapters.

3.7 Discussion

The global nature of the HT extracts the strongest groups of collinear pixels. Within each
group, locally significant but spatially separated (sub-groups of) pixels are merged based on
parameters minimum gap Gmin, maximum gap Gmax and the minimum length of the line
segment Lmin. These parameters make the merging process robust against random noise.

The distinct and bright color of the goals makes them strong candidates to be selected as land-
marks. Furthermore, calculating robot position and orientation with respect to goal corners
is efficient since only N/16 pixels are tested to determine the rectangular boundaries around
the color patches (if any), N being the total number of pixels. This results in localization of
color patches which are then searched for the actual transitions.

The intersection point of two line segments is calculated based on ρ and θ values of the
selected peaks. Further improvements in performance could be achieved if these values are
recalculated once the line segments are extracted. The next chapter presents global self-
localization using these landmarks.
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Feature Based Global
Self-localization

The discussion here builds on the previous chapter and presents landmark based global
self-localization. Global localization is required for an initial startup or at a later stage
when the robot loses track of its pose during navigation. Existing approaches are based on
dense range scans [GS96, GWN01], active beacon systems [HTMA03, Kle92], artificial land-
marks [BSB+00, JKLK02], bearing measurements using omni-directional cameras [JIPB03,
BAK04] or bearing/range calculation using single frontal cameras [BKHS00, CRK99], while
a feature based stereo vision system for range calculation is presented here. Location of
the robot is estimated using range measurements with respect to distinct landmarks. Un-
like methods based on angle measurements, this method requires only two distinct land-
marks [BS06].

Distinct landmark features are sparse in our application domain and are frequently occluded
by other robots. This makes simultaneous acquisition of two or more landmarks difficult.
Therefore, another method is proposed that requires only one distinct landmark [BSG06].
The method requires independent estimation of the robot absolute orientation. To enable
the robot to estimate its absolute orientation, it is equipped with a compass in addition to
odometry and the stereo vision system [NM05, NCB+06]. Uncertainty analysis of both the
methods is also presented in this chapter.

4.1 Related Work

If the robot can only measure angles between landmarks then a minimum of three distinct
landmarks are required to triangulate the robot position on a planar surface [YM05, Sug88].
Furthermore, methods based on angle measurements are sensitive to the relative position
of robot with respect to the landmarks [SB93]. Whereas, when range measurements are
available this requirement drops to two if ordering of the landmarks with respect to the robot
is possible [BS06].

There have been approaches to maximize the chances of simultaneous acquisition of multiple
landmarks using omni-directional cameras with viewing angle of 360 ◦ [SB05, JIPB03]. A
camera looking at a mirror of special shape provides the robot with visual information in
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all directions simultaneously. The work reported in [ML01] is an example of such a setup
used for localization of soccer robots. As the resolution and camera range depend on the
mirror geometry, the resolution of objects is usually smaller than that of directional im-
ages [UNMK03]. The mirror should be fitted at a required height in order to have a global
view of the environment. This could be a drawback if the maximum height of the robot is
constrained.

Approaches using single frontal cameras in conjunction with odometry are widely used for
self-localization. These methods are either based on calculating range and/or bearing based
on known shape and size of landmarks or enforce special constraints on environment fea-
tures [BKHS00, CRK99]. Choi et al. [CRK99] present a localization system for mobile in-
door robot using a monocular vision system. They use calibrated camera to acquire depth
of features. The robot’s actual position is computed by referencing door corners over the
floor edge, and heading by direction of the floor edge lines. With frontal cameras one can
have high resolution but the field of view is limited [UNMK03]. Furthermore, range measure-
ment using single image is not always robust especially for targets near the altitude of the
sensor [NJW+98].

Error in robot observations results in uncertain position estimate. In addition to estimating
the position, it is also important to know the reliability of this estimate. One method to
accommodate observation and landmark position error, an observation tolerance ε and land-
mark position tolerances σi, i = 1, 2, . . . can be used [AH93]. ε is a maximal error in sensor
measurement, and likewise σi is a maximal error in the absolute position of landmark i. Using
the notation as introduced in [AH93], landmark i can be defined as pi =

[
pi − σi pi + σi

]
,

and an observation as oi =
[
oi − ε oi + ε

]
. The basic idea of the algorithm reported

in [AH93] is to recognize in the camera image those entities that stay invariant with respect
to the position and orientation of the robot as it travels in its environment. A triple of point
landmarks on a wall in the environment is an example of such invariant entities [DK02]. The
algorithm cannot be run if the number of observed landmark points is less than three [AH93].

Matthies and Shafer [MS87] use a stereo vision system to estimate translation and rotation
between two three dimensional sets of points. The robot position is estimated as a succession
of each transformation between frames. Similarly, Kriegman et al. [KTB89] use a stereo vision
system for robot navigation in indoor environments. The robot position is tracked, based on
information gathered from features which move between each successive motion of the robot,
while its position uncertainty is calculated using first order approximation. The drawback of
such an approach is that without referencing global features in the map, uncertainty increases
with the passage of time.

Fuzzy logic based methods [Saf97] can also be used to account for error in odometry and
external sensors and to represent uncertainty in robot location. Buschka et al. [BSW00]
adopt this technique for localization of Sony Aibo robots using lines and color marking in the
environment, whereas Herrero-Perez et al. [HPMBS05b] use corner formed by field lines.

To address these limitations a stereo vision based range estimation is proposed. This approach
enables range estimation of landmarks and the use of bi/trilateration approach helps to
calculate robot position. Moveover, the pivoted camera head enables the robot to have
a 360 ◦view of its environment. The robot could acquire additional information from the
environment by rotating its head. The major advantage of the approach is that it requires
less landmarks as compared to the angle based methods [BS06, BSG06].
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For uncertainty analysis a basic assumption about error distribution in the left and right
camera images is made and this error is then propagated into the robot position estimate.
For error propagation, it is further assumed that the non-linear models that link the robot
observations to its position can be represented by the first two components of the Taylor
series expansion around the estimated observation. Experimental results have shown that
this model can adequately capture the uncertainty in robot position that arise from sensor
imperfections, whereas, error in landmark location in the global map and correspondence
analysis is ignored [BSKN07].

4.2 Landmark Based Position Estimation

In the following sections different methods of position estimation using range or angle mea-
surements are discussed. The discussion provides basis for derivation of the robot position in
Section 4.3.

4.2.1 Position Estimation using Range Measurements

Let us consider that while navigating in an environment, a robot detects a unique landmark
feature pl1 whose location is known in the global map and estimates its distance r1. With
this information the robot position is constrained to a circle C ′ of radius r1 and center at
pl1, considering that the robot is moving on a flat surface. This phenomena is illustrated in
Fig. 4.1(a).

Similarly, detection of landmark point pl2 and its range estimate r2 will constrain robot
position to circle C ′′. Concurrent identification and range estimation of two landmark points
will constrain the robot position to the intersection of two points. Fig.4.1(b) shows that after
identification of two landmark points pl1 and pl2, the robot is at one of the two possible
positions p1 or p2, which are determined by the intersection of circle C ′ and C ′′. The correct
solution among the two possible candidates can be determined by assuming a fixed order
of landmarks with respect to the robot [Sug88]. For example it may be known from the
environment map that landmark point pl1 appears to the left or right of pl2 from certain
areas in the environment or one of the solutions lies at impossible locations.

The ambiguity can also be resolved by identifying three landmarks simultaneously. Fig. 4.1(c)
shows that the robot identifies landmark point pl3 and measures its range r3. Identification
of pl3 and its range estimation constrains the robot position to circle C ′′′. It is clear from
the figure that when all the three points are extracted concurrently the robot position is at
the intersection of C ′, C ′′ and C ′′′.

From the above discussion it is clear that with perfect distance measurement to three distinct
landmarks or to two distinct landmarks with ordering constraint, the robot position can be
calculated uniquely. However, depending on the onboard sensors, the robot may not be able
to estimate distance to landmarks in its environment. If it can only estimate angle between
landmarks then a minimum of three landmarks are required for position calculation. This is
explained in the following section.
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(a) (b)

(c)

Figure 4.1: Position estimation using range measurements (a) with range estimation to a
single landmark the robot position is constrained to a circle. If the robot is able
to identify two landmarks and measure there range its position is constrained
to two points as in (b) or to a single point when three landmarks are extracted
concurrently as in (c)

4.2.2 Position Estimation using Angle Measurements

Fig. 4.2(a) shows a case where the robot identifies two distinct landmarks pl1 and pl2 in its
environment and measures the angle α between them. The angle between the two landmark
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points remains equal to α as long as the robot is on the circular arc C ′ or C ′′ (shown dashed
in Fig. 4.2(a)) [Sug88, SB93]. The angle, α, formed by the rays from robot position to each
landmark is called the visual angle [SB93]. Again, as in the case with distance measurement
the ambiguity between C ′ and C ′′ can be resolved by considering a fixed order of landmark
points.

(a) (b)

Figure 4.2: Angle based position estimation (a) identifying two landmarks and measuring
angle α between them constrains the robot position to circular arc C ′ or C ′′

(b) using three landmarks and angle measurements the robot position can be
calculated uniquely. The robot p is determined by the intersection of the three
circular arcs C ′, C ′′, and C ′′′

In this case there are infinite number of candidate positions and the robot must acquire a
third landmark point in its environment. Since the robot is moving on a flat terrain, visual
angles between three landmark points will constrain robot to the intersection of three circles,
unless all three points and the robot lie on the same circle [Sug88, Kro89, SB93]. Fig. 4.2(b)
illustrates that the robot identifies three landmark points pl1, pl2 and pl3 and measures the
visual angles α, β and γ. Angle α is formed between pl1 and pl2. The angle α stays the
same as long as the robot is somewhere along the circular arc C ′ shown in red. Similarly,
β is formed between pl2 and pl3 which constrains the robot position to C ′′. The angle γ
constrains the robot position to C ′′′ and is formed between pl1 and pl3. The intersection of
the three circular arcs result in the position p.

4.2.3 Adding Absolute Orientation of the Robot

Absolute robot orientation can be obtained by equipping the robot with sensors such as
a magnetic compass. This information provides a constraint which results in reduction of
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minimum number of required landmarks for a unique position estimate if combined with
landmark sightings. As can be seen in Fig. 4.3(a) knowledge of absolute orientation of the
robot and identification of landmark point pl1 constrains the robot orientation to line L′.
When this constraint is combined with the one shown in Fig. 4.1(a), the robot position
can be calculated by the intersection of line L′ and circle C ′. Further details are given in
Section 4.3.2.

Similarly, additional knowledge of robot orientation in Fig. 4.2(a) will constrain the robot
position to a single point. In Fig. 4.2(a) the robot detects landmarks pl1 and pl2 and mea-
sures the visual angle α, which constrains the robot position to the circular arc C ′. When
this knowledge is combined with absolute orientation of the robot (θ), the robot position is
constrained to a single point on the circular arc. This phenomenon is illustrated in Fig. 4.3(b)
as intersection of L1 and L2. Detection of pl1 and measurement of angle ψ1 when combined
with θ constrains the robot position to L1, whereas detection of pl2 and measurement of
angle ψ2 defines the constraint L2. Simultaneous detection of pl1 and pl2 and measurement
of angles ψ1 and ψ2, in addition to θ define a single point p as the robot location. This
point can be calculated as the intersection of lines L1 and L2 shown in blue and red color in
Fig. 4.3(b).

(a) (b)

Figure 4.3: Typically, the minimum number of landmarks can be reduced by one if abso-
lute orientation of the robot is available (a) combining range estimation with
absolute orientation of robot (b) two landmarks are required when only angle
between landmarks can be estimated

4.2.4 Using a Virtual Landmark

Range measurement with respect to a distinct landmark and knowledge of absolute orienta-
tion is sufficient to calculate the robot orientation. Another approach of position estimation
using a single landmark uses the concept of runningfix [Cas86]. The underlying principle
of the running fix is that an angle or range obtained from a landmark at time k − 1 can be
utilized at time k, as long as the cumulative movement vector, recorded since the reading was
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obtained, is added to the position vector of the landmark, thus creating a virtual landmark.
This approach is explained in the following paragraphs [BSG06].

Going back to the case shown in Fig. 4.1(a), where the robot detects a distinct landmark
point pll and measures its distance r1 from it, after detecting this landmark the robot tries to
identify other landmarks. However, if it is the only landmark that can be detected from the
current position of the robot, it moves to a new point and tries to detect the same landmark
again. Movement of the robot by δx and δy can be seen as motion of the circle C ′ by the
same amount. Radius of the circle remains equal to r1 as all candidate positions undergo
the same displacement. This moment of the circle can be described as if the circle’s center
has moved to a new location, namely, pl2 as shown in Fig. 4.4(a). pl2 can be considered as
a virtual landmark [Cas86, BSG06]. The robot is now somewhere on circle C ′′. The original
circle is labeled C and is shown dotted in Fig. 4.4(a).

(a) (b)

Figure 4.4: Position estimation using a virtual landmark (a) robot’s movement is effec-
tively motion of the circle by the same amount (b) robot is at the intersection
of C ′ and C ′′

Suppose, that after moving to this new location the robot detects the same landmark pll

again and measures its range r2. Identification of this landmark and its range measurement
will constrain the robot position to a new circle, C ′, which is shown in Fig. 4.4(b). The
illustration in Fig. 4.4(b) shows that the intersection of circle C ′ and C ′′ will give possible
robot position in the global coordinate system. One of the intersection points p1 or p2 will
qualify for the possible robot position. The ambiguity between the two possible positions
of the robot can be resolved by a rough estimate of the robot position or by tracking both
candidate positions until further information is available. Resolving the ambiguity between
the two position is not always possible, nevertheless, the robot position belief is concentrated
to two points on the circle.
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4.2.5 Position Uncertainty Due to Erroneous Measurements

So far the discussion is based on perfect identification of landmarks and error free measure-
ments, hence, perfect localization. However, measurements are never perfect, which result in
an uncertain position estimate [SB93]. Errors in landmark location, range and visual angle,
absolute orientation of the robot can vary significantly in magnitude and would be due to a
variety of reasons ranging from sensor imperfections to errors in correspondence [SB93].

For example, as illustrated in Fig. 4.5(a), with an erroneous range measurement the robot
can be anywhere on the thick ring instead of a perfect circle of Fig. 4.1(a). The intersection
of such thickened rings will determine the uncertainty in robot position when two or more
landmarks are used. The area of uncertainty is shown shaded in Fig. 4.5(b) and Fig. 4.5(c)
for the case of two or three landmarks, respectively.

Uncertainty in visual angle estimate will constrain the robot position to a thickened ring
as shown in Fig. 4.6(a). The thickness of the ring is determined by the amount of error in
visual angle [Kro89]. When three landmarks are used, error in estimate of visual angles α,
β and γ will constrain the robot position to the intersection of such thick rings as shown in
Fig. 4.6(b).

Similarly, landmark identification and uncertain absolute orientation of the robot constrains
its location to a cone shaped area. The intersection of such a cone and a thick circle will
determine the uncertainty of robot location if this information is combined with an erroneous
range estimate as shown in Fig. 4.7(a). If the only information is the absolute orientation
of the robot and the robot detects two landmarks, then its position is constrained to the
intersection of two cones, labeled L1 and L2 as shown in Fig. 4.7(b).

4.2.6 Error in Landmark Identification and Matching

In addition to measurement errors, there could be error in landmark identification and match-
ing with the world map. Moreover, some landmarks may not be detected, and some spurious
landmarks may be detected. A missing landmark may not effect the localization if enough
landmarks are detected. However, if a landmark point is spurious then the localization al-
gorithm may determine an incorrect solution [Kro89]. Additionally, there could be error in
landmark location in the global map of the environment and error in correspondence anal-
ysis. Errors in correspondence is that the point which has been identified as point x on the
map may really be point y [SB93]. Furthermore, the assumption that the landmarks are
distinguishable may not always hold.

4.2.7 Sensitivity to Landmark Configuration

Landmark based methods are sensitive to its configuration which is a major drawback [SS00].
The angle based methods are not applicable when all the landmarks and the robot lie on a
circle or in a straight line. For angle based methods the most accurate position estimate
occurs when the robot is at the center of the circular zone constructed by the three land-
marks [SZL95]. Errors increase proportionally to the distance from the circle center. Also,
there are singularities in which the errors reach extreme values. These singularities are proven
to be on the bounding circle constructed by the three landmarks/beacons [SS00, TA93].
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(a) (b)

(c)

Figure 4.5: Uncertainty due to erroneous range measurements (a) the position of the robot
is restricted to a thickened ring if there is error in distance measurement to the
landmark. Intersection of such rings will give position uncertainty when two or
three landmarks are detected as shown in (b) and (c)

Sutherland and Thompson [SB93] address the localization problem using distinguishable land-
marks in the environment. They analyze the areas of uncertainty for different configuration
of three landmarks and the errors in visual angle estimates to those landmarks, and show
that for a given error in angle measurement the size of the localization error varies depending
on the configuration of landmarks.

55



Chapter 4 Feature Based Global Self-localization

(a) (b)

Figure 4.6: Uncertainty due to error in estimate of visual angle (a) the robot is somewhere
on the thick ring when the angle between two landmarks is in error. Intersection
of such thick rings will determine the uncertainty as shown (b)

4.2.8 Position Estimation with More Than Three Landmarks

For much of the reasons stated in the previous sections, landmark based methods for position
estimation with three landmarks does not yield an optimal position estimation. To overcome
this problem, more than three landmarks have to be identified in the environment, and all
the measurements have to be used to get an optimal estimate for the robot’s position. The
geometric method does not lend itself naturally to more than three measurements. Thus,
costly nonlinear minimization techniques have to be employed [Shi02]. Given n landmarks,
there are n!

3!(n−3)! combinations of three landmarks that can be used to compute n!
3!(n−3)!

position estimates by the triangulation method. One way of combining these estimates — to
obtain a final position estimate — is to compute their average [BG97].

Sugihara [Sug88] present an algorithm that tries to find the location of the robot inside a
room using vertical edges extracted from an image taken by an onboard camera whose optical
axis is kept parallel to the ground. The robot measures the direction of rays each of which
emanates from the robot’s position and pierces through at least one of the points in the
environment. The measurements are considered to be error free. The algorithm runs in time
O(n3 lg(n)), where n is number of identical landmark points.

Krotkov [Kro89] followed the approach of Sugihara and formulated the positioning problem as
a search in a tree of interpretation (pairing of landmark directions and landmark points). He
developed an algorithm to search the tree efficiently and to determine the solution positions,
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(a) (b)

Figure 4.7: Error in absolute orientation of the robot result in an uncertain position (a)
robot position is constrained to the intersection of the ring and cone (b) with
two landmarks and erroneous absolute orientation the robot location is deter-
mined by the intersection of two cones

taking into account the errors in the landmark direction angle. According to this analysis, if
the angle between two landmark points is in error, then the possible robot location does not
lie on circular arc, but in a thickened region as shown in Fig. 4.5(b).

Atiya and Hager [AH93], developed a real-time vision-based algorithm for self-localization
under the same assumptions. They mention both the lack of treatment of observation error
in [Sug88] and the disregard with false positives —detecting features that do not correspond to
a known landmark— in [Kro89]. They propose to represent the sensory error by a tolerance,
which leads to a set-based algorithm for solving the matching problem and computing the
absolute location of a mobile robot for indoor navigation.

As triangulation with noisy data is based on solving nonlinear equations with complicated
closed-form solutions, Betke and Gurvits [BG97] argue that standard algorithms that provide
least squares solutions for large numbers of nonlinear equations take too long for real-time
robot navigation. They represent landmarks as complex numbers, which is the key idea to
get a set of n linear equations, where n is the number of landmark points. This set of linear
equations is represented as a vector equation, which is solved in O(n) time. Their robot is
equipped with a camera that points upwards onto a reflective ball which acts like a mirror
of the surroundings. Only a circular, one-dimensional strip of the brightness of each image
is analyzed. The strips provide information on the angle of one landmark relative to another
landmark but not on the distance of the landmarks to the camera. At least three landmarks
are required to find a solution.

Another method to reduce the time complexity of solving the non-linear equations is reported
by Shimshoni [Shi02]. He uses each angle measured to define a linear constraint on the po-
sition and orientation of the robot. For three or more angle measurements the same number
of linear constraints are defined. This linear system is solved using Singular Value Decompo-
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sition (SVD) [PFTV92]. They also estimate the accuracy of the estimate by estimating its
covariance matrix. They propose scaling of the input data to improve quality of results.

4.3 Position Estimation Using Vision Based Range

The presentation of landmark based position estimation in the previous section was based on a
hypothetical sensor that would provide range and angle with respect to point landmarks. The
following builds on it by using stereo vision based range estimates to distinctive environment
features as discussed in Chapter 3. First robot position is calculated using two landmarks.
This is followed by another derivation based on range measurement to a single landmark
combined with the absolute orientation of the robot.

4.3.1 Calculating Position Using Two Landmarks

Using (3.6), range r1 and r2 with respect to landmarks pl1 and pl2 in Fig. 4.1(b) is given by
(4.1) and (4.2) as follows:

r1 =
√

(xC0
1 )2 + (yC0

1 )2 (4.1)

r2 =
√

(xC0
2 )2 + (yC0

2 )2 (4.2)

The circle C ′ and C ′′ can be described using (4.3) and (4.4):

r21 = (x− xl1)2 + (y − yl1)2 (4.3)
r22 = (x− xl2)2 + (y − yl2)2 (4.4)

where (xl1, yl1) and (xl2, yl2) are the elements of pl1 and pl2 representing their location in the
world coordinate system and centers of C ′ and C ′′. The intersection of the two circles can be
found by solving (4.3) and (4.4), which will give the robot position in global coordinate system.
Subtraction of (4.3) from (4.4) and re-arranging terms results in the following expression for
x and y: [

x
y

]
=

[
−D±

√
D2−4CE
2C

A+B (D±
√

D2−4CE
2C

]
(4.5)

where

A =
r21 − r22 + x2

l2 − x2
l1 + y2

l2 − y2
l1

2a

B =
xl1 − xl2

a
C = B2 + 1
D = 2AB − 2yl1B − 2xl1

E = A2 + x2
l1 + y2

l1 − 2yl1A− r21

a = yl2 − yl1

The subscripts 1 and 2 differentiate between quantities related to the two landmarks. One
of the solution pairs (if any) from (4.5) will qualify for the robot position. The ambiguity

58



Chapter 4 Feature Based Global Self-localization

between the two positions of the robot is resolved by using the information that the landmarks
appear in a fixed order with respect to the robot.

The robot orientation θ can be calculated using its position and position of one of the land-
marks. From illustration of Fig. 4.8 the following expression for the robot orientation can be
obtained:

θ = ϕ− ψ (4.6)

where

ϕ = atan2 (yl1 − y, xl1 − x)
ψ = atan2

(
yC0, xC0

)
In these equations (xl1, yl1) is the landmark location in the global coordinate system, (x, y) is
the robot position and (xC0, yC0) is the location of the selected landmark in robot coordinate
system. After having derived expression for all components of the robot pose, it can be

Figure 4.8: Calculating robot orientation

written in vector form as follows:

p =

xy
θ

 =

 (−D±
√

D2−4CE)/2C

A+B (−D±
√

D2−4CE)/2C

atan2 (yl1 − y, xl1 − x)− atan2
(
yC0, xC0

)
 (4.7)

4.3.2 Position Estimation Using Single Landmark

The previous subsection presented position estimation using two landmarks. Simultaneous
acquisition of two or more landmarks is troublesome in our application environment where
landmarks are scarce and they are frequently occluded by other robots for longer durations.
Therefore, the localization algorithm should be based on as few landmarks as possible. This
section builds on Section 4.2.3, where absolute orientation of the robot is used in position
estimation.
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As stated earlier and shown in Fig. 4.3(a), finding location of a single landmark in robot
coordinate system is sufficient for robot position calculation if the absolute orientation of the
robot is known. The line L′ of Fig. 4.3(a) can be described using the slope-point form of line
equations as given by (4.8), whereas, the circle C ′ is described by (4.3).

y − yl1 = m (x− xl1) (4.8)

The slope of the line m is equal to tan(θ + ψ) and ψ = atan2(yC0, xC0). The intersection
of L′ and C ′ can be obtained as solution of (4.8) and (4.3), which is given by the following
expression:

p =
[
x
y

]
=

[
xll ± r1√

1+m2

yll ± mr1
1+m2

]
(4.9)

Equation (4.9) results in two candidate positions for each intersection of the line with circle,
one of which qualifies for the robot position. In our case the line segment always originates
at the robot location and terminates at the landmark. This information is used to resolve
the ambiguity between the two candidate positions. This is further illustrated in Fig. 4.9.
For this case the robot position is given by the following expression:

p =
[
x
y

]
=

[
xll − r1 cosϕ
yll − r1 sinϕ

]
(4.10)

where ϕ = ψ + θ. For measuring absolute orientation our robot is equipped with a magnetic

Figure 4.9: Single landmark based localization: robot position constrained to the intersec-
tion of line and circle

compass. It is most accurate (< 3 ◦) when the robot is not moving and there are no other
robots or magnetic objects in its close proximity [NM05].
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4.4 Uncertainty Analysis

The previous section presented two methods for robot position estimation assuming error
free measurements. However, as stated earlier error in sensor readings, landmark locations
and in correspondence results in an uncertain position estimate. Therefore, in addition to
knowing the position of the robot it is also important to measure reliability of this estimate.

Ignoring the landmark location error in the global coordinate system and the error in corre-
spondence analysis, any error in estimating the location of the landmark projections in the
left and right image together with an error in absolute orientation of the robot will determine
the uncertainty in the robot location.

The major source of error in location of landmark points in the images is due to image
quantization [MS87]. As shown in Fig. 4.10, all points in the light gray areas result in
same pixels in the image plane. The uncertainty area grows as the distance from the image
plane increases. This uncertainty can be adequately captured by assuming Gaussian error
distribution in estimating the image coordinates and propagating it to the 3D location of
the point using first order approximation of (3.4). This results in a 3D gaussian probability
distribution for the 3D coordinates. A 2D view of the uncertainty ellipses are shown in black
color in Fig. 4.10 [MS87]. However, as noted by Kriegman et al. [KTB89] the linearization of
the perspective transformation does not hold for distant point correspondence as the disparity
decreases and higher order terms will dominate.

4.4.1 Robot Location Uncertainty Using Single Landmark

Substituting values of r1 and ϕ in (4.10) the following expression for robot position is obtained:

p =
[
x
y

]
=

xll −
√

(xC0
1 )2 + (yC0

1 )2 cos
(
θ + atan2

(
yC0, xC0

))
yll −

√
(xC0

1 )2 + (yC0
1 )2 sin

(
θ + atan2

(
yC0, xC0

))
 (4.11)

It is clear from (4.11) that the robot position is dependent on xC0
1 , yC0

1 and θ. Whereas, (3.4)
and (3.5) reveal that xC0

1 and yC0
1 are in turn dependent on ul1 and ur1, hence, the input

vector for position estimate using this method can be formed as follows:

i =

ul

ur

θ

 (4.12)

and formulate the robot pose as:
p = g (i) (4.13)

The imperfections of the input quantities will result in an uncertain position estimate as
shown in Fig. 4.7(a). It is assumed that error in input vector is zero mean Gaussian with the
following covariance:

Σi =

σ2
uu 0 0
0 σ2

uu 0
0 0 σ2

θθ

 (4.14)

where σ2
uu is the variance of error distribution of ul or ur and σ2

θθ is the variance of error
distribution in absolute orientation of the robot. It is reasonable to assume that the three
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Figure 4.10: Stereo triangulation error due to image quantization (adapted from [MS87])

components of the input vector are not correlated as they are estimated independently. Fur-
thermore, due to the identical camera assumption the error distribution of ul and ur are
supposed to be identical. This error is propagated into the position estimate by the trans-
formation (4.11) through (3.4) and (3.5). The systems given by (4.11), (3.4) and (3.5) are
nonlinear and the resulting error distribution will not be a Gaussian. However, it is assumed
that it can be adequately represented by the first two terms of Taylor series expansion around
estimated input, î, which results in the following expression:

p = g(̂i) + Jĩi + . . . (4.15)

where

p̂ = g(̂i)
p̃ ≈ Jĩi

Ji =
∂p
∂i
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In the above equations p̂ is the position estimate, p̃ its error and Ji is the jacobian of p with
respect to i evaluated at its estimated value î. Ji is having the following elements:

∂x/∂ul
= 1/rd2 [uro(bsxC0 − cbyC0) + fb(syC0 + cxC0)]

∂x/∂ur = −1/rd2 [ulo(bsxC0 − cbyC0) + fb(syC0 + cxC0)]
∂x/∂θ = rs

∂y/∂ul
= −1/rd2 [uro(bcxC0 + sbyC0) + fb(cyC0 − sxC0)]

∂y/∂ur = 1/rd2 [ulo(bcxC0 + sbyC0) + fb(cyC0 − sxC0)]
∂y/∂θ = −rc

where d = ul − ur, uro = ur − ou and ulo = ul − ou. Using the approximation from (4.15)
expression for the covariance matrix of position estimate can be derived as follows:

Σp = E{p̃p̃T } = JiΣiJT
i

4.4.2 Location Uncertainty Using Two Landmarks

Following the same model of the previous subsection for the uncertainty of the robot position
estimation using two landmarks the following input vector can be formed:

i =


ul1

ur1

ul2

ur2

 (4.16)

The input vector in this case has four components which correspond to the location of the
two landmarks in the left and right camera images. The imperfection in its estimation is
propagated into the robot pose using (4.7) which result in an uncertain position estimate
as illustrated in Fig. 4.5(b) and Fig. 4.11. This imperfection is modeled with a zero mean
Gaussian having the following covariance matrix:

Σi = σ2
uuI4×4 (4.17)

where I4×4 is 4 × 4 identity matrix. Using the same principles as adapted in the previous
section the following expression for the covariance matrix of position estimate is derived using
the new method:

Σp = JiΣiJT
i (4.18)
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Figure 4.11: The resulting uncertainty in robot position is irregular in shape

Elements of the updated jacobian matrix are given by the following expressions:

∂x/∂ul1
= (−fbxC0

1 +b(ur1−ou)yC0
1 )T1/aCd2

1

∂x/∂ur1 = (fbxC0
1 −b(ul1−ou)yC0

1 )T1/aCd2
1

∂x/∂ul2
= (−fbxC0

2 +b(ur2−ou)yC0
2 )T2/aCd2

2

∂x/∂ur2 = (fbxC0
2 −b(ul2−ou)yC0

2 )T2/aCd2
2

∂y/∂ul1
= (−fbxC0

1 +b(ur1−ou)yC0
1 )/ad2

1
+B ∂x/∂ul1

∂y/∂ur1 = (fbxC0
1 −b(ul1−ou)yC0

1 )/ad2
1
+B ∂x/∂ur1

∂y/∂ul2
= (fbxC0

2 −b(ur2−ou)yC0
2 )/ad2

1
+B ∂x/∂ul2

∂y/∂ur2 = (−fbxC0
2 +b(ul2−ou)yC0

2 )/ad2
2
+B ∂x/∂ur2

∂θ/∂ul1
= ((yl1−y)( ∂x/∂ul1

)−(xl1−x)( ∂y/∂ul1
))/r2

pl

− (bxC0
1 (ur1−ou)+fbyC0

1 )/r2
1d2

1

∂θ/∂ur1 = ((yl1−y)( ∂x/∂ur1 )−(xl1−x)( ∂y/∂ur1 ))/r2
pl

+ (bxC0
1 (ul1−ou)+fbyC0

1 )/r2
1d2

1

∂θ/∂ul2
= ((yl1−y)( ∂x/∂ul2

)−(xl1−x)( ∂y/∂ul2
))/r2

pl

∂θ/∂ur2 = ((yl1−y)( ∂x/∂ul2
)−(xl1−x)( ∂y/∂ul2

))/r2
pl

where T1 = −B± 1/√D2−4CE(BD−2C(A−yl1−a)), T2 = B± 1/√D2−4CE(−BD+2C(A−yl1))
and rpl = ((xl1 − x)2 + (yl1 − y)2).

The error analysis method presented in this section results in a measure of uncertainty in
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the form of a covariance matrix. Such a form is required to initialize a location tracking
algorithm such as the EKF [New05].

4.5 Discussion

The methods presented in this chapter give the robot the ability to globally localize itself with
two distinct landmarks or with one landmark if absolute orientation of the robot is available.

Global self-localization is sometimes impossible if enough features are not available. There-
fore, it is required to track the robot position once it is estimated. During tracking, the
uncertainty grows, which can be suppressed when external observation of landmark features
are available. The position estimate and its corresponding covariance matrix provide the
required information to initialize a location tracker such as an EKF. This is the subject of
the next chapter.
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Chapter 5

Position Tracking and Information
Fusion

The discussion in the previous two chapters reveals that the global position of the robot can
be estimated whenever range estimate of a single landmark and absolute orientation of the
robot are available [BSGM06]. If the robot orientation cannot be estimated independently
then two distinct landmarks are required [BS06]. However, instantaneous acquisition of
distinct landmarks at all times is not possible as landmarks are few in number and are
frequently occluded. Furthermore, global position estimation using only external sensors is
time consuming [BEF96]. Similarly, it is shown in Section 2.1 that only local sensors are not
enough for position estimation as it requires knowledge of the initial position and the errors
accumulate unbounded. Therefore, it is required to use a combination of local and external
sensors and fuse the information obtained from them. In order to have an all time position
estimate, this chapter aims at tracking the robot position. The growing position error is
suppressed by acquiring features from the robot environment whenever possible.

The information obtained from both the internal and external sensors are uncertain and
incomplete, therefore it is required to use error models for their representation. The robot
local sensors are calibrated for systematic errors, whereas, for the non-systematic error, it is
assumed that it can be represented by zero mean Gaussian distribution. Similarly, the robot
observations can also be adequately represented by a Gaussian distribution [BSGK07].

A simplified assumption of our application environment is that there exist features that are
globally distinguishable. This resolves the problem of uniquely identifying areas in the envi-
ronment, helps us avoid local minima traps and saves us from tracking multiple hypotheses
or to maintain a multi-modal position belief. Therefore, the position belief can also be mod-
eled by a Gaussian distribution. Keeping these properties of environment in view, the EKF
is considered to be best suited for our application [BDN07]. Furthermore, the limited pro-
cessing capabilities of the robot warrants the use of methods that need less memory and
demand comparatively less computational power. This requirement favors EKF over ML and
MCL [GF02].

The main weakness of the unimodal Gaussian representation of the belief is compensated
by the global localization methods as discussed in the previous chapter. These methods are
used to provide the robot an initial position at startup. The kidnapped robot problem or
tracking failures can be detected by applying a validation gate to the innovation sequence.
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After detecting such a failure the global localization procedure can be initiated. However, as
shown in our comparison paper [BDN07] and discussed in the next chapter, the EKF also
behaves gracefully during the initial position estimation. The convergence of the estimated
position towards the true position is comparable to the one achieved with MCL method.

Implementation of a PF based method for position estimation and information fusion is
also carried out in this chapter. The results of the comparison study are presented in the
next chapter, which illustrates the performance and suitability of the EKF for the proposed
application. Construction of the robot observation vector and its uncertainty analysis is also
discussed in this chapter.

5.1 Extended Kalman Filter

Position tracking using EKF is the subject of this section. Detailed discussion about deriva-
tion of EKF and its application to robot navigation problems can be found in [Cro95]
and [New05]. Using the global localization techniques, the filter is provided with optimal
initial conditions (in the sense of minimum mean square error). State transition and observa-
tion models in the framework of an EKF are explained in the following sections. Presentation
about geometric construction of differential drive robot, formation of the control vector and
its uncertainty analysis is given in Appendix B.

5.1.1 State Transition Model

Beginning with the assumption of having a function f that models the transition from state
pk−1

1 to pk in the presence of control vector uk−1
2 at time k. The control vector is indepen-

dent of state pk−1 and is supposed to be corrupted by an additive zero mean Gaussian noise
ũk of strength Uk. This model is formally stated by the following equation:

pk = f (pk−1,uk−1, k) (5.1)

where uk = ûk + ũk. The quantities pk−1 and pk are the desired (unknown) states of the
robot. Given robot observations Zk−1, a minimum mean square estimate of the robot state
pk−1 at time k − 1 is defined as [New05]:

p̂k−1|k−1 = E{pk−1|Zk−1} (5.2)

The uncertainty of this estimate is denoted by Pk−1|k−1 and can be written as follows:

Pk−1|k−1 = E{p̃k−1|k−1p̃
T
k−1|k−1|Zk−1} (5.3)

where
p̃k−1|k−1 = pk−1 − p̂k−1|k−1 (5.4)

is the estimation error. Here p̃k−1|k−1 is supposed to be zero mean.

1The notation used here is a slightly changed version of [New05]. In our case bpi|j is the minimum mean
square estimate of pi given observation until time j i.e. Zj , where j ≤ i. Similarly, Pi|j is the uncertainty of
the estimate bpi|j

2The control vector is the state change in robot frame of reference
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The next step is to derive expression for p̂k|k−1, an estimate of pk using all measurements but
the one at time k and its uncertainty Pk|k−1 using (5.1). This is called prediction. Similar to
(5.2) this estimate can be written as follows:

p̂k|k−1 = E{pk|Zk−1} (5.5)

Using multivariate Taylor series expansion pk is linearized around p̂k−1|k−1 and ûk as given
by the following expression:

pk = f(p̂k−1|k−1, ûk, k) + J1(pk−1 − p̂k−1|k−1) + J2(uk − ûk) + . . . (5.6)

where J1 and J2 are the jacobians of (5.1) w.r.t pk−1 and uk evaluated at p̂k−1|k−1 and ûk,
respectively. Substitution of (5.6) in (5.5) results in the following:

p̂k|k−1 = E{pk|Zk−1}
≈ E{f(p̂k−1|k−1, ûk, k) + J1(pk−1 − p̂k−1|k−1) + J2ũk|Zk−1}
= f(p̂k−1|k−1, ûk, k) + J1E{p̃k−1|k−1|Zk−1}+ J2E{ũk|Zk−1}
= f(p̂k−1|k−1, ûk, k) (5.7)

From (5.6) and (5.7) expression for prediction error can be derived as follows:

p̃k|k−1 = pk − p̂k|k−1

≈ f(p̂k−1|k−1, ûk, k) + J1p̃k−1|k−1 + J2ũk − f(p̂k−1|k−1, ûk, k)
= J1p̃k−1|k−1 + J2ũk (5.8)

The prediction error is then used to calculate prediction covariance as given below:

Pk|k−1 = E{p̃k|k−1p̃
T
k|k−1|Zk−1}

= E{(J1p̃k−1|k−1 + J2ũk)(J1p̃k−1|k−1 + J2ũk)T |Zk−1}
= J1E{p̃k−1|k−1p̃

T
k−1|k−1|Zk−1}JT

1 + J2E{ũkũT
k |Zk−1}JT

2

+ J1E{p̃k−1|k−1ũ
T
k |Zk−1}JT

2 + J2E{ũkp̃T
k−1|k−1|Zk−1}JT

1

= J1Pk−1|k−1J
T
1 + J2UkJT

2 (5.9)

Equation (5.9) is based on the fact that ũk and p̃k−1|k−1 are not correlated. Detailed discus-
sion on state transition model for a two wheeled differential drive robot [NM05] is given in
Appendix B, where expressions for all terms used in this section are derived.

5.1.2 Observation Model

The robot observation model links the current state of the robot pk with its observation zk

and is given by the following transformation:

zk = h (pk, k) + wk (5.10)

Robot observation is assumed to be corrupted by zero mean Gaussian noise wk of strength
R. Using Taylor series expansion of (5.10) around the predicted state and retaining only the
first two terms, the following expression of the observation model can be obtained:

zk ≈ h
(
p̂k|k−1

)
+ Jzp(p̂k|k−1 − pk) + wk (5.11)
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where
zk|k−1 = E{zk|Zk−1} = h

(
p̂k|k−1

)
(5.12)

is the observation prediction and Jzp is the observation jacobian evaluated at p̂k|k−1. The
deviation of the actual observation from the predicted one is called innovation and is evaluated
as follows:

z̃k|k−1 = zk − zk|k−1

≈ h(p̂k|k−1) + Jzp(p̂k|k−1 − pk) + wk − h(p̂k|k−1)
= Jzpp̃k|k−1 + wk (5.13)

After having derived expression for innovation, expression for its covariance matrix can be
derived as follows:

S = E{z̃k|k−1z̃
T
k|k−1|Zk−1}

= E{(Jzpp̃k|k−1 + wk)(Jzpp̃k|k−1 + wk)T |Zk−1}
= JzpE{p̃k|k−1p̃

T
k|k−1|Zk−1}JT

zp + E{wkwT
k |Zk−1}

= JzpPk|k−1J
T
zp + R (5.14)

Innovation is a measure of disagreement between the actual and predicted state of the robot
and is used to evaluate the state estimate p̂k|k as follows [New05]:

p̂k|k = p̂k|k−1 + K(zk − zk|k−1) (5.15)

where K is the gain. A value of K that minimizes the mean square estimation error is called
Kalman gain [SSGS02, New05]. Using (5.15), estimation error can be calculated as follows:

p̃k|k = pk − p̂k|k

= pk − p̂k|k−1 −K(zk − zk|k−1)
= pk − p̂k|k−1 −Kz̃k|k−1

= p̃k|k−1 −Kz̃k|k−1

= p̃k|k−1 −K(Jzpp̃k|k−1 + wk)
= (I−KJzp)p̃k|k−1 −Kwk (5.16)

and its covariance matrix by the following expression:

Pk|k = E{p̃k|kp̃
T
k|k|Zk}

= E{((I−KJzp)p̃k|k−1 −Kwk)((I−KJzp)p̃k|k−1 −Kwk)T |Zk}
= (I−KJzp)E{p̃k|k−1p̃

T
k|k−1|Zk}(I−KJzp)T

+ KE{wkwT
k |Zk}KT

− (I−KJzp)E{p̃k|k−1w
T
k |Zk}KT

− KE{wkp̃T
k|k−1|Zk}(I−KJzp)T

= (I−KJzp)Pk|k−1(I−KJzp)T + KRKT (5.17)

To find the Kalman gain K the following expression for mean square estimation error is
evaluated [New05]:

pmmse = E{p̃T
k|kp̃k|k|Zk}

= Tr(Pk|k)

= Tr((I−KJzp)Pk|k−1(I−KJzp)T ) + Tr(KRKT ) (5.18)
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where Tr stands for trace. Differentiating (5.18) with respect to K and equating the result
to zero:

− 2(I−KJzp)]Pk|k−1J
T
zp + 2KR = 0

−Pk|k−1J
T
zp + KJzpPk|k−1J

T
zp + KR = 0

K(JzpPk|k−1J
T
zp + R) = Pk|k−1J

T
zp

KS = Pk|k−1J
T
zp

K = Pk|k−1J
T
zpS

−1 (5.19)

The algorithm for EKF is outlined in Algorithm 5 and its flow chart is shown in Fig. 5.1. It
is divided into two phases which are processed periodically. In the first phase which is called
the ”time update” or the ”prediction phase”, system state at k is predicted based upon the
previous state estimation p̂k−1|k−1 and the estimated value of the system input or control
vector ûk−1. As given by (5.9), the uncertainty of the prediction is increased by the process
noise J2UkJT

2 .

Algorithm 5 Extended Kalman filter algorithm [BDN07]
upon initialization do

input bp0|0
input P0|0
k ← 1

end upon
loop

if new control input available then
// time update stage
// predicting future position and its uncertainty based on the new control inputbpk|k−1 ← f(bpk−1|k−1, buk, k)

Uk ← JuΣvJ
T
u

Pk|k−1 ← J1Pk−1|k−1J
T
1 + J2UkJ

T
2

else bpk|k−1 ← bpk−1|k−1

Pk|k−1 ← Pk|k−1

end if
if new observation available then

// updating position based on new observation

K ← Pk|k−1JzpS
−1

R ← JzΣiJ
T
zbpk|k ← bpk|k−1 + K(zk − zk|k−1)

Pk|k ← (I−KJzp)Pk|k−1(I−KJzp)T + KRKT

else bpk|k ← bpk|k−1

Pk|k ← Pk|k−1

end if
k ← k + 1

end loop
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The second phase, also known as the ”measurement update” or the ”correction phase”,
corrects prediction using the noisy measurements. The Kalman gain K (5.19) gives the
proportion between how much the predicted state can be trusted, and up to what extent
the new measurements can be taken into account in a way that results in a minimum mean
square estimation error [New05]. The observation uncertainty R is based on the assumption
that errors in estimating landmark location in the left and right camera are independent
identically distributed Gaussian random variables having zero mean and covariance matrix
Σi. The robot observation and its uncertainty analysis is given in Section 5.2.

Figure 5.1: Flow chart of the EKF [New05]
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5.1.3 Kidnapped Robot Problem

An example of the kidnapped robot problem is illustrated in Fig. 5.2. Here the robot starts at
point ’A’ and moves along the linear path in reverse direction towards point ’B’. The actual
path of the robot is shown by the blue line in Fig. 5.2. At point ’A’ the robot calculates
its global position using the single landmark based global position estimation method. The
robot then tracks this position until it reaches point ’B’. The estimated path between point
’A’ and point ’B’ is shown in black color. After reaching point ’B’, the robot is brought back
to point ’A’ without giving it the information that it is being displaced. The robot has a
high belief that it is at point ’B’, while it is moved to point ’A’. This is called a kidnapped
problem and the robot has to detect it.

Figure 5.2: Illustrating the kidnapped robot problem. The robot is kidnapped after reach-
ing point ’B’

The robot initially covers this distance between ’A’ and ’B’ in 100 steps and then repeats
the whole process in another 100 steps. Between point ’A’ and ’B’, the position belief and
estimate are in sync and the update process is working properly. The kidnap causes a
disagreement between position belief and the actual estimate, which results in haphazard
position estimation. The robot estimates that it is a point ’C’. After several jumps here and
there the position estimate steadies at point ’D’. From point ’D’ to ’E’ the robot position
estimates lie along a line but the error still remain high.

Fig. 5.3 shows pose error along with the ±3σ uncertainty bound. The error is plotted in blue,
whereas, the ±3σ uncertainty bound is shown in red. As can be clearly seen from this figure
that until step 100, the error is well-bounded by the position uncertainty. At step 100 the
robot is kidnapped (brought back to point ’A’). Large error in all three components of the
robot pose (x, y and θ) is the result of the kidnap. Beyond step 100, the robot has a false
belief about its position.

Such a situation has to be identified and consequently the robot has to be declared lost. Once
a kidnap is identified, corrective measures can be applied, which include adjusting the robot
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Figure 5.3: Error in x, y, and z components of the robot pose and its corresponding un-
certainty for the kidnapped robot case. At step 100, the robot is kidnapped.
Beyond this point the robot has a false belief of its position

position uncertainty or initiating the global position estimation. An unexpected situation
can be detected by monitoring the innovation sequence (the difference between actual and
expected observation) i.e. by implementing a validation gate [BS87]. The observation residual
or innovation for the above example is shown in Fig.5.4. Whenever the robot makes an
observation, it is also predicting what it should see from its prediction. As stated earlier, this
difference in the actual and predicted observation is way to correct the predicted position
estimate. The innovation is shown in blue color, whereas, its ±σ uncertainty bound is shown
in red. From step 1 to step 100 the innovation sequence is well-bounded, however, as soon
as the robot is displaced, the measurements are unexpected and hence unbounded. The
situation in this figure is such that the robot position uncertainty is not adjusted or the
global position estimation is not initiated.

The implementation of a validation gate based on the innovation is effectively comparing the
predicted and actual observations. The objective is to determine the normalized difference
between the predicted and actual observations. This difference is a quadratic form known as
the squared Mahalanobis distance and is given by the following equation [Cro95, RB00a]:

e2 = z̃T
k|k−1S

−1z̃k|k−1 (5.20)

With Gaussian innovation, the resulting distribution of e2 is chi-square [RB00a]. The values
of e2 for each step of the above example are shown in Fig. 5.5. The normalized error stays
very low until step 100. The big jump in error is the result of kidnapping the robot. The error
stays high and unpredictable for several observation. It is clear from the figure that with the
help of this test the algorithm can decide if a given observation is unexpected or not. Several
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Figure 5.4: Observation residual or innovation for the case shown in Fig. 5.2

unexpected observations will further increase the probability of a kidnap. Fig. 5.6 shows
robot position estimates when the robot position is readjusted after detecting an unexpected
behavior using (5.20).

Figure 5.5: The Mahalanobis squared distance for example shown in Fig. 5.2

In this example when the filter detected that something is wrong, it ignored that observation
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Figure 5.6: Repeating the estimation shown in Fig. 5.2. Here global position estimation is
initiated after detecting that the robot is being kidnapped

and waited for a next one. After receiving several unexpected observation, the robot is
declared lost and global position estimation is initiated. Until the global position is estimated,
the robot position is updated only based on odometry information.

In this example observations are frequently made. The innovation increases when observa-
tions are not frequently made. This increase is accounted for by increase in the innovation
covariance, which is dependant on the position uncertainty as given by (5.14). This means
that the validation gate based on the normalized distance will work even if observations are
not frequently available. However, as noted by Negenborn [Neg03] the unexpected obser-
vation are not only due to kidnapped robots, other sources may include sensor failure or
increased sensor noise.

5.1.4 Representing Uniform Position Belief

Under global uncertainty the robot waits until its position is estimated using one of the global
self-localization approaches. An alternative approach for representing the global uncertainty
is to use a very high uncertainty for the initial position so that it approximates a uniform
distribution. However, it is difficult to decide the amount of initial uncertainty so that it
approximates a uniform distribution. The uncertainty grows even further until observations
are made. Once observations are made, the uncertainty will drop. This decrease is inversely
proportional to the initial uncertainty. Furthermore, the amount of observation residual that
is taken into account is also decided on the basis of initial uncertainty as given by (5.19). An
equivalent approach to approximate the uniform distribution is that the robot simply drives
around until it receives its first observation of landmark features in its environment [Neg03].
When this measurement arrives it is taken into account in its totality. In the limiting case,
when the initial uncertainty approaches infinity the innovation covariance (5.14) can be writ-
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ten as:
S ≈ JzpPk|k−1J

T
zp (5.21)

With the modified innovation covariance the Kalman gain can be approximated by the fol-
lowing expression:

K = Pk|k−1J
T
zpS

−1

≈ Pk|k−1J
T
zp(JzpPk|k−1J

T
zp)

−1 (5.22)

= J−1
zp (5.23)

and (5.17) becomes:
Pk|k ≈ J−1

zp R(J−1
zp )T (5.24)

With the modified Kalman gain the position update can be written as follows [Neg03]:

p̂k|k = p̂k|k−1 + K(zk − zk|k−1)

≈ p̂k|k−1 + J−1
zp (zk − zk|k−1)

= p̂k|k−1 + J−1
zp zk − J−1

zp zk|k−1)

= p̂k|k−1 + J−1
zp zk − p̂k|k−1

= J−1
zp zk (5.25)

However, (5.25) can only be used if Jzp is invertible. Further discussion on the initialization
issue is presented in the next chapter, where different alternatives are evaluated experimen-
tally.

5.2 Robot Observation

The values xC0 and yC0 with respect to a landmark pl = [xl yl]T (see Section 3.2) are used
to construct robot observation vector zk. The construction of the robot observation vector is
illustrated in Fig. 5.7 and is given by (5.26).

zk =
[
rk
ψk

]
=

[√
(xC0)2 + (yC0)2

atan2(yC0, xC0)

]
(5.26)

Equation (5.12) is making use of observation prediction. From its predicted position p̂k|k−1,
robot predicts what it may see, which is used for position update. Construction of the robot
observation prediction vector is illustrated in Fig. 5.7 and is given by the following expression:

zk|k−1 =
[
rk|k−1

ψk|k−1

]
=

[ √
(xl − xk|k−1)2 + (yl − yk|k−1)2

atan2(yl − yk|k−1, xl − xk|k−1)− θk|k−1

]
(5.27)

For robot observation uncertainty it is assumed that the error
[
ũl ũr

]T in
[
ul ur

]T is zero
mean Gaussian. The covariance matrix of this error is give by the following expression:

Σi = E{
[
ũl ũr

]T [
ũl ũr

]
} = σ2

uu

[
1 0
0 1

]
(5.28)
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Figure 5.7: Illustration of the robot observation: The robot stereo vision system is used to
estimate range and bearing with respect to a landmark feature. Four distinct
landmark features are shown here

where σ2
uu is the variance of ul or ur. In deriving (5.28) it is assumed that ũl and ũr are not

correlated. Error in ul and ur is propagated to observation zk by the transformation (5.26)
through (3.4) and (3.5). It is assumed that these systems can be represented by the first two
terms of Taylor series expansion around estimated value of ul and ur. This assumption leads
to following expression for observation model:

zk ≈ ẑk + Jz

[
ũl ũr

]T (5.29)

where

Jz =

[ −b
rkd2 (fxC0 − (ur − ou)yC0) b

rkd2 (fxC0 − (ul − ou)yC0)
b

r2
kd2 (xC0(ur − ou) + xC0f) −b

r2
kd2 (xC0(ul − ou) + yC0f)

]
(5.30)

is the jacobian of (5.26) with respect to
[
ul ur

]T and ẑk is the estimated observation. From
(5.29) the observation error can be written as follows:

z̃k = zk − ẑk

= Jz

[
ũl ũr

]T (5.31)

Using (5.31) expression for observation covariance matrix is derived as follows:

R = E{z̃kz̃T
k }

= E{(Jz

[
ũl ũr

]T )(Jz

[
ũl ũr

]T )T }

= JzE{
[
ũl ũr

]T [
ũl ũr

]
}JT

z

= JzΣiJT
z (5.32)

Substitution of Σi and Jz from (5.28) and (5.30) into (5.32) results in the following expressions
for different elements of R:
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R11 =
b2σ2

uu

r2kd
4

(2f2(xC0)2 + (yC0)2{(ul − ou)2 + (ur − ou)2} − 2fxC0yC0(ul + ur − 2ou))

R12 =
−b2σ2

uu

r3kd
4

(f((xC0)2 − (yC0)2)(ul + ur − 2ou)

+2f(xC0)(yC0)− xC0yC0{(ul − ou)2 + (ur − ou)2})
R21 = R12

R22 =
b2σ2

uu

r4kd
4

((xC0)2{(ul − ou)2 + (ur − ou)2}+ 2f2(yC0)2 + 2fxC0yC0(ul + ur − 2ou))

where Rij represent an element at ith row and jth column. The error model discussed above
captures the uncertainty due to image quantization, yet it fails to handle gross segmentation
problems [MS87].

5.3 Particle Filter Based Position Estimation

In the following implementation of PF based position estimation algorithm is discussed. The
discussion here builds on theoretical background of Section 2.4.2. Details of the algorithm
and motivation behind its use can be found in [Deu07, BDN07].

The basic concept of the algorithm is a Monte Carlo approximation with Sequential Impor-
tance Sampling (SIS). At startup, random particles are generated from the initial distribution
and their weights are set to the reciprocal of the number of particles. In each iteration, the
weight of a particle is calculated by multiplying its old weight with the probability that this
particle represents the real state in accordance with the new sensor data. After weight nor-
malization, the new state is calculated using these particles. The SIS leads to degeneration,
since the current weight of particles influences the weight update process, strong particles
dominate the overall belief even if sensor readings suggest otherwise. This problem could be
avoided by replacing SIS with SIR. This introduces another source of degeneration, which
could be addressed by re-injection as discussed in Section 2.4.2.

Algorithm 6 shows a classical PF with SIR. During initialization, N particles are drawn from
p(p0). If the robot has no knowledge of its position the distribution p(p0) is uniform over the
entire state space. When new control input is available, temporary particles p̃k

(i) are gener-
ated according to the distribution given by (5.33). Using the actual sensor data zk, the weight
w̃k

(i) for the particles is calculated in (5.34). In (5.37), the normalized weights of (5.36) are
used to calculate the state estimation for pk conditioned on all previous measurements z1:k.
As a preparation for the re-sampling step, all tuples

{
p̃k

(i), w̃k
(i)

}
are sorted in descending

order with the highest weight-value first. During re-sampling, N times a random number
j is drawn in such a way that tuples with a higher weight are preferred. For each j, the
corresponding p̃k

(j) is drawn and assigned to the final state p(i)
k as described by (5.38). All

final state vectors are assigned a uniform weight. To avoid local maxima, finally, T particles
are replaced with new uniformly distributed random particles. T is much smaller than N ,
typically 100 times or more.
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Algorithm 6 Particle filter algorithm [BDN07]
upon initialization do

// generate random particles
for i = 1 to N do

generate p
(i)
0 ∼p(p0)

end for
k ← 1

end upon
loop

if new control input available then
for i = 1 to N do

// generate particle

p̃k
(i) ← p

“
pk|uk−1,p

(i)
k−1

”
(5.33)

// calculate weight/probability of particle

w̃k
(i) ← p

“
zk|p̃k

(i)
”

(5.34)

end for
end if

wsum ←

"
NX

j=1

w̃k
(j)

#
(5.35)

// normalize weights
for i = 1 to N do

w̃k
(i) ← w̃k

(i)

wsum
(5.36)

end for
// estimate current state

E(pk|z1:k)←
NX

j=1

p̃
(j)
k w̃

(j)
k (5.37)

// resample particles

sort
n
p̃k

(i), w̃k
(i)

oN

i=1
such that w̃k

(i) > w̃k
(i+1)

for i = 1 to N do
draw j with probability w̃k 

p
(i)
k ,

1

N

ff
←

n
p̃k

(j), w̃k
(j)

o
(5.38)

end for
// re-inject random particles
for i = 1 to T do

replace p
(i)
k with new random particle

end for
k ← k + 1

end loop
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Chapter 6

Results and Evaluation

In the following chapter the performance of all algorithms given in the previous chapters
is tested with simulations. The parameters for simulations have been chosen to match the
Tinyphoon robot [NM05, NCB+06]. For example, matching parameters of Tinyphoon, the
simulated robot is a two wheeled differential drive, with wheel base of 75 mm. The stereo
vision system is mounted at a height of 70 mm. The separation between the two cameras
(stereo baseline) is 30 mm. This comes from the construction of the robot as the maximum
allowed size of the robot is 75 mm. The cameras are capable to provide images of resolution
640 × 480 pixels or 320 × 240 pixels. For experiments reported in this thesis the resolution
was set at 320× 240 pixels. The size of the robot and dimensions of the robot environment
conforms with the Federation of International Robot-soccer Association (FIRA) Micro Robot
World Cup Soccer Tournament (MiroSot) Small League [FIR07b].

6.1 Feature Extraction Results

Beginning with Fig. 6.1(a) which shows a color image of the soccer field in our laboratory.
The ball and a robot can be seen on a flat surface. Field walls, the blue goal and the center
line can also be seen in the image. Fig. 6.1(b) shows the edge map detected by applying
the Sobel edge detector to the y-channel of this image. The detected line segments, corners
and line intersections are superimposed on the edge map. The line segments which belong to
field markings are shown red in Fig. 6.1(b). Corners and line intersections are shown with a
(+) sign. It can be seen in the figure that certain features have been detected that do not
belong to objects in the field. These features are marked with arrows starting at ’a’ and can
be discarded by using information based on the computed range information. A convincing
result of the algorithm is the detection of the borderline (occluded by the ball, marked as ’b’)
as one line segment. This was achieved by the GBHT which classified all the pixels belonging
to the two line segments in one group. The two line segments were merged using the two
thresholds to merge line segments and pixels within the same group of collinear pixels.

Images of the yellow goal are shown in Fig. 6.2. In Fig. 6.2(b) two corners and one intersection
are detected. The intersection point in the top-left corner (marked as ’a’) is spurious. The
reason for detection of this intersection point is that the two line segments are within allowed
tolerance for detection of line intersection. The vertical line segments in the top middle of the
image are not detected since the length of these segments is less than the minimum length
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(a) (b)

Figure 6.1: Real images with features superimposed (a) color camera image showing a
robot, ball and the goal area (b) edge image with the detected lines, corners
and line intersections superimposed on it. Features that are classified as field
markings are shown in red color, while other line segments are shown in green
color

allowed. It can be seen from this figure that the line segments are successfully classified.
The corner formed by the two field markings (’c’) can also be seen in the figure. This type
of corners can be identified from the angle between the two line segments. Fig. 6.2(c) and
Fig. 6.2(d) show the same scene from slightly different position. Two robots with red objects
on their top can also be seen in Fig. 6.2(c). In this case the extracted feature points are
superimposed on the edge map. The line joining the top of the two robots is not separately
identified but merged and seen as one single line as shown in Fig. 6.2(d). This line segment
is marked as ’a’. Such features have to be detected and discarded during correspondence
analysis. Similarly, Fig. 6.2(e) and Fig. 6.2(g) show two more images of the same scene with
the ball at different positions. The corresponding edge maps and detected features for the
two images are shown in Fig. 6.2(f) and Fig. 6.2(h) respectively. The merging of the line
segments occluded by the ball in Fig. 6.2(h) is remarkable.

Results from application of the algorithm to synthetic images are shown in Fig. 6.3. An
image of the field corner is seen in Fig. 6.3(a). One can see a corner (pointed to by arrow ’a’)
formed by the two walls and another formed by the two field markings (’b’). The junction
formed by the field marking and the border can also be seen in Fig. 6.3(a). The junction is
pointed to by arrow ’c’ in Fig. 6.3(b). The corner formed by the two walls is blunt as solid 7
cm × 7 cm isosceles triangles are fixed at the four corners of the field to avoid the ball getting
cornered [FIR07b]. The extracted features from this image are superimposed on its edge map
in Fig. 6.3(b). The field marking (shown in red) are successfully classified by the algorithm.
Fig. 6.3(c) and Fig. 6.3(e) show two other images of the field, while the extracted features
are shown in Fig. 6.3(d) and Fig. 6.3(f) respectively. Fig. 6.3(f) shows a corner formation
from two segments of the arc. This type of corners can be identified by the angle between
the two line segments, since the real corners from the field lines have 90 ◦angle.

Feature extraction summary for the real world images and synthetic images is shown in
Table 6.1 and Table 6.2. The summary is based on manual classification of features in images
shown in this section.

For the results presented in this section, the image resolution was set at 320 × 240 pixels.
The quantization steps for θ and ρ were 1 ◦ and 3 pixels, respectively. The tolerance used
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Image of the yellow goal from varying distances under bad illumination condi-
tions. Color images are shown in (a), (c), (e) and (g), while their edge maps
with the super imposed features are shown in (b), (d), (f) and (h), respectively

82



Chapter 6 Results and Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Synthetic images of the virtual field (a) colored image showing field corner (b)
detected features super imposed on the edge map (c) image showing the goal
area (d) edge map with detected features (e) image showing corners, field lines
and arc (f) a corner formation by two line segments of the arc
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Table 6.1: Feature extraction summary for real world images

Total Detected Missed Spurious

Lines 48 50 3 5

Field markings 10 10 0 0

Corners 16 13 5 2

Junctions 0 1 0 1

Line intersection 1 1 0 0

Table 6.2: Feature extraction summary for synthetic images

Total Detected Missed Spurious

Lines 20 21 1 2

Field markings 6 6 0 0

Corners 9 9 1 1

Junctions 4 4 0 0

Line intersection 0 0 0 0

for the GBHT is ±5 ◦. Gapmin and Gapmax (see Section 3.3.3) were set to 3 and 50 pixels,
respectively. The minimum length of line segments was 30 pixels whereas, the tolerance for
corners and junctions to be selected was 8 pixels of the rotated lines. These are empirical
values and have to be tuned depending on the application.

6.2 Statistical Results for Vision Based Range Estimation

Statistical results from stereo vision based range estimation are presented in this section.
Range estimation is based on the extracted feature points in images generated from an en-
vironment model of the FIRA MiroSot Small League [FIR07b]. Features used are color
transitions. A sample image is shown in Fig. 6.4.

Figure 6.4: Incorrect range estimation due to concave structures in the environment

Results from range estimation error are shown in Table 6.3. The first column shows values for
the mean error. The standard deviation (Std), minimum (Min) and maximum (Max) values
are presented in the second, third and fourth columns. The absolute error is expressed in
millimeters (mm). The normalized error is calculated by dividing the range estimation error
by the actual range.
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Table 6.3: Range estimation error
Mean Std Min Max

Absolute error 43.91 39.06 0.0007 295.97
Normalized error 5.18% 4.04% 0.0001% 35.91%

The results presented in Table 6.3 are based on 4893 range measurements which were made
from different locations in the robot environment. Histograms for the actual and normalized
range measurement error are shown in Fig. 6.5(a) and Fig. 6.5(b), respectively. In these
figures, numbers along the x-axis represent the actual (millimeters) and normalized (%) range
measurement error, whereas, those along the y-axis show the counts for the corresponding
bin of the histogram. The histogram for normalized error shows that for some measurements
the error is even higher than 20% of the true range. There are several reasons for this high
error. The baseline of the stereo vision system is narrow as the construction of the robot does
not allow the use of a wide baseline. This makes range estimation sensitive to segmentation
problems, especially for distant points. The images used are low resolution due to the limited
processing capabilities of the robot. Moreover, due to the size and concavity of the goal, it is
often difficult to determine which point on the goal is being observed or to get an accurate
range measurement. Fig 6.4 shows an example where range of the left goal corner is variable.
This results in inconsistent ranges and inconsistent landmark positions [SSB03]. Performance
improvement can be achieved by using high resolution images [BDN07].

(a) (b)

Figure 6.5: Histogram of stereo range estimation error (a) absolute difference between true
and estimated range (b) normalized range estimation error

6.3 Feature Based Global Localization Using Two Landmarks

In the following global self-localization (based on algorithms discussed in Chapter 4) is pre-
sented. It is assumed that landmarks appear in a fixed order with respect to the robot.
The discussion in this section aims at evaluating performance of the global self-localization
method and does not incorporate any kind of tracking of landmarks or of its own position.
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This means that the position at each is step does not use information acquired at any other
step.

To cover different possibilities of the instantaneous pose of the robot, 30 trials each con-
sisting of 100 steps were conducted. These trials are grouped into five categories: motion
along rectangular paths with no rotation, single point rotation of 360 ◦, 180 ◦or 90 ◦with no
motion, motion along rectangular paths with 360 ◦rotation, motion along linear paths with
20 ◦rotation and motion along linear paths with no rotation. At every step the robot takes
images of its environment, searches for landmark feature (s) and calculates its position if it
finds the minimum required landmarks.

6.3.1 Motion without Rotation

Fig. 6.6 shows the simulations of the case when the robot moves along rectangular paths of
different dimensions. In all these cases the robot orientation was fixed at 0 ◦or 180 ◦along the
x-axis but this a priori known orientation was not used as input for position estimation. The
locations from where the position estimation was attempted are marked with crosses (x) in
gray color. The blue plus (+) signs mark the true location where the robot found both of
the required features and was able to estimate its position and orientation. The estimated
locations are marked with a blue dot (·). The difference between the estimated position and
true position is indicated by the line segments shown in red. The small circles (blue and
yellow) on the left and right sides show the landmark features to which the robot position is
estimated.

In Fig. 6.6(a), dimensions of the rectangular path taken by the robot is 900 × 600. The
starting step for this trial is at (1200, 950) and the robot moves in counter clockwise direction
along the rectangle. The step size in each trial stays the same. Orientation of the robot is
fixed at 180 ◦(robot is facing towards left). Dimensions of the rectangular path in Fig. 6.6(b)
is 750 × 500. The starting step is at (1125, 900) and orientation is fixed at 180 ◦. Similarly,
in Fig. 6.6(c), the starting step is at (1050, 850), while the next steps are selected along the
rectangular path having dimensions 600×400. The orientation of the robot in this case is set
at 0 ◦(robot is facing towards right here). In the final trial of this category the robot starts at
(975, 800) with orientation at 0 ◦and moves along the rectangular path having dimensions of
450× 300. Statistical results for the absolute error in all three components of the robot pose
for the category discussed above are shown in Table 6.4. The first column shows the average
(Mean) values. The standard deviation (Std), minimum (Min) and maximum (Max) values
are presented in the second, third and fourth columns. The starting locations, dimensions
and the position errors are expressed in millimeters (mm), whereas, the orientation error is
expressed in degrees ( ◦).

Table 6.4: Estimation error, based on the two landmarks method, in each component (x,
y and θ)of the robot pose. The robot positions are along rectangular paths and
there is no rotation involved

Mean Std Min Max
δx (mm) 78.56 56.88 0.17 344.06
δy (mm) 113.89 144.45 0.015 630.47
δθ ( ◦) 6.40 8.25 0.0004 36.36
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(a) (b)

(c) (d)

Figure 6.6: The robot is following rectangular paths of different dimensions. However, its
orientation is fixed at 0 ◦or 180 ◦. Locations from where position estimation
was attempted are marked with cross (x), the plus (+) signs mark the true
location of successful estimation. The estimated position is indicated by dot
(·) and the position error is shown by the line segment
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While estimating its position, the robot also calculates its uncertainty. The advantage of
uncertainty calculation is two-fold. It helps the robot decide if it wants to use an estimation
or ignore it. Secondly, the uncertainty is calculated in the form of a covariance matrix, which
is required to initialize a location tracker such as EKF. As can be seen from Table 6.4, the
error is high. The reason of this high error is that most of the position estimates are made
with respect to distant landmarks, where a small error in pixel location causes large position
error. Uncertainty calculation for each position gives the robot with an option if it wants
to reject estimates with high uncertainty. To compare error in each component of the robot
pose with its corresponding ±σ error bound all measurements in all trials of this category are
stacked together and shown in Fig. 6.7. The four trials are separated by the green bars and
marked as (a), (b), (c), and (d). The marker (a) in Fig. 6.7 corresponds to Fig. 6.6(a), (b) to
Fig. 6.6(b) and so on. Error values are plotted as bars in black color, while the corresponding
±σ uncertainty bound is shown in red. Position error increases as the robot is getting further
from landmark features, which is captured by a corresponding increase in uncertainty. The
simulations results show that the robot can estimate its position if it can find two landmarks.
Even estimates with unacceptable error are useful in the sense that it gives the robot a rough
estimate which can be refined later.

Figure 6.7: Comparison of position estimation error with corresponding ±σ uncertainty
bound. Error from position estimations shown in Fig. 6.6 is stacked together
and shown by black bars while the red curve give the ±σ uncertainty bound.
The four trials of Fig. 6.6 are separated by the green bars and marked as (a),
(b), (c), and (d). The marker (a) corresponds to Fig. 6.6(a), (b) to Fig. 6.6(b)
and so on
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6.3.2 Single Point Rotation

Fig. 6.8 shows results from position estimation in the category wherein the robot rotates
around a single point without moving. The robot is placed at different positions in the
environment. Between different steps in each trial only orientation of the robot changes,
whereas, its position remains fixed. However, this knowledge is not used and global position
estimation is attempted at each step. In Fig. 6.8(a), the robot is placed at (750, 650). During
this trial the robot rotates 360 ◦in clockwise direction in 100 steps. The robot orientation at
step 1 is −90 ◦ i.e., the robot begins by facing downwards. Two landmarks are not visible to
both the cameras during the first 22 steps. The first time two landmarks are extracted and
position estimated is at step 23. From step 23 to step 29, the two landmarks on the left side
are visible to the robot. The landmarks on the right side become available from step 73 to
79.

In Fig. 6.8(b), the robot is placed in the lower-left corner at (350, 350). The robot completes
a 360 ◦clockwise rotation in 100 steps, with its initial orientation set at −90 ◦. In this trial
the robot position was estimated only from step 67 to step 77 with respect to landmarks on
the right side. Similarly, Fig. 6.8(c) to Fig. 6.8(e) show trials where the robot is placed at
the other three corners. Fig. 6.8(f) repeats the case presented in Fig. 6.8(a). In this case the
robot orientation at start is −135 ◦ and it completes a 90 ◦clockwise rotation in 100 steps. The
robot is able to estimate its position in almost 30% of the steps with respect to landmarks on
the left side. Also in Fig.6.8(g), the robot is placed at the center but has different orientation
at startup and completes 180 ◦clockwise rotation in 100 steps. In the last trial of this category
shown in Fig.6.8(h), the robot is placed at a center right location at (1050, 650) from where
it completes a clockwise rotation of 90 ◦. The numbers for starting locations represent the
absolute position of the robot and are expressed in millimeters (mm). Similarly, dimensions
and position errors are also expressed in millimeters (mm).

Statistical results for the rotation-only case are shown in Table 6.5. The column headers and
units in this table are the same as those in Table 6.4. The robot could estimate its pose only
in less than 20 % of the locations where it searched for landmarks. A little less than 15% of
the position estimates have distance between the true and estimated position greater than
400 mm. Similar to Fig. 6.7, a comparison of the estimation error for all estimates of Fig. 6.8
and the corresponding ±σ error bound is shown in Fig. 6.9. The eight trials of Fig. 6.8 are
separated by the green bars and marked with the name of the sub-figure. For example, all
the estimates of the trial shown in Fig. 6.8(a) are marked as (a) in Fig. 6.9.

Table 6.5: Estimation error, based on the two landmarks method, in each component (x,
y and θ)of the robot pose. The robot is placed at different positions in its
environment. Between different steps only robot orientation changes, while its
position remains fixed

Mean Std Min Max
δx (mm) 58.22 37.79 1.13 231.75
δy (mm) 140.39 136.30 0.86 623.08
δθ ( ◦) 7.41 6.69 0.11 28.75

89



Chapter 6 Results and Evaluation

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.8: The robot is placed at different locations in its environment. In this case the
robot is rotating in small steps but without any motion. The robot completes
360 ◦rotation in (a), (b), (c), (d) and (e), whereas, it completes 180 ◦rotation
in (g) and 90 ◦in (f) and (h)

90



Chapter 6 Results and Evaluation

Figure 6.9: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.8. The eight trials of Fig. 6.8 are
separated by the green bars and marked as (a), (b), (c), (d), (e), (f), (g) and
(h). The marker (a) corresponds to Fig. 6.8(a), (b) to Fig. 6.8(b) and so on

6.3.3 Motion and Rotation

The third category is shown in Fig. 6.10 wherein the robot moves in rectangular paths and
at the same time is able to rotate through 360 ◦. In addition to changing position the robot
orientation is also changed. In each trial of this category the robot completes a 360 ◦rotation
in clockwise direction. In Fig. 6.10(a), dimensions of the rectangle path is 1200 × 800. The
starting step for this trial is at (1350, 1050). The next steps from here are in counter clockwise
direction along the rectangle. The step size in these measurements is also kept the same.
Between consecutive steps there is a fixed change of 3.6 ◦in the robot orientation. At startup
the robot orientation is -90 ◦. Simulation results show that the robot is able to estimate its
position from step 15 onwards and not before. From 15 to 20, the robot can estimate its
position with respect to landmarks on the left side. The next time it is able to estimate
position is from step 65 to 70, where position is estimated with respect to landmarks on the
right side.

In Fig. 6.10(b) the robot follows a rectangular path of dimensions 800 × 600. The starting
step for this trial is at (1150, 950). Initial orientation and direction of change in position and
orientation remains the same. In this case the robot position was estimated between steps 16
to 22 and 66 to 72. Similarly, in Fig. 6.10(c), Fig. 6.10(d) and Fig. 6.10(e) the same pattern
is followed. Statistical results from this category are shown in Table 6.6.

It can be seen from Table 6.6 that in these measurements the error is lower as compared to
the previous two cases. The reason for this low error is that the position is estimated with
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(a) (b)

(c) (d)

(e)

Figure 6.10: Here in this case the robot is following rectangular paths and is rotating as
well. The start position is at the top-right corner of the rectangle and the
starting orientation is -90 ◦. The rectangular paths are divided into 100 steps
each. The robot position is changing in counter clockwise direction and it
completes 360 ◦clockwise rotation in each trial
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Table 6.6: Estimation error, based on the two landmarks method, in each component (x,
y and θ)of the robot pose. The robot moves along rectangular paths of different
dimensions and is also changing its orientation

Mean Std Min Max
δx (mm) 36.90 18.88 1.90 84.77
δy (mm) 56.10 42.51 9.66 161.73
δθ ( ◦) 3.60 2.76 0.02 9.70

respect to landmarks at moderate distances. Uncertainty as calculated for each step in this
category is shown in Fig. 6.11. Different trials of this category are also separated by the green
bars and marked in a similar fashion.

Figure 6.11: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.10. The five trials of Fig. 6.10
are separated by the green bars and marked as (a), (b), (c), (d), and (e). The
marker (a) corresponds to Fig. 6.10(a), (b) to Fig. 6.10(b) and so on

6.3.4 Linear Motion with Restricted Rotation

Here, the robot follows linear paths but its orientation remains fixed at 0 ◦or 180 ◦along
the x-axis. In total 6 trials were made in this category which are shown in Fig. 6.12. In
Fig. 6.12(a), the starting position is at (321, 650), where the robot faces the goal on the left
side while moves backwards towards the right. At each step the robot moves away from the
goal. The only change between steps is along the x-axis, while orientation and location along
y-axis remain fixed. The step size is ≈9 mm. Increase in position error with distance to the
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landmarks can be seen from this figure. The first time robot acquires both the landmarks is
at step 9. The landmarks (the two goals) remain in sight until the end of the trial.

Fig. 6.12(b) shows the location estimation from the same position but in this case the robot’s
orientation is fixed at 0 ◦. In this case the robot faces the landmarks on the right hand
side (the yellow goal) and moves closer to them with each step. Similarly, Fig. 6.12(c) and
Fig. 6.12(d) follow the same motion pattern of Fig. 6.12(a) Fig. 6.12(b), respectively, but
having different start positions. In Fig. 6.12(c) the start position is at (321, 450), whereas, in
Fig. 6.12(d) the robot start at (321, 850). Fig. 6.12(e) shows a different pattern. In this case
the change between different steps is along the y-axis. The orientation of the robot remains
fixed at 0 ◦. The start position is in the middle of the field on the lower side at (750, 222).
During the next steps there is a constant change of ≈9 mm along y-axis. The first time the
robot is able to estimate its position is at step 26. From 26 to 76, the robot can estimate its
position with respect to landmarks on the right side.

The final trial of this category is shown in Fig. 6.12(f), where the robot follows a similar
motion pattern as shown in Fig. 6.12(a), but with a different start position, step size and
direction of motion. In this case the robot begins moving from (1300, 650). With each step
the robot gets closer to the landmarks on the left side. Table 6.7 shows statistical results from
this category, whereas, uncertainty calculations for each estimates are drawn in Fig. 6.13. The
rise and fall of error and the corresponding uncertainty values with distance from landmarks
can be seen from the figure. The almost constant level of uncertainty, marked as (e), is for
the trial shown in Fig. 6.12(e).

Table 6.7: Estimation error, based on the two landmarks method, in each component (x,
y and θ)of the robot pose. The robot positions are along linear paths, while its
orientation remain fixed along x-axis

Mean Std Min Max
δx (mm) 69.39 55.88 1.27 270.28
δy (mm) 96.00 130.43 0.011 546.74
δθ ( ◦) 6.23 7.64 0.0024 28.07

In the above discussion the robot always looks at one of landmarks on the left or right side,
due to which position estimates were made at more than 70% of the locations where it was
attempted. A little less than 6% of the total estimates are such that the distance between
the true and estimated position is greater than 400 mm.

6.3.5 Linear Motion with Rotation

Fig.6.14 shows 5 trials of the last category. Here, the robot motion is along linear paths
but in addition to change in the position there is a change in orientation too. Between two
consecutive steps there is a small change of 0.2 ◦in robot orientation. In Fig. 6.14(a) the robot
starts at (950, 452) and moves upward in small steps of ≈9 mm. The robot orientation at
startup is -170 ◦, which changes to -190 ◦or 170 ◦by the end of the trial. The same motion
pattern is followed in rest of the trials, however, with a different start location.

Table 6.8 shows results from the above data. It was possible to estimate the robot position in
more than 55% of the locations where features were searched. In 55% of the total estimates
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: The robot is moving along linear paths, while its orientation is fixed along
x-axis (a) the robot is looking at landmarks on the left side and moves away
towards the right (b) the robot is looking at landmarks on the right side. At
each step it is getting closer to the landmarks. In (c) and (d) the motion
pattern is as similar to (a) and (b) but positions are different (e) the robot
start at the bottom position and moves upward while looking at landmarks
on the left side (f) the robot is looking at and moving towards left
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Figure 6.13: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.12. The six trials of Fig. 6.12
are separated by the green bars and marked as (a), (b), (c), (d), (e) and (f).
The marker (a) corresponds to Fig. 6.12(a), (b) to Fig. 6.12(b) and so on

the distance between the true and calculated positions is less than 100 mm. The error is
between 100 mm and 200 mm for 35% of the time. Only 4 estimates are such where error is
greater than 400 mm. Results from uncertainty analysis are shown in Fig. 6.15.

Table 6.8: Estimation error, based on the two landmarks method, in each component (x, y
and θ)of the robot pose. The robot positions are along linear paths. The robot
orientation is also changing

Mean Std Min Max
δx (mm) 56.26 36.33 0.15 274.40
δy (mm) 86.45 98.21 0.07 804.47
δθ ( ◦) 4.99 4.89 0.03 32.59

6.4 Location Estimation Using One Landmark

In the following section a performance evaluation of the single landmark based position
estimation is presented. For this study it is assumed that information about the absolute
orientation of the robot is always available. The locations from where position estimation
have been attempted are the same as in the case for two landmark. However, in this case
the position is estimated whenever the robot could find a single distinct landmark. The
experiment in each category is repeated for varying level of noise in the robot’s absolute
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(a) (b)

(c) (d)

(e)

Figure 6.14: Motion along linear path. In this case the robot is also changing its orientation
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Figure 6.15: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.14. The five trials of Fig. 6.14
are separated by the green bars and marked as (a), (b), (c), (d) and (e). The
marker (a) corresponds to Fig. 6.14(a), (b) to Fig. 6.14(b) and so on

orientation, which is additive zero mean Gaussian. Figures shown in this section are generated
for orientation error of zero mean and 3.5 ◦standard deviation.

6.4.1 Motion without Rotation

Fig. 6.16 shows single landmark position estimation for the case where locations from where
robot position estimation was attempted lie along rectangular paths of different dimensions.
In Fig. 6.16(a), it is only from step 27 to 33, 39 to 41 and 48 to 53 that no landmark can be
acquired. Dimensions of the rectangle in Fig. 6.16(b) is 750 × 500, where the true positions
lie more in the field as compared to the first trial. The result is that a single landmark is
available in 97 out of 100 steps, whereas, in Fig. 6.16(c) and Fig. 6.16(d), one landmark is
always available.

Statistical results for the absolute error in x and y components of the robot pose for the
above category is shown in Table 6.9. Position estimates are made frequently here since
the probability of sighting a single landmark is higher as compared to the case with two
landmarks. The mean as well as standard deviation error is also less.

The effect of rising the level of angular noise can be seen from Table 6.9. Mean as well as
standard deviation increases with the increase in angular noise. Fig. 6.7 shows the error in
each component of the robot pose and the corresponding uncertainty values. Similar to the
two landmarks method, error values are plotted as bars in black color, while the corresponding
±σ uncertainty bound is shown in red. Increase in the position error is accounted for a
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Table 6.9: Estimation error, based on the single landmark method, in each component (x,
y and θ) of the robot pose. The robot positions are along rectangular paths and
there is no rotation involved. The experiment is repeated for varying level of
noise in robot orientation

Angular noise (Std) Mean (mm) Std (mm) Min (mm) Max (mm)
δx

0 ◦
57.03 44.76 0.15 174.70

δy 11.48 11.85 0 52.47
δx

1 ◦
57.11 45.07 0.18 177.39

δy 16.02 12.81 0.17 78.78
δx

2 ◦
57.95 45.44 0.04 179.21

δy 24.97 20.89 0.04 112.37
δx

3 ◦
58.47 45.35 0.01 184.69

δy 32.42 24.47 0.16 154.09
δx

3.5 ◦
57.95 45.64 0.06 195.36

δy 38.11 30.52 0.06 157.84
δx

4 ◦
58.47 46.53 1.06 200.63

δy 41.11 33.40 0.10 176.61
δx

5 ◦
59.50 46.10 0.01 205.77

δy 52.44 43.38 0.24 222.68
δx

6 ◦
60.96 48.06 0.04 291.74

δy 61.67 53.56 0.08 274.49
δx

7 ◦
63.00 52.19 0.15 345.40

δy 68.78 59.17 0.15 325.90
δx

8 ◦
64.36 50.33 0.23 285.68

δy 76.25 62.74 0.52 340.44
δx

9 ◦
66.07 53.97 0.28 355.34

δy 84.82 67.51 0.71 397.81
δx

10 ◦
66.41 50.71 0.04 251.26

δy 91.51 81.63 0.07 395.84
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(a) (b)

(c) (d)

Figure 6.16: Single landmark based position estimation. The robot is following rectangular
paths of different dimensions. However, its orientation is fixed at 0 ◦or 180 ◦.
The starting position in each trial is at the top-right corner of the rectangular
path. Locations in next steps are lie is counter clockwise direction. In (a) and
(b) the robot is looking towards landmarks on the left side, whereas, in (c)
and (d) it is looking towards landmarks on the right side

corresponding increase in uncertainty. The four trials of Fig. 6.16 are separated by the green
bars and marked with the name of the sub-figure. For example, all the estimates of the trial
shown in Fig. 6.16(a) are marked as (a) in Fig. 6.9.

6.4.2 Single Point Rotation

Fig. 6.18 shows results from position estimation in the second category wherein the robot
rotates around a single point looking for landmarks. Details of robot positions and changes in
its orientation between steps has already been explained in the previous section. Fig. 6.18(a)
shows a 360 ◦clockwise rotation from the center of the field. The robot orientation at step 1
is −90 ◦. No landmark can be sighted during the first 14 steps. The first time a landmark
can be extracted and position estimated is at step 15. From step 15 to step 36, at least one
of the landmarks on the left side is visible to the robot. After this phase no landmark can
be extracted from step 37 to 63. At least one of the landmarks on the right side becomes
available from step 64 to 86.
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Figure 6.17: Comparison of position estimation error with corresponding ±σ uncertainty
bound. Error from position estimations shown in Fig. 6.16 is stacked together
and shown by black bars while the red curve give the ±σ uncertainty bound.
The four trials of Fig. 6.16 are separated by the green bars and marked as
(a), (b), (c), and (d). The marker (a) corresponds to Fig. 6.16(a), (b) to
Fig. 6.16(b) and so on

Fig. 6.18(b) shows the second trial of this category. In this trial the robot position was
estimated at step 34, 37, 42 to 48 and then from step 64 to 80. Position estimates from step
64 to 80 were made with respect to landmarks on the right side. Similarly, Fig. 6.18(c) to
Fig. 6.18(e) show trials where the robot is placed at the other three corners. Fig. 6.18(f)
repeats the case presented in Fig. 6.18(a). Here the robot orientation at step 1 is −135 ◦

and it completes a 90 ◦clockwise rotation in 100 steps. In this case, the robot is able to
estimate its position from step 7 to 94, where one of the landmarks on the left side is visible.
Statistical results for the rotation-only case are shown in Table 6.10. In this category the
robot could estimate its position in more than 45% of the locations where it searched for
landmarks compared to less than 20 % of the two landmark case. Additionally, the position
error is less as compared to the error shown in Table 6.5. ±σ uncertainty bound for the
rotation-only case is shown in Fig. 6.19.

6.4.3 Motion and Rotation

The third category is shown in Fig. 6.20. Here, in addition to changing the position, the
robot orientation is also changed. In Fig. 6.20(a), the robot starts at (1350, 1050). Its next
steps lie along the rectangular path of size 1200 × 800 in counter clockwise direction. The
lower landmark on the right side is visible during the first two steps. From step 11 to 24 the
robot can see one of the landmarks on the left side. However, it fails to estimate its position
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.18: Single landmark based position estimation. The robot is placed at different
locations in its environment. In this case the robot is rotating in small steps
but without any motion. The robot completes 360 ◦rotation in (a), (b), (c),
(d) and (e), whereas, it completes 180 ◦rotation in (g) and 90 ◦in (f) and (h)
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Table 6.10: Estimation error, based on the single landmark method, in each component
(x, y and θ) of the robot pose. The robot is placed at different positions in its
environment. Between different steps only robot orientation changes, while its
position remains fixed

Angular noise (Std) Mean (mm) Std (mm) Min (mm) Max (mm)
δx

0 ◦
42.52 35.69 0.026 163.89

δy 14.68 13.03 0.005 67.68
δx

1 ◦
42.43 35.76 0.17 163.19

δy 18.26 16.18 0.003 95.46
δx

2 ◦
43.40 36.08 0.11 178.55

δy 23.92 22.13 0.03 179.72
δx

3 ◦
43.95 35.70 0.04 181.18

δy 31.67 28.14 0.28 177.74
δx

3.5 ◦
44.75 37.46 0.23 196.04

δy 39.65 35.73 0.14 202.99
δx

4 ◦
45.86 36.23 0.24 166.90

δy 40.64 35.51 0.013 196.82
δx

5 ◦
46.95 38.23 0.131 218.24

δy 47.77 42.43 0.32 271.06
δx

6 ◦
51.04 44.12 0.37 404.81

δy 60.88 56.82 0.10 314.65
δx

7 ◦
50.73 42.42 0.21 248.07

δy 67.34 62.45 0.04 403.82
δx

8 ◦
54.05 43.90 0.07 282.74

δy 78.58 72.74 0.09 406.91
δx

9 ◦
57.55 52.65 0.05 386.74

δy 85.34 79.82 0.05 501.56
δx

10 ◦
58.71 51.00 0.116 316.76

δy 93.6964 82.79 0.05 435.09
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Figure 6.19: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.18. The eight trials of Fig. 6.18
are separated by the green bars and marked as (a), (b), (c), (d), (e), (f), (g)
and (h). The marker (a) corresponds to Fig. 6.18(a), (b) to Fig. 6.18(b) and
so on

at step 22 and 23 due to segmentation problems. Similarly, motion patterns are shown in
Fig. 6.20(b) to Fig. 6.20(e). Statistical results from this category are shown in Table 6.11,
whereas, uncertainty as calculated for each step in this category is shown in Fig. 6.21.

6.4.4 Linear Motion with Restricted Rotation

The fourth category consisting of 6 trials is shown in Fig. 6.22. Here, the robot is following
linear paths but its orientation remains fixed at 0 ◦or 180 ◦along the x-axis. In Fig. 6.22(a),
the starting position is at (321, 650), where the robot is looking at the goal on the left side,
with each step the robot moves away from the goal. The only change between steps is along
the x-axis, while orientation and location along y-axis remain fixed. The step size is ≈9 mm.
Increase in position error with distance to the landmarks can be seen from this figure. The
first time robot can acquire at least one landmark is at step 9, which remains in sight until
end of the trial.

Fig. 6.22(b) shows the location estimation from the same positions but here the robot is
looking in the opposite direction. In this case the robot is getting closer to the yellow goal
on the right side in each step. In Fig. 6.22(c) the robot starts at (321, 450), and is moving
away from landmarks on the left side. Similarly, Fig. 6.22(d) the robot start at (321, 850)
and follows the pattern shown in Fig. 6.22(b). Table 6.12 shows statistical results from this
category, whereas, uncertainty calculations for each estimates are drawn in Fig. 6.23. In this
category the robot is able to estimate its position more than 95% of the time.
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(a) (b)

(c) (d)

(e)

Figure 6.20: Single landmark based position estimation. Here in this case the robot is
following rectangular paths and is rotating as well. The start position is
at the top-right corner of the rectangle and the starting orientation is -90 ◦.
The rectangular paths are divided into 100 steps each. The robot position
is changing in counter clockwise direction and it completes 360 ◦clockwise
rotation in each trial
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Table 6.11: Estimation error, based on the single landmark method, in each component
(x, y and θ)of the robot pose. The robot moves along rectangular paths of
different dimensions and is also changing its orientation

Angular noise (Std) Mean (mm) Std (mm) Min (mm) Max (mm)
δx

0 ◦
34.31 25.76 0.30 98.83

δy 19.70 17.51 0.08 64.98
δx

1 ◦
34.68 26.03 0.09 98.90

δy 21.99 18.63 0.003 85.14
δx

2 ◦
35.95 26.09 0.33 99.79

δy 24.86 19.66 0.08 85.14
δx

3 ◦
36.55 27.13 0.014 127.79

δy 27.97 22.45 0.105 113.90
δx

3.5 ◦
36.27 27.56 0.03 106.15

δy 32.06 27.74 0.014 121.74
δx

4 ◦
38.34 28.70 0.65 147.28

δy 35.45 28.14 0.41 177.09
δx

5 ◦
37.43 27.75 1.23 135.25

δy 39.68 33.24 0.08 169.00
δx

6 ◦
42.84 35.30 0.52 276.81

δy 46.93 49.33 0.19 479.26
δx

7 ◦
43.39 32.44 1.09 180.61

δy 56.44 46.93 0.37 285.49
δx

8 ◦
46.46 37.76 1.56 258.58

δy 69.26 55.76 0.13 259.66
δx

9 ◦
45.95 35.97 1.14 177.13

δy 65.75 52.61 0.40 284.58
δx

10 ◦
53.19 42.97 1.21 270.52

δy 80.46 67.27 0.67 378.00

106



Chapter 6 Results and Evaluation

Table 6.12: Estimation error, based on the single landmark method, in each component (x,
y and θ) of the robot pose. The robot positions are along linear paths, while
its orientation remain fixed along x-axis

Angular noise (Std) Mean (mm) Std (mm) Min (mm) Max (mm)
δx

0 ◦
60.58 41.21 0.73 204.61

δy 3.11 3.57 0 19.98
δx

1 ◦
60.80 41.16 0.94 204.67

δy 10.81 9.15 0.0012 51.26
δx

2 ◦
61.22 41.47 1.19 205.04

δy 19.63 15.96 0.02 95.67
δx

3 ◦
61.60 42.33 0.47 206.96

δy 30.43 24.65 0.08 172.82
δx

3.5 ◦
61.04 41.98 0.23 208.77

δy 31.99 28.08 0.04 217.09
δx

4 ◦
61.98 42.42 1.84 215.08

δy 40.56 34.41 0.45 222.17
δx

5 ◦
62.41 43.56 0.07 213.28

δy 48.70 40.76 0.08 222.48
δx

6 ◦
64.16 43.75 0.28 225.79

δy 60.21 48.83 0.03 248.67
δx

7 ◦
67.35 45.89 0.02 255.98

δy 70.64 58.25 0.19 356.68
δx

8 ◦
66.74 45.15 0.16 219.35

δy 73.98 58.83 0.04 306.21
δx

9 ◦
69.99 48.99 0.34 306.73

δy 89.77 72.73 0.18 405.94
δx

10 ◦
75.35 52.57 0.98 251.09

δy 101.81 82.91 0.17 570.67
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Figure 6.21: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.20. The five trials of Fig. 6.20
are separated by the green bars and marked as (a), (b), (c), (d), and (e). The
marker (a) corresponds to Fig. 6.20(a), (b) to Fig. 6.20(b) and so on

6.4.5 Linear Motion with Rotation

Fig.6.24 shows the last category where the robot moves in linear path and is rotating as well.
In Fig. 6.24(a) the robot starts at (950, 452) and moves upward in small steps of ≈9 mm.
The robot orientation at startup is -170 ◦, which changes to -190 ◦or 170 ◦by the end of the
trial. The starting location in Fig. 6.24(b) is (750, 452). Here the robot follows a similar
motion pattern as in Fig.6.24(a). At least one landmark can always be acquired during the
entire trial.

Table 6.13 shows results from the category discussed above. It was possible to estimate the
robot position in 100% of the locations where features were searched compared to 55% when
two landmarks were used. Results from uncertainty analysis are shown in Fig. 6.25.

6.5 Position Tracking and Information Fusion

The trials for the position tracking experiment are grouped into three categories according
to the trajectory followed by the robot: circular motion, linear motion and rotation about a
single point. First the curved trajectory and then its two special cases are tested. In order to
improve the statistics regarding the growth of uncertainty and robot position, different trials
are conducted in each category and every trial consists of 100 steps.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Single landmark based position estimation. The robot is moving along linear
paths, while its orientation is fixed along x-axis (a) the robot is looking at
landmarks on the left side and moves away towards the right (b) the robot is
looking at landmarks on the right side. At each step it is getting closer to the
landmarks. In (c) and (d) the motion pattern is as similar to (a) and (b) but
positions are different (e) the robot start at the bottom position and moves
upward while looking at landmarks on the left side (f) the robot is looking at
and moving towards left
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Table 6.13: Estimation error, based on the single landmark method, in each component (x,
y and θ) of the robot pose. The robot positions are along linear paths. The
robot orientation is also changing

Angular noise (Std) Mean (mm) Std (mm) Min (mm) Max (mm)
δx

0 ◦
49.01 31.80 0.03 173.73

δy 6.89 24.06 0.0042 378.59
δx

1 ◦
49.15 31.86 0.12 173.65

δy 12.48 26.16 0.08 394.69
δx

2 ◦
49.71 32.37 0.42 174.75

δy 22.32 27.94 0.0031 379.47
δx

3 ◦
50.07 33.22 0.34 175.01

δy 29.97 33.94 0.10 422.09
δx

3.5 ◦
50.36 33.9883 0.02 173.90

δy 34.86 37.48 0.012 411.98
δx

4 ◦
50.87 34.30 0.012 175.28

δy 42.74 41.88 0.12 444.12
δx

5 ◦
52.94 34.70 0.08 176.09

δy 50.93 46.93 0.11 337.05
δx

6 ◦
54.23 35.63 0.65 179.04

δy 62.50 56.22 0.02 487.67
δx

7 ◦
55.05 36.90 0.14 181.84

δy 70.54 62.20 0.16 510.14
δx

8 ◦
57.21 40.38 0.05 282.57

δy 76.96 68.63 0.37 569.72
δx

9 ◦
59.89 43.46 0.002 244.21

δy 93.17 76.20 0.31 469.05
δx

10 ◦
61.07 44.09 0.0014 258.40

δy 91.68 76.36 0.23 419.38
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Figure 6.23: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.22. The six trials of Fig. 6.22
are separated by the green bars and marked as (a), (b), (c), (d), (e) and (f).
The marker (a) corresponds to Fig. 6.22(a), (b) to Fig. 6.22(b) and so on

For extensive testing of the algorithm the experiments are repeated in three different sce-
narios. Firstly, the position tracker is initialized manually with a starting position and its
corresponding uncertainty. The initial position is obtained by adding random noise to the
true position. Secondly, the robot is given a random start position with a high uncertainty.
This is to study the convergence of the robot position belief when features are available.
Providing the starting position and the covariance matrix violates the robot autonomy. For
autonomous behavior the robot must be equipped with tools that enable it to localize itself
from scratch. This capability of the algorithm is demonstrated in the final run of the exper-
iment where initialization of the tracker is done with the help of global position estimation
methods discussed in Chapter 4. At startup the robot does not initialize its position tracker
and actively searches landmarks until it finds enough that are required for global localization.
After finding its position on the global map, the robot initializes its location tracker with this
position and its corresponding covariance.

The first category consists of different trials where the robot follows a circular path of different
diameters. A sample trial of this category is shown in Fig. 6.26. Here radius of the circle is
500 mm. As can be seen from Fig. 6.26(a) the ideal path that the robot is supposed to follow
is a perfect circle. However, due to imperfections of its sensors the robot deviates from the
true path. In this trial the true starting position of the robot is

[
1350 650 90 ◦

]
. In 28 of

the 100 steps, at least one landmark is visible. Two landmarks were visible in four of these
steps. The first landmark sighting is at step 32. Due to the fact that the robot travels on the
same path and performs the same relative movement at each step, a landmark is visible at
the same step(s) in every run of the same trial. In Fig. 6.26(a) the robot starts at a known
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(a) (b)

(c) (d)

(e)

Figure 6.24: Single landmark based position estimation. Locations from where position es-
timation is attempted lie along linear paths. The robot orientation at startup
is -170 ◦, which changes to -190 ◦or 170 ◦by the end of the trial. In all of these
trials, y-component of robot starting position is ≈400 and the step size is ≈4
mm. The x-component of the positions is starting is 950, 750, 550, 1050 and
450 in (a), (b), (c), (d) and (e), respectively
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Figure 6.25: Comparison of position estimation error with corresponding ±σ uncertainty
bound for position estimates shown in Fig. 6.24. The five trials of Fig. 6.24
are separated by the green bars and marked as (a), (b), (c), (d) and (e). The
marker (a) corresponds to Fig. 6.24(a), (b) to Fig. 6.24(b) and so on

position with low uncertainty and moves in counterclockwise direction. The starting position
is marked as ’A’ (in Fig. 6.26(c) the random start point is marked ’A1’ and the true start
as ’A2’). The robot observes its first landmark feature when it has covered more than a
quarter of its intended path marked as ’B’ (the estimated and true points in Fig. 6.26(c) and
Fig. 6.26(e) are marked as ’B1’ and ’B2’ respectively). As can be seen in Fig. 6.26(a), the
uncertainty of the robot position is growing continuously and the pose drifts away from the
true value. When the robot observes one of the two features on the left side, its uncertainty is
reduced and position adjusted. However, as soon as the landmarks are out of sight, drift from
the true position starts and the uncertainty increases. Between ’C’ and ’D’ robot position
uncertainty is increasing unbounded. This drift is corrected when the landmarks are visible
again from ’D’ onward.

Fig. 6.26(c) illustrates the case where the robot is given a random starting position with a
high uncertainty. The true path is shown in red whereas, the estimated path is shown in blue.
As can be seen in the figure the robot is constantly moving away from its intended path and
its uncertainty is growing rapidly. However, when landmark features become available to the
robot, corrective steps are applied and the robot gets closer and closer to its true path. Since,
only odometric data is available during the first thirty two steps the relative movement of the
robot is in wrong direction. After the first sighting of landmark at position marked as ’B2’,
the estimated position jumps to the upper right of the field (’B1’). Consecutive landmark
sightings reduce the uncertainty and improve estimation. Due to scarcity of landmarks the
robot takes long to rectify its position belief. However, the assumption of the existence of
globally distinct landmarks helps the robot converge to its correct position when features are
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(a) (b)

(c) (d)

(e) (f)

Figure 6.26: Path estimation using EKF. Robot desired trajectory is a circle of radius 500
mm (a) the robot starts at a known position with low uncertainty (b) ±3σ
bound on error in x, y and θ when the robot starts at a known location
(c) the robot starts at a random position with a very high uncertainty (d)
error bounds for random starting position (e) start position and uncertainty
estimated using single landmark method (f) uncertainty bounds when the
robot position is initialized with global localization method

114



Chapter 6 Results and Evaluation

observed. The process is rather slow and the global position estimation should be carried out
at startup and whenever it loses track of its position as it results in a better performance.
Global self-localization for the same path is shown in Fig. 6.26(e). Between ’A’ and ’B2’ no
landmarks are available and the robot does not do any estimation of its position but only
searches for landmarks. The global position is estimated using the single landmark method at
’B1’. Between ’B1’ and ’C’ the robot position belief is continuously improved since it can sight
at least one landmark. From ’C’ onwards the robot cannot acquire any of the landmarks and
the uncertainty is growing again. From point ’D’ onwards the robot position is continuously
adjusted. ±3σ error bound on each component of the robot pose for all the three runs of this
trial are shown in Fig. 6.26(b), Fig. 6.26(d) and Fig. 6.26(f). The error in each component of
the robot pose is shown in blue, whereas, the corresponding ±3σ uncertainty bound is shown
in red. It can be seen from these figures that the error is bounded.

The second category consists of trials to test the limiting case when the two wheels are moving
with approximately the same velocity. The difference between different trials is in starting
position of the robot and/or direction of motion. A single trial from this category is shown
in Fig. 6.27. The robot orientation is fixed at 180 ◦and it starts at a point ’A’ on the left side
and moves in reverse direction towards the right in small steps of 8.9 mm each. The end point
is marked as ’B’. The orientation of the robot is such that in 99 out of the 100 steps, at least
one landmark is visible. The first landmark sighting is at step 2. From step 44 onwards two
landmarks are visible. First run of this trial where the position tracker is manually initialized
is in Fig 6.27(a). The robot starts at a known position with low uncertainty. When the
robot moves further away from the landmarks, the effect of robot observation decreases as
its uncertainty increases and the accumulation of odometry error dominates. As predicted
by (B.23) uncertainty in direction perpendicular to the direction of motion is growing much
faster than uncertainty in x or θ. The uncertainty is reduced when the second landmark
becomes available. The effect of deteriorating observation can be seen in Fig. 6.27(b) where
error is not bounded. Also in this case the experiment is repeated for a random start location
with high uncertainty and global position estimation as shown in Fig. 6.27(c) and Fig. 6.27(e),
respectively. In Fig. 6.27(c) the random start position is marked as ’C’. Since, observations
are frequently available, the position error is quickly reduced. Further reduction in error is
achieved when the second landmark is sighted. The error in each component of the robot
pose and their corresponding ±3σ uncertainty bounds are shown in Fig. 6.27(b), Fig. 6.27(d)
and Fig. 6.27(f).

The trials in the last category simulate the robot behavior when the two wheels are ro-
tating with the same velocity but in opposite direction. Under such a scenario the robot
rotates around its center of mass. During each trial the robot may or may not complete a
full 360 ◦rotation. Fig. 6.28 shows a single trial of this category. Here the robot starts at[
750 650 −90 ◦

]
and completes a 180 ◦rotation in 100 steps in clockwise direction. During

this trial the robot observes at least one landmark in 44 out of 100 steps (between step 29
and step 72). Two landmarks are available only in 15 of the 44 observations. Similar to
the previous two categories the experiment is repeated for random and unknown starting
position. Even though the randomly chosen position in Fig 6.28(c) matches with the true
position, the uncertainty stays high.

The above experiment is compared with a PF based position estimation method. Details of
the comparison study are reported in [BDN07, Deu07]. The PF algorithm uses random values
and hence a single run is not precisely repeated. The results presented here are generated by
using 25 different runs for the same input data set. Fig. 6.26 is repeated in Fig. 6.29. The
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(a) (b)

(c) (d)

(e) (f)

Figure 6.27: Path estimation using EKF. The robot’s desired path is a straight line (a)
known starting position (b) error and ±3σ error bound for known starting
location (c) starting at a random position with high uncertainty (d) error and
±3σ bound on error in x, y and θ for a random start position (e) the location
tracker is initialized by estimating the robot location and its uncertainty using
global position estimation (f) location error and ±3σ error bound when the
location tracker is initialized with a global position estimate
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(a) (b)

(c) (d)

(e) (f)

Figure 6.28: Path estimation using EKF. The robot is rotating about its center of mass (a)
starting at a known position (b) ±3σ error bound for known starting position
(c) starting at a random position (d) ±3σ error bound for random start (e)
initial position is estimated using the single landmark method (f) ±3σ error
bound for global initialization of the filter
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estimated path and absolute error in x, y and θ for the EKF and MCL is shown blue dotted
and red dashed, respectively. The gray line in Fig. 6.29(b) shows the 100 mm error reference
in x and y and 7.5 ◦in θ. The true path is shown solid in gray color. Both methods are using
the same data.

Path estimation with the EKF has already been explained in the previous paragraphs. In
Fig. 6.29(a), both methods are provided with a known start position. The starting position is
marked as ’A’. It can be seen from the figure that the path estimated by both methods drifts
from the true path until landmarks are available at point ’B’. Random initialization is shown
in Fig. 6.29(c). The start position of the PF is marked ’A1’, while the true start is marked as
’A2’. After the first sighting of landmark, PF based estimated position jumps to the upper
left of the field marked as ’B’. Beyond this point the estimated position is getting closer to
the true position but starts drifting away when no landmarks can be sighted. Improvement
in position estimate is rather slow until landmark on the right side is sighted. This position
is marked as ’C’ in the figure. The path estimation done by the EKF is corrected by the new
sightings towards the real path, which fits the true path well until the end of the round.

The algorithm is initialized with a set of 1000 uniformly distributed position estimations
(particles). The particles at each step move according to the odometric data. Along with the
particle resampling/reinjection, the estimated position stays close to the center. With the
first landmark sighting at position marked ’B’, the estimation gets closer to the true path.
By the time the robot reached the point marked with ’C’, fifteen steps without a landmark
sighting were passed. This causes a spread of the particles and overlaps the borders of the
playground. Similar to the EKF, with the first landmark sighting of the other goal at point
marked as ’C’, the estimated path approaches the true path.

The estimation done by the EKF algorithm is smoother as compared with the one achieved
with the MCL. As shown in Fig. 6.29(c), the path of the EKF is following a similar path as
the true one. An individual particle also follows a path based on the control input, however,
the resultant path estimate of the robot does not look like a circular arc as N circular paths
contribute to it. Comparison for motion along a straight line and single rotation is shown in
Fig. 6.30 and Fig. 6.31, respectively.

Comparison results of the EKF algorithm and the MCL algorithm for the last 20 steps of
the trials discussed above are shown in Table 6.14, Table 6.15 and Table 6.16. The tables
also show results from after landmark sighting until step 79. Both the algorithms are getting
closer to the true values. The two categories where the EKF is performing better than the
MCL are the maximum distance and the standard deviation. Bad estimations in Table 6.15
are the result of erroneous observation for line motion. The terms ’Known’, ’Random’, and
’Global’ refer to the way EKF is initialized. ’Known’ means the filter is initialized manually
by providing it the starting position and uncertainty, ’Random’ means random start position
and high uncertainty, while in ’Global’ the start position and uncertainty is estimated using
global self-localization techniques discussed earlier.

Statistical results for the error in robot observation are shown in Table 6.17. In this table δr
and δϕ refer to the range and bearing components of the observation vector. δr is expressed
in millimeters and δϕ is given in degrees. The first row show values for the average error.
The standard deviation (Std), minimum (Min) and maximum (Max) values for each group
are presented in the second, third and fourth row. The Min and Max shown are the absolute
values. The first two columns list error in range and bearing in the category where robot
follows circular paths of different diameters. Results from single point rotation and straight
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(a) (b)

(c) (d)

(e) (f)

Figure 6.29: Path estimation comparison for the case shown in Fig. 6.26. The estimated
path and absolute error in x, y and θ for the EKF and MCL is shown blue
dotted and red dashed, respectively. The gray lines in (b), (d) and (f) shows
the 100 mm error limit in x and y and 7.5 ◦in θ (a) known start position (b)
error in x, y, and θ (c) random start position (d) error comparison (e) start
position estimated with with single landmark based method (f) error
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(a) (b)

(c) (d)

(e) (f)

Figure 6.30: Path estimation comparison for the case shown in Fig. 6.27
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(a) (b)

(c) (d)

(e) (f)

Figure 6.31: Path estimation comparison for the case shown in Fig. 6.28
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Table 6.14: Statistical results (distance to the true position) for parts of the circular path
shown in Fig. 6.29. First landmark is sighted at step 32

Start position Method Steps Mean (mm) Std (mm) Min (mm) Max (mm)

Known

EKF 33—79 60.41 53.63 10.40 197.60
MCL 33—79 105.83 28.11 65.71 169.01
EKF 80—100 33.18 32.33 10.40 114.40
MCL 80—100 107.81 8.53 89.42 125.34

Random

EKF 33—79 235.66 92.95 93.60 457.60
MCL 33—79 120.24 64.13 41.41 266.96
EKF 80—100 51.01 19.43 31.20 93.60
MCL 80—100 40.95 4.66 31.49 51.07

Global

EKF 33—79 241.41 102.95 62.40 416.00
MCL 33—79 140.52 58.01 77.28 283.22
EKF 80—100 96.08 46.85 10.40 197.60
MCL 80—100 61.54 8.91 44.66 74.85

Table 6.15: Statistical results (distance to the true position) for parts of the linear path
shown in Fig. 6.30

Start position Method Steps Mean (mm) Std (mm) Min (mm) Max (mm)

Known

EKF 10—79 49.03 17.27 20.80 72.80
MCL 10—79 337.38 133.00 73.73 529.26
EKF 80—100 90.63 5.83 83.20 104.00
MCL 80—100 486.13 44.09 408.14 579.04

Random

EKF 10—79 95.83 41.37 31.20 166.40
MCL 10—79 218.99 38.71 151.54 314.06
EKF 80—100 72.80 6.58 62.40 83.20
MCL 80—100 394.09 47.53 312.22 472.50

Global

EKF 10—79 30.16 18.24 10.40 62.40
MCL 10—79 219.24 43.83 142.78 338.27
EKF 80—100 70.82 7.07 62.40 83.20
MCL 80—100 392.75 44.32 312.54 457.97

line motion are shown from third to sixth column respectively. Overall results from all the
three categories are shown in the last two columns.

The rise in observation error with distance from landmark features is adequately captured
by a corresponding increase in uncertainty. However, the error that arises from segmentation
problems is not handled. The observation error is comparatively low for the case when robot
is moving along circular paths. This is due to the fact that in this case landmarks are observed
from relatively short distances.

The main problem that stems from the high observation error is the slow repositioning of the
robot if it has a wrong position with low uncertainty. The fusion of an erroneous observation
reduces the robot position uncertainty even further but causes less improvement in its error.
To tackle this problem a validation gate is implemented which is based on innovation. If
innovation is above a certain threshold the robot is declared lost and global position estimation
is forced. After global position estimation the location tracker is initialized with the new
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Table 6.16: Statistical results (distance to the true position) for parts of the single point
point rotation shown in Fig. 6.31. First landmark is sighted at step 29

Start position Method Steps Mean (mm) Std (mm) Min (mm) Max (mm)

Known

EKF 30—79 33.28 12.78 20.80 104.00
MCL 30—79 53.92 20.29 15.38 102.02
EKF 80—100 31.20 0.00 31.20 31.20
MCL 80—100 69.71 8.56 56.40 83.41

Random

EKF 30—79 70.10 42.59 10.40 145.60
MCL 30—79 149.27 11.40 121.14 176.62
EKF 80—100 52.00 0.00 52.00 52.00
MCL 80—100 156.67 3.50 150.77 166.06

Global

EKF 30—79 37.44 14.25 20.80 93.60
MCL 30—79 150.24 15.59 118.86 178.24
EKF 80—100 31.20 0.00 31.20 31.20
MCL 80—100 155.38 3.93 147.39 160.83

Table 6.17: The robot observation error

Circular path Point Line All

δr (mm) δϕ δr (mm) δϕ δr (mm) δϕ δr (mm) δϕ

Mean -4.67 -0.19 ◦ -38.31 -0.17 ◦ -32.16 -0.37 ◦ -31.04 -0.30 ◦

Std 22.43 0.17 ◦ 43.52 0.85 ◦ 46.61 0.70 ◦ 44.83 0.72 ◦

Min 0.25 0.0007 ◦ 0.007 0.0003 ◦ 0.07 0.0006 ◦ 0.007 0.0003 ◦

Max 70.12 0.53 ◦ 163.17 1.93 ◦ 204.60 1.78 ◦ 204.60 1.93 ◦

estimate and its corresponding uncertainty. A similar problem has already been discussed
in Section 5.1.3, where a robot which is certain about its position is displaced. The robot
detected such a situation by analyzing the innovation sequence.

Simulation results illustrate that the algorithm can successfully localize the robot despite of
the fact that landmarks are sparse. The linearization of the observation model introduces
problems for distant features. The robot position error is perfectly bounded when it is fol-
lowing a circular path. However, the error is not always bounded in the latter two categories.
The reason for this is that in motion along the circle, features are always observed from a
short distance whereas in the other cases features are observed from a larger distance towards
the end of the trials. The prominence of this problem comes from the use of a narrow baseline
stereo.

The method that requires two landmarks for global self-localization is the desired one since
it does not require the robot to known its absolute orientation. The drawback of this method
is the difficulty to acquire two landmarks simultaneously, specially from short distances.
As shown by the simulation results that the probably of acquiring single landmark is high
as compared to two landmarks and the method can be used from most locations in the
robot environment. However, estimation of the absolute orientation of the robot in indoor
environments requires tedious calibration and is inaccurate if other robots are in close vicinity
of the robot.
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The comparison study concludes that both algorithms perform well for their average esti-
mates. The comparison shows that estimates obtained by EKF have fewer errors and are
closer to the true values than MCL. In MCL (for circular path) the mean error is about 6
cm and it increases with decrease of number of particles. Further, tests to determine the
optimal number of particles for the PF based localization approach have been performed.
3,000 particles mark the point above which no additional quality could be gained and below
which the result is varying [BDN07]. These variations are caused by the initial distribution
of the particles and values generated by the random number generator. With fewer particles
the shape of the path is disturbed by many peaks and the robot appears to move back and
forth [Deu07].
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Chapter 7

Discussion and Future Work

Concluding remarks and direction for future work is presented in this chapter. Emphasis is
given to the requirements listed in the Introduction chapter of this thesis.

7.1 Discussion

The work presented in this thesis is a step towards realization of tiny autonomous mobile
robots. It has been shown that the robot can successfully localize itself within its environment,
which is the basic requirement for autonomous behavior. The discussed approach to self-
localization is a combination of global and local position estimation methods. Methods
based on local sensors have not been used since they require a manual starting position and,
moreover, position error accumulate unbounded as the robot move in its environment. The
robot position at startup (a solution to the bootstrap problem) is estimated using global
position estimation methods, which extract distinct features that already exist in the robot
environment. Globally distinct features being scarce, localization algorithms were required
to use as few landmarks as possible. The localization algorithm is not dependent on specially
designed landmarks or on there placement at a specific location in the robot environment.
Reduction in number of landmarks has been achieved by using range based methods. It has
been shown that just one landmark is required if absolute orientation of the robot is estimated
independently.

Global self-localization requires extraction of at least one global distinct landmark or two
if the absolute orientation of the robot is not known, which may not be possible at every
step as landmarks are scarce and are not available through the entire state space. Therefore,
the robot position is tracked once it is estimated. During tracking, the uncertainty grows,
which is suppressed when external observations of landmark features are available. The global
position estimation methods and their uncertainty analysis provide the required information
to initialize a location tracker such as an EKF, which results in significant performance
improvement over random initialization. The global position estimation also compensates
the drawback of EKF to bootstrap in a recurrent environment due to its unimodal nature.

Comparison of EKF and MCL has shown that EKF performs better or at least comparable to
MCL. The plus point of EKF over MCL is that its computation time is at least 10 times less
than that compared to MCL [GF02]. Comparison of computation time for both the methods
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on the Tinyphoon is within the scope of future work. The kidnap robot problem has been
addressed using a validation gate on the innovation sequence. Detection of a kidnap case and
successful re-localization of the robot has been demonstrated.

The stereo vision system has been used as the robot primary external sensor, which solves
the problem of range computation without enforcing special constraints on object positions
or size. Using a single image for range computation whole object has to be visible in camera
images. For example the entire goal area has to be visible to compute range to it. This
is something unlikely as goals are frequently occluded. Features used are line based and
color transitions. Line based features are extracted using GBHT while color transitions are
detected using color segmentation methods.

Details of constructing a sparse 3D map have been reported in our work [Ent05]. Implemen-
tation details of edge detection, blob detection and extraction of 3D lines on the Tinyphoon
robot has been reported in [Bad07]. It has been shown that a frame rate of 5 Hz can be
achieved using the onboard processors of the Tinyphoon robot. Currently, a frame rate of
12 Hz can be reached by narrowing the window of interest. This frame rate is adequate
for self-localization but not for detection of game ball and other robots. A game where the
robot should play against state-of-the-art robots with vision systems above the playing field
(MiroSot Small and Middle-Size Leagues [FIR07b, FIR07a]) might result in a failure for the
Tinyphoon robot. The game ball speed (in MiroSot up to 60km/h) makes the vision sen-
sor less effective [Bad07]. However, the new proposed league, AMiroSot, is an environment
where the robot can face opponents with similar problems [KDB+06]. Tinyphoon’s capabil-
ities to play in such an environment have already been demonstrated at the FIRA World
championship 2006 at Dortmund in the RoboSot league [FIR06]. Nevertheless, fast vision
computations are required. One way of achieving a fast first computation is to use scale-space
methods which is discussed in the next section.

7.2 Future Work

The hard real-time requirements warrant research to introduce an efficient first computation
that can be refined later. It is proposed as a future work to develop a new scale-space based
stereo algorithm that allows the computation of the range images at different scales which
is essential in real-time environments. First a course and fast estimation of the depth is
obtained, and then detailed and more accurate results are computed.

A basic property of real-world objects is that they only exist as meaningful entities over
certain ranges of scale [Lin94b]. For example when looking at moving people at a distance
(coarse scale) it is important to identify them as a woman or man or to determine direction
of their movement. At a fine scale it is more appropriate to talk about small features of
the individual person, like the hair style or the face. To model the structure of the real
world the concept of scale plays an important role in computer vision. If the scale is too low
for a certain problem it can be refined by foveating interesting structures, or if necessary,
moving closer to the interesting object. This movement process makes it possible to acquire
additional information about the three-dimensional structure of an object. So the main tasks
to be solved by vision algorithms are as to what kind of information should be extracted
at the initial stages, and which operations should be performed on the data that reach the
visual sensors.
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The general idea of representing a signal on multiple scales is not new. Early work was per-
formed by Rosenfeld in 1971 [RT71], who observed the advantage of using operators of differ-
ent sizes in edge detection. Several authors used different levels of resolution [Kli71, Uhr72].
These approaches have been developed further by Burt [BA83], Crowley [CS87], Kropatsch,
et al. [Kro91] to the image pyramid. The main advantage of the pyramid representation is
the rapidly decreasing image size, thus reducing the computational work in pre-processing.
There is vast literature on different aspects of pyramid representation [Bur81, BA83, CS87,
MBR87, Nac95, KY96]. An overview can be found in [Kro91] and [JR94].

The scale-space representation is a special type of multi-scale representation that comprises
of a continuous scale parameter and preserves the same spatial sampling at all scales. It is an
embedding of the original signal into a one-parameter family of derived signals constructed
by convolution with a one-parameter family of Gaussian kernels of increasing width [Lin94b].
This operation is known by the term scale-space smoothing [Lin94a]. In this representation the
fine scale information is successively suppressed, preserving the same resolution. One of the
major reasons for using a multi-scale representation is to remove fine details for pre-processing
in order to have low noise conditions and to eliminate unnecessary scene details. An important
property of scale-space is that features at different scales can be related to each other in a
precise manner [Lin94a]. In addition to the constraints and consistency checks several control
strategies have been proposed by many researchers to reduce ambiguous correspondences and
enhance stereo matching. These include, for instance, hierarchical matching strategies [MT89,
MS98]. It is required to use the scale-space approach for range estimation and adapt it to
feature-based stereo, since it speeds up the entire range computation while preserving the
accuracy. So far this approach is only used for area-based correspondence analysis.

The work reported in this dissertation address only the position estimation and assume
that the environment is known. In future this work could be extended in a way that the
robot is able to explore its environment and build a map of it. Map building is the dual of
position estimation as it requires knowledge of the robot position. Therefore, there is a need
to address both of them simultaneously i.e. Simultaneous Localization and Map Building
(SLAM). Realization of a tiny robot with vision as its primary sensor and capable of learning
its environment for the purpose of navigation will be an interesting and challenging research
topic.

An extended version of this work could be applied to lateral positioning of vehicles in a
lane. Although GPS is used for position calculation in out door environments but GPS
signals may be obstructed by tall and large buildings. One significant limitation of feature
based binocular stereo vision is that it cannot match pixels on line segments if they lie on or
close to the epipolar lines. This ambiguity can be resolved by adding a third camera [WT99].
However, such extension could be made only if it can be supported by the on-board processing
unit.
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Appendix A

Notations and Coordinate Systems

A.1 Notations

The notation used in this thesis broadly follows conventions in computer vision and robotics.
However, exact meanings of certain representations is described here.

Coordinate Systems

A coordinate system is an imaginary alignment of x,y,z axes in Euclidean 3D space. In this
thesis it is denoted by a capital letter such as W or a capital letter and a number such as C0.

Vectors

Vectors are represented in lower case bold type such as p. Superscripts are used to identify
the coordinate system of interest in which the vector are represented. The superscripts are
however dropped to simplify notation in cases where the coordinate system is obvious from
the context or the vector is independent of any coordinate system introduced in this thesis.
Lower case subscripts such as l are sometimes used to differentiate between different vectors
of the same name, whereas, numbers in the subscript mean multiple instances of the same
type of vector. k in the subscript refers to step number (time).

Matrices

Matrices are denoted in upper case bold type such as U or Σ. Subscripts are sometimes used
to differentiate between different vectors though ones with a similar role. Different elements
in a matrix are differentiated with subscript ij representing a particular element at ith row
and jth column e.g. U23 is an element of U at 2nd row and 3rd column.
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Rotations

Rotations are special matrices that transform a vector from one coordinate system to another.
A rotation matrix which produces the components of a vector in frame C0 from its components
in frame C1 is defined as RC0C1 and can be written as follows:

aC0 = RC0C1aC1 (A.1)

Similarly, the reverse transformation is simply written as:

aC1 = RC1C0aC0 (A.2)

where RC1C0 = (RC0C1)T due to the fact that a rotation matrix is orthogonal.

A.2 Coordinate Systems

The coordinate systems used in this thesis are shown in Fig. A.1. The world coordinate system
is denoted with superscript W. Objects in the world coordinate system have coordinates x,
y, and z. The robot motion is always assumed to be a flat surface therefore the robot position
is denoted by x, y, and θ. Besides this coordinate system five other coordinate systems are
introduced as follows:

Figure A.1: Coordinate Systems

Robot Coordinate System

The robot coordinate system is represented by C0. It is fixed with respect to the center. The
origin of this coordinate system lies at the robot center of mass. Its x-axis lies in the forward
direction with the z-axis pointing upward and y-axis to the left. The origin of this coordinate
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system with respect to the origin of the world coordinate system gives the position and its
orientation with the world coordinate defines the orientation of the robot. Objects in the
robot coordinate system are represented by xC0, yC0, and zC0 coordinates.

Head Coordinate System

The head coordinate system is represented by C1. This coordinate system is fixed to the
robot head and is rotated with respect to C0 by rotation angle γ. With γ = 0, both C0 and
C1 are aligned. The origin of this coordinate system lies at the robot center of mass.

Vision Coordinate System

The stereo vision coordinate system is represented by C2. C2 is translated and rotated with
respect to C1. The translation and rotation is constant along x-axis and y-axis, respectively.

Cameras Coordinate Systems

The left and right cameras coordinate systems are represented by L and R respectively. These
coordinate systems are fixed relative to the two cameras. Their x-axes are aligned with the
camera optic axes, and their y and z axes lie parallel to their image planes. These coordinate
systems are aligned with C2.

The axes of the image plane are represented by u, v. An image pixel irrespective of the camera
will be denoted as (u, v). Image pixels from the left and right cameras are differentiated by
subscripts l and r, respectively. Multiple instances of the same type are differentiated by
a number in the subscript. For example two points in the robot coordinate system are
represented by

[
xC0

1 yC0
1 zC0

1

]T and
[
xC0

2 yC0
2 zC0

2

]T , while two pixels in the left camera

image are denoted by
[
ul1 vl1

]T and
[
ul2 vl2

]T .

Position of the head of the robot is fixed with respect to its center. It can only rotate about z-
axis. The transformation of a vector aC0 to vision coordinate system is formulated as follows:

aC2 = RC2C1((RC1C0aC0) + t) (A.3)

Using (A.2) the reverse transformation can be written as:

aC0 = RC0C1(RC1C2aC2 − t) (A.4)

where

t =
[
xc 0 0

]T (A.5)

RC2C1 =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (A.6)

RC1C0 =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (A.7)

RC0C1 = (RC1C0)T (A.8)
RC1C2 = (RC2C1)T (A.9)

In the above equation xc and β are constants, whereas, γ is a variable.
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Odometry Model

B.1 Geometric Construction of a Differential Drive Robot

It is assumed that the two wheeled differential drive robot is moving on flat surface with
the robot pose1 having 3 degrees of freedom as shown in Fig. B.1. The separation between
the two wheels of the robot is w. The robot center is represented by o. Movement of the
robot center is considered as motion of the whole robot. The type of trajectory followed
by the robot depends on the velocity of each wheel. If the two values are equal the robot
travels along a straight line. A curved path is traversed if the two wheels rotate at different
velocities, whereas the robot rotates around its center of mass if the velocities are equal in
magnitude but opposite in direction.

Figure B.1: Representation of the robot pose

Fig. B.2 shows the robot’s trajectory between time step k − 1 and k. The distance covered
(per unit time) by the left and right wheels of the robot is denoted by vlk and vrk respectively.
The three components of state change in robot coordinate system are represented by δxk, δyk

and δθk. Whereas, αk denotes change in robot orientation, ck the radius of curvature and vk

is the robot velocity. The relations between these quantities and the distance traveled by the
two wheels are given by (B.1), (B.2) and (B.3). It is assumed that between time k − 1 and
k, the robot moves with constant velocity, hence, the robot follows a path of constant radius
of curvature. The robot wheel encoders provide wheel counts which are transformed into
the distance covered by the two wheels. The relationship between distance covered by each

1If not specified, state, pose and position refer to the same quantity
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wheel of the robot with the robot velocity and radius of curvature is illustrated in Fig. B.2
and given by the following expressions:

Figure B.2: Geometric construction of differential drive robot

αk =
vrk − vlk

w
(B.1)

vk =
vrk + vlk

2
(B.2)

ck =
w(vrk + vlk)
2(vrk − vlk)

(B.3)

These expressions are used to formulate the control vector uk, which is the state change
in robot frame of reference. This is called control vector as it is based only on vrk and
vlk. Further illustration of the construction of control vector is given in Fig. B.3, where
only relevant elements of Fig. B.2 are shown. Using geometric relationship between different
elements of Fig. B.3 the control vector can be formally stated as follows:

Figure B.3: Construction of the robot’s control vector

uk =

δxk

δyk

δθk

 = g
([

vlk

vrk

])
=

 cksinαk

ck(1− cosαk)
αk

 (B.4)
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or in more detail by the following equation:

uk =

δxk

δyk

δθk

 =


w(vrk+vlk)
2(vrk−vlk) sin( vrk−vlk

w )
w(vrk+vlk)
2(vrk−vlk) (1− cos( vrk−vlk

w ))
vrk−vlk

w

 (B.5)

This is a generalized expression for the control vector for the case when the robot is following
a curved path and is required to predict future state of the robot as given by (5.7). For
calculation of prediction uncertainty, expressions for Uk, J1 and J2 are required. Uncertainty
analysis of the control vector is given in the next section, whereas, expressions for J1 and
J2 are derived in Section B.3 along with compounding of the control vector with the current
location to arrive at the new location at time k. In this discussion it is assumed that at time
k − 1 an estimate p̂k−1|k−1 of the robot pose and its uncertainty Pk−1|k−1 is available.

B.2 Control Vector Uncertainty

For uncertainty analysis of the control vector it is assumed that the robot’s odometry is cal-
ibrated for systematic errors using methods such as the University of Michigan Benchmark
(UMBmark) [BF96]. Analysis of the non-systematic errors start by making a basic assump-
tion about error in distance traveled by the robot and propagate it to the robot control vector
as discussed in the following paragraphs. Suppose the deviation ṽk of the estimated velocity
vector v̂k from its true value vk is a random vector of zero mean and covariance Σv. As the
two wheels are driven by two different motors and the distance covered by each wheel is mea-
sured by two independent encoders, it is reasonable to assume that error in distance covered
by the left wheel is independent of the error in distance covered by the right wheel [CK97].
The covariance matrix of this error is given by the following equation:

Σv = E{ṽkṽT
k } =

[
σ2

l 0
0 σ2

r

]
(B.6)

where σ2
l and σ2

r are the variances of vlk and vrk and are proportional to their absolute values.

Expression for covariance matrix of error in uk can be derived by writing (B.4) using Taylor
series expansion around v̂k as follows:

uk = g(v̂k) + Ju[ṽk] + . . . (B.7)

where ûk = g(v̂k) and

Ju =


−(v2

rk−v2
lk) cos(

vrk−vlk
w

)+2wvrk sin(
vrk−vlk

w
)

2(vrk−vlk)2
(v2

rk−v2
lk) cos(

vrk−vlk
w

)−2wvlk sin(
vrk−vlk

w
)

2(vrk−vlk)2

−(v2
rk−v2

lk) sin(
vrk−vlk

w
)+2wvrk(1−cos(

vrk−vlk
w

))

2(vrk−vlk)2
(v2

rk−v2
lk) sin(

vrk−vlk
w

)−2wvlk(1−cos(
vrk−vlk

w
))

2(vrk−vlk)2
−1
w

1
w


(B.8)

is the jacobian of uk with respect to vk evaluated at v̂k. Retaining only the first two terms
of (B.7), expression for ũk becomes:

ũk = uk − ûk

≈ g(v̂k) + Juṽk − g(v̂k)
= Juṽk (B.9)
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Hence, Uk can be written as follows:

Uk = E{ũkũT
k }

= E{(Juṽk)(Juṽk)T }
= JuE{ṽkṽT

k }JT
u

= JuΣvJT
u (B.10)

Substitution of (B.6) and (B.8) in (B.10) results in the following elements of Uk, where Uij

represents an element at ith row and jth column:

U11 =
1

4(vrk − vlk)4
((v2

rk − v2
lk)

2(σ2
l + σ2

r ) cos2 αk + 4w2(v2
rkσ

2
l + v2

lkσ
2
r ) sin2 αk

−4w(v2
rk − v2

lk)(vrkσ
2
l + vlkσ

2
r ) sinαk cosαk)

U12 =
1

4(vrk − vlk)4
((v2

rk − v2
lk)

2(σ2
l + σ2

r ) cosαk sinαk

+4w2(v2
rkσ

2
l + v2

lkσ
2
r ) sinαk(1− cosαk)

−2w(v2
rk − v2

lk)(vrkσ
2
l + vlkσ

2
r )(cosαk(1− cosαk) + sin2 αk))

U13 =
1

2w(vrk − vlk)2
((v2

rk − v2
lk)(σ

2
l + σ2

r ) cosαk − 2w(vrkσ
2
l + vlkσ

2
r ) sinαk)

U21 = U12

U22 =
1

4(vrk − vlk)4
((v2

rk − v2
lk)

2(σ2
l + σ2

r ) sin2 αk + 4w2(v2
rkσ

2
l + v2

lkσ
2
r )(1− cosαk)2

−4w(v2
rk − v2

lk)(vrkσ
2
l + vlkσ

2
r ) sinαk(1− cosαk))

U23 =
1

2w(vrk − vlk)2
((v2

rk − v2
lk)(σ

2
l + σ2

r ) sinαk − 2w(vrkσ
2
l + vlkσ

2
r )(1− cosαk))

U31 = U13

U32 = U23

U33 =
1
w2

(σ2
l + σ2

r )

B.3 Compounding of Transformation

Motion model (5.1) states that the robot pose changes from pk−1 to pk under the influence
of control vector uk. In our application a simplified version of this transition is illustrated in
Fig. B.4, which helps us in incorporating the control vector with the current state to arrive at
a new state of the robot. The illustration in Fig. B.4 show the following relationship between
different terms:

dk =
√
δx2

k + δy2
k

=
√
dx2

k + dy2
k (B.11)

where dx, dy are the total change in x and y and δx, δy are components of the control vector.
Similarly:

δxk = dk cosαk (B.12)
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Figure B.4: Compounding of transformation

δyk = dk sinαk (B.13)

and

dxk = dk cos(αk + θk−1)
= dk cos(αk) cos(θk−1)− dk sin(αk) sin(θk−1)
= δxk cos(θk−1)− δyk sin(θk−1) (B.14)

dyk = dk sin(αk + θk−1)
= dk sin(αk) cos(θk−1) + dk cos(αk) sin(θk−1)
= δyk cos(θk−1) + δxk sin(θk−1) (B.15)

Using the illustration of Fig. B.4 and (B.14) and (B.15), (5.1) may be written as follows:

pk =

 xk

yk

θk

 =

 xk−1 + δxkcos(θk−1)− δyksin(θk−1)
yk−1 + δxksin(θk−1) + δykcos(θk−1)

θk−1 + αk

 (B.16)

and prediction (5.7) in the following form:

p̂k|k−1 =

 xk|k−1

yk|k−1

θk|k−1

 =

 xk−1|k−1 + δxkcos(θk−1|k−1)− δyksin(θk−1|k−1)
yk−1|k−1 + δxksin(θk−1|k−1) + δykcos(θk−1|k−1)

θk−1|k−1 + αk

 (B.17)

After having derived the above equations, it is time to write expressions for J1 and J2 as
used in (5.6) and given by (B.18) and (B.19) below:

J1 =

 1 0 −δxk sin(θk−1|k−1)− δyk cos(θk−1|k−1)
0 1 δxk cos(θk−1|k−1)− δyk sin(θk−1|k−1)
0 0 1

 (B.18)

J2 =

 cos(θk−1|k−1) − sin(θk−1|k−1) 0
sin(θk−1|k−1) cos(θk−1|k−1) 0

0 0 1

 (B.19)
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The above equations state closed form expressions which are applicable when the two wheels
of the robot are turning with different velocities and the robot is following a circular arc
with constant radius of curvature. However, if the robot is moving along a straight line or is
rotating about its center of mass, the above expressions can be further simplified as explained
in the next sub-section.

B.4 Special Cases

The robot follows a curved path when its wheels are moving at different velocities. Its
trajectory approaches a straight line when the two wheels start turning at the same velocities
and rotates about its center of mass when the two velocities are same in magnitude but
opposite in direction.

B.4.1 Motion Along a Straight Line

Robot trajectory approaches a straight line when vrk−vlk → 0. Application of this condition
to (B.1) and (B.3) results in αk → 0 and ck → ∞, respectively. The control vector (B.5)
becomes:

uk =

δxk

δyk

δθk

 =

vk

0
0

 (B.20)

Using the new control vector prediction estimate (B.17) takes the following form:

p̂k|k−1 =

 xk|k−1

yk|k−1

θk|k−1

 =

 xk−1|k−1 + vkcos(θk−1|k−1)
yk−1|k−1 + δxksin(θk−1|k−1)

θk−1|k−1 + αk

 (B.21)

It is assumed that sin(αk) ≈ αk and cos(αk) ≈ 1 for small values of αk. Using these
approximations the jacobian Ju and covariance matrix Uk of (B.8) and (B.10) are simplified
as follows:

Ju =


1
2

1
2−vk

w
vk
w

−1
w

1
w

 (B.22)

Uk =


σ2

l +σ2
r

4
vk(σ2

r−σ2
l )

2w
σ2

r−σ2
l

2w
vk(σ2

r−σ2
l )

2w
v2
k(σ2

l +σ2
r)

w2

vk(σ2
l +σ2

r)

w2

σ2
r−σ2

l
2w

vk(σ2
l +σ2

r)

w2

σ2
l +σ2

r

w2

 (B.23)

The above equations are using the fact that for straight line motion vk ≈ vlk ≈ vrk. As
revealed by (B.23) uncertainty in direction perpendicular to the direction of motion is pro-
portional to the cube of distance traveled.
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B.4.2 Rotation Around Center of Mass

The robot starts rotating around its center of mass when the two velocities are equal in
magnitude but opposite in direction. Suppose vrk → −vlk or vrk + vlk → 0, in such a case
(B.1) and (B.3) result in αk → 2vrk

w and ck → 0, respectively. The control vector of (B.5)
becomes:

uk =

δxk

δyk

δθk

 =

 0
0

2vrk
w

 (B.24)

whereas, the prediction (B.17) takes the following form:

p̂k|k−1 =

 xk|k−1

yk|k−1

θk|k−1

 =

 xk−1|k−1

yk−1|k−1

θk−1|k−1 + 2vrk
w

 (B.25)

Substituting −vrk for vlk, Ju and Uk reduces to the following:

Ju =


w sin αk

4vrk

w sin αk
4vrk

w(1−cos αk)
4vrk

w(1−cos αk)
4vrk−1

w
1
w

 (B.26)

Uk =


w2(σ2

l +σ2
r) sin2 αk

16v2
rk

w2(σ2
l +σ2

r) sin αk(1−cos αk)

16v2
rk

(σ2
r−σ2

l ) sin αk

4vrk

w2(σ2
l +σ2

r) sin αk(1−cos αk)

16v2
rk

w2(σ2
l +σ2
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Localization Using Natural Features in the Four-Legged League. In: et al.,
D. N. (Hrsg.): RoboCup 2004: Robot Soccer World Cup VIII, Springer-Verlag,
2005 (Lecture Notes in Computer Science), S. 110 – 121
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[RJ04] Röfer, T. ; Jüngel, M.: Fast and Robust Edge-Based Localization in the
Sony Four-Legged Robot League. In: RoboCup 2003: Robot Soccer World Cup
VII Bd. 3020, Springer-Verlag GmbH, 2004, S. 262 – 273

[RR95] R.Bauer ; Rencken, W. D.: Sonar Feature Based Exploration. In: Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems. Pittsburgh, Pennsylvania, August 1995, S. 148–153

[RT71] Rosenfeld, A. ; Thurston, M.: Edge and Curve Detection for Visual Scene
Analysis. In: IEEE Transactions on Computers 20 (1971), Nr. 5, S. 562–569

[Saf97] Saffiotti, A.: The Uses of Fuzzy Logic in Autonomous Robot Navigation. In:
Soft Computing - A Fusion of Foundations, Methodologies and Applications 1
(1997), December, Nr. 4, S. 180 – 197

[SB93] Sutherland, K. T. ; B.Thompson, W.: Inexact Navigation. In: Proceedings
of the IEEE International Conference on Robotics and Automation, 1993, S.
1–7

[SB05] Steinbauer, G. ; Bischof, H.: Illumination Insensitive Robot Self-
Localization Using Panoramic Eigenspaces. In: RoboCup 2004: Robot Soccer
World Cup VIII Bd. 3276, 2005, S. 84 – 96

[SC94] Schiele, B. ; Crowley, J. L.: A Comparison of Position Estimation Tech-
niques Using Occupancy Grids. In: Proceedings of the IEEE International
Conference on Robotics and Automation Bd. 2, 1994, S. 1628–1634

[SD95] Stella, E. ; Distante, A.: Self-Location of a Mobile Robot by Estimation
of Camera parameters. In: Robotics and Autonomous Systems 15 (1995), S.
179–187

[SHB+02] Schmitt, T. ; Hanek, R. ; Beetz, M. ; Buck, S. ; Radig, B.: Cooperative
Probabilistic State Estimation for Vision-Based Autonomous Mobile Robots.
In: IEEE Transactions on Robotics and Automation 18 (2002), October, Nr.
5, S. 670 – 684

[Shi02] Shimshoni, I.: On Mobile Robot Localization from Landmark Bearings. In:
IEEE Transactions on Robotics and Automation 18 (2002), DECEMBER, Nr.
6, S. 971–976

[SK95] Simmons, R. ; Koenig, S.: Probabilistic Robot Navigation in Partially Ob-
servable Environments. In: Proceedings of the International Joint Conference
on Artificial Intelligence, 1995, S. 1080–1087

153



[SN04] Siegwart, R. ; Nourbakhsh, I. R.: Introduction to Autonomous Mobile
Robots. The MIT Press, April 2004. – ISBN 026219502X

[Soj02] Sojka, E.: A New and Efficient Algorithm for Detecting the Corners in Digital
Images. In: Gool, L. V. (Hrsg.): Proceedings of the DAGM Symposium Bd.
2449, Springer, 2002, S. 125–132

[SS86] Steier, W. H. ; Shori, R. K.: Optical Hough Transform. In: Applied Optics
25 (1986), Nr. 16, S. 2734 – 2738

[SS00] Sinriech, D. ; Shoval, S.: Landmark Configuration for Absolute Positioning
of Autonomous Vehicles. In: IIE Transactions 32 (2000), S. 613–624

[SSB03] Stroupe, A. W. ; Sikorski, K. ; Balch, T.: Constraint-Based Landmark
Localization. In: Kaminka, G.A. (Hrsg.) ; Lima, P.U. (Hrsg.) ; Rojas, R.
(Hrsg.): RoboCup 2002: Robot Soccer World Cup VI Bd. 2752, Springer-
Verlag, November 2003, S. 8–24

[SSGS02] Singh, S. ; Srinivasan, T.P. ; Gupta, A. ; Srivastava, P. K.: Improving
the Accuracy of High Resolution Image Data Products Using Kalman Filter.
In: Indian Cartographer DAPI-13 (2002), S. 73

[Sug88] Sugihara, K.: Some Location Problems for Robot Navigation Using a Single
Camera. In: Computer Vision, Graphics, and Image Processing 42 (1988), Nr.
1, S. 112–129

[SZL95] Shoval, S. ; Zeitoun, I. ; Lenz, E.: Layout of Beacon for Triangulation
of AGV’s in Industrial Environments. In: Proceedings of the International
Conference on Production Research, 1995, S. 485 – 487

[SZO+03] Sharon, A. ; Zentner, A. ; Oren, E. ; Goldberg, Y. ; Sharvit, Z. ;
Kirkpatrick, S. ; Jonas, A.: Robot Localization Using Ultrasonic and Ra-
dio Frequency Signals. humanrobot.kist.re.kr/New_papers/cjs/c-04.PDF.
2003. – Engineering Project: School of Engineering and Computer Science The
Hebrew University, Jerusalem

[TA90] Talluri, R. ; Aggarwal, J.K.: Position Estimation for a Mobile Robot in
an Unstructured Environment. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1990, S. 159–166

[TA91] Talluri, R. ; Aggarwal, J.K.: Position Estimation of a Mobile Robot
Using Edge Visibility Regions. In: Proceedings of International Conference on
Computer Vision and Pattern Recognition, 1991, S. 714–715

[TA93] Talluri, R. ; Aggarwal, J.: Position Estimation Techniques for an Au-
tonomous Mobile Robot - a Review. In: Chen, C. H. (Hrsg.): Handbook of
Pattern Recognition and Computer Vision. World Scientific: Singapore, 1993,
Kapitel 4.4, S. 769–801

[TFBD01] Thrun, S. ; Fox, D. ; Burgard, W. ; Dellaert, F.: Robust Monte Carlo
Localization for Mobile Robots. In: Artificial Intelligence 128 (2001), S. 99–
141

154

humanrobot.kist.re.kr/New_papers/cjs/c-04.PDF


[Thr98] Thrun, S.: Bayesian Landmark Learning for Mobile Robot Localization. In:
Machine Learning 33 (1998), Nr. 1, S. 41–76

[TNS03] Tang, Z. ; Nazeer, A. ; Sun, Z.: Robust Vision Localization For RoboCup
F180. In: Singapore Polytechnic Technical Journal (2003), May

[TRM+05] Tehrani, A. F. ; Rojas, R. ; Moballegh, H. R. ; Hosseini, I. ; Amini, P.:
Analysis by Synthesis, a Novel Method in Mobile Robot Self-Localization. In:
et al., G.A. K. (Hrsg.): RoboCup 2004: Robot Soccer World Cup VIII Bd.
3276, 2005, S. 586–593

[TTA94] Tonouchi, Y. ; Tsubouchi, T. ; Arimoto, S.: Fusion of Dead-Reckoning Po-
sitions With a Workspace Model for a Mobile Robot by Bayesian Inference. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1994, S. 1347–1354

[TV98] Trucco, E. ; Verri, A.: Introductory TEchniques for 3-D Computer Vision.
Upper Saddle River, NJ, USA : Prentice Hall, 1998. – ISBN 0–13–261108–2

[Uhr72] Uhr, L.: Layered ’Recognition Cone’ Networks that Preprocess, Classify and
Describe. In: IEEE Transactions on Computers (1972), S. 759–768

[UNMK03] Utz, H. ; Neubeck, A. ; Mayer, G. ; Kraetzschmar, G.: Improving
Vision-Based Self-Localization. In: et al., G. K. (Hrsg.): RoboCup 2002:
Robot Soccer World Cup VI, Springer-Verlag, 2003 (Lecture Notes in Computer
Science 2752), S. 25–40

[VXBA96] Vandorpe, J. ; Xu, H. ; Brussel, H. V. ; Aertbelien, E.: Positioning of
the Mobile Robot LiAS Using Natural Landmarks and a 2D Range Finder. In:
Proceedings of the IEEE/SICE/RSJ International Conference on Multisensor
Fusion and Integration for Intelligent Systems, 1996

[Wan88] Wang, C.M.: Location Estimation and Uncertainty Analysis for Mobile
Robots. In: Proceedings of the IEEE International Conference on Robotics
and Automation, 1988, S. 1230–1235

[WB95] Welch, G. ; Bishop, G.: An Introduction to the Kalman Filter / University
of North Carolina at Chapel Hill. Chapel Hill, NC, USA : University of North
Carolina at Chapel Hill, 1995. – Forschungsbericht

[WBB05] Wolf, J. ; Burgard, W. ; Burkhardt, H.: Robust Vision-Based Localiza-
tion by combining an Image-retrieval System with Monte Carlo Localization.
In: IEEE Transactions on Robotics 21 (2005), April, Nr. 2, S. 208 – 216

[WD96] Weckesser, P. ; Dillmann, R.: Sensor-Fusion of intensity and LaserRange
Images. In: Proceedings of the IEEE/SICE/RSJ International Conference on
Multisensor Fusion and Integration for Intelligent Systems, 1996, S. 501–508

[WFJ+01] Weber, J. ; Franken, L. ; Jorg, K.-W. ; Schmitt, K. ; Puttkamer,
E.v.: An Integrative Framework for Global Self-Localization. In: Proceedings
of the IEEE/SICE/RSJ International Conference on Multisensor Fusion and
Integration for Intelligent Systems, 2001, S. 73 – 78

155



[WFJP02] Weber, J. ; Franken, L. ; Jorg, K.-W. ; Puttkamer, E.v.: Reference Scan
Matching for Global Self-Localization. In: Robotics and Autonomous Systems
40 (2002), August, Nr. 2, S. 99–110

[Wic98] von Wichert, G.: Mobile Robot Localization Using a Self-organized Vi-
sual Environment Representation. In: Robotics and Autonomous Systems 25
(1998), S. 185 – 194

[WP03] Wolf, J. ; Pinz, A.: Particle Filter for Self Localization Using Panoramic
Vision. In: ÖGAI Journal 22 (2003), May, Nr. 4, S. 8–15

[WT99] Williamson, T. ; Thorpe, C.: A Trinocular Stereo System for Highway
Obstacle Detection. In: Proceedings of the IEEE International Conference on
Robotics and Automation Bd. 3, 1999, S. 2267 – 2273

[XOK90] Xu, L. ; Oja, E. ; Kultanen, P.: A New Curve Detection Method: Random-
ized Hough Transform (RHT). In: Pattern Recognition Letters 11 (1990), S.
331–338

[YM05] Yuen, D. C. K. ; MacDonald, B. A.: Vision-Based Localization Algorithm
Based on Landmark Matching, Triangulation, Reconstruction, and Compar-
ison. In: IEEE Transactions on Robotics 21 (2005), April, Nr. 2, S. 217 –
226

[Zol03] Zollner, H.: A Calibration Technique for CCD Cameras Using Pose Estima-
tion / PRIP, TU Wien. 2003 ( PRIP-TR-085). – Forschungsbericht

[ZRJ03] Zezhong, X. ; Ronghua, L. ; Jilin, L.: Global Localization Based on Corner
Point. In: Proceedings of the IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 2003, S. 843 – 847

156



Internet References

[FIR06] FIRA MiroSot WorldCup: Official Website of the 11th FIRA RoboWorld
Cup Germany 2006 in Dortmund and the 5th FIRA RoboWorld Congress 2006.
http://www.firaworldcup.de/. 2006. – [Online; accessed 10-April-2007]

[FIR07a] FIRA MiroSot: Overall System:FIRA MiroSot Small League. http://www.
fira.net/Soccer/mirosot/appendix2.html. 2007. – [Online; accessed 21-
February-2007]

[FIR07b] FIRA MiroSot: Overview: FIRA MiroSot Small League. http://www.fira.
net/Soccer/mirosot/overview.html. 2007. – [Online; accessed 21-February-
2007]

[Rob07a] RoboCup: Overall System:RoboCup Small Size Robot League. http:
//Small-size.informatik.uni-bremen.de/_detail/dataflow.png?id=
start&cache=cache. 2007. – [Online; accessed 21-February-2007]

[Rob07b] RoboCup: Overview: RoboCup Small Size Robot League (F180). http:
//Small-size.informatik.uni-bremen.de/. 2007. – [Online; accessed 21-
February-2007]

[Wik07a] Wikipedia: Charge-Coupled Device — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/. 2007. – [Online; accessed 21-February-2007]

[Wik07b] Wikipedia: Kalman Filter — Wikipedia, The Free Encyclopedia. http://en.
wikipedia.org/. 2007. – [Online; accessed 11-February-2007]

157

http://www.firaworldcup.de/
http://www.fira.net/Soccer/mirosot/appendix2.html
http://www.fira.net/Soccer/mirosot/appendix2.html
http://www.fira.net/Soccer/mirosot/overview.html
http://www.fira.net/Soccer/mirosot/overview.html
http://Small-size.informatik.uni-bremen.de/_detail/dataflow.png?id=start&cache=cache
http://Small-size.informatik.uni-bremen.de/_detail/dataflow.png?id=start&cache=cache
http://Small-size.informatik.uni-bremen.de/_detail/dataflow.png?id=start&cache=cache
http://Small-size.informatik.uni-bremen.de/
http://Small-size.informatik.uni-bremen.de/
http://en.wikipedia.org/
http://en.wikipedia.org/
http://en.wikipedia.org/
http://en.wikipedia.org/

	Introduction
	Motivation
	Problem Statement
	The Robot Environment
	Constraints About the Robot
	Requirements for Self-localization

	Proposed Methodology

	Related Work
	Relative Position Estimation
	Odometry
	Inertial Navigation

	Landmark-Based Methods
	Natural Landmarks for Localization
	Artificial Landmarks for Localization
	Active Beacons

	Map-Based Positioning
	Map Representation
	Map Building
	Map Matching

	Probabilistic Methods
	Markov Localization
	Monte-Carlo Localization
	Kalman Filter Based Techniques

	Hardware for Robot Self-Localization
	Miscellaneous Methods of Localization
	Collaborative Multi-Robot Localization
	Global Vision
	Mosaic-Based Localization
	Position Estimation Based on Camera Calibration Techniques

	Discussion

	Vision Based Feature Extraction
	Related Work
	The Stereo Vision System
	Detecting Line Features
	Line Detection with Hough Transform
	Peak Detection
	Peak Verification and Completing Line Segment Description

	Detecting Field Markings
	Detecting Corners and Junctions
	Detecting Color Transitions
	Discussion

	Feature Based Global Self-localization
	Related Work
	Landmark Based Position Estimation
	Position Estimation using Range Measurements
	Position Estimation using Angle Measurements
	Adding Absolute Orientation of the Robot
	Using a Virtual Landmark
	Position Uncertainty Due to Erroneous Measurements
	Error in Landmark Identification and Matching
	Sensitivity to Landmark Configuration
	Position Estimation with More Than Three Landmarks

	Position Estimation Using Vision Based Range
	Calculating Position Using Two Landmarks
	Position Estimation Using Single Landmark

	Uncertainty Analysis
	Robot Location Uncertainty Using Single Landmark
	Location Uncertainty Using Two Landmarks

	Discussion

	Position Tracking and Information Fusion
	Extended Kalman Filter
	State Transition Model
	Observation Model
	Kidnapped Robot Problem
	Representing Uniform Position Belief

	Robot Observation
	Particle Filter Based Position Estimation

	Results and Evaluation
	Feature Extraction Results
	Statistical Results for Vision Based Range Estimation
	Feature Based Global Localization Using Two Landmarks
	Motion without Rotation
	Single Point Rotation
	Motion and Rotation
	Linear Motion with Restricted Rotation
	Linear Motion with Rotation

	Location Estimation Using One Landmark
	Motion without Rotation
	Single Point Rotation
	Motion and Rotation
	Linear Motion with Restricted Rotation
	Linear Motion with Rotation

	Position Tracking and Information Fusion

	Discussion and Future Work
	Discussion
	Future Work

	Notations and Coordinate Systems
	Notations
	Coordinate Systems

	Odometry Model
	Geometric Construction of a Differential Drive Robot
	Control Vector Uncertainty
	Compounding of Transformation
	Special Cases
	Motion Along a Straight Line
	Rotation Around Center of Mass



