
DISSERTATION

Design Space Exploration for the
Development of Embedded Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

eingereicht an der
Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Martin Holzer
Josef-Kollmannstraße 10/2/4, 2500 Baden
geboren in Baden am 19. November 1970
Matrikelnummer: 9025189

Wien, April 2008 ...

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Advisor

Univ.Prof. Dipl.-Ing. Dr.techn. Markus Rupp
Vienna University of Technology
Institute of Communications and Radio-Frequency Engineering

Examiner

Univ.Prof. Dipl.-Ing. Dr.techn. Axel Jantsch
Royal Institute of Technology
Department of Electronics, Communication, and Software Systems

– Dedicated to Heidi and Philipp –

ABSTRACT

The evolution of electronic devices has made a tremendous progress within the last 50 years.
In today’s world they can be found nearly everywhere, such as cell phones, camcorders, and
antiblock-brakes. The design of such complex systems, that consist of hardware and software has
to cope with several obstacles like for example high system complexity and increasing economical
demands like shortened time-to-market. Those barriers become especially visible in the wireless
domain. Here, design productivity lacks behind the possible computational complexity famously
described by Moore’s law. The importance to cope efficiently with these problems of system
design has been highlighted by the International Technology Roadmap for Semiconductors.

This thesis examines one of the design tasks namely design space exploration. Since the description
of systems raises constantly its level of abstraction which causes a higher ability for exploring
design variants, the automatic derivation of alternatives becomes a high importance. Current
approaches for design space exploration are based on manual exploration and hence suffer from
a time consuming exploration, leading to sub-optimal solutions. Even automated approaches are
restricted due to the high system complexity and need to be enhanced. In this thesis a fast and
efficient design space exploration approach is proposed. This is based on the characterisation of
a system description, the estimation of design properties, and the automatic evaluation of design
variants.

Thus, as first step a set of system description properties is derived that builds a basis for an initial
quantitative description of an algorithm. This system characterisation is embedded in a design
framework the Open Tool Integration Environment (OTIE) that closes the fragmentation of the
design flow, caused by incompatible tools. This framework exhibits its ability for representing a
design at various abstraction levels.

Another important ingredient for the design space exploration is the fast and accurate estimation
of final implementation properties such as area consumption and execution time. In this thesis
an estimation model for predicting the execution cycle count and the hardware complexity is
proposed based on the aforementioned metrics. Those rapid estimation methods that are based
on static characterisation preserve relative ordering where a fidelity value of 100% is achievable.
Furthermore, those estimations are applied to the characterisation of one function regarding its
timing profile and the minimisation of the overall execution time for structural verification. A new
method which combines execution time profiling and feasible path analysis of the control flow
graph is presented. This allows for exact estimation of the process run time interval. Furthermore,
a new extension of Poole’s algorithm for identifying a basis is presented that allows for reducing
the time effort for structural verification significantly.

Finally, the various implementation variants of an algorithm have to be efficiently explored to

vi Abstract

achieve optimal designs. Those variants are determined by algorithmic transformations like loop
unrolling or tree height reduction. The exponential growth of this implementation variants with the
system size causes an impossible coverage of the complete design space. Hence, an evolutionary
algorithm with a two-staged fitness function and an extreme value elitism feature is presented that
allows for increasing the coverage of the design space exploration by more than 20% compared
to existing approaches. Furthermore, the trade-offs for time and area for a given task set are
utilised to increase the efficiency of a schedule for run-time reconfigurable systems. An algorithm
is presented that reduces the number of design alternatives that are used for the scheduling. A
depth first search algorithm is applied that constructs solutions in feasible time compared to a
classical level strip packing formulation with comparable performance results. With the extension
to a heuristic algorithm the typical run time is further reduced to several seconds.

Keywords: design space exploration, embedded systems, hardware metrics, single system descrip-
tion, design data base, structural verification, multi-objective optimisation, run time reconfigurable
computing.

ZUSAMMENFASSUNG

Die Entwicklung elektronischer Geräte hat innerhalb der letzten 50 Jahre enorme Fortschritte
gemacht. Elektronische Komponenten können in fast allen Bereichen des täglichen Lebens
angetroffen werden, wie z.B. in Mobiltelefonen, Camcordern, oder Antiblockiersystemen. Die
Entwicklung von diesen Systemen bestehend aus Hardware und Software hat einige technische
Schwierigkeiten, wie z.B. hohe Systemkomplexität und ökonomischen Anforderungen wie die im-
mer kürzer werdenden Produktzyklen zu überwinden. Diese Barrieren treffen im besonderen Maß
auf den Mobilkommunikationsbereich zu. Hier werden wesentlich höhere Fortschritte im Bereich
der physikalischen Integration von Transistoren, bestimmt durch das Mooresche Gesetz, als bei
der Entwicklungsproduktivität erzielt. Die entscheidende Bedeutung einer automatisierten Ent-
wicklung zur Produktivitätssteigerung wurde bereits von der International Technology Roadmap
for Semiconductors aufgezeigt.

Diese Arbeit befasst sich mit einem bestimmten Arbeitsschritt, nämlich der Analyse des Entwurf-
sraums, wobei einer automatischen Analyse immer größere Bedeutung zukommt. Zur Zeit wird
diese Aufgabe mit hohem zeitlichen Aufwand manuell durchgeführt und führt oft nur zu subop-
timalen Lösungen. Sogar automatisierte Ansätze stoßen aufgrund der Systemkomplexität schnell
an ihre Grenzen. In dieser Arbeit wird eine schnelle und effiziente Entwurfsraumanalyse basierend
auf einer statischen Analyse der Systembeschreibung, einer schnellen Schätzung von Implemen-
tierungsaspekten und der effizienten Generierung von Implementierungsalternativen vorgestellt.

Dazu wird zuerst eine algorithmische Beschreibung analysiert und markante Metriken ermittelt,
um eine quantifizierte Charakterisierung zu erhalten. Diese automatische Systemcharakterisierung
ist in eine Entwicklungsumgebung namens Open Tool Integration Environment (OTIE) eingebet-
tet, welche die Lücken im Entwicklungsfluss bedingt durch inkompatible Entwicklungsprogramme
schließt. Diese Entwicklungsumgebung erlaubt es, die unterschiedlichen Abstraktionsebenen einer
Systembeschreibung zu erfassen.

Ein weiterer wichtiger Schritt zur Entwurfsraumermittlung ist die genaue und schnelle Abschätzung
von Implementierungseigenschaften wie z.B. Ausführungszeit und Flächenverbrauch mittels der
zuvor beschriebenen Metriken. Diese schnellen Schätzmethoden basierend auf statischen Metriken
erhalten die relative Ordnung zueinander wobei ein Zuversichtswert von 100% erreicht wird. Diese
Schätzungsmethoden werden verwendet, um eine Funktion bezüglich ihres Ausführungszeitprofils
zu charakterisieren und um den Verifikationsaufwand für strukturelles Testen zu minimieren. Eine
neue Methode, die Ausführungszeitanalyse und zulässige Pfadanalyse kombiniert, wird vorgestellt.
Diese Methode erlaubt eine exakte Abschätzung des Laufzeitintervalls. Weiters wird eine Er-
weiterung des Pooleschen Algorithmus zur Bestimmung einer Verifikationsbasis vorgestellt, die
den zeitlichen Aufwand für strukturelles Testen erheblich reduziert.

viii Zusammenfassung

Zuletzt bestimmen Implementierungsvarianten aufgrund algorithmischer Transformationen wie
z.B. loop-unrolling den zu untersuchenden Entwurfsraum. Das exponentielle Wachstum dieser
Varianten mit der Systemgröße macht es aber unmögliche diese Varianten vollständig aufzuzählen.
Ein genetischer Algorithmus mit einer zweiphasigen Fitnessfunktion und einem Elitismusschema
wird vorgestellt, der eine Verbesserung der Entwurfsraumabdeckung von mehr als 20% gegenüber
bestehen Methoden erreicht. Weiters wird diese Entwurfsraumanalyse verwendet, um die Aus-
nutzung von zur Laufzeit rekonfigurierbarer Systeme zu erhöhen. Ein Algorithmus wird vorgestellt,
der die Anzahl von Implementierungsalternativen reduziert, um die Problemgröße zu verkleinern.
Weiters wird eine Tiefensuche wird verwendet, um eine Lösung verglichen mit einer klassischen
Formulierung als ganzzahliges lineares Programmierungsproblem mit praktikablen Zeitauwand zu
erreichen. Eine weitere Erweiterung von diesem Algorithmus zu einer Heuristik reduziert die
Laufzeit auf wenige Sekunden.

Schlagwörter: Entwurfsraumanalyse, Eingebettete Systeme, Hardwaremetriken, Systembeschrei-
bung, Entwicklungsdatenbank, Strukturelle Verifikation, Mehrzieloptimierung, rekonfigurierbare
Rechensysteme.

ACKNOWLEDGEMENTS

This thesis would no exist with the support of many other people. Hence, I want to express
my gratitude to my supervisor Professor Markus Rupp for encouraging me for working towards a
PhD and his support of my thesis. My thankfulness is also directed to Professor Axel Jantsch for
agreeing to act as my second supervisor and who gave valuable comments for the improvement
of this thesis.

My sincere appreciation goes to my colleagues Pavle Belanović, Bastian Knerr, Christoph Angerer,
Naeem Zafar Azeemi, and Daniel Micusik for various fruitful discussions and an inspiring working
environment.

Furthermore, I want to acknowledge the support of my colleagues Thomas Herndl and Guillaume
Sauzon from Infineon Technologies especially for the joint work on the automatic generation of
virtual prototypes.

This work has been funded by the Christian Doppler Laboratory for Design Methodology of Signal
Processing Algorithms.

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Embedded System Design . 4
1.2.1 Design Languages . 5
1.2.2 Design Tasks . 7

1.3 Contributions and Outline of the Thesis . 9

2 System Description Metrics 13

2.1 Overview . 13

2.2 Graph Prerequisites . 15

2.3 Graph Representations . 16
2.3.1 Data Flow Graph . 17
2.3.2 Access Graph . 18
2.3.3 Control Flow Graph . 19
2.3.4 Data Flow Representations . 24

2.4 Structural Metrics . 25
2.4.1 Cyclomatic Complexity . 25
2.4.2 Degree of Parallelism . 26

2.5 Linguistic Metrics . 29
2.5.1 Program Vocabulary . 29
2.5.2 Memory Oriented Metrics . 30
2.5.3 Control Oriented Metrics . 30

2.6 Implementation Affinity . 31

2.7 Example . 32

2.8 Summary . 35

3 Integrated Design Methodology 37

3.1 Fragmentation of the Design Flow . 37

3.2 Overview . 38

3.3 Single System Description . 39
3.3.1 Design Database . 41
3.3.2 OTIE Interface . 43

3.4 Design Analysis . 46

3.5 HTML Visualisation . 46

xii Contents

3.6 Summary . 48

4 Estimation of Design Properties 51

4.1 Overview . 51

4.2 High Level Synthesis . 53

4.3 Control Cycles . 56

4.3.1 Execution Time Profile . 61

4.3.2 Control Cycle Estimation Example . 63

4.3.3 Structural Verification in Minimal Time 65

4.4 Hardware Complexity . 71

4.5 Summary . 72

5 Design Space Exploration 75

5.1 Overview . 75

5.2 Trade-Off between Area and Timing . 77

5.2.1 Tree Height Reduction . 77

5.2.2 Loop Unrolling . 78

5.2.3 Design Space . 78

5.3 Multi-objective Optimisation . 79

5.4 Genetic Algorithm . 81

5.4.1 Fitness Function . 82

5.4.2 Elitism with Extreme Values . 85

5.5 Performance Analysis . 86

5.6 Run Time Reconfigurable Computing . 94

5.6.1 Scheduling Problem . 96

5.6.2 Scheduling Algorithm . 97

5.6.3 Results . 99

5.7 Summary . 100

6 Conclusions 101

Appendices 103

A Notation 105

B List of Variables 107

C Intermediate Format 109

C.1 XML Format . 109

C.2 GXL Format . 119

D Design Space Exploration Results 127

E Benchmark Algorithms 131

Contents xiii

F Dijkstra’s Algorithm 139

G List of Acronyms 141

LIST OF FIGURES

1.1 Algorithmic complexity outpaces silicon complexity. 2

1.2 Design productivity crisis. 3

1.3 Deployment of new electronic design automation technologies by the industry and
the life cycle of a new technology. 3

1.4 Design flow for embedded systems. 6

1.5 Hardware/software design languages covering different levels of abstraction. . . . 6

1.6 Up to 90% of the costs are determined at the first part of the design. 7

1.7 Design space exploration on different levels of abstraction. 8

1.8 Overview of the EDA tool support for the entire design process. 9

1.9 Automatic design space exploration versus manual approach. 10

2.1 System decomposition into hierarchical graph structures. 17

2.2 Simple SDFG and decomposition into its SAG. 18

2.3 Access graph. 18

2.4 Programming statements and their corresponding graph structure within a CFG. 19

2.5 Example of a CFG. The basic blocks are annotated with the corresponding Cycle
Count (CC) that is needed to execute the internal DFG. 21

2.6 A CFG and its dominace tree representations. 23

2.7 Reducability of CFG. 24

2.8 Graphical data flow representations. 24

2.9 CFG of the code example in Listing 2.2. 26

2.10 Control flow graph with a cyclomatic complexity of three, which equals the number
of regions (I, II, III) surrounded by the graph. Basic blocks that represent a control
statement are shaded. 27

2.11 Degree of parallelism for γ = 1 and γ > 1. 28

2.12 Degree of parallelism for a DFG. 28

2.13 Kiviat charts for different functions indicating their affinity either to be imple-
mented in hardware or software. 32

2.14 Block diagram of the cell searcher. 32

2.15 Control flow graphs of two different matched filter implementations. 34

xvi List of Figures

3.1 Fragmentation of the design flow. 38

3.2 Open Tool Integration Environment. 40

3.3 The structure of the design data base. 41

3.4 Design Example. 43

3.5 Concept of the OTIE interface. 44

3.6 XML-based Intermediate Format. 45

3.7 Information page of one process. 47

3.8 Hierarchical view of a system. 47

3.9 Visualisation of the data flow. 48

4.1 HW/SW partitioning of an algorithm and its implementation by several hardware
accelerators. 54

4.2 Design flow that utilises high level synthesis and RTL synthesis. 55

4.3 Elimination of the common sub expression a + b. 56

4.4 Tree height reduction of the expression z = a + b + c + d. 56

4.5 Multiplexer architecture. 57

4.6 Bus architecture. 57

4.7 Ready lists for the DDG of a filter function. 58

4.8 Optimal schedules with different resource constraints. 59

4.9 Comparison of cycle count estimations. 60

4.10 Execution time of different execution paths of a function. 61

4.11 Determining feasible paths of a CFG. 62

4.12 Execution time profile for the predcase1 function from the MPEG algorithm. . . 65

4.13 Simple example of a CFG. The basic blocks are annotated with the corresponding
cycle count that is needed to execute the internal DFG. 65

4.14 Control flow graph with four different selections of the default edges indicated by
bold edges. 67

4.15 A section of the control flow graph of the predcase2 function. On the left side the
edges of the shortest path are highlighted in bold. On the right side edges of the
longest path search are highlighted bold. 69

5.1 Design alternatives for an algebraic expression. 78

5.2 Design alternatives with loop unrolling. 79

5.3 Multi-objective Optimisation. 80

5.4 Design space for area and timing trade-off. 81

5.5 Chromosome representation of a design point for the genetic algorithm. 82

5.6 Structogram of a genetic algorithm. 82

5.7 Rank ordering of a population. 83

List of Figures xvii

5.8 Directed acyclic dominance graph. 85

5.9 Different coverage scenarios. 86

5.10 Hyper volume indicator IH and local hyper volume indicator LH for a Pareto front. 87

5.11 Approximation sets for the CFG13 derived with GA1, GA2, GA3, and GA4. . . . 89

5.12 Box plots of the achieved coverage of the genetic algorithms for the control flow
graph CFG23. The coverage of Xq(GA1) compared to Xq(GA2), Xq(GA3), and
Xq(GA4) is depicted in the first row (Figure 5.12a, Figure 5.12a, and Figure 5.12a.
The coverage of Xq(GA2) compared to Xq(GA3) and Xq(GA4) is depicted in the
second row (Figure 5.12d and Figure 5.12f). The coverage of Xq(GA3) compared
to Xq(GA4) is presented in Figure 5.12f. 90

5.13 Quality sets derived by the genetic algorithms GA1 and GA4. 91

5.14 Boxplot of the hyper volume indicator. 91

5.15 Convergency of the Hyper volume indicator. 92

5.16 Examples for different Pareto fronts. 93

5.17 Software defined radio platform. 94

5.18 1D and 2D area models for the partial run-time reconfiguration. 95

5.19 Slot size and task variant determination. 97

5.20 Decision tree for the branch and cut algorithm. 98

5.21 Remaining cycle count. 98

5.22 Execution time of the scheduling algorithms. 99

5.23 Optimisation results of the scheduling algorithms. 100

C.1 Structure of the IF representation of the system 111

D.1 Convergency of the ranked fonts . 127

D.2 Evolvement of the population over several generations of the genetic algorithm GA4.128

D.3 Examples for Pareto fronts. 129

D.4 Examples for Pareto fronts. 130

LIST OF TABLES

1.1 Performance development of processors. 2

2.1 Set of operators. 29

2.2 Indication of metrics regarding its affinity to HW or SW, ↑ indicates an affinity for
high values and ↓ an affinity for small values. 31

2.3 Metrics for control, memory usage, cyclomatic complexity, and parallelism. 33

4.1 Upper bound for ready list with different resource constraints. 58

4.2 Average cycle count based on statistics. 59

4.3 Cycle count derived with optimal schedules. 60

4.4 BCET and WCET execution time prediction. 63

4.5 Number of feasible paths and process run time interval. 64

4.6 Minimal and maximal timing for testing of the predcase2 function. 70

4.7 Gate count for functional units in dependance on the bit widths n and m of its
inputs. 72

5.1 Features of the various genetic algorithms GA1, . . . ,GA4. 87

5.2 Performance comparison of the different optimisers for the control flow graph CFG13. 88

1 INTRODUCTION

”The beginning is the most important part of the work.”

Plato

In today’s world embedded systems are nearly everywhere. Persons of a developed nation get

in touch with about 100 embedded systems per day. An embedded system is a special purpose

computer such as for example cell phones, anti-block brakes, camcorders, digital cameras, DVD

players, or washers. Usually, they execute a single program repeatedly and continually react to

changes in the system’s environment and must respond in real-time. Complexity of such systems

varies from rather simple devices to very complex ones. For example a BMW745i utilises more than

100 micro processors with about 2 Mio. lines of source code which are responsible for the engine

control, break system, airbag deployment, door locks, and the entertainment system [109]. The

design goals of such systems are rather demanding and include low unit cost and Non Recurring

Engineering Cost (NRE), small size, high performance, low power, and high flexibility.

1.1 Motivation

The success of embedded systems is based on the enormous advances in system integration. Gor-

don Moore, one of the founders of INTEL, presented in a talk in 1965 his investigations about the

number of integrated transistors on recently fabricated integrated circuits. He presented that the

number of integrated transistors on a device doubles each year. This effect is nowadays slowed

down to about 18 months, but holds on and is called Moore’s Law [123]. In the beginning, the

higher integration density, by reducing the gate length of the transistors, allowed for increasing

processing frequency and therefore more processing power. Whereas now the reachable higher

density is used for example to enlarge memory like caches, this does not directly influence pro-

cessing performance anymore. In the case of cache enlargement only the speed of read and write

operation is increased. For example, the benchmarks from the Standard Performance Evaluation

Corporation (SPEC) [70] of a Pentium-III at 500MHz compared to a Pentium-III at 1000MHz has

increased by a factor of 2.5 for integer and by a factor of 2 for floating point operations, whereas

the corresponding number of transistors has tripled from about 10 Mio. to 30 Mio. to achieve this

performance increase (Table 1.1). Although Moore’s law is expected to be limited ultimately by

hard physical or economical boundaries, it still holds and the International Technology Roadmap

for Semiconductors in 2005 [58] predicts a further validity until 2020.

One of the most challenging areas for the design of embedded systems are modern communi-

cation systems. Here, particularly in the wireless domain, complexity of the algorithms grows

2 1 Introduction

Processor Transistors SPEC integer SPEC float

Pentium-III 500MHz 9.5 Mio. 20.6 14.7
Pentium-III 1000MHz 28.5 Mio. 46.8 32.2

Table 1.1: Performance development of processors.

at an astounding rate. While the analog first generation (1G) of wireless communication has

been dedicated merely to voice communication, the digital systems of the second generation (2G)

and even more the third generation (3G) support additionally data communication at rates up

to several Mbps. Here, a raise of computational complexity from one technology generation to

the next one by a factor of 1000 has been observed. This rate is so high that the demand of

algorithmic complexity now significantly outpaces the above discussed growth in available compu-

tational performance of the underlying silicon implementations (Figure 1.1). Also the increase of

battery capacity stays far behind the actual needs of portable devices. Furthermore, algorithmic

2

6

5

4

3

Figure 1.1: Algorithmic complexity outpaces silicon complexity.

complexity even more rapidly outpaces design productivity, expressed as the average number of

transistors designed per staff/month [57, 162, 163]. In other words, current approaches for the

design of a wireless embedded system are proving inadequate in the struggle to keep up with

system complexity. In 1999 Sematech [3] called this problem design productivity crisis, which is

nowadays well known under the name productivity gap or design gap (Figure 1.2).

The Electronic Design Automation (EDA) industry has faced this trend the last years and is nowa-

days confronted with even more design technology gaps. For example test cost has grown expo-

nentially relative to manufacturing cost, verification engineers outnumber design engineers [16,80],

and security applications need even more processing performance.

Additionally, economical aspects like time-to-market are very decisive, especially in markets where

1.1. Motivation 3

20
01

10

Tr
an

si
st

or
s

pe
r c

hi
p

20
06

19
96

19
91

19
86

1k

100k

10M

1G

Design productivity
Silicon complexity

Design gap

10M

100k

1k

D
es

ig
ne

d
tra

ns
is

ito
rs

 p
er

st

af
f-m

on
th

Figure 1.2: Design productivity crisis.

Design productivity
Silicon complexity

Physical
 Synthesis

Synthesis

Place & Route

Pattern
Generation

1960 1970 1980 1990 2000

Th
e

te
et

hi
ng

 p
ro

bl
em

The youth The old age

Design productivity
Silicon complexity

Figure 1.3: Deployment of new electronic design automation technologies by the industry and
the life cycle of a new technology.

product cycles of 18 months can be found. Here, launching a product six months early, triples

profits, whereas being six-months late results in breaking even [17].

The EDA industry observed this effect already several times in the past and overcame it by

new technologies like test pattern generation, place and route, synthesis of RTL code to gates,

placement, and global routing by physical synthesis (Figure 1.3). A more detailed look into the

deployment of new technologies by the industry shows that firstly the productivity decreases (The

teething problem), and after a time of getting used to the new technology a period of high

productivity follows (The youth). Finally, a new technology gets well established (The old age)

in the product development process.

Currently, industry is in such a phase out period. Thus many new concepts so far have been

proposed to solve the problem as there are for example optimal hardware/software co-design,

co-simulation on different design levels, and new design languages to overcome the fragmentation

4 1 Introduction

of the design process. One of the latest combined efforts of the EDA industry focusses on

electronic system level design. The key here is to move to higher levels of abstraction, to start

at the architectural level and refine down from there. The tools to support this will have to

simultaneously address large, high-level blocks such as processors and large peripherals, and the

gate-level details. Additionally, integration of hardware and software should be supported as well

as capabilities for optimisations regarding system throughput and power consumption.

1.2 Embedded System Design

Embedded systems incorporate Hardware (HW) and Software (SW) parts which affect the design

process itself resulting in a HW/SW co-design flow. Due to high complexity of such systems it is

not possible to derive directly an efficient implementation. Therefore, the design of an embedded

system incorporates a number of abstractions, ideally allowing for a smooth refinement process.

The refinement of such a system considers communication and computation separately. Here, the

levels of abstraction can be identified for time (from untimed to timed) or the granularity of data

(from complex data types to simple types). In the following common models of abstraction are

described (Figure 1.4):

Specification Model : Usually, at first a specification model of the algorithm is written which is

free from implementation details. It is untimed and models data transfer through accesses to

variables. Depending on the domain of application, specific models of computation (finite state

machine, discrete event, synchronous reactive) are used for an efficient algorithm description. For

example in the wireless domain algorithms are usually described by a Synchronous Data Flow

Graph (SDFG) at first introduced by E.A. Lee and D.G. Messerschmitt [112] in 1987 where

functions (A,B,C,D,E as depicted in Figure 1.4) inter-communicate with fixed data rates.

Transaction-Level Model (TLM): Transaction-level modelling has been proposed in the year 2000

by T. Grötker [165]. In a transaction level model the details of communication among computa-

tional components are separated from the details of computation components. Communication is

modelled by channels while transaction requests take place by calling interface functions of these

channel models. Unnecessary details of the communication and computation are hidden. Here,

the main advantage of this model is to speed up simulation.

Bus-Functional Model (BFM): The BFM is a model that can generate different bus transactions

for a given device which is not limited to microprocessor. Here, protocol channels are used that

are time/cycle accurate and pin-accurate. Note, it is not necessary that all channels have to be

modelled at this level. A heterogenous approach may be applicable.

Cycle-accurate computational model : Here, the computation within functional blocks is cycle

accurate whereas the communication is modelled on a higher level of abstraction. The hardware

is modelled on Register Transfer Level (RTL). This means that the behaviour is defined in terms

of the flow of signals or transfer of data between registers, and the logical operations performed

on those signals. Furthermore, general purpose processors are modelled in terms of cycle accurate

instruction set architectures.

1.2. Embedded System Design 5

Virtual Prototype (VP): A virtual prototype enables earlier development and testing of the soft-

ware. In this technique, SW reflects the behaviour of the HW and implements the HW interface

to the SW, as it will be realised later in HW. Such a VP can be implemented faster than the

HW itself because all the HW implementation details specific to the chosen technology can be

neglected and high-level description languages can be used instead of hardware description lan-

guages. A first implementation of a VP by J. Cockx [40] in the year 2000 has for the most part

focused on its use in the hardware/software co-simulation of the embedded system. While this

early effort was targeted towards increasing the efficiency and quality of the design process through

novel modifications of the co-simulation process, a transition method (even a manual one) from

an algorithmic description to the VP was not shown. First automatic generation approaches for

VPs are presented by A. Hemani et al. [77] in the year 2000 and A. Hoffmann and H. Meyr [80]

in the year 2002. A further automatic VP generation approach is presented in [20, M. Holzer et

al.]1

Implementation model : Such a model has cycle-accurate communication as well as computation.

The components are defined in terms of their register transfer or instruction set architecture.

An implementation model may utilise a heterogenous architecture that consists of processing

elements (DSPs, ASICs), memory, and a bus system. As stated before, in the last decades new

development approaches and tools have allowed for the design of ever more complex hardware.

Higher integration and thus increasing miniaturisation have led to a shift from using distributed

hardware components towards heterogeneous System-on-Chip (SoC) designs [26]. Such SoCs

consisted at first only of a single processor, HW accelerators, memory and a bus system. Rather

simple HW accelerators emerged to more sophisticated Application Specific Integrated Processors

(ASIP) [81]. The integration of an entire product onto a single complex IC may include, one

or more processor core(s) (μPs or DSPs), memory, peripherals, custom blocks, reconfigurable

blocks, and busses. State of the art SoCs incorporate multiple processing cores. Even further

research is going on by replacing the classical interconnection structure of standard bus systems

with distributed communication structures (network on chip [94]).

1.2.1 Design Languages

For the design of a system consisting of hardware and software parts different design languages

are applicable on different abstraction levels (Figure 1.5). The system design starts with design

languages where general concepts of a product are described. Mostly languages with strong

graphical visualisation capabilities are used for this task like the Unified Modelling Language

(UML) [6] or the Specification and Description Language (SDL) [5]. Furthermore algorithmic

descriptions usually start with languages embedded in special design environments, that support

the designer with pre-defined libraries of system components (e.g. filter, modulation schemes,

channel models for signal processing applications).

Based on its widespread use also languages like C or Java are found for describing systems on

1 Cited work which I authored or co-authored is indicated with M. Holzer et al.

6 1 Introduction

Model N

Model 1
B A

C D E

DSP

ASICASIC
...

System BusRAM

DMA
SW

memory

direct I/O

DSP

SW
memory

High

Level of abstraction

Low

Figure 1.4: Design flow for embedded systems.

Figure 1.5: Hardware/software design languages covering different levels of abstraction.

architectural level or building a virtual prototype [76, 169]. On the lowest level of abstraction

assembler and hardware description languages like VHDL, Verilog are deployed. One of the last

major contributions for the co-design of HW/SW systems is SystemC [165]. This language has

been introduced in 1999 by the Open SystemC Initiative (OSCI) [2] and is supported by many

EDA companies (ARM, Cadence, CoWare, Synopsys, Mentor Graphics, NEC, Fujitsu). SystemC

is an open C++ library which allows for the description of a system on different abstraction levels

while staying in the same design language (one-code paradigm). The first version of SystemC

provides hardware related concepts like concurrency and signals. Version 2 generalises the hard-

ware related communication structures to so called channels. Within Version 3 the abilities for

1.2. Embedded System Design 7

incorporating the features of an operating system will be provided. Version 1 and 2 are nowadays

available and ratified as IEEE Standard, the release of Version 3 has been postponed several times.

Instead, OSCI concentrated its work on enriching the available versions of SystemC with special

libraries (Verification Library, Transaction Level Modelling Library). Furthermore, extensions of

SystemC-AMS targets the co-simulation of digital and analogue systems.

1.2.2 Design Tasks

Various design tasks have to be considered for the implementation of an embedded system.

Typically, a design methodology formalises the implementation flow. Such a design methodology

is a set of abstraction levels together with a set of transformation rules which transform one

abstraction level into another [64]. Most typical tasks for the HW/SW co-design are listed in the

following:

• System Characterisation Early design decisions have a huge impact on the final system

performance [127], about 90% of the overall costs are determined in the first stages of

a design. Figure 1.6 depicts the evolution of the cost during the development time [14]

where it can be seen that early design decisions have a much higher resulting cost span than

design decisions taken at the end of the development time. Therefore, it is of paramount

Time

Cost

Concept Study Detailed Design

Cost span of
alternative
concepts

Cost span of
alternative

designs

Design Decision

Figure 1.6: Up to 90% of the costs are determined at the first part of the design.

importance to base the design decisions on reliable characteristics. Those characteristics

of the code are called metrics and can be identified on different levels of abstraction. The

terms metric and measure are used as synonyms in literature whereas a metric is in general

a measurement which maps an empirical object to a numerical object.

• Design Space Exploration: Design Space Exploration (DSE) refers to the process of inves-

tigating implementation variants regarding their optimal solution. In the case of multiple

objectives like minimisation of time, area, and power not only a single optimal solution exist.

8 1 Introduction

Here, a set of equally acceptable design points has to be considered for the further develop-

ment flow. Due to the high system complexity manual design exploration approaches lead

to suboptimal solution. Thus, in order to gain full advantage of the design space exploration

this task has to be performed automatically with additional tools that allow for discovering

trade-offs on each level of abstraction (Figure 1.7).

implementation
model

cycle-accurate
models

specification
 model

ab
st

ra
ct

io
n

alternative realisations

high

low

explore

explore

co
st

 o
f m

od
el

in
g

an
d

ev
al

ua
tio

n

high

low

Figure 1.7: Design space exploration on different levels of abstraction.

• Floating-point to fixed-point conversion: The algorithmic model usually uses floating-point

formats in order to disburden the designer from having to take numeric effects into con-

sideration. At the end of the design process only fixed-point numeric formats are used.

Thus, during the design process it is necessary to perform a conversion from floating-point

to fixed-point data types [133].

• HW/SW partitioning : HW/SW partitioning can in general be described as the mapping of

the interconnected functional objects that constitute the behaviour of the algorithm onto a

chosen architecture model [105, M. Holzer et al.].

• Platform based design: Platform-based design focusses on a specific application domain.

The platform embodies the hardware architecture, embedded software architecture, and

design methodologies for IP authoring and integration. Derivative designs may be rapidly

implemented from a single platform that has a fixed part and a variable part [37,101].

• High Level Synthesis (HLS): One of the trends for boosting design productivity is increasing

the level of abstraction. The majority of modern design flows describe the system register

transfer level. Furthermore, advances to higher abstraction levels are at the one hand pro-

vided by languages for simulation (e.g. SystemC) and on the other hand by the capability

of high level synthesis. High level synthesis refers to the process of deriving an RTL descrip-

tion from and algorithmic description. This process has been investigated by many research

projects like for example in the SPARK [71] environment and is also adopted to commercially

1.3. Contributions and Outline of the Thesis 9

available tools (behavioural compiler from SYNOPSYS, CatapultC from Mentor Graphics).

A survey of high level design synthesis techniques is given by Jantsch [172].

• Verification: Verification is the process of evaluating a system or component to determine

whether the products of a given development phase satisfy the condition imposed at the

start of the phase. This correctness can be verified by simulation or formal methods like for

example equivalence-check [20, M. Holzer et al.].

• Rapid prototyping : Rapid Prototyping describes the fast development of a working entity

to prove that a new theory could really be applied and to have a first impression of the

development effort for turning it into a product. Due to the high complexity of modern

systems prototyping has become nearly as challenging as designing the product itself [147,

148].

In Figure 1.8 several tools from different vendors are shown and their coverage of abstraction

levels. Especially in the market of EDA tools two big players like Synopsys and Cadence have

dominated the market. Their tools mainly focus on the VHDL to RTL synthesis and place and

route tasks. Other emerging companies have tried to tackle specific problems as mentioned before

like Coware (architecture exploration).

Figure 1.8: Overview of the EDA tool support for the entire design process.

Despite all the efforts of solving specific tasks of the design flow, the problem of integrating all

those tools together, in order to provide a seamless design flow has been neglected. A designer is

forced to integrate those tools in their specific order into a design flow.

1.3 Contributions and Outline of the Thesis

One of the major capabilities of accelerating the design flow is to focus on tools and methods

that are concerned with exploring a design on the highest possible level of abstraction. The

contribution of this thesis is the the efficient generation of design trade-offs regarding area and

execution time. This is based on the derivation of design characteristics with static methods and

10 1 Introduction

the estimation of implementation properties. Design space exploration currently reveals several

disadvantages as already in the previous section mentioned. This design task is usually manually

performed or with low support of tools. Hence, it is a time consuming process and thus it is usually

only affordable to discover only a small portion of all possible design alternatives. In this thesis a

novel methodology is presented that generates Pareto optimal design alternatives which cover the

design space to a high extend. Specifically, the efficient generation of design trade-offs allows for

an easy identification of extrema, i.e. design solution with maximum/minimum execution time

(xe1 and xe2 in Figure 1.9). Another aspect of the presented design space exploration concerns

the treatment of loops. Here, the proposed approach identifies optimal solutions regarding the

loop unrolling factors (in Figure 1.9 solution x4 is an implementation with less area and time effort

than x1). Finally, the proposed automatic approach discovers a high density of equally acceptable

solutions. Thus, for a given constraint concerning for example execution time a design alternative

can be identified that suits optimally (in Figure 1.9 design alternative x5 requires less area than

x2 and still adheres to the given execution time constraint). Certainly, design space exploration

has to cope with several additional cost functions like for example power, complexity, verification

effort, or implementation effort. Nevertheless, as described before even only the consideration of

time and area trade-offs allows for a significant improvement of the design flow.

Figure 1.9: Automatic design space exploration versus manual approach.

This thesis is based on the following publications, which will be referred to in the overview of the

chapters at the end of this section.

• M. Holzer, B. Knerr, P. Belanović, and M. Rupp, ”Efficient Design Methods for Embedded
Communication Systems,” EURASIP Journal on Embedded Systems, Volume 2006, pages
1 - 18, 2006.

• M. Holzer, B. Knerr, and M. Rupp, ”Design Space Exploration for Real-time Reconfigurable
Computing”, in Proc. Asilomar Conference on Signals, System, and Computers, Pacific
Grove, CA, USA, November 2007.

• M. Holzer, B. Knerr, and M. Rupp, ”Design Space Exploration with Evolutionary Multi-
objective Optimisation,” in Proc. Symposium on Industrial Embedded Systems (SIES),
pages 126 - 133, Lisbon, Portugal, July, 2007.

1.3. Contributions and Outline of the Thesis 11

• M. Holzer, B. Knerr, and M. Rupp, ”Structural Verification in Minimal Time,” in Proc.
System on Chip, pages 151 - 154, Tampere, Finland, November, 2006.

• M. Holzer and B. Knerr, ”Pareto Front Generation for a Tradeoff between Area and Timing,”
in Proc. Austrochip 2006 Tagungsband, pages 131 - 134, Vienna, Austria, October, 2006.

• M. Holzer and M. Rupp, ”Static Code Analysis of Functional Descriptions in SystemC,”
in Proc. DELTA 2006 Third IEEE International Workshop on Electronic Design, Test and
Applications, pages 243 - 248, Kuala Lumpur, Malaysia, January, 2006.

• M. Holzer and M. Rupp, ”Static Estimation of Execution Times for Hardware Accelerators
in System-on-Chips,” in Proc. Proceedings of International Symposium on System-on-Chip
2005, pages 62 - 65, Tampere, Finland, November, 2005.

• M. Holzer, P. Belanović, B. Knerr, and M. Rupp, ”Automatic Design Techniques for Em-
bedded Systems,” in Proc. Proceedings of GI/ITG/GMM Workshop Modellierung und
Verifikation, Munich, Germany, April, 2005.

• M. Holzer, B. Knerr, P. Belanović, G. Sauzon, and M. Rupp, ”Faster Complex SoC Design
by Virtual Prototyping,” in Proc. Proceedings of CITSA International Conference on Cyber-
netics and Information Technologies, Systems and Applications, pages 305 - 309, Orlando,
Florida, USA, July, 2004.

• M. Holzer, P. Belanović, B. Knerr, and M. Rupp, ”Design Methodology for Signal Process-
ing in Wireless Systems,” in Proc. Informationstagung Mikroelektronik, pages 303 - 307,
Vienna, Austria, October, 2003.

• M. Holzer, P. Belanović, and M. Rupp ”A Consistent Design Methodology to Meet SDR
Challenges,” in Proc. 9th Wireless World Research Forum Meeting, Zürich, Switzerland,
July, 2003.

The content of the individual chapters is briefly described in the following:

Chapter 1 describes the technological advances that allow for the design of complex embedded

systems. Furthermore, current design problems like the design productivity gap are highlighted.

The design of embedded systems is described and a focus is given on languages and tools that

are utilised within the design process. The importance of two major design tasks like system

characterisation and design space exploration is shown and their capability for improving the

design process.

Chapter 2 is dedicated to the characterisation of algorithms for the HW/SW co-design process.

The usage of metrics for the algorithm already has quite a long history in the development of

software [73, 118]. Algorithmic characterisation for hardware has been mainly performed on the

lowest level of abstraction (e.g. VHDL) [39]. Only a few approaches consider SystemC [7].

Thus, in this chapter a new set of structural and linguistic metrics which are specially suited to

describe the features of an algorithm regarding complexity, operation reuse, and memory access, is

presented [89,103, M. Holzer et al.]. A grouping of those metrics to an affinity value is presented

which allows for a first identification whether a function is more likely to be mapped to specific

12 1 Introduction

hardware components like a DSP, micro controller or an ASIC/FPGA. Finally, the derivation of

metrics and graph structures is exhibited within an example.

In Chapter 3 a novel design methodology is presented that features the characterisation tech-

niques of Chapter 2. The problem of lacking consistency within the design process has been

identified by several approaches [98, 164]. Nevertheless, most of them support only the lower

abstraction levels of the design process. As a basic concept of this design methodology a sin-

gle system description [82, 87, 88, M. Holzer et al.] is introduced which allows for capturing the

refinement process of a design starting at the highest level of abstraction (e.g. SystemC). This

is based on a database model that stores the algorithm description itself and its characterisation

properties that are presented in Chapter 2. Via open interfaces the communication to several

existing electronic design automation tools is supported.

In Chapter 4 estimation functions for cycle count and area complexity are discussed. The main

objective for the estimation of implementation properties like area and timing has been accu-

racy [55, 139]. In contrast to this a new approach for estimation functions is presented in this

chapter that targets the preservation of relative ordering (homomorphism) of the estimations.

These estimations are based on the metrics that are presented in Chapter 2 [90, M. Holzer et

al.]. Furthermore, the estimation of these properties is utilised for a detailed profiling of the exe-

cution cycle of a control flow graph. Another application of the cycle count estimation aims for

the minimisation of the verification effort. Here, a novel algorithm for minimising the structural

verification effort is presented [84, M. Holzer et al.].

In Chapter 5 design space exploration for trade-offs between area and timing is discussed. Tradi-

tionally, the performance of alternative designs is manually explored which is significantly based on

the experience of the designer. Exhaustive search tries to identify all possible design points. This

is certainly only applicable for small problems because usually the design space grows exponentially

with the number of parameters and the size of the problem. Hence, heuristic approaches are most

promising candidates for this optimisation problem [9, 41, 156]. In this chapter the generation

of area timing trade-offs is formulated as multi-objective optimisation problem [83, M. Holzer et

al.]. Here, the generation of Pareto optimal design points is shown with an evolutionary genetic

algorithm that features enhanced approaches for the fitness function as well as the preservation of

an equal distribution of the set of Pareto optimal points [86, M. Holzer et al.]. The performance

of different fitness and elitism schemes is discussed on various control flow graphs. Finally, the de-

sign space exploration for one task is applied to run-time reconfigurable computing [85, M. Holzer

et al.]. Here, a novel scheduling algorithms is presented that utilises several implementation

trade-offs in order to minimise overall execution time.

Finally, Chapter 6 summarises the main contributions of the thesis and gives an outlook to further

extensions to the presented work.

2 SYSTEM DESCRIPTION METRICS

”Since the measuring device has been constructed by the observer,
we have to remember that what we observe is not nature in itself,

but nature exposed to our method of questioning.”

Werner Karl Heisenberg

This chapter is devoted to the identification of the properties of an algorithmic description. A

focus on properties is set which can be identified by static analysis of the algorithm. This means

no simulation run of the algorithm is needed. These properties establish a first characterisation

of the algorithm which allows for its first analysis regarding its inherent features, thus providing

the possibility to compare different implementation variants quantitatively. Additionally, those

properties will allow for the estimation of final implementation properties like area and timing as

will be described in more detail in Chapter 4. This chapter starts with a review of metrics in the

software area and their further evolvement for the hardware/software design flow. Since most of

the presented metrics are heavily based on the analysis of graph structures, a basic introduction to

graph theory is given. This is followed by a system decomposition into a hierarchical structure of

various graphs. Next, a set of of system description properties is presented. Those properties are

grouped into properties related to structure or linguistic features. The already existing software

metrics cyclomatic complexity and program vocabulary are reviewed in the context of hardware

description. Furthermore, the existing hardware related metrics parallelism is extended towards an

operation dependent parallelism metric. Furthermore, the vocabulary match between an algorithm

and the vocabulary of the target hardware is newly introduced as well as a refinement of the

memory access metric regarding read and write accesses. A new measure for the affinity of an

algorithm to be implemented in hardware or software is presented by grouping together a subset

of the presented metrics. Finally, the utilisation of the metrics that are highlighted in this chapter

is demonstrated within an example design of a UMTS cell searching algorithm.

2.1 Overview

Since the first programming languages appeared, the interest of the software engineering com-

munity in the measurement of software properties emerged and is ongoing until nowadays [153].

A software metric is defined as a numerical rating with the purpose to measure properties like

complexity, reliability, length, quality, or performance of the algorithm. In this context metrics are

at first defined by a measurement procedure which assigns an entity, e.g. a software program, a

numerical value. In a second step this value can be interpreted as a measure for a property like

complexity. More formally spoken this is a mapping of an empirical object to a numerical object.

14 2 System Description Metrics

Note, that the term metric has in the context of software engineering not that exact mathemati-

cal definition as a distance measure, even if the metrics presented in this thesis share properties

like to be non negative. One of the main targets which emphasises the usability of a metric, is

that the mapping procedure preserves the relations within a homomorphism1. This means if a

metric is used as quantitative expression of a feature like complexity of a function, then a metric

that describes this feature should preserve the relations. So if an implementation of an algorithm

f1 is considered empirically more complex than the implementation f2, then a derivation of a

complexity metric with a function g should preserve this circumstance g(f1) > g(f2).

The usage of metrics within the design process are manyfold: The identification of algorithm

properties allows to conduct the design process. This is usually achieved with metrics that describe

the quality, complexity, and readability of an implementation. Other metrics might describe data

and control dependencies, granularity, parallelism, and regularity [166]. Another usage of metrics

can be identified within the estimation of final properties of the implementation. Implementation

properties might be for example code size, timing, or memory usage. Estimations that concern

the development process itself are the volume of a project or the expected implementation effort.

Hence, gathering properties of an algorithm leads to a deeper insight and understanding, thus

allowing for a comparison of different implementations of one algorithm against each other.

The first target of this chapter is to identify metrics for the HW/SW codesign flow which allow

for a first characterisation. A second target is to provide a fundament for Chapter 4 where the

estimation of implementation features like area and time is based on these metrics.

The usage of these metrics already has quite a long history in the development of software.

Different metrics have been defined for functional programming languages like Pascal or C. One

of the earliest proposed software metrics is the measure Lines of Code (LOC) which has been

mainly used as complexity measure and is still being used today [27,137].

One of the main purposes of software metrics is to predict the implementation effort. A recog-

nisable approach for modelling the cost of a design and predicting the effort or time required for

the process of development has been undertaken within the COCOMO project [27]. Here, the

size of a system is described with the number of source lines. One of the major shortcomings of

this approach is the task of predicting the number of source lines at an early stage in the project.

This task is avoided with the introduction of function points. A function point is a measure for

the functional size of a software application. It is basically derived from the number of inputs,

outputs, and internal functions of a software system. Thus, is a measure which can be derived

from the specification itself and therefore does not require any implemented code. Also for hard-

ware projects it is of substantial economical importance to predict the implementation effort very

early. In this context the concept of function points has been adopted for hardware description

languages like VHDL by Fornaciari et al. [60].

One of the most popular metrics, known as cyclomatic complexity, has been defined by Mc-

1 The term homomorphism has specific definitions in several mathematical fields. For example a homomorphism
is a map from one algebraic structure to another of the same type that preserves all relevant structures; i.e.
properties like identity elements, inverse elements, and binary operations.

2.2. Graph Prerequisites 15

Cabe [118], expressing readability and testability of an implemented function (Section 2.4.1).

Another contribution to static analysis of code has been defined by Halstead [73], which focuses

on predicting the design effort for a software module (Section 2.5.1). With the introduction

of object oriented languages like C++ and Java, metrics for the investigation of object oriented

features have been introduced [38]. Prominent object oriented measures are the depth of the

inheritance tree and the number of methods per class.

First attempts for investigating hardware description languages have been achieved for VHDL. Here,

the first activities started with the automatic code analysis task itself. An approach for identi-

fying program slices which are functional dependent code parts and its application to hardware

description languages, especially VHDL, is presented by Clarke et al. [39]. In comparison to these

approaches the work of this thesis is devoted to the analysis of SystemC.

With the evolving capabilities of HW/SW co-design languages like SystemC also the focus for

metric generation has been adopted to this language. The metrics that are defined for object

oriented languages are naturally applicable to SystemC. Nevertheless, those metrics need to be

reinterpreted in the context of HW/SW co-design. Further metrics evolved with a focus to the

special concepts that are provided with the language constructs of SystemC, like for example

channels. Also the possibility of using SystemC at various abstraction levels as system description

permits the derivation of specific metrics. A contribution of Agosta et al. [7] analyses transaction

level models with a focus on communication effort, memory size, and synchronisation.

In order to generate metrics, dynamic and static approaches are applicable. Dynamic techniques

rely on the execution of test cases. Within these simulations profiling techniques or execution

traces are applied. A disadvantage lies in its dependency on the test cases. Especially, the

generation of test cases which trigger a worst case behaviour are not always easily deducible. A

rather long run time compared to static approaches, exhibits a further disadvantage. In modern

designs the time that is spent on verification of a system increased already up to 80% of the

design time [100]. Hence, a reduction of the simulation effort is one of the most eminent design

targets. In this chapter a focus is set on Static Code Analysis (SCA).

2.2 Graph Prerequisites

Static analysis of a function relies on its representation in various graph forms. The analysis of

these graph representations allows for deriving metrics that quantify the structure of the language

description. This analysis includes for example search algorithms regarding the longest paths

or depth first searches. In order to set up a common wording a list of some basic definitions

for graphs are enumerated in the following, that are referred to in the further chapters of this

thesis. Among many other textbooks about graph theory this enumeration basically follows the

introduction of graphs by Sedgewick [152].

Definition 2.1 (Graph). A graph G(V, E) is defined as an ordered pair of a set V = {v1, v2, . . . , v|V|}
of vertices and a set E = {e1, e2, . . . , e|E|} of edges. The elements of the set E are unordered

16 2 System Description Metrics

pairs of vertices. The vertices belonging to an edge are called endpoint or end vertices of the

edge.

Definition 2.2 (Directed Graph). A directed graph G(V, E) is defined as an ordered pair of a

set V = {v1, v2, . . . , v|V|} of vertices and a set E = {e1, e2, . . . , e|E|} of edges. The set of edges

E is defined as a 2-tuple of vertices E = {(v, w) | v, w ∈ V}. The operation beg returns the

source (tail) vertex, and the operation end returns the sink (head) vertex of an edge e as follows:

∀e = (v, w) ∈ E : beg(e) = v, end(e) = w. The vertex v is called a direct predecessor of w, vice

versa w is a direct successor of the vertex v.

Definition 2.3 (Indegree/Outdegree). The operation indegree(v) returns the number of incom-

ing edges to the vertex v ∈ V of a directed graph. The operation outdegree(v) returns the

number of outgoing edges from the vertex v ∈ V of a directed graph.

Definition 2.4 (Path). A path p from a vertex v0 to a vertex vn in a directed graph is a sequence

of vertices v0, v1, v2, . . . , vn that satisfies: ∀i, i = 0 . . . n − 1∃ (vi, vi+1) ∈ E . The vertex v0

is the initial vertex and vn is the terminal vertex of the path. Equivalently a path from a vertex

v0 to a vertex vn can be described by a sequence of edges e1, e2, . . . , en. A simple path ps

additionally fulfills the condition: ∀vi, vj ∈ p, i �= j : vi �= vj . If the initial and the terminal

vertices of a path are the same, that is, v0 = vn, then the path is called a cycle.

Definition 2.5 (Directed Acyclic Graph). A directed graph without any cycles is denoted Directed

Acyclic Graph (DAG).

2.3 Graph Representations

A common approach for reaching a high perceivability of the functionality within a large and

complex system is to use a hierarchical decomposition together with graphical representation.

Hierarchical decomposition into subsystems provides a structured view to the system for a group

of different designers. In Figure 2.1 common graphical representations for a system (e.g. in

communications) are depicted. This starts with a data flow graph (Section 2.3.1), that describes

communication and operations on a high level. Furthermore, a detailed view of one operation

block as access graph (Section 2.3.2) is given. Next, the description of one function with a control

flow graph (Section 2.3.3) is depicted. Furthermore, one vertex of the control flow graph can

contain a single algebraic expressions with an expression tree (Section 2.3.4) of in the case of a

function call another control flow graph.

Beside its purpose of a structured view to a system, these graphs allow for automatic analysis in

order to derive properties that are described later in the chapter. The definition of those graph

structures is presented in the following sub sections.

2.3. Graph Representations 17

A

B

C

D F

Data Flow Graph

bb0

bb1

bb4

bb2

bb3

=

k +

shl index

j 2

F1

F4

F3F2

Access Graph
Control Flow

Graph

Expression

Tree

E

CFGbb0

bb1 bb2

bb3

Figure 2.1: System decomposition into hierarchical graph structures.

2.3.1 Data Flow Graph

One description method for a signal processing system is a Synchronous Data Flow (SDF)

graph [112]. This representation accomplishes the backbone of renowned signal processing work

suites like Ptolemy [111] or Signal Processing Designer [1]. In Figure 2.2 a simple example of an

SDF graph is depicted. The number which is annotated on the tail of each edge represents the

number of produced bits in each invocation. The main advantages of this model of computation

is that in many cases the execution of the vertices can be statically scheduled while the buffer

size remain bounded, thus allowing for a fast execution of such a system without any complex

scheduling technique. A further even simpler design technique are homogenous SDF graphs where

each vertex consumes and produces only one token per invocation. Here, the buffer size of each

vertex is equal one and a schedule is found by invoking each vertex once according to a breadth

first search. Although widely accepted for signal processing systems SDF graphs are restricted to

static dataflow behaviour, thus many algorithms are not completely describable with SDF graphs.

Extensions of SDF towards parameterised dataflow are published by G. Bilsen et al. [25] and

S. Bhattacharya et al. [22].

A further decomposition into a Single Activation Graph (SAG) is depicted. In this graph the

input/ouput rate dependencies have been solved and every process invocation is transformed into

one vertex. The vertices v1 and v2 are doubled (v11, v12 and v21, v22) according to their distinct

18 2 System Description Metrics

Figure 2.2: Simple SDFG and decomposition into its SAG.

invocations that result from the data rate analysis. The solid edges indicate precedence as well

as data transfers from one vertex to another whereas the dashed edges just indicate precedence.

2.3.2 Access Graph

One execution block of the SDF graph may include a set of functions. The call dependencies

between those functions are depicted as Access Graph (AG), or Call Graph (CG). It covers the

dependencies between functions. Each function is represented by a vertex, and a function call

is depicted by an edge between calling and called function vertex. The leaves of this graph

correspond to the simplest functions that do not contain further function calls. In Figure 2.3 e.g.

one execution block of the SDFG contains the functions main, f1, and f2. The function main

calls both functions f1 and f2, and f1 calls f2. The edges of the AG are annotated with the

number of functions calls and the amount of transferred data per call. A common application of

this representation is its usage within the task of HW/SW partitioning.

Figure 2.3: Access graph.

2.3. Graph Representations 19

2.3.3 Control Flow Graph

A control flow graph is a graph representation of a program and essential to many compiler

optimisations as discussed in the famous Red Dragon Book [10]. A Control Flow Graph (CFG)

is a directed graph G(V, E , root, exit) with the set V of vertices and the set E of edges. A CFG

is a notation of all paths that might be traversed through a function during its execution. The

control flow of a function enters only at one vertex (root vertex) and leaves the function only at

at one vertex (exit vertex). Therefore, the vertices root and exit are special vertices of the graph

structure regarding their connectivity. The root does not have any incoming and exit does not

have any outgoing edge (indegree(root) = outdegree(exit) = 0).

Each node in this graph represents a so-called Basic Block (BB). Each basic block contains a

sequence of data operations ended by a control flow statement as last instruction. The statements

implementing the control flow are for example for C based languages if, case, goto, for, while,

do, continue, and break. These statements divide a program into basic blocks and establish

the control dependencies between them. Due to programming constructs like loops a CFG is

generally not cycle-free. Figure 2.4 depicts programming statements and their resulting graph

structure within a CFG.

Figure 2.4: Programming statements and their corresponding graph structure within a CFG.

The basic definition of a path in the Definition 2.4 does not imply any restriction to the starting

vertex and the end vertex. Nevertheless, in the context of CFG a path considers always a sequence

of vertices that start with the root and end with the exit.

The path from the root to the exit vertex with highest number of basic blocks will in the following

be called longest path pLP. Vice versa, the path, which yields the least number of vertices will be

referred to as shortest path pSP. Basically, search of the longest path belongs to the complexity

class of NP-complete problems whereas the search for the shortest path belongs to P, and can be

solved with Dijkstra’s algorithm [50] (Appendix F) in O(|V|2). In computational complexity theory

the complexity class P contains decision problems which can be solved in polynomial amount of

computation time. The class of problems for which answers can be verified by an algorithm with

20 2 System Description Metrics

polynomial run time in the size of the input is denoted NP. The problem complexity NP-

complete has been introduced by S. Cook [44] in 1971 and defines a decision problem if it is

possible to transform every problem from NP to it. It is widely assumed that no polynomial

algorithm for NP-complete problems exists but has not been proven until now.

Beside the representation of a path with sequence of edges another description utilises a path

edge matrix

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 . . . a1|P|
a21 a22 . . . a2|P|
...

...
. . .

...

a|E|1 a|E|2 . . . a|E||P|

⎤
⎥⎥⎥⎥⎦ =

[
p1 p2 . . . p|P|

]
. (2.1)

The number of columns equals the number of existing paths of the CFG where P denotes the

set of paths. The number of rows equals the number of edges |E| of the CFG. So each column

corresponds to one path. The elements aij ∈ N0 determine the number of times the edge ei is

traversed within the path pj . One column corresponds to a path vector pj .

The representation of loops with path vectors requires bounded loops. In the case of data depen-

dent loops it is assumed in this thesis that upper bounds for the loops are available either given by

the designer or computed by static or dynamic methods. Specifically, dynamic estimation of the

loop count will allow on average for higher accuracy of the estimates compared to static methods.

Nevertheless, in the case of estimating worst case response times static estimation is preferred

although pessimistic.

Example 2.1. For example the CFG in Figure 2.5 incorporates seven vertices (basic blocks) and

eight edges. The vertex BB1 is the root and the vertex BB7 is the exit vertex of the CFG.

The path consisting of the edges e1, e2, e3, and e4 is represented by the vector (1, 1, 1, 1, 0, 0, 0, 0)T .

All the possible paths of the shown CFG are given in their vector notation,

p1 = (1, 1, 1, 1, 0, 0, 0, 0)T ,

p2 = (0, 0, 0, 0, 1, 1, 1, 1)T ,

p3 = (1, 1, 0, 0, 0, 0, 1, 1)T ,

p4 = (0, 0, 1, 1, 1, 1, 0, 0)T .

(2.2)

Thus, they form the path edge matrix

2.3. Graph Representations 21

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
0 1 0 1
0 1 0 1
0 1 1 0
0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.3)

The path p4 can be linearly expressed with

p4 = p1 + p2 − p3. (2.4)

Figure 2.5: Example of a CFG. The basic blocks are annotated with the corresponding Cycle
Count (CC) that is needed to execute the internal DFG.

Not every permutation of vector entries corresponds to a valid path through the CFG which means

that the set of vectors of valid paths for the CFG is a subset of the set of all possible vectors with

the dimension |E|. Since linear combinations of vectors from this subset exist that do not create

valid paths through the CFG, this subset does not form a subspace.

A span Ψ ∈ Z|E| of the set of paths can be defined by all possible linear combinations of the CFG

paths pi,

Ψ =
{

ψ |ψ =
∑
pi∈P

λipi

}
= span{p1, . . . ,p|P|} (2.5)

with any λi ∈ Z, which defines a subspace of Z|E|. In the following the term basis of paths or

short basis is used as a maximal set B of linearly independent paths of the span of the possible

22 2 System Description Metrics

1 FindBasis(vertex)

2 if (vertex == EXIT) then store path

3 else if (vertex not VISITED)

4 {

5 mark vertex as VISITED

6 label default edge

7 FindBasis(end(defEdge(vertex)))

8 for all other outgoing edges

9 FindBasis(end(edge))

10 }

11 else

12 FindBasis(dest(defEdge(vertex)))

Listing 2.1: Poole’s algorithm for the identification of a basis of a CFG.

paths. The term ”linear independent paths” means that any path vector in the basis set cannot

be formed as a linear combination of other paths of their basis. Therefore, any path through the

control flow graph can be formed as a combination of paths in the basis. Such a basis is not

unique, thus a CFG can have more than one basis. Nevertheless, according to the definition of

the basis the number of paths of the basis is constant and corresponds to the rank of the path

edge matrix A (|B| = rankA).

In Example 2.1 the set {p1,p2} is not a basis, because there is no possibility to construct the

path vector p4. Whereas the set {p1,p2,p3} defines a basis.

An algorithm for the generation of a basis has been presented by Poole [140] (Listing 2.1). This

algorithm is based on a depth-first search through the CFG. Each time a vertex is visited for the

first time, one of the outgoing edges is marked arbitrarily as default edge (line 6). After that the

recursion of the function follows the default edge and afterwards it follows the other outgoing

edges of the current vertex (line 8-9). If the vertex has been already visited, only the default path

is taken (line 12). This causes that the default edges build the main parts of the basis vectors. If

the exit vertex is reached than the currently followed path is a path of the basis (line 2).

Another important aspect of a CFG covers the dependencies of basic blocks specified with the

concepts of dominator and post-dominator.

Definition 2.6 (Dominator). A vertex v of a CFG dominates a vertex u (v dom u), if every path

from the root vertex to the vertex u incorporates the vertex v.

Definition 2.7 (Post dominator). A vertex v of a CFG post dominates a vertex u (v postdom u),

if every path from the vertex u to the exit incorporates the vertex v.

Both concepts have a graphical representation as dominance trees. The start node in a dom tree

is the root. The parent of each node is its immediate dominator. A postdom tree has the exit

vertex as start node and only immediate posdominators as parent. The Figure 2.6 depicts a CFG

(Figure 2.6a), its dominance tree (Figure 2.6b), and its post dominance tree (Figure 2.6c). It

can be clearly seen that the root (here BB1) dominates all basic blocks of the CFG, and the exit

vertex (here BB6) post dominates all basic blocks.

2.3. Graph Representations 23

(a) Control flow graph. (b) Dominance tree. (c) Post dominance
tree.

Figure 2.6: A CFG and its dominace tree representations.

Another important property of a control flow graph are cycle structures. For a formal identification

of the interdependence of cycles within a CFG the concepts of forward and backward edges are

introduced in the following:

Definition 2.8 (back edge/forward edge). A back edge of the CFG is an edge (v1, v2) such that

v2 (the head) dominates v1 (the tail). A forward edge of a CFG is an arc edge (v1, v2) such

that there exists an acyclic path of the form (root, . . . , v1, v2). This arc edge is a member of a

set of edges, which taken together form an acyclic graph so that every node of the CFG can be

reached from the root node [10]. If all edges of the CFG belong to the set of forward edges, the

entire graph is an acyclic graph.

Definition 2.9 (reducible control flow graph). A reducible control flow graph is a CFG in which

all edges are elements of two disjoint sets of forward edges Ef and backward edges Eb. Forward

edges, with the property that the set of all forward edges forms a directed acyclic graph in which all

nodes are reachable from the root, and backward edges, of the form (v1, v2) such that v2 dom v1.

Common language constructs create only reducible flow graphs (if, while, repeat, for) [118]

i.e. only nested loops occur. The edges of the CFG depicted in Figure 2.7a can be partitioned into

two disjoint sets of forward and backward edges (Ef = {e1, e2, e3}, Eb = {e4, e5}, Ef ∩ Eb = 0,

and Ef ∪ Eb = E). The usage of goto statements might result in an irreducible flow graph like

for example shown in Figure 2.7b. Here, the edge e4 = (BB5, BB3) is neither element of the

set of back edges, nor the set of forward edges. It is not considered as back edge, because BB3

does not dominate BB5 since there exists the path (BB1, BB2, BB4, BB5). It belongs also not

to the forward edges, because the path (BB1, BB3, BB4, BB5, BB3) is not cycle free. In the

following only reducible CFG are considered. Beside its main advantage of a reduced complexity

of an implementation also the automatic analysis of those structures is simplified.

24 2 System Description Metrics

(a) Reducible CFG with nested
loops.

(b) Not reducible CFG.

Figure 2.7: Reducability of CFG.

The head vertex of a loop-forming backward edge will be denoted loop header in this thesis. It

dominates all basic blocks in the loop which are called loop body. Further, an inner loop is a loop

that does not contain other loops.

2.3.4 Data Flow Representations

The sequence of data operations inside of one BB forms itself a Data Flow Graph (DFG) (Fig-

ure 2.8a) or equivalently one or more expression trees (Figure 2.8b).

(a) Data flow graph. (b) Expression tree.

Figure 2.8: Graphical data flow representations.

An algebraic expression has an inherent tree-like structure. This tree is called expression tree

(Figure 2.8b). The terminal nodes (leaves) of an expression tree are the variables or constants

in the expression. The non-terminal nodes of an expression tree represent the operators. It is

important to preserve the order for noncommutative operations by identifying a left and right

operand for an operation node. An expression tree describes only one algebraic operation. The

data dependencies between several operations (expression trees) is represented by a data flow

graph.

2.4. Structural Metrics 25

2.4 Structural Metrics

Structure related metrics describe properties that can be identified by the analysis of the afore-

mentioned graph representations. As mentioned in the overview SystemC is based on an object

oriented approach and thus structural metrics like the number of classes, depth of hierarchy, or

number of methods can be naturally applied. In the following metrics that can be identified on

CFG and DFG level will be described. Those metrics are not specific to any language and can be

applied for example to SystemC and VHDL as well.

2.4.1 Cyclomatic Complexity

A basis set of paths is defined as a set of linearly independent paths. In other words each

path vector in the basis set cannot be formed as a combination of other paths in the basis set.

Therefore, any path through the control flow graph can be formed as a combination of paths in

the basis set. Hence, in order to test every structural path of a CFG, the number of vectors in

the basis set defines the number of needed test cases.

McCabe’s measure [118] cyclomatic complexity V (G) which has its origin from the cyclomatic

number defined in graph theory [21], is equal to the number of paths in the basis set. It can be

computed as follows

V (G) = |E| − |V| + 2. (2.6)

Hence, as stated above, if a structural path coverage of 100% should be achieved at least V (G)
test cases have to be performed.

The effect of testing all linearly independent paths can be seen in the following simple example

(Listing 2.2). The CFG of this code example is depicted in Figure 2.9 which consists of six edges

and five vertices. Assume that in the code example the value a is required to stay unchanged,

whatever execution path is taken. A test bench which fulfills the requirement for statement

coverage or branch would not detect the programming error. A statement coverage demands that

each statement of the function under test has to be executed at least once. A branch coverage

additionally requires that each decision outcome has to be tested. E.g. in this example for a

branch coverage two test cases are sufficient, which could be chosen like both logic structures

condition1 and condition2 are true and both condition1 and condition2 are false. In

both cases a stays unchanged, thus hiding the programming error. Whereas the structural testing

criterion (2.6) demands 3 test cases for this example, which would discover this programming

error.

Further methods for computing cyclomatic complexity of a graph G are shown in the following.

With Euler’s famous relation for planar graphs [56] |V|−|E|+R = 2 where R denotes the number

of regions that are surrounded by the graph the cyclomatic complexity computes to

26 2 System Description Metrics

1 int func(int a, bool condition1 , bool condition2) {

2 .

3 .

4 if(condition1)

5 a = a + 1;

6 .

7 .

8 if(condition2)

9 a = a - 1;

10 .

11 .

12 return(a);

13 }

Listing 2.2: Example C function.

Figure 2.9: CFG of the code example in Listing 2.2.

V (G) = R. (2.7)

Note, that for the number of regions R also the whole area surrounding the graph is taken into

account. And finally it is possible to count the number of predicates P (control statements),

which are the vertices where more than one edge is leaving the vertex (outdegree(v) > 1).

V (G) = P + 1. (2.8)

Example 2.2. In Figure 2.10 a CFG is shown which consists of 10 vertices and 11 edges, thus

the cyclomatic complexity of this example is 3. The number of regions R equals 3 (I, II, III). The

two nodes BB2 and BB8 represent predicates of the function, which leads according to (2.8) also

to V = 3.

2.4.2 Degree of Parallelism

In general a degree of parallelism of a graph G can be defined as follows:

2.4. Structural Metrics 27

Figure 2.10: Control flow graph with a cyclomatic complexity of three, which equals the number
of regions (I, II, III) surrounded by the graph. Basic blocks that represent a control statement are
shaded.

γ =
Nv

Nvl
. (2.9)

Here, the value of Nv denotes the number of vertices and Nvl the number of vertices in the

longest path of the graph. In Figure 2.11 it can be seen that for a γ value of 1 the graph is

sequential and for γ > 1 the graph has many vertices in parallel.

The degree of parallelism γ for a DFG can be defined according to (2.9) as the number of overall

operations Nop divided by the number of operations Nopl in the longest path of the algorithm.

γ =
Nop

Nopl
(2.10)

A DFG that has a low γ value (very close to 1) are rather sequential whereas a function with a

large γ value reveals parallelism.

Example 2.3. In Figure 2.12 a DFG is depicted with six input variables (a,b,c,d,e, and f), nine

operations and a longest path of six operations (OP3, OP4, OP6, OP7, OP8 and OP9), so that

γ equals 1.5.

In order to render the CFG context more precisely these properties are applied in order to define

28 2 System Description Metrics

Figure 2.11: Degree of parallelism for γ = 1 and γ > 1.

Figure 2.12: Degree of parallelism for a DFG.

some important metrics to characterise the algorithm:

Definition 2.10 (Longest path weight for the operation type j). Every vertex of a CFG is anno-

tated with a set of m different weights w(vi) = (wi
1, w

i
2, . . . , w

i
m)T , i = 1, . . . , |V| that describe

the occurrences of its m internal operations (e.g. wi
1 = number of ADD operations in vertex vi).

Accordingly, a specific longest path with respect to the jth distinct weight, Sj
LP, can be defined

as that sequence of vertices (vroot, vl, . . . , vexit) which yields a maximum path weight PWj by

summing up all the weights wroot
j , wl

j , . . . , w
exit
j of the vertices that belong to this path

PWj =
∑

vi∈Sj
LP

w(vi)dj . (2.11)

Here the selection of the weight with the type j is accomplished by multiplication with a vector

dj = (δ1j , . . . , δmj)T defined by the Kronecker-delta δij .

2.5. Linguistic Metrics 29

Definition 2.11 (Degree of parallelism for the operation type j). Similar to the path weight PWj

a global weight GWj can be defined,

GWj =
∑
vi∈V

w(vi)dj , (2.12)

which represents the operation specific weight of the whole CFG. Accordingly, an operation specific

degree of parallelism γj is defined as follows,

γj =
GWj

PWj
. (2.13)

A list of possible operator types will be given the next section.

2.5 Linguistic Metrics

Beside the structural investigation of graph representations linguistic metrics refer to the investi-

gation of operations and operands that are used within a process.

2.5.1 Program Vocabulary

A basic measure regarding the kind of computation of a process is described with the set S of

applied types of operations. For example a list of possible operation types is given in Table 2.1.

Further, the cardinality η1 = |S| defines the number of distinct operators that are instantiated

in a process. For example the cardinality of the set of operations given by the operations of the

Table 2.1 equals |S| = 15.

Operation set Operation type

arithmetic operation ADD, SUB, MUL, DIV
logic operation OR, XOR, AND
relational operation =, �=, <, >, ≤, ≥
bit operation SHL, SHR

Table 2.1: Set of operators.

Similarly, the used types of operands with set K, meaning the number of variables and their types

are counted. Depending on which level of abstraction the bit widths for example in SystemC

(sc_int, sc_uint, sc_bit, sc_vect, or fixpoint data types like sc_fixed and sc_ufixed).

Here, also a the number of distinct operation types is given with η2 = |K| (e.g. |K| = 6 for the

aforementioned list of types).

Both measures together form a vocabulary measure defined by Halstead [73].

η = η1 + η2 (2.14)

30 2 System Description Metrics

This measure has been used for SW development to predict the volume of a program. Another

measure based on the vocabulary S and the number of operations Nop has been introduced by

Eles et al. [54], which describes the uniformity of a process.

U =
Nop

|S| . (2.15)

2.5.2 Memory Oriented Metrics

Analysis of the memory behaviour has been specified in [126, 127] with the Memory Orientation

Metric (MOM)

MOM =
Nmac

Nop + Ncop + Nmac
. (2.16)

Here, Nop defines the overall number of utilised operations as defined in Table 2.1, Ncop the

number of control statements (if, for, while), and Nmac the number of memory accesses. A

MOM value near one identifies a function with high memory usage. In order to use this metric

for the estimation of power consumption, where different energy models are used for read and

write operations [96] a further differentiation in read and write accesses is appropriate,

MROM =
Nmrac

Nop + Ncop + Nmac
, (2.17)

MWOM =
Nmwac

Nop + Ncop + Nmac
. (2.18)

Here, Nmrac represents the number of read operations from the memory and in (2.18) Nmwac

denotes the number of write operations to the memory.

2.5.3 Control Oriented Metrics

In contrast to the memory metrics, a control orientation metrics (COM) identifies whether a

function is dominated by control operations,

COM =
Ncop

Nop + Ncop + Nmac
. (2.19)

When COM approaches 1, the function is dominated by control operations. This is usually an

indicator that an implementation of a control-oriented algorithm is more suited for running on a

controller than to be implemented as dedicated HW.

2.6. Implementation Affinity 31

2.6 Implementation Affinity

One of the most important tasks of the HW/SW co-design is the mapping of an algorithm

to HW and SW. A tendency which type of implementation is best suited for an algorithm is

accomplished by identifying a subset of the aforementioned metrics that indicates an affinity to

a certain implementation type. In Table 2.2 metrics and their tendency to implementation types

are shown.

SW HW

MOM ↑ ↓
COM ↑ ↓
γi ↓ ↑
V ↑ ↓

Table 2.2: Indication of metrics regarding its affinity to HW or SW, ↑ indicates an affinity for
high values and ↓ an affinity for small values.

A further affinity can be identified by taking into account also the properties of the target ar-

chitecture. A target architecture is specified with an available command set Sa. For example

command sets for different architectures like DSP (SDSP), ASIP (SASIP), μC (SμC) can be

identified which usually exhibit differences in their command structure regarding their support of

special processing domains. For example, special operations for signal transforms like Multiply

Accumulate (MAC) or Add-Compare-Select (ACS) operations are typically supported by DSPs.

With the set of operations within an algorithm a vocabulary match to a certain architecture can

be defined with

Km =
|S ∩ Sa|

|S| , (2.20)

thus showing the percentage of operations that is directly supported by the target architecture.

Those properties can be graphically depicted with a Kiviat chart [107] like for example shown in

Figure 2.13. Here, a process with high affinity to a software implementation is indicated by metric

values that completely lie in the region labelled � of the chart (Figure 2.13a) while metric values

that completely lie in the region labelled � indicate high affinity to a hardware implementation

(Figure 2.13b).

Thus, a distance measure dhw to a hardware realisation can be defined,

dhw =
√

MOM 2 + COM 2 + V 2 + Km
2 +

∑
i∈J

1
γ2

i

. (2.21)

A stated before this affinity value can be used to reduce the search space for the computational

intensive task of hardware software partitioning. Here, algorithmic parts with a high affinity to

a certain type implementation can be mapped directly. Furthermore, the presented metrics are

32 2 System Description Metrics

(a) Function with high affinity
to software.

(b) Function with high affinity
to hardware

(c) Function with no explicit
affinity either to a hardware or
software implementation.

Figure 2.13: Kiviat charts for different functions indicating their affinity either to be implemented
in hardware or software.

a multidimensional description of a function. A Principal Component Analysis (PCA) can be

applied in order to identify a subset of these metrics with highest significance.

2.7 Example

An algorithmic description written in SystemC of a UMTS cell searcher algorithm has been pro-

cessed in order to gather the presented metrics. This cell searcher performs the slot synchronisation

part of the cell searching procedure by detecting the start of a slot transmitted by the base station

in a UMTS communication system.

Figure 2.14: Block diagram of the cell searcher.

The cell searcher implementation consists of four SystemC modules as depicted in Figure 2.14.

The I and Q values are correlated within the Matched Filter with the chip sequence of the Primary

Synchronisation Code (PSC). Two different types of matched filter functions Matched Filter 1

and Matched Filter 2 have been implemented in order to show design tradeoffs by means of static

code analysis. The functions Square and Sum together with Slot Accu perform addition and

accumulation over several slots of the energy values. As last step, the Peak Detection sorts the

energy values and searches for the highest peak, whose index determines the start of a slot.

This example consists of four classes, each instantiated once. It has a flat hierarchy, so that the

maximum depth of hierarchy is only one. Each class contains one method. The results of the

2.7. Example 33

static code analysis of the code are shown in Table 2.3.

Function MOM MROM MWOM COM V γ

Sqr and Sum 0.62 0.5 0.12 0 1 1
Slot Accu 0.67 0.45 0.22 0 1 1
Peak Detection 0.39 0.26 0.13 0.11 5 1

Matched Filter 1 0.49 0.35 0.14 0.16 7 1.25
Matched Filter 2 0.55 0.35 0.2 0.16 9 1.29

Table 2.3: Metrics for control, memory usage, cyclomatic complexity, and parallelism.

The functions Sqr and Sum and Slot Accu show similar memory usage and contain no control

parts. Peak Detection exhibits less memory accesses than the functions Sqr and Sum and Slot

Accu but has a minor fraction of control statements. Both matched filter implementations show

the same effort for control and read operations but the Matched Filter 2 has significantly more

write accesses compared to the first implementation.

The functions Sqr and Sum and Slot Accu are rather simple functions with few operations and

operands, as well as no control and no parallelism. Peak Detection performs a shell sort algorithm

which shows the need for control operations but also gives no possibilities for resource sharing. A

comparison of the two matched filter implementations regarding their vocabulary indicates, like the

memory orientation metrics a higher memory usage by a higher number of distinct operands in the

Matched Filter 2 design. The parallelism capabilities of the two matched filter implementations

regarding the utilised types of operations (ADD, SUB) tend to be one (γADD = 1.24, γSUB = 1),

because both types of operations appear in the longest paths much more frequently than in the

other possible paths. Figure 2.15 depicts the CFG of the matched filter implementations Matched

Filter 1 and Matched Filter 2.

Both implementation share the CFG regions A and C. Matched Filter 1 consists of two nested

loops in region B, both with a Loop Count (LC) of 16, which forces the innermost basic blocks

(BB4, BB5) to be executed 256 times. Those loops are decoupled in the second implementation

within the region B’ and B”. This is achieved by storing intermediate results which causes an

additional memory effort of storing 512 values but necessitates much less computation in its

longest computation path. Also, additional control effort is introduced as denoted within region D.

This causes a higher cyclomatic complexity value and therefore slightly increases the testing effort

for this implementation. While both implementations are regarded as low complexity functions,

it can be seen that a tradeoff between testing effort and implementation cost exists.

From this analysis a first conclusion regarding the HW/SW partitioning of the cell searcher func-

tionality can be drawn. Due to their simple structure (low control effort and moderate memory

usage) the functions SqrandSum and SlotAccu should be implemented in hardware, whereas high

complexity of the PeakDetection a software implementation should be favoured. Both matched

filter implementations have quite similar properties. Nevertheless, the implementation variant

Matched Filter 2 revealed higher performance in terms of execution cycles of the longest path.

Certainly, the cost functions that determines hardware/software partitioning of a function is pre-

34 2 System Description Metrics

Figure 2.15: Control flow graphs of two different matched filter implementations.

dominantly composed of many additional objectives like performance or power consumption.

Thus, this first analysis will provide only additional insight.

2.8. Summary 35

2.8 Summary

One contribution to an enhanced design flow is the continuous analysis of the produced descrip-

tions starting from highest level of abstraction down to implementation. This chapter presents

metrics that can be derived by the analysis of an algorithm and its graph structures. Those

metrics are classified in structural and linguistic metrics. Here structural metrics are dedicated

to the graph structures whereas linguistic metrics are based on the statistics of operations and

operands. The main application of these metrics lies in a first quantitative description of an

algorithm which allows for comparison to for example other implementation variants. For exam-

ple an affinity to certain implementation architectures helps to reduce the search space of the

hardware/software partitioning process. One of the main advantages of the static analysis is its

performance. Nevertheless, some aspects of the algorithm could only be accurately estimated by

additional simulations such as upper bounds for loop counts or memory accesses. Furthermore,

HW/SW partitioning that is based on an affinity will only lead to reasonable partitioning if the

involved functions expose a high affinity either to software or hardware which might be not always

the case. The further application of those metrics will become apparent in Chapter 4 where the

fast estimation of implementation properties is based on these metrics.

3 INTEGRATED DESIGN METHODOLOGY

”Everything you can imagine is real.”

Pablo Picasso

As explained in the previous section, various metrics of a system description can be identified

which allow for a characterisation of an algorithm and thus build a basis for design decisions.

These design decisions like for example bit-width conversions or HW/SW partitioning are usu-

ally performed manually but also automatic approaches are under considerations. Automatic

approaches are a substantial ingredient in order to accelerate the design process and to close

the design gap. A further obstacle for a consistent design process is the fragmentation of the

design process that is caused by several inconsistent design tools. This chapter introduces a new

design frame work based on a single representation of an algorithm which allows for the seamless

integration of several EDA tools. This new concept of a single system description features the

consistent representation of a system design at various levels of abstraction. Furthermore, this

concept is based on a data base that combines the facilities for storing the system description as

well as its corresponding design properties. A high flexibility of this design data base is achieved

by so-called system description interfaces. A flexible intermediate format is presented that is

based on XML which allows for the integration of several other design automation tools in the

design flow. Finally, as a proof-of-concept the automatic generation of metrics which has been

presented in the last chapter, is integrated in this design environment, thus providing a data base

of characteristic values that can be shard with any other design tool.

3.1 Fragmentation of the Design Flow

The common design flow for a hardware/software system exhibits a fragmented structure as visu-

alised in Figure 3.1. Due to the large scope and the extremely heterogeneous nature of modern

wireless communication devices, their development suffers from many incompatible system de-

scriptions. On its way to the final product the design meanders towards completion passing very

dissimilar development stages. This starts with the first stage where the research team conceives

new algorithms and applications that are described and tested in high level languages as C/C++,

UML, or Matlab. In a further stage of the design process the system design team creates an

architecture. Here, several different tools like Instruction Set Simulators (ISS) for microprocessors

(μPs) or DSPs, bus and bridge models, memory models, and power simulators are involved. Thus,

a variety of experts has to be involved in this phase of the design process. Finally, the imple-

mentation team performs the step from transforming the specification to hardware or software.

38 3 Integrated Design Methodology

i
f

z-1

i
f

Codec + Framing

Interface TCP/IP

Chec
k

CRC

Dev Original Target

Original
Target

System
Architecture

IP
Selection

Hardware
Design

Software
Development

System Level
Integration

Intended Design Flow

Research
Team

System Design
Team

Implementation
Team (Marketing Team)

Design Flow © CoWare Inc.

1997-2000

System
Specification

Product
Launch

Figure 3.1: Fragmentation of the design flow.

This means for the hardware implementation rewriting of parts of the system functionality in

VHDL/Verilog for the target hardware either an Application Specific Integrated Circuits (ASICs)

or a Field Programmable Gate Array (FPGA). VHDL code is then synthesised to register transfer

level followed by a place and route process. For the parts that have to be implemented in software,

implementation issues of μPs or DSPs have to be considered. The high complexity of this process

results in an assembled product that may deviate from the original target.

Apparently, system descriptions are herein constantly rewritten by corresponding experts and

are converted into other, locally more suitable, forms. The outcome are serious communication

obstacles between design teams in backward and forward direction leading to a dramatic increase

of verification effort of up to 70% of the overall development time [16,80].

3.2 Overview

Several approaches for a consistent design methodology have been proposed, both in the com-

mercial and academic arenas, in order to close the design and productivity gaps.

A notable approach to EDA tool integration is provided by the Model Integrated Computing (MIC)

community [98]. This academic concept of model development gave rise to an environment for

tool integration [97]. In this environment, the need for centring the design process on a single

description of the system is also identified, and the authors present an implementation in the

form of an Integrated Model Server (IMS), based on a database system. The structure of the

entire environment is expandable and modular in structure, with each new tool introduced into

the environment requiring a new interface. The major shortcoming of this environment is its

dedication to the development of software components only. As such, this approach addresses

solely the algorithmic modelling of the system, resulting in software at the application level. Thus,

3.3. Single System Description 39

in comparison to the presented single system description of this thesis the environment does not

support the architectural and implementation levels of the design process.

Synopsys is one of the major EDA tool vendors offering automated support for many parts of the

design process. Recognising the increasing need for efficiency in the design process and integration

of various EDA tools, Synopsys developed a commercial environment for tool integration, the

Galaxy Design Platform [164]. This environment is also based on a single description of the

system, implemented as a database and referred to as the open Milkyway database. Thus, this

environment eliminates the need for rewriting system descriptions at various stages of the design

process. It also covers both the design and the verification processes. It is capable of integrating

a wide range of commercially available EDA tools, due to its open nature of the interface format.

However, this environment is essentially a proprietary scheme for integrating existing Synopsys

products, and as such lacks any support from other parties.

The SPIRIT consortium [158] acknowledges the inherent inefficiency of interfacing incompatible

EDA tools from various vendors. The work of this international body focuses on creating inter-

operability between different EDA tool vendors from the point of view of their customers. Hence,

the solution offered by the SPIRIT consortium is a standard for packaging and interfacing of IP

blocks used during system development. The existence and adoption of this standard ensures

interoperability between EDA tools of various vendors, as well as the possibility for integration of

own IP blocks which conform to the standard. However, this approach requires widest possible

support from the EDA industry which is currently lacking. Also, even the full adoption of this IP

interchange format does not eliminate the need for multiple system descriptions over the entire

design process. Finally, the most serious shortcoming of this methodology compared to the single

system description concept of this thesis is that it provides support only for the lower levels of

the design process, namely the lower part of the architecture level (component assembly) and the

implementation level.

In the work of Posadas et al. [141] a single source design environment based on SystemC is

proposed. Within this environment analysis tools are provided for time estimations for either

hardware or software implementations. After this performance evaluation, it is possible to insert

hardware/software partitioning information directly in the SystemC source code. Furthermore,

the generation of software for real time application is addressed by a SystemC-to-eCos library

which replaces the SystemC kernel by realtime operating system functions. Similarly to the single

system description of this thesis it is capable of describing a system consistently on different

abstraction levels based on a single SystemC description. Nevertheless, the this system does not

offer a concrete and general basis for the integration of design tools at all abstraction levels.

3.3 Single System Description

One of the most important ingredients for a consistent design methodology establishes a Single

System Description (SSD). An elaborated solution of an SSD is the implementation in the form

of an SQL [69] based Design Database (DDB). A database representation is not bound to specific

40 3 Integrated Design Methodology

language constraints and thus offers great flexibility in capturing the miscellaneous aspects of a

design. Additional advantages of the DDB approach are fast access, data security by the capability

to grant permissions to the developers, a high popularity as well as compatibility with major Data

Base Management Systems (DBMS) from Microsoft, IBM, Oracle and the open source DBMS

MySQL [129].

COSSAP
(Synopsys)

E
n
S
c
a
l

P
r
e
S
e
l

T
h
r
e
s
h

S
l
o
t
A
c
c

M
a
s
k
C
a
l

sig01 sig03

sig02 sig04

sig05

sig00

i
n
E
S

o
u
t
E
S
1

o
u
t
E
S
2 i

n
S
A

i
n
P
S

i
n
T
h

i
n
M
C

o
u
t
P
S

o
u
t
S
A

o
u
t
M
C

o
u
t
T
h

s
i
n
k

l
o
a
d
C
I
Q

OTIE
Interface

SystemC
Design

OTIE
Interface

.hpp

.cpp

#ifdef __DEBUG
 cout << ’“\nFrame
error.“
#endif

SC_MODULE(receive) {
 sc_fifo_in<double>
in_Q;
 sc_fifo_in<double>
in_I;
// ...

};

OTIE
Interface

Design
Analysis/Estimation

OTIE
Interface

System
Partitioning

e1

e2

e3

e4

e5

e1

e2

e3

e4

e5

Figure 3.2: Open Tool Integration Environment.

A framework called Open Tool Integration Environment (OTIE) reflecting these obligations is

shown in Figure 3.2. It depicts the DDB surrounded by the required tools each with dedicated

interfaces to incorporate the various existing EDA tools and languages and stays open for incor-

porating other tools for missing design tasks. During the design flow the various design teams

provide inputs, such as desired system behaviour and structure, constraints, tool options etc.

Also, the designers receive outputs, like status of the system description, results of simulations,

estimates of hardware cost, timing and similar. Typically, the outputs of the database are handed

to the tools which present them in form of their Graphical User Interfaces (GUI) to the designer.

Some of the tools supported by OTIE are commercially available, favoured by the various design

teams, while others are specially written to perform missing tasks, usually performed manually by

designers in the past. As long as some design steps are not covered by available tools, for example

HW/SW partitioning, a database modification tool is available, simply allowing the designer to

enter manually derived values. The database is thus enriched and the system description is refined

on its way to implementation. Note, that the database system does not require a specific order

of which various tools need to be performed. For example, some designers prefer to perform

floating-point to fixed-point conversion after the HW/SW partitioning. As long as the succeeding

tool is provided with sufficient information, it can be started. Such open environment has not

only the advantage that new commercial tools can be incorporated but it also provides a realistic

platform to investigate the performance of new research tools. A possible design flow sequence for

example would be loading a SystemC description into the database. Furthermore, design/analysis

3.3. Single System Description 41

and estimation would be performed which enriches the content of the database with the results of

the characterisation process. Finally, HW/SW partitioning may be accomplished which exploits

the properties of the system analysis.

Currently, several design tools have been developed, that are integrated within this design envi-

ronment: Automatic partitioning of the system into HW/SW parts [103], automatic generation

of virtual prototypes [102], and an environment called fixify is available for performing the task

of fixed-point to floating-point optimisations [133].

3.3.1 Design Database

The DDB as the central repository of the consistent design environment has been designed to

generally fit system descriptions and also design properties. The system description part supports

concepts as modules or entities, their hierarchy and interconnections. This concept does allow

to store design languages with concepts of parallel processing and procedures. Thus, this main

concept allows also for storing other design languages like for example ESTEREL which is also

based on modules that are concurrently executed and communicate via signals. Nevertheless, the

structure of the data base is specifically motivated by the language features of SystemC and would

need certain modifications. The entity-relationship structure of the underlying DDB structure is

depicted in Figure 3.3. Here, the boxes represent entities, or types of information contained in

process

data
type

operation
type

aliasdataoperation

instance

has

has

reads
has

is ofis of

has

writes

hierarchy

module

of
type

basic
block

basic
block con

block
property

has

hashas

process
property has

Figure 3.3: The structure of the design data base.

the database. The arrows represent relationships among the different entities in the database. An

entity can thus be considered a noun, such as ”data”, or ”data type”, and a relationship can be

considered a verb, such as ”has”, or ”is of type”. Entities are represented in the form of database

42 3 Integrated Design Methodology

tables, with columns and rows, much like a spreadsheet, while relationships are represented in

the form of links, connecting the information in one table to the information in another. The

entity module in this figure represents the break-down of the system functionality by the designer,

using the SystemC SC_MODULE classes. Through modules, the designer represents the system

with each individual part of its functionality contained in a separate module, with its own inputs

and outputs. Actual use of modules in the SystemC model of the system is made by instantiation,

i.e. the declaration of at least one particular instance of that module, with connections to other

instances in the design through existing data channels. Hence, instance is another entity in the

structure of the subset of the DDB. It is worthwhile noting that more than one instance of each

module may exist in the overall representation of the system but a module declaration which is

not instantiated at least once, is redundant.

There are generally two types of instances in SystemC: structural and functional. Structural

instances contain no explicit functionality but do contain instances of other modules within them,

thus allowing for the existence of a hierarchy in the SystemC description. On the other hand,

functional instances do not contain any sub-modules (and are hence always the leaf nodes of

the hierarchy tree) but they do contain explicit functionality. This hierarchy of the SystemC

description is represented through one relationship of one entry in the instance table to another.

Hence, all instances in this table are linked up into a single hierarchy tree, whose root is referred

to as the top-level instance, containing the entire design.

Embedded in the functional instances, as already stated, is the functionality of the system. Each

functional instance contains one or more processes, as represented in the figure, connected to

the appropriate instance through the ”has” relationship. While all the processes throughout the

design are running concurrently, each process is in itself purely sequential, i.e. contains a control

flow graph representation. The CFG representation of each process shows the sequential progress

through the execution of the process. The CFG is built up of nodes, representing the basic blocks

(Section 2.3.3) which is also represented as an entity in Figure 3.3, linked from its parent process

by a ”has” relationship. The structure of the CFG of each process is represented through a detailed

list of predecessor and successor nodes for each basic block. Through this technique, it is possible

to link up basic blocks into any arbitrary CFG structure as needed. The lists of predecessors and

successors of each basic block is contained in the basic block connections entity. Each basic block

is itself represented by a data flow graph, where each node is an operation. Thus, each basic

block by itself contains no control flow. Operations are atomic, i.e. are not further divisible, and

are of a certain operation type. Basic operations for example are of the type as addition (+),

multiply-accumulation (MAC) or left bit wise shift (<<).

Communication between instances in a SystemC description is achieved through data channels,

represented in this figure by the data entity. Each data entity is bound to one data type entity,

such as a signal, variable or constant. Since a single data channel, on the way from its source

to its destination, can traverse several instances in the hierarchy of the design, it has a number

of different aliases referring to it. Similarly, an instance entity is bound to a number of different

alias entities through the ”has” relationship, representing all the different aliases for all the data

3.3. Single System Description 43

channels within that particular instance. Finally, two relationships exist between data channel and

operation entities. The ”reads” relationship represents the use of a data channel as an input into

one or more operations. Similarly, an operation has the relationship ”writes” to one or more data

channels. It is important to note that each data channel may be read by one or more operations,

and each operation may read one or more data channels. On the other hand, each data channel

is written by exactly one operation (and no more than one), though an operation may write one

or more data channels.

The design properties part of the design database allows for storing specific properties, that char-

acterise the processes and the basic blocks of the algorithms stored within the system description

part of the design data base. The entity process property contains for example information on

the longest path through the CFG of the process, or, the degree of parallelism in the CFG. The

entity block property stores for example information on the depth of the DFG of the basic block,

or the number of addition operations in the basic block. Such property information is essential in

performing high-level system characterisation through static code analysis (Section 3.4).

Example 3.1. Figure 3.4 shows a graphical representation of a small design written in SystemC.

Example 1 which is an instance of Example has inputs (in1, in2, in3, in4) and an output (out1).

It contains three blocks two adders (add 1, add 2), one multiplication (mul 1), and their corre-

sponding processes. The add-blocks are connected with the multiplier internally with the signals

int1 and int2. Here, the alias-concept is useful to identify these signals with the internal output

signals of the add-blocks and the input signals of the multiplier.

Example_1 (Example)

add_1 (add)

+ int1

int2

in1

out1

in2

add_2 (add)

+

in3

in4

mul_1 (mul)

x

Figure 3.4: Design Example.

In this simple case the module table holds the names for the used modules Example, add, and

mul. Inside of the instance table Example 1, add 1, add 2, and mul 1 can be found. The alias

table stores the ports in 1, in 2, in 3, in 4, out 1, and the internal signals int1 and int2.

3.3.2 OTIE Interface

The connection of tools to OTIE is accomplished via the OTIE interface. The underlying concept

of this interface, allowing to import designs into the data base is two-tiered, consisting of a parser

44 3 Integrated Design Methodology

and a scanner, as Figure 3.5 illustrates.

Figure 3.5: Concept of the OTIE interface.

Since a number of design languages are currently in wide-spread use, a separate interface needs

to be developed for each design language, thus the OTIE interface implementation aims at high

modularity and ease of reuse of components which is reflected by this two-tired concept of parser

and scanner. The front end of the interface, the parser module, operates directly on the textual

system description created by the designer, and is thus language-dependent. However, the back

end, or the scanner module, operates only on the intermediate description of the system, and is

thus language independent. Therefore, the front end has to be written for each tool separately

whereas the back end can be reused without modifications.

The communication between the two modules of the OTIE interface is achieved through an

Intermediate Format (IF) representation of the system, which captures the design information

extracted by the parser module, before it is stored in the DDB by the scanner module. The IF

representation is formatted in the Extensible Markup Language (XML) due to its good human

readability and high popularity, which in turn resulted in many XML software tools (such as syntax

checkers, parsers, editors, etc.) being available.

Additionally, this intermediate format is also available in a format, which adheres to the specifica-

tions of the Graph Exchange Language (GXL). A cut-out of the XML-based intermediate format

is presented in Figure 3.6. Furthermore, a detailed description of the semantics of the two formats

is given in the Appendix C. Also, basing the IF representation on XML allows for unobstructed

expansion of the semantic set (e.g. for adaptation to a new design language in the future) simply

by defining additional XML tags. The functionality of the scanner module is to enrich the DDB

with the design information in the XML IF representation of the system. Therefore, the semantics

in the XML IF need to match the entity-relationship structure of the subset of the DDB which

will hold this information. In other words, the newly acquired design information, held in the

XML IF, needs to be able to fit into the DDB. As already stated, the semantics of the XML IF

representation of the system agrees closely with this entity-relationship structure within the OTIE

interface.

Two parsers for incorporating SystemC and COSSAP descriptions have been implemented (Fig-

ure 3.2). The parser for SystemC is based on the Open Compiler Environment (OCE) [130].

This software decomposes each function of the design into its basic blocks and allows for the

construction of the CFG and DFG representation. Within this compilation framework the source

code (SystemC) is transformed into an abstract syntax tree. At this step already target indepen-

dent optimisations are applied like dead code elimination or constant propagation. In a second

3.3. Single System Description 45

Figure 3.6: XML-based Intermediate Format.

step a compiler back-end has been developed, that translates the abstract syntax tree into the

intermediate format representation.

The second parser realisation considers COSSAP, an environment from Synopsys, as starting point,

which allows for a graphical representation of the design at system level. To provide a complete

representation of the COSSAP model within the DDB, the information on the architectural structure

as well as on the functionality and behaviour of each component is extracted from the COSSAP

project. A COSSAP project stores its model architecture in a non-hierarchical way in a file pair

named after the top module, suffixed .v_arc and .v_ent. The description language used in these

files is VHDL compliant. A parser for VHDL has been implemented to create the IF representation

of the model architecture. This parser is based on two open source tools: Flex, a lexical analyser,

and Bison, a parser generator [67].

46 3 Integrated Design Methodology

3.4 Design Analysis

In general poorly supported design tasks considers the analysis of a system description. Thus, a

design analysis tool has been integrated within OTIE that allows for automated characterisation of

the system description. This design analysis is based on Static Code Analysis (SCA) and generates

a set of metrics that has been described in the previous chapter. In principal, design analysis can

be performed on different levels of abstraction. Usually, it will be performed immediately after

reading a design description either for example in SystemC or VHDL as described in the previous

section. The design analysis tool reads the appropriate information from the DDB. This embraces

the information about basic blocks, control flow graphs, data flow graphs, and used operations

and operands. In a second step, the generation of the metrics is achieved by means of a C++

graph library. This graph library provides a framework for storing any graph structure (e.g. tree).

Additionally, the library supports weighting of the nodes. These weights are used for example to

annotate nodes with the operations and types of operation used within each basic block, and can

be weighted according to the needs of the designer. Furthermore, it provides efficient algorithms

for traversing the graph, enumerating different paths, gathering the longest/shortest path, and

identification of loops. Thus, the set of metrics that has been presented in the previous chapter

is generated. The results of the design analysis are persistently stored in the design database.

Further tools that are used within the design flow will exploit those results for refining the system.

Such tasks are for example estimation of implementation properties (Chapter 4) and design space

exploration (Chapter 5), or HW/SW partitioning of the system based on high level metrics [103].

3.5 HTML Visualisation

While most of the EDA tools transform and refine the design database, it is also necessary to

inform the designer about the content of data base. This task is accomplished by an HTML

visualisation which directly exports the contents of the SSD to the designer. This tool helps the

designers to observe the status of the SSD and to visually summarise the relevant refinement

information in the design. One of the most suitable formats for visualising the contents of the

SSD is the Hyper Text Markup Language (HTML). This language is flexible, through its ability

to describe any number of mutually linked pages. It is also suitable for displaying both textual

and graphical information which is a critical requirement for the visualisation of the SSD. Finally,

HTML is highly suitable because its viewing is ubiquitously supported by any web browser. The

HTML visualiser is capable of representing all of the information in the SSD at any stage in

the design process. In other words, it is general and dynamic in nature, adapting to the current

contents of the SSD as it grows during the design process. Hence, it displays the contents of all the

tables in the SSD textually, and whenever possible, augments this with graphical representations

of the data. A screen shot of the HTML visualiser is given in Figure 3.7.

This screen shot shows the information page of a particular instance, showing its name (mul_1),

place in the hierarchy, aliases it contains, and its unique ID within the SSD. The HTML visualiser

3.5. HTML Visualisation 47

Figure 3.7: Information page of one process.

is also capable of graphically representing the hierarchy tree of the design (Figure 3.8).

Figure 3.8: Hierarchical view of a system.

Another view for example depicts the data flow within one process as shown in Figure 3.9.

To achieve its dynamic flexibility mentioned earlier, the HTML visualiser relies on creating dy-

namic HTML pages using Common Gateway Interface (CGI) scripts written in the Perl scripting

48 3 Integrated Design Methodology

Figure 3.9: Visualisation of the data flow.

language. These scripts are also capable of directly querying the MySQL database in which the

SSD is implemented, thus providing a direct link from the SSD to the created visualisation. In

this way, the HTML visualiser creates one of the possible direct exports of the refinement data

contained in the SSD into a lucid visual form which gives the designer a clear overview of the

entire system.

3.6 Summary

The fragmentation of the design flow has been identified as one of the major starting points

for accelerating the design flow. This chapter presents the Open Tool Integration Environment

which is based on a central repository, thus following the principal of a single system description.

This repository in form of a design database provides the facilities for a consistent design flow.

Thus, every EDA tool can seamlessly communicate to each other and the system description can

be stepwise refined. The concept of the design database allows for storing system description

languages that are based on structural language concepts (e.g. SystemC or C++).

Several EDA tools have been integrated in this environment like automatic generation of virtual

prototypes, HW/SW partitioning, and automatic floating-point to fixed-point conversion. The

content of the design database can be visually depicted to the designer. Finally, a design anal-

ysis environment which performs static code analysis is also integrated automatically identifying

metrics and storing them into the data base. This automatic analysis allows for taking design de-

3.6. Summary 49

cisions on very early stage of the design flow based on characteristics of the system. Furthermore,

this builds a basis for additional design tools that refer to cost functions based on metrics.

4 ESTIMATION OF DESIGN PROPERTIES

”If you optimise everything, you will always be unhappy.”

Donald E. Knuth

The estimation of implementation properties is crucial for every design decision that has to be

taken during the design flow. Usually, the estimation process starts at the register transfer level

and contains properties like timing, area, and power. With the introduction of high level synthesis

tools which allow for the synthesis of languages with more expressiveness, the task of prediction

has become even more complex. This is caused by many optimisation techniques that are hardly

predictable without performing synthesis itself. Thus, instead of exact prediction methods which

would be infeasible for industrial projects with hundreds of functions, an estimation based on

statistics like the properties that are defined in Chapter 2 will be introduced. The estimation

of control cycles and area complexity is presented. In comparison to other approaches these

estimation techniques do not require any scheduling or resource allocation. Furthermore, those

estimations are applied to the characterisation of one function regarding its timing profile and

the minimisation of the overall execution time for structural verification. A new method which

combines execution time profiling and feasible path analysis of the control flow graph is presented.

This allows for exact estimation of the process run time interval. Furthermore, a new extension

of Poole’s algorithm for identifying a basis is presented that allows for reducing the time effort for

structural verification significantly. Hence, this chapter provides estimations of design properties

which enable cost and performance evaluation without synthesis and the exploration of design

alternatives either manually or as it will be shown in the next chapter, automatically.

4.1 Overview

Early estimates of the key features like execution time, area, and power consumption of a specific

algorithm implemented in hardware are crucial for design decisions. Especially scheduling relies on

estimations of timing in the area of real time systems in order to fulfill the required response time.

Here, also possible interference by other programs has to be taken into account which results in

a Worst Case Response Time (WCRT). For the task of HW/SW partitioning [103], execution

time contributes to the cost function, which should be minimised. The effort of elaborating

implementation variants is usually not feasible in order to find optimal solutions. The modelling of

only critical parts, just like within rapid prototyping [147], allows for a detailed characterisation of

the final implementation properties. This time consuming procedure is certainly not affordable for

systems with the complexity that are found in current industrial designs. Thus, estimation methods

52 4 Estimation of Design Properties

have to predict the final hardware properties from the starting point of the implementation.

Those starting points are quite different including design languages like C/C++, SystemC, and

Matlab/Simulink.

As long as the hardware development is performed manually on the register transfer level, the

required cycle count of the implementation is already known. With the introduction of high level

synthesis tools [63] and thus the exploitation of potential parallelism, re-timing, and other tech-

niques, prediction of the execution time has become more challenging. Execution time estimation

can be achieved by simulation or static analysis. In simulation based approaches, simulation suc-

ceeds necessarily the synthesis procedure and thus accuracy of the estimation is burdened with

the penalty of synthesis time. Synthesis time can be reduced by utilising simple methods like

greedy approaches for scheduling and allocation in order to obtain fast estimations. Further-

more, in simulation based approaches the algorithm is enriched with logging statements in order

to obtain simulation traces. Hence, this procedure is appropriate for investigating the standard

working conditions. Static approaches are usually path based techniques where the algorithm

description is transformed from its CFG and DFG representation into a directed acyclic graph.

Within this acyclic graph worst case paths can be investigated by static analysis. Static analysis

allows for identifying the boundaries of the execution but usually provides a pessimistic estimate.

Nevertheless, in the case of real time systems this is essential.

The prediction of an attribute A will generally depend on a mathematical model relating A to some

existing measures of attributes A1, . . . , An. Accurate prediction depends in any case on the careful

measurement of the attributes A1, . . . , An. Hence, careful measurement of the key attributes like

the metrics presented in Chapter 2 is necessary for prediction as well as the selection of attributes

in order to fulfill the main demands on estimates according to Gajski et al. [63] accuracy, fidelity,

and simplicity.

In the work of Bilavarn et al. [23] a behavioural description in C is the starting point for the estima-

tion procedure. This description is translated into a Hierarchical Control Flow Graph (HCFG). For

the area consumption the number of required resources is accumulated. The estimation process

itself utilises a library with pre characterised hardware units, while the estimation approach of this

thesis is independent of any hardware library.

Performance and area estimations for FPGAs are shown in [55]. Firstly, the algorithm is char-

acterised starting with a DFG representation. Thus, a characterisation vector is derived that

accounts for the number of data input and outputs, the number of resources and word lengths

(adders, multipliers, logic, LUT), the memory, the degree of parallelism, and the number of itera-

tions. The design space is explored by applying several transformation techniques like pipelining,

replication, and decomposition of the DFG.

Estimating the run-time of a hardware implementation on an FPGA is reported in [139]. In com-

parison to the approach of this thesis a simulation based approach is presented. Here, simulation

traces of the algorithm that is implemented in MATLAB are generated and with this information

acyclic data flow graphs are produced. No loops are present within this data flow graph due to

the fact that all loops of the algorithm are unfolded. In a further step the operations of the data

4.2. High Level Synthesis 53

flow graph are scheduled and bounded to the FPGA resources. Finally, estimates for timing and

resources are derived based on an FPGA performance model.

4.2 High Level Synthesis

The starting point for a system design is usually an algorithm that is described and verified at a

high level of abstraction. A high level of abstraction provides convenient means like complex data

types, various operations, parallel processing, and easy to use communication facilities between

processes. For example SystemC provides such features and is even more attractive when it is sup-

ported by a graphical development environment [122]. Furthermore, it is a common approach to

use domain specific communication models, like for example, in the wireless domain to describe al-

gorithms with a synchronous data flow graph where functions (A,B,C,D,E as shown on Figure 4.1)

communicate with fixed data rates to each other. In order to implement such an algorithm on

a SoC the algorithm has to be partitioned into hardware and software parts. The partitioning

process is driven by estimates of the final implementation like costs for software (execution time,

memory) and the implementation costs of hardware (execution time, area, power). Usually, the

SoC architecture for complex systems comprises nowadays a heterogenous architecture that con-

sists of processing elements (DSPs, ASICs), memory, and a bus system (MPSOC). Furthermore,

not all parts of the algorithm which are dedicated to hardware, will be implemented into one

monolithic part. Thus, several so called hardware accelerators will perform independent tasks of

the algorithm in parallel. Common examples for such hardware accelerators are dedicated to the

audio and video processing domain (H.264 codecs, MP3 decoder) or signal processing algorithms

from the communications domain (Viterbi decoder, synchronisation, channel estimation).

Finally, the implementation of these hardware accelerators is usually performed at RTL with

marginal reuse of the golden reference code of the algorithm. Here, certain limitations of the

description languages at RTL can be identified that hinder a direct reuse of the algorithm descrip-

tion from the highest level which utilises constructs with no synthesis/hardware expression, real

data types (encoding problem), multi-dimensional arrays (addressing problem), no static bounds

for loops, and pointers.

High Level Synthesis (HLS) targets the transformation of high level languages such as C/C++ to

RTL. The evolvement of high level synthesis tools tries to overcome these limitations and has

thus the potential to automate the design process for hardware accelerators. Approaches to high

level synthesis from academia and industry like for example SPARK [71] and CatapultC [120] from

Mentor Graphics overcome at least some of these limitations. They support as starting point for

the synthesis a C/C++/SystemC based algorithmic description which is transformed to an RTL

description in VHDL/Verilog. Another high level synthesis project is called MATCH (MATlab

compiler for heterogeneous computing systems) that allows to generate VHDL from Matlab code

for FPGAs [18].

Furthermore, synthesis to a gate level representation for ASIC/FPGA designs (Figure 4.2) is

achieved with tools from Synopsys (Design Compiler) or Mentor Graphics (Leonardo Spectrum).

54 4 Estimation of Design Properties

Figure 4.1: HW/SW partitioning of an algorithm and its implementation by several hardware
accelerators.

High level synthesis is divided in several sub tasks:

• A Compiler front end performs syntax and semantic analysis of the algorithm description

and generates a representation of the program structure with control flow graphs and data

flow graphs or a combined representation with control data flow graphs. Now data and

control flow analysis can start. To these representations several technology independent

optimisations are applied like for example dead code elimination, constant propagation,

or loop invariant code motion. Furthermore, optimisations on this level target already a

fast and minimal hardware implementation. For example the elimination of common sub

expressions within one basic block is depicted in Figure 4.3.

• Algebraic transformations are used to identify an equivalent algebraic representation with

reduced implementation cost. For example in the strength reduction technique, expensive

exponential operations are replaced by quadratic operations or multiplications are replaced

by additions. Furthermore, multiplication and division by a power of two can be described

by a shift operation or if implemented in hardware only a rewiring is required (reordering of

a bit vector).

• Tree Height Reduction (THR) detects the possible parallelism within one expression tree and

tries to minimise the longest path of the expression tree, thus a fastest possible hardware

implementation can be achieved [108] (Figure 4.4).

4.2. High Level Synthesis 55

Figure 4.2: Design flow that utilises high level synthesis and RTL synthesis.

• Scheduling(temporal domain) and allocation (spatial domain) establish the main tasks in

the high level synthesis process. Those two domains strongly interact, thus optimisation

of objectives like timing and area becomes a complex task in order to obey constraints for

timing and area. Generally, this thesis will focus on Resource-Constrained Scheduling (RCS)

which tries to minimise the number of execution steps while obeying to a limited number

of execution resources. Also technology dependent optimisations for the scheduling can be

applied like pipelining, multi-cycle operations, and chaining of operations.

Furthermore, a structural model of the data path has to be defined, as an interconnection of

resources and a logic level model of a control unit that issues the control signals to the data path

according to the schedule. Two hardware models for the data path synthesis can be distinguished,

a multiplexer and a bus architecture. In the multiplexer architecture the connection structure

between storage, namely registers or memory, is accomplished by multiplexers (Figure 4.5).

56 4 Estimation of Design Properties

Figure 4.3: Elimination of the common sub expression a + b.

Figure 4.4: Tree height reduction of the expression z = a + b + c + d.

In the bus architecture the connection of processing elements and memory is realised with a bus

system (Figure 4.6).

4.3 Control Cycles

The number of cycles that is needed for an application to compute the results for a given input

will be derived by static analysis of a function. This will be performed on its graph representation.

As shown in Chapter 2, a function can be decomposed into its control flow graph built up with

interconnected basic blocks. Each basic block contains a sequence of data operations. Those

data operations can be represented as expression trees.

In order to estimate the cycle count that is needed to execute one path, the operations inside the

basic block have to be considered. For each basic block BB an execution cycle count CC(BB) is

assumed. An upper bound for the number of control cycles that is required to execute the DFG

of one basic block which obeys to a resource constraint, is based on the Operator-Use Method

(OUM) [63]). This method is based on the computation of the cycle count of a so-called ready

list. A ready list is defined as a set of data independent operations within a basic block. The

following equation specifies an upper bound for the execution cycles of a ready list:

4.3. Control Cycles 57

Figure 4.5: Multiplexer architecture.

Figure 4.6: Bus architecture.

CCUB = max
φ∈Φ

(⌈occur(φ)
num(φ)

⌉
delay(φ)

)
. (4.1)

Here, the set Φ = {φ1, . . . , φn} denotes the various operations that are used within the data

flow graph of the basic block. Furthermore, occur(φ) denotes the required number of operations

of type φ and num(φ) the number of available resources to compute φ. The delay(φ) describes

the number of clock cycles that an operation φ takes for its execution. For example consider the

rank ordered DDG of one basic block which performs a filter function y =
4∑

i=1
cixi as depicted in

Figure 4.7. The operations that correspond to the same rank are data independent and can be

executed in parallel. Thus, the operations within the same rank are grouped together into one

ready list. Thus, each BB is annotated with a set of ready lists RL(BB). Finally, summing this

upper bounds of execution cycles for each ready list of the BB results to the upper bound of

execution cycles for the complete basic block,

58 4 Estimation of Design Properties

CCUB(BB) =
∑

r∈RL(BB)

CCUB(r). (4.2)

Figure 4.7: Ready lists for the DDG of a filter function.

Table 4.1 lists the upper bound for the DDG with different resource constraints, assuming that

a multiplication and an addition consumes one cycle. An upper bound with a constraint of only

one multiplier and one adder results in a complete sequential schedule of all operations and takes

seven cycles as indicated in the first column of Table 4.1.

Ready Resource constraint
list 1*,1+ 2*,2+ 3*,3+ 4*,4+

1 4 2 2 1

2 2 1 1 1

3 1 1 1 1

CCUB 7 4 4 3

Table 4.1: Upper bound for ready list with different resource constraints.

In this approach the time for reading from and writing to memory or register is neglected. This

drawback is overcome by the resource use method [52].

A lower bound for the control cycles for the execution of an BB is given by the longest path

of the As Soon As Possible (ASAP) schedule of the DFG. This approach assumes no resource

constraints. A lower bound cycle count for the example above results to CCLB = 3. A tighter

lower bound that takes into account a limited amount of resources is the TASAP [138] algorithm.

A fast estimation approach which is based on the metrics that are derived in Chapter 2 is presented

in the following

CCAV =
⌊

log2(N) +
∑
φ∈Φ

Nφ + 1 − γφ

ηφ

⌋
, (4.3)

where N denotes the number of nodes (operations) inside the data flow graph. The first summand

4.3. Control Cycles 59

describes an empirical lower bound for the cycle count. The second one denotes a penalty for a

DFG with less parallelism γφ, as defined in (2.13) regarding to each type of operation. There is

no penalty applied in the case of Nφ + 1− γφ = 1 and many resources available (ηφ denotes the

number of available resources of the underlying hardware). In Table 4.2 the average cycle count

for the above described filter example are presented.

Resource constraint
1*,1+ 2*,2+ 3*,3+ 4*,4+

CCAV 6 4 3 3

Table 4.2: Average cycle count based on statistics.

(a) Resource constraint (1*,1+). (b) Resource constraint (2*,2+).

(c) Resource constraint (3*,3+). (d) Resource constraint (4*,4+).

Figure 4.8: Optimal schedules with different resource constraints.

Thus, by applying the presented cycle counts for one basic block CC the execution cycle count

of one path pj of a CFG is expressed with

t(pj) = pjcbeg + CC(exit). (4.4)

Here, the vector cbeg represents the number of executions of the basic blocks of the CFG,

60 4 Estimation of Design Properties

Resource constraint
1*,1+ 2*,2+ 3*,3+ 4*,4+

CCOP 6 4 4 3

Table 4.3: Cycle count derived with optimal schedules.

1*,1+ 2*,2+ 3*,3+ 4*,4+
1

2

3

4

5

6

7

8

resource constraint

cy
cl

e
co

un
t

CCUB

CCLB

CCAV

CCOP

Figure 4.9: Comparison of cycle count estimations.

cbeg =

⎛
⎜⎜⎜⎜⎜⎜⎝

CC(beg(e1))
CC(beg(e2))
CC(beg(e3))

...

CC(beg(e|E|))

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.5)

Here, to each entry of the vector the execution cycle count of the corresponding basic block is

assigned.

Vice versa (4.4) can be formulated in the following way

t(pj) = pjcend + CC(root), (4.6)

by a vector cend which is defined as:

4.3. Control Cycles 61

cend =

⎛
⎜⎜⎜⎜⎜⎜⎝

CC(end(e1))
CC(end(e2))
CC(end(e3))

...

CC(end(e|E|))

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.7)

The application of the estimation of execution cycles will be shown within two examples. Firstly,

a profile of the execution time behaviour of one control flow graph will be presented. Secondly,

an algorithm for a structural verification of functions which achieves a minimal overall execution

time will be presented.

4.3.1 Execution Time Profile

A full timing characterisation of the execution time of a hardware accelerator includes not only

worst case estimation but also best case estimation, as well as estimation of all other execution

paths (Figure 4.10). This is accomplished by extracting all possible paths from the CFG, starting

at the root and ending at the exit node of the CFG. The computation of all possible paths seems

to be feasible for functions restricted to a certain complexity, which is the case in a CFG derived

from algorithms in industrial context. Nevertheless, in the case of data dependent loops an upper

bound for the loop count has to be assumed.

Figure 4.10: Execution time of different execution paths of a function.

A process run time interval Tint can be identified by

62 4 Estimation of Design Properties

Tint = WCET − BCET. (4.8)

Not all possible paths from the CFG contribute to the number of paths but only those paths

which are feasible. A path is feasible if the boolean product of its conditions is not false.

Figure 4.11: Determining feasible paths of a CFG.

For example in Figure 4.11 a CFG is depicted with seven basic blocks BB1, . . . , BB7 and eight

edges e1, . . . , e8. All the possible paths of the shown CFG are given in their vector notation,

p1 = (1, 1, 1, 1, 0, 0, 0, 0)T ,

p2 = (1, 1, 0, 0, 0, 0, 1, 1)T ,

p3 = (0, 0, 1, 1, 1, 1, 0, 0)T ,

p4 = (0, 0, 0, 0, 1, 1, 1, 1)T .

If the value A that is used within the two conditions of the CFG stays constant during the

execution, then only the paths p1 and p4 are feasible. Systems with a Single Feasible Path (SFP)

(pure data flow graphs) are usually hardware related algorithms e.g. FIR and FFT (Figure 4.10).

In other words, the execution path is independent from the input data.

However, for control flow graphs for each set of inputs different paths can be examined. Systems

with many feasible paths are control dominated but differences between run times of different

paths are experienced only if the execution time in the branches differs.

4.3. Control Cycles 63

4.3.2 Control Cycle Estimation Example

The presented static analysis techniques are demonstrated by two examples. An MPEG algorithm

has been chosen from the embedded systems library called MediaBench [110] and a part of a Cell

Searching (CS) algorithm in UMTS from the mobile communication domain.

In order to compare the estimates to results, derived by high level synthesis, the SPARK [71]

environment has been taken. For the synthesis, all optimisation options have been turned on,

like loop invariant code motion which moves computations that are unchanged by the iteration

of one or more surrounding loops out of the loops, thus eliminating redundant computation. Also

elimination of common sub expression and constant propagation is deployed.

Function CS Eb Ew Rb Rw Ab Aw

Filter 1 228 230 165 167 0.62 0.61
Filter 2 2112 2114 1330 1333 0.41 0.41
Sqr and Sum 3 3 5 5 0.6 0.6
Slot Accu 2 2 1 1 0 0
Peak Detection 15360 15360 15362 15362 0.99 0.99

Function MPEG

calcid 3 3 6 6 0.5 0.5
calculate fwd 13 13 15 17 0.76 0.86
predcase1 256 512 475 539 0.94 0.53
predcase2 2 960 4 1486 0.64 0.5

Table 4.4: BCET and WCET execution time prediction.

In Table 4.4 the predicted cycle count for BCET Eb and WCET Ew for the functions of the

chosen examples are shown. Also the high level synthesis results are given for the BCET Rb and

WCET Rw. The relative accuracy A (between estimated value E and the reference value R of a

design) as defined in (4.9) is also depicted.

A = 1 − |E − R|
R

. (4.9)

In regard of applying the cost estimation heuristic within transformational design space exploration,

the ability to quantify relative dependencies of design characteristics is much more important than

the ability to capture absolute values. In the following the value μij is defined to be one if the

relation between estimated value E and reference value R of two different designs i and j is

preserved.

μij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1; if

⎧⎪⎪⎨
⎪⎪⎩

Ri < Rj ∧ Ei < Ej

Ri > Rj ∧ Ei > Ej

Ri = Rj ∧ Ei = Ej

0; otherwise

(4.10)

64 4 Estimation of Design Properties

Thus, a fidelity [64] value as proposed by Gajski is defined:

Fidelity = 100
2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

μij . (4.11)

The fidelity measure supplies for a given set of n reference values R1, . . . , Rn and n estimated

values E1, . . . , En a number describing the quality of the estimate with respect to its ability to

quantify relative dependencies of pairs of reference/estimation values.

The fidelity value for the given set of nine function has been evaluated and gives for the WCET

0.96 and 1 for the BCET estimation values. Those values emphasise their usability for optimisation

processes where only relative values are needed.

Furthermore, Table 4.5 reports on the number of paths (Npath) found in the control flow graph

and the reduced amount of paths (Nfpath) by selecting only the feasible ones. Also, the process

run time intervals, estimated (Eint) and deduced by synthesis (Rint) are shown in this table.

Function CS Npath Nfpath Eint Rint

Filter 1 16 16 2 2
Filter 2 64 64 3 3
Sqr and Sum 1 1 0 0
Slot Accu 1 1 0 0
Peak Detection 2 2 0 0

Function MPEG

calcid 1 1 0 0
calculate fwd 1 1 0 2
predcase1 16 4 256 64
predcase2 128 11 958 1482

Table 4.5: Number of feasible paths and process run time interval.

In Figure 4.12 the execution time profile of the function predcase1 is depicted. In Table 4.6 is

shown that 16 structural paths can be determined from the CFG of the function. Not all of them

lead to different execution times. The dashed lines denote those path which are not feasible and

therefore do not contribute to the actual possible paths. So that after removing the non feasible

paths only four paths remain. Only three paths are drawn solid, because two of the remaining

paths lead to the same execution time of 320 cycles. The BCET has the value of 256 cycles and

the WCET has 512 cycles with a run time interval Tint1 of 256 cycles. Whereas for the non feasible

paths a BCET of 128 cycles and a WCET of 896 cycles (Tint2=768 cycles) can be determined.

The removal of the non feasible paths leads to much tighter WCET and BCET estimates, so that

the estimated run time interval has been significantly reduced.

4.3. Control Cycles 65

Figure 4.12: Execution time profile for the predcase1 function from the MPEG algorithm.

4.3.3 Structural Verification in Minimal Time

Due to the fact that verification is one of the most time consuming tasks within the design process

it is of major interest to reduce the time effort for this task. As explained in Chapter 2, each

path of a CFG can be associated with a vector where each element of the vector is associated to

a distinct edge of the CFG and its value represents the number of times that the edge is traversed.

Example 4.1. Consider the graph in Figure 4.13 with seven vertices (basic blocks) and eight

edges. The vertex BB1 is the root and the vertex BB7 is the exit vertex of the CFG.

Figure 4.13: Simple example of a CFG. The basic blocks are annotated with the corresponding
cycle count that is needed to execute the internal DFG.

The path consisting of the edges e1, e2, e3, and e4 can be represented by the vector (1, 1, 1, 1, 0, 0, 0, 0)T .

All possible paths of the depicted CFG are given in their vector notation, p1 = (1, 1, 1, 1, 0, 0, 0, 0)T ,

p2 = (0, 0, 0, 0, 1, 1, 1, 1)T , p3 = (1, 1, 0, 0, 0, 0, 1, 1)T , p4 = (0, 0, 1, 1, 1, 1, 0, 0)T .

66 4 Estimation of Design Properties

As explained in Section 2.3.3 a vector of the basis set of a CFG cannot be formed as a combination

of other paths of such basis. Therefore, any path through the control flow graph can be formed

as a combination of paths in the basis. The set {p1,p2} is not a basis of the CFG in Figure 4.13,

because there is no possibility to construct the path vector p4. Whereas the set {p1,p2,p3}
defines a basis. Such a basis is not unique, thus at least one basis of paths for a CFG exists.

The structured testing criteria [118] requires the verification of all paths of a basis in order to

test all decisions of the CFG independently. Hence, the number of vectors of the basis defines the

number of needed test cases to achieve this structural testing criteria. According to McCabe’s

complexity measure (2.6) a basis for the CFG of Example 1 (Figure 4.13) has three entries (eight

edges and seven vertices). In this case four different bases Bi can be identified

B1 = {p1,p2,p3},B2 = {p1,p2,p4},
B3 = {p1,p3,p4},B4 = {p2,p3,p4}.

(4.12)

The cycle count (CC) annotation of the basic blocks in Figure 4.13 allows to determine the overall

verification time of a distinct basis. For example the execution time of B3 is higher (CC = 185,

BB3 is used twice) than the one of B1 (CC = 160, BB3 is used only once).

Therefore, the aim for reducing verification time is to compute a basis Bi out of the set of all M

possible bases B = (B1, . . . ,BM) that has minimal overall execution time

Tmin = min
Bi∈B

{Tv (Bi)}. (4.13)

The time effort Tv for testing all paths of the basis is the sum of the execution time for all paths

of the basis

Tv(Bi) =
∑

pj∈Bi

t(pj). (4.14)

An algorithm for the generation of a basis has been presented by Poole [140] and has been shown

in Section 2.3.3 (Listing 2.1). In this algorithm the resulting basis depends on the arbitrarily

chosen edges for the default paths. In Figure 4.14 the four possible default edge selections of

Example 1 (marked with thicker edges) are depicted, resulting in the four bases given in (4.12).

The minimisation of (4.13) is achieved by first calculating the shortest path (each vertex is

weighted with its run time) from each vertex of the CFG to the exit vertex of the CFG. The shortest

path algorithm from Dijkstra solves the single-source shortest paths problem in weighted directed

graphs that have nonnegative weights [50] using a priority depth first search. The complexity of

this algorithm is O(|V|2 + |E|). A special implementation of the priority list (Fibonacci heap [62])

allows to reduce the complexity to O(|V| log |V|+ |E|). Within this shortest path algorithm each

vertex stores a list of successors determining its shortest path to the exit. In the case of a CFG

the shortest path search has only a complexity of O(|V|+ |E|) since there is exactly one root and

4.3. Control Cycles 67

(a) (b) (c) (d)

Figure 4.14: Control flow graph with four different selections of the default edges indicated by
bold edges.

one exit node.

With this list each vertex’ edge is annotated that points to the next vertex that is nearest to the

exit vertex (the first vertex of the shortest path successor list).

Afterwards Poole’s algorithm is performed where, instead of the arbitrary default edge selection,

the edge leading to the shortest path will be chosen. In Listing 2.1 Line 6 has to be exchanged

to label the shortest path edge as default edge. By storing the paths to the exit vertex, so that

each time an already visited vertex is found, the already found default path to the exit can be

used. This yields a complexity of O(|V| + |E|).

Theorem 4.1. Let the graph G be a control flow graph. A basis B1 which yields a minimum

verification time as described in (4.13) is achieved by:

• Firstly, the application of the shortest path algorithm which marks the edge of each vertex

that points via the shortest path to the exit node.

• Secondly, the application of Poole’s algorithm (Listing 2.1) on the graph G, where the

default edge is chosen to be the marked shortest path edge.

Proof. Assume that a basis B2 exists which is different from B1, with an overall execution time

that is smaller than the one of B1. This implies that at least one of the chosen default edges is

different compared to the default edges of the basis B1. This means that a default edge has been

68 4 Estimation of Design Properties

1 ShortestPath(G, root , exit)

2

3 FindTMinBasis(vertex)

4 if (vertex == EXIT) then store path

5 else if (vertex not VISITED)

6 {

7 mark vertex as VISITED

8 label shortest path edge

9 FindTMinBasis(end(defEdge(vertex)))

10 for all other outgoing edges

11 FindTMinBasis(end(edge))

12 }

13 else

14 FindTMinBasis(dest(defEdge(vertex)))

Listing 4.1: Algorithm for the minimisation of the structural verification effort.

chosen that points to a basic block with a higher execution time. Therefore, the overall execution

of the basis B2 will be higher than the one of B1 which contradicts the assumption.

The presented minimisation algorithm will be demonstrated on one function of an MPEG algo-

rithm out of the embedded systems benchmark library MediaBench [110]. The function under

test (predcase2) has 47 vertices and 74 edges that results in a cyclomatic complexity of 27, which

determines the number of paths that establish the basis. The CFG of this example has 68 possible

paths with their corresponding vectors p1, . . . ,p68. In Figure 4.15 a section of the CFG of this

function is shown. The dashed arrow at the vertex bb20 connects to the remaining part of the

CFG. On the left side the shortest path edges are highlighted in bold. The worst case scenario is

achieved by finding a maximum of the overall verification time. In order to identify this worst case

scenario regarding testing time a longest path search has been applied to the function and the

edges which points to longest path to the exit vertex have been marked and are used to determine

the overall testing time.

Table 4.6 reports on the number of basis paths found in the control flow graph and its needed

cycle count. The set Bmin establishes the basis which achieves a minimum verification time

(Tmin = 389) and the set Bmax builds the maximal verification time (Tmax = 573) for this

functions. Note that the set of paths, which builds a minimal and the maximal verification time

has three paths in common (p62, p63, and p64). The difference between maximum and minimum

overall verification time for this function exhibits (Tmax
Tmin

= 1.47) 47%, which highlights the

tremendous importance of a carefully chosen test bench.

4.3. Control Cycles 69

Figure 4.15: A section of the control flow graph of the predcase2 function. On the left side the
edges of the shortest path are highlighted in bold. On the right side edges of the longest path
search are highlighted bold.

70 4 Estimation of Design Properties

Bmin t(pj) Bmax t(pj)
p1 6 p2 14
p5 14 p3 22
p7 15 p4 23
p10 16 p6 24
p11 15 p8 23
p18 16 p9 24
p20 15 p12 23
p21 16 p13 24
p27 15 p15 23
p28 16 p19 24
p29 14 p22 22
p40 15 p23 23
p41 14 p30 22
p43 15 p31 23
p44 16 p32 24
p46 15 p33 23
p50 16 p34 24
p51 15 p35 23
p52 16 p36 24
p56 15 p37 23
p57 16 p38 24
p59 14 p42 22
p60 15 p53 23
p61 7 p54 7
p62 13 p62 13
p63 14 p63 14
p64 15 p64 15

389 573

Table 4.6: Minimal and maximal timing for testing of the predcase2 function.

4.4. Hardware Complexity 71

4.4 Hardware Complexity

Minimisation of area and therefore estimation of area is still an important issue, even if silicon has

become cheaper and process dimensions are shrinking. Because an increase of chip size implies a

reduced yield since chips per wafer decrease and thus defects per chip increase. Also in the area

of FPGA designs the estimation of area is an important aspect. Here, the main reason for area

estimation is the prediction whether a function exceeds the available resources like number of

Complex Logic Blocks (CLB). Furthermore, area estimates are an important ingredient for power

estimation since most power models treat power to be proportional to supply voltage, switching

frequency, and capacitance of the chip.

A classic approach for estimating the total area At of a chip is to sum up individual summands

which account for the data path Ad , the control part Ac , and the interconnect Ai ,

At = Ad + Ac + Ai . (4.15)

The data path consists of several components; the functional units (ADD, MUL) that implement

the main functionality of the algorithm, storage units (registers), and interconnect units (multi-

plexers and busses). Storage units are required to save data values by the constants, variables,

and arrays, such as intermediate values between two operations that have to be stored persistently

over several execution cycles. The control unit consists of registers that store the state of the

state machine and the control logic. Also the control signals for driving the functional units of the

data path contribute to area of the control unit. The interconnect term accounts for the wiring

efforts like for example busses in an SoC. This term will be neglected due to the fact that the

hardware complexity estimation is dedicated to a single hardware accelerator and not to several

instances of interconnected hardware accelerators.

Since a specific area can only be described in strong dependence on the hardware library, an

area complexity measure AC t will be derived which is independent of the hardware library. This

measure represents the complexity of the utilised operations and considers complexity of the data

path AC d and the complexity of the control unit AC c.

AC t = AC d + AC c. (4.16)

Again for the estimation of hardware complexity empiric characteristics based on the metrics of

Chapter 2 are used.

AC d =
∑
φ∈Φ

wφγφ + Nreg. (4.17)

The high-level metric for the data path complexity consists of two summands: the first one covers

operational units of type φ where the reuse of resources is considered by taking into account the

degree of parallelism for each individual kind of operation γφ. The weighting factor wφ for each

type of operations considers the implementation effort of the operation. A common approach is

to measure the implementation effort with the number of gates. The gate count for a functional

72 4 Estimation of Design Properties

unit varies with the bit width and the number of its input variables (n,m). Table 4.7 lists the

estimations of the gate count number for different operation types and their dependency on the

bit widths of the inputs. The second summand corresponds to the storage of intermediate results

Operation GC(n, m)
ADD, SUB 10 max(n, m)
MUL 10nm
AND, XOR, OR 2 min(n, m)

Table 4.7: Gate count for functional units in dependance on the bit widths n and m of its inputs.

between operations. This is considered with a term computed by the number of intermediate

results Nreg.

The second part of the area complexity (4.16) covers the required structure for the controller

AC c. The structure of the controller (finite state machine) is defined by the number of inputs

NI , number of outputs NO , number of states C , the state transitions, the output function, and

the initial state. According to the work of Brandolese et al. [31] the complexity of a state machine

is composed of the registers AC regs and the complexity of the state logic AC sl (AC c = AC regs +
AC sl). The number of registers that are required to encode the states of the state machine

depends on the type of encoding (e.g. one hot encoding or binary encoding). Furthermore, the

number of states is related to the number of execution cycles of the function that has to be

implemented as expressed in (4.3). Thus, e.g. for a binary encoding scheme

AC regs = log2(CC)�. (4.18)

Furthermore, the complexity of the state logic AC sl depends on the number of states CS , the

number of controller inputs CI , and the number of controller outputs CO as expressed in the

following equation

AC sl = aCS − bCI + cCO + d�. (4.19)

Here, the weighting factors a, b, c, and d could be tuned for a certain target technology. For

example the configuration of the weights a = 1.99, b = 0.24, c = 1.5, and d = 0.97 reflects

the required number Look Up Tables (LUT) for an FPGA implementation. It is assumed that

the number of the controller states CS is related to the cycle count of all basic blocks. Further-

more, the number of inputs CI is deduced from the number of loops and conditions. This is

basically reflected by the cyclomatic complexity V , whereas the number of controller outputs CO
is considered to be related to the reuse γ of operations within an algorithm.

4.5 Summary

The estimation of implementation properties like timing and area are important ingredients for de-

riving design decisions. Especially, with usage of high level synthesis tools for the implementation

4.5. Summary 73

of hardware accelerator units, such estimations become even more important. Cycle count and

area estimation based on metrics of Chapter 2 is presented. An average cycle count formula has

shown that these estimations preserve relative correctness (homomorphism) with a fidelity factor

of one. Nevertheless, in complex system design many functions with similar properties might be

present thus the homomorphism of the estimation cannot be guaranteed anymore. Furthermore,

those estimations are applied to a timing profiler, thus allowing to determine all possible execu-

tion times of an algorithm. Those estimates haven been specified in more detail by removing

non-feasible paths from the profile. Also, the application of the cycle count estimation to the

verification process is shown. Here, a novel algorithm has been presented that allows for the min-

imisation of the structural testing effort. Both estimations for timing and area are a fundament

for the design space exploration of one hardware accelerator, thus allowing to determine optimal

design trade offs as it is discussed in the next chapter.

5 DESIGN SPACE EXPLORATION

”Following the light of the sun, we left the old world.”

Christopher Columbus

The design process of an embedded system can be considered as multi-objective optimisation

problem that tries to identify an optimal solution regarding objectives like time, area, and power.

In order to identify optimal implementations a set of implementation variants has to be consid-

ered and evaluated. This task, known as design space exploration, reveals highest importance

for achieving optimal implementations. Manual exploration approaches suffer from their time

consuming demands due to the high number of solution alternatives. Automatic approaches are

expected to enhance the efficiency of this task, nevertheless it is of utmost importance to cover

the design space to a high extent in feasible time. This chapter presents an automatic design

space exploration algorithm which aims for a high coverage of all possible design alternatives. This

high coverage is achieved by the application of a genetic algorithm. A new two-staged fitness

function and an extreme value elitism feature allows for increasing the coverage of the design

space exploration by more than 20% compared to existing approaches. Finally, the design space

exploration is applied to run time reconfigurable computing. In run time reconfigurable comput-

ing the hardware is adapted at run-time which allows for efficient processing of various tasks on

one device. Here, the trade-offs for time and area for a given task set are utilised to increase

the efficiency of a schedule. A novel algorithm is presented that reduces the number of design

alternatives that are used for the scheduling thus allowing for searching solutions in feasible time

compared to a classical level strip packing formulation with comparable performance results.

5.1 Overview

One of the trends for increasing design productivity in the hardware/software co-design process

is to raise the level of abstraction. Nowadays, the implementation process of most designs flows

is based on descriptions at register transfer level. The advances to higher abstraction levels are

on the one hand provided by languages for simulation (e.g. SystemC) and on the other hand

by the capability of high level synthesis. The object of high level synthesis is twofold. Firstly,

by describing a system at higher level a productivity gain can be obtained. Secondly, because

the design transformations occur on a higher level there is greater potential for exploring the

design space, which should lead to better designs. The importance of this evolution has a direct

impact on cost for a design. The full advantage of such improvements can only be exploited by

additional tools that allow for discovering trade-offs automatically which has been pointed out by

76 5 Design Space Exploration

the International Technology Roadmap for Semiconductors [92]. Different realisations of processes

are achieved by applying diverse source code transformations. Especially loop transformations like

loop unrolling with varying unrolling factors as well as data flow transformations like tree height

reduction are to be mentioned. Some high level synthesis tools allow for automatic application

of these techniques (CatapultC from Mentor Graphics [145], SPARK [71]). Nevertheless, these

decisions have to be performed manually and are based for example on pragma [28,146] statements

within the code in order to control the compilation task. This leads to inflexible mappings which

have to be updated when either the target hardware or the algorithm itself changes.

Those transformations can be applied to code segments of the algorithm and the permutation of

those independent transformations results in different realisations that are called design points.

Additional requirements from the specification translate into constraints on the set of feasible

design points. For example maximum values for area as well as for timing are given. The design

space grows exponentially with the size of the function under consideration and therefore cannot be

exhaustively searched in reasonable time. Even heuristics which yield a quite good approximation

of the design space show their incapability for an application to real examples because of a not

negligible run time in the magnitude of several hours, assuming a typical project with about several

hundred functions. One of the main applications of the design space exploration manifests in the

extended partitioning problem [95]. Here HW/SW partitioning is performed on systems that are

represented as task graphs and each node has several implementation options differing in area and

execution time. Furthermore, it is of paramount importance in an industrial setting to guarantee

feasible running times for the estimation of those implementation options.

The design space exploration has been investigated on a multitude of different optimisation sce-

narios on varying abstraction levels. Typical parameters of this exploration are timing, area, and

power:

The work of Ahmad et al. [9] identifies trade-offs between area and control steps for data flow

graphs. For this task a problem specific genetic algorithm is introduced which optimises the

number of hardware resources, the number of control steps, and the length of the clock period. A

shortcoming of this approach compared to the approach of this thesis is the neglection of control

and wiring overhead for the area estimation.

System optimisation and exploration with respect to power consumption is presented within the

work of Henkel [78]. In this work a power model that depends on certain system parameters

like cache size or main memory size are considered for hardware/software systems is presented.

The main focus in this work is set on system optimisation, whereas in this thesis the target is an

exhaustive coverage of the design space.

Haubelt and Teich [74] estimate a Pareto front by applying a hierarchical approach. Here, Pareto

front arithmetic [41] is applied for combining different Pareto fronts that are computed for parts

of the architecture. A further extension of this approach utilises particle swarm optimisation [124].

The particle swarm optimisation concept has been successfully applied in many research an applica-

tion areas since its development in the year 1995, nevertheless the main feature is its optimisation

towards a single solution and not the exhaustive coverage of Pareto fronts.

5.2. Trade-Off between Area and Timing 77

The work of Bilavarn et al. [24] considers time and area trade-offs for different implementation

types regarding loop transformations like loop unrolling or pipelining. Two main steps compose

the flow. In a first step structural exploration defines several RTL implementations. As a second

step characteristics are estimated for the physical mapping on FPGAs. Here, an exhaustive search

of all possible design points is performed in order to find the optimal solutions. Such an exhaustive

search method is limited to small systems and has to be improved with an heuristic approach as

presented in this thesis.

So et al. [156,157] examine trade-offs between area and timing by loop unrolling of nested loops.

A search strategy is introduced to identify an optimal design point for an FPGA implementation.

This search strategy utilises a balance metric, which guides the algorithm. It tries to equally use

memory and computation resources targeting a balanced utilisation of the available resources.

The compiler within this technology offers several optimisations like loop unroll and jam, scalar

replacement, peeling, and invariant code motions. Compared to this approach also consecutive

loops are considered within this thesis.

Design Space exploration by using a high level synthesis tool together with the design compiler has

been investigated by Bruni et al. [32]. Here, design alternatives of the design space are generated

randomly with Monte-Carlo sampling. After the specification of constraints and behavioural

synthesis the implementation is evaluated. This evaluation is based on the RTL netlist thus

generating cost metrics for area, delay, and power. A shortcoming of this technique is that for

each design point synthesis is needed which leads to a time consuming effort for generating a

Pareto front for complex systems.

5.2 Trade-Off between Area and Timing

Different design points are obtained by source code transformations like loop unrolling or tree

height reduction.

5.2.1 Tree Height Reduction

Tree height reduction deals with different scheduling of the data operations inside of a basic block.

Assume for instance a complete sequential scheduling opposing to an implementation featuring

full parallelism.

In Figure 5.1 a DFG is shown, which corresponds to the algebraic expression z = (a+b)c+(d+e)f .

Different schedules allow for four realisations (x1, x2, x3, and x4) as depicted. Here, a cycle

count of five is achieved by sequentially performing the additions (x1) whereas a completely

parallel implementation achieves a cycle count of three (x4). Finally, the design space of the four

solutions is shown. It is assumed that the implementation cost for multiplications and additions is

equal. In this case only the design points x4 and x3 achieve the best trade-off between area and

timing and therefore could be considered as most promising candidates for an implementation.

78 5 Design Space Exploration

Figure 5.1: Design alternatives for an algebraic expression.

5.2.2 Loop Unrolling

Loop unrolling describes the reduction of execution time of a loop by implementing several in-

stances of the loop body which can be executed in parallel [128]. In this thesis reducible loops

are assumed with statically known iteration space. The unrolling factor U counts the number of

duplicated loop bodies. The loop unrolling factor U for iteration counts M is chosen such that

M/U is an integer. The original cycle count of the loop is defined by the cycle count of the longest

path of the loop body multiplied with the number of loop iterations, t = M CC(pLP). The area

complexity of the loop corresponds to the area complexity of the loop body a = AC(BBbody).
After loop unrolling with the factor U the new cycle count computes to tu = t/U and the new

amount for the required area is computed with au = aU . For the simplification of the model an

additional increase of the area complexity that is caused by the added complexity of the controller

implementation is neglected [71]. For example in Figure 5.2 the potential design alternatives of a

loop by unrolling are depicted.

In general loop unrolling permits to increase the potential parallelism and reduces therefore the

critical path of a function. However, unfolding a loop is limited by functional and structural data

dependencies.

5.2.3 Design Space

Based on the described code variants each BB is annotated with a set of k possible implementation

types I(BB) = {(a1, t1), (a2, t2), . . . , (ak, tk)}. Thus, the number of possible design points for a

CFG that consists of N basic blocks, is computed with
∏N

i=1 |I(BBi)|. Hence, it is obvious that

for large N an exhaustive search for all possible design points is an infeasible technique in order

5.3. Multi-objective Optimisation 79

Figure 5.2: Design alternatives with loop unrolling.

to select optimal solutions.

5.3 Multi-objective Optimisation

As described in the section before, area complexity and cycle count are competing resources for

the implementation of an algorithm. The problem of identifying optimal implementations can be

generally described as multi-objective optimisation problem [42] and has the following formulation

min{f(x)}
subject tox ε S,

(5.1)

where f(x) defines a vector involving k ≥ 2 conflicting objective functions fi : Rn → R, i =
1..k. The decision (variable) vector x = (x1, . . . , xn)T belongs to the feasible region S ⊂ Rn

(Figure 5.3).

Due to some system constraints a feasible decision vector might not be valid. Thus a set of

constraints bi like maximum area, maximum response time, or maximum power consumption

given by the requirements of the system might exist. Those constraints which can be grouped

into a vector b = (b1, . . . , bn)T , defining a set of inequalities

x ≤ b. (5.2)

The following relations between two decision vectors x1 and x2 can be identified:

80 5 Design Space Exploration

x1 � x2 (dominates) if f(x1) < f(x2),
x1 � x2 (weakly dominates) if f(x1) ≤ f(x2),

x1 ∼ x2 (is indifferent to) if f(x1) � f(x2) ∧ f(x1) � f(x2).

The relation for vectors is defined in the following.

u = v if for all i = 1, . . . , k : ui = vi,

u ≤ v if for all i = 1, . . . , k : ui ≤ vi,

and u < v if for all i = 1, . . . , k : ui < vi.

Figure 5.3: Multi-objective Optimisation.

The relations greater and greater equal are defined equivalently. As stated before it is not possible

to find a single solution that would optimise all the objectives simultaneously. Therefore, in this

thesis the most common description of optimality for a multi-objective optimisation is used as

given by Vilfredo Pareto [136].

Definition 5.1 (Pareto-optimality). A vector x1 is Pareto optimal if there does not exist another

vector x2 such that x2 � x1. The set of Pareto optimal points is called Pareto optimal set Xp or

short Pareto front. Furthermore, the approximation of the Pareto set Xp is called quality set Xq.

Mathematically, all the Pareto optimal points are equally acceptable solutions. However, is is

generally desirable to obtain a single point or a subset of those points as solution.

Further on a decision vector will be called design points and the set of all valid decision vectors

span the so-called design space X = {x1, . . . ,xm}. This reflects the application of the general

formulation of the multi-objective optimisation problem in the area of system design.

In Figure 5.4 a design space for area and timing is depicted. The design point x1 is Pareto

optimal and it dominates x2, x3, and x4 (x1 � x2, x1 � x3, x1 � x4), whereas x3 is indifferent

to x4 (x3 ∼ x4). The design point x2 weakly dominates x4(x2 � x4). Also some constraints for

maximum timing and area are shown, so that the design points x5 and x6 become invalid.

5.4. Genetic Algorithm 81

Figure 5.4: Design space for area and timing trade-off.

The computational complexity of many multicriteria optimisation problems like for example the

Multicriteria Traveling Salesman Problem (MTSP) is NP-hard [117]. Firstly, due to the fact that

already the corresponding decision problem can be formulated as the question if a given solution

is a Pareto optimal solution. This problem is known to be NP-hard. It can be concluded that

the derivation of all Pareto optimal solutions is NP-hard as well [53]. Nevertheless, the number

of Pareto optimal solutions could grow exponentially, thus even the enumeration of all solutions

is not affordable, thus the overall problem might be considered as intractable.

5.4 Genetic Algorithm

Several heuristics are applicable in order to solve this optimisation problem, for example simulated

annealing and tabu search. Usually, in these techniques the optimisation result is only one design

point. In order to identify a Pareto front with these heuristics a multi start approach has to

be chosen which leads to a high running time of the algorithms. Most promising candidates

for the identification of a Pareto front are genetic algorithms because of their good capability

of maintaining a large set of possible solutions [68]. The fundament of the algorithm is the

representation of a solution in form of a chromosome. In this case it is a vector x of the dimension

N equal to the number of basic blocks of the CFG (Figure 5.5). Each vector entry xi selects one

implementation type of its corresponding basic block.

The structogram of a genetic algorithm is depicted in Figure 5.6. Initially a set of individuals

is generated with randomly chosen implementation types which forms the starting population.

Now, the parents for the next generation are found by binary selection. This means that two

chromosomes are randomly chosen and the one which has a better fitness is selected as parent.

After that the parents are recombined by joining sub sequences of two different chromosomes,

in order to get the new population. Further, the implementation types of certain chromosomes

are probabilistically changed in order to guarantee the diversity of a population (mutation). This

82 5 Design Space Exploration

Figure 5.5: Chromosome representation of a design point for the genetic algorithm.

procedure is repeated until a saturation criteria is achieved, e.g. new Pareto optimal points cannot

be found within one iteration of the algorithm.

Figure 5.6: Structogram of a genetic algorithm.

5.4.1 Fitness Function

The performance of the optimisation heavily depends on the fitness computation. Also the appli-

cation of an elitism technique can significantly improve the performance of the genetic algorithm.

Weighted Sum

The fitness of each design point is computed by a weighted sum

k∑
i=1

wifi(x) (5.3)

with the weighting coefficients wi that represent the relative importance of the objective func-

5.4. Genetic Algorithm 83

tions [48]. Usually, it is assumed that the weights sum up to 1,
∑k

i=1 wi = 1. With this method

a scalar fitness function is achieved, which allows for simple comparison of two design points.

A serious drawback lies in its incapability of generating members of the Pareto optimal set if

the Pareto front is concave. Therefore, an approach is proposed to solve the same problem for

different values of the weighting coefficients. This approach does not require any changes to

the basic mechanism of the genetic algorithm and is therefore easy to implement. This type of

implementation feature will be further on referred to as Weighted Sum (WS).

Rank Ordering of Pareto Fronts

A strategy featuring higher complexity determines the fitness criteria of each design point by

a consecutive identification of Pareto fronts within one population [49]: once a population is

generated, the Pareto optimal set of this population is determined and removed from the set.

Afterwards the next Pareto front of the remaining set is determined. This procedure is repeated

until the set is empty. Now, each point obtains a fitness value according to the rank number

of its Pareto front. In Figure 5.7 the design points x1, . . . , x14 are shown and their split into

consecutive Pareto fronts Xq1 = {x1, . . . , x5}, Xq2 = {x6, . . . , x11}, and Xq3 = {x12,. . . , x13}.

Figure 5.7: Rank ordering of a population.

In a brute force method where each individual of the population is compared to each other the

computation of one Pareto front has a complexity of O(MN2). Here, M denotes the number

of objectives and N is the size of the population. In the worst case this sorting has to be

performed N times, resulting in a complexity of O(MN3) in order to determine all fronts of

one population. A fast sorting approach with O(MN2) is presented in the following (compare

to the rank sorting approach that is proposed for the NSGA-II algorithm [49]). At first a DAG

is generated which reflects the dominance relations of the individuals of one generation. This

means a graph G(V, E) is generated where each individual x of the population corresponds to

one vertex v. Furthermore, the dominance properties are represented by directed edges. Here,

84 5 Design Space Exploration

for each individual x1 that dominates x2 an edge e(x1, x2) is inserted. The algorithm for the

establishment of such a dominance graph is presented in Listing 5.1.

1 function domgraph

2 S = [] // empty set of starting nodes

3 for all v of V

4 if S == [] then

5 S += v // add v into list of starting nodes

6 else

7 for all s of S

8 if s dom v then // if s dominates v

9 insert(s,v) // insert new edge in subgraph starting with v

10 else

11 create e(v,s) // create edge v -> s

12 S -= s // remove s from starting nodes list

13 S += v // insert v to starting nodes list

14

15 function insert(v1, v2)

16 if v1 dom v2

17 create e(v1 ,v2) // create edge v1 -> v2

18 for all v with e(v1 , *) // for all nodes v connected to v1

19 insert(v,v2)

Listing 5.1: Generation of dominance graph.

Secondly, this dominance graph has to be rank sorted (topological sort). In graph theory, a

topological sort or topological ordering of a directed acyclic graph is a linear ordering of its nodes

where each node v1 comes before v2 if there is a directed path from v1 to v2 in the DAG.

Equivalently, this means that each node comes before all nodes to which it has outbound edges.

Note, that every DAG has one or more topological sorts. The common algorithms for topological

sorting have running time linear in the number of nodes plus the number of edges O(|V| + |E|).
One of these algorithms works by choosing vertices in the same order as the eventual topological

sort 5.2. At first a list of start nodes which have no incoming edges is generated and inserted

into a queue Q. Furthermore, L corresponds to the list that will finally contain the nodes in

topological sort. The algorithm iteratively removes nodes with no incoming edge from the graph

and inserts them into the list L. Afterwards all edges that have been previously connected to the

removed node are deleted. Thus new nodes without incoming edges could be removed from the

graph until no vertex exists anymore.

1 L = [] // list for topological sort

2 Q = list of start nodes // set of all nodes with no incoming edges

3 while Q is not empty do

4 remove node n from Q

5 L += n // insert n into L

6 for all v with e(*,v) // each node v with an edge e from n to m

7 remove edge e from the graph

8 if v has no other incoming edges then

9 Q += v // insert v into Q

Listing 5.2: Topological sort.

Thus, finally the rank number of a node (individual) of the dominance graph corresponds to its

corresponding Pareto front. For example the Figure 5.8 depicts the rank sorted graph of the

5.4. Genetic Algorithm 85

design points of Figure 5.7.

Figure 5.8: Directed acyclic dominance graph.

A GA with this above described fitness computation will be referred to in this work as Rank

Ordered (RO).

5.4.2 Elitism with Extreme Values

Generally, the identification of all Pareto optimal design points requires an exhaustive search.

Nevertheless, this specific problem of identifying Pareto optimal points for area time trade-offs

allows to compute some specific Pareto optimal points beforehand. Extreme values are defined

as design points xe,i, that minimise or maximise at least one of the objective functions fi,

xe,i = argmin
x∈X

fi(x), i = 1, . . . , k, or

xe,i = argmax
x∈X

fi(x), i = 1, . . . , k.
(5.4)

The extreme values for the execution cycle count are found by.

CCmax = max
p∈P

{t(p)}. (5.5)

Here, P defines the set of all possible paths through the CFG and for each BB the implementation

type is chosen which yields the highest cycle count. Vice versa, if for each path the implementation

type with the minimal execution cycle count is chosen, CCmin is computed with

CCmin = min
p∈P

{t(p)}. (5.6)

This extreme points will be used in order to implement an elitism feature within the genetic

algorithm. This means that usually the overall best values are added to the population in order

to preserve them. In this case the extreme design points will be added to each population. In the

further part of the thesis a genetic algorithm which includes the described feature will be called

Extreme Value Elitism (EVE).

86 5 Design Space Exploration

5.5 Performance Analysis

As the result of a multi-objective optimisation is not a single value which could be easily compared

to the result of another optimisation run, it is necessary to define some quality measure. In order to

quantify the quality of the genetic algorithm, the actually achieved Pareto front can be compared

to the Pareto optimal solutions found by the full search method. This is certainly only possible

for small optimisation problems. The size of such problems is in the order of 1010 design points

and a full search takes some hours of computation time on a standard PC (3 GHz). For larger

problem sizes the following two quality measures are utilised. The coverage reflects the dominance

behaviour of two Pareto fronts and the hyper volume indicator is a measure for the length of one

Pareto front.

• Coverage: The coverage C is defined for two sets of design points and describes the number

of points that are dominated, C(X ,Y) = |{y εY| ∃xεX : x�y}|
|Y| . A coverage of C(X ,Y) = 1

means that all elements of Y are weakly dominated by at least one element of the set X ,

whereas C(X ,Y) = 0 indicates that no element of the set Y is weakly dominated by any

element of the set X . Note, that this function is usually asymmetric, C(X ,Y) �= C(Y,X),
and also the sum of C(X ,Y) and C(Y,X) does not equal 1, C(X ,Y) + C(Y,X) �= 1.

For example in Figure 5.9a the Pareto set X dominates 1/3 of the set Y. Vice versa no

design point of X is dominated by Y. This means, a comparison of the two sets of the

figure would consider X better, nevertheless the set Y covers the design space to a higher

extend (higher distance between the extreme values). In Figure 5.9b a symmetric scenario

is depicted.

(a) Asymmetric coverage. (b) Symmetric coverage.

Figure 5.9: Different coverage scenarios.

• Hyper Volume Indicator : The hyper volume indicator [174] IH is a unary quality measure

that can be applied to a single quality set. The hyper volume is spanned by the union of of

cubes between the solutions xi and a reference point z. Certainly, it is important that the

reference point z has to be chosen such, that all of the design points dominate this point

(x � z) in order to have an appropriate measure of the covered area. In our problem this

requirement is achievable because the maximum extension of the Pareto front is known.

5.5. Performance Analysis 87

Therefore, the reference point z has to be chosen such, that it is dominated by the extreme

values xe1 and xe2 (as defined in (5.4)), which are known beforehand, xe1 � z and xe2 � z
(Figure 5.10).

Figure 5.10: Hyper volume indicator IH and local hyper volume indicator LH for a Pareto front.

A measure for the local performance of a Pareto front is the local hyper volume indicator

LH . For example, this local measure could be applied to identify the performance of the

Pareto set in the vicinity of the extreme values.

In order to identify the effects of three strategies (Weighted Sum (WS), Rank Order (RO),

Extreme Value Elitism (EVE)) described in the previous section, the most promising combinations

of features that are used for the optimisers from I ∈ {GA1, GA2, GA3, GA4} as shown in Table 5.1

separately. Note, that the extreme value elitism cannot be applied as single feature and is therefore

used only in combination with other features. The genetic algorithm GA1 utilises both features

rank ordering and weighted sum. Here, the selection process inside the genetic algorithm contains

two steps. At first the rank of two chromosomes is compared and the one with the minor rank is

selected. If the rank of the two competing chromosomes is equal, then the one with the smaller

weighted sum is selected as parent for the next generation.

WS RO EVE

GA1 x x x
GA2 x x
GA3 x
GA4 x

Table 5.1: Features of the various genetic algorithms GA1, . . . ,GA4.

Due to the randomised characteristics of GAs for each algorithm type, 30 runs have been per-

formed. The achieved quality set of the genetic algorithm GAi will be described with X i
q(GAi).

Hence, 30 approximation sets X i
q1,X i

q2, . . . ,X i
q30 for every algorithm GAi have been generated.

88 5 Design Space Exploration

The performance of the different optimisers from I is evaluated on a set of control flow graphs. In

this chapter the results of two instances of those graphs CFG13 and CFG23 are discussed. Results

for the complete set of graphs are discussed in Appendix D. Here, the CFG13 consists of 13 basic

blocks and features a size which allows for an exhaustive search of the Pareto front. The control

flow graph CFG23 incorporates 23 basic blocks. The parameters of the genetic algorithms are set

to 20 individuals per population and a mutation probability of 10%.

In Table 5.2 the results regarding the identified quality set Xq compared to the optimal front Xp

is described. The actual front, which has been derived by an exhaustive search, consists of 133

design points. Only GA4 is able to find a substantial portion (22%) of these design points of

the optimal Pareto front. Nevertheless, the draw back of a pure weighted sum approach will be

apparent in the next examples when the design space coverage is considered. A first indication of

this behaviour can be seen by comparing the number of design points that build the quality set.

Here, the algorithm GA1 contains about 50% more design points compared to GA4. Certainly,

the performance of all the different genetic algorithms can be substantially improved by increasing

the number of individuals. With a population of about 100 individuals nearly 80% of the Pareto

optimal design points are identified. The population size of 20 individuals aims at low computation

times of about several minutes in order to be appropriate for an application in realistic setting.

|Xq| |Xq ∩ Xp| (|Xq ∩ Xp|)/|Xp|%
Full Search 133 133 100
GA1 67 5 3
GA2 65 3 2
GA3 50 0 0
GA4 44 29 22

Table 5.2: Performance comparison of the different optimisers for the control flow graph CFG13.

A detailed view of the Pareto fronts is depicted in Figure 5.11. It shows the good coverage of the

design space by algorithms with the elitism feature GA1 and GA2 compared to GA3 and GA4.

In the following a control flow graph CFG23 with a more realistic size is investigated. Since

the statistical distribution of the results of the optimisation runs is not known, the results of

the optimisations are illustrated with box plots, that show the median, the first and the third

quartile, 1.5 of the interquartile range, and outliers. The significance of differences regarding the

performance indicators of the algorithms has been tested with the rank based Wilcoxon-Mann-

Whitney [116] test, a non parametric technique for the comparison of several samples where the

distribution is not known.

Figure 5.12 shows the coverage of the algorithm GA1 compared to GA2, GA3, and GA4. Here,

GA1 significantly outperforms GA2 and GA3 (Figure 5.12a and Figure 5.12b). The Pareto front of

the algorithm GA1 dominates 60% to 80% of the quality set of GA2 and GA3, and only about 10%

of the design points of GA1 are dominated. Figure 5.12c demonstrates that the weighted sum

approach dominates about 60% of the design points of the combined rank order and weighted

sum approach of the algorithm GA1. Vice versa only 5% of the design points are dominated by

5.5. Performance Analysis 89

45 50 55 60 65 70 75 80 85
25

30

35

40

45

50

55

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
2
)

X(GA
3
)

X(GA
4
)

Figure 5.11: Approximation sets for the CFG13 derived with GA1, GA2, GA3, and GA4.

GA1.

In Figure 5.13 the quality sets of the GA1 and GA4 are presented. Here, the better coverage

performance of GA4 becomes visible caused by a grouping of the resulting design points in the

middle of the design space region. Naturally, the elitism of extreme values generates also solutions

in the regions of the extreme values (higher local hyper volume indicator in the vicinity of the

extreme values). Therefore, much more solutions in this region are seen which causes a better

convergence in this region of the Pareto front.

Nevertheless, a quite high coverage of the possible design space is preferable. This is shown by the

hyper volume indicator for the different optimisers (Figure 5.14). The application of the extreme

value elitism causes a significantly better performance of GA1 and GA2 compared to GA3 and

GA4.

The convergency of the hyper volume indicator while the GA proceeds is presented in Figure 5.15.

Already more than 90% of the hyper volume indicator are achieved after 20 generations.

Finally, it can be stated that the combination of improvements in GA1 outperforms all the individ-

ually applied features in the other GAs and exposes good convergency behaviour. With increased

population size and run time (generations) the effects of weighting and elitism vanish. Neverthe-

less, the design space exploration task has to be accomplished in a time that is still affordable

in an industrial setting, therefore the number of individuals and generation should be chosen as

small as possible.

For example the Figures 5.16a, 5.16b, and 5.16c depict some examples of Pareto fronts that

have been derived. In this examples different control flow graphs properties are shown like N
denotes the number of basic blocks, L the number of loops, DP the number of overall design

90 5 Design Space Exploration

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Box plots of the achieved coverage of the genetic algorithms for the control flow
graph CFG23. The coverage of Xq(GA1) compared to Xq(GA2), Xq(GA3), and Xq(GA4) is depicted
in the first row (Figure 5.12a, Figure 5.12a, and Figure 5.12a. The coverage of Xq(GA2) compared
to Xq(GA3) and Xq(GA4) is depicted in the second row (Figure 5.12d and Figure 5.12f). The
coverage of Xq(GA3) compared to Xq(GA4) is presented in Figure 5.12f.

points, and |Xq| the approximated number of Pareto optimal points. Figure 5.16a depicts a Pareto

front of a CFG without any loop structures which results in a rather equally spaced distribution

of design points. In Figure 5.16b and 5.16c loop structures are involved thus generating an

accumulation of design points in certain areas. Note, the accumulation of design points is caused

by implementation variants of the expression trees. In the corresponding algorithm of Figure 5.16b

one loop is involved that is unrolled once, thus causing an accumulation of design points at the

cycle count of 1300 and in the band of 300 to 500. In Figure 5.16c the original algorithm has a

cycle count of 2000 and the involved loop structures are unrolled twice. This unrolling results in

a group of Pareto optimal design points at the region of a cycle count between 300 and 1200.

5.5. Performance Analysis 91

100 200 300 400 500 600 700
300

350

400

450

500

550

600

650

700

750

800

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
4
)

Figure 5.13: Quality sets derived by the genetic algorithms GA1 and GA4.

Figure 5.14: Boxplot of the hyper volume indicator.

92 5 Design Space Exploration

0 20 40 60 80 100 120 140 160 180 200
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
x 105

Generation

I
H

GA
1

GA
2

GA
3

GA
4

Figure 5.15: Convergency of the Hyper volume indicator.

5.5. Performance Analysis 93

45 50 55 60 65 70
28

30

32

34

36

38

40

42

44

46

48

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

(a) N = 10, L = 0, DP = 1010, |Xq| = 14.

200 400 600 800 1000 1200 1400
100

110

120

130

140

150

160

170

180

190

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

(b) N = 35, L = 1, DP = 1035, |Xq| = 35.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
30

40

50

60

70

80

90

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

(c) N = 15, L = 2, DP = 1020, |Xq| = 29.

Figure 5.16: Examples for different Pareto fronts.

94 5 Design Space Exploration

5.6 Run Time Reconfigurable Computing

Current communication systems like for example mobiles have to cope with many different com-

munication standards like for example GSM, GPRS, EDGE, UMTS, or WLAN. One approach for

dealing with such diverse requirements is Software Defined Radio (SDR) [4]. Here, the idea is that

a communication system can be re-programmed according to the specific needs of a communica-

tion protocol. A system architecture which adheres to this flexibility requirements is compromised

with some fixed components like DSP, uC, memory, and re-programmable components like specific

hardware accelerator that perform time critical functions as depicted in Figure 5.17. All the differ-

ent time critical functions are usually not executed simultaneously so that it would be inefficient

to spend for each of those a unique hardware accelerator. Thus, a partially reconfigurable device

would support such an architecture optimally. For example at set up time of the system all the

re-programmable hardware is used to perform fast cell searching and synchronisation. Once this

start up procedure has been accomplished the system is reconfigured to provide specific hardware

accelerators for decoding (Viterbi decoder or Turbo decoder). Even on application level different

kinds of hardware accelerator could be needed to support video/audio processing or cryptography.

Figure 5.17: Software defined radio platform.

The idea of reconfigurable computing has been firstly presented in the year 1960 by Gerald Estrin.

At this early stage the idea was far ahead of its time regarding the required electronic technology.

Nevertheless, it lead to development of FPGAs. Over the years reconfigurability has improved

thus allowing for reconfiguration even at run-time and opened the way for multi-tasking. Run-

Time Reconfigurable Computing (RRC) is nowadays featured by SRAM-based FPGAs [43] like for

example the Virtex II and the Virtex II Pro from XILINX with a configuration memory divided into

frames which can be reconfigured independently. Thus, a partially reconfiguration is supported

that allows for executing one task while other tasks are removed or reloaded onto the FPGA.

The reconfiguration model of the reconfigurable device can be abstracted by a 1D or 2D area

model as shown in Figure 5.18. In the 1D model the device is divided into several slots which

5.6. Run Time Reconfigurable Computing 95

could be separately reconfigured. This model simplifies the scheduling mechanism and trades this

simplification for a sub-optimal utilisation of the given hardware area. The Virtex II family provides

reconfiguration of slots, thus a 1D area model is supported. The procedure of reconfiguration is

either accomplished by providing the configuration bitstream over the JTAG interface or is also

achieved internally over the so called ICAP interface. The more complex 2D area models allows

for placing the tasks at any free position on the reconfigurable device [91].

Figure 5.18: 1D and 2D area models for the partial run-time reconfiguration.

Hence, scheduling for such a usage scenario becomes apparent where a set of tasks with their

specific area demands, execution time, and deadline has to be scheduled on the FPGA, similar

to the behaviour of a real time operating system. Both models expose themselves as NP-hard

scheduling problems, thus heuristic scheduling policies are to be considered like for example Earliest

Deadline First (EDF).

In the work of Panainte et al. [134] two scheduling algorithms are proposed with the target to

minimize the FPGA-area. Those scheduling algorithms take also into account the time that is

needed for re-configuration. Two scenarios are discussed: all operations have to executed on the

FPGA as well as some operation could also be executed in software. Steiger et al. [161] present

an online real-time scheduling problem and two heuristic approaches namely horizon and stuffing

technique. Both techniques are integrated in an operating system for reconfigurable devices.

Nevertheless, non of the described approaches considers several tasks variants as it is presented

in this thesis.

The benefits of the utilisation of the FPGA by using three and five implementation variants, thus

offering more flexibility to schedule the tasks has been shown by Danne and Platzner [47]. This

work gives a theoretical gain on the utilisation of an FPGA and is based on artificially generated

tasks and their design alternatives which might not be achievable for real tasks sets. The authors

have extended their work towards a reconfigurable operating system for a 1D area model [170]. In

comparison to this approach in this thesis the task variants are generated with the in the previous

section presented design space exploration technique.

96 5 Design Space Exploration

5.6.1 Scheduling Problem

A set of tasks T = {T1, T2, . . . , Tn} is considered that has to be scheduled on a reconfigurable

device. For each task Ti one or more implementation variants Ti = {T 1
i , T 2

i , . . . , Tm
i } may exist.

Hence, the cardinality |T | accounts for the number of tasks and the cardinality |Ti| denotes

the number of task variants. Furthermore, a function CC(T j
i) returns the number of needed

execution cycles of the task variant T j
i . Another function AC(T j

i) returns the area consumption

of the task variant T j
i . It is assumed that the re-programmable device is divided into a set of

slots S = {S1, S2, . . . , S|S|} where each slot Si has a corresponding area Ai. Finally, a decision

variable xk
i,j is introduced that indicates whether a task variant T j

i is scheduled into one slot Sk

or not

xk
i,j =

{
1 Task variant T j

i is scheduled in slot Sk

0 Task variant T j
i is not scheduled in slot Sk

. (5.7)

Thus, the optimisation targets the minimisation of the slot with the highest utilisation. With the

decision variable xk
i,j this problem is formulated as binary programming problem

min
x

(
max

{ |T |∑
m=1

|Tm|∑
n=1

CC(Tn
m)x1

m,n,

|T |∑
m=1

|Tm|∑
n=1

CC(Tn
m)x2

m,n,

|T |∑
m=1

|Tm|∑
n=1

CC(Tn
m)x3

m,n, . . . ,

|T |∑
m=1

|Tm|∑
n=1

CC(Tn
m)x|S|

m,n

})
.

(5.8)

Here, one entry of the set corresponds to the sum of cycle counts that are needed by the task

variants that are scheduled to a slot. In addition to this optimisation the constraint that for each

task exactly one and only one task variant has to be scheduled must be fulfilled

|S|∑
k=1

|Ti|∑
j=1

xk
i,j = 1, i = 1, . . . , |T |. (5.9)

Furthermore, it is required that the size of a task variant T j
i if the corresponding decision variable

equals one, has to be smaller or equal than the size of the slot Sk

AC(T j
i)xk

i,j ≤ Ak, (5.10)

i = 1, . . . , |T |, j = 1, . . . , |Ti|, k = 1, . . . , |S|.

Let V =
|T |∑
i=1

|Ti| denote the accumulated number of task variants. Thus, this problem formulation

contains V |S| decision variables. Additionally, there have to be |T | constraints (5.10), and V

5.6. Run Time Reconfigurable Computing 97

constraints (5.9) to be fulfilled. Hence, it is of paramount importance to limit the number task

variants and slots in order to keep the complexity of this problem controllable.

5.6.2 Scheduling Algorithm

The algorithm starts with the determination of slots and task variants. We define Amax,i =
max{AC(T 1

i), . . . ,AC(T |Ti|
i)} and similarly Amin,i = min{AC(T 1

i), . . . ,AC(T |Ti|
i)}. The min-

imal CCmin,i and maximum CCmax,i execution times of one task Ti are defined analogously.

Thus, three slot sizes Smax = max{Amax,1, . . . , Amax,|T |} , Smin = max{Amin,1, . . . , Amin,|T |},
and Sav = (Smax + Smin)/2 as it is depicted for example in Figure 5.19 are chosen. Hence, it

200 250 300 350 400 450 500

120

140

160

180

200

220

240

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

T
1

T
2

T
3

T
3
1

T
3
2

T
3
3

S
max

S
av

S
min

Figure 5.19: Slot size and task variant determination.

is obvious that not the full range of design alternatives for each task has to be considered but

only the task variants for each task that are closest to the determined slot sizes Smax, Smin,

and Sav. For example, the three task variants that are chosen for task T3 in Figure 5.19. The

next step in the algorithm is the enumeration of solutions. The generation of solution can be

accomplished with a depth first search of a decision tree (Figure 5.20). In this decision tree each

level corresponds to one decision variable, thus the depth of tree equals the overall number of task

variants V that have to be scheduled. The order of the decision variables in the tree is chosen

such that tasks with less variants are at a higher position than others in order to cause an early

violation of the constraint (5.9), thus improving performance of the algorithm.

Cutting of the tree can be performed due to several stopping criteria:

• Violation of the constraints (5.10) and (5.9) (Figure 5.20 Label �).

• Current cycle count is less than an already determined optimum (Figure 5.20 Label �).

98 5 Design Space Exploration

Figure 5.20: Decision tree for the branch and cut algorithm.

• While traversing the tree a remaining cycle count CC rm and the cycle count that is needed

to schedule the remaining tasks CC rmt (time minimal implementation) is maintained. If

CC rmt ≤ CC rm then cutting of the tree is performed (Figure 5.20 Label �). For example,

see Figure 5.21 where the tasks T1 to T5 are already scheduled (T6, T7, and T8 are not yet

scheduled) and the overall remaining time to the current minimum is CCrm = t1 + t2 + t3
and the time for the not yet scheduled tasks CC rmt = CCmin,6 + CCmin,7 + CCmin,8.

Figure 5.21: Remaining cycle count.

As already mentioned the complexity of this scheduling problem (size of the decision tree) increases

exponentially with the number of decision variables. Therefore, the aforementioned stopping

criteria is extended to a heuristic. A factor a ∈]0, 1] is introduced CC rmt ≤ aCC rm that forces

an earlier cutting of the decision tree.

5.6. Run Time Reconfigurable Computing 99

5.6.3 Results

The performance of the proposed algorithms (branchcut and the extension towards a heuristic

with a = 0.8 (hbranchcut0.8) and a = 0.6 (hbranchcut0.6) are evaluated on twelve task sets

ts1, . . . , ts12. The sets differ in the number of task variants, number of basic blocks, number of

loops, and number of loop nests. The proposed algorithms are compared to a basic level strip

packing algorithm (levelpacking) which tries to optimise also the level size. The drawback of

this algorithm becomes apparent in Figure 5.22, due to the fact that the number of decision

variables in this algorithm grows quadratically with the overall design variants V . Thus, already

the optimisation of a task set with V = 20 already exceeds several hours of computation time on

a standard PC, whereas the execution time of the branch and cut algorithm stays beneath one

hour. Further decrease of run time is achieved with the heuristic approaches.

0

1000

2000

3000

4000

5000

6000

7000

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 ts9 ts10 ts11 ts12
task set

e
x
e
c
u

ti
o

n
 t

im
e
/s

levelpacking
branchcut
hbranchcut0.8
hbranchcut0.6

Figure 5.22: Execution time of the scheduling algorithms.

The optimisation performance of the algorithm is depicted in Figure 5.23. For the task sets ts1
to ts7 all algorithms achieve equal minimisation result. For the task sets ts7 to ts12 the algorithm

hbranchcut0.8 deviates only up to 6% from optimisation results that have been obtained with

branchcut, whereas hbranchcut0.8 shows already deviations up to 20%.

As it has been mentioned earlier the decision variables within the tree are ordered in the way that

decision variables that correspond to tasks with less variants are ordered at first. A comparison

between ordered and not ordered decision variables has been performed where a performance gain

of up to 20% has been observed, due to fact that the constraint (5.9) is violated earlier.

100 5 Design Space Exploration

0

1000

2000

3000

4000

5000

6000

ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 ts9 ts10 ts11 ts12
task set

m
in

im
u

m
 c

y
c
le

 c
o

u
n

t

levelpacking
branchcut
hbracnhcut0.8
hbranchcut0.6

Figure 5.23: Optimisation results of the scheduling algorithms.

5.7 Summary

A new step in the automatisation of the HW/SW co-design process is introduced with high level

synthesis tools. Here, it is of high importance for a design flow improvement to provide the designer

or other optimisation tools with Pareto optimal design points. The design space of area and time

trade-offs grows exponentially with the size of the underlying algorithm. Hence, the complete

design space cannot be exhaustively searched with reasonable time effort. This chapter shows the

application of a genetic algorithm to the problem of identifying Pareto optimal solutions of the

time and area design space. A two-staged fitness function and an extreme value elitism feature

have been introduced thus allowing to increase the effectiveness of the design space exploration by

more than 20% compared to the solely application of a fitness computation with weighted sums

or rank ordering. A drawback of the genetic algorithm is its random nature which causes that

each optimisation run generates a different set of design points. Thus, this optimisation technique

lacks reproducibility which is mandatory for EDA tools if they should be applied in an industrial

project. In order to achieve better reproducibility the size of each generation could be increased,

nevertheless this increase the running time of the optimisation. Furthermore, the application of

this design space exploration is presented for run time reconfigurable computing. Here, the trade-

offs for time and area for a given task set are utilised to increase the efficiency of a schedule.

Nevertheless, it is computational impossible to consider all the theoretically achievable design

points for an exhaustive search for the schedule. A novel scheduling algorithm is presented that

reduces the number of design alternatives that are considered for the scheduling. Additionally, a

depth first search algorithm is applied that constructs solutions in feasible time compared to a

classical level strip packing formulation with comparable performance. With the extension to a

heuristic algorithm the run time is further reduced to several seconds.

6 CONCLUSIONS

”The important thing is not to stop questioning.”

Albert Einstein

This thesis presents design space exploration for the implementation of embedded systems. The

automated and efficient design space exploration at an early stage of the design flow leads to an

accelerated and improved design flow. Thus significant importance becomes apparent in order

to incorporate design space exploration in modern electronic design automation tools. Design

space exploration is accomplished by several tasks: a framework that generates metrics that are

based on static properties, a single system description that stores those metrics, an estimation

framework for implementation properties, and an evolutionary algorithm that efficiently explores

design alternatives. This is based on several unique contributions.

• The characterisation of an algorithm on highest level by simulation is time consuming and

thus inefficient for the characterisation of algorithms. Whereas static characterisation allows

for deriving a quantitative characterisation of an algorithm. Thus, it becomes possible to

compare different algorithm variants. This efficiently supports the design tasks like HW/SW

partitioning. For example an affinity to certain implementation architectures helps to reduce

the search space of the hardware/software partitioning process. Nevertheless, some aspects

of the algorithm could only be accurately estimated by additional simulations such as upper

bounds for loop counts or memory accesses. Furthermore, HW/SW partitioning that is

based on an affinity metric will only lead to a reasonable partitioning if the involved functions

expose a high affinity either to software or hardware which might not always be the case.

• One of the main problems of the current development flow is identified within the frag-

mentation of the design flow thus leading to inefficient designs. This is caused by constant

rewriting of the system descriptions and the fragmented tool support. The Open Tool Inte-

gration Environment (OTIE) overcomes those inefficiencies. Due to its extendible structure

it allows for storing a system design at various levels of abstraction. Furthermore, generic

interfaces provide the connection to existing and future electronic design automation tools

thus exposing highest flexibility.

• The estimation of implementation properties is a main ingredient for the design space

exploration. Dynamic methods which are based on simulation runs are not capable to be

used in large scale application and lead to not acceptable simulation time. Therefore, fast

estimation techniques for cycle count and area complexity are required. Rapid estimation

102 6 Conclusions

methods that are based on static characterisation preserve relative ordering where a fidelity

value of 100% is achievable.

• Another important problem is the verification effort in complex designs. Here, structural

testing is one of the important tasks of any system verification concept. Here, an arbitrarily

taken set of verification paths leads to high execution time. An algorithm is presented

that allows for the minimisation of the structural verification effort. A reduction of the

verification time of nearly 50% is achieved.

• The efficient generation of design alternatives and their evaluation is an important part of

the design flow of an embedded system. Due to the complexity of algorithms the number

of design alternatives grows exponentially thus manual exploration leads to suboptimal

solutions. Furthermore, exhaustive searches are also infeasible methods for computer aided

algorithms. A genetic algorithm with a two-staged fitness function and an extreme value

elitism feature allows for increasing the coverage of the design space exploration by more

than 20% compared to previous approaches.

• The classical application of reconfigurable devices like FPGAs is mainly characterised by

prototyping systems and as hardware accelerator. Here, one specific task is implemented

only once on such a dedicated device which can be described as compile time reconfiguration.

Here, the trade-offs for time and area for a given task set are utilised to increase the efficiency

of a schedule. Nevertheless, it is computational impossible to consider all the theoretically

achievable design points for an exhaustive search for the schedule. An algorithm is presented

that reduces the number of design alternatives that are used for the scheduling. A depth

first search algorithm is applied that constructs solutions in feasible time compared to a

classical level strip packing formulation with comparable performance results. With the

extension to a heuristic algorithm the typical run time is further reduced to several seconds.

A number of future research topics based on this thesis can be identified: In order to obtain

higher accuracy regarding the estimation methods a combined approach of static and dynamic

techniques might be applicable which still allows for an acceptable time effort for the generation of

the metrics. Most of the presented metrics can be adapted for their usage on different description

languages.

The single system description has interfaces to certain languages and design tools. Further

extension could be considered in order to support other languages and tools like for example

analog or mixed signal systems.

The design space exploration can be further expanded towards the incorporation of additional

objectives like for example power. Thus, the multi-objective optimisation will generate a two-

dimensional Pareto front.

The application to run-time reconfigurable computing identified the reduction of the number of

Pareto points as an important task in order to reduce the complexity of the scheduling algorithm.

Further research on the reduction of design points could take into account the shape of the Pareto

front.

APPENDICES

A NOTATION

a,b,c scalars

a,b,c vectors

a,b,c n-tuples

ai element of vector

ai element of tuple

A, B, C sets

|A| cardinality of a set

(.)T Transpose operator

min f(x) Minimum of the function f(x)
max f(x) Maximum of the function f(x)
argmin f(x) Argument x for which the scalar function f(x) is minimised

argmax f(x) Argument x for which the scalar function f(x) is maximised

δ Kronecker-delta

dom dominates

postdom postdominates

� strictly dominates

� weakly dominates

∼ indifferent

106 A Notation

B LIST OF VARIABLES

U unrolling factor

V cyclomatic complexity

M iteration count of a loop

p path of a control flow graph

pLP longest path

pSP shortest path

x design point

xe extreme design point

AC(f) area complexity of a function f

AC(BB) area complexity of a basic block BB

CC(f) cycle count of a function f

CC(BB) cycle count of a basic block

CCAV average cycle count

CCOP optimum cycle count

CCLB lower bound cycle count

CCUP upper bound cycle count

xi decision variable

E set of edges

V set of vertices

γ parallelism

γi parallelism of an operation type i

P number of predicates

R number of regions

η vocabulary measure

η1 number of distinct operators

η2 number of distinct operation types

S set of operations

Xp Pareto front

Xq quality set of a pareto front

C INTERMEDIATE FORMAT

C.1 XML Format

The IF representation of the system is based on XML, as described in Section 3.3.2. The XML

tags used to represent the system are listed below, together with a short description of each. A

graphical representation of the XML structure is depicted in Figure C.1. Following this, the IF

representation of the CellSearcher design is given, to further illustrate the XML format of the

IF representation.

project Contains an entire project, consisting of one or more designs.

design Contains one design, made up of instances of modules.

modules A section inside the design tag, where module definitions are given.

module Contains the definition of a module.

submod Defines sub-modules of structural modules.

signal Defines data channels connecting sub-modules.

connections A section inside the module tag or the block tag. When inside the module

tag, contains definitions of sub-module connections. When inside the block tag, contains

definitions of predecessor/successor connections of a basic block.

connection When inside the module tag, describes a connection between sub-modules through

a data channel. When inside the block tag, describes a connection to another basic block,

either as a predecessor or successor.

port Defines a port through which a functional module receives and/or sends data.

type Defines the type of a port (in, out, in/out,...).

datatype Defines the datatype of a port.

process Contains the definition of a process within a functional module.

blocks A section inside the process tag where basic blocks are defined.

block Contains the definition of a basic block.

110 C Intermediate Format

properties A section inside the block tag or the process tag. When inside the block tag,

contains definitions of properties relevant to basic blocks. When inside the process tag,

contains definitions of properties relevant to processes.

property When inside the block tag, describes a a property relevant to basic blocks. When

inside the process tag, describes a property relevant to processes.

instances A section inside the design tag, where module instantiations are given.

instance Defines an instance of a module.

The following is the IF representation of the CellSearcher design, illustrating the XML format

of the IF representation. Please note that in the interest of brevity, this IF representation is

shortened, that is to say some parts of the IF representation are omitted. The information on

basic blocks and their contents is shown only for one of the functional modules in the design, the

MatchedFilter module. While analogous information for all the other functional modules in the

design is available as well, it is omitted here.

<project name="Cellsearcher" id="cdl_prj_id_000000001">

<design>

<modules>

<module name="Cellsearcher" id="cdl_mod_id_000000001">

<submod module_id="cdl_mod_id_000000002" name="SqrAndSum" />

<submod module_id="cdl_mod_id_000000003" name="MatchedFilter" />

<submod module_id="cdl_mod_id_000000004" name="Display" />

<submod module_id="cdl_mod_id_000000005" name="PeakDetector" />

<submod module_id="cdl_mod_id_000000006" name="SlotAccu" />

<submod module_id="cdl_mod_id_000000007" name="FrameSource" />

<signal name="I" />

<signal name="Q" />

<signal name="filtered_I" />

<signal name="filtered_Q" />

<signal name="Energy" />

<signal name="Acc_Energy" />

<signal name="PeakIndex" />

<signal name="PeakHeight" />

<connections>

<connection sub_mod_name="FrameSource"

sub_port="out_I"

signal="I" />

<connection sub_mod_name="MatchedFilter"

sub_port="in_I"

signal="I" />

<connection sub_mod_name="FrameSource"

sub_port="out_Q"

signal="Q" />

<connection sub_mod_name="MatchedFilter"

sub_port="in_Q"

signal="Q" />

<connection sub_mod_name="MatchedFilter"

sub_port="out_I"

signal="filtered_I" />

<connection sub_mod_name="SqrAndSum"

C.1. XML Format 111

<project>
<design>

<modules>
<module>

<submod . . .>
. . .
<signal . . .>
. . .
<connections>

<connection . . .>
. . .

<\connections>
<\module>
<module>

<\module>

<port>

<port>

<type . . .>
<datatype . . .>

<process>

<\process>

<basicblocks>

<\basicblocks>
<properties>

<\properties>

<\block>

<block>

. . .

<property . . .>

<connections>
<connection . . .>
. . .

<\connections>

. . .

<properties>

<\properties>

<property . . .>
. . .

<\modules>
<instances>

<\instances>

<instance . . .>
. . .

<\design>

<\project>
. . .

. . .

. . .

. . .

Example of a structural module
(contains connected sub-modules)

Example of a functional module
(contains ports and processes)

Figure C.1: Structure of the IF representation of the system

sub_port="in_I"

signal="filtered_I" />

<connection sub_mod_name="MatchedFilter"

sub_port="out_Q"

signal="filtered_Q" />

<connection sub_mod_name="SqrAndSum"

sub_port="in_Q"

signal="filtered_Q" />

<connection sub_mod_name="SqrAndSum"

sub_port="out_En"

112 C Intermediate Format

signal="Energy" />

<connection sub_mod_name="SlotAccu"

sub_port="in_En"

signal="Energy" />

<connection sub_mod_name="SlotAccu"

sub_port="out_Accu_En"

signal="Acc_Energy" />

<connection sub_mod_name="PeakDetector"

sub_port="in_En"

signal="Acc_Energy" />

<connection sub_mod_name="PeakDetector"

sub_port="out_Peak_Index"

signal="PeakIndex" />

<connection sub_mod_name="Display"

sub_port="in_PI"

signal="PeakIndex" />

<connection sub_mod_name="PeakDetector"

sub_port="out_Peak_Height"

signal="PeakHeight" />

<connection sub_mod_name="Display"

sub_port="in_PH"

signal="PeakHeight" />

</connections>

</module>

<module name="MatchedFilter" id="cdl_mod_id_000000003">

<port name="in_I">

<type>in</type>

<datatype>double</datatype>

</port>

<port name="in_Q">

<type>in</type>

<datatype>double</datatype>

</port>

<port name="out_I">

<type>out</type>

<datatype>double</datatype>

</port>

<port name="out_Q">

<type>out</type>

<datatype>double</datatype>

</port>

<process id="cdl_pro_id_000000001" name="filterFunc">

<blocks>

<block name="bb0">

<properties>

<property name="DfgDepth">0</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb1</connection>

</block>

C.1. XML Format 113

<block name="bb1">

<properties>

<property name="DfgDepth">0</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb2</connection>

<connection type="pred">bb0</connection>

</block>

<block name="bb2">

<properties>

<property name="Loopcountupper">16</property>

<property name="Loopcountlower">16</property>

<property name="Loopcountstep">1</property>

<property name="Loopcountbitsize">32</property>

<property name="DfgDepth">0</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb3</connection>

<connection type="pred">bb1</connection>

<connection type="pred">bb10</connection>

</block>

<block name="bb3">

<properties>

<property name="Loopcountupper">16</property>

<property name="Loopcountlower">16</property>

<property name="Loopcountstep">1</property>

<property name="Loopcountbitsize">32</property>

<property name="DfgDepth">2</property>

<property name="NrOfAdd">3</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">1</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">4</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb5</connection>

<connection type="succ">bb4</connection>

114 C Intermediate Format

<connection type="pred">bb2</connection>

<connection type="pred">bb6</connection>

</block>

<block name="bb4">

<properties>

<property name="DfgDepth">3</property>

<property name="NrOfAdd">4</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">2</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb6</connection>

<connection type="pred">bb3</connection>

</block>

<block name="bb5">

<properties>

<property name="DfgDepth">3</property>

<property name="NrOfAdd">2</property>

<property name="NrOfSub">2</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">2</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb6</connection>

<connection type="pred">bb3</connection>

</block>

<block name="bb6">

<properties>

<property name="DfgDepth">1</property>

<property name="NrOfAdd">1</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">1</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb3</connection>

<connection type="succ">bb7</connection>

<connection type="pred">bb4</connection>

<connection type="pred">bb5</connection>

</block>

<block name="bb7">

<properties>

<property name="DfgDepth">0</property>

C.1. XML Format 115

<property name="NrOfAdd">1</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">1</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">1</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb9</connection>

<connection type="succ">bb8</connection>

<connection type="pred">bb6</connection>

</block>

<block name="bb8">

<properties>

<property name="DfgDepth">1</property>

<property name="NrOfAdd">2</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb10</connection>

<connection type="pred">bb7</connection>

</block>

<block name="bb9">

<properties>

<property name="DfgDepth">1</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">2</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb10</connection>

<connection type="pred">bb7</connection>

</block>

<block name="bb10">

<properties>

<property name="DfgDepth">1</property>

<property name="NrOfAdd">1</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">1</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

116 C Intermediate Format

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb2</connection>

<connection type="succ">bb11</connection>

<connection type="pred">bb8</connection>

<connection type="pred">bb9</connection>

</block>

<block name="bb11">

<properties>

<property name="DfgDepth">1</property>

<property name="NrOfAdd">1</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">1</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">1</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb13</connection>

<connection type="succ">bb12</connection>

<connection type="pred">bb10</connection>

</block>

<block name="bb12">

<properties>

<property name="DfgDepth">0</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb13</connection>

<connection type="pred">bb11</connection>

</block>

<block name="bb13">

<properties>

<property name="DfgDepth">1</property>

<property name="NrOfAdd">1</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">1</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">1</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb15</connection>

C.1. XML Format 117

<connection type="succ">bb14</connection>

<connection type="pred">bb11</connection>

<connection type="pred">bb12</connection>

</block>

<block name="bb14">

<properties>

<property name="DfgDepth">0</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb15</connection>

<connection type="pred">bb13</connection>

</block>

<block name="bb15">

<properties>

<property name="DfgDepth">0</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="succ">bb16</connection>

<connection type="pred">bb13</connection>

<connection type="pred">bb14</connection>

</block>

<block name="bb16">

<properties>

<property name="DfgDepth">0</property>

<property name="NrOfAdd">0</property>

<property name="NrOfSub">0</property>

<property name="NrOfMul">0</property>

<property name="NrOfIf">0</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">0</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

<connection type="pred">bb15</connection>

</block>

</blocks>

<properties>

<property name="NrOfAdd">16</property>

<property name="NrOfSub">4</property>

118 C Intermediate Format

<property name="NrOfMul">0</property>

<property name="NrOfIf">6</property>

<property name="NrOfXor">0</property>

<property name="NrOfSL">11</property>

<property name="NrOfSR">0</property>

<property name="NrOfAnd">0</property>

<property name="NrOfOr">0</property>

<property name="NrOfDiv">0</property>

</properties>

</process>

</module>

<module name="SqrAndSum" id="cdl_mod_id_000000002">

<port name="in_I">

<type>in</type>

<datatype>double</datatype>

</port>

<port name="in_Q">

<type>in</type>

<datatype>double</datatype>

</port>

<port name="out_En">

<type>out</type>

<datatype>double</datatype>

</port>

</module>

<module name="Display" id="cdl_mod_id_000000004">

<port name="in_PH">

<type>in</type>

<datatype>double</datatype>

</port>

<port name="in_PI">

<type>in</type>

<datatype>int</datatype>

</port>

</module>

<module name="PeakDetector" id="cdl_mod_id_000000005">

<port name="in_En">

<type>in</type>

<datatype>double</datatype>

</port>

<port name="out_Peak_Height">

<type>out</type>

<datatype>double</datatype>

</port>

<port name="out_Peak_Index">

<type>out</type>

<datatype>int</datatype>

</port>

</module>

<module name="SlotAccu" id="cdl_mod_id_000000006">

<port name="in_En">

<type>in</type>

<datatype>double</datatype>

</port>

<port name="out_Accu_En">

<type>out</type>

<datatype>double</datatype>

</port>

</module>

C.2. GXL Format 119

<module name="FrameSource" id="cdl_mod_id_000000007">

<port name="out_I">

<type>out</type>

<datatype>double</datatype>

</port>

<port name="out_Q">

<type>out</type>

<datatype>double</datatype>

</port>

</module>

</modules>

<instances>

<instance id="cdl_ins_id_000000001"

name="CellSearcher_1"

module_id="cdl_mod_id_000000001"

type="top" />

</instances>

</design>

</project>

C.2 GXL Format

While the XML format described in the previous section has been especially tailored to the

design data base also a second intermediate format in the graph exchange language GXL [171]

is supported. This open language standard allows for exporting the graph descriptions of the

data base to other second party tools. Nevertheless, not all features of the design database are

supported within this language. In the following the IF representation of the CellSearcher

design in GXL is presented.

<?xml version="1.0"?>

<!DOCTYPE gxl SYSTEM "../gxl.dtd">

<gxl id="testgraph">

<node id="bb0">

<attr name="DfgDepth">

<uint>0</uint>

</attr>

<attr name="NrOfAdd">

<uint>0</uint>

</attr>

<attr name="NrOfSub">

<uint>0</uint>

</attr>

<attr name="NrOfMul">

<uint>0</uint>

</attr>

<attr name="NrOfIf">

<uint>0</uint>

</attr>

<attr name="NrOfXor">

<uint>0</uint>

</attr>

<attr name="NrOfSL">

<uint>0</uint>

</attr>

120 C Intermediate Format

<attr name="NrOfSR">

<uint>0</uint>

</attr>

<attr name="NrOfAnd">

<uint>0</uint>

</attr>

<attr name="NrOfOr">

<uint>0</uint>

</attr>

<attr name="NrOfDiv">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalRead">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalWrite">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalMAcc">

<uint>0</uint>

</attr>

<attr name="NrOfLocalRead">

<uint>0</uint>

</attr>

<attr name="NrOfLocalWrite">

<uint>0</uint>

</attr>

<attr name="NrOfRead">

<uint>0</uint>

</attr>

<attr name="NrOfWrite">

<uint>0</uint>

</attr>

<attr name="NrOfMAcc">

<uint>0</uint>

</attr>

</node>

<node id="bb1">

<attr name="DfgDepth">

<uint>0</uint>

</attr>

<attr name="NrOfAdd">

<uint>0</uint>

</attr>

<attr name="NrOfSub">

<uint>0</uint>

</attr>

<attr name="NrOfMul">

<uint>0</uint>

</attr>

<attr name="NrOfIf">

<uint>0</uint>

</attr>

<attr name="NrOfXor">

<uint>0</uint>

</attr>

<attr name="NrOfSL">

<uint>0</uint>

</attr>

C.2. GXL Format 121

<attr name="NrOfSR">

<uint>0</uint>

</attr>

<attr name="NrOfAnd">

<uint>0</uint>

</attr>

<attr name="NrOfOr">

<uint>0</uint>

</attr>

<attr name="NrOfDiv">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalRead">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalWrite">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalMAcc">

<uint>0</uint>

</attr>

<attr name="NrOfLocalRead">

<uint>2</uint>

</attr>

<attr name="NrOfLocalWrite">

<uint>4</uint>

</attr>

<attr name="NrOfRead">

<uint>2</uint>

</attr>

<attr name="NrOfWrite">

<uint>4</uint>

</attr>

<attr name="NrOfMAcc">

<uint>6</uint>

</attr>

<attr name="Loopcountupper">

<uint>16</uint>

</attr>

<attr name="Loopcountlower">

<uint>16</uint>

</attr>

<attr name="Loopcountstep">

<uint>1</uint>

</attr>

<attr name="Loopcountbitsize">

<uint>32</uint>

</attr>

</node>

<node id="bb2">

<attr name="DfgDepth">

<uint>0</uint>

</attr>

<attr name="NrOfAdd">

<uint>0</uint>

</attr>

<attr name="NrOfSub">

<uint>0</uint>

</attr>

122 C Intermediate Format

<attr name="NrOfMul">

<uint>0</uint>

</attr>

<attr name="NrOfIf">

<uint>0</uint>

</attr>

<attr name="NrOfXor">

<uint>0</uint>

</attr>

<attr name="NrOfSL">

<uint>0</uint>

</attr>

<attr name="NrOfSR">

<uint>0</uint>

</attr>

<attr name="NrOfAnd">

<uint>0</uint>

</attr>

<attr name="NrOfOr">

<uint>0</uint>

</attr>

<attr name="NrOfDiv">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalRead">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalWrite">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalMAcc">

<uint>0</uint>

</attr>

<attr name="NrOfLocalRead">

<uint>2</uint>

</attr>

<attr name="NrOfLocalWrite">

<uint>4</uint>

</attr>

<attr name="NrOfRead">

<uint>2</uint>

</attr>

<attr name="NrOfWrite">

<uint>4</uint>

</attr>

<attr name="NrOfMAcc">

<uint>6</uint>

</attr>

<attr name="Loopcountupper">

<uint>16</uint>

</attr>

<attr name="Loopcountlower">

<uint>16</uint>

</attr>

<attr name="Loopcountstep">

<uint>1</uint>

</attr>

<attr name="Loopcountbitsize">

<uint>32</uint>

C.2. GXL Format 123

</attr>

</node>

<node id="bb3">

<attr name="DfgDepth">

<uint>3</uint>

</attr>

<attr name="NrOfAdd">

<uint>3</uint>

</attr>

<attr name="NrOfSub">

<uint>0</uint>

</attr>

<attr name="NrOfMul">

<uint>0</uint>

</attr>

<attr name="NrOfIf">

<uint>1</uint>

</attr>

<attr name="NrOfXor">

<uint>0</uint>

</attr>

<attr name="NrOfSL">

<uint>4</uint>

</attr>

<attr name="NrOfSR">

<uint>0</uint>

</attr>

<attr name="NrOfAnd">

<uint>0</uint>

</attr>

<attr name="NrOfOr">

<uint>0</uint>

</attr>

<attr name="NrOfDiv">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalRead">

<uint>2</uint>

</attr>

<attr name="NrOfGlobalWrite">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalMAcc">

<uint>2</uint>

</attr>

<attr name="NrOfLocalRead">

<uint>2</uint>

</attr>

<attr name="NrOfLocalWrite">

<uint>1</uint>

</attr>

<attr name="NrOfRead">

<uint>4</uint>

</attr>

<attr name="NrOfWrite">

<uint>1</uint>

</attr>

<attr name="NrOfMAcc">

<uint>5</uint>

124 C Intermediate Format

</attr>

</node>

<node id="bb4">

<attr name="DfgDepth">

<uint>3</uint>

</attr>

<attr name="NrOfAdd">

<uint>4</uint>

</attr>

<attr name="NrOfSub">

<uint>0</uint>

</attr>

<attr name="NrOfMul">

<uint>0</uint>

</attr>

<attr name="NrOfIf">

<uint>0</uint>

</attr>

<attr name="NrOfXor">

<uint>0</uint>

</attr>

<attr name="NrOfSL">

<uint>2</uint>

</attr>

<attr name="NrOfSR">

<uint>0</uint>

</attr>

<attr name="NrOfAnd">

<uint>0</uint>

</attr>

<attr name="NrOfOr">

<uint>0</uint>

</attr>

<attr name="NrOfDiv">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalRead">

<uint>2</uint>

</attr>

<attr name="NrOfGlobalWrite">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalMAcc">

<uint>2</uint>

</attr>

<attr name="NrOfLocalRead">

<uint>4</uint>

</attr>

<attr name="NrOfLocalWrite">

<uint>2</uint>

</attr>

<attr name="NrOfRead">

<uint>6</uint>

</attr>

<attr name="NrOfWrite">

<uint>2</uint>

</attr>

<attr name="NrOfMAcc">

<uint>8</uint>

C.2. GXL Format 125

</attr>

</node>

<node id="bb5">

<attr name="DfgDepth">

<uint>3</uint>

</attr>

<attr name="NrOfAdd">

<uint>2</uint>

</attr>

<attr name="NrOfSub">

<uint>2</uint>

</attr>

<attr name="NrOfMul">

<uint>0</uint>

</attr>

<attr name="NrOfIf">

<uint>0</uint>

</attr>

<attr name="NrOfXor">

<uint>0</uint>

</attr>

<attr name="NrOfSL">

<uint>2</uint>

</attr>

<attr name="NrOfSR">

<uint>0</uint>

</attr>

<attr name="NrOfAnd">

<uint>0</uint>

</attr>

<attr name="NrOfOr">

<uint>0</uint>

</attr>

<attr name="NrOfDiv">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalRead">

<uint>2</uint>

</attr>

<attr name="NrOfGlobalWrite">

<uint>0</uint>

</attr>

<attr name="NrOfGlobalMAcc">

<uint>2</uint>

</attr>

<attr name="NrOfLocalRead">

<uint>4</uint>

</attr>

<attr name="NrOfLocalWrite">

<uint>2</uint>

</attr>

<attr name="NrOfRead">

<uint>6</uint>

</attr>

<attr name="NrOfWrite">

<uint>2</uint>

</attr>

<attr name="NrOfMAcc">

<uint>8</uint>

126 C Intermediate Format

</attr>

</node>

<edge id="cdl_bbl_id_030000001" from="bb0" to="bb1"/>

<edge id="cdl_bbl_id_030000003" from="bb1" to="bb2"/>

<edge id="cdl_bbl_id_030000004" from="bb2" to="bb3"/>

<edge id="cdl_bbl_id_030000005" from="bb3" to="bb5"/>

<edge id="cdl_bbl_id_030000005" from="bb3" to="bb4"/>

</gxl>

D DESIGN SPACE EXPLORATION RESULTS

Figure D.1 depicts the convergency of the ranked fronts. The number of individuals that reside

in each front of the population. Almost all of the individuals of one population tend ro reside in

the first front X1. Whereas the number of the individuals within the other fronts X2, X3, X4 is

decreasing.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

55

generation

nu
m

be
r

of
 in

di
vi

du
al

s

X1

X2

X3

X4

Figure D.1: Convergency of the ranked fonts

This behaviour is also visualised in the Figure D.2 that depicts snapshots of the populations. It

starts with the initial population D.2a crowded in the centre region and evolves further towards

the Pareto front (Figure D.2c).

Further examples of Pareto fronts derived with the four genetic algorithm variants that are de-

scribed in Chapter 5 are depicted in Figure D.3 and Figure D.4.

250 300 350 400 450 500 550 600
160

180

200

220

240

260

280

300

320

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

(a) 1st population.

250 300 350 400 450 500 550 600
160

180

200

220

240

260

280

300

320

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

(b) 5th population.

250 300 350 400 450 500 550 600
160

180

200

220

240

260

280

300

320

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

(c) 10th population

Figure D.2: Evolvement of the population over several generations of the genetic algorithm GA4.

45 50 55 60 65 70 75 80 85
25

30

35

40

45

50

55

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
2
)

X(GA
3
)

X(GA
4
)

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
30

40

50

60

70

80

90

100

110

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
2
)

X(GA
3
)

X(GA
4
)

(b)

100 120 140 160 180 200 220 240
70

75

80

85

90

95

100

105

110

115

120

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
2
)

X(GA
3
)

X(GA
4
)

(c)

Figure D.3: Examples for Pareto fronts.

0 1 2 3 4 5 6

x 104

100

150

200

250

300

350

400

450

500

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
2
)

X(GA
3
)

X(GA
4
)

(a)

200 250 300 350 400 450 500 550 600 650 700
120

140

160

180

200

220

240

260

280

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
2
)

X(GA
3
)

X(GA
4
)

(b)

250 300 350 400 450 500 550 600
160

180

200

220

240

260

280

300

cycle count

a
r
e
a

c
o
m
p
l
e
x
i
t
y

X(GA
1
)

X(GA
2
)

X(GA
3
)

X(GA
4
)

(c)

Figure D.4: Examples for Pareto fronts.

E BENCHMARK ALGORITHMS

In the following the benchmark functions are listed that have been used within the thesis. The

first group of functions (Listing E.1, E.2, E.3, E.4, and reflist:sqrandsum)is derived from the

communication domain. Those functions perform a the slot synchronisation part of the cell

searching procedure by detecting the start of a slot transmitted by the base station in a UMTS

communication system.. The second group of function (Listing E.6, E.7, E.8, and E.9) belongs to

the video processing domain. They are part of an MPEG algorithm from the embedded systems

library called MediaBench [110].

1 void filterFunc(double new_I , double new_Q) {

2 int i,j,index;

3 double innerSum_I , innerSum_Q , outerSum_I , outerSum_Q;

4

5 outerSum_I = outerSum_Q = 0.0;

6 for (i = 0; i < 16; i++) {

7 innerSum_I = innerSum_Q = 0.0;

8 for (j = 0; j < 16; j++) {

9

10 index = (m_mem16Head + OVSR *(16*i+j))%(m_mfc_len*OVSR);

11 if (A_CODE[j] > 0) {

12 innerSum_I += m_mem_I[index];

13 innerSum_Q += m_mem_Q[index];

14 }

15 else {

16 innerSum_I -= m_mem_I[index];

17 innerSum_Q -= m_mem_Q[index];

18 }

19 }

20 if (PSCH_CODE[i] > 0) {

21 outerSum_I += innerSum_I;

22 outerSum_Q += innerSum_Q;

23 }

24 else {

25 outerSum_I -= innerSum_I;

26 outerSum_Q -= innerSum_Q;

27 }

28 }

29 if ((++ m_mem16Tail %(OVSR*m_mfc_len)) == 0) m_mem16Tail = 0; // index ==512 - >0

30 if ((++ m_mem16Head %(OVSR*m_mfc_len)) == 0) m_mem16Head = 0;

31

32 /* OUTPUT */

33 m_mf_out_I = outerSum_I;

34 /* OUTPUT */

35 m_mf_out_Q = outerSum_Q;

36 }

Listing E.1: Matched filter 1.

132 E Benchmark Algorithms

1 void filterFunc16(double new_I , double new_Q)

2 {

3 int index , i;

4 double innerSum_I = 0.0;

5 double innerSum_Q = 0.0;

6 for (i = 0; i < 16; i++) {

7 index = (m_mem16Head +2*i)%32;

8 if (A_CODE[i] > 0) { // A_CODE[i] == 1

9 innerSum_I += m_mem16_I[index];

10 innerSum_Q += m_mem16_Q[index];

11 }

12 else { // A_CODE[i] == -1

13 innerSum_I -= m_mem16_I[index];

14 innerSum_Q -= m_mem16_Q[index];

15 }

16 }

17 if ((++ m_mem16Tail %(OVSR *16)) == 0) m_mem16Tail = 0; // index ==30 ->0

18 if ((++ m_mem16Head %(OVSR *16)) == 0) m_mem16Head = 0;

19

20 // Push value to last position in m_mem256_?

21 m_mem256_I[m_mem256Tail] = innerSum_I;

22 m_mem256_Q[m_mem256Tail] = innerSum_Q;

23

24 // Calc new correlation , 16 times

25 m_newCorr_I = m_newCorr_Q = 0.0;

26 for (i = 0; i < 16; i++) {

27 index = (m_mem256Head +32*i)%512;

28 if (PSCH_CODE[i] > 0) { // PSCH_CODE [i] == 1

29 m_newCorr_I += m_mem256_I[index];

30 m_newCorr_Q += m_mem256_Q[index];

31 }

32 else { // PSCH_CODE [i] == -1

33 m_newCorr_I -= m_mem256_I[index];

34 m_newCorr_Q -= m_mem256_Q[index];

35 }

36 }

37 if ((++ m_mem256Head %512) == 0) m_mem256Head = 0;

38 if ((++ m_mem256Tail %512) == 0) m_mem256Tail = 0;

39

40 /* OUTPUT */

41 m_mf_out_I = m_newCorr_I;

42 /* OUTPUT */

43 m_mf_out_Q = m_newCorr_Q;

44 }

Listing E.2: Matched filter 2.

1 void shellSort(double *valArray , int *indArray , int ar_size)

2 {

3 int N = ar_size;

4 int i,j,h = 1;

5 double value;

6 int index;

7

8 // Prepare the h row values.

9 while (h <= N) h=3*h+1;

10 // start shellsort

11 while (h > 1) {

133

12 h = h/3;

13 for (i = h; i < N; i++) {

14 value = valArray[i]; index = indArray[i];

15 j = i;

16

17 while (valArray[j-h] < value) { // sort in descending order , largest value first

18 valArray[j] = valArray[j-h]; indArray[j] = indArray[j-h];

19 j = j-h;

20

21 if (j < h) break;

22 }

23 valArray[j] = value; indArray[j] = index;

24 }

25 }

26 }

Listing E.3: Shell sort.

1 void slotAccuFunc(double En , int index)

2 {

3 m_accu_En[index] += En;

4 }

Listing E.4: Slot accumulation.

1 void sqrAndSumFunc(double I, double Q)

2 {

3 m_out_En = I*I + Q*Q;

4 }

Listing E.5: Square and sum.

1 void calcid(int picture , int mb_addr , int i, int j)

2 {

3

4 b_00=picture+mb_addr +((i+down_for)/8)*2+((j+right_for)/8);

5 b_10=picture+mb_addr +((i+down_for +1)/8)*2+((j+right_for)/8);

6 b_01=picture+mb_addr +((i+down_for)/8)*2+((j+right_for +1)/8);

7

8 p_i0=(i+down_for) % 8;

9 p_i1=(i+down_for +1) % 8;

10 p_j0=(j+right_for) % 8;

11 p_j1=(j+right_for +1) % 8;

12 }

Listing E.6: Calculate index.

1 void pred_case1 () {

2 int i,j;

3 // calculate_forward_motion (1);

4 for (i=0; i<=7; i++)

5 {

6 for (j=0; j<=7; j++)

7 {

8 // calcid(previous_picture , macroblock_address ,i,j);

9

10 if ((right_half_for ==0) && (down_half_for ==0))

134 E Benchmark Algorithms

11 pred_block[i*8+j]= storage[b_00 *64+ p_i0 *8+ p_j0];

12

13 if ((right_half_for ==0) &&(down_half_for ==1))

14 pred_block[i*8+j]=(storage[b_00 *64+ p_i0 *8+ p_j0]+

15 storage[b_10 *64+ p_i1 *8+ p_j0])/2;

16

17 if ((right_half_for ==1) &&(down_half_for ==0))

18 pred_block[i*8+j]=(storage[b_00 *64+ p_i0 *8+ p_j0]+

19 storage[b_01 *64+ p_i0 *8+ p_j1])/2;

20

21 if ((right_half_for ==1) &&(down_half_for ==1))

22 pred_block[i*8+j]=(storage[b_00 *64+ p_i0 *8+ p_j0]+

23 storage[b_10 *64+ p_i1 *8+ p_j0]+

24 storage[b_00 *64+ p_i0 *8+ p_j0]+

25 storage[b_01 *64+ p_i0 *8+ p_j1])/4;

26 } // end loop; //

27 } // end loop; //

28 }

Listing E.7: Prediction case 1.

1 void pred_case2 () {

2 int k,l,m,p,r,q;

3 if (is_for_info ==1)

4 {

5 // calculate_forward_motion (set_prev_values);

6 for (k=0; k<=7; k++)

7 {

8 for (p=0; p<=7; p++)

9 {

10 // calcid(previous_picture , macroblock_address ,k,p);

11

12 if ((right_half_for ==0) &&(down_half_for ==0))

13 pred_block[k*8+p]= storage[b_00 *64+ p_i0 *8+ p_j0];

14

15 if ((right_half_for ==0) &&(down_half_for ==1))

16 pred_block[k*8+p]=(storage[b_00 *64+ p_i0 *8+ p_j0]+

17 storage[b_10 *64+ p_i1 *8+ p_j0])/2;

18

19 if ((right_half_for ==1) && (down_half_for ==0))

20 pred_block[k*8+p]=(storage[b_00 *64+ p_i0 *8+ p_j0]+

21 storage[b_01 *64+ p_i0 *8+ p_j1])*2; /* SG was >1 */

22

23 if ((right_half_for ==1) && (down_half_for ==1))

24 pred_block[k*8+p]=(storage[b_00 *64+ p_i0 *8+ p_j0]+

25 storage[b_10 *64+ p_i1 *8+ p_j0]+

26 storage[b_00 *64+ p_i0 *8+ p_j0]+

27 storage[b_01 *64+ p_i0 *8+ p_j1])/4;

28 } //&end loop; //

29 } // end loop; //

30 }

31 else

32 {

33 recon_right_for=recon_right_for_prev;

34 recon_down_for=recon_down_for_prev;

35 } // end if; //

36

37 if (is_back_info ==1)

135

38 {

39 // calculate_backward_motion (1);

40 for (l=0; l<=7; l++)

41 {

42 for (q=0; q<=7; q++)

43 {

44 // calcid(future_picture , macroblock_address ,l,q);

45

46 if ((right_half_for ==0) &&(down_half_for ==0))

47 pred_block[l*8+q]= pred_block[l*8+q]+

48 storage[b_00 *64+ p_i0 *8+ p_j0];

49

50 if ((right_half_for ==0) && (down_half_for ==1))

51 pred_block[l*8+q]= pred_block[l*8+q]+

52 (storage[b_00 *64+ p_i0 *8+ p_j0]+

53 storage[b_10 *64+ p_i1 *8+ p_j0])/2;

54

55 if ((right_half_for ==1) &&(down_half_for ==0))

56 pred_block[l*8+q]= pred_block[l*8+q]+

57 (storage[b_00 *64+ p_i0 *8+ p_j0]+

58 storage[b_01 *64+ p_i0 *8+ p_j1])/2;

59

60 if ((right_half_for ==1) &&(down_half_for ==1))

61 pred_block[l*8+q]= pred_block[l*8+q]+

62 (storage[b_00 *64+ p_i0 *8+ p_j0]+

63 storage[b_10 *64+ p_i1 *8+ p_j0]+

64 storage[b_00 *64+ p_i0 *8+ p_j0]+

65 storage[b_01 *64+ p_i0 *8+ p_j1])/4;

66 } // end loop; //

67 } // end loop; //

68 }

69 else

70 {

71 recon_right_back=recon_right_back_prev;

72 recon_down_back=recon_down_back_prev;

73 } // end if; //

74

75 if ((is_for_info ==1) &&(is_back_info ==1))

76 {

77 for (m=0; m<=7; m++)

78 {

79 for (r=0 ; r<=7; r++)

80 pred_block[m*8+r]= pred_block[m*8+r]/2;

81 } // end loop ;//

82 } // end if; //

83

84 } /* void pred_case2 () */

Listing E.8: Prediction case 2.

1 void calculate_forward_motion(int new_prev_values) {

2 int pred_temp_bit_vector;

3 int right_little;

4 int right_big ;

5 int down_little;

6 int down_big ;

7

8 int min ,max;

136 E Benchmark Algorithms

9 int new_vector;

10

11 right_little=motion_horizontal_forward_code*forward_f;

12 if (right_little ==0)

13 right_big =0;

14 else

15 {

16 if (right_little >0)

17 {

18 right_little=right_little - complement_horizontal_forward_r;

19 right_big=right_little -(forward_f *32);

20 }

21 else

22 {

23 right_little=right_little+ complement_horizontal_forward_r;

24 right_big=right_little +(forward_f *32);

25 } // end if; //

26 } // end if; //

27

28 down_little=motion_vertical_forward_code*forward_f;

29 if (down_little ==0)

30 down_big =0;

31 else

32 {

33 if (down_little >0)

34 {

35 down_little=down_little -complement_vertical_forward_r;

36 down_big=down_little -(forward_f *32);

37 }

38 else

39 {

40 down_little=down_little+complement_vertical_forward_r;

41 down_big=down_little +(forward_f *32);

42 } // end if ;//

43 } // end if; //

44

45 max=(forward_f *16) -1;

46 min=-(forward_f *16);

47

48 new_vector=recon_right_for_prev+right_little;

49 if ((new_vector <=max) && (new_vector >=min))

50 recon_right_for=recon_right_for_prev+right_little;

51 else

52 recon_right_for=recon_right_for_prev+right_big;

53 if (new_prev_values ==1)

54 recon_right_for_prev=recon_right_for;

55 if (full_pel_forward_vector ==1)

56 {

57 pred_temp_bit_vector=recon_right_for;

58 pred_temp_bit_vector=pred_temp_bit_vector *2;

59 recon_right_for=pred_temp_bit_vector;

60 } // end if; //

61

62 new_vector=recon_down_for_prev+down_little;

63 if ((new_vector <=max) && (new_vector >=min))

64 recon_down_for=recon_down_for_prev+down_little;

65 else

66 recon_down_for=recon_down_for_prev+down_big;

67 if (new_prev_values ==1)

137

68 recon_down_for_prev=recon_down_for;

69 if (full_pel_forward_vector ==1)

70 {

71 pred_temp_bit_vector=recon_down_for;

72 pred_temp_bit_vector=pred_temp_bit_vector *2; /* SG: used to <1 */

73 recon_down_for=pred_temp_bit_vector;

74 } // end if ;//

75

76 if (b_num >3)

77 {

78 recon_right_for=recon_right_for /2;

79 recon_down_for=recon_down_for /2;

80 } // end if; //

81

82 pred_temp_bit_vector=recon_right_for;

83 pred_temp_bit_vector=pred_temp_bit_vector *21;

84 right_for=pred_temp_bit_vector;

85

86 pred_temp_bit_vector=recon_down_for;

87 pred_temp_bit_vector=pred_temp_bit_vector /2;

88 down_for=pred_temp_bit_vector;

89

90 right_half_for=recon_right_for -(right_for *2);

91 down_half_for=recon_down_for -(down_for *2);

92 } // end; //

Listing E.9: Calculate forward motion.

F DIJKSTRA’S ALGORITHM

Dijkstra’s algorithm (Listing F.1) is a greedy algorithm that solves the single-source shortest path

problem for a directed graph with nonnegative edge weights. The input of the algorithm consists

of a weighted directed graph G and a source vertex s in G. V denotes the set of all vertices in the

graph G. Each edge of the graph is an ordered pair of vertices (u, v) representing a connection

from vertex u to vertex v. The previous array is populated with a pointer to the ”next-hop” node

on the source graph to get the shortest route to the source.

1 function Dijkstra(G, s)

2 for each vertex v in G // Initialisations

3 dist[v] = infinity // Unknown distance function from source to v

4 previous[v] = undefined

5 dist[s] = 0 // Distance from source to source

6 Q = copy(G) // All nodes in the graph are

7 // un -optimised - thus are in Q

8 while Q is not empty // The main loop

9 u = extract_min(Q) // Remove and return best vertex from

10 // nodes in Q; returns source on first iteration

11 for each neighbour v of u // where v has not yet been considered

12 alt = dist[u] + length(u, v)

13 if alt < dist[v]

14 dist[v] = alt

15 previous[v] = u

16 return previous []

Listing F.1: Dijsktra’s algorithm.

G LIST OF ACRONYMS

AG Access Graph

ALU Arithmetic Logic Unit

ASAP as soon as possible

ASIC Application Specific Integrated Circuit

ASIP Application Specific Integrated Processor

ASP Application Specific Processor

BB Basic Block

BFM Bus Functional Model

CC Cycle Count

CFG Control Flow Graph

CGI Computer Gateway Interface

CG Call Graph

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DAG Directed Acyclic Graph

DBMS Data Base Management System

DDB Design Data Base

DDG Data Dependency Graph

DMA Direct Memory Access

DFG Data Flow Graph

DRL Dynamic Reconfigurable Logic

DS Design Space

DSE Design Space Exploration

DSP Digital Signal Processor

EDA Electronic Design Automation

EDGE Enhanced Data Rates for GSM Evolution

EVE Extreme Value Elitism

EDF Earliest Deadline First

EMOO Evolutionary Multi-objective Optimisation

FPGA Field Programmable Gate Array

GPRS General Packet Radio Service

GSM Global System for Mobile Communication

GUI Graphical User Interface

142 G List of Acronyms

GXL Graph Exchange Language

HCFG Hierarchical Control Flow Graph

HDL Hardware Description Language

HLS High-level Synthesis

HTML Hyper Text Markup Language

HW Hardware

IF Intermediate Format

IP Intellectual Property

ISS Instruction Set Simulator

LC Line Count

LSI Large Scale Integration

LOC Lines of Code

MAC Multiply Accumulate

MOC Model of Computation

MPSOC Multi Processor System on Chip

NoC Network on Chip

OSCI Open SystemC Initiative

OTIE Open Tool Integration Environment

PSC Primary Synchronisation Channel

RISC Reduced Instruction Set Computer

RRC Run Time Reconfigurable Computing

RT Register Transfer

RTL Register Transfer Level

RTOS Real Time Operating System

SDR Software Defined Radio

SoC System-on-Chip

SQL Structured Query Language

SW Software

TLM Transaction Level Modeling

UML Unified Modeling Language

UMTS Universal Mobile Telecommunication System

VC Virtual Component

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

VP Virtual Prototyping

VSIA Virtual Socket Interface Alliance

WCRT Worst Case Response Time

WLAN Wireless Local Area Network

XML Extensible Markup Language

BIBLIOGRAPHY

[1] CoWare Signal Processing Designer. http://www.coware.com/.

[2] Open systemc initiative. http://www.systemc.org.

[3] Sematech. http://www.sematech.org.

[4] Software defined radio forum. http://www.sdrforum.org.

[5] Specification and description language. http://www.sdl-forum.org.

[6] Unified modeling language. http://www.uml.org.

[7] Giovanni Agosta, Francesco Bruschi, and Donatella Sciuto. Static Analysis of Transaction-

Level Models. In Design Automation Conference, pages 448–453, Anaheim, CA, USA, June

2003.

[8] H. Agrawal. Dominators, super blocks, and program coverage. In Annual Symposium on

Principles of Programming Languages, pages 25–34, 1994.

[9] I. Ahmad, M.K. Dhodi, and F.H. Hielscher. Design-Space Exploration for High-Level Syn-

thesis. Computers and Communications, pages 491–496, 1994.

[10] A. V. Aho, R. Sethi, and J. D. Ullmann. Compilers: Principles, Techniques and Tools.

Addison-Wesley, 1985.

[11] A. Allara, C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. System-level Perfor-

mance Estimation Strategy for Sw and Hw. In Computer Design: VLSI in Computers and

Processors, pages 48–53, October 1998.

[12] A. Allara, W. Fornaciari, F. Salice, and D. Sciuto. A Model for System-level timed analysis

and profiling. In Design, Automation, and Test in Europe, pages 204–210, Paris, France,

1998.

[13] P. Altenbernd. On the false path problem in hard real-time programs. In Euromicro Work-

shop, pages 102–107, June 1996.

[14] J. Axelsson. Cost Model for Electronic Architectures Trade Studies. In Sixth International

Conference on Engineering of Complex Computer Systems, Tokyo, Japan, 2000.

144 Bibliography

[15] Abdenour Azzedine, Jean-Philippe Diguet, and Jean-Luc Philippe. Large Exploration for

HW/SW partitioning of Multirate and Aperiodic Real-Time Systems. In International Sym-

posium on Hardware/Software Co-Design, pages 85–90, 2002.

[16] B. Bailey. The Waking of the Sleeping Giant – Verification, April 2002. http://www.

mentor.com/consulting/techpapers/mentorpaper_8226.pdf.

[17] R. Baines and D. Pulley. A Total Cost Approach to Evaluating Different Reconfigurable

Architectures for Baseband Processing in Wireless Receivers. IEEE Communications Mag-

azine, 41:105–128, January 2003.

[18] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Hladar, P. Joisha,

A. Jones, A. Kanhare, A. Nayak, A. Periyacheri, M. Walkden, and D. Zarestky. A MATLAB

Compiler for Distributed, Heterogeneous, Reconfigurable Computing Systems. In Sympo-

sium on Field-Programmable Computing Custom Computing Machines, pages 17–19, 2000.

[19] B. Beizer. Software Testing Techniques for Functional Testing of Software and Systems.

Wiley, New York, 1990.

[20] P. Belanović, B. Knerr, M. Holzer, and M. Rupp. A fully automated environment for

verification of virtual prototypes. EURASIP Journal on Applied Signal Processing, 2006:1–

12, 2006.

[21] C. Berge. Graphs and Hypergraphs. North-Holland Publishing Company, 1973.

[22] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for dsp systems.

IEEE Trans. on Signal Processing, 49(10):2408–2412, 2001.

[23] S. Bilavarn, G. Gogniat, and J. Philippe. Area time power estimation for fpga based designs

at a behavioral level. In Electrnics, Circuits and Systems, pages 524–527, 2000.

[24] Sebastian Bilavarn, Guy Gogniat, Jean-Luc Philippe, and Lilian Bossuet. Design space

pruning through early estimation of area/delay tradeoffs for fpga implementations. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(10):1950–

1968, October 2006.

[25] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclostatic dataflow. IEEE

Trans. on Signal Processing, 44(2):397–408, 1996.

[26] M. Birnbaum and H. Sachs. How VSIA Answers the SOC Dilemma. IEEE Computer,

32:42–50, June 1999.

[27] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[28] W. Böhm, J. Hammes, B. Draper, M. Chatawathe, C. Ross, R. Rinker, and W. Najjar.

Mapping a Single Assignment Programming Language to Reconfigurable Systems. The

Journal of Supercomputing, 21(2):117–130, February 2002.

Bibliography 145

[29] U. Bortfeld and C. Mielenz. Whitepaper C++ System Simulation Interfaces, July 2000.

[30] C. Brandolese, W. Foranciari, F. Salice, and D. Sciuto. Source-Level Execution Time

Estimation of C Programs. In International Symposium on Hardware/Software Co-Design,

pages 98–104, 2001.

[31] C. Brandolese, W. Fornaciari, and F. Salice. An Area Estimation Methodology for FPGA

Based Designs at SystemC-Level. In Design Automation Conference, pages 129–132, June

2004.

[32] Davide Bruni, Alessandro Bogliolo, and Luca Benini. Statistical Design Sapce Exploration

for Application-Specific Unit Synthesis. In Design Automation Conference, pages 641–646,

2001.

[33] K.M. Büyüksahin and F.N. Najm. High-Level Area Estimation. In Low Power Electronics

and Design, pages 271–274, Monterey, CA, USA, August 2002.

[34] L. Cai and D. Gajski. Transaction Level Modeling in System Level Design. Technical report,

Center for Embedded Computer Systems, 2003.

[35] C. Carreras, J.C. Lopez, M.L. Lopez, C. Delgado-Kloos, N. Martinez, and L. Sanchez. A Co-

Design Methodlogy Based on Formal Specification and High-level Estimation. In Workshop

on Hardware/Software Co-Design, pages 28–35, December 1996.

[36] A. Cau, R. Hale, J. Dimitrov, H. Zedan, B. Moszkowski, and M. Spivey. A Compositional

Framework for Hardware/Software Co-Design. Design Automation for Embedded Systems,

6:367–399, 2003.

[37] H. Chang. Surviving the SOC Revolution: A Guide to Platform-based Design. Boston:

Kluwer Academic Publishers, 1999.

[38] S. R. Chidamber and C.F. Kemerer. A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering, 20:476–493, 1994.

[39] E. M. Clarke, M. Fujita, S. P. Rajan, T. Reps, S. Shankar, and T. Teitelbaum. Program

Slicing of Hardware Description Languages. In Advanced Research Working Conference on

Correct Hardware Design and Verification Methods, pages 298–312, September 1999.

[40] J. Cockx. Efficient Modelling of Preemption in Virtual Prototype. In International Workshop

on Rapid System Prototyping RSP 2000, pages 14–19, Paris, France, June 2000.

[41] C. A. Coello and M. S. Lechuga. Mopso: A proposal for multiple objective particle swarm

optimization. In World Congress on Computational Intelligence, pages 1051–1056, 2003.

[42] Yann Collete and Patrick Siarry. Multiobjective Optimization. Principles and Case Studies

(Decision Engineering). Springer-Verlag Berlin Heidelberg New York, 2003.

146 Bibliography

[43] K. Compton and S. Hauk. Reconfigurable Computing: a survey of systems and software.

ACM Comput. Surv., 34:171–210, 2002.

[44] S. A. Cook. The complexity of theorem-proving procedures. In ACM Symposium on Theory

of Computing, pages 151–160, 1971.

[45] CoWare, Inc. SoC platform-based design using ConvergenSC/SystemC, July 2002.

[46] J.G. D’Ambrosio and X. (Sharon) Hu. Configuration-level hardware/software partitioning

for real-time embedded systems. In Proceedings of the 3rd international workshop on

Hardware/software co-design, pages 34–41, 1994.

[47] Klaus Danne and Marco Platzner. Partitioned Scheduling of Periodic Real-Time Tasks onto

Reconfigurable Hardware. In International Parallel and Distributed Processing Symposium

(IPDPS’06), Reconfigurable Architecture Workshop (RAW’06), pages 8–15, 2006.

[48] Indraneel Das and John Dennis. A Closer Look at Drawbacks of Minimizing Weighted Sums

of Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural

Optimization, 14(1):63–69, 1997.

[49] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist multi-objective genetic

algorithm: NSGA-II. Technical report, Indian Institute of Technology Kanpur, Kanpur,

India, 2000.

[50] E. W. Dijkstra. A Note on Two Problems in Connection with Graphs. Numerische Mathe-

matik, (1):269–271, 1959.

[51] Elena Dubrova. Structural testing based on minimum kernels. In Design and Test in Europe,

pages 1168–1171, Munich, Germany, March 2005.

[52] Basant K. Dwivedi, Arun Kejariwal, M. Balakrishnan, and Anshul Kumar. Rapid Resource-

Constrained Hardware Performance Estimation. In International Workshop on Rapid System

Prototyping, pages 40–46, 2006.

[53] Matthias Ehrgott. Approximation Algorithms for Combinatorial Multicriteria Optimization

Problems. International Transactions in Operational Research, 7:5–31, 2000.

[54] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli. System level hardware/software partitioning

based on simulated annealing and tabu search. Journal on Design Automation for Embedded

Systems, 2:5–32, 1997.

[55] R. Enzler, T. Jeger, D. Cottet, and G. Tröstler. High-Level Area and Performance Esti-

mation of Hardware Building Blocks on FPGAs. In Proceedings of the The Roadmap to

Reconfigurable Computing, pages 525–534, 2000.

[56] L. Euler. Elementa doctrinae solidorum. Novi commentarii academiae scientarium Petropoli-

tanae, 1752:140–160, 1758.

Bibliography 147

[57] P. Fisher and D. Cottrell. Emerging Standards in the Electronic Design Automation (EDA)

Industry. In Electronic Systems Design Seminar, UC Berkeley, CA, USA, October 1999.

[58] International Technology Roadmap for Semiconductors. http://www.itrs.net.

[59] W. Fornaciari, P. Micheli, F. Salice, and L. Zampella. A First Step Towards Hw/Sw

Partitioning of UML Specifications. In Design, Automation and Test in Europe, pages

668–673, Munich, Germany, March 2003.

[60] W. Fornaciari, F. Salice, U. Bondi, and E. Magini. Development Cost and Size Estimation

Starting from High-Level Specifications. In International Conference on Hardware/Software

Co-Design (CODES 01), pages 86–91, Copenhagen, Denmark, 2001.

[61] William Fornaciari, Paolo Gubian, Donatella Sciuto, and Cristina Silvano. Power Estimation

of Embedded Systems: A Hardware/Software Codesign Approach. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 6:266–275, 1998.

[62] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM, 34:596–616, 1987.

[63] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level Synthesis: introduction to chip and

system design. Kluwer Academic Publishers, 1992.

[64] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie Gong. Specification and Design of

Embedded Systems. Prentice Hall, 1994.

[65] Joachim Gerlach and Wolfgang Rosenstiel. Development of a High-Level Design Space

Exploration Methodology. Technical report, Tübingen, Wilhelm-Schickard-Institut für In-

formatik, 1999.

[66] P. Giusto, G. Martin, and E. Harcourt. Reliable estimation of execution time of embedded

software. In Proceedings of the conference on Design, automation and test in Europe, pages

580–589, 2001.

[67] GNU. http://www.gnu.org.

[68] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., 1989.

[69] J.R. Groff and P.N. Weinberg. SQL: The Complete Reference, Second Edition. McGraw-

Hill, Osborne, 2002.

[70] Standard Performance Evaluation Group. http://www.spec.org.

[71] S. Gupta. Spark: A high-level synthesis framework for applying parallelizing compiler trans-

formations. In International Conference on VLSI Design, January 2003.

148 Bibliography

[72] T. Vinod Kumar Gupta, Roberto E. Ko, and Rajeev Baruna. Compiler-directed Customiza-

tion of ASIP Cores. In International Symposium on Hardware/Software Co-Design, pages

97–102, 2002.

[73] Maurice H. Halstead. Elements of Software Science, volume 7. Elsevier, 1977.

[74] Christian Haubelt and Jürgen Teich. Accelerating Design Space Exploration. In International

Conference on ASIC, pages 79–84, 2003.

[75] A. Haverinnen, M. Leclercq, N. Weyrich, and D. Wingard. Whitepaper SystemC based SoC

Communication Modeling for the OCP Protocol, October 2002.

[76] C. Hein, J. Pridgen, and W. Kleine. RASSP Virtual Prototyping of DSP Systems. In Design

Automation Conference DAC’97, pages 492–497, Anaheim, CA, USA, 1997.

[77] A. Hemani, A. K. Deb, J. Öberg, A. Postula, D. Lindqvist, and B. Fjellborg. System Level

Virtual Prototyping of DSP SOCs Using Grammar Based Approach. Design Automation

for Embedded Systems, 5(3):295–311, 2000.

[78] J. Henkel and Li Yanbing. Avalanche: An environment for design space exploration and

optimization of low-power embedded systems. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 10:454–468, 2002.

[79] John L. Hennessy and David A. Patterson. Computer Architecture A Quantitative Approach.

Kluwer Academic Publishers, 2nd edition, 1995.

[80] A. Hoffmann, T. Kogel, and H. Meyr. A Framework for Fast Hardware-Software Co-

simulation. In Design, Automation and Test in Europe DATE’01, Munich, Germany, 2001.

[81] A. Hoffmann and H. Meyr. Architecture Exploration for Embedded Processors with LISA.

Kluwer Academic Publishers, 2002.

[82] M. Holzer, P. Belanović, B. Knerr, and M. Rupp. Design Methodology for Signal Processing

in Wireless Systems. In Beiträge der Informationstagung Mikroelektronik 2003, volume 33,

pages 303–306, Vienna, Austria, October 2003.

[83] M. Holzer and B. Knerr. Pareto front generation for a tradeoff between area and timing.

In Austrochip 2006 Tagungsband, pages 131–134, Wien, Austria, October 2006.

[84] M. Holzer, B. Knerr, and M. Rupp. Structural verification in minimal time. In International

Symposium on System-on-Chip, pages 151–154, Tampere, Finland, November 2006.

[85] M. Holzer, B. Knerr, and M. Rupp. Design space exploration for real-time reconfigurable

computing. In Asilomar Conference on Signals, System, and Computers, Monterey, 2007.

[86] M. Holzer, B. Knerr, and M. Rupp. Design Space Exploration with Evolutionary Multi-

Objective Optimisation. In IEEE Symposium on Industrial Embedded Systems (SIES),

pages 126–133, Lisbon, Portugal, July 2007.

Bibliography 149

[87] M. Holzer, P. Belanović, B. Knerr, and M. Rupp. Automatic Design Techniques for Em-

bedded Systems. In Workshop ”Modellierung und Verifikation”, Munich, Germany, April

2005.

[88] M. Holzer, P. Belanović, and M. Rupp. A Consistent Design Methodology to Meet SDR

Challenges. In Wireless World Research Forum WWRF9, Zurich, Switzerland, July 2003.

[89] M. Holzer and M. Rupp. Static Code Analysis of Functional Descriptions in SystemC. In

IEEE International Workshop on Electronic Design, Test and Applications, pages 243–248,

Kuala Lumpur, Malaysia, January 2006.

[90] Martin Holzer and Markus Rupp. Static Estimation of the Execution Time for Hardware

Accelerators in System-on-Chips. In International Symposium on System-on-Chip, Tampere,

Finland, November 2005.

[91] Michael Hübner, Christian Schuck, Matthias Kühnle, and Jürgen Becker. New 2-

Dimensional Partial Dynamic Reconfiguration Techniques for Real-time Adaptive Micro-

electronic Circuits. In Symposium on Emerging VLSI Technologies and Architectures, pages

6–11, 2006.

[92] International SEMATECH. International Technology Roadmap for Semiconductors, 2005.

http://www.sematech.org.

[93] J. Jahangiri and D. Abercrombie. Value-added defect testing techniques. IEEE Design and

Test of Computers, 22:224–231, 2005.

[94] Axel Jantsch and Hannu Tenhunen. Networks on Chip. Springer, 2003.

[95] A. Kalavade and E. Lee. The extended partitioning problem: Hardware -software mapping

and implementation-bin selection. In Proceedings of International Workshop on Rapid

Systems Prototyping, pages 12–18, 1995.

[96] Milind B. Kamble and Kanad Ghose. Analytical Energy Dissipation Models For Low Power

Caches. In International Symposium on Low Power Electronics and Design, pages 143–148,

1997.

[97] G. Karsai. Design Tool Integration: An Exercise in Semantic Interoperability. Proceedings

of the IEEE Engineering of Computer Based Systems, March 2000.

[98] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated Development of

Embedded Software. Proceedings of the IEEE, 91:145–164, January 2003.

[99] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated Development of

Embedded Software. Proceedings of the IEEE, 91:145–164, January 2003.

[100] Michael Keating and Pierre Bricaud. Reuse Methodology Manual for System-on-Chip De-

signs. Kluwer Academic Publishers, 1998.

150 Bibliography

[101] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System level

design: Orthogonalization of concerns and platform-based design. IEEE transactions on

Computer-Aided Design, 19(12), December 2000.

[102] B. Knerr, M. Holzer, P. Belanović, G. Sauzon, and M. Rupp. Advanced UMTS Receiver

Chip Design Using Virtual Prototyping. In International Symposium on Signals, Systems,

and Electronics (ISSSE), Linz, Austria, August 2004.

[103] B. Knerr, M. Holzer, and M. Rupp. HW/SW Partitioning Using High Level Metrics. In In-

ternational Conference on Computing, Communications and Control Technologies (CCCT),

pages 33–38. Houston, TX, USA, August 2004.

[104] B. Knerr, M. Holzer, and M. Rupp. Task scheduling for power optimisation of multi

frequency synchronous data flow graphs. In Symposium on Intgerated Circuits and Systems

Design (SBCCI), Florianopolis, Brazil, September 2005.

[105] B. Knerr, M. Holzer, and M. Rupp. Improvments of the GCLP algorithm for HW/SW

Partitioning of Task Graphs. In Proceedings of the 4th IASTED International Conference,

pages 107–113, San Francisco, CA, USA, November 2006.

[106] B. Knerr, M. Holzer, and M. Rupp. Novel Genome Coding of Genetic Algorithms for the

System Partitioning Problem. In IEEE Symposium on Industrial Embedded Systems (SIES),

Lisbon, Portugal, July 2007.

[107] Kenneth W. Kolence and Philip J. Kiviat. Software unit profiles and kiviat figures. ACM

SIGMETRICS Performance Evaluation Review, 2:2–12, 1973.

[108] D. Kuck. The Structure of Computers and Computation. John Wiley & Sons, 1978.

[109] Meghan Le. 8-bit microcontrollers: still going ..., June 2004. http://www.eetimes.com/

showAricle.jhtml?articleID=54202120.

[110] C. Lee, M. Potkonjak, and William H. Mangione-Smith. MediaBench: a tool for evaluating

and synthesizing multimedia and communication systems. In International Symposium on

Microarchitecture, pages 330–335, North Carolina, USA, 1997.

[111] E.A. Lee. Overview of the Ptolemy Project. Technical report, University of Berkeley, March

2001. http://ptolemy.eecs.berkeley.edu.

[112] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proc. of the IEEE, 75(9):1235–

1245, Sept. 1987.

[113] Bjrn Lisper. Fully automatic, parametric worst-case execution time analysis. In Proc. Third

International Workshop on Worst-Case Execution Time (WCET) Analysis, pages 77–80,

2003.

Bibliography 151

[114] G. Logothetis and K. Schneider. Exact High Level WCET Analysis of Synchronous Programs

by Symbolic State Space Exploration. In Design, Automation and Test in Europe DATE’03,

pages 196–204, Munich, Germany, 2003.

[115] Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static timing analysis of

embedded software. In Design Automation Conference, pages 147–152, 1997.

[116] H. B. Mann and D.R. Whitney. On a test of whether one of 2 random variables is stochas-

tically larger than the other. Annals of Mathematical Statistics, 18:50–60, 1947.

[117] Bodo Manthey and L. Shankar Ram. Approximation Algorithms for Multi-criteria Traveling

Salesman Problems. In Workshop on Approximation and Online Algorithms, pages 302–315,

2006.

[118] T. McCabe. A Complexity Measure. IEEE Transaction of Software Engineering, SE-2:308–

320, December 1976.

[119] MEDEA+. EDA Design Automation Roadmap. Technical report, edacentrum, 2003.

[120] Mentor Graphics. http://www.mentor.com.

[121] D. Mintz and C. Dangelo. Timing Estimation for Behavioral Descriptions. In International

Symposium on System Synthesis, pages 42–47, 1994.

[122] R. Le Moigne, O. Pasquier, and J-P. Calvez. A Graphical Tool for System-Level Modeling

and Simulation with SystemC. In Proceedings of the Forum on Design Languages, Stuttgart,

Germany, 2003.

[123] G.E. Moore. Cramming more components onto integrated circuits. Electronics Magazine,

38 (8):114–117, April 1965.

[124] Sanaz Mostaghim and Jürgen Teich. Covering Pareto-optimal Fronts by Subswarms in

Multi-objective Particle Swarm Optimization. In Congress on Evolutionary Computation,

volume 2, pages 1404–1404, 2004.

[125] Y. Moullec, J-Ph. Diguet, and J-L. Philippe. Fast and adaptive dataflow and data-transfer

scheduling for large design space exploration. In Great Lake Symposium on VLSI, New

York, USA, April 2002.

[126] Y. Le Moullec, N. Ben Amor, J-Ph. Diguet, M. Abid, and J-L. Philippe. Multi-Granularity

Metrics for the Era of Strongly Personalized SOCs. In Design, Automation and Test in

Europe, pages 674–679, Munich, Germany, March 2003.

[127] Yannick Le Moullec, Peter Koch, Jean-Philippe Diguet, and Jean Luc Philippe. Design

Trotter: Building and Selecting Architectures for Embedded Multimedia Applications. In

IEEE International Symposium on Consumer Electronics, December 2003.

152 Bibliography

[128] Steven S. Muhnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,

2004.

[129] MySQL Database Products. http://www.mysql.com/products/database/.

[130] Open Compiler Environment. http://www.atair.com.

[131] P. Belanović, M. Holzer, D. Mičuš́ık, and M. Rupp. Design Methodology of Signal Process-

ing Algorithms in Wireless Systems. In International Conference on Computer, Commu-

nication and Control Technologies CCCT’03, pages 288–291, Orlando, Florida, USA, July

2003.

[132] P. Belanović, B. Knerr, M. Holzer, G. Sauzon, and M. Rupp. A consistent design methodol-

ogy for wireless embedded systems. EURASIP Journal on Applied Signal Processing, pages

2598–2612, 2005.

[133] P. Belanović and M. Rupp. Automated Floating-point to Fixed-point Conversion with the

fixify Environment. In International Workshop on Rapid System Prototyping RSP’05, pages

172–178, Montreal, Canada, June 2005.

[134] Elena Moscu Paniante, Koen Bertels, and Stamatis Vassiliadis. FPGA-area Allocation for

Partial Run-Time Reconfiguration. In ProRISC Workshop on Circuits, Systems, and Signal

Processing, pages 415–420, 2005.

[135] Christophe Paoli, Marie-Laure Nivet, and Jean-Francoise Santucci. Use of Constraint Solv-

ing in order to Gernerate Test Vectors for Behaviroal Validation. In IEEE International High

Level Design Validation and Test Workshop, pages 15–20, Berkeley, California, November

2000.

[136] Vilfredo Pareto. Cours d’Économie Politique, volume I and II. F. Rouge, Lausanne, 1896.

[137] R.E. Park. Software Size Measurement: A Framework for Counting Source Statements.

Technical report, Software Engineering Institute, Pittsburg, May 1992.

[138] Helvio P. Peixoto and Margarida F. Jacome. A new technique for estimating lower bounds

on latency for high level synthesis. In ACM Great Lakes Symposium VLSI 2000, pages

129–132, 2000.

[139] Per Bjuréus, Mikael Millberg, and Axel Jantsch. FPGA Resource and Timing Estima-

tion from Matlab Execution Traces. In International Workshop on Hardware/Software

Co-Design, pages 31–36, May 2002.

[140] J. Poole. A Method to Determine a Basis Set of Paths to Perform Program Testing.

U.S. Department of Commerce/National Institute of Standards and Technology, November

1995.

Bibliography 153

[141] H. Posadas, F. Herrera, V. Fernandez, P. Sanchez, E. Villar, and F. Blasco. Single source

design environment for embedded system based on systemc. Design Automation for Em-

bedded Systems, 9:293–312, December 2004.

[142] H. Posadas, F. Herrera, P. Sanchez, E. Villar, and F. Blasco. System-Level Performance

Analysis in SystemC. In Design, Automation and Test in Europe, pages 378–383, February

2004.

[143] Peter Puschner and Christian Koza. Calculating the maximum execution time of real-time

programs. Journal of Real-Time Systems, 1(2):159–176, September 1989.

[144] J.M. Rabaey and M. Potkonjak. Estimating Implementation Bounds for Real Time DSP

Application Specific Circuits. IEEE Transaction on Computer-Aided Design of Integrated

Circuits and Systems, 13:669–683, June 1994.

[145] M. Raulet, F. Urban, J.-F. Nezan, C. Moy, O. Deforges, and Y. Sorel. Rapid Prototyping

for Heterogeneous Multicomponent Systems: An MPEG-4 Stream over a UMTS Commu-

nication Link. Journal on Applied Signal Processing, Special Issue Design Methods for DSP

Systems, pages 1–13, 2006.

[146] Alberto La Rosa, Luciano Lavagno, and Claudio Passorone. Hardware/Software Design

Space Exploration for a Reconfigurable Processor. In Design, Automation and Test in

Europe, pages 570–575, Munich, Germany, 2003.

[147] M. Rupp, A. Burg, and E. Beck. Rapid Prototyping for Wireless Designs: the Five-Ones

Approach. Signal Processing Europe 2003, 83:1427–1444, July 2003.

[148] M. Rupp, C. Mehlführer, S. Caban, R. Langwieser, Lukas W. Mayer, and Arpad L. Scholtz.

Testbeds and rapid prototyping in wireless system design. EURASIP Newsletter, 17(3):32–

50, September 2006.

[149] Z. Salcic and C. F. Mecklenbräuker. Software Radio - Architecture Requirements, Research

and Development Challenges. In International Conference on Communication Systems,

volume 2, pages 711–716, 2002.

[150] B. Salefski and L. Caglar. Re-Configurable Computing in Wireless. In Design Automation

Conference, pages 178–183, Anaheim, CA, USA, 2001.

[151] Donatella Sciuto, Fabio Salice, Luigi Pomante, and William Fornaciari. Metrics for Design

Space Exploration of Heterogeneous Multiprocessor Embedded Systems. In International

Symposium on Hardware/Software Codesign, pages 55–60, May 2002.

[152] Robert Sedgewick. Algorithms in C++ Part 5 Graph Algorithms. Addison-Wesley, 2002.

[153] Martin Sheppered and Darrel Ince. Derivation and Validation of Software Metrics. Oxford

University Press, 1993.

154 Bibliography

[154] Youngsoo Shin and Kiyoung Choi. Power conscious fixed priority scheduling for hard real-

time systems. In Design Automation Conference, pages 134–139, Anaheim, CA, USA,

1999.

[155] Javinder Pal Singh, Anshul Kumar, and Shasi Kumar. A Multiplier Generator for Xilinx

FPGA’s. In International Conference on VLSI Design: VLSI in Mobile Communications,

pages 322–323, 1996.

[156] Byoungro So, Pedro C. Diniz, and Mary W. Hall. Using Estimates from Behavioral Synthesis

Tools in Compiler-Directed Design Space Exploration. In Design Automation Conference,

pages 514–519, Anaheim, CA, USA, 2003.

[157] Byoungro So, Mary W. Hall, and Pedro C. Diniz. A Compiler Approach to Fast Hard-

ware Design Space Exploration in FPGA-based Systems. In International Conference on

Programming Language Design and Implementation (PLDI), pages 165–176, June 2002.

[158] SPIRIT Consortium. http://www.spiritconsortium.com.

[159] SPIRIT Schema Working Group Membership. SPIRIT-User Guide v1.1. Technical report,

SPIRIT Consortium, June 2005.

[160] S. Srikanteswara, J.H. Reed, P. Athanas, and R. Boyle. A Soft Radio Architecture for

Reconfigurable Platforms. IEEE Communications Magazine, February 2000.

[161] Christoph Steiger, Herbert Waldner, and Marco Platzner. Heuristics for Online Scheduling

Real-time Tasks to Partially Reconfigurable Devices. In International Conference on Field-

Programmable Logic and Applications, 2003.

[162] R. Subramanian. Shannon vs. Moore: the digital signal processing in the broadband age.

In IEEE Communication Workshop, Aptos, CA, USA, May 1999.

[163] R. Subramanian. Shannon vs. Moore: Driving the Evolution of Signal Processing Platforms

in Wireless Communications. In IEEE Workshop on Signal Processing Systems SIPS’02,

October 2002.

[164] Synopsys Inc. Galaxy Design Platform. http://www.synopsys.com/products/

solutions/galaxy_platform.html.

[165] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer

Academic Publishers, 2002.

[166] U.A. Thoeni. Programming real-time multicomputers for signal processing. Prentice-Hall,

1994.

[167] M. O. Tokhi. Parallel Computing for Real-time Signal Processing and Control. Springer,

2003.

Bibliography 155

[168] F. Vahid and D. Gajski. Closeness metrics for system-level functional partitioning. In

Proceedings of the European Design Automation Conference (EuroDAC), pages 328–333,

September 1995.

[169] C. Valderrama. Virtual Prototyping For Modular And Flexible Hardware-Software Systems.

Design Automation for Embedded Systems Journal, 2(2):267–282, 1997.

[170] Herbert Waldner and Marco Platzner. Online Scheduling for Block-partitioned Reconfig-

urable Devices. In Design Automation and Test in Europe Conference and Exhibition, pages

290–295, 2003.

[171] A. Winter, B. Kullbach, and V. Riediger. An Overview of the GXL Graph Exchange Lan-

guage. Springer Verlag, 2002.

[172] Wenbiao Wu and Axel Jantsch. A Survey of Design Transformation Techniques. http:

//www.ida.liu.se/~eslab/SAVE/SAVE99ESDlab.pdf.

[173] H. Zang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J.M. Rabaey. A

1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband Digital Processing. IEEE

Journal of Solid-State Circuits, 35:1697–1704, November 2000.

[174] Eckhart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A Compara-

tive Case Study and the Strength Pareto Algorithm. IEEE Transactions on Evolutionary

Computation, 3(4):257–271, November 1999.

[175] V. D. Zivkovic, E. Deprettere P. van der Wolf, and E. de Kock. Design space exploration of

streaming multiprocessor architectures. In IEEE Workshop on Signal Processing Systems,

pages 228–234, 2002.

