
•
Dissertation

Supervised Learning of Wrappers from
Structured Data Sources

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung

von
O. Univ.-Prof. Dipl.-Ing. Dr. Georg Gottlob

E 184
Institut für Informationssysteme

eingereicht an der Technischen Universität Wien
Fakultät für technische Naturwissenschaften und Informatik

von
Mgr. Michal Ceresna

Zelena 12
91501 Nove Mesto nad Vahom

Slowakei

Wien, am 19. Mai 2005

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

•

Kurzfassung

HTML Wrapping ist eine häufig gebrauchte Strategie für den Zugriff und die
Extraktion von Daten, die sich im World Wide Web befinden. HTML Wrap-
per lokalisieren die relevanten Daten in den Webseiten und transformieren
sie in Formate, die für die weitere maschinelle Verarbeitung geeignet sind,
wie zum Beispiel XML.

In den letzten Dekaden wurden verschiedene Methoden und Sprachen zur
Generierung von HTML Wrappern vorgeschlagen und analysiert. Das reicht
von hand-codierten Perl Programmen, Induktion von Stringautomaten und
semi-automatischen visuellen Systemen mit speziell konstruierten Extrak-
tionssprachen bis hin zu Data-Mining Methoden wie Support Vektor Maschi-
nen, Bayesianischen Sortiermaschinen und Markov Modellen.

In der vorliegenden Dissertation konzentrieren wir uns auf das interak-
tive Lernen von Wrapper Programmen. Diese Systeme erstellen Wrapper
basierend auf der visuellen Interaktion mit einem menschlichen Designer.
Der Wrapperdesigner interagiert direkt mit der dargestellten Webseite, ins-
besondere durch Markierung von positiven und negativen Beispielinstanzen.
Diese Beispielinstanzen dienen als Basis für die Generierung eines Wrappers.
Die Semistruktur von Webseiten, die sich als DOM Baum darstellen läßt,
erweist sich als sehr nützliches Hilfsmittel für die Datenextraktion. Deshalb
interessieren wir uns inbesondere für Methoden des Lernens von Baumstruk-
turen, wo wir auf bessere Ergebnisse im Bereich der Erlernbarkeit solcher
Strukturen hoffen als in vergleichbaren Lerntheorien auf flachen Strings.

Der erste Teil der Dissertation beschäftigt sich mit den existierenden Mod-
ellen des aktiven Lernens, die auf die interaktive Wrapper Generierung an-
wendbar sind. Wir studieren die theoretischen Grenzen der aktiven Erlern-
barkeit, wir untersuchen die existierenden Algorithmen und vergleichen die
relevanten Lernenmodelle.

Der zweite Teil der Dissertation beschäftigt sich mit dem aktiven Lernen
von HTML Wrappern. Wir wählen die Sprache XPath als Formalismus für
das Ausdrücken von HTML Wrappern und studieren die Erlernbarkeit von
verschiedenen XPath Fragmenten. Danach präsentieren wir eine Methode

1

2

für Behandlung von HTML Attributen die auf dem Konzept der Entropie
basiert. Diese Methode ermöglicht es, die vorgeschlagenen Algorithmen für
das Lernen von Baumstrukturen mittels Abfragen mit anderen Methoden
aus Data-Mining und Semantic Web, wie zum Beispiel Ontologien, Entschei-
dungsbäume oder der Bayesianischen Klassifikation, besser zu kombinieren.

Contents

Introduction

I Active Learning

5

9

1 Learning Models 10
1.1 Basic Concepts 10
1.2 Overview of Learning Models 11
1.3 Identification in the Limit . . 12
1.4 Identification from the Given Data (Characteristic Sets) . 14
1.5 Teaching......................... 18
1.6 Query Based Learning 20

1.6.1 Consistency Problem and Equivalence Queries 22

2 Bounds on Number of Required Queries 27
2.1 Bounds on Membership Queries 28
2.2 Bounds on Equivalence Queries . . . 29

2.2.1 Halving-XEQ algorithm .. . 31
2.2.2 Standard Optimal Algorithm 32

2.3 Bounds on Membership and Equivalence Queries. 36

3 Measures for Learning Complexity 39
3.1 Teaching and Exclusion Dimension 39

3.1.1 Teaching Dimension 39
3.1.2 Exclusion Dimension 41
3.1.3 Replacing Equivalence Queries. 42

3.2 Approximate Fingerprint Dimension 44
3.3 Vapnik-Chervonenkis Dimension. 46

4 Learning of String Automata
4.1 Packs and Access Strings . .

51
. 51

3

CONTENTS 4

4.2 Expanding of Pack/ Adding Access Strings 55
4.3 DFA Learning with Membership and Equivalence Queries. 58

4.3.1 Complexity 63
4.4 Lower Bounds for Number of Queries 64

II HTML Wrapping

5 Wrapper Induction and Learning
5.1 Wrapping Approaches .
5.2 Interaction with the Wrapping System

6 Query Based Learning of XPath
6.1 XPath Definitions and Background
6.2 Boundaries of Interactive Wrapper Induction
6.3 Equivalence Queries.
6.4 Membership Queries
6.5 Tree-prefix Queries .

7 Classification of DOM Attributes
7.1 Entropy .
7.2 Building Decision Trees .
7.3 Wrapping with Attribute Classification

7.3.1 Clustering....
7.3.2 Building Features
7.3.3 Training.....

Conclusion

Bibliography

69
70
70
74
79
79
80
82
94
96

103
104
105
106
106
109
111
118

122

•

•

Introduction

HTML wrapping is a commonly adopted strategy for accessing and extracting
data located on the Web. HTML wrappers locate relevant data in Web pages
and transform them into formats suitable for further machine processing such
as XML.

In the last decade various approaches to creating HTML wrappers have
been researched. These range from hand-coded Perl programs, induction
of string based automata and semi-automatic visual systems with specially
designed wrapping languages to data mining approaches such as support
vector machines, Bayesian classifiers and hidden Markov models.

In this thesis, we focus on the learning process of interactive wrapper
generators. These are systems that create wrappers from visual interaction
with a human wrapper designer. The wrapper designer interacts directly with
the rendered Web page, marking positive and negative example instances.
These example instances are then used to generate the wrapper. A tree-
structured representation of Web pages (the DOM tree) has proved to be
useful for HTML wrappers. We therefore are specifically interested in tree
learning techniques, where we hope for better wrapper learnability results in
comparison to flat string approaches.

The first part of this thesis is devoted to existing active learning mod-
els applicable to interactive wrapper generation. We study the theoretical
bounds of active learnability, analyse existing algorithms and compare the ex-
isting learning models. Through this part we assume familiarity of the reader
with basic concepts from the complexity theory, theory of formal languages
and boolean functions.

The second part of this thesis focuses on the active learning of HTML
wrappers. We choose the XPath language as the formalism for expressing
HTML wrappers and study the learnability of various XPath fragments. At
the end, we present a method of dealing with HTML attributes. This method
allows us to better combine the proposed algorithms for learning of tree
shapes with other approaches from data mining and semantic Web research,
for example ontologies, decision trees and Bayesian classification. Familiarity

5

CONTENTS 6

of the reader with basic concepts of XML, XPath and DOM standards is
assumed through this part of the thesis.

Chapter 1 introduces elementary concepts from machine learning. We
define samples, hypothesis spaces, concepts and their representations. Then
we present the learning models related to active learning: identification in
the limit, identification from characteristic sets, teaching and query based
learning. For each of these models we show their basic properties and their
well known results. We start with the model of identification in the limit,
which has most of the negative learnability results, because it is too generic.
Next we study the model of identification from characteristic sets which, in
contrast, has most of the positive polynomiallearnability results, because it
assumes a very strong condition of receiving a teaching set from the user.
Additionally, we prove the non-Iearnability of NFA and super-classes in this
model, and this also implies the non-Iearnability of NFA for other weaker
learning models.

With the query based model we try to remove the assumption of requiring
a teaching set. We treat the problem of an adversely constructed example
sequence by empowering the learning algorithm with the possibility to ask
queries about the target concept.

In the second chapter, we investigate generic query based learning al-
gorithms. We abstract from computational time and space and study the
lower and upper bounds for the number of queries that are required if using
membership only, equivalence only, or equivalence and membership queries.
For each of these cases we give algorithms or examples where the lower and
upper bounds are reached.

We also present the halving-XEQ algorithm capable of discovering any
target concept with at most logarithmic complexity in number of extended
equivalence queries with respect to the size of the hypothesis space.

Additionally, we investigate the standard optimal algorithm. This algo-
rithm establishes a min-max theorem and thus provides us with non-obvious
results about relations between the number of required extended equivalence
queries and membership queries.

In Chapter 3 we continue with studying the properties of hypothesis
spaces. We explore the combinatorial properties and measures that allow us
to express how many queries are needed to learn in these hypothesis spaces.

We start with using only membership queries and define the teaching di-
mension; the number of examples required to prove that a concept belongs to
the hypothesis space. Next we define the exclusion dimension; the number
of examples required to prove that a concept does not belong to the hy-
pothesis space. Afterwards we discuss the problem of replacing a proper or
extended equivalence query with a sequence of membership queries. We in-

CONTENTS 7

vestigate how many queries are required for the replacement. This replacing
technique, together with the teaching and exclusion dimensions, allows us to
establish tight lower and upper bounds from the number of required mem-
bership only, or membership and equivalence queries. The next measure that
we study is the approximate fingerprint dimension that establishes the lower
and upper bounds when using only proper equivalence queries. This mea-
sure we later reuse in the context of HTML wrapper induction to prove the
non-Iearnability of several XPath fragments using only equivalence queries.

At the end of the chapter we present the Vapnik-Chervonenkis dimen-
sion which is useful for establishing the lower bounds for the number of
required membership and equivalence queries, and also for establishing the
lower bounds for the number of examples required to be seen by the learning
algorithm.

Chapter 4 is devoted to the L* algorithm, the well known result of query
based learning. This algorithm is capable of polynomial learning of deter-
ministic string automata using membership and equivalence queries.

We gradually build the necessary background required for explanation of
the algorithm. Therefore, we define the notions of observation packs, access
strings, is-like strings and escaping. Then we show the isomorphism between
the minimal deterministic automaton accepting the target regular language
being learned and the group of access strings, and therefore prove correctness
of the algorithm. Afterwards we present the algorithm itself, demonstrating
its operation on an example. We complete the chapter discussing the lower
bounds for the number of required membership and equivalence queries.

In the second part of this thesis we focus on HTML wrapping. We start
with Chapter 5, where the various approaches to wrapping are described. We
discuss their theoretical foundation and review the existing implementations.

We decide to focus on interactive HTML wrapper generators operating
on DOM trees. We give examples for different kinds of instances being ex-
tracted in DOM trees and formalise the interaction between the user and the
wrapping system.

Chapter 6 is dedicated to the learnability of the XPath language. Be-
cause the XPath language is nowadays present in many XML related appli-
cations, we choose it as the hypothesis space for wrapper induction. More-
over, the XPath language also has many sub-fragments that scale well with
respect to the polynomially-to-exponentially enlarging translation into the
finite tree automata. This was found to be useful when investigating the
borders between learnability and non-Iearnability, because the deterministic
tree automata are known to be identifiable from characteristic sets, but the
nondeterministic tree automata are not. We show that using only equiva-
lence queries, even surprisingly simple XPath fragments are not equivalence

CONTENTS 8

query learnable. Next, we continue with the analysis of learning using only
membership queries, and prove by reduction to the equivalence problem of
the XPath fragments, that these queries are not sufficient. Summarising us-
age of the classical type of queries, we discover negative results if using only
equivalence queries, and find difficulties with the visualisation of member-
ship queries needed by the minimal adequate teacher. Therefore we propose
the tree-prefix queries that can be naturally visualised on DOM trees (Web
pages) and, together with the equivalence queries, still form a polynomial
learning algorithm in reasonable XPath fragments.

In the last chapter we investigate handling of the DOM attributes. While
it is still possible to view the attributes as internal DOM nodes and apply
the algorithms from the previous chapter, we prefer to analyse an approach
using decision tree classifiers. In practice, this approach seems to better deal
with the semantics of HTML and the various features of the text content.
We start the description with defining the notion of entropy and explain how
the entropy-based classifiers are built. Then we describe the clustering of the
instances, construction of the datasets from DOM attributes and the training
of the attribute classifiers. Finally, we describe how to use the constructed
clustering of the instances and the trained attribute classifiers for performing
the information extraction.

Part I

Active Learning

9

Chapter 1

Learning Models

1.1 Basic Concepts

A domain, denoted as X, is a set of elements. A concept, denoted as c, is
subset of the domain X and a hypothesis space C is set of concepts. For
example, a domain is a set of all words over some fine alphabet, a concept is
a regular language and a hypothesis space is the class of all regular languages.

A trivial example of a concept c is an element x from the domain X. It
is either labelled positively if x E c or negatively if x ~ c.

The learning problem is the problem of a learner to identify the unknown
concept chosen from the hypothesis space C. The concept which should
be the result of learning is also called target concept and we will denote
it as c? E C. Passive learning methods do not give a possibility for the
learner to control which examples it receives. In active learning methods, the
learner can influence the received examples, for example by asking queries
and receiving counterexamples. It is assumed that the queries are answered
by an oracle, called teacher.

A hypothesis space is considered to be learnable, if there exists a tractable
learning algorithm that is able to discover any chosen target concept c? from
the hypothesis space C. A learning algorithm that is polynomial is usually
considered as tractable. That means, the algorithm runs in polynomial time,
sees at most polynomial number of examples, asks at most polynomial num-
ber of queries etc. Not all inputs are known to the learning algorithm at the
beginning of the run. Therefore, the polynomial bound is computed with
respect to the size of target concept c?, size of the largest example seen so
far or the sum of size for all examples seen so far.

The same concept can have several representations. For example, a con-
cept being some regular language can be represented with a deterministic fi-

10

CHAPTER 1. LEARNING MODELS 11

nite automaton, nondeterministic finite automaton or logic formula. Different
representations have influence on polynomial learnability of the hypothesis
spaces, because not all representation spaces are polynomially transformable
between each other. For example, the hypothesis space of regular languages
is polynomially learnable in the query based model if the representation space
is DFA, but it is not learnable if the representation space is NFA. Therefore,
if running time of a learning algorithm is computed with respect to the size
of the target concept, it means the size of the smallest representation of the
target concept c? in the representation space R.

1.2 Overview of Learning Models
In the literature, various learning models have been already proposed and
studied. The most widely known are:

• query-based learning [Ang88, Ang04]

• mistake bounded online learning [Lit88]

• identification from the given data [GoI67, Go178]

• PAC (probably approximately correct) learning [KV94, Ant94]

One of the most studied concept classes are finite automata, because of-
ten they draw a border line between existence and non-existence of tractable
learning algorithms in those models. Besides the generic learning frameworks
listed above, other more specialised approaches, especially for the finite au-
tomata domain have been proposed:

• Modelling external environment using inference from homing sequences.
That is, inference from (limited) information about the sequence of
states that were passed by the automaton modelling the environment.
These states are discovered while interacting with the environment that
is executing some actions inside of it and interpreting the results .

• Stochastic models - make use of the known probabilities of transitions
in the 8 function of the automaton.

In this chapter, we will study some of these learning models, explore their
properties and relations among them. Let us note that the most extensive
research has been done for the PAC learning model of Valiant and query
based learning model of Angluin.

CHAPTER 1. LEARNING MODELS 12

As we will see, there is a huge amount of results about learnability of var-
ious concept classes such as finite automata, context free grammars, boolean
functions in the above listed learning models. Nevertheless, it is interesting
to briefly view these learning models also from the cognitive point of view.
That is, how well do these models capture the character of learning by hu-
man beings? There are some properties of the learning by humans, nicely
captured already by the current formal models:

• usage of oracles (asking queries and teachers) helps with learning;

• frequency (probabilistic distribution) of examples influences the results
of learning;

• simple examples (shorter or for example in sense of Kolmogorov com-
plexity) are better;

• there are examples (characteristic and teaching sets) that are especially
well describing the target concept being learned.

One of the unnatural properties of the learning algorithms is that they are
hard-coded to particular representation classes. So, most of them learn fi-
nite automata or boolean functions, but not concept classes with arbitrary
representations. Despite of this drawback, there still do not exist learning
algorithms capable of learning natural languages, even though young chil-
dren can easily do this. Clearly, one asks a question: What makes it so
difficult? Is the hardness hidden in the knowledge representation or in the
incapable learning algorithms? Or is the problem caused by missing effective
combination among them?

1.3 Identification in the Limit
The first learning model for identification of the languages has been proposed
in the work of Gold [GoI67]. It his model, a learning algorithm reads a
sequence of examples labelled with + in case of a positive example and with
- in case of a negative example. The learned concept is either outputted
after reading each example - the so called online learning mode or only after
reading the whole sequence - the so called batch mode.

Definition 1.3.1. A complete presentation of the language L is an ordered
(possibly infinite) sequence of labelled samples such that every example ap-
pears at least once.

CHAPTER 1. LEARNING MODELS 13

An algorithm A identifies the language L in the limit, if on every complete
presentation of the language L, the automaton A converges to the correct
target concept.

There are two results from Gold binding the tractable cases of the lan-
guage identification in the limit.

Theorem 1.3.2. [Gol67j No super-finite class of languages is identifiable in
the limit from positive data only.

Informally, this theorem states that receiving infinitely many, but only
positive examples is not sufficient. Therefore, any successful learning algo-
rithm has to either deal also with the negative examples or besides observing
the examples, it also has to make additional usage of other channels for get-
ting information about the target concept. Two of such possible channels
with information about the target concept are the example based queries,
discussed in the following Section 1.6 and the assumptions about the prob-
abilistic distribution of examples made in the PAC model. Moreover, the
next negative results show us closer boundaries for existence of the tractable
(polynomial) learning algorithm.

Theorem 1.3.3. [Gol78, Ang78j Learning the smallest deterministic finite
automaton consistent with an arbitrary set of positive and negative examples
of a regular language L is NP-hard.

Because finding the minimal DFA is intractable, there were attempts to
find at least approximations of the minimal automaton, however also this
leads to an NP-hard problem:

Theorem 1.3.4. [PW89j If the minimal automaton ML for the language
L has n states, it is NP-hard for fixed kEN to find a deterministic finite
automaton with at most nk states that is consistent with an arbitrary set of
positive and negative examples of the language L.

This complexity result applies also to all super-classes of DFA. As a con-
sequence we obtain that just observing the positive and negative examples
is for most of the interesting concept classes not sufficient.

The problem lies in the distribution of the received examples. In the
model of identification in the limit we learn from arbitrary sequences of ex-
amples, this includes also such sequences, where many uninformative exam-
ples occur at the beginning and the good, informative examples are placed
only very far - in the limit.

Various learning models treat the problem of sample distribution differ-
ently. This is also the reason why we obtain for them different, sometimes
incomparable learnability results:

CHAPTER 1. LEARNING MODELS 14

• identification from characteristic sets - relies on the environment (for
example the teacher) that good examples are provided early to the
learning algorithm;

• PAC learning - assumes that the examples appear according to some
probabilistic distribution; the successfulness of the learning algorithm
is measured according to this distribution;

• query based learning - does not assume anything about the target dis-
tribution, but empowers the learning algorithm with stronger weapons
(queries) than just the observing of examples.

1.4 Identification from the Given Data (Char-
acteristic Sets)

There is a problem with the sound definition of the polynomial learnabil-
ity in Gold's model of learning in the limit, discussed in the above section.
Therefore, a new framework for passive learning, called identification from
the given data, has been proposed.

In the unbounded (non-polynomial) case, it is equivalent to the identifica-
tion in the limit, but additionally it also consistently defines the polynomial
learnability with respect to the number of seen examples, size of the largest
example received so far and polynomial running time of the learning algo-
rithm. In the following section, let IISII denote the sum of lengths of all
elements in the set S.

The model for identification from the given data implicitly assumes that
good examples are provided in the input sequence read by the learning al-
gorithm. Thanks to this restriction, there are weaker assumptions expected
from the learning algorithm.

First, the learning algorithm is required, for each given set (S+, S-) of
positive and negative examples of some concept c E C, to return in polyno-
mial time a consistent hypothesis cf E C. Let us note that cf may not be
necessarily equivalent to c. It is only required that cf is consistent with the
given examples of c.

Second, it is required that for each target concept c exists a special set
(S: ,S;), called characteristic set such that for this characteristic set and all
its super-sets returns the learning algorithm the same correct target concept.
Let us explicitly note, that the characteristic sets may vary for different target
concepts. Formally defined:

CHAPTER 1. LEARNING MODELS 15

Definition 1.4.1. A concept class C is identifiable in the limit from the
polynomial time and data if and only if there exist a learning algorithm A
and two polynomials pO and qO such that

1. given any set (S+, S-) of labelled examples of a concept cEe, the
learning algorithm A returns in time p(llS+ uS-II) a concept cf E e
consistent with the set (S+, S-);

2. for each concept cEe, there exists a characteristic set (S:, S;) of
size less than q(lcl) such that for every superset (S+,S-), S+ :2 S:,
S- ç S; of the characteristic set returns the learning algorithm A a
concept cf equivalent to the concept c.

Of course, in the practical implementation we do not know the characteristic
set of the target concept being learned. But, due to the monotone Property
2, in the Definition 1.4.1, we assume that after providing enough examples
we reach a superset of the characteristic set and therefore, the correct target
concept will be returned by the learning algorithm A.

The Algorithm 1 outlines the protocol of the communication between a
teacher T and a learner L in the framework of identification from the given
data.

Algorithm 1Protocol of identification from the given data
S+ = 0, S- = 0
do

T: add more examples into S+ or S-
L: generate hypothesis 1l consistent with (S+,S-)
L ---+ T: return hypothesis 1l to the teacher

until teacher decides whether 1l is the correct target concept

One of the negative properties of the identification from the given data is
that the learning algorithm does not known whether the outputted result is
really equivalent to the target concept (that is the learning can be successfully
ended). This happens, because it is assumed that the characteristic set will
appear once in the input sequence, but we can not recognise that situation.

There are positive results for learning of regular languages in the frame-
work of polynomial identification from the given data, when using deter-
ministic representation of the concepts such as DFA or deterministic tree
automata. This is thanks to the algorithm called RPNI (regular positive
negative inference), proposed by Oncina and Garcia [G092, G093]. Given
a superset of a characteristic set, the RPNI algorithm infers in polynomial

CHAPTER 1. LEARNING MODELS 16

time the minimal deterministic finite automaton consistent with the given
samples.

To outline briefly, the tree version of this algorithm (denoted as tRPNI) is
based on state merging in a prefix-tree bottom-up tree automaton built from
the given positive examples. The negative examples are used as guidelines
to prevent merging of certain states. The tRPNI algorithm converges in the
limit to the minimal bottom-up deterministic tree automaton accepting the
language being learned.

Let us note that Niehren et al. [CLN04] show one of the possible ways for
applying of the learning using the tRPNI algorithm to wrapper induction.

On the other side, the super-classes of the deterministic finite automata
are known to be not identifiable with polynomial time and data. In par-
ticular, this is interesting in connection with the relation to other learning
models such as the query based learning and online prediction, because it
implies non-Iearnability also in these models.

Theorem 1.4.2. [Hig97] Assuming Pl-coNP, the class of NFA is not iden-
tifiable from polynomial time and data.
Proof Let A be a learning algorithm for identification of the NFA from poly-
nomial time and data. Then, let pO and qO be the polynomials corresponding
to the learning algorithm A that exists according to Definition 1.4.1.

The equivalence problem for NFA is:
Input: two nondeterministic finite automata Al and

A2

Goal: return the answer ''yes'', if the languages de-
fined by these automata are equal (L(AI) =
L(A2)).

This problem is known to be coNP-complete [GJ90], even for the case of
an input alphabet with a single letter. Let us denote this letter as 'a'.

In the following part, we show, how this NFA equivalence problem can
be reduced to the problem of identification from polynomial time and data.

Let Al and A2 be two arbitrary nondeterministic finite automata (two
concepts). Definition 1.4.1 implies that for the automata Al and A2 there
exist characteristic sets:

(st,SÄJ ofsize O(q(IAII)) such that the learning algo-
rithm A outputs an automaton equivalent to
Al

(St,SA) ofsize O(q(IA21)) such that the learning algo-
rithm A outputs an automaton equivalent to
A2

CHAPTER 1. LEARNING MODELS 17

Let us analyse the following sets:

st = {ak I k::; q(IAII), ak E L(Ad}, S-; = {ak I k::; q(IAII), ak rJ. L(Ad}

si = {ak I k ::; q(IA21), ak E L(A2)}, S;; = {ak I k::; q(IA21), ak rJ. L(A2)}

The sets (st, S1) and (Si, S;;) are consistent supersets of the charac-
teristic sets (st, SÄJ respectively (S.t, SA2)' defined above. Clearly, these
sets can be constructed in polynomial time.

Now, two cases are possible:

1. st n S;; i= 0 or S-; n Si i= 0
Then, there exists a sample in SlnS2 proving that L(AI) i= L(A2) and
therefore, the answer to the equivalence problem is "no".

2. st n S;; = 0 and SI n Si = 0
The situation is depicted in the following figure:

We have:

(st,SAI) ç (st, SI) ç (st u Si, S-; u S;;) and therefore, the defi-
nition 1.4.1 implies that the learning algorithm outputs an automaton
A~ equivalent to the automaton AI.
Similarly,

(st, SA2) ç (Si, S;;) ç (st u Si, S-; u S;;) and therefore, the defi-
nition 1.4.1 implies that the learning algorithm outputs an automaton
A; equivalent to the automaton A2.

Because the learning algorithm is deterministic, on the input set (Si U
Si, S-; uS;;) outputs always the same concept and therefore A~ = A;.
Combining with the above equivalences, we have that Al is equivalent
to A2 (AI = A~ = A; _ A2). Therefore, the answer to the equivalence
problem is "yes".

It can be decided in polynomial time, which of the above two cases occurred
and therefore, the equivalence problem can be solved in polynomial time.

o

CHAPTER 1. LEARNING MODELS 18

Corollary 1.4.3. The following concept classes are not identifiable from
polynomial time and data: NFA, CFG, nondeterministic tree automata, lin-
ear context grammars (LIN).

Proof. Combining the technique in Theorem 1.4.2 and (co)NP-hard or harder
equivalence problem of these classes. 0

The following table summarises results of identification from polynomial
time and data:

concept class
DFA

deterministic tree automata
NFA
CFG
LIN

1.5 Teaching

polynomial learnability
yes [G092]
yes [G093]

no (Corollary 1.4.3)
no (Corollary 1.4.3)
no (Corollary 1.4.3)

The characteristic sets in the previous section have not been just arbitrary
sets of examples. They were special, because of minimising the effort of the
learner to discover the target concept by providing good examples.

So, there naturally a question is raised: Given a target concept c? E C,
what is the minimal number of examples needed to be provided so that there
is a learner capable of discovering the target concept c??

These questions have been studied in the work of Mathias and Gold-
man [GM96]. They define a teaching model resembling this behaviour. The
biggest obstacle for providing a good definition of teaching is to avoid the so-
called collusion. Collusion means the cooperation mode between the teacher
T and learner L, where examples are used by them as an information chan-
nel to transfer an encoded representation of the target concept. Mathias and
Goldman choose the conception of an adversary that introduces additional
correctly labelled examples into the teaching set, following the goal of making
the learner to fail with discovering the target concept. Formally their model
is defined as:

Definition 1.5.1. A concept class Cis fO/gO T/L-Iearnable if and only if
there exist a teacher T and a learner L such that for any adversary ADV the
following teaching protocol succeeds:

1. Adversary ADV chooses a target concept c? E C.

CHAPTER 1. LEARNING MODELS 19

2. Teacher T computes the set of examples ST (called teaching set) of size
at most j(IISTII).

3. Adversary ADV optionally adds correctly labelled examples to this set.
That is, she constructs an augmented set SADV = STU{added examples}.

4. Learner L outputs in time g(118ADVII) a concept c equivalent to the
?target concept c'.

Definition 1.5.2. A concept class C is semi/poly T/L-Iearnable if and only
if it fulfils the conditions of Definition 1.5.1 and additionally:

1. The size of the set ST is polynomially bounded 1.

2. The learner outputs a concept equivalent to the target concept c? in
polynomial time. (The function 9 is a polynomial).

In the next theorem we show that giving the best possible teaching set is
equivalent to providing the characteristic set, thus we show equivalence of
identification from characteristic sets and semi/poly teachability.

A hypothesis space C is consistent-easy class of concepts, if there exists
a polynomial algorithm that for any given set of labelled examples returns a
consistent concept (not necessary minimal). All usuallanguage classes such
as DFA, NFA, CFG etc. are consistent-easy.

Theorem 1.5.3. [Hig97] A consistent-easy concept class C is identifiable
from polynomial time and data if and only if it is semi/poly TIL teachable.

Proof. => Let c? E C be any target concept chosen by the adversary ADV.
Because the hypothesis space C is polynomially identifiable, there exist a
polynomial learning algorithm A and a characteristic set (S~, S"2) of the
target concept c? such that the algorithm outputs a concept cl equivalent to c?
on any input that is a superset of the characteristic set (S~, 8"2). Therefore, if
the teacher returns the characteristic set (S~, S"2) as the teaching set and the
learner uses the algorithm A, the hypothesis space C is semi/poly teachable.

~ Because the hypothesis space C is consistent-easy, the condition 1 of
Definition 1.4.1 is immediately fulfilled.

Let c? E C be an arbitrary target concept. Because the hypothesis space
C is semi/poly teachable, there exists a learning algorithm A and teaching
set ST = (S:J:, Sr) such that the algorithm A learns the concept c? with
this teaching set. Due to the adversary behaviour of ADV in the definition

1but its computation may take arbitrary long

CHAPTER 1. LEARNING MODELS 20

1.5.1, the learner returns a concept cl equivalent to the target concept c? for
any superset of (Si, Sr)' Therefore, the hypothesis space Cis polynomially
identifiable with the learning algorithm A and using the characteristic set
(Si, Sr) for the concept c? D

1.6 Query Based Learning

The active form of learning is a configuration with class of concepts e, teacher
T and learner L. The goal is for the learner to discover the target concept
c? E e chosen by the teacher. To achieve this goal, the learner receives
examples from the teacher and is additionally allowed to pose various type of
questions (queries). We can formalise the learning protocol into the following
scheme:

Algorithm 2 Protocol of query based learning
while learning is running

if L decided to pose a query
L ---+ T: ask query
T ---+ L: answer to query

(usually for negative answer
return also a counterexample)

else
T ---+ L: provide next example

return the learned concept c

In general, example based queries are questions of the form:

Answer to an example based query is either yes or no with a counterexample
(Zl, Z ... Zk) E Xk such that -,<P(Zl, Z2, .•. , zn).
Representatives of those queries are equivalence, membership, subset, su-
perset or disjointness queries. The most common types of the queries are
formalised in the following list:

• membership query is a question of the form
input: example x
query: does the example x belong to the target concept c?

xE c?

answer: yes / no

CHAPTER 1. LEARNING MODELS

• equivalence query is a question of the form
input: concept c
symbolic: c == c?
query: is the concept c equivalent to the target concept c?

't/x : x E c {:::=::} x E c?
answer: yes

no + counterexample x such that x E c {:::=::} x (j. c?

• subset or superset query is a question of the form
input: concept c
symbolic: c ç c? (c;2 c?)
query: is the concept c subset (superset) ofthe target concept

?
C'

't/x : xE c::::}x E c? ('t/x : xE c?::::}x E c)
answer: yes

no + counterexample x such that x E c 1\ x (j. c?
(x (j. c 1\ x E c?)

21

Many hypothesis spaces are known to be polynomially learnable if the learn-
ing algorithm is allowed to ask both membership and equivalence queries.
This setting is called minimally adequate teacher [Ang87] and examples of
the learnable classes are deterministic string automata [Ang87, BDGW97],
deterministic tree automata [Sak90] or geometric concepts [BGGM99]. Inter-
estingly, the hypothesis spaces of DNF are known to be learnable using the
subset and superset queries, but not learnable using only equivalence queries
and it is an open problem whether membership and equivalence queries are
sufficient.

Definition 1.6.1. A concept class C is learnable using example based queries
if there exists an algorithm A such that for any target concept c? E C the
algorithm A returns a concept cf E C such that the concepts cf and c? are
equivalent.

Definition 1.6.2. A concept class Cis polynomially learnable using example
based queries if there exist polynomials PI () and P2 () such that for any target
concept c? E C at any point holds:

1. the number of the queries posed by the learning algorithm A is bounded
by PI(lc?l)

2. the running time of the learning algorithm A is bounded by P2(lc?j, l),
where l is size of the largest counterexample received so far.

CHAPTER 1. LEARNING MODELS

1.6.1 Consistency Problem and Equivalence Queries

22

The reasons for nonexistence of a polynomial query based learning algorithm
for some hypothesis space waggles between two boundaries:

1. complexity theoretic barrier - the problem of finding a hypothesis con-
sistent with the set of given examples in polynomial time

2. information theoretic barrier - the problem of discovering the target
concept with polynomial number of queries, even if unlimited compu-
tational time is allowed.

The reasons from the second type barrier are closely studied in Chapter 3.
Here we will study an example of the first reason. A necessary condition for
the polynomiallearnability we are going the present is based on the following
observation. If it is hard to find any concept consistent with the given set of
samples, then it is even more harder to discover the correct target concept
among all the concepts consistent with the seen examples.

Definition 1.6.3. Let (Xl, YI), (X2, Y2) ... (Xn, Yn) such that Xi E D, Yi E
{+, -} be a sequence of labelled examples from domain D. A concept c is
consistent with the input sequence if Vi Xi E c ~ Yi = +.
Definition 1.6.4. Let C be a class of concepts. The consistency problem
for C is a task for the given input sequence (Xl, Yd, (X2' Y2) ... (Xn, Yn) to find
a consistent concept cEe or return "no" if no such concept exists in C.

Theorem 1.6.5. [AHHP98] Let C be a class of concepts which is polynomi-
ally size bounded and membership of samples and concepts can be tested in
polynomial time. If C is polynomially exactly learnable using only equivalence
queries then the consistency problem for C is in P.

Proof Let C be polynomial time learnable class of concepts. Then there
exists a polynomial learning algorithm A for the class C. Without loss of
generality we may assume that A always asks an equivalence query before
returning the learned concept c? Then using the learning algorithm A we can
construct an algorithm A' solving the consistency problem for C as outlined
in Algorithm 3.

It is straightforward to verify that this algorithm solves the consistency
problem and runs in polynomial time because the learning algorithm A is
polynomial. Note that we have to test the consistency also for the learned
concept c* because it is not guaranteed which concept the learning algorithm
A returns if there is no consistent concept for the given input sequence. D

CHAPTER 1. LEARNING MODELS

Algorithm 3 Solving consistency problem using learnability
while simulation of A is running

simulate next step of A

if A asks an equivalence query with concept c
if c is consistent with input sequence

(for all i = 1 ... n holds c(xd = Yi)
return concept c

else
answer to A a counter example Xi such that C(Xi) =1= Yi

else if A outputs a concept c*
c* is result of the learning run
if c* is consistent with the input sequence

(for all i = 1 ... n holds C(Xi) = Yi)
return concept c*

else
there is no consistent concept
return "no"

else if A outputs "FAIL"
there is no consistent concept
return "no"

23

CHAPTER 1. LEARNING MODELS 24

•

•

Corollary 1.6.6. Assuming P =I- NP, if the consistency problem is NP-
hard, then C is not polynomial-time learnable using equivalence queries.

Proof. If the consistency problem for Cis N P-hard: then every N P- problem
is polynomially reducible to it. Therefore, if P =I- NP also C tJ. P. Then
Theorem 1.6.5 implies that C is not polynomially exactly learnable using
only equivalence queries. 0

The above corollary implies that all consistency hard problems, for exam-
ple the constrain satisfaction problems (CSP) are not polynomially learnable.
We have summarised the known query based learnability results in Table 1.1
and Figure 1.1.

As shown in the next theorem, learnability with queries implies identifi-
cation from polynomial time and data. The reverse implication is not true,
an negative example is the class of DFA.

Theorem 1.6.7. Every hypothesis space C that is learnable using example
based queries is identifiable from polynomial time and data.

Proof. Let A be a polynomiallearning algorithm for C using example based
queries. Let c? E C be any target concept. The characteristic set (S~, S;;;) is
the set of all counterexamples returned to the example based queries during
simulation of the algorithm A while learning the concept c?

The algorithm A' for identification from the characteristic set simulates
the algorithm A. Each time an example based query 'ï/Xl, X2 ... Xn EX:
<I>(Xl: X2:' .. , xn) is going to be asked by the algorithm A, the algorithm A'
computes sequentially the value of <I> for all examples in S~US;;; and compares
it with the classification into S-I:, and S-.,. If the classification mismatches thec. c.
query is answered with "no" and the found counter example is returned. 0

CHAPTER 1. LEARNING MODELS

Table 1.1: Learnability with example based queries

C'- •

25

•

•

CHAPTER 1. LEARNING MODELS 26

•

•

u«a..
IQ)
ä.E
"iii

~

c IIIO-.- Q)
(ij -Ill

~o'E~ It: :;::;
:;::;1Il0= C'CC'-

>,.0 Q)Q)-m "0 -o~ - ._ 0
0.0 -m:::::m m~.- mE Q) E~Q)- 00

Cf) cE~o
0.:::a..

a;
Q) I!?
ä. ~

"E lI>mill .h
><.9:1 "lI>Q)~

l'ÏQ)E ::::l c
CIlOCT ~~"O "e>Q) cr
CIlclll ci:._ mcoo :ë~ I!?m .8Q) E

...J CIl
E

.... UIOle:::e:::0..... -!'ClOla.-E
'3:3
tUlOlUI
~!'Cl0a.5i
UlEUle:::~o....

'>e:::
Ol

l!!o
E

CJ
w UI+ e:::CJ CJ 0:!: w ;:l

CJ a.
w E+
CJ :3
:!: mill l: OlUI

e -- e e:::UIl' m Q) ::I !'Cl
III E III ~ !'Cl

t ~ . .c ~5iCl :i! o Q) ai
III -- .J::. -èEl: "'" ::::l.o e« III mm Ole:::r;:- III IC (,') ~.g!£ en Q)1t: Ml!:?Q) 0>!£ £ a.e:::_"0 OlOl

.... UI
OUI
E~

Figure 1.1: Summary of relations between the models

•

Chapter 2

Bounds on Number of Required
Queries

In this chapter, we abstract from the computational time and space complex-
ity and study how many queries are needed to learn concept classes. We will
also introduce several generic query-based learning algorithms using different
type of queries.

All the learning problems, we are going to analyse, will be defined over a
finite value domain of samples X. Concepts will be subset of the domain X
and the hypothesis space will be a finite set of concepts.

Because we focus only on combinatorial bounds for the number of required
queries, it is possible to view the query-based algorithms as search trees for
the hypothesis spaces. Each non-leaf node of that search tree corresponds
to a posed query, be it membership, equivalence or any other type of query.
Child edges of the node correspond to answers for the asked query. For
each node, it is possible to assign a set of the remaining concepts which are
consistent with all answers to the queries on the path from this node to the
root node of the search tree.

Let d(T) denote a depth of the algorithm (search tree) T. Let d(c, T)
denote the maximum depth in T of a leaf node that has singleton set {c} as
a set of its remaining consistent concepts.

In the following sections, we will give several examples for performance
and query complexity of various learning algorithms. To reduce the text vol-
ume, we will try to recycle the following learning problem wherever possible:

Example 2.0.8. Shared learning problem

X - finite value domain for samples, X = {Xl, X2, X3, X4, X5}

O2.0.8 - finite hypothesis space 0 = {Cl, C2, C3, C4, C5}

27

•

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 28

Cl = {XI,X2,X3}
Xl X2 X3 X4

C2={X3,X4}
Cl + + +

C3 = {XI,X3,X4}
C2 + +

C4 = {XI,X2,X3,X4}
C3 + + +

Cs = {Xl}
C4 + + + +
Cs +

2.1 Bounds on Membership Queries
An MQ-algorithm T is allowed to pose only membership queries while dis-
covering the target concept c? We denote as TMQ(C) the set of all MQ-
algorithms which are successful on C. Let #M Q(C) be the number of queries
required for unambiguous identification of any target concept c? from the hy-
pothesis space C by the best MQ-algorithm T. Formally,

#MQ(C) = min max depth(c, T)
TETMQ(G) cEG

Example 2.1.1. For the above defined shared example hypothesis space
C2.0.8 is #MQ(C2.0.8) = 3. Clearly, there exist optimal and suboptimal MQ-
algorithms.

(CI, C2•C3,C4,CS)

?: X3EC?

~
(cl, Cl, C3,C4) (cs)
?: X.EC?

~
(c l,C3,C4) (C2)

?: X2EC?

~
(Cl,C4) (C3)

?: X4EC?

~
(c4) (cl) unoptimal optimal

Figure 2.1: Unoptimal and optimal MQ-algorithms

The MQ-algorithms have the so-called partitioning property, that is every
concept assigned to at most one leaf of T. Therefore, for any finite hypothesis
space we have

ICI ~ 2depth(T) (2.1)

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 29

Note, that in case of finite hypothesis space there always exists a successful
MQ-algorithm. This is the search tree Texhaust which we get with exhaustively
querying using all possible samples from the domain X and by subsequent
pruning of the redundant membership queries. An example is depicted in
the following figure:

•
{Cl,Cl, C3•C4, Cs}

?: XlEC?

~
{cI,C3,C4,CS} {c2l
?: X2EC?

~
{cI,c4l (c3,csl?)\? ?'A?

{c1,c4l ~ {c3l {csl
?: X4EC?

~
{c4l {cIl

{cl, C2•C3, C4•csl
?: XjEC?

~
{cl, C3, C4, csl {c2}

----~ ?: X2EC?
pruning ~

{c1.C4} {c3,CS}

?: X4EC? ?: X3EC?

~ ~
{c4} (cIl {c3} {cs}

Figure 2.2: Pruning of membership queries

Clearly,
max depth(c, Texhaust) :::; lXI (2.2)
cEG

Therefore, combining 2.1 and 2.2 we have the next bound. Both, the
upper and lower bound are tight if the hypothesis space C contains 21x1
concepts.

• 19 ICI:::; #MQ(C) :::;lXI

2.2 Bounds on Equivalence Queries

(2.3)

For discovering of the target concept c? an EQ-algorithm T is allowed to pose
only proper equivalence queries. The subject of a proper equivalence query
must be some concept c from the hypothesis space C. An XEQ-algorithm is
allowed to ask equivalence queries, where the subject of the query can be an
arbitrary concept, not necessarily from the hypothesis space C. Let #EQ(C)
(respectively #X EQ(C)) be the number of queries required for unambiguous
identification of any target concept c? from hypothesis space C by the best
EQ-algorithm (XEQ-algorithm) T. Formally,

#EQ(C) = min max depth(c, T)
TETEQ(G) cEG

•

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 30

#XEQ(C) = min max depth(c, T)
TETxEQ(C) cEC

Example 2.2.1. For the above defined shared example hypothesis space
C2.0.8 is #EQ(C2.0.8) = #X EQ(C2.0.8) = 2. The next figure shows both
optimal and unoptimal (X)EQ-algorithms.

{CI,C2,C3,C4,CS}

?: C2={X3,X4}=C?

+
X2 X3

I ""{C1,C4} {cs}
?: C1={X1 X2X3}=C?

1\'
+yes X4

/ \
{cl} {c4}

yes X3 X4
/ I \

{c3) {cs} {cs}

yes X2 X3
/ I \

{CI} {cs} {cs}
unoptimal EQ

optimalXEQ

Figure 2.3: Unoptimal and optimal (X)EQ-algorithms

In case of the finite hypothesis space, there exists always a successful EQ-
algorithm, because we can exhaustively search through all concepts in the
hypothesis space. Therefore,

#EQ(C) :::;ICI-1 (2.4)

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 31

Example 2.2.2. There exist concept classes, where this bound is tight.
For example, for hypothesis spaces consisting of singletons (e.g. C2.2.2 =
{{xd, {X2}, {X3}, {X4}}), any EQ-algorithm must ask ICI - 1 equivalence
queries. Interestingly, only one extended equivalence queries is needed, be-
cause we may ask a query ? : c? == 0 and the counterexample will be the
target concept.

Because each EQ-algorithm is also an XEQ-algorithm, we have

Therefore, combining (2.1) and (2.2) we obtain the following bounds•
#XEQ(C) ::; #EQ(C)

#XEQ(C) ::; #EQ(C) ::; ICI-1

2.2.1 Halving-XEQ algorithm

(2.5)

(2.6)

•

The idea of the binary search can be applied to the problem of learning
with extended equivalence queries in finite hypothesis spaces. For dividing
the hypothesis space into two halves, we repeatedly as a query use a so-
called "majority vote" concept. For construction of this majority vote, the
halving algorithm maintains a set of hypotheses Cconsist, consistent with all
so far received answers. An instance x from the domain X is part of the
majority vote concept, if it belongs to at least half of all remaining consistent
hypothesis. Formally,

. . {I X I{I C } I ICconsist I }MajorIty Vote = x x E 1\ ceE consist 1\ X E c > 2

Due to this construction any counter example received to the query with
majority vote disqualifies at least one half of the remaining consistent hy-
potheses. Therefore, we have the following upper bound for the number of
required extended equivalence queries:

#X EQ ::; (llg ICIJ) (2.7)

The following example shows that this bound is not tight, because the
halving algorithm does not work well on hypothesis spaces with sparse con-
cepts.

Example 2.2.3. Unoptimal halving algorithm. Let C2.2.3 be the hypothesis
space defined as

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 32

Algorithm 4 Halving-XEQ algorithm

Cconsist = C

while ICconsist! 2: 2 :
construct majority vote Cquery

ask the extended equivalence query ? : Cquery == c?
if answer to query is ''yes''

return Cquery

else
answer to query is ''no'' with counterexample x-
update Cconsist according to x-

invariant: ICconsistl = 1
return the last consistent hypothesis from Cconsist

Xl X2 X3 X4 X5 X6 X7 Xs

Cl +
C2 +
C3 +
C4 +
C5 +
C6 +
C7 + +
Cs + +
Cg + + +

Then #X EQ(C2.2.3) = 2, but the halving algorithm requires 3 queries.

2.2.2 Standard Optimal Algorithm
The standard optimal algorithm (Algorithm 5) was first presented by Little-
stone [Lit88] in context of the mistake bounded learning model. Here, we
present its modification in the terminology of query based learning.

The standard optimal algorithm, similarly as the halving algorithm, uses
the idea of the worst case partitioning for the remaining consistent hypoth-
esis. But here, the splitting criterion is the largest number of answers a
teacher may answer to an arbitrary sequence of membership queries, while
still having two or more concepts consistent with all those answers. The next
min-max theorem formalises this splitting criterion and proves correctness of
the standard optimal algorithm.

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 33

Algorithm 5 Standard optimal XEQ-algorithm

Cconsist = C
while ICconsistl ~ 2 :

construct concept Cquery

Cquery = {}
for x E X

C; = {c ICE Cconsist A x E c}
C;; = {c ICE Cconsist A x tJ. C}

if

max min depth(c, T) > max min depth(c, T)
TET MQ(C;l CECI TET MQ(C;;l cEG;;

then
add x into Cquery

ask the extended equivalence query? : Cquery = c?
if answer to query is "yes"

return Cquery

else
answer to query is ''no'' with counterexample y;
update Cconsist according to y
if Y E Cquery

Cconsist = C;;
else

C . -C+consIst - y

invariant: ICconsistl = 1
return the last consistent hypothesis from Cconsist

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 34

Theorem 2.2.4. [Lit88] For every finite hypothesis space C over finite value
domain X holds

#X EQ(C) = min max depth(c, T) = max min depth(c, T)
TETXEQ(G) cEG TETMQ(G) cEG

Proof " 2: " Let C be any finite hypothesis space and let #X EQ(C) be the
number of extended equivalence queries required by any XEQ-algorithm to
learn any target concept from the hypothesis space C. We show that there is
a strategy for an adversary teacher that forces any XEQ learning algorithm
to ask at least

d = max min depth (c, T)
TETMQ(G) cEG

queries. Because the value of maxTETMQ(G) mincEGdepth(c, T) is always de-
fined, there must exist an MQ-algorithm such that the maximum value is
reached for it. Let Tmax be that tree with the maximal value, that is

min depth (c, TmaJ = dcEG

Let {Xjll Xj2"" Xjk} be an extended equivalence query asked by the learning
algorithm. A sufficient strategy for the adversary is to maintain the current
node Xi (position) in the tree Tmax in the following way: If the current node is
a leaf, the adversary answers "yes". Otherwise, she answers "no" and returns
counterexample xt if Xi t/:. {XJ1' Xh, ... Xjk} and updates the current node to
the left child of Xi' Or if Xi E {Xjl' Xh, ... Xjk} she again answers "no", but
returns counterexample xi and updates the current node to the right child
of Xi.

learner with XEQ algorithm adversary with MQ algorithm

Figure 2.4: Min-max relation of MQ and XEQ algorithms

The definition of d implies that every leaf node in Tmax is in depth at
least d. Therefore, the above described strategy of the adversary guarantees

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 35

that every XEQ-algorithm must ask at least d queries before it discovers any
?target concept c'.

" ~ " We show that the number of extended equivalence queries asked by
the standard optimal algorithm is at most maxTETMQ(C) mincEc depth(c, T).

Every iteration of the while loop in the standard optimal algorithm (Al-
gorithm 5) asks one extended equivalence query. Therefore, it is sufficient
to show that the algorithm runs at most maxTETMQ(C) mincEc depth(c, T)
iterations of the loop.

Let us analyse the value of Dconsistdefined as

Dconsist:= max min depth(c, T)
TETMQ(Cconsist) cECconsist

where Cconsistis the variable used in the code of Algorithm 5.
Initially, we have

Dconsist= max min depth(c, T)
TETMQ(c) cEC

Let y be the counter example received during the current loop iteration.
Assume that following equation would be true for y:

max min depth(c, T) = max min depth(c, T) = Dconsist
TET MQ(Ct) CECt TET MQ(C;;) cECil

Then, we can for the set of remaining consistent hypothesis Cconsist,con-
struct the following MQ-tree Ty . Root node is y and its subtrees are the
maximal MQ-algorithms for C:and C;;. But then, because of the partition-
ing property of membership queries, we obtain

min depth(c, Ty) = Dconsist+ 1
cECconsist

and this is a contradiction with Dconsistbeing the maximum.
Because C: and C;; are subsets of Cconsist,there remains only the case

that

min { max min depth(c, T), max min depth(c, T)} < Dconsist
TET MQ(C+) cEC+ TET MQ(C-) cEC-

We have chosen y to the Cquery so that y returned back as the counterexample
rules out from C:' C;; the set with larger value. Therefore, the value of
Dconsistwill decrease for the next iteration at least by 1.

After reaching Dconsist= 0 there is only one remaining consistent hypothe-
sis. Therefore, the algorithm will do at most maxTETMQ(c) mincEc depth(c, T)
iterations. D

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 36

2.3 Bounds on Membership and Equivalence
Queries

An MQ&EQ-algorithm T is allowed to pose both membership and equiv-
alence queries. Similarly, an MQ&XEQ-algorithm T is allowed to pose
both membership and extended equivalence queries. Let #MQ&EQ(C)
(#M Q&X EQ(C)) be the number of queries required for unambiguous iden-
tification of any target concept c? from hypothesis space C by the best
MQ&EQ-algorithm (MQ\&XEQ-algorithm) T. Formally,

#MQ&EQ(C) = min max depth(c, T)
TETMQ&EQ(G) cEG

#MQ&XEQ(C) = min max depth(c, T)
TETMQ&XEQ(G) cEG

Because adding new type of queries increases learning power, we have the
following trivial bounds

#MQ&EQ(C) ::; #MQ(C)

#MQ&EQ(C) ::; #EQ(C)

#MQ&XEQ(C) ::; #MQ(C)

#MQ&XEQ(C) ::; #XEQ(C)

#MQ&XEQ(C) ::; #MQ&EQ(C)

To my knowledge, there are no stronger generic results valid for all concept
classes that bound the number of membership and proper equivalence queries.
However, as we will see in Chapter 4, there are results when restricted to
particular concept classes such as deterministic finite automata.

Maas and Turan [MT92] showed that adding of the membership queries
to the extended equivalence queries yields only logarithmic improvement.

Theorem 2.3.1. For every finite hypothesis space C over finite value domain
X holds

#XEQ(C)
19(#XEQ(C) + 1) ::; #MQ&XEQ(C)

Proof. We show, that an adversary teacher has a strategy that forces every
MQ&XEQ algorithm to ask at least #XEQ(C)jlg(#XEQ(C) + 1) queries.

From the min-max theorem 2.2.4 we have

#XEQ(C) = max min depth(c, T)
TETMQ(C) cEG

(2.8)

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 37

Let Tmax be such a tree where this value is maximal. Every leaf of Tmax

is in depth at least #X EQ, because mincEc depth(c, Tmax) = #X EQ.
Let NU) be the set of nodes n from Tmax such that n is exactly in depth

#X EQ and its subtree contains at least one leaf node with assigned concept
c E C that is consistent with all answers to the previous queries.

We show that after answering j queries the following invariant remains
true:

2#XEQ(C)
INU)I > -----

- (#XEQ(C) + l)i
Initially, N(O) contains 2#XEQ(C) nodes.
If the j-th query is a membership query, we answer "yes" if and only if

IN(i+1)I ~ ~INU)I

and the invariant will remain true.
Now let us assume the j-th query will be an extended equivalence query

of the form ? : Cquery - c? Without loss of generality Cquery is consistent
with all the previous answers, because otherwise we just recycle one of the
previous answers.

Thanks to the partitioning property of membership queries and because
Tmax is a complete binary tree up to the depth #XEQ, there is a node
n E NU) such that Cquery is consistent with all the nodes on the path from
node n to the root node of the tree Tmax. We choose the counterexample for
the posed Cquery using the following strategy.

By Dirichlet's principle, among the nodes on the path from n to the
root(exists a node n' such that the subtree of its sibling contains at least
#:E~+l nodes from NU). Let the label of the n' be x. Then we return x
as the counterexample and the invariant 2.8 remains true. The situation is
depicted in the following figure:

Figure 2.5: Adversaryanswers to MQ&XEQ algorithm

CHAPTER 2. BOUNDS ON NUMBER OF REQUIRED QUERIES 38

The MQ&XEQ algorithm must ask at least so many queries that the
number of nodes in the set N(j) will be less than 2. Therefore,

and so,

2#XEQ(C)

(#XEQ(C) + l)#MQ&XEQ(C) ::; 1

o

Chapter 3

Measures for Learning
Complexity

In the previous chapter we have studied the generic learning algorithms that
work on arbitrary hypothesis space. In this chapter we extend the hypothesis
space to act as a variable.

We analyse structure and combinatorial properties of hypothesis spaces,
to find out which types ofthe hypothesis spaces make the learning harder. We
define several measures that express complexity of the learning and establish
lower and upper bound for these measures. The bounds are later applied in
concrete hypothesis spaces to prove non-Iearnability results or the existence
of learning algorithms.

3.1 Teaching and Exclusion Dimension

3.1.1 Teaching Dimension
Let C be a finite set of concept. Imagine the problem of convincing a sceptical
learner that the target concept is some chosen c E C. That is, how many
examples do we require to prove that c? is really the target concept?

A teaching set of a concept c E C is the minimal set of examples required
to distinguish the concept c from all other concepts in the hypothesis space
C.

Let T D(C) denote the size of the largest teaching set required to distin-
guish a concept c E C from all the other concepts in C. Formally,

TD(C) = max min depth(c, T)
cEG TETMQ(C)

39

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 40

Example 3.1.1. (Example 2.0.8 continued) The teaching dimension of hy-
pothesis space C2.0.8 is 3. Teaching sets for its concepts are the following:

concept
Cl

C2

C3

C4

C5

teaching set
{X3, X4}
{Xl}
{XI,X2,X3}
{X2, X4}
{X3}

Theorem 3.1.2. For any finite hypothesis space C over a finite value domain
X holds

TD(C) ::;#MQ(C)

Proof. Let Tmin be the best MQ-algorithm for the hypothesis space C. Let
Cmax E C be some of its concepts with the largest teaching set. Thanks to
the partitioning property of the membership queries, every concept Cmax is
assigned only to one leaf node of Tmin. The depth of each concept Cmax must
be at least T D(Cmax). Otherwise, we could construct a smaller teaching set
for the concept Cmax consisting of samples asked in the membership queries
on the path from the leaf node with Cmax to the root node of the tree Tmin'

And this would be a contradiction to the maximality of T D(C) for all Cmax
nodes. 0

Rewriting the above theorem in terms of polynomiallearning we obtain
the following necessary condition:

Corollary 3.1.3. [GK95] If a finite hypothesis space C over domain X is
learnable with polynomial number of membership queries, then it has polyno-
mial teachin9 dimension.

Example 3.1.4. Known teaching dimensions for some concept classes [GK95]:

concept class
monotone k-term DNF (with lliterals)
k-term j.l-DNF (with n variables)
monotone decision lists (with n variables)

upper bound
l+1

n
n

lower bound
1+ k

n+2k
2n -1

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 41

3.1.2 Exclusion Dimension

Now, let us imagine the problem of convincing a sceptical user that some
concept C E 2x does not belong to the hypothesis space C. That is, how
many examples are required to show that some concept C tj:. C?

A O-specifying set of a concept ê tj:. C is the minimal set of examples
required to distinguish the concept ê from all concepts in the hypothesis
space C. Let X Do (C) be the size of the largest O-specifying set required to
distinguish a concept ê tj:. C from all concepts in C. Formally,

X Do (C) = max min depth (ê, T)
êfj.C TETMQ(c)

Example 3.1.5. (Example 2.0.8 continued) the exclusion dimension of hy-
pothesis space C2.O.8 is 3. O-specifying sets for concepts not from C2.O.8 are
the following:

concept O-specifying concept O-specifying
set set

0 {XI,X3} {XI,X2} {X2, X3}
{X2} {XI,X3} {XI,X3} {X2, X3, X4}
{X3} {XI,X4} {XI,X4} {X3, X4}
{X4} {XI,X3} {X2, X3} {XI,X2}
{X2,X3,X4} {Xl, X2} {X2,X4} {Xl, X2}
{XI,X2,X4} {X2,X3}

If the concept ê would belong to the hypothesis space, the O-specifying
set would match with the teaching set. Therefore,

XDo(C) = Tfj.~ TD(Cu {ê})

Theorem 3.1.6. For any finite hypothesis space C over a finite value domain
X holds

XDo(C) ::;#MQ(C) + 1

Proof Let Tmin be the best MQ-algorithm for the hypothesis space C. Let ê
be some concept not from the hypothesis space C. Due to the partitioning
property of membership queries, there is exactly one leaf node such that ê is
consistent with all the membership queries on the path from this leaf node
to the root node of the tree Tmin. Let CC be the concept from the hypothesis
space C assigned to that leaf node. Because ê tj:. C, there must exist at
least one example X E X such that X E ê {::::::::}X tj:. Cc. Then, the set

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 42

consisting of examples asked in membership queries on the path from the
leaf node with assigned Cc to the root of Tmin together with the example X

form a O-specifying set for ê. Therefore, for every concept not in C we can
construct a O-specifying set with at most #MQ(C) + 1 elements and so,
XDo(C) ::::;#MQ(C) + 1. D

Example 3.1.7. Let C3.1.7 be a concept class consisting of binary vectors
of the form om{o, I}n. The teaching dimension and the exclusion dimension
may be arbitrary different for C3.1.7, as shown by this example. T D(C3.1.7)

can be made arbitrary n E N and X D(C3.1.7) will remain still 1.

Xl X2 X3 X4 X5 X6 X7

Cl
C2 +
C3 +
C4 +
C5 + +
C6 + +
C7 + +
Cs + + +

3.1.3 Replacing Equivalence Queries
The teaching and specifying sets are useful for replacing (extended) equiv-
alence queries with a sequence of membership queries. The question is how
many membership queries are required for such a replacement.

Assume we want to replace a proper equivalence query ? : C == c? with a
sequence of membership queries. Let Sc be the teaching set of the concept
c. From TD(C) being maximal, we have IScl ::::;TD(C). Because concepts
C and c? belong to the same hypothesis space C, the set Sc uniquely dis-
tinguishes the concept Cc from all concepts in C, including c? Therefore,
each proper equivalence query can be replaced with a sequence of at most
T D(C) membership queries asked about samples in the set Sc . We answer
the equivalence query with "yes", if answers to all membership queries are
consistent with c.

Now, let us analyse the case of replacing an extended equivalence query
? : ê == c? with a sequence of membership queries. Without loss of generality
ê ~ C, otherwise we proceed as in the case above.

We define ::::;I-specifying set of concept ê ~ C as the minimal set distin-
guishing the concept ê from all but at most one concept in C. Said differently,

•

•

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 43

::; I-specifying set is such a set that ê is consistent with this set and addi-
tionally, zero or at most one concept from C are consistent with this set.

Let XD9 (C) be the size of the largest ::; I-specifying set required to
distinguish a concept ê tJ. C from all but at most one concept in C.

Clearly, with adding zero or at most one more sample x E X into a
::; I-specifying set we can construct a O-specifying set for a concept ê tJ. C.
Therefore,

XDo(C) ::;XD9(C) + 1

Moreover, every O-specifying set is also a ::; I-specifying set and there-
fore,

XD9(C) ::;XDo(C)

The extended equivalence query can be replaced with a sequence of at
most X D9 (C) membership queries asked about samples in the::; I-specifying
set of the concept ê tJ. C. We answer this equivalence query always with ''no'',
because the concept ê is not from the hypothesis space C, but the target con-
cept c? is. A counterexample is either a sample from a membership query,
where the answer is inconsistent with ê or a sample distinguishing the concept
ê and the only possible concept consistent with all answers to the membership
querIes.

To summarise, for replacing an equivalence query, a sequence of at most
max{TD(C),XD9(C)} membership queries is needed. This measure we
define as the extended teaching dimension XTD:

XTD(C) = max {TD(C), XD<l(C)} = max min depth(c,T)
- cE2X TETMQ(C)

If we apply this technique of replacing the extended equivalence queries
to the standard optimal algorithm, we obtain the following two theorems:

Theorem 3.1.8. For any finite hypothesis space C over a finite domain X
holds

<
XTD(C) ::;#MQ(C) ::;#XEQ(C) XTD(C) (2~7) 19ICI XTD(C)

Proof The lower bound is implied from Theorems 3.1.2 and 3.1.6, the upper
bound from replacing of the equivalence queries described above. 0

Theorem 3.1.9. For any finite hypothesis space C over a finite domain X
holds

<
XD9(C) ::;#MQ&EQ(C) ::;#XEQ(C) XD9(C) (2~7) 19ICI XD9(C)

•

•

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 44

Proof To show the upper bound, we construct a MQ&EQ learning algorithm
for C using at most #X EQ(C) X D9 (C) queries. We do this with simu-
lating the standard optimal algorithm. Each time an extended equivalence
query is asked with a concept ê fj:. C, we replace it with a sequence of at most
X D9 (C) membership queries as described in the text above.

For the lower bound, we show a strategy for an adversary that forces any
learning algorithm to ask at least X D9 (C) queries. Let Gnax be some of the
concepts with:::; 1- specifying set of size XD9(C). The adversary answers
questions consistently with êmax. After answering X D9 (C) - 1 queries at
least two concepts in C must be consistent with all the previous answers.
Otherwise there would be a smaller:::; 1- specifying set for the concept êmax.

And so, any MQ&EQ-algorithm must ask at least XD9(C) queries. 0

As a corollary of the above theorem we have the next result for polynomial
learning.

Corollary 3.1.10. [HPRW96} The finite hypothesis space C over domain X
is learnable with polynomial number of membership and equivalence queries
if and only if it has polynomial exclusion dimension.

3.2 Approximate Fingerprint Dimension

Assume that we use a concept CqueryE C for a proper equivalence query
? : Cquery== c? Then each counterexample Xans E X partitions the hypothesis
space into two disjoint subsets of hypotheses, depending on their consistency
with this answer. Therefore, the number of concepts that are at least dis-
qualified with the answer Xans to the query Cqueryis

#min-disqualified(cquery, xans) = I{c E CI Xans E C ~ Xans E Cquery}I~ 1

and there is some some integer 1 :::;dxans :::; ICI such that
1

#min-disqualified(cquery, xans) ~ dici
Xans

If the adversary teacher provides the best possible answer, that is the
answer that disqualifies as few hypotheses as possible, from the previous
equation results:

#min-disqualified (cquery)= min #min-disqualified (Cquery,x)
xEX

and there is again some some integer dquery such that
1

#min-disqualified(cquery) ~= -d -ICI
Cquery

•

•

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 45

Definition 3.2.1. A subset C' ç C of the hypothesis space C is denoted as
reachable from C if there exists a set of examples Xreach = {Xl, X2 ... xr} such
that C' can be constructed from C by removing all hypotheses not consistent
with the examples in the set Xreach.

Definition 3.2.2. The fingerprint dimension of the hypothesis space C is the
least possible number F D(C) E N such that for every reachable hypotheses
subset C' ç C exists a proper equivalence query such that after any answer,
the number of disqualified hypotheses is at least Fd(C) IC'I.

Formally,

VC' ç C, C' is reachable: [max #min-disqualified(C)] ~ \C) IC'I
cEC' FD

The situation with the minimal fragment of the disqualified hypotheses
after each query is depicted in the next figure.

hypotheses consistent
before the query

certainly disqualified
after any answer

Figure 3.1: FD (fingerprint dimension) fraction of certainly disqualified hy-
potheses

Imagine a learning algorithm that in every step asks an equivalence query
that disqualifies at least FD\C)-fraction of the currently consistent hypothe-
ses. Such query always exists, as implied from the definition of the finger-
print dimension. Then after k equivalence queries, the number of remaining

consistent hypotheses is at most (1 - Fd(c)) k ICI. The learning algorithm
must keep asking equivalence queries, while there are at least 2 remaining
consistent hypotheses. Therefore,

(1) #EQ(C)

1- FD(C) ICI::; 1

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 46

which yields
#EQ(C) ::; rF D(C) In ICll (3.1)

The fingerprint dimension defines also a lower bound for the number of
required proper equivalence queries. We describe a strategy for an adversary
teacher that forces this lower bound.

Because the value of F D(C) is minimal there must be a reachable subset
of hypotheses C' ç C such that for any proper equivalence query with a con-
cept from C' there is an answer disqualifying at most FD(~)_lIC/1 hypotheses.

Assume that the learning algorithm asks a query? : c _ c? with a concept:

• CEC' - Then according to the definition of F D(C), there exists an
answer X E X such that at most FD(~)-lIC'1 concepts are disqualified.

• c f:. C' - Then among the examples Xl, ... , Xr that prove the reachability
of C' from the hypothesis space C must exist Xi such that Xi E c ~
Xi f:. c? Therefore, this Xi can be returned as an counterexample and
the answer does not disqualify any concepts from C'.

Therefore, after k equivalence queries, the number of hypotheses consistent
with the previous answers is at least

k
ICI- FD(C) _l1CI

Because the learning algorithm must keep asking queries until there is
only one remaining consistent hypothesis, it follows:

k
ICI- FD(C) _11CI::; 1

and hence
#EQ(C) ~ FD(C)-l

Combining (3.1) and (3.2) we finally retrieve:

F D(C) - 1 ::; #EQ(C) ::; rF D(C) In ICll

3.3 Vapnik-Chervonenkis Dimension

(3.2)

Consider set S = { l, 2, ... , m} of unlabelled samples from domain X.
There are 2m possible ways of division it into two disjoint and exhaustive
subsets. As illustrated in Figure 3.2, each possible dividing of the sample S
into these subsets is called partition. For example, the set { l, 2} partitions
the sample set S into the pair< { l, 2}, { 3, ... , m} >.

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 47

Figure 3.2: Division of samples

Definition 3.3.1. We say that the hypothesis space 0 shatters the set of
samples S if and only if for every subset T ç S there exists a concept e E 0
which partitions S in the same way as T does. In symbolic form:

'iT ç S ::le E 0 'i8 E S 8 ET{=} 8 E e

or
{S neie E O} = P(S)

Because for every subset of the shattered sample set S there exists a
matching concept e and these concepts must be disjoint between each other,
the definition of shattering implies that

(3.3)

Example 3.3.2. Samples set S shattered by hypothesis space 03.3.2:

03.3.2 - set of all half-planes (y ::; ax +)
S - two points 81, 82 from JR2 in general position

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 48

•

+

1+1--

«(s,).{s,})

(.0', {s,.s,}}

Example 3.3.3. Hypothesis space C3.3.3 not shattering any sample set of
size 2:

03.3.3 - set of centred circles (y ::; ax2)

S - two points 81, 82 from JR2 in general position

I
«(S"s,). .0'}

I-r-
(.0' .{S"s,}}

I

-W-
I

«(s,}. (s,})

does not
exist

«(s,}.{s,))

+

Example 3.3.4. Hypothesis space C3.3.4 shattering any finite set of samples:
03.3.4 - set of all XPath expressions

S - Let < { ill i2"'" in}, { jll 12"'" jn} > be a parti-
tion of some finite set of trees. Then the matching
XPath expression is il I i2 I ... I in'

Definition 3.3.5. The Vapnik-Chervonenkis Dimension of the hypothesis
space C, denoted as VCD(C) is the maximal number n E N such that there
is a set of samples with n elements shattered by the hypothesis space C.

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 49

Example 3.3.6. The examples above imply that there are hypothesis spaces
with both finite and infinite VC-dimension. We have VCD(C3.3.2) = 4,
VCD(C3.3.3) = 1, VCD(C3.3.4) = 00.

The interesting fact behind the Vapnik-Chervonenkis dimension is that it
measures only the combinatorial parameters of the hypothesis space, indepen-
dently from the computational complexity. Also, there is a well understood
connection between of the VC dimension and the PAC learning model. The
most known results are summarised in the following theorem.

Theorem 3.3.7. [BEHW89j A hypothesis space C is PAC learnable (with
unbounded complexity) if and only if it has finite VC dimension.

Upper bound: Any hypothesis space C is properly PAC learnable if

• there is an algorithm that outputs concept c E C consistent with the
training set in polynomial time (depending on size of the target concept
and number of seen examples)

• and the number of seen (available) samples is at least

4 2 8 13
max(-lg 6' VCD(C)-lg-)

Lower bound: Any PAC learning algorithm must examine at least

1 1
O(-lg 6 + VCD(C))

samples.

As the consequence of the above Theorem 3.3.7, example 3.3.4 and the
transformation ofEQ-learning algorithms into PAC learning algorithms [Ang87]
the following statement results:

Corollary 3.3.8. The hypothesis space of all XPath expressions is not PAC
learnable and is not learnable using only equivalence queries.

After seeing good connection between the PAC model and VC dimension,
it is natural to ask about its relationship to the query based learning.

Combining the equations 3.3 and 2.3, we obtain for any finite hypothesis
space C the following lower bound for the number of membership queries:

VCD(C) ~ 19 ICI ~ #MQ(C)

CHAPTER 3. MEASURES FOR LEARNING COMPLEXITY 50

Theorem 3.3.9. (Lit88] For every finite hypothesis space C over finite do-
main X holds

VCD(C) ::;#XEQ(C) ::;#EQ(C)

Proof. The definition of shattering implies that it is possible to construct an
MQ-algorithm To such that To is up to depth VCD(C) a complete binary
tree. Therefore,

min d(c, To) ~ VCD(C)
cEG

Combining this inequality with Theorem 2.2.4 we have

#XEQ(C) = max min d(c, T) ~ min d(c, To) ~ VCD(C)
TETMQ(C) cEG cEG

D

Again, this lower bound is not tight as shown by the following example.

Example 3.3.10. The VC-dimension is not the tight lower bound for #X EQ.
X - finite value domain, X = {a, 1,2, ... , 2n-l}

C3.3.1O - finite set of concepts, C3.3.l0

{Co, Cl, ... ,C2n-l}, where
Co = {a}
Cl = {O,l}
C2 = {a, 1, 2}

Cj = {i liE No 1\ i ::;j}
VCD(C3.3.1O) = 1, because every pair of integers i and j, (i < j) with

partition< {j}, {i} > does not shatter the hypothesis space C3.3.1O•

The equation 2.7 implies #XEQ(C3.3.1O) ::; IgIC3.3.101 = n. The binary
search over the sorted array [0,1, ... ,2n-l] is a complete MQ - algorithm of
depth n. Therefore, from the Theorem 2.2.4 is implied that #X EQ(C3.3.1O) ~

n, and we have #X EQ(C3.3.1O) = n.

Note~ that [MT92] shows also another tighter lower bound for the Vapnik-
Chervonenkis dimension

~VCD(C) ::;#MQ&EQ(C)

Chapter 4

Learning of String Automata

After studying the generic approaches and bounds for learnability, we turn
our attention to specialised learning algorithms.

We will present one of the most known results in the active learning the-
ory - the Angluin's polynomial algorithm for learning of deterministic finite
automata using membership and equivalence queries [Ang87]. Let us remark
that after the original work of Angluin, appeared several other modifications
of the DFA learning algorithm for example reducing number of member-
ship or equivalence queries [BDGW97], reducing space complexity [KV94] or
adapted for training of robots [RS93].

After presenting the algorithm together with proofs and examples explain-
ing why it works, we analyse its query complexity and the relation between
the number of required membership and equivalence queries.

4.1 Packs and Access Strings
The DFA learning algorithm learns from observing of (input, output) exam-
ples. By an example we mean a pair (x, +) or (x, -), which expresses that
the word x is (is not) member of a target language L? that we want to learn.
Set of positive/negative examples is called observation pack (P).

It is assumed, that the set of examples used for training is consistent.
That is, there is no word y such that (y, +) EPand (y, -) E P. In other
words, there is no noise in the examples.

The examples in the observation pack are distributed into a finite sys-
tem of sets (not necessarily disjoint) P = (PI, P2, ... , Pp), so that these two
following conditions are fulfilled:

1. Let Si be the shortest word in component Pï. Then word Si is prefix of

51

CHAPTER 4. LEARNING OF STRING AUTOMATA

all words in the component Pï, that is

Vw E Pï :Je E ~* : W = Sie

52

We will call Si as an access string of the component Pi. We define the
set of experiments Ei as a set of all suffixes of the access string Si in
the pack Pi, that is

2. For each pair of the components Pi, Pj from an observation pack
P = (PI, P2, ... , Pp) exists a known experiment that distinguishes them.
That is, there exists a suffix string e in both sets Ei and Ej such that
the words Sie and sje have different +/ - labels. Formally,

VPi, Pj :Je E Ei n Ej : Sie E L -Ç=? sje fi. L

Where not clear from the context, we will put the access string into brackets
(e.g. [s]) for better understanding. We denote S as set of all access strings
in observation pack P == (PI, P2, ... , Pp).

S = {Si I Si is accesstring of Pi}

Example 4.1.1. Observation pack
Let L:x be the unknown language we would like to learn. Of course, the

learning algorithm does not know this language, we dispose it here only for
better tracking and understanding of the next examples.

L? = ab*abex

The minimal automaton (with no dangling transitions) accepting that
language is (~, Q, 5, qo, F), where:

~ = {a,b},
Q = {q,q,q,q,q}, F = {q+}
and the transition function 5 is defined as:

5(qo, a) = ql
5(qo, b) = q-

5(ql' a) = q2
5(ql, b) = ql

5(q2, a) = q_
5(q2, b) = q3

5(q3, a) = q_
5(q3, b) = q_

5(q_, a) = q_
5(q_, b) = q_

CHAPTER 4. LEARNING OF STRING AUTOMATA 53

Let us have the following observation pack of labelled samples:

(E, -), (b, -), (ab, -), (aba, -), (bab, -), (abab, +),
(babab, -), (bbbab, -), (abbbab, +), (ababbab, -)

This pack can be distributed into following components (Pl, P2, P3, P4, P5)

(one distribution from several possible):

access experimentsstring

Pl [E] (Elab, -) (Elabab, +) (Elb,-) (EIE, -)
P2 [b] (blab, -) (blbbab, -) (blabab, -) (bk, -)
P3 [ab] (abi ab, +) (ablbbab, +) (ablE, -)
P4 [aba] (abalbbab, -) (abalb, +) (abalE, -)
P5 [abab] (ababIE, +)

The intuition behind the access strings is that each access string corre-
sponds to one state of the automaton that accepts the unknown language L?
Each access string defines on language L? a right-congruence class. Thanks to
the condition (2) for existence of the distinguishing experiment are the con-
gruence classes of access string unequal between each other, because there
is always a witness proving their inequality. But this implies, that for ev-
ery pair of different access strings the unknown automaton Mu must have
reached two different states. And therefore, every automaton accepting the
language L? must have at least as many states as is number of access strings
in the set S. Formally,

Theorem 4.1.2. Let S be a set of access strings for an observation pack
P = (Pl, P2, •.. , Pp) of language L? Let ML? be the minimal (with respect to
IQI - number of states in Mu) deterministic finite state automaton accepting
L? Then

Proof Assume the automaton ML? would reach the same state while running
on two different access strings Si and Sj' That is 5(qo, Si) = 5(qo, Sj). Be-
cause the automaton has reached the same state, for each string X holds that
5(qo, SiX) = 5(qo, Sjx) and therefore, \;je E Ei nEj : sie E L? {::::::::}sje EL?
But this is a contradiction with point (2) of the pack-component definition.
Because for every pair of i, j the inequality Sl =I- S2 implies 5ML (qo, Sl) =I-
5ML(qO, S2), the automaton ML? must have at least ISI states. 0

CHAPTER 4. LEARNING OF STRING AUTOMATA 54

distinguishing
ex~~t.iment

~.- .
.........~

Figure 4.1: Distinguishing experiment leading to different states

Definition 4.1.3. String x "is like" an access string Si if x and Si behave the
same way for all experiments in Ei, i.e.

Being unable to distinguish the "is like string" x from an access string on
all its known experiments suggests that the automaton Me reaches on the
string x the same state as on the access string.

Example 4.1.4. (continued Example 4.1.1) An access string and its "is like"
string

access string
"is like" string

[ab]
abb

(ablab, +)
(abblab, +)

experiments
(ablbbab, +)

(abblbbab, +)
(ablE, -)

(abbiE, -)

Let us clarify that the unknown automaton Me may not always reach
the same state on an access string and its "is-like" string. The reason is that
we just do not have currently enough examples to distinguish them.

It the next part, we will use a function that maps word from E* to its "is
like" access string. The following claim ensures that the function will be well
defined, that is no word from E* will map onto two different access strings.

Theorem 4.1.5. Let S be a set of access strings for an observation pack
P = (PI, P2, ... , Pp) of language L? For each string x E E*, there is at most
one access string Si such that x is like Si.

Proof Assume x is like two different access strings Si and Sj' The point
(2) in the pack-components definition implies existence of experiment e such
that xe E L? ~ Sie E L? ~ sje rt L? ~ xe rt L? and that is a
contradiction. D

CHAPTER 4. LEARNING OF STRING AUTOMATA 55

4.2 Expanding of Pack/Adding Access Strings
We define partial function "(: E* ~ S that maps string w E E* to its "is like"
access string with respect to the current observation pack P = (PI, P2, ... , Pp)

"(: x t--+ [s] such that x is like s

We say, string x "escapes" if "((x) is undefined. That is, there is no access
string sES such that x is like s.

Definition 4.2.1. An observation pack P is called closed if

1. "((c) is defined

2. Vs E S Va E E : "((sa) is defined

Example 4.2.2. (continued Example 4.1.1) The observation from the ex-
ample 4.1.1 is closed as demonstrated by Table 4.1

The most interesting property of the above defined function "(is that it may
be undefined for some values. Discovery of such an undefined point means
discovery of a new access string.

This fits then with the following theorem that expresses the core principle
of the query learning algorithms for DFA by giving for the upper bound for
the number of access strings. In the ground basis, all the learning algorithms
just search for new access strings, what varies are only the strategies for
discovery of new access strings. Moreover, as we show, when the upper
bound for access strings is reached, the right-congruence classes characterised
by the set of all access string define the minimal automaton accepting the
target language L?

Theorem 4.2.3. [BDGW97] Let P be an observation pack of language L?
Let ML? = (EML?, QML?, 6ML?, q~L?, pML?) be the minimal automaton accept-
ing language L? If the observation pack P has exactly IM£? I components (or
access strings) then

• P is closed

• and automaton A = (E, Q, 6, qo,P) 'lS isomorphic with the minimal
automaton M£?, where
E = EML?

Q=S
6 : 6([S], a) = "((sa)
qo = "((c)
p = {[s] ISE SAs EL?}

CHAPTER 4. LEARNING OF STRING AUTOMATA

Table 4.1: Closed observation pack example

<l.) :c:c ~~ ~:c ~:c ~~.~ ~
~~ ..0 c::l c::l~~ ..0

~

..-...-.... ..-... ..-... ..-... ------ ------ ------ ------ ------ ------------I I I I + I I I I I I I
,... ,... ,... ,...

"" """"IJ.) IJ.) IJ.) IJ.) IJ.) IJ.) IJ.) IJ.) IJ.)----- -
IJ.) ..0..0 c::l..o c::l c::l..o ..0 c::l c::l..o

"'--""'--" c::l ..0 c::l "'--" ..0..0 ..0 c::l ..0 ..0
"'--" c::l ..0 ",--,,"'--" c::l ..0 c::l c::l

"'--" c::l "'--" c::l ..0 ..0
"'--" "'--" c::l c::l

"'--" '"--'

------ ------I +..c ..c
IJ.) c::l

"'--" ..0
c::l

"'--"

------ ------ ------------ ------ ------ ------+ I I I I I I
..0 ..c ..0 ..0 ..0 ..c ..0

Ul c::l c::l c::l c::l c::l c::l c::l
+" ..0 ..0 ..0 ..0 ..0 ..0 ..0~ c::l c::l c::l c::l c::l c::l c::l
<l.)

IJ.) ..0 c::l..o c::l c::l..o.S "'--""'--" ..0 ..0 c::l ..0 ..0
~ '"--' "'--" ..0 c::l c::l
<l.) c::l ..0 ..0

0.. "'--" c::l c::l
>< "'--" '"--'
<l.)

------ ------ ------ ------ ------------ ------ ------ ------ ------I + I + I I + I I I
..c ..c ..0 ..c ..c ..c..0 c::l ..0 ..0 ..0

c::l c::l c::l ..0 c::l c::l c::l c::l c::l c::l
..0 ..0 ..0 ..0 ..0 ..0 ..0 ..0 ..0 ..0
..0 ..0 ..0 c::l ..0 ..0 ..0 ..0 ..0 ..0
..o..o""d '"--' c::l..o ..0 c::l c::l..o
"'--" c::l ..0 ..0 ..0 ..0 c::l ..0 ..0

"'--" c::l '"--' '"--' c::l ..0 c::l c::l
"'--" "'--" c::l ..0 ..0

"'--" c::l c::l
"'--" '"--'

------ ------ ------ ------ ------------ ------ ------ ------ ------I I + + I I + I I I
..c ..c ..c ..0 ..c ..cc::l ..0 ..0 ..0 ..0
c::l c::l c::l c::l c::l c::l c::l c::l c::l c::l

~..o..o "'--" ""d..o ..0 c::l c::l..o
'"--' "'--" c::l ..0 ..0 ..0 c::l ..0 ..0

"'--" '"--' '"--' c::l ..0 c::l c::l
"'--" c::l ..0 ..0

"'--" c::l c::l
"'--" '"--'

~:c:c~:c c::l ..0 c::l ..0 c::l ..0 c::l ..0 c::l ..0

------Ul bO ~~c::l..oc::l IJ.) IJ.) ..0 ..0 ..0 ..0 c::l c::l ..0 ..0
Ul ~ ~ ~ ..0 c::l c::l ..0 ..0 c::l c::l
<l.) ~ c::l c::l ..0 ..0
U "C c::l c::l
U +"
cd Ul

"'--"

56

CHAPTER 4. LEARNING OF 8TRING AUTOMATA 57

Proof Assume that the observation pack P would not be closed. Then, there
is some word x E ~* such that ,(x) is undefined. Therefore, we can add the
word x into the pack P as a new access string. But then we have 181 > 1M£? I
which is a contradiction with Theorem 4.1.2.

The isomorphism of the automaton A with the minimal automaton ML?
implies from the bijection <p between Sand QML? defined as:

<p : [s] 1---7 ÖML? (q~ L? , s)

<p is indeed a well defined function. That is, it maps each access string to
at most one state of automaton ML?, because Mu is deterministic.

The condition (2) for existence of the distinguishing experiment in the
pack-component definition implies that for every pair of two access strings
Si and Sj if Si =1= Sj then <P(Si) =1= <p(Sj)' Because 181 = IMul and the
sets are finite, the function <p is surjective. Therefore, the function <p is an
isomorphism. 0

Example 4.2.4. Isomorphism of a closed observation pack to the minimal
automaton

According to the construction in the Theorem 4.2.3, the automaton ac-
cepting the language L:x is:

Q = {[E], [b], [ab], [aba], [abab]},
F = {[abab]}
and the transition function Ö defined as:

Ö([E], a) = [ab]
ö([t], b) = [b]

ö([b], a) = [b]
ö([b], b) = [b]

ö([ab], a) = [aba]
ö([ab], b) = [ab]

ö([aba], a) = [b]
ö([aba], b) = [abab]

ö([abab], a) = [b]
ö([abab], b) = [b]

And indeed, there is a isomorphism <p to the original automaton from
Example 4.1.1 defined as:

qo 1---7 [E]
ql 1---7 [ab]
q2 1---7 [aba]
q+ 1---7 [abab]
q- 1---7 [b]

CHAPTER 4. LEARNING OF STRING AUTOMATA 58

4.3 DFA Learning with Membership and Equiv-
alence Queries

There are several version of the original algorithm [Ang87, BDGW97, KV94],
essentially different only in the ways of processing and maintaining the re-
ceived counterexamples and discovering of new access strings.

Typical strategy of the learning algorithm is to ask a sequence of member-
ship queries, and continuously extend the set of known access strings using
the received query answers. When the set of access string can not be ex-
panded anymore, the learning algorithm considers the current hypothesis as
a good candidate of automaton accepting the target language L? Therefore,
it asks an equivalence query to confirm its hypothesis. If the answer is "yes"
the algorithm succeeded, otherwise it uses the returned counterexample to
discover a new access string.

Now, we describe one version of such DFA learning algorithm. First,
it constructs an initial observation pack. Then the learning algorithm uses
membership queries until that the pack is closed. That means, it determines
the "is-like" access string for all strings of the form sa, where sES and
a E L:. In the next step, according to the construction in theorem 4.2.3
builds a hypothesis automaton Ahyp and it tests the automaton Ahyp using
an equivalence query.
Let X = XOX1." Xn-l be the counterexample received from the teacher in
case of negative answer. And let

be the run of the hypothesis automaton Ahyp on the counterexample x. The
construction of the automaton Ahyp implies Sn E L? ~ X tJ. L? Because
there is always an access string s such that f is like s, we mayassume without
loss of generality that So = c.

Therefore, in sequence

X SO(XOXl Xn-l)

Sl(Xl Xn-l)

must exist at least one k such that

CHAPTER 4. LEARNING OF STRING AUTOMATA 59

For finding that k we use binary search of at most 19n membership queries.
Then, if we look at 'Y(SkXk), two cases are possible:

• 'Y(SkXk) escapes. We have a new access string and can restart asking
membership queries to close the observation pack.

• 'Y(SkXk) is defined. Then, the transition 8(Sk, Xk) = SH1 and construc-
tion of the automaton Ahyp imply that SkXk is like Sk+1' Therefore, if
we extend experiments of Sk+1 with new experiment Xk+1 ... xn_1 to

the string SkXk will escape. So also in this case, we yield a new access
string and can restart asking membership queries to close the observa-
tion pack.

Pseudo code of the DFA learning algorithm using membership and equiva-
lence queries is summarised in Algorithm 6.

Example 4.3.1. (continued Example 4.1.1) Trace of the learning algorithm
during learning of the language L:x'

experiments 1S
'Y like

[E] (EIE,-)
a (aIE,-) [E]
b (bIE, -) [E]

Asks an equivalence query?: LAhyp == L? with automaton Ahyp:

ä
[E]

"'[abr

Receives answer: no, counterexample: abab. Applies binary search:

([E], abab)
abab E L

([E], bab) f-
bab (j. L

([E], ab) f- ([E], b) f- ([E], E)
ab (j. L

'Y(a) is defined. Therefore, add experiment bab and close the pack.

CHAPTER 4. LEARNING OF STRING AUTOMATA

Algorithm 6 MQ&EQ learning algorithm for DFA
construct initial observation pack P
while true:

ask membership queries until the observation pack P is closed
construct the hypothesis automaton Ahyp

ask the equivalence query? : LAh _ L?
yp

if answer to query is "yes"
return Ahyp

else
answer to query is "no"
with a counterexample X = XOXI ... Xn-l

use binary search and
counterexample XOXI ... Xn-l received from teacher
to find access string Sk such that
SkXkXk+l ... Xn E L? <===} Sk+lXk+l'" Xn tJ. L?

if ,(SkXk) is undefined
add new access string SkXk to the pack P

else
update Ek+1 = Ek+l U {Xk+l'" xn-d

add new access string SkXk to the pack P

60

""[ab]*ab*

CHAPTER 4. LEARNING OF STRING AUTOMATA

experiments is
'Y like

[E] (EIE, -) (Elbab,-)
e, (ale,) 14
b (bIE, -) [E]

[a] (alE, -) (albab, +)
aa (aalE, -) (aalbab, -) [E]
ab (ablE, -) (ablbab, +) [a]

Asks an equivalence query?: LAhyP == L? with automaton Ahyp:

(\0~~
~

a

61

Receives answer: no, again counterexample: abab. Applies binary search:

([E],abab) f- ([a],bab) f- ([a],ab) f-
aab EL{:::=::}

([E], b) f- ([E], E)
bt/.L

'Y(aa) is defined. Therefore, add experiment b and close the pack.

experiments is
'Y like

[E] (EiE, -) (Elbab, -) (Elb, -)
b (bIE, -) [E]

[a] (alE, -) (albab, +)
e,e, (aale,) ~ 14
ab (ablE, -) (ablbab, +) [a]

[aal (aalE, -) (aalbab, -,-) (aalb, +)
aaa (aaaIE, -) (aaalbab, -) (aaalb, -) [E]
aab (aabIE, +) (aablbab, -) (aablb, -) new

While closing the pack a new access string is been discovered. Algorithm
adds it and tries to close the pack again.

CHAPTER 4. LEARNING OF STRING AUTOMATA

experiments IS
"(like

[E] (EIE, -) (Elbab, -) (Elb, -)
b (bIE, -) [E]

[a] (alE, -) (albab, +)
ab (ablE, -) (ablbab, +) [a]

[aal (aalE, -) (aalbab, -) (aalb, +)
aaa (aaaIE, -) (aaalbab, -) (aaalb, -) [E]
fMtè (aable, I) (aablbab,) ~ fleW

[aab] (aabIE, +) (aablbab, -) (aablb, -)
aaba (aabaIE, -) (aabaJbab, -) (aabalb, -) [E]
aabb (aabbIE, -) (aabblbab, -) (aabblb, -) [E]

Asks an equivalence query?: LAhyP - L? with automaton Ahyp:

b

...[ab]" ab" ab

a

62

Receives answer: no, again counterexample: baab. Applies binary search:

([E], baab) f-
baab tj. L ~

([E], aab) f- ([a], ab) f- ([aa], b) f- ([aab], E)
aab EL aab EL

"((b) is defined. Therefore, add experiment aab and close the pack.

experiments IS
"(like

[E] (EIE,-) (Elbab, -) (Elb,-) (Elaab, +)
h (ble,) 14

[a] (aIE,-) (albab, +)
ab (abIE,-) (ablbab, +) [a]
[b] (bIE, -) (blaab, -)
ba (balE, -) (balbab, -) (balb, -) (balaab, -) [b]
bb (bIE, -) (bblbab, -) (bblb, -) (bblaab, -) [b]

[aal (aalE, -) (aalbab, -) (aalb, +)
aaa (aaaIE, -) (aaalbab, -) (aaalb, -) [b]

[aab] (aabIE, +) (aablbab, -) (aablb, -)
aaba (aabaIE, -) (aabalbab, -) (aabalb, -) (aabalaab, -) [b]
aabb (aabbIE, -) (aabblbab, -) (aabblb, -) (aabblaab, -) [b]

Asks an equivalence query?: LAhyP = L? with automaton Ahyp:

CHAPTER 4. LEARNING OF STRING AUTOMATA 63

=ab. ab

a

Receives answer: yes.

Note, that we did not store into the observation pack all of the counterex-
amples obtained from membership queries during the binary search.

The reason for this was that we wanted the observation pack to be smaller.
And so, we have traded usage of more equivalence queries for reduction of
the observation pack and therefore also for reduction of the number of mem-
bership queries.

But this implies that the hypothesis automaton may still incorrectly clas-
sify an already received counterexample. Therefore, there is a case possible,
and happens also in the Example 4.3.1, that the teacher will answers more
queries using the same counterexample.

4.3.1 Complexity
The Algorithm 6 runs in polynomial time. It asks at most IML? I equivalence
queries as implied by the Theorem 4.2.3.

The membership queries are in the algorithm used in three contexts: for
the binary search, for closing of the observation pack and for testing whether
an access string is an accepting state.

To distinguish each access string from the other IML I - 1 access strings
at most IMLI - 1 experiments are required. Therefore, for closing of the ob-
servation pack requires the algorithm in each iteration at most O(I~IIML? I)
membership queries. And so, in the whole run at most O(I~IIM£?12) mem-
bership queries are used for closings of the observation packs.

Between the while iterations we have two possibilities:

• Either we remember all answers to the membership queries from the
previous pack closings. In this case, for the whole run we use at most
O(I~IIM£?12) membership queries.

• Or we do not store the answers from the previous pack closings and
during the current pack closing we re-query them again. In this case,
for the whole run at most O(I~IIM£?13) membership queries are used.

CHAPTER 4. LEARNING OF STRING AUTOMATA 64

Let m be the size of the largest counterexample received from equivalence
queries. Then for one binary search we use at most O(1og m) queries. There-
fore, in the whole run at most O(IML?llogm) membership queries are used
for the binary searches.

To summarise, there is a learning algorithm (Algorithm 6) that stores
previous answers to membership queries and uses at most

membership queries.

• 4.4 Lower Bounds for Number of Queries

In this section, we return back to the problem of relation between the number
of required membership and equivalence queries left open in Section 2.3. But
this time, we restrict to the hypothesis space of deterministic finite automata
to obtain stronger results.

The first result stated here was obtained using the Vapnik-Chervonenkis
dimension. It confirms that the VC-dimension is not the tightest lower
bound, because later we will see a better bound.

Theorem 4.4.1. [1893J Every learning algorithm making O(n) equivalence
queries must make O(I~lnlogn) membership queries.

In the next theorem, we enlarge the lower bound to about n2. The in-
teresting point about the theorem is that it shows a general strategy for
construction of hard-to-Iearn learning problems.

Here, first a non-regular language is chosen. Then the language is turned
into finite (and so regular) by restricting the maximum word length. This
yields that any finite automaton accepting that language will have a lot of
states. Note, that just having a lot of states does not imply this language
is hard to learn, because the polynomial bounding the number of required
queries may still have a relatively low degree.

But the learning can be made harder when the language is extended by
union with one more set. For construction of this set we choose few random
words as members of the regular language to be learned. We choose the
candidates from an exponentially large superset with respect to the length
of words it contains. Therefore, discovering those positive words requires
searching the whole exponentially large set and so usage of many queries.

Theorem 4.4.2. [BDGW97J For given n E N and input alphabet~, I~I ~
2, there exist constant c > 0 and a class C of regular languages such that

CHAPTER 4. LEARNING OF STRING AUTOMATA 65

•

minimal automata accepting languages from this class have at least n states
and for every learning algorithm successfully learning that class holds:

Proof Let

m= llOglEI [(I~I-11(n-1) +1] -lJ
Let a E ~ be a chosen fixed input symbol. Let LCF be a copy-language

of the form
LCF = {xax I x E ~m}

It is a finite restriction of a context free grammar. Let us define

qx := ö(qo, x)

Px := ö(qo, xa)

as the states reached after processing the word x, respectively xa, by some
minimal automaton accepting the language LcF. Let Qx, Px be sets of all
such possible states:

Qx = {qx I qx = ö(qo,x) \Ix E ~m}

Px = {Px I Px = Ö(qo, xa) \Ix E ~m}
It is easy to verify that all states involved in the run of the minimal

automaton on words of form xax must cumulatively store all the previously
seen symbols.

•
m

o(qo,xa)

--w
a I I

! I
I

I

. b \- ----- . .,-....---.~
q-

Figure 4.2: Automaton accepting the finite restriction LCF

Therefore, all those states are different between each other and so the sets
Qx and Px have cardinality

CHAPTER 4. LEARNING OF STRING AUTOMATA

and the minimal automaton accepting the language LeF has at least

66

•
states. Thanks to the choice m, this is larger or equal than the given n.

Now, we increase the query complexity of the regular language by adding
new words into the language. For all triples in

Qx x ~ - {a} x Px

we to the original minimal automaton either add a transition defined by the
triple or leave it undefined. Let S be the set of word we add this way into
the language. Together, there are

(4.1)

possibilities for adding a transition or leaving it undefined. Because we want
the automaton accepting the language to be deterministic, at most (I~I -
l)I~lm transitions can be added from all the available possibilities. Therefore,

(4.2)

The finallanguage constructed with the above described method has the
form of

L? = {xax I x E ~m} U S

where S is some subset of

Lxy = {xby Ix, y E ~m, b E ~ - {a}}

Now, let us analyse the number of queries required to learn the language
L? by any learning algorithm. We assume that the teacher behaves adversary
that is, she uses the power of the language L? and returns to posed queries
little informative answers.

To achieve this, the adversary teacher maintains set of words Xpos that
have been returned as positive query answers and for answering of the queries
she plays then the "moving target" game. That is, she tries to delay the
situation, where only the last hypothesis remains consistent with all the
previous query answers.

These following situations are possible during answering of a query:

CHAPTER 4. LEARNING OF STRING AUTOMATA 67

query situation answer description

else no

•
exists some no, xcy
xcy EXpos
and xcy f/. LA

exist some no, xcz
xcy EXpos
and xcz E LA
such that y =1= Z

if some of the previously re-
turned positive examples in
X pas is not still accepted

if the previously returned
positive examples III X pas
imply that some word should
not be accepted anymore,
but the automaton LA still
accepts it.

exists
xdy E
and Vz
Xpos

else

some
Xpos

xdz f/.

no, xdy

yes

if LA accepts consistently
with all the previously an-
swered positive examples in
Xpos and also consistently
with all the negative words
implied from Xpos

From a positive answer to a membership query with particular transition
xcy, a learning algorithm can not yield more new informations about other
possible transitions from Qx x I; - {a, c} x Px' Similarly, from a negative
answer to a membership query it can not yield more new information than
just with plain trying of all the possibilities from Qx x I;- {a, c} x Px. From a
negative answer to an equivalence queries the algorithm can yield information
about 0, 1 or I;m transitions.

The learning algorithm must keep asking queries until the set Xpos
reaches (I; - l)I;m elements which means that the presence or absence of
all (I; - 1)I;2m transitions has been resolved. Therefore, combining with
Equations 4.1 and 4.2 we have the following bound:

CHAPTER 4. LEARNING OF STRING AUTOMATA 68

•

With c approximately ~ this can be adapted to the form presented in theorem
statement. 0

Rewriting the above theorem using asymptotic notation, we have

Corollary 4.4.3. [BDGW97} Every learning algorithm making o(I~ln) equiv-
alence queries must make O(JEln2) membership queries .

Part II

HTML Wrapping

69

Chapter 5

Wrapper Induction and Learning

5.1 Wrapping Approaches

Commonly adopted strategies for accessing data located on Web pages are
technologies known as Web information extraction or HTML wrapping. They
turn interesting data in Web pages into formats suitable for further ma-
chine processing such as XML [Lix05], data models of integrated applications
[Tec05b] or relational databases [LSPS05].

Over the time various approaches of building the HTML wrappers have
been researched. Chronologically, the following mainstreams can be recog-
nised:

• hand coded wrapping programs expressed in Perl, special purpose lan-
guages or as finite state machines [HGMC+97, HFAN98]

• inductive learning of string based automata [CMMOl, KWD97]

• semi-automatic visual systems with specially designed wrapping lan-
guages [BFGOl, LPHOO]

• machine learning techniques:

- support vector machines [MK05]

- hidden Markov models [LSPS05]

- conditional Markov models [MJ05]

Many parties see the strategical value of information extraction solutions.
This value is even magnified, if the information extraction can be additio-
nally interconnected with data mining or knowledge acquisition techniques.

70

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 71

•

Therefore, nowadays one can see a lot of research projects and commercial
ventures battling in the field.

Reviewing the current successful commercial systems, it is possible to
recognise two mainstream categories. The first category are wrapping sys-
tems based on various machine learning techniques with lower roll-out and
maintenance costs, but reaching worse results and usually being specialised
to particular domains. Examples of them are:

• IBM WebFountain 1 - aims to transform data available on the Web
into business trends, for example collects user feedback about various
products in online discussion forums .

• Froogle2, the former Netbot Jango3 - collect information about items
sold in Web shops .

• KnowItAll4 - accumulates large collections of facts from the Web.

The second category of commercial systems are tools such as [Tec05b, Lix05,
Tec05a] which allow to build more complicated wrapping solutions. But here
a human wrapper designer is required to build and maintain the wrappers.
Therefore, it increases costs for acquiring of the information.

Most of the current approaches that are subject of our interest have the
Web page represented in form of a DOM tree [Rec98, Rec03] and on these
DOM trees the extraction process is executed. The DOM trees are con-
structed using HTML parsing libraries such as [ea04, Mic04] or leveraging
parsers in modern Web browsers such as Mozilla [Fou05] and Internet Ex-
plorer [Cor05]. Example of a Web page and its corresponding DOM tree are
depicted in the Figure 5.1.

Having a DOM tree, the HTML wrapping task can be viewed as identi-
fication of the relevant parts, for example subtrees in the input DOM tree.
From applications point of view, the interested data chunks to be extracted
usually are:

• sets of tree nodes in the given input DOM tree

• substrings from the text content nodes

• values from tree node attributes

1http://www.almaden.ibm.com/webfountain/
2http://froogle.google.com
3http://www.jango.com
4 http://www.cs. washington.edu/research/knowitall/

http://www.almaden.ibm.com/webfountain/
http://2http://froogle.google.com
http://3http://www.jango.com

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 72

Adv~rti5lna proarams _ ~ • Go to Gooahl Slov.mikel rfloubllkv

8 #document
8.HTML

IBHEAD
8BODY

8CENTER
.IMG
. BR
•. BR
f#text
8FORM

8SCRIPT
j • #text

$TABLE
8TABLE

8TBODY
8TR

8TD
• C .. #text
;$TD

rlNPUT
~'INPUT
'.BR
[.INPUT

; L.INPUT
@TD

LBR
,.BR

$FONT
@P

Figure 5.1: Web page and its DOM tree

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 73

............t.CO_

-1'--'" .:jIWm_

=':tI~~

:-.-I;'-m:.~~.=:uI~~<l:)-~'_

'fii!;lI....",..""'.~.,.,.".=1
~ 1M..t'!I!i'1U4.D-Ir.f::l;~!:2'1;&CI.lO

, W 1~-::::-i";~~~'~;..,,1
'al--""-"',m_= I'r'~s:;:;q.IIJ-~r::::u:3
~!$i1~~~-~~~~>un~1
, ~ 1~~~~'m __ '~'_""'1

~ ~~a-.t::u..=llcc:un

.........--

...---~-.~-"_."'-------"II--..,.......-.....-"'-----------___ ._ UII ._

0..-. ._. __

Coogle ;::.= ~ bad ~ ~~~~

Web RtilIbI.lOr1IoIboul2,UG,OllOloItlI!D.mum 10.11 __ '1

~. Wno_r I CIlOr,,,",,,e03

to .. t.-.ar06. Elk_W_tclII.ltltlOlIouU

, '.
:::..,:,::::,,,:::, '1 http://www.kapowtech.comJ
;;;',,'7:;,"~~._ ~solutions_appllcatlonlntegratlon.htm?
~."~n;:;.::=~;;google&keyword=wrapper
..... OItOOCW"Y _HTIIIL __
_ .. n~"y'ec_SUW1 .. 2kfl_"I)~'~-~

~ii'4""'r ".,._C; ...inn.A"ttNt ..,...."
",~'MnU.",,_.""""r_tlnQ ..~ ~ •...uIOUl_n_
••• So. loy"MTML "'- 1_ 9O"Q l.Oll.~' .. .,p',__ •
....w_tO'lVPllp.r p"~.11k.~-~

AM'" ,l' ... IfTML w..-r _"-'<.j 1 ,_.,..u_..Il'TML __ Ul« ~oDu-._...,S_. n...tfnIIL
....... I$fICll..utnt.olllSk._'" SWIId 1ne,.. I>e'.-d, to •••
""-1:;0:;, m,""fom"~ cDml ~.<lar.le>._<1O<-'_enIOOClCOi2) Ilun - U • ~',eJ' ~p_S;ll';;~

Figure 5.2: Different types of instances extracted from Web pages

Further, we will call the interesting data chunks to be extracted as instances.
Examples of the various instance types are in Figure 5.2 highlighted with
green background.

Operating on the DOM-tree, various techniques are used to express how to
extract the interested instances from the given Web page. We have identified
the following approaches:

• Datalog-like programs evaluated over tree domains [Lix05, HL98]

• finite (tree) automata [CLN04, GMTT05]

• XPathjXQuery node selection queries [Goe05]

In the following part, we will focus on interactive wrapper generators op-
erating on DOM trees that create wrappers from a visual interaction with
a human wrapper designer. During the visual interaction the user is asked
to provide an example input HTML document and then to mark via mouse
clicks positive and negative examples inside of the rendered input HTML
page. Such an interaction is technically equivalent to the marking of nodes
in the DOM tree.

http://www.kapowtech.comJ

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 74

extraction program
constructed

s

~a.epersy~

Figure 5.3: Wrapper creation process

5.2 Interaction with the Wrapping System
The goal of an interaction between a user and a wrapper-building system is
to help the system to discover an extraction program that correctly identifies
all the desired instances. The process of the interaction is outlined in Figure
5.3 as a loop of the following steps:

1. Select an example HTML document.

2. On this HTML document mark missing instances not yet recognised
by the system or drop instances that were incorrectly identified by the
system.

3. After the system has correctly matched all of the intended instances
inside of the current HTML document, decide whether to continue with
training/testing on another HTML document.

To formalise this interaction we will use in the next part the terminol-
ogy of game theory, because it allows us to capture both the adversary and
cooperative forms of behaviour between a wrapper system WS and a user
U.

Let 7in be a set of all input trees and let Tout = 2subtrees(Tin) be the set
of all possible subsets of tree fragments from Tin. For example, in case of
the Web pages, 7in is the set of all well-formed DOM-trees and Tout are all
possible subsets of DOM-tree fragments.

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 75

Algorithm 7 Protocol of the wrapper-simulating game
1. U ---+ WS, C: user chooses tree tin E 'lin

for example an HTML document or
fragment of an HTML document

2. U ---+ C: user announces the set of intended instances
P(tin) E Tout from the document t to the committee C

3. WS ---+ U,C: WS responds with an estimated set
of matched instances tout E Tout

4. C decides: if tout = P(tin) (precisely p(tout, P(tin)) = 0)
user has lost this round, wrapper system
matched all intended instances
if user resigned

end successful wrapper learning process
else

goto step 1
else

wrapper system did not match
the correct set of instances,
user provides more examples

5. U ---+ WS, C: user chooses set of instances texam E Tout
such that p(texam, P(tin)) < p(tout, P(tin))
if texam does not exist

wrapper system has lost
end failed wrapper learning process

else
goto step 3

A wrapper program is an algorithm that computes a mapping P : lin ---+

Tout. The game space (or also the hypotheses space of extraction programs)
is set of all such possible mappings. Of course, there may be additional
restrictions about the valid form of this mapping, such as being a valid tree
automaton or XPath expression.

We define the wrapper building process as a game being played according
to the protocol outlined in Algorithm 7 between the user U and the wrapper
generation system WS. For the WS player to win the game, it must be able
to successfully infer the extraction program P intended by the user U. The
winning region is the set of all extraction programs matching exactly the
intended instances. Let us note that the winning region is not constant for
all games.

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 76

From wrapper system's point of view, the user U is just a black-box
that knows the winning region. Because the wrapper system has merely the
possibility of observing the moves (1)-(3) played be the user U during the
game, we need an additional mechanism that prohibits cheating in case of an
adversary behaving user. An example of such cheating would be changing
of the winning region (the desired set of instances to be extracted) once
the game playing has been started. Therefore, we add into our model one
more party called committee C, that performs the necessary guarding checks
guarantying fairness of the game.

Note, that for real-world implementations the committee player is again
played by the user that interacts with the wrapper generation system. We
may assume that it never triggers a warning about failure of the guarding
checks. This is based on an assumption that the user wants to do some
meaningful work with the system and so, she will not cheat intentionally.

The metrics function p defined on the set Tout forces the user in each game
round to correct the set instance hypotheses given by the wrapper system in
such a way that the corrected set of instances is closer to the right answer
than the original estimation ofthe wrapper system (Step 5). Example ofsuch
a metrics p may be a number of elements in a symmetric difference between
these two sets.

Once the wrapper system has identified the correct extraction program, it
returns the correctly matched set of instances on all input trees. Therefore, a
(learning) algorithm A is a winning strategy for the wrapper system WS for
the class of the wrapper-simulating games, if in each game played between
the user U and the wrapper system WS is after a finite number of rounds
each following round won by the WS with a single move. That is, the WS
will immediately mark all the intended instances for any given input tree.

Protocol Implications

The wrapper systems are real-world applications being practically imple-
mented and used. Therefore, it is natural to require that for any extraction
program, kept in the mind of the user, the wrapper system is able to dis-
cover and construct it. That is, expressed for the game model, we insist on
existence of a winning strategy for the wrapper system WS.

Lemma 5.2.1. There exists always a winning strategy for wrapper system
W S, assuming there is a computable enumeration of extraction program hy-
potheses.

Proof One of the winning strategies is for example the enumeration of hy-
potheses, with skipping of hypotheses that are not compatible with the set

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 77

of positive/negative examples instances in the current DOM tree chosen by
the user U. D

Moves that are played in a single round, that is inside of one DOM-
tree chosen by the user U, do not add to the wrapper system WS a real
computational advantage. As shown by the next Lemma, they put the WS
into a weaker position as if the user U would directly label all nodes of the
current tree which is equivalent to a passive form of learning.

Lemma 5.2.2. If there exists a winning strategy for the wrapper-simulating
games, then there exists also a winning strategy for the simplified wrapper-
simulating games. That is for such games, where in each round (on each
chosen input DOM tree) after the first move of the wrapper system WS the
user U directly announces all correct (intended) instances to the WS.

Proof Let S be a winning strategy full wrapper-simulating games. Then
winning strategy S' for the simplified wrappers-simulating games can be con-
structed as follows:

Let t be an input tree chosen by the user U in a round of a simplified
wrapper-simulating game. S' asks the strategy S to mark instances. Let
Hl(t) be the set of instances that will be answered by the strategy S. The
strategy S' plays a move with H1(t) as an answer.

Let P(t) be set of correct instances that are then announced by the user
U. If P(t) is equal to H1(t), the next round between U and S' is played.
Otherwise if P(t) is not equal to H1(t), the strategy S' plays the game against
the strategy S until it replies with P(t). This must occur, because S is a
winning strategy.

user

•

•
winning strategy for

simplified games
-., .1

I H\{t) i Hl{t)
'~ .. I",+
~ matched? I
I _ P{t) I P{t)

/1.. H2{t)

~
+1

winning strategy
for full games

.1
I

Figure 5.4: Reduction of simplified wrapper-simulating games to full
wrapper-simulating games

D

CHAPTER 5. WRAPPER INDUCTION AND LEARNING 78

•

The situation with labelling of all nodes at once shows that the sequen-
tial interaction, known from active learning methods, is not itself the key
feature that leads to the stronger learners when compared to the passive
form of learning. As we will see later, it is the sequential interaction com-
bined together with more universally quantified queries (answers) in Step 5
of Algorithm 7 that bring the positive learnability results. Formally said, the
user will answer in the Step 5 with an example instance texam fulfilling

where Tquery is a set of instances with a similar structure as the instance tout

estimated previously in the Step 3.

•

•

Chapter 6

Query Based Learning of XPath

6.1 XPath Definitions and Background
XPath [Rec99] is a language for navigation in XML documents and their
physical representations such as DOM trees. Nowadays, it is part of many
XML related applications and standards such as XSLT, XQuery, XLink, etc.

Therefore, we will study in this chapter active forms of learnability for
various fragments of the CoreXPath [GKP02]. CoreXPath is the full XPath
language stripped from functional symbols and predicates. It consists of
finite length expressions generated by the following grammar:

p --+ a

*
p faxe::p
p[J]

f --+ p
pip

Here, the symbol a E ~ represents a node label. The symbol * is a wild
card matching any node label. The terminal symbol faxe:: is one of the
following tree navigation steps:

79

CHAPTER 6. QUERY BASED LEARNING OF XPATH 80

• child U), parent

• descendant, descendant-or-self U I)
• ancestor, ancestor-or-self

• following, following-sibling

• preceding, preceding-sibling

• self (.)

There are several commonly usage shortcuts: . = Iself::*, la == Ichild::a
and I I a - I descendant-or-self::nodeO la. The subexpression f is called filter
condition. We define the size of an XPath expression Ipl as the number of its
axes.

We define the XML document as an ordered and unranked tree with
nodes labelled from an infinite alphabet ~ . By T'5:. we denote the set of all
XML documents over the alphabet ~. For a tree t E T'5:., the size of the tree,
denoted as Itl, is the number of its nodes.

Let p(t) be the set of nodes navigated by the expression p on the tree t.
The semantics of p(t) is defined inductively on the structure of p according
to the Table 6.1.

Because we will deal in this chapter with learning on trees, we additionally
denote the target XPath expression that should be learned as p? For the
purpose of sample labelling needed by learning algorithms, we add a *-mark
to nodes that should be the result of the XPath navigation on some example
instance. Let nodes*(t) be the set of all *- marked nodes in the tree t.

We say that the expression p extracts a tree t E Tf:. if p(t) = nodes*(t).
Informally said, the expression p navigates exactly to the *- marked nodes.

6.2 Boundaries of Interactive Wrapper Induc-
tion

Now, let us summarise the known results of the query based learning that
apply also to the query based learning of XPath fragments.

Corollary 6.2.1. XPath or its fragments with expressions represented using
deterministic tree automata are polynomially learnable from characteristic
sets and with M Q&EQ queries.

CHAPTER 6. QUERY BASED LEARNING OF XPATH

Table 6.1: Semantics of CoreXPath expressions

81

•

~ ~ ~ ~ ~ ~
~~~~~~
"--" '-'" "'--"'" "-'" '---" '-"'"

..... ....-l ...-I '1""'"1 ...-I 1""""1

'" '" '" '" '" '"\.IJ\.IJ\.IJ\.IJ\.IJ\.IJ
;;:l ;;:l ;;:l ;;:l ;;:l ;;:l

II II II II II II

,... r- ,.. ....

~~~~
'-'" '---" '--" "--"

1""""1 ...-I-l-l

'" '" '" '"\.IJ\.IJ\.IJ\.IJ
;;:l ;;:l ;;:l ;;:l

II II II II

~~~~
'-' '-' --- "--"

~ N N N

'" c::r< '" '"----(j (j * *

,... ..................-.....-.....-.....-...
~ ~ ~ ~

'--" '--" '-" '--"
...-I 1"""'4 ....-l ...-j

'" '" '" '"\.IJ\.IJ\.IJ\.IJ
;;:l ;;:l ;;:l ;;:l

II II II II

- -...--.... ,.....-... ....
~~~....--..

'--'~'--'~GGGG
\.IJ\.IJ\.IJ\.IJ

;;:l -+-:> ;;:l -+-:>

II II II II II II II II

-s
'ij....-....--..~~~ '--'

'c:;'~
~=>

~~
'--' '--'..........
'" '"\.IJ\.IJ

;3 ;3

;3 ;3--
II II

CHAPTER 6. QUERY BASED LEARNING OF XPATH 82

•

Proof. Each XPath expression from the CoreXPath fragment can be rewrit-
ten into an equivalent deterministic bottom-up tree automaton. Therefore,
using the results from [CLN04] and [Sak90], they are learnable from charac-
teristic sets and learnable using the M Q&EQ queries. 0

Let us note that the result from the previous corollary is not a contradic-
tion to the other polynomial non-learnability results in this chapter. This is
due the transformation, which may create an exponential enlargement of the
original representation class.

Corollary 6.2.2. All concept classes with representations from NFA (or
higher in Chomsky's hierarchy) are not polynomially learnable with example
based queries.

Proof. Implied from Theorem 1.4.2, Corollary 1.4.3 and 1.6.7. o
As implied by the previous corollaries, the full XPath is not polynomially

learnable with example based queries. Luckily, there are many types of XPath
(sub-)fragments with good properties. Some of the fragments have only ex-
ponentially enlarging translation to deterministic tree automata and are not
good candidates for studying of their polynomiallearnability. But there are
also fragments (for example without transitive axes such as ancestor) that
have a translation to the deterministic automata with only a polynomially
bounded enlargement. These fragments may be good candidates for being
polynomially learnable and we will analyse their learnability.

The Figure 6.1 shows the boundary oflearnability between deterministic
and nondeterministic tree automata and how the XPath and its fragments
fit into it.

6.3 Equivalence Queries

Applied to DOM trees, an equivalence query is a question of the form \It E
TL, : p(t) = p?(t). Answers are either "yes" or "no" with a counterexample
of an instance witnessing the inequality.

Equivalence queries have, in context of the HTML wrapper induction, a
very natural visualisation. To answer them a human wrapper designer just
marks the missing or unwanted example instances inside of the currently
rendered HTML page. Optionally, she tests the hypothesis on other Web
pages. Example of such visualised interaction is in Figure 6.2.

Angluin [Ang90] presents a sufficient condition for non-learnability using
only equivalence queries, called approximate fingerprints. Applied to XPath
fragments, the definition can be reformulated as:

CHAPTER 6. QUERY BASED LEARNING OF XPATH 83

representation class leamability

not polynomially learnable

learnable with polynomial number
of exponentially large queries

polynomially leamable

Figure 6.1: XPath situated on boundaries of polynomial learnability and
non-Iearnability

GiMES
ILlILLZI:x.I.UI.Jl.-' ,.., no-

caJlU1l'I'W.-. ... ,....... _-------- -----------

GAMES'04 : \.Oeal Information

'r"... :M: .. -....:JuI'.ptr..r.:boI~Q1r2ioeJllll:;.
.,.,.,.dt:'\~tar .. iac..~tl:.N:r.~:Tn.:.

I

::::::,
• J.IUC~.~v.û;l;;.,~-!(~œ .. ~Jl<t~

.I"....o/..~ ..~I':!"--'-

.11' .. ~~:

Arriv.llotord .. u

""5'000~.,
ÎitiW .. _

=r";u~~--;~~
GAMES'04 : I.OUI information

T:.o:z:..-:JuIo .. ~.r.dMl'Drr.._:y" ~~::.
~.:..\"oatv •. ia~~ÜW' ~:nu:.

1

== ,
• ANt::;.o;>=" ..:.d::I.~![p;:i~~~n

.t"..A!r'.J"'<"C~i
'~.:'I.71!"ll:

Arm.11o I<>nl ••••

"~-~.,
Ii~r-
joMùit-,>~--
~~.!~

• Bypl_-

Tl' .•,nlfbu,.1ClMoorir.l- Àm..io1<o'\".lII:n.'miII: .. ~
(TcrlIl.A:iS)t;:!Mrdw'OI7r.:r:ccl(G:re:t..Jeœ..c!;2wCJ:T«::Ur)4'TCl'Y
..~ ... Inm " ..~tl>ll:"~''foo:"'J'd.T.Iot>r.d"""""",,~'''",,,,,

• Bytl'lda

Th~ .. 1x.lt~ClMonf:"..t('.Abulo ... ",'mI;"~~!t. .. ~
(Ttml:II:! :.l~dw r~ r..w:&:l(~:t.Je&l.,cl:!M<:'.r(CE::Ur)«'m'
...o;;=am..." ..:t:>~,,;:.,,",",dql.M,,o-.irJomut»nn";oti.ho,.. .

• Bytniu

GAMES'04 : L.oeallnformatlon

T::.o~..,......:Iut-';U;.r.ll\ool'llr'l'_:r"b1üa:: .
•u..".s.:..\'.=-.,inQ.oIooctu. !l'.w:n.F:TF.C.

1

=::::,
• .l.fut;::'O;>IIIJY~(pl!Ia: •. :t::u<fl

'T~.~...~
ArrtY ..I' ..~ ...

• Bypb-

n __~ .. b:w4~I~AbuI.Io ...'=I~r~ t
{T1fm.1l.:JP;)t=:tltr~~{~~..Je:q.ctlltefJ'_)....ery
.e=lr:"OlI;:~:'~ ~,~=•...,.4rr.M:lr.d~lO'~h.r:-oo .

• Bytn.iao

Figure 6.2: Visualisation of equivalence queries

CHAPTER 6. QUERY BASED LEARNING OF XPATH 84

Definition 6.3.1. An XPath fragment XP has approximate fingerprints if
there exist nondecreasing polynomials PI and P2 such that for every posi-
tive nondecreasing polynomial q there exists a sequence of classes Tl, T2, ••.

containing the X P fragment expressions with size bounded by Pl. And addi-
tionally, for infinitely many n :

• class Tn contains at least two XPath expressions of size at most p2(n);

• for every XPath expression rEX P, Irl ::; q(n) there exists a tree t E Ty:,
with at most p2(n) nodes such that number of XPath expression in Tn
that navigate on tree t to the same set of nodes as r does, is less than
.ffiJ
q(n) .

Or in a concise symbolic form:
3PI,P2 'tIq

3{Tdi~O, Ti ç XP, 'tip E Ti : Ipl < PI(i)
for infinitely many n

IT~P2(n) I ~ 2 1\

'tir E X P, Irl ::; q(n) 3t E Ty:" Itl ::;p2(n)
I{p E Tn Ip(t) = r(t)}1 < ~

We use this definition of fingerprints and apply techniques from [Ang90]
to show non-learnability of certain XPath fragments using only equivalence
queries.

Definition 6.3.2. By X PU, / /, 0 :Sm" , I, *) we denote an XPath fragment
which has union (I), wild card node matching (*) and only child and descen-
dant-or-selfaxes. Additionally, there exists a single constant a < Q' < 1, such
that for each expression P from this fragment is the number of all location
paths from all filter conditions bounded by ma., where m is the number of
the axes on the main (top-level) location path of p.

Figure 6.3: Location paths in an XPath expression

Theorem 6.3.3. The XPath fragment X PU, / /, 0 :Sm" , I, *) has the approxi-
mate fingerprints.

CHAPTER 6. QUERY BASED LEARNING OF XPATH 85

To prove the theorem we proceed as follows. First we define a sequence
of concept classes Tl, T2, n,. ... Then for any learning algorithm A with
running time bound by polynomial q, there exists for a sufficiently large s a
concept class Ts which can be used by an adversary teacher for answering of
the asked equivalence queries asked by the learning algorithm.

Next, for each concept class Tn we define two sets An, Bn and we show
in a lemma that for all sufficiently large n each XPath expression p which
is subject of an equivalence query either does not extract all trees in An or
extracts a tree from Bn.

Thanks to this property an adversary teacher is able to provide such an
answer to each equivalence query which rules out only exponentially small
fragment of all concepts. And this implies that no polynomiallearning algo-
rithm is able to find the target concept in the exponentially large space of
all concepts.

Let E, lEI ~ 2 be some finite subset of the (infinite) input alphabet of
XML documents. Moreover, let kEN be a sufficiently large number such
that for 0 < Œ < 1:

k > 19 IL; I + 1- a
a

I-a
k>--

a

(6.1)

(6.2)

k> 1+ 2a
1- a (6.3)

Let Tl, T2, T3, ... be a sequence of concept classes defined as follows. For
i = 1 ... nk let Lin be the set of all single-branched trees of size 2nk + 2 with
the first and the middle symbol #, such that the (i+ 1)-th and (nk + i +2)-th
node have the same label. That is

A concept is n concatenations of Lin languages plus the appended symbol
#*. For each tree t from the concept only the last node (#*) is result of
the XPath navigation on t. The concept class Tn is a set of all possible
concatenations. That is

Clearly, ITnl ~ 2 for n ~ 2.

CHAPTER 6. QUERY BASED LEARNING OF XPATH 86

Let us take an XPath expression from the fragment X PU, I I, []~mQ , I, *) of
the following form:

al * ... I * la
'10.. ~

nk+2

al * ... I * la
'10.. j

nk+2

1#
The language generated by this XPath expression is exactly Lil,n . Li2,n .
Li3,n' Lin,n#*. For each tree t from this language the XPath expression
navigates only to its last node. The expression has PI (n) = [2 + 2nk +
1~I(nk+ 2)]n+ 1 axes. Because k is constant, the sequence of concept classes
Tl, T2, ... Tn is bounded by the polynomial PI(n). The number ofaxes on
the main location path is m = (2nk + 2)n + 1 and the number of alllocation
paths in all filter conditions is 1~ln. Due to the choice of k fulfilling (6.1)
and (6.2) it holds

1~ln < 2(k+l)a-1 :::; [nk+l]a:::; [2nk+1 + 2n + 1]a :::;ma
(6.1) (6.2)

and therefore, the expression belongs to the fragment X PU, I I, D~mQ, I, *).

Let An be the intersection of all concepts in Tn

An = n L = {#XI#XI#X2#X2 ... #xn#xn#* I Xi E ~nk}
LETn

and let Bn be the set of n pairs of trees from ~nk such that at least ~ pairs
have at least ~k unequally labelled nodes and arbitrary subset of nodes which
includes the last #* may be result of the XPath navigation.

Bn = { #XI#YI#X2#Y2 ... #xn#Yn#* I
Xi, Yi E ~~k, d(Xi, Yi) > ~k for at least ~ values of i }

The size of any tree in the sets An and Bn or of any tree in any concept
from Tn is bounded by polynomial p2(n) = (nk + 1)2n + 1.

In the following part we prove a lemma, which will be later used for
completion of the proof of Theorem 6.3.3.

CHAPTER 6. QUERY BASED LEARNING OF XPATH 87

Lemma 6.3.4. Let q be an arbitrary nondecreasing polynomial. Let P be an
XPath expression from the XPU, / /, [lm" , I, *) fragment such that Ipl ::; q(n).
For all sufficiently large n, if P extracts all trees from An' it also extracts some
tree from Bn.

Proof. Without loss of generality we may assume that the XPath expression
P has the form

where al, a2 ... aq1 are location steps on the primary location path. Each
ai has form /child::x or /descendant-or-self::x. The symbol x is either from
the earlier defined subset E of the infinite input alphabet for XML documents

--+
or x = *. Then bij are XPath sub-expressions from filter conditions of cl.

--+
Recursively each bij has again the form of (6.4).

Let s denote the number and P;, P; ,P;, ... P; denote the list of all loca-
tion paths in p. For example the expression /a/a[b/bI c[d/dJ/a/a has the
following list of location paths: PI = la/a/a/a, P2 = /b/b, P3 = c, P4 = did.

Let qi be number ofaxes in Pi. In our example ql = 4, q2 = 2, q3 = 1,
q4 = 2. Because P;, P; ,P;, ... P; is a complete partition of all axes in P we
have

s

Lqi = q(n)
i=l

(6.5)

Let t = #XI#XI#X2#X2'" #xn#xn#* , Xi E En
k be an arbitrary tree from

An. Because P extracts all trees in An there exists at least one embedding e
of the expression P into the tree t such that the last location step (Plql) in the
top-levellocation path (P;) navigates only to the last node #*, as illustrated
in Figure 6.4.

CHAPTER 6. QUERY BASED LEARNING OF XPATH 88

The X PU, / /, []~m" , I, *) fragment has only forward axes. Therefore, with
respect to the embedding e we can for each location path P; = /Pil/Pi2 ... /Piq;
partition the tree #Xl #Xl #X2#X2 ... #xn#xn#* into a list of subsequent
intervals such that j-th interval is a sequence of nodes from right-sibling of
node matched by location step Pi,j-l up to the node matched by location
step Pij. Intuitively said, in the j-th interval the location step Pij searches
for its witness node in embedding e. For location paths from filter conditions
which do not need to start at first and end at last node of tree t we allow
two special prefix and suffix intervals not associated with any location step
(marked with '-'), see Figure 6.5.

P21 P22 I ... ~1~P2_~~1__ ~

Figure 6.5: Partition of nodes in tree #Xl #Xl #X2#X2 ... #xn#xn#*

For a fixed embedding of expression P into the tree #Xl #Xl ... #xn#xn#*
let (SiO, Sil, ... Si2n) denote the tuple oflocation steps (intervals) from location
path P; to which belong the # labelled nodes.

Let S be the set of all possible tuples of location step (intervals) defined
by all possible embeddings of the expression P into all trees in An.

Expression P has only child and descendant axes and extracts all trees in
An which all have size p2(n) = 2nk+l +2n+ 1. Therefore, for m - the number
of steps on the main location path of the expression P holds m ::; P2 (n). From
the definition of the fragment X PU, / /, 0~m" , I, *) it follows that the number
of alllocation paths in p, denoted earlier as s, is bounded by

(6.6)

Because each P; has qi location steps the size of S has upper bound

ISI <
(6.5)
<
<

(q(n) + 1)2n+l (q(n) + 1)2n+l

(q(n) + 1)s3n

CHAPTER 6. QUERY BASED LEARNING OF XPATH 89

Let A~ be the largest subset of trees from An which map to the same
tuple of location steps in S. Because An contains IElnk+ltrees, the size of A~
is at least

(6.7)

kFor a fixed X E En there are at most

trees y E Enk such that d(x, y) ::; ~k. Using an inequality from [Ang90],
there exists a constant e, 0 < e < 1 such that

(6.8)

Therefore, in a set with at least IElcnk elements exists y such that d(x, y) >
nk
4 .

Let A~[i] be the set of trees in the projection of A~ to i-th block, that is

A~[i]= { Xi I XiEEnk,:3xl"",Xi_l,Xi+l"",XnEEnk:
#Xl #Xl ... #Xi-l #Xi#Xi#Xi+l ... #xn#xn E A~ }

Among the indices i = 1,2, ... ,n there are at least ~ indices such that
IA'[i] I ~ IElcnk, that is

(6.9)

Otherwise assuming III < ~ the number of trees in A~ is bounded by

IA~I <
(IElnk) III (IElcnk) n-III

< (IElnk) ~ (IElcnk) ~

<
lEI~nk+l(1+c)

Then combining (6.7) and (6.10) we have

IElnk+l_____ < IEI~nk+l(1+c)
(q(n) + l)s3n -

(6.10)

(6.11)

CHAPTER 6. QUERY BASED LEARNING OF XPATH 90

This leads to contradiction, because from choice of k in (6.3) it is implied
that

s ::; 1+[2nk+l+2n+1]0< < 2[2nk+l+2n+1t < [nk+2]0< < nk-l (6.12)(6.6) - - (6.3)

and then we obtain

n > ~ loglEIn Va E (0,1), Vb> 1

an > blaglEI n

ank+1 > bk-Ilnn aglEIn
ankH (6.12)

bns loglEIn>

ankH > 3nslogIEI(q(n) + 1) !ognj ---t 0
n

1~I~nk+l(l-c) > (q(n) + 1)s3n

IElnk+l
> I~I~nk+l(1+c)(q(n)+1)s3n

This is a contradiction with (6.11) for all sufficiently large n and therefore,
the equation (6.9) must be true.

Let us choose any fixed tree t from An

We construct a tree t' = #Xl #Yl #X2#Y2 ... #xn#Yn#* from Bn in the
following way: If i ~I let Yi := Xi. In case i E I by (6.8) there exists a
subtree Zi in A'[i] such that d(Xi, Zi) > ~k. Then let Yi := Zi.

Because III 2: ¥ there are at least ¥ indices such that d(Xi, Zi) > ~k and
so t' E Bn. Because t E An' all embeddings of pinto t navigate only to the
last #*. By replacing Xi with Yi we preserve for the # labelled nodes sets
of location steps which search for their witness node, as illustrated in Figure
6.6.

Therefore, there exists at least one embedding of p to t' which navigates
to the last #* labelled node, so t' E Bn. 0

CHAPTER 6. QUERY BASED LEARNING OF XPATH 91

I ,

Figure 6.6: Preserving sets of location steps

Proof. (Theorem 6.3.3). Let q(n) be an arbitrary nondecreasing polynomial
(derived from running time of some learning algorithm A). Assume that the
learning algorithm asks an equivalence query Vt : r(t) = p?(t) with an XPath
expression r from the XP(j, I I, D:Smo

, I, *) fragment such that Irl ~ q(n).
Lemma 6.3.4 implies that for all sufficiently large neither r does not

extract some tree from An or extracts a tree from Bn.
Let it be the case that r does not extract a tree t from An that is t E

An 1\ r(t) =1= nodes*(t). Because An is subset of each concept in Tn' the
number of concepts in Tn which do not extract t is O. Therefore, we can
return t as an answer to the equivalence query while the following equation
is true

{p E Tn I p(t) = r(t)} = 0 < ~~~1
Let it be the case that p extracts a tree t = #Xl #Yl ... #xn#Yn#* from Bn,
that is t E Bn 1\ t E L(r). If r navigates on t also to some other node than
the last #*, the number of concepts in Tn which extract t is O. So, assume
that r navigates only to the last #* node. From definition of Ljn it is implied
that

Xi[j] =1= Yi[j] =} XiYi fi. Ljn
k k

If d(Xi, Yi) > ~ there are at least ~ unequal symbols and therefore, XiYi
belongs to at most nk - ~k = 3~k languages Ljn. So, there are at most

(nk) ~ (3~k) % concepts in Tn which extract the tree t. Therefore, we can
return t as an answer to the equivalence query and for all sufficiently large n
the following equation is true

CHAPTER 6. QUERY BASED LEARNING OF XPATH 92

To summarise, for all sufficiently large n it is possible for each equivalence
query r of size at most q(n) to return an example t of size at most p2(n) which
rules out only an exponentially small fragment of all concepts in Tn and
therefore XPU, I I, D~mQ, I, *) has the property of approximate fingerprints.

D

Corollary 6.3.5. The fragments XPU, I I, []~mQ, I,*) and XPU, []~mQ, I, *)
are not polynomially exactly learnable using only equivalence queries.

Proof. Implied from Theorem 6.3.3, the main theorem in [Ang90] and that
the Lemma 6.3.4 and Theorem 6.3.3 hold also for the X PU, []~mQ , I,*) frag-
~~. D
Corollary 6.3.6. The super fragments of the fragments X PU, []~mQ , I, *)
and X PU, I I, []~mQ , I, *) with added following, following-sibling, preceding
or preceding-sibling axes and/or with allowed presence of attributes are not
polynomially exactly learnable using only equivalence queries.

Proof. Assume there would be an algorithm for the above defined sequence
of concept classes Tl, T2, ... which returns a learned XPath expression p from
any of these super fragments. Then we can construct an equivalent expression
pi from X PU, / /, []~mQ , I, *) or X PU, []~mQ , I, *) by removing attribute tests
and location paths which contain following, following-sibling, preceding or
preceding-sibling axes. D

Theorem 6.3.7. The XPath fragment X PU, / I, *) has the approximate fin-
gerprints.

Proof. Let E, lEI;::: 2 be some finite subset of the (infinite) input alphabet
of XML documents.

Let Tl, T2, T3,'" be a sequence of concept classes defined as follows. For
i = 1 ... n is Lian set of all single-branched trees of size 2n + 2 with the first
and the middle symbol # such that (i + l)-th and (n + i + 2)-th node have
the label a E E. That is

A concept is n concatenations of Lian languages plus the appended symbol
#*. For each tree t from the concept only the last node (#*) is the result of
XPath navigation on the tree t. The concept class Tn is a set of all possible
concatenations:

CHAPTER 6. QUERY BASED LEARNING OF XPATH 93

Clearly, ITnl ~ 2 for n ~ 2.
Let us take the following XPath expression from the XPU, I I, *) fragment:

1# I* .. .j* laI 1* ... 1* 1# 1* ... 1* laI 1* ... 1*
~ ~ ~ ~

il - 1 n - 'Zl il - 1 n - 'Zl

1# I* .. .j* Ian 1* ... 1* 1# 1* ... 1* Ian 1* ... 1*
~ ~ ~ ~

in - 1 n - 'Zn in - 1 n - 'Zn

1#
The language generated by this XPath expression is exactly Lilaln' Li2a2n .
Li3a3n" ... Linann#*' For each tree t from this language the XPath expression
navigates only to its last node. The expression has Pl(n) = (2 + 2n)n + 1
axes.

Let An be the set of n pairs of trees from 2;n that is

and let Bn be set of n pairs of trees from 2;n such that at least ~ pairs have at
least ~ unequally labelled nodes and arbitrary subset of nodes which includes
the last # may be result of the XPath navigation.

Bn = { #Xl#Yl#X2#Y2 ... #xn#Yn#* I
Xi, Yi E 2;~, d(Xi, Yi) > ~for at least ~ values of i }

The size of any tree in An and Bn or of any tree in any concept from Tn
is bounded by polynomial p2(n) = (2n + 2)n + 1.

Let q(n) be an arbitrary nondecreasing polynomial (derived from running
time of some learning algorithm A). Assume that the learning algorithm asks
an equivalence query \:It : r(t) = p?(t) with an XPath expression r from the
XPU, I I, *) fragment such that Irl ::;q(n).

Because Lemma 6.3.4 holds also for ex = 0 and k = 1, it implies that for
all sufficiently large neither r does not extract some tree from An or extracts
a tree from Bn.

Assume the case that r does not extract a tree t = #Xl #Yl ... #xn#Yn#*
from An that is tE An 1\ r(t) =I- nodes*(t). From definition of Ljan implies

Xi ri] = Yi [j] = a ===* XiYi E Ljan
A
XiYi ~ Ljbn \:Ib E 2; - {a}

CHAPTER 6. QUERY BASED LEARNING OF XPATH 94

•

•

Therefore, XiYi belongs to at most n languages Ljan and so there are at most
nn concepts in Tn which extract the tree t. Therefore, we can return t as an
answer to the equivalence query while the following equation is true

Consider the case that r extracts a tree t = #XI #YI ... #xn#Yn#* from Bn,
that is t E Bn At E L(r). If r navigates on t also to some other node than
the last #* the number of concepts in Tn which extract tis O. So assume that
r navigates only to the last #* node. From definition of Ljan it is implied
that

xdj] f= Yi[j] ===?- XiYi tI. Ljan Va E ~

If d(Xi, Yi) > ~, there are at least ~ unequal symbols and therefore, XiYi
belongs to at most 1~ln - Ir;r = 31~lnlanguages Ljan. So, there are at most

(1~ln)!j (31~ln)!j concepts in Tn which extract the tree t. Therefore, we can
return t as an answer to the equivalence query and for all sufficiently large n
the following equation remains true

n (31~ln)!j (3)!j I:r, I{p E Tn Ip(t) = r(t)} :::;(1~ln)2 -4- :::;4 ITnl < q(~)

o
Corollary 6.3.8. The XPath fragments XPU, I I, *) and XPU, *) are not
polynomially exactly learnable using only equivalence queries.

Proof Lemma 6.3.4 and Theorem 6.3.7 hold for both fragments. Then it is
implied from Theorem 6.3.7 and the main theorem in [Ang90]. 0

Corollary 6.3.9. The super fragments of the XPath fragments X PU, I I, *)
and XPU, *) with added following, following-sibling, preceding or preceding-
sibling axes and/or with allowed presence of attributes are not polynomially
exactly learnable using only equivalence queries.

6.4 Membership Queries

Another type of queries often used for active learning are membership queries.
Applied to the DOM trees, a membership query is a question of the form
nodes*(t) = p?(t). Answers are either "yes" or "no".

CHAPTER 6. QUERY BASED LEARNING OF XPATH 95

GAMES'04 : I..oc:al information

r.:..mtt"œ:ot..o\olt;".IUltI1lll ..tnity:i~::.
~dt:.. \',<ta:r (.-.. 10= ..u.n. F:Tß.:.~~

=,F"
~!!~--~ ...~~

- --- -. --_ ..-.- -._---- ---- .. -.. ----- ..- - ..----

GiMES !~''l.{''''l:;~~
tc:m!!n!rIIlnDIII'. "~ , ..
c.ulUaT'Oo._ ... _. __

~----------
il

T:.e :;1ll:«m:.o "'IJt*e pi=! r.:to. r_~ .. t,..Xmi ::.
~ ...do.~\"tQl.,iat! ...s..;no: !-...... ".F:~

~

GAMES'04 : Locallnformatlon

•
Figure 6.7: Visualisation of membership queries

Unfortunately, the membership queries do not have, in context of HTML
wrapper induction, a natural visualisation. The reason is that the learning
algorithm needs to ask queries about trees with various shapes. This leads
to a problem of constructing for the query a valid HTML page which can be
rendered. Moreover, this also leads to artificially looking Web pages. Such
Web pages are then unfamiliar to the human wrapper designer. An example
of such unnatural visualisation is in Figure 6.7, where the learning algorithm
tries to insert an image into the right sidebar.

In the following part we present limits on learnability using only member-
ship queries by reduction to the equivalence problem of XPath expressions.

Definition 6.4.1. XPath expressions PI and P2 are equivalent if Vt E TE :
PI(t) = P2(t), denoted as PI = P2. The XPath expression equivalence problem
is for the given expressions PI and P2 to decide whether PI = P2.

•
Theorem 6.4.2. Assuming P i= coNP, the XPath fragment XPU, I I, *,0)
and aU its super fragments are not polynomiaUy exactly learnable using only
membership queries.

Proof. Assume, there exists a learning algorithm A for exact query based
learning of expressions from the fragment X PU, I I, *, 0) or some of its su-
per fragments. Then Algorithm 8 solves the equivalence problem for this
fragment.

Correctness is implied from the exactness of the learning. If the algorithm
A outputs an expression q then all expressions which are consistent with all
query answers must be equivalent. Because PI and P2 are consistent with all
query answers they are equivalent.

In [GKP02] a PTIME algorithm for XPath evaluation is presented. Be-
cause the learning algorithm A runs in polynomial time with respect to size
of Pl, the whole Algorithm 8 runs in PTIME.

CHAPTER 6. QUERY BASED LEARNING OF XPATH 96

•

•

Algorithm 8 solving equivalence of Pl and P2 using membership query learn-
mg
simulate learning algorithm A

if A asks a membership query with tree t E Tr;,* in form: nodes*(t) = p?(t)
compute Nl = Pl(t), N2 = P2(t)
if Nl =1= N2

return "Pl not equal to P2"
else if Nl = nodes*(t)

answer "yes" to the query
else

answer ''no'' to the query
if A outputs learned expression q

return "Pl equal to P2"

The [MS02] shows that the equivalence problem is coNP-complete for the
XPath fragment X PU, / /, *, 0) and also for its sub-fragments, where the
number of * is bounded by a constant c ~ 2 or the number of [] is bounded
by a constant. Therefore, the equivalence problem for each of their super
fragments is also coNP-complete or harder.

Therefore, assuming P =1= coNP yields a contradiction with Algorithm 8
running in PTIME. 0

6.5 Tree-prefix Queries
We have seen in the previous sections limits of learnability using equivalence
and membership queries. Therefore, in this part we propose and then study
a more suitable type of queries which we call tree-prefix queries. We combine
these tree-prefix queries with equivalence queries into a polynomiallearning
algorithm for the X PU, [],*) fragment.

Definition 6.5.1. Tree-prefix query is a question about two XPath expres-
sions Pl and P2 in the form:

Vt E Tr:. : pd / * (t) ~ P2(t)

The answer to the query is either ''yes'' or ''no'' with a counterexample t E Tr:.*
such that nodes*(t) ç P2(t) and 3x : xE nodes*(t) A x tt pd / * (t).

Let Pl <l P2 be the short notation of the tree-prefix query.

Described with words, the query asks whether in an arbitrary tree all
nodes navigated by the expression P2 are located in the subtrees of nodes

CHAPTER 6. QUERY BASED LEARNING OF XPATH 97

navigated by the expression Pl' Because we want to pose these queries to
a human wrapper designer, we allow for the returned counterexample to
contain only a subset of the *-nodes navigated by the expression P2. Nodes
navigated by the expression PI form a prefix-tree of the tree defined by the
nodes navigated with the expression P2. Due to this reason name of the query
results.

For example, the answer to the query lalb[d]/e <J lalb[dle]/e[f] is "yes"
as illustrated in Figure 6.8. On the other side, answer to the query Ialb[d]/ e <J
lalble[J] is "no" with the counterexample in Figure 6.9 .

•
a

JI~
b

<!I~~
d c*

~~ /a/b[d]/c

•
Figure 6.8: Shape oftrees fulfilling lalb[d]/e <J ... , tree prefix on a particular
tree instance

By X PU, [],*) we denote an XPath fragment consisting of wild card node
matching (*), child axes U) and filter conditions ([]).

The fragment does not contain the backward parent axis. Fortunately,
adding of the parent axe does not increase the expressive power, because the
fragments X PU, [],*) and X PU, [],*, parent) are equal under root equiva-
lence [BFK03]. Moreover, there exists a deterministic polynomial translation
between these fragments. Therefore, a learning algorithm for the first frag-
ment can be used also for learning of expressions from the other fragment.

The fragment X PU, [],*, parent::) also does not contain the transitive
axes such as descendant-ar-self U I), ancestor, etc. We trade their absence
for good visualisation of the tree-prefix queries. Answering of an tree-prefix
query by the wrapper designer then reduces on an HTML DOM tree to
visual verification that all target nodes are located inside of the highlighted
rectangles. The Figure 6.10 illustrates the visualisation of an interaction
between a human designer and a wrapper system, including answers with a

CHAPTER 6. QUERY BASED LEARNING OF XPATH 98

/alb/e[f]

e*
I
f

/alb[d]

Figure 6.9: Counterexample for the query lalb[dJ/e <J lalble[!]

counter example. Note, that this visualisation additionally assumes that in
the context of HTML wrapper induction are the input HTML documents
very similarly structured and therefore, checking through all possible HTML
DOM trees can be reduced to verification on small number (2-3) of similarly
structured documents.

Now, we present Algorithm 9 for learning of the XP(j, D, *) using tree-
prefix queries. The tree-prefix queries define a partial order on the XPath
expressions in the fragment. With respect to this ordering the algorithm in
a systematic top-down manner trims the hypotheses space using tree-prefix
queries until it reaches the correct target XPath expression p?

The algorithm runs in two phases. The first phase finds labels on the main
location path using a positive example. At its end, all consistent hypotheses
have the form of lal[Â0<JI!]la2[Â0<JI!] ... an[Â0<JI!]'

In the second phase, filter conditions are discovered using the following
technique. The algorithm chooses an existing node in the hypothesis ex-
pression and tries to extend it by appending another filter condition in the
form l*J or [Xl 1\ X2 ...]. The function subst(expression, node, subtree) used
in Algorithm 9 for this purpose takes an XPath expression and replaces its
node with the given subtree. This trims top-down the hypothesis space of
the possible XPath expressions. A subsequent equivalence query is posed to
check whether the correct hypothesis has been reached.

Note, that it is possible in an implementation to reduce the number of
queries posed to the user, because some of the queries are trivially fulfilled
or can be ruled out with the already given examples. An example run of the
algorithm is illustrated in Figure 6.11.

CHAPTER 6. QUERY BASED LEARNING OF XPATH 99

Publications Publications
r .. k 1: Algorithmic .n.lp •• of p.rlty gamu

[ljJ.llcnlct.o...t.=.R:.v:~PC':"'I .. i""'~r.l'"R!! ~"ty~ID"'IOW~
(~X~;;:;~..Jl:rf=.r::::..:1Ar.:~;~:r;:;-:t.WÔ;.:;;::.i~~---- --_.-

[~j D.&trvc"~onc! E.Gr~f'I .. dpolIU ~"""I_I••• ..:I.01tI.Ip....I.IIli'!'r:!-."tt~'if
~::.d~lV .."**';.-oC1Ic.~~ :i:m='l',..~~C-A:I~.4'OIr-.
~œ~~~SJ=I=tI.
(~?'I' •.Xt~...:tl

C); D ~,E.Grdd • .m1(;.lA#>.O .. !"._rtabl •.lU~.-cbl(.. ~t~~ ...,ocIa,l_::;;~::;;.~~:c:~~L<Jo;'~.Qil.2?W.J. ~..s~T:f Z07l<tir.'C.S.pp.
[!!o1>Te.xIAUl'Mtj

{~JH.b:.~I:a:I.~~ . .ond'\.~ 4, __ ~.,.~::<~I'_~1_.lplnl "!rP-]>!ry,
~,"'.~tT>I~~..,_n:~<>"rn:~lo~oJ~r~~ .
S:~êS.='3tHtm::lM.H.lhb,e:~.),.wl :;:6f;'?«t.c~~:1otnr:>":""""'~,s..,.,,....~;..
PP_U)~7';'Sp-~-'''.rlJI,~
[I':ib;~)(J

~Jicri<lo,a4.~~~~.boMka.e ... "-_

G/'MES
~u: ""
o~.uItTll. __ TNa>T".,_._--~-- --------- .--.

[i} ;. k1lIol. t•.J.IItn. ~:-b.""'-=- ~!~~!~~~!!.._I~~~~~~"~!X,,..!!..~!!l'_"f!!!Y.
P-~_~1 rlv:!Xa1N:.'!.-.Imr>«~D'ldAppi>;-x .. ""!IU:!{OÀ200:.<Ç~.
{~':'t_)(I~~"!:a~]

[~: l'. r .. ,.,.oClP""" m.1 il- '''-1-1ol.. FlIr~ J'5III.1 '0':M'ell ,,~ ••~1I_1.1 11IF"""~"~"Ç"~'
t."';.md lœLm:,r>:M;N~~"i' "" Co<l-.p.iM;; '.~A!It=_- ..4~4'-....~.CAP;~'-~. ;..->or..
~.lI:tNtIo'Tho«y<ll':œt;>.l:ct~,........
[!!'b':,XIA!=>tac:]

[~}~~:;~~~~~~~;;;~::'~''Z;;~:~.t~r~~/~.'}'~~I..W~.R'
3~:.~6;:r.-~''''.e:1~1.~:
[1!I?7.XI~"~rtl

r~iH. t'tof'.k:n<l.:'. ::...~...,..._I:J.. v""'.."..,¥,,, <l~.., I. a1IbUpolI.II~I~1_l, ..nl.b ... lor IM"'''Y
........ , .. JC".lrol ... nu'~S'Jl".p._Jm.," ;->..-" ,;n,IJ.s,"""r. QjC:"' 'a S<-,'1I('.
S:-A<."S ."J~.'(H.A.' £;;;j;,l,. HI.:.o:), .. ill.l.,::rI. :';'17:>1 loH''''. Notll '~"""'"'Pl.I:'" "Ii'>Ci. :!tr1:n.l
l'\.>.U~.l:I:;~ ~~::lIo'.-.'loc1:~. ::00'.
[~7 • .Kl

r•.; H.r..Jr\lI<..lrl,!'~~'1<I!........._1 ~ V~. eo lullvofmod.l ..h....1rJo.bYlleum ...

G/'MES
1f.!IliI:DI~ ..
<liUlU""" __ .'~"_.~--- .~----_.- ~--

•
Publications

i!~r~~~':;;~~~:::::~~;r~':ID~~t~..Dl".'O .. kty]

[~~';'~!'tl~~)

12; ~~.:;.~;;:.~~~::~~~~::.::1:~.:::::;~:;=':'~;::;;,~4
:).:t::'.I"U.jtoTboClJ'Qf~.r.s:y.::emI
{e;:,';'p)(l.u.-:u •.,]

,,;,~~~"';;;i~~:n;~~::;;;,~t:,~~:.~~:~~.~:;;;j~~~\,~~.~~~1L"C3,~
)~.365.~ •. ~.~$.:OO:,
[PO';'.Xl~"~l

(~j~~:~;:7;:~:=~:=:!ft:;:~;:;~::;~:~~:.~~
S:ACSn'J(n A.I ..::;1:.\, K.o.~ •• ~ 'ni .• :Nlill t.cn," N~:II ,~Cor>yl:tlr$~~.{ktDl
pp U}4I7.;. ~ ... -.:ctu,:ocr=.-
(~:r~1'1

' •.1 H,,.,lr\<h:Il~,::.=....,.r, ,.... iJ.VJl'1>l.....,,,J~......t.eld ...d ••_bo<liJou...-1

G/'MES
lI:IIE!iI:llu:nJl'.'. ,,,'", ..
ç~""'.~~>T".,_.------- .------.----.

Publications
Tuk 2: Algorithmic analv.i. of pariry garn ..

1):t.~-:;r=~!.i:'~~~~~;..~~~~~;~~:~.~~':7.~t:~:;;;~.I~Iu:C~.~
3~:'l<'~.:;çr.nfff''''iIUf..:çc2,
[~~';'.)(IAt:c:r.o:t1

r.j~~~=~:::;::z:~~=~~~
S':J.ê$"z-:n,! (jl.A:t ~ W. i'.lbb,Q.'\, vet. ~*-..,d Uttv. Neu, In ~~r Slu (kil::l
p;).t6l.'7':"~oIIlI.'''';c1.q.~
(l!l'?!"!!')

r*.l H.ri<lrlo:hon:l.'.::..n.-r.- •. .md:>. \."'d>vJ~...tmod&l.m.ciWl.aloo.L..--I

Publications
T.. k2:AJgorittomlc."alv.llofparitygamu

Figure 6.10: Visualisation of tree-prefix queries

CHAPTER 6. QUERY BASED LEARNING OF XPATH

Algorithm 9 learning with tree-prefix and equivalence queries
if ask: 0 == p?

return 0
else

let (Xl1X12 ... Xln), ... , (XklXk2 ... Xkn) be all the
branches in the received counterexample to target
nodes (labelled with *)
for i = 1 to n

if I{Xli,X2i, ... ,Xki}1 2:: 2
ai = *

else if ask: jada2'" jai-dxli <J p?
ai = Xli

else

hypothesis = j ad ad ... j an
if hypothesis == p? return hypothesis

queue = Il
for node ai in hypothesis: queue.append(ai)

while not queue.isEmptyO
testedNode = queue.popO

if ask: subst(hypothesis, testedNode, testedNode [*]) <I p?
U = labels ofnodes matched with testNode when na-

vigating using the hypothesis on any example
L={}

for label X in U
if ask: subst(hypothesis,

testedNode,
testedNode[X I\YEL y]) <I p?

L=LU{x}

if L is empty
hypothesis =

subst(hypothesis, testedNode, testedNode [*])
queue.append(node * from testedNode[*])

else
hypothesis =

subst(hypothesis, testedNode, testedNode [I\YEL y])
for node y in testedNode[I\YEL y]: queue.append(y)

if ask: hypothesis=: p?: return hypothesis

100

CHAPTER 6. QUERY BASED LEARNING OF XPATH 101

query
O .,

==P"
jbodY<lp'!
jbody jtable <l p?
jbody jtablejtr <l p?
jbody jtablejtr jtd <l p?
jbodyjtablejtrj* = p?
jbodyjtablejtrj * [*] <lP'(
jbody jtablejtr j * [img] <l p?
jbodyjtablejtrj * [h3] <lp?
jbodyjtablejtrj * [h3Ap] <lp?
jbodyjtablejtrj * [h3Ap] =p?
jbodyjtablejtrl*Jj * [h3 Ap] <lp'!
jbody jtablejtr[td]j * [h3 A p] <l p?
jbody jtablejtr[th]j * [h3 A p] <l p?
jbodyjtablejtrl*Jj * [h3 Ap] == p?
jbodyjtablejtrl*Jj * [h3l*J Ap] <lp'!
jbodyjtablejtrl*Jj * [h3 Apl*J] <lp?
jbodyjtablejtrl*Jj * [h3 Ap[b]] <lp?
jbodyjtablejtrl*Jj * [h3 Ap[b]] == p?
jbody jtablejtrl*[*]]j * [h3 A p[b]] <l p?
jbody jtablejtrl*[h3]]j * [h3 A p[b]] <l p?
jbody jtablejtrl*[h3 A p]]j * [h3 /\ p[b]] <l p?
jbodyjtablejtr[*[h3 A p /\ img]]j * [h3/\ p[b]] <lp?
jbodyjtablejtrl*[h3 A p /\ img]]j * [h3/\ p[b]] _ p?

jbodyjtablejtr[*jimgJl * [h3 A pjb] - p?

answer
no - example 1
yes
yes
yes
no - example 2
no - example 3
yes
no - example 1
yes
yes
no - example 3
yes, trivial
no - example 3
no - example 1
no - example 3
no - example 1
yes
yes
no - example 3
yes
yes
yes
yes
yes
sImple minimIsatIOn
applied

body
I

table

/I~
tr tr tr

/1'\ /1' 1\
th th" th td td" td td td

1\111\/\ 1\
imgh3 p P imgh3 p P h3 h3 P

I I I
b b b

a) training tree

body
I

table

/I~
tr tr tr/j /,' 1\th th td td td td

I I /\ 1\
imgh3p P imgh3 p P h3 h3P

I I I
b b b

C) example 2

body
I

table

/I~
tr tr tr

/1'\ /,' 1\th th" th td td td td
1\ I I 1\ 1\

imgh3 p P imgh3 p P h3 h3 P
I I I
b b b

b) example 1

body
I

table

/I~
/,tr ~ /,tr, l,

th th td td td
I I 1 \

imgh3 p P imgh3 p P h3 h3 P
I I I
b b b

C) example 3

Figure 6.11: Learning of the expressionjbodyjtablejtr[*jimg]j * [h3 A pjb]
using tree-prefix queries

CHAPTER 6. QUERY BASED LEARNING OF XPATH 102

Theorem 6.5.2. Algorithm 9 learns the XP(j, [],*) fragment and runs in
time O(lp?lltl) where Ip?1is size of the target XPath expression and Itl is size
of the largest received example.

Proof Correctness implies from the property of partial ordering defined with
the tree-prefix queries. Let PI and P2 be two XPath expressions such that
PI <lP2. Let P be an arbitrary XPath expression (the hypothesis). Let p' be
an expression constructed from p by replacing its part PI with expression P2.
Then holds P <l p'.

The algorithm systematically searches the hypotheses space with respect
to this ordering. Therefore, each target XPath expression is once eventually
reached.

The for loops run at most O(ltl) times. A node is appended to the queue
only if a filter condition f from hypothesis is replaced with a more specialised
form J[*] or J[1\ x] which is a prefix of the corresponding filter condition
in p? Therefore, the while loop runs at most O(Ip? I) times. D

Chapter 7

Classification of DOM Attributes

In the previous chapter has been studied learning of tree structures. So
far, we did not discuss handling of the DOM attributes. Of course, one
straightforward solution is to handle the attributes with the DOM Levell
approach that means to view them as regular DOM nodes and then apply
the algorithms of the previous chapter.

In this chapter we study another approach that can be both applied
as an extension of the previous query-based algorithm and used separately.
It becomes more flexible, especially in context of the HTML DOM trees,
which have many types of attributes with diverse values. This allows us
to build into the learning algorithm various heuristics using knowledge of
the HTML standard. Moreover, we can easily add to the algorithm any
additional features which are already used in the existing wrapper systems
such as syntactic and semantic concepts as defined in [BFGOl].

Knowledge representation using decision trees has been already used in
many applications. Decision trees are a type of symbolic machine learning
and are based on the divide and conquer method. The training data are
gradually divided into smaller and smaller subsets. At the beginning of the
learning using decision trees is one big set with all training data, at the end
there is a partition of the training data into a system of subsets.

In this chapter we present a solution for classification of extraction in-
stances that is based on decision trees using the so called "entropy" measure.
Let us note that there are also other types of measures such us the Gini index
or X2• But our experiments did not show noticeable advantage when using
those measures.

The entropy based queries will show us how to undermine the problem of
choice between restricting the probabilistic distribution of examples and the
need of an additional channel on information about the target concept, which
is known from the trade-offs between the active and passive learning models

103

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 104

described in the Chapter 1. Of course, this approach must trade strong
assumptions for a simple algorithm performing well in some applications.
Types of constrains that we are going to assume are restricted (finite) number
of question, small (finite) hypotheses space, independence of certain random
events and ability to estimate some probabilities.

7.1 Entropy

Suppose that we have a teacher T and learner L. The learner is willing to
discover the unknown target concept c? Let Q = {ql, q2,'", qn} be the set
of all possible questions the learner L can ask before applying the divide and
conquer step. Let Aq; = {ai, a~, ... , a~} be the set of answers the teacher T
can answer on learner's question qi.

We denote P(answer(qi) = a;) as probability of the random event that
the teacher answers the question qi with answer a;. Note, we implicitly
assume here that answering answers ak and al for arbitrary k and l are two
independent events. That is

P(answer(qi) = {aLan) = P(answer(qi) = a1) + P(answer(qi) = aD
Now, we would like to help the learner to identify the most valuable

question. Ideally, we would use a metric for measuring how good each of the
questions is and choose the question with the highest value. From an usable
measure of the informativeness of a question we would expect the following
natural properties:

1. I is continuous.
That is, we expect the measure of the question informativeness to be a
continuous function of the probabilities of its answers.

2. It the set of all possible answers A = {al, a2, ... an} is splitted for
a particular question q into m disjoint subsets Al,'" , Am such that
A = U::l Ai; and Ai nAj = 0 for all i and j, then informativeness of
the question q with the original answer set A should be equal to the
weighted sum of informativenesses of the question q with the reduced
answer subsets. That is

m

I(A) = L P(Ai).I(A)
i=l

(7.1)

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 105

where
I(A)

P(A)

informativeness of question q with set of the pos-
sible answers A

- informativeness of question q with set of the pos-
sible answers Ai

- probability that answer returned for question q
will be from the set Ai

3. If all answers A = {al, a2,"', an} for a question q have equal probabil-
ity (= *), then the informativeness I(q) of the question q should grow
with n.

That is, the more answers are possible for a question, then with receiv-
ing one particular answer from this set we can exclude larger part of
the hypotheses space. So the question has larger informativeness about
the target concept.

Due to Shannon's seminal work on information theory [Sha48] we know that
there exists only one function fulfilling the above criteria. That function is
called entropy.

Definition 7.1.1. Let A = {al, a2, ... , an} be a set of independent random
events and Pl, P2, ... , Pn their probabilities, 2::::1 Pi = 1. Then the only
continuous function of probabilities fulfilling the above three criteria is called
entropy and has the form of:

(7.2)

Using the equation In x ~ x-I with equality only if x = lone can show
that

(7.3)

The upper bound of the equation 7.3 is reached only if Pi = *. Therefore,
informativeness of a question q is maximal if all of its answers al, a2, ... , an
have equal probabilities.

7.2 Building Decision Trees
Now let us return to the problem of the learner with the identification of the
best question. Let Q = {ql, q2, ... , qm} be the set of questions the learner
may ask in the current situation. Her interest is to choose the most valuable
question among them using the entropy function.

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES

The informativeness of question qi we express using (7.1) as:

l(qi) = L P(answer(qi) = aij).l(answer(qi) = aij)
qiEQ

106

where P(answer(qi) = aij) is probability of answer aij on question qi and
l(answer(qi) = aij) is informativeness of answer aij to question qi. The
second value is expressed by (7.2) as:

l(answer(qi) = aij) =

~ ? 1~ P(c == C' I answer(qi) = aij).log P(_ ? I ())
cEG C = c. answer qi = aij

where P(C == c? I answer(qi) = aij) is conditional probability that a hypoth-
esis C is the correct target concept, if answer to the question qi is aij. Its
value is usually estimated as the ratio between number of example instances
consistent with the hypothesis c and answer aij on question qj versus the
number of examples consistent with the answer aij on question qj.

Being able to choose the best local question, the decision tree is built
recursively using Algorithm la.

7.3 Wrapping with Attribute Classification

7.3.1 Clustering
Having all background prepared, we can proceed with an explanation of the
attribute classifying algorithm. We will demonstrate the algorithm on the
following, rather artificial, Web page displayed in Figure 7.1 which allows us
to show the interesting properties of this algorithm. Inside of this example
Web page, we are interested to extract the city names and the contact links
with the black text colour. Assume that in the current situation we have
from the user the following positive and negative example instances, marked
with green respectively red background.

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES

Algorithm 10 building decision tree
start with the set of all hypotheses
function chooseQuestion (C)

if ICI ~ 2 :
for each question qi from available questions {ql, q2, ... , qn}

compute I(qi)

choose question qmax with highest informativeness value
qmax = maxI(Ql), ...,I(Qn){ql, q2, ... , qn}
ask question qmax and receive answer amax

partition the hypotheses into two subsets C+, C-
according their consistence with the answer
C+= getConsistentHypotheses(C, qmax, amax)
C-= C-C+

recursively build the decision tree
chooseQuestion (C+)
chooseQuestion (C-)

-
Czech Republic

Praqua

Slovakia

Bratislava

Figure 7.1: Example Web page for attribute classification

107

During the training process Algorithm 11 proceeds with the following
steps:

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 108

1. Sort example instances into clusters with respect to similarity of their
tree structure.

2. For each cluster build the list of features used for classification. Here
the feature list is a collection of possible values for each attribute of
the training examples.

3. Build the training dataset.

4. Build the decision tree based classifier.

We have implemented the clustering of example instances according to the
similarity of the tree structure using the nearest neighbourhood grouping.
As the distance metrics is used the number of different nodes between two
DOM trees. During the clustering process a DOM tree becomes pivot of
a new cluster, if its distance from pivot DOM trees of the existing clusters
oversteps above a chosen threshold. In that case, a new cluster is created
and the existing instances are regrouped to their closest cluster.

Additionally, each cluster is divided into blocks. Essentially each DOM
element forms its own block, just for some types of the DOM elements, we
use the built-in HTML knowledge and merge several elements into a single
block. Examples of elements merged into one block are <table> / <tbody>
or <p> / <center>.

The following figure contains a clustering of the instances from our ex-
ample. Let us note that the cluster might not be just flat tree branches, but
also full tree-like structures.

cluster;
/

/

//

/
/

/
/

/
p'/hlml /body

/hlml Ibody

/hlml , Ibody

/hlml /body' la[href=.http:// color=.black1 i Icontent(text=.contacl11 ' yes
: I '

/hlml Ibody' la[href="mai!to: ...1 Icontent(text="contactT] no
I I ' I>

/him! /body I Ispan[color=.black1/a[href="mailto:1 ' Icontent(text="contact31, yes \

\ \
\

\block
~''',

,/'-- "
,/ "-.----. "-

"d--"---'- '~
/h3 : lcenter; Icontent(text="Pregue1 : yes

lh3 lcenter, lcontent(text="Austria1 no
/h3 lcenter, Icontent(text="Vienna1 , yes

Figure 7.2: Clustering of instances

When using this clustering and attribute classification approach, the
wrapper is a set of extraction rules. Each cluster has associated its own ex-
traction rule which is a pair consisting of a CoreXPath expression [GKP02]

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES

Algorithm 11 learning of the wrapper and the extraction process
learn the wrapper
clustering = buildClustering(USER_EXAMPLE_INSTANCES)
for cluster in clustering

each cluster contains already the cluster.xpath
discovered during the clustering process

#build the attribute classifier
cluster.featuresDef = buildClusterFeatures(cluster)
trainData = buildClusterTrainData(cluster)
cluster.classifier = buildDecisionTree(featuresDef, trainData)

109

extract the matched instances
for cluster in clustering

instances = evaluateXPath(cluster.xpath, USER_INPUT _DOCUMENT)
for instance in instances:

testExample = build TrainOrTestExample(cluster .featuresDef, instance)
if cluster.classifier .classify(testExample)== 'yes'

add 'instance' to matched instances

and an attribute classifier. The XPath expression is used to find DOM nodes
(instances) inside of the input DOM tree matching the particular tree shape.
Subsequently, the attribute classifier is used to sort out the instances with
incorrect attributes and properties.

7.3.2 Building Features
Building of a decision requires to know which features are available and what
are the possible values for these features. Therefore, before training of the
DOM attribute classifier we need to decide what are the interesting features
being considered by the classifier.

The list of the features is built from the set of DOM attributes and text
node values in the cluster. The same DOM attribute may repeat in several
blocks of a cluster with different values, for example the 'bgcolor' attribute
in the instance /table[bgcolor='red'l/tr/td[bgcolor='green'j. Therefore, each
feature has associated also an index of the block it belongs to. DOM at-
tributes inside of one block are treated as non-repeating that means, their
values are unified into a single set.

Clearly, not all HTML attributes have equal semantics. Therefore, it

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 110

does not make sense to map all DOM attributes one-ta-one into training
features. For example, our feature selection considers only attributes that
have rendering effect. Because the user highlights the interested instances
inside of a rendered Web page, she can not distinguish DOM nodes that differ
only with an attribute that does not influent rendering of the DOM node.
Therefore, we sorted the HTML attributes into three categories, depending
on their rendering effect:

• attributes with no rendering effect

• attributes which affect rendering always the same way, independent of
their value

• attributes which affect rendering with each their value differently

Examples of the attributes with different rendering influence are listed in the
following table.

influence of rendering:
none by presence
alt multiple
code base readonly
id checked
method disabled

by each value
align
border
color
style

The list of possible values for a feature is constructed in the following way.
Values of a feature constructed from a DOM attribute with rendering influ-
ence by presence are 'present' and 'absent'. Values of a feature constructed
from a DOM attribute with rendering changed by each value is union of
all values of this attribute collected in the current block over all example
instances.

Using only the syntactical properties of the DOM trees is quite successful
method, but not always sufficient. The beauty of our approach is that we can
easily include any other type of features. Therefore, we extended our list for
example also with ontology-based features and we include syntactic concepts
such as isDate, isYear, isNumber, isCurrency and semantic concepts such as
isCity, isCountry, isContinent. List of values for those features is 'yes' and
'no'.

Each feature has two additional values with special meaning. The' !miss-
ing' value is used during building of the training data to express that the
current example instance does not contain a particular attribute in a block,

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 111

while the other instances contain this feature in that block. The value' !other'
is used during the extraction process to express that an instance has a partic-
ular attribute, but with a value that has not been known during the training
process. The Algorithm 12 outlines building of the feature list for a cluster.

For our example, these are the features chosen for the training:

BL3_hreCval = {http:// ... , mailla: ..., Imissing, lolher}
BL3_hrefJlrotocol = {http, mailto, Imissing, lother}
BL3_hreCcolor = {black, Imissing, lolher}
BL4_texCval = {contact1, contact2, contact3, Imissing, lather}

BLS_taxt_val = {Prague, Austria, Vienna, Imissing, lather}
BLS_text_isCity = {yes, no, Imissing, lolher}

7.3.3 Training
Building of the training data is straightforward. We iterate over all instances
in the cluster and compute the values of features, as outlined in Algorithms
13 and 14. As indicated already earlier, there is a case possible, when value
of a feature can not be computed for some example instance, most probably
because the DOM element does not contain the needed DOM attribute. In
that case the special value' !missing' is used.

Moreover, a special target feature is added to each training example.
The values of that feature are 'yes' or 'no', depending whether the processed
example instance is a positive or negative extraction example. Prediction of
this feature is then trained by the decision tree classifier.

For our example, the following training set is constructed:

BL3_hreCval BL3_hrefJlrotocol BL3_bgcolor_val BL4_taxt_val extract.

http://... http black contact1 yes

mailto:... maillo Imissing contact2 no

http:// ... http black contact3 yes

BLS_text_val BLS_taxt_isCity extract"

Prague yes yes

Austria no no

Vienna yes yes

Finally, the constructed list of features and the data set are feed into the
training algorithm that builds the classifier. Our implementation is illus-
trated in Figures 7.3-7.7. For implementation of the learning algorithm we

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES

Algorithm 12 building features
function build Cluster Features(cluster)

at the beginning the cluster has no features
featuresDef = {}

112

build the feature definitions from DOM attributes
in the example instances
for block in cluster.blocks()

blockIndex = cluster.indexOfBlock(block)
for domElement in block

for domAttName in domElement.attributes()
if not getRenderingEffect(domAttName)==NONE

domAtt Value = domElem.getAttributeValue(domAttName)
addFeature (featuresDef, blockIndex,

domAttName, domAttValue)

return featuresDef

function addFeature(featuresDef, blockIndex, domAttName, domAttValue)
construct name for the feature
featureName = 'BL'+blocklndex+' '+domAttName+' val'

add the current dom value to the feature domain
featureDomain = featuresDef.get(featureName)
if featureDomain==none

featureDomain = [' !missing', , !other']
featuresDef. pu t (featureN arne, featureDomain)
if getRenderingEffect(domAttName)==BY _PRESENCE

featureDomain.add ('present')
featureDomain.add ('absent')

if getRenderingEffect (domAttName) ==BY _EACH_ VALUE
featureDomain.add(domAtt Value)

construct the additional features such as the href_proto, text_isCity
using the built-in HTML knowledge or ontologies

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 113

Algorithm 13 building training data (1)
function buildClusterTrainData(cluster)

#build training example for each instance
trainData = Il
for instance in cluster.instancesO:

example = buildTrainOrTestExample(cluster.featuresDef, instance)
trainData.add (example)

return trainData

function buildTrainOrTestExample (featuresDef, instance)
at the beginning the training example has no feature values
trainOrTestExample = {}

find value for each feature
for featureName in featuresDef.attributesO

blockID, domAttName, valueType = parseFeatureName(featureName)

domAttValue = none
blockDOMElements =

getBlockDomElements(examplelnstance, blockID)
for domElern in blockDOMElements

if domElem.hasAttribute(domAttName)
domAttValue = domElem.getAttributeValue(domAttName)
break

featureValue = buildTrain Value(valueType, domAtt Value)
train OrTestExample. put (featureN arne, featureValue)

set value for the target feature being learned
if instance.isPositiveO

trainOrTestExample.put('extract*', 'yes')
else if instance.isNegativeO

trainOrTestExample.put('extract*', 'no')
else

used during the extraction process,
this value is left unfilled here and then
it is computed using the decision tree
trainOrTestExample.put('extract*', ,?')

return trainOrTestExample

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES

Algorithm 14 building training data (2)
function buildTrainValue(valueType, domAttValue)

if domAtt Value==none
return' !missing'

switch (valueType)
case VALUE:

trainValue = domAttValue
case PROTOCOL:

trainValue = 'unknown'
for proto in ['http','mailto']

if domAtt Value.startsWith(proto)
trainValue = proto

case ISCITY:
if database.isConcept('city', domAtt Value)

trainValue = 'yes'
else

trainValue = 'no'

return trainValue

114

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 115

.;~,
ill ea.1fllOlllln.._y.....-?

Wtlk:ome, Qual Userie----I.
I- Sho.laR I 10 of:ZOO

~1~1!!!!11!.!!!...........-

Drrd.JohnA6"",._ .. hitc

,.
~!B2!'~'~'BoclI-tl!!R

!I
~'i2!..!!! ~

I ~_p." ~_~s~rm

Figure 7.3: Start of the wrapper learning

used the Weka package [WFOO]which allowed us to compare performance
of various classifying algorithms. Using the ID3 decision tree we get the
following classifier:

Cluster I ID3:
BL3_bg_color != ' !missing' yes

Cluster2 ID3 :
BL5_text_isCity = 'yes' yes

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 116

"lw~"'."'""'l
-O",;:.!E...~IV_= .0

~~/1MPe&ciRct~u.

,:1:"810 .><> .. ~~ Ot)~.06.'
t:.N~ts -o:n-wdL~(lnii
~ "''' "". <:>.0>. fi} 0 €ll ~

.J.pqect~~

t WeAcome. Quat u....
Iemoil_ S-<hRauIls

Sbcntiar: 1-101'1100
H-st1Pr.ncus1!!!!11b!!!

~-~
I AoIv_aoI ~ ~I ..~._~~ !

.... E....

.... omo.
+LO.BOOV

+lri.CEHTER

+I..ri:P

+I.riTAIlE

+l.iI*l'1OOY

+lri~

...... m
+li'*TABl.£

+l..ri:aoDY

+Lîr*TR

.!.riTO

+I.riTABLE

+I..ri:T1OOY b
;i~';~~--~=-:':'.~.-~~
'~.llIodfc;mVt~tI_

I S:md1"3Ad\'e hllr

Figure 7.4: Positive example from the user

I

I

.!;J

S!l.Ii:wc:nbllndl!-:~:~~t;~~-;.;IÎ~'~~~:-~J
__.__.B 0E __ ~li: ~.. I

+t.ri.tl'TML

+LriBOOY

.Lint; CENTER
+Lri.P

_link fASlE

...... ßOOY.... '"
+I.iN<TO

+ I..ri: TABl£

+lriTtlOOY

+LriTR
+lriTD

+lri;TA8l.£

B _

B __

w.acom., Guest u..,

jEmoll Baole S-<h_ ..

SbowIIlJt 1-IOvlZOO

Fnl:!Prwia.aI!!!!Ib!!!

... - S!ideO

..""""""", ..
~ CM'tF .. n- ..V..... ?

I~~-:~:~~.=:=::~:='~'--'-'---'-"'-'-'--'-"-
1.::lPn:iprin;ZI.Plct:iIcad~~l'IPIcomy ~., ., ... , , . . f\'~

'~~- =-_._~:-~~::~~,.~.~.....

9t £iii ti..,;p. eq.:1 WirIlD Hep

I;:. ~ ö ! ';' .,;:... ~- I0 El ? • 0 r:.:

~:~::.ii~:~";I:.,~.~~~~~:~~~~::::~
IV Iddtmo

I J._~~

I

:~,~"._~.W.t

Figure 7.5: Hypothesis generated by the learning algorithm

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 117

!
I
G

~-~
lAoht~p.,,""I ..~--... ~]

~"I
Cld,tir!\' orC.nTolIFrftIf77_'~7_'477

SliIkU

.'"""","""",
,:ß c.'tFIIIoIIn- .. V.....-;o

i
I: Welcome, Q&IMt u....

,i ie----! Sho-aiql.l0rl1OO
Fml~I!!!!I~

9-~ft &qedICilnbJ:1ep

:n"60J';'~h<,.IOO~.O.... öE!1i2w~1
't.N~a' ~.-o.:7t~à:, ..- '-'--:~~=:-.~'~Év~"";';--ä'---.o
<:..~_~ ..Ë~ ~ Q_ 0). t!} 0 ~ " :............~~,;;;,-=--=-::_---~.:B0 .. _. lié I, ..

I'" 'ddlano ~ • ElMnCIIe

I ~_~~ "YAHDO!:t:.~~ ~ ~Ï!t!!!!!!-~'~'!!!!5!'" .~::-HTML
+l.ri;BOO'f'

+I.D.CENlER
_laP
+Lir*TASlE
+lri.T8OOY

+l.ri;TR

+LiMTO
+Lir*TABL.E
+Lir*T8OOY
+I.ri.TR

+UnlTD

+lri.TABlE

: : .CIIs~FilIe'Id3

I

II
"

![~ "-~ ~ I'
~ "=- £Iilliiiiiiiiii :'_______ r:t.

;j~ "'o'_.--..-,...,.....--.-------_--...,-....,. ..--_~ .. ,------._r" __ • ,:"':;;"';:è;;;;;;~ , ' ---... ...,-_ -, , c. -m;-,t-: ='O'i

1]- I'''' I
Ii I

Figure 7.6: Negative example from the user

....... , __ •• «nmo..;.", ..

«Jri:_Ozin..,,,,,,,_

I'MVh~1190vllhoo.com

Click Herr MeOn Toll Fm ~77-'~7-'-177

S)'dm')./'J ...

Slidcll

.'~.""
..ß C-,f:Wn.- ... Ya..J7

Showi •• I • 10 fil ZOO
~ntl~II!!!!!IJ:!!!;

~ 'Iw.,_'._._" , ','
~ II"

~ B~ 1\-n.,. fTKlI£"DnI """",-,,"'--" il

~ "=- ~ ~~:-;=n.J!;:~~::~;~-~i:~~::-:--...~I,~.- ..:-==.~..=::=~=--=

.-. " ... --- .. ------.- ... -~____c"-~-.-_
'g:OudnItI .0

'.~p..:l~"! .,
I

'~.OCJ,'~~.Q- OO<:\.O~ ~_l~~~_~._
.tN~-zi ..~-:~::.,;rr~ä~~~.==~-~-~.-..---~~: -------~---- - -------;';'-6 ~" Ev~ v.. a" - 0

1 Q.1t> ~ j Ë ~ :" <:a .. c). fi 0 fitt 0 ~~:~~~el<l,"~~eNlhtm __ 8 -'0 --i ~ &::j....~~ .. ~

1.~demO r ~~ :::: •

, ;:~' "YAHDO!:::m;:> ~ ~VII'IcDI.5!!:!!!'~'~ +l..inlHTU.

+lÏI*8OOY

+Ü*CENT£R

+LiMP

+l..inlT4BLE

+lri. TBODY

+lri.TR

+ÜI*TD

+LiIllTABlE

+l..inlTllOOY

..... TR

+I.riTtl

Figure 7.7: Correct wrapper generated by the learning algorithm

Conclusion

There are many approaches to Web information extraction. When charac-
terised by their usage of learning techniques, these approaches fall into two
distinct categories; fully automated systems using data mining principles
and naturallanguage processing and systems whereby information extraction
procedures are created by human wrapper designers. The former category
of systems reach relatively low precision and recall, but also have low main-
tenance costs. The latter category carries a much higher maintenance cost,
but the precision and recall of the generated wrappers are very high, often
reaching almost one hundred per cent.

The successful operation of data mining techniques is achieved under one
important assumption: the information is numerously repeating on the Web.
Thus, it is not important if the information extraction procedure fails on
one particular Web page, as the same information can be still retrieved from
plenty of other available Web pages.

An example of applications built with this assumption is the collection of
records about corporations and their managers from news sites. The same
news item, interview or statement is posted on many news portals and, there-
fore, failure to extract the data on one particular portal can be salvaged by
extracting the information from another portal with a different structure
and layout that happens to be more friendly to the information extraction
algorithms being used.

However, there are many other applications where the user needs to ex-
tract data from just one particular Web site with a concrete structure and
layout. These are the cases where wrappers built by human designers are
most suitable. Examples of applications built with this approach include
collecting items sold in a small set of monitored Web shops, monitoring bal-
ance and transactions for an account in Internet banking and collecting job
openings on particular portals.

Most previous research in information extraction has made use of data
mining techniques to create fully automated systems. In comparison, there
has not been much previous effort to apply learning algorithms to acceler-

118

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 119

ate the creation of wrappers by human designers. In this thesis we have
attempted to narrow this gap, and have studied active forms of learning and
explored their application to HTML wrapper generation.

The first major part of this thesis studied existing active learning theory.
At the beginning we presented severallearning models related to active forms
of learning, including identification from characteristic sets, teaching and
query based learning. We concluded that the query based model had the
most reasonable assumptions about the learner and the environment, and was
closest to the paradigm of interactive wrapper generation. It was therefore
chosen as the most suitable model for a practical implementation and we
further analysed its properties.

The most common approach of active learning is query based learning
using membership and equivalence queries. Therefore we further studied the
properties of learning algorithms using membership and equivalence queries.
We explored the lower and upper bounds for the number of required queries
and presented two generic learning algorithms that work on any hypothesis
space - the halving-XEQ algorithm and the standard optimal algorithm.

Next we focused on properties of the hypothesis spaces that measure the
hardness of learnability - the teaching, exclusion, approximate fingerprint
and Vapnik-Chervonenkis dimensions. Some of these dimensions were also
used later when proving negative learnability results.

At the end of the first part we presented the L* algorithm, a well known
positive result of active learning theory. The algorithm is capable of query-
based learning of DFA using membership and equivalence queries.

In the second major part of this thesis we applied the knowledge from
the active learning theory to interactive wrapper generation.

At the beginning we overviewed existing approaches to the building of
HTML wrappers: from hand-coded programs to interactive wrapper induc-
tion and data mining techniques. Additionally, we also discussed some of the
most known practical implementations.

After the introduction we focused on wrapping techniques that operate
on DOM trees and create wrappers by interacting with a human designer.
This allowed us to view HTML wrapping as identification of relevant parts
in the input DOM tree, such as internal nodes, text node values or attribute
values.

We continued by formalising the interaction between the user and the
wrapper induction system. We gave a game-theoretic characterisation of the
interaction protocol, defined game space and winning conditions. Then we
studied the existence of a winning strategy for the wrapper system and proved

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES 120

that, interestingly, the interactive highlighting of example instances weakens
the learning power of the wrapping system. That is, the active interaction
inside of a single document, resembling the example based queries, did not
lead to tractable learnability results. Tractability was found to come from
the possibility to pose the example based queries across a set of similarly
structured documents.

Because the XPath language is nowadays a standard for DOM tree naviga-
tion and also an integral part of many other XML related standards, we chose
it as the formalism for expressing our wrappers. We therefore deeply explored
learnability of XPath and its sub-fragments using example-based queries.
First we started with the queries used by the minimal adequate learner -
equivalence and membership queries. We proved several non-Iearnability re-
sults when using each of these queries separately; even for surprisingly simple
XPath fragments in case of equivalence queries.

Interestingly, wrapper induction turned out to be the first known problem
where equivalence queries had a natural application and visualisation, but
use of the membership queries was artificial and led to obstacles in their visu-
alisation. We therefore proposed a replacement for the membership queries
- the tree-prefix queries that did not suffer the visualisation problems. Af-
terwards we presented a polynomial learning algorithm for several XPath
fragments using the combination of equivalence and tree-prefix queries.

The Figure 7.8 summarises the results of query-based learnability for
XPath fragments which have been proved in this thesis. Let us note that
the negative results for these fragments can not be automatically lifted up to
their super-fragments. This is due the fact that the non-Iearnability proofs,
as usual for query-based learning, are representation dependent. In this thesis
we used the default representation of the XPath expressions defined in the
W3C standard [Rec99].

When we implemented the XPath learning algorithm in practice, we dis-
covered that the proposed learning algorithm is applicable for learning of tree
shapes, but has difficulty handling DOM attributes. For HTML wrapper in-
duction we needed to improved the handling of DOM attributes, making use
of HTML semantics and text values. The last chapter therefore presents
our method for classification of DOM attributes based on decision trees. We
showed an algorithm that encodes DOM attributes into a dataset and how
a decision tree is built for this dataset. Additionally, we showed how to use
the trained attribute classifier for HTML information extraction.

From our experience, we conclude that the learning of wrappers - and
information extraction in general - is a challenge combining many areas of
artificial intelligence such as machine learning, data mining, statistics, knowl-

CHAPTER 7. CLASSIFICATION OF DOM ATTRIBUTES

XP(/,*) -EO

~
XP(/,//,*) -EO XP(/,D,*) +TPO&EO

I I
MO +TPO&EO

XP(/,I/,D,*) - XP(/,D,*,Î)

~
XP(/,//,[],*,Î) -MO

Figure 7.8: Polynomial query-based learnability of XPath fragments

121

edge representation and naturallanguage processing into a unified theory and
implementation leveraging a synergy of all the participating techniques. And
in this thesis we have deeply explored some of the pieces in this puzzle.

Bibliography

[AHHP98] Howard Aizenstein, Tibor Hegedus, Lisa Hellerstein, and
Leonard Pitt. Complexity theoretic hardness results for query
learning. Computational Complexity, 7(1):19-53, 1998.

[AK91] Dana Angluin and Michael Kharitonov. When won't member-
ship queries help? In STOC '91: Proceedings of the twenty-
third annual ACM symposium on Theory of computing, pages
444-454, New York, NY, USA, 1991. ACM Press.

[Ang78] Dana Angluin. On the complexity of minimum inference of
regular sets. Information and Control, pages 39:337-350, 1978.

[Ang82] Dana Angluin. Inference of reversible languages. Journal of the
ACM, 29(3):741-765, 1982.

[Ang87] Dana Angluin. Learning regular sets from queries and coun-
terexamples. Information and Computation, 75(2):87-106,
1987.

[Ang88] Dana Angluin. Queries and concept learning. Machine Learn-
ing, 2(4):319-342, 1988.

[Ang90] Dana Angluin. Negative results for equivalence queries. Ma-
chine Learning, 5(2):121-150, 1990.

[Ang04] Dana Angluin. Queries revisited. Theoretical Computer Sci-
ence, 313(2):175-194, 2004.

[Ant94] Martin Anthony. Probabilistic analysis of learning in artificial
neural networks: The PAC model and its variants. Technical
Report NC-TR-94-3, London, UK, 1994.

[BDGW97] Jose Balcazar, Josep Diaz, Ricard Gavalda, and Osamu Watan-
abe. Algorithms for learning finite automata from queries:

122

BIBLIOGRAPHY 123

A unified view. Technical report, Neural and Computational
Learning, NeuroCOLT 8556, 1997.

[BEHW89] Anselm Blumer, A. Ehrenfeucht, David Haussler, and Man-
fred K. Warmuth. Learnability and the Vapnik-Chervonenkis
dimension. Journal of the ACM, 36(4):929-965, 1989.

[BFGOl] Robert Baumgartner, Sergio FIesca, and Georg Gottlob. Visual
Web information extraction with Lixto. In The VLDB Journal,
pages 119-128, 200l.

[BFK03] M. Benedikt, W. Fan, and G. M. Kuper. Structural properties
of XPath fragments. In Proceedings of the 9th International
Conference on Database Theory, 2003.

[BGGM99] Nader H. Bshouty, Paul W. Goldberg, Sally A. Goldman, and
H. David Mathias. Exact learning of discretized geometric con-
cepts. SIAM Journal on Computing, 28(2):674-699, 1999.

[Bsh95] Nader H. Bshouty. Exact learning boolean functions via the
monotone theory. Information and Computation, 123(1):146-
153, 1995.

[CGL97] Jorge Castro, David Guijarro, and Victor Lavin. Learning
nearly monotone k-term DNF. In Euro COLT, pages 162-170,
1997.

[CLN04] Julien Carme, Aurelien Lemay, and Joachim Niehren. Learn-
ing node selecting tree transducer from completely annotated
examples. In ICGI, pages 91-102, 2004.

[CMM01] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo.
Roadrunner: Towards automatic data extraction from large
Web sites. In Proceedings of 27th International Conference on
Very Large Data Bases, pages 109-118, 200l.

[Cor05] Microsoft Corporation. Internet Explorer - Web browser, 1995-
2005. Homepage on http://www.microsoft.com/windows/iej.

[ea04] Andy Quick et al. JTidy - HTML syntax checker and pretty
printer, 2004. Homepage on http:/ jjtidy.sourceforge.net.

[Fou05] Mozilla Foundation. Mozilla - Web browser, 1998-2005. Home-
page on http://www.mozilla.org.

http://www.microsoft.com/windows/iej.
http://www.mozilla.org.

BIBLIOGRAPHY 124

[GJ90] Michael R. Garey and David S. Johnson. Computers and In-
tractability; A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., 1990.

[GK95] Sally A. Goldman and Michael J. Kearns. On the complexity of
teaching. Journal of Computer and System Sciences, 50(1):20-
31, 1995.

[GKP02] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient
algorithms for processing XPath queries. In Proc. of the 28th
International Conference on Very Large Data Bases (VLDB
2002), 2002.

[GLR97] David Guijarro, Victor Lavin, and Vijay Raghavan. Learning
monotone term decision lists. In EuroCOLT, pages 16-26, 1997.

[GM96] Sally A. Goldman and H. David Mathias. Teaching a smarter
learner. Journal of Computer and System Sciences, 52(2):255-
267, 1996.

[GMTT05] Remi Gilleron, Patric Marty, Marc Tommasi, and Fabien Torre.
Statistical classification for wrapper induction. In Proceedings
of the Dagstuhl Seminar on Machine Learning for the Semantic
Web,2005.

[G092] Pedro Garcia and Jose Oncina. Inferring regular languages in
polynomial update time. Pattern Recognition and Image Anal-
ysis, 1:49-61, 1992.

[G093] Pedro Garcia and Jose Oncina. Inference of recognizable tree
sets. Technical report, Departamento de Sistemas Informaticos
y Computacio, Universidad Politnica de Valencia, 1993. Tech-
nical Report DSIC 11/47/1993.

[Goe05]

[GoI67]

[GoI78]

Brian Goetz. Easy screen-scraping with XQuery, 2005. Pub-
lished on http://www-128.ibm.com/
developerwor ks /java/library /j- jtp03225. html.

E. Mark Gold. Language identification in the limit. Information
and Control, 10(5):447-474, 1967.

E.M. Gold. Complexity of automaton identification from given
data. Information and Control, 37:302-320, 1978.

http://www-128.ibm.com/

BIBLIOGRAPHY 125

[Han89] Thomas R. Hancock. Identifying decision trees with equivalence
queries. Technical report, Harvard University, 1989.

[HFAN98] Gerald Huck, Peter Fankhauser, Karl Aberer, and Erich J.
Neuhold. Jedi: Extracting and synthesizing information from
the Web. In Conference on Cooperative Information Systems,
pages 32-43, 1998.

[HGMC+97] Joachim Hammer, Hector Garcia-Molina, Junghoo Cha, Ar-
turo Crespo, and Rohan Aranha. Extracting semistructured
information from the Web. In Proceedings of the Workshop on
Management for Semistructured Data, 1997.

[Hig97] Colin De La Higuera. Characteristic sets for polynomial gram-
matical inference. Machine Learning, 27(2):125-138, 1997.

[HL98] Rainer Himmeroder and Bertram Ludascher. Querying the Web
with FLORID. In Grundlagen von Datenbanken, pages 47-51,
1998.

[HPRW96] Lisa Hellerstein, Krishnan Pillaipakkamnatt, Vijay Raghavan,
and Dawn Wilkins. How many queries are needed to learn?
Journal of the ACM, 43(5):840-862, 1996.

[IS93] y. Ishigami and S.Tani. The VC-dimensions of finite automata
with n states, volume Lecture Notes on Artificial Intelligence
744, pages 328-341. Springer Verlag, 1993.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An Introduction to
Computational Learning Theory. MIT Press, 1994.

[KWD97] Nickolas Kushmerick, Daniel S. Weld, and Robert B. Dooren-
bas. Wrapper induction for information extraction. In Intl.
Joint Conference on Artificial Intelligence (IJCAI), pages 729-
737, 1997.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
2(4):285-318, 1988.

[Lix05] Lixto Software GmbH. Lixto Visual Wrapper software, 2000-
2005. Homepage on http://www.1ixto.com.

http://www.1ixto.com.

BIBLIOGRAPHY 126

Object Model
Published on

[LPHOO]

[LSPS05]

[Mic04]

[MJ05]

[MK05]

[MS02]

[MT92]

[PW89]

[Rec98]

[Rec99]

Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled
wrapper construction system for Web information sources. In
IGDE, pages 611-621, 2000.

Martin Labsky, Vojtech Svatek, Pavel Praks, and Ondrej Svab.
Information extraction from HTML product catalogues: Cou-
pling quantitative and knowledge-based approaches. In Pro-
ceedings of the Dagstuhl Seminar on Machine Learning for the
Semantic Web, 2005.

Sun Microsystems. Java Swing library, 2004. Documentation
published on http://java.sun.com/j2se/1.5.0/docs/api/
j avax / swing/ text /html / package-summary. html.

Andrew McCallum and David Jensen. A note on the unification
of information extraction and data mining using conditional-
probability, relational models. In Proceedings of the Dagstuhl
Seminar on Machine Learning for the Semantic Web, 2005.

Matthew Michelson and Craig A. Knoblock. Semantic annota-
tion of unstructured and ungrammatical text. In Proceedings
of the Dagstuhl Seminar on Machine Learning for the Semantic
Web,2005.

Gerome Miklau and Dan Suciu. Containment and equiva-
lence for an XPath fragment. In Symposium on Principles of
Database Systems, pages 65-76, 2002.

Wolfgang Maass and Gyorgy Turan. Lower bound methods
and separation results for on-line learning models. Machine
Learning, 9(2-3):107-145, 1992.

L. Pitt and M. K. Warmuth. The minimum consistent DFA
problem cannot be approximated within any polynomial. In
STOG '89: Proceedings of the twenty-first annual AGM sym-
posium on Theory of computing, pages 421-432. ACM Press,
1989.

W3C Recommendation. Document
(DOM) Levell specification, 1998.
http://www.w3.org/TR/REC-DOM-Levell.

W3C Recommendation. XML Path Language (XPath), 1999.
Published on http://www.w3.org/TR/xpathj.

http://java.sun.com/j2se/1.5.0/docs/api/
http://www.w3.org/TR/REC-DOM-Levell.
http://www.w3.org/TR/xpathj.

BIBLIOGRAPHY 127

Object Model
Pu blished on

[Rec03]

[RS93]

[Sak90]

[Sha48]

[Tec05a]

[Tec05b]

[WFOO]

W3C Recommendation. Document
(DOM) Level2 HTML specification, 2003.
http://www.w3.org/TR/DOM-Level-2-HTM1.

Ronald 1. Rivest and Robert E. Schapire. Inference of finite
automata using homing sequences. Information and Computa-
tion, 103(2):299-347, 1993.

Yasubumi Sakakibara. Learning context-free grammars from
structural data in polynomial time. Theoretical Computer Sci-
ence, 76(2-3):223-242, 1990.

C.E. Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379-423 and 623-656, July and
October 1948.

Fetch Technologies. Fetch Agent platform, 1999-2005. Home-
page on http://www.fetch.com.

Kapow Technologies. Kapowtech Robosuite software, 2000-
2005. Homepage on http://www.kapowtech.com.

Ian H. Witten and Eibe Frank. Data Mining: Practical machine
learning tools with Java implementations. Morgan Kaufmann,
San Francisco, 2000.

http://www.w3.org/TR/DOM-Level-2-HTM1.
http://www.fetch.com.
http://www.kapowtech.com.

r- ------------

CURRICULUM VIT AB

Mgr. Michal Ceresna

Zelena 12

91501 Nove Mesto nad Vahom

Slovakia

Email: ceresna@dbai.tuwien.ac.at

Date of Birth: August 1st , 1978

Education
• Mgr. (the Slovak equivalent of B.S. + M.S.), Computer Science, Comenius

University, Bratislava, Slovak Republic, June 11th
, 2002.

• Student of Computer Science at Comenius University, Bratislava, Slovak
Republic, (Sept. 1996 - Jun. 2002).

• Specialization in artificial intelligence and mathematical methods of
computer science (cryptography, formallogic).

• Diploma thesis: "Computational model for analysis of natural
language" supervised by Prof. Jan Sefranek, submitted 31st March,
2002.

Non-native naturallanguages spoken: English, German.

Professional experience

Dec 1999-
present day

Technical University Vienna, Institute for Information Systems,
Database and Artificial Intelligence Group.

Research associate.

• Research in the areas of machine learning and information extraction,
implementation of a visually guided HTML wrapper induction
system.

mailto:ceresna@dbai.tuwien.ac.at

