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I

KURZFASSUNG

Die vorliegende Arbeit beschäftigt sich mit der Simulation von Laminaten aus faserver-

stärkten Kunststoffen, wie sie nun auch vermehrt in Strukturbauteilen zum Einsatz kom-

men. Bei diesen Laminaten handelt es sich um Schichtverbunde, deren Einzelschichten

aus einem Werkstoffverbund von unidirektionalen Fasern, eingebettet in ein Matrixma-

terial, bestehen. Ziel der Arbeit ist die Entwicklung neuer numerischer Werkzeuge, die

eine genauere Vorhersage des thermo-mechanischen Materialverhaltens solcher Laminate

ermöglichen und für den Einsatz in der Strukturanalyse geeignet sind. Dazu werden Mate-

rialgesetze auf Schichtebene formuliert, wobei hier besonderes Augenmerk auf die Berück-

sichtigung der typischen Versagensmechanismen in Laminatschichten gelegt wird.

Nach einer allgemeinen Einführung in die Modellierung von faserverstärkten Kunststoffen

und einer Zusammenfassung der experimentell beobachteten Versagensmechanismen aus

der Literatur beschäftigt sich der Hauptteil der Arbeit mit zwei Bereichen der Laminat-

modellierung. Einerseits wird die Vorhersage von Laminatversagen im Rahmen des “first

ply failure” Ansatzes behandelt (Kapitel 2), andererseits die Simulation der fortschrei-

tenden Schädigung, die zu einer sukzessiven Änderung der Materialeigenschaften führt

(Kapitel 3).

In Kapitel 2 wird zunächst der derzeitige Stand der Technik in Bezug auf first ply failure

Modellierung überblicksmäßig dargestellt. Das first ply failure Konzept beruht auf der

Annahme, dass alle Spannungskomponenten proportional mit der Last anwachsen. Um
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Spannungszustände mit konstanten Spannungsanteilen beurteilen zu können, wird eine

Methode zur Berücksichtigung kombinierter Spannungszustände adaptiert und sowohl als

“stand alone” Programm als auch in Form eines Postprocessing-Werkzeuges für ein Finite

Elemente Programm implementiert. Als wichtigstes Versagenskriterium wird dabei das

Kriterium nach Puck verwendet, welches auf der Anwendung der Mohr’schen Hypothese

auf faserparallele Bruchebenen basiert. Anhand einiger Beispiele wird die Verwendung des

entwickelten Programms in der Strukturanalyse demonstriert. Dabei wird der Einfluss her-

stellungsbedingter Spannungen auf das Versagensverhalten unter zusätzlicher mechanischer

Last untersucht.

Zur Modellierung der fortschreitenden Schädigung, die in Kapitel 3 behandelt wird, kommt

die Methode der “continuum damage mechanics” zum Einsatz. In einer ausführlichen Lit-

eraturrecherche werden verschiedene existierende Schädigungsmodelle diskutiert und ver-

glichen. Basierend auf den von Puck postulierten Versagensmechanismen wird ein neues

Schädigungsmodell entwickelt. Ziel dabei ist die Herleitung einer thermodynamisch kon-

sistenten Beziehung für die Änderung des gesamten Steifigkeitstensors in Abhängigkeit von

der Schädigung. In Hinblick auf die praktische Anwendung wird dabei auf eine möglichst

geringe Anzahl und einfache Identifikation von Modellparametern geachtet.

Das Schädigungsmodell wird einerseits mit der klassischen Laminattheorie kombiniert,

womit das Schädigungsverhalten beliebiger Laminataufbauten unter Last simuliert wer-

den kann. Andererseits wird es als Konstitutivgesetz in ein Finite Elemente Programm

implementiert. Dies ermöglicht die Analyse von komplexen Strukturen aus faserverstärk-

ten Laminaten unter Berücksichtigung von Schädigung. Die Identifizierung der Modell-

parameter wird anhand zweier Materialsysteme gezeigt. Zu Demonstrationszwecken wird

das entwickelte Schädigungsmodell auf einige Beispiele von Laminaten und Faserverbund-

Strukturen angewendet und die Ergebnisse mit experimentellen Daten aus der Literatur

verglichen. Basierend auf den Vergleichen zwischen Simulationen und Experimenten wer-

den die dem Schädigungsmodell zugrunde liegenden Annahmen diskutiert.
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ABSTRACT

The present thesis is concerned with the computational simulation of laminates made from

fiber reinforced polymers, as they are nowadays increasingly used in structural components.

These laminates are stacks of layers of a matrix material reinforced by uni-directional fibers.

The objective of this work is to improve predictions of the thermomechanical behavior

of such laminates by developing new tools for numerical simulation which can also be

employed in structural analysis. To this end, material laws are formulated on the ply level

which are focused on reflecting the typical failure mechanisms observed in fiber reinforced

plies.

After a general introduction to modelling approaches for laminates and a summary of

experimentally observed failure mechanisms reported in the literature, the main portion of

the thesis is concerned with two fields of laminate modelling. In chapter 2 the prediction

of laminate failure is treated within the framework of the ‘first ply failure’ concept, while

in chapter 3 the simulation of progressive damage, which leads to a gradual change of

material properties, is considered.

In the beginning of chapter 2 the state of the art in first ply failure modeling is reviewed.

The first ply failure approach is based on the assumption of proportional increase of all

stress components with load. To evaluate stress states with constant stress contributions,

the ‘superposition method’ for combined stress states is adopted and implemented as a

‘stand alone’ tool as well as a post-processing tool combined with a finite element program.
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As one of the currently most promising failure criteria the Puck criterion, which is based on

physical failure mechanisms and Mohr’s fracture hypothesis for brittle materials, is briefly

introduced. The application of the developed Fortran program in structural analysis is

demonstrated by some example problems. As a typical example for combined load cases,

the influence of production related stresses superimposed on mechanical service loads is

studied.

The simulation of progressive damage in chapter 3 is based on continuum damage me-

chanics. Several existing damage models for fiber reinforced laminates are discussed and

compared in an extensive literature review. Based on the failure mechanisms postulated by

Puck a new damage model is developed. The objective is to derive a thermodynamically

consistent relation that is able to describe the change of the complete elasticity tensor as

a function of damage, capturing the non-isotropic nature of damage in fiber reinforced

composites. In view of its practical application the model is designed such that only a

relatively small number of parameters is required which can be identified from standard

test data.

On the one hand, the damage model is combined with classical lamination theory in order

to study the damage behavior of laminates. On the other hand, it is implemented as

constitutive law into a finite element program. This way analyses of complex structures

can be performed under consideration of damage. The identification of model parameters is

shown for two material systems. For demonstration purposes the presented damage model

is applied to some examples of laminates and fiber reinforced structures and the results

are compared to experimental data from the literature. Based on the correlation between

simulations and experiments the validity of the fundamental assumptions of the damage

model are discussed.
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Chapter 1

INTRODUCTION

In the aerospace and many other industries, structural components made from fiber rein-

forced polymer (FRP) laminates are becoming increasingly important due to their great

potential for weight savings [19]. Figure 1.1, top, shows the increase of the percentage

of structural weight of composites in aeroplanes over the past decades. Although fighter

aircraft are clearly ahead in the use of composites, the trend in civil airplanes is similar.

With 20% composites in the Airbus A380 the composite share of structural weight has

quadrupled compared to the 20 years older A300 airplane. Airplane components made of

fiber composites are outlined in Fig. 1.1, bottom, for the Boeing 777. Plans for the Boeing

787 are even more ambitious, with part of the main fuselage made of composite materials

and estimates of composite weight as high as 50% [19]. As the prices of composite mate-

rials are decreasing, they have also made their way into other branches of industry where

lighter weight of components is beneficial.

In order to fully exploit the advantages of composites, it is necessary to develop model-

ing tools which can reliably and accurately predict the response of composite structures

to service loads. The goal of this thesis is to improve and develop modeling tools that

are adequate for computational simulations of composite structures made from fiber rein-
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forced laminates. As such, ply-level modeling approaches are considered. In this chapter,

some basics about composite materials, appropriate modeling methods for FRPs and the

behavior of laminate plies are reviewed.
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Figure 1.1: Use of composites in the aerospace industry; structural weight
share in fighter (top, left) and civil aircraft (top, right); composite
components in the Boeing 777 (bottom); from [19].
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1.1 Introduction to composites

What are composites?

Composite materials are made up of at least two different constituents. In many cases they

have matrix-inclusion type topology which means that one of the materials is connected

(the ‘matrix phase’) while the other one is distributed (‘inclusion phase’) inside the matrix.

Such composites can be classified by inclusion type (particle, short fiber, or continuous

fiber reinforcement, Fig. 1.2, top), fiber orientation (random or uni-directional), matrix

material etc. For some applications, continuous fibers can be woven, knitted, or braided

to improve drapability of the material, load flow in complex 3D structures, or damage

tolerance (Fig. 1.2, bottom).

The current work is concerned with laminates made of uni-directional (UD) continuous

FRP layers that can be utilized in structural applications. As matrix material thermoset-

particle long fiber

woven, knitted, braided fabrics

short fiber

Figure 1.2: Classification of composites by reinforcement geometry (top);
various fabrics for improved drapability (bottom), from [1].
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ting polymers (e.g. epoxy, polyester, phenolic resin) are most suitable for load carrying

structures due to their high strength and stiffness. Probably the most common polymer

matrices used in composites for aerospace structures are epoxy resins. They are very brittle,

but have a low chemical shrinkage and good adhesive properties [86]. Recently, toughened

epoxy materials which have an improved fracture toughness but lower stiffnes, have be-

come increasingly popular [87]. Fiber materials typically used with polymer matrices are

carbon, glass, and aramid fibers.

UD-composites can be supplied as sheets of pre-impregnated fibers (‘prepregs’) which are

then stacked into a mold to give the desired shape and lay-up of the composite structure

(Fig. 1.3, left). For components with rotational symmetry (e.g. pipes, pressure vessels)

fiber strands are impregnated as they are placed onto a mandrel using filament winding

technology (Fig. 1.3, right). Other production techniques (e.g. resin transfer molding) are

also available but are more commonly used for woven fabrics, rather than UD-composites.

The bonded stacks of layers with varying fiber orientation are called ‘laminates’.

Where are composites used?

Even though composites are rather new in high-tech applications, they have been around

for a very long time. Most biological materials are actually highly structured composite

Figure 1.3: Manufacturing of laminated structures; hand lay-up of prepregs
(left) courtesy of FACC AG, Ried, Austria; filament winding
technology (right)[2].
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materials. For example bone, wood, or insect cuticle are fiber reinforced composites on a

microscopic scale (Fig. 1.4).

In technology, composites find their application wherever light weight is an issue, paired

with requirements of high load carrying capacity. A traditional field of application is

aerospace technology. Today, composites are also used e.g. for maritime vessels, trans-

portation vehicles, and wind turbines of electrical power plants, as well as in the sporting

good industry (Fig. 1.5).

Why are composites used?

Materials for light weight structures should possess low specific weight, and at the same

time exhibit high strength and stiffness. To evaluate their efficiency, the ratios of strength

to weight (i.e. specific strength) and stiffness to weight (i.e. specific stiffness) of various

materials are compared. As shown in Fig. 1.6, UD fiber composites are by far superior to

metals in this respect if properties in fiber direction are considered. In particular carbon

fiber composites are especially suited for light weight applications.

wood cuticle

chitin fibers, 
protein matrix

exocuticle 

epicuticle 

endocuticle 

epidermis 

bone

cellulose fibers, 
lignin matrix

Figure 1.4: Examples of composite materials in nature (after [51]).
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Some drawbacks of composites are the typically higher initial costs (raw material, man-

ufacturing, assembly), and the lesser experience in design, bonding of parts, long term

behavior, damage detection techniques, etc. A lot of research is aimed at these issues. Es-

pecially laminate design is of the utmost importance and can make the difference whether

or not a composite component is superior to a conventional (e.g. metallic) one.

Due to their micro structure FRPs are highly anisotropic, and transverse strengths and

stiffnesses are considerably lower compared to those in longitudinal direction. By varying

the fiber orientation of individual layers, the direction dependent laminate properties can

be tailored to meet specific design needs. In order to do so, it is necessary to predict the

strength and stiffness behavior of such multi-directional laminates, a task for which reliable

modeling tools are required.

Figure 1.5: Applications of FRP composites in technology.
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1.2 Basics of laminate modeling

1.2.1 Length scales

As can be seen from the discriptions in the previous section, FRP laminates have a hierar-

chical structure. The basic building blocks are the fiber and matrix constituents (Fig. 1.7,

left) which are arranged into a new ‘material’ – the composite ply (Fig. 1.7, center). Sev-

eral of these plies are stacked to laminates which finally make up the component (Fig. 1.7,

right). Analogous to these structural scales, three modeling length scales are commonly

distinguished, the micro-, meso-, and macroscopic scales, corresponding to fiber diameter

(≈ 0.01mm), ply thickness (0.1 − 0.2mm), and laminate or component size (> 1mm),

respectively.

Figure 1.6: Specific strength vs. specific stiffness of some engineering mate-
rials (from [95]).
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Micromechanical modeling is used to predict ply behavior as well as micro stress and

strain fields based on fiber/matrix interactions and microscopic failure mechanisms. Several

analytical and numerical methods have been developed to this purpose, for example mean

field and unit cell approaches (e.g. [15]). Modeling results are considerably influenced by

properties of the fiber/matrix interface which are often not known. For this reason, these

micromechanical methods are mainly used to make qualitative predictions. Furthermore,

modeling on the micro level would be computationally way too expensive for utilization in

(nonlinear) structural analyses.

In mesoscopic modeling the composite ply is considered as a homogeneous material which,

in the case of continuous UD plies, is transversally isotropic. As a result of this assumption

microscopic stress and strain fields are not be resolved. The advantage of meso-models is

that they can be applied more easily to the macro level. For this reason, the meso-scale is

the preferred modeling scale for material modeling in engineering applications.

As the present work is intended for application in structural analysis, micromechanical

concepts are out of the scope of this thesis. Therefore, modelling approaches applied here

are based on meso-scale models which are discussed in more detail in the following section.

macrome s omi cro

Figure 1.7: Length scales in the hierarchical structure of FRP composites;
fiber (micro-) scale (left) [50], ply (meso-) scale (center) [48], and
laminate or component (macro-) scale (right) [3, 103].
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1.2.2 Mesomodeling of laminates

In order to describe the material behavior of a ply, it is convenient to introduce a local

ply coordinate system for each layer in addition to the global x-y-z-coordinate system. As

shown in Fig. 1.8 the ply coordinate system is aligned with the respective layer’s principal

material directions, i.e. axis 1 in longitudinal, 2 in transverse (in-plane), and 3 in out-of-

plane direction.

Material data for ply behavior are determined from experiments. In this regard it should

be noted, that a single ply (or a laminate made of several plies of same fiber orientation)

behaves differently from a ply embedded in a laminate. The stress level that leads to

failure of an embedded ply is usually higher than the failure stress of a UD-ply (‘effect of

ply clustering’ or ‘in-situ effect’ [59, 75, 76]). This effect is not considered in the present

work. Furthermore, a single ply fails when the maximum supportable load is reached in any

cross-section according to the ‘weakest link’ analogy. In a laminate, the failure of one cross-

section of a ply usually does not lead to complete laminate failure since the load can often

be transferred locally to other layers. Nevertheless, the most widely used method for failure

prediction of laminated structures defines laminate failure at the load at which the first ply

reaches it’s failure limit. This approach is known as the First Ply Failure (FPF) concept

x

y

z

1
2

3

Figure 1.8: Laminate with global x-y-z-coordinate system and definition of a
local ply coordinate system by example of the top layer.
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(e.g. [38, 79]), in which linear material behavior is assumed. Performing a FPF analysis

is computationally efficient and requires only a relatively small amount of material data

which renders it a valuable tool for initial design and optimization purposes. The drawback

is, that it cannot capture some effects of material behavior realistically. Firstly, it is a very

conservative approach since in many cases the load can be increased significantly after FPF

due to load redistribution to layers of more favorable fiber orientation. Secondly, material

behavior can be non-linear, also prior to FPF, especially under shear dominated loading.

For a more detailed analysis these effects should not be neglected.

To capture non-linearities and load redistribution after (partial) failure of individual plies

the development of progressive damage models has been an active field of research in the

past years. Of course this kind of modeling requires a larger amount of material data and

more computational time. However, they are necessary in order to access the post-FPF

regime and further improve predictions of the stiffness and strength behavior of laminates.

Both approaches, FPF and progressive damage modeling, have their fields of application

and research in the two areas is far from being completed.

Once the mechanical behavior of a ply is known, the behavior of a laminate is derived

by applying lamination theory [38, 95] and/or Finite Element Modeling (FEM), assuming

perfect bonding between the layers. This way it is possible to bridge the gap between

the ply and laminate scales in both directions. This means that, on the one hand, global

laminate stiffnesses can be determined based on ply orientations and stiffness data, and on

the other hand, the distribution of global loads to the individual layers (also dependent on

lay-up and ply stiffnesses) can be computed. The localization from global to ply loads is

important for the failure and damage prediction of laminates, since the risk of failure (or

damage) is evaluated on a ply-by-ply basis.
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1.2.3 Mechanism based modeling

In order to reduce the number of tests necessary to characterize a ply material, interaction

laws are typically derived for multi-axial stress states. Initially, this was often done by

extensions of failure criteria from isotropic to orthotropic materials. However, unlike ‘con-

ventional’ materials such as metals, several failure mechanisms are observed in composites

owing to the inhomogeneous micro structure. Not all stress components necessarily con-

tribute to the risk of failure in all failure mechanisms. This leads to the conclusion that

independent failure mechanisms should be treated separately, and only the relevant stress

components should be considered for each mode.

In FPF theories, this realization gave rise to the development of new, mechanism based

failure criteria [26, 72, 73]. Recently, an extensive study on the capabilities of currently

available FPF theories has shown that mechanism based failure criteria not only give more

reliable predictions of failure, but additionally offer information as to the type of failure that

can be expected [33, 90, 91, 92]. The success of these mechanism based failure theories lays

the basis of the research that is presented here. It shows that in order to further improve

modeling capabilities it is necessary to understand the mechanisms that lead to failure and

damage in FRP composites. In the next section, a review of the current state of research

on failure and damage behavior of composite materials is given.

1.3 Behavior of FRP plies

In order to be able to realistically model the behavior of FRP composites, it is useful to take

a look at material behavior observed experimentally. Note, that unless stated otherwise,

the behavior of a ply embedded in a laminate is considered in the following. The material

behavior in fiber direction is dominated by fiber properties, while transverse and shear

properties are greatly influenced by the matrix material. Accordingly, two basic failure
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modes, fiber failure (FF) and matrix dominated failure (MDF), are distinguished. The

latter includes cohesive matrix failure and fiber/matrix debonding which are typically not

treated separately in ply level material models.

Due to the high strength of fibers, fiber failure is a rather violent event and often leads to

further significant damage in adjacent plies and subsequent global failure. Consequently,

the margin from first fiber failure to global failure is very small and the modeling of

fiber damage is deemed less important. Rather, damage modeling is focused primarily on

damage induced by matrix failure. In the following, matrix and fiber dominated material

behavior and failure mechanisms are discussed in more detail.

1.3.1 Matrix dominated material behavior

FRPs made of thermosetting polymers (e.g. epoxy resin) in general exhibit brittle failure

behavior, i.e. material plasticity is negligibly small [59, 60, 87]. Based on this observation,

non-linearities in material behavior are attributed to cracks which evolve in planes parallel

to the fibers of the respective layer. The crack orientation in the 2 − 3 plane defined by

the angle θfp (cf. Fig. 1.9, left) depends on the stress state. In plane stress conditions,

matrix cracks form perpendicularly to the laminate plane under tensile or moderately

compressive transverse stresses combined with shear (Fig. 1.9, center). According to Puck

[73] inclined cracks develop only when the ratio of compressive transverse stresses to shear

θfp

1 2

3

θfp = 0o

σ22 ≥ 0
σ12

σ22 < 0

θfp = 45o...55o

θfp

Figure 1.9: Matrix dominated failure (MDF); orientation of fracture plane
(left); tensile crack (center); uniaxial compression (right).
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stresses is greater than a threshold value. The maximum inclination is reached at uni-axial

transverse compression with a fracture plane angle in the range of 45◦ to 55◦ (Fig. 1.9,

right). When interlaminar stresses exist, e.g. near locations of load introduction or at free

edges [66, 95], delamination between laminate layers is likely to occur. This is due to stress

concentrations and reduced material strength at layer interfaces caused by an accumulation

of matrix material and possible production flaws (e.g. [7, 73]).

According to the three modeling length scales, cracks are classified as micro, meso, or

macro cracks. In Fig. 1.10 the typical material behavior of a laminate corresponding to

the succession of matrix failure mechanisms is shown schematically. In general, material

behavior is approximately linear at low load levels (curve 0–A in Fig. 1.10). This leads to

the assumption, that even though there may be some flaws like micro cracks due to chemical

shrinkage inherent in the material, there is no growth of damage. With increasing load, the

Displacement

Lo
ad

0

A

B

C

First Ply Failure load

starting micro damage

micro cracking

meso cracking

diffuse delamination

ultimate failure

Figure 1.10: Progression of matrix damage mechanisms and related stiffness
degradation.
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amount of micro damage initiated by local fiber/matrix debonding [59] becomes significant

enough for non-linearity to be observed (curve A–B in Fig. 1.10). The micro cracks continue

to grow in size and number until they coalesce to form the first meso crack across the ply

thickness (point B, FPF-load).

While material non-linearity is relatively small up to FPF, a more substantial loss of

stiffness is caused by the growing number of meso cracks (starting at point B). With

further increase of load, local delaminations form due to local triaxial stress states at the

tips of meso cracks. This kind of delamination is often termed ‘diffuse delamination’ in

contrast to delaminations caused by free edges and ‘global’ interlaminar stresses. The

point at which diffuse delamination becomes dominant over mesoscopic matrix cracking

is a function of ply thickness [59]. Experiments show that in thin plies the formation

of new meso cracks stagnates at a certain ‘saturation crack density’ before significant

diffuse delaminations appear. In thicker plies delaminations already appear prior to crack

saturation [5, 59, 65]. Finally, at point C ultimate failure occurs, e.g. due to macro cracking,

fiber failure, intolerably large deformations or global loss of stability.

It should be noted, that there are cases where some of the points on the curve of Fig. 1.10

coincide. For example in uni-axial transverse tension tests of UD specimens, material be-

havior is approximately linear until FPF (A=B). It indicates that in this loading condition

the first occurrence of micro damage leads to FPF (and ultimate failure) right away if the

UD layer is not embedded in a laminate. In laminate tests, on the other hand, non-linear

material behavior may be observed with the start of external loading (0=A). This can

be the result of residual ply stresses (e.g. thermally induced or due to production related

chemical shrinkage) exceeding the micro damage limit.

Once matrix cracks have developed, the effect of damage on material behavior depends

on the current strain field. If the ply normal-strain component perpendicular to the crack

plane is negative, crack faces come into contact, leading to a recovery of normal and shear

stiffness (‘unilateral effect’). In some load cases significant residual strains can be observed
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after unloading (Fig. 1.11, left) [11, 32, 40, 45]. Since plasticity is said to be negligible

in thermoset composites, these permanent strains are attributed to friction between crack

faces when cracks are closed [46]. As shown in Fig. 1.11, right, crack faces are rather rugged

in areas of cohesive matrix failure and can be the source of frictional forces.

1.3.2 Material behavior in fiber direction

Material behavior in longitudinal direction is determined mainly by fiber properties. In

longitudinal tension tests UD-specimens essentially exhibit elastic material behavior until

failure, with a slight stiffening in some cases [43, 87, 89]. The source of this stiffening effect

is not quite clear. It has been attributed to improved orientation of graphitic planes within

fibers [43, 87], but geometric effects (stretching of fiber waviness or rotation of misaligned

fibers) are also conceivable. Either way, the non-linearity is a non-dissipative effect [43],

i.e. loading and unloading curves coincide. Final failure is caused by brittle fracture of

the fibers as indicated by the fracture surface shown in Fig. 1.12, left [50]. As is typically

observed with brittle fracture processes, there is a statistical distribution of tensile fiber

strength with a rather large scatter in test data (Fig. 1.12, right).

Residual strain

Cohesive 
matrix failure

Fiber/matrix 
debonding

Figure 1.11: Residual strain; load vs. strain curve of ±45 FRP tube under
internal pressure combined with axial compression [40] (left);
microscopic view of crack surface [50] (right).
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In compression, material behavior can either be linear [89] or show increasing compliance

with load [43], but in both cases is elastic until failure. Two failure mechanisms have been

observed [87]. Composites with a very brittle matrix show 45◦ shear failure in which case

the failure stress in compression is similar to that in tension. With the use of tougher but

lower modulus matrix materials the failure mode switches to fiber instability at compressive

stresses significantly lower than the tensile failure limit. This phenomenon, leading to the

formation of kink bands has been studied by several authors (e.g. [14, 26, 94]) who identified

the matrix shear modulus and the initial fiber waviness as relevant parameters (Fig. 1.13).

For a detailed review of compressive fiber failure cf. [85].

Although the failure mechanisms have been identified, it is still disputed how to model

damage initiated by fiber failure. It has been reported that the rather violent process

of multiple fiber breakage is likely to induce damage in neighboring layers as well [73].

Therefore, it is questionable whether ply-level damage models are able to appropriately

capture damage triggered by fiber failure. While some authors treat damage due to fiber

failure in their models [46, 63], others argue that the amount of damage introduced warrants

the consideration of fiber failure as ultimate failure and obviates the need for damage

modeling in fiber direction [73].
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Figure 1.12: Tensile fiber failure; brittle fracture surface [50] (left); scatter
of IM7 fiber tensile strength [98] (right).
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1.4 Scope of the present work

The objective of this thesis is the improved prediction of the load response of composite

structures through computational simulation. To this end, tools for modeling damage and

failure of fiber reinforced laminates made of continuous fiber UD plies are developed. The

modeling tools operate on the ply level, but are applied to structural analysis through

combination with lamination theory and FEM. They are based on the specific failure

mechanisms as observed in polymer laminates typically used for structural applications.

Therefore, these tools are suitable only for materials that exhibit brittle failure in matrix

dominated loading conditions.

The thesis is divided into the two parts FPF analysis (chapter 2) and progressive damage

modeling (chapter 3), where detailed reviews of relevant literature head the respective sec-

tions. In chapter 2 the extension and implementation of the FPF concept for combined

load cases is presented. The approach is used to study the effect of constant stress contribu-

tions (e.g. due to residual stresses) on FPF predictions using the Puck failure criterion. To

demonstrate it’s application in structural analysis some example problems are presented.

Figure 1.13: Fiber waviness leading to fiber kinking under longitudinal com-
pression [14].
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Chapter 3 first gives an overview of existing damage models. In an attempt to directly apply

meso-scopic failure modes of Puck’s FPF theory to the modeling of progressive damage, a

new damage model is presented. It is focused on damage due to matrix dominated failure

mechanisms, since fiber failure is considered as ultimate laminate failure. For assessing

the capabilities of the developed damage model, predictions are compared to experimental

results reported in the literature. Furthermore, the model is implemented into a commercial

FEM program as constitutive law for application in structural analysis, which is again

demonstrated by means of example problems.
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Chapter 2

FIRST PLY FAILURE ANALYSIS

In the design process, the availability of reliable modeling tools to predict the strength of

a component is crucial. One of the most commonly used approaches for failure analysis of

laminated structures is the first ply failure (FPF) concept [38, 79]. Even though the basic

modeling concept is well established, considerable development is still directed towards

improving the accuracy of FPF criteria. In this chapter an extension of the FPF method

is used to study the effect of constant stress contributions on the risk of failure and the

failure mode with special emphasis on the Puck failure criterion [73, 75].

2.1 First Ply Failure – state of the art and new de-

velopements

The FPF concept states that failure occurs, if the stress state in one of the laminate layers

reaches a certain stress limit. Ply strength values are determined experimentally for a few

basic (uni-axial, simple shear) stress states, typically using UD-specimens with a homoge-

neous stress state throughout the specimen thickness. Therefore, the FPF concept should
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only be used as long as stresses are approximately homogeneous in thickness direction. To

derive stress limits for multi-axial stress states from these ply strengths, failure criteria are

used to define a ‘failure surface’ or ‘failure envelope’, which contains all failure limits in

stress space (cf. Fig. 2.1). The criteria are applied on the ply level, with failure envelopes

referenced to the ply-coordinate system as defined in Fig. 1.8. Assuming linear elastic, or-

thotropic material behavior, the risk of failure is characterized by a scalar risk parameter,

λ. It is defined as the factor that yields the stress state at ply failure, σFPF
ij , (with respect

to some FPF criterion), by multiplication with a given stress tensor, σij,

F (σFPF
ij ;Rt,c

kl ) = F (λσij;R
t,c
kl ) ≡ 1 . (2.1)

The function F (σFPF
ij ;Rt,c

kl ) refers to any suitable failure criterion, with FPF strength values

Rkl, and superscripts t and c denoting tension and compression, respectively (Fig. 2.1).

Equation (2.1) implies proportional increase of all stress components with load.

Several failure criteria for orthotropic materials have been presented in the past decades.

Among the most commonly used criteria are those assuming no interaction between ply-

stress components (Maximum Stress/Strain Criterion [38]) and quadratic failure criteria

like the Tsai-Hill [38], Tsai-Wu [79], or Hoffman criterion [34]. These criteria are aimed

at predicting stress interactions in a mathematically simple way, but do not reflect the

σ22

σ11

t
22R

c
22R

t
11Rc

11R
σij

λ σij

f a i l u r e  s u r f a c e

F P F  
s t r e s s  s t a t e

Figure 2.1: Definition of risk parameter, λ, in conventional FPF analysis.
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physical failure mechanisms observed in composite materials. More advanced approaches

are mechanism based failure criteria initiated by the works of Hashin [31], such as the Puck

failure criterion [39, 73, 75, 76] and variations thereof [16, 24, 25, 26, 27, 72]. In addition

to the risk of failure, these mechanism based criteria provide information on failure mode

and fracture plane angle.

Recently, in a World Wide Failure Exercise (WWFE) [33, 90, 91, 92], an extensive study

was undertaken to establish the capabilities of existing failure criteria and perhaps point

out the direction for future research. In this study, 19 different failure criteria are presented

and evaluated, judging their predictions against experimental evidence. One of the results

of the exercise was, that criteria based on failure mechanisms, especially the Puck criterion

[73, 75], do not only give better results, but also provide additional information about

the likely failure mode. The finding gave rise to the developement of new FPF models,

distinguishing even more failure modes in three-axial stress states [16, 26, 27, 72]. Another

observation was that there can be significant variations in predicting laminate failure,

depending on whether or not residual curing stresses are taken into account [33, 90, 91, 92].

The findings emphasize the importance of using physically meaningful failure criteria and

accounting for production related residudal stresses in order to further improve laminate

failure predictions. In conventional FPF analyses it is assumed that all stress components

increase proportionally with load. Since residual stresses are independent of applied load

they cannot be included easily in the FPF approach.

In the following sections, the ‘superposition method’ [81, 82, 84, 68, 69, 70, 75] is adopted

as a method for studying combined stress states within the FPF concept. Combining

the approach with finite element modeling (FEM), a post-processing tool for structural

analysis is developed. Although the present study focuses on Puck’s failure hypothesis for

plane and three-axial stress states, the software concept is open to any failure criterion

according to Eqn. (2.1). The superposition method is applicable to any combination of

independent load mechanisms, but in the present work it is used to look into the effects of
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residual stresses. Some example problems are presented demonstrating the features of this

structural analysis tool. The case studies also show how residual stresses affect the failure

behavior of laminated structures.

2.2 Superposition method for combined stress states

If stress contributions are caused by independent load mechanisms, e.g. a combination of

thermal and mechanical loads, the requirement of proportional increase of stresses is not

fulfilled. In such a case, one of the load mechanisms needs to be identified as the load of

primary interest, and the corresponding stresses are defined as variable stress tensor, σvar
ij .

The sum of stress states due to all other load mechanisms is defined as constant stress

tensor σcon
ij . For linear elastic material, the current stress tensor is the sum of constant

and variable stresses. The risk parameter for combined stress states, λcmb, is defined by

proportional scaling of σvar
ij as

F (λcmbσvar
ij + σcon

ij ;Rt,c
kl ) ≡ 1 (2.2)

(cf. Fig. 2.2a). This risk parameter is a proper measure for the risk of failure under com-

bined stresses, but may not give a complete picture of the situation. Therefore, additional

risk parameters are introduced. A constant risk parameter, λcon, is defined based on the

constant stress tensor (cf. Fig. 2.2b)

F (λconσcon
ij ;Rt,c

kl ) ≡ 1 , (2.3)

in order to ensure that the constant load can be sustained if the variable load is zero

(i.e. λcon > 1 is required). Knowledge of the constant risk parameter is also important

for assessing the reliability of results, since the influence of the loading path may not be

negligible for λcon → 1 (see discussion at end of this section).
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The variable risk parameter, λvar, (Fig. 2.2c) shows, if the variable load can be carried

when there is no constant load, and gives a comparison to the case where constant stresses

are neglected,

F (λvarσvar
ij ;Rt,c

kl ) ≡ 1 . (2.4)

Finally, a total risk parameter, λtot, is defined to identify ‘direction sensitive’ load cases,

F (λtot(σvar
ij + σcon

ij );Rt,c
kl ) ≡ 1 . (2.5)

Comparing λtot to the other three risk parameters can indicate if the variable stresses are

‘parallel’ to the failure surface, in which case a small variation of one stress component of

the variable or constant stress tensors can lead to a significant change of λcmb (Fig. 2.2d).

As mentioned previously, the superposition method can only be used if material behavior

is approximated as linear elastic. Otherwise, laminate failure depends on the loading path,

and the superposition of stress states is not valid. Non-linear material behavior is most
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Figure 2.2: Definition of risk parameters; FPF under proportional loading,
λ, vs. FPF of combined stress states, λcmb (a); constant risk
parameter, λcon (b); variable risk parameter, λvar (c); total risk
parameter, λtot (d).
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pronounced in shear loading conditions, and becomes relevant when ply shear stresses

reach approximately 50% of the ply shear strength. The load path dependency of laminate

failure is discussed in [23, 25, 50], where it is indicated, that there is no influence of loading

path as long as no damage occurs, or if the damage mechanism does not change during

loading. These observations need to be kept in mind when looking at failure predictions

using the superposition method. Particularly, when the constant stress contributions are

high (e.g. λcon ≤ 2) caution is advised.

2.3 Implementation of the superposition method

A software CNV is developed based on the superposition method and the considerations

made in section 2.2, using a modular structure in order to provide for easy extension to

additional failure criteria. Plane as well as three axial stress states can be handled by the

routine. The four risk parameters presented above are available for output, additionally,

failure mode and fracture plane angle can be predicted depending on the failure criterion

applied.

The program can be used as a stand alone tool, e.g. for evaluating combined stress states

and computing failure envelopes of laminates that were analysed by lamination theory. In

order to enable failure analysis of complex composite structures, it is hooked up onto the

FEM Program ABAQUS (ABAQUS Inc., Pawtucket, RI) as a post-processing subroutine. A

two step FEM stress analysis must be performed, in which the constant and variable load

cases are applied consecutively. In the post-processing routine, the layer stresses computed

by FEM are used to determine the failure relevant variables. These are stored by ABAQUS

as output variables, so they can be accessed by any compatible post-processor, e.g. for

visualization as contour plots. In the analysis any shell or continuum type FEM model

suitable for studying laminated structures can be used.
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It should be noted that the use of FPF criteria in combination with three-axial stress states

is somewhat ambiguous. Criteria for FPF are designed for use at the ply level, assuming a

homogeneous stress state over the ply thickness. With increasing layer thickness and more

triaxial stress states, stress gradients in thickness direction are not necessarily negligible,

thus violating requirements of the FPF approach. The question arises, whether the use

of averaged ply stresses or local (material point) stresses give more realistic predictions of

the risk of FPF in 3D models. In the present work, the latter option is adopted, hence,

the prediction of risk of failure is a conservative one. Additionally, high stress gradients

can be recognized as variations of the risk parameter over ply thickness which would be

an indication that the FPF approach reaches its limit of applicability at the respective

location.

2.4 Puck’s failure criterion

Given the results of the WWFE [33] and the capability of Puck’s failure criterion to ad-

ditionally predict failure modes and fracture plane orientations, it seems to be one of the

most potent failure criteria at present. Therefore, the Puck failure criterion is focused on

in the present work, even though it is not the only failure criterion implemented in the CNV

software. Since the criterion is not very well known and there have been several variations

proposed in the literature [39, 73, 75, 76], the version of the Puck failure criterion used in

the present study is reviewed in the following.

Unlike most of the commonly used failure criteria (e.g. Tsai-Hill, Tsai-Wu, Maximum Stress

Criteria), the Puck failure criterion is designed specifically for continuous fiber reinforced

composites and is therefore restricted to transversally isotropic materials. It uses separate

definitions for different parts of the failure envelope depending on the failure mode. As

ususal FF and MDF are distinguished as general failure modes, where the latter is referred

to as inter fiber failure (IFF) in Puck’s terminology. Assuming that only the stress com-
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ponent in fiber direction, σ11, is relevant for FF, the maximum stress criterion is used to

evaluate FF by
∣

∣

∣

∣

σ11

Rt,c
11

∣

∣

∣

∣

≤ 1 . (2.6)

MDF is viewed as brittle failure leading to fracture in a plane that is parallel to the

ply’s fiber direction and defined by the fracture plane angle, θfp, as shown in Fig. 2.3.

The physical basis for Puck’s MDF criterion is given by Mohr’s fracture hypothesis for

brittle materials. It states, that failure occurs in that material plane which offers the

lowest failure resistance towards the stresses acting on the plane. Consequently, the failure

surface is a function of the fracture plane stresses (σnn, σnt, σln) only, and is defined with

respect to a fracture plane coordinate system l-n-t (cf. Fig. 2.3). Two cases of MDF are

distinguished, depending on the fracture plane’s normal stress component, σnn, being tensile

or compressive. The corresponding failure surface is given in [73] as
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Figure 2.3: Definition of fracture plane coordinate system with regard to the
ply coordinate system by fracture plane angle, θfp.
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Some estimates for physically realistic values of slope parameters pt
12, p

c
12, p

t
23, and pc

23

for glass and carbon fiber materials are given in [74]. A schematic representation of the

fracture plane failure envelope and its parameters is shown in Fig. 2.4. Note that the

surface is open for σnn → −∞, indicating that pressure on a plane does not lead to failure

of this plane, but rather to shear failure of an inclined plane.

According to Puck, the actual fracture plane is the plane that has the highest risk of failure.

In the general case of three-axial stress states (referred to as ‘Puck 3D’ in the following),

the fracture plane angle is determined by a minimum search for the plane of lowest risk

parameter (λ(θ) → min). A prediction of θfp = ±90◦ is interpreted as delamination.

Typically, the function λ(θ) has several local minima which need to be determined and

compared in order to find the global minimum. In cases where there are two or more local

minima with similar values of λ a small variation of the stress state can cause the global

minimum to jump from one local minimum to another, leading to an abrupt change of

predicted fracture plane angle.

For plane stress, θfp can be determined analytically if the relation pc
2ψ/R

A
2ψ =const is

assumed. Plugging this relation into Eq. (2.7), the ‘Puck 2D’ formulation is derived.
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Figure 2.4: Puck failure surface for three-axial stress states (stresses with
respect to fracture plane coordinate system).
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Transforming the fracture plane stresses, σnn, σnt, σln, to ply stresses, σ22, σ12, leads to the

more commonly known set of equations
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distinguishing three MDF modes (Fig. 2.5, left) [73]. In Eq. (2.8) the definition of θfp for

Mode C has two possible solutions in the domain −π/2 ≤ θ ≤ +π/2, implying that the

planes +θfp and −θfp are equally likely to fail.

Since fracture planes are always parallel to the fiber direction, there is no influence of

longitudinal stresses on MDF in Eqs. (2.7) and (2.8). However, Puck suggests to use a

weakening factor, fw1, to scale the failure envelopes at high longitudinal stresses according

to

FPuck(σ
FPF
ij ;Rt,c

kl , p
t,c
kl ) = fw1 (2.9)
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with the weakening factor being defined as

fw1 =
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The effect of fw1 on the Puck 2D failure envelope in the three-dimensional stress space of

ply-stress components is shown in Fig. 2.5, right.

2.5 First Ply Failure analysis – examples

2.5.1 Plate with hole

To demonstrate the features of the developed analysis tool it is applied to the test case of a

rectangular plate with a centrally located hole under uni-axial compression. The geometry

is shown in Fig. 2.6 and material data is listed in Table 2.1. The plate is a symmetric

cross-ply laminate (0/90)s of nominal ply thickness t = 0.143mm (0◦ being defined as the

loading direction). With this lay-up the problem is three-fold symmetric and it is sufficient

to model one eighth of the plate with symmetry conditions. Since free edge effects at
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Figure 2.5: Puck failure surface for plane stress states (stresses with respect
to ply coordinate system).
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Table 2.1: Material data of carbon fiber/epoxy UD-layer, T300/976 [20].

elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

[GPa] [GPa] [GPa]

156.512 12.962 6.964 0.23 0.4

strength data

R11 R22 R12 p12 p23

[MPa] [MPa] [MPa]

tension 1516.8 44.54 106.9 0.35 ∗ 0.27 ∗

compression 1592.7 253 106.9 0.3 ∗ 0.27 ∗

coefficient of thermal expansion [1/K]

α11 α22 = α33

−0.17 · 10−6 41.4 · 10−6

∗ following Puck’s guidelines for carbon fiber materials [74]

the hole are not considered and there are no other sources of out-of-plane stresses, layered

shell elements (with linear interpolation and one Gauss-point through the thickness of each

layer) are used in the model. In addition to an axial compression of 300N a thermal load of

∆T = −50K with respect to an initially stress free state is applied to account for residual

curing stresses.

For comparison, the risk of failure is assessed by two different failure criteria, Puck 2D and

Tsai-Hill. The latter is a quadratic failure criterion which, in the plane stress case, uses

four different equations to define the failure surface depending on the signs of the normal

stresses σ11 and σ22. Accordingly, four failure modes are distinguished depending on the

combination of tensile or compressive normal stresses in the 1- and 2-directions (Table 2.2).

The distribution of risk parameter, λcmb, near the hole according to Puck 2D and Tsai-Hill

is shown in Fig. 2.7. It is very similar for both criteria . The minimum risk parameter
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Table 2.2: Definition of Tsai-Hill failure modes, depending on longitudinal
and transverse normal stresses.

long. tension long. compression

(σ11 ≥ 0) (σ11 < 0)

transv. tension (σ22 ≥ 0) mode 1 mode 2

transv. compression (σ22 < 0) mode 4 mode 3

in the 0◦ layer is located at point A with λcmb ≈ 1.64, in the 90◦ ply at point C with

λcmb ≈ 2.99 (Puck 2D) or λcmb ≈ 2.57 (Tsai-Hill). A juxtaposition of the lowest values of

all four risk parameters determined by the two failure criteria is shown in Fig. 2.8. In all

cases the 0◦ layer is the more critical one (except λcon which is the same everywhere in the

plate). If the thermally induced stresses were neglected, the critical risk parameter would

amount to λvar = 2.76 (Puck 2D) or λvar = 2.32 (Tsai-Hill), underestimating the risk of

failure by 68% or 41%, respectively. Additionally, the predicted FPF location in this case

would shift to point B of the 0◦ layer.
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Figure 2.6: Geometry and FEM mesh of a rectangular plate with a central
hole under uniaxial compression.
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As can be seen from Fig. 2.8, the various risk parameters predicted by the two failure criteria

are practically the same in some cases but differ in others. The biggest difference between

the failure surfaces of Puck 2D and Tsai-Hill lies in the interaction between between σ22

and σ12 stresses under transverse compression. In Fig. 2.9 the respective failure curves in

σ22 − σ12 stress space are displayed toghether with the stress states at points A (0◦ layer),

B (0◦ layer), and C (90◦ layer).

The stress states at points B and C contain a considerable amount of shear stresses and lead

to FPF at σ22 < 0 (at point B only if constant stresses are neglected). This explains the

discrepancies between the Puck and Tsai-Hill FPF predictions at those locations depicted

in Fig. 2.8. Similar observations were reported in the WWFE, where shear dominated

test cases produced the biggest variation of FPF predictions by the various criteria tested.

The variation of λtot in the 0◦ ply at point A (Fig. 2.8, left) is due to small differences

between the two failure criteria in the treatment of longitudinal normal stresses which are

risk parameter, 
λcmb
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Figure 2.7: Distribution of risk parameter, λcmb, evaluated by Tsai-Hill (top)
and Puck 2D (bottom).
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not shown in Fig. 2.9.

The biggest advantage of mechanism based failure criteria like Puck’s, as was also concluded

in the WWFE, is the prediction of physically meaningful failure modes. The distribution

of failure modes for the current example is shown in Fig. 2.10. Even though it is possible

to distinguish failure modes in the Tsai-Hill criterion, these modes are not connected to

any physical failure mechanisms. Accordingly, there is little similarity between the failure

mode distributions shown in Fig. 2.10. From the predictions according to Puck (Fig. 2.10,

bottom) it can be deducted that MDF is to be expected, either in mode A (at location A)

or mode B (at location B) depending on the actual amount of residual stresses.

If failure is initiated at point A, the load can probably be taken over by the 90◦ layer

which has a favorable fiber orientation with respect to the stress state and a low risk of

failure at that location. Failure at point B, on the other hand, is likely to cause more

severe damage by triggering cracks in the 90◦ ply near point C. In experimental testing of

a similar specimen with (0/90)6s lay-up, the first observable damage occurred near point

B in the form of cracks parallel to the fibers of the 0◦ layer [21], which supports the above

assessment.
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2.5.2 Pressure vessel

For a second example, a filament wound pressure vessel, used e.g. for propellant storage in

space craft, is chosen as a typical engineering structure. Due to its geometry and complex

loading, the structure is difficult to analyse analytically. In some regions of the structure

three-axial stress states occur which calls for 3D modeling. These stresses are evaluated by

the Puck 3D criterion, while Puck 2D is used for assessing plane stress states computed via

layered shell elements. In both cases, the distribution of risk parameters, failure modes,

and fracture plane angles are predicted.

Problem definition

The geometry of the vessel considered in this study consists of a cylindrical center part

with a spherical dome on each end (Fig. 2.11). At the top of the dome there is an opening

which is covered by a lid (not shown) mounted to the inside of the rim. The laminate

lay-up of the vessel is summarized in Table 2.3. In the cylindrical part the basic angle ply

laminate is reinforced by additional 90◦-layers on the inside and outside. The thickness

of each 90◦-layer is 0.2mm, that of each angle-ply 0.6mm. Due to the filament winding

process there is a gradual change in fiber angle, γ, and thickness, t, of each layer along the

dome contour. The winding condition for geodesic winding is given in [54] as

r sin γ = const , (2.11)

where r is the distance from the axis of revolution. For a circular dome contour Eq. (2.11)

yields the fiber angle as function of axial coordinate, z,

γ = arcsin

[

r0 sin γ0
√

r2
0 − z2

]

, (2.12)
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with initial winding angle, γ0 = 19.5◦, and cylinder radius, r0 = 75mm (z = 0 at the

dome/cylinder conjunction). Due to the changing fiber angle and shell diameter, the layer

thickness varies according to

t = t0
r0 cos γ0

cos γ
√

r2
0 − z2

, (2.13)

with t0 = 0.6mm denoting the thickness of each angle ply at z = 0. Equations (2.12) and

(2.13) lead to a maximum ply thickness and fiber angle at the dome openings of 1.91mm

and 90◦, respectively. The vessel is made of the intermediate carbon fiber/epoxy material,

AS4/3501-6. Transversely isotropic material data is taken from [88] and summarized in

Table 2.4. Inter-laminar strength data for the Puck 3D criterion is derived from in-plane

strength data given in Table 2.4 by a 10% reduction, as suggested in [73, 75].
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Figure 2.11: Pressure vessel geometry and applied loads.
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Table 2.3: Laminate design of filament wound pressure vessel (0◦ = projec-
tion of axial direction onto the shell surface).

lay-up ply thickness [mm]

cylinder [90/+ 19.5/− 19.5]s t90 = 0.2; t19.5 = 0.6

dome [+γ/− γ]s (γ = 19.5◦ . . . 90◦) t= 0.6 . . . 1.91

Table 2.4: Material data of carbon fiber/epoxy UD-layer, AS4/3501-6 [88].

elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

[GPa] [GPa] [GPa]

126 11 6.6 0.28 0.4

strength data

R11 R22 R12 p12 p23

[MPa] [MPa] [MPa]

tension 1950 48 79 0.35 ∗ 0.27 ∗

compression 1480 200 79 0.3 ∗ 0.27 ∗

coefficient of thermal expansion [1/K]

α11 α22 = α33

−1 · 10−6 26 · 10−6

∗ following Puck’s guidelines for carbon fiber materials [74]

The vessel is operated at room temperature. According to the material specifications

[88], the stress free temperature corresponds to 177◦C, however, a reduction of thermally

induced stresses due to relaxation can be expected and is assumed to amount to 50%. This

yields an effective temperature load of ∆T = −75◦C which is applied to the structure as

constant load. An internal pressure of 4MPa causes the variable loads. In addition to

uniform pressure, there is a radially cosine-distributed load at the rim of the vessel due to

the pressure acting on the lid (cf. Fig. 2.11).
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For most of the structure, the shell thickness is very small compared to the vessel diameter

and the gradients of external loads are small. Therefore, a layered shell model is sufficiently

accurate for predicting the overall behavior of the vessel (Fig. 2.12, left). The shell model

consists of quadrilateral 8-noded shell elements employing first order lamination theory.

Because of globally symmetric geometry, loading, and response, only half of the vessel

needs to be modeled. Note that axisymmetric modelling is not possible in the problem

at hand. Due to the laminate lay-up the specified loads lead to displacements in hoop

direction which violate assumptions of standard axisymmetric FEM-modeling.

Near the dome opening, the stress state is more complex due to the lid forces and the

increasing shell thickness. A computationally efficient way to examine the three-axial

stress state near the rim more closely is the submodeling technique which is realized by

employing a 3D continuum submodel. In the submodel, the three rows of shell elements

closest to the dome opening are replaced by continuum elements (cf. Fig. 2.12, right). Each

ply is modeled by four elements over its thickness using 20-noded hexahedral elements. For

X Y

Z

Figure 2.12: FEM-mesh; global shell model (left), and cut open view of 3D
continuum submodel (right).
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comparison, a coarsely meshed submodel with two elements per layer is analysed as well,

showing good agreement with the refined model. Free edge effects [66, 68, 69] are not

considered in the present study. Therefore, the results of the first two rows of elements are

not relevant and are not displayed in the figures of the results section. The same strategy

is applied to the element rows near the shell/submodel transition zone where results are

unreliable due to the locally distorted deformation field.

Results

In this section, results of the structural failure analysis of the pressure vessel are presented.

For the given material the variation of p2ψ/R
A
2ψ with ψ (cf. Eq. (2.7)) is small. Consequently,

the Puck 2D and Puck 3D formulations virtually yield the same results for plane stress

states. Since Puck 2D is computationally much more efficient, risk parameters of the shell

model are computed by Puck 2D, while the stress states of the continuum submodel are

assessed by Puck 3D. Note, that in the following stresses are referred to the respective ply’s

coordinate system which is defined through rotation about the shell normal by the angle

±γ. Therefore, the 1-directions of the coordinate systems of the middle and outer layers

point in opposite directions at the dome opening where γ = 90◦.

Constant load: temperature reduction. Subjecting the vessel to a temperature

change causes stresses by two effects. The first one is related to the angle-ply layup of

the laminate. Since the ply thermal expansion in fiber direction is smaller than the one

in transverse direction, a homogeneous temperature reduction leads to tensile ply stresses

transverse to the fibers, σ22 > 0. These stresses depend upon the laminate’s ply angles

and have their maximum for a [±45◦] layup. As a result of the low tensile ply strength

in transverse direction, these stresses have a high potential to cause failure. The second

effect is due to the doubly curved geometry in the dome section. Because of the differing

thermal expansion properties of the laminate in meridional and circumferential directions,
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laminate strain components in these directions are not equal, which results in a bending

moment. The combination of these two effects leads to the distribution of the constant

risk parameter shown in Fig. 2.13.

In the view of the shell model (Fig. 2.13, left) the outer angle ply is displayed which is the

most critical one. There, two critical regions with respect to the constant risk parameter

can be discerned. They are located where the difference between fiber angles of adjacent

layers is high, i.e. in the cylindrical section between the 90◦ and the 19.5◦ layer, and near

the rim of the dome where fiber angles are approximately ±45◦. Because of the coarse shell

discretization near the dome opening, it is useful to obtain more accurate values for the

second location by considering the continuum model, a slice of which is shown in Fig. 2.13,

right. While λcon does not vary over laminate thickness in the cylindrical part, there is a

gradient in thickness direction in the dome section. Corresponding to the bending moment

due to the doubly curved geometry, the highest risk of failure occurs in the outermost layer

with a constant risk parameter of λcon = 2.4.

X Y

Z

Risk parameter λcon

λcon = 2.4

λcon = 2.5

Figure 2.13: Distribution of constant risk parameter, λcon; outermost angle
ply of global shell model - Puck 2D (left), and slice of 3D con-
tinuum submodel - Puck 3D (right).
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Variable load: internal pressure. According to analytical solutions, the highest sec-

tion forces in a vessel subjected to internal pressure will occur in circumferential direction.

The cylindrical part is reinforced with 90◦ layers which carry a major part of those cir-

cumferential laminate stresses. At the beginning of the dome, however, fiber directions

are in ±19.5◦ only, without further reinforcement, while section forces are the same as in

the cylinder. Consequently, the relatively low transverse strength is of relevance and the

lowest variable risk parameter can be expected in this area.

Combined load. The distribution of λcmb is shown for the outer angle ply in Fig. 2.14,

with a critical risk parameter of λcmb = 1.05 near the junction of the cylinder and dome

sections (Fig. 2.14, left). With the reducing shell diameter of the dome, fiber angles

increase, so that the higher strength fibers are able to carry a growing portion of the load.

Additionally, the shell thickness increases as well, hence, no failure due to the internal

pressure is to be expected there. A look at the submodel (Fig. 2.14, right) confirms this

X Y

Z

Risk parameter λcmb

 λcmb =1.05

 λcmb =1.8

Figure 2.14: Distribution of combined risk parameter, λcmb; outermost an-
gle ply of global shell model - Puck 2D (left), and slice of 3D
continuum submodel - Puck 3D (right).
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general assessment up to the point where the fiber orientation is ±45◦. For γ > 45◦ the

risk of tensile matrix failure increases again due to the unfavorable fiber orientation with

regard to meridional laminate stresses (critical risk parameter λcmb = 1.8).

Whether or not residual stresses are taken into account has no influence on the spatial

distribution of the risk of failure. However, the magnitude of the combined risk parameter,

λcmb, is significantly lower than that of the variable risk parameter with a critical value of

λvar = 1.3 at the dome/cylinder conjunction. The lowest total risk parameter is also found

at that location with λtot = 1.04.

Failure Mode. Both temperature and pressure load mainly cause tensile layer stresses in

transverse direction as long as plane stress is assumed. Therefore, tensile matrix failure is

predicted throughout the shell model. The distribution of failure modes in the continuum

model is shown in Fig. 2.15, illustrating that tensile matrix failure predominates here as

well. Only the region near the distributed lid forces exhibits compressive matrix failure.

However, risk parameters are very high there, and FPF due to this mode is unlikely.

Angle of fracture plane. Under plane stress tensile matrix failure leads to a fracture

plane that is perpendicular to the laminate plane, i.e. θfp = 0◦ (cf. Eq. (2.8), Mode A).

tensile matrix failure

compressive 
matrix failure

X Y

Z

Figure 2.15: Distribution of failure mode in the continuum submodel pre-
dicted by Puck 3D failure criterion.
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This is the case everywhere in the shell model. The distribution of fracture plane angles

in the continuum model is shown in Fig. 2.16. Considering the area where tensile failure is

predicted (cp. Fig. 2.15) the fracture plane angle deviates up to 18◦ from the zero-degree

orientation with different sign depending on the sign of fiber orientation in the layer.

The deviation is attributed primarily to out-of-plane shear stresses. Due to the parabolic

distribution of macro-shear stresses, the absolute values of θfp are higher in the two middle

layers (18◦ at maximum) than in the outer layers (|θfp| ≤ 11◦). The sign of the predicted

fracture plane angle is related to the definition of the respective ply coordinate system.

In the region of compressive matrix failure, high fracture plane angles are predicted with

a maximum of θfp ≈ 50◦ (Fig. 2.16). Since compressive stresses only appear in the out-

of-plane direction (σ33 < 0) they must be responsible for this failure mode (cf. Fig. 2.17).

According to Puck’s hypothesis, purely compressive stresses do not lead to failure directly,

rather, they cause shear failure at an inclined angle. For example, uni-axial out-of-plane

compressive stresses would lead to a fracture plane angle slightly below 40◦. Here, in-plane

stresses are present at the same time and, in combination with the compressive out-of-plane

X Y

Z

Fracture plane angle

Figure 2.16: Distribution of fracture plane angle, θfp, in the continuum sub-
model predicted by Puck 3D failure criterion.
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stresses, lead to the observed fracture angle. It is noted that in the area where the failure

mode switches from tension to compression (cp. Figs. 2.15 and 2.16), the prediction of θfp

is difficult, since the global minimum of λ(θ) switches between several local minima.

Validity of the approach. As pointed out in section 2.2, the presented approach is valid

as long as failure is independent of the loading path, and it is necessary to ascertain that

this assumption is not violated. In the example problem, constant stresses are well below

the expected failure stress, since λcon ≥ 2.4. Shear stresses and compressive transverse

stresses, which are most likely to induce non-linear material behavior, are negligible in the

constant load case. During loading the failure mode does not change, except for a small

area near the introduction of lid forces. At that location, however, constant stresses are

very low, and stress components increase almost proportionally with load. As a result

it is assumed, that failure is independent of the loading path and the application of the

superposition method is legitimate.

X Y

Z

S33

Figure 2.17: Distribution of out-of-plane normal stress, σ33, (ply-coordinate
system), in the continuum submodel.
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2.5.3 Test design – interlaminar shear strength (ILSS)

Motivation and problem definition

Delamination is one of the most critical failure modes in laminated composite structures.

It is triggered by interlaminar (shear) stresses which can be caused e.g. by impact loads,

free edge effects, or localized load introduction. There are two reasons why delamination

is especially hazardous. First, delaminations cannot be seen by visual inspection, so that,

for example, ‘barely visible impact’ (BVI) damage in aerospace structures is not easily

detected. Second, there are no fibers bridging the interface which could prevent the initial

delamination from growing. In order to predict the onset of delamination using FPF, the

knowledge of the interlaminar shear strength (ILSS) is required. In standard test methods,

like double-lap-shear and short-beam-shear, the accuracy of test results is influenced by

free edge effects [67]. To overcome this problem, a feasability study on a new test design

using a circular plate specimen is performed.

The geometry of the proposed test set-up is shown in Fig. 2.18. The laminated plate is

placed on a support ring and centrally loaded with a spherical indenter. Depending on

the ratio of ring diameter, D, to laminate thickness, t, failure is dominated either by out-

R 

D

dc

t

(0/90)8S Laminat
t = 2.4mm
D = 7.2mm
R = 36mm

Indenter

Figure 2.18: Geometry of the ILSS test setup, including test parameters used
in the FEM analysis.
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of-plane shear or bending. For a very stiff plate (small ratio of D/t) compression cracks

and delaminations develop in a cone-like area underneath the indenter emanating from the

top layers (Fig. 2.19, left). More flexible plates, on the other hand, show tensile MDF in

the lower layers which is typically combined with delaminations as well (Fig. 2.19, right)

[10, 61, 62].

In these examples it is not clear if delamination is the initial mode of failure or if it is

triggered by the matrix cracks. To be able to use the setup as a test for ILSS, it is necessary

for delamination to be the primary mode of failure. The goal of this study is to investigate

the possibilities of choosing test parameters such that delamination is predicted as the first

mode of failure and the set-up can be employed as a test for progressive delamination.

Modeling issues

The material of the laminated plate is a carbon fiber/epoxy T700/M21 with material data

as given in Table 2.5. As suggested by Puck [73, 75], interlaminar strengths are reduced

Figure 2.19: Failure mechanisms of a plate under lateral load (‘low velocity
impact’); stiff plate — shear dominated failure (left), after [10,
61]; flexible plate — bending dominated failure (right), after
[61, 62].
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Table 2.5: Material data of carbon fiber/epoxy UD-layer T700/M21.

elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

[GPa] [GPa] [GPa]

140 8.5 4.5 0.35 0.4

strength data

R11 R22 R12 p12 p23

[MPa] [MPa] [MPa]

tension 2376 60 108 0.35 ∗ 0.27 ∗

compression 1420 280 108 0.3 ∗ 0.27 ∗

coefficient of thermal expansion [1/K]

α11 α22 = α33

−0.09 · 10−6 33.5 · 10−6

∗ following Puck’s guidelines for carbon fiber materials [74]

by 20% compared to the respective in-plane values. In a preliminary study, two possible

lay-ups are considered, (0n/90n)s and (0/90)ns. Other parameters studied are the ratio D/t

and the indenter radius R. It is found that for the given material, a ratio of D/t . 3 with

alternating layers (0/90)ns should be used in order to produce shear dominated failure. The

indenter radius should be rather large to avoid crushing of the composite right underneath

the indenter.

A 3D FEM analysis of the test is conducted using the test parameters given in Fig. 2.18. For

a cross ply layup it is sufficient to model one quarter of the plate with symmetry conditions.

The indenter is modeled as a rigid surface that interacts with the plate through a contact

formulation on the surface of the top layer. The plate itself is modeled using 20-noded

hexahedral elements (4 elements in the top layer, otherwise 3 elements per layer), with a

refined discretization near the plate center.
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In addition to the mechanical load that is exerted via the indenter, a thermal load due

to a temperature decrease of ∆T = −100K is applied in order to account for production

related stresses. The Puck 3D criterion (cf. Eq. 2.7 in section 2.4) is used to evaluate

stresses with regard to the risk of FPF. Note, that the mechanical loading here is a non-

linear problem due to the contact between the plate and the indenter. Hence, it is not

possible to extrapolate stress states to FPF by linear scaling. In order to obtain useful

estimates of FPF loads, the mechanical load is increased in the analysis until FPF is

reached approximately.

Results

In the following, results of the numerical analysis of the ILSS test are presented. All

figures shown here correspond to an indenter load of Findenter = 1100N. It is noted, that

some severe deformations and stress concentrations can be seen near the location of the

support ring. These are a modeling effect and are expected not to have any influence on

the relevant results, since the distance between the distortions and the area of interest is

large enough.

If curing stresses are not taken into account, there are two FPF-critical locations, as shown

in Fig. 2.20. One at the center on the bottom of the plate (point A), the other at the

second interface (point B), with risk parameters of λvar = 1.13 and λvar = 1.3, respectively.

The corresponding failure modes can be seen in Fig. 2.21. At point A tensile MDF is

predicted, while at point B interlaminar shear stresses lead to delamination. Tensile cracks

in the bottom layer probably do not have a significant effect on the overall stiffness of the

plate, since the stresses can be taken over by the adjacent layer with favorably oriented

fibers. Hence, it can be expected, that after the initial failure and further increase of load,

delamination will start at location B without any notable influence of the previous failure

in the bottom layer.
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Aλ = 1.13, AFFPF ≈ 1300N
Bλ = 1.3, BFFPF ≈ 15 00N

B

A

risk parameter, 
no temperature

Figure 2.20: Risk parameter according to the Puck 3D FPF-criterion without
thermally induced stresses at an indenter load of F=1100N.

B

A

fiber compression
fiber tension
delamination
matrix compr.
matrix tension

Failure Mode,
no temperature

Figure 2.21: Failure mode according to the Puck3D FPF-criterion without
thermally induced stresses at an indenter load of F=1100N.
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The distribution of failure modes looking from the top onto the first six laminate interfaces

is displayed in Fig. 2.22. It shows, that delamination is predicted as critical failure mode

in a larger area on interface 2 surrounding the location of point B, so it is likely that

the delamination will continue to grow due to load transfer after delamination onset. On

interfaces 3 – 6 delamination is also forecast in elongated zones parallel to the fibers of the

layer underneath. This looks very similar to delaminations found experimentally in ‘low

velocity impact’ tests, where delamination occurs as secondary failure mode (cf. Fig. 2.23)

[93]. However, for a proper prediction of the post-FPF behavior a progressive damage

analysis including growth of delamination and perhaps other damage mechanisms would

be necessary.

As mentioned previously, it is not possible to compute FPF loads by linear extrapolation

due to the non-linearity inherent in contact problems. In order to obtain approximate

loads for failure at points A and B, the relationship FFPF = λFindenter is linearized near

fiber compression
fiber tension
delamination
matrix compr.
matrix tension

Failure Mode,
no temperature

Interface 1 Interface 2 Interface 3

Interface 4 Interface 5 Interface 6

B

Figure 2.22: Failure mode according to the Puck 3D FPF-criterion without
thermally induced stresses (top view on interfaces 1 – 6, num-
bering starting from the top of the plate).



CHAPTER 2. FIRST PLY FAILURE ANALYSIS 51

λ = 1. By this approach FPF loads are estimated as F≈ 1300N (point A) and F≈ 1500N

(point B).

If residual stresses are incorporated in the analysis the distribution of failure mode looks

quite similar to Fig. 2.21. While there is no temperature effect on the risk of failure at point

B, the risk parameter is significantly lower in those areas where mode A failure is predicted

(see Fig. 2.24). The failure critical location is still found at point A with λcmb ≈ 0.8,

but also in the layers above tensile MDF is predicted prior to the onset of delamination.

Conceivably, these transverse cracks could trigger delaminations prematurely which would

alter experimental ILSS test results. For this loading scenario the FPF loads are estimated

as FFPF ≈ 800N and FFPF ≈ 1300N at points A and B, respectively.

It can be concluded that, depending on the actual amount of residual stresses, the ILSS test

studied here might be a viable solution to overcome the drawbacks of other test methods.

Further (experimental) research is necessary to confirm the findings of this study.

Figure 2.23: Illustration of delamination and transverse cracking observed in
‘low-velocity-impact’ tests [93].
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2.6 Conclusions – FPF analysis

In this chapter failure analysis by the FPF approach is considered which is a very efficient

method for initial design purposes. An extension of the FPF concept for evaluation of

combined stress states showing constant and variable character is presented. Superposition

of stress states is used in conjunction with the concept of FPF to predict the onset of

failure in laminated composite structures. The risk of failure and its sensitivity to various

load combinations is characterized by four risk parameters. A modular computer code is

developed which is easily adaptable for additional failure criteria and can handle plane as

well as three-axial stress states. By hooking the code up onto a FEM program as post-

processing tool, stress analysis of complex structures can be performed, while additionally

assessing the distribution of the risk of failure, failure mode, and fracture plane angle.

Aλ = 0.8, AFFPF ≈ 800N
Bλ = 1.3, BFFPF ≈ 1 5 00N

B

A

risk parameter, 
incl. temperature

Figure 2.24: Risk parameter according to the Puck 3D FPF-criterion includ-
ing thermally induced stresses at an indenter load of F=1100N.
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Special emphasis is put on the Puck fracture plane criterion which is based on physical

failure mechanisms. Such mechanism based failure models can only be used for a very

specific type of material (here, continuous FRPs with brittle failure behavior) but for

those materials in general show better agreement with experimental data. A comparison

to FPF prediction with the more commonly used Tsai-Hill criterion shows the biggest

discrepancy for interactions of shear stresses with transverse compression (mode B and C

in Puck’s criterion). This concurs with observations of the WWFE, where it was reported

that simpler models are less accurate especially in shear dominated load cases.

The features of the developed software tool are demonstrated in several examples where

the effect of constant stress contributions due to production related residual stresses is

studied. It is found that the risk of failure may be underastimated significantly if curing

stresses are not included in analyses. In addition, these stresses can have an influence on

the predicted failure mode and critical location.
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Chapter 3

PROGRESSIVE DAMAGE

MODELING

As mentioned previously, the first ply failure (FPF) approach is very important for initial

design and optimization purposes. However, for a detailed analysis of composite structures

especially in the post FPF regime the approach is insufficient since it is restricted to linear

material behavior. The non-linearities observed in the actual behavior of fiber reinforced

polymers (FRPs) are attributed to material damage, mainly in the form of matrix cracks

[59, 60], which lead to a reduction of laminate stiffness. Methods for modeling material

damage can be divided into micromechanics of damage and continuum damage mechanics

approaches [59]. Micromechanics of damage is an extension of fracture mechanics concepts

to inhomogeneous media like composite materials. It is concerned with the analysis of the

various types of damage and prediction of their initiation and growth processes [59]. This

requires the stress/strain state to be resolved on a microscopic scale which renders these

methods computationally too demanding for structural analysis.

In the present work, the continuum damage mechanics approach is used to model laminate

behavior due to damage. By this method, the damaged composite is viewed as a contin-
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uum, i.e. the actual (discontinuous) material is replaced by a homogenized material which

shows the same effective material behavior. This way a constitutive law relating stresses,

strains, and damage can be formulated. For the modeling of laminates, continuum damage

mechanics is typically applied on the ply-level. Since damage is treated on the mesoscopic

length scale, only mesoscopic stress/strain states need to be known. Considering each ply

separately implies that damage modes of individual layers do not interact directly, but

only through the feedback of load redistribution between layers. This may not be realistic

in all cases, but at this time it is probably the only feasable approach.

3.1 Continuum Damage Mechanics

The concept of continuum damage mechanics was introduced by Rabotnov [77]. He used

a damage variable, d, to describe the stiffness degradation of a homogeneous material.

The damage variable ranges between 0 and 1, with d = 0 for undamaged, and d = 1 for

completely damaged material. For uni-axial tension of a specimen with cross-section, A,

an effective stress is defined as [77]

σeff =
σ

1 − d
with σ =

F

A
, (3.1)

with stress, σ, and tensile force, F. According to the strain equivalence principle [52], the

stress acting on the damaged material produces the same elastic strain as the effective

stress on the undamaged material

ε =
σ

Ed
=

σeff

E init
, (3.2)

with Ed and E init denoting the Young’s modulus of the damaged and undamaged material

in loading direction, respectively. From these two equations the Young’s modulus of the
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damaged material follows directly as

Ed = (1 − d)E init . (3.3)

Generalizing the approach for three-axial stress states gives rise to the tensor equations for

effective stress as

σ
eff = M (D) σ , (3.4)

and the constitutive law for the damaged material as

σ = E
d
ε , with E

d = [M(D)]−1
E

init . (3.5)

Here, E
d and E

init are the elasticity tensors of the damaged and virgin material, respec-

tively, M(D) defines the influence of damage on material behavior and is a tensorial func-

tion of the damage tensor, D [57]. In the most general case the damage tensor is a rank four

tensor [18], whose entries are zero in the initial state and non-zero in the damaged state.

The damage tensor is typically related to scalar damage variables, D = D(d1, . . . , dn),

where the number of independent variables, n, depends upon the symmetry of the respec-

tive damage model (isotropic, orthotropic, or anisotropic damage). Since E
d must equal

E
init in the undamage state, M(D = 0) = I must hold as well, with I denoting the

identity matrix.

In order to set up the material law, the evolution of damage variables and the function

M(D) need to be defined. One way to achieve this is the use of purely phenomenological

models (e.g. [38, 64, 70, 73, 95]) which define the degradation of engineering constants

directly based on FPF theories and experimental observations. Typically, these models are

computationally less expensive and provide for easier parameter identification, but they

are not necessarily thermodynamically consistent. In order to overcome this drawback,

the majority of continuum damage models is based on thermodynamical considerations

(e.g. [5, 7, 11, 29, 44, 53, 56, 97]). To this end, the material’s Helmholtz free energy, Ψ,
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is defined as a function of internal variables, e.g. elastic strain, ε
el, and damage variables,

dn, in the case of elastic, damageable material

Ψ = Ψ(εel, dn) . (3.6)

Typically, polynomial functions of first or second order are used to characterize Ψ. Making

use of the second law of thermodynamics in the form of the Clausius-Duhem inequality

(c.f. [52, 53, 97]) the components of the stress tensor can be obtained as the thermody-

namically conjugate variables of elastic strain components

σij =
∂Ψ

∂εel
ij

. (3.7)

Partial derivatives of the Helmholtz free energy with respect to the damage variables yields

the respective conjugate force referred to as damage energy release rate [9]

Yn =
∂Ψ

∂dn
. (3.8)

The functions in Eqs. (3.7) and (3.8) provide a set of equations relating stresses, strains,

damage variables, and damage energy release rates. In order to solve the system of equa-

tions, an evolution law for each damage variable as function of the corresponding damage

energy release rate needs to be defined. A number of methods have been presented to

find damage evolution laws, such as experimental data-fitting (e.g. [8, 45, 101]), unit-cell

approaches (e.g. [42, 47]), statistical methods (e.g. [17, 56, 96]), micromechanical consid-

erations (e.g. [41]), and combinations thereof (e.g [35]).

Damage models based on energy potentials vary in the choice of internal variables, formu-

lation of the potential, and definition of evolution laws. By introducing additional internal

variables in Eq. (3.6), the material model can be extended and treated in a similar fashion

to account e.g. for elasto-plastic or temperature dependent behavior. In this case, laws for

plasticity and thermal dependency also need to be defined.
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3.2 Existing Damage Models for Fiber Reinforced

Laminates

In this section damage models adopting the continuum damage approach for ply level mod-

eling of fiber reinforced laminates are discussed. According to the general failure modes,

fiber failure (FF) and matrix dominated failure (MDF) are treated separately. Damage

due to FF mainly affects longitudinal stiffness (E1), while MDF leads to a reduction of

transverse Young’s moduli (E2, E3) and shear moduli (G12, G13, G23). In some models

Poisson ratios are also degraded due to matrix failure. For both failure modes, tensile and

compressive damage behavior is distinguished.

Although some damage models also involve micro damage, the primary interest lies in

the modeling of meso-damage. In this regard some problems arise concerning the valid-

ity of the continuum damage approach which is based on the homogenization principle.

Homogenization is considered to yield sufficiently accurate results, when the size of inho-

mogeneities (e.g. cracks) is small compared to the length scale at witch the material is

studied [6]. For a ply in a laminate containing meso cracks this condition is not strictly

fulfilled, since laminates are usually modeled on the ply level, a length scale which is of

the same order of magnitude as meso cracks. Nevertheless, the application of continuum

damage mechanics to ply level damage models of FRPs is widely accepted. It is argued,

that the homogenization requirement is approximately fulfilled within the laminate plane

if the volume element considered is large enough to contain several cracks. Comparison to

micromechanical models show that the continuum damage approach is able to reasonably

describe in-plane material behavior of FRPs with mesoscale matrix cracks [6]. For pre-

dictions of out-of-plane behavior the applicability of continuum damage mechanics is less

clear. However, continuum damage mechanics is currently deemed to be the only method

qualified for application in structural analysis.
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3.2.1 Phenomenological models

Phenomenological models for FRPs are typically based on the FPF method, assuming

plane stress conditions and considering only mesoscale damage. Popular phenomenological

approaches are ply discount methods which use existing FPF criteria (e.g. Tsai-Hill, Tsai-

Wu, Maximum Stress/Strain) [38] to predict failure of individual plies. Upon failure the

respective ply’s stiffness properties are reduced instantly to a certain value, i.e. instead

of modeling damage evolution, the layer is assumed to reach the final state of damage

immediately. Versions of this method include the total discount (all ply stiffnesses set to

zero) [38], limited discount (only some moduli set to zero, depending on failure mode) [64],

and residual property method (selected stiffnesses reduced to a non-zero value) [70, 95].

Lacking sophisticated evolution laws, these models are computationally very efficient and

are often used for initial design analysis, e.g. in combination with classical lamination the-

ory. Also, ply discount methods are frequently used because of a lack of reliable material

data needed for more elaborate models. However, rather than a sudden drop-off, experi-

mental data indicates a gradual decrease of stiffness of embedded layers, which should be

taken into account for realistic laminate modeling. Several of the FPF theories studied in

the WWFE [33, 90, 91, 92] have built-in evolution laws to give estimates on the post FPF

behavior. As one of the most prominent the Puck degradation model which is based on

Puck’s FPF criterion will be described in more detail [73, 74, 75, 76].

In Puck’s damage model, degradation due to FF is not considered, but FF in one ply is

regarded as ultimate failure [73]. In MDF modes a degradation function

η =











1 for fE < 1

1−ηr

1+c(fE−1)ξ + ηr for fE ≥ 1

(3.9)

is used to describe the decay of stiffness, covering all damage effects from FPF to ultimate

failure (i.e. meso cracking and diffuse delamination are not treated separately). The scalar
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variable, fE, termed ‘factor of effort’ is the reciprocal value of the reserve or safety factor

used in the FPF approach [75]. Constants c, ξ, and ηr are material parameters used

to adapt the degradation function to various material systems. The parameters can be

determined based on experimental data [30] if available; in [75] η is computed iteratively

such that no hardening or softening occurs. The general form of η(fE) is shown in Fig. 3.1,

with values ranging between one and ηr, in particular η = 1 signifying no degradation.

The onset of damage is marked by FPF (at fE = 1), followed by a steep decline of η as the

number of meso cracks increases, and, finally, a leveling at ηr for higher values of fE due

to crack saturation.

The degradation of engineering constants by the degradation function η depends on the

stress state (cf. Table 3.1). Under transverse tension the transverse Young’s modulus and

shear modulus are reduced by multiplication with η. Under transverse compression the

transverse Young’s modulus remains unchanged, while the shear modulus is degraded by

a reduced function

ηc = η cos2(%) + sin2(%) with % = arctan

∣

∣

∣

∣

σ22

σ12

∣

∣

∣

∣

. (3.10)

ηr

Figure 3.1: Degradation function for positive and negative transverse normal
stress after Puck [75].
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Table 3.1: Degradation of engineering moduli under plane stress as defined
by the Puck damage model

tension compression
σ22 ≥ 0 σ22 ≤ 0

Ed
2 = ηE init

2 Ed
2 = E init

2

Gd
12 = η Ginit

12 Gd
12 = ηcGinit

12

νd
12 = ν init

12

This function is equal to the original degradation function, η, when the transverse normal

stress is zero, and for uniaxial transverse compression (ηc ≡ 1) there is no degradation.

The Poisson number, ν12, stays constant under tensile as well as compressive damage.

3.2.2 Thermodynamically consistent models

Cachan Model

One of the most widely used approaches of continuum damage models for FRPs based

on energy potentials has been developed by the research group of Ladevèze and Allix at

LMT Cachan, France [7, 8, 44, 46]. In this approach a laminate is modeled by two types

of constituents (cf. Fig. 3.2); single plies for representing intralaminar failure mechanisms

(MDF and FF), and two dimensional interfaces, transmitting tractions from one layer to

the next, for the modeling of delamination.

Single-layer

Interface

Figure 3.2: Constituents of the Cachan damage model developed by
Ladevèze and Allix [47].
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The initially proposed ply model [44, 45] assumes that interlaminar stresses need not be

considered since they affect interface behavior only. Two ply damage variables, d2 and d12,

are introduced, which act on transverse Young’s and shear modulus, respectively, as [44]

Ed
2 = (1 − d2)E

init
2 , Gd

12 = (1 − d12)G
init
12 . (3.11)

Through a specific formulation of the energy potential, the Cachan model takes into account

stiffness recovery and inelastic strains. In later works, an additional damage variable, d1,

is introduced in the same fashion to model damage in fiber direction. Furthermore, the

influence of ply damage variables d2 and d12 is extended to affect out-of-plane moduli E3,

G13, and G23 as well [46, 47]. Another extension is provided to account for damage-delay

in moderately dynamic analyses [8, 9, 46].

Several experiments on specific laminate lay-ups are necessary to identify damage evolution

as a function of damage energy release rates [46]. In these evolution laws no distinction is

made between micro- and meso-damage. Other possible evolution laws, e.g. depending on

meso crack density [47], and a fatigue evolution law [46], have also been described.

A similar concept is used to model damage of the second constituent, the two-dimensional

interface [7, 8, 9]. Only one damage variable is introduced to degrade out-of-plane stiff-

nesses of the interface. The associated conjugate force Ydel is a linear combination of energy

release rates Y3, Y13, Y23 corresponding to opening mode I, II, and III, respectively, [8]

Ydel = Y3 + γ1Y13 + γ2Y23 . (3.12)

With parameters γ1 and γ2 the conjugate force Ydel can be related to fracture mechanical

strain energy release rates GI , GII , and GIII [9].

The ply model of Ladevéze has been adopted by several other authors (e.g. [37, 42, 57, 71])

and shows good agreement with experimental results. However, the amount of additional

testing required to identify model parameters is large, which seems to be the main drawback
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of the model. Even more difficult is the determination of ‘interface stiffness properties’

required for the interface model. Also, there is no correlation between damage evolution

and individual matrix damage mechanisms, a problem that was addressed by unit-cell

modeling of transverse matrix cracks by Ladevéze et al [47].

Models related to crack density

The idea behind the damage models developed by Allen [5] and Talreja [97] is that material

damage has two contributions. The kind of damage present in the material is described by

the damage entity vector, ~n (in general the surface normal of a flaw), and the influence of

this flaw on material behavior is given by the damage influence vector, ~a (Fig. 3.3, left).

From these two independent vectors, a second order damage tensor, D, is derived from

the dyadic product of ~a and ~n by integration over the flaw surface, S, and summing up

the number of similar flaws, m, within a reference volume, V , as [97]

D =
1

V

∑

m

∫

S

~a ⊗ ~n dS or Dij =
1

V

∑

m

∫

S

ainj dS . (3.13)

A damage evolution law is formulated based on the increasing number of flaws inside the

reference volume.

volume 
element

similar 
damage 
entities

S

n(S)
a(S)

n

a

Figure 3.3: Damage entity vector, ~a, and damage influence vector, ~n, after
Talreja [97]; general case (left), effective vectors on the mesoscale
for transverse matrix cracks in FRPs (right).
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Adaptations of this approach for laminates focus on matrix cracks perpendicular to the

laminate plane [35, 36, 55, 97, 100, 101]. There, ~n is defined as the crack face normal vector,

and crack opening displacement is used as damage influence vector, ~a (Fig. 3.3, right).

Both vectors are averaged over ply thickness to yield effective mesoscale vectors. Similarly,

delaminations are modeled in [5] to derive a damage dependent lamination theory.

The advantage of this model is that effects of changing loading directions, like stiffness

recovery due to the unilateral effect, are automatically considered. For example, if load on

a damaged material changes from transverse tension to uniaxial transverse compression,

cracks close and ~a = ~0. This leads to a vanishing damage tensor, but with the number of

cracks remaining constant. As soon as load is changed back to tension, cracks open and

the original effect of damage is restored.

On the downside the determination of actual crack opening displacement and crack density

is very tedious. So far correlations of experimental and modeling results have only been

reported for cracked 90◦ layers embedded in various laminates [35, 36, 100, 101]. There,

shear lag models are used in combination with statistical methods to model the growth of

crack density.

3.2.3 Summary – existing damage models

In this section several damage models for FRPs were presented, each approach having some

distinct advantages and disadvantages. A juxtaposition of the damage models’ features is

shown in Table 3.2. With growing complexity of the damage models, more damage effects

can be captured. On the other hand, more experimental data from non-standard tests are

necessary to determine model parameters which renders elaborate models less practical for

engineering applications. Under plane stress the stiffness degradation predicted by models

containing evolution laws, in general, has been shown to correlate well with experimental

data for tensile transverse stresses.
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Table 3.2: Comparison of features captured by the presented damage models
for FRPs (+...yes; -...no; -/+...in some versions; (+)...yes with
restrictions; ◦...possible within modeling concept).

Ply-
discount

Puck Cachan
Allen & 
Talreja

evolution law  -  +  +  +
distinction tension / compression  +  +  +  +

stiffness recovery / unilateral effect  -/+  +  + �
residual strains  -  -  + �

out-of-plane stresses  -  -  (+) �
 'wedge effect'  -  -  - �
fiber damage   -/+  -  -/+  -

                              Damage model 
 Features

Phenomenological Energy based

A few unclear issues remain concerning the validity of modeling assumptions in other

loading conditions. In the presented damage models there is no loss of transverse stiffness

due to transverse compressive stress. This is in contrast to experimental results which

show stiffness reduction in transverse compression tests of UD specimens (e.g. [88]). The

behavior can be explained by recalling that, according to Puck, transverse compression

leads to inclined cracks (section 2.4). Although the stiffness normal to the crack, En(θfp),

does not degrade when crack faces are in contact, there is a change of transverse Young’s

modulus, E2, (cf. Fig. 3.4, left). Accordingly, the in-plane shear modulus changes as well.

σ22 

σnn σnt 

d 0
n nE =E

d 0
2 2E =E

local 
d e lam i n at i on

wedge effect

Figure 3.4: Effects of inclined crack planes; degradation of E2 under trans-
verse compression (left), wedge effect described by Puck et al
[73, 75] (right).
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Apart from transverse compression, inclined cracks can also evolve due to three-axial stress

states. With inclined cracks, the orthotropic axes of a damaged ply no longer lie within

the laminate plane. As described by Puck [73, 75] this can lead to a wedge effect, where

the broken layer slides along the crack plane as shown schematically in Fig. 3.4, right. This

wedge effect can cause local delaminations and subsequently trigger buckling of neighboring

layers which cannot be captured by a ply-based model. Additionally, a laminate containing

that ply in general becomes anisotropic and it is questionable whether orthotropic damage

models are suitable to realistically predict damage effects in this case.

Another problem that requires further scrutiny is the change of Poisson ratio due to dam-

age. Most damage models assume the Poisson ratio ν12 to remain constant. Owing to the

lack of experimental data, the validity of this assumption has not been evaluated. More

experimental data are desirable to determine the influence of damage on Poisson ratio.

3.3 Proposed damage model

In this section, a ply-level constitutive model for damage due to matrix dominated failure

(MDF) modes is presented [83, 84]. It is designed to predict the behavior of a ply embedded

in a laminate containing a number of cracks within a reference volume. In order to account

for all possible interactions of damage with stresses and strains, a 4th order tensor relation is

defined. The goal is to develop a relation which is able to capture all relevant characteristics

of the damage behavior by using only few, easily identifiable damage parameters. This is

accomplished by correlating damage to physical failure mechanisms and deriving relations

for material degradation based on the following fundamental hypotheses.

• Any non-linear material behavior is the result of brittle cracking inside the composite

ply in planes that are parallel to the fiber direction (the fracture plane angle will

depend on the mode of damage).
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• The damage modes correspond to failure modes given by the Puck first ply failure

(FPF) criterion for plane stress states (‘Puck 2D’) [73, 75, 82],

• The growth of damage is driven by tractions on the respective fracture plane which

are also assessed by Puck 2D.

Once damage exists, its effect on material behavior depends on whether cracks are open

or closed. Based on this consideration, the damage model is split into two independent

parts, damage evolution and damage effect (Fig. 3.5). The first part describes the increase

of damage by an evolution law as function of the maximum of a load measure, i.e. the

amount of damage in the material depends on the load history. To this end, a stress based

load measure is derived based on Puck’s failure hypotheses for FRP laminates [73, 75, 82].

The second part predicts the effect of damage on stiffness by recourse to a mean field

method and is a function of the current stress state. This method is not intended to

model the effect of actual cracks quantitatively, but provides a set of equations to derive a

thermodynamically consistent compliance (or elasticity) tensor, which captures the effects

of damage. By this approach, degradation of all components of the compliance tensor is

modeled, hence, the prediction of Poisson’s ratios is automatically included. Furthermore,

degradation under transverse compression can be taken into account by allowing for damage

due to slanted cracks.

damage evolution damage ef f ec t

E
stiffness
E

stiffness
D

d a m a g e
D

d a m a g e
L
l o a d
L
l o a d

inter a c tio n w ith  o th er  l a m ina te l a y er s

D =  D( L ) E =  E ( D)

Figure 3.5: Concept of proposed damage model, strictly divided into the two
parts damage evolution and damage effect.
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In the present formulation of the damage model plane stress is assumed, therefore, global

delamination is not captured. However, the full three-axial elasticity tensor of the damaged

ply material is predicted in view of its application in 3D FEM analyses. Progressive damage

due to fiber failure (FF) is not included in the model, since FF in one ply typically leads

to substantial damage in adjacent layers and is considered as ultimate laminate failure.

Secondary failure mechanisms (such as e.g. diffuse delamination [59]) are not considered,

either.

In the following, the formulation of the damage evolution and of the effect of damage are

presented. The identification of damage parameters is demonstrated and simulation results

of uni-directional and general laminates are compared to data from the literature. Finally,

the capabilities of the proposed damage model are assessed based on these comparisons.

The presented model is also applied as a constitutive material law in finite element analyses

of composite structures, which is the topic of section 3.5.

3.3.1 Evolution of damage

The progression of damage in an embedded ply depends on the maximum load that has been

reached in the load history and is described by an evolution law. In order to formulate an

evolution law, measures for damage and load are defined. To quantify the damage state,

a single scalar damage variable, ξ, is sufficient, assuming that all cracks have the same

orientation and that this orientation does not change during loading. As load measure a

factor of effort, fE, is introduced to evaluate the severity of a given stress state with respect

to damage. It is defined in relation to the Puck 2D failure surface as

σ = fE σ
FPF , (3.14)

where σ is the current ply stress tensor, and σ
FPF is the corresponding FPF-stress state

(Fig. 3.6). By this definition, fE = 1 when the stress state reaches the FPF surface.
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Consequently, any damage evolving at fE < 1 may be considered as micro-damage, while

fE > 1 corresponds to meso-damage.

The damage variable, ξ, is linked to the factor of effort, fE, by an evolution law which

needs to follow some general characteristics of damage evolution in FRPs. As reported

e.g. in [59, 73, 75], there is no growth of matrix cracks at loads below a certain threshold

value. Above this limit, matrix cracks start to develop and increase in size and number

until a saturation of cracks is reached. At saturation no more matrix cracks are created

by a further increase of load. An evolution law reflecting these qualitative observations of

damage evolution is chosen as

ξ

ξsat
=











0 for fE ≤ f onset
E = 1

1+κ

1 − exp
(

− (fE(1+κ)−1)2

2κ2

)

for fE ≥ f onset
E = 1

1+κ

, (3.15)

with the factor of effort at damage onset, f onset
E , the damage state variable at saturation,

ξsat, and the evolution parameter, κ. A schematic representation of the evolution law is

σ22

σ12

+
22R

12R

FPFσ

= FPF
Efσ σ

12R

FPF s u r f a c e

Figure 3.6: Definition of factor of effort, fE, as a measure for the severity of
a given ply stress state, σ, by comparison to the Puck 2D failure
surface.
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shown in Fig. 3.7. The evolution parameter is related to how quickly damage advances

with an increase of load, such that the evolution law converges to the step function for

κ → 0. Due to the definition in Eq. (3.15), in the present model the onset of damage

depends solely on the parameter κ, and the damage state at FPF is given by

ξFPF

ξsat
= 1 − 1√

e
for fE = 1 . (3.16)

If the stress–strain behavior for a specific load case is known from experiments, κ can be

identified from the stress states at damage onset and FPF, σ
onset and σ

FPF, respectively,

by

κ =
1

f onset
E

− 1 with f onset
E σ

FPF = σ
onset . (3.17)

From experimental tests on UD-specimens it is found, that the progression of damage

depends on the type of loading [59, 80, 88]. For example, in carbon fiber/epoxy materials

under simple in-plane shear, damage typically starts at about 50% of the ply failure stress,
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ξ = −
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=
+ κ

Figure 3.7: Damage evolution law relating damage variable, ξ, to the factor
of effort, fE, with damage evolution parameter κ (see Eq. (3.15)).
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followed by a slow progression of damage. In transverse tension, on the other hand, failure

occurs instantly with no discernible non-linearity at all prior to failure. Obviously, on a

microscopic level, there are different mechanisms at work, depending on whether stresses

are dominated by shear or transverse tension. This observation is supported by the different

micro-topologies of fracture surfaces created by shear as compared to those from transverse

tensile loading (see e.g. [13, 50]).

In the ply-level model, this microscopic effect can be taken into account quantitatively by

varying κ depending on the load case. The value of κ for an arbitrary stress state, σ,

is determined from f onset
E (σ) given by a damage onset surface as illustrated in Fig. 3.8.

The damage onset surface is defined through scaling of the Puck FPF surface by the

damage evolution parameters for in-plane shear, κ12, transverse tension, κt
22, and transverse

compression, κc
22 (with the distinction of mode B/C defined by the FPF surface).

σ22

σ
12

FPF surface

damage onset 
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���

R
1+ κ

����
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1+ κ

�
����
����

�	�

R R
1+ κ

∼

FPF
Ef=σ σ

onset onset FPF
Ef=σ σ


���
R

��R

Figure 3.8: Puck 2D damage and failure envelope of a typical carbon
fiber/epoxy material in σ22–σ12 stress space and their applica-
tion to define κ(σ).
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Final failure of one ply of a laminate is considered as ultimate failure of the laminate,

where final ply failure is defined as either FF or damage saturation (ξ = ξsat) under

MDF. It is noted, that the definition of final MDF is somewhat arbitrary since there is no

clear agreement of what ‘failure’ is in MDF modes (see discussion about ‘Laminates with

unsound loading conditions’ in [76]). Note also, that the damage model is applicable only

as long as no damage modes other than matrix cracking occur. In experimental testing,

matrix crack induced delamination is observed at crack densities close to crack saturation

[5, 59, 65]. It is reported, that in thin plies crack saturation is typically reached before

significant delaminations appear, while in thick plies such delamination already starts prior

to saturation (effect of ‘ply clustering’) [5, 59, 65]. Predictions of the damage model at

high values of ξ should therefore be treated with caution, especially if laminates containing

relatively thick plies are considered.

3.3.2 Effect of damage

The effect of damage on material behavior is based on the hypothesis that it can be imitated

by ficiticious, oblate spheroidal inclusions embedded in the initial (i.e. undamaged) ply

material. Note, that in many cases the inclusions will be voids, i.e. inclusions with vanishing

stiffness. It is further assumed, that the damage effect is independent of how the damage

was created and applies to the micro- and meso-damage regime. The initial ply material

is taken to be homogeneous and transversally isotropic with respect to the ply coordinate

system 1-2-3. Inclusions are aligned with a local coordinate system l-n-t, which is defined

through rotation of the ply coordinate system about the 1-axis by the angle θ, (Fig. 3.9).

The inclusion aspect ratio in n-direction, en, is much smaller than one. Note, that the

inclusions are not intended to model actual cracks in the material, rather they are used to

derive a thermodynamically consistent compliance tensor using the Mori-Tanaka Method

(MTM) [12, 58], a mean field method known from mechanics of materials. Based on the

formulation of Tandon and Weng [99], the compliance tensor of the damaged material
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(referenced to the fracture plane coordinate system) is given by

C
d =

{

I − ξ
[

(Eincl − E
init) : (S − ξ(S − I)) + E

init
]−1

:
[

E
incl − E

init
]

}

: C
init .

(3.18)

Here, E
incl denotes the elasticity tensor of the fictitious inclusions, E

init and C
init are the

elasticity and compliance tensors of the initial (undamaged) material, respectively, S is

the Eshelby tensor, and I is the 4th order identity tensor. The Eshelby tensor depends

on initial material properties and inclusion geometry. A numerical integration scheme

[28] is used to compute the Eshelby tensor since analytical solutions are not available for

transversally isotropic material and arbitrary en. For a given inclusion geometry, E
incl

is the only unknown in Eq. (3.18). If θ 6= 0, Eq. (3.18) needs to be transformed to ply

coordinates, since it is referenced to the fracture plane coordinate system. The inclusion

orientation and stiffness are defined depending on the damage mode.

Inclusion orientation as function of damage mode

If the ply and inclusion coordinate systems are not aligned (i.e. θ 6= 0), the compliance

tensor given by Eq. (3.18) needs to be transformed to ply coordinates by

θ

1
2

3
n

l �
t

Figure 3.9: Orientation of fictitious inclusions with respect to ply- and frac-
ture plane coordinate systems.
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C
d(θ) = σ

T (θ)T : C
d : σ

T (θ) , (3.19)

with the stress transformation matrix σ
T defined as

σ
T =





































1 0 0 0 0 0

0 cos2(θ) sin2(θ) 0 0 sin(2θ)

0 sin2(θ) cos2(θ) 0 0 − sin(2θ)

0 0 0 cos(θ) sin(θ) 0

0 0 0 − sin(θ) cos(θ) 0

0 −1
2
sin(2θ) 1

2
sin(2θ) 0 0 cos(2θ)





































,

(σ = [σll, σnn, σtt, σln, σlt, σnt]
T, ε = [εll, εnn, εtt, 2εln, 2εlt, 2εnt]

T) .

(3.20)

The resulting compliance tensor

C
d(θfp) =





































C11d Cd
12 Cd

13 0 0 0

Cd
12 Cd

22 Cd
23 0 0 Cd

26

Cd
13 Cd

23 Cd
33 0 0 Cd

36

0 0 0 Cd
44 Cd

45 0

0 0 0 Cd
45 Cd

55 0

0 Cd
26 Cd

36 0 0 Cd
66





































(3.21)

resembles that of a monoclinic material, with shear/extension coupling in the 2-3 coordinate

plane. Due to these coupling terms, compressive in-plane stresses can lead to out-of-plane

shear deformations, similar to the ‘wedge effect’ described by Puck [73, 75] (see section

3.2.3).
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The inclusion orientation for damage generated under a given stress state is assumed to

correspond to the fracture plane angle, θfp, determined from the Puck 2D failure criterion

[73, 75, 82] (cf. Fig. 3.10 and section 2.4). If transverse stresses are tensile, σ22 ≥ 0,

failure mode A is predicted, with a fracture plane orientation of θfp = 0. Therefore, no

rotation of the material tensors is necessary. Under transverse compression, the orientation

of the fracture plane depends on the ratio between shear and compressive stresses. If shear

stresses are dominant, mode B failure will occur, where the fracture plane is still aligned

with the ply coordinate system. If compressive stresses are high compared to in-plane

shear stresses, they lead to mode C failure with a slanted fracture plane (see Eq. (3.19)),

reaching a maximum inclination at uni-axial transverse compression of θfp ∼ 50◦. For mode

C damage, the material transformation to ply coordinates needs to be performed.

It should be noted that the solution for the orientation of the fracture plane in mode C

is not unique since the fracture planes at +θfp and −θfp are equally likely to fail. The

difference between the two solutions shows in the compliance tensor C
d as opposite signs

of the shear/extension coupling terms Cd
26, C

d
36, and Cd

45 of Eq. (3.21). For an equal amount

σ22

σ12

+
22R-

22R

+
12R

-
12R

mode C

m
od

e 
A

m
od

e 
B

closed crack
θfp =  0
closed crack
θfp =  0

op en crack
θfp =  0
op en crack
θfp =  0θfp

closed,  
ob li q u e crack
θfp ≠ 0

θfp

closed,  
ob li q u e crack
θfp ≠ 0

Figure 3.10: Failure modes according to Puck 2D and their characteristics
with regard to effect of damage.
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of inclusions at +θfp and −θfp within a reference volume, the compliance tensor for mode

C damage can be shown to be given by the average

C
d,C =

1

2

(

C
d(+θfp) + C

d(−θfp)
)

. (3.22)

This leads to a material that is orthotropic with respect to the ply coordinate system and

is equivalent to setting the interaction terms in Eq. (3.21) equal to zero. As long as the

damage model is restricted to plane stress states, there is no difference between Eqs. (3.21)

and (3.22) as far as stresses and in-plane strains are concerned. This means that the wedge

effect cannot be captured by the plane stress model.

Note that the current formulation of the model entails that the fracture plane angle does

not change during loading. Therefore, under MDF modes A and B it is valid for any

loading path, while for mode C it is valid only if stress components change approximately

proportionally with load. An adaptation of the model to arbitrary loading paths in mode

C that is suited for implementation as a constitutive material law into FEM is given in

section 3.5.

Inclusion stiffness

Once damage exists in the material, its effect on material behavior depends on whether or

not crack faces are in contact, which is determined by the current stress state. If normal

stresses perpendicular to the fracture plane are tensile (σnn ≥ 0), cracks are ‘open’, i.e. there

is no contact between crack faces, consequently no forces can be transmitted across the

cracks. In this case, the inclusion elasticity tensor is set to zero and Eq. (3.18) simplifies

to that of a material containing voids [78]

C
d,open ≡ C

d
∣

∣

E
incl=0

=

[

I +
ξ

1 − ξ
(I − S)−1

]

: C
init . (3.23)
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In the case of compressive stresses normal to the fracture plane cracks are closed, so crack

faces are in contact and no longer free of tractions. As a result, forces can be transmitted

across the cracks which leads to the recovery of material stiffness. In the model, this effect

is attained by defining a non-zero inclusion elasticity tensor as

E
incl ≡





































E init
ll

E init
ln

E init
lt

0 0 0

E init
ln

E init
nn

E init
nt

0 0 0

E init
lt

E init
nt

E init
tt

0 0 0

0 0 0 µD|σnn| 0 0

0 0 0 0 Ginit
lt

0

0 0 0 0 0 µD|σnn|





































, (3.24)

with stiffnesses set to the initial material values, ()init, except for the shear moduli Gincl
ln

and Gincl
nt

. These are a function of the compressive stresses on the fracture plane reading

Gincl
ln

= Gincl
nt

= µD|σnn| . (3.25)

The factor µD is a material parameter introduced to account for shear stiffness recovery

attributed to frictional forces at the crack faces. The dissipative mechanism of friction,

however, cannot be captured by this approach. If friction is negligible, µD can be set

to zero. Note, that due to the initial material being transversally isotropic, the initial

values in Eq. (3.24) are the same as those referenced to the ply coordinate system (E init
ll

=

E init
11 , E

init
nn

= E init
tt

= E init
22 , E

init
ln

= E init
lt

= E init
12 , E

init
lt

= E init
23 , G

init
lt

= Ginit
13 ).

Plugging the inclusion elasticity tensor into Eq. (3.18), it is found that damage has an

effect only on the shear moduli Gd
ln

and Gd
nt

in the case of closed cracks. Therefore, the

moduli Ed
1 , Ed

2 , Ed
3 , and Gd

13 of a damaged ply recover their respective initial values if

θfp = 0, while Gd
12 and Gd

23 are degraded. A slanted fracture plane, on the other hand leads

to degradation of all moduli (referenced to ply coordinates) also if cracks are closed.
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Based on comparison to experimental data, reasonable values for µD are of the order of

10–20. Since Gln and Gnt increase with the normal compressive stress on the fracture

plane, it needs to be assured, that they do not exceed the respective initial shear moduli,

Ginit
12 and Ginit

23 , which would be physically unrealistic. At usual values of µD, Gd
12 and Gd

23

are typically still significantly lower than the respective initial moduli when final failure is

reached.

3.4 Damage modeling of laminates

The damage behavior of multi-directional laminates with arbitrary lay-up can be simulated

through combination of the present model with classical lamination theory. This way, the

load redistribution to other laminate layers can be captured as well. For studying the effects

of multiaxial stress states and variations of model parameters on the predicted behavior

of single UD-plies the computation is stopped when stresses reach the ply strength, i.e. at

fE = 1, since load cannot be transferred to other layers. In the following, the identification

of damage parameters is demonstrated and modeling results of uni- and multi-directional

laminates are compared to data from the literature. The capabilities of the proposed

damage model are assessed based on these comparisons. The application of the model

within the framework of FEM is presented in section 3.5.

3.4.1 Parameter identification

In order to fully calibrate the damage model, six parameters need to be identified based on

experimental data from three tests as shown in Figs. 3.11 and 3.12 for a carbon fiber/epoxy

(AS4/3501-6) and a glass fiber/epoxy (E-glass/MY750) material (experimental data taken

from [80, 88, 89]). The curves show ply stress–strain plots except for the transverse ten-

sion load cases of Figs. 3.11c and 3.12c. Under transverse tension, damage progresses
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very quickly, therefore it is very difficult to determine stiffness degradation experimentally.

Typically, this failure mode is tested by subjecting a (0/90)ns laminate to uni-axial tension.

This way, the 90◦-layers experience transverse tension, and as long as there is no damage

in the 0◦-layers, any reduction of laminate stiffness can be attributed to mode A damage

in the 90◦-layers. For the carbon fiber material the results of such a test are displayed

as degradation of laminate Young’s modulus, Ex, vs. laminate stress, σxx, (Fig. 3.11c),

whereas for the glass fiber composite laminate stress–strain curves are shown (Fig. 3.12c).

To determine the evolution parameters, the ply stress at damage onset, σ
onset, is identified

from the experimental curves by assuming damage onset to correspond to the first deviation

model
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Figure 3.11: Identification of carbon/epoxy AS4/3501-6 damage parameters;
degradation due to in-plane simple shear (a), uni-axial trans-
verse compression (b), and uni-axial tension of a (0/90) lami-
nate (c); experimental data from [80, 88].
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from linear behavior. Knowing the appropriate FPF stresses of the materials, which are

given in [88] and shown in Figs. 3.11 and 3.12, the three evolution parameters (κ12, κ
c
22, κ

t
22)

for each material can be computed from Eq. (3.17). Note, that in the cross-ply laminate

tension tests of both materials the onset of damage in the 90◦ layers occurs at ply stresses

above the nominal FPF limit. This higher in-situ strength of thin plies cannot be accounted

for in the current model. Since it is known, that under transverse tension the behavior of

a single ply is linear until failure (i.e. damage onset ≈ FPF), κt
22 is chosen very small, for

the carbon fiber material κt
22 = 0.01, and for the glass fiber κt

22 = 0.05.

The damage effect depends on the three parameters inclusion aspect ratio, en, damage state

variable at saturation, ξsat, and shear stiffness recovery factor, µD. They are considered to
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Figure 3.12: Identification of glass/epoxy E-glass/MY750 damage parame-
ters; degradation due to in-plane simple shear (a), uni-axial
transverse compression (b), and uni-axial tension of a (0/90)
laminate (c); experimental data from [88, 89].
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be constants, i.e. they do not depend on load or failure mode. Since there is no influence

of µD on damage under mode A, only en and ξsat are relevant for parameter identification

from the experimental curves of simple shear and transverse tension. From Figs. 3.11a

and 3.12a the secant shear modulus at FPF, GFPF
12 = G12(σ

FPF), can be determined. If

either en or ξsat is chosen, the other parameter needs to be adjusted such that the predicted

shear modulus at FPF matches the experimental one (Gd
12(σ

FPF) = GFPF
12 ). This is done

by means of Eq. (3.23). For an adequate choice of en or ξsat, model predictions for damage

under transverse tension from various pairs of en and ξsat are compared to the curves

in Figs. 3.11c and 3.12c. It is found that en should be much smaller than 1, naturally

resembling the crack type characteristics.

For the two materials, en and ξsat are identified as en = 0.035 and ξsat = 0.2 (carbon/epoxy),

and en = 0.014 and ξsat = 0.2 (glass/epoxy). Based on the compressive material behavior

the parameter for shear stiffness recovery is determined for the carbon and glass fiber

materials as µD = 15 and µD = 11, respectively. Material data for both materials, taken

from [80, 88, 89], as well as the identified damage parameters are summed up in Tables 3.3

and 3.4. Model predictions using the listed parameters are given in Figs. 3.11 and 3.12.

Results of parameter identification

As can be seen in Figs. 3.11 and 3.12 the damage model is able to reflect the experimental

results for all three load cases of both materials. For the cross-ply laminate test of the glass

fiber material (Fig. 3.12c) some additional information regarding failure modes is available

from [89]. The onset of damage in transverse plies is reported at σxx = 120MPa, and

due to the mismatch of Poisson number, longitudinal splitting of the 0◦ plies is initiated

at σxx ≈ 330MPa. The same failure modes are predicted by the model with lower onset

values due to the ‘in-situ’ effect (damage onset in 90◦ layers at σxx = 70MPa, in 0◦ layers

at σxx = 290MPa). Final failure is caused by FF in the 0◦ plies.
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Table 3.3: Material data [88] and damage parameters of carbon fiber/epoxy
UD-layer AS4/3501-6.

elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

[GPa] [GPa] [GPa]

126 11 6.6 0.28 0.4

strength data

R11 R22 R12 p12 p23

[MPa] [MPa] [MPa]

tension 1950 48 79 0.35 ∗ 0.27 ∗

compression 1480 200 79 0.3 ∗ 0.27 ∗

damage evolution damage effect

κ12 κt
22 κc

22 en ξsat µD

1.63 0.01 0.54 0.035 0.2 15

∗ following Puck’s guidelines for carbon fiber materials [74]
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Figure 3.13: Degradation of engineering constants predicted by the present
damage model under simple in-plane shear; carbon fiber/epoxy
AS4/3501-6 (left), glass fiber/epoxy E-glass/MY750 (right).
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Table 3.4: Material data [88, 40] and damage parameters of glass fiber/epoxy
UD-layer E-glass/MY750.

elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

[GPa] [GPa] [GPa]

45.6 16.2 5.5 0.278 0.4

strength data

R11 R22 R12 p12 p23

[MPa] [MPa] [MPa]

tension 1280 40 73 0.3 ∗ 0.22 ∗

compression 520 145 73 0.25 ∗ 0.22 ∗

damage evolution damage effect

κ12 κt
22 κc

22 en ξsat µD

0.9 0.05 0.7 0.0144 0.2 11

∗ following Puck’s guidelines for glass fiber materials [74]

In Fig. 3.13 the degradation of engineering constants (normalized by their respective initial

values), is plotted as function of fE for the simple shear load case. It is interesting to note

that the decrease of E2 is more pronounced than that of G12, which contradicts some

damage models assuming the same degradation of E2 and G12. This is a result of the

chosen inclusion geometry of crack like voids. Only for spherical inclusions (en=1) the

degradation of E2 and G12 (and also E1) would be the same. Furthermore, an increase of

the Poisson ratio ν12 with damage is predicted by the present model in contrast to other

damage models where it is assumed to remain constant. Note that for the carbon/epoxy

material the Poisson ratio reaches a maximum value of ν12 = 0.635 which is not a violation

of thermodynamic requirements for orthotropic materials.
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Sensitivity to parameter variation

From the damage parameters identified above it can be seen that there are no major

variations for different materials considering ξsat and κt
22. To test this finding for another

material system, some off-axis tests of UD-specimens and a ±45 laminate under uni-axial

tension, which are given in [102], are simulated (Fig. 3.14). Since the degradation behavior

of the UD-material is most evident in the 25◦ off-axis test, the data of this test is used to

determine κ12 and en as 1.3 and 0.04, respectively. For ξsat and κt
22 typical values are used

(see material data Table 3.5). The results are shown in Fig. 3.14.

Note, that the model is actually designed to simulate the behavior of a ply in a laminate

rather than that of a single ply. Hence, its application to the tests of UD-specimens is not

strictly valid. To partly account for the different behavior of UD-laminates, simulations of

the UD-tests are terminated at the ply-failure stress (i.e. at fE = 1). This approach works

exp.
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Figure 3.14: Uni-axial tension of off-axis UD-laminates and a ±45 laminate
[102]; comparison of experimental data to model predictions.
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Table 3.5: Material data [102] and damage parameters of carbon fiber/epoxy
UD-layer Zoltek Panex r© 33/YLA RS1.

elastic constants

E1 E2 = E3 G12 = G13 ν12 = ν13 ν23

[GPa] [GPa] [GPa]

115.3 8.584 4.24 0.304 0.4

strength data

R11 R22 R12 p12 p23

[MPa] [MPa] [MPa]

tension 2500 58 60 0.35 ∗ 0.27 ∗

compression 2000 200 60 0.3 ∗ 0.27 ∗

damage evolution damage effect

κ12 κt
22 en ξsat

1.3 0.05 0.04 0.2

∗ following Puck’s guidelines for carbon fiber materials [74]

well for shear dominated load cases where the evolution parameter, κ, determined from

Eq. 3.17 is fairly high. For the 90◦, 65◦, and 40◦ tests the evolution parameter is very small.

Therefore, the onset of damage leads to a very abrupt drop of predicted stiffness in these

test cases. In the corresponding experimental curves such degradation of stiffness does

not appear, possibly because the start of cracking under these loading conditions leads to

immediate failure of the UD-specimens. Based on this reasoning the experimental failure

stress of the three test cases should approximately correspond to the onset of damage in

simulation results. As shown in Fig. 3.14 this is the case for the 90◦ test, while onset

stresses are below the experimental failure stresses of the 65◦ and 40◦ specimens. Apart

from this small discrepancy, the agreement between experiments and simulation is very

good.



CHAPTER 3. PROGRESSIVE DAMAGE MODELING 86

3.4.2 Qualitative effect of stress interactions

Not much experimental data is available concerning the influence of multi-axial stress states

on the damage behavior. Qualitatively this effect is discussed by Puck et al. [73, 75]. Figure

3.15 shows the influence of a variation in the stress ratio σ22/σ12 on the shear stress–shear

strain relation of a single ply. On the left hand side, predictions from the present model

for the carbon fiber/epoxy material AS4/3501-6 (see material data Table 3.3) are shown.

The solid line corresponds to the stress–strain curve under simple shear and is the same

as in Fig. 3.11a. Superimposed tensile stresses in transverse direction lead to the onset of

damage and ply failure at an earlier stage than under pure shear conditions. Compressive

stresses, on the other hand, have a ‘stabilizing’ effect, such that higher shear stresses can

be carried by the material. This general assessment of the influence of stress interactions

agrees well with that reported in [73, 75]. Note, that the two graphs in Fig. 3.15 can only

be compared on a qualitative basis since they belong to different materials.

In analogy to the influence of transverse normal stresses on shear behavior, the effect of

shear stresses on the transverse normal stress–strain relation can be studied (Fig. 3.16).
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Figure 3.15: Influence of transverse normal stress on shear stress–shear strain
curve of a single ply as predicted by the present damage model
(left), and according to Puck [75] (right).
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Again, damage model predictions are shown on the left with the solid line corresponding

to the uni-axial load case (tension and compression). With increasing level of additional

shear loading damage onset and FPF shift to lower stress magnitudes. In this case there

is good qualitative agreement as well between model predictions and the data from Puck

[73, 75].

3.4.3 Comparison to WWFE test cases

In the World Wide Failure Exercise (WWFE) [90, 91, 92], a recent study into the capabil-

ities of current failure models for FRPs, some laminate tests using the glass fiber/epoxy

material identified in section 3.4.1 (cf. Table 3.4) were conducted. Laminates with sym-

metric cross-ply and ±55 lay-up (x-axis defined as 0◦) were tested under various stress

ratios (SR ≡ σxx : σyy) and the stress–strain behavior was recorded [89]. The test case of a

(0/90)ns lay-up under uni-axial tension has already been discussed previously (Fig. 3.12c).

The experimental data and model predictions of test cases ±45 at SR=1:1, ±55 at SR=1:2,

and ±55 at SR=0:1 are shown in Figs. 3.17 to 3.19. For each test, the stress–strain curve
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Figure 3.16: Influence of shear stress on transverse normal stress–strain curve
of a single ply as predicted by the present damage model (left)
and according to Puck [75] (right).
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of one test specimen and the mean laminate failure strength as given in [89] are displayed

and compared to model predictions.

±45 laminate, SR=1:1 (Fig. 3.17)

For a symmetric ±45 laminate under biaxial tension, the strains in x and y directions

should coincide. No explainatin is given in [89] why this is not the case in the experimental

data shown in Fig. 3.17. Considering the discrepancy between the experimental curves,

the correlation between model predictions and experimental data is excellent. The onset

of matrix cracking is reported at 50 to 70MPa [89], which agrees well with model predic-

tions of 65MPa (MDF mode A). The ultimate failure stress is somewhat overestimated

with 660MPa compared to a mean value of 502MPa determined experimentally. In the

strain [ % ]
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ess

, σ
yy
 [M

Pa
] 502M P a  (e x p .  m e a n  f a i l u r e  s t r e s s )  

damage model 
ex p .  dat a

Figure 3.17: WWFE test case ±45 laminate under σxx : σyy = 1 : 1; experi-
mental data [89] and model predictions.
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experiments, final failure is caused by fiber rupture and transverse matrix cracking [89].

According to the damage model, tensile FF is the final failure mode after some substan-

tial damage due to transverse cracking (ξ ≈ ξsat at ultimate failure). It is likely that the

high amount of damage is the reason for the reduced strength in fiber direction in the

experiments. This effect is not accounted for in the present model.

±55 laminate, SR=1:2 (Fig. 3.18)

In this test case, the agreement between experiment and model is satisfactory for transverse

laminate strain, εyy, and for εxx up to a stress of σyy ≈ 300MPa. Experimental results

show a kink in the εxx curve at this value, which is not predicted by the present model. No

possible reasons for this kink are discussed in [89]. However, according to [89], the general

damage model ±5 5  lay -u p
damage model ±5 6  lay -u p
ex p .  dat a
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Figure 3.18: WWFE test case ±55 laminate under σxx : σyy = 1 : 2; experi-
mental data [89] and model predictions.
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shape of the experimental curve shown here is typical for this load case, although there is

some significant variation between final readings of εxx from different strain gauges on the

test specimen (up to 30% lower).

A detailed discussion about possible causes for this behavior by Puck et al. [76] concludes,

that the only plausible explanation is a deviation of the actual winding angle of the test

specimen from the nominal value of ±55. Since the ±55 fiber orientations are optimal

for the given stress ratio, even a small deviation from this angle can lead to a significant

change in the curves of Fig. 3.18 (especially εxx) under the given load. For example, the

model prediction for a ±56 laminate, which is also shown in Fig. 3.18, is similar to that of

the experimental test.

The ultimate laminate strength is overpredicted by both analyses. In the ±55 model FF

is predicted after the laminate is again almost completely damaged by transverse cracks.

In the analysis of a ±56 laminate MDF mode A is the ultimate failure mode. No reference

is made in [89] to failure modes observed during experiments.

±55 laminate, SR=0:1 (Fig. 3.19)

The loading in this example problem leads to high ply-shear stresses. This causes severe

non-linearity in the test data. The agreement between model and experiments is acceptable

up to σyy ≈ 250MPa, which approximately corresponds to the load where ply stresses reach

the FPF strength (fE = 1). At higher loads, the laminate stiffness is overestimated. The

onset damage mode predicted by the model is tensile MDF, which switches to mode B

due to the different degradation of E2 and G12 at a load of σyy ≈ 140MPa. Under mode

B, cracks are closed, so there is no degradation of E2, and also G12 declines less rapidly.

Final failure is predicted due to the damage state reaching saturation under mode B at

≈ 600MPa, a value similar to the experimental data.

There are two possible contributions to the poor correlation between modeling and exper-
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imental results regarding laminate stiffness. On the one hand, in reality cracks are not

perfectly aligned with the θfp = 0 orientation, which would cause more degradation of E2

and G12 at σ22 < 0 (see discussion about inclined cracks in section 3.2.3). On the other

hand, it has been observed, that (at least for this glass/epoxy material) stiffness degrada-

tion is generally underestimated by our model in shear dominated loading scenarios. This

is further discussed in sections 3.4.5 and 3.4.6.

3.4.4 Assessment of capabilities of the damage model

As stated at the beginning of section 3.3, the objctive of the present model is its practical

application for engineering purposes. A big advantage of the model in that regard is

the relatively small number and easy identification of material parameters. It is shown
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Figure 3.19: WWFE test case ±55 laminate under σxx : σyy = 0 : 1; experi-
mental data [89] and model predictions.
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that these parameters are sufficient to capture relevant effects like individual degradation

of all engineering constants, stiffness recovery, and degradation due to slanted cracks.

Furthermore, from the damage parameters determined for different materials it is found

that the sensitivity of the model to changing of some of the parameters is very low. If data

for shear dominated behavior is available, values for κ12 and en can be derived based on

this data and assuming ξsat = 0.2 and κt
22 = 0.05. This is typically sufficient for obtaining

good results for mode A damage, which is the most relevant in engineering structures.

Due to the lack of experimental data for transverse compression only very few load cases

involving damage parameters κc
22 and µd have been evaluated. Typically, values for these

parameters are of the order of κc
22 ∼ 0.5 and µd ∼ 10 . . . 15.

Correlations between model predictions and the various data from the literature are very

good if ply stress states are dominated by transverse tension. Under shear dominated

loading, the agreement is satisfactory only at low magnitudes of ply shear stresses. For

structural applications high shear deformations and loading conditions approaching ulti-

mate failure are typically not allowed. In view of the initial goal to develop a tool for

damage prediction in structural analysis, the present damage model can therefore be con-

sidered as sufficiently accurate. Nevertheless, the implications of the limited correlation

between model and experiments at high shear loads need some further scrutiny and are

discussed in the following section.

3.4.5 Validity of model assumptions regarding shear behavior

As noted before, predicted stiffnesses in general are too high compared to experimental

data under shear dominated loading. This seems to apply even more under load cases lead-

ing to mode B damage. Although it would be possible to obtain a better fit to experimental

data by adjusting damage parameters and/or changing the definition of the evolution law,

experimental observations suggest, that the higher loss of stiffness is caused by additional

dissipative mechanisms coming into play at severe shear strains. Therefore, a model exten-
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sion to account for additional damage mechanisms seems more likely to realistically model

material behavior.

Consider, for example, the data of a ±45 carbon fiber/epoxy laminate under uni-axial

tension in Fig. 3.20. During the test, the laminate is unloaded and reloaded three times

before final failure, which shows that the laminate stiffness (given by the unload-reload

loop) changes only slightly. At the same time significant residual strains are observed

after unloading, which agrees with similar tests of ±45 tensile specimens presented in the

literature [11, 22, 40, 49]. These residual strains cannot be explained by brittle transverse

cracks. Since transverse ply stresses in a ±45 laminate under uni-axial tension are tensile

and cracks are open, the residual strains cannot be attributed to crack face friction.

This view is supported further by the experimental data shown previously in Fig. 3.14,

where the material behavior seems to change abruptly with increasing ratio of shear

stresses to transverse normal stresses (cf. Fig. 3.21). For the 90◦, 65◦, and 40◦ off-axis

test specimens, where transverse tension is relatively high compared to shear stresses, the

laminate strain,  σxx [ % ]

lam
ina

te 
loa

d [
N] init

x xE

Figure 3.20: Stress–strain curve of a ±45 tensile specimen with unload-reload
loops showing little change of stiffness but considerable residual
strains (courtesy of PCCL GmbH, Leoben, Austria).
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stress–strain behavior is approximately linear until failure. The 25◦ off-axis UD-specimen

and the ±45 laminate test with a higher ratio of shear stresses, on the other hand, show a

pronounced non-linearity. This could be an indication of a switch in (micro-) failure mech-

anism if ply loading changes from transverse tension to a shear dominated one. It is con-

ceivable that at high shear strains other dissipative mechanisms (e.g. plastic, visco-elastic,

visco-plastic) come into play and are responsible for the observed higher non-linearity and

residual strains. More research on this topic is needed before any reliable conclusions can

be drawn.

3.4.6 Influence of residual stresses

In [40] the shear behavior of the glass fiber/epoxy material used in the WWFE examples

(E-glass/MY750, Table 3.4) is determined from two different test methods. The shear

stress–shear strain relation of a UD-material under simple in-plane shear is tested by torsion

of a hoop-wound tube. That of a ply in a laminate is derived via lamination theory from

tests on a ±45 laminate under stress ratio σxx/σyy = 1 : −1 which leads to simple in-

plane shear in each layer. Since the individual plies experience only shear stresses in both
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Figure 3.21: Ply stress states at final failure (cf. Fig. 3.14) of uni-axial tension
tests on off-axis UD-specimens and a ±45 laminate (from [102])
shown in σ22 − σ12 stress space.
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experiments, there should be no difference between the two test results. However, this is

not the case for the test data from [40] shown in Fig. 3.22, left, as the curves from laminate

tests exhibit significantly higher strains at loads above σ12 ≈ 40MPa. Residual curing

stresses due to the production process are expected to exist in the ±45 laminate but not

in the UD-specimens. The possibility of these stresses being responsible for the observed

discrepancy between the two test methods is investigated in the following.

The shrinkage due to curing of a single ply of the given material amounts to 0.14% in

transverse, and 0% in longitudinal direction [40]. With a coefficient of thermal expansion

in transverse direction of α2 = 2.6 10−51/K and zero thermal expansion in longitudinal

direction, this corresponds to a temperature change of ∆T ≈ −75K. In a cross-ply laminate

the constraint of shrinkage leads to ply stresses of σ11 ≈ 20MPa and σ22 ≈ −20MPa. In

order to study the effect of residual stresses on the shear stress–shear strain behavior, three

different simulations of the ±45 laminate test are performed (Fig. 3.22).

The first analysis of the ±45 laminate without consideration of residual stresses (model,

no Temp) agrees with the results of the UD-layer experiments (Fig. 3.22, left). It is the
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same curve as the simulation of a single ply under simple shear loading that was used for

parameter identification (Fig. 3.12a). If a thermal load of −75K is applied in addition

to the mechanical load, the predicted onset of damage shifts to lower stresses, but there

is only little change in the overall stiffness behavior (model, ∆T = −75). According to

the present model, damage under shear loading not only leads to a degradation of G12,

but also to an even faster deterioration of E2. Therefore, most of the residual stresses are

released due to the reduction of E2 as soon as damage starts to develop (Fig. 3.22, right).

This shows, that the discrepancy between experimental results from the two test methods

cannot be attributed to residual stresses if the assumption that brittle cracks are the source

of damage under shear loading is correct.

As discussed in the previous section, it is likely that the non-linear behavior under shear

dominated loading is not merely the result of brittle cracking. If there are other or addi-

tional damage mechanisms causing a degradation of G12 but not associated with a change

of E2, there will be no or at least less reduction of residual stresses after the onset of dam-

age. To simulate these conditions, residual stresses are superimposed as constant stresses

in a third analysis (model, res.stress). In this case, the predicted curve is shifted to lower

stress values similar to the experimental results of the ±45 laminate. Since the actual

mechanisms of damage under shear loading remains unclear, it is concluded that further

research is necessery to determine the role of residual stresses with regard to damage.

3.5 Damage in structural analysis

3.5.1 Damage model for arbitrary loading path

The damage model as presented in the previous section is restricted to load cases where

the predicted fracture plane orientation does not change during loading. In order to apply

the model as a general constitutive law in structural analysis it needs to be able to handle
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any kind of loading path. This requires the managing of a change of fracture plane angle,

θfp, along the loading path. Introducing inclusions at any possible orientation is not very

practical for this purpose. In typical applications damage in the form of perpendicular

cracks (failure mode A or B) is most relevant. However, it is necessary to also include the

possibility of slanted cracking to allow stiffness degradation under compressive loads.

The strategy pursued here is to limit the number of possible inclusion orientations to two,

i.e. θ = 0 and θ = ±θmax
fp , where θmax

fp denotes the maximum fracture plane angle given by

cos θmax
fp =

√

RA
23

Rc
22

, (3.26)

which is reached at uni-axial transverse compression (cf. Eq. (2.8)). To determine which

of the two angles (0 or ±θmax
fp ) is to be used, a threshold angle, θthr, is introduced. If

θfp ≤ θthr, inclusions with 0◦ orientation are employed, otherwise the inclusion angle is

set to θ = ±θmax
fp . As a guideline for choosing θthr, two issues are considered. First, the

variation of ply stiffness with inclusion angle, θ, and second, the change of the predicted

fracture plane angle, θfp, with the stress ratio σ12/σ22. These issues are discussed in the

following by example of the carbon fiber/epoxy material AS4/3501-6.

In Fig. 3.23, left, the effect of damage on Ed
2 and Gd

12 as a function of inclusion orientation,

θ, (with E
incl for closed cracks as given in Eq. (3.24)) is shown at a damage state ξ =

0.2 = ξsat. Ed
2 reaches its minimum value at θ = 45◦ and increases slightly between 45◦

and the maximum fracture plane angle, θmax
fp . To minimize the error of the prediction for

Ed
2 that is made by restricting the inclusion angle to the two values, a reasonable choice of

the threshold angle is θthr ≈ 20◦ corresponding to Ed
2 = 1

2
(E2(0

◦) + E2(θ
max
fp )). Applying

the same considerations for Gd
12, which grows gradually until θmax

fp , leads to a threshold

angle of θthr ≈ 36◦.

In Fig. 3.23, right, the predicted fracture plane angle, θfp, for several σ12/σ22-ratios is shown.

Near the mode B/mode C transition, a small variation of σ22 can lead to a significant
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Table 3.6: Predicted fracture plane angle, θfp, and FPF stresses for various
ratios |σ12/σ22| for carbon fiber/epoxy AS4/3501-6.

stress ratio
∣

∣

∣

σ12

σ22

∣

∣

∣

RA
23

τc
1.026

RA
23

τc
1.11

RA
23

τc
1.3

RA
23

τc
1.75

RA
23

τc
∞

σFPF
22 [MPa] RA

23 = −77.3 −79.7 −87.6 −102.1 −131.7 Rc
22 = −200

σFPF
12 [MPa] τc = ±99.5 ±100 ±101.4 ±103.1 ±96.9 0

θfp [◦] 0 ±10 ±20 ±30 ±40 θmax
fp = ±51.56

change of θfp. For example, increasing the stress ratio from the mode B/mode C boundary

at σ22/σ12 = RA
23/τc by less than 3% leads to a change of θfp from 0◦ to 10◦, an increase of

11% leads to θfp = 20◦ (cf. also Table 3.6). Considering the typical uncertainties of stress

states, it is reasonable to choose θthr rather high, e.g. in the range of 25 − 36◦, to avoid

jumping between the two inclusion orientations due to small stress fluctuations. Useful

values of θthr for other material systems can be estimated in a similar fashion.

As a consequence of having two possible inclusion orientations, two damage variables, ξ1

and ξ2, are introduced to track the damage state for both orientations. Both damage
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Figure 3.23: Example of the carbon fiber/epoxy material AS4/3501-6; influ-
ence of inclusion orientation, θ, on degradation of Ed

2 and Gd
12

at damage state ξ = 0.2 = ξsat (left); predicted fracture plane
angle, θfp, for various ratios σ12/σ22 (right).
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variables follow the same evolution law (Eq. (3.15)), with ξ1 corresponding to 0◦ and ξ2

belonging to ±θmax
fp inclusions. As in the definition of Mode C damage (see ‘inclusion

orientation’, section 3.3.2), an equal volume fraction of inclusions at +θmax
fp and −θmax

fp is

assumed (i.e. ξ(+θmax
fp ) = ξ(−θmax

fp ) = 1
2
ξ2).

The compliance tensor of a material containing more than one population of aligned in-

clusions is determined by extension of Eq. (3.18) to multiphase inclusions

C
d = C

init −
∑

i

ξ(i)
[

(Eincl
(i) − E

init) : (S(i) − ξ(S(i) − I)) + E
init
]−1

:
[

E
incl
(i) − E

init
]

: C
init .

(3.27)

To compute C
d in ply coordinates, all tensors in Equation (3.27) are referenced to the ply

coordinate system. Tensors E
incl
(i) and S(i), pertaining to inclusion populations oriented at

θ = ±θmax
fp , are transformed according to

E
incl
(i) =ε

T
T : E

incl
(i) (±θmax

fp ) : ε
T

S(i) =σ
T

T : S(i)(±θmax
fp ) : ε

T

with ε
T

−1 ≡ σ
T

T ,

(3.28)

and σ
T defined in Eq. (3.20). Note, that for two inclusion populations of equal volume

fraction oriented at +θ and −θ Eq. (3.27) is equivalent to Eq. (3.22).

3.5.2 Employing the constitutive law in combination with FEM

The commercial FEM package ABAQUS (ABAQUS Inc., Pawtucket, RI) provides an in-

terface for user defined mechanical material behavior by a user subroutine UMAT. During

an analysis the user subroutine is called at each integration point for which user defined

material is specified. It is provided with the strain state at the end of the previous load

increment, ε
0, and a strain increment, ∆ε. In the subroutine the material Jacobian ma-
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trix, DDSDDE, and the stress state at the end of the current increment, σ(ε0 + ∆ε), must

be defined. Furthermore, solution dependent state variables (‘STATEV’) which are used to

monitor the state of the material throughout the FEM analysis must be updated.

FEM implementation

The present damage model is implemented as a constitutive law for mechanical material

behavior as user subroutine UMAT. To provide as much generality as possible, the subroutine

is designed to handle (layered) shell and 3D continuum elements. It is noted, however, that

if 3D elements are used out-of-plane stress components are ignored for prediction of the

damage state. If considerable out-of-plane stresses arise in a structural analysis, the present

damage model should be used in combination with a damage approach that can capture

these out-of-plane stresses (e.g. by an interface formulation for modeling of delamination

like the one developed by Allix et al. [8, 9], see section 3.2.2).

The analysis procedure is illustrated in Fig. 3.24. At the start of the analysis the constant

tensors E
init, C

init, and S are computed and stored. After the application of a load

increment, the results of the previous increment are checked for final failure. If final failure

is detected in one or more material points, the analysis is terminated with a message

written to the data file (jobname.dat). Otherwise, the damage state and corresponding

elasticity tensor are determined for each integration point in an iterative procedure (with

()i denoting the value of a variable in the ith iteration). The current stress state is computed

and evaluated by Puck 2D. The degradation of material stiffness is performed if MDF is

predicted. The damage state, ξi, corresponding to the current factor of effort is determined

according to the evolution law given in Eq. (3.15). For a computed fracture plane angle

lower than the threshold value, the state variable for 0◦ inclusions is increased to the new

damage state (ξi1 = ξi), while ξi2 retains its value at the start of the increment (ξi2 = ξ0
2). If

a fracture plane angle above θthr is predicted, ξi2 is raised and ξi1 remains at ξ0
1 .
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Figure 3.24: Flow chart of ABAQUS FEM analysis with the present damage
constitutive model implemented as user subroutine UMAT.
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After convergence, the material Jacobian, DDSDDE, the state variables, and the correspond-

ing stress state are determined. In general, DDSDDE is defined as the consistent tangent

stiffness tensor, ∂∆σ/∂∆ε. An inexact definition of the Jacobian in the UMAT subroutine,

however, only affects the convergence rate, while the results (if obtained) are unaffected

[4]. In the damage model it is sufficient for acceptable convergence rate to use the secant

elasticity tensor as material Jacobian (DDSDDE = E
d) since softening does not occur. If

damage exists in a material and the load changes such that stiffness recovery is activated,

the sudden jump of material stiffness can lead to convergence problems. To reduce these

problems, the inclusion elasticity tensor is increased linearly at low compressive stresses

with the compressive normal stress on the fracture plane, −σnn, to reach its nominal value

at σnn = −0.1Rc
22 (see Fig. 3.25).

Using the damage model in an FEM analysis

In order to employ the damage-UMAT in an FEM analysis some provisions must be made in

the ABAQUS input file. Templates of relevant entries are shown in Fig. 3.26. The material

orientation must be defined such that it corresponds to the ply coordinate system using the

-σnn

,incl incl
ltiE G

,incl incl
ln ntG G

c
2 3-0.1R

in
cl
us
io
n 
st
iff

ne
ss

Figure 3.25: Schematic illustration of the definition of inclusion stiffness at
low magnitudes of compressive fracture plane stresses with lin-
ear relation for 0 ≥ σnn ≥ −0.1Rc

22.
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ORIENTATION option on the SHELL SECTION or SOLID SECTION command. If shell elements

are used, estimates of transverse shear stiffness need to be provided as described in the

ABAQUS standard user’s manual [4]. The number of solution dependent state variables

is assigned using the keyword *DEPVAR. These variables, STATEV(1) - STATEV(17), are

available for postprocessing if SDV is specified as element output. A description of state

variables available with the damage-UMAT is given in Table 3.7. State variables that are non-

zero at the start of the analysis, i.e. STATEV(1)-(9), need to be defined by the command

. . . (model definition)

*SHELL SECTION, COMPOSITE, ORIENTATION=ply orientation
. . . (section definition)
*TRANSVERSE SHEAR STIFFNESS

Kts
11, K

ts
22, K

ts
12

or
*SOLID SECTION, ORIENTATION=ply orientation
. . . (section definition)

*MATERIAL, NAME=materialname
*DEPVAR

17
*INITIAL CONDITIONS, TYPE=SOLUTION

elsetname, E init
1 , E init

2 , E init
3 , Ginit

12 , G
init
13 , G

init
23 , ν

init
12

ν init
13 , ν

init
23 , 0., 0., 0., 0., 0., 0.

0., 0.
*USER MATERIAL, CONSTANTS=20
E init

1 , E init
2 , Ginit

12 , ν
init
12 , ν

init
23 , R

t
11, R

c
11, R

t
22,

Rc
22, R12, p

t
12, p

c
12, el = 1.0, en, ξ

sat, κ12,
κt

22, κ
c
22, µD, θ

thr

. . . (step definition)

*Element Output

section points (if relevant)
SDV

Figure 3.26: Template entries of ABAQUS-input file for FEM analysis using
the present damage constitutive model as UMAT subroutine.
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Table 3.7: List of solution dependent state variables (STATEV) available with
the UMAT user subroutine for FRP damage.

variable label description

STATEV(1) Ed
1

engineering constants of damaged material
referenced to ply coordinate system

STATEV(2) Ed
2

STATEV(3) Ed
3

STATEV(4) Gd
12

STATEV(5) Gd
13

STATEV(6) Gd
23

STATEV(7) νd
12

STATEV(8) νd
13

STATEV(9) νd
23

STATEV(10) Gincl inclusion shear stiffness =µD |−σnn|
STATEV(11) fE factor of effort

STATEV(12) θfp computed fracture plane angle

STATEV(13) ξ1 damage state corresponding to 0◦ inclusions

STATEV(14) ξ2 damage state corresponding to ±θmax
fp inclusions

STATEV(15) κ current evolution parameter

STATEV(16) ifstate
flag for damage state (0=no damage,

1=micro damage, 2=meso damage, 3=final failure)

STATEV(17) ifmode
flag for damage mode (0=no damage,

1=MDF-A, 2=MDF-B, 3=MDF-C, 4=FFt, 5=FFc)

*INITIAL CONDITIONS, TYPE=SOLUTION. Note, that in the initial state, the material is

transversally isotropic, therefore E init
3 = E init

2 , Ginit
13 = Ginit

12 , ν init
13 = ν init

12 , and Ginit
23 =

E init
2 /(2(1+ν init

23 )). The 20 material parameters are given by the keyword *USER MATERIAL

as shown in Fig. 3.26. To conduct an FEM analysis using the damage model, the user

subroutine is linked and compiled with ABAQUS (see analysis procedures in the ABAQUS

standard user’s manual [4]).
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3.5.3 Example – plate with hole

In a first set of examples, the proposed damage model is applied to simulate the damage

behavior of a laminated rectangular plate with a central hole under uni-axial compression.

The material and geometry of the plate are the same as in section 2.5.1, but with three

different lay-ups, (±45)6s, (±30)6s, and (0/90)6s (0◦ being defined in loading direction).

As before, a temperature decrease of ∆T = −50K from a stress free state is assumed to

account for production related residual stresses. Note, that the same symmetry conditions

are applied as in section 2.5.1 even though they are not strictly valid for the ±45 and

±30 lay-ups. The global shell behavior, however, is symmetric also for these laminates,

therefore the error is expected to be negligible.

Results of the analyses are compared to experimental data presented by Chang and Lessard

[20], where damage mechanisms are observed by X-ray and visual inspection. Extensiome-

ter readings for load–displacement curves are taken on both sides of the hole in loading

direction at points located 12.7mm from the center of the hole (i.e. initial extensiometer

length Eext = 25.4mm).

Due to the lack of experimental data on the degradation behavior of the ply material, it is

difficult to determine the necessary material parameters for the damage model. Therefore,

only κ12 and en are adapted in a ‘trial and error’ fashion by comparing load–displacement

data of the (±45)6s plate from experiments and the corresponding FEM analysis. All other

damage parameters are chosen as those of the AS4/3501-6 carbon fiber material identified

in section 3.4.1 (see Table 3.8). For the examples shown here, the definition of θthr is

irrelevant, since mode C damage is not predicted anywhere.
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Table 3.8: Damage parameters of carbon fiber/epoxy UD-layer T300/976
(for material parameters see Table 2.1).

damage evolution damage effect

κ12 κt
22 κc

22 en ξsat µD

2.0 0.01 0.54 0.012 0.2 15

(±45)6s plate

The test case of the ±45 plate is dominated by ply shear stresses, which makes this test

best suited for identification of κ12 and en. In the experimental test, failure is observed

to develop from the hole along the ±45◦ directions [20]. Final failure occurs at about

13000N due to MDF combined with delamination, i.e. plies are separated along the layer

interfaces and by cracks parallel to their respective fiber direction while fibers stay intact.

In the case of ‘exp. data 1’ the specimen does not fail immediately, but the switch in

failure mechanism to delamination is shown as a kink in the load–displacement curve, with

displacements increasing further at constant load before the specimen finally breaks.

Analysis results of the ±45 plate using the chosen damage parameters are shown in

Fig. 3.27. Note that the initial stiffness predicted by the model is slightly higher com-

pared to the test data (Fig. 3.27, top). This is probably due to small deviations of either

the test specimen’s material from nominal values, or of actual fiber angles from the ±45

directions. It is therefore not attempted to match the experimental curves exactly. In,

Fig. 3.27 bottom, the distribution of the damage state variable for perpendicular cracks,

ξ1, and the damage mode is shown at final failure for layer 2 (which is representative for

all −45◦ layers). Originating at the hole, damage evolves primarily in a band along the

ply’s fiber direction. The distribution of damage in +45◦ layers looks very similar, but

at a slightly lower level. At the onset of damage, mode A is predicted, which switches

to mode B with increasing damage. Thus, mode B occurs mainly inside the −45◦ strip
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of maximum damage. Note, that away from the hole the magnitude of transverse normal

stresses is very small (|σ22| ≤ 1MPa), leading to some fluctuations in the predicted damage

mode. Ultimate failure is predicted due to damage reaching the saturation state under

MDF mode B next to the hole as indicated in Fig. 3.27, bottom. Since the cause of final

failure according to the experiments is delamination, a failure mode not captured by the

present model, the ultimate failure load is overpredicted for this test case.

damage mode
Layer 2

MDF, mode B
MDF, mode A
no damage

damage state ξ1
Layer 2

final failure
MDF, mode B

final failure
MDF, mode B

init
e x pEinit

F E ME

Figure 3.27: Experimental data and FEM analysis results of (±45)6s plate
with hole under uni-axial compression; load–displacement curve
(top); distribution of damage state variable ξ1, and damage
mode at ultimate failure (bottom).
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(±30)6s plate

In contrast to the previous case, the test data of the ±30 plate shows only little non-

linearity. From the experiments it is found, that the ±30 specimens are also damaged

along lines parallel to fiber orientations radiating from the hole [20]. However, this time

no delamination occurs, instead ultimate failure is caused by FF in the highly damaged

areas leading to fracture of the specimens along +30◦ or −30◦ lines.

The analysis of the ±30 plate is performed with the same damage parameters as the pre-

vious example. With these parameters, the predicted load–displacement curve is realistic

up to about 13000N compressive force, but is slightly lower than the experimental one at

higher loads (Fig. 3.28, top). The distributions of damage state and damage mode are

almost identical for all layers, here, one of the +30◦-layers (layer 1) is displayed (Fig. 3.28,

bottom). Prior to final failure, mode A damage is predicted throughout the plate, con-

centrating in a strip parallel to the fiber direction of the −30◦ plies and emanating from

the hole. Ultimate failure is predicted in the +30◦ layers due to compressive FF at the

location where the fibers are tangential to the hole. The ultimate load is overestimated by

about 20%. In [20] it is mentioned that failure occurs very abruptly in this test without

any cracking sounds prior to failure. So for this example, the assumption that first FF

leads to ultimate failure immediately seems valid.

(0/90)6s plate

The behavior of the (0/90) plate is almost perfectly linear until failure (Fig. 3.29, top). As

reported in [20] some matrix cracking can be observed in the top (0◦) layer spreading from

the hole parallel to the fiber direction about one or two hole diameters in length. During

the tests of (0/90) specimens cracking could be heard prior to failure, which could be a sign

for a rather gradual failure of fibers, rather than an immediate collapse after initial fiber

breakage. This is supported by the complicated fashion by which these specimens fail. In
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[20] this ultimate failure mode is described very figuratively as ‘brooming’ which is actually

a combination of several failure modes (fiber failure, matrix cracking and delamination),

that also led to considerable out-of-plane deformation.

In the analysis of this test case, damage starts to spread already at 30% of the predicted

failure load from the hole along the 0◦ direction but has hardly any effect on stiffness

fiber compression
MDF, mode A
no damage

damage mode
Layer 1

damage state ξ1
Layer 1

final failure
fiber compression

final failure
fiber compression

Figure 3.28: Experimental data and FEM analysis results of (±30)6s plate
with hole under uni-axial compression; load–displacement curve
(top); distribution of damage state variable ξ1, and damage
mode at ultimate failure (bottom).
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(Fig. 3.29). Final failure is triggered by compressive FF at the indicated location at a load

of approximately 20000N, severely underestimating the ultimate failure load determined

experimentally. It should be noted that in the model it is assumed that first fiber failure is

equivalent to ultimate laminate failure. Judging from the experimental observations, this

seems not to be the case in this test. Nevertheless, it is surprising that such a big increase

of load would still be possible after the start of FF.

fiber compression
MDF, mode A
no damage

damage state ξ1
Layer 1

final failure
fiber compression

final failure
fiber compression

damage mode
Layer 1

Figure 3.29: Experimental data and FEM analysis results of (0/90)6s plate
with hole under uni-axial compression; load–displacement curve
(top); distribution of damage state variable, ξ1, and damage
mode at ultimate failure (bottom).
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Discussion of results

The main objective of the presented model is the simulation of damage due to primary

MDF rather than ultimate failure. This intention is entirely fulfilled, as the predicted

initial damage and stiffness degradation at moderate loads matches experimental results.

The agreement between experiments and FEM analyses of the three test cases regarding

the prediction of location, mode, and sequence of damage (as far as they can be observed

in experimental tests and captured by the model) is remarkable. The concentration of

damage parallel to the respective specimen’s fiber directions emanating from the hole is

simulated successfully by the model in all three examples. Also the qualitative difference

between the final failure modes of the ±30 and ±45 specimens (i.e. FF in the ±30 case,

but not for ±45) is captured.

The correlation between load–displacement curves at loads close to final failure is less

satisfactory. This is partly due to the lack of information about the stress–strain behavior

of the material used, which makes the identification of material parameters very tedious.

It is noted, that for the ±30 lay-up a very good prediction of the plate’s stiffness can be

obtained by employing a higher aspect ratio (e.g. en = 0.02) in the damage model. For the

±45 plate, however, this aspect ratio leads to a load reaction that is way too stiff. The

effect of a variation of other damage parameters has not been investigated.

Secondary failure mechanisms (except for FF) and interactions of different failure modes,

which are often responsible for final failure, are not considered and, thus, reliable values for

ultimate loads cannot be predicted by the model. While it is conceivable to develop mod-

eling tools accounting for diffuse (micro crack induced) delamination, other mechanisms

(like the ‘brooming’ in the example of the 0/90 plate) seem too involved to be grasped by

a damage model based on failure mechanisms.
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3.5.4 Example – pressure vessel

As an example for a typical FRP engineering structure, the pressure vessel discussed in

section 2.5.2 is re-analysed employing the constitutive damage model. The geometry and

load specifications are the same as used previously, except this time the mechanical load

is increased proportionally until ultimate failure is reached. For the damage analysis of

the vessel, only the shell model is considered, since no failure of the region near the rim

is expected based on the FPF results (see section 2.5.2). Damage parameters for the used

carbon fiber material (AS4/3501-6) have already been identified and are listed in Table

3.3.

Some results of the analysis are presented in Fig. 3.30, showing the distribution of damage

state ξ1 and damage mode at final failure in the outermost layers (i.e. a +γ ply in the

fiber tension
MDF, mode A
no damage

damage state ξ1
outermost layer

final failure
fiber tension

final failure
fiber tension

max
1 0.16ξ =

dome / cylinder 
conjunction

damage mode
outermost layer

Figure 3.30: FEM analysis of a pressure vessel under thermal and mechanical
load (results shown for outermost ply at the ultimate failure load
of ∼17MPa); distribution of damage state variable ξ1 (left), and
damage mode (right).
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dome, and a 90◦ ply in the cylinder section). In agreement with the FPF predictions in

section 2.5.2, the onset of damage is predicted near the dome/cylinder transition at a load

between 4MPa and 5MPa of internal pressure. With increasing damage, the location of

maximum damage moves further up the dome to reach about 80% of ξsat (ξ1 ≈ 0.16) at

ultimate failure as indicated in Fig. 3.30, left. In the cylindrical part, damage is distributed

very homogeneously with ξ1 ≈ 0.1 in the angle plies and ξ1 ≈ 0.03 in the 90◦ layers at the

final failure state. All damage predicted in the vessel is caused by MDF mode A. Ultimate

failure is caused by tensile FF within the reinforcement layers at the end of the cylindrical

part (Fig. 3.30, right) at approximately 17MPa internal pressure.

To improve the performance of the pressure vessel it is necessary to reduce the amount

of damage in the dome section which is unaccaptably high for practical application. This

could be reached by extending the reinforcement layers into the dome section. Because of

the geodesic winding condition (see Eqs. (2.11) and (2.12)), a winding angle of 75–80◦ of

the reinforcement layers would be required for this purpose. Moreover, the ultimate failure

load reached can be increased by an increased thickness of the reinforcement layers.

3.6 Conclusions – progressive damage modeling

In chapter 3, the application of continuum damage mechanics to FRP laminates is dis-

cussed. Some existing continuum damage models for FRPs are compared and assessed.

In order to capture some effects not covered by these existing models, a new ply level

continuum damage model for matrix dominated damage is proposed. Based on damage

mechanisms observed on the ply level, a scalar evolution law and a tensor relation de-

scribing the effect of different damage modes on material stiffness are defined. The latter

is derived by recourse to the Mori-Tanaka Method to phenomenologically describe the

change of the compliance tensor due to material degradation in a thermodynamically con-

sistent way. With this approach, the degradation of all engineering constants (including
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the in-plane Poisson ratio) is implicitly predicted, while also capturing effects like stiffness

recovery and degradation due to slanted cracks under transverse compression. At the same

time, only a relatively small number of parameters is needed which can be identified from

standard test data.

The identification of the required model parameters is demonstrated for two material sys-

tems and simulations of damage progression under specific load cases are performed. In

contrast to assumptions in some existing damage models, the present model predicts dif-

ferent degradation of in-plane Young’s and shear moduli and an increase of the in-plane

Poisson ratio due to damage. It is observed, that standard values can typically be used

for the damage state at saturation, ξsat, and the evolution parameter for transverse ten-

sion, κt
22, as the damage model is not very sensitive to variations of these parameters.

By combining the model with lamination theory, the damage behavior of multi-directional

laminates of arbitrary lay-up can be predicted. The capabilities of the developed damage

model are assessed based on comparison to data available in the literature. While model

predictions compare well with experimental data under load cases dominated by transverse

tension, a bigger discrepancy is observed at high shear deformations. It is expected that

a better correlation could be obtained by refining the model (e.g. modification of the evo-

lution law or using elongated ellipsoidal inclusions), however, experimental data suggests,

that damage at high shear deformations cannot be attributed to brittle cracking alone.

Further research is required to determine the dissipative mechanisms in order to develop

adequate extensions of the model.

In order to employ the damage model as a material model in structural analysis, it is

adapted to handle arbitrary loading paths and is implemented as constitutive law into

FEM. Its application is demonstrated by some examples. Comparisons between FEM

analyses and experimental results of uni-axial compression tests on rectangular specimens

of various lay-up with a central hole show very good agreement regarding failure mecha-

nisms and stiffness degradation at low and moderate loads. The analysis of such loading
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conditions is the main objective of the presented model. For modeling the stiffness behav-

ior close to final failure and realistic prediction of ultimate failure loads, secondary failure

mechanisms would need to be taken into account. As an example for the analysis of lami-

nated structures, the damage model is applied to a filament wound pressure vessel. Based

on analysis results suggestions are made to improve the vessels performance under load.
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Chapter 4

SUMMARY

In the present work ply level material models for fiber reinforced laminates based on ply

failure mechanisms are studied. The primary interest lies in the prediction of failure and

damage due to brittle matrix cracking, a failure mechanism that is very specific for polymer

matrix laminates used in structural applications. Two general modeling approaches are

employed, the first ply failure concept for failure prediction of laminates and progressive

damage modeling for simulation of the non-linear material behavior due to damage.

Within the first ply failure concept the advantages of taking failure mechanisms into ac-

count in failure criteria of fiber reinforced laminates are shown. Not only do they give

more reliable results, they also are able to predict physically meaningful failure modes

which can help to better understand material behavior of such composites. As one of the

most prominent exponents of mechanism based criteria the Puck criterion is considered in

the present work. In conjunction with a method for evaluating combined stress states it is

used to study the influence of thermally induced stresses on first ply failure. The results

show that such stresses can have a significant impact on predictions of the risk of failure

and of the failure mode.
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In chapter 3 the idea of mechanism based modeling is extended to the damage regime. At-

tributing the degradation of the ply elasticity tensor to one specific failure mode (i.e. matrix

dominated failure) a continuum damage model is developed. The complete 3D elasticity

tensor of a damaged ply is derived by recourse to a micro mechanics approach. The ad-

vantage of this method is the thermodynamically consistent prediction of the individual

degradation of engineering constants due to non-isotropic damage by a relatively small

number of model parameters. It is shown that the agreement between simulations and

experiments is very good as long as no secondary failure mechanisms are active in addition

to matrix cracking. Furthermore, the correlation between failure mechanisms observed

experimentally and predicted by the damage model shows, that mechanism based damage

modeling can be very useful to gain a better understanding of laminates. The discrepancy

between model results and test data under severe shear loading suggests that the common

assumption of purely brittle damage is insufficient. To improve predictions under such load

cases, the actual failure mechanisms need to be identified. This is also indispensable for a

realistic assessment of the influence of residual stresses on damage behavior.



118

Bibliography

[1] http://www.mtm.kuleuven.ac.be/Research/C2/poly/advanced.html.

[2] http://www.multistation.com/DIV MACHINES/EHA-filament.htm.

[3] http://www.adoptech.com/pressure-vessels/main.htm.

[4] ABAQUS/standard user’s manual, version 6.3. Hibbit, Karlsson & Sorensen Inc.,

Pawtucket, RI, USA.

[5] D. H. Allen. Damage evolution in laminates. In R. Talreja, editor, Damage Mechanics

of Composite Materials, volume 9 of Composite Materials Series, chapter 3. Elsevier

Science Ltd., Oxford, UK, 1994.

[6] D. H. Allen and C. Yoon. Homogenization techniques for thermoviscoelastic solids

containing cracks. Int. J. Sol. Struct., 35(31-32):4035–4053, 1998.

[7] O. Allix, L. Daudeville, and P. Ladevèze. Delamination and damage mechanics. In
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[8] O. Allix, P. Feissel, and P. Thévenet. A delay damage mesomodel of laminates

under dynamic loading: basic aspects and identification issues. Composite Structures,

81:1177–1191, 2003.



BIBLIOGRAPHY 119
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[44] P. Ladevèze. On a damage mechanics approach. In D. Baptiste, editor, Mechan-

ics and Mechanisms of Damage in Composites and Multi-Materials, pages 119–142.

Mechanical Engineering Publications Limited, London, UK, 1991.
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[76] A. Puck and H. Schürmann. Failure analysis of FRP laminates by means of physically

based phenomenological models. Comp. Sci. and Tech., 62:1633–1662, 2002.

[77] J. N. Rabotnov. Creep Problems in Structural Members, volume 7 of North-Holland

series in Applied Mathematics and Mechanics. North-Holland, Amsterdam, Nether-

lands, 1969.
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